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ABSTRACT

The Brahmaputra is the largest river in the Indian subcontinent and ranks fifth in the
world in terms of discharge. The specific yield from its catchment area is one of the
highest in the world due to incidence of very high rainfall on a narrow drainage basin.
Sigﬁiﬁcant areas of prime inhabited land are lost every year to river erosion in the
Brahmaputra basin. Furthermore, unrelenting bank erosion process has caused channel
braiding which created navigation bottle-neck zones in the Brahmaputra due to
inadequate draught during non-monsoon. For efficient management of prevailing
problem spanning over hundreds of kilometre length along the Brahmaputra, the need has
arisen for a convenient scientific methodology which can aid systematic monitoring of
braiding behaviour, help prioritization of erosion zones, and maintain navigational all-

weather fairway.

River morphological processes are among the most complex and least understood
phenomena in nature. Hence for addressing numerous related hydraulic engineering
problems, understanding flows through bpen channels, is of crucial importance. These
flows are typically turbulent and highly three- dimensional. Traditional approaches for
studying natural river flows and morpho-dynamics study are based on field
-measurements and laboratory experiments. Owing to site and event specific concerns,
field studies of natural open channel flows are very expensive, tedious and time
consuming. Similar problems are associated with laboratory physical model studies,
which suffer from scale effects owing to non- similarity of one or more dominant non
dimensional parameters. To overcome above shortcomings, developments of numerical

models that generally do not exhibit aforementioned difficulties are being stressed upon.

The geometric complexities induce very intricate three dimensional turbulent shear flows
which are characterized by secondary currents, vortex formation, flow reversal, and
anisotropy effects. Majority of existing numerical models have focused primarily on the
study of rivers of simplified geometries. The initial attempts in application of

mathematical models in conjunction with empirical functions obtained from laboratory



experiments to the investigation of morphological processes can be found in the 1950s.
Research in this direction was intensified and broadened in the 1970s and later. However
3-D numerical models are yet to be fully and adequately deveioped for channel with
complex geometry in macro scale river reaches. Solving the equations of motion in these

conditions is very difficult and computationally tedious.

In rivers where the width of the flow is large compared to its depth, the vertical
acceleration of water is negligible compared to the gravitational acceleration. In this
cohdition, the pressure distribution in depth can be assumed to be hydrostatic. Hence, in
order to ease the numerical complexity and without compromising much with the results,
the equations of motion can be integrated in depth to derive two-dimensional depth
averaged equations.- Wherever the channel domain becomes curvilinear in nature, either
well defined meanders, braiding, curved bank-lines or 3-D flow structures are bound to
develop on account of dominant secondary flows. The secondary flow is transverse
circhlation induced by centrifugal forces. Incorporating adequately the effect of
secondary flow further enhances the two dimensional modelling to assess the realistic
flow field. Thus, with less expensive numerical effort, a better and improved flow

scenario can be achieved without going into 3-D model development.
Problem identification

The Assam section of the Brahmaputra River is in fact, highly braided and characterized
by the presence of numerous lateral ars well as mid channel bars and islands (Goswami
and Das, 2000). Due to these facts, the research on Brahmaputra River in the past mostly
relied on field investigation and physical modelling. Only after 1980s, numerical
modelling, especially 1-D modelling has been gradually applied in flow simulation and
sediment prediction in Brahmaputra River (Sharma, 2004). Yet successful
implementation of 2-D depth averaged modelling in Brahmaputra River reaches in
Assam Flood Plains is hardly found in literature due to its highly complex topography
and difficulty in reproduction of geometric data mathematically. A number of
investigétions have been done so far to develop numerical models to represent the

processes involved in braided river. Correct process representation of the river

vi



morphology is yet to be achieved by improving fluvial features like impact of secondary
flow due to channel bends on the flow field. With this background, development of an
enhanced 2-D depth averaged numerical model and its application in identified reach of
Brahmaputra River is attempted to critically analyse the effect of flow features for better

understanding of braided river behaviour. -
Objective of the study

The ﬁrét objective of proposed research work was set with the application of principles
and practices of numerical model development, to derive the appropriate set of
mathematical expressions for the secondary flow correction (flow dispersion stress
fensor) for depth averaged 2-D model to be used for non-orthogonal curvilinear flow
domain. The second objective was to develop numerical algorithm using finite volume
method to solve conservative form of governing equations in non-orthogonal grids v;'fth
incorporated flow dispersion stress terms in momentum equations and compar'g?'the
results of flow model with and without flow dispersion for general curved channels.’?'The
third objective was to apply and verify the proposed numerical model for the
Brahmaputra River in selected reach and possible identification of braiding pattern with
variability in stage-discharge. The fourth objective was to evolve a simplified braiding
indicator to express the measure of braiding intensity for a river reach with incorporated

no flow zone within the flow domain.

The study area and data collected

The reach between measured cross sections number-22 (Pandu near Guwahati) to 9
(Jogighopa) released by Brahmaputra Board, G.O.I (spanning over approx. 100 km
length in Assam state of Indian Territory) is selected for this study. Fourteen measured
river cross-section data (Cross-section no. 22 to Cross section no. 9) for the year 1997
were used. Discharge data of the river Brahmaputra during 1997 was used in the study
(Central Water Commission and Brahmaputra Bbard, G.0.1). T_h'e' digital satellite data
comprising scenes of Indian Remote Sensing (IRS) Linear Imaging Self Scanner (LISS-
III) sensors for the year 1997 (Unpublished report of National Disaster Management

Authority, Govt. of India) for the study area, have been used. For model verification and
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evaluation, an experimental flume of test section (4.25mx0.15mx0.20m) comprised a

contraction in between with 0.002 m*/s of constant discharge was simulated.

Methodology

The boundary fitted coordinate system has been used to describe a naturaliy shaped
boundary to represent the complex flow domain. The &-axis is drawn along the channel
for a given channel shape and #- axis is set to intersect the &~axis, Then the plane (& #) is
divided into the structured cells to form the mesh for computations using Poisson’s
equation. The governing equations for estimating flow field are transformed from
Cartesian co-ordinate system to a Boundary fitted curvilinear co-ordinate system to
represent flow domain. Finite Volume Method conserves mass-momentum and can be
well applied for highly complex geometry using non-orthogonal grids. The flow field is
computed at geometric cell centers using the Finite Volume Method using SIMPLEC
algorithm. Rhie and Chow’s (1983) interpolation technique is used to estimate the
velocities at cell faces. The flow field and water depth are computed using the derived
transformed governing equations with special attention to boundary implementation. The
river braiding is simulated with incorporation of wetting and drying technique into the
numerical solver. A C++ computer code has been developed for numérical model to

simulate flow field and mesh generation.

Proposed governing equations

The governing equations for flow simulation are RANS (Reynolds Averaged Navier
Stokes) equations with depth averaged approximation of continuity and momentum
equation in generalized curvilinear coordinate system. Components of dispersion stress
terms are included in momentum transport equations as additional source/sink term. The
derivation of dispersion stress tensor is done step by step to get revised set of empirical
relations to be used in subsequent development of enhanced 2-D numerical flow model.
The derived expressions are modifications to earlier relevant investigations (Duan, 2004;
Duan and Julien, 2005). The proposed formulations are with simplified mathematical
representation and are numerically compatible. These also improved the flow field

simulation reasonably.
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Validation of the developed 2-D model and salient contribution of the present

research work

1-D flow models are insufficient to tackle problems of braided streams due to lack of
information with regard to transverse flow field. So, 2-D or 3-D models are used. 3-D

models are numerically expensive for macro scale river reaches. Hence, 2-D enhanced
eni;

o

model was developed. Most of the 2-D models developed especially for braiding rivers
did not account for secondary flow correction probably presuming these corrections to be
insignificant for turbulent flows and mild curved bank-lines. But in complex flow
situation with considerable braiding, the secondary flow correction is suitably justified to
achieve improved flow scenario with nominal additional expense in respect to
computational effort with including secondary flow correction using modified terms for

- dispersion stress tensor in the flow momentum equations.

&

Developed model was initially verified with flume experiment operating a flow with a
contraction, and the validation 6f the flow simulation was achieved. It is established from
the model application in laboratory flume that redistribution of flow concentration in
longitudinal and transverse directions are desirably accounted for, using the formulation
in curvilinear flow field and are well capable of assessing realistic flow prediction with

4

reasonable approximation.

The model developed in this study has been applied and verified in the selected stretch of
Brahmaputra River. It was observed that the effect of dispersion stress tensor in flow
field increases with increase in braiding intensity. The model results lend support to this
observation. When braiding intensity increases, it evolves multiple channels with
meandering configurations within the domain of stream flow. Meandering and bend' in
evolved multiple channels instigate more discrepancy in the flow-field, if it is
approximated with depth averaging'. Braiding induces severe bank ‘erosion, due to
dominant transverse flow field. So, improved and realistic flow-field estimation will lead
to realistic assessment of predictions of bank erosion and riirer bed evolution for braided
alluvial rivers. Better erosion models can be developed with reasonable accuracy using

estimated flow field as the prime input.



Based on the obtained results and information from flow simulation for twenty discharge
profiles at receding flood of 1997 for Brahmaputra River stretch under this study, an
indicator namely braid power is proposed based on the model output to express the

measure of braiding for a river reach as

braid powe r(N/m” -s) = Jur- flow Area of?%'ileat‘s;)f the Reach

where, f,r =Ratio of no flow zone area with respect to whole flow domain area, y=Unit
weight of water (N/m>) and S=Average longitudinal slope of the study reach. Flow area
(m?) is the cross-sectional flow area of the inlet boundary at the given discharge. It was
observed that braid power increases with decrease in incoming discharge into the reach at
a particular instance of time. The rate of decrease or increase of braid power depends
upon geometric configuration of the reach at the particular instance of time along with

other factors
Scope for future work and limitations

The numerical model developed in this research work is limited to flow field simulation
in rivers with highly complex geometries and braided configurations. The prime thrust of
the present research work is to bring to the fore persistent shortcomings in relation to
flow field estimation for rivers with highly braided configuration. The present research
work has desirably brought about a significant improvement in dominant transverse flow
field estimation in highly braided rivers. The transverse flow field is one of the
significant causative factors for stream bank erosion resulting in huge land loss around
the vicinity of braided rivers such as Brahmaputra River. However, to model bank
erosion and bed evolution with high degree of accuracy, after further research, a robust 2-
D sediment transport module with incorporated bank erosion mechanism, clubbed with
the present enhanced flow simulation model is required to be developed. To model the
moving boundaries, present developed model uses fixed boundary method through
implementation of wetting and drying technique including the whole flood plain under
the flow domain. However through conducting further research on advanced algorithm

using depth adaptive grid generation and temporal deformed mesh technique; a moving



boundary can possibly be implemented to simulate the multiple channels actual flow
zones instead of considering the whole flood plain. However, at present numerical
implementation of the aforesaid process is quite complex for highly braided rivers with

multiple channels like Brahmaputra and possibly be a potential area of research.
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CHAPTER-1

INTRODUCTION

1.1 GENERAL

Fluvial landforms are produced by the action of flowing water in the terrestrial
environment, whereas fluvial geomorphic processes are those natural processes that
produce, maintain and change fluvial landforms. The channel pattern or landform of a
reach of an alluvial river reflects the hydrodynamics of flow within the channel and the
associated processes of sediment transfer and energy dissipation. Channel patterns form a
continuum in response to varying energy conditions ranging from straight and
meandering to braided forms. Generally, braiding is favoured by high energy fluvial
environment with steeper gradients, large and variable discharges, dominant bed load
transport and non-cohesive banks lacking stabilization by vegetation (Richards, 1982).
The secondary flow component also contributes to the growth of channel deformations

(Bathurst ef al., 1979).

The Brahmaputra is the largest river in the Indian subcontinent and ranks fifth in the
world in terms of discharge. The specific yield from its catchment area is one of the
highest in the world due to incidence of very high rainfall on a narrow drainage basin.
Relentless stream-bank erosion along with flooding in the densely populated region of the
Brahmaputra basin in the Indian province of Assam has become one of the causative
factors for impoverishing a large segment of agrarian population every year. Significant
areas of prime inhabited land are lost every year to river erosion in the Brahmaputra basin
thereby impoverishing the affected people due to sudden loss of home and hearth.
Furthermore, unrelenting bank erosion process has caused channel widening which
created navigation bottleneck zones in the Brahmaputra due to inadequate draught during
non-monsoon. For efficient management of the Brahmaputra, the. need has arisen for a
convenient scientific methodology to understand its complex channel hydrodynamics,
which can aid systematic monitoring of bank-line changes, help prioritization of erosion

zones, and facilitate maintenance of navigation for all-weather fairway.



River morphological processes are among the most complex and least understood
phenomena in nature. Due to the fact that they intimately affect on our living conditions,
scientists and engineers have been looking for better tools to improve our understanding
and enhance the quality of our lives ever since the beginning of human civilization.
(Wang and Wu, 2004). Understanding flows through open channels, is of crucial
importance for addressing numerous hydraulic engineering problems. A prerequisite for
arriving at such optimal solutions is that the complex physics of open channel flows can
be understood. These flows, however, are typically turbulent, unsteady, and highly three-
dimensional; they often take place in stratified environments, and can involve multiple
phases. For that reason, their understanding continues to present hydraulic engineers with
rather formidable challenge. Traditional approaches for studying natural river flows and
morpho-dynamics study are based on field measurements and laboratory experiments.
Owing to site and event specific concerns, field studies of natural open channel flows are
very expensive, tedious and time consuming. Similar problems, although to a lesser
extent, are associated with laboratory physical model studies, which further suffer from -
scale effects owing to non-similarity of one or more dominant non dimensional
parameters. (Sinha et al., 1998). In order to overcome above shortcomings, development
of approaches that generally do not exhibit aforementioned difficulties were stressed
upon to provide practising engineers with effective tool in the form of numerical models

for understanding natural river flows in better way.

Although braiding seems to be best developed in rivers flowing over glacier outwash
plains or alluvial fans, perfect braiding is also found to occur in large alluvial rivers
having low slope, such as the Brahmaputra in Assam (India) and Bangladesh or the
Yellow River in China. The Assam section of the Brahmaputra River is in fact, highly
braided and characterized by the presence of numerous lateral as well as mid channel bars
and islands (Goswami and Das, 2000). Due to these facts, the research on Brahmaputra
River in the past mostly relied on field investigation and physical modelling. Only after
1980s, numerical modelling, especially 1-D modelling has been gradually applied in flow
simulation and sediment predfction in Brahmaputra River (Sharma, 2004). Yet success
fuil implementation of 2-D depth averaged modelling in Brahmaputra River reaches in

Assam Flood P’lains is hardly found in literature due to its highly complex topography
2



and difficulty in reproduction of geometric data mathematically.

1.2 NEED FOR 2-D OR 3-D MATHEMATICAL MODELLING OF
BRAIDED RIVERS ; |

The geometric complexities along with the changing upstream and downstream flow
conditions induce very complex three dimensional turbulent shear flows which are
characterized by secondary currents, vortex formation, flow reversal, and anisotropy
effects. The difficulty in modelling natural river flow is best underscored by the fact that
the vast majority of existing numerical models have focused primarily on the study of
rivers of simplified geometries. In 1-D mathematical modeling, a number of assumptions
are made to achieve feasible solution, yet information with regard to secondary flow field
especially transverse flow field is absent. The secondary flow including transverse ﬂow is
one of the important causative factors of relentless bank erosion due to severe braldmg
process in Brahmaputra. Where the flow scenario is within reach flows, and the geometry
is complex, at least a 2-D or even a 3-D treatment is required. 1-D modelling can neither
generate the bar pool riffle topography commonly found in natural rivers nor adequately
simulate the associated local variation in flow and sediment transport conditions..River
meanders and plan-form have strong circulation associated with bed topographw.,vg’i’th
water surface gradients and associated pressures. Flow field have both topographic;%as
well as bottom shear stress terms. It implies that application of CFD with topographing-
D modeling fails when there is significant flow variability in either the vertical or the
cross stream direction commonly associated with secondary circulation due to flow
curvature or turbulence. For predicting the magnitude and timing of an out of bank flow,
1-D models is adequate provided proper attention is given to cross-section spacing and
model calibration. However, where the interest lies within reach flow with variability,

one need a 2-D, if not a 3-D, treatment, (Bates, e al., 2005)

Several two-dimensional numerical models especially with braided/meandering
configuration have been developed to simulate braided rivers (Enggrob and Tjerry, 1999;
Lien et al,, 1999; Jang and Shimizu, 2007 etc.). However, vast majority of existing

numerical flow models have focused primarily on rivers of simplified geometries. More



recehtly, numerous 2-D and 3-D numerical-empirical models have been developed to
simulate morphological changes in channels with mobile bed and bank, both in the
laboratory and field. However, these models have some limitations when it comes to
treating relatively shallow, wide braided rivers with highly irregular bed profile and

complex bank-lines resulting in dominant transverse flow field.

1.3 NEED FOR ASSESSMENT OF SECONDARY FLOW IN
BRAIDED BRAHMAPUTRA RIVER

Secondary currents, occur in the plane normal to the axis of the primary flow, they
originate from interactions between the primary flow and gross channel features (Prandtl,
1952). Secondary transverse flow results from the imbalance between transverse water
surface gradient force and centrifugal forces over the depth due to vertical variation of the
primary flow velocity (Lien ez al., 1999). In braided rivers, most channel changes are
associated with changes in bed morphology, which occur at high discharges, observation
is very difficult (Smith, 1970). Any mention of secondary currents in braided systems has
been restricted to areas of channel confluence, and the effect of secondary currents in
bifurcations and around braid bars has been largely neglected (Saﬁkhua, 2005). A number
of attempts have been done to catch the realistic flow field including transverse
components in complex geometry like bends, curves (Lien et al., 1999; Odgaard, 1989a;
Duan, 2004; Seo et al., 2008). However, assessment of flow-field in braided river with
‘secondary flow correction’ in complex géometry is hardly found in literature. Estimation
of an improved flow field in braided river is expected to lead to realistic assessment of

bed changes and bank erosion in braided rivers.
1.4 EARLIER RESEARCH

The difficulty in modelling natural river flow is best underscored by the fact that the vast
majority of existing numerical models have focused primarily on the study of rivers of
simpliﬁed geometries. The initial attempts of significance in application of mathematical
models in conjunction with empirical functions obtained from laboratory experiments to

the investigation of morphological processes can be found in the 1950s. Later, the



research was intensified and broadened in the 1970s. Since then, a number of 1-D models
(e.g., Cunge et al., 1980; Thomas, 1982; Rahuel ef al., 1989; Wu and Vieira, 2002) were
applied to sedimentation studies in reservoirs and rivers. More recently, numerous 2-D
and 3-D numerical-empirical models (e.g., Sheng, 1983; Wang and Adeff, 1986;
Spasojevic and Holly, 1993; Jia and Wang, 1999; Wu et al., 2000,) have been developed
to simulate sediment transport processes and morphological changes in channels with
mobile bed and bank, both in the laboratory and nature. Flow in nature is three
dimensional and usually turbulent. 3-D numerical models have been developed
(Leschziner and Rodi, 1979; Shimizu ef al., 1990; Sinha e al., 1998) to simulate spiral
motion/secondary flows. However, 3-D numerical models are yet to be fully and
adequately developed for channel with complex bathymetry in long river reaches. In
many cases the geometry of the flow boundaries is very complex. Solving the equations
of motion in these conditions is very difficult and computationally tedious. Inrivers -
where the width of the flow is large compared to its depth, the vertical acceleratic')g.‘. of
water is negligible compared to the gravitational acceleration. In this condition,-‘:,‘.[he
pressure distribution in depth can be assumed to be hydrostatic and the equationé of
motion can be integrated in depth to derive two-dimensional depth averaged equations.
Irregular boundaries of rivers, however, add to the complexity of these models (Zarrati er
al., 2005).

¥,
i

Understanding the processes of morphological behavior in braided rivers is Véry
important for river engineering purposes and prevents disasters from flood, bank erosion
and environmental purposes to maintain river ecosystem. The morphological changes of
rivers are deeply interrelated to the bed deformation and bank erosion because of the
mutual relationship between water flow and sediment transport. In the process of channel
development, bars emerge under certain hydraulic conditions as the channel widens from
an initially straight channel, with erodible bed and banks (Jang and Shimizu, 2007).
Previous investigations examined the mechanical processes of channels with erodible
banks theoretically (Ikeda et al., 1981; Parker et al., 1982), and have provided a method
to reproduce lateral changes in the channel. In due course, several numerical models have
been developed to reproduce braided rivers with fixed banks (Murray and Paola, 1994)

and with erodible banks (Sharma, 2004). Numerical models to reproduce the evolution of
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meandering channels, taking bank erosion into consideration, have been developed for
beds and banks made of uniform sediment (Shimizu et al., 1996; Nagata et al., 2000).
Murray and Paola (1994, 1997) reproduced the spatial and temporal features of braided
rivers using a relatively simple cellular numerical model in a fixed grid system. Two-
dimensional numerical models have been developed to simulate braided rivers (Enggrob
and Tjerry, 1999; McArdell and Faeh, 2001; Shimizu et al., 2001). However, these
models have some limitations when it comes to treating a relatively shallow, wide
channel with moving boundaries due to channel widening, i.e. braided rivers with
unconstrained banks. Jang and Shimizu (2005a) proposed a numerical model to simulate
braided rivers with erodible banks, and showed the possibility of simulating braided
rivers considering bank erosion. Jang and Shimizu (2005a, 2005b and 2007) developed a
two dimensional model to simulate the processes of channel évolution from an initially
straight channel with relatively high width to depth ratio and erodible banks composed of
non-cohesive materials. However, this model had not been verified for a natural braided
river with complex bathymetry although model results were compared with laboratory
experiments. Jang and Shimizu (2007) found some discrepancies in the model and
attributed  these discrepancies in computed results to assumed parameters, initial

conditions and three dimensional flow features at confluences.
1.5 PROBLEM IDENTIFICATION

As one can observe, a number of investigations have been done so far to develop
numerical models to represent the processes involved in wide braided river, correct
process representation of the river morpho-dynamics is yet to be achieved by improving
features like impact of secondary flow due to channel bends and turbulence on flow field.
The intense braided rivers, like the Brahmaputra are hydraulically less efficient, and the
formation of braid bars plays an important role in the dissipation of the energy due to
friction.

In the above backdrop, the intense variability and complexity of the fluvio-morphological
features of the Brahmaputra River is attempted to be captured in sufficient details with

development of 2-D depth averaged hydrodynamic numerical model in identified reaches



for Brahmaputra River extracted with remote sensing data analysis to critically analyse

the effect of flow features for better understanding of braided river behaviour,

1.6 OBJECTIVE OF THE STUDY

In line with the aforementioned strategy, in the proposed research work, the following

objective(s) are set in the mind with the application of updated principles and practices of

numerical model development for fluvial morpho-dynamics as well as remote sensing

data usage.

ii.

iif.

iv.

To derive the appropriate set of mathematical expressions for the secondary flow
correction (flow dispersion stress tensor) for depth averaged 2-D model to be used

for non-orthogonal curvilinear flow domain.
_-}»" )
Development of numerical algorithm using finite volume method to solve

conservative form of governing equations in non-orthogonal grids: “;lth
incorporated flow dispersion stress terms in momentum equations and compare
the results of flow model with and without flow dispersion for general curved

channels.

Application and verification of the 'proposed numerical model for the
Brahmaputra River in selected reach and possible identification of braiding

pattern with variability in stage-discharge.

To evolve a simplified braiding indicator to express the measure of braiding

intensity for a river reach with incorporated no flow zone within the flow domain.

1.7 THE STUDY AREA

The reach between measured cross sections number-22 (Pandu near Guwahati) to 9

(Jogighopa) released by Brahmaputra Board, G.0O.I. (spanning over approx. 100 km

length in Assam state of Indian Territory) is selected for flow simulation.

1.8 DATA COLLECTED AND USED



Fourteen measured river cross-section data (Cross-section no. 22 to Cross section no. 9)
for the year 1997 were used. Discharge data of the river Brahmaputra during 1997 was
used in the study (Central Water Commission and Brahmaputra Board, G.0O.l). The
digital satellite data comprising scenes of Indian Remote Sensing (/RS) Linear Imaging
Self Scanner (LISS-III) sensors for the year 1997 (Unpublished report of National
Disaster Management Authority, Govt. of India) for the study area, have been used.

For proposed model verification and evaluation, an experimental flume of test section
(4.25mx0.15mx0.20m) comprised a contraction in between with 0.002 m%/s of constant

discharge was simulated.
1.9 THE METHODOLOGY

The boundary fitted coordinate system has been used to describe a naturally shaped
boundary to represent the complex flow domain. The &-axis is drawn along the channel
for a given channel shape and #- axis is set to intersect the ¢-axis, Then the plane (& 7) is
divided into the structured cells to form the mesh for computations using Poisson’s
equation. The governing equations for estimating flow field, transformed from Cartesian
co-ordinate system to a Boundary fitted curvilinear co-ordinate system have been used to
represent flow domain. Finite volume method conserves mass-momentum and can be
suitably applied for highly complex geometry using non-orthogonal grids. The flow field
is computed at geometric cell centers using the Finite Volume Method using SIMPLEC
algorithm. Rhie and Chow’s (1983) interpolation technique is used to estimate the
velocities at cell faces. The flow field and water depth are computed using the derived
transformed governing equations with special attention to boundary implementation. The
river braiding is simulated with incorporation of wetting and drying technique into the
numerical solver. A C++ computer code has been developed for numerical model to

simulate flow field and mesh generation.

1.9.1 PROPOSED GOVERNING EQUATIONS

The governing equations for flow simulation are RANS (Reynolds Averaged Navier

Stokes) equations with depth averaged approximation of continuity and momentum



equation in generalized curvilinear coordinate system. Components of dispersion stress
terms are included in momentum transport equations as additional source/sink term, The
derivation of dispersion stress tensor is done step by step to get revised set of empirical
relations to be used in subsequent development of enhanced 2-D numerical flow model.
The derived expressions are modifications to earlier relevant investigations (Duan, 2004;
Duan and Julien, 2005). The proposed formulations are with simplified mathematical
representation and are numerically compatible. These also improved the flow field

simulation reasonably.

1.10 OUTCOME OF THE DEVELOPED 2-D MODEL AND SALIENT
CONTRIBUTION OF THE PRESENT RESEARCH WORK

1-D flow models are insufficient to tackle problems of braided streams due to lack of
information with regard to transverse flow field. So, 2-D or 3-D models are used. -3-D
models are numerically expensive for macro scale river reaches. Hence, 2-D enhaand
model was developed. Most of the 2-D models developed especially for braiding rix{érs
did not account for secondary flow correction probably presuming these corrections to be
insignificant for turbulent flows and mild curved bank-lines. But in complex flow
situation with considerable braiding, the secondary flow correction is suitably Justified;to
achieve improved flow scenario with nominal additional expense in respect ;o
computational effort with including secondary flow correction using modified terms f;)r

dispersion stress tensor in the flow momentum equations

Developed model was initially verified with flume experiment operating a flow with a
contraction, and the validation of the flow simulation was achieved. It is established from
the model application in laboratory flume that redistribution of flow concentration in
longitudinal and transverse directions are desirably accounted for, using the formulation
in curvilinear flow field and are well capable of assessing realistic-flow prediction with

reasonable approximation.

The model developed in this study has been applied and verified in-the selected stretch of

Brahmaputra River. It was observed that the effect of dispersion stress tensor in flow



field increases with increase in braiding intensity. The model results lend support to this
observation. When braiding intensity increases, it evolves multiple channels with
meandering configurations within the domain of stream flow. Meandering and bend in
evolved multiple channels instigate more discrepancy in the flow-field, if it is
“approximated with depth averaging. Braiding induces severe bank erosion, due to
dominant transverse flow field. So, improved and realistic flow-field estimation will lead
to realistic assessment of predictions of bank erosion and river bed evolution for braided
alluvial rivers. Better erosion models can be developed with reasonable accuracy using

estimated flow field as the prime input.

Based on the obtained results and information from flow simulation for twenty discharge
profiles at receding flood of 1997 for Brahmaputra River stretch under this study, an
indicator namely braid power is proposed based on the model output to express the

measure of braiding for a river reach as follows.

7Qinlet S

" flow Area of Inlet of the Reach

Where, f,r =Ratio of no flow zone area with respect to whole flow domain area, y=Unit

braid power(N/m? -s) =

weight of water (N/m?®) and S=Average 'longitudinal slope of the study reach. Flow area
(m?®) is the cross-sectional flow area of the inlet boundary ét the given discharge. It was
observed that braid power increases with decrease in incoming discharge into the reach at
a particular instance of time. The rate of decrease or increase of braid power depends
upon geometric configuration of the reach at the particular instance of time along with

other factors

1.11 LIMITATIONS AND SCOPE FOR FUTURE WORK

The numerical model developéd in this research work is limited to flow field simulation
in rivers with highly complex geometries and braided configurations. The prime thrust of
the present research work is to bring to the fore persistent shortcomings in relation to
flow field estimation for rivers with highly braided configuration. The present research
work has desirably brought about a significant improvement in dominant transverse flow

field estimation in highly braided rivers. The transverse flow field is one of the
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significant causative factors for stream bank erosion resulting in huge land loss around
the vicinity of braided rivgrs such as Brahmaputra River. However, to model bank
erosion and bed evolution with high degree of accuracy, after further research, a robust 2-
D sediment module with incorporated bank erosion mechanism, clubbed with the present
enhanced flow simulation model is required to be developed. To model the moving
boundaries, present developed model uses fixed boundary method through
implementation of wetting and drying technique including the whole flood plain under
the flow domain. However through conducting further research on advanced algorithm
using depth adaptive grid generation and temporal deformed mesh technique; moving
boundary can possibly be implemented to simulate the multiple channels actual flow

zones instead of considering the whole flood plain. However, at present numerical

implementation of the aforesaid process is quite complex for highly braided rivers with

| multiple channels like Brahmaputra and possibly be a potential area of research.
1.12 ORGANISATION OF THESIS

The chapters are organized in the following way

Chapter -1 Description of introductory aspects of the topic studied, underlying

.

objectives and the layout of the thesis.

Chapter-2 Presentation of a relevant comprehensive review of literature and in

addition the objective of the present study is also explained.
Chapter-3 Description of the study area

Chapter-4  Presentation of development of modified dispersion stress tensor in two

dimensional curvilinear flow field

Chapter -5 Presentation of formulation of 2-D depth averaged equations for

curvilinear domain

Chapter- 6 Presentation of numerical development of mesh generation algorithm for

complex physical domain
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Chapter-7  Presentation of numerical 2-D hydrodynamic model development for

braided river with complex flow domain

Chapter-8  Data acquisition, pre-processing and application

Chapter-9  Presentation of evaluation of the developed numerical model

Chapter-10 Presentation of results and analyses of 2-D flow simulation for

Brahmaputra River stretch

Chapter- 11 Presentation of conclusions and scope for future work

Bibliography

Furthermore, at the end of the thesis eight annexure are placed for ready reference.

Appendix I

Appendix IT
Appendix- III
Appendix-IV
Appendix-V
Appendix-VI
Appendix —VII

Appendix -VIII

Derivation of Duan (2004)’s dispersion tensor

Derivation of stream wise and transverse angles (6s, and 6n),

trapezoidal rule with non uniform Ay for area computation.

Scanned soft copy of standard Brahmaputra map showing chainage

and bearings of pre-defined cross sections

Graphical data for fourteen field measured predefined cross

sections

Graphical processed data for normalized measured cross sections

for the image extracted flow domain

Salient features and computer code modules in C++ programming

language on numerical solution for mesh generation/ flow model.

Summarized experimental laboratory data for conducted

experiment and model results.
List of relevant communicated research papers
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CHAPTER-2

LITERATURE REVIEW

2.1 INTRODUCTION

The study 6f alluvial river attempts to explain and describe the typical features of the
river. These features appear as a result of cdmplex dynamics of flow over a mobile bed.
Channel morphology changes with time and is affected by water and sediment discharge
including sediment characteristics, composition of bed and bank materials, and
vegetation. The prediction and post-diction of fluvial system behaviour is greatly
complicated by the variability of fluvial system morpho!ogy and dynamics through time.
Moreover, most rivers have been affected by human interventions to one degree or
another, so their current condition results from the interplay of the river and social system
Within the river system flow regime (Q) and sediment load (Qs) from the basin are the
independent variables that largely determine alluvial channel form as reflected in the
adjustments of dependent variables of width, depth, grain size, and pattern (Kondolf et
al., 2003). Channels change in different ways through the process of erosion and
deposition. Yet considerable uncertainty in its prediction for non-uniform sediments is
experienced (Patel ef al,, 2010). It is often difficult to mathematically represent sedifiient
Process into the river modelling. Almost in all cases, river bed profiles are irregular in_
shape and size. For representing these profiles, mathematical functions are generally ‘used‘
in the conventional methods of idealization. But, the representation becomes difficult
when the river geometry exhibits significant variability and complex patterns. The
Complexity in representing this information is made somewhat easier and quick by
application of remote sensing technique clubbing with 2-D hydrodynamic mathematical
modeling for better understanding of channel hydrodynamics. A thorough understanding
of the morphology of alluvial streams presupposes detailed knowledge of their plan-form

characteristics. The plan-form of alluvial streams can be classified into the following

three categories:

2.1.1. BRAIDED STREAM



A braided stream can be defined as one which flows in two or more channels around
alluvial islands. Leopold and Wolman (1957) stated that braided pattern in alluvial stream
develops after local deposition of coarse material, which cannot be transported under
local conditions of flow existing within the reach. This coarse material becomes the
nucleus for a bar formation, and subsequently grows into an island made up of coarse as
well as fine material. The formation of the bar deflects the main stream towards the banks

and may cause bank erosion.
2.1.2. MEANDERING STREAMS

A sinuous channel is called meandering stream. It consists of regular or irregular pattern
of loops and a distinct sinuous plan-form. A meandering river has a single flow channel,

while a braided river has a number of channels (Richards, 1982).

Leopold and Wolman (1957) have defined sinuosity of a stream as the ratio of the
thalweg length to the valley length (Figure 2.1). They have arbitrarily classified streams
with sinuosity greater than 1.5 as meandering streams. Friend and Sinha (1993) defined

the meandering parameter (Sinuosity) as modified sinuosity parameter, and presented as
P = Lomad Lr | 2.1)

where, P = Modified Sinuosity Parameter, Lc,,,ax. = mid-channel of the widest channel,
where, there is more than one channel and Lg = overall length of the meander belt reach

measured along a straight line (Sankhua, 2005).

l-' <tk

Sinuosity P = Lgye flr

Figure 2.1 Schematic diagram representing the computation of sinuosity for single
channel and multi-channel rivers
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2.1.3. STRAIGHT STREAMS

A stream in this classification refers to one that does not have a distinct meandering
pattern. It is extremely difficult to find straightv reach of stream over large lengths.
Straight reach implies neither constant depth of the channel nor a straight thalweg. Even
though the channel is straight; the line of maximum depth commonly known as thalweg

moves from one bank to another bank (Richards, 1982).

2.2 MEASURE OF THE BRAIDING INTENSITY AND EXISTING
BRAIDING INDICATORS

Several past studies had presented discrimination between the straight, meandering, and
braided streams on the basis of discharge and channel slope. Lane (1957) suggested the

following criterion for the occurrence of braiding.

S > 0.004 (Qm)*> (22

Where, Q,, = mean annual discharge; and S = channel slope.

Using bank full discharge Qp, Leopold-Wolman in 1957 (Richards, 1982) proposed the

relationship for braiding to occur, which also predicts braids at higher slopes and

discharges:

W’

S>0.013Q, " | (2.3)
Where, Q, = bank full discharge. | |

Antropovskiy (1972) developed the following criterion for the occurrence of braiding
S>1.4Q," | 2.4

Leopold-Wolman (1957) also indicated that braided and meandering streams can be

separated by the relationship:

S=0.06 Q%% (2.5)

where, S = channel; and Q = water discharge.

15



However, these indicators have been criticized by Schumm and Khan '(1972)Aas none of
these recognizes the importance of sediment transport. These results imply a higher
power expenditure rate in braided streams, a conclusion reinforced by Schumm-Khan’s
(1972) flume experiments. However, none of these investigators recognizes the control of
channel pattern by sedimentology. Since, bed material transport and bar formation are
necessary in both meander and braid development processes, the threshold between the

patterns should relate to bed load.

Henderson (1961) re-analyzed Leopold-Wolman's data to derive an expression including

dso, median grain size (mm):
S > 0.002 dso '1° Q, 046 (2.6)
Where, dso = median grain size

According to Eq. (2.6), a higher threshold slope is necessary for braiding in coarse bed
materials. Bank material resistance affects rate of channel migration and should also
influence the threshold, although its effect may be difficult to quantify and also be non-

linear since greater stream power is required to erode clays and cobbles than sands.

Parker's stability analysis (1976) indirectly illustrates the effects of bank material

resistance by defining the meander - braid threshold as:
S/F, =D/B 2.7

where, D = mean depth of the flow; B = width of the stream, and Fr = Froude number.
However, depth, width and Froude number may be expressed in terms of discharge and
bank silt-clay percentage, as suggested by Schumm (Richards, 1982). Meandering occurs
when S/Fr < D/B, braiding occurs when S/Fr > D/B, and transition occurs in between

S/Fr ~ D/B.

Ferguson (1981) suggésted for braiding to occur, which predicts steeper threshold slopes

for braiding in channels with resistant silty banks.

$>0.0028(Qp) ***B.>%° | (2.8)

16



where, B, = percentage of silty clay content in the bank material.

Measures of the degree of braiding generally fall into two categories:

(i) the mean number of active channels or braid bars per transect across the channel belt
and

(ii) the ratio of sum of channel lengths in a reach to a measure of reach- length (total
sinuosity). The sinuosity, P is thalweg length / valley length.

Smith (1970) illustrated the measurement of cross-section bed relief, measured by the
index.

2[(T1 + T2 .......Tn) -(tl +t2 + 13 +.......tn)] *Te,,Te,
B, (2.9)

BRI =

where, T; = height maxima between hollows, t; = minima between peaks, B;= transect

length and T, = end heights.

Sharma (2004) developed Plan Form Index (PFI), Flow Geometry Index (FGI),, qqd
Cross-Slope ratio for identifying the degree of braiding of highly braided river. He
mentioned that the braided channels are hydraulically less efficient. Also, the formation
of braid bars plays an important role in the modification of the energy losses due to
friction. With a view to incorporating the effect of the above hydraulic variables, he

proposed new indices namely PFI, FGI and Cross- Slope formulae have been éiven

below:
Lx 10
Plan Form Index=8___ - (2.10) .
N
Flow Geometry Index = [L_‘_"_f_ﬁ] x N (2.11)
: W x D
By
Cross-Slope = 2 ' (2.12)

(Bank level — Av. bed level )

where, T = flow top width (m), B= overall width of the channel (m), B;= transect length
across river width, N= number of braided channel, d; and x; are depth and top lateral

distance of submerged sub-channel, and D = hydraulic mean depth.
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Figure 2.2 Definition sketch for PFI

Plan Form Index (PFI) in Eq. (2.10) (Definition sketch as shown in Figure 2.2) reflects
the fluvial landform disposition with respect to a given water level and its lower value is
indicative of higher degree of braiding. It is expressed in percentage, which shows the
fluvial landform disposition with respect to a given water level and its lower value
indicates higher degree of braiding. For providing a broad range of classification of the
braiding phenomenon, the following threshold values for PFI are proposed by Sharma
(2004).

Highly Braided: PFI<4
Moderately Braided: 19> PFI> 4
Low Braided: PFI> 19

Braided river reaches and alluvial systems are abundant in many areas. They are
characterized by their multi-threaded plan-form, and are agents of substantial sediment
transport, erosion and deposition. The high rates of sediment transport, erosion and
deposition, and the frequent shifting of river channel positions in braided rivers pose
many problems to a whole range of disciplines. Despite this importance, they have been
relatively neglected in academic study when compared with the wealth of material on
meandering rivers. The majority of studies to-date have been qualitative in nature, with

Howard et al. (1970) and Murray and Paola (1994) being notable exceptions.

The neglect of braided river study is partly due to the difficulty of undertaking field work
~and characterizing complex features. Although, advances have been made in the
qualitative understanding of flow and sediment processes in braided systems, Bristow and

Best (1993) have identified several key issues that remain to be addressed, such as (a) the
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mechanisms of braid bar genesis and evolution, (b) flow and sediment dynamics at
bifurcations and confluences, (c) the influence of flow stage on plan-form development,
(d) the implications of a channel hierarchy system found over a range of channel scales
and (e) the influence of secondary currents on the morphological development of braid

bars.

Many of the existing braid indicators do not adequately account for the hydraulic
parameters and the underwater bars, both of which are seen to have a close relationship
with the braiding process. Hence, it can be concluded that there is still a need to
formulate new braid indicators by incorporating the above indicators to have a more
rational description of the braiding phenomenon. However, newer braiding indicator
proposed by Sharma (2004) was used to evaluate the efficacy of its rational use in real
physical scenario using temporal as well as spatial remote sensing data analysis of

Brahmaputra River (Sharma and Akhtar, 2010).

2.3 NEED FOR 2-D OR 3-D MATHEMATICAL MODELLING OF
BRAIDED RIVERS

The geometric complexities along with the changing upstream and downstream flow
conditions induce very complex three dimensional turbulent shear flows which are
characterized by secondary currents, vortex formation, flow reversal, and énisotropy
effects. The difficulty in modelling natural river flow is best underscored by the fact that
the vast majorify of existing numerical models have focused primarily on the study of
rivers of simplified geometries. In 1-D mathematical modelling, a number of assumptions
are made to achieve feasible solution, yet information with regard to secondary flow field
especially transverse flow field is absent. The secondary flow including transverse flow is
one of the important causative factors of relentless bank erosion due to severe braiding
process in the Brahmaputra. Where the flow scenario is within reach flows and the
geometry is complex, at least 2-D or even a 3-D treatment is required. 1-D modelling can
neither generate the bar pool riffle topography commonly found in natural rivers nor
adequately simulate the associated local variation in flow and sediment transport

conditions. River meanders and plan-form have strong circulation associated with bed
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topography with transverse water surface gradients and associated pressures. Resulting
flow field has both topographic as-well as bottom shear stress terms. It implies that
application of CFD with topographic I-D modelling fails when there is significant flow
variability in either the vertical or the cross stream direction commonly associated with
secondary circulation due to flow curvature or turbulence. For predicting the magnitude
and timing of an out of bank flow, 1-D models are adequate (provided proper attention is
given to cross-section spacing and model calibration). However, where the interest is
within reach flow with variability, one needs a 2-D, if not a 3-D, treatment (Bates, et al.,

2005).

Several two-dimensional numerical models have been developed to simulate braided
rivers (Enggrob and Tj‘erry, 1999; Lien et al., 1999 etc.). However, vast majority of
existing numerical flow models have focused primarily on rivers of simplified
geometries. More recently, numerous 2-D and 3-D numerical-empirical models have
been developed to simulate morphological changes in channels with mobile bed and
bank, both in the laboratory and field. However, these models have some limitations
when it comes to treating relatively shallow, braided rivers with highly irregular bed

profile and complex bank-lines resulting in dominant transverse flow field.

2.4 INFLUENCE OF SECONDARY CURRENTS IN BRAIDED
CHANNELS

Secondary currents have originally been defined by Prandtl (1952) as currents, which
occur in the plane normal to the axis of the primary flow, they originate from interactions
between the primary flow and gross channel features. Two types of secondary currents

have long been recognized; skew induced and stress induced secondary currents.

There have been few field and laboratory investigations of flow structures in braided
rivers and as a consequence their link to braided morphology is little understood. Unlike
meandering single-thread rivers, in which observations of key flow processes can be
undertaken over a range of flow stages, in braided rivers most channel changes are
associated with changes in bed morphology, which occur\at high discharges when

observation is very difficult (Smith, 1974; Rust, 1978b). Any mention of secondary
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currents in braided systems has been restricted to areas of channel confluence, and the
effect of secondary currents in bifurcations and around braid bars has been largely

neglected(Sankhua, 2005).

Mosley (1976) reported the presence of helical flow at channel confluences in a general
flume experiment of confluence behaviour. Using dye injection to visualize flow patterns;
he observed that the pattern of secondary flow at channel confluences consisted of a pair
of helical cells, converging in the channel centre over the point of maximum scour and
diverging at the bed. He concluded that the observed helical flow pattern resulted in
steepening of the scour walls beyond their natural angle of repose, giving rise to their
characteristic avalanche faces. Mosley further stated that the helical flow structure
resulted in most of the sediment transport in the confluence occurring at the channel
fringes away from the area of maximum scour. There is also evidence found for smaller
cells of reverse rotation further downstream from the channel confluence, resulting in
elevated portions of the bed flanking the channel centre line. Mosely (1976) observed that
this secondary flow pattern resulted in high rates of sediment transport restricted to the

zones between opposing cells.

Best and Roy (1991) proposed that these secondary flow patterns are the result of
horizontal separation vortices formed in the toe of the avalanche faces at the entrance to
the confluence, particularly when the converging channels are of unequal depth. Another
probable cause of the helical circulation is the same mechanism that causes helical flow
in meander bends, i.e. the relationship between the outwardly directed centrifugal force
and the inwardly directed pressure gradient force caused by super-elevation. In the case
of channel confluences the centrifugal force would be acting towards the confluence
centre and the pressure gradient force would be acting towards the confluence fringes.
Mosley (1976) observed a degree of super-elevation in the centre of their model
confluences. Ashmore et al. (1992) proposed that the flow separation at the confluence
entrance probably reinforced, rather than replaced, the circulation due to channel

curvature.
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Ashmore et al. (1992) carried out a field investigation of secondary flow patterns in river
confluences on the gravely SunWapta River, Alberta. They confirmed for the first time in
a real river the existence of the secondary flow patterns observed in laboratory
experiments by Mosley (1976). Ashmore et al.(1992) made measurements in two Y
shaped anabranch confluences at relatively high discharge levels and found that the
pattern of secondary flow observed in laboratory experiments existed in both of the
surveyed cross-sections, although the pattern was much stronger in one of the
confluences. In both confluences, the larger of the two helical cells tended to dominate
-the other in the downstream direction. They conceded that the methods employed to
correct velocities in meandering rivers were inappropriate for braided rivers and as a

result the flow patterns reported may be susceptible to small errors.

2.5 MODELLING OF BRAIDED RIVER

2.5.1 BACKGROUND OF NUMERICAL MODELLING

Numerical analysis of fluid flow in complex geometrical domains has been the focus of
quite a few researchers in the past decade. Such flows typically are representative of
those situations occurring in a numerous variety of practical engineering problems.
Examples can be found in such diverse areas as aerodynamics, meteorology, nuclear
reactor design, ‘compact heat exchangers, turbo-machines, the cooling of electronic
packages and river hydrodynamics. The numerical prediction of fluid flow has evolved
over the last two decades into an established field known as Computational Fluid
Dynamics and often referred to by the acronym CFD and within its domain, in case of

river hydraulics, it is popularly known as computational river mechanics.

Numerical codes are structured around the numerical algorithms that deal with fluid flow
problems. There are four major streams of numerical solution techniques: finite
difference, finite volume, finite element, and spectral methods. All numerical methods

that form the basis of the solver follow the same steps. These steps are:

2. 5.1.1. Domain discretization
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Division of the computational domain into several control volumes, location of nodes at
the geometric center of the control volumes, and systematic numbering of nodes
constitutes domain discretization. Nodes are the locations (points) where unknowns are

calculated.
2.5.1.2 Development of discretization equations

In this step the exact mathematical operations, such as partial derivatives, are converted

to approximate algebraic expressions at various nodes.
2.5.2.3 Solution of discretization equations

A set of linear equations, obtained as a result of step mentioned in above section-2.5.1.2,
are solved to obtain the values of the variables at various nodes. The manner in which the
discretization equations are obtained determines the technique. For example in the finite
difference technique the discretization equations are obtained by differentiation. In the
finite element technique the discretization equations are obtained by integration. In the
finite volume technique the discretization equations are obtained by a combination of
differentiation and integration. Finite Volume and finite element are the two
methodologies employed most commonly in broader field of Computational Fluid
Dynamics (CFD). With regard to the task of computing flows in complex geometries, the

finite element method appears to be the most natural tool, because of its better geom;étric

flexibility.

2.52 REVIEW ON NUMERICAL MODEL DEVELOPMENT IN RIVER
MECHANICS

Fluvial geo-morphologists are increasingly using computational fluid dynamics methods
to improve understanding of the interactions between channel morphology, discharge,
flow structure and sediment transport. If such models can provide an adequate
representation of key processes, they have the potential to increase significantly our
understanding of river channel dynamics. First, they may increase the spatial density of
information beyond what is possible through field measurement. Process investigation in

the field is largely based upon point measurement of velocity or sediment transport
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processes. A large number of sample sites may be required to obtain . sufficient
representation of spatio-temporai process characteristics, and this takes time, over which
the processes themselves may change (Lane ef al., 1999). River morphodynamics is the
interaction between hydrodynamics, sediment transport, bank erosion and bed
morphology. As a consequence of this interaction, planform migration of the river due to
erosion of the banks, widening of the river, degradation and aggradation of the bed,
evolution of bedforms and variations in suspended concentrations may result (Abad ef al.,
2007). To analyse these processes, several approaches have been developed. Theoretical
approaches such as Ikeda ef al. (1981), Johannesson and Parker (1989a), Parker et al.
(1982) and Seminara et al. (2001) for the case of models in meandering rivers,
| experimental such as Guy et al. (1966), Hooke (1974) and Garcia and Nino (1993) where
bed morphology has been studied under fixed-bank meandering channels, or numerical
models such as Lyn (1987), Celik and Rodi (1988), Correia et al. (1992), Howard (1992),
Jin and Steffler (1993), Mosselman (1998), Nagata et al. (2000b), Duan et al. (2001), Sun
et al. (2001a), Cao et al. (2002), Darby and Delbono (2002), Kassem and Chaudhry
(2002), Soulis (2002), Wilson et al. (2003), Duc et al. (2004) and Vasquez (2006) where
applications of models have been presented. The hydrodynamics and morphodynamics of
a meandering channel are physically complex, involving diverse phenomena such as
secondary flows (also known as helical flow or spiral flow), turbulent flows, sediment
transport and bank erosion processes. The Computational Fluid Dynamics (CFD) field
has been an area of constant improvement, where high-resolution and detailed studies to
describe the mean and turbulence structures of laboratory and natural channels have been
carried out successfully. For the case of solely meandering configurations, Leschziner
and Rodi (1979) conducted 3-D modelling of a single constant-curvature bend
(Rozovskii, 1957) under flat conditions, Morvan et al.(2002) presented a 3-D
hydrodynamic model of a meandering compound channel under flat conditions, Wu ez al.
(2000) presented a 3-D numerical model for hydrodynamic and sediment transport
modelling of a single bend (Odgaard and Bergs, 1988), Ferguson and Parsons (2003)
reported 3-D numerical modelling of a meander bend with recirculation along the inner
bank, and Abad and Garcia (2005) presented a 3-D hydrodynamic numerical simulation

of periodic meandering channels at different sinuosities where the importance of

24



convective accelerations due to bed configurations was described. Even although 3-D
numerical simulations are increasingly popular in river studies, its applicability to study
morpho-dynamics processes such as erosion/deposition and meander migration is limited
since it requires'sophisticated implementation of boundary conditions (Ingham and Ma,
2005; Sotiropoulos, 2005) and applications are possible generally for micro or meso scale
with small scale time domain cases. Under certain considerations and limitations (Wang
and Ribberink, 1986; Lane and Ferguson, 2005), it is possible and even preferred to use
2-D depth-averaged models or even cross-section averaged 1-D models to overcome this
problem (Garcia, 2001), in particular for certain engineering applications. The 2-D depth
averaged models with secondary flow correction can readily be applied to larger spatial
domains with computational ease. Similarly turbulence models such as developed in
Erpicum et al. (2008 and 2009) have also been developed for macro rough channel and

validated in experimental flumes.

Several 2-D models have been developed to reproduce braided rivers with fixed G:nks
(Murrey and Paula 1994). Dammular et al. (1989) presented a 2-D for unsteady flow in
curved channel. The results of the numerical model are compared to laboratory test data
for the unsteady flow created by an instantaneous dam failure in a test facility (Miller,
1988). Numerical models to reproduce the evaluation of curved channels taking bank
erosion into consideration have been developed for bed and banks of non coheswe
sediment (Shimizu ez al., 1996; Nagata et ql., 2000). However these models have some
limitations to simulate braided rivers with unconstrained banks. Jang and Shimizu
(2005a, 2005b and 2007) proposed a numerical model to simulate braided rivers with
erodible banks composed of well sorted material using moving boundary co-ordinate
system to naturally shaped boundary and showed possibility of simulating braided river
with complex geometries. Jang and Shimizu (2005a, 2005b and 2007) observed that the
model somehow reproduces features of braided rivers such as generation of new channels
and abandonment of old channel, the bifurcation and confluence as well as channel
migration. However this model had not been verified on a natural braided river with
complex bathymetry, although model results were compared with laboratory experiments
in a controlled environment. Jang and Shimizu (2005a, 2005b and 2007) found some

discrepancies in the model and attributed these discrepancies in computed results to
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assumed parameters, initial conditions and three dimensional flow features at confluences
which indicate that the model itself warrant further improvement in view of real and

complex application scenarios.

2.5.3 REVIEW ON 2-D DEPTH AVERAGED MODELLING WITH SECONDARY
FLOW CORRECTIONS

The occurrence of the secondary flow is one of the dominant features of flows in bends.
Secondary flow results from the imbalance between the transverse water surface gradient
force and centrifugal force over the depth due to the vertical variation of the primary flow
velocity. In other words, the inward pressure gradient near the bed prevails over the
centrifugal force resulting in an inward flow along the bed and an outward flow near the
water surface (Lien et al., 1999). This circulatory flow pattern is termed as secondary
flow. Measurements by Rozovskii (1961) and de Vriend (1979, 1980 and 1981) have
shown that the secondary flow near the water surface moves toward the outer bank, and -
that near the bed moves toward the inner bank. Consequently, the shear force, which has
the same direction as the local flow close to the bed, deviates slightly from the direction

of the mean flow (Engelund and Skovgaard 1973).

Pioneering investigations of the flow phenomena in open-channel bends are generally
attributed to Thompson (1876) who observed the spiral motion inherent in a channel bend
by introducing seeds and dyes into the flow. The 3-D numerical models have been
developed (e.g. Leschziner and Rodi 1979; Shimizu et al. 1990; Sinha et al. 1998) to
simulate the complicated spiral flow motion in the bend or channel curves. However, 2-D
depth-averaged models are often adopted in practice by hydraulic engineers because of
their easy implementation and application as mentioned earlier. For 2-D bend-flow
modelling, steady-flow models, such as that of Odgaard (1989), have been developed to
avoid the possible numerical instability and large amount of computation time. Yen and
Ho (1990) developed a numerical model for the simulation of bed evolution in channel
bends with fixed walls. They followed Odgaard’s concept and adopted several published
approximations of the transverse velocity distribution to reduce the depth-averaged water

flow equations. An alternative approach for describing bend flow is to use the concept of
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moment of momentum (Falcon Ascanio 1979; Jin and Steffler 1993; Yeh and Kennedy
1993). The method couples the depth-averaged continuity and momentum equations with
two moment-of-momentum equations derived from the balance among the momentum
flux of the convective terms, pressure gradient term, and stress terms for closure
purposes. For steady bend-flow models, the determination of flow depth in the flow
domain is difficult due to the lack of time derivative of the flow depth in the continuity
equation. Among the existing unsteady 2-D bend-flow models, the models developed by
Molls and Chaudhry (1995) and Nagata et al. (1997) were presented, Molls and
Chaudhry’s model (1995) simulated the experimental bend-flow data conducted by
Rozovskii (1961). They proposed the concept of integrated effective stress, which
consists of laminar viscosity stress, turbulence stress, and dispersion stress due to depth
averaging. However, they ignored the non-uniform distribution of vertical velocity in the
bend-flow simulation. Nagata er al.’s model (1997) considers a secondary flow
component that was derived by using the vertical distributions of the main and transverse
velocities in the same way as Kalkwijk and de Vriend (1980). In their studies, only one of
the dispersion stresses acting on the face perpendicular to the streamwise axis and acting
in the direction of the transverse axis is used as the secondary flow component. de Vriend
(1977) used the perturbation method to derive the velocity distribution over the depth ih
the shallow curved channel. The vertical velocity distribution of the main flow and
\secondary flow can be approximated by a logarithmic profile and a nonlinear p;f)ﬁle,
respectively. Using these velocity distributions, one can obtain the dispersion stress’“é’?by
numerical integration. Lien ef al. (1999) proposed an unsteady 2-D depth averaged flow
model to capture all the effect of dispersion stresses terms in curved channel flow. This
model has been done exclusively for hydrodynamic module without incorporating the
sediment module. Hsieh and Yang (2003) has attempted to establish guidelines for users
to select more appropriate 2-D models. Lien et al. (1999a) calculated the dispersioﬁ terms
in the momentum equations, which are the integrations of the product of the difference
between the depth-averaged and the actual velocity along the verticals. The model (Lien
et al., 1999) adopted the curvilinear coordinate and included the dispersion terms
deduced from the stream-wise and transverse velocity profiles (de Vriend, 1977).

Hydrodynamic modelling of bend flow in the curvilinear coordinate (Kalkwijk and de
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Vriend, 1980; Demuren and Rodi, 1986; Odgaard, 1989a; Shimizu and Itakura, 1989;
Molls and Chaudhry, 1995; Ye and McCorquodale, 1997; Lien ef al. 1999; Darby et al.
2002; Wu et al., 2004; Hsich and Yang, 2003} has been effective because the longitudinal
and radial coordinates approximately agree with the directions of the main and the
transverse flow. In many practical cases, the effect of secondary flow is not significant
when the channels are not curved or the curvature effect is small. This study employed
the Cartesian coordinate so that the hydrodynamic model can be easily applied to both
meandering and non-meandering channels. Instead of including the dispersion terms
calculated directly from the stream-wise and transverse velocity profiles, the dispersion
terms were converted to those in the Cartesian coordinate. The dispersion terms resulting
from the transverse velocity distribution disappeared when the radius of curvature was
relatively large or the channel was straight. Additionally, the hydrodynamic model
adopted the modified depth-averaged momentum equétions, where the density of flow
was treated as a variable and changed with the concentration of transported mass
enabling the hydrodynamic model to couple with the mass transport model. As for the
mass transport model, the depth-averaged convection and diffusion equation, which takes
the difference between mass entrainment and deposition from the mobile bed surféce as
the source/sink term, was solved to obtain the depth-averaged concentration (Duan 2004).
Duan (2004) attempted derivation of the dispersion terms (incorporation of secondary
flow correction) for the depth-averaged 2-D models using governing equations in
Cartesian coordinates. She also compared the results of flow hydrodynamic models with

and without the dispersion terms.

The additional dispersion term coming on account of non uniformities in vertical
distribution of velocities in the momentum equation in 2-D depth averaged equation has a
potential for improvement in its empirical relations with involved flow variables to

adequately represent its effect in the morpho-dynamic process in a braided river.

2.5.4 2-D MATHEMATICAL FORMULATIONS PERTAINING TO NATURAL
STREAMS

2.5.4.1. Basic governing equations for river flows
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The constituent equations for fluid flows are well established and they are basically in the
form of a coupled set of partial differential equations, known as the Navier—Stokes
equations (Batchelor, 1967). Different ways of numerically solving these equations give
rise to different CFD techniques in which various forms of these equations may be
employed. In the framework of the finite difference/volume technique, the most
fundamental solution method is referred to as the Direct Numerical Simulation (DNS). In
the DNS method, the transient form of the Navier—Stokes equations is solved numerically
by means of spectral and pseudo-spectral techniques. However, because of the
complexity of general industrial, as well as environmental, problems and the limitation in
the capabilities of present computer systems, DNS is nowadays still primarily limited in
its use to the study of some of the very simple but fundamental flow problems, such as
simple turbulent channel and pipe flows, flow in plane mixing layers, etc (Bates et al.,
2005). It is evident that even when using the Reynolds-averaged Navier—Stokes
equations, it is sometimes very difficult to solve large scale, complex unsteady river
flows in a fully 3-D model due to the limitations in computer power. This is particularly
true when the problem‘investigatled is part of a real river where the flow is turbulent with
irregularly shaped banks and beds. Therefore, various simplifications to the governing
equations have to be made in order to reduce the dimensions of the problem. Subsequent
section presents the Reynolds-averaged Navier—Stokes equations and the 2-D depth-

averaged equations which have been commonly employed in CFD models of river flow.

It is noted that there have been some attempts to use the Large Eddy Simulation (LES)
techniques to investigate steady and unsteady flows in river channels (e.g. Thomas and
Williams, 1995; Bradbrook et al., 2000). Although LES itself is a relatively well-
established numerical technique, and has been used in numerous engineering and
environmental applications, the use of LES in river flow modeling is still at an early stage

of development.
2.5.4.2 The Reynolds-averaged Navier—Stokes equations

The fundamental parameters required to describe a river flow are the pressure and the

velocity of the fluid flow. If the flow is assumed to be incompressible and Newtonian,
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then these parameters are solely governed by the constitutional Navier—Stokes equations
which are based on the basic physical principles of conservation of mass and momentum.
For an incompressible and turbulent fluid flow, the Reynolds-averaged form of the
Navier—Stokes equations may be written in a Cartesian coordinate system as follows
(Hinze, 1975).

(i) Continuity Equation.

ou oJv ow
+

242420 | (2.13)

Where u, v and w are instantaneous velocities used in original Navier Stokes Equations.

This can further be decomposed as

u=u+u'
v=v+y
w=w-+w

Where #,v,w are time averaged velocity components in Cartesian coordinate system,
and z',v';w’ are fluctuating velocity components in Cartesian coordinates system.

(ii) Momentum Equation

In x direction

Du op O ou  —\ o ou - o ou
—=f =t | p—- +—| g—— - 2.14
Por =" ax(”ax pu) @[ﬂay puVJ a(ﬂaz pu WJ (2.14)

In y direction
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In z direction
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where D is total derivative operator (convective acceleration), u is molecular viscosity,

p is mean pressure and £, f, and f, are body forces in x, y and z direction respectively.

The term — pu’> and other similar six terms in above equations are the result of the
Reynolds-averaging of the original Navier-Stokes equations known as Reynolds stresses.
These terms represent the effect of turbulence on the fluid flow and are not known a
priori. Thus, we have more unknowns and less number of equations, so above equations
are not closed. So, additional closure equations and a set of properly defined boundary
conditions for the fluid flow are required. The river flow can be modelled numerically by
solving the Reynolds-averaged Navier—Stokes equations in all three directions of the

coordinate system.
2.5.4.3 Depth averaged equations

Due to the complexity of solving the full 3-D Navier—Stokes equations, which often place
impractical demands on computer resources, there is a practical requirement to reduce the
dimension of the governing fluid flow equations and this result in the depth-averaged

fluid flow equations.

For a shallow river flow, and in situations where the vertical variations of the fluid. flow
are less important than the variations of the lon gitudinal and transverse flows in the.river,
or the flow is approximately unidirectional, the dimensions of the governing fluid flow
equations can be reasonably accurately reduced by integrating the full 3-D equations over
the water depth A. This results in the introduction of the depth averaged velocity
components of the fluid velocity, #'in the x'-direction of the horizontal Cartesian
coordinate system (i=1, 2), as follows:

u'=

h
% oju’dz (i=1,2) (2.17)

where z is the vertical axis of the 3-D Cartesian co-ordinate system. Thus in the depth-

averaged approach, the fluid velocities are assumed to be constant throughout the depth

and equal to the depth-averaged velocity, #'In addition, from the assumption of the
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hydrostatic pressure distributions in the vertical direction, the pressure forces can be
evaluated in terms of the depth. However, it should be noted that the assumption of the
hydrostatic pressure distribution limits the accuracy of the model in regions of steep
slopes and rapid changes in the bed topography. The 2-D depth-averaged Navier—Stokes
equations can be expressed in a horizontal. Cartesian coordinate system as follows (Bates
et al., 2005) |

Continuity Equation

oh o —i
EET(M )=0 (2.18)

Momentum equation

—i —i—j if e h . |, . o
ou' ol ) on A ok LY Up(u._u ).(uf_uf}ng (2.19)
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The turbulence shear stressz, , can be determined using an appropriate turbulence model

(e.g. Wilson et al., 2003). The depth-averaging also results in the introduction of two

other groups of stresses in the equation, i.e. the water surface and bed stresses (z] and

z,), and the so-called ‘dispersion stress terms’, namely the last term in above equation,

and these terms usually require empirical formulae or models.

2.5.4.4 Bed shear stresses

Water surface shear stressesz! are usually ignored unless strong winds exist. However,

the bed shear stressesz, are very important and usually have to be obtained

experimentally. It is assumed that bed shear stresses can be expressed as a quadratic
function of the depth-averaged velocity as follows ( Rastogi and Rodi, 1978; Ye and
McCorquodale, 1997)

TR (2.20)
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where C, is the bed friction coefficient. As the bed shear stresses result primarily from

the turbulent flow interactions, there is considerable uncertainty in their evaluation.
Typically, they may be determined using various empirical functions (Nezu and
Nakagawa, 1993; Lane, 1998). In many applications, the bed friction coefficient is

calculated using the Manning’s equation as follows:

c, == (2.21)

where the parameter » is not a constant but depends on the fluid flow situation under
investigation. In an equivalent formulation, the bed shear stresses are evaluated using the

nondimensional Chezy coefficient C_ as follows

P =N -hy - |
T, = Ef— pu'~Nu'u (2.22)
and the Chezy coefficient can be related to the effective bed roughness height K is

follows

C, =5.7510g[12 L
K

s

J (5".‘23)

R

hd

It should be noted that there is considerable uncertainty in how to choose the effective

roughness, height K as well as Manning’s #, as it requires information on the grain size.

Therefore, both K, and # are often used as calibration parameters a&ainst, for example,

measured water surface elevations and fluid velocity. There are also other empirical

formulae that may be used to evaluate the bed shear stresses/frictions (Rastogi and Rodi,
1978; Van Rijn, 1987; Nezu and Nakagawa, 1993), and this is clearly an area in which

further research is required.
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2.5.4.5 Dispersion terms

The dispersion terms, namely the last term in Eq. (5.16), are produced because of the
non-uniformities of the fluid flow velocity in the vertical direction during the depth-
averaging. The determination of these terms requires knowledge of the information in the
secondary flows across the depth which is, however, usually not known a priori.
Therefore, we usually have to produce a mathematical model for the dispersion terms (e.g
Lane, 1998; Duan, 2004). However, these terms are frequently found to be negligible in
cases such as straight channel flows (Nezu and Nakagawa, 1993). However, the
dispersion terms can be very important, particularly when there are strong secondary
flows, such as fluid flows through a river bend or over channel junctions (Bernard and

Schneider, 1992) or in other words river with complex physical domain.

Since there are no additional equations for the dispersion terms arising from the depth-
averaging, the treatment of the dispersion terms has been mainly through semi-empirical
~ or empirical models to represent their effects on the transport of momentum. The key
element of these models is the representation of the secondary flows resulting from the
effects of the lateral curvature of the river and the friction at the bottom of the river. One
of the key models for the dispersion terms is that described by Johannesson and Parker
(1989), where 2-D forms of the mass and momentum equations are combined with an
empirical shape function for the distribution of the primary velocity across the depth.
Another approach is that of Bernard (1992) in which the dispersion terms are expressed
as a function of the shear stresses associated with the secondary flow, and empirically
derived terms are used. However, regardless of the relative importance of the dispersion
terms, the present available treatment of these terms is limited in its representation of the
vast complexity and variety of secondary flows oceurring in natural river flows. This is
largely attributed to the lack of understanding of the mechanisms of secondary flow
generation in 3-D natural river flows in various bed topographies and channel
irregularities. Clearly; more research on the mathematical representation of the dispersion
terms is required when modelling complex river flows using the depth averaging
approach. However, fluid flow problems with strong secondary flows can be more

completely addressed through 3-D simulations (Bates er al, 2005). More recently,

34



numerous researchers have given formulation to estimate dispersion terms. Some relevant

formulations are presented here for illustrations and clarity.

de Vriend (1977) used the perturbation method to derive the velocity distribution over the
depth in the shallow curved channel, and the vertical velocity profiles were then verified
by the experiments. Later Lien et al. (1999a) used in line with adopting the following

formulation for dispersion terms into the momentum equation de Vriend(1977) adopted

—[ Iz, fm;]=u=fm(¢) | (2.24)

[2F(c)+ FL(¢)- 2( ‘/_J (c)} (2:25)

In Eqgs. (521) and (522)f(¢)_1+f fln¢ e e IM g0 T Im < ag?

s
¢ =(z -z, )/ d =dimensionless distance from the bed, r=radius of curvature, #,v = Depth

averaged velocities in stream-wise and transverse directions, #,v =time averaged

velocities in stream-wise and transverse directions.

Here, the main velocity profile is assumed to have a logarithmic distribution, anci the
transverse velocity profile is a combination of a logarithmic distribution and a nonfiéear
distribution of the secondary flow. It is obvious that only the secondary flow due t; the
curvature of the bend is considered in the formulation of the transverse velocity profile.
Such consideration of transverse secondary flow is a main factor to shift the stream wise
momentum from the inner region of a bend toward the outer region and to increase the
main velocity near the outer bank. In addition, the effect of the secondary flow on the
stream wise velocity profile is neglected, and these velocity profiles, used in the model,
are inadequate for a reverse secondary eddy that occurred near the surface at the outer

bank.

After including the velocity profile, Lien et al. (1999a) derived namely DSXX, DSYY and
DSXY as follows to be incorporated as dispersion terms in to the their controlling

equation. .
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DSXX =pzj(zT—u=)2dz pfd[ﬁy (2.26)

Kc

DSYY = sz(V—vz)zdz = p[{z—"d(‘/g) + 2“=sz ."/—g_.FF 1+ 2?:2“23 FF 2] | 2.27)
Iy xc K°r Kxc K'r

DSXY = pzj(lT— Ty -T Mz = p[ﬁd(‘;{f_] + a_:f: ."/(f_,FF 1] (2.28)

where

FF1= j(l +1In g{za(gy l/;-g-F, (&)- 2[1 L "{—f_-].f,,, (g):|dg (2.29)

FF2= j(l +In ¢{2F1(4)+—‘£_§«F2(5)- 2(1— —g—].fm(;)] d¢ (2.30)

Above equations are integrated using trapezoidal rule. The first term (DSXX) indicates
that the integration of the products of the discrepancy between the mean and the true
velocity distributions in the stream wise direction. The second term (DSYY) indicates that
the integration of the products of velocity discrepancy in the transverse direction. The
third term (DSXY) indicates that the integration of the products of velocity discrepancy in

the stream wise direction and that in the transverse direction.

Lien et al. (1999a) worked on the above formulation in their controlling equations: of -
flow in curvilinear coordinate system to get the solution for their model. They compared
the result of their model performance with other investigators and summarized the
conclusion as dispersion terms to be important source/sink term in momentum equation
and contribute to the transverse convection of the momentum. Their relative contributions
in the overall secondary flow effect depend on flows in mild or sharp bends. Lien etz al.
(1999) further concluded that if the dispersion stress terms are neglected, the governing
equations reduce to a conventional depth-averaged equation assuming uniform velocity
over depth. Hence, the model presented by Lien et al., (1999a) is more applicable for
practical application in bend-flow modeling than the conventional depth-averaged models
because of its ability to account for the secondary flow effect. In short, the dispersion
stresses play an important role in accurately simulating or predicting flow fields in sharp

bends as well as in mild bends. Hsieh and Yang (2003) conducted some experimental
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analysis to validate the above formulations. Readers are suggested to refer the Hsieh and
Yang (2003) for further details. More recently, Duan (2004) derived the mathematical
‘expressions of these terms, assuming that the stream-wise velocity satisfies the

logarithmic law written in Eq. (2.31).

ﬂzlln(ij 231)

u, K \ z,

where, u,=Velocity in stream-wise direction, z =vertical coordinate, u,=shear velocity,
z,= calculated according to flow velocity, Integrating the logarithmic velocity profile

along the vertical. Eq. (2.31) ends up with

o _ l[fo_ _ 1 ln('h—ﬂ ' ‘ (2.32)
u, k| h 2 i

where %, = depth-averaged velocity in the stream-wise direction. Combining the &bove

two equations she landed with relation between time averaged and depth ave?éged
velocities. Duan(2004) assumed the transverse profile of the velocity linear and adopted
transverse velocity profile proposed by Odgaard (1989a) in the formulation. The
dispersion terms at the stream-wise and transverse directions have been derived by Duan

(2004) as follows. . : "

z,+h

b, = J-pm (u! b_iz'l)zdz =X 2712]1[—7]0 Inz, (ln;'?o _2) +217 (1 "770)(1 “lnﬂo);(ﬂo —1)3] (2.33)
i SRV e [, ™% 1§ ™

D, = z_[pm(u, —u,)(vr —v,)d?= 49.0u; 7[—5 773 +§ 773 . 7 +1—2i| | (2.34)
T (2.35)

_ W
X = j pm(vr—v,)zdz=3.5C'z7,27[—77§ I, +1 177, ~ 77, +17
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= 1 = Z/:—_ H 3 _ . — .
where y = /) ,—1—1In7,’ 7o 0 A dimensionless zero-bed elevation, r=radius of

curvature, v, and v, are transverse velocity and depth averaged transverse velocity

respectively. The curvilinear dispersion terms transformed to dispersion terms in
Cartesian coordinate for incorporation into governing equations . through usual
transformation procedure. Duan (2004) adopted the efficient element method (Wang and
Hu, 1990) as the numerical solver to get the solution. To test the model performance of
dispersion terms and verify the developed hydrodynamic model, two sets of experimental
data and bend flow conducted by de Vriend (1979) and Rozovski (1961) were adopted.
As per Duan (2004)’s cbnclusion, the verifications by the experiments in mild and sharp
curved channel indicated that the effect of dispersion terms on flow hydrodynamic field
becomes significant when curvature is increased. However flows in bends are essentially
a three dimensional flow feature so 3-D modelling certainly gives better model results.
Seo et al. (2008) further applied the dispersion coefficient tensor to the mass dispersion

and solute transport and used finite element method to validate the results.
2.5.4.6 Turbulent stresses

The stresses which include turbulent effects are determined using the Boussinesq

assumption as follows (Wu, 2007)

T, =2p(,) = -2 pc 2.36)
ox 3 ‘
oU, U
T =7 = Lt 2.37
oU 2
T, =2p(v,) % 3% (2.38)

where v, is the eddy viscosity that needs to be determined using a turbulence model. The

choices for determining v, include the depth-averaged parabolic model, modified mixing
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length model, and three depth-averaged linear k—¢& turbulence models. Averaging the

parabolic eddy viscosity equation over the flow depth yields
v, =auh ' (2.39)

where ¢, is an empirical coefficient. Theoretically «, shou_ld be equal tox /6. However,
it has been given various values in practice, because of the anisotropic structures of
turbulence in horizontal and vertical directions and the effects of dispersion. According to
experiments by Elder (1959), ¢, is about 0.23 for the longitudinal turbulent diffusion in
laboratory channels. For transverse turbulent diffusion, Fischer er al. (1979) proposed
that ¢, is about 0.15 in laboratory channels and 0.6 (0.3-1.0) in irregular waterways with

weak meanders.

Equation (2.41) is applicable in the region of main flow. Because the ihﬂue-ﬁée of
horizontal shear is ignored, significant errors may arise when applied in regions close to
rigid sidewalls. Improvement can be achieved through a combination of Eq. (2.4 1:'2) and

Prandtl’s mixing length theory mentioned herein as Eq. (2.40).

v, = ek +(2f (2.40)
where

o ész aUyz %?_U—yzuz v
lsj—[Z[ > ) +2( % ) +( > — ) } (2.41)

a, is an empirical coefficient similar to ¢, in Eq. (2.39) and has a value of about «/6
and /, is the horizontal mixing length, determined using I, = x min(y',c, k) with y'
being the distance to the nearest wall and ¢,, an empirical coefficient ranging between

0.4 and 1.2 (Wu et al., 2004b).
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Rastogi and Rodi (1978) established a depth-averaged %-¢ turbulence model through
depth-integration of the 3-D standard k-¢ model. Readers are suggested to refer to

relevant literature for detail information.

2.5.5 FORMULATION OF MASS-MOMENTUM CONTROLLING EQUATIONS
IN CURVILINEAR COORDINATE SYSTEM.

2.5.5.1 Governing equations

The governing equations for flow simulation are RANS equations with depth averaged
approximation of continuity and momentum equations [Egs.(2.42), (2.43) and (2.44)] in
Cartesian coordinate system with secondary flow corrections are (Duan and Julien,

2005).

9ph 2 = (ont)+ = 2 (phU) 0

* | (2.42)
2 ) 2 s 2 (o 2 e 70T+ o S T |
4 i (2.43)
D% 0 Dy __ &u, &u,
(ﬂi )+ (p"UU) = @(/*U, J > pghg C.pUJU}+U, +hpv(ax2 +@2) B

where U, and U,= depth-averaged velocity components in x and y directions, r=time,
p=density of water (kg/m3), H=water surface elevation, A=depth of the flow,
g=acceleration of gravity, C ~frictional stress coefficient (for friction shear stress at the

bottom in x and y directions); and equals nZPVy with n=Manning’s roﬁghness

3
coefficient; v, =eddy viscosity. Homogeneous suspension is presumed. (p is constant ).
Wind /rainfall forces are neglected. Coriolis force due to the rotation of the earth is
neglected. The equation is valid to homogeneous suspensions to orthogonal system of
coordinates in which z- axis is near vertical (small angle). Dy, D,, and Dy, are flow

dispersion stress components.

Numerous researchers formulated and derived different forms of mass-momentum

equations in curvilinear coordinate system based on the above equations in view of
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suitability with their adopted discretization schemes during the last decade. Lien et al.
(1999a) presented an unsteady 2-D depth-averaged flow model with the consideration of
dispersitv)n' stress terms to simulate the bend-flow field. The model uses an orthogonal
curvilinear coordinate system to efficiently and accurately simulate the flow-field with
irregular boundaries. Nagata et al., (2000) has adopted generalized non-orthogonal co-
ordinate system to formulate the controlling equations with complex flow domain. This is
appropriate approach not only on account of its generality, but also due to the fact that it
is possible to orient the dependant variable along the grid-lines conforming to the shape
of the domain and therefore usually along principal streamlines, which will minimize the
chance of false diffusion (Patankar, 1980). More recently many researchers for example
Duan (2004), Seo et al. (2008) developed models with secondary flow corrections and

applied and verified in laboratory flume data.
2.6 CONCEPT OF NUMERICAL SOLUTION

River engineering problems are usually governed by nonlinear differential eqliations in
irregular and movable domains, most of which have to be solved using numerical
methods. Introduced in this chapter are the discretization methods for 1-D, 2-D and 3-D
problems on fixed and moving grids, the solution strategies for the Navier-Stokes
equations, and the solution methods of algebraic equations (Wu, 2007). Some of tﬁese
can be found in Patankar (1980), Hirsch (1988), Fletcher (1991), Ferziger and Peric
(1995), Shyy et al. (1996) etc.

2.6.1 DISCRETIZATION METHODS

Widely used discretization methods include finite difference method, finite element
method, finite volume method, finite analytical method, and efficient element method

(Wu, 2007).

The finite difference method discretizes a differential equatibn by approximating
differential operators with difference operators at each point. The finite analytical method
discretizes the differential equation using the analytical solution of its locally linearized

form, and the efficient element method establishes difference operators using
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interpolation schemes in local elements. Because of their similarity, the finite analytical
method and efficient element method are herein grouped with the finite difference

method (Wu, 2007).

The finite volume method integrates the differential equation over each control volume,
holding the conservation laws of mass, momentum, and energy. In the finite element
method, the differential equation is multiplied by a weight function and integrated over
the entire domain, and then an approximate solution is constructed using shape functions
and optimized by requiring the weighted integral to have a minimum residual (Wu,

2007).

The algebraic equations resulting from the finite difference and finite volume methods
usually have banded and symmetric coefficient matrices that can be handled efficiently,
whereas the algebraic equations from the finite element method often have sparse and
asymmetric coefficient matrices that require relatively tedious effort for solution (Wu,
2007). However finite element method handles unstructured meshes, so it can be
conveniently applied to complex geometry more efficiently. The choice of numerical
method depends on many factors including computation expense, suitability in a
particular situation and degree of accuracy required in the final solution etc. In some
specific cases like water quality modelling, Lagrangian approach such as Time Driven
Method (TDM) or Event Driven Method (EDM) are more efficient for simulating the
chemical transport in a water distribution system than Eulerian approach like finite

difference method (FDM) (Munavalli and Kumar, 2004) .

Any numerical method may have its advantages and disadvantages, and subjectivity may
prevent a modeler from becoming more successful. One has to learn the basic properties
such as accuracy, stability, convergence, and efficiency of the used method and know

how to take advantage of its strengths and avoid its weaknesses (Wu, 2007)

Finite volume schemes have evolved in recent years into powerful tools for the prediction
of shallow water flows (Alcrudo, er al. 1992; Jin and Fread, 1997; Sanders and
Katopodes, 1999; Tseng and Chu, 2000; Sanders, 2001) as reported by Capart et al.

(2003). Among other attractive features, these algorithms are noteworthy for their ability
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to deal with trans-critical flows and propagating shocks. Favburable comparisons with
analytical benchmarks and laboratory measurements have been obtained for complex
flows in one and two-dimensional configurations (e.g., Fraccarollo and Toro, 1995;
Capart, et al. 1997; Soares et al., 2000; Tseng et al., 2001; Bradford and Sanders 2002).
Capart et al. (2003) used 1-D flow simulation using FVM in more general case of
inclined, non prismatic channel characterized by abrupt variation in bathymetry. More
recently Kuiry ez al. (2008) demonstrated numerical simulation using FVM for triangular
mesh extracted from a triangulated irregular network (7IN) form of digital elevation

model (DEM).

Hence for simulating large rivers, finite volume method (FVM) of discretizing
conservative form of partially transformed controlling equations in curvilinear coordinate
system seems appropriate to use based on the earlier studies. F¥M solver additionally

conserves mass-momentum and can be well applied for highly complex geometrynti‘iéing
vl

non-orthogonal grids with reasonable approximation. o

L

2.6.2 DISCRETIZATION BY CO-ORDINATE TRANSFORMATION

The finite volume method offers two methods to discretize equatio'ns. One method is to
look at physical processes and parameters, and thereby derive the discretized equafions
This approach is used by Olsen (1999). The method has the advantage of being ea;y to
understand, facilitating debugging and implementation of new algorithms (Olsen, 2000)
However Olsen (2000) mentions difficulty in deriving three groups of terms i.e. the
production of turbulence in k-¢ model, stress terms in Navier-Stokes equations, non-
orthogonal diffusive terms in Navier-Stokes equations. Hence these terms are usually
discretized using a method called co-ordinate transformation: The co-ordinate

transformation is a transformation between natural Cartesian co-ordinate system- and

system following the computational domain.

Some finite volume methods used in most of the CFD codes ai¢ briefly introduced in

following sub section.
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2.6.2.1 SIMPLE, SIMPLEC and SIMPLER methods

SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The
original description was given by Patankar and Spalding (1972). The basic concept of this
method as given by Olsen (2000) is to guess a pressure field and calculate the velocities.
Then the continuity defect is estimated and it is used to calculate a correction in pressure
field. The initially computed variables do not satisfy continuity and are denoted with an
index ¢*.The correction of the variables is denoted with an index ( '). The variables after

correction do not have superscript. The process can be written

P=P +P (2.452)
U=U"+U"' (2.45b)

P is the pressﬁre and U is the velocity. Similarly SIMPLEC method is the refinement of
SIMPLE method. In these methods an equation of pressure is not solved directly, instead
of that a pressure correction equation is solved. The pregsure is obtained by accumulative
addition-of the pressure correction values. Regarding the difference between the SIMPLE
and SIMPLEC method, the SIMPLEC should be more consistent as revised and correct
formula is used. The SIMPLE method moves slower towards convergence than the
SIMPLEC method. The SIMPLER method is an extension of the SIMPLE method. The
SIMPLE/SIMPLEC method usually gives good velocity corrections, but the correction of
pressure is less accurate (Olsen, 2000). It means that a good guess of pressure will give a
good velocity correction and overall solution will be of better accuracy and instability.
For large rivers with very mild longitudinal slope such as Brahmaputra River where sub-
critical flow condition and gradually varied flow persists, a good guess of pressure (wafer
level) can suitably be done. Hence, SIMPLEC method is expected to give better results
with stability and consistency in specific scenario of flow field simulation for large rivers

with mild longitudinal bed slopes.

2.6.2.2 The Rhie and Chow interpolation

The Rhie and Chow interpolation is used to prevent oscillation when using a cell centered

discretization scheme. Its derivation is given by Rhie and Chow (1983). The method
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introduces additional term when computing the fluxes on the cell faces. The terms can be
interpreted as fourth order artificial diffusion. However, method is consistent, as there are
no calibration coefficients involved (Olsen, 2000). The motivation fqr introducing the
method originates from the discussion of using staggered and non-staggered variable
location in a grid. The staggered grid removes some instability experienced in non-
staggered grids. The Rhie and Chow (1983) interpolation is used in connection with
estimating the velocities on a grid cell faces when fluxes are calculated. The method uses
the pressure gradients from several grid cells to add an extra term to the fluxes. For
illustration, Grids for estimation on fluxes on surface e, between cell P and £ will be W,

P, E and EE is shown in Figure 2.3.

w
J

Figure 2.3 Grids for estimating fluxes on surface e between cell P and £

2.6.3 BODY FITTED CO-ORDINATE

The Cartesian co-ordinate system is the most common co-ordinate system used to
describe the location of a point in space. It takes advantage of the three base vectors that
characterize the system of an ortho-normal system. Computational methods, based on
Cartesian or cylindrical coordinate systems, have certain limitations in irregular
geometries. When the boundaries of the domain of the physical problem are not aligned
along the Cartesian base vector directions, the use of the Cartesian coordinate system is
inconvenient and often impractical. A co-ordinate system where principal co-ordinate
directions are aligned along the domain boundaries of any physical problem is referred to
as a body-fitted coordinate system and is specific to the partichlar domain of interest.
Methods based on the body-fitted grid or non-orthogonal grid system -have been
developed and used increasingly in the present CFD procedure, for details one can refer
to Rhie and Chow (1983), Peric (1985), Demirdzic et al. (1987), Shyy et al. (1988) and
Karki and Patankar (1988).
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The flexibility offered by body-fitted grid techniques is useful in the modelling of
practical problems involving irregular geometries like that of a braided stream. All
geometrical details can be accurately incorporated and the grid properties can be
controlled to capture useful features in the region of interest. However, the governing
equations using the body-fitted coordinate system are much more complex than their
Cartesian counterpart. The major differences between the two formulations are based on

the grid arrangement and the choice of dependant variables in the momentum equations.
2.6.3.1 General curvilinear coordinate system

The choice of a proper grid arrangement is closely related to that of the dependent
variables in the momentum equations. The configuration should be such that it does not
admit spurious solutions. The staggered grid arrangement wherein scalar variables are
stored at cell nodal centers and velocity components at cell faces, has long been preferred
on account of its desirable pressure velocity coupling characteristics as described by
Patankar (1980).

When Cartesian velocity components are retained as dependent variables and the
coordinates are transformed, such formulation of the governing equations is considered
partial co-ordinate transformation. This has been extensively used in the past, primarily
on account of its simplicity. The Cartesian velocity components have been widely used as
the dependent variables in non-orthogonal coordinate systems (Maliska and Raithby,
1984 and Shyy et al., 1985). The curvilinear components of velocity change their
directions and tend to "follow" the grid lines. This feature makes them more attractive for
highly non-orthogonal grids and geometries with strong curvature. However, due to the
changes in their direction the governing equations are very complicated and involve
curvature source terms that account for the fact that momentum -is conserved along a

straight line.
2.6.3.2 Generalized coordinate transformation

The well-known Cartesian coordinate system is characterized by the three base vectors,

which have preferable properties of orthogonality and spatial invariance. However, in the
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General Curvilinear Coordinate System, each coordinate needs to be described by two
sets of base vectors. Sharatchandara (1995) explained that one of the base vectors will be
parallel to the coordinate lines and the second one will be normal to the coordinate

surfaces, in order to characterize the system. Figure 2.3 shows the covariant (tangential to
a line along which the coordinate ¢ varies) base vector (@;) in the ¢ direction and the
contra-variant (normal to the surface S (#,{) on which ¢ is constant) base vector
(a*)associated with the & coordinate direction. Covariant and contravariant base vectors

may be sirhilarly described for the other two coordinate directions (#,{).

The coordinate system will be considered as non-orthogonal, if the surfaces of the
constant ¢ are not normal to the lines along which the coordinate & varies, even if the
coordinate system is orthogonal at some points of the domain. It has to be noted that if
the surface S(i,&) is perpendicular to the line £ at point P, then there will be no distinction

between the covariant and contra-variant base vectors as can be seen in Figure 2.4,

By

When the covariant and contra-variant base vectors, at different locations, are oriented in
different directions, the body-fitted coordinate system is not spatially invariant. It is more
preferable to have a spatially invariant basis for the representation of the base vectors at
all points of the domain. The Cartesian coordinate basis, the only such basis in three-
dimensional space, is generally used in the representation of the base vectors in a ggiieral

curvilinear non-orthogonal coordinate system.

Figure 2.4 Covariant and contra-variant base vectors
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When the covariant and contra-variant base vectors, at different locations, are oriented in
different directions, the body-fitted coordinate system is not spatially invariant. It is more
preferable to have a spatially invariant basis for the representation of the base vectors at
all points of the domain. The Cartesian coordinate basis, the only such basis in three-
dimensional space, is generally used in the representation of the base vectors in a general

curvilinear non-orthogonal coordinate system.

Figure 2.5 shows a non-uniform non-orthogonal physical plane x-y which is to be
transformed to a uniform orthogonal computational plane &7. Where & and # are known
to be as: & =& (x, y) and 5 =n(x, y). It is highly recommended that this transformation be
one-to-one and invertible. It is this kind of mapping transformation from the x-y plane to
the £-» plane where every single-point in the physical domain has its own corresponding
point in the computational domain. By following this procedure, we will end up with a
number of rows and columns in the computational domain that correspond to rows and

columns in the physical domain as mentioned by Sharatchandara (1995).

\
\j

X

(a) Physical domain {b) Computational domain ¢

Figure 2.5 Transformation from (a) physical to (b) computational space
2.6.3.3 Grid generation methods

The field of grid generation is very wide and the numbers of studies on this subject are
available in literature. Thompson (1982) and Thompson er al. (1985) present a

comprehensive introduction to the methods of grid generation. Grid generation in one
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dimension is straightforward. The two boundaries (i.e., end points) of the physical space
must be defined, and the problem reduces to determining the grid spacing in one
dimension. One dimensional grid generation is important in itself for the use of one
dimensional problem and in two-dimensional grid generation, where the boundaries of
two-dimensional space consist of several one-dimensional spaces, and so forth. Grid
generation within two- and three-dimensional spaces is considerably 'more complicated

than one-dimensional grid generation (Hoffman, 1992).

Available grid generation techniques can be generally classified into three general
categories: (i) Conformal mapping, (ii) Algebraic methods, and (iii) Differential equation
methods. Conformal mapping is based on a complex wvariable theory, which has
limitations to two-dimensional problems. Consequently, this method is not as general as
the other methods and will not be considered further. Algebraic methods and differential
equation methods can be applied to both two and three dimensional spaces.
Consequently, they are the methods of choice. A brief overview of both of these will bé

mentioned in the next section.
2.6.3.3.1 Algebraic methods

The algebraic grid generation technique is based on the specification of algebraic
equations for the Cartesian coordinates x, y and z in terms of general curvilinear
coordinates & #, and (¢ Karki (1986) summarized the algebraic features of such
equations as stretching transformation, shearing transformation, and blending function or
isoparametric transformation. For example, the shearing transformation is a linear
transformation used to non-dimensionalize the distance between two physical boundaries.
The physical domain illustrated in Figure 2.6a can be discretized using the algebraic
sheared transformation. The x-coordinate can be transformed by any one dimensional
transformation, if needed. It is simply discretized into equally spaced points. The y-
coordinate is then discretized into equally spaced points at each x location by the

normalizing transformation technique as:

y =( ,7’7 fJY(x) (<7 <n,,) |  (246)
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where, Y(x) is the upper boundary. The results of the complete transformation are
illustrated in Figure 2.6b. The reader may refer to Hoffman (1992) for further

information.

Transfinite interpolation is considered to be a highly advanced method of algebraic grid
generation technique as described by Gordon and Hall (1973). The location of the grid
points inside the domain is determined by a series of uniform variation interpolations
between the boundaries. The degree of freedom of the blending function can be either
linear or higher order which controls the grid spacing and angles at the intersection. The
choice of higher order is preferable because it gives more flexibility in controlling the
gridline spacing and the angles at which grid lines meet the boundaries. However, this
may create an overlappiﬁ‘g "ahd crossover of the grid lines. For further information the

reader may refer to Thompson et al. (1985).
2.6.3.3.2 Differential equation methods

Algebraic grid generation techniques mentioned above have some disadvantages
associated with the grid. Discontinuities at the intersection of cell faces, crossover of the

gridlines, and undesirable gridline spacing are some of them. A more consistent method

@)

®)

Figure 2.6 Grid generation using normalizing transformation technique (a)
physical domain and (b) grid point distribution (Hoffman, 1992).
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to overcome these problems is the use of a system of partial differential equations to
obtain a higher degree of grid smoothness. Grid generation using partial differential
equations involves the following steps: (i) determining the grid point distributions on the -
boundaries of the physical domain, and (ii) specifying the interior grid points by using

partial differential equations that satisfies the grid point distributions on the boundaries.

Any of the three classical types of partial differential equations (i.e., elliptic, parabolic, or
hyperbolic) may be used as the governing grid generation equation. The elliptic grid
generation technique discussed by Thompson et al. (1985) is considered as the well-

known method in this field. The most common elliptic partial differential equation is the

' U&%

Poisson equation (in two-dimensional domain):

@,2|184—

F\LQNC. amnREs sansawRERE

(2.47)

Vé=E +E, =PEn)

Vi =141, =0,7) N /. 7. Rooa‘ég’ '

(2.48)

Using the inverse transformation and some mathematical manipulations, one can derive

the following elliptic partial differential equations for the Cartesian coordinates:

Qg =23, + 5, = —J 2 (Px, + Ox,) (249
Wes =2y + Wy =—J 2(Pyg +0y,) (2.50)
where

a=x,+y, 2.51)
B=xx,+y:y, (2.52)
y=x;+y; | (2.53)

and J is the Jacobian of the coordinate transformation defined as:

J =Xy, = %,¥, 2.54)
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These sets of equations need to be solved numerically, for x and y with respect to £ and
with the known prior boundary condition specifications. Parameters or control functions

that can control the coordinate line spacing are non-homogeneous terms P and Q.

The three-dimensional grid generation method is a combination of a series of two-
dimensional grid slices, as referenced by many researchers. For both internal and external
flows, the elliptic grid generation method works fine. However, the hyperbolic grid
generation method is preferred for external flow since the hyperbolic equations can be

solved by non-iterative marching techniques as proposed by Steger and Sorenson (1980).
2.6.4 NUMERICAL SIMULATION PROCESS AND ACCURACY

The starting point of any numerical simulation process is the physical system which
should be described. Figure 2.7 shows schematically the whole procedure that will be
performed in a numerical simulation. First, a mathematical formulation for the behavior
of the physical system has to be described. This step will yield the first of the three types
of systematic errors involved in the simulation procedure as mentioned by Breuer (1998).
The formulation error describes the difference between the behavior of the physical
system and the exact solution of the mathematical formulation. After the mathematical
formulation, the basic equations have to be discretized because often no analytical
solution exists for a non-linear system of equations. This introduces the second type of ‘
error, called discretization error, defined as the difference between the exact solution of
the mathematical formulation and the exact solution of the discretized equations. In
Computational methods, the size of this error can be minimized by choosing the proper
discertization method and a sufficiently fine grid. Finally the third type of error, called
convergence error, is due to the difference between the iterative and the exact solution of

the discretized equations. It depends on the solver and the convergence criteria chosen.

These type~s of errors should be clearly distinguished even though they are in general
completely mixed up in the numerical solution of a physical problem. However, one
should be aware of these errors that strongly affect the quality of any numerical
simulation (Bahaidarah, 2004). '
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2.6.5 BOUNDARY CONDITIONS

2.6.5.1 Rigid wall boundary conditions

Near a rigid wall, there may be a bank or island as shown in Figure 2.8. The flow is quite
complex. A very thin viscous sub-layer exists near a smooth wall, while roughness
elements on a rough wall affect the flow significantly. Because the velocity gradient is
quite high there, it is of high cost to resolve the flows in the viscous sub-layer and around

individual roughness elements. A wall-function approach is often used instead (Wu,

2007).
( Physical Problem }———’
Governmg Equations
Boundary Conditions Formulation Error
—————( athematical Formulatno)o—»——‘ T

Discretization Error Discretizatlon Resolution

3
&

v
—————»C Discretized Equations e —
Convergence Criteria Solver Convergence Error e

Solution of Discretized R
Equations "
i

Figure 2.7 Different types of errors involved in a numerical simulation (Bahaidarah;**
2004)
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Figure 2.8 A typical horizontal 2-D computational domain (Wu, 2007)
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At the sidewall, the logarithmic law is applied to the wall boundary, which is

v _ 1,y ' 2.55
(u')w Kln(y()) ( )

where (u,)w =depth-averaged shear velocity at the sidewalls, y =distance from the wall
and y,=location of zero velocity near the wall. Upon obtaining the gradient of velocity,

the velocity at the sidewall is calculated based on the velocity at the adjacent internal
node (Duan, 2004). Lien et al. (1999 a) has used the same logarithmic law of wall in the

following way. The law of wall is applied outside the viscous sub-layer and transition
layer in the range of 30 < y* <100, in whichy* =u,y_ /v’ and y, = distance between the

first computational grid point adjacent to the wall and the wall itself. Within the wall

region, the universal law of the wall is applied as,

w =L 1n(Ey*) (2.56)
K
whereu® =u ,/u,, u,=depth-averaged resultant velocity near the wall, and E(

roughness parameter)= 9.0. On the basis of law of the wall, a so-called wall function
(Rastogi and Rodi, 1978) is formulated, which links the near-wall velocities. Using the

logarithmic velocity law; given in Eq. (2.56) and the expression for wall shear stress i.e.

t,, = pul can be expressed as (Biglari and Sturm, 1998)

T Kuu,

; B lniEy" ) @D

The above wall shear stress relation in Eq. (2.57) is used as the wall boundary condition
and is substituted into the momentum equation in the wall region to solve for the velocity

component parallel to the wall.
2.6.5.2 Inflow and outflow boundary conditions

For subcritical flow, a boundary condition is needed at each inlet and outlet in order to

derive a well-imposed solution while for supercritical flow two boundary conditions
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should be specified at each inlet. For the sake of simplicity and cases of macro domain of
alluvial rivers, only the subcritical flow case is considered below. The inflow boundary
condition is usually a time series of flow discharge. However, a lateral distribution of’
velocity at the inlet is required in the depth-averaged 2-D model. Duan (2004) has
directly used resistance equation for steady flow discharge at inlet. The total discharge is

distributed along the cross section according to the local conveyance.

h5/3 .
g =K | (2.58)
n

where g,=unit discharge, K =local conveyance coefficient and Manning’s roughness

coefficient. The current version of her model allows the specifications of roughness
coefficient denoted as vroughness height or Manning’s roughness coefficient for each
computational node. However, Duan (2004) has chosen the roughness coefficient as a
constant for each case based on the bed roughness conditions described in the original

experiments. Because the total discharge can be calculated as the integral of unit

discharge across channel width, the following equation was applied. e
h~5/3
0= [gds=K [~—ds (2.59)
R W

&

where sdenotes the direction of channel width and the flow conveyance and K can be

obtained as follows:

Q .

K = o (2.60)
I ds
n

At the outlet, Duan (2004) has set surface elevation as a constant, which is the observed
surface elevation at the experiment. The velocity of the outlet cross section is calculated
based on the total discharge and flow depth at the outlet cross section. Wu (2007)
mentions that the stream-wise (resultant) velocity U at each computational point of the

inlet located in a nearly straight reach may be assumed to be proportional to the local

flow depth i.e.,, U o A" Here, r is an empirical exponent; r ~ 2/3 for uniform flow. A
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small » value means a fairly uniform distribution of velocity along the inlet cross-section.

Therefore, for a given total inflow discharge Q(: ?Uhd y'J , U is determined by
4]

U= ;& (2.61)
J’hl+rdyr .
0

where B is the channel width at the water surface, and ' is the transverse coordinate.

The inflow velocity direction must also be specified; it essentially determines the two
components of velocity in the x and y directions at each point of the inlet. The boundary
condition at the outlet may be a time series of the measured water stage, a stage-discharge
rating curve measured or generated using the uniform or critical flow condition, or a non-
reflective wave condition, depending on the outlet configurations. For tidal flow, the tidal
level may also be determined using the major astronomical constituents of tide in the
study reach (Wu, 2007). If a k-¢ turbulence model is used, boundary conditions should be
given for the turbulent energy and its dissipation rate at the inlet and outlet. At the
outflow ,boundary, located in a reach with simple geometry and far from hydraulic
structures, the gradients of flow velocity, turbulent energy, and dissipation rate can be
given zero (Wu, 2007).

2.6.5.3 Wetting and drying techniques

In the calculation of flows in open channels with sloped banks, sand bars, and islands, the
water edgés change with time, and some part of the domain might be dry. A number of
methods have been reported in the literature to handle this problem. They may be
classified into two groups. One group tracks the moving water edges and adjusts the
computational mesh to cover the wet domain. This group can use the boundary-fitted grid
at each time (iteration) step and achieve better accuracy around the water edges.
However, it results in complicated codes and perhaps requires more computational effort.
The other group uses the fixed grid that covers the largest wet domain and treats dry
nodes as part of the solution domain. The latter group includes the “small imaginary

depth,” “freezing,” “porous medium,” and “finite slot” methods (Wu, 2007).
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The “small imaginary depth” method uses a threshold flow depth (a low value, éuch as
0.02m in natural rivers and 0.001m in experimental flumes) to judge drying and wetting
at each time step. If the flow depth at a node is larger than the threshold value, this node
is considered to be wet, and if the flow depth is lower than the threshold value, this node
is dry. The dry nodes are assigned zero velocity. The water edges between the dry and
wet areas can be treated as internal boundaries, at which the wall-function approach may
be applied. The dry nodes can be excluded from the computation in an explicit algorithm,
but must usually be included in an implicit algorithm. In the latter case, the “freezing”

method is often adopted (Wu, 2007).

The “freezing” method also adopts a threshold flow depth to judge wetting and drying in
the computational domain. At dry nodes, the Manning » is given a very large value, such

as 10%°; therefore, the calculated velocity is zero and the water level does not change (as

it is frozen). The “freezing” method can include dry nodes in an implicit algorithm.

However, it should be noted that the water level gradient may induce false flow fﬁ%tion‘s
at the dry nodes. To avoid this problem, a horizontal water level profile at the dry“':iiodes
may be assumed (Wu, 2007). The “porous medium” method (Ghanem, 1995; Khan,
2000) assumes that the bed at the dry nodes is a porous medium and the flow can extend
into the dry bed. Based on a specified minimum depth criterion, either the St. Venaht or
groundwater equations are applied at a particular computational point. The “finite’slot”
method proposed by Tao (1984) is similar to the “porous medium” method. In the “finite
slot” method, a dry node is cut into two slots (with infinitesimal width and infinite depth)
parallel to the x and y coordinates, respectively, in which the water is assumed to move.
Thus, the water depth is kept positive artificially, even if the bed is dry. Different
momentum equations are used at the dry nodes in the “porous medium” and “finite slot”
methods, but the continuity equation at the dry nodes in both methods can be written as

f%+v-(hl7)= 0 , (2.62)
where fis the storativity in the “porous medium” mefhod, or the slot width in the “finite

slot” method. The slot width is given as
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g, +(1—g,)e ™)z <z,

1 z, >z,

where z,is the bed elevation; ¢, is the slot width, with a value between 0.02 and 0.05,

when z, << z,; and ais a coefficient, which is usually larger than 2.0.

2.6.6 GRID ARRANGEMENT AND VELOCITY COMPONENTS
2.6.6.1 Orthogonal coordinate

Orthogonal grid formulation is the most employed scheme for computing fluid flow in
complex geometrical domains. This type of grid is popular because either the domain of
interest can be mapped onto orthogonal coordinates or nearly orthogonal grids can be
generated by using an advanced grid generation technique such as elliptic differential
equations. The merit of such a formulation is the simplicity of the governing equations of
fluid flow when condpared to its non-orthogonal grid counterparts. Additional terms arise
because of the non-orthogonality of the coordinate system which would vanish if an
orthogonal system were to be employed. The disadvantage of using orthogonal grid
generation is the limitation of its applicability. In two-dimensional, the controlling of the
gridline spacing is hard even if special techniques were to be used. The generality of the

non-orthogonal coordinate formulation makes it more favourable.
2.6.6.2 Staggered and non-staggered grid

It is an issue to select the points in the domains at which the values of the unknown
depéndent variables are to be computed. The obvious choice is to store all the variables at
the same locations and to use the same control volumes to all variables. Such a grid is
called “collocated” or non-staggered grid. Since many of the terms in each of the
discretized equations are essentially identical, the number of coefficients, that must be
computed and stored, are reduced and the programming effort is simplified by this type

of grid.
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The non-staggered grid arrangement also has significant advantages in complicated
solution domains, particularly when the boundaries have slope discontinuities or the
boundary condition itself is discontinuous. All flow variables are stored at the cell
centers. So solution procedure is simplified using less memory usage with respect to
staggered grid arrangement in developed computer programs. A set of control volumes
can be intended to fit the boundary including the discontinuity. Other arrangements 6f the
variables lead to some of the variables to be lbcated at the singularities of the grid, which
may lead to singularities in the discretized equation as mentioned by Ferziger and Peric
(1996). However, a serious drawback of this arrangement is that it may give rise to a
checkerboard pressure pattern and a wavy pressure field may be interpreted as uniform
by the momentum equations as explained by Patanker (1980) due to weak coupling
between velocity and pressure. However, this problem is avoided by adopting Rhie and
Chow interpolation technique (1983) into the numerical solver. Rhie and Chow (1983)
presented a novel way of treating the convective terms in the momentum equations. They '
used the pressure difference between adjacent nodes instead of alternate nodes to
calculate the cell face velocities. The best advantage of the staggered arrangement 1s the
strong coupling between the velocities and the pressure (Figure 2.9). This will help to

avoid some convergence problems and oscillation in the pressure and velocity fields in

.\\i__w.w.-l}\»-»-w\.-«.w.w :
M |
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specific conditions.
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Figure 2.9 Example of staggered grid in two-dimension (Bahaidarah, 2004)
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2.7 CHARACTERISTICS AND MODELLING OF BRAHMAPUTRA
RIVER

2.7.1 THE BRAHAMPUTRA RIVER SYSTEM -

The Brahmaputra River, termed as a moving ocean (WAPCOS, 1993), is an antecedent
snow-fed large Trans-Himalayan river which flows across the rising young Himalayan
range. Considerable variations in width, gradient, discharge and channel pattern occur
throughout its course. Geologically, the Brahmaputra is the youngest of the major rivers
of the world and unique in many respects. It happens to be a major river for three
countries, vz’é., China, India and Bangladesh. The river basin of the Brahmaputra is
bounded on the north by the Kailas and Nyen- Chen-Tanghla ranges of mountains; on the
east by the Salween river basin and the Patkai range running along the Indo-Myanmar
border; on the south by the Nepal Himalayas, the Naga and Barail ranges and the
Meghalaya Plateau; and on the west by the Ganga river basin (Sarma, 2005).

Throughout its course within India, the Brahmaputra is braided with some well defined
nodal points with rock crops where the river width is narrow and restricted within stable
banks. All along its course in the valley, abandoned wetlands and back swamps are
common. The river carries about 735 million metric tons of suspended sediment loads

annually.

The Indian section of the Brahmaputra River receives innumerable tributaries flowing
down the northern, north-eastern and southern hill ranges. The mighty Brahmaputra
along with the well-knit network of its tributaries controls the geomorphic regime of the
entire region, especially the Brahmaputra valley. In the north, the principal tributaries are
the Subansiri, the Jia Bhareli, the Dhansiri, the Puthimari, the Pagladiya, the Manas and
the Champamati. Amongst these, the Subansiri, the Jia Bhareli and the Manas are the
Trans-Himalayan Rivers. The principal south bank tributaries are the Burhi Dehing, the
Disang, the Dikhow, the Dhansiri (south), the Kopili and the Krishnai.

It is observed that three Trans-Himalayan tributaries, the Subansiri, the Jia Bhareli and
the Manas on the north have a basin more than 10000 km?, i.e., only two south bank

tributaries namely the Dhansiri and the Kopili form a basin area more than 10000 km?.
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The Manas River combined with the Aie and the Beki rivers drains biggest area of 41,
350 km?. The 442 km long Subansiri River and the 360 km long Burhi Dehing River are
cbnsidered longest, respectively, among the north-bank and south bank tributaries (Water
Year book, CWC, 2002). In terms of the average annual discharge, the Subanstri carries a
discharge of 755-771 m®/sec, which ranks first among all the important tributaries. The
Jia Bhareli and the Manas in the north carrying an average annual suspended sediment
load of 2013 ha-m and 2166 ha-m, respectively, are the leading rivers in the case of
sediment discharge. Of all the north and south bank tributaries, as many as fourteen have
sediment yields in excess of 500 tons/ km?/year, the highest being 4721 tons/km? /year
(Sankhua,2005).

2.7.2 HYDROLOGIC AND PHYSIOGRAPHIC CHARACTERISTICS OF THE
BRAHMAPUTRA RIVER

The statistical details of the river are described below (Sankhua, 2005).

(a) Total basin area from its source to its confluence with Ganga at Goalundo in

Bangladesh 580,000 km?
(i)Basin area within Tibet 293,000 km?
(ii)Basin area in Bhutan and India 240,006 km?
(iii) Basin area in Bangladesh 47,00(‘)%km2

(b) Length from its source to outfall in Bay of Bengal 2,880 km’

(c) Gradient

(i) Reach within Tibet 1 in 385
(i)  Reach between Indo-China border and Kobo in India 1 m v5 15
(i) Reach between Kobo and Dhubri 1 in 6,990

(iv)  Reach within Bangladesh
First 60 km from Indian Border - 1in 11,340

Next 100 km stretch 1in 12,360
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Next 90 km stretch 1 in 37,700

(d) Observed discharge

(i) Maximum observed discharge at Pandu (on 23.8.1962) 72,727 m®/sec
(i) Minimum observed discharge at Pandu (on 20.2.1968) 1,757 m*/sec
(iii) Average dry season discharge at Pandu 4,420 m*/sec

(iv) Normal annual rainfall within basin ranges between 2,125 mm in Kamrup

District of Assam and 4,142 mm in Tirap district of Arunachal Pradesh.
2.7.3 CHANNEL PROCESS

The Brahmaputra River in India forms a complex river system characterized by the most
dynamic and unique water and sediment transport pattern. The Brahmaputra is the fourth
largest river in the world (Goswami and Das, 2000). The water yield from per unit basin
area is among the highest of the major rivers of the world. The Jia Bhareli, a major
tributary, carries a mean annual water discharge of the order of 0.0891 m’/sec/km’. As .
estimated by Goswami (1982), the Brahmaputra yields 0.0306 m*/sec/km? at Pandu. As
regards sediment transport, the river has also set records in carrying large volumes of
sediment. The high intensity of monsoon rains, easily erodible rocks, steep slopes, and
high seismicity contribute a lot by rendering the river a heavily sediment-laden one.
Thus, the Brahmaputra becomes one of the leading sediment carrying rivers of the world.
Amongst the large rivers of the world, it is second only to the Yellow river in China in

the amount of sediment transport per unit of basin area (Goswami and Das, 2000).

The Brahmaputra is a uniquely braided river of the world. Although braiding seems to be
best developed in rivers flowing over glacier outwash plains or alluvial fans, perfect
braiding is also found to occur in large alluvial rivers having low slope, such as the
Brahmaputra in Assam (India) and Bangladesh or the Yellow River in China. The Assam
section of the Brahmaputra River is in fact, highly braided and characterized by the
presence of numerous lateral as we}ll as mid channel bars and islands (Goswami and Das,
2000).
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The high degree of braiding of the Brahmapﬁtra channel near Dibrugarh and downstream
of Guwabhati is indicated by the calculated Vbraiding indices of 5.3 and 6.7 respectively for
the two reaches, following the method suggested by Brice (1964). A braiding Index of
4.8 for the entire Assam section of the river calculated on the basis of satellite data of
1993 also suggests a high degree of braiding of the Brahmaputra River (Sankhua, 2005).
Further, based on remote sensing data study, Sharma and Akhtar (2010) reported a
progressive decrease in Plan Form Index (PFI) values in different reaches of
Brahmaputra River in Assam flood plain during recent years (1990-2007). This is

indicative of intensification of braiding process in recent years.

The basin with varied terrain characteristics and being an integral part of the monsoonal
regime of south-cast Asia shows a marked spatial variation in the distribution of
precipitation. The rainfall in the Teesta valley varies from 164 cm in the south to 395 cm
in the north. The average annual rainfall in the lower Brahmaputra valley is 213 cm while
the same in the north-eastern foothill belt is 414 cm. The basin as a whole has the average
annual rainfall of 230 cm with a variability of 15-20%. The Himalayan sector receives
500 cm of rainfall per year, the lowér ranges receiving more than the higher areas

(Goswami , 1985).

In the sub-Himalayan belt soils with little depth developed over the Tertiary sand s'E\ones
generally belong to red loam, laterite, and brown hill soil type with admixtures of cd:t;bles
and boulders. The greater part of the Brahmaputra valley is made up of new alluvium of
recent deposition overlying Tertiary, Mesozoic and Archaean bedrocks. Along the
piedmont zone, there occurs some patches of older alluvium extending along the the
tributaries flowing from the Himalayan foothills. The soils of the Meghalaya plateau and

the Mikir Hills in the south are of laterite and loamy silt and fine silt types. - Y

In general, braiding in the Brahmaputra follows the mechanism of central bar type of - |
braid formation. During high flow, a central bar is deposited in the channel and gradually
the bar accretes vertically to the level of the floodplain. It also bulilds on the downstream
end through deposition of bed load material due to the slack water occurring behind the -

bar. The bar growth causes a decrease in total cross-sectional area leading, thereby, to the
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instability of the channel. Lateral erosion then follows on one or both the banks. Through
repetition of this process in the divided reach, a well developed braided reach with

multiple sandbars and islands is produced (Sankhua, 2005).

In the Assam section of the river, the presence of nodes of stable banks of rock outcrops
or stiffed clay formation is found to effect the formation and location of the bars. There
are nine nodal reaches of narrow constriction at various locations along the Brahmaputra,
which are at Murkongselek (4.8 km), Disangmukh (5.10 km), downstream of Jhanjimukh
(3.75), upstream of Dhansiri north (4.0 km), downstream of Dhansirimukh (4.4 km),
upstream of Tezpur (3.6 km), Pandu Guwahati (1.2 km), U/s of Sualkuchi (2.4 km) and
Pancharatna (2.4 km) (Sankhua, 2005). Since banks are relatively stable in these reaches,
the river scours deeper to accommodate the flood discharge. The scoured debris is then
deposited in the channel immediately downstream from the narrow section. As a result,
the channel becomes wider and bars and islands are produced. Formation of bars causes
reduction in cross sectional area and the river, therefore, cuts its banks laterally to
accommodate the discharge. Thus, in the downstream of the nodes, intense braiding
develops resulting in channel widening through continuous migration of both banks of

the Brahmaputra (Sankhua, 2005).

As reported from the studies carried out on braided rivers of the world, the major factors
thought to be responsible for braiding and bar formation are steep channel gradient, high
erodibility of bank materials, great variability in discharge, overabundance of load, and
aggradation of the channel bed. In case of the Brahmaputra River in Assam bar formation
and channel division are owing to a combination of factors like high variability in
discharge, excessive sediment transport, easily erodible bank materials and aggradation
of the channel. Being the fourth largest river in the world with an average discharge of
19,830 m3/sec at its mouth, the Brahmaputra carries 82% of its annual flow at Pandu
(Assam) only during the rainy season from May to October (Goswami,1992). The
maximum and minimum mean monthly flows in the river during 1990-2002 are 48,160
m>/sec and 3,072 m>/sec, respectively. On an average, therefore, the maximum flow is

more than fifteen times the minimum (Goswami and Das, 2000).
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High variability in discharge of the river is mainly caused by seasonal rhythm of the
monsoon and the freeze-thaw cycle of the Himalayan snow. As regards the pattern of
sediment transport, the river has the record of carrying excessive sediment load which is

believed to be one of the important factors responsible for braiding.
2.7.4 2-D or 3-D mathematical modelling for Brahmaputra River

In view of the extensive review of literature presented in the previous section, it can be
summarized that a number of attempts have been done to simulate the realistic flow field
including transverse components in complex geometry like bends, curves (Lien et al.,
1999; Odgaard, 1989a; Duan, 2004; Seo et al., 2008). However, assessment of flow-field
in braided river like that of Brahmaputra with ‘secondary flow correction’ in complex

geometry is hardly found in literature.

Moreover, braiding seems to be best developed in rivers flowing over glacier outwash
plains or alluvial ‘fans, perfect braiding is also found to occur in large alluvialrivers
having low slope, such as the Brahmaputra in Assam (India) and Bangladesh or the
Yellow River in China. The Assam section of the Brahmaputra River is in fact, highly
braided and characterized by the presence of numerous lateral as well as mid channel bars
and islands (Goswami and Das, 2000). Due to these facts, the research on Brahmaputra
River in the past mostly relied on field investigation and physical modelling. Onl’)f% aﬁLef
1980s, numerical modelling, especially 1-D modelling has been gradually applied u: flow
simulation and sediment prediction in Brahmaputra River (Sharma, 2004). Yet successful
implementation of 2-D depth averaged modelling in Brahmaputra River Reaches in
Assam Flood Plains is hardly found in literature due to its highly complex topography

and difficulty in reproduction of geometric data mathematically.
2.8 SUMMARY

In this chapter, a comprehensive review of literature is presented with regard to braided
river characteristics, 2-D depth averaged modeling for rivers, secondary flow and its
corrections in controlling equations in river flow scenario, discretization methods,

coordinate transformation. Investigations in these potential research areas have been
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highlighted from earlier works to the devélopments in more recent years. The gaps in the
concurrent research in relation to braided river modelling in particular to Brahmaputra

River have also been attempted to be adequately focused.

Based on the comprehensive literature review, following observation can be broadly -
summarized in relation to mathematical modelling of the braided stream in particular to

Brahmaputra River.

1. One dimensional mathematical modelling for flow field simulation in braided river
is highly approximated and fallacious on account of numerous assumptions. It
considers only unidirectional flow variability. All the model parameters, state
variables and forcing functions are approximated through average valued composite
representation across the flow in the stream. Naturally, 1-D models are insufficient
to deal with secondary currents or helical flow, vortex formation, flow reversal and

anisotropy effects.

2.  The preferred way to represent the fluvial process in the braided river adequately
with inclusion of 3-D flow structures is obviously the development and application
of 3-D models. However, there are some practical limitations to apply 3-D models
for reach scale modelling. 3-D modelling is to be developed by superimposing
numerous fluvial processes especially in braided stream thrbugh mathematical
functions and has too many imponderables for predicting flow variables. It is
computationally tedious and highly expensive in terms of numerical solution
algorithm for large flow domain such as where the width of the channel is in the
order of 20 km with 100km of reach length.

3. The best alternate way to find the solution is to reduce the dimension of the
modelling to ease the computational effort without any significant compromise in

the accuracy and objectives. In lieu of that, 2-D model can be applied.

4. In wide braided rivers where water depth is very small in compare to width, the

vertical acceleration of flow can be reasonably ignored and pressure is assumed to be
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hydrostatic. The velocity is depth averaged to reduce the dimension of the

modelling.

However, on account of reduction of dimension in 2-D from 3-D , the accounting of
secondary flow or helical flow will be reflected in terms of only flow in transverse

direction (vertical velocity is ignored as stated earlier)

Especially in braided channels where flow domain may have a number of
curvilinear multiple channels with considerable skew symmetric flow domain, the
accuracy of flow field can possibly be improved with suitable incorporation of
realistic secondary flow (effect of vertical acceleration due to skew symmetric
domain characteristics) into the governing 2-D flow equations through introducing
additional source /sink terms due to flow dispersion tensor (secondary flow
corrections). This way an enhanced 2-D depfh averaged model can be developed

whose result is expected to be close proximity to realistic physical flow scenario.:

The dispersion stresses due to skew-symmetric flow domain have been estimated
empifically by numerous investigators like Lien et al. (1999), Hsich and Wang
(1999); Nagata et al.( 2000); Duan (2004), Duan and Julien (2005), Seo et al. 2008
etc. The empirical models given by earlier investigators for estimating -flow
dispersion stress tensor can possibly be improved further to get better estimation of
flow dispersion stresses. Better flow dispersion stress model can bring forth a better

2-D depth averaged enhanced model for realistic prediction of flow field.

The skew symmetric flow domain is the essential feature of braided streams. Use of
the Cartesian co-ordinate is often inconvenient and impractical representing the skew
symmetric irregular geometry when boundaries of the domain are not aligned along
the Cartesian base vector directions. Hence body fitted coordinates system is
employed whose principal coordinate directions are along the domain boundaries.
The flexibility offered by body-fitted grid techniques is useful in the modelling of
practical problems involving irregular geometries and like that of a braided stream

and capable of capturing useful features in the area of interest.
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9.

10.

11.

Reviews of earlier works indicated that braided rivers react to changes in flow stage
signiﬁcantiy. More quantitative data are needed for research on understanding of the
processes involved during the flow stages. The apparent complexity the braided
pattern seems to have implications for the nature of the main processes involved in
shaping braided morphology, bar genesis and evolution. With significant advances in
data acquisition techniques such as remote sensing data usage, use of latest
instrument to measure stage discharge at gauge stations and hydro-graphic data
collection in close intervals, reliable data become more available on larger rivers,
such as the Brahmaputra, the issue of morphological processes and their relationship
to channel scale in braided systems can be addressed though multidimensional

mathematical modelling with much ease and accuracy.

However, a great deal of uncertainty over the true process representation of braided
river is yet to be adequately addressed through mathematical modelling of higher
dimension. Correct process representation of the distribution of flow concentration at
the channel confluences and around the evolved braid-bars, side-bars and islands
within the flow domain is yet to be achieved through adequately -incorporating»its
effect through tested mathematical functions into the governing equations of

simulating the flow field.

The problem of key morphological processes of braided channels has yet to be fully
addressed (Bristow and Best, 1993). The apparent similarities of plan-form and cross-
sectional characteristics require further investigation ((Bristow and Best, 1993).
Similarly it has been demonstrated by many researchers that a proper understanding
of the flow and sedimentary processes at channel junctions is fundamental to the
braided river morphology (Leopold and Wolman, 1957a; Bridge, 1993; Ashworth,
1996, Sankhua, 2005). The studies to-date that have been carried out to establish
models and frameworks for understanding braided river behaviour have been mostly
qualitative in nature. The lack of quantitative studies on morphology and evolution
braiding pattern with flow stages for braided rivers has impeded the development of

the understanding of this complex environment further.
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12. From this review of the literature, it is seen that there is a complete lack of
quantitative studies on spatio-temporal mdrphological modelling of the braided rivers
due to apparent fallacious estimation of transverse flow concentrations around the
braid bars and sidebars which is a one of the prime causative factor for bed evolution,
braiding pattern change and influencing the intermittent river bank erosion. Two
dimensional enhanced flow models can possibly simulate the braiding process
provided adequate distribution of flow concentration including transverse flow field is
adequately accounted for into the flow governing equations without going into for
numerically and computationally expensive 3-D models for macro scale river
simulation. Moreover 3-D models require reliable three dimensional sediment process
representations and are highly data intensive. Hence for practical engineering
purposes, 2-D enhanced models for braided river can fetch equally significant model
results without much improvement apparently with 3-D models which is still at

nascent stage of development for macro flow domains with complex bed geometry.

EoE
In view of the above, the objective of the present study is framed to develop and test a
numerical 2-D enhanced depth averaged model embedded with turbulence and secondary
flow attributes along with nonlinear stream boundary in a real braided river like

Brahmaputra in Assam flood plain of Indian Territory.
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CHAPTER-3

DESCRIPTION OF STUDY AREA

3.1 INTRODUCTION

Stretching within the basin periphery of 82°E to 97° 50" E longitudes and 25° 10" to 31°
30' N latitudes the river Brahmaputra envelopes a drainage area of 580000 sq.km and is
recognized to be one of the most braided channel river. The hugeness of the river system
in terms of the drainage area and the lengths it encompasses may be realised from its

aerial extent as under.

Table 3.1 Aerial distribution of the total drainage basin (Bora, 2004)

Basin area . prannel
Country _ Length
(Km?) (km)
I. Tibet (China) 293000 1,625
2. Bhutan 45000 -
3. India 194413 ' 918
(a) Arunachal Pradesh 81424 278
(b) Assam 70634 640
(c) Nagaland 10803 -
(d) Meghalaya 11667 -
(e) Sikkim 7300 -
(f) West Bengal 12585 -
4. Bangladesh 47000 337

Originating in a great glacier mass at an altitude of 5300 m just south of the lake
Konggyu Tso in the Kailas range, about 63 km southeast of Mansarovar lake in southern
Tibet at an elevation of 5300m, the Brahmaputra flows through China (Tibet), India and
Bangladesh for a total distance of 2880 km, before emptying itself into the Bay of Bengal
through a joint channel with the Ganga. It is known as the Tsangpo in Tibet (China), the
Siang or Dihang in Arunachal Pradesh (India), the Brahmaputra in Assam (India) and the

Jamuna, Padma, and Meghna in Bangladesh

Before entering India, the river flows in a series of big cascades as it rounds the Namcha-

Barwa peak. The river forms almost trough receiving the flows of its tributaries both
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from North and South. The river, with its Tibetan name Tsangpo in the uppermost reach,

flows through
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Figure 3.1 Location map of the Brahmaputra River in Assam, India (Sarma, 2005)

southern Tibet for about 1625 km eastward and parallel to tributaries, viz., the Nau Chhu,
the Tsa Chhu, the Men Chhu, the Charta Tsangpo, the Raga Tsangpo, the Tong Chhu, the
Shang Chhu, the Gya Chhu, the Giamda Chhu, the Po Tsangpo and the Chindru Chhu
and the right bank tributaries, viz. the Kubi, the Kyang, the Sakya Trom Chhu, the Rhe
Chhu, the Rang Chhu, the Nyang Chhu, the Yarlang Chhu, and the Trulung Chhu join the
river along its uppermost reach. At the extreme eastern end of its course in Tibet the
Tsangpo suddenly enters a deep narrow gorge at Pe, where in the gorge section the river

has a gradient ranging from about 4.3 to 16.8 m/km (Figure 3.2).

The river enters in India near Tuning in Arunachal Pradesh. A fter travelling for a distance
of 278 km up to Kobo, it meets with two rivers the Dibang and the Lohit in Assam near
Kobo. Below this confluence point, the river is known by the name of the Brahmaputra. It
passes through Assam into Bangladesh and at last it meets with the Ganga near Goalundo
in Bangladesh before joining the Bay of Bengal. Its total length is 2880 km comprising
1625 km in Tibet, 918 km in India and 337 km in Bangladesh. It is also one of the most
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braided rivers in the world with width variation from 1.2 km at Pandu near Guwahati to

about 18.13 km near Gumi few km distances downstream to this point.

Traversing through deep narrow gorges of the Himalayan terrain the Tsangpo takes a
southward turn and enters Indian Territory at an elevation of 660 m. The river then enters
the State of Assam (India) taking two important tributaries the Dibang and the Lohit. At
the exit of the gorge the slope of the river is only 0.27 m/km. At the head of the valley
near Dibrugarh the river has a gradient of 0.09-0.17 m/km, which is further reduced to
about 0.1 m/km near Pandu (Figure 3.1). The mighty Brahmaputra rolls down the Assam
valley from east to west for a distance of 640 km up to Bangladesh border (Table

3.1)(Sarma, 2005).

3.2 LONGITUDINAL SECTION OF THE BRAHMAPUTRA RIVER

The longitudinal section of the Brahmaputra River from its origin to the outfall point is
depicted in Figure 3.2. It is observed that Pasighat, stop is quite steep. As one moves
from Pasighat to Pandu(Guwahati), bed slope becomes mild indicating that the ‘flow
characteristics in downstream reaches is predominantly sub-critical and laden with

sediment with wide banklines.
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Figure 3.2 Longitudinal profile of the Brahmaputra River (Sarma, 2005)
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3.3 STUDY AREA

For the application of developed hydrodynamic model, the reach between measured cross
sections number-22 (Pandu near Guwabhati) to 9 (Jogighopa) released by Brahmaputra
Board, G.0O.1(spanning over about 100 km length in Assam state of Indian Territory) has
been taken as flow domain and extracted from Satellite image of the year under study.
Measured fourteen cross-section data (Cross section 22 to cross section 9) for year 1997
was used (Appendix IIT). The location of study stretch of Brahmaputra River with
respect to whole Brahmaputra River in Assam flood pain in India is shown in Figure 3.3.
Flow domain (Primary Flood Plain) of the study stretch is delineated from geo referenced
satellite image (IRS-LISS-III satellite imagery) of 1997 was delineated by GIS software
tools. The delineated image of the study stretch of Brahmaputra River is shown in Figure
3.4. Figure 3.5 is presented to show the geo-referenced image of the flow domain
extracted from the imagery of 1997 for further preprocessing to design the geometric data

for 2-D mathematical modelling. Preparation and processing of the geometric data for the

study domain is discussed in Chapter 8 of this thesis in detail.

Study Area

.SHILLONG

T

Figure 3.3 Location of study stretch of River Brahmaputra (NDMA4, 2011)
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Figure 3.4 Study area delineated from satellite image (courtesy: NDMA-2011)
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Figure 3.5 River. flow domain delineated from satellite image for the year 1997

74



CHAPTER-4

DEVELOPMENT OF MODIFIED DISPERSION STRESS
TENSOR IN TWO DIMENSIONAL CURVILINEAR FLOW
FIELD

4.1 INTRODUCTION

The empirical relations for dispersion stress terms in 2-D curvilinear flow field have been
given by numerous researchers. Towards this, Engelund and Skovaard (1973) and
Shimizu and Itakura (1989) predicted the transverse velocity, however it was valid only
near the bed. Lien et al. (1999) used orthogonal curvilinear coordinate system and
incorporated the dispersion terms derived from stream-wise and transverse velocity
profile (de Vriend, 1977). Duan (2004) employed the Cartesian Co-ordinate to facilitate
model application in meandering and non meandering channels. Duan (2004) found that
in meandering channel, mass diffusion coefficient is much larger than turbulent diffusion
coefficient. Mathematical expressions for components of dispersion coefficient tensor
have been deduced by integrating the product of discrepancy between the depth averaged
and actual velocity. Duan (2004) deduced the dispersion terms with the assumption that
the stream-wise velocity satisfies the logarithmic law. It seems that integration by Duan
(2004) ignored the role of boundary sub-layer formation at the bed. However, this
assumption may not always hold good in many situations. For example, for very mild bed
gradient with highly sub-critical flow zones in alluvial river flow case, the boundary sub-
layer is rationally assumed to be intact to satisfy logarithmic law of velocity distribution.
This chapter attempts to deal with the derivation of flow dispersion tensor in general
curved channels which are common features in braided and dynamic alluvial streams.
The objective of this chapter is to derive the appropriate set of mathematical expressions
for dispersion_stress terms for depth averaged 2-D model to be used for complex non-
orthogonal curvilinear flow domain with mild bed slope. The numerical model
development with finite volume method and the verification of the proposed formulations

has been discussed in Chapter 9 of this thesis.
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4.2 DISPERSION STRESS TENSOR

- Components of dispersion stress terms in Cartesian coordinate which can be included in

momentum transport equations are D,,, D,, and D, . These terms can be expressed as

follows (Duan, 2004).

h+zg

Dxx = Jp(ux _Ux)zdz

h+zy 4.1
D, = [plu,-UYu,-U, Mz @D

h+z,

D, = [plu,-U,)d

where zy=zero velocity level.

For open channelvfree surface gravity flow, cohesive terms are non-significant and can be
neglected. The depth averaged parabolic eddy viscosity model (zero equation model) is
adopted for the turbulence term. The depth averaged eddy viscosity is computed as
[Eq.(4.2)] (Kalkwijk and De Vriend, 1980; Zhou, 1995)

r

VvV, = LlcU_h
6 4.2)

Where k=Von Karman’ coefficient and U'=Shear velocity= [C o (U o )]% .

4.2.1 TRANSFORMED GOVERNING EQUATIONS ‘WITH DISPERSION
STRESS TENSOR

The transformed depth averaged governing equations in generalized curvilinear
coordinate system (¢ #, t) for continuity and momentum equation (Eqs.4.3, 4.4 and 4.5)

are derived (detail derivation is presented in Chapter 5) as follows.

B oy s 2oy + L i ) “.3)
5 (P S (PRI + - (phTd,) = 0
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In Egs. (4.3) to (4.5), u,, (m=¢& ) are the velocity components in the curvilinear -

coordinate (£ ,7,7 ) which relate to Uy, U, as

ﬁf | I fx gy Ux | .

a, “n, n, \U, (4.6)
4.2.2 DERIVATION OF DISPERSION STRESS TERMS IN MOMENTUM
EQUATIONS

The dispersion terms resulting from the integration of the product of the discrepancy
between the mean velocity and actual vertical velocity distribution were included in the
momentum equations to take into account the effect of secondary current. Free surface
flow in natural rivefs is generally classified as turbulent-subcritical within the ranges of
corresponding values of Reynolds numbers and Froude numbers. One of the important
aspects of the free surface flow is shear velocity parameter which causes variation in
velocity in different layers of fluid flow. So from the literature, one can readily assume

that the stream wise velocity profile satisfies the logarithmic distribution law, i. e.

E

o

77



where z=vertical coordinate level (See Figure 4.1), us~velocity in stream-wise direction

and zp is calculated according to flow Reynolds number as follows,

2y =011 . RALAPYS
v (4.8)
2y = 0.033 &, e BT T
1 4
v Uk

zo = 0.11

+0.033%,.,52

-

Where in Eq.(4.8), v = Kinematic Viscosity; 4, = Roughness height(m) and U~ = Shear Velocity

Ideally, at the bed boundary, u (stream-wise actual veloéity) is zero; but for developing
numerical scheme, value of base velocity should judiciously be taken non zero value to
ensure feasible solutions. Hence, it is well justified to exclude boundary sub-layer
thickness (depth up to which boundary sub-layer is formed) and assign non-zero base
velocity to achieve numerical solution close to experimental results. In other words, solid
physical boundary is replaced with fluvial boundary and corresponding fluvial boundary
condition has to be taken into consideration when analyzing the velocity profile vertically

(Figure 4.1).

Duan (2004) computed the depth averaged stream-wise velocity

1" '
N Z Iusdz J (4'9)
0
Equation(4.9) implies that the depth in the expression is integrated in denominator, from
zero to h, instead of z, (zero bed elevation) to h. Here, modification can be proposed

through computing the depth averaged stream-wise velocity integrated over the depth

from zero velocity level (zp) to water surface elevation (h) as

U, = ’]usdz / I]-dz (4.10)

Zo
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Dividing Eq.(4.12¢) with Eq.(4.7), one obtains,

b =)

Us ﬂo_l_ln(no)

Rearranging the above expression, one has

a- no)ln(ﬂzh)— no +1+ Inn,

us_l= 0

U, e —1=1In(7,)

Or,

u U (1—no)ln(%)—(l—no)lnno-r70+1+1n770

5

U, no—l—ln(no)

u, ~U, = %_ﬁ(n—oj((l —r]o)ln(%)——no +1)

Or,

_ — U,(l—ﬂo) i
“ U’_U,o_l_k‘(’?o)[in(h)"-l)
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The transverse velocity profile is assumed to be linear. As proposed by

Odgaard(1989a,b), following relation is adopted for this model.
u =U”+2vs(%——1—) (4.16)

Where u,, U, and v, are transverse velocity, depth averaged transverse velocity and the
transverse velocity at the water surface. Engelund and Skovgaard (1973) derived the

deviation angle of the bottom shear as follows

“n P E—'—‘- = -}15
(3) () 7% % @17

where r=radius of channel curvature and the secondary flow at the surface and the bottom

are equal. Therefore Eq. (4.17) is used to express transverse velocity at the surface..Thus,
(vs)v= 7.0(4/r)(us)o (4.18)

Or,
Substituting Eq. (4.18) in Eq. (4.16), one obtains (same as Duan (2004)’s approach),
1

h z
u, =U,,+7.O;—Us[;—5) (4.19)

e

Let us define

(l—no)( =7 , (4.20)
ﬂo_l_ln o

Substituting Eq. (4.20), Eq. (4.15b) and Eq. (4.19) convert to;

u,-U, = yU:(ln(%) + 1) (4.ila)

u, -U, = 7.ins(£~ l) | (4.21b)
h 2
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4.2.2.1 Expressions for dispersion stress tensors

The dispersion stress terms at the stream-wise and transverse directions can be expressed

as.

Den = h:f:o(u, UV (4.22a)
Doy = [l =0, Yo, - U, (4.22b)
Dow = [ple,~U,Yde (4.22¢)

Zo

where D , D] and Dj, are dispersion stress terms in curvilinear coordinate system.

Substituting Eqs. (4.21a) in Egs. (4.21b), one can deduce dispersion stress tensor

presented in following steps.
(a) The first dispersion term Dy,

Substituting Eq(4.21a) in Eq(4.22a), one can get,

A 2
DL = pyU,U, I(ln(%)+l) dz | (4.23)

Zo

Now consider z/h=m, then, dz=h dm, m;=z¢/h=ny lower integral bound, m,=h/h=1

upper integral bound. With these substitution Eq.(4.23) becomes

DL = pr 2usush[ [n @) am + 2m fin G )z + 1 - m} (4.242)
2 3 )

Or,

DS = p;/zUsUshI(m(ln m)’ —2mlnm+2m):]o fz(m Inm-m), +(1 —770)]’ | (4.24b)

Or,

D%, = py*U,U b2 —7,(Inn, ¥ + 277, n7gy — 2390 +2(— 1= g Injgy + 730 ) #1175 (4.24¢)
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One gets the final expression as,
D = py 2U,Ush[— 7, (ln 7o )2 -1 + 1] ' (4-24d)
(b) The second dispersion term D,

Similar to the above, one can get expression for the Second Dispersion Stress Term

s =0 z Ly~ 4253
DH—PZ{YU,(IH[Z—)+1}X7O—U (;—?)dz ( )
Or,

. 1 2 - (4.25b)
‘ny _—7 OP}’ '—U U zg(ln(h)+1J[2—'h—JdZ g
Or,

D =-7.0 by, In Zmila+ Ll - [2a
e f Tolag= = b 4.25¢)

Again taking m=z/h and integrating and transforming the upper and lower bound as done

earlier, and taking 2 common, one has ,

2
D, = —7.0pyh— USUS(% [mlnm—m]i70 —% [2m2 1nm~—m2L +—;—(l—ﬂo)—%[m2L) (4.26a)
r
Or,
hZ
o, =-7. Op}"“"U U, (2[ 173, In7g, +13, ] [‘1 =21, Inggy+135 ]""2(1 ~11,) 2[1 %D (4.26b)
Or
2
=-1 75pyh—UsUs([— 2-2n,Inny +2n,+1+ 2778 Inggy —n +2-2n, -2+ 217021) (4.26¢)
2
Or,
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c h’ ’ 2 2
Dt =-1.750y 20U U 20, ne+ 272 Inny + 7l —1)
r
> (4.26d)

. (4.26¢€)
D{, =-1.75py 7u,U:([— 270 7, (1=1,)- (1L +n,)1-7)]

2
2
D, =1.75py —hr—U,Us(l = 2.)2n, 07y + 7, +1) (4.261)

(c) The third dispersion term Dy’

Using the similar procedure as above, one can obtain the expression for D° ,,

Dy, = P "y ol f[——%) ' (4.27a)
Or,
D¢ = 49.0pf—;U,US(][%J dz — j( )dz S J'dzJ | | (4.27b)

Again taking m=z/h and integrating and transforming the upper and lower bound as done

earlier, one can obtain,

D¢, =49 .Opf—jU,Us[[ﬁi]l _[ﬁ] +l(1_770)) (4.28a)

e _ 173 1 ng 0
D¢ = 49 Op—U U {? T‘(?”T)+ i ] (4.28b)
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) |
¢ 7o 1 7,

Pt =a90pt vy, Do T, " 7o
» T ’[3 3 2 2 4 4} - (4.28¢0)

Or, finally one may obtain,

3 3 2 .
D¢ =49_Oph—2-UsUs M Mo Mo 1 : (4.28d)
» r 3 2 4 12

The relation between depth averaged velocities in curvilinear coordinates and Cartesian

coordinate can be given as (Duan 2004)
U,=U,cos8 +U,cosb,

(4.29)
U,=U,sin6,+U,siné, )

where 6; and 6, are angles between stream wise, transverse directions pointing outward
and positive x-axis respectively. Similarly the dispersion terms in Cartesian coordinates
can be related to that in curvilinear coordinates as follows (Duan 2004).

D,, = D;, cos’ 6, +2D;, cos 8, cos 8, + D5, cos® 6,

€ il € ol 2 C ol 2 (4~30)
D, =D_sin” 6, +2D,, sinf,sin§, + D) sin" 6,

D,, = D cos@,sing, + 2D, (cosd,siné, +sind, cosd, + D], sin g, cosb,

The dispersion stress terms finally obtained in Egs. (4.24d, 4.26f and 4.28d) can be
transformed by Eqgs. (4.29) and Egs. (4.30) to get modified dispersion stress tensor in

Cartesian coordinate system.

4.2.3 COMPARISON OF MODIFIED AND DUAN’S FORMULATIONS

The correlations by Duan(2004) for dispersion stress tensor in curvilinear coordinate

system are as follows (Derivation in Annexure-I).
Di = z*UU,hl-nynny(nn, = 2) + 20,(1- 7)1 = In 7, )= (7, - 1)’ ] (431a)

h2

D}, =3.5C—-U,U, (-0 lnny + 75 In g 70 + 23] (4.31b)
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T T L} (4.31c)

For the statistical comparison, theoretical data for a wide rectangular channel is analyzed.
A qualitative comparison of variations of dispersion stresses for varying sinuosity with
the modified formulation (Eqs.4.24d, 4.26f and 4.28d) and Duan’s(2004) formulations
(Egs. 31 a,b and c) have been compared. Four configurations (Curvature 0.34, 0.72, 1.00
and 1.05) were chosen to cover low, moderate, high and very high sinuosity curved
channels (Abad and Garcia 2005). The width ratio (f=B/h, where h=water depth,
B=channel width) were chosen as 10, 15 and 20. Longitudinal slope is kept as 0.001 and
0.025 for creating sub-critical and supercritical condition respectively. Average
velocities are estimated using Manning’s equation (Manning’s » is kept 0.025). z, is

taken as Dsy/30( Roughness height (k) is kept equal to Dsp=0.44 mm).

It can be seen that expressions of dispersion stress terms as obtained in the present work.
are not in complete agreement of Duan (2004) formulations as given in Eq. (4.31a). From
Eq. (4.31Db), it is apparent that for any comparison between the two approaches, the value
of ‘C’ should have been available. However, in her another paper (Duan and Julien,
2005), there is no C in Eq. (4.31b). Thus, there is lack of enough insight into the adoption
of any appropriate value of C. However, in view of Duan and Julien (2005), the value of

‘C’ is taken unity-for comparative purposes only.

Assuming C as one, an attempt is made to relate Eq.(4.31b) with Eq. (4.26f), developed

in the present work. Following empirical relation is obtained.
D =A4¢ +A4; %D ,(Duan) (R-Square=0.9854; Adjusted R-Square=0.9847) (4.32)
where 4Ap=-3.147 and 4,=-103.676

To appreciate the difference between the two expressions for two approaches of
dispersion terms (as given in Eqs.4.24d, 4.26f, 4.28d and 4.31), certain computations are

done for a variety of conditions (Table 4.1).
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Modified Formulation Duan's formulation

71 0.00
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Figure 4.2 Variation of D° ,, (N/m>) with width ratio (8) for two approaches

The differences do appear in the formulations of the first term (D) and second terms
(D). The formulation for D°, are different for the present approach and Duan’s
approach yet computed values of this term is similar and close valued, as shown in:Table
4.1. However, the modified model (Eq. 4.24d) has much simpler mathematical
representation than Duan(2004)’s model (Eq. 4.31a).

The variability of D<, for both approaches is shown in Figure 4.2. The trend E_fof the
variation is closely related (R-square=0.985), but values of D%,, differs considerabIS}. Plot
of D°,, against width ratio(8) for both approaches for variety of conditions are shown in

Figure 4.2.

The third term D, is identical in both cases as in present formulation and Duan’s work.
The trend of second terms is statistically similar with very low difference in mean and
standard deviation (using statistically determined ‘C’ value). R-square (0.99 for D¢, and
D,,,and 0.98 for D) and standard error suggests high degree of goodness of fit for-both
models (For Eqs. 4.26f, and 4.31b). The inconsistency in the values of dispersion stress
terms from Duan’s model for different hydraulic conditions is evident in the Table 4.1.
For example, in modified model’s D%, D, and D, ; are varying consistently for
different width ratio(/3), whereas same terms show inconsistent variations with different 8

for Duan’s Model. These models are developed for sub-critical flow condition; however,
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their trends are also analyzed for super-critical flow condition. Plots of variation of

different terms with width ratio for sub-critical and super-critical conditions are shown in

Figures 4.2 and 4.3.

Table 4.1 Computations of dispersion stress tensor by modified and Duan (2004)’s

expressions

o N % 3 ’\g _.,é Modified Terms (N/m?) Duan(2004)-Terms(N/m?)
w & = £ Dw ‘S <

d S EES maMiNE

> D D, D%, DS D, DS,

1 0.34 10 0.001 0.57 03304 1.204 1.90 400 1204 -0.0182 4.00
2 0.34 15 0.001 0.43 02522 0.512 0.52 0.69 0.512 -0.0068 0.69
3 = 034 20 - 0.001 0.36 02082 0.280 0.20 020 0.280 -0.0034 0.20
4 = 034 10 0025 2.83 1.6521 30.098 47.56 99.88 30.101 -0.4540  99.88
5 0.34 15 0025 2.16 12608 12.800 12.89 1723 12802 -0.1697 17.23
6 034 20  0.025 1.79 1.0408 6.994 5.11 495  6.996 -0.0844 4.95
7 0.72 10  0.001 0.57 03304 1.204 406 1824 1204 -0.0388 18.24
8 0.72 15 0.001 0.43 02522 0.512 1.10 3.15 0512 -0.0145 3.15
9 g 0.72 20 0.001 036 02082 0.280 0.44 090 0.280 -0.0072 0.90
10 s 072 10 0.025 2.83 1.6521 30.098 101.61 455.88 30.101 -0.9699 455.88
11 0.72 15 0.025 2.16 12608 12.800 27.54 78.66 12.802 -0.3626 78.66
1 072 20 0.025 1.79 1.0408 6.994 1092 2261 6996 -0.1802 22.61
13 1.00 10  0.001 0.57 03304 1.204 569 3570 1204 -0.0543  35.70
14 1.00 15 0.001 043 02522 0.512 1.54 6.16 0.512 -0.0203 6.16
15 =5 1.00 20 0001 036 02082 0.280 0.61 1.77  0.280 -0.0101 1.77
16 T 1.00 10 0.025 2.83 1.6521 30.098 142.16 89242 30.101 -1.3570 892.42
17 1.00 15 0025 2.16 12608 12.800 38.53 153.98 12.802 -0.5073 153.98
18 1.00 20 0025 1.79 1.0408 6994 1528 4426 = 6996 -0.2522 44.26
19 1.05 10 0.001 057 0.3304 1.204 595 3909 1204 -0.0568  39.09
20 _ 105 15 0001 043 0.2522 0.512 1.61 6.74 0.512 -0.0212 6.74
21 &  1.05 20 0.001 036 0.2082 0.280 0.64 1.94 0.280 -0.0106 1.94
22 § 1.05 10 0.025 2.83 1.6521 30.098 148.76 977.22 30.101 -1.4200 977.22
23 1.05 15 0025 2.16 12608 12.800 4032 16862 12.802 -0.5309 168.62
24 1.05 20 0025 1.79 1.0408 6994 1599 4847 6996 -0.2639  48.47
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Figure 4.3 shows that D°, remains nearly constant with varying sinuosity and . DS,
increases sharply with increasing sinuosity and reducing width ratio. For wider channels,
variations are low. But for narrow bends transverse deviations in velocity are quite high.
The trend remains same in case of supercritical flow condition except higher magnitude
of three components of flow dispersion tensor. This is caused due to enhanced transverse

mixing of the flow at high turbulence.
4.3 CONCLUDING REMARKS

New expressions for dispersion stress tensor are proposed. A comparison between these
terms and one given by Duan (2004), indicates the conditions in which there is a good
agreement between the two. An insight is provided to estimate one of the unknown
parameters in the Duan (2004)’s dispersion stress tensor. Compared to Duan (2004)’s
model, two of the three components of dispersion stress tensor namely D°%. and D¢, are

considerably simplified in the mathematical representation.

e sk ok ok 2k oo o ok ok o vk 2k sk ke ok ke ok ok ok 3k e ok ok sk sk sk ok ok sk sk sk sk sk sk sk ok ke ok ok
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CHAPTER-S

FORMULATION OF 2D DEPTH AVERAGED EQUATIONS
FOR CURVILINEAR DOMAIN

5.1 GENERAL

The fundamental governing differential equations of fluid flow are the equations of
conservation of mass and momentum. Apart from these equations, the fundamental
governing differential equation for heat transfer is the equation of conservation of energy.
The equation of conservation of mass can be derived from a balance of the mass fluxes
across a differential control element and the rate of mass accumulation within the
element. The equation of conservation of momentum is derived from a force balance on
the control element in conjunction with Newton's second law of motiorf%"% The
conservation of energy equation is derived from an energy balance on the control element
in conjunction with the first law of thermodynamics. Here the focus is on mass and

momentum equations.

5.2 GOVERNING EQUATIONS

The differential equations governing the conservation of mass and momentum in depth

averaged form in Cartesian coordinate (Duan and Julien, 2005) are,

oh onU, ©0hU, .1
—+ L+ =0
ot Ox oy

arU,) AU ARUU,)  BH U, oU,) 1(ép, Dy 59
5 T t Y hax C,U U, +U? +hv(axz+(,jy2 . ay - (3.2

AWU,) OKU}) XKUY, oH (20U, &) 1(Dy D) (53)
P + > + Fe hE—CU,/U +U, +hv[6x2+@}2 o @)

In the Egs.(5.1 -5.3), H=Water surface elevation; h=water depth; U, , U, =depth averaged

velocities, C;~= bed friction coefficient; v/~eddy viscosity; x and y = spatial coordinate
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components. Dy, D,, and D, are dispersion terms explained in Chapter 4 of this thesis.

In Cartesian system, consider a non-orthogonal curvilinear plane in ( x, y,¢#), which is to
be transformed to a rectangular computational plane (&,7,7) by direct transformation.
where, £= & (x,y,f)and n=7 (x,y,f)and 7 =t ’

Consider the generic dep-endent variable f (x,y,r). Applying chain rule of partial

derivatives,

_a_[_:_af_%_pia_n.'.gg: i.i.n 1 & 4)

ox 0 ox oOnox orox TT9E T om )

zzz%_kia_”_Fiﬁ: i""’? i (5‘5)

o 0oy ondy oroy o5 Vom

%zgl%_,_?ia_n_kgf_ﬁ:f‘g__{_;m_ai_;z (5.6)
& ot Omn ot Ot ot o0& on ot

7,=7,=7,=0...and---7,=1 (5.7)

One can express the above Eqgs. (5.4) to (5.7) in matrix form as below

(5 (2

& | (& m 0} %

— | = 0| — 5.8) -
o & 1, o7 (5.8)
5 S M 15

\ Ot / \ 07 )

Similarly, contra-varient velocity component in & -direction and 77 -direction in terms of

Cartesian components U, and U, can be written easily as taking the advantage of partial

derivative rule as,

d 8
vt -2, +£-Uy = LU, +EU, (5.10)
Vri—_-_gg_.[[x+%gko=nxe+nyUy (5.1DH
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Expressing Eqs.(5.10) and (5.11) in matrix form one has,

MR

Applying the matrix inversion rule, one can get

u,) \m. n,) \»v?)
Or,
U}’ 1 ' 77:: §x V”
where [ =Jacobian, and expressedas, I=¢&.n, -8, 6r %= J=xy, —yx, (5.12)

Uz and U, can be expressed in terms of contra-varient velocities U*,V” from above

expression as,

U, =+b,ut - y7)- 10Ut -577) (5.13a)
U, =L enut v ep )=l n Ut £07) | (5.13b)
5.2.1 TRANSF ORMATION OF CONTINUITY EQUATION

Rewriting Eq. (5.1) as below,

oh oSmrU, O0OhU,
-—+ + =0
ot Oox oy

Each term is subjected to transformation through partial differentiation with respect to
&,1m, 7 using the PDE rule,

For first term of the continuity equation, one can write;
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oh_p0k _Oh Oh - 5.14)
o 5o M on  or (

For second term of the the continuity equation, one can obtain,

ohU, -n oU, +U, _B_h“
ox ox ox’

or,

ohU ouU ou Oh oh
=h £+ = 1+U —
e 5. s, Ze s, 2, 2]

Putting the expression of U from Eq. (5.13a) into above equation.

hU. o Uf £ V™Y o, Uf —&¥™) t gy O . OH) (515
- +77 HIOUS =) b gyt 5, | G19)

- LD, S0

For third term of the continuity equation, one has,

orU,  dU, -
r g | & | (5.15a)
oy oy Y oy
ohU oU,  8U, on _ oh
s Oh ©oh - 5.15b
oy h(gy o¢ B on ]+ Uy(cfy o¢ e 377) ¢ )

Putting the expression of U, from Eq.(5.13b) into the Eq .(5.15b), one can get,

ohU, _ o-—n U +&EFVT) A UF +&F7") £ n)[ ) 16
= =& 5 +1, o FIC U+ EVTY &, o2+, | (5:16)

Collecting the terms of derivative operator % £ in Eqs.(5.15) and Eq.(5.16) and placed

together, one obtains, _
oh
W W2 (En U - £ £V ~nEUF HGLV )T Ut L8V LU + 58 Y)

Cancelling identical terms in above expression,
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W 2 (&m, ~n.8, U )+ J—a—g(@ 7y ~1:8,)U%)

One can recall Eq. (5.12) and substituting the value of J, one gets

O (1 e Ok (1 e
Ma&(JU)Jaé( U)

Or,

(. 1 '
= (h = ) (5.17)

Again, one may collect the terms of derivative operator %77 in Eq. (5.15) and Eq. (5.16)

and placing together, one may get, .
0 oh
Ma_n("*"yU F-n VT -nn U + éxﬂyV")Jf'Ja_q (o U% ~n ey =n Ut + £, 775, I;Sa)

Identical terms may be cancelled in above expression, one obtains,

Ve = g T
Wog 2 (- “hdy + )4 oo e+ emp) (5185

Recalling Eq. (5.12) and substituﬁng the value of J, one has

0 (L V”) R (L.Vv) (5.180)
677 677 J ‘
Or,
J-la—(h-i-V'f) | (5.18d)
on J

Summing transformed terms in the form of expressions in Egs. (5.14), (5.17) and (5.18d)

and equating to zero to complete the continuity equation, one obtains,
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oh _on _ oh
— & —+ +7l il sl mlyny=o
o7 T Ty v e Py U g (V)=

Or,

%+——(5, h+h.Uf)+§—(n,.h+h.V") =0
n

or 0¢&
Or,

@--i-—(f, Uf).h+ai(n, +V").h=0
7

ar oL

For co-ordinate transformation of d(x, y,¢) using (Hoffman, 1992),

1 _o(,n.1)

J 8y,
One may have,

ﬁ-(hJ)+——(§, +U§)h]+—(77, +V"hJ =0

o&
For fixed grid and fixed boundary with time,
& =0;m =0and 7=¢

Equation (5.20b) will be reduced to,
—(hJ) - -—E(U"’hJ) - B—(V”hJ) =0

Or,

—(hJ)+E( ST )+ 5 (ﬁ,,hJ) =0
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In Eq. (521b),J =x,y, -x,y, u,(m=¢ 1n) are the velocity components in the

curvilinear coordinate (£,77,7 ) which relate to Uy, U, as follows
6 e e '

. = <:>

4,) e M AU, an an)\U, (5.21c)
5.2.2. TRANSFORMATION OF MOMENTUM EQUATIONS

S.2.2.1 First momentum equation without diffusive/dispersion terms

Rewriting Eqgs. (5.2) and (5.3) without dispersion terms, one has,

In x-direction

&hU,) AU SAUU,) oH o’U, 8'U,
x x . h_—~CU,/U U’ +h 5.22a
a P Sodld Ay Lo O T e T S

In y-direction

hU,) &hU?) XrUY,) _ , 0H U, U
aty + ay” + H hE—CU,/U +U,? +hv, = By ayzy (5.22b)

Terms wise differentiation of left hand side of the first momentum equation in Eq.

(5.22a).

(@)  First term, of first momentum equation using the relation Eq. (5.6).

U, 1y P  (5.23a)
ot ot ot

One can write, using the relation Eq. (5.6).

ouU oU oU oU
h X — h X + X + X 5.23b
a7 (&, Y- 7, Py rye ) ( )

Using the expression for U from Eq. (5.13a), one obtains,

. R E_E VT f_g VT
haU SR BJ(nyU &V )+77z 5J(77yU 4 )+ a‘](ﬂyU s,V )) (5.23¢)
Y ' o0& on o7
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And,

oh o 0 0
U —=JlnU*-EV" —h]+n,—h] +—hJ 5.23d
o I VK S e T 4 ) (5.234)
Combining Eqs.(5.23c) and (5.23d), including all terms under derivative operator

separately, one can easily write, from differentiation rule (product of two variables).

oy, o heg, 2 o
ot = 6_5"( ‘ffﬂ,v‘]zUlf o J2y I/WJ-i_3—77(}177:77)"]2Uf _hﬂx'nyqu)_'_gr—(h”y‘]sz “hé:szV”) (5.24a)

Or,

oh d 2 0 N 0 (1, 72
o= sl U ey )« Ut —ngy )+ 2 (,0F - v w?)) (5:24)

(b) Second term of first momentum equation

Expanding the second term, one may get,

2
Ohls o U, ohU, +hU, O, (5.25a)
Ox ox
Using the relation in Eq. (5.4), one has,
2 o 4 7 o ¢ 7
ShU hJ"4¢, _a—g(nyU ™ §yV )+ 7, %(nyU - gyV ) + '
U, = = I, Ut =& " ‘ (5.25b)

2y U — ) £ PRy, OR
e G )

Again same operation can be done for U aa—U Combining all terms under derivative
x

operator separately for % £ and %77’ one can easily write from differentiation rule

(product of two variables).
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oru,* | [ @ . . s ) U 3 ,
3% _l:{a‘f fx(ﬂyU é:yV )th +37] ﬂ,(ﬂyU‘f ny )th }jl (5.25¢)

Expanding the above expression, one obtains,

2
aha(xjx = I:{Eag (gx”yngug + éxfsznVﬂ k- zgxérﬂ)‘UgVn)LIJ + 5% 77: (vquzU{U‘f + ”xgyZV”V” - anﬂyéyU;V”)da}] (5 '25d)

(¢) Third term of first momentum equation

Again expanding and resolving the third term of the first equation.

ohU U oU
Yo x = U,U, Pt +U h U +U h—2 : (5.262a)
oy oy

Using the relations as in Egs. (5.13 a, b), one obtains,

oU oU U ‘
U r _ S_EVn)ng - 2 ’ 5.26b
5 J U - V") (gy 56 > 60} (5.26b)
Or,
au, U +EVT U +&EV”
U hP —gyw)-[fya( A )) (5.26¢)

Shifting all the variables under derivative operators,

RUU, o X
—2 = O [y, EUTU + ELE UV 40,8 UV~ EEVVIF |+
» o (5.26d)

g
a (Cnopvevs + £pusvn s s U v £ £y

Combining Eqgs. (5.25d) and (5.26d), one can obtain the following expression after

collecting terms of identical operator together.
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LN 108
AT R Y
: | (5.27a)
+ % [Vané:y (_ Uxé:y + é:xn}')_*_ Uquny (— ”xgy + gxﬂy )1’1‘]3

Or,
hU> OhUU, a |
S 5 =5 [Ug(quy Vg )+ [V"(—V"gy +Usn, (5.27b)

Combining Eqgs. (5.25d), (5.26d) and (5.27d); one has in left hand side of the first

momentum equation as

onU, , ohU OhUU,
ot ox oy

0 o !
o [l Wwen, —-viE)+vivrg, + Uy, g2 + = (0, U — &7 g

¥ 5% e Won, -voe) + Ut win, -ve )
(5.282)

Or,

2 ohUU,
T S U, VS + g U
EY (5.28b)
o

+a_(77yUf _é:yVﬂ)th

Expanding the first two terms of right hand side of the first momentum equation in Eq.
(5.22a), one has,

_gh___CU ’U +U =g fxaH n, ﬂ) CJB( Ut — fV")\/—(ﬁ fV" (_nxU5+§an)2(5.29a)

Equating Eqs. (5.28b) and (5.29a), one gets the transformed first equation of momentum

without diffusive terms as

i[(é, +USYUS, —V7E T +a%[(m SV, U 4 g, U~y
- h,l(f . n] C, Ut -¢ V")\/(nyUf &V} +(-nUf +EVTY
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Or, using relations given in Egs.5.13a and 5.13b and for fixed grid and fixed boundary

with time, & =0;n,=0and 7=¢

One may obtain Eq. (5.29b) as,

0 0 " J oH OH 2 2
U + 5;[(1/ W, o+ U,k = —th(fx ST ﬁj—cdwx Juivu,r (5299

Or,
9 ¢ 0 [y | OH . OH T (5.29d)
a’Ux};]+——[U U, +a”[V Uy]hJ- gh.l(g” PY: +77, a”] CJU JU,” +U,

3.2.2.2 Second momentum equation without diffusive/dispersion terms
(a) First term of second momentum equation in Eq. (5.22b)

ohU ouU oh
Y=ph—2 40U — 5.30a
ot ot - ( )

Using the chain rule relation given in Eq. (5.6),

U, 4z, Uy U, i
P A - TR TS ‘

Or,
ou, . I8 n —n U " - [JE n

1Y e aIn U+ &V )+m WenUi+g") aln Ul +&p) (5:300)

ot o0& on ot

Similar mathematical operations are done for the first momentum equation adopted here,

and one gets,

6hU o 8 hné 3
—=* hERJUS + REE TV )+ —| —hnn J U¢ + 22 p7 —hn JUS + hEJWT (5.31a)
P af( EnSUF +hEESV )+ 617[ nd 7 ) 37 - hn S Uf 4 hE SV

Or,
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ohU
5 = 5 (CEmUs e ey Ve Z(enm® + gy W)+ Z(entf +epmlt)  G31D)

(b) Second term of the second momentum equation

hU ? ohU 1

ohU, =U, Y+ U, —2 (5.32a)
oy oy oy

Or,

vy, G, G, ) *h o
U, > R hﬁ{g‘y-az(—me+§V”)+77ya—”(—r]x(f+¢‘x1/”)}+{./ (—q,uf+;,w(§ya—§+qya—ﬂ)}] (5.32b)

Applying the same operation as for the first momentum equation,

on¢ may get,

ah;y - H% £,CnUs + £V Fha? + a%"’ (-nu¢ +§xV")ZhJ3H (5-32¢)

aha:’ =H% [Enivets v e -2 g q v s +§7 (o0 U U 4,29 —2n £ UV P H t%32d)

(c)Third term of the second momentum

ohU U ou
—>==UU —a—h-+U #2l- +Uh—=

5.33a
Ox ¥ ox Y Bx ox ( )

Expanding and resolving with the same operation done for the first momentum equation,

104 oU oU
Unhle = j(-p Ut vi)ywr e e g s 5.33b
Or,

OU; _ il n Ut o). P@UE =SV o Uf &) 5.33c
U,k > WP g Ut + ey )(5, 5 +7, 5 ( )
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Shifting all the variables under derivative operator,

hUU, 3
7x——y =2 (- nn,EUSUS +n E LUV +En UV — «ffé‘yV”V”)W
5 - (5.33d)
* o CHUU AEUT 4+ EMmUY " = EEn VT S
Combining Egs.(5.32) and (5.33), one has,
> anlJU, o
T P It g, ~En )+ UVIE g, +En b
¥ & b (5.34a)
3
+Zye(-né, +En )+ UV ng —En I f
on
ohU * BhUU, 5 5] :
Y =Y = U (-Un, +V Py g, -U* A 5.34b
a2 = VU VO + P 0, - Ut BT (5.34m)

Adding Eqgs. (5.31) and (5.34),

U, oy’ onUU,
—_
& ax

+a%(~ nUF + &V RS

:565“[4(—0‘77, PN+ U (Ui +VIET +567;['h("U¢ nAVIE) VI - Unpf (5.352)

Or,

ohU, onU} onUU,
—+ i
a oy ox

+£-(—- nU* + é’xV”)th
or

Ot '+ 2 U
_65[(5 +USYUEn, + 17 )T +aq[(77,+V")(V”é Ut (5.35b)

Expanding the first two terms of right hand side of the second momentum equation

(5.22b), one may obtain,

oH > 5 OH aHJ
- h————CUﬂ/U +U," = —ght —_—+n, —
By T oNTe Ty =8 [ SrArT" (5.36)

~C, i nui vy Naus -y Y U v ey
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Equating Egs. (5.35b) and (5.36);

o R ) R AT TR A

(5.372)

—_ ;,_{gy%? +7, %gj—cdﬁ(—nxw +§XV”)\/(17yU5 ~EV ) +(-n Ut e}

Or, using the relation given in Eqgs. 5.13a and 5.13b and for fixed grid and fixed boundary

with time, £, =0; 7, =0 and 7 =¢, one may get,

9 [we 2 fwn 2 g oH . OH)_ TR (5.37b)
5 [w )Uy]h!+a” [ )U,]1u+at U, hJ th(rfy e a”) CIU, UL +U,

Or,

0 0 17, oH oH 2 2
UM 23z l0v, e Lo Ju - - gh;(gy L WJ_ cu,fuisu; (5379

5.2.3. Diffusive‘terms

Diffusive terms in Cartesian coordinate are in light of Egs. (5.22a) and (5.22b,)

In first momentum equation (Eq. 5.22a),

= 2
hv,(aagx + a@;ﬁx) (5.38a)

One can expand following terms in view of Eq.(5.4)

ouU oU oU
X - X + X 5.38b
Ox ox oL 7 on ( )
U 0 oUu oU
= X+ x 5.38
o’ ox (5" or an) (5:38¢)
Or,
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o'U o oU oU 0 oU oU
x v x4 X + il x + x
Or,
2 2 2 2
0 (éx =§x2 0 sz +2E D, oU, +77f 15} sz
Ox o0& o&on on

One can write the following term in view of Eq. (5.5)

oU, , OU, . oU,

= +
& e " an
U, _ o £ 9U. . 29U,
* gy \maLy 7 on
Or,
aZUx_figaUX+ oU.\,, 8 (; 8U. o,
ayz = yag Y aé 77)’ an nyaﬂ y aé: ”y aﬂ
Or,
o’U 2, 07U o’U U
x _ X 42 x 4 2 X
ayZ ‘fy 552 é':}’ny 66677 77)’ 6’72

Similarly, the second momentum equation in Eq. (5.3);

*U. U
hv, -+ —"
Ox oy

One can write following term in view of Eq. (5.4)

OU, _, U, U,

ox - 7* BF on
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(5.38¢)

(5.38)

(5.38g)

(5.38h)

(5.381)

(5.39a)

(5.39b)



(5.39%)

%' x|\ ax "8
Or,
U oU oU U U
—2—’=§xi & —2+n,—= +mi E —2L+n, —2 (5.39d)
o o& o& on on o& on
Or,
U U U U
L=g2 3 5! *28.71. - 56:7 + 1} aﬂf (5.39%)

axZ

Again, one can write following term in view of Eq.(5.4)

oU, _oU,  o8U,
Yy 5,2 20 (5.390)
AT A
Or,
2 e, 26,25 0, %0, 2, % 01, 22) (5390
Or,
a;;y =& a;g;’ +2£,7, Z;Z; +77, a;lyjzy (5399

5.2.4 Dispersion terms

In Eq. (5.2), one has the dispersion term as,
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(a_DaJra—Di) | (5.40)

1
p\ ox Oy

Using the relation given in Eq.(5.8), one obtains

1 oD oD oD,, oD,
— =+ =+ +n, —— 5.40b

Similarly, one has the dispersion term in Eq. (5.3),

oD, D
1(99y 9Oy (5.40c)
P\ Ox oy :

Using the relation given in Eq.(5.8), one obtains

5.2.5 Final transformed momentum equations

Combining Eqgs. (5.29d), (5.38¢), (5.38i) and (5.40b), and multiplying it by p, one gets

the complete first transformed momentum equation as;

El 2 2 U, U, (5.41)
= (ohJU.)+ =3 [, U, )+ 3 EI XA pth,(a“ T J

OH . oH 2 2 U oD, aD, oD, oD,
=- —+7n,— |-IC,UNU,) + U, — = =
pgh{si o anJ PICU N+, + prv,a, a%on [«fx % oy 9 T oy

Again, combining Egs.(5.37d), (5.3%9¢), (5.39i) and (5.40d), and multiplying it by p, one

gets the second transformed momentum equation as;

o¢

oH oH U oD oD oD oD
ok G on Gy - NET ) *”’””[“" agaf;}‘(fx e en e Gen, 2

P ) ) o'U o'U (5.42)
57(ph.1tf,)+%[pwufuyh%[WuﬂU,]me[au -+ O 302’J=
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In Bq. (5.41) and (5.42): & =254, m. =900 &£ =94 5 O o =&2+&]

Xy = 77,:2 +77§ a, =2(&m,+<,m,) J=x.y,-x,y;, #,(m=L n) are the velocity

components in the curvilinear coordinate (£, 7,7 ) which relate to Uy , U, as follows

i _ ¢ & Vs a, oy U, (5.43)
ﬁn - n. 1, \U, it (aﬂ azz) U,
5.3 SUMMARY

In this chapter, step by step mathematical transformation of mass and momentum partial
differential equations in Cartesian co-ordinate system (Eqs. 5.1-5.3) to Boundary fitted
co-ordinate system (Egs. 5.21b, 5.41 and 5.42) have been done. In the momentum
equations, flow dispersive terms along with diffusive terms have also been included. The
transformed flow equations have been further used as governing equations for the
solution of flow variables in a complex flow domain in Chapter 7 of this thesis, using
control volume approach. The transformation coefficients introduced in Eqs. (5.21b),
(5.41) and (5.42) were determined from grid generation algorithm for the flow domain

using the numerical scheme described in Chapter 6.

sfe s e sfe e o ke o o sk ofe o sk sk ok sk sk ok ok s ok ok oo ok oo ok o o ok o o ke ok ok e ook ok
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CHAPTER-6

NUMERICAL DEVELOPMENT OF GRID GENERATION
ALGORITHM

6.1 GENERAL

The governing differential equations for engineering problems are generally derived and
" expressed in a Cartesian (rectangular) coordinate system. Solving these differential
equations in particular require that the continuous physical space be discretized into
uniform -orthogonal computational space (Hoffman 1992). However, the applications of
boundary conditions require that the boundaries of the physical space fall on coordinate
lines (surfaces) of the coordinate system. Moreover, accurate resolution of the solution
requires that grid points be spread out in regions of small gradients and be clustered:i in the
region of large gradients. Requirement of the grid generation and appropriate co-ordmate
transformation has been dealt in detail in chapter 2 of this thesis. The general procedure

adopted in this thesis for grid generation is widely referred to (Hoffman, 1992).

6.1.1 GRID GENERATION

In brief, grid generatlon is the process of determining the coordinate transformation that
maps the body ﬁtted non uniform, non orthogonal physical space into transformed
uniform orthogonal computational space. For comprehensive detail information, reader
may further refer to Thompson (1982) and Thompson et al. (‘1“985).
The coordinate transformation must satisfy several requirements. The following list
includes the most common requirements (Hoffman, 1992).

(a) The grid in the transformed computational plane must be uniform and orthogonal.

(b) The transformation must be one to one.

(c) The transformation must be nonsingular. That is, the Jacobian determinants / and

J both must be non-zero.

(d) The transformation must yield a body fitted grid.
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(e) The maximum and minimum values of the transformed coordinates must occur on
the boundaries of the physical plane (space).
() Coordinate lines (surfaces) of the same family must not cross. Reasonable control

of the spacing of the points within the physical space must be possible

6.2 2-D GRID GENERATION USING DIFFERENTIAL EQUATIONS

6.2.1 FORMULATION

Grid generation using differential equations involves the generation of a body fitted
coordinate transformation using differential equations. In chapter 2 of this thesis,

introductory aspect has been discussed.
Grid generation using differential equation involves two steps (Hoffman. 1992).

(i) Grid point distribution on the boundary of the physical plane is determined

through algebraic method using polynomial approach.

(ii) Assuming that interior grid point distribution is specified by a differential
equation that satisfies the grid point distribution specified on the boundaries

and yields an acceptable interior grid point distribution.

The majority of grid generation by differential equations is based on elliptic PDEs as

generating functions. The most common elliptic PDE for grid generation is the Poisson’s

equation which has been adopted here for this model. Inverse operation of Poisson’s

equation to get suitable equations for discretization can be found in any standard

reference of grid generation (Hoffman, 1992, Thomson et al., 1985)). Details are as

follows.

For mapping the body fitted, non-uniform physical plane (x, y,?) into the transformed

uniform orthogonal computational plane (£,n,t), following elliptic PDE (Poisson’s

equation.) used for grid generation.

6.1

sz — P(f,ﬂ) ( a)
2 _

Vi =0(.n) (6.2a)
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Above equations can be written in expanded form as,

9% 9%

a 2 ayz —P(§9n)
0 02
P ?27 + ay? —'Q(g”])

(6.1b)

(6.2b)

In Egs. (6.1b) and (6.2b), P and Q are non-homogeneous terms. Coordinates (&,77) is

known and (x,y) is not known. The objective of the grid generation process is to

determine the grid in the x, y space. The inverse transformation will be

x=x(g,1)

y=y(&,n)

From the chain rule for partial derivative of generic function f (x, y) )

Je 5 Fi6e + ol
£y =1, + £,
In similar manner, second derivatives are given by
= ()= e+ (1),
fuo = fibo + Eul s + e )+ Finue + 1.1 &+ fras)
Fo = 1ol + &ty + Fom )+ £yny + 0, (06, + £,1,)

Adding Egs. (6.5b) and (6.5¢). one has,

Vif = fut £y =€+ 82 +2em 4 E, )
+(77* +77y)frm +V25;= +V? ﬂf

Let f = xin above equation. Then
Vix=x,+x,=0
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(6.43)

(6.4?)

6.5

(6.5b)

(6.5¢)

(6.6a)

(6.6b)



Then Eq(6.6a) becomes,

(erz +9zf)x§£ + 2(‘5:;77:: + ‘:y”y)xfn + (’7: + ﬂj)xrm = -—-(ng + an)

From direct inverse transformation done in Chapter 5, one may get,

& =1y,
77; = —[yf

1
J=7=x5y,,—qu§

Substituting these results of Eq. (6.7) in Eq. (6.6¢) and simplifying gives

(x; +y;)x§§ —2(x§x,, +y§yn)x§rr +(x§2 +y§)x’7’7 1 _Jz(Pxé’ +err)

Equation can be written in condensed form as

axy — 2Pxq + yx,, = _Jz(Pxf +an)

Similarly repeating the same step for putting f = yyields

Ve —2PVey + Wiy = "JZ(PJ’f + Qyn)
where
a=x;+y; b

'B=x¢xn+y<§yrr >

2 2
y=Xg+ Ve W,

Furthermore for orthogonal condition (Zhang and Jia, 2005), one has
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B=xx,+y:y, =0 -~ (6.10b)

6.2.2 NUMERICAL DISCRETIZATION

The boundary conditions for above equations will be

=
1]

FE.n) 6.11)
G (¢.n) |

<
[l

These are elliptic PDEs with Dirichlet Boundary Conditions. Writing equation in finite
difference form using second order centered difference approximations of the exact
partial derivatives (Figure 6.1)

First equation Eq. (6.8b)

X 2x,.', + X, -Xx

a'-l A§2

i-1.j xl-l,j+l + Xio1,j-1 + Xij+1 ~ 2xl,j + x!,j—l

4A¢AT F Adr (6.12).

. X
S i+1, f+1
- 2ﬁi,j )

_ Xinr,y — Xiony X a1~ Xy
_—Jl%f( éAé I)i.j+ J2An Q'vf)

Second Equation Eq. (6.9)

Vi = 2Vt Vil _28 Yietjor = Yirj = Yicrjar ¥ Vi -1 Yij+v1 — 2yi,j + Vi
. i ;

(74 —+ i
Ag? 48EA7 it An (6.13)
YT Yiay Yijar = Vi
=_J2 . dp g 2hd .J »
r,/( 2A: iJ 2A’] Q:,]]
i-1,j-1 i, j+1 i+l j-1

ey

ij

i+1, j-1

i—I,j-] i,j-] ’

Figure 6.1 Finite difference grid for discretization
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where the finite approximation for coefficients are

@, = 35, Ay (6.15)
Biy=%el, %l + ¥el, ¥4l | (6.16)
LA EAN (6.17)
Ty =%l vali, + %l 26, (6.18)

x | = xi+|,1— x!—l_] \
¢ L 2 A&
yl+|,j— yl—]j
.V§| 7 i
i 2 A
J > (6.19)
X | . X i+ X oy, -1
ol 2 An
e xi'j+1 - xi,j—l
y’II,'_j n ZAT] j

Multiplying Eq.(6.12) by A£?and collecting terms yields

B, A A B, A A&? AE?
x:-l,j-{ 2I Ai X, & JZP j F X0, 41 TJ_A_% X 50 %,;A_f]?_‘ffjgui

AZ? (6.20a)
_ZJcI.J[a,J +7; A—f;—z-)

AL AL B, A A B, A
u+1(7u Aé:z r/Qu 3 J i1, /- 1( ; A§)+x;+lj(au+'ffj ij 2£)+xl+l,j+l( ; Af]

Similarly, multiplying Eq. (6.13) by A&?and collecting terms yields
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B, A ‘ A¢ B, A Aas? AL’
y,_l,j_{-— ,,_5 + Yoy ai,j_']iz,jﬁ,_/ 2 + Vi éj A7 + Y1) Yy Z;]T_thjQi,j 2A7

2 Ay
(6.20b)
—2y a, , +y,; Aéi
LJ ij i A772
A§2 A¢ B, A Ag B, A
+yl,j+l(yi,j Ar] leIj 2A77)+yi*|,j |( 2j AT] +yl+lj a +J111::j > +yl+l,j+l — > Z% =
In our case A¢ = An =1, simplifying, first equation for x variable, one has.
B B.,
xi—l,j—l(_—z’_j +xi-l,j(ai -0. SJ: J 1,)"' Xi_ —1,,/+1 Tj +xi?j-—l(7i,j _O'SJiZ,jQi,j)
6.20c
—2x,, (a,.,j  J i,j) ( )
+ xl j+|(;/f J +0. 5‘]2 i,j )+ xi+l,j—l(ﬁ£j ]+ xi+1,j(ai,j + 0'5‘]12 P )+ xr+1 _[-H( %’LJ =0
Again the second equation will be for y variable
B, B
yi—l,j—](_ Tj + yi—l,j( =0. 5']:21Pu)+ Yiaj+ _2—1’ + yi,}-l(]’ -0. 5J21Qr j)
6.21
—zyi,j(ai,j+7j,j) ( )
AE? B Bis
y' J+](7’f f] +0. 5J2 Qi.fJ+yi+l,j—l(TjJ+yn+l (a +0. 5‘]12] lj)+y1+1 j+l( TJ =0

6.2.3. SOLUTION ALGORITHM

Using ADI (Alternate Direction Implicit Explicit) Scheme,

lth

For any iteration

Step-1
Row wise solutions is obtained
Writing equation Eq.(6.20) in tri-diagonal matrix form for unknowns in a row ie

Xict,5> Xi j> %

1+1,; -One has,
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x-n,( —05-/,2,3,) 2x, (a +}’,,) ,Hj(a +0.577 P, ,j) ”11('62} x""”(%J_

(6.222)

B, B, e
%20, 05720, )-% ., +0.572,0 )%, . ,( “L |, o S | = Didindicating)

Above equation simplified in terms of three consecutive row wise variables at internal

nodes,

x, (e, —0.572, P )=2x, (a,, +7. )+ x.. (e, +0.572,P )= D, (6.22b)

Y ’J

Similarly for y values, Eq. (6.21) is rearranged,

yHJ( OSJ'ZJEJ) 2,)’,}( +711)+yr+1/(a +0. SJJZJRJ) yu—lj—l(lgéjj ys-l/#(ﬂ;:jj—
(6.22¢)
2 2 .B ;8
e i,j—l(y ij —O'S'Ii,jQ,j )_yi,j+1(7i,j +0'5Ji, ,Qr j)_yi+l,j—l 2 +Vin i+ 2 =k, (lndlcatmg
Or,
y,._l,j( ~0. 5ijP,J) 2y, (a +7,, )+ v A (a +0. 5J,ZJ f J) E, (6.22d)

(a)Thomas algorithm for tri-diagonal matrix form for row wise solution

Using appropriate terminologies, Eqs. (6.22b) and (6.22d) can be written in the following
form.

At [ " iteration

l l *

A, x, vt Bix ;+Cox,,, =D, . (6.22¢)
I ! ! *
Aiyi—l,j+ B, Vit C, Niet,y = E, (6.221)

where, * evaluated on the latest best known values of x and y
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where,

2
Ai = ai,j '—O_.SJI-JE’]. w
B, =_2(a;,j+7i,j) e
_ 2
C =a,, +05J F, )

(6.23)

Stepwise one can compute intermediate variables (7DMA) as follows to get the solution,

(i) Generate array of @ and @,

w, = B,
C
6, =—
B,
®, =B, — A4 %0,
C, .
6, =—- (Array recursively generated)
@

D
é, =1
o,
, D= dixd

.

i
(iii) Finally, one can generate solution array (in terms of x or y)
x, =9,

x,=¢, -0, xx

i+1

‘ Step-2
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Column-wise solutions are obtained.

Writing equation Eq. (6.20) in tridiagonal matrix form for unknowns (column-wise)

IJ—I(}'LJ 0 5‘]2 ) (QJ +7 ) l_]+l(}, +0 5]2 Q,J)

(6.24a)
'xi—l,j—l(%J_xi—l,j(ar,j _0'5'};3;8‘;)"3‘;—1#1(%)_xm‘f—l(id) 1+1,J(q +0. SJ : ) l+|J+](_ﬂ j_D (Indicatg)
Or,
Iy i =i
%y, ~0572.0 )- 2x, e, +7,, )+ %, ,uly, +05720,,)=D, (6.24b)
Similarly one can rearrange Eq. (6.21) for y,
YA (}’.-,/ _0'5'/7?19,/)‘2)’},/(‘4,1 +7’1,/) +yi,f+1(7't.f +0'5‘]1?JQJ)=
' (6.24¢)
),I—I J—I(’i ) J’;-]j(a 0 S‘Iszj 1;) .yz—l]+l[ﬂ12}J .y1+l j—l[ﬂz ) -})l+1j(q‘f +0 5']1,1 fj)+}/l+! j+1(ﬁ2 J E (Indlcatg)
Or,
! 3 p -1
yi,j-l(yi,j —05"]1,_]Q ) 2yl_]( +}’lj)+yl_]+](7/lj +0 5'] Q ) Ej (624d)

(b)Thomas algorithm for tri-diagonal matrix form for column wise solution

Using appropriate terminologies, Eqs. (6.24b) and (6.24d) can be written in following

form
I 1 -1
ij,j 4B x, +Cx, =D, (6.24e)
I -1
Ayn_/—1+B y//+C y:j+l_E' (6'24t)
where,
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4, = (7 i — 0.5 foi,j)

B, =2a,, +7.,) $ (6.252)

J

¢, = (7':',1 +0.572,0, ) )

One can stepwise compute intermediate variables (7DA4A4) as follows to get the solution

(i) Generate array of @ and 6

@, =B,
o-C
B,
@, =B, ~A %0,

C.

— !

0, = (Array recursively generated)
J

(ii) Generate another array (¢ ).;

D
& =—t

W, -
5 - D, —-A4,x¢,,

@,

(iii) Finally, one can g’énerate solutton array (in terms of x or y),

X, =¢,-0,xx,,

One can update the entire coefficients and go for (/+1)" iteration until solution

converges.
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(c) Convergence Criteria
Iteration continues until the following condition fulfills,

) (-1
Vi~ Yij

O N

Maxe,., ;= %, | & &Max, < g,(say = .0002) ‘ (6.25b)

where 7 =number of iteration
6.3. DATA PREPARATION FOR BOUNDARY VALUES

The grid point distribution on the boundaries of the physical space is determined. The
boundaries are in one dimensional space. The required grid point distributions can be
obtained by Algebraic methods. For the study done in this thesis, Algebraic method using

polynomials has been used.
The range of the transformed variable & is arbitrary. The most common (used in this
calculation) are 0<&<land 1<¢& <¢&... -Where & is an integer. The transformed

variables £and & are related as follows.

E:f‘il (osEsl.,lsgsgm) (6.26)

Polynomial expansion can be written as follows,

= =2 —3 —4 =5
x=a+b&l+cé& +d&E +e& + fE ... (6.27)
Differentiating and solving for E yield transformation matrix

. 1
Sy = =" R —
b+2c&+3dE +4eé +5f& ...........

(6.28)

The coefficients a, b, ¢, d, e, fand so on are determined By applying boundary conditions,

constraints and requirements.
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S (6.28b)
x=X,>E=EE=¢ > |

xy =Xy >E=lE >¢=¢,

s

Algorithm steps
(i) Give number of boundaries and constrains
(i1) Select corresponding degree of polynomial

(iii)Generate simultaneous equations of a, b, ¢, d, e and so on by putting in boundary

values in polynomial equations.
(iv)Solve simultaneous equations through matrix inverse multiplication for g, 4, ¢, d

(v) Using polynomial, determine value of x for corresponding integer values of & for
the range of 1<£< & ( &, is fixed by the user appropriately to get desired

mesh resolution
(vi)Evaluate corresponding values of y from cubic interpolation from curve data.

(vii) Same procedure is adopted for 7 if the boundary is aligned by and large along y

axis.

64. NUMERICAL COMPUTATION OF NON-HOMOGENEOUS
TERMS

6.4.1 INTERIOR GRID POINT CONTROL

Poisson’s equation used in grid generation Eq. (6.1b) and Eq. (6.2b) essentially contains
non homogeneous terms P and Q. The finite difference form also contain the

aforementioned terms naturally. Specific functional forms must be chosen for P(&,7)and
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Q(&,m) to control the interior grid points to desire level of their distribution to optimize

orthogonality. If one considers top boundary then the boundary points are fixed. Non-
zero values of P tends to move the interior points right or left, thus influencing the angle

of intersection of the & -line with the boundary. Non-zero values of Q tends to move the
interior points up and down, thus influencing the spacing of the 77- lines adjacent to the

boundary. Similar results can be developed for left, right, and bottom boundaries.
Consequently, the angle of intersection of interior grid lines with boundaries and spacing
of interior grid lines adjacent to the boundaries can be controlled by the choices for
P(&,n) and O(£,77) (Hoffman, 1992).

Numerous numerical approaches have been found in literature to tackle this specific
problem.For details reader may refer to Thompson ez al. (1985), Thomas and Middlecoff
(1980), Steger and Sorenson (1979), and Hilgenstock (1988).

The general approach for interior grid point control has two steps.

(i) Specification of P(&,77)and Q(&,77) on the boundary to achieve the desired

effect at the boundaries.

(i) Extrapolation of the boundary values of P(&,77)and Q(&,7)into the interior

of the domain to achieve the desired effect in the interior.

6.4.2 IMPLIMENTATION OF THE TECHNIQUE FOR COMPUTING ‘P’AND
(Q’

Several techniques for implementing the two steps presented in Secion-6.4.1 are
available. Though none of them are foolproof still the technique here, adopted for

implementing the interior grid control is impleménted by Hilgenstock (1988), which is

an iterative approach and quite comfortably implemented to evaluate P(&,7)and
Q(&,m), widespread in use to effectively solve the problem as presented in
Hoffman(1992). After the values of P(£,7) and Q(&£,n7) are determined at the

boundaries, interior values are extrapolated exponentially.

122



Initially P(&,7) and Q(&,77) are not known. So the initial values of P and Q is set to

zero and Poisson’s equation is solved to get interior points and updated recursively while

evaluating P and Q for each iteration as follows.
Let us say at »™ iteration P and Q are P” and Q"

So at n+1" iteration new value of Pand O will be,
P™ = P" + AP" (6.293)
O™ =" +AQ" (6.29b)

n=denotes the iteration level. The initial values of P and Q is set to zero.

Let us define some terminologies,

T, » =Tangent vector to the &-line at the boundary. f;,= Tangent vector to the nflfne at

wd

the boundary. The dot product will give the angle between tangent vectors (see Fig:Ure
6.2), N

TS,OI_",] =|f¢'~1fﬂ|cosa ‘ (6.30a)

One has then,
o
@ =cos™ :—5.—?; o \ (6.30b)
A

N

Let " is the desired angle of intersection. Then, the required correction AP” to P”" is

DN

L

AP" = +tan"[5"—;,‘3‘—J - (631)

(24

To make the line orthogonal «" is taken % . The spacing As between the boundary point

and the first interior point on & line is given by
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As = ((xi,j-l _xi,j)z + ()’f,j—l —Yij )z)yz (6.32)

Let’s As® be the desired spacing, then the required correction AQ" to Q" is,

As

AQ" = +tan -'(A—s—‘,ﬁ—J | (6.33)

As’ may be set as per the domain resolution or conveniently may be taken by user as the

smallest permissible spacing of the domain, between the boundary point and the first
interior point on & -line. Either or both of the correction AP” and AQ"can be over

relaxed or under relaxed.

6.4.2.1 Top boundary implementation
For the top boundary, one can calculate 7T ;> and T , as follows,

(y N g ) i3
J

7 (‘xi,jm,x—l T X )-:

¢~ % i ol (6.34)
1

As) = [(xf,jmx TR 7 T )2 + (y;‘,jm "L AW )ZF (6.35)

T, :%h%j (6.36)

+ - ] S . 7 .
where 7 and ; are unit vectors along x and y axis. LA and 7})- can be determined as

follows,

dbx 1 A At,

d 1 A At, :
PR TR I R
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After computing T, rand T, > one can compute @ from Eq. (6.30b) and AP” from Eq.

(6.31). Using value of As, from Eq. (6.35), AQ"is computed. Then, P and Q for next
step are updated.

Figure 6.2 Effect of P and QO adjacént to top boundary (Hoffman, 1992)

- 6.4.2.2 Bottom boundary implementation

For the bottom boundary, one can calculate 3 : and y , as follows,

T = (xi,l _xi,l);‘+ (,Vf,l ".Vf,z)}r

6.38
3 As, . ( )
1
As, = [(xi,l —Xi2 ; +(}’i,1 —Vi2 )2]E : (6.39)
= dx - dy -
T, =—"i+—" 6.40
" ! (6.40)

where 7and j are unit vectors along x and y axis. -:—idi and iy-can be determined as

follows,
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1 A A
% = (At AL ]I:[A;— J‘(xm,l "-’C.‘,l)"'[A;+ J'(xi,l — X )] (6'.41a)

d 1 Af_ At,
7{ ) [At+ +AL J[( A§+ J s = )+(A;_ J B =y )} (6.41b)

After computing 7, - and T, z» one can compute « from Eq. (6.30b) and AP" from Eq.

(6.31). Using value of As, from Eq. (6.39), AQ”is computed. Then, P and QO for next

step are for bottom boundary updated.
6.4.2.3 Extrapolation of boundary values to interior points.

Extrapolation of the boundary values of P({, 77) and Q(f,ry) into interior points of the

domain is done to achieve the desired effect in the interior grid points. For this

exponential extrapolation is adopted herein (Hoffman 1992).

A, )

PE.m)=PEDe " + P(£, 7, ) (6.422)
_cln-1) 4 (max 1)

o&.n)=0ENe " +O(E e (6.42b)

Where first term represents boundary control on the bottom boundary and second term
represents the boundary control on the top boundary. Large value of exponential term
gives rapid decay and vice versa. Here in the model, the adopted values of coefficients
were 9.0. Similarly, for downstream, upstream boundaries P and Q were evaluated and
extrapolated. P and Q were averaged to include the effect of all four boundaries of the

domain.

6.5 IMPROVED MESH GENERATION SYSTEM

6.5.1 EFFECT CONTROL FOR SMOOTHNESS
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A good balance of orthogonality and smoothness without distortion and overlapping,
method proposed by Zhang and Jia (2005) is applied by introducing effect control factor

on non homogeneous terms P and Q as follows.

For each grid point factor such as (1-r,) and (1-r,) were applied to the terms P and Q to

get improved P and Q for incorporation of smoothness as

P =(-r,)P (6.43a)

0 =@-r) - (6.43b)
In Egs. (6.43a) and (6.43b),

lh ‘ | ‘ (6.44a)

B |7, = | (6.44b)
q i .

h’?
P and Q* are improved terms, and l—z‘f and l_z,, are locally averaged scale factor along

£and 7 direction.

6.6 MEASURE OF QUALITY OF THE GENERATED GRID.

6.6.1 MEASURE OF MESH QUALITY

Zhang and Jia (2005) mentioned three indices to evaluate the quality of a mesh system
i.e. uniformity, orthogonality and adaptivity. Uniformity indicates how uniform the mesh
spacing is; Orthogonality is a measure to what extent the mesh lines are perpendicular to
each other; and adaptivity indicates the degree of the mesh density distributed in areas
where higher resolution and accuracy are desired (Zhang and Jia, 2005). The adaptivity

of the mesh is measured by the functional,
D .
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Where the Jacobian J, which represents the area of a mesh cell in two dimensions and
w(x,y)is the weighing factor. When this integral is minimized, w(x,y)J (with
w(x,y) > 0) should have a uniform distribution, so that where the weighting function is
large, the mesh size J should be small.

The weighting function w is often formulated using water depth or bed bathymetry' to
handle the complex hydrodynamic problems. If the numerical solutions such as the
concentration or the wvelocity gradients are selected, the mesh shall be adaptive

dynamically with the numerical solution (Zhang and Jia, 2005). The uniformity of a mesh

is measured by the functional

1, = [|&) + (V) ha (6.46)
D

The orthogonality which is vital for ease in numerical solution can also be measured as

I, = [(v&- V) 4 (6.47)
D .

Where the factor J? is added to enforce the orthogonality with higher weighting for large
cells. If the three indices approach their minimum values, the mesh would have the
optimal combination of uniformity, orthogonality and adaptivity. In general, 2 mesh can

be generated by minimizing the sum of the three integrals.
I=41,+A 1+, (6.48)

Since it is impossible to achieve these three objectives at the same time, for a particular

mesh one needs to select the appropriate combination of the coefficients of 4,, A,.and 4.
In our case A, is for orthogonality has been stressed upon more than other indices for

numerical ease of hydrodynamic solution. It is further to be mentioned here that
" topographical variations are irregular and large as well as mesh used in this thesis is of
fixed domain. So optimizing indices like adaptivity and uniformity may increase

complication to get feasible mesh generation with nearly orthogonal grid.
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6.6.2 MESH EVALUATION

Zhang and Jia (2005) have suggested a number of indices to evaluate quality of mesh
quantitatively by several indicators which have been applied here to check the quality.
These are Maximum Deviation Orthogonality (MDQO), Averaged Deviation from
Orthogonality (4D0), Maximum Aspect Ratio (MAR) and Average grid aspect ratio
(4AR) (Zhang and Zia, 2005).

MDO = max(9, ) (6.49a)

ADO = - ffmax(a ) (6.49b)
(ni i 2) (nj ' 2) 2 2 e/ '

Py P :

MAR = max(max(—=L,—21) (6.49¢)
htif, J hfi, Ji ‘

where nmiandnj are the maximum number of mesh lines in & and 7 directions

respectiveiy; and €@ is defined as

g, = arccos( L J (6.50a)
hfh’l ij %f“
aar = L S (s T (6.50b)
(n! = 2) (nJ == 2) 2 2 h’“,j h‘fi,j

For generated mesh to be perfectly orthogonal, 4ADO and MDQO should be 1.57(7c/2).' For

perfectly smooth mesh, MAR and A4R should have same for perfect mesh smoothness¥

6.7 COMPUTATION OF COEFFICIENT MATRICES FOR THE
GRID

Difference formulas for derivatives developed in Hoffman (1992) have been chosen

suitably to compute coefficient matrices which are various derivatives or combination of

129



derivatives between independent variables x and y with & andzdepending upon the

availability of neighborhood nodes.

L ox _mlIx, 18, = 9%, + 250,
< as 6AE
Or,
X, = @ _ _2xi-1,j _3xi, J +6xi+l, T Xiva,y
oL 6AE
Or,
.. 2 ox _ X2y T 6x,,,—3x,; +2x,,,;
Y : 6AE
Or,
. = ox i 2x,.4; +9%,_, ; —18x,  ~+1lx,,
¢ 9& 6AL
| 0’ x - Xy, =2, ;X%
Xee = g2 2
_ o0& A&
Or,
_&x 2%, 5%, A%, — X,
Xee =22 = 2
o& AE
Or,
_ O°x T X3, +4xi——2,j =5%,,,;+x%;
Xee = = 2
o AS
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Similarly y,and y,. can be computed by substituting y in place of x in Egs. (6.51) and

(6.52). Similarly following coefficient matrices can be determined depending upon the

availability of neighborhood nodes and suitability.

ox  —llx;; +18x, ,,, — 9%, ., +2X, .

\

X,=_—=
on 6An
Or,
_ B_x - 2xi,j—| 5 3xi,j + 6xi,j+] X je2
7 8py 6An
Or, (6.53)
2 "X iY== 6xi,j—l = 3xi,j i 2xi,j+1
7 8n 6An
Or,
_Ox  —2x,;,+9x,,, —18x, ,, +1lx, j
" on 6A7n
o 0%x _ X 2‘xi,j + X1 \
Xon = 2 i 2
on An
Or,
2
. = 0°x _ 2%, ;= 5% + A%, 0 =X ju3 (6.54)
nn 6772 An? o
Or,
2
x = O°x  —X ;3 +4x; —5%, ;4 +X,;;
nm 2 2
o An Y,

131



Similarly y,and y, can be computed by substituting y in place of x in Egs. (6.53) and

(6.54). Other coefficients used in the transformed equations are functionally related to
above basic derivatives. Functional relations have been derived and presented in Chapter
5 of this thesis in relevant sub-sections. Flow chart of the grid generation algorithm has

been presented in Figure 6.3a and continued to Figure 6.3b.

6.8 GRID GENERATED FOR DIFFERENT DOMAINS FROM
DEVELOPED CODE

The computer code in C++ based on the algorithm has been developed to generate
efficient meshes starting from simple to curvilinear domain to assess the efficacy of the
developed algorithm. The parameters to measure the quality have also been computed to
observe the control functions performance while adjusting the internal nodal points to
optimize orthogonality and aspect ratio. Some developed meshes in variety of flow

domain are presented here illustrate the quality of generated meshes.
Case-I.

In Figure 6.4, a rectangular domain has been discretized with 6 x41 nodal points. MDQO
and ADO is 1.57, indicating the grid to be perfectly orthogonal. Moreover Maximum
Aspect Ratio (MAR) and Average Aspect Ratio (4A4R) are also same, indicating the mesh
to be perfectly smooth.

Case-II:

In the Figure 6.5, a tapered domain has been taken and the grid quality is assessed. The
orthogonality and aspect ratio have been computed with maximum and average values.
Generated mesh is orthogonal with slight deviation with perfect orthogonality while
computing maximum deviation from perfect orthogonal mesh lines. Still mesh is
reasonably perfect orthogonal in character. Aspect ratio deviation from maximum and

average is quite high indicating reduced smoothness in comparison to Figure 6.4.
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Loop-l

Start

Set grid resolution by selecting
integer values for £ and 7 as &max
and Npmax

-

For boundary points, compute x and y
coordinates by algebraic method. P and
Q set to zero.

Ith iteration
/ Compute xg, e, X, and y,
/ Compute ay;, By vipand Jy;

Compute row wise
TDMA Coefficients

Solve for x and y for internal nodes
(rowwise)

. ) Update x¢ v xpand yy,
1+1 iteration Update ay,, By, viy and

(7]

Compute column wise
TDMA Coefficients

Solve for x and y for internal nodes
{column wise)

Check for convergence crieteria

Continued
to next
page

Figure 6.3a Flow chart of grid generation algorithm
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Continued
from
previous
page

/ For top and bottom
L boundaries,

Compute T¢, 7, a,
As, AP? and AQn

Update P and Q and
extrapolate at interior
points exponentially

iterate

1. Repeat loop-1 with updated Pand Q
2. Modify for smoothness

no

Iteration<= user assigned value

1. Repeat loop-1 till convergence

v

Compute coefficient matrices for the
generated mesh for transformed
equations

stop

Figure 6.3b Flow chart of grid gcneration'algorithm
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Figure 6.4 A mesh of rectangular domain with 6x41 nodes
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Figure 6.5 A mesh of domain with 21x41 nodes for tapered shape
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Figure 6.6 A mesh of domain with 11x51 nodes for curved shape
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Case-II1I:

A symmetric curved shape as depicted in Figure 6.6 with 11x51 nodal points has been
discretized using orthogonal and smoothness effect control to get the mesh quality for
curvilinear symmetric meshes. The computed value of ADO suggests mesh to be
perfectly orthogonal but MDO gives the indication of maximum deviation from
orthogonality to be 2.20., which indicates that code has to adjust some nodal points to
achieve the general mesh characteristic to be orthogonal. So far A4R and MAR depend on
the number of & lines and 7 lines by user to achieve a close proximity between contra-
varient metric scale factors to make the meshes smoother. It should be kept in mind that
there should be a reasonable balance between smoothness and orthogonality, as forced

smoothness may decrease orthogonality and vice versa (Zhang and Jia, 2005).

6.8.1 COMPARISON OF MESH QUALITY WITH AND WITHOUT
SMOOTHNESS CONTROL '

Algorithm is modified in view of the effect control procedure described in Section
6.4.3(a) and mesh for an asymmetric curved domain is generated with and without

smoothness measure as follows.

4 ,::EE
"::_é::__
£ 2 e e e i ot et o
= 1
> 0 .
:;:: ll
=2 =
] MDO=2.45
] ADO=1.70
- MAR=1.90
AAR=1.227
Iteration=15
- - . . . .
0 5 . 10 18 20

X(km)

Figure 6.7a A mesh of domain with 21x51 nodes with smoothness control
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Figure 6.7b A mesh of domain with 21x51 nodes with smoothness control
Figures 6.7a and 6.7b are presented to demonstrate the effect of the smoothness control
over the mesh generated. Figure 6.7a depicts the internal control through applying low

values non homogeneous terms Pand Q through iterating 15 times only to estimate

¢

them, whereas Figure 6.7b. the P and Q terms are kept high with 100 iteration, yet.:()"n
account of smoothness control, grid remains nearly unaltered keeping the orthogonality
and smoothness controlled at its optimum values resulting in the grid to be independent
of the iteration done to estimate non homogeneous terms P and Q. This gives a perfect
balance between orthogonality and smoothness at a time without deciding much for the
number of iteration done to evaluate P and Q (as described in section 6.4.2) to. get
optimum quality of the grid.

8

6

4 —1 1

) .

g I e
A T Y O |

> N
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Iteration=15
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Figure 6.8a A mesh of domain with 21x51 nodes without smoothness control
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Figure 6.8b A mesh of domain with 21x51 nodes without smoothness control

Figures 6.8a and, 6.8b are presented here to observe the grid quality without smoothness

control. When P and Q values are increased, the nodal points adjust to make the grid

more skewed thereby changing the average orthogonality considerably at the same time
there is no control over aspect ratio also. So, Figure 6.8a is more orthogonal and smooth
when compared to Figure 6.8b. Whereas in Figures 6.7a and 6.7b, the orthogonality and
smoothness remains unchanged and optimized irrespective of the relative absolute values

of the non-homogeneous terms.
6.9 SUMMARY

In this chapter numerical scheme for developing a code for generating grids in the flow
domain using Poisson’s equation is described in detail. The computer code has been
developed in C++ using finite difference method as stated earlier and clubbed with the
flow simulation numerical scheme to facilitate prime input for domain variables and
coordinate transformation coefficients to be used in the governing equations for flow
simulation boundary fitted flow domain (details in Appendix VI). The evaluation criteria
for asSessing mesh quality and efficiency have also been described. To make the
generated mesh smooth and nearly orthogonal, certain modifications suggested by Zhang
and Jia (2005) have also been incorporated in the developed computer code. To illustrate
the performance evaluation of the developed computer code, some chosen physical
domains with different geometry have also been discretized and quality parameters were

evaluated anfi described further to provide an insight into the mesh evaluation.
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CHAPTER-7

NUMERICAL DEVELOPMENT OF 2-D HYDRODYNAMIC
MODEL FOR COMPLEX PHYSICAL DOMAIN

7.1 GENERAL

The governing differential equations for mass and momentum in curvilinear coordinate
system have been formulated step by step in Chapter 5 of this thesis. As mentioned
earlier, finite difference methods for solving these differential equations in particular
require that the continuous physical space be discretized into uniform orthdgonal
computational space (Hoffman 1992). In the process of formulating these controlling
equations, 'coefﬁcients of transformation introduced into the PDEs which have to be
evaluated through mesh generation algorithm separately, for a given domain. Moreover
boundary conditions have to be implemented very cautiously to adequately represent and
simulate the real physical conditions to solve these equations. In addition, _;fhe
independent variables x and y change to uniform ¢ and # variables. Similarly, dependent
variables like Cartesian physical velocities also changes to contra-variant counterparts
resulting in requirement of complete transformation of the PDEs. Numerical model
development for determination of coefficient matrices for transformed controlling
equations and appropriate coordinate transformation has been dealt in detail in chapter 6
of this thesis. The complete transformed governing equations in curvilinear coordinate
system (Jang and Shimizu, 2007) to be solved in finite difference method is mentioned

" herein under.

o  h 0 h

(U~ yr)Ls :
or J’  B& 7 on p )7 (7.12)
ou* +(U‘\3U¢ +(V”)6U: +aUCUS +a,UV" +a,V V"
or J a§ 677 1 2 3

L a_H ___9_1_ < [ n ‘ — 3 7
[(5 +&2 )aé +(.L, +nyfy)an) LU Vo, us ey} +Cnut vy )1+D¢(7.1b)
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n /)
V) o) s autUt +a Ut va Y
or o0& on
oH) C
[(me‘ +7,4,) g+(nf+ﬂj)aj——h-ﬁ’]—V"\/(nyU§—é‘yV”)2+(—mU"’+§,V”)z+D,,( 9
7.1c
2 2 2
In Egs. (7.1b) and (7.1¢), ¢ ¢ 2%, Y o o’y ox &y
as. (7.16) and (710), o, =&, 7214, 9%. a2 T vg T =6, 710, T,
= azx o’x o’y o%x and spatial
Ay =7 ozt ,&Ez) 2(17,raé,an+r7ya‘fa E =75y +nya 2) '3 7=sp

coordinates in the boundary-fitted coordinate system, 7 =time coordinate in the
coordinate system, x and y=spatial coordinate components in the Cartesian coordinate

system, H =water surface elevation(/# +z, ), hA=water depth, z,=bed elevation referred

to a horizontal plane, g =gravitational acceleration, C,=bed friction coefficient, which is

written using Manning’s roughness coefficient as g’nz/ h3, n=Manning’s roughness

coefficient, J=Jacobian of the coordinate transformation, U¢ and ¥ "= contra-variant

components of flow velocity in the £ and # directions, U, and U = depth-averaged
velocity components in x and y directions, respectively, v,= depth-averaged diffusion

coefficient (=xU'h/6), x=Von Karman constant(=0.4), U (shear velocity)=
' 1
nlglv.2+U,2 ) rhe.

There are number of nonlinear terms introducéd (for example terms with coefficients a;-
as) in Egs. (7.1b and 7.1c) while transforming it from Cartesian coordinate system to
Boundary fitted coordinate System. Flow variables such as Cartesian velocities are also
transformed to their counterpart such as contra-variant velocities. The introduced
additional non-linear source terms are difficult to handle while solving it with numerical
procedure. Moreover, solutions are obtained in terms of contra- variant variables which
again have to be transformed to get Cartesian physical velocities with mathematical
correlations to get as actual set of final results. It introduces additional computations at
each computational step. So, models with finite difference solver generally are used for

orthogonal grids or nearly orthogonal grids to avoid non-linear curvature source terms,
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which in-advertently get introduced in complete coordinate transformation in curvilinear
system on account of non-orthogonality which is significant with increasing geometric
complexity. This may introduce considerable error propagation when dealing with
complex domain with highly non-prismatic channels (i.e. Lien et al., 1999; Jang and
Shimizu, 2005 and 2007). These models may work efficiently for simple experimental
flumes but applied to complex flow geometry like simulating alluvial river. Other
investigators (Seo et al., 2008 etc.) applied finite element methods, which is though
efficient but requires more computational efforts with enhanced mathematical
complexity. Kuiry er al. (2008) implemented finite volume method with an implicit
solution of the discretized equations. They tested the model theoretically as well as on
field problem taken from a tidal reach of River Hoogly in India. = For simulating large
rivers, finite volume method (FVM) of discretizing conservative form of partially
transformed controlling equations in curvilinear coordinate system seems most
appropriate to use with much computational ease. FVM is used because of its simpff*éity
of implementation and good flexibility for space discretization over other methodhs'v, as
discussed by Tan (1992) and Zhao et al. (1996) as reported by Kuiry et al. (2008). FVM
schemes maintain conservation properties in the presence of shocks Hirsch (1988) and
their stability is independent of Froude number (Beffa 1994), reported by Ku’iryﬁet.lal.
(2008). As FVM solver additionally conserves mass-momentum, hence it can be sui;tably

applied for highly complex geometry using non-orthogonal grids.

The details with regard to transformed governing equations and secondary flow
correction with mathematical derivation are dealt in Chapter 5 of this thesis. Here,

development of 2-D numerical model with modified dispersion stress tensor is focused.
z

7.2 NUMERICAL SOLUTION PROCEDURE

7.2.1 GOVERNING EQUATIONS

The governing equations presented in Chapter 5 (Eqs. 5.21b, 5.41 and 5.42) are
discretized using the finite volume method in curvilinear, non-staggered grid. In the
curvilinear co-ordinate system, mass and momentum equation can be written in

conservative tensor notation form as
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Continuity equation

3(Ph]) (
phJi, )=0
or 6 . (7.2) '

Momentum equations

o(phJU,)
ot DE™

[ nJu, U, —Thla]a) 2UJ aa (pgh.la}"H)+JSu‘
g S (7.3)
In Eq. (7.2) and (7.3), # 1, (m=1, 2) are the velocity components in the curvilinear

coordinate (£, 7,7 ) which relates to Uy, U, and others as follows, where ¢ =0¢,, /ox,

i) (ol @YU (& &)U '
i, - o a; \U, 3 1. M \U, (7.4)
. In Eq. (7.3), I"= py, =diffusitiry;

U; stands for depth averaged velocities (i=x, y), S, is the corresponding source term in
the equation for U, J is the Jacobian of transformation between Cartesian coordinate

system x; (x;=x, xy=y) and the computational curvilinear coordinate system &, (£;=¢ and

&=n)

Source terms includes cross derivative diffusive terms, dispersion stress terms and
external forces but excludes the second derivatives of coordinates (curvature terms) that

are very sensitive to grid smoothness (Wu, 2007). Expanding Eq. (7.3)

orhe s -rvan S 2 o i L anss s ehaiye sy 7.5)

) 2 g2 11
where a,, =7,’ +nl =ala’+aja; and o, =& +& =aq +aja)
(7.6)

Eq. (7.5), can be written for i=x, y
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AU,) , a(ph.l U, ~Thia, 2= )+i(ph./ﬁqU‘—FhJau au,,]z_:% hJarLH)—%(pghIafHﬁWSu,

or oZ o& on on (77&)

a(";‘:y) (MS,U —Thia, al;)+-—[p’uﬁ U, —Fhley, J d (pg )—%(agwgﬂ)J,mng

on (7.7b)

7.2.2 CONTROL VOLUME SETUP

The computational domain is discretized into finite number of control volumes by a
computational body fitted grid. The gridlines are identified as cell faces. The control
volume centered at point P is embraced by four faces w, s, e and »n (Figure 7.1). It is
connected with four adjacent control volumes centered at points W, E, S and N. Here, W
denotes west (the negative ¢ direction), E the east (positive & direction), S the south
(hegative n direction) and N the north (positive # direction). The convection terms in Eq.
(7.3) are discretized by Hybrid Linear/Parabolic Approximation (HLPA) scheme, (Zhu
and Rodi, 1991). The HLPA scheme is reported to be good at stability and accuraéy._'(Wu,
2007). The diffusion terms are discretized by central difference scheme. The time

derivative term is discretized by first order backward scheme.

s

Figure 7.1 Two dimensional control volume

For discretization, non staggered grid is used. It stores all variables on the same set of

grid points. Number of coefficients is minimized. It handles more complex geometry
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easily. It encounters difficulty in coupling of pressure and velocity (Wu, 2007). It may
induce numerical oscillation in pressure field. Rhie and Chow (1983) gave momentum
interpolation technique to improve pressure velocity coupling in non staggered grid,

which has been adopted to avoid spurious solution.
7.2.3 DISCRETIZATION

Momentum equations in Eqs. (7.7a) and (7.7b) are discretized term wise using FVM

through integrating over the control volume in Figure 7.1 as follows

i. Transient term

Transient mass of the control volume in At

For U,
Ic+lUk+l - I(Uk
Pp xAt PpU '(hJAfAﬂ)p
P : (7.8a)
For U,
k+1y rik+l kyrk
pp U, —ppU
B
P (7.8b)
ii. Convection term
For U,
(ohnna, ) ), ~(oran, b, fUF), + (g g, P UH), - (ohng 2, ) ),
‘Whichcanbe writtenas
’h:+1U_f+le _’h:HUf-.i-lw + 7;1:+]Uf+ln _ mf+lU:+lS (7.9a)
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For U,
(phnmaac), "), ~ (o, i) ), + (s, )7 ), ~ (i, , ),

Whichcanbe writtenas

o ktly rk+l = k+ly rk+l » k+ly rk+1 « k+ly rk+l1
m, U —m, U +m, U —m U™ (7.9b)

In Eqs.(7.92) and (7.9b)

m; = (phjﬁmAm)l (7.10)

where Am=4¢& or Ap and [ represent cell faces w, e, s, n.
iii. Interpolation of dependent variables at cell faces

Dependent variables are interpolated at cell faces to substitute their values in Eqgs. (7.9a)

and (7.9b). The interpolation has been done through Linear/Parabolic Hybrid Scheme

(HLPA) scheme as suggested by Zhu and Rodi (1991) for non-uniform non -orthogonal

grids. The implementation of the HLPA scheme is as follows. ¢ stands for dependent
“variables (U, or U,).

(a) West face

m, >=0
at = 1 |¢P -2¢, +¢WWI <|¢P _¢WW|
Y lo otherwise (71 1a)
m, <1
o 1 1w =20, +6:| <|dy - 4]
¥ o otherwise (7.11b)
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¢w = U;¢W +U;¢P +A¢w

U =o.5(1+|":’—"|] U, =(1-Uz) where s, #0

7|

m

w

U+ + ¢W Bovw - yi- - Po— g
p—1 — U
A¢ (¢P ¢W { w w ¢P ¢ w w ¢W ¢F

8, =U by +U ép +(¢P — {U\: e —— Py — ¢WW
Pe — Ow

(b) East face

i, >=0

o, =
0 otherwise

+ ={1 I¢L‘ —2¢P +¢W|<I¢E _¢W’
m, <1

e

a, = .
0 otherwise

- __{1 |¢p _2¢E +¢EE| <|¢P —¢EE|
g =Ulgp +U,¢; + Ag,

U, = 0.5(1 + MJ
me

+ + ¢P ¢W - ¢E ¢EE
Ag, =g, -0 U cx, -V
4.~ ”’)[ bty Gy

+ - ++¢P ¢W
U P U E E P U
¢, ¢, +U ¢, +(¢ ¢)[ Sy

=
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" gy -

U; =(1—Ue+) where ﬁ'ze #0

Uafim

" 4

P

Per
~Pux

— &

=2

e

(7.11¢c)

(7.11d)

(7.11e)

(7.11%)

(7.11g)

(7.11h)

(7.110)

(7.11j)



(c) South face

g, >=0

. 1 |¢p — 24y +¢ss| <|¢p ~Pss|
s 0 otherwise (7.11k)

m_<1

5

a—=

§

1 |¢s _2¢P +¢N| <|¢s _¢Nl
0 otherwise (7.111)

¢s =U:¢S +Us_¢f’ +A¢s

] U;=(1—U:) where rm, 20

1,
U = 0.5(1 +=
m

) (7.11m)
OOl ORI e ¢N]
A . — o) Urer ~-Ua
7 (¢ ¢{ " e —bss " b5~y (7.11n)
+ +¢ ¢ = —¢ ¢
2 U¢+U¢+(¢P¢)[U i ) ”]
3 - L bt b5 —n (7.110)

(d) North face

riz, >=0

+={1 |¢N”‘2¢P+¢S|<|¢N_¢SI

"0 otherwise - (T.11p)
m, <1

- {1 16 =20 + | <[6p — B

"0 otherwise «(7.11q)
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¢n = U:¢P + U;¢N +Agp,

U =0.5(1+l—"_’"—|) U; =(1-U;) where 11, #0
mﬂ

(7.11p)
+ __+ ¢ ¢ e ¢ ¢
A¢n = (¢N _¢I’{Un n P = Un n - NN]
¢N ¢s ¢ ¢NN (7‘113)
+ + , + ¢ ¢ . ¢ ¢ IN
B, =Urdp +U by + (B — m)[v g T ”}
¢N _¢s ¢ ¢NN (7.1 10

iv.  Convection term discretization using HLPA

Expressions in Eqgs.(7.9a) and (7.9b) can be written using HLPA scheme in
Eqgs.(7.11e),(7.11)), (7.110) and (7.11t) in terms of variables at cell centers. ¢ stands for

dependent variables (U, or Uy). Then Egs. (7.9a) and (7.9b) can be expressed as follows.

Using HLPA scheme, substituting relations given in Egs. (7.11e), (7.11)), (7.110) and
(7.11¢t), one obtains

i |Vl +U 4 +8.0c — o) |Uidy + U0 + 6,06, — 80 )|+

U +Usdy + 8,0~ $)-mfUtds + U8, + 8,6, =) (7.12a)
Or,

b\ U — i 8, — i U, — i, g, + iU, =8, = mU; ~ivg,)

+d, (— UL — n'zwe?w)+ @ (n‘uU; +1i1,4, )+ Ps (— mU; — n’m&)+ Py (m,,U; + m¢) (7.12b)

Or,
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b, i, (U? — 4.~ i, (U, +8,)+ 0, (U ~8,)~ 1, (U; +4)
-, U2 =0 ) 0o (U2 +6.)- 05,02 =4 )+ 6., (U, +4,) (7.120)

Thus convection term can be expressed in terms of variables at cell centers i.e. at W, E, S,

and N using the expression obtained in Eq. (7.12¢).
v. Diffusive term

In Egs. (7.7a) and (7.7b), diffusive terms can be discretized using central difference

scheme as follows.

aU, - (Ux)E_(Ux)P \
(rh‘]au),Ane' & L_(rh‘]au)eAﬂz' L AZ,
(tha,,)WAT],,,~ale =(I~.h‘]a“)wA”w.(Ux)P—(Ux)W

o |, g, > (7.13)

| oy | U ) UL,

(I"h./-an),_Aé,‘n ‘a—n"n—(rh‘]an)nAfn. An"

U, v,), -,
((hay)as, - s=(rh/an)sA:,-( )’;nn( ) =

Segregating expressions of diffusing terms in Eq. (7.13) for Eq. (7.7a)

~(ThIG,), A, (e () (T ), An, -M—(Fhlan),, AE. U -W,),

Ag, Ag, A,
(7.14a)
+(rh‘]a22);A§s . (Ux)PA—(Ux)S
s
Or,
- An. An. Ay
Thay,), NG .)s +They), AE. (Ux)}" +(Chiay,), AL, (Ux)P
~Cway,), T30 - Cway), T2 ©.),
\ A A | (7.14b)
HOWan), 2500, + EWan), £2-0.), - CWaw), 3-0.);

149



Or,

~(Thaey,), jge (U,), ~(They,), ggw Oy~ (), 25 (0L,

e w n

(i), e ), [(Fhfau) A (), e+ (T, 2o+ (), s]-(ux),,
Arn, AS, AL, An, s (7.14¢)
Same operations can be done in Eq. (7.7b) for U,
(T, gg( ) ~n). S (0), o), 22-(0),
B AL A7, An, Ag ,
(Ohs), o0, + [(l“hJa.,) oz HO) = (Fh/aﬂ)s Am] @), SR

vi.  Final discretized equations for momentum equations

Substituting Eq.(7.12¢) in (7.92) and (7.9b) and collecting discretized expressions for
transient term, convection term and diffusive term obtained in Eqs.(7.8a), (7.8b),

(7.9a) , (7.9b), (7.14c¢) and (7.14d), one can obtain the following final expression

0.l V) ungan), -

=a,U,, +a,U, +a,U, —a,U, + S(WIAEAR), (7.15)

where,

ay =m,(1-4,)+(pv,hia,), | (7.168)
ay =i, )+ (ov W), (7.16b)
a =, (1-1, )+ (pv,hIas,), ' (7.16¢)
ay ==m b, +(pv,hia,),

(7.16d)
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aiP = 'ﬁe (1 - ﬁei )—— ’hwﬁ_wi + mn (1 - ﬁm’ )— msﬁsi +‘(pvlh']all )w
+(pvth‘]all)e +(pvlh‘]a22,)n +(thh‘]a22 )s (7.163)
Source term can be linearised in Eq (7.15) as follows.

S hINAT| =Sy, +SpUp (7.17)

In Eq. (7.17) Su; and Sp are coefficients. Sp must be non positive (Patankar-1980).
Eq.(7.15) can be written as

a;’uiP = Zaluil + Sz:i
1=N S EW (7.18)

In Eq. (7.18), one has

LYY
/ At . - (7.192)

’—
a,=a

(phJAéAD); us

S"; = S i + 1.
i At | (7:19b)

where subscript & indicates the immediate value at &” time step and &+ 1* subscript is the
value after Az. Pressure value at cell faces can be computed through linear interpolation

as,
| Hw =fwPHP+(1_fwP)HW \
H, =j;PHP+(1_.feP)HE ' | (7.20)

Hn =fnPHP +(1‘“fnP)HN

H, =fsPHP +(1_fsP)HW ~

InEq.(720), f,-—Bhw o B o Al g Bhs
AL, +AL,, ALy, + AL, ALy, + AL,y ALy + AL
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where AL gives segment length between given nodes indicated in its subscript in the

control volume.

Final discretized equation in Eq. (7.15) can be written using the relations developed in
Egs. (7.18), (7.19a), (7,19b) and (7.20)

Ur‘,;:I = _IT( ZalUl‘I;+l +SUE"J+D11(HW -—He)+ Diz(Hs “.Hn)
Ap \U=NS,EW (7.21a)
'A ZA
where in Eq. (7.21a) D} = (pgh.]a,, 77)” and D} = (ptha’, é:)”
& R el (7.21b)
Denoting first term of R.H.S of Eq. (7.21a) as H;p, i.e.
1
Up' = —,( ZaU;" +Su,-)+D,-l(Hw -H,)+Df(H,-H,)
ap \I=N.S.EW
Hp (7.21c)

Under relaxation is introduced to stabilize the iteration solution for Eqs. (7.21c), one can

write the Eq. (7.21c) as

Ukt =a,|H, + DNEE — H )+ D2 ES - H )+ (-0, )Us, (7.222)

where o stands for an old value of variable at k+ 7" time step and @, is under relaxation

factor (usually taken as 0.8).

One can conveniently write the relation obtained in Eq. (7.22a) for intermediate guessed

velocities designated with “*’ superscript as

U, =, [H; + DN #E) — B+ D}, - B[+ (-a, ), (7.22b)

i1 @y, Ulp , Si; are guessed velocities, under-relaxation factor (taken as=0.8), old
values of velocities and source term respectively. H*,, H*, H*; ,.q H*, are guessed

water surface level at cell faces of the control volume centered at P.
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Subtracting Eq. (7.22b) from Eq. (7.22a), and neglecting H "' — H,, , one has
Ukt =U, +a,|DNE, - H! )+ D} H! - H, )| 723)

where in Eq. (7.23), H' with w, e, n, s subscripts denote pressure corrections at cell faces.

Pressure correction has the following relation,
HY =H'+H' (7.24)

vii. Implementation of momentum interpolation technique proposed by Rhie and
Chow (1983).

The scheme uses the non-staggered grid as stated earlier. Velocity and pressure coupling
is poor in this case as all dependent variables are stored at the cell centers. It leads to
spurious solution. To improve pressure velocity coupling, Rhie and Chow (1983)

interpolation technique is implemented. It computes U; at cell faces as follows.
Uy = a0~ 1.0 005w + 1.0G5 v @ li- 1.0V aty + 10 165 ]

X (pghla,-'An)w (H,',, = H;’)"' (1 -a, )[(1 mwid )sz + fx,PUio,p] (7.25)
Ui.,e = au [(1 - fx,P ):;il,:’E + fx,PGil,;’ ]+ au [(1 - fx,P )/ alL’IE i fx,l’ /ag]

X (ptha}Af])e (H; -H, )+ (1-e, )[(1 ~fer )Ui(jE + fx,pU,-'f,,] (7.26)

In Eq. (7.25) and Eq. (7.26), G = H_, + D2(H. — H). Where G5y, and alpy, are the
values of G5 and af for the neighbouring control volume centered at point . G; g

and af/pg are the values of G;;: and a for the neighbouring control volume centered at

point E.

Similarly the values of U; at cell faces s, » are calculated as,
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U:s =a, [(1 - fy,P iz,;’s + fy,PGi?:’ ]+ 2, [(1 - fy,l’ )/ags + fy-” /ag]
X (ptha,.zA§)s (H; - H, )+ (-a, )[(1 ~Jor )U!fs + fx,PUi‘iP] (7.27)

Ui’,n =, [(1 - fy,p bif;’N + fy,PGi?;’]-’- a, [(1 - fy,P )/agjv + fy,P /aff]
x (Pgh-]aizAf),, (H;v - H;)*' (-a, )[(1 =Jyr b:ﬂw 7 f;,rUzr] (7.28)

In Egs. (7.27) and (7.28), G2 =H,,+D/(H,—H.). Where Gjs and alps are the
values of Gf,’,‘ and af for the neighboring control volume centered at point S. GggN '

and af/py are the values of Gf;,* and af for the neighbouring control volume centered at

point V.

Substracting expressions in Eqgs. (7.25), (7.26) and (7.27), (7.28) from same relation
[Eqs(7.25-28)] at k+1" time-step, for the interpolated UXF:, UKF and UKF', UL, one

can get following correlations.

Ukl =u;, +a,0.,(H, - H}) \

Uk =U,, +e,0,(H; - H}) } | (7.29)
U = UL a0 (H )

Ukl =U,, +a,0%(H; - Hy) )

where in Eq. (7.29),
0. =l £..) abiy + 1., 1 af pghalam),
Q:,e = [1— fx,P)/ A + Jer /aj Kpgha}AT])e ¥ (7.30)

Qis = [(1 _fy,P)/agS +fy,P /ag Kpghasz‘f)s

02, =l1- £, ) a¥% + £, 1 a8 N pgra?ag),

7
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Convection Fluxes (F,,, F., Fs and F,, ) at cell faces w, e, s, and » can be approximated by

mid point integral rule as

F, = pt(hIAn), " \
F, = pf*'(nJAn), a5
} (7.31)
F, = p! (RIAg), ok
F, = ps' (WIAE), 0k )

Equations (7.29) can be written in terms of fluxes at the faces using correlations given in
Eqgs. (7.4) and (7.31)

;
F,=F, +a,(H, -H})

F,=F +af(H} - H}) > (7.322)
F,=F; +af(H, - H})

F,=F, +ai(H}, - H)) ‘ J

where in Eqgs.(7.32a), one obtains

ay = aup::“(h‘,ailAﬂ)inl,w and  ap = aupk*l(hJailAﬂ),,Ql ;

e ie ?

al = a,pt (WalsE) @l and  af =a,pt (Wa!AE),00, (7.32b)

Using relations given in Eq. (7.6), one obtains

af, = a, (o). (sm), (@, QL +03,0L,) and - af =a, (oh)," (A7), (1,0, +5,05.)
(7.33)

af =a, (o) (nn) (2 0, +e2, 0) and af =a,(oh);" (An), (03,0, +02,05) 5
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Guessed fluxes (F*) are determined in terms of guessed velocities U* for using it in Eqgs.

(7.32a).
viii. Discretization of continuity equation.

Equation (7.2) can be written

0 0 0
- — 7 B, 7 )= 7.34
aT(phJ)+ Y (phJ.u;)-f- on (phJ.u,,) 0 ( a)

Integrating first order backward difference for Eq.(7.34a)

()" —oh: (sngan), + (phsiz, ) An, - (onsi,), An, +(phJi,) AE, —(phJit,) AE, =0

At (7.34b)
Substituting correlation given in Eq.(7.31), one has
k+1 k
(ph)P _(ph)P.AAP*'F;‘—Fw'*'F;—F;:O
At (7.35a)

For incompressible flow and rigid bed condition, above equation can be approximated

using relation given in Eq. (7.24)

’ B k
Het By oMy oMMy +F,—F,+F,~F,=0
At (7.35b)

In Eq. (7.34), substituting the values of fluxes from Eqgs. (7.32a) and writing it in the

following form
alH,=a}H,, +afH, +alHg +afH, +S, (7.35¢)
Whereas in Eq. (7.35¢)

+ PrAAp
At (7.35d)

P —_ 4P 14 14 p
dp =ay tap +ag +ay
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(H, —Hp)pB4,

S,=—F'+F,—F' +F -
At (7.35¢)

Equation (7.35c) can be solved through well known iterative 4ADJ scheme explained in

Chapter 6.
Implementation of SIMPLEC algorithm

SIMPLEC Algorithm mentioned in Wu (2007) and Majumdar ef al. (1992), adopted in
this numerical code in view of the modification in descritized equations, suggested by

Van Doormal and Raithby (1984).

Equation (7.23) is modified as,

U,’f;l = Ui‘,P +ta, [5:1(1{»'« - H;)+ 5i2(H; "l H;)] (7‘.36a)

Where 5:11 i Dfm/(l—au za:U /all’,j
I=sEW,N.S

(7.36b)

Using the momentum interpolation technique, the velocity corrections at cell faces in

Egs. (7.29) can be modified as follows

UL = U, +a,0, (), ~ Hy) )
k+l __r7* A v _ r ’

Ut =U,, + a0 (Hy— Hy) (7.37)

k+l . 2
Ui,: = Ui,s 3 auQi,s (Hg' n H;’)

Utlf;] = Ul'.,n +au§§n(H;’ _HJIV)

In Eq. (7.37),

iI=E W NS

Qi’,”w =Qi,,"w/[1_au(l—fx,}3)([_ Z a,U/ag)W —a,f.p( Zafll/alL:)P] ™

EW N,

0 =05 (1-curn 3 et far, ~en- 1) St )

I=EW NS

oy =Q,'fl/(1—a,,(1—fy_p)( >
I=E

W.N.S

v/U viu
al/aP)S_aufy,P( Zal /ap)pJ
I=EW NS
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Q’,’;=Qf_’;/(l—a,,fy,p( S dlfa-a0- 5,0 Tat /a,,>,,]

I=EW ,N,S I=E W NS

For depth averaged 2-D SIMPLEC algorithm implementation, coefficients af,, af, af

and ak are determined by Egs. (7.33) only by replacing Q7,, , Q% , Q. and Q2Z, with

modified coefficients such as Q},,, Q% @}, and Q2, respectively.

X. Cross derivative source term computation

Cross derivative terms are kept as pure source term to avoid instable solution as it is
sensitive to grid resolution. Linearising both momentum source terms,

S, RINEAD =S, +S,. U,

S, hJAEAT =S, +S,U,, (7.39)

First term of the source term is cross derivative term of the momentum equations to be

dealt specially, integrating over the Control Volume. One can get, (7.40a)
Sy, =Thla,,

a.fary
Sy, =Thla,,

656 (7.40b)

One can represent the Eqgs. (7.40a) and (7.40b) as below

S,, = Thia,,

65677 (7.41)
where in Eq. (7.41), i=x or y;

Integrating over the control volume, Eq. (7.41) becomes

aU,
on

oU,

- (rh‘]alz) A”w
on

€

{(Fh‘]am) Aﬂe J
w) o (7.42a)
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Sy = {(rhjalz )eA”e

(Ul')nc —(Ui)se —(l"hJa,z )wAﬂw (Ul)nw —(Uf).sw} )

Ar |, An (7.42b)

Or,
Su=((Waa) (@), - ©)..)-Chtas), (©),. - ©),.) | (7.420)

Equation (7.42c) is used to evaluate cross derivative source terms in terms of velocities at

the neighbourhood.
xi.  Broad outline steps for SIMPLEC algorithm

a) Guess the pressure field H';

b) Solve the momentum equations to obtain Uy and Uj, using (7.22b)

¢) Calculate H using ADI [Eq. (7.35¢)]

d) Calculate H using Eq. (7.24)

e) Calculate UX** and U} using Eq. (7.36b)

f) Treat the corrected pressure H as new guessed pressure H" and repeat “the
procedure from step b) to f) until converge solution is obtained, and

g) Conduct the calculation of next time step if unsteady flow is to be simulated.
7.2.4 BOUNDARY IMPLIMENTATION

i. Side boundary

TR --3---%

<
~

=]
23 Ay

Figure 7.2 Control volume at side boundary
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For side boundary implementation, wall function approach given by Wu (2007) is
adopted. For south boundary, velocity at wall (point‘s’) is assumed non-slip and assigned
zero value. The convection flux is zero when x-momentum is integrated over the CV and

4

shear stress is determined as (Figure 7.2),
Tay = —Azy Up , (7.432)

where in Eq. (7.43a), Up is flow velocity at P. A, is determined using the relations given
~ in Egs. (7.43b).

puK

A =
* " In(Ey;)
where yi =222 (7.43b)

where yp is the distance from the wall to the point P, shear velocity is the shear velocity

on the wall defined as u, = { —T%. E is the roughness parameter given as

E = olro-55)]

[

. 0 ks < 2.25 (7'430)
AB = (Bo ~8.5+—In k:]sin [0.4258 (In k7 - 0.811)] 2.25 <&* <90
K
B(,—8.5+L1nks+ k >90
\ x (7.43d)
u.k,

In Eq. (7.434), Bo=additivé constant of 5.2 and Roughness Reynolds number & =
v

(Cebeci and Bradshaw, 1977) in zero equation model. This shear stress is moved to
source term thus yielding zero coefficients ag" in Eq. (7.22b). Second momentum

equation is integrated over C¥, the convection flux and normal stress 7, at face s should

be zero. Thus agy will be zero as well in Eq. (7.22b). Flux F; is zero. So pressure

correction at face s is not needed. ab in Eq.(7.33) becomes zero. The pressure (water
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level) at boundary point S can be extrapolated from values at adjacent internal points. No
slip condition (U,=0, U,=0) is the appropriate condition at solid walls. Since the wall

velocity is known, it is also unnecessary to perform a pressure correction here.
Same analogous boundary condition implemented in north side boundary.

ii. Inlet boundary

» The depth averaged stream-wise velocity at each computational point of the inlet
located in a nearly straight reach may be assumed to be proportional to the local

flow depth, ie. Ua A', where r~ 2/3 for uniform flow (Wu, 2007), given as

U=
J' l+rdy;
> (7.44a)

where, O=total inflow discharge, B= width of channel at discharge Q and '

= transverse co-ordinate. For assumed uniform flow

2
IWE
S
3

1

h3dy'

.
==l

(7.44b)

where denominator in Eq. (7.44b) can be evaluated through trapezoidal

rule to evaluate integration along the inflow boundary.

» For a specified discharge Q, formulation will not give directly unique
value of inflow flux at each cell if flow depth is unknown. Iteration is
needed (Wu, 2007).

» Water level is assumed at face w, and inflow velocity and flux is obtained
uniquely using the formula from Eq. (7.44b) (Figure 7.3).

» Flux Correction at face w is zero.
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Figure 7.3 Control volume at inlet boundary

> Pressure correction equation becomes.

alH!, =alH'y +afH, +alH', + S, (7.440)
where, a} =af +af +aj +£—“—’% and, (7.444d)

. (Hy = Hp)ppAd,

Sp=—F +F, —F/+F .
At (7.44¢)

» Flow calculation is then carried out over internal points.

> After internal pressure field is obtained, the pressure (water level) at
the w-face of each inlet can be extrapolated from pressure value at
adjacent internal points and new inflow flux can be obtained from

usual formula.
» The above procedure is repeated till convergent solution is obtained.

> Source term computations for inlet boundary is done as follows
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Spw = (FhJ 277 )e [(Ux )Ne - (Ux )Pe ]— (Fh*] al2)w [(Ux )Nw - (Ux )Pw ] (7.441)

Syy = (Fh‘] &y )e [(Uy )Ne - (Uy )pe ]— (Fh'] @, )w [(Uy )Nw - (Uy )pw ]

(7.44g)

iii. QOutlet boundary
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Figure 7.4 Control volume at outlet boundary

At outlet boundary, pressure (Water Level) is specified for sub-critical

flow.
It is specified at the center of the control volume, i.e. at P

Pressure correction at point P is as earlier stated.

apH, =agHy, +afH, +alHy +alH), + S, (7.45)

In this case, pressure correction at point P is zero.

Flow velocity at the outlet can be extrapolated from the values at adjacent
internal points. '"

The diffusion flux at the outlet (face e) is zero due to zero gradients
(Versteeg and Malalsekera, 1995). Because, the convection terms are
usually discretized using an upwind scheme, the coefficient ag (where ¢

is Uy or U, ) may actually be zero.
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7.2.5 COMPUTATION OF PHYSICAL DOMAIN VARIABLES FOR THE
CONTROL VOLUME

In the Figure 7.1, area of Control Volume (A4p) can be given using only the parameter in
the Cartesian coordinate system without involving the increment A and Az (Peric, 1985;
Zhu, 1992a). |

1 .
A‘4P = El(xne - szynw —yse)—(xnw _xsexyne _ysw)
(7.46)

where in Eq. (7.46), Cartesian independent variables (x and y) with subscripts indicate the
values at cell vertices located at North-East (ne), South-West (sw), North-West (nw),
South-East (se) and North-West (nw). For neighborhood nodes W, E, S, N and w, e, s, n
area of control volumes (Ady, Adg, Ads, Ady AA,,, AAd., aAs and AA,) are computed
using the formula (Eq.7.46) by symmetry, substituting the corresponding x, y values,

fluxes can be computed as follows

'hw = pw(‘]An)wﬁg:: u pw(bllux +b;-uy):+1 \ |

i, = p,(JAn), 852 = p, (Blu, +blu, )"

oLy

’hw =P, (JAg)nﬁll;:: = Pn (blzu" + b22uy y(n+l

m, = pS(JA(f)S z?,’;;l = p, (blzux +b22uy):

J (7.47)
where in Eqs. (7.47),
G 2 "
on on
oy ox
b =JalAé ~—| = |A bl =JalAn~|— A
1 a;Ag (af] 4 2 a,nn [67] J n )

(7.48)

164



The difference equations can be written for cell faces w and s for the Control Volume
(Figure 7.1).

bip=Va=Ys b=V~ Ye B, =Yr—Vs \
by, = x5~ %p

e ol

b12P =Y —)e blzw =Yw —Yp blzs = Viw = Vse

1 1 _
bZP - xs - xn b2w - xsw xnw

2 P =
b2P =X, =X,

by, =xp—x, b, =x,—x, j (7.49)

For cell face » and e, difference equations can be written using formulae given¥in Eq.

(7.49) by symmetry, substituting the corresponding x, y values.

Diffusion parameters can be written at cell faces w and s as

' (7.50a)

bib! +bib!
(Chialalan) /A&, =T, L‘—{ZZ—Z)_W | - ‘
(ChialalAg) [ An, =T, G ‘2”'2;’22 ) (7.50b)

Ry

For cell face » and e, diffusion parameters can be written using formulae given in
Eqgs.(7.50a) and (7.50b) by symmetry, substituting corresponding &', (i=1 or 2 and m=1
or 2) and A4,(lis nore).

7.2.6 SOURCE TERM COMPUTATION FOR DISPERSION TERMS OVER THE
CONTROL VOLUME

For first momentum equation (Eq. 5.41) and second momentum (Eq. 5.42) explained in

Chapter 5, dispersion terms are

‘165



xx + — XX + xx + Xy xy
ax oy [ o R on g, Y 7, o7
8D, 8D aD aD aD aD
Lt =l 2 4 g, =,
ox oy o0& on o&¢ on

(7.51a)

(7.51b)

Integrating Egs. (7.51a) and (7.51b) over the C¥-shown in Figure 7.1 One has

oD oD

SaJAEAD =S, = I o) s +aj O to, —2+ o —=
M 96 on o0& on
oD oD oD oD

SuJAEAD =S, = j a—2+al —Ztral —2 +al 2
aar " O¢ on o0& on

From Eqgs. (7.52a) and (7.52b), one has
Sy =(el.D,, +Ja).D,) Ay, ~(Ja!.D,, +Jal.D, ) An,

+(atD,, +Ja2D,) AE, -(Jal.D, +Jal.D,) AL,

and
Sy =(el.D, +Ja).D,) Ay, —(Jal.D,, +JalD,) An,
+(Ja?.D,, +Jai.D,) AE, ~(Jal.D, +Jal.D,) AL

Using relations in Eqs.(7.48), for Eqs.(7.53a) and (7.53b), one obtains

S =0bL.D.+8),.D,) ~(b].D, +b.D,) +(?.D, +82.D,) ~(B2.D,. +b2.D

and

Sy =0.-D, +8,.D,) ~(8l,.D,, +al,.D,) +(2.D,+82.D,) ~(82.D, +83..D,), (7.54b)
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i.” Computation of Cartesian dispersion tensor from curvilinear dispersion tensor

Modified empirical expressions were obtained in Chapter 4 for curvilinear dispersion
tensor. The curvilinear dispersion components are transformed to Cartesian dispersion
tefms for using them in Egs. (7.54a) and (7.54b). Following correlations were used to
obtain Cartesian components from curvilinear components of dispersion terms (Duan,
2004)

D._=D° cos’ 6. +2D° cos@.cosO, + D’ cos’ @
xx xx g xy s n yy n

— Coli=E 2 C. 2 e e 242
D, =D sin"6, +2D,,sing, sing, + D; sin" 6, '

xy

D,, = Dy cosf, sin6, +2(D;, smés cosd, + D, cosd, sing,)+ D, sinf, cosd, / (1.55)

where 6; and 6, are angles between stream-wise, transverse directions pointing outward
and positive x-axis respectively (Derivation of the formulae for computing §; and 6, is

detailed in Appendix-II).
ii. =~ Computation of streamline radius of curvature

Radius of curvature is required to determine the curvilinear dispersion stress tensor
explained in Chapter 4. Following correlations used to compute streamline radius of
curvature (Jang and Shimizu, 2005; 2007).

[ (. 8U U oU. au,\ |
Ux gx z +77x i +UxU gx - +7]y 2
o o& on NF o on
n U B d ou _ Ou
U U, 2
~UU| & ===+ = \—UP & —+np, —
i x y(gx aé ﬂy 67] ] y (é:y af ny 577) |

(7.56a)

Or,
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i oU oU oUu. .U\ ]
U —2+af —2 |4+UU,| o —2 +0 —2
on o& on

1_1
r, U

~-UU (a' U, +a’ aU"J—U’[a; o, +a; aU")
_J

xy| M1 2 y
% on % on (7.56b)

In Eq. (7.56b), s is radius of curvature, U is stream-wise velocity, others terms are

already explained in previous Chapters of this thesis. Multiplying L. H.S. and R H.S of Eq.
(7.56) with A4, = JA¢A7

U2 {(Jaian),U,, —(JaiAn) U, +(Jat A9, U,, ~(Jo?AE),U,,)

+ UxPUyP ((‘chl1 Aﬂ )e Uye L] (']all Aﬂ) w Uyw + (Ja;z Af)n Uyn = (Ja22 Af)n Uyn)

M, 1
rs U3 1 1 2 2
. UxPUyP ((Jal Aﬂ)e Uxe " (Jal Aﬂ) w wa + (JaZ Aé:)n an m (Ja2 Aé:)n UJ_cn)
| ~Un(Je A U, ~(ebAD, U, +UaAD, U, ~Ue3ADU) ] 5
Or,
S U2 ((6). U, =@, U, + 7Y, Uy~ U )+ Ul (B, U, =), U, + B2, U,y =), U,)
r MU

v - Ux yl’((bll)e Uxe —(blt )wwa +(b12)n an ﬁ(blz)n an)— lj)%P((bz: )e Uxe _(b;)wwa +(a22)n an _(azz)s Uxx) (7. 5 6d)

Equation (7.56d) is used for computing radius of curvature; it is the function of Cartesian

velocities at cell vertices and physical domain variables.
7.2.7 COMPUTATION OF BED FRICTION COEFFICIENT

The bottom shear stress appears in momentum equation used explicitly as source term in
2-D modelling, i.e., it affects every cell rather than being a condition that it affect only
boundary cells. It is commonly assumed that the shear stress can be expressed as a square

“law of depth averaged velocity (U) using;
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_ 2 » ,
7o =kpU | (7.57a)

The parameter k is then expressed in terms of roughness parameters, such as Chezi’s C or
Manning’s ». For uniform flow it is readily found that equation is equivalent to the
Darcy- Weisbach equation with k=f’8, Comparing with Manning‘s equation (Lane and
Ferguson, 2005) one has,

c (7.57b)

2

gn

1
h3 (7.57¢)
Using uncertainty approach it is established that, over a non-uniform river reach U is
likely to have far greater spatial variability than », so will be the dominant control over
spatial variation in shear stress as defined in the above equation (Lane and Ferguson,
2005). Physically based alternative to estimate 7, is used as mentioned in the following
equation (Lane and Ferguson, 2005). The assumption éonsidered is that law of wall holds

throughout the full depth to estimate value of Cpat each node.

1

6
"

n= ‘ - (Lane and Ferguson, 2005)
Janl 2]

ez,

(7.57d)

z,(Roughness height) = :—8 (Nikuradse, 1930) or more recently = 0.1D,,, h=flow depth,
e=2.71.

7.2.8 MOVING BOUNDARY IMPLIMENTATION (wetting and drying technique)

A number of approaches are available in literature. The methodology, appropriate and

extensively used for structured meshes with FDM solver is Fixed Grid Method with

“discontinuous stair case discretization” (Bates and Horritt, 2005) (Figure 7.5).
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Figure 7.5 Discontinuous staircase discretization at boundary

Such methodology was published in Bradbrook et al. (2004). Point wise assumptions and

methodology adopted for this model is mention herein.

v

v

Bed slope at each computational cell is assumed to be zero.

Topography is represented as series of planer horizontal element forming

discontinuous staircase.
Entire element is switched on /off depending upon the computed water level.

Assume instantaneous wetting of each element in a manner that conserve

mass. However, momentum equations are not still conserved.

Boundary should move with the momentum of fluid which generally is small

in shallow water flows.

Logical ‘flag’ need to be assigned to each cell to indicate when it becomes

wet. So that correction may be applied.

Numerical simulation of flow in open channels with slope banks, sand bars
and isiand, the water edges changes with time, with part of nodes being

possibly wet or dry.

Even for steady flow, the water edges are not known until the computation is
finished. So whole domain has to be included initially to solve for momentum

equation and water depth is computed for the whole domain implicitly. So
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fully implicit solver is used in the model for water depth, all the wet and dry

nodes participate in the solution.

v/ A threshold flow depth (a small value such as 0.02 m in natural rivers) is used
to judge drying and wetting front. If the flow depth is lower than the threshold -
value, the node is dry. The dry nodes are assigned zero velocity in stream wise

and transverse direction.
7.5 OVERALL SOLUTION PROCEDURE AND FLOW CHART

A brief flow chart for the developed numerical scheme is shown in Figures 7.6a as part-A

and continued to part-B in Figure 7.6b (computer code details in Appendix-VI and VIB).

The SIMPLEC Algorithm being semi implicit scheme, the stability of solution is ensured
using the Courant-Fredrich-Lewy(CFL) cqndition (Lien et al., 1999).

Uxi,jl lin,j
CFL = max, + - [Ar1<1.0
oA Wy,
(7.58)

In the program, the courant number for each computational node is checked at each time
step. If, it is greater than one, it is automatically adjusted by reducing the time step. The
convergence criteria of this scheme is when difference of calculated velocity and the flow

depth at current and previous time step approaches zero which is expressed as

&+l k
Yo~
lPk

ij

-0

where, ¥ =U,,U, or A

A smallno.isadded(1x10®) beforedivision b avoidzerodenominata (7.59)
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Figure 7.6a Flow chart of numerical scheme (part-A)
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7.6 SUMMARY

In this chapter, a detail and comprehensive step wise procedure for solving the governing
flow equations in curvilinear co-ordinate system by finite volume method has been given.
A C++ program module (Appendix-VI) has been developed using this numerical code to
solve flow equations. For solving governing mass momentum equations derived in
Chapter 5, SIMPLEC algorithm with incorporated Rhie and Chow’s (1983) interpolation
technique in non-staggered grid has been adopted. In the solution algorithm moving
boundary implementation using wetting and drying technique has been incorporated to
simulate moving boundaries, braid bars, islands and no flow zones witﬁin the flow

domain.
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CHAPTER-8

DATA ACQUISITION, PRE-PROCESSING AND
APPLICATION

8.1 GENERAL

One of the characteristic features of Brahmaputra River is that it has three to four
constricted nodal points where the cross-sections remain unaltered and stable with
time and space, moreover, around the vicinity within an extent,-Brahmaputra follows
uniform aligned channel configuration. This gives different segments of Brahmaputra
separated with well defined nodal points (with uniform channel width) which is
adequately and favourably suited for applying 2-D hydrodynamic mathematical
model with relative ease so far as upstream and downstream boundary
implementation is concerned. Still, process representation of fully developed braided
stream is challenging task on account of the presence numerous 3-D flow structures
within the flow domains.

The sediment discharges and flood discharges at certain locations of the river have
been continuingly recorded and the river cross sections surveyed periodically. Still,
the limitation in the human capacity, instrumentation, the difficulties of the
measurement and the riSk involved, the actual data acquisition often remain off-set by
errors. The importance of the information that could be derived from the analysis of
the data is very high in the design, management and future risk and hazard prediction
and strategies.

Taking in to account the situation as described above, the present study is a maiden
attempt to implement a 2-D hydrodynamic flow simulation model based on the
controlling equation and specified boundaries specially keeping in mind the flow
behavior of River Brahmaputra in chosen study reach. The algorithms established by
the researchers/modelers in the relevant literatures advocate that the success of flow
simulation model application depends on the size of the data covering wide patterns
of phenomena. More the data sets, better is the result’s reliability. The technique is a
data driven model requiring gamut of data patterns representing the actual phenomena

to accommodate all the possibilities within the patterns of independent and dependent

variables.
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The study has been carried out on the following data sets and the area of interest.
1. Study domain of the river channel (from Pandu to Jogighopa) -112 km
2. No. of the measured river cross sections ( 1997)- 14 Numbers

3. Hydrological Data( Jogighopa-Pandu) for the same year(1997)

8.2 DATA SOURCES AND DATA TYPES

8.2.1 HYDROGRAPHIC DATA

Morpho-metric data: the reduced levels of the river cross-sections of post-monsoon
period for the year 1997 have been collected in respect of all the 14 pre-defined river

cross-sections (Appendix-III) from the Brahmaputra Board, Government of India.
8.2.2 DISCHARGE AND STAGE DATA

Discharge and stage data of the river Brahmaputra collected for various cross-sections
from Central Water Commission (CWC), Assam Water Resources Department and
Brahmaputra Board have constituted main data resource to the model

implementation. The length of data record was for 1997.
8.3 PRE- PROCESSING OF HYDRO GRAPHIC DATA

The Brahmaputra River Basin in terms of its complexity calls for well-defined
response models. In the study, the significant steps followed are outlined. The steps
are the abstraction of outliers and errors in the data sets. Conceptual or statistical tools
as regression and curve fitting were implemented on the variables pertaining to
specific river / stream to identify the irrational points; they were either discarded or

rectified based on the earlier trends or pattern of the data.

8.4 FRAMING OF THE DATA-SET FOR MODEL APPLICATION

The system contains 2-D hydraulic analysis component for steady flow water surface
profile computations. A key element is that component will use geometric data

representation and geometric and hydraulic computation routines.
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8.4.1 DATA REQUIREMENTS AND INPUT

The basic input data required for 2-D model can be grouped into follbwing categories.

8.4.1.1 Geometric data
(i) Domain discretization

Geometry of the physical system is represented by cross sections, specified by
coordinate points (stations and elevations), and the distance between cross sections.
The 2-D surface is represented by grid with appropriately chosen nodal point with
know x, y and z coordinates. Moreover Hydraulic roughness is computed in case of 2-
D by Manning’s # values and can vary from node to node depending upon the depth
averaged velocity. The river domain boundaries (main channel and largely low flood
plain) for the study period is extracted in geographical coordinate system from the
remote sensing imagery [Courtesy: NDMA(2011)] shown in Figure 8.1a and 8.1b and
transformed to Cartesian coordinate system to accufately represent the domain in
Cartesian Plane (Figure 8.2a). It is to be understood that the whole cross ééctibn
includes main channel, low flood plains, and high flood plains. Some reaches CVithin
the river study stretch have dykes built for flood protection purposes. These dykes
have poor maintenance and are often breached during high flood seasons. The main
channel and low flood plains (Primary Flood Plains) are inundated in low and ,
medium flood periods. Keeping in view, care has been taken to extract the ﬂov?
domain to include primary flood plain and cross sections were fit that must include

main channel and low flood plain.

The geo-referenced image covering the river stretch in 1997 was delineated using GIS
software tool by the digitizing the bank lines through identifying river sandy bed
fringes with vegetative cover along the bank line. The coordinate system of the geo

referenced image was WGS 84. Thus, x and y of boundary grid points were obtained.
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Figure 8.2b Domain in x-y Cartesian coordinate

Furthermore, boundary grid points have been refined and evenly redistributed through
- algebraic method into 451 points along the positive x-axis (south and north
boundaries) and 51 points along y-axis. Domain is re-oriented as, positive x-axis
aligned with the direction of the flow for convenience in sign convention while
applying the controlling transformed partial differential equations for computation of
flow field and water depth. Some of the extreme grid points at upstream and
downstream of the flow domain is corrected and rectified to fit the measured cross-
section in the given orientation which is supposed to be crept in due to manual
digitization error while delineating the flood plain from inhabited area in the vicinity
of prime inhabited land at Pandu (at upstream location) and Jogighopa (at downstream
location). Boundaries are slightly smoothened through three point-Finite Fourier
Transform (FFT) using a math-processing software to generate an efficient mesh

without changing the basic characteristic of the domain (Figure 8.2b).
(ii) Hydrographic data

As discussed in earlier Chapter 3, morpho-metric data in the form of the reduced

levels of the river cross-sections of post-monsoon period for the 1997 have been
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collected in respect of all the 14 pre-defined river cross-sections from the

Brahmaputra Board, Government of India.

The data for the cross-section have been normalized and as per their position and
orientation (chainage, and bearings), these points are fit accordingly into the domain
taken under study. The bearing at cross section-22 is zero and physically identified
position on the imagery used to extract the domain, taking reference of C/s -22, cross-
sections can be positioned and oriented if chainage and bearing are known (Table-8.1,

and standard Brahmaputra map in Appendix- V, Brahmaputra Board Govt. of India).

Table 8.1 Study reach of Jogighopa-Pandu(Appendix-V)

S.No. Name of Site X-section chainage Downstream Bearing of X-section
(km) Reach Length
(km)

1 Jogighopa 9 82.62 0 0°-30
2 - 10 92.82 10.2 24 °-40
3 Dubapara 11 100.98 8.16 16°-00
4 . Dalgoma 12 109.65 8.67 5°-30
5 Simlitola 13 119.85 10.2 358°-30
6 Nagarbera 14 128.01 8.16 310°-30
7 Rangapani 15 137.70 9.69 .- 340°-30
8 Rangapani 16 146.37 8.67 349°-30
9 Barakhat 17 156.06 9.69 22°-00
10 Bitartari 18 167.28 11.22 3°-00
11 Ganimara 19 175.95 8.67 13°-30
12 Palasbari 20 182.50 6.55 3°-00
13 Dharapur 21 189.21 6.71 356°-00
14 Pandu 22 197.37 8.16 0°-00'

It is further elaborated that boundary geometry for the analysis of flow in natural
streams is specified in terms of ground surface profiles (cross sections) and the
measured distances between them. Measured cross sections are located at intervals
-along a stream to characterize the flow carrying capability of the stream and its
adjacent floodplain. They extend across the entire floodplain and perpendicular to the
anticipated flow lines. Occasionally, it is necessary to layout cross-sections in a
curved or dog-leg alignment to meet this requirement (Table 8.1). Every effort has
been made to obtain interpolated stream bed data at mesh nodes based on these

measured cross-sections so that data will accurately represent the stream and
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floodplain geometry. The adopted process of bed interpolation appropriate for the
available data set is discussed in subsequent sections. Thus, the river domain is
specifically delineated with the flow area with flood plain (outlines the sandy bed of
river, see Figure 8.1).

As discussed earlier, cross-sections are fit at the position and bearing as per Table 8.1.
The measured cross-sectional data from the left bank of the river is normalized (0-1)
and 101 points are extracted through linear interpolation technique to get nodal points

for the structured matrix for bed interpolation, discussed in the subsequent section.
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In Figures 8.3a- 8.3d. X-sectional data interpolation of 101 points from measured and
domain fitted cross-sections numbering 22, 20, 15 and 9 have been depicted for

illustration.
(i1i) Stream bed interpolation

Stream bed interpolation is a process of interpolating bed elevation from the topology
or bathymetrical database onto the mesh nodes. A number of methods and algorithm
are available in the literature. For the type of observed data available, Inverse
Distance weighing method with structured data base is used which has been also one
of the methods as described by Zhang and Jia (2005). Inverse Distance weighing
method can be described as follows. Suppose there are known bed level Z; where i=1,
2, 3..n and Z, is the bed level at the known grid point (P) which has to be

interpolated. The Z; can be given as

> .2,

Z, :T (8.1a)

where, g, =weighting factor of the respective interpolated point i, weighting factor is

taken proportional to inverse of the distance from P to the interpolation points. So

finally Z, can be given as

— __,_ (8.1b)
d,

where d, = distance between interpolation point (i) and grid point P (Figure 8.4). As

the data base is structured, so structured interpolation of Zhang and Jia, 2005
Algorithm is adopted to interpolate the data at grid points using Eq. (8.1). In the
structured interpolation, the cross-sectional measured data set is normalized and
-refined to improve the accuracy of the interpolation by considering the flow direction.
The algorithm is as follows:

1. Refinement is done through normalizing and expanding to desired data points

in the transverse direction along each cross section using linear interpolation
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2. Each cross section is divided into three parts, left bank, main channel, and
right bank appropriately as per the cross section configuration.
Equal number of points in these three parts is distributed.

4. Again the database in the longitudinal direction between cross sections is
normalized and expanded to desired data points between cross sections, the
linear interpolation will be conducted between the corresponding parts of each
cross section,

Adopting aforementioned procedure, a structured matrix of data points from measured
data points is generated. Now from the quadrilateral formed from these matrix
elements, each grid point which has to be interpolated is identified, and using Eq.
(8.1b), bed elevation is determined as the x, y co-ordinates of all the neighborhood
points and the grid point are already known. This method is stable and reasonable as it
interpolates the data along the thalweg if one can appropriately and judicious identify
the left over bank, right over bank and main channel for each measured cross
sectional data.

As discussed above, X-section is positioned and oriented as per the chainage and
bearing given in Table 8.1 numbering X-section-9 (Downstream) to 22 (Upstream) in
Figure 8.5. Out of the measured data of each X-section, data are normalized and 101
equally distanced data points are extracted for each X-section (illustrated in Figurésv

8.3a-8.3d).

N

Figure 8.4 Inverse distance weighing method of interpolation
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Figure 8.5 Positioning of measured X-sections into the domain

Thereafter, from the normalized data point of each X-section, 21 data points are
linearly interpolated for each set of two adjacent X-sections through the HEC-RAS
geometric interpolation application software (HEC,1997) so as to interpolate the data
along the thalweg (deepest bed level), for continuity in the main channel
configuration. Thus, a structured matrix of dimension 101x261 for data points is
generated, presented in Figure (8.6a) in graphical form and corresponding contour

plot of bed elevation is presented in Figure 8.6b and colour map in Figure 8.7a.

15

o 20x10° 40x10% S0x10° 80Ox10° 100x10°
X (kkm)

Figure 8.5a Structured matrix for measured data points ih the domain

Discretization of the domain is done through the developed computer code (Figure
8.6) and bed level matrix (51x451) is generated by applying the relations mentioned
Eq. (8.1), namely IDW method.

Figure 8.5b Contour plot of structured matrix (z, in m)
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Bed interpolation has also been done by for discretized array[x, y] using Matlab tool
using nearest neighborhood technique for comparing and checking the accuracy of the
interpolated bed variation from the developed computer code using /DW method.
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The generated bed data from IDW method using the C++ code and nearest
neighborhood method using the Matlab code is presented in Figure 8.7b and 8.7c.
Though the pattern of the bed variation in Figs 8.7b and 8.7¢ is similar to the
structures data processed from measured bed variation, yet data generated by IDW
method do contain some localized discrepancy in comparison to nearest neighborhood
method from Matlab code, which is almost identical to Figure 8.7a. Hence, Matlab

generated matrix is preferred. Surface Plot is shown in Figure 8.7d.
8.4.1.2 Hydrological data

The hydrologic data consist of water discharges, temperatures and flow durations. The
discharge hydrograph 1s approximated by a sequence of steady inflow discharges each
of which occurs for a specified numbers of days or hours depending upon the
acquisition of data. Water surface profiles are computed by using the 2-D depth

averaged mass momentum equations.
(i) Flow data

The flow in long reaches of river is 3-D dimensional and essentially an unsteady flow.
To simulate 2-D flow for such a long reach with width varying from 2km to 22km is
heavily data driven, Practically, data required for simulating unsteady flow in 2-D are
hard to acquire for such a large alluvial river like the Brahmaputra. Yet for practical
engineering purposes, steady flow simulation using 2-DD model for large alluvial river
provides desirable information and enough insight {o approximate realistic flow

situation.

Observed flow field data were required in order to perform a steady water surface
profile computation and velocity field. Initial steady flow was taken as the peak flow
to assure that the whole domain (primary flood plain and full bank flow scenario) is
included into the computational domain in 2-D model. The chosen peak steady flow
will also provide the initial conditions if the unsteady flow computation is to be

performed.

Boundary conditions are necessary to establish the water surface at the ends of the
river system (upstream and downstream). In a sub critical flow regime, boundary
conditions are necessary at the downstream ends of the river system with hydrograph

in the upstream. Figure 8.8 is the rating curve (R-Square=0.95 and Standard Error of
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Estimation= 0.229) at extreme downstream node (C/s-9) of the flow domain ie the
relation between stage and discharpe derived from the data for several years. The
trend-line power equation may be fit into downstream C/s in the flow code to compute

the corresponding water level for a given flow discharge.
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Figure 8.8 Stage-discharge relation at C/s-9 (Jogighopa site)
Similarly, data for measured water level with corresponding discharge have been
plotted for last ten years and rating curve (R-square=0.85 and Standard Error of
Estimation=0.50) is drawn to establish a mathematical relation of water level with
discharge at Pandu. This is to be mentioned here that both the cross sections(9 and 22)
are highly stable and configured of rock-outcrops, and straight, considered to be
perfect nodal points and quite suitable for boundary implementation for inlet and

outlet.
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Figure 8.9a Stage-discharge relation at C/s-22 (Pandu site)
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Figure 8.9b Stage-time series at C/s-22 (Pandu site) for monsoon period 1997-98
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Figure 8.9¢c Observed discharge at C/s-22 (Pandu site)

Measured daily water level with time is plotted for Monsoon period, 1997-98 in
Figure 8.9b. The proposed simulation period is kept from 12% July 1997(00 hrs) to
31% July 1997(2400 hrs) when flood recedes locally to simulate the braiding pattern in
the flow domain. The measured discharge data for Pandu (C/s-22) for the specific
period is not available from the field. Observed discharge at Pandu is approximated
from Figure 8.9a for observed water level since observed water level at Pandu is

known from Figure 8.9b for the simulation period. Figure 8.9¢ depicts plot between
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the approximated observed discharge verses observed water level at upstream location
at Pandu. Hence, 20 discharge profiles for the receding flood of 1997 (12" July 1997
to 315 July 1997) is available to conduct simulation in developed 2-D flow model.

(i1) Bed Gradation

For computing frictional parameters, gradation of bed material should be known to
compute Dsp or Dsg,. Bed gradation data for each gauge site within the domain
predefined X-sections could not be procured on account of unavailability. However,
character of bed material within the entire study reach can presumed to be similar in
nature in downstream reach of Brahmaputra reach. In view of the above, bed material
gradation at X-section-20 (Palasbari) is taken as representative bed gradation (Figure
8.10) through out the alluvial study reach except where outcrops were present. 2-D
flow model was used for 20 discharge profiles for receding flood of 1997 (12" July
1997 to 31° July 1997)
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Figure 8.10 Representative bed gradations at Palasbari

8.5 SUMMARY :

In this chapter, input data for simulating the flow field in Brahmaputra River braided
stretch have been pre-processed and designed suitably to make them mathematically
compatible with the developed numerical model. The river geometry of the study
stretch is reproduced mathematically using the available observed field cross-
sectional data for the year 1997. Bed interpolation has been done mathematically to
determine bed elevation at ecach grid point of the generated mesh for the study flow
domain, which is otherwise, impossible to acquire from the field for grid points with

such fine grid spacing in both stream-wise and transverse directions.
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CHAPTER-9

EVALUATION OF THE DEVELOPED NUMERICAL
MODEL

9.1 GENERAL

In this chapter of the thesis, the developed two dimensional enhanced depth averaged
model with incorporated modified dispersion stresses tensor as source term in
transport equations is used for simulating the flow ficld in curved flow domain of a
laboratory flume. The work utilizes dispersion stress tensor, as developed in Chapter 4
and 5 of this thesis. The proposed model uses boundary fitted non-orthogonal
curvilinear coordinate system with irregular boundaries. For numerical solution
procedure, the finite volume method with the SIMPLEC algorithm and Rhie and
Chow’s momentum interpolation technique on non-staggered grid is adopted. The
details of numerical model development are elaborated in Chapter 6 and 7. The
governing equations presented in Chapter 5, are discretized using the finite volume

method in curvilinear, non-staggered grid.

For model verification, an experimental flume data with channel contraction was
used. The comparison of the simulated velocity field and water surface elevation with
new dispersion stress tensor indicated that the incorporation of modified dispersion

stress term has the potential for simulating the flow field.

9.2 EXPERIMENT

For validation of the numerical scheme, experimental data were collected in the
Hydraulic Lab. of CED, ILIT. Roorkee (Figure 9.1a and 9.1b). An experimental
rectangular flume of test section 0.15 m and 4.25 meter length and 0.20m deep, was
used. The side wall and bottom wall was made of fiber-glass with thin layer of
uniform sand sprinkled (Ds;=0.44mm) at the bed to artificially create roughness. To
model the curved bank-lines with opposite sinuosity, a transition of 0.25m was
provided at middle with sharp bend for 0.08 meter followed by mild expansion for

0.17m. The schematic line diagram of the experimental setup is shown in Figure 9.2.
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Figure 9.1b Photograph of experimental setup showing flow contraction and inlet
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Figure 9.2 Schematic line diagram of experimental setup

Upstream boundary and downstream boundary nodes are kept 2 meters away from the
transition boundary to minimize the effect of boundary disturbances on the channel
transition part. The bed slope of the channel is kept (1/400). The water is dropped
through a galvanized pipe of 102 mm external diameter in the inlet tank. Flow
strengtheners in the form of vertical metallic plates of about 6 ¢cm long are placed
parallel to channel after the inlet point of channel. A movable carriage with pointer
gauge (least count= 1mm) is mounted in the pipe rail. Rail has been fixed at the entire
length of channel. A mechanical tailgate is also provided at the end of the channel to
control the flow discharge and flow characteristics. Discharge i1s measured using
venturi-meter (Specification: pipe diameter 38 mm, throat diameter 19mm, discharge
coefficient(Cp) as 0.98 (pre-calibrated)). Water is released into the channel for
sometimes with tailgate partially open (to ensure lowered shear Reynolds Number to
avoid incipient motion condition in order to maintain channel bed undisturbed). At the
transition, flow changes occur. Tail gate is lowered down gradually to a sufficient
level in order to reduce the flow considerably to completely diminish the hydraulic
jump formation at the downstream of the transition and thus ensuring full sub-critical

(Froude Number(F) <I) flow all along the channel.

9.2.1 RESULTS

The constant discharge is maintained for sometimes to ensure full development of
flow with steadiness. Then, the measurements were taken from venturi-meter reading
for measuring discharge. Through pointer gauge average water level is measured at
regular intervals from upstream nodes to downstream node. The measured discharge
computed with venturi-meter formula was 0.001907 cumecs. Measured water levels at

the inlet, out let, and at lowest water level were 7.86 cm (water depth=6.79 c¢m), 6.9
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cm(water depth=6.9 cm), 6.69 cm(water depth 6.16cm) keeping the outlet bed level as
zero reference (Figure 9.4). (Measured experimental data attached as Appendix-VII)

9.3 MODEL SIMULATION

The flow domain is discretized into structured curvilinear mesh of 16x426 (6816)
nodes and 6375 cells (Figure 9.3). Non-staggered grid is used for the finite volume
solver, All the state variables (Cartesian velocities, water depths) are computed at the
geometric center of each cell control volume. The time step is controlled using
Courant—Friedriche~Lewy (CFL) condition in order to ensure stability in view of
adopted SIMPLEC algorithm. While simulating steady flow, calculation is repeated
for a number of time steps until solution converges. Convergence criteria adopted was
that maximum incremental water depth at the last iteration will be lesser then 0.001
m. Furthermore, mass residual is also computed while solving the momentum
equations, iteratively. As the water depth at the inlet is not known priory so initially it
is guessed and computation is performed. The water depth is updated at each time
step through extrapolating it from internal cell water depth. Computation is iterated

until convergence.
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Figure 9.3 Constructed mesh for numerical simulation in the laboratory flume

Flow simulation was conducted for the flume with models without dispersion, with
modified dispersion stress terms (detived in Chapter 4 of this thesis) and with
dispersion stress terms suggested by Duan (2004) into the momentum transport
equations. These flow simulations are designated as Case-1 and Case-2 and Case-3
respectively. In Case-3, value of C in Duan(2004)’s expression (dealt at detail in
Chapter 4 of this thesis) for computing D°,;, was kept as unity. Results were analyzed
for the whole flow domain with special attention to the transition zone of the flume.

The computed discharge after the simulation at the down-stream was 0.001902
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(Percentage FError 0.259) and almost same in all cases. (Detail model
results: Appendix-VII).

2.3.1 COMPARISON OF SIMULATED WITH OBSERVED WATER LEVELS
FOR THREE CASES

The comparison of water level with observed water levels is presented in Figures 9.4
and 9.5 and corresponding contour plot of water surface elevations in Case-I and
Case-2 is presented in Figure 9.6. The statistical results for all three cases are
presented in Table 9.1, Standard error estimators were appropriately chosen to assess
the degree of match of computed water levels with observed one. Forty six data points
were chosen to show the agreement between simulated and observed values.
Statistical parameters demonstrated, suggest that Case-2Z has statistically closer and
exhibit better accuracy of prediction with observed data than Case-1 and Case-3.
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194



_.. 0.080 O Observed Water surface level (m}
£ o o —— Computed Water surface level (m)
= 0078 Y M TOCoeesoaaac -
% 0.076 - Sac
® 0.074 -
0
Y 0072 SO
2 5.070 4 - 9889 ae
& o0.068 -
= 086 — ' N T ————y
O o4 ¥ O m | O &N T @M @ o N € W @ o N v m @ 9O ™
L) p= o = =) - — — — bl o o™ o4 o o™ L] Lol ) m o3 3 I =r
Distance from U/s Boundary (m)
__ boso
E o078 —— Compited Water surface Elevation (m)
T © Observed Water surface Ellevation (m)
E 0.07¢ {Case-3)
] 0074 4
Qg
T 0072 -
s |
g 0.070 -
© Q
® 0.088 -
= O
0.066 - - :
O N W WD 0 O ™ T © O S N % 9 @ o ™Y o o ®m S o
L= L] = = =] — — bl — — L] od L o (4] Lo ] Lor] oy Lo ] oy o o o
Distance from U/s Boundary (m)
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Table 9.1 Statistical tests for computed and observed data points
Computed Vs Observed Water Level
Statistical
S No. Parameters 3 : -
Estimation g{lthou'f g“h modified  with Dispersion
ispersion ispersion (Duan,2004)
(Case-1) (Case-2) (Case.3) No. of data
Correlation peints=46
1 Coefficient 0.988 0.991 0.986
2 Standard Error 0.00059 0.000520 0.000523
3 R- Square 0.976 0.969 0.972
4 F-Test 0.903 0.967 0.928

The simulated velocity flow field has also been compared statistically to examine to

assess the flow field (U, and U, ) improvement (Table 9.2).

9.3.2 COMPARISON OF FLOW FIELD IN THREE CASES

The correlation and variability of the velocity flow field for Case-2 and Case-3 were

computed and with respect to velocity matrices of Case-1 and are shown in Table 9.2.
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The vector plot of Case-2 is shown in Figure 9.7. Vector plot for stream-wise
velocities and transverse velocities at transition are Figures 9.8a, 9.8b and 9.8c.
Correlation coefficient for U,-matrix is more than U,-matrix indicating that U, field
has registered a change while including dispersion terms into the governing

momentum equations. It is supported by the values of standard error. It also implies

that improvement in the flow field is more evident in Case-2 than Case-3.
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Table 9.2 Statistical parameters estimation for velocities for Case-2 and Case-3 with

- respect to Case-1

Case-1 vs. Case-2 Case-1 vs. Case-3
No. of
Statistical Data
S.No. Parameters Ux-Matrix Uy-Mainx Ux -Matrix Uy-Matrix  points
Correlation
| . 0.9992 0.9878 0.99946 0.9873
Coefficient 15%425
Standard 6375
2 0.0016 0.00214 0.0012 0.0023 (8373
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Figure 9.8b Vector plot of stream-wise velocity (U} in transition for Case-2
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Figure 9.8¢c Vector plot of transverse velocity (U/,) in transition for Case-2

The computed flow field at computational grid nodes in »-direction (transverse
direction) is averaged and mean (i), standard deviation (¢) were computed for U, and
U, for Case-1, Case-2 and Case-3 respectively. It is plotted against longitudinal
distance from U/s boundary (Figures 9.9a and 9.9b). The mean velocities and its
variations, are though close-valued vet if one looks at the corresponding o-plot
(Figure 9.9b), the variation in U} is quite high in compare to U, (For U,, o ranges 0.0
to 0.04 whereas U, ¢ ranges from 0 to 0.12). Standard deviation registered though

similar trend, but have lower values in Case-2 and Case-3.

To elaborate the findings, mutual column-wise co-variances of U, and U, for Case-2
and Case-3 with Case-1 were computed for computational cell centers transversely
(n-direction) and plotted spatially along the channel (Figure 9.11). Spatial changes in
co-variances in case of U, registered a sharp increase in respect to U, which is
marginal. That amply indicates that, when dispersion terms are included in the 2-D
flow model, it considerably affects transverse secondary flow pattern which is also
quite a good agreement with the expected results with flow dispersion inclusion into

the flow simulation.

The contour plot of velocity variation i.¢. stream-wise velocity U/ and secondary flow
U, in Case-2 for transition location is presented for illustration (Fig 9.10a and 9.10b).

Velocity flow field for the whole domain is shown in Figure 10c.
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94 ESTIMATION OF NON-DIMENSIONAL VELOCITY
DEVIATION INTENSITIES ({; and Iy)

To express the shear flow effect by the distribution of the vertical profile, Seo er al.
(2008) calculated the velocity deviation intensities from their longitudinal and

transverse velocity experimental data as follows.

1
= [updz 9.1)
I, =
L UI
1 [ (9.2)
I,=|2
T Uz

In Egs. (9.1) and (9.2), *f and uy, =longitudinal and transverse velocity deviations

with respect to depth averaged velocities, ¥4 and ¥# in &£ and # direction respectively.
The values of /; and Ir were computed for experimental data by Seo ef al. (2008). In
the presented numerical model, the flow dispersion stress terms are adequately

accounted for, into the controlling flow equations, hence I; and 7r can numerically be
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computed and analyzed spatially in-depth for possible explanation of associated

physical process in the secondary flow scenario in the curvilinear flow domain.

For the whole flow domain, I, and fr are computed for Case-2 for all computational
cell centers. From the obtained matrices, for cach column (transversely in »-
direction), mean and standard deviation of both variables are computed and plotted
spatially (Figure 9.12a) along the channel. The corresponding contour plot of
transition location is presented in Figure 9.12b. Analyzing the plot of spatial variation
of mean longitudinal deviation intensities, f; (Figure 9.12 a), it can be easily inferred
that at transition location it dips and again attains to higher values at the end of the
transition to its values before the transition. At the same time, Standard deviation of I,
(o;.) increases at the transition. Interestingly, contrary to the trend of [;, transverse
velocity deviation intensities (/7) plotted (Figure 9.12b). It can be seen that changes
occur with considerable increase in fr in the transition location, associated spatial
variations of Standard deviations of Iy (o) also increases more than Standard
deviations of I;. oy at the channel transition ranges from 0 to 0.005 whereas &,7at the
channel transition ranges from 0 to 0.35. The interpretations of these plots strongly
and incisively suggest that while in channel transition, on account of secondary flow
dominance; the diffusion process becomes predominant, resulting in more turbulence

in the flow.

It increases with relatively higher magnitude with high o, at the transitions and
indicates that significantly large variations in true transverse velocity distribution
persists in respect to corresponding depth averaged transverse velocity (As transverse
true velocity distribution along the depth is assumed to be linear, (See Chapter 4 of
this thesis). It is easily inferred that at curvilinear flow domain, owing to persisting
centrifugal forces, generation of vertical wvortices occurs which instigates
redistribution of the flow concentration along the longitudinal and transverse direction
with decrease in convective and increase in diffusive process at the channel
transitions. The physical interpretations can further be supported with Figures 9.13a,
9.13b, 9.14a and 9.14b. These plots are presented to show distribution of f; and Ir
and the concentration of D, (Longitudinal Flow Dispersion Stress Term) and D,,

(Transverse Dispersion Stress Term) on the flow domain through contour map.
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9.5 CONCLUDING REMARKS

In this chapter, flow simulation was conducted in a laboratory flume with contraction
using the developed 2-D flow model. Streamwise and transverse simulated velocities
in the flow domain were analyzed along with the simulated water depth at constant
discharge of 0.001907 cumecs. The developed 2-D model was verified and evaluated.
The flow field using the developed numerical scheme in this thesis indicates that the
use of modified dispersion tensor in the governing flow equations leads to better
agreement with observed flow variables. Further, it has been observed that flow field
simulation using Duan (2004)’s approach is also possible, however the present work
indicates the limited potential of the Duan(2004)’s approach in flow field simulation,
as compared with the use of the present approach.

t A2 2222 RS2 2SS R 2 R RS2SR R R R R R R R R 2 L
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CHAPTER-10

RESULTS AND ANALYSES OF 2-D FLOW
SIMULATION FOR BRAHMAPUTRA RIVER STRETCH

10.1 GENERAL

In this chapter of the thesis, the developed two dimensional enhanced depth averaged
model with incorporated modified dispersion stresses tensor as source term in
transport equations is used for simulating the flow field in the Brahmaputra River
stretch. The work utilizes dispersion stress tensor, as developed in Chapter 4 and 5 of
this thesis. The model uses boundary fitted non-orthogonal curvilinear coordinate
system with irregular boundaries. The details of numerical model development are
discussed in Chapter 6 and 7. The governing equations presented in Chapter 5, are

discretized using the finite volume method in curvilinear, non-staggered grid.

As stated earlier in Chapter 8, significant morphological feature of the Brahmaputra
River is that it has a number of constricted nodal points where the cross-sections
remain unaltered and stable. In addition, the Brahmaputra follows generally uniform
aligned channel configuration in the study stretch under consideration. This gives a
segment of Brahmaputra separated with well defined nodal points (with stable
unbraided channel width) which is adequately suited for applying 2-D developed
mathematical model conveniently so far as upstream and downstream boundary
implementation is concemned. Still, process representation of fully developed braided
stream is challenging due to the presence of numerous 3-D flow structures within the

flow domains and difficulty in mathematical reproduction of highly complex river

geometry.

Notably, the River Brahmaputra is one of the rivers which are well under the
observation of different government agencies. The sediment discharges and flood
discharges at certain locations have been continuingly recorded and the river cross
sections periodically surveyed. Still, the limitation in the human -capacity,
instrumentation, the difficulties of the measurement and the risk involved, the actual

data acquisition often remain off-set by errors. The importance of the information that
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10.2.1 MODEL VALIDATION

Aftributes of the study stretch make the Brahmaputra River an ideal example for
undertaking the application of the model. At both ends of the reach under study, two
important towns are situated namely Guwahati at the upstream end and Goalpara at
the downstream end. At these locations, gauge and discharge measurements are made
daily by the Warer Resources Depariment, Govt. of Assam. The contribution from
the tributaries in this stretch forms hardly 0.5 to 1 percent of the main stem peak flow
at Pandu (Sharma, 1995). Model verification was done with the help of comparing
measured water stages at Pandu site with model simulated water stages. Measured
stages at downstream Jogighopa were implemented as downstream boundary
condition. Observed discharges were assigned at Pandu as upstream boundary
condition and discharge at the downstream boundary were computed from model
results as simulated discharges for comparison. 2-D Flow Model was used for 20
discharge prafiles (designated as profile-1 to profile-20 respectively) for the flood of
1997 (12™ July 1997 to 31% July 1997) and validation results are presented in Figure
10.4 and Table 10.1. It can be seen that the simulated stages are in fair agreement with
the measured. Amongst the hydrological data, water level can be considered to be
the most reliable primary data with minimum error in comparison to other data.
In the above context, the good reproduction of stages is quite encouraging for the
enhanced 2-D depth averaged modelling approach considered, for such a highly
braided curvilinear stretch of Brahmaputra River. '

48.5 - 55000 -
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E 457 % 7 45000 &
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Figure 10.4 Observed verse computed WSL plot and discharge for d/s location
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Table 10.1 Comparison between measured water stages and discharges upstream and
downstream locations respectively for designated profiles

Absolute
Actual Computed Absolute Errorin
Observed Computed Discharge Discharge  Error in Discharge
profiles Date WL{m) WL(m) (Cumecs) (Cumecs) WL {(cm) (Cumecs)
1 12-Jul-1997 48.93 48 83 49389.69 49241.40 10.00 148.29
2 13-Jul-1997 48.72 48.77  46269.77 46141.35 5.00 128.42
3 14-Jul-1997 48.4 48.4  41866.74 41769.65 0.00 97.09
4 15-Jul-1997 43.15 48.1 38725.74 38616.61 5.00 109.13
5 16-Jul-1997 48.07 48.02  37854.29 37753.99 5.00 100.30
6 17-Jul-1997 48.07 48.02  37834.47 37692.20 5.00 142.27
7 18-Jul-1997 47.98 47.91 36788.31 36697.66 7.00 00.65
8 19-Jul-1997 47.81 47.87  34808.59 34691.10 6.00 117.49
9 20-Jul-1997 47.74 47.8 34119.5 34055.45 6.00 64.05
10 21-Jul-1997 47.65 47.69 33153.9 33077.78 4.00 76.12
11 22-Jul-1997 47.48 47.47  31330.32 31240.26 1.00 90.06
12 23-Jul-1997 47.26 47.21 29289.57 29213.12 5.00 76.45
13  24-Jul-1997 47.08 47.15  27649.36 27570.90 7.00 78.46
14 25-Jul-1997 46.94 4698  26419.21 26357.51 4.00 61.70
15 26-Jul-1997 46.84 46.87  25590.78 25552.40 3.00 38.38
16 27-Jul-1997 46.76 46.77  24936.58 24912.53 1.00 24.05
17 28-Jul-1997 46.59 46.57  23547.83 23530.02 2.00 17.81
18 29-Jul-1997 46.47 46.44  22663.52 22650.32 3.00 13.20
19 30-Jul-1997 46.37 46,32  21920.12 21893.58 5.00 26.54
20  31-Jul-1997 46.32 46.27  21562.88 21541.23 5.00 21.65

10.2.2 VARIATION OF FLOW YARIABLES
10.2.2.1 Variation in water depth and water surface elevation

The contour plot of model simulated water depth for discharge prafiles 1, 3, 6, 9, 13,
16 and 20 have been shown in Figures 10.5a and 10.5b for the flow domain of the
study stretch. One can observe that with decreasing discharges into the flow domain,
from profile-1 to profile-20, flow area shrinks around the deepest bed level with
increasing no flow zone or zones with shallow water depths. Highest water depth is
around 10-12 m found in the inlet and outlet of the flow domain where the river
constricts to narrow with incised configurations. Water depths across the river are as
low as 2 m where the river fans out at Palasbari (20 km to 40 km from the inlet at
Pandu). Such a large variation of water depth along the thalweg (Deepest bed level)
is one of the special features of Brahmaputra River. This special character due to
typical bed geometry of
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Figure 10.5b Contour-plot for water depth for profiles 13, 16 and 20

the river at a particular instance of time induces a very high dissipation of flow energy
to the bank-lines through evolution and diminishing of secondary flow field. High
dissipation of flow energy makes bank-lines vulnerable to severe river bank erosion.
It further increases the sediment load into the river, making the river prone to
aggradation in the downstream. When aggradation occurs, it increases the braiding
intensity in the downstream. The associated physical process is complex and inter-

dependent, making Brahmaputra River prone to relentless bank erosion severed
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gradually in geological time-scale. Contours for water surface elevation (WSL) for the
same profiles i.e. 1, 3, 6, 9, 13, 16 and 20 are presented in Figure 6a and 6b in
sequence. Simulated average water surface levels along the river stretch for above
mentioned profiles are shown in Figure 10.6¢. In Chapter 7, one may recall that the
developed 2-D model, wetting and drying technique was incorporated to judge
individual grid to be wet or dry by assigning a threshold depth of 0.02m (For natural
rivers). In the pressure solver, all wet and dry grids participated in the solution. While

computing water surface elevation, those nodes where computed WSL was less than
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or equal to bed elevation (i.e.H<=z,), H value was assigned numerical threshold value
of 0.02m for solving momentum equations. In the final results, for practical purposes,
H values with 0.02 or lesser were considered as dry nodes with water depth assigned

to zero.

o | Profile-13
44 - = Profile-16
: Profile-20

34 Ty

32

Se e PR IRNRIIFINBBIBRRBITNRE IR
X(km) from U/s Boundry

Figure 10.6¢ Simulated average water surface level (WSL) for profiles 1, 3,6,9 13, 16
and 20

Adopting the methodology mentioned above, the dry zones in the flow domain were
simulated for different discharge profiles. The dry zones with zero water depth have
been shown in black shades in Figures 10.6a and 10.6b for simulated discharge
profiles namely 1, 3, 6, 9, 13, 16 and 20. At channel bifurcations, although flow-fields
are essentially three dimensional, yet braid bars or side bars (simulated dry zones)
were approximated with reasonable accuracy using the developed enhanced model
through implementing wetting and drying technique without developing numerically
more expensive 3-D model for such macro-scale flow field scenario. Looking at the
Figures 10.6a and 10.6b, it was observed that braiding intensity was increasing with
decreasing discharges, more and more braid bars and side bars were evolved, thereby

increasing the proportionate no flow zone in the flow domain.
10.2.2.2 Variation in flow field

Simulated stream-wise velocity vector plots for the study flow domain are presented
in Figure 10.7 for discharge profiles 13, 16 1nd 20 for illustrating decreasing
concentration of flow with decreasing discharges. Figures 10.8a, 10.8b, 10.8c, 10.8d,
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10.8e and 10.8f showed here to illustrate the simulated velocities at some important
specific locations for profile-1. Figures 10.8a and 10.8b are shown to depict the
streamwise velocity vector near Goalpara Town (40 to 80 km downstream of
Guwahati). Vanation of stream-wise velocity along the bank-line of Brahmaputra
River in upstream location of Golapara Town is shown in Figure 10.8a and in
downstream location of Goalpara Town in Figure 10.8b. The important location
chosen was near Guwahati (0 km to 25 km from inlet location at Pandu). At Pandu
(Guwabhati), river is incised and stable with rock out-crops. Figure 10.8c shows the
velocity profile from O to 10 km from Guwahati where river is narrow and velocity is
high. In Figure 10.8d, velocity vector plot is shown for the location 12-25 km from
Guwabhati, from where river width starts widening almost to 20 _km at Palasbari.
Similarly, Figures 10.8e and 10.8f are presented to depict the transverse velocity field
near Guwahati and Goalpara Town. Figure 10.8f vividly depicts the significant
variation of transverse velocities near the bank-lines, which is one of the causative
factors for intermittent river bank failure.

The contour plot for the magnitudes of stream-wise velocities for the discharge
profiles 1, 3, 6 and 6 and profiles 9, 13, 16 and 20 are shown in Figures 10.9a and
10.9b respectively. From the figures, it was observed that concentrations of high

velocities are confined to certain specific flow regions.
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These location are at the inlet of the flow domain near Guwahati (streamwise velocity
almost 3.5 m/s at discharge profile-1, Location- X=0-5 km, Y=0), at 55km
downstream of Guwahati near Goalpara Town (streamwise velocity is 2.5m/s at
profile-1; Location- X= 52-58 km, Y=0-4 km ), at 65 to 75 km (Location: X=65-
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75km, Y=8 to -6 km) and at the outlet at Jogighopa (X=112 km, ¥=4-7km) .In this
simulated flow field these locations did not change due to rigid bed consideration in
the developed model. Apart from these locations, magnitude of the velocity in the
flow-field is lowered down almost to 0.5 m/s. Moreover, flow field shrinks around the
thalweg (deepest bed level) with decreasing discharges.
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Figure 10.9a Contour-plot for stream-wise velocity for profiles 1, 3 and 6

218



R

-
=]

@ & b A o N » 8 @

o
o
°

-
LM

-
o

& &4 b 4 o N & & @

-
o

--
N

-
o

& & LA & o N 2 & o

1
-l
o

Figure 10.9b Contour-plot for stream-wise velocity for profiles 9, 13, 16 and 20

219



10.2.3 VARIATION OF LONGITUDINAL VELOCITY DEVIATION
INTENSITY

Longitudinal velocity deviation intensity (/;) and transverse velocity deviation
intensity (/7) give the fractional deviations of discrepancy with respect to depth
averaged velocity in stream-wise and transverse direction (Seo et al., 2008). I and I
and their variation in curved flow domain have been discussed in detail in Chapter 9
of this thesis. While conducting flow simulaﬁon for the Brélhmaputra River Stretch, I,
and Ir were computed for all discharge profiles. For further analysis, stream-wise
" deviation I, was chosen to see its variations along the river stretch under study. Mean
I;, was obtained through averaging /; for all cell centers lying at each transverse 5-line
in the study domain. Thereafter, it was plotted against longitudinal distances from
inlet to outlet locations for profiles 1, 6, 9, 13, 16 and 20 (Figure 10.10). Spatial
variations of I; helped to identify the meandering behavior of the braided river. It
changes rapidly wherever stream has well developed curved flow domain (Figure

10.10). As the discharge decreases (profile-1 to 20), mean I along the reach has more
fluctuations with increased numbers of peaks and dips. It indicates that as the
discharge decreases, dispersion is more predominant. In other words, when intensity
of braiding increases, it evolves multiple channels with meandering configurations.
Meandering and bend in evolved multiple channels instigate more discrepancy in the
flow-field if it is approximated with depth averaging. So velocity deviations
intensities are more prominent fluctuations at low discharges in braided rivers.
Hence, at lower discharges with high braiding, dispersion stress terms are well

justified to include into the flow model for better assessment of the flow field.

10.2.4 MEASURE OF BRAIDING: INTENSITY BY A NEW BRAIDING
INDICATOR BASED ON MODEL RESULTS

Contour plots shown in Figures 10.6a and 10.6b were further analyzed. Simulated dry |
cell nodes (where water depth was zero) for each profile were identified and sum of
the area of dry cells for each profile simulation -was evaluated. Thus, area of no flow
zone is calculated for each profile simulation. Dividing it by total area of flow
domain, fractional no flow ratio (f,y) was calculated. No flow area was subtracted
from total flow area and fractional flow ratio (f}) was estimated. Simulated frziction_al

flow ratio and no flow ratio for profile 1 to 20 were tabulated in Table 10.2. It was
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observed that with decreasing discharges, no flow ratio (f,) decreases. Simulated no
flow ratio verses corresponding observed discharge was plotted and shown in Figure
10.11(a). The rate of decrease of no flow ratio with observed discharge also depends

upon the geometric configuration of the flow domain along with other factors.
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Figure 10.10 Mean longitudinal velocity deviations (1) for profiles 1,6, 9 13 16 and
20

Based on the obtained results and information from flow simulation for twenty
discharge profiles at receding flood of 1997, an indicator namely braid power is

proposed based on the model output to express the measure of braiding for a river

reach as follows.

-
b ’d / 2 _ _ ) 7Q1nlet 101
raid power(N/m” -5) = £, flow Area of Inlet of the Reach (1o-D

In Eq. (10.1), f,y=Ratio of no flow zone area with respect to whole flow domain area,
y=Unit weight of water (N/m?®) and S=Average longitudinal slope of the study reach.
Flow area (m?) is the cross-sectional flow area of the inlet boundary at the given
discharge. The unit of braid power is N/m27s. If one attempts to fix threshold value of

braid power, the following conditions might be the possibility (Table 10.3).
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Table 10.2 Model simulated computation of ‘No flow Zone’ and Estimation of braid

power
Fractional Flow Ratio No Flow Ratio braid-power
profiles Date (simulated) (Simulated) (N/m>-s)

1 12-Jul-1997 0.9703 0.0297 0.110
2 13-Jul-1997 0.9684 0.0316 0.111
3 14-Jul-1997 0.9581 0.0419 0.139
4 15-Jul-1997 0.9493 0.0507 : 0.161
5 16-Jul-1997 0.9462 0.0538 0.168
6 17-Jul-1997 0.9461 0.0539 0.168
7 18-Jul-1997 0.9451 0.0549 0.169
8 19-Jul-1997 0.9384 0.0616 0.180
9 20-Jul-1997 0.9352 0.0648 0.187
10 21-Jul-1997 0.9298 0.0702 0.200
11 22-Jul-1997 0.9173 0.0827 0.228
12 23-Jul-1997 (.9042 0.0958 0.254
13 24-Jul-1997 0.8979 0.1021 0.258
14 25-Jul-1997 0.8867 0.1133 0.278
15 26-Jul-1997 0.8797 0.1203 0.290
16 27-Jul-1997 "~ 0.8739 . 0.1261 0.299
17 28-Jul-1997 0.8606 0.1394 0.320
18 29-Jul-1997 0.8503 0.1497 0.336
19 30-Jul-1997 0.8398 0.1602 0.352
20 31-Jul-1997 0.836 0.164 0.357

0.18 -
0.16 ‘

014 4 . @

-- @+ Observed Discharge vs No flow ratio

3

0.12 - ®
0.10 o

0.08

Ratio of no flow zone

0.06 - o,

0.04 - -e..,

0.02 T T T T T )
20000 25000 30000 35000 40000 45000 60000

Observed Discharge (Cumecs)

Figure 10.11 (a) Plot for observed discharge vs. no flow ratio (f,,) for the Study Reach
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Table 10.3 Threshold values of braid power at extreme values of £,

No Flow Flow

Ratio Ratio Slope Flow Area
Conditions () )] Qinter (S (Inlet) braid power
1 1 0 0 - - oo
2 0 1 - - - 0
J(Unit Stream Power per unit
depth of the flow at the inlet
0=l 12/20 location of the Reach
3 - _ _ considered)

Extreme values of f,r, values of braid power were assessed. For a given river reach,
when f,r approaches 1, O;u.: approaches zero, at the same time flow area at inlet also
approaches zero. Braid power becomes very large and approaches infinity. Similarly,
when Jfnr approaches zero, braid power approaches zero (Eq. 10.1). Within the rangé
ofﬁf between 0 to 1, braid power is nothing but a fraction of unit stream power per
unit depth of flow at the inlet location of reach under consideration. The reported
average longitudinal slope of the study reach is 0.11 m/km (Figure 3.2 of Chapter 3).
Hence, braid power was computed for twenty simulated profiles and braid power
verses observed discharge was plotted and presented as Figure 10.13b. It was
observed that braid power increases with decrease in incoming discharge into the
reach at a particular instance of time (Figure 10.11b). The rate of decrease or increase
of braid power depends upon geometric configuration of the reach at the particular

instance of time along with other factors.
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Figure 10.11 (b) Plot for observed discharge vs. braid power for the study reach
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10.3 CONCLUDING REMARKS

In this study, for the first time, two dimensional enhanced numerical model with
- boundary fitted coordinate system and secondary flow corrections for the
Brahmaputra River stretch with highly braided configuration, has been developed and
verified. Braiding induces severe bank erosion, due to dominant transverse flow field.
So, improved and realistic flow-field estimation will lead to realistic assessment of
predictions of bank erosion and river bed evolution for braided alluvial rivers. Better
erosion models can be developed with reasonable accuracy using estimated flow field

as the prime input.

sk ok 3k 3k sk s ok s o o ok st o o ok o st st o ok ok ok sk ok ok ok e ok ok ok ok e ok ok sk ok ok ok ok ok .
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CHAPTER-11

CONCLUSIONS AND SCOPE FOR FUTURE WORK

11.1 CONCLUSIONS

Conclusions and major contributions of the present research work are summarized as

follows.

1. Comprehensive literature review discussed in-Chapter 2 succinctly suggests
that 1-D flow models are insufficient to tackle problems of braided streams
due to lack of information with regard to transverse flow field. In lieu of this,

' 2-D or 3-D numerical models are to be used. In addition, 3-D models have
many imponderables for prediction of flow simulation with braided
complexities as well as are computationally tedious for macro scale .river
reaches. Hence, 2-D enhanced model with secondary flow corrections: in

governing equations has been developed in this study.

2. Most of the 2-D models developed especially for braiding rivers did not
account for secondary flow correction probably presuming these corrections to

be insignificant for turbulent flows and mild curved bank-lines.

3. In complex flow situation with considerable braiding, the secondary flow
correction 1s suitably justified to achieve, improved flow scenario by
enhancing the model capability through incorporating secondary flow
correction using modified flow dispersion stresses with nominal additional

expense of computational effort.

4. Based on model result, it was observed that redistribution of flow
concentration in longitudinal and transverse directions are adequately
accounted for, using the formulation in curvilinear flow field and was suitably

capable of assessing realistic flow prediction with reasonable approximation.

5. For the first time, two dimensional enhanced numerical model with boundary
fitted coordinate system for the Brahmaputra River Stretch with highly braided

configuration, has been developed and verified.
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10.

11.

It has been observed that effect of dispersion stress tensor in flow field
increases with increase in braiding intensity. Model results discussed in

Chapter 10 adequately supported this statement.

When intensity in braiding increases, it evolves multiple channels with
meandering configurations. Meandering and bend in evolved multiple
channels instigate more discrepancy in the flow-field if it is approximated with

depth averaging.

Braiding induces severe bank erosion, due to dominant transverse flow field.
So, improved and realistic flow-field estimation will facilitate realistic
assessment of predictions of bank erosion and river bed evolution for braided

alluvial rivers.

Based on the obtained results and information from flow simulation for twenty
discharge profiles at receding flood of 1997 for Brahmapu;cra River stretch
under this study, an indicator namely braid power is proposed in this work
based on the model output to express the measure of braiding for a river reach

as follows.

}Qinl’elS
" flow Area of Inlet of the Reach

braid power(N/m? -s) =

where, f,r =ratio of no flow zone area with respect to whole flow domain area,
y=unit weight of water (N/m’) and S=average longitudinal slope of the study
reach. Flow area (m?) is the cross-sectional flow area of the inlet boundary at

the given discharge.

It was observed that braid power increases with decrease in incoming

discharge into the reach at a particular instance of time (Figure 10.13b).

The rate of decrease or increase of braid power depends upon geometric
configuration of the reach at the particular instance of time along with other

factors.
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11.2 FUTURE SCOPE OF THE STUDY

The prime thrust of the present research work is to bring to the fore persistent
shortcomings in relation to flow field estimation for rivers with highly braided
configuration. The present research work has desirably brought about a signiﬁéant
improvement in dominant transverse flow field estimation in highly braided rivers.
The transverse flow field is one of the significant causative factors for stream bank
erosion resulting in huge land loss around the vicinity of braided rivers such as
Brahmaputra River. However, to model bank erosion and bed:-evolution with high
degree of accuracy, after further research, a robust 2-D sediment »transport module
with incorporated bank erosion mechanism, clubbed with the present enhanced flow
simulation model is required to be developed. To model the moving boundaries,
present developed model uses fixed boundary method through implementation of |
wetting and drying technique including the whole flood plain under the flow doﬁla_in.
However through conducting further research on advanced algorithm using dépth»
adaptive grid generation and temporal deformed mesh techniqué; a moving boundé;ry
can possibly be implemented to simulate the multiple channels actual flow zones
instead of considering the whole flood plain. However, at present numerical
implementation of the aforesaid process is quite complex for highly braided rivers

with multiple channels like Brahmaputra and possibly be a potential area of research.
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