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ABSTRACT 

The Brahmaputra is the largest river in the Indian subcontinent and ranks fifth in the 

world in terms of discharge. The specific yield from its catchment area is one of the 

highest in the world due to incidence of very high rainfall on a narrow drainage basin. 

Significant areas of prime inhabited land are lost every year to river erosion in the 

Brahmaputra basin. Furthermore, unrelenting bank erosion process has caused channel 

braiding which created navigation bottle-neck zones in the Brahmaputra due to 

inadequate draught during non-monsoon. For efficient management of prevailing 

problem spanning over hundreds of kilometre length along the Brahmaputra, the need has 

arisen for a convenient scientific methodology which can aid systematic monitoring of 

braiding behaviour, help prioritization of erosion zones, and maintain navigational all-

weather fairway. 

River morphological processes are among the most complex and least understood 

phenomena in nature. Hence for addressing numerous related hydraulic engineering 

problems, understanding flows through open channels, is of crucial importance. These 

flows are typically turbulent and highly three- dimensional. Traditional approaches for 

studying natural river flows and morpho-dynamics study are based on field 

measurements and laboratory experiments. Owing to site and event specific concerns, 

field studies of natural open channel flows are very expensive, tedious and time 

consuming. Similar problems are associated with laboratory physical model studies, 

which suffer from scale effects owing to non- similarity of one or more dominant non 

dimensional parameters. To overcome above shortcomings, developments of numerical 

models that generally do not exhibit aforementioned difficulties are being stressed upon. 

The geometric complexities induce very intricate three dimensional turbulent shear flows 

which are characterized by secondary currents, vortex formation, flow reversal, and 

anisotropy effects. Majority of existing numerical models have focused primarily on the 

study of rivers of simplified geometries. The initial attempts in application of 

mathematical models in conjunction with empirical functions obtained from laboratory 



experiments to the investigation of morphological processes can be found in the 1950s. 

Research in this direction was intensified and broadened in the 1970s and later. However 

3-D numerical models are yet to be fully and adequately developed for channel with 

complex geometry in macro scale river reaches. Solving the equations of motion in these 

conditions is very difficult and computationally tedious. 

In rivers where the width of the flow is large compared to its depth, the vertical 

acceleration of water is negligible compared to the gravitational acceleration. In this 

condition, the pressure distribution in depth can be assumed to be hydrostatic. Hence, in 

order to ease the numerical complexity and without compromising much with the results, 

the equations of motion can be integrated in depth to derive two-dimensional depth 

averaged equations. Wherever the channel domain becomes curvilinear in nature, either 

well defined meanders, braiding, curved bank-lines or 3-D flow structures are bound to 

develop on account of dominant secondary flows. The secondary flow is transverse 

circulation induced by centrifugal forces. Incorporating adequately the effect of 

secondary flow further enhances the two dimensional modelling to assess the realistic 

flow field. Thus, with less expensive numerical effort, a better and improved flow 

scenario can be achieved without going into 3-D model development. 

Problem identification 

The Assam section of the Brahmaputra River is in fact, highly braided and characterized 

by the presence of numerous lateral as well as mid channel bars and islands (Goswami 

and Das, 2000). Due to these facts, the research on Brahmaputra River in the past mostly 

relied on field investigation and physical modelling. Only after 1980s, numerical 

modelling, especially 1-D modelling has been gradually applied in flow simulation and 

sediment prediction in Brahmaputra River (Sharma, 2004). Yet successful 

implementation of 2-D depth averaged modelling in Brahmaputra River reaches in 

Assam Flood Plains is hardly found in literature due to its highly complex topography 

and difficulty in reproduction of geometric data mathematically. A number of 

investigations have been done so far to develop numerical models to represent the 

processes involved in braided river. Correct process representation of the river 
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morphology is yet to be achieved by improving fluvial features like impact of secondary 

flow due to channel bends on the flow field. With this background, development of an 

enhanced 2-D depth averaged numerical model and its application in identified reach of 

Brahmaputra River is attempted to critically analyse the effect of flow features for better 

understanding of braided river behaviour. 

Objective of the study 

The first objective of proposed research work was set with the application of principles 

and practices of numerical model development, to derive the appropriate set of 

mathematical expressions for the secondary flow correction (flow dispersion stress 

tensor) for depth averaged 2-D model to be used for non-orthogonal curvilinear flow 

domain. The second objective was to develop numerical algorithm using finite volume 

method to solve conservative form of governing equations in non-orthogonal grids with 

incorporated flow dispersion stress terms in momentum equations and compare' the 

results of flow model with and without flow dispersion for general curved channels. The 
41; 

third objective was to apply and verify the proposed numerical model for the 

Brahmaputra River in selected reach and possible identification of braiding pattern with 

variability in stage-discharge. The fourth objective was to evolve a simplified braiding 

indicator to express the measure of braiding intensity for a river reach with incorporated 

no flow zone within the flow domain. 

The study area and data collected 

The reach between measured cross sections number-22 (Pandu near Guwahati) to 9 

(Jogighopa) released by Brahmaputra Board, .G.0.1. (spanning over approx. 100 km 

length in Assam state of Indian Territory) is selected for this study. Fourteen measured 

river cross-section data (Cross-section no. 22 to Cross section no. 9) for the year 1997 

were used. Discharge data of the river Brahmaputra during 1997 was used in the study 

(Central Water Commission and Brahmaputra Board, G.0.1.). The digital satellite data 

comprising scenes of Indian Remote Sensing (IRS) Linear Imaging Self Scanner (LISS-

III) sensors for the year 1997 (Unpublished report of National Disaster Management 

Authority, Govt. of India) for the study area, have been used. For model verification and 
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evaluation, an experimental flume of test section (4.25mx0.15mx0.20m) comprised a 

contraction in between with 0.002 m3/s of constant discharge was simulated. 

Methodology 

The boundary fitted coordinate system has been used to describe a naturally shaped 

boundary to represent the complex flow domain. The e=-axis is drawn along the channel 

for a given channel shape and 1- axis is set to intersect the caxis, Then the plane 	1) is 

divided into the structured cells to form the mesh for computations using Poisson's 

equation. The governing equations for estimating flow field are transformed from 

Cartesian co-ordinate system to a Boundary fitted curvilinear co-ordinate system to 

represent flow domain. Finite Volume Method conserves mass-momentum and can be 
well applied for highly complex geometry using non-orthogonal grids. The flow field is 

computed at geometric cell centers using the Finite Volume Method using SIMPLEC 

algorithm. Rhie and Chow's (1983) interpolation technique is used to estimate the 
velocities at cell faces. The flow field and water depth are computed using the derived 
transformed governing equations with special attention to boundary implementation. The 

river braiding is simulated with incorporation of wetting and drying technique into the 

numerical solver. A C++ computer code has been developed for numerical model to 

simulate flow field and mesh generation. 

Proposed governing equations 

The governing equations for flow simulation are RANS (Reynolds Averaged Navier 

Stokes) equations with depth averaged approximation of continuity and momentum 
equation in generalized curvilinear coordinate system. Components of dispersion stress 
terms are included in momentum transport equations as additional source/sink term. The 
derivation of dispersion stress tensor is done step by step to get revised set of empirical 
relations to be used in subsequent development of enhanced 2-D numerical flow model. 
The derived expressions are modifications to earlier relevant investigations (Duan, 2004; 
Duan and Julien, 2005). The proposed formulations are with simplified mathematical 
representation and are numerically compatible. These also improved the flowfield 
simulation reasonably. 
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Validation of the developed 2-D model and salient contribution of the present 
research work 

1-D flow models are insufficient to tackle problems of braided streams due to lack of 
information with regard to transverse flow field. So, 2-D or 3-D models are used. 3-D 

models are numerically expensive for macro scale river reaches. Hence, 2-D enhanced 
54 

model was developed. Most of the 2-D models developed especially for braiding rivers 

did not account for secondary flow correction probably presuming these corrections to be 

insignificant for turbulent flows and mild curved bank-lines. But in complex flow 

situation with considerable braiding, the secondary flow correction is suitably justified to 

achieve improved flow scenario with nominal additional expense in respect to 

computational effort with including secondary flow correction using modified terms for 

dispersion stress tensor in the flow momentum equations. 

Developed model was initially verified with flume experiment operating a flow with a 

contraction, and the validation of the flow simulation was achieved. It is established from 

the model application in laboratory flume that redistribution of flow concentration in 

longitudinal and transverse directions are desirably accounted for, using the formulation 

in curvilinear flow field and are well capable of assessing realistic flow prediction with 

reasonable approximation. 

The model developed in this study has been applied and verified in the selected stretch of 

Brahmaputra River. It was observed that the effect of dispersion stress tensor in flow 

field increases with increase in braiding intensity. The model results lend support to this 

observation. When braiding intensity increases, it evolves multiple channels with 

meandering configurations within the domain of stream flow. Meandering and bend in 

evolved multiple channels instigate more discrepancy in the flow-field, if it is 

approximated with depth averaging. Braiding induces severe bank erosion, due to 

dominant transverse flow field. So, improved and realistic flow-field estimation will lead 

to realistic assessment of predictions of bank erosion and river bed evolution for braided 

alluvial rivers. Better erosion models can be developed with reasonable accuracy using 

estimated flow field as the prime input. 
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Based on the obtained results and information from flow simulation for twenty discharge 

profiles at receding flood of 1997 for Brahmaputra River stretch under this study, an 

indicator namely braid power is proposed based on the model output to express the 

measure of braiding for a river reach as 

YanterS  braid powe r (N/m z  - s) = fn.(  
flow Area of Inlet of the Reach 

where, ic,f =Ratio of no flow zone area with respect to whole flow domain area, rUnit 
weight of water (N/m3) and S=Average longitudinal slope of the study reach. Flow area 

(m2) is the cross-sectional flow area of the inlet boundary at the given discharge. It was 
observed that braid power increases with decrease in incoming discharge into the reach at 
a particular instance of time. The rate of decrease or increase of braid power depends 

upon geometric configuration of the reach at the particular instance of time along with 

other factors 

Scope for future work and limitations 

The numerical model developed in this research work is limited to flow field simulation 
in rivers with highly complex geometries and braided configurations. The prime thrust of 
the present research work is to bring to the fore persistent shortcomings in relation to 
flow field estimation for rivers with highly braided configuration. The present research 

work has desirably brought about a significant improvement in dominant transverse flow 
field estimation in highly braided rivers. The transverse flow field is one of the 

significant causative factors for stream bank erosion resulting in huge land loss around 
the vicinity of braided rivers such as Brahmaputra River. However, to model bank 
erosion and bed evolution with high degree of accuracy, after further research, a robust 2-
D sediment transport module with incorporated bank erosion mechanism, clubbed with 

the present enhanced flow simulation model is required to be developed. To model the 
moving boundaries, present developed model uses fixed boundary method through 
implementation of wetting and drying technique including the whole flood plain under 
the flow domain. However through conducting further research on advanced algorithm 
using depth adaptive grid generation and temporal deformed mesh technique; a moving 



boundary can possibly be implemented to simulate the multiple channels actual flow 

zones instead of considering the whole flood plain. However, at present numerical 

implementation of the aforesaid process is quite complex for highly braided rivers with 

multiple channels like Brahmaputra and possibly be a potential area of research. 

**************************************** 
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CHAPTER-1 

INTRODUCTION 

1.1 GENERAL 

Fluvial landforms are produced by the action of flowing water in the terrestrial 

environment, whereas fluvial geomorphic processes are those natural processes that 

produce, maintain and change fluvial landforms. The channel pattern or landform of a 

reach of an alluvial river reflects the hydrodynamics of flow within the channel and the 

associated processes of sediment transfer and energy dissipation. Channel patterns form a 

continuum in response to varying energy conditions ranging from straight and 

meandering to braided forms. Generally, braiding is favoured by high energy fluvial 

environment with steeper gradients, large and variable discharges, dominant bed load 

transport and non-cohesive banks lacking stabilization by vegetation (Richards, 1982). 

The secondary flow component also contributes to the growth of channel deformations 

(Bathurst et al., 1979). 

The Brahmaputra is the largest river in the Indian subcontinent and ranks fifth in the 

world in terms of discharge. The specific yield from its catchment area is one of the 

highest in the world due to incidence of very high rainfall on a narrow drainage basin. 

Relentless stream-bank erosion along with flooding in the densely populated region of the 

Brahmaputra basin in the Indian province of Assam has become one of the causative 

factors for impoverishing a large segment of agrarian population every year. Significant 

areas of prime inhabited land are lost every year to river erosion in the Brahmaputra basin 

thereby impoverishing the affected people due to sudden loss of home and hearth. 

Furthermore, unrelenting bank erosion process has caused channel widening which 

created navigation bottleneck zones in the Brahmaputra due to inadequate draught during 

non-monsoon. For efficient management of the Brahmaputra, the need has arisen for a 

convenient scientific methodology to understand its complex channel hydrodynamics, 

which can aid systematic monitoring of bank-line changes, help prioritization of erosion 

zones, and facilitate maintenance of navigation for all-weather fairway. 
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River morphological processes are among the most complex and least understood 

phenomena in nature. Due to the fact that they intimately affect on our living conditions, 

scientists and engineers have been looking for better tools to improve our understanding 

and enhance the quality of our lives ever since the beginning of human civilization. 

(Wang and Wu, 2004). Understanding flows through open channels, is of crucial 

importance for addressing numerous hydraulic engineering problems. A prerequisite for 

arriving at such optimal solutions is that the complex physics of open channel flows can 

be understood. These flows, however, are typically turbulent, unsteady, and highly three-

dimensional; they often take place in stratified environments, and can involve multiple 

phases. For that reason, their understanding continues to present hydraulic engineers with 

rather formidable challenge. Traditional approaches for studying natural river flows and 

morpho-dynamics study are based on field measurements and laboratory experiments. 

Owing to site and event specific concerns, field studies of natural open channel flows are 

very expensive, tedious and time consuming. Similar problems, although to a lesser 

extent, are associated with laboratory physical model studies, which further suffer from 

scale effects owing to non-similarity of one or more dominant non dimensional 

parameters. (Sinha et al., 1998). In order to overcome above shortcomings, development 

of approaches that generally do not exhibit aforementioned difficulties were stressed 

upon to provide practising engineers with effective tool in the form of numerical models 

for understanding natural river flows in better way. 

Although braiding seems to be best developed in rivers flowing over glacier outwash 

plains or alluvial fans, perfect braiding is also found to occur in large alluvial rivers 

having low slope, such as the Brahmaputra in Assam (India) and Bangladesh or the 

Yellow River in China. The Assam section of the Brahmaputra River is in fact, highly 

braided and characterized by the presence of numerous lateral as well as mid channel bars 

and islands (Goswami and Das, 2000). Due to these facts, the research on Brahmaputra 

River in the past mostly relied on field investigation and physical modelling. Only after 

1980s, numerical modelling, especially 1-D modelling has been gradually applied in flow 

simulation and sediment prediction in Brahmaputra River (Sharma, 2004). Yet success 

full implementation of 2-D depth averaged modelling in Brahmaputra River reaches in 

Assam Flood Plains is hardly found in literature due to its highly complex topography 
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and difficulty in reproduction of geometric data mathematically. 

1.2 NEED FOR 2-D OR 3-D MATHEMATICAL MODELLING OF 
BRAIDED RIVERS 

The geometric complexities along with the changing upstream and downstream flow 

conditions induce very complex three dimensional turbulent shear flows which are 

characterized by secondary currents, vortex formation, flow reversal, and anisotropy 

effects. The difficulty in modelling natural river flow is best underscored by the fact that 

the vast majority of existing numerical models have focused primarily on the study of 

rivers of simplified geometries. In 1-D mathematical modeling, a number of assumptions 

are made to achieve feasible solution, yet information with regard to secondary flow field 

especially transverse flow field is absent. The secondary flow including transverse flow is 

one of the important causative factors of relentless bank erosion due to severe braiding 

process in Brahmaputra. Where the flow scenario is within reach flows, and the geometry  
is complex, at least a 2-D or even a 3-D treatment is required. 1-D modelling can neither 

generate the bar pool riffle topography commonly found in natural rivers nor adequately 

simulate the associated local variation in flow and sediment transport conditions.. River 

meanders and plan-form have strong circulation associated with bed topography ,with 

water surface gradients and associated pressures. Flow field have both topographic, as 

well as bottom shear stress terms. It implies that application of CFD with topographic 1-

D modeling fails when there is significant flow variability in either the vertical or the 

cross stream direction commonly associated with secondary circulation due to flow 

curvature or turbulence. For predicting the magnitude and timing of an out of bank flow, 

1-D models is adequate provided proper attention is given to cross-section spacing and 

model calibration. However, where the interest lies within reach flow with variability, 

one need a 2-D, if not a 3-D, treatment. (Bates, et al., 2005) 

Several two-dimensional numerical models especially with braided/meandering 

configuration have been developed to simulate braided rivers (Enggrob and Tjerry, 1999; 
Lien et al„ 1999; Jang and Shimizu, 2007 etc.). However, vast majority of existing 

numerical flow models have focused primarily on rivers of simplified geometries. More 
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recently, numerous 2-D and 3-D numerical-empirical models have been developed to 

simulate morphological changes in channels with mobile bed and ,bank, both in the 

laboratory and field. However, these models have some limitations when it comes to 

treating relatively shallow, wide braided rivers with highly irregular bed profile and 

complex bank-lines resulting in dominant transverse flow field. 

1.3 NEED FOR ASSESSMENT OF SECONDARY FLOW IN 
BRAIDED BRAHMAPUTRA RIVER 

Secondary currents, occur in the plane normal to the axis of the primary flow, they 

originate from interactions between the primary flow and gross channel features (Prandtl, 

1952). Secondary transverse flow results from the imbalance between transverse water 

surface gradient force and centrifugal forces over the depth due to vertical variation of the 

primary flow velocity (Lien et al., 1999). In braided rivers, most channel changes are 

associated with changes in bed morphology, which occur at high discharges, observation 

is very difficult (Smith, 1970). Any mention of secondary currents in braided systems has 

been restricted to areas of channel confluence, and the effect of secondary currents in 

bifurcations and around braid bars has been largely neglected (Sankhua, 2005). A number 

of attempts have been done to catch the realistic flow field including transverse 

components in complex geometry like bends, curves (Lien et al., 1999; Odgaard, 1989a; 

Duan, 2004; Seo et al., 2008). However, assessment of flow-field in braided river with 

`secondary flow correction' in complex geometry is hardly found in literature. Estimation 

of an improved flow field in braided river is expected to lead to realistic assessment of 

bed changes and bank erosion in braided rivers. 

1.4 EARLIER RESEARCH 

The difficulty in modelling natural river flow is best underscored by the fact that the vast 

majority of existing numerical models have focused primarily on the study of rivers of 

simplified geometries. The initial attempts of significance in application of mathematical 

models in conjunction with empirical functions obtained from laboratory experiments to 

the investigation of morphological processes can be found in the 1950s. Later, the 
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research was intensified and broadened in the 1970s. Since then, a numbei:  of 1-D models 

(e.g., Cunge et al., 1980; Thomas, 1982; Rahuel et al., 1989; Wu and Vieira, 2002) were 

applied to sedimentation studies in reservoirs and rivers. More recently, numerous 2-D 

and 3-D numerical-empirical models (e.g., Sheng, 1983; Wang and Adeff, 1986; 

Spasojevic and Holly, 1993; Jia and Wang, 1999; Wu et al., 2000,) have been developed 

to simulate sediment transport processes and morphological changes in channels with 

mobile bed and bank, both in the laboratory and nature. Flow in nature is three 

dimensional and usually turbulent. 3-D numerical models have been developed 

(Leschziner and Rodi, 1979; Shimizu et al., 1990; Sinha et al., 1998) to simulate spiral 

motion/secondary flows. However, 3-D numerical models are yet to be fully and 

adequately developed for channel with complex bathymetry in long river reaches. In 

many cases the geometry of the flow boundaries is very complex. Solving the equations 

of motion in these conditions is very difficult and computationally tedious. In rivers 

where the width of the flow is large compared to its depth, the vertical acceleration., of 

water is negligible compared to the gravitational acceleration. In this condition, the 

pressure distribution in depth can be assumed to be hydrostatic and the equations of 

motion can be integrated in depth to derive two-dimensional depth averaged equations. 

Irregular boundaries of rivers, however, add to the complexity of these models (Zarrati et 

al., 2005). 

Understanding the processes of morphological behavior in braided rivers is very 

important for river engineering purposes and prevents disasters from flood, bank erosion 

and environmental purposes to maintain river ecosystem. The morphological changes of 

rivers are deeply interrelated to the bed deformation and bank erosion because of the 

mutual relationship between water flow and sediment transport. In the process of channel 

development, bars emerge under certain hydraulic conditions as the channel widens from 

an initially straight channel, with erodible bed and banks (Jang and Shimizu, 2007). 

Previous investigations examined the mechanical processes of channels with erodible 

banks theoretically (Ikeda et al., 1981; Parker et al., 1982), and have provided a method 

to reproduce lateral changes in the channel. In due course, several numerical models have 

been developed to reproduce braided rivers with fixed banks (Murray and Paola, 1994) 

and with erodible banks (Sharma, 2004). Numerical models to reproduce the evolution of 

5 



meandering channels, taking bank erosion into consideration, have been developed for 

beds and banks made of uniform sediment (Shimizu et al., 1996; Nagata et al., 2000). 

Murray and Paola (1994, 1997) reproduced the spatial and temporal features of braided 

rivers using a relatively simple cellular numerical model in a fixed grid system. Two-

dimensional numerical models have been developed to simulate braided rivers (Enggrob 

and Tjerry, 1999; McArdell and Faeh, 2001; Shimizu et al., 2001). However, these 

models have some limitations when it comes to treating a relatively shallow, wide 

channel with moving boundaries due to channel widening, i.e. braided rivers with 

unconstrained banks. Jang and Shimizu (2005a) proposed a numerical model to simulate 

braided rivers with erodible banks, and showed the possibility of simulating braided 

rivers considering bank erosion. Jang and Shimizu (2005a, 2005b and 2007) developed a 

two dimensional model to simulate the processes of channel evolution from an initially 

straight channel with relatively high width to depth ratio and erodible banks composed of 

non-cohesive materials. However, this model had not been verified for a natural braided 

river with complex bathymetry although model results were compared with laboratory 

experiments. Jang and Shimizu (2007) found some discrepancies in the model and 

attributed these discrepancies in computed results to assumed parameters, initial 

conditions and three dimensional flow features at confluences. 

1.5 PROBLEM IDENTIFICATION 

As one can observe, a number of investigations have been done so far to develop 

numerical models to represent the processes involved in wide braided river, correct 

process representation of the river morpho-dynamics is yet to be achieved by improving 

features like impact of secondary flow due to channel bends and turbulence on flow field. 

The intense braided rivers, like the Brahmaputra are hydraulically less efficient, and the 

formation of braid bars plays an important role in the dissipation of the energy due to 

friction. 

In the above backdrop, the intense variability and complexity of the fluvio-morphological 

features of the Brahmaputra River is attempted to be captured in sufficient details with 

development of 2-D depth averaged hydrodynamic numerical model in identified reaches 
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for Brahmaputra River extracted with remote sensing data analysis to critically analyse 

the effect of flow features for better understanding of braided river behaviour, 

1.6 OBJECTIVE OF THE STUDY 

In line with the aforementioned strategy, in the proposed research work, the following 

objective(s) are set in the mind with the application of updated principles and practices of 

numerical model development for fluvial morpho-dynamics as well as remote sensing 

data usage. 

i. To derive the appropriate set of mathematical expressions for the secondary flow 

correction (flow dispersion stress tensor) for depth averaged 2-D model to be used 

for non-orthogonal curvilinear flow domain. 

ii. Development of numerical algorithm using finite volume method to solve 

conservative form of governing equations in non-orthogonal grids = With 

incorporated flow dispersion stress terms in momentum equations and compare 

the results of flow model with and without flow dispersion for general curved 

channels. 

iii. Application and verification of the proposed numerical model for the 

Brahmaputra River in selected reach and possible identification of braiding 

pattern with variability in stage-discharge. 

iv. To evolve a simplified braiding indicator to express the measure of braiding 

intensity for a river reach with incorporated no flow zone within the flow domain. 

1.7 THE STUDY AREA 

The reach between measured cross sections number-22 (Pandu near Guwahati) to 9 

(Jogighopa) released by Brahmaputra Board, G.0.1 (spanning over approx. 100 km 

length in Assam state of Indian Territory) is selected for flow simulation. 

1.8 DATA COLLECTED AND USED 
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Fourteen measured river cross-section data (Cross-section no. 22 to Cross section no. 9) 

for the year 1997 were used. Discharge data of the river Brahmaputra during 1997 was 

used in the study (Central Water Commission and Brahmaputra Board, G.O.I.). The 

digital satellite data comprising scenes of Indian Remote Sensing (IRS) Linear Imaging 

Self Scanner (LISS-II1) sensors for the year 1997 (Unpublished report of National 
Disaster Management Authority, Govt. of India) for the study area, have been used. 

For proposed model verification and evaluation, an experimental flume of test section 
(4.25mx 0.15mx 0.20m) comprised a contraction in between with 0.002 m3/s of constant 
discharge was simulated. 

1.9 THE METHODOLOGY 

The boundary fitted coordinate system has been used to describe a naturally shaped 
boundary to represent the complex flow domain. The iaxis is drawn along the channel 
for a given channel shape and 1- axis is set to intersect the caxis, Then the plane 	ri) is 
divided into the structured cells to form the mesh for computations using Poisson's 

equation. The governing equations for estimating flow field, transformed from Cartesian 
co-ordinate system to a Boundary fitted curvilinear co-ordinate system have been used to 

represent flow domain. Finite volume method conserves mass-momentum and can be 
suitably applied for highly complex geometry using non-orthogonal grids. The flow field 
is computed at geometric cell centers using the Finite Volume Method using SIMPLEC 
algorithm. Rhie and Chow's (1983) interpolation technique is used to estimate the 

velocities at cell faces. The flow field and water depth are computed using the derived 
transformed governing equations with special attention to boundary implementation. The 

river braiding is simulated with incorporation of wetting and drying technique into the 
numerical solver. A C++ computer code has been developed for numerical model to 
simulate flow field and mesh generation. 

1.9.1 PROPOSED GOVERNING EQUATIONS 

The governing equations for flow simulation are RANS (Reynolds Averaged Navier 
Stokes) equations with depth averaged approximation of continuity and momentum 
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equation in generalized curvilinear coordinate system. Components of dispersion stress 

terms are included in momentum transport equations as additional source/sink term. The 

derivation of dispersion stress tensor is done step by step to get revised set of empirical 

relations to be used in subsequent development of enhanced 2-D numerical flow model. 

The derived expressions are modifications to earlier relevant investigations (Duan, 2004; 

Duan and Julien, 2005). The proposed formulations are with simplified mathematical 

representation and are numerically compatible. These also improved the flow field 

simulation reasonably. 

1.10 OUTCOME OF THE DEVELOPED 2-D MODEL AND SALIENT 
CONTRIBUTION OF THE PRESENT RESEARCH WORK 

1-D flow models are insufficient to tackle problems of braided streams due to lack of 

information with regard to transverse flow field. So, 2-D or 3-D models are used. -3-D 

models are numerically expensive for macro scale river reaches. Hence, 2-D enhanced 

model was developed. Most of the 2-D models developed especially for braiding rivers 

did not account for secondary flow correction probably presuming these corrections to be 

insignificant for turbulent flows and mild curved bank-lines. But in complex flow 

situation with considerable braiding, the secondary flow correction is suitably justifiedp 

achieve improved flow scenario with nominal additional expense in respect Ito 

computational effort with including secondary flow correction using modified terms for 

dispersion stress tensor in the flow momentum equations 

Developed model was initially verified with flume experiment operating a flow with a 

contraction, and the validation of the flow simulation was achieved. It is established from 

the model application in laboratory flume that redistribution of flow concentration in 

longitudinal and transverse directions are desirably accounted for, using the formulation 

in curvilinear flow field and are well capable of assessing realistic-flow prediction with 

reasonable approximation. 

The model developed in this study has been applied and verified in the selected stretch of 

Brahmaputra River. It was observed that the effect of dispersion stress tensor in flow 
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field increases with increase in braiding intensity. The model results lend support to this 

observation. When braiding intensity increases, it evolves multiple channels with 

meandering configurations within the domain of stream flow. Meandering and bend in 

evolved multiple channels instigate more discrepancy in the flow-field, if it is 

approximated with depth averaging. Braiding induces severe bank erosion, due to 

dominant transverse flow field. So, improved and realistic flow-field estimation will lead 

to realistic assessment of predictions of bank erosion and river bed evolution for braided 

alluvial rivers. Better erosion models can be developed with reasonable accuracy using 

estimated flow field as the prime input. 

Based on the obtained results and information from flow simulation for twenty discharge 

profiles at receding flood of 1997 for Brahmaputra River stretch under this study, an 

indicator namely braid power is proposed based on the model output to express the 

measure of braiding for a river reach as follows. 

l' S  braid power(Nlm 2  - s) = f 	 ,"let  „f  
flow Area of Inlet of the Reach 

Where, f ir  =--Ratio of no flow zone area with respect to whole flow domain area, rUnit 

weight of water (N/m3) and S=Average longitudinal slope of the study reach. Flow area 

(m2) is the cross-sectional flow area of the inlet boundary at the given discharge. It was 

observed that braid power increases with decrease in incoming discharge into the reach at 

a particular instance of time. The rate of decrease or increase of braid power depends 

upon geometric configuration of the reach at the particular instance of time along with 

other factors 

1.11 LIMITATIONS AND SCOPE FOR FUTURE WORK 

The numerical model developed in this research work is limited to flow field simulation 

in rivers with highly complex geometries and braided configurations. The prime thrust of 

the present research work is to bring to the fore persistent shortcomings in relation to 

flow field estimation for rivers with highly braided configuration. The present research 

work has desirably brought about a significant improvement in dominant transverse flow 

field estimation in highly braided rivers. The transverse flow field is one of the 
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significant causative factors for stream bank erosion resulting in huge land loss around 

the vicinity of braided rivers such as Brahmaputra River. However, to model bank 

erosion and bed evolution with high degree of accuracy, after further research, a robust 2-

D sediment module with incorporated bank erosion mechanism, clubbed with the present 

enhanced flow simulation model is required to be developed. To model the moving 

boundaries, present developed model uses fixed boundary method through 

implementation of wetting and drying technique including the whole flood plain under 

the flow domain. However through conducting further research on advanced algorithm 

using depth adaptive grid generation and temporal deformed mesh technique; moving 

boundary can possibly be implemented to simulate the multiple channels actual flow 

zones instead of considering the whole flood plain. However, at present numerical 

implementation of the aforesaid process is quite complex for highly braided rivers with 

multiple channels like Brahmaputra and possibly be a potential area of research. 

1.12 ORGANISATION OF THESIS 

The chapters are organized in the following way 

Chapter -1 Description of introductory aspects of the topic studied, underlying 

objectives and the layout of the thesis. 

Chapter-2 Presentation of a relevant comprehensive review of literature and in 

addition the objective of the present study is also explained. 

Chapter-3 Description of the study area 

Chapter- 4 

Chapter -5 

Chapter- 6 

Presentation of development of modified dispersion stress tensor in two 

dimensional curvilinear flow field 

Presentation of formulation of 2-D depth averaged equations for 

curvilinear domain 

Presentation of numerical development of mesh generation algorithm for 

complex physical domain 

11 



Chapter-7 Presentation of numerical 2-D hydrodynamic model development for 

braided river with complex flow domain 

Chapter-8 	Data acquisition, pre-processing and application 

Chapter-9 	Presentation of evaluation of the developed numerical model 

Chapter-10 Presentation of results and analyses of 2-D flow simulation for 

Brahmaputra River stretch 

Chapter- 11 Presentation of conclusions and scope for future work 

Bibliography 

Furthermore, at the end of the thesis eight annexure are placed for ready reference. 

Appendix I 	Derivation of Duan (2004)'s dispersion tensor 

Appendix II 	Derivation of stream wise and transverse angles (Os, and On), 

trapezoidal rule with non uniform Ay for area computation. 

Appendix- III 	Scanned soft copy of standard Brahmaputra map showing chainage 

and bearings of pre-defined cross sections 

Appendix-IV 	Graphical data for fourteen field measured predefined cross 

sections 

Appendix-V 	Graphical processed data for normalized measured cross sections 

for the image extracted flow domain 

Appendix-VI 	Salient features and computer code modules in C++ programming 

language on numerical solution for mesh generation/ flow model. 

Appendix —VII 	Summarized experimental laboratory data for conducted 
experiment and model results. 

Appendix -VIII 	List of relevant communicated research papers 

12 



CHAPTER-2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

The study of alluvial river attempts to explain and describe the typical features of the 

river. These features appear as a result of complex dynamics of flow over a mobile bed. 

Channel morphology changes with time and is affected by water and sediment discharge 

including sediment characteristics, composition of bed and bank materials, and 

vegetation. The prediction and post-diction of fluvial system behaviour is greatly 

complicated by the variability of fluvial system morphology and dynamics through time. 

Moreover, most rivers have been affected by human interventions to one degree or 

another, so their current condition results from the interplay of the river and social system 

Within the river system flow regime (Q) and sediment load (Qs) from the basin are the 

independent variables that largely determine alluvial channel form as reflected in the 

adjustments of dependent variables of width, depth, grain size, and pattern (Kondolf et 

al., 2003). Channels change in different ways through the process of erosion and 

deposition. Yet considerable uncertainty in its prediction for non-uniform sediments is 

experienced (Patel et al., 2010). It is often difficult to mathematically represent sediMent 

process into the river modelling. Almost in all cases, river bed profiles are irregular in 

shape and size. For representing these profiles, mathematical functions are generally used 

in the conventional methods of idealization. But, the representation becomes difficult 

when the river geometry exhibits significant variability and complex patterns. The 

complexity in representing this information is made somewhat easier and quick by 

application of remote sensing technique clubbing with 2-D hydrodynamic mathematical 

modeling for better understanding of channel hydrodynamics. A thorough understanding 

of the morphology of alluvial streams presupposes detailed knowledge of their plan-form 

characteristics. The plan-form of alluvial streams can be classified into the following 

three categories: 

2.1.1, BRAIDED STREAM 
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A braided stream can be defined as one which flows in two or more channels around 

alluvial islands. Leopold and Wolman (1957) stated that braided pattern in alluvial stream 
develops after local deposition of coarse material, which cannot be transported under 

local conditions of flow existing within the reach. This coarse material becomes the 

nucleus for a bar formation, and subsequently grows into an island made up of coarse as 
well as fine material. The formation of the bar deflects the main stream towards the banks 

and may cause bank erosion. 

2.1.2. MEANDERING STREAMS 

A sinuous channel is called meandering stream. It consists of regular or irregular pattern 
of loops and a distinct sinuous plan-form. A meandering river has a single flow channel, 

while a braided river has a number of channels (Richards, 1982). 

Leopold and Wolman (1957) have defined sinuosity of a stream as the ratio of the 
thalweg length to the valley length (Figure 2.1). They have arbitrarily classified streams 

with sinuosity greater than 1.5 as meandering streams. Friend and Sinha (1993) defined 
the meandering parameter (Sinuosity) as modified sinuosity parameter, and presented as 

P = Lcmaxl LR 
	 (2.1) 

where, P = Modified Sinuosity Parameter, Lam=  = mid-channel of the widest channel, 
where, there is more than one channel and LR = overall length of the meander belt reach 
measured along a straight line (Sankhua, 2005). 

1.-CtrtiA 

Sinuosity P = L,,„„ax  / LR 

Figure 2.1 Schematic diagram representing the computation of sinuosity for single 
channel and multi-channel rivers 
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2.1.3. STRAIGHT STREAMS 

A stream in this classification refers to one that does not have a distinct meandering 

pattern. It is extremely difficult to find straight reach of stream over large lengths. 
Straight reach implies neither constant depth of the channel nor a straight thalweg. Even 

though the channel is straight; the line of maximum depth commonly known as thalweg 

moves from one bank to another bank (Richards, 1982). 

2.2 MEASURE OF THE BRAIDING INTENSITY AND EXISTING 
BRAIDING INDICATORS 

Several past studies had presented discrimination between the straight, meandering, and 

braided streams on the basis of discharge and channel slope. Lane (1957) suggested the 
following criterion for the occurrence of braiding. 

S > 0.004 (Q.)-0.25 
	

(2.2) 

Where, Qm  = mean annual discharge; and S = channel slope. 

Using bank full discharge Qb, Leopold-Wolman in 1957 (Richards, 1982) proposed the 

relationship for braiding to occur, which also predicts braids at higher slopes and 

discharges: 

S > 0.013 Qb 0 44 	 (2.3) 

Where, Qb = bank full discharge. 

Antropovskiy (1972) developed the following criterion for the occurrence of braiding 

S > 1.4Qb 	 (2.4) 

Leopold-Wolman (1957) also indicated that braided and meandering streams can be 

separated by the relationship: 

S = 0.06 Q  0. 44 	 (2.5) 

where, S = channel; and Q = water discharge. 
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However, these indicators have been criticized by Schumm and Khan (1972) as none of 

these recognizes the importance of sediment transport. These results imply a higher 

power expenditure rate in braided streams, a conclusion reinforced by Schumm-Khan's 

(1972) flume experiments. However, none of these investigators recognizes the control of 

channel pattern by sedimentology. Since, bed material transport and bar formation are 

necessary in both meander and braid development processes, the threshold between the 
patterns should relate to bed load. 

Henderson (1961) re-analyzed Leopold-Wolman's data to derive an expression including 
d50, median grain size (mm): 

S > 0.002 d50 1.15 Qb  -0.46 
`..e (2.6) 

Where, d50 = median grain size 

According to Eq. (2.6), a higher threshold slope is necessary for braiding in coarse bed 

materials. Bank material resistance affects rate of channel migration and should also 
influence the threshold, although its effect may be difficult to quantify and also be non-

linear since greater stream power is required to erode clays and cobbles than sands. 

Parker's stability analysis (1976) indirectly illustrates the effects of bank material 
resistance by defining the meander - braid threshold as: 

S/Fr  = D/B 	 (2.7) 

where, D = mean depth of the flow; B = width of the stream, and Fr = Froude number. 

However, depth, width and Froude number may be expressed in terms of discharge and 
bank silt-clay percentage, as suggested by Schumm (Richards, 1982). Meandering occurs 

when S/Fr < D/B, braiding occurs when S/Fr D/B, and transition occurs in between 
S/Fr D/B. 

Ferguson (1981) suggested for braiding to occur, which predicts steeper threshold slopes 
for braiding in channels with resistant silty banks. 

S>0.0028(Qb)-°3413e° 9° 
	

(2.8) 
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where, B,= percentage of silty clay content in the bank material. 

Measures of the degree of braiding generally fall into two categories: 

(i) the mean number of active channels or braid bars per transect across the channel belt 

and 
(ii) the ratio of sum of channel lengths in a reach to a measure of reach- length (total 

sinuosity). The sinuosity, P is thalweg length / valley length. 
Smith (1970) illustrated the measurement of cross-section bed relief, measured by the 

index. 

BR! = 2[(T1 + T2 ........Tn) - (tl + t2 + t3 + 	An)] t Te , Te 2  
B L 	 (2.9) 

where, Ti = height maxima between hollows, ti = minima between peaks, BL= transect 

length and Te  = end heights. 

Sharma (2004) developed Plan Form Index (PFI), Flow Geometry Index (FGI),, and 

Cross-Slope ratio for identifying the degree of braiding of highly braided river. He 

mentioned that the braided channels are hydraulically less efficient. Also, the formation 
of braid bars plays an important role in the modification of the energy losses due to 

friction. With a view to incorporating the effect of the above hydraulic variables, he 

proposed new indices namely PFI, FGI and Cross- Slope formulae have been given 

below: 

72—x 100 
Plan Form Index =  B 	 (2.10) 

N 

E Flow Geometry Index =[ 	d
W xD

I x']x N 	 (2.11) 

BL  
Cross-Slope = 2 (2.12) 

(Bank level — Av.  . bed level ) 

where, T = flow top width (m), B= overall width of the channel (m), BL= transect length 

across river width, N= number of braided channel, di  and xi  are depth and top lateral 

distance of submerged sub-channel, and D= hydraulic mean depth. 
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B 

Water Level 

Figure 2.2 Definition sketch for PFI 

Plan Form Index (PFI) in Eq. (2.10) (Definition sketch as shown in Figure 2.2) reflects 

the fluvial landform disposition with respect to a given water level and its lower value is 

indicative of higher degree of braiding. It is expressed in percentage, which shows the 

fluvial landform disposition with respect to a given water level and its lower value 

indicates higher degree of braiding. For providing a broad range of classification of the 
braiding phenomenon, the following threshold values for PFI are proposed by Sharma 
(2004). 

Highly Braided: 	PFI < 4 

Moderately Braided: 19 > PFI> 4 

Low Braided: 	PFI> 19 

Braided river reaches and alluvial systems are abundant in many areas. They are 
characterized by their multi-threaded plan-form, and are agents of substantial sediment 

transport, erosion and deposition. The high rates of sediment transport, erosion and 

deposition, and the frequent shifting of river channel positions in braided rivers pose 
many problems to a whole range of disciplines. Despite this importance, they have been 
relatively neglected in academic study when compared with the wealth of material on 

meandering rivers. The majority of studies to-date have been qualitative in nature, with 
Howard et al. (1970) and Murray and Paola (1994) being notable exceptions. 

The neglect of braided river study is partly due to the difficulty of undertaking field work 
and characterizing complex features. Although, advances have been made in the 

qualitative understanding of flow and sediment processes in braided systems, Bristow and 
Best (1993) have identified several key issues that remain to be addressed, such as (a) the 
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mechanisms of braid bar genesis and evolution, (b) flow and sediment dynamics at 

bifurcations and confluences, (c) the influence of flow stage on plan-form development, 

(d) the implications of a channel hierarchy system found over a range of channel scales 

and (e) the influence of secondary currents on the morphological development of braid 

bars. 

Many of the existing braid indicators do not adequately account for the hydraulic 

parameters and the underwater bars, both of which are seen to have a close relationship 

with the braiding process. Hence, it can be concluded that there is still a need to 

formulate new braid indicators by incorporating the above indicators to have a more 

rational description of the braiding phenomenon. However, newer braiding indicator 

proposed by Sharma (2004) was used to evaluate the efficacy of its rational use in real 

physical scenario using temporal as well as spatial remote sensing data analysis of 

Brahmaputra River (Sharma and Akhtar, 2010). 

2.3 NEED FOR 2-D OR 3-D MATHEMATICAL MODELLING OF 
BRAIDED RIVERS 

The geometric complexities along with the changing upstream and downstream flow 

conditions induce very complex three dimensional turbulent shear flows which are 

characterized by secondary currents, vortex formation, flow reversal, and anisotropy 

effects. The difficulty in modelling natural river flow is best underscored by the fact that 

the vast majority of existing numerical models have focused primarily on the study of 

rivers of simplified geometries. In 1-D mathematical modelling, a number of assumptions 

are made to achieve feasible solution, yet information with regard to secondary flow field 

especially transverse flow field is absent. The secondary flow including transverse flow is 

one of the important causative factors of relentless bank erosion due to severe braiding 

process in the Brahmaputra. Where the flow scenario is within reach flows and the 

geometry is complex, at least 2-D or even a 3-D treatment is required. 1-D modelling can 

neither generate the bar pool riffle topography commonly found in natural rivers nor 

adequately simulate the associated local variation in flow and sediment transport 

conditions. River meanders and plan-form have strong circulation associated with bed 
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topography with transverse water surface gradients and associated pressures. Resulting 

flow field has both topographic as • well as bottom shear stress terms. It implies that 

application of CFD with topographic 1-D modelling fails when there is significant flow 
variability in either the vertical or the cross stream direction commonly associated with 

secondary circulation due to flow curvature or turbulence. For predicting the magnitude 

and timing of an out of bank flow, 1-D models are adequate (provided proper attention is 

given to cross-section spacing and model calibration). However, where the interest is 
within reach flow with variability, one needs a 2-D, if not a 3-D, treatment (Bates, et al., 

2005). 

Several two-dimensional numerical models have been developed to simulate braided 

rivers (Enggrob and Tjerry, 1999; Lien et al., 1999 etc.). However, vast majority of 

existing numerical flow models have focused primarily on rivers of simplified 

geometries. More recently, numerous 2-D and 3-D numerical-empirical models have 

been developed to simulate morphological changes in channels with mobile bed and 
bank, both in the laboratory and field. However, these models have some limitations 
when it comes to treating relatively shallow, braided rivers with highly irregular bed 
profile and complex bank-lines resulting in dominant transverse flow field. 

2.4 INFLUENCE OF SECONDARY CURRENTS IN BRAIDED 
CHANNELS 

Secondary currents have originally been defined by Prandtl (1952) as currents, which 
occur in the plane normal to the axis of the primary flow, they originate from interactions 
between the primary flow and gross channel features. Two types of secondary currents 
have long been recognized; skew induced and stress induced secondary currents. 

There have been few field and laboratory investigations of flow structures in braided 
rivers and as a consequence their link to braided morphology is little understood. Unlike 
meandering single-thread rivers, in which observations of key flow processes can be 
undertaken over a range of flow stages, in braided rivers most channel changes are 
associated with changes in bed morphology, which occur at high discharges when 
observation is very difficult (Smith, 1974; Rust, 1978b). Any mention of secondary 
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currents in braided systems has been restricted to areas of channel confluence, and the 
effect of secondary currents in bifurcations and around braid bars has been largely 
neglected(Sankhua, 2005). 

Mosley (1976) reported the presence of helical flow at channel confluences in a general 
flume experiment of confluence behaviour. Using dye injection to visualize flow patterns, 

he observed that the pattern of secondary flow at channel confluences consisted of a pair 

of helical cells, converging in the channel centre over the point of maximum scour and 

diverging at the bed. He concluded that the observed helical flow pattern resulted in 

steepening of the scour walls beyond their natural angle of repose, giving rise to their 
characteristic avalanche faces. Mosley further stated that the helical flow structure 

resulted in most of the sediment transport in the confluence occurring at the channel 
fringes away from the area of maximum scour. There is also evidence found for smaller 

cells of reverse rotation further downstream from the channel confluence, resulting in 
elevated portions of the bed flanking the channel centre line. Mosely (1976) observed that 

this secondary flow pattern resulted in high rates of sediment transport restricted to the 

zones between opposing cells. 

Best and Roy (1991) proposed that these secondary flow patterns are the result of 
horizontal separation vortices formed in the toe of the avalanche faces at the entrance to 

the confluence, particularly when the converging channels are of unequal depth. Another 
probable cause of the helical circulation is the same mechanism that causes helical flow 

in meander bends, i.e. the relationship between the outwardly directed centrifugal force 

and the inwardly directed pressure gradient force caused by super-elevation. In the case 

of channel confluences the centrifugal force would be acting towards the confluence 
centre and the pressure gradient force would be acting towards the confluence fringes. 

Mosley (1976) observed a degree of super-elevation in the centre Of their model 

confluences. Ashmore et al. (1992) proposed that the flow separation at the confluence 
entrance probably reinforced, rather than replaced, the circulation due to channel 
curvature. 
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Ashmore et al. (1992) carried out a field investigation of secondary flow patterns in river 

confluences on the gravely Sunwapta River, Alberta. They confirmed for the first time in 

a real river the existence of the secondary flow patterns observed in laboratory 
experiments by Mosley (1976). Ashmore et a/.(1992) made measurements in two Y 

shaped anabranch confluences at relatively high discharge levels and found that the 

pattern of secondary flow observed in laboratory experiments existed in both of the 

surveyed cross-sections, although the pattern was much stronger in one of the 
confluences. In both confluences, the larger of the two helical cells tended to dominate 

the other in the downstream direction. They conceded that the methods employed to 
correct velocities in meandering rivers were inappropriate for braided rivers and as a 

result the flow patterns reported may be susceptible to small errors. 

2.5 MODELLING OF BRAIDED RIVER 

2.5.1 BACKGROUND OF NUMERICAL MODELLING 

Numerical analysis of fluid flow in complex geometrical domains has been the focus of 

quite a few researchers in the past decade. Such flows typically are representative of 

those situations occurring in a numerous variety of practical engineering problems. 

Examples can be found in such diverse areas as aerodynamics, meteorology, nuclear 

reactor design, compact heat exchangers, turbo-machines, the cooling of electronic 

packages and river hydrodynamics. The numerical prediction of fluid flow has evolved 
over the last two decades into an established field known as Computational Fluid 
Dynamics and often referred to by the acronym CFD and within its domain, in case of 
river hydraulics, it is popularly known as computational river mechanics. 

Numerical codes are structured around the numerical algorithms that deal with fluid flow 
problems. There are four major streams of numerical solution techniques: finite 
difference, finite volume, finite element, and spectral methods. All numerical methods 
that form the basis of the solver follow the same steps. These steps are: 

2. 5.1.1. Domain discretization 
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Division of the computational domain into several control volumes, location of nodes at 
the geometric center of the control volumes, and systematic numbering of nodes 

constitutes domain discretization. Nodes are the locations (points) where unknowns are 
calculated. 

2.5.1.2 Development of discretization equations 

In this step the exact mathematical operations, such as partial derivatives, are converted 

to approximate algebraic expressions at various nodes. 

2.5.2.3 Solution of discretization equations 

A set of linear equations, obtained as a result of step mentioned in above section-2.5.1.2, 
are solved to obtain the values of the variables at various nodes. The manner in which the 

discretization equations are obtained determines the technique. For example in the finite 
difference technique the discretization equations are obtained by differentiation. In the 

finite element technique the discretization equations are obtained by integration. In the 

finite volume technique the discretization equations are obtained by a combination of 

differentiation and integration. Finite Volume and finite element are the two 

methodologies employed most commonly in broader field of Computational Fluid 

Dynamics (CFD). With regard to the task of computing flows in complex geometries, the 
finite element method appears to be the most natural tool, because of its better geothetric 
flexibility. 

2.5.2 REVIEW ON NUMERICAL MODEL DEVELOPMENT IN RIVER 
MECHANICS 

Fluvial geo-morphologists are increasingly using computational fluid dynamics methods 

to improve understanding of the interactions between channel morphology, discharge, 

flow structure and sediment transport. If such models can provide an adequate 

representation of key processes, they have the potential to increase significantly our 
understanding of river channel dynamics. First, they may increase the spatial density of 

information beyond what is possible through field measurement. Process investigation in 
the field is largely based upon point measurement of velocity or sediment transport 
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processes. A large number of sample sites may be required to obtain sufficient 

representation of spatio-temporal process characteristics, and this takes time, over which 

the processes themselves may change (Lane et al., 1999). River morphodynamics is the 
interaction between hydrodynamics, sediment transport, bank erosion and bed 

morphology. As a consequence of this interaction, planform migration of the river due to 
erosion of the banks, widening of the river, degradation and aggradation of the bed, 
evolution of bedforms and variations in suspended concentrations may result (Abad et al., 
2007). To analyse these processes, several approaches have been developed. Theoretical 

approaches such as Ikeda et al. (1981), Johannesson and Parker (1989a), Parker et al. 
(1982) and Seminara et al. (2001) for the case of models in meandering rivers, 
experimental such as Guy et al. (1966), Hooke (1974) and Garcia and Nino (1993) where 
bed morphology has been studied under fixed-bank meandering channels, or numerical 
models such as Lyn (1987), Celik and Rodi (1988), Correia et al. (1992), Howard (1992), 
Jin and Steffler (1993), Mosselman (1998), Nagata et al. (2000b), Duan et al. (2001), Sun 
et al. (2001a), Cao et al. (2002), Darby and Delbono (2002), Kassem and Chaudhry 
(2002), Soulis (2002), Wilson et al. (2003), Duc et al. (2004) and Vasquez (2006) where 

applications of models have been presented. The hydrodynamics and morphodynamics of 

a meandering channel are physically complex, involving diverse phenomena such as 
secondary flows (also known as helical flow or spiral flow), turbulent flows, sediment 
transport and bank erosion processes. The Computational Fluid Dynamics (CFD) field 
has been an area of constant improvement, where high-resolution and detailed studies to 
describe the mean and turbulence structures of laboratory and natural channels have been 
carried out successfully. For the case of solely meandering configurations, Leschziner 

and Rodi (1979) conducted 3-D modelling of a single constant-curvature bend 
(Rozovskii, 1957) under flat conditions, Morvan et a/.(2002) presented a 3-D 
hydrodynamic model of a meandering compound channel under flat conditions, Wu et al. 
(2000) presented a 3-D numerical model for hydrodynamic and sediment transport 
modelling of a single bend (Odgaard and Bergs, 1988), Ferguson and Parsons (2003) 
reported 3-D numerical modelling of a meander bend with recirculation along the inner 
bank, and Abad and Garcia (2005) presented a 3-D hydrodynamic numerical simulation 
of periodic meandering channels at different sinuosities where the importance of 
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convective accelerations due to bed configurations was described. Even although 3-D 

numerical simulations are increasingly popular in river studies, its applicability to study 

morpho-dynamics processes such as erosion/deposition and meander migration is limited 

since it requires sophisticated implementation of boundary conditions (Ingham and Ma, 

2005; Sotiropoulos, 2005) and applications are possible generally for micro or meso scale 

with small scale time domain cases. Under certain considerations and limitations (Wang 

and Ribberink, 1986; Lane and Ferguson, 2005), it is possible and even preferred to use 

2-D depth-averaged models or even cross-section averaged 1-D models to overcome this 

problem (Garcia, 2001), in particular for certain engineering applications. The 2-D depth 

averaged models with secondary flow correction can readily be applied to larger spatial 

domains with computational ease. Similarly turbulence models such as developed in 

Erpicum et al. (2008 and 2009) have also been developed for macro rough channel and 

validated in experimental flumes. 

Several 2-D models have been developed to reproduce braided rivers with fixed banks 

(Murrey and Paula 1994). Dammular et al. (1989) presented a 2-D for unsteady flow in 

curved channel. The results of the numerical model are compared to laboratory test data 

for the unsteady flow created by an instantaneous dam failure in a test facility (Miller, 

1988). Numerical models to reproduce the evaluation of curved channels taking bank 

erosion into consideration have been developed for bed and banks of non cohesive 

sediment (Shimizu et al., 1996; Nagata et al., 2000). However these models have some 

limitations to simulate braided rivers with unconstrained banks. Jang and Shimizu 

(2005a, 2005b and 2007) proposed a numerical model to simulate braided rivers with 

erodible banks composed of well sorted material using moving boundary co-ordinate 

system to naturally shaped boundary and showed possibility of simulating braided river 

with complex geometries. Jang and Shimizu (2005a, 2005b and 2007) observed that the 

model somehow reproduces features of braided rivers such as generation of new channels 

and abandonment of old channel, the bifurcation and confluence as well as channel 

migration. However this model had not been verified on a natural braided river with 

complex bathymetry, although model results were compared with laboratory experiments 

in a controlled environment. Jang and Shimizu (2005a, 2005b and 2007) found some 

discrepancies in the model and attributed these discrepancies in computed results to 
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assumed parameters, initial conditions and three dimensional flow features at confluences 

which indicate that the model itself warrant further improvement in view of real and 

complex application scenarios. 

2.5.3 REVIEW ON 2-D DEPTH AVERAGED MODELLING WITH SECONDARY 

FLOW CORRECTIONS 

The occurrence of the secondary flow is one of the dominant features of flows in bends. 

Secondary flow results from the imbalance between the transverse water surface gradient 
force and centrifugal force over the depth due to the vertical variation of the primary flow 

velocity. In other words, the inward pressure gradient near the bed prevails over the 
centrifugal force resulting in an inward flow along the bed and an outward flow near the 
water surface (Lien et al., 1999). This circulatory flow pattern is termed as secondary 
flow. Measurements by Rozovskii (1961) and de Vriend (1979, 1980 and 1981) have 

shown that the secondary flow near the water surface moves toward the outer bank, and 
that near the bed moves toward the inner bank. Consequently, the shear force, which has 

the same direction as the local flow close to the bed, deviates slightly from the direction 
of the mean flow (Engelund and Skovgaard 1973). 

Pioneering investigations of the flow phenomena in open-channel bends are generally 
attributed to Thompson (1876) who observed the spiral motion inherent in a channel bend 
by introducing seeds and dyes into the flow. The 3-D numerical models have been 
developed (e.g. Leschziner and Rodi 1979; Shimizu et al. 1990; Sinha et al. 1998) to 
simulate the complicated spiral flow motion in the bend or channel curves. However, 2-D 
depth-averaged models are often adopted in practice by hydraulic engineers because of 
their easy implementation and application as mentioned earlier. For 2-D bend-flow 
modelling, steady-flow models, such as that of Odgaard (1989), have been developed to 
avoid the possible numerical instability and large amount of computation time. Yen and 
Ho (1990) developed a numerical model for the simulation of bed evolution in channel 
bends with fixed walls. They followed Odgaard's concept and adopted several published 
approximations of the transverse velocity distribution to reduce the depth-averaged water 
flow equations. An alternative approach for describing bend flow is to use the concept of 
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moment of momentum (Falcon Ascanio 1979; Jin and Steffler 1993; Yeh and Kennedy 
1993). The method couples the depth-averaged continuity and momentum equations with 
two moment-of-momentum equations derived from the balance among the momentum 

flux of the convective terms, pressure gradient term, and stress terms for closure 
purposes. For steady bend-flow models, the determination of flow depth in the flow 
domain is difficult due to the lack of time derivative of the flow depth in the continuity 

equation. Among the existing unsteady 2-D bend-flow models, the models developed by 
Molls and Chaudhry (1995) and Nagata et al. (1997) were presented. Molls and 
Chaudhry's model (1995) simulated the experimental bend-flow data conducted by 

Rozovskii (1961). They proposed the concept of integrated effective stress, which 
consists of laminar viscosity stress, turbulence stress, and dispersion stress due to depth 
averaging. However, they ignored the non-uniform distribution of vertical velocity in the 
bend-flow simulation. Nagata et al.'s model (1997) considers a secondary flow 

component that was derived by using the vertical distributions of the main and transverse 

velocities in the same way as Kalkwijk and de Vriend (1980). In their studies, only one of 

the dispersion stresses acting on the face perpendicular to the streamwise axis and acting 

in the direction of the transverse axis is used as the secondary flow component. de Vriend 

(1977) used the perturbation method to derive the velocity distribution over the depth in 
the shallow curved channel. The vertical velocity distribution of the main flow and 
secondary flow can be approximated by a logarithmic profile and a nonlinear profile, 
respectively. Using these velocity distributions, one can obtain the dispersion stresses' by 
numerical integration. Lien et al. (1999) proposed an unsteady 2-D depth averaged flow 
model to capture all the effect of dispersion stresses terms in curved channel flow. This 

model has been done exclusively for hydrodynamic module without incorporating the 

sediment module. Hsieh and Yang (2003) has attempted to establish guidelines for users 
to select more appropriate 2-D models. Lien et al. (1999a) calculated the dispersion terms 

in the momentum equations, which are the integrations of the product of the difference 

between the depth-averaged and the actual velocity along the verticals. The model (Lien 
et al., 1999) adopted the curvilinear coordinate and included the dispersion terms 

deduced from the stream-wise and transverse velocity profiles (de Vriend, 1977). 

Hydrodynamic modelling of bend flow in the curvilinear coordinate (Kalkwijk and de 
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Vriend, 1980; Demuren and Rodi, 1986; Odgaard, 1989a; Shimizu and Itakura, 1989; 

Molls and Chaudhry, 1995; Ye and McCorquodale, 1997; Lien et al. 1999; Darby et al. 
2002; Wu et al., 2004; Hsieh and Yang, 2003) has been effective because the longitudinal 

and radial coordinates approximately agree with the directions of the main and the 

transverse flow. In many practical cases, the effect of secondary flow is not significant 
when the channels are not curved or the curvature effect is small. This study employed 
the Cartesian coordinate so that the hydrodynamic model can be easily applied to both 
meandering and non-meandering channels. Instead of including the dispersion terms 

calculated directly from the stream-wise and transverse velocity profiles, the dispersion 
terms were converted to those in the Cartesian coordinate. The dispersion terms resulting 

from the transverse velocity distribution disappeared when the radius of curvature was 
relatively large or the channel was straight. Additionally, the hydrodynamic model 

adopted the modified depth-averaged momentum equations, where the density of flow 

was treated as a variable and changed with the concentration of transported mass 

enabling the hydrodynamic model to couple with the mass transport model. As for the 
mass transport model, the depth-averaged convection and diffusion equation, which takes 

the difference between mass entrainment and deposition from the mobile bed surface as 
the source/sink term, was solved to obtain the depth-averaged concentration (Duan 2004). 
Duan (2004) attempted derivation of the dispersion terms (incorporation of secondary 
flow correction) for the depth-averaged 2-D models using governing equations in 

Cartesian coordinates. She also compared the results of flow hydrodynamic models with 
and without the dispersion terms. 

The additional dispersion term coming on account of non uniformities in vertical 
distribution of velocities in the momentum equation in 2-D depth averaged equation has a 

potential for improvement in its empirical relations with involved flow variables to 
adequately represent its effect in the morpho-dynamic process in a braided river. 

2.5.4 2-D MATHEMATICAL FORMULATIONS PERTAINING TO NATURAL 
STREAMS 

2.5.4.1. Basic governing equations for river flows 
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The constituent equations for fluid flows are well established and they are basically in the 

form of a coupled set of partial differential equations, known as the Navier—Stokes 

equations (Batchelor, 1967). Different ways of numerically solving these equations give 

rise to different CFD techniques in which various forms of these equations may be 

employed. In the framework of the finite difference/volume technique, the most 

fundamental solution method is referred to as the Direct Numerical Simulation (DNS). In 

the DNS method, the transient form of the Navier—Stokes equations is solved numerically 

by means of spectral and pseudo-spectral techniques. However, because of the 

complexity of general industrial, as well as environmental, problems and the limitation in 

the capabilities of present computer systems, DNS is nowadays still primarily limited in 

its use to the study of some of the very simple but fundamental flow problems, such as 

simple turbulent channel and pipe flows, flow in plane mixing layers, etc (Bates et al., 

2005). It is evident that even when using the Reynolds-averaged Navier—Stokes 

equations, it is sometimes very difficult to solve large scale, complex unsteady river 

flows in a fully 3-D model due to the limitations in computer power. This is particularly 

true when the problem investigated is part of a real river where the flow is turbulent with 

irregularly shaped banks and beds. Therefore, various simplifications to the governing 

equations have to be made in order to reduce the dimensions of the problem. Subsequent 

section presents the Reynolds-averaged Navier—Stokes equations and the 2-D depth-

averaged equations which have been commonly employed in CFD models of river flow. 

It is noted that there have been some attempts to use the Large Eddy Simulation (LES) 

techniques to investigate steady and unsteady flows in river channels (e.g. Thomas and 

Williams, 1995; Bradbrook et al., 2000). Although LES itself is a relatively well-

established numerical technique, and has been used in numerous engineering and 

environmental applications, the use of LES in river flow modeling is still at an early stage 

of development. 

2.5.4.2 The Reynolds-averaged Navier—Stokes equations 

The fundamental parameters required to describe a river flow are the pressure and the 

velocity of the fluid flow. If the flow is assumed to be incompressible and Newtonian, 

29 



then these parameters are solely governed by the constitutional Navier–Stokes equations 

which are based on the basic physical principles of conservation of mass and momentum. 

For an incompressible and turbulent fluid flow, the Reynolds-averaged form of the 

Navier–Stokes equations may be written in a Cartesian coordinate system as follows 

(Hinze, 1975). 

(i) Continuity Equation. 

au av aw —ax  +—ay  +—az  = (2.13) 

Where u, v and w are instantaneous velocities used in original Navier Stokes Equations. 

This can further be decomposed as 

= -17 + v' 

w= -T+W 
Where is-, v, w are time averaged velocity components in Cartesian coordinate system, 

and u',v', w' are fluctuating velocity components in Cartesian coordinates system. 

(ii) Momentum Equation 
In x direction 

Du 	ap a au 	a au,) a au ,, 
P—Dt = fx--ax ÷—ax ii—ax –P"' +—ay 11--ay – Pi" +—az liZa 

puw 
 

In y direction 

a–p a a-; 	a av ---) a  au  p—Dv = --+— p-- 	+— p-- pv'2  + p – pv'w' Dt 	ay ax ax 	aY ay 	az az 

(2.14) 

(2.15) 

In z direction 

Dw 	ap a aw-  „) a aw 	 a aw ,2 

Dt 	Ow  P = --+— -- pw u +— p-- pw'v' +— 
az 

 p—  az – pw 	(2.16) ax 
p 

 ax 	ay aY  
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where D is total derivative operator (convective acceleration), ,u is molecular viscosity, 

is mean pressure and fx ,/,, and fz  are body forces in x, y and z direction respectively. 

The term — pul2  and other similar six terms in above equations are the result of the 

Reynolds-averaging of the original Navier-Stokes equations known as Reynolds stresses. 
These terms represent the effect of turbulence on the fluid flow and are not known a 
priori. Thus, we have more unknown's and less number of equations, so above equations 

are not closed. So, additional closure equations and a set, of properly defined boundary 

conditions for the fluid flow are required. The river flow can be modelled numerically by 
solving the Reynolds-averaged Navier—Stokes equations in all three directions of the 
coordinate system. 

2.5.4.3 Depth averaged equations 

Due to the complexity of solving the full 3-D Navier—Stokes equations, which often place 

impractical demands on computer resources, there is a practical requirement to reduce the 
dimension of the governing fluid flow equations and this result in the depth-averaged 

fluid flow equations. 

For a shallow river flow, and in situations where the vertical variations of the fluid flow 

are less important than the variations of the longitudinal and transverse flows in the,river, 
or the flow is approximately unidirectional, the dimensions of the governing fluid flow 

equations can be reasonably accurately reduced by integrating the full 3-D equations over 
the water depth h. This results in the introduction of the depth averaged velocity 

components of the fluid velocity, ii` in the x'-direction of the horizontal Cartesian 
coordinate system (i=1, 2), as follows: 

= 1hru' dz 
h g 

(i =1, 2) 	 (2.17) 

where Z is the vertical axis of the 3-D Cartesian co-ordinate system. Thus in the depth-

averaged approach, the fluid velocities are assumed to be constant throughout the depth 

and equal to the depth-averaged velocity, 17' In addition, from the assumption of the 
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hydrostatic pressure distributions in the vertical direction, the pressure forces can be 

evaluated in terms of the depth. However, it should be noted that the assumption of the 

hydrostatic pressure distribution limits the accuracy of the model in regions of steep 

slopes and rapid changes in the bed topography. The 2-D depth-averaged Navier—Stokes 

equations can be expressed in a horizontal. Cartesian coordinate system as follows (Bates 

et al., 2005) 

Continuity Equation 

ah a (—i — + — hu )= 0 
at ax' 

Momentum equation 

Cu' a(Trul 	ah  1 arii 	— 	rb  1  a  h 

= g 	 . 	 --ui )dz) 
at 	Oxf 	 p Or' 	ph ph Oxf ■„,c) 

(2.18) 

(2.19) 

The turbulence shear stress r‘,„,  can be determined using an appropriate turbulence model 

(e.g. Wilson et al., 2003). The depth-averaging also results in the introduction of two 

other groups of stresses in the equation, i.e. the water surface and bed stresses ( r; and 

rib  ), and the so-called 'dispersion stress terms', namely the last term in above equation, 

and these terms usually require empirical formulae or models. 

2.5.4.4 Bed shear stresses 

Water surface shear stresses rs are usually ignored unless strong winds exist. However, 

the bed shear stresses rbi are very important and usually have to be obtained 

experimentally. It is assumed that bed shear stresses can be expressed as a quadratic 
function of the depth-averaged velocity as follows ( Rastogi and Rodi, 1978; Ye and 
McCorquodale, 1997) 

1-; = cfpw F.17277' 
	

(2.20) 
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where Ci  is the bed friction coefficient. As the bed shear stresses result primarily from 

the turbulent flow interactions, there is considerable uncertainty in their evaluation. 
Typically, they may be determined using various empirical functions (Nezu and 
Nakagawa, 1993; Lane, 1998). In many applications, the bed friction coefficient is 
calculated using the Manning's equation as follows: 

2 

C — gn  
h3  

I - (2.21) 

where the parameter n is not a constant but depends on the fluid flow situation under 

investigation. In an equivalent formulation, the bed shear stresses are evaluated using the 

nondimensional Chezy coefficient Cs  as follows 

1 
S 

and the Chezy coefficient can be related to the effective bed roughness height Ks  is 

follows 

Cs = 5.7510g(12K 
	

(223) 

It should be noted that there is considerable uncertainty in how to choose the effective 

roughness, height Ks  as well as Manning's n, as it requires information on the grain size. 

Therefore, both Ks  and n are often used as calibration parameters against, for example, 

measured water surface elevations and fluid velocity. There are also other empirical 

formulae that may be used to evaluate the bed shear stresses/frictions (Rastogi and Rodi, 

1978; Van Rijn, 1987; Nezu and Nakagawa, 1993), and this is clearly an area in which 

further research is required. 

(2.22) 
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2.5.4.5 Dispersion terms 

The dispersion terms, namely the last term in Eq. (5.16), are produced because of the 

non-uniformities of the fluid flow velocity in the vertical direction during the depth-
averaging. The determination of these terms requires knowledge of the information in the 

secondary flows across the depth which is, however, usually not known a priori. 
Therefore, we usually have to produce a mathematical model for the dispersion terms (e.g 

Lane, 1998; Duan, 2004). However, these terms are frequently found to be negligible in 

cases such as straight channel flows (Nezu and Nakagawa, 1993). However, the 

dispersion terms can be very important, particularly when there are strong secondary 
flows, such as fluid flows through a river bend or over channel junctions (Bernard and 

Schneider, 1992) or in other words river with complex physical domain. 

Since there are no additional equations for the dispersion terms arising from the depth-

averaging, the treatment of the dispersion terms has been mainly through semi-empirical 
or empirical models to represent their effects on the transport of momentum. The key 

element of these models is the representation of the secondary flows resulting from the 
effects of the lateral curvature of the river and the friction at the bottom of the river. One 
of the key models for the dispersion terms is that described by Johannesson and Parker 

(1989), where 2-D forms of the mass and momentum equations are combined with an 

empirical shape function for the distribution of the primary velocity across the depth. 
Another approach is that of Bernard (1992) in which the dispersion terms are expressed 

as a function of the shear stresses associated with the secondary flow, and empirically 
derived terms are used. However, regardless of the relative importance of the dispersion 
terms, the present available treatment of these terms is limited in its representation of the 
vast complexity and variety of secondary flows occurring in natural river flows. This is 

largely attributed to the lack of understanding of the mechanisms of secondary flow 
generation in 3-D natural river flows in various bed topographies and channel 

irregularities. Clearly, more research on the mathematical representation of the dispersion 
terms is required when modelling complex river flows using the depth averaging 
approach. However, fluid flow problems with strong secondary flows can be more 
completely addressed through 3-D simulations (Bates et al., 2005). More recently, 
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numerous researchers have given formulation to estimate dispersion terms. Some relevant 
formulations are presented here for illustrations and clarity. 

de Vriend (1977) used the perturbation method to derive the velocity distribution over the 
depth in the shallow curved channel, and the vertical velocity profiles were then verified 
by the experiments. Later Lien et al. (1999a) used in line with adopting the following 
formulation for dispersion terms into the momentum equation de Vriend(1977) adopted 

?T. = ii[1+ 	c] = tTf jc) 
KC KC 

= 1Tf.(04-  K  2 i [2F,(4)+ -ri- F2(C)-  21 1 -\1 )-f,(4")] r  KC 	 KC 

(2.24) 

(2.25) 

In Eqs. (5.21) and (5.22), f..4- 1+ 	 9 F1 (‘)- 	in  C 	F2 ( 	 as F in2 	4 	9  KC 	KC 	 o 	- I 	o 4- -1  

4-  = (z = zb )1 d dimensionless distance from the bed, r=radius of curvature, 17,V = Depth 

averaged velocities in stream-wise and transverse directions, u,v time averaged 

velocities in stream-wise and transverse directions. 

Here, the main velocity profile is assumed to have a logarithmic distribution, and the 

transverse velocity profile is a combination of a logarithmic distribution and a nonlinear 

distribution of the secondary flow. It is obvious that only the secondary flow due to the 

curvature of the bend is considered in the formulation of the transverse velocity profile. 

Such consideration of transverse secondary flow is a main factor to shift the stream wise 

momentum from the inner region of a bend toward the outer region and to increase the 
main velocity near the outer bank. In addition, the effect of the secondary flow on the 
stream wise velocity profile is neglected, and these velocity profiles, used in the model, 

are inadequate for a reverse secondary eddy that occurred near the surface at the outer 
bank. 

After including the velocity profile, Lien et al. (1999a) derived namely DSXX, DSYY and 
DSXY as follows to be incorporated as dispersion terms in to the their controlling 
equation. 
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(2.27) 

(2.28) 

(2.29) 

(2.30) 
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Above equations are integrated using trapezoidal rule. The first term (DSXX) indicates 

that the integration of the products of the discrepancy between the mean and the true 
velocity distributions in the stream wise direction. The second term (DSYY) indicates that 

the integration of the products of velocity discrepancy in the transverse direction. The 
third term (DSXY) indicates that the integration of the products of velocity discrepancy in 

the stream wise direction and that in the transverse direction. 

Lien et al. (1999a) worked on the above formulation in their controlling equations of 

flow in curvilinear coordinate system to get the solution for their model. They compared 

the result of their model performance with other investigators and summarized the 
conclusion as dispersion terms to be important source/sink term in momentum equation 
and contribute to the transverse convection of the momentum. Their relative contributions 
in the overall secondary flow effect depend on flows in mild or sharp bends. Lien et al. 
(1999) further concluded that if the dispersion stress terms are neglected, the governing 

equations reduce to a conventional depth-averaged equation assuming uniform velocity 
over depth. Hence, the model presented by Lien et al., (1999a) is more applicable for 
practical application in bend-flow modeling than the conventional depth-averaged models 
because of its ability to account for the secondary flow effect. In short, the dispersion 
stresses play an important role in accurately simulating or predicting flow fields in sharp 
bends as well as in mild bends. Hsieh and Yang (2003) conducted some experimental 
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analysis to validate the above formulations. Readers are suggested to refer the Hsieh and 
Yang (2003) for further details. More recently, Duan (2004) derived the mathematical 

expressions of these terms, assuming that the stream-wise velocity satisfies the 
logarithmic law written in Eq. (2.31). 

u, 1 , 	z = — in — 
us  K zo  

(2.31) 

where, u, =Velocity in stream-wise direction, z =vertical coordinate, u. =shear velocity, 

zo = calculated according to flow velocity, Integrating the logarithmic velocity profile 

along the vertical. Eq. (2.31) ends up with 

1 

 [

zo  _ i+ in( h 
h 	z (2.32) 

where ur  = depth-averaged velocity in the stream-wise direction. Combining the above 

two equations she landed with relation between time averaged and depth averaged 

velocities. Duan(2004) assumed the transverse profile of the velocity linear and adopted 

transverse velocity profile proposed by Odgaard (1989a) in the formulation. The 
dispersion terms at the stream-wise and transverse directions have been derived by Duan 
(2004) as follows. 

zo+h 

Dra4 =  SPin(14 —11/ 
zo  

2  dz = 	[-770 111110(1n710 —2)+21700 — 170 X1  — 70'470 -iy] 	(2.33) 
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(2.35) 
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Tyy  = 2p(v,) Pr 
ay 3  

(2.38) 
aUy  2 

where x = y74) -1- In r7° 	70  = 	=dimensionless zero-bed elevation, r=radius oflz 

curvature, "v, and v, are transverse velocity and depth averaged transverse velocity 

respectively. The curvilinear dispersion terms transformed to dispersion terms in 

Cartesian coordinate for incorporation into governing equations through usual 
transformation procedure. Duan (2004) adopted the efficient element method (Wang and 

Hu, 1990) as the numerical solver to get the solution. To test the model performance of 

dispersion terms and verify the developed hydrodynamic model, two sets of experimental 

data and bend flow conducted by de Vriend (1979) and Rozovski (1961) were adopted. 
As per Duan (2004)' s conclusion, the verifications by the experiments in mild and sharp 

curved channel indicated that the effect of dispersion terms on flow hydrodynamic field 
becomes significant when curvature is increased. However flows in bends are essentially 
a three dimensional flow feature so 3-D modelling certainly gives better model results. 

Seo et al. (2008) further applied the dispersion coefficient tensor to the mass dispersion 

and solute transport and used finite element method to validate the results. 

2.5.4.6 Turbulent stresses 

The stresses which include turbulent effects are determined using the Boussinesq 
assumption as follows (Wu, 2007) 

\ u a 	2 Txx= 2"vil axx  3 PIC  

au  a UY) Txy  = = P
I x 

ay  ± (3x  

(2.36) 

(2.37) 

where v, is the eddy viscosity that needs to be determined using a turbulence model. The 

choices for determining v, include the depth-averaged parabolic model, modified mixing 
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length model, and three depth-averaged linear k — s turbulence models. Averaging the 
parabolic eddy viscosity equation over the flow depth yields 

v, = alush 	 (2.39) 

where al  is an empirical coefficient. Theoretically al  should be equal to K / 6 . However, 

it has been given various values in practice, because of the anisotropic structures of 

turbulence in horizontal and vertical directions and the effects of dispersion. According to 

experiments by Elder (1959), al  is about 0.23 for the longitudinal turbulent diffusion in 

laboratory channels. For transverse turbulent diffusion, Fischer et al. (1979) proposed 

that al  is about 0.15 in laboratory channels and 0.6 (03-1.0) in irregular waterways with 

weak meanders. 
■•■ 

Equation (2.41) is applicable in the region of main flow. Because the influence of 

horizontal shear is ignored, significant errors may arise when applied in regions close to 
rigid sidewalls. Improvement can be achieved through a combination of Eq. (2.41) and 

Prandtl's mixing length theory mentioned herein as Eq. (2.40). 

v, = V(aou.h)2  + 	 (2.40) 
• 

where 

	

Isl= [2( aUx 	
2rUY ± aux + auy )

2 ill 2 

	

ax 	ay ) L ay ax  (2.41) 

ao  is an empirical coefficient similar to al  in Eq. (2.39) and has a value of about K / 6 

and /h  is the horizontal mixing length, determined using 14  = icmin(y1 ,c„,h) with y' 

being the distance to the nearest wall and cm  an empirical coefficient ranging between 

0.4 and 1.2 (Wu et al., 2004b). 

39 



Rastogi and Rodi (1978) established a depth-averaged k-c turbulence model through 

depth-integration of the 3-D standard k-c model. Readers are suggested to refer to 

relevant literature for detail information. 

2.5.5 FORMULATION OF MASS-MOMENTUM CONTROLLING EQUATIONS 
IN CURVILINEAR COORDINATE SYSTEM. 

2.5.5.1 Governing equations 

The governing equations for flow simulation are RANS equations with depth averaged 

approximation of continuity and momentum equations [Eqs.(2.42), (2.43) and (2.44)] in 

Cartesian coordinate system with secondary flow corrections are (Duan and Julien, 

2005). 

_(phuo aph + ( phu x )., 
at 0x 	ay 

a
a
(cho, 

x  (
rhu.2)÷0Rx  + a (chuxu.„)+84), = pgh_off cdpudu 2 	+u 2 +phi, (a2ux 	 

1 ax2 aj?  a 	ax ay 	ay 

a2u, .92u,) aD,,, 	ifitu2)+8P, 	_cd puy\fu„2 +u,,2 +hp( ax2  + 	ay2  (chuy)+1(chu;,u)+—+— y ay ac 	Y ax  ay ìf-- 	ay 

(2.42) 

(2.43) 

(2.44) 

where Ux  and Uy= depth-averaged velocity components in x and y directions, t=time, 

p=density of water (kg/m3), H=water surface elevation, h=depth of the flow, 
g=acceleration of gravity, Cd=frictional stress coefficient (for friction shear stress at the 

bottom in x and y directions); and equals n 2  pg 	with n=Manning's roughness 
h 

coefficient; vi  =eddy viscosity. Homogeneous suspension is presumed. (p is constant ). 
Wind /rainfall forces are neglected. Coriolis force due to the rotation of the earth is 

neglected. The equation is valid to homogeneous suspensions to orthogonal system of 
coordinates in which z- axis is near vertical (small angle). A, Dxy and D yy  are flow 
dispersion stress components. 

Numerous researchers formulated and derived different forms of mass-momentum 

equations in curvilinear coordinate system based on the above equations in view of 
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suitability with their adopted discretization schemes during the last decade. Lien et al. 
(1999a) presented an unsteady 2-D depth-averaged flow model with the consideration of 

dispersion stress terms to simulate the bend-flow field. The model uses an orthogonal 

curvilinear coordinate system to efficiently and accurately simulate the flow-field with 

irregular boundaries. Nagata et al., (2000) has adopted generalized non-orthogonal co-

ordinate system to formulate the controlling equations with complex flow domain. This is 

appropriate approach not only on account of its generality, but also due to the fact that it 

is possible to orient the dependant variable along the grid lines conforming to the shape 

of the domain and therefore usually along principal streamlines, which will minimize the 

chance of false diffusion (Patankar, 1980). More recently many researchers for example 

Duan (2004), Seo et al. (2008) developed models with secondary flow corrections and 

applied and verified in laboratory flume data. 

2.6 CONCEPT OF NUMERICAL SOLUTION 

River engineering problems are usually governed by nonlinear differential equations in 

irregular and movable domains, most of which have to be solved using numerical 

methods. Introduced in this chapter are the discretization methods for 1-D, 2-D and 3-D 

problems on fixed and moving grids, the solution strategies for the Navier-Stokes 

equations, and the solution methods of algebraic equations (Wu, 2007). Some of these 

can be found in Patankar (1980), Hirsch (1988), Fletcher (1991), Ferziger and Peric 

(1995), Shyy et al. (1996) etc. 

2.6.1 DISCRETIZATION METHODS 

Widely used discretization methods include finite difference method, finite element 

method, finite volume method, finite analytical method, and efficient element method 

(Wu, 2007). 

The finite difference method discretizes a differential equation by approximating 

differential operators with difference operators at each point. The finite analytical method 

discretizes the differential equation using the analytical solution of its locally linearized 

form, and the efficient element method establishes difference operators using 
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interpolation schemes in local elements. Because of their similarity, the finite analytical 

method and efficient element method are herein grouped with the finite difference 
method (Wu, 2007). 

The finite volume method integrates the differential equation over each control volume, 

holding the conservation laws of mass, momentum, and energy. In the finite element 

method, the differential equation is multiplied by a weight function and integrated over 

the entire domain, and then an approximate solution is constructed using shape functions 
and optimized by requiring the weighted integral to have a minimum residual (Wu, 
2007). 

The algebraic equations resulting from the finite difference and finite volume methods 

usually have banded and symmetric coefficient matrices that can be handled efficiently, 
whereas the algebraic equations from the finite element method often have sparse and 

asymmetric coefficient matrices that require relatively tedious effort for solution (Wu, 

2007). However finite element method handles unstructured meshes, so it can be 

conveniently applied to complex geometry more efficiently. The choice of numerical 
method depends on many factors including computation expense, suitability in a 

particular situation and degree of accuracy required in the final solution etc. In some 
specific cases like water quality modelling, Lagrangian approach such as Time Driven 
Method (TDM) or Event Driven Method (EDM) are more efficient for simulating the 
chemical transport in a water distribution system than Eulerian approach like finite 
difference method (FDM) (Munavalli and Kumar, 2004) . 

Any numerical method may have its advantages and disadvantages, and subjectivity may 
prevent a modeler from becoming more successful. One has to learn the basic properties 
such as accuracy, stability, convergence, and efficiency of the used method and know 
how to take advantage of its strengths and avoid its weaknesses (Wu, 2007) 

Finite volume schemes have evolved in recent years into powerful tools for the prediction 
of shallow water flows (Alcrudo, et al. 1992; Jin and Fread, 1997; Sanders and 
Katopodes, 1999; Tseng and Chu, 2000; Sanders, 2001) as reported by Capart et al. 
(2003). Among other attractive features, these algorithms are noteworthy for their ability 
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to deal with trans-critical flows and propagating shocks. Favourable comparisons with 

analytical benchmarks and laboratory measurements have been obtained for complex 

flows in one and two-dimensional configurations (e.g., Fraccarollo and Toro, 1995; 

Capart, et al. 1997; Soares et al., 2000; Tseng et al., 2001; Bradford and Sanders 2002). 

Capart et al. (2003) used 1-D flow simulation using FVM in more general case of 

inclined, non prismatic channel characterized by abrupt variation in bathymetry. More 

recently Kuiry et al. (2008) demonstrated numerical simulation using FVM for triangular 

mesh extracted from a triangulated irregular network (TIN) form of digital elevation 

model (DEM). 

Hence for simulating large rivers, finite volume method (FVM) of discretizing 

conservative form of partially transformed controlling equations in curvilinear coordinate 

system seems appropriate to use based on the earlier studies. FVM solver additionally 

conserves mass-momentum and can be well applied for highly complex geometry using 

non-orthogonal grids with reasonable approximation. 

2.6.2 DISCRETIZATION BY CO-ORDINATE TRANSFORMATION 

The finite volume method offers two methods to discretize equations. One method is to 

look at physical processes and parameters, and thereby.derive the discretized equations. 

This approach is used by Olsen (1999). The method has the advantage of being easy to 

understand, facilitating debugging and implementation of new algorithms (Olsen, 2000). 

However Olsen (2000) mentions difficulty in deriving three groups of terms i.e. the 

production of turbulence in k-c model, stress terms in Navier-Stokes equations, non-

orthogonal diffusive terms in Navier-Stokes equations. Hence these terms are usually 

discretized using a method called co-ordinate transformation; The co-ordinate 

transformation is a transformation between natural Cartesian co-ordinate system- and 

system following the computational domain. 

Some finite volume methods used in most of the CFD codes are briefly introduced in 

following sub section. 
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2.6.2.1 SIMPLE, SIMPLEC and SIMPLER methods 

SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The 

original description was given by Patankar and Spalding (1972). The basic concept of this 

method as given by Olsen (2000) is to guess a pressure field and calculate the velocities. 
Then the continuity defect is estimated and it is used to calculate a correction in pressure 

field. The initially computed variables do not satisfy continuity and are denoted with an 
index `*'.The correction of the variables is denoted with an index ( ' ). The variables after 

correction do not have superscript. The process can be written 

P = P*  + P' 
	

(2.45a) 

U = U*  +U' 
	

(2.45b) 

P is the pressure and U is the velocity. Similarly SIMPLEC method is the refinement of 
SIMPLE method. In these methods an equation of pressure is not solved directly, instead 
of that a pressure correction equation is solved. The pressure is obtained by accumulative 
addition-of the pressure correction values. Regarding the difference between the SIMPLE 
and SIMPLEC method, the SIMPLEC should be more consistent as revised and correct 
formula is used. The SIMPLE method moves slower towards convergence than the 

SIMPLEC method. The SIMPLER method is an extension of the SIMPLE method. The 
SIMPLE/SIMPLEC method usually gives good velocity corrections, but the correction of 
pressure is less accurate (Olsen, 2000). It means that a good guess of pressure will give a 
good velocity correction and overall solution will be of better accuracy and instability. 

For large rivers with very mild longitudinal slope such as Brahmaputra River where sub-
critical flow condition and gradually varied flow persists, a good guess of pressure (water 
level) can suitably be done. Hence, SIMPLEC method is expected to give better results 
with stability and consistency in specific scenario of flow field simulation for large rivers 
with mild longitudinal bed slopes. 

2.6.2.2 The Rhie and Chow interpolation 

The Rhie and Chow interpolation is used to prevent oscillation when using a cell centered 
discretization scheme. Its derivation is given by Rhie and Chow (1983). The method 
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introduces additional term when computing the fluxes on the cell faces. The terms can be 

interpreted as fourth order artificial diffusion. However, method is consistent, as there are 

no calibration coefficients involved (Olsen, 2000). The motivation for introducing the 

method originates from the discussion of using staggered and non-staggered variable 

location in a grid. The staggered grid removes some instability experienced in non-

staggered grids. The Rhie and Chow (1983) interpolation is used in connection with 

estimating the velocities on a grid cell faces when fluxes are calculated. The method uses 

the pressure gradients from several grid cells to add an extra term to the fluxes. For 

illustration, Grids for estimation on fluxes on surface e, between cell P and E will be W, 
P, E and EE is shown in Figure 2.3. 

W P 	e E EE 

Figure 2.3 Grids for estimating fluxes on surface e between cell P and E 

2.6.3 BODY FITTED CO-ORDINATE 

The Cartesian co-ordinate systtm is the most common co-ordinate system used to 

describe the location of a point in space. It takes advantage of the three base vectors that 

characterize the system of an ortho-normal system. Computational methods, based on 

Cartesian or cylindrical coordinate systems, have certain limitations in irregular 

geometries. When the boundaries of the domain of the physical problem are not aligned 

along the Cartesian base vector directions, the use of the Cartesian coordinate system is 

inconvenient and often impractical. A co-ordinate system where principal co-ordinate 

directions are aligned along the domain boundaries of any physical problem is referred to 

as a body-fitted coordinate system and is specific to the particular domain of interest. 

Methods based on the body-fitted grid or non-orthogonal grid system have been 

developed and used increasingly in the present CFD procedure, for details one can refer 

to Rhie and Chow (1983), Peric (1985), Demirdzic et al. (1987), Shyy et aL (1988) and 

Karki and Patankar (1988). 
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The flexibility offered by body-fitted grid techniques is useful in the modelling of 

practical problems involving irregular geometries like that of a braided stream. All 

geometrical details can be accurately incorporated and the grid properties can be 

controlled to capture useful features in the region of interest. However, the governing 

equations using the body-fitted coordinate system are much more complex than their 

Cartesian counterpart. The major differences between the two formulations are based on 

the grid arrangement and -the choice of dependant variables in the momentum equations. 

2.6.3.1 General curvilinear coordinate system 

The choice of a proper grid arrangement is closely related to that of the dependent 

variables in the momentum equations. The configuration should be such that it does not 

admit spurious solutions. The staggered grid arrangement wherein scalar variables are 

stored at cell nodal centers and velocity components at cell faces, has long been preferred 

on account of its desirable pressure velocity coupling characteristics as described by 

Patankar (1980). 

When Cartesian velocity components are retained as dependent variables and the 

coordinates are transformed, such formulation of the governing equations is considered 

partial co-ordinate transformation. This has been extensively used in the past, primarily 

on account of its simplicity. The Cartesian velocity components have been widely used as 

the dependent variables in non-orthogonal coordinate systems (Maliska and Raithby, 

1984 and Shyy et al., 1985). The curvilinear components of velocity change their 

directions and tend to "follow" the grid lines. This feature makes them more attractive for 

highly non-orthogonal grids and geometries with strong curvature. However, due to the 

changes in their direction the governing equations are very complicated and involve 

curvature source terms that account for the fact that momentum is conserved along a 

straight line. 

2.6.3.2 Generalized coordinate transformation 

The well-known Cartesian coordinate system is characterized by the three base vectors, 

which have preferable properties of orthogonality and spatial invariance. However, in the 
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General Curvilinear Coordinate System, each coordinate needs to be described by two 

sets of base vectors. Sharatchandara (1995) explained that one of the base vectors will be 

parallel to the coordinate lines and the second one will be normal to the coordinate 

surfaces, in order to characterize the system. Figure 2.3 shows the covariant (tangential to 

a line along which the coordinate varies) base vector (at ) in the direction and the 

contra-variant (normal to the surface S (77,4) on which 	is constant) base vector 

)associated with the coordinate direction. Covariant and contravariant base vectors 

may be similarly described for the other two coordinate directions (q,)). 

The coordinate system will be considered as non-orthogonal, if the surfaces of the 

constant are not normal to the lines along which the coordinate varies, even if the 

coordinate system is orthogonal at some points of the domain. It has to be noted that if 

the surface S(ri,) is perpendicular to the line c  at point P, then there will be no distinction 

between the covariant and contra-variant base vectors as can be seen in Figure 2.4. 

When the covariant and contra-variant base vectors, at different locations, are oriented in 

different directions, the body-fitted coordinate system is not spatially invariant. It is more 

preferable to have a spatially invariant basis for the representation of the base vectors at 

all points of the domain. The Cartesian coordinate basis, the only such basis in three- ., 
dimensional space, is generally used in the representation of the base vectors in a general 

curvilinear non-orthogonal coordinate system. 

Figure 2.4 Covariant and contra-variant base vectors 

47 



When the covariant and contra-variant base vectors, at different locations, are oriented in 

different directions, the body-fitted coordinate system is not spatially invariant. It is more 
preferable to have a spatially invariant basis for the representation of the base vectors at 

all points of the domain. The Cartesian coordinate basis, the only such basis in three-

dimensional space, is generally used in the representation of the base vectors in a general 
curvilinear non-orthogonal coordinate system. 

Figure 2.5 shows a non-uniform non-orthogonal physical plane x-y which is to be 
transformed to a uniform orthogonal computational plane 	Where and rl are known 
to be as: 	(x, y) and I/ 	y). It is highly recommended that this transformation be 
one-to-one and invertible. It is this kind of mapping transformation from the x-y plane to 

the &I plane where every single-point in the physical domain has its own corresponding 

point in the computational domain. By following this procedure, we will end up with a 

number of rows and columns in the computational domain that correspond to rows and 
columns in the physical domain as mentioned by Sharatchandara (1995). 

Y 

(a) Physical domain (b) Computational domain 

Figure 2.5 Transformation from (a) physical to (b) computational space 

2.6.3.3 Grid generation methods 

The field of grid generation is very wide and the numbers of studies on this subject are 
available in literature. Thompson (1982) and Thompson et al. (1985) present a 
comprehensive introduction to the methods of grid generation. Grid generation in one 
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dimension is straightforward. The two boundaries (i.e., end points) of the physical space 

must be defined, and the problem reduces to determining the grid spacing in one 

dimension. One dimensional grid generation is important in itself for the use of one 

dimensional problem and in two-dimensional grid generation, where the boundaries of 

two-dimensional space consist of several one-dimensional spaces, and so forth. Grid 

generation within two- and three-dimensional spaces is considerably more complicated 

than one-dimensional grid generation (Hoffman, 1992). 

Available grid generation techniques can be generally classified into three general 

categories: (i) Conformal mapping, (ii) Algebraic methods, and (iii) Differential equation 

methods. Conformal mapping is based on a complex variable theory, which has 

limitations to two-dimensional problems. Consequently, this method is not as general as 

the other methods and will not be considered further. Algebraic methods and differential 

equation methods can be applied to both two and three dimensional spaces. 

Consequently, they are the methods of choice. A brief overview of both of these will be 

mentioned in the next section. 

2.6.3.3.1 Algebraic methods 

The algebraic grid generation technique is based on the specification of algebraic 

equations for the Cartesian coordinates x, y and z in terms of general curvilinear 

coordinates 	lb and C Karki (1986) summarized the algebraic features of such 

equations as stretching transformation, shearing transformation, and blending function or 

isoparametric transformation. For example, the shearing transformation is a linear 

transformation used to non-dimensionalize the distance between two physical boundaries. 

The physical domain illustrated in Figure 2.6a can be discretized using the algebraic 

sheared transformation. The x-coordinate can be transformed by any one dimensional 

transformation, if needed. It is simply discretized into equally spaced points. The y-

coordinate is then discretized into equally spaced points at each x location by the 

normalizing transformation technique as: 

y = 
77-1 Y(x) 

/Lax — 1  

(2.46) 
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0.5 	1 	1.5 	2 	2.5 x- axis 

where, Y(x) is the upper boundary. The results of the complete transformation are 

illustrated in Figure 2.6b. The reader may refer to Hoffman (1992) for further 

information. 

Transfinite interpolation is considered to be a highly advanced method of algebraic grid 

generation technique as described by Gordon and Hall (1973). The location of the grid 

points inside the domain is determined by a series of uniform variation interpolations 
between the boundaries. The degree of freedom of the blending function can be either 

linear or higher order which controls the grid spacing and angles at the intersection. The 
choice of higher order is preferable because it gives more flexibility in controlling the 
gridline spacing and the angles at which grid lines meet the boundaries. However, this 

 may create an overlapping , 
 atid crossover of the grid lines. For further information the 

reader may refer to Thompson et al. (1985). 

2.6.3.3.2 Differential equation methods 

Algebraic grid generation techniques mentioned above have some disadvantages 
associated with the grid. Discontinuities at the intersection of cell faces, crossover of the 

gridlines, and undesirable gridline spacing are some of them. A more consistent method 

x- axis 

(b) 
Figure 2.6 Grid generation using normalizing transformation technique (a) 
physical domain and (b) grid point distribution (Hoffman, 1992). 
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to overcome these problems is the use of a system of partial differential equations to 

obtain a higher degree of grid smoothness. Grid generation using partial differential 

equations involves the following steps: (i) determining the grid point distributions on the 

boundaries of the physical domain, and (ii) specifying the interior grid points by using 

partial differential equations that satisfies the grid point distributions on the boundaries. 

Any of the three classical types of partial differential equations (i.e., elliptic, parabolic, or 

hyperbolic) may be used as the governing grid generation equation. The elliptic grid 

generation technique discussed by Thompson et al. (1985) is considered as the well-

known method in this field. The most common elliptic partial differential equation is the 

Poisson equation (in two-dimensional domain): 

V2  =L 1- YY =*,77) 

V 2  = 77.xx ± yy 	,77) 

(2.47) 

(2.48) 

Using the inverse transformation and some mathematical manipulations, one can derive 

the following elliptic partial differential equations for the Cartesian coordinates: 

— 2fix + yx = —J 2 (PXe Qx 

aYet — 2/6)1471 + 2Y,iii —J2 (PY 

where 

a = X2 + y2 
rl 

13= x4 x77 + y0/,7  

7=-4 

and J.  is the Jacobian of the coordinate transformation defined as: 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 
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These sets of equations need to be solved numerically, for x and y with respect to and ri 

with the known prior boundary condition specifications. Parameters or control functions 

that can control the coordinate line spacing are non-homogeneous terms P and Q. 

The three-dimensional grid generation method is a combination of a series of two-
dimensional grid slices, as referenced by many researchers. For both internal and external 

flows, the elliptic grid generation method works fine. However, the hyperbolic grid 
generation method is preferred for external flow since the hyperbolic equations can be 

solved by non-iterative marching techniques as proposed by Steger and Sorenson (1980). 

2.6.4 NUMERICAL SIMULATION PROCESS AND ACCURACY 

The starting point of any numerical simulation process is the physical system which 
should be described. Figure 2.7 shows schematically the whole procedure that will be 
performed in a numerical simulation. First, a mathematical formulation for the behavior 
of the physical system has to be described. This step will yield the first of the three types 
of systematic errors involved in the simulation procedure as mentioned by Breuer (1998). 

The formulation error describes the difference between the behavior of the physical 

system and the exact solution of the mathematical formulation. After the mathematical 

formulation, the basic equations have to be discretized because often no analytical 
solution exists for a non-linear system of equations. This introduces the second type of 

error, called discretization error, defined as the difference between the exact solution of 
the mathematical formulation and the exact solution * of the discretized equations. In 

Computational methods, the size of this error can be minimized by choosing the proper 
discertization method and a sufficiently fine grid. Finally the third type of error, called 
convergence error, is due to the difference between the iterative and the exact solution of 
the discretized equations. It depends on the solver and the convergence criteria chosen. 

These types of errors should be clearly distinguished even though they are in general 

completely mixed up in the numerical solution of a physical problem. However, one 
should be aware of these errors that strongly affect the quality of any numerical 

simulation (Bahaidarah, 2004). 
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2.6.5 BOUNDARY CONDITIONS 

2.6.5.1 Rigid wall boundary conditions 

Near a rigid wall, there may be a bank or island as shown in Figure 2.8. The flow is quite 

complex. A very thin viscous sub-layer exists near a smooth wall, while roughness 

elements on a rough wall affect the flow significantly. Because the velocity gradient is 
quite high there, it is of high cost to resolve the flows in the viscous sub-layer and around 

individual roughness elements. A wall-function approach is often used instead (Wu, 
2007). 

Physical Problem 

Governing Equations 
Boundary Conditions 

Nir 

Mathematical Formulation 

Discretization Error 	Discretization Resolution 

Discretized Equations 

Convergence Criteria Solver 

Tiv  
C Solution of Discretized 

Equations 

Formulation Error 

Convergence Error 

Figure 2.7 Different types of errors involved in a numerical simulation (Bahaidarah,''' 
2004) 

Left bank 

Right Bank 

Figure 2.8 A typical horizontal 2-D computational domain (Wu, 2007) 
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At the sidewall, the logarithmic law is applied to the wall boundary, which is 

	= 1  In Y  
(u, )„ 	K 	Yo 

(2.55) 

where (u.)., =depth-averaged shear velocity at the sidewalls, y =distance from the wall 

and yo  =location of zero velocity near the wall. Upon obtaining the gradient of velocity, 

the velocity at the sidewall is calculated based on the velocity at the adjacent internal 
node (Duan, 2004). Lien et al. (1999 a) has used the same logarithmic law of wall in the 

following way. The law of wall is applied outside the viscous sub-layer and transition 

layer in the range of 30 <y+  <100, in which y+ = u ,yw  /v' and y,„ = distance between the 

first computational grid point adjacent to the wall and the wall itself. Within the wall 

region, the universal law of the wall is applied as, 

u+ = lnkEy+ 
	

(2.56) 

where u+ = u„, I u., u., =depth-averaged resultant velocity near the wall, and E( 

roughness parameter)= 9.0. On the basis of law of the wall, a so-called wall function 
(Rastogi and Rodi, 1978) is formulated, which links the near-wall velocities. Using the 
logarithmic velocity law; given in Eq. (2.56) and the expression for wall shear stress i.e. 

zw  = 	can be expressed as (Biglari and Sturm, 1998) 

r 	KU U „, 	*  *  
p 	(Ey' ) (2.57) 

The above wall shear stress relation in Eq. (2.57) is used as the wall boundary condition 
and is substituted into the momentum equation in the wall region to solve for the velocity 
component parallel to the wall. 

2.6.5.2 Inflow and outflow boundary conditions 

For subcritical flow, a boundary condition is needed at each inlet and outlet in order to 
derive a well-imposed solution while for supercritical flow two boundary conditions 
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should be specified at each inlet. For the sake of simplicity and cases of macro domain of 
alluvial rivers, only the subcritical flow case is considered below. The inflow boundary 

condition is usually a time series of flow discharge. However, a lateral distribution of 
velocity at the inlet is required in the depth-averaged 2-D model. Duan (2004) has 

directly used resistance equation for steady flow discharge at inlet. The total discharge is 
distributed along the cross section according to the local conveyance. 

h5/3 q, = K 1 
n 

(2.58) 

where qi  =unit discharge, K =local conveyance coefficient and Manning's roughness 

coefficient. The current version of her model allows the specifications of roughness 

coefficient denoted as roughness height or Manning's roughness coefficient for each 

computational node. However, Duan (2004) has chosen the roughness coefficient as a 
constant for each case based on the bed roughness conditions described in the original 

experiments. Because the total discharge can be calculated as the integral of unit 

discharge across channel width, the following equation was applied. 

" h Q= fq,ds = K .Hcis (2.59) 

where s denotes the direction of channel width and the flow conveyance and K can be 

obtained as follows: 

K = 	 

Sh15/3  ds 
(2.60) 

At the outlet, Duan (2004) has set surface elevation as a constant, which is the observed 
surface elevation at the experiment. The velocity of the outlet cross section is calculated 

based on the total discharge and flow depth at the outlet cross section. Wu (2007) 

mentions that the stream-wise (resultant) velocity U at each computational point of the 

inlet located in a nearly straight reach may be assumed to be proportional to the local 

flow depth i.e., U cc h' Here, r is an empirical exponent; r 2 /3 for uniform flow. A 
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small r value means a fairly uniform distribution of velocity along the inlet cross-section. 
B 

Therefore, for a given total inflow discharge Q . juhd y' , U is determined by 
0 

U = B  Qhr 	
(2.61) 

f
hi" dy' 

where B is the channel width at the water surface, and y' is the transverse coordinate. 

The inflow velocity direction must also be specified; it essentially determines the two 

components of velocity in the x and y directions at each point of the inlet. The boundary 

condition at the outlet may be a time series of the measured water stage, a stage-discharge 

rating curve measured or generated using the uniform or critical flow condition, or a non-

reflective wave condition, depending on the outlet configurations. For tidal flow, the tidal 

level may also be determined using the major astronomical constituents of tide in the 

study reach (Wu, 2007). If a k-e turbulence model is used, boundary conditions should be 

given for the turbulent energy and its dissipation rate at the inlet and outlet. At the 

outflow boundary, located in a reach with simple geometry and far from hydraulic 

structures, the gradients of flow velocity, turbulent energy, and dissipation rate can be 

given zero (Wu, 2007). 

2.6.5.3 Wetting and drying techniques 

In the calculation of flows in open channels with sloped banks, sand bars, and islands, the 

water edges change with time, and some part of the domain might be dry. A number of 

methods have been reported in the literature to handle this problem. They may be 

classified into two groups. One group tracks the moving water edges and adjusts the 

computational mesh to cover the wet domain. This group can use the boundary-fitted grid 

at each time (iteration) step and achieve better accuracy around the water edges. 

However, it results in complicated codes and perhaps requires more computational effort. 

The other group uses the fixed grid that covers the largest wet domain and treats dry 

nodes as part of the solution domain. The latter group includes the "small imaginary 

depth," "freezing," "porous medium," and "finite slot" methods (Wu, 2007). 
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The "small imaginary depth" method uses a threshold flow depth (a low value, such as 

0.02m in natural rivers and 0.001m in experimental flumes) to judge drying and wetting 

at each time step. If the flow depth at a node is larger than the threshold value, this node 

is considered to be wet, and if the flow depth is lower than the threshold value, this node 

is dry. The dry nodes are assigned zero velocity. The water edges between the dry and 

wet areas can be treated as internal boundaries, at which the wall-function approach may 

be applied. The dry nodes can be excluded from the computation in an explicit algorithm, 

but must usually be included in an implicit algorithm. In the latter case, the "freezing" 

method is often adopted (Wu, 2007). 

The "freezing" method also adopts a threshold flow depth to judge wetting and drying in 

the computational domain. At dry nodes, the Manning n is given a very large value, such 
as 1030; therefore, the calculated velocity is zero and the water level does not change (as 

it is frozen). The "freezing" method can include dry nodes in an implicit algorithm. 

However, it should be noted that the water level gradient may induce false flow notions 

at the dry nodes. To avoid this problem, a horizontal water level profile at the dry 'nodes 

may be assumed (Wu, 2007). The "porous medium" method (Ghanem, 1995; Khan, 

2000) assumes that the bed at the dry nodes is a porous medium and the flow can extend 

into the dry bed. Based on a specified minimum depth criterion, either the St. Venant or 

groundwater equations are applied at a particular computational point.. The "finite slot" 

method proposed by Tao (1984) is similar to the "porous medium" method. In the "finite 

slot" method, a dry node is cut into two slots (with infinitesimal width and infinite depth) 

parallel to the x and y coordinates, respectively, in which the water is assumed to move. 

Thus, the water depth is kept positive artificially, even if the bed is dry. Different 

momentum equations are used at the dry nodes in the "porous medium" and "finite slot" 

methods, but the continuity equation at the dry nodes in both methods can be written'as 

ah 	r 
f at 

-EV -ku )= 0 (2.62) 

where f is the storativity in the "porous medium" method, or the slot width in the "finite 

slot" method. The slot width is given as 
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1 	zs > zb  

where zb  is the bed elevation; e0  is the slot width, with a value between 0.02 and 0.05, 

when zs  << zb  ; and a is a coefficient, which is usually larger than 2.0. 

2.6.6 GRID ARRANGEMENT AND VELOCITY COMPONENTS 

2.6.6.1 Orthogonal coordinate 

Orthogonal grid formulation is the most employed scheme for computing fluid flow in 

complex geometrical domains. This type of grid is popular because either the domain of 
interest can be mapped onto orthogonal coordinates or nearly orthogonal grids can be 

generated by using an advanced grid generation technique such as elliptic differential 
equations. The merit of such a formulation is the simplicity of the governing equations of 

fluid flow when compared to its non-orthogonal grid counterparts. Additional terms arise 

because of the non-orthogonality of the coordinate system which would vanish if an 

orthogonal system were to be employed. The disadvantage of using orthogonal grid 
generation is the limitation of its applicability. In two-dimensional, the controlling of the 
gridline spacing is hard even if special techniques were to be used. The generality of the 
non-orthogonal coordinate formulation makes it more favourable. 

2.6.6.2 Staggered and non-staggered grid 

It is an issue to select the points in the domains at which the values of the unknown 

dependent variables are to be computed. The obvious choice is to store all the variables at 
the same locations and to use the same control volumes to all variables. Such a grid is 
called "collocated" or non-staggered grid. Since many of the terms in each of the 
discretized equations are essentially identical, the number of coefficients, that must be 
computed and stored, are reduced and the programming effort is simplified by this type 
of grid. 

(2.63) f = 
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The non-staggered grid arrangement also has significant advantages in complicated 

solution domains, particularly when the boundaries have slope discontinuities or the 

boundary condition itself is discontinuous. All flow variables are stored at the cell 

centers. So solution procedure is simplified using less memory usage with respect to 

staggered grid arrangement in developed computer programs. A set of control volumes 

can be intended to fit the boundary including the discontinuity. Other arrangements of the 

variables lead to some of the variables to be located at the singularities of the grid, which 

may lead to singularities in the discretized equation as mentioned by Ferziger and Peric 

(1996). However, a serious drawback of this arrangement is that it may give rise to a 

checkerboard pressure pattern and a wavy pressure field may be interpreted as uniform 

by the momentum equations as explained by Patanker (1980) due to weak coupling 

between velocity and pressure. However, this problem is avoided by adopting Rhie and 

Chow interpolation technique (1983) into the numerical solver. Rhie and Chow (1.983) 

presented a novel way of treating the convective terms in the momentum equations. They 

used the pressure difference between adjacent nodes instead of alternate nodes to 

calculate the cell face velocities. The best advantage of the staggered arrangement is the 

strong coupling between the velocities and the pressure (Figure 2.9). This will help to 

avoid some convergence problems and oscillation in the pressure and velocity fields in 

specific conditions. 

Figure 2.9 Example of staggered grid in two-dimension (Bahaidarah, 2004) 
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2.7 CHARACTERISTICS AND MODELLING OF BRAHMAPUTRA 
RIVER 

2.7.1 THE BRAHAMPUTRA RIVER SYSTEM 

The Brahmaputra River, termed as a moving ocean (WAPCOS, 1993), is an antecedent 

snow-fed large Trans-Himalayan river which flows across the rising young Himalayan 

range. Considerable variations in width, gradient, discharge and channel pattern occur 

throughout its course. Geologically, the Brahmaputra is the youngest of the major rivers 
of the world and unique in many respects. It happens to be a major river for three 

countries, viz., China, India and Bangladesh. The river basin of the Brahmaputra is 

bounded on the north by the Kailas and Nyen- Chen-Tanghla ranges of mountains; on the 

east by the Salween river basin and the Patkai range running along the Indo-Myanmar 
border; on the south by the Nepal Himalayas, the Naga and Barail ranges and the 

Meghalaya Plateau; and on the west by the Ganga river basin (Sarma, 2005). 

Throughout its course within India, the Brahmaputra is braided with some well defined 

nodal points with rock crops where the river width is narrow and restricted within stable 
banks. All along its course in the valley, abandoned wetlands and back swamps are 

common. The river carries about 735 million metric tons of suspended sediment loads 
annually. 

The Indian section of the Brahmaputra River receives innumerable tributaries flowing 
down the northern, north-eastern and southern hill ranges. The mighty Brahmaputra 
along with the well-knit network of its tributaries controls the geomorphic regime of the 
entire region, especially the Brahmaputra valley. In the north, the principal tributaries are 
the Subansiri, the Jia Bhareli, the Dhansiri, the Puthimari, the Pagladiya, the Manas and 
the Champamati. Amongst these, the Subansiri, the Jia Bhareli and the Manas are the 
Trans-Himalayan Rivers. The principal south bank tributaries are the Burhi Dehing, the 
Disang, the Dikhow, the Dhansiri (south), the Kopili and the Krishnai. 

It is observed that three Trans-Himalayan tributaries, the Subansiri, the Jia Bhareli and 
the Manas on the north have a basin more than 10000 km2, i.e., only two south bank 
tributaries namely the Dhansiri and the Kopili form a basin area more than 10000 km2. 
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The Manas River combined with the Aie and the Beki rivers drains biggest area of 41, 
350 km2. The 442 km long Subansiri River and the 360 km long Burhi Dehing River are 

considered longest, respectively, among the north-bank and south bank tributaries (Water 
Year book, CWC, 2002). In terms of the average annual discharge, the Subansiri carries a 

discharge of 755-771 m3/sec, which ranks first among all the important tributaries. The 
Jia Bhareli and the Manas in the north carrying an average annual suspended sediment 

load of 2013 ha-m and 2166 ha-m, respectively, are the leading rivers in the case of 
sediment discharge. Of all the north and south bank tributaries, as many as fourteen have 

sediment yields in excess of 500 tons/ km2/year, the highest being 4721 tons/km2  /year 

(Sankhua,2005). 

2.7.2 HYDROLOGIC AND PHYSIOGRAPHIC CHARACTERISTICS OF THE 
BRAHMAPUTRA RIVER 

The statistical details of the river are described below (Sankhua, 2005). 

(a) Total basin area from its source to its confluence with Ganga at Goalundo in 

Bangladesh 	 580,000 km2  

(i)Basin area within Tibet 	 293,000 km2  

	

(ii)Basin area in Bhutan and India 	 240,000 km2  

(iii) Basin area in Bangladesh 	 47,000 km2  

(b) Length from its source to outfall in Bay of Bengal 	 2,880 km 

(c) 	Gradient 

(i) Reach within Tibet 	 1 in 385 

(ii) Reach between Indo-China border and Kobo in India 	1 in 515 

(iii) Reach between Kobo and Dhubri 	 1 in 6,990 

(iv) Reach within Bangladesh 

First 60 km from Indian Border 	 1 in 11,340 

Next 100 km stretch 	 1 in 12,360 
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Next 90 km stretch 	 1 in 37,700 

(d) Observed discharge 

(i) Maximum observed discharge at Pandu (on 23.8.1962) 	 72,727 m3/sec 

(ii) Minimum observed discharge at Pandu (on 20.2.1968) 	 1,757 m3/sec 

(iii) Average dry season discharge at Pandu 	 4,420 m3/sec 

(iv) Normal annual rainfall within basin ranges between 2,125 mm in Kamrup 
District of Assam and 4,142 mm in Tirap district of Arunachal Pradesh. 

2.7.3 CHANNEL PROCESS 

The Brahmaputra River in India forms a complex river system characterized by the most 
dynamic and unique water and sediment transport pattern. The Brahmaputra is the fourth 

largest river in the world (Goswami and Das, 2000). The water yield from per unit basin 
area is among the highest of the major rivers of the world. The Jia Bhareli, a major 

tributary, carries a mean annual water discharge of the order of 0.0891 m3/sec/km2. As 
estimated by Goswami (1982), the Brahmaputra yields 0.0306 m3/sec/km2  at Pandu. As 
regards sediment transport, the river has also set records in carrying large volumes of 
sediment. The high intensity of monsoon rains, easily erodible rocks, steep slopes, and 

high seismicity contribute a lot by rendering the river a heavily sediment-laden one. 
Thus, the Brahmaputra becomes one of the leading sediment carrying rivers of the world. 

Amongst the large rivers of the world, it is second only to the Yellow river in China in 
the amount of sediment transport per unit of basin area Goswami and Das, 2000). 

The Brahmaputra is a uniquely braided river of the world. Although braiding seems to be 
best developed in rivers flowing over glacier outwash plains or alluvial fans, perfect 

braiding is also found to occur in large alluvial rivers having low slope, such as the 
Brahmaputra in Assam (India) and Bangladesh or the Yellow River in China. The Assam 
section of the Brahmaputra River is in fact, highly braided and characterized by the 
presence of numerous lateral as well as mid channel bars and islands (Goswami and Das, 
2000). 
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The high degree of braiding of the Brahmaputra channel near Dibrugarh and downstream 

of Guwahati is indicated by the calculated braiding indices of 5.3 and 6.7 respectively for 

the two reaches, following the method suggested by Brice (1964). A braiding Index of 

4.8 for the entire Assam section of the river calculated on the basis of satellite data of 

1993 also suggests a high degree of braiding of the Brahmaputra River (Sankhua, 2005). 

Further, based on remote sensing data study, Sharma and Akhtar (2010) reported a 

progressive decrease in Plan Form Index (P F1) values in different reaches of 

Brahmaputra River in Assam flood plain during recent years (1990-2007). This is 

indicative of intensification of braiding process in recent years. 

The basin with varied terrain characteristics and being an integral part of the monsoonal 

regime of south-east Asia shows a marked spatial variation in the distribution of 

precipitation. The rainfall in the Teesta valley varies from 164 cm in the south to 395 cm 

in the north. The average annual rainfall in the lower Brahmaputra valley is 213 cm while 

the same in the north-eastern foothill belt is 414 cm. The basin as a whole has the average 

annual rainfall of 230 cm with a variability of 15-20%. The Himalayan sector receives 

500 cm of rainfall per year, the lower ranges receiving more than the higher areas 

(Goswami , 1985). 

In the sub-Himalayan belt soils with little depth developed over the Tertiary sand stones 

generally belong to red loam, laterite, and brown hill soil type with admixtures of cobbles 

and boulders. The greater part of the Brahmaputra valley is made up of new alluvium of 

recent deposition overlying Tertiary, Mesozoic and Archaean bedrocks. Along the 

piedmont zone, there occurs some patches of older alluvium extending along the the 

tributaries flowing from the Himalayan foothills. The soils of the Meghalaya plateau and 

the Mikir Hills in the south are of laterite and loamy silt and fine silt types. 

In general, braiding in the Brahmaputra follows the mechanism of central bar type of 

braid formation. During high flow, a central bar is deposited in the channel and gradually 

the bar accretes vertically to the level of the floodplain. It also builds on the downstream 

end through deposition of bed load material due to the slack water occurring behind the 

bar. The bar growth causes a decrease in total cross-sectional area leading, thereby, to the 
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instability of the channel. Lateral erosion then follows on one or both the banks. Through 

repetition of this process in the divided reach, a well developed braided reach with 

multiple sandbars and islands is produced (Sankhua, 2005). 

In the Assam section of the river, the presence of nodes of stable banks of rock outcrops 

or stiffed clay formation is found to effect the formation and location of the bars. There 

are nine nodal reaches of narrow constriction at various locations along the Brahmaputra, 

which are at Murkongselek (4.8 km), Disangmukh (5.10 km), downstream of Jhanjimukh 
(3.75), upstream of Dhansiri north (4.0 km), downstream of Dhansirimukh (4.4 km), 

upstream of Tezpur (3.6 km), Pandu Guwahati (1.2 km), U/s of Sualkuchi (2.4 km) and 
Pancharatna (2.4 km) (Sankhua, 2005). Since banks are relatively stable in these reaches, 
the river scours deeper to accommodate the flood discharge. The scoured debris is then 
deposited in the channel immediately downstream from the narrow section. As a result, 

the channel becomes wider and bars and islands are produced. Formation of bars causes 
reduction in cross sectional area and the river, therefore, cuts its banks laterally to 

accommodate the discharge. Thus, in the downstream of the nodes, intense braiding 

develops resulting in channel widening through continuous migration of both banks of 

the Brahmaputra (Sankhua, 2005). 

As reported from the studies carried out on braided rivers of the world, the major factors 
thought to be responsible for braiding and bar formation are steep channel gradient, high 
erodibility of bank materials, great variability in discharge, overabundance of load, and 
aggradation of the channel bed. In case of the Brahmaputra River in Assam bar formation 
and channel division are owing to a combination of factors like high variability in 

discharge, excessive sediment transport, easily erodible bank materials and aggradation 
of the channel. Being the fourth largest river in the world with an average discharge of 

19,830 m3/sec at its mouth, the Brahmaputra carries 82% of its annual flow at Pandu 
(Assam) only during the rainy season from May to October (Goswami,1992). The 
maximum and minimum mean monthly flows in the river during 1990-2002 are 48,160 
m3/sec and 3,072 m3/sec, respectively. On an average, therefore, the maximum flow is 
more than fifteen times the minimum (Goswami and Das, 2000). 
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High variability in discharge of the river is mainly caused by seasonal rhythm of the 

monsoon and the freeze-thaw cycle of the Himalayan snow. As regards the pattern of 

sediment transport, the river has the record of carrying excessive sediment load which is 

believed to be one of the important factors responsible for braiding. 

2.7.4 2-D or 3-D mathematical modelling for Brahmaputra River 

In view of the extensive review of literature presented in the previous section, it can be 

summarized that a number of attempts have been done to simulate the realistic flow field 

including transverse components in complex geometry like bends, curves (Lien et al., 

1999; Odgaard, 1989a; Duan, 2004; Seo et al., 2008). However, assessment of flow-field 

in braided river like that of Brahmaputra with 'secondary flow correction' in complex 

geometry is hardly found in literature. 

Moreover, braiding seems to be best developed in rivers flowing over glacier outwash 

plains or alluvial fans, perfect braiding is also found to occur in large alluvial rivers 

having low slope, such as the Brahmaputra in Assam (India) and Bangladesh or the 

Yellow River in China. The Assam section of the Brahmaputra River is in fact, highly 

braided and characterized by the presence of numerous lateral as well as mid channel bars 

and islands (Goswami and Das, 2000). Due to these facts, the research on Brahmaputra 

River in the past mostly relied on field investigation and physical modelling. Only after 

1980s, numerical modelling, especially 1-D modelling has been gradually applied in flow 

simulation and sediment prediction in Brahmaputra River (Sharma, 2004). Yet successful 

implementation of 2-D depth averaged modelling in Brahmaputra River Reaches in 

Assam Flood Plains is hardly found in literature due to its highly complex topography 

and difficulty in reproduction of geometric data mathematically. 

2.8 SUMMARY 

In this chapter, a comprehensive review of literature is presented with regard to braided 

river characteristics, 2-D depth averaged modeling for rivers, secondary flow and its 

corrections in controlling equations in river flow scenario, discretization methods, 

coordinate transformation. Investigations in these potential research areas have been 
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highlighted from earlier works to the developments in more recent years. The gaps in the 

concurrent research in relation to braided river modelling in particular to Brahmaputra 

River have also been attempted to be adequately focused. 

Based on the comprehensive literature review, following observation can be broadly 
summarized in relation to mathematical modelling of the braided stream in particular to 
Brahmaputra River. 

1. One dimensional mathematical modelling for flow field simulation in braided river 
is highly approximated and fallacious on account of numerous assumptions. It 
considers only unidirectional flow variability. All the model parameters, state 

variables and forcing functions are approximated through average valued composite 

representation across the flow in the stream. Naturally, 1-D models are insufficient 
to deal with secondary currents or helical flow, vortex formation, flow reversal and 

anisotropy effects. 

2. The preferred way to represent the fluvial process in the braided river adequately 
with inclusion of 3-D flow structures is obviously the development and application 
of 3-D models. However, there are some practical limitations to apply 3-D models 
for reach scale modelling. 3-D modelling is to be developed by superimposing 

numerous fluvial processes especially in braided stream through mathematical 

functions and has too many imponderables for predicting flow variables. It is 
computationally tedious and highly expensive in terms of numerical solution 
algorithm for large flow domain such as where the width of the channel is in the 
order of 20 km with 100km of reach length. 

3. The best alternate way to find the solution is to reduce the dimension of the 
modelling to ease the computational effort without any significant compromise in 
the accuracy and objectives. In lieu of that, 2-D model can be applied. 

4. In wide braided rivers where water depth is very small in compare to width, the 
vertical acceleration of flow can be reasonably ignored and pressure is assumed to be 
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hydrostatic. The velocity is depth averaged to reduce the dimension of the 
modelling. 

5. However, on account of reduction of dimension in 2-D from 3-D , the accounting of 
secondary flow or helical flow will be reflected in terms of only flow in transverse 

direction (vertical velocity is ignored as stated earlier) 

6. Especially in braided channels where flow domain may have a number of 

curvilinear multiple channels with considerable skew symmetric flow domain, the 
accuracy of flow field can possibly be improved with suitable incorporation of 

realistic secondary flow (effect of vertical acceleration due to skew symmetric 

domain characteristics) into the governing 2-D flow equations through introducing 

additional source /sink terms due to flow dispersion tensor (secondary flow 
corrections). This way an enhanced 2-D depth averaged model can be developed 

whose result is expected to be close proximity to realistic physical flow scenario. 

7. The dispersion stresses due to skew-symmetric flow domain have been estimated 

empirically by numerous investigators like Lien et al. (1999), Hsieh and Wang 

(1999); Nagata et al.( 2000); Duan (2004), Duan and Julien (2005), Seo et al. 2008 

etc. The empirical models given by earlier investigators for estimating ,,flow 

dispersion stress tensor can possibly be improved further to get better estimation of 

flow dispersion stresses. Better flow dispersion stress model can bring forth a better 
2-D depth averaged enhanced model for realistic prediction of flow field. 

8. The skew symmetric flow domain is the essential feature of braided streams. Use of 

the Cartesian co-ordinate is often inconvenient and impractical representing the skew 

symmetric irregular geometry when boundaries of the domain are not aligned along 

the Cartesian base vector directions. Hence body fitted coordinates system is 

employed whose principal coordinate directions are along the domain boundaries. 
The flexibility offered by body-fitted grid techniques is useful in the modelling of 

practical problems involving irregular geometries and like that of a braided stream 

and capable of capturing useful features in the area of interest. 
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9. Reviews of earlier works indicated that braided rivers react to changes in flow stage 

significantly. More quantitative data are needed for research on understanding of the 

processes involved during the flow stages. The apparent complexity the braided 

pattern seems to have implications for the nature of the main processes involved in 
shaping braided morphology, bar genesis and evolution. With significant advances in 
data acquisition techniques such as remote sensing data usage, use of latest 

instrument to measure stage discharge at gauge stations and hydro-graphic data 
collection in close intervals, reliable data become more available on larger rivers, 

such as the Brahmaputra, the issue of morphological processes and their relationship 
to channel scale in braided systems can be addressed though multidimensional 

mathematical modelling with much ease and accuracy. 

10. However, a great deal of uncertainty over the true process representation of braided 
river is yet to be adequately addressed through mathematical modelling of higher 

dimension. Correct process representation of the distribution of flow concentration at 

the channel confluences and around the evolved braid-bars, side-bars and islands 
within the flow domain is yet to be achieved through adequately incorporating its 

effect through tested mathematical functions into the governing equations of 
simulating the flow field. 

11. The problem of key morphological processes of braided channels has yet to be fully 
addressed (Bristow and Best, 1993). The apparent similarities of plan-form and cross-
sectional characteristics require further investigation ((Bristow and Best, 1993). 
Similarly it has been demonstrated by many researchers that a proper understanding 

of the flow and sedimentary processes at channel junctions is fundamental to the 
braided river morphology (Leopold and Wolman, 1957a; Bridge, 1993; Ashworth, 

1996, Sankhua, 2005). The studies to-date that have been carried out to establish 
models and frameworks for understanding braided river behaviour have been mostly 
qualitative in nature. The lack of quantitative studies on morphology and evolution 
braiding pattern with flow stages for braided rivers has impeded the development of 
the understanding of this complex environment further. 
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12. From this review of the literature, it is seen that there is a complete lack of 

quantitative studies on spatio-temporal morphological modelling of the braided rivers 

due to apparent fallacious estimation of transverse flow concentrations around the 

braid bars and sidebars which is a one of the prime causative factor for bed evolution, 

braiding pattern change and influencing the intermittent river bank erosion. Two 

dimensional enhanced flow models can possibly simulate the braiding process 

provided adequate distribution of flow concentration including transverse flow field is 

adequately accounted for into the flow governing equations without going into for 

numerically and computationally expensive 3-D models for macro scale river 

simulation. Moreover 3-D models require reliable three dimensional sediment process 

representations and are highly data intensive. Hence for practical engineering 

purposes, 2-D enhanced models for braided river can fetch equally significant model 

results without much improvement apparently with 3-D models which is still at 

nascent stage of development for macro flow domains with complex bed geometry. 

In view of the above, the objective of the present study is framed to develop and test a 

numerical 2-D enhanced depth averaged model embedded with turbulence and secondary 

flow attributes along with nonlinear stream boundary in a real braided river like 

Brahmaputra in Assam flood plain of Indian Territory. 

yii 

** * * ** * * * ** * ** ** * ** * ** * *** * ** **** * ** ** ** 
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CHAPTER-3 

DESCRIPTION OF STUDY AREA 

3.1 INTRODUCTION 

Stretching within the basin periphery of 82°E to 97° 50' E longitudes and 25° 10' to 31° 
30' N latitudes the river Brahmaputra envelopes a drainage area of 580000 sq.km and is 

recognized to be one of the most braided channel river. The hugeness of the river system 
in terms of the drainage area and the lengths it encompasses may be realised from its 
aerial extent as under. 

Table 3.1 Aerial distribution of the total drainage basin (Bora, 2004) 

Country 
Basin area 

(Km2) 

Channel  Length 
(km) 

I. Tibet (China) 293000 1,625 
2. Bhutan 45000 
3. India 194413 918 
(a) Arunachal Pradesh 81424 278 
(b) Assam 70634 640 
(c) Nagaland 10803 
(d) Meghalaya 11667 
(e) Sikkim 7300 
(f) West Bengal 12585 
4. Bangladesh 47000 337 

Originating in a great glacier mass at an altitude of 5300 m just south of the lake 

Konggyu Tso in the Kailas range, about 63 km southeast of Mansarovar lake in southern 

Tibet at an elevation of 5300m, the Brahmaputra flows through China (Tibet), India and 

Bangladesh for a total distance of 2880 kin, before emptying itself into the Bay of Bengal 
through a joint channel with the Ganga. It is known as the Tsangpo in Tibet (China), the 

Siang or Dihang in Arunachal Pradesh (India), the Brahmaputra in Assam (India) and the 

Jamuna, Padma, and Meghna in Bangladesh. 

Before entering India, the river flows in a series of big cascades as it rounds the Namcha-

Barwa peak. The river forms almost trough receiving the flows of its tributaries both 
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from North and South. The river, with its Tibetan name Tsangpo in the uppermost reach, 

flows through 

Figure 3.1 Location map of the Brahmaputra River in Assam, India (Sarma, 2005) 

southern Tibet for about 1625 km eastward and parallel to tributaries, viz., the Nau Chhu, 

the Tsa Chhu, the Men Chhu, the Charta Tsangpo, the Raga Tsangpo, the Tong Chhu, the 
Shang Chhu, the Gya Chhu, the Giamda Chhu, the Po Tsangpo and the Chindru Chhu 
and the right bank tributaries, viz. the Kubi, the Kyang, the Sakya Trom Chhu, the Rhe 
Chhu, the Rang Chhu, the Nyang Chhu, the Yarlang Chhu, and the Trulung Chhu join the 
river along its uppermost reach. At the extreme eastern end of its course in Tibet the 
Tsangpo suddenly enters a deep narrow gorge at Pe, where in the gorge section the river 
has a gradient ranging from about 4.3 to 16.8 m/km (Figure 3.2). 

The river enters in India near Tuning in Arunachal Pradesh. After travelling for a distance 
of 278 km up to Kobo, it meets with two rivers the Dibang and the Lohit in Assam near 
Kobo. Below this confluence point, the river is known by the name of the Brahmaputra. It 
passes through Assam into Bangladesh and at last it meets with the Ganga near Goalundo 
in Bangladesh before joining the Bay of Bengal. Its total length is 2880 km comprising 
1625 km in Tibet, 918 km in India and 337 km in Bangladesh. It is also one of the most 
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braided rivers in the world with width variation from 1.2 km at Pandu near Guwahati to 

about 18.13 km near Gumi few km distances downstream to this point. 

Traversing through deep narrow gorges of the Himalayan terrain the Tsangpo takes a 

southward turn and enters Indian Territory at an elevation of 660 m. The river then enters 

the State of Assam (India) taking two important tributaries the Dibang and the Lohit. At 

the exit of the gorge the slope of the river is only 0.27 m/km. At the head of the valley 

near Dibrugarh the river has a gradient of 0.09-0.17 m/km, which is further reduced to 

about 0.1 m/km near Pandu (Figure 3.1). The mighty Brahmaputra rolls down the Assam 

valley from east to west for a distance of 640 km up to Bangladesh border (Table 

3.1)(Sarma, 2005). 

3.2 LONGITUDINAL SECTION OF THE BRAHMAPUTRA RIVER 

The longitudinal section of the Brahmaputra River from its origin to the outfall point is 

depicted in Figure 3.2. It is observed that Pasighat, stop is quite steep. As one moves 

from Pasighat to Pandu(Guwahati), bed slope becomes mild indicating that the :flow 

characteristics in downstream reaches is predominantly sub-critical and laden with 

sediment with wide banklines. 

Figure 3.2 Longitudinal profile of the Brahmaputra River (Sarma, 2005) 
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3.3 STUDY AREA 

For the application of developed hydrodynamic model, the reach between measured cross 
sections number-22 (Pandu near Guwahati) to 9 (Jogighopa) released by Brahmaputra 
Board, G.0./.(spanning over about 100 km length in Assam state of Indian Territory) has 
been taken as flow domain and extracted from Satellite image of the year under study. 
Measured fourteen cross-section data (Cross section 22 to cross section 9) for year 1997 
was used (Appendix III). The location of study stretch of Brahmaputra River with 
respect to whole Brahmaputra River in Assam flood pain in India is shown in Figure 3.3. 
Flow domain (Primary Flood Plain) of the study stretch is delineated from geo referenced 
satellite image (IRS-LISS-III satellite imagery) of 1997 was delineated by GIS software 
tools. The delineated image of the study stretch of Brahmaputra River is shown in Figure 
3.4. Figure 3.5 is presented to show the geo-referenced image of the flow domain 
extracted from the imagery of 1997 for further preprocessing to design the geometric data 
for 2-D mathematical modelling. Preparation and processing of the geometric data for the 
study domain is discussed in Chapter 8 of this thesis in detail. 

Figure 3.3 Location of study stretch of River Brahmaputra (NDMA, 2011) 
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kvvvovir River V, 

Figure 3.4 Study area delineated from satellite image (courtesy: NDMA-2011) 

Figure 3.5 River. flow domain delineated from satellite image for the year 1997 
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CHAPTER-4 

DEVELOPMENT OF MODIFIED DISPERSION STRESS 

TENSOR IN TWO DIMENSIONAL CURVILINEAR FLOW 

FIELD 

4.1 INTRODUCTION 

The empirical relations for dispersion stress terms in 2-D curvilinear flow field have been 

given by numerous researchers. Towards this, Engelund and Skovaard (1973) and 

Shimizu and Itakura (1989) predicted the transverse velocity, however it was valid only 

near the bed. Lien et al. (1999) used orthogonal curvilinear coordinate system and 

incorporated the dispersion terms derived from stream-wise and transverse velocity 

profile (de Vriend, 1977). Duan (2004) employed the Cartesian Co-ordinate to facilitate 

model application in meandering and non meandering channels. Duan (2004) found that 

in meandering channel, mass diffusion coefficient is much larger than turbulent diffusion 

coefficient. Mathematical expressions for components of dispersion coefficient tensor 

have been deduced by integrating the product of discrepancy between the depth averaged 

and actual velocity. Duan (2004) deduced the dispersion terms with the assumption that 

the stream-wise velocity satisfies the logarithmic law. It seems that integration by Duan 

(2004) ignored the role of boundary sub-layer formation at the bed. However, this 

assumption may not always hold good in many situations. For example, for very mild bed 

gradient with highly sub-critical flow zones in alluvial river flow case, the boundary sub-

layer is rationally assumed to be intact to satisfy logarithmic law of velocity distribution. 

This chapter attempts to deal with the derivation of flow dispersion tensor in general 

curved channels which are common features in braided and dynamic alluvial streams. 

The objective of this chapter is to derive the appropriate set of mathematical expressions 

for dispersion stress terms for depth averaged 2-D model to be used for complex non-

orthogonal curvilinear flow domain with mild bed slope. The numerical model 

development with finite volume method and the verification of the proposed formulations 

has been discussed in Chapter 9 of this thesis. 
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4.2 DISPERSION STRESS TENSOR 

Components of dispersion stress terms in Cartesian coordinate which can be included in 

momentum transport equations are D.„ Pry, and D yy  . These terms can be expressed as 

follows (Duan, 2004). 

h+ zo  

Dxx  = 	x  — U x )2  dz 

zo 
zo  

D Xy = 	x  — U x Xu y  —U y )dz 
zo  

h+ zo  

D yy  = p(1, y  — y )2  dz 

zo 

where zo=zero velocity level. 

For open channel free surface gravity flow, cohesive terms are non-significant and can be 

neglected. The depth averaged parabolic eddy viscosity model (zero equation model) is 

adopted for the turbulence term. The depth averaged eddy viscosity is computed as 

[Eq.(4.2)] (Kalkwijk and De Vriend, 1980; Zhou, 1995) 

= 1 —
6

KU .h 	
(4.2) 

Where K=Von Karman' coefficient and C=Shear velocity= [c 	-F U 

4.2.1 TRANSFORMED GOVERNING EQUATIONS WITH DISPERSION 
STRESS TENSOR 

The transformed depth averaged governing equations in generalized curvilinear 
coordinate system 	77, r) for continuity and momentum equation (Eqs.4.3, 4.4 and 4.5) 
are derived (detail derivation is presented in Chapter 5) as follows. 

—(phJ)+— a  (phJit)+—(phJiiv) a r 
a 	 a 	 (4.3) 

(4.1) 
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where = aYax  77. = a%,, y =  

a22 = .2  + r/y2  77 	a12 = 2(x11), 	 ),17x) J = 

all 
= 2 + 

In Eqs. (4.3) to (4.5), /in, (m=, ri) are the velocity components in the curvilinear - 

coordinate ( , r ) which relate to Ux  , Uy  as 

(1.14 = 	liyy jrusj 	
(4.6) 

4.2.2 DERIVATION OF DISPERSION STRESS TERMS IN MOMENTUM 

EQUATIONS 

The dispersion terms resulting from the integration of the product of the discrepancy 

between the mean velocity and actual vertical velocity distribution were included in the 

momentum equations to take into account the effect of secondary current. Free surface 

flow in natural rivers is generally classified as turbulent-subcritical within the ranges of 

corresponding values of Reynolds numbers and Froude numbers. One of the important 

aspects of the free surface flow is shear velocity parameter which causes variation in 
velocity in different layers of fluid flow. So from the literature, one can readily assume 

that the stream wise velocity profile satisfies the logarithmic distribution law, 1. e. 

us  
U K 

 
zo* 1  In( z 	 (4.7) 
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where z=vertical coordinate level (See Figure 4.1), us=velocity in stream-wise direction 

and zo is calculated according to flow Reynolds number as follows, 

zo  =0.11 	U•kg<5; 
U •  (4.8) 

zo  = 0.033 k g 	 U•ks >_ 70; •9 	  
V 

zo  = 0.11 (.j* -I- 0.033 k s ..,5 U•ks > 70 

Where in Eq.(4.8), v = Kinematic Viscosity; k g = Roughness height(m) and U .  = Shear Velocity 

Ideally, at the bed boundary, u (stream-wise actual velocity) is zero; but for developing 

numerical scheme, value of base velocity should judiciously be taken non zero value to 
ensure feasible solutions. Hence, it is well justified to exclude boundary sub-layer 

thickness (depth up to which boundary sub-layer is formed) and assign non-zero base 

velocity to achieve numerical solution close to experimental results. In other words, solid 

physical boundary is replaced with fluvial boundary and corresponding fluvial boundary 
condition has to be taken into consideration when analyzing the velocity profile vertically 

(Figure 4.1). 

Duan (2004) computed the depth averaged stream-wise velocity 

1 U = — u dz . 
h 0  (4.9) 

Equation(4.9) implies that the depth in the expression is integrated in denominator, from 

zero to h, instead of 20 (zero bed elevation) to h. Here, modification can be proposed 
through computing the depth averaged stream-wise velocity integrated over the depth 

from zero velocity level (zo ) to water surface elevation (h) as 

h I h 
U S  = 114sdZ Jdz 

zo 	zo 

(4.10) 
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- -Figure 4.1 Schematic diagram to illustrate assumed vertical distribution of 
stream-wise velocity 

• - - —Reference 
— - 

one can 

ithmic velocity profile along the depth, from Eq. (4.'7), 

Integrating the logar  as follo 
finally deduce an expression 

	ws. 

Now 
	 (4.11) 

.14sclz 	
usdz 

—z° 	
z _ 

" ° 	— 

Combining Eq. (

ets 

m 

	

	

the following 
43) and Eq. (4.11), one get

s  
expression,  

s 

Let 



= 	1 	 h 	zo 	1 	z 

K h(1-1o) 	
In 

zo 	zo 	zo 	zo 	zo 	zo 
_ 	1 	zo 	[h 	(h ) 	h 	zo 	in(zoj+ zol, 	 (4.1 

_ 	1 
[ 	In (77 0 ) 	1 + C 0 ] = 

K(1— 170) 	 hi= K(1— co)[1: 	1+ 	zo 
[In ( z 0 ) 	1 + 	 In ( 	)1 

K(1 -770) 
K 0 —1 77 0 ) p., 0 770)[0 —1-1n0 

2c) 

(4.12d) 

(4.12e) 

U,(1 /70) In z  1.7) + 1) 
— 1 — ln  (77,) 

Or, 

u, — U, = (4.15b) 

h U 5   
- = 	 i in (HdZ 5 	 (4.12a) 1  

U • 	rch(1 - 77,3  ) z„ 	zo 
Or, 

h 
U,  = 1 	z 0 	 z In ( 	z 	 (4.12b) 

H U* 	K h(1-77 0 )[z o 	z o 	z o  t 

Or, 
U , 
U . 
Or, 

U , 
U .  
Or, 
U , 
U' 

Dividing Eq.(4.12e) with Eq.(4.7), one obtains, 

In 

 z ) 
zo  )  

U, 
us 	— 770)770 1 — In (70) 

Rearranging the above expression, one has 

(1 — 77 0  )1n (  z 	q o  + 1 + In 770 
u„ 	 71 0 h 
Us 

— 1 = 
710 -1—  In 070) 

Or, 

0 — 770141 — (1 — 77o ) 111 77. - 770  + + in 770 us  -  us  
— U s 	 77 0  —1— In(q0 ) 

us —U = 
77 
	, 

0 -1— In(%) 
((1-770)10-770+1) 

(4.13) 

(4.14a) 

(4.14b) 

(4.15a) 
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The transverse velocity profile is assumed to be linear. As proposed by 
Odgaard(1989a,b), following relation is adopted for this model. 

u„ =U „+ 2v (1- 2  - ) 	 (4.16) 
h  

Where u,,, U,,, and vs  are transverse velocity, depth averaged transverse velocity and the 
transverse velocity at the water surface. Engelund and Skovgaard (1973) derived the 
deviation angle of the bottom shear as follows 

(„) 4u) .7.0_1 
Ts b 	U s

„ 

 b  
(4.17) 

where r=radius of channel curvature and the secondary flow at the surface and the bottom 

are equal. Therefore Eq. (4.17) is used to express transverse velocity at the surface..Thus, 

(vs )b= 7 .0(h/r)(us )b 
	 (4.18) 

Or, 

Substituting Eq. (4.18) in Eq. (4.16), one obtains (same as Duan (2004)'s approach), 

u,, = 	+ 7.0 ---12 - 1  r h 2 

Let us define 

(1 -770) 	= r  
77. -1- In 010) 
Substituting Eq. (4.20), Eq. (4.15b) and Eq. (4.19) convert to; 

(4.19) 

(4.20) 

u s  - u, = ru in (Lh  ) +1) 

-U „ = 7.0 —h  Us z 1 
r h 2 

(4.21a) 

(4.21b) 
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4.2.2.1 Expressions for dispersion stress tensors 

The dispersion stress terms at the stream-wise and transverse directions can be expressed 

as. 

= f p(u., — U z )2  dz 
zo  

D cxY = f p(zi s  - ,Xun  - U n )dz 
.0  

I.+zo  
D er, = fp(u„— u„ )2  dz 

.0  

(4.22a) 

(4 .22b) 

(4.22c) 

where D , D:), and Die,y  are dispersion stress terms in curvilinear coordinate system. 

Substituting Eqs. (4.21a) in Eqs. (4.21b), one can deduce dispersion stress tensor 
presented in following steps. 

(a) The first dispersion term Dom̀  

Substituting Eq(4.21a) in Eq(4.22a), one can get, 

2 

D = py 2U st.I 1(14—z  -I- 1) dz 	 (4.23) 

	

zo 	h 

Now consider z/h.--122, then, dz=h dm, mi=zo/h=rio lower integral bound, m2=1//h----1 
upper integral bound. With these substitution Eq.(4.23) becomes 

	

= py 2U stl ,h[ if (m 	D2  dm + 2m f In (in 	+ (1 - 01 	 (4.24a) , 
no 	 710 

Or, 

D: = py2U sU s hKm(ln m)2  — 2m In m + 2 mi. + 2(m In m — m)„o  +(1— 77).1, 
	 (4.24b) 

Or, 

D:= py2U3U5 h12— 770 0n 770 y+ 2770  In 770  — 2770  + 2(— 1 —770  In 770  + 770+1 — 
	 (4.24c) 
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One gets the final expression as, 

= py 2U sU s h[ qc, 770Y - 770 +1] 	 (4.24d) 

(b) The second dispersion term Pr; 

Similar to the above, one can get expression for the Second Dispersion Stress Term 

h 

D A.3, = p f yU ,(1n( -h-) 

z o  

Or, 

D:y  = -7.0 py 

Or, 

D:y  = -7 .0 py 

—
h

U 	s 

— U sU r 

+ 1) 

z„ 

1 	
hi 

i(in(T)+ 

h 
x 7.0 —Ur  

z 

r , 
In

z 
 - az - 

1)(2 

(z 	1 
s  -h--  Tjdz 

1 	Z 

hjdz 

z 	z 	 — 2  hidz - 2hri 1 	In — dz + 1 	 hz  
h 	h z o 	 z 0  

z ci 

(4.25a) 

(4.25b) 

(4.25c) 

Again taking m=z/h and integrating and transforming the upper and lower bound as done 
earlier, and taking h common, one has , 

h2 
UsUs  -2  i 

(1 r 
13f y  = -7.0py— mInm-m10.1 -4 [2m2 1nm-m2L +-21  (1-z70)--21  Pilo ) 

Or, 

2  
Dx3,=-7.0py--  U

s
:4  R-1-770  1n 770  + 770 [ 1 - 2re In 770  + ]+ 2(1 - 770 - 2[1 - I)

r  

(4.26a) 

(4.26b) 

Or 

Or, 

2 
= -1.75py —

h 
UsUs  a-  2-  2770  ln 770 +2770 +1+ 27g ln 770 	+ 2-  2770  - 2 + 2/gD (4.26c) 

83 



D = —1.75 p'),  —
h2

U s ff— 277 o  In 77 0  + 21,? In  710  + th; — 1D 

Or, 

D = — 1 . 7 5 py —h2  U,U,Q 277 0  ln 	— 0) —  (1  + 0)( 1  — 0)D 

Or, 

2   = 1.75py 	„ A 
— 710X2770 In 770 +770  +1) 

(c) The third dispersion term Dy; 

Using the similar procedure as above, one can obtain the expression for DC yy  

h2 	 2 

D;), = p(7)2 	LJ,.L/s 
20 h  
f(—z — —1 dz

r z 	 2 

Or, 

	

h h jr z 	1  j  
D yy°  = 49.0p - h 	ti Uss 	

n 
( f() dz — (7)dz + 	dz) 

	

zo  n 	zo  

(4.26d) 

(4.26e) 

(4.260 

(4.27a) 

(4.27b) 

Again taking m=z/h and integrating and transforming the upper and lower bound as done 

earlier, one can obtain, 

h3 	 [m2 	1 	1 
D yyc  = 49 .0p 	Li s t/ s [[

M3 

2 	+74 (1-71°)) 3 
77, 

Or, 

h 	?7,, 	(1 	ri cl+  1 _ go) D;, = 49 .0 p 	45—  3 - y -  2 	4 4 
9 

(4.28a) 

(4.28b) 

Or, 
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h 3 	1 	q: 	1  + 17: 4.  1  
D yy‘ 	49.0p 	sU 

3 2 2 4 4 (4.28c) 

Or, finally one may obtain, 

17O 27  
Dy  = 49.0p 112-r  U,U,[— 

3 + 2 — 4
0 ÷ 

12
) 

 
(4.28d) 

The relation between depth averaged velocities in curvilinear coordinates and Cartesian 
coordinate can be given as (Duan 2004) 

U„ = U s  cos 61 + U„ cos 9„ 	
(4.29) 

U y  = Us  sin 0, +Un  sin t9„ 

where O and On  are angles between stream wise, transverse directions pointing outward 
and positive x-axis respectively. Similarly the dispersion terms in Cartesian coordinates 

can be related to that in curvilinear coordinates as follows (Duan 2004). 

D cost  Bs  +2D,cry  cos Os cos O, + Dom, cost  0„ 

Dyy, = D:„ sin 2  es + 2D .̀ sin 0, sin e„ + D yyC  sin 2  en 
	 (4.30) 

Dry  = Ac cosOs  sin Os  +2/3,;(cos0„ sin Bs  + sing„ cos 0, + D;), sin 0„ cos 0„ 

The dispersion stress terms finally obtained in Eqs. (4.24d, 4.26f and 4.28d) can be 
transformed by Eqs. (4.29) and Eqs. (4.30) to get modified dispersion stress tensor in 

Cartesian coordinate system. 

4.2.3 COMPARISON OF MODIFIED AND DUAN'S FORMULATIONS 

The correlations by Duan(2004) for dispersion stress tensor in curvilinear coordinate 
system are as follows (Derivation in Annexure-I). 

D = z 2U sU s h[– 770 In 770 (In 77 0  – 2) + 2770 (1– 770 )0 – In 710)–  (710 – 03 ] 
	

(4.31a) 

D `), 	 U,U5 ff_ rh;  In 770  + qo  In 770  – qo  + 77(3)  3.5C = 	—h2 
	

(4.31b) 
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D;y 	49 h -—U sU,.(— 	+ 11° 	17 	1  ) 
3 2 4

° 
 12 

(4.31c) 

For the statistical comparison, theoretical data for a wide rectangular channel is analyzed. 

A qualitative comparison of variations of dispersion stresses for varying sinuosity with 

the modified formulation (Eqs.4.24d, 4.26f and 4.28d) and Duan's(2004) formulations 
(Eqs. 31 a,b and c) have been compared. Four configurations (Curvature 0.34, 0.72, 1.00 
and 1.05) were chosen to cover low, moderate, high and very high sinuosity curved 

channels (Abad and Garcia 2005). The width ratio (/3=B/h, where h=water depth, 

B=channel width) were chosen as 10, 15 and 20. Longitudinal slope is kept as 0.001 and 

0.025 for creating sub-critical and supercritical condition respectively. Average 

velocities are estimated using Manning's equation (Manning's n is kept 0.025). zo  is 

taken as D50/30( Roughness height (ks ) is kept equal to D50 =0.44 mm). 

It can be seen that expressions of dispersion stress terms as obtained in the present work 
are not in complete agreement of Duan (2004) formulations as given in Eq. (4.31a). From 

Eq. (4.3 lb), it is apparent that for any comparison between the two approaches, the value 

of 'C' should have been available. However, in her another paper (Duan and Julien, 

2005), there is no C in Eq. (4.3 lb). Thus, there is lack of enough insight into the adoption 

of any appropriate value of C. However, in view of Duan and Julien (2005), the value of 

`C' is taken unity for comparative purposes only. 

Assuming C as one, an attempt is made to relate Eq.(4.31b) with Eq. (4.260, developed 
in the present work. Following empirical relation is obtained. 

Dcxy=Ao  +A, xIf,y(Duan) (R-Square=0.9854; Adjusted R-Square=0.9847) 	(4.32) 

where A0=-3.147 and A1=-103.676 

To appreciate the difference between the two expressions for two approaches of 
dispersion terms (as given in Eqs.4.24d, 4.26f, 4.28d and 4.31), certain computations are 
done for a variety of conditions (Table 4.1). 
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Figure 4.2 Variation of If xy  (N/m2) with width ratio (16) for two approaches 

The differences do appear in the formulations of the first term (If xx) and second terms 

(D y). The formulation for It x, are different for the present approach and Duan's 
approach yet computed values of this term is similar and close valued, as shown inTable 

4.1. However, the modified model (Eq. 4.24d) has much simpler mathematical 

representation than Duan(2004)'s model (Eq. 4.31a). 

The variability of If xy  for both approaches is shown in Figure 4.2. The trend of the 
variation is closely related (R-square=0.985), but values of if xy  differs considerably. Plot 

of Ef xy against width ratio(fl) for both approaches for variety of conditions are shoWn in 

Figure 4.2. 

The third term 1:f yy  is identical in both cases as in present formulation and Duan's work. 
The trend of second terms is statistically similar with very low difference in mean and 

standard deviation (using statistically determined 'C' value). R-square (0.99 for If ,„ and 

Dcyy,and 0.98 for If „y) and standard error suggests high degree of goodness of fit for both 

models (For Eqs. 4.26f, and 4.31b). The inconsistency in the values of dispersion stress 
terms from Duan's model for different hydraulic conditions is evident in the Table 4.1. 

For example, in modified model's Dc  x , Dxy, and D yy  is  are varying consistently for 

different width ratio(/), whereas same terms show inconsistent variations with different /3 

for Duan's Model. These models are developed for sub-critical flow condition; however, 
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 rs 

 (...) 

a 
.o 	= 
..., 	7*Ks 

"CI 	0) 
g 	2 Oa' 	›, 

70 	
:0 	

o 
a 71' 3 	■- 	w 

0.34 	10 	0.001 	0.57 
0.34 	15 	0.001 	0.43 
0.34 	20 	0.001 	0.36 
0.34 	10 	0.025 	2.83 
0.34 	15 	0.025 	2.16 

0.34 	20 	0.025 	1.79 
0.72 	10 	0.001 	0.57 
0.72 	15 	0.001 	0.43 

0.72 	20 	0.001 	0.36 
0.72 	10 	0.025 	2.83 

0.72 	15 	0.025 	2.16 
0.72 	20 	0.025 	1.79 
1.00 	10 	0.001 	0.57 
1.00 	15 	0.001 	0.43 
1.00 	20 	0.001 	0.36 
1.00 	10 	0.025 	2.83 
1.00 	15 	0.025 	2.16 
1.00 	20 	0.025 	1.79 
1.05 	10 	0.001 	0.57 
1.05 	15 	0.001 	0.43 
1.05 	20 	0.001 	0.36 
1.05 	10 	0.025 	2.83 
1.05 	15 	0.025 	2.16 
1.05 	20 	0.025 	1.79 

a.) 

1 
2 
3 -o  

4 	.." 

5 
6 
7 
8 
9 1 

10 
11 

12 	 
13 

14 
15 on 
16 x  

17 
18 	 
19 
20 
21 :a 
22 
23 
24 

0.3304 
0.2522 
0.2082 
1.6521 
1.2608 
1.0408 
0.3304 
0.2522 
0.2082 
1.6521 
1.2608 
1.0408 
0.3304 
0.2522 
0.2082 
1.6521 
1.2608 
1.0408 
0.3304 
0.2522 
0.2082 
1.6521 
1.2608 
1.0408 

their trends are also analyzed for super-critical flow condition. Plots of variation of 

different terms with width ratio for sub-critical and super-critical conditions are shown in 

Figures 4.2 and 4.3. 

Table 4.1 Computations of dispersion stress tensor by modified and Duan (2004)' s 

expressions 

Modified Terms (N/m2) 	Duan(2004)-Terms(N/m2) 

D`„ 	DcIv 	D`,,,, 	D` x, 	13;,y 	D;,„ 
1.204 	1.90 	4.00 	1.204 	-0.0182 	4.00 
0.512 	0.52 	0.69 	0.512 	-0.0068 	0.69 
0.280 	0.20 	0.20 	0.280 	-0.0034 	0.20 

30.098 	47.56 	99.88 	30.101 	-0.4540 	99.88 
12.800 	12.89 	17.23 	12.802 	-0.1697 	17.23 
6.994 	5.11 	4.95 	6.996 	-0.0844 	4.95 
1.204 	4.06 	18.24 	1.204 	-0.0388 	18.24 
0.512 	1.10 	3.15 	0.512 	-0.0145 	3.15 
0.280 	0.44 	0.90 	0.280 	-0.0072 	0.90 

30.098 	101.61 	455.88 	30.101 	-0.9699 	455.88 
12.800 	27.54 	78.66 	12.802 	-0.3626 	78.66 
6.994 	10.92 	22.61 	6.996 	-0.1802 	22.61 
1.204 	5.69 	35.70 	1.204 	-0.0543 	35.70 
0.512 	1.54 	6.16 	0.512 	-0.0203 	6.16 
0.280 	0.61 	1.77 	0.280 	-0.0101 	1.77 

30.098 	142.16 	892.42 	30.101 	-1.3570 	892.42 
12.800 	38.53 	153.98 	12.802 	-0.5073 	153.98 
6.994 	15.28 	44.26 	6.996 	-0.2522 	44.26 
1.204 	5.95 	39.09 	1.204 	-0.0568 	39.09 
0.512 	1.61 	6.74 	0.512 	-0.0212 	6.74 
0.280 	0.64 	1.94 	0.280 	-0.0106 	1.94 

30.098 	148.76 	977.22 	30.101 	-1.4200 	977.22 
12.800 	40.32 	168.62 	12.802 	-0.5309 	168.62 
6.994 	15.99 	48.47 	6.996 	-0.2639 	48.47 
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Figure 4.3 Variation of Dc and Dc yy with channel width ratio for sub- critical flow  

 

40 

30 

20 

10 

O - 

Sharp Curve 

 

b 

I 

    

Ce 

g 

1000 

800 

800 - 

400 - 

200 - 

0 - 

Mild 

condition 

1000 

.s 
•-•k 	800 
O 

	

O
tt 	800 

400 

200 

5 

1 

—0— D.„(Duan) 
—v.— 0, 

Dw(Duan) 

a 
8 	10 	12 	14 	16 	18 	20 

	
8 	10 	12 	14 	18 	18 	20 

Width Ratio(ti) 
	

Width Ratio(/ 

Sharp Curve 
	

Very Sharp Curve 

8 10 12 14 18 18 20 	 8 10 12 14 18 18 20 22 

Width Ratio(/3) 
	

Width Ratio(a) 

Figure 4.4 Variation of Dc  , and De  yy with channel width ratio for super-critical flow 
condition 

89 



Figure 4.3 shows that D remains nearly constant with varying sinuosity and )3. D yy 

increases sharply with increasing sinuosity and reducing width ratio. For wider channels, 

variations are low. But for narrow bends transverse deviations in velocity are quite high. 

The trend remains same in case of supercritical flow condition except higher magnitude 

of three components of flow dispersion tensor. This is caused due to enhanced transverse 

mixing of the flow at high turbulence. 

4.3 CONCLUDING REMARKS 

New expressions for dispersion stress tensor are proposed. A comparison between these 

terms and one given by Duan (2004), indicates the conditions in which there is a good 
agreement between the two. An insight is provided to estimate one of the unknown 
parameters in the Duan (2004)'s dispersion stress tensor. Compared to Duan (2004)'s 

model, two of the three components of dispersion stress tensor namely Dexx  and Dc ), are 

considerably simplified in the mathematical representation. 

* * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * ** * * ** * 
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CHAPTER-5 

FORMULATION OF 2D DEPTH AVERAGED EQUATIONS 

FOR CURVILINEAR DOMAIN 

5.1 GENERAL 

The fundamental governing differential equations of fluid flow are the equations of 
conservation of mass and momentum. Apart from these equations, the fundamental 

governing differential equation for heat transfer is the equation of conservation of energy. 
The equation of conservation of mass can be derived from a balance of the mass fluxes 

across a differential control element and the rate of mass accumulation within the 

element. The equation of conservation of momentum is derived from a force balance on 
the control element in conjunction with Newton's second law of motion:, The 

conservation of energy equation is derived from an energy balance on the control element 

in conjunction with the first law of thermodynamics. Here the focus is on mass and 

momentum equations. 

5.2 GOVERNING EQUATIONS 

The differential equations governing the conservation of mass and momentum in depth 

averaged form in Cartesian coordinate (Duan and Julien, 2005) are, 

ahUx 	
ahu 

—oh + + 	= 0 

ghall 

ay 

( 32U a2uy  ND., +W xy  

(5.1) 

(5.2) 

(5.3) 

at 	ax 	ay 

sa(hor ) 	aou x2) 	y ) + aoup = 
ax dxx C U 	 2  +U 2  +hv y 

at 	 ax 	ay 

aouy ) 

	

	 y) ± aouy2 ) ± a(huxu 

lax2 

a2u 

ay 2 

a2u 

ax 	ay  

i raD, ,aDyy ) 
CdUylkir2 	U y2  ± at 	ay 	ax hilt[ ar2Y 

ay2Y p( ax 

	ay 

In the Eqs.(5.1 -5.3), H=water surface elevation; h=water depth; Ux  , Uy  =depth averaged 

velocities, Cd= bed friction coefficient; v=-eddy viscosity; x and y = spatial coordinate 
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( a \ 
ax 
a 

ay 
a 

(4'x lix 

= 0 
y 

rly 

1,  

a  \ 

a 
aq  
a 

(5.8) 

components. Dxx, Dyy  and Dxy are dispersion terms explained in Chapter 4 of this thesis. 

In Cartesian system, consider a non-orthogonal curvilinear plane in (x,y,t), which is to 

be transformed to a rectangular computational plane (,ii,r) by direct transformation. 

where, 4 = (x,y,t) and 77= 77  (x,y,t) and r = t 

Consider the generic dependent variable f (x,y,t). Applying chain rule of partial 

derivatives, 

af af ± af 577 ± af ar 
ax a ax aq ax ar ax 

of 	of (5.4) 

of = of ar ± af aq + Of ar 
ay a  ay aq ay ar ay 

= y 

af 	af 
aq 

(5.5) 

of _af a ± af ati + 5f ar 
at as at ari  at ar at 

af af af 
ari  ar 

(5.6) 

rx  =ry  = rz  = 0...and •••r, 	 (5.7) 

One can express the above Eqs. (5.4) to (5.7) in matrix form as below 

Similarly, contra-varient velocity component in -direction and ri  -direction in terms of 

Cartesian components Ux  and Uy  can be written easily as taking the advantage of partial 
derivative rule as, 

w = 49 J u
x 
 + 	u

Y 
 = jxux + yu y  

ax 	ay  
(5.10) 

a = ri 
a

U + 
a77 U 

= 77xUx  + 77 ),U y  
x 	ay 

(5.11) 
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Expressing Eqs.(5.10) and (5.11) in matrix form one has, 

ylux  
74) U y  

Applying the matrix inversion rule, one can get 

((ix ) 
U y  

( x  
77 x  77y ) 

&,) I rM ) .  
T/71 )' 

Or, 

ux)  
uy) I(_77x  

1 where I —.Tacobian, and expressed as, I = .rrl y — .),q„ or 7  = J = 	 (5.12) 

Ux  and Uy  can be expressed in terms of contra-varient velocities (14 , V" from above 

expression as, 

	

x  == —1  (77 3,U — C,v")= J(77 y EJ — &,Vq) 	 (5.13a) 

L/ y  = 1-(-77 xtf + 	J(77 xW" + xT(') 	 (5.13b) 

5.2.1 TRANSFORMATION OF CONTINUITY EQUATION 

Rewriting Eq. (5.1) as below, 

oh + ahu x  OhU y 

at 	ax 	ay = ° 

Each term is subjected to transformation through partial differentiation with respect to 

r using the PDE rule, 

For first term of the continuity equation, one can write; 
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ah ah —Oh Oh 	 (5.14) 

For second term of the the continuity equation, one can obtain, 

ahu, 	 x 	ah . , -had  +U x  — 
ax 	 ax 

or, 

ah 	Oh); au 	au)+ux(x—+77xTT7 ahux 	 x  
ax 

Putting the expression of U from Eq. (5.13a) into above equation. 

ahux h.j [ x a(riyU4  - 4=y1/1) + a(77.),U4  - y171)) 
+ JOiyUe - yV") ax 	 a 77 

For third term of the continuity equation, one has, 

ahU y  = h  OUy 	ah 	+U 
ay 	ay 	Y  ay 

ahuy 	au 	au y ) 	Oh 	Oh 
ay 	

) 	= h( y 	+ y 	+
, 

Y 	 IfY aq  

x  ah + 7 ,7 x  ah) (s.15) 

Putting the expression of Uy  from Eq.(5.13b) into the Eq .(5.15b), one can get, 

	

ahUy 	a(-rixW + xV") 	a(-7 - 	+ 	+ J(-77xW + 	ah +riy ah ) (5.16) + tly 	 
ay -4  

Collecting the terms of derivative operator y in Eqs.(5.15) and Eq.(5.16) and placed so 

together, one obtains, 

i 	 \ 	ah I 
la —1-1  - - 4' ill  - 71 W + r J+ J — 77 U.' --- r —7.7x4:yW +WI) 

	

t:) 	y 	xy 	xy 	yx 	a4. xy 	xy 
Cancelling identical terms in above expression, 
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a f 	 4.\ 	ah 
hJ — gxrly 11.xy)U )+ 	gXqy 77x y  

One can recall Eq. (5.12) and substituting the value of J, one gets 

hJ 8  11-W)+Jt9 
	) 

1-1  .w)• 
' 

Or, 

J.--8  112.-1—w) 
J 

(5.17) 

Again, one may collect the terms of derivative operator %I/  in Eq. (5.15) and Eq. (5.16) 

and placing together, one may get, 	 ,1 

- v7 77,, ah 
hJ— aq (77,77Y 	-77 ),77xU +,,77 yr1  )+ ,1—ri 	a W 	-770yU4  

Y  

Identical terms may be cancelled in above expression, one obtains, 

hJ a f 	 ah f 
y 	xi-ly)J77  )± 	877 k( -77xy 	,,77 ),)V 77  

Recalling Eq. (5.12) and substituting the value of J, one has 

	

0 1• 	J 
ah 

 1 1  V") 
077 J 	 071 

Or, 

J- a  ih. 1 -V 7  
a77 	J 

(5.18a) 

(5.18b) 

(5.18c) 

(5.18d) 

Summing transformed terms in the form of expressions in Eqs. (5.14), (5.17) and (5.18d) 

and equating to zero to complete the continuity equation, one obtains, 
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ah 	 a + 	_ah77+ J a 	 J 	 = 0 (5.19a) 

Or, 

ah (77t .h+h.V'')= 0 
017 

Or, 

ah a 	 a ar l--at +W).h-F .T77 (17,÷V").h =0 

(5.19b) 

(5.19c) 

For co-ordinate transformation ofa(x, y,t) using (Hoffman, 1992), 

1 a(• ,77,r)  
J 

- 

a(x,y,t) 

One may have, 

a (hJ) + —  + )h.J + —a (r7 	)hJ = 0 

For fixed grid and fixed boundary with time, 

= 0; th = 0 and r = t 

Equation (5.20b) will be reduced to, 

a 	a a  
Ft (hf ) + 	(U hJ ) + 	(V 17  ) = 0 

577 

(5.20a) 

(5.20b) 

(5.21a) 

Or, 

a  
(17,1. )+ —(1,7 4-hf) + 

au 
(,7,7 h.1) = o at (5.21b) 
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In Eq. (5.21b), J = 	—um n) are the velocity components in the 

curvilinear coordinate 	,r ) which relate to U,„ U y  as follows 

	

ji 	
lal, *12 jrx 

	

g 	A UY ) 	L6(21 4722 UY 

5.2.2. TRANSFORMATION OF MOMENTUM EQUATIONS 

5.2.2.1 First momentum equation without diffusive/dispersion terms 

Rewriting Eqs. (5.2) and (5.3) without dispersion terms, one has, 
In x-direction 

(5.21c) 

vivo + a(hux2 )  
at 	ax 

o(hUxU) 
	= ax  ay 	

ghaff  CdUxliUx2  +Uy  2  + hvl( aax2U2x + ao),2112-1 (5.22a) 

In y-direction 

a 

	

	 a2u a2u)  wl) + a(hu 2 ) a(hU y  ± ax p 	a Y 	ghil cauyVux2  + Uy2  h vi( ax2Y  ay  2 
y  

at 	ay 	 ay 	
(5.22b) 

Terms wise differentiation of left hand side of the first momentum equation in Eq. 
(5.22a). 

(a) 	First term, of first momentum equation using the relation Eq. (5.6). 

ahux .h aux +u  ah 
at 	at 	x at 

One can write, using the relation Eq. (5.6). 

h aux h( , aux +r au x 	 + aux)  
at 	

h 	
ar 

(5.23a) 

(5.23b) 

Using the expression for U from Eq. (5.13a), one obtains, 

	

au 	al(n 	 aJ(nyu 	ri) aAn 	VI) h 	x 1-a( 	 + 771 	 Y 	 Y 	) 	(5.23c) 

	

at 	 an 	 ar 
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And, 

ah 	 \, ux  =.1w),(1 - 	h./ rh 
—a 

hJ + a hJ) at 	 aq 	ar (5.23d) 

Combining Eqs.(5.23c) and (5.23d), including all terms under derivative operator 
separately, one can easily write, from differentiation rule (product of two variables). 

ahu a 	 ) a I  [1474,J2Ue 	Y 	 kinyhrtfi -hrgyJ 2V7  )+—
ar

(hly.12uf  -h y.12TP7) (5.24a) at 	 j2 	at, 

Or, 

ahux 	 a 	 a ki7 	-,3,1/")(17.12 ))+—(07177 	- IgyV 1 )0J 2 D+ —(07 	V 11 )(12,12 )) (5.24b) at 	Y 	 077 	 or Y 	Y  

(b) Second term of first momentum equation 

Expanding the second term, one may get, 

ahu,2  _ u  ahux ±hu  aux  
ax  - x ax 	x ax  (5.25a) 

Using the relation in Eq. (5.4), one has, 

 

2 	 (71 yU 	 ;ix 77 (1-1 ),W - yr711 )}. + 

{j2(iyu, 	x (.ah 	,t. )} 

 

  

u  ahux  _ Ariyu4  
x ax 

(5.25b) 

  

  

  

Again same operation can be done for hU au— . Combining all terms under derivative ax 
operator separately for 4, 	and/ one can easily write from differentiation rule 

077' 
(product of two variables). 
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ahu x 2 	[{ a 	I 	
hl 3 -1-  — 	

a 	
ki7 	— yV hJ 3 11 

ax 
(5.25c) 

Expanding the above expression, one obtains, 

ahu _[ta (A 77
y 
'Um + 3 

o

a 
r/ 2U( Lg 77g y2r1P7  -277,7wigr)1/4.131] (5.25d) 

" 

(c) Third term of first momentum equation 

Again expanding and resolving the third term of the first equation. 

ahu yux  _ 	 aux 	h auY  	 U yux  ah  +Uh 	+ u y 	x ay  
ay 	ay 

(5.26a) 

Using the relations as in Eqs. (5.13 a, b), one obtains, 

as Y u h 	 41),U x ay  
hj 	au y  qy  aU y ) (5.26b) 

Or, 

auy  uxh 	.hAnv 	a(-77xv +xv") 	a(--17xv +„v")) 
ay 	viy 	 +77y 

Shifting all the variables under derivative operators, 

ahuxu y  a [(_77x77,4ujw 	+rix . y2vv„ _ ,x42V7IV II)hj3]-1- 
aY 

72U" ± ,v71))2(fir771  77x77yyWri 	yrilr)h.131 ari 	x y 

a 

(5.26c) 

(5.26d) 

Combining Eqs. (5.25d) and (5.26d), one can obtain the following expression after 

collecting terms of identical operator together. 
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ahu 
x + 

2  ahuxuy  _ r a 	 f

a  
ay  — 	UC  77), 	+ 	uqi% (- 77„cy  + 	

„ 

 

_ 	 (5.27a) 
a r 	 f 

Irs7V" , rigy 	WV 17 77y  77,gy  17y1/1/3  

Or, 

ahUx2  -I-  algf y  a rw,7y-%) ay 	L 
u  

ax 
12.12  +— [vg(-vg y  + V77 y1,a2  

a77 
(5.27b) 

Combining Eqs. (5.25d), (5.26d) and (5.27d); one has in left hand side of the first 
momentum equation as • 

ahux  + ahux 2  
at 	ax 

+077 [7h(W17), 

ahuxuy  a r 
(Vriy  - 

ay 

-v-iiy)+-ri(-V%+wqy 

rPi y ) 	(W77 y  -17%)111J2

a (r7 U 	+- yr/77)11.12  
or 

(5.28a) 

 

 

Or, 

ehux   
+ 

ahu: +ahuxuy  = k ±v)077y -T/77y) a  ac ay 

+1(7  uc-777 )02  Or Y  

+—o (77, +r)(-1,  y+tirly ]hi 
877  (5.28b) 

Expanding the first two terms of right hand side of the first momentum equation in Eq. 
(5.22a), one has, 

x —
aH — gh—OH —CdUx\tUx2  +U y2  =—ghJ ThU4 +77X )-ce.13(77,g4 - 3,1l.'111(24,(14 . ),V")2 tr/') )2 (5.29a) 

Equating Eqs. (5.28b) and (5.29a), one gets the transformed first equation of momentum 
without diffusive terms as 

	

±w )( fiqy 	) 1112 	[Oh +V  )(-V1 3, + WI/ 

( = 	+ 77, 	Cd .J3 	- 	Mrly 	riq y+(__„ru4.+ xv77 a, 

2  - 
a 

kri yW - 3,vq )h.12  
ay (5.29b) 
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Or, using relations given in Eqs.5.13a and 5.13b and for fixed grid and fixed boundary 

with time, 	0; qi  = 0 and r = t 

One may obtain Eq. (5.29b) as, 

a xu x dka + kv ,xuy iv 	u xhf = -gla(j„ —all  +77 x aH ) C,JU .01U x2  +U 2  
071 	 a 	077 	 -3' 

Or, 

uxh./ + —a  [u 4uxia + — [rf'w ylla = -g11.4x —aH  +77„ aH I Cd JU,VU,.2  +U y2  aj 	aq  

5.2.2.2 Second momentum equation without diffusive/dispersion terms 

(a) First term of second momentum equation in Eq. (5.22b) 

ahuy = h
auY  -Eu ah at 	at 	Y at 

Using the chain rule relation given in Eq. (5.6), 

au 	au 	
au, au, ) = hgt 	 rh 437; + 	 at 

(5.29c) 

(5.29d) 

(5.30a) 

(5.30b) 

Or, 

of 	+ v") 	aj(- 	+e Vq) al(-77.ru +u"))  (5.30c) 
ar 

h---2- =_- hj(t 	 x 	rh 	 x  
() 	 aq 	 ar 

Similar mathematical operations are done for the first momentum equation adopted here, 

and one gets, 

\ 	, 	, r 	ingr  Vq)4 ±(- hq  .12Ue +h x.12rlq) 
ahuy 	( z., j2v _Fh4.,..12V")+--(-n17177,-1 2 L' + J2 	 ar 	X 

- 	,ry ari at 
(5.31a) 

Or, 
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ahoy  a 	 m 	 ‘, a l 
 k(-&1x Li f  +gx Vq )(h./2 ))-1--K-qtrixW +7gy")(h.12  p+ k(-17xU 4  + ,rvq)(hj 2 )) (5.31b) 

at 	0 	 077 

(b) Second term of the second momentum equation 

ahuy2 ahUy 
 +hU 

au  y  
ay — Y  aY 	Y 	ay  (5.32a) 

Or, 

Oh(' 

	

U 	 71xV + 40/ 

	

Y 	= k  - 77)+ 1(- 	 V7( 	 (5.32b) x 	7Y 	7x 	x 	 Y 	Y  

Applying the same operation as for the first momentum equation, 
one may get, 

ahuy2  _ rj- a . 	u, +4-7,yhj3 +4,7y (_,,xw + xv1)2  
ay 	Y 

(5.32c) 

ahayuy2  _R4 klix2u4u4 4.y4,x2v/I/n7 _24yjxrzifiv9hy +37y  (77y77x2u4V +Thevrivii _247yroxu4kr .)3 (5.32d) 

(c)Third term of the second momentum 

ahUyUx aux 	auy  	 U ux ah  +Uyh 	+U x h 	ax  ax 	ax 	ax (5.33a) 

Expanding and resolving with the same operation done for the first momentum equation, 

DU x 	 Dux 	aux )  U y h 	11xU e  F „r777 ) 	 -Frix au  Dy (5.33b) 

Or, 

\ 	49yV") 	
77
- .yV") ) 

U yh  ay = hJ 3 ( 77 xU 4  + 	) *(x 	  71), 
0 

(5.33c) 
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Shifting all the variables under derivative operator, 

ahuxuy  = a 	,t.xu‘u4- 	 i _ x2rlytgv-q _ yrp-ivrf)hj3 
ax  

a 	
77,2,77,,WW + rayUIV" + xtix /./ yU 4V11  - xCiiix TTIV')/113  

q  

Combining Eqs.(5.32) and (5.33), one has, 

a Uy2  4PhUxUY  = a frPthh(77x4-77y)+Vr.(-77x4--Ex77y)11d 

[rIP7 x(--7gy -Fxriy)+U"71h.13  ari 

ahu y2  ahuxu y  a [w(-w77),+177x).h.J2 +—aari[v1(v4x-u4r1Y1hj2 ay  ± ax 	45  

(5.33d) 

(5.34a) 

(5.34b) 

Adding Eqs. (5.31) and (5.34), 

ahuY ±ahu;  + ahuxuY = a  kc-viix -Fry x )-1- V(4-1477. ÷1lYx) I1J2 	[77A-V77. + V`Vx) 4- 	- Lfil7x1V2  (5.35a) a, ay 	ax   

+exvila2  

Or, 

ahuy  Oh u 2  2  ahupy 
 = a k+u4X-Vrix+vlx) at ay 

2 	r hJ +— a  [(77 +1/17 )(171/ -1 fl ihita2  
aq 	 (5.35b) 

+-k-(-77xV + xv 

Expanding the first two terms of right hand side of the second momentum equation 

(5.22b), one may obtain, 

OH  
71  — Y gh 	 yVU x 2 	y 2  = ay

H  C d U 	+ 	
a77 

—C d .1 3 (—ri xU +,,T7 17 )\477 yU 4. 	y ±(_,Tr u± x v-riy 
(5.36) 
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Equating Eqs. (5.35b) and (5.36); 

r 
g +U)(—ifiqx +V707J2  +— [07,+rxri x -V77x  

OH ail —ghJ+74 --)—Cd J3(-77xV + xV")1 (77,,t_fi — yv,7 y +(__77„(fi±riy 
aq 

(5.37a) 

a +—t-1 + ar  	xr)h.I2  

Or, using the relation given in Eqs. 5.13a and 5.13b and for fixed grid and fixed boundary 

with time, = 0; /7, = 0 and r = t , one may get, 

)u yht + r 	x ym —U yhJ = - gh+ y —OH + y  5H )-c,,..lt y 	2  ± uy 2  a 	077 

Or, 

aH aH uY  hJ + fuu iv+ [vqu p__gh+y_5T +773, TIT )-C,JU yllU x 2  +u ,,2 at 	Y 	aq 

5.2.3. Diffusive terms 

Diffusive terms in Cartesian coordinate are in light of Eqs. (5.22a) and (5.22b,) 
In first momentum equation (Eq. 5.22a), 

hv( a2u x + 82ux ) 
ax  2 	a 2 y  

One can expand following terms in view of Eq.(5.4) 

aux  au au x  
ax 	x 	

+ 77x  ari 

a2ux  a ( au 	au x  
49x 2 	ax x 	"' 

„ 
x aq 

(5.37b) 

(5.37c) 

(5.38a) 

(5.38b) 

(5.38c) 

Or, 
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a2ux 	aux  aux )  a aux  aux )  
. 	±q„ 	+qx 	gx 	+17x ax.2 	 aq 	 aq (5.38d) 

Or, 

a2u 	2  a2ux  a2 u„  g 	x gxrh 	 ri a 2  —
x 
2 a2Uae 	

x 
a0q ax 

One can write the following term in view of Eq. (5.5) 

OE x 	aU
x 	au  
	+71 	x 

ay 	Y 	877 

a2ux  a ( p  aux   +, aux )
a  ay 2 ay 	al  

Or, 

a 2 ux 

= 	

aux 

+ 

aux 

+q 

a 	aux  +q aux)  
ay2 	a   77 y aq ) 	y ari (. 	Y au  

Or, 

= 

	

a2ux 	+77 
aq2

2 a2ux  a2ux 	a2ux 2 
aye 	

ae  +gyqy eori 

Similarly, the second momentum equation in Eq. (5.3); 

hvi(a2u,  + a2uy ) 
axe ay 2  

(5.38e) 

(5.380 

(5.38g) 

(5.38h) 

(5.38i) 

(5.39a) 

One can write following term in view of Eq. (5.4) 

aTly  = auy 	Orly  
Ox 	 aq 

(5.39b) 
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(5.39c) 

Or, 

a2uy 	a 	auy 	au), 	a (auy 	au y j 
ax2 	 qx aq 	'Ix aqx 

	
" Ix al/ 

Or, 

a2Uy  a2u a2U 	2 	Y  

	

2 a2uy 	77_ 	 77x 
aX 2 	a4.2 	" a0

v  
7-7 	aq2 

Again, one can write following term in view of Eq.(5.4) 

auy  au DU 
= 	Y  +1 	Y  ay 
 Y Y  

a2uy
— 
 a (, auy  +, au), 

ay2 	ay 	ify aq  

Or, 

u  auy a  a2uy 	a 	
ark 

	77y a 77  a 	aaui +71Y aaulY ) aye 
	Y 

Or, 

a2uy 	2 a2uy 
	+ 	7-7 

52Uy 4_ 1.72 a2Uy  
ay e 	 Y Y twri 	aril 

5.2.4 Dispersion terms 

In Eq. (5.2), one has the dispersion term as, 

(5.39d) 

(5.39e) 

(5.391) 

(5.39g) 

(5.39h) 

(5.39i) 
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I 
P 

1(_ 
p 

P 

1

1

4 p 

+ aD,) (al) 

given in Eq.(5.8), one obtains 

aD 	aD xx 	xy 	xy 

(5.40a) 

(5.40b) 

(5.3), 

(5.40c) 

(5.40d) 

Using 

ax 	ay 

the relation 

aD xx 

Similarly, 

ilaP, 

one has 

÷ aDyy ) 

Ya 	 Y  

the dispersion term in Eq. 

given in Eq.(5.8), one obtains 

0D 	OD
YY 	

yy ) 

Using 

ex 	ay 

the relation 

OD 
+ 7  7x 	+ 4 

Y 	
+ . 	

077 	 Y 	077 

5.2.5 Final transformed momentum equations 

Combining Eqs. (5.29d), (5.38e), (5.38i) and (5.40b), and multiplying it by p, one gets 

the complete first transformed momentum equation as; 

(,011Jux)+-a- 	
1 	 02ux 	02U,  ) 

at 	
u

x
i+—

Og
ipro,Ux j- plat/sic(' 1 	g 2 + CY22 ag, 	

(5.41) 

=-Pghi --Fq ---)-Pfcd04)1*)2  +(tly)2  +PhJviot 	x  (4x " +77x xx +4 	xY +77 1  

	

x  ari 	
12 

ajar 3 	an Y  3 	Y  

	

aH aH 	 a2u ap  at) ap op 

Again, combining Eqs.(5.37d), (5.39e), (5.39i) and (5.40d), and multiplying it by p, one 

gets the second transformed momentum equation as; 

ai(

- 

phfu .„)+ a  [ohm uj+ —a  Lohif u ari  
a2u, 	a2u y )  

phiv, (al I 	a  2 + a22 ari 2 

(5.42) 

• aH 
— pghJ 	+ —.)—Cdp*AIVIj 

• Y 	77Y  a71 

o2u,, 	apxy 	aDxy 	apy, 	apyy ) 
+02  +phJvg ior,, ;57 ) 	+ 77x 	ari 	on +14 ari  
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In Eq. (5.41) and (5.42); x = %, /ix  = algx  , y  

2 
a22 = rix

2 
 + 74 au = 2(.77, + .),11x) 	J = x4  y, 	. - xn y 	ii. (m--- , I) are the velocity 

 
components in the curvilinear coordinate ( , 27 , r) which relate to Ux  , Uy  as follows 

(.,,,, f y  yUr lroci , 
u,7

I
)
.r 

7-1„ 77 y )U,,)
.=, 

 (.-421  
a12 )(LC 
a22 Uy 

(5.43) 

5.3 SUMMARY 

In this chapter, step by step mathematical transformation of mass and momentum partial 

differential equations in Cartesian co-ordinate system (Eqs. 5.1-5.3) to Boundary fitted 

co-ordinate system (Eqs. 5.21b, 5.41 and 5.42) have been done. In the momentum 

equations, flow dispersive terms along with diffusive terms have also been included. The 

transformed flow equations have been further used as governing equations for the 
solution of flow variables in a complex flow domain in Chapter 7 of this thesis, using 
control volume approach. The transformation coefficients introduced in Eqs. (5.21b), 

(5.41) and (5.42) were determined from grid generation algorithm for the flow domain 
using the numerical scheme described in Chapter 6. 

**************************************** 

rly = 	ay, all = . -1-  `v
,e

y 
a 	e  2 _,_ 2 y 

5  
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CHAPTER-6 

NUMERICAL DEVELOPMENT OF GRID GENERATION 

ALGORITHM 

6.1 GENERAL 

The governing differential equations for engineering problems are generally derived and 

expressed in a Cartesian (rectangular) coordinate system. Solving these differential 

equations in particular require that the continuous physical space be discretized into 

uniform orthogonal computational space (Hoffman 1992). However, the applications of 

boundary conditions require that the boundaries of the physical space fall on coordinate 

lines (surfaces) of the coordinate system. Moreover, accurate resolution of the solution 

requires that grid points be spread out in regions of small gradients and be clustered' in the , 
is 

region of large gradients. Requirement of the grid generation and appropriate co-ordinate 

transformation has been dealt in detail in chapter 2 of this thesis. The general procedure 

adopted in this thesis for grid generation is widely referred to (Hoffman, 1992). 

6.1.1 GRID GENERATION 

In brief, grid generation is the process of determining the coordinate transformation that 

maps the body fitted non uniform, non orthogonal physical space into transformed 

uniform orthogonal computational space. For comprehensive detail information, reader 

may further refer to Thompson (1982) and Thompson et al. (1985). 

The coordinate transformation must satisfy several requirements. The following list 

includes the most common requirements (Hoffman, 1992). 

(a) The grid in the transformed computational plane must be uniform and orthogonal. 

(b) The transformation must be one to one. 

(c) The transformation must be nonsingular. That is, the Jacobian determinants I and 

J both must be non-zero. 
(d) The transformation must yield a body fitted grid. 
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(e) The maximum and minimum values of the transformed coordinates must occur on 

the boundaries of the physical plane (space). 

(0 Coordinate lines (surfaces) of the same family must not cross. Reasonable control 
of the spacing of the points within the physical space must be possible 

6.2 2-D GRID GENERATION USING DIFFERENTIAL EQUATIONS 

6.2.1 FORMULATION 

Grid generation using differential equations involves the generation of a body fitted 

coordinate transformation using differential equations. In chapter 2 of this thesis, 

introductory aspect has been discussed. 

Grid generation using differential equation involves two steps (Hoffman. 1992). 

(i) Grid point distribution on the boundary of the physical plane is determined 
through algebraic method using polynomial approach. 

(ii) Assuming that interior grid point distribution is specified by a differential 

equation that satisfies the grid point distribution specified on the boundaries 
and yields an acceptable interior grid point distribution. 

The majority of grid generation by differential equations is based on elliptic PDEs as 

generating functions. The most common elliptic PDE for grid generation is the Poisson's 

equation which has been adopted here for this model. Inverse operation of Poisson's 
equation to get suitable equations for discretization can be found in any standard 

reference of grid generation (Hoffman, 1992, Thomson et al., 1985)). Details are as 

follows. 

For mapping the body fitted, non-uniform physical plane ( x, y, t ) into the transformed 

uniform orthogonal computational plane ( , rl, t), following elliptic PDE (Poisson's 

equation.) used for grid generation. 

V 2 	I ( 911) 

	 (6.1a) 

v 211 = Q(4 ,17 ) 
	

(6.2a) 
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Above equations can be written in expanded form as, 

ax a 	

77) 

Y 2  

a 7.7  + 32 	77) 
ax2 aY2

71  Q(*, 

 

(6.1b) 

(6.2b) 

In Eqs. (6.1b) and (6.2b), P and Q are non-homogeneous terms. Coordinates (,77) is 

known and (x, y) is not known. The objective of the grid generation process is to 

determine the grid in the x, y space. The inverse transformation will be 

x = x(, r7} 
(6.3) 

Y =Y(,77) 

From the chain rule for partial derivative of generic function f (x, y), 

Jr T fx+ 

fy 	foy 

In similar manner, second derivatives are given by 

fxx = (f x ), = (Mx)„ +(f0x)x 

f. = 4,„+x(f g-x+ .4,7 77x)+ 	+ 	+ f mrix) 

•MYY 	(fm.y + 4177 y)+ 	yy r Y (I14 	4,17  Y) 

Adding Eqs. (6.5b) and (6.5c). one has, 

v2  f fxx  + f yy 	+ )4f  + 	+ yr I y ).47  
+ (7e ÷ 7 elf m  \ 7 2  ± V 2  

Let f = x in above equation. Then 

V 2  X = X x  x  X yy  =0 

(6.4a) 

(6.4b) 

(6.5a) 

(6.5b) 

(6.5c) 

(6.6a) 

(6.6b) 
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Then Eq(6.6a) becomes, 

+ y ).x„ + 	+ yr I y)x + (11 + qy c „„ = —(Px + Qx ,7 ) 

From direct inverse transformation done in Chapter 5, one may get, 

(6.6c) 

= 1y71 

71x = (6.7) 
77y = 

1 J =l=x~ yn —xn y~  

Substituting these results of Eq. (6.7) in Eq. (6.6c) and simplifying gives 

(x12 + y,72 )x — 2(x x,7 + yo/q)x477 +lx + ,4)x,,p7 = —J 2 (1'x + Qx,7 ) 

Equation can be written in condensed form as 

otx — 2 /3.x ii yx,p7 = —J 2 (PX 	Qx 

(6.8a) 

(6.8b) 

Similarly repeating the same step for putting f = y yields 

ay — 2 13 y + yy 77,7 = — J 2 (Py + Qy 

where 

(6.9) 

cc = x2 +y2 

  

  

fl = 

y = 	y 

Furthermore for orthogonal condition (Zhang and Jia, 2005), one has 

(6.10a) 
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i-I j-1 

j 

j-1 

Figure 6.1 Finite difference grid for discretization 
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fi =x~ x,1 + yyn = 0 	 (6.10b) 

6.2.2 NUMERICAL DISCRETIZATION 

The boundary conditions for above equations will be 

x = F 	) 

 

(6.11) 

   

= G 

These are elliptic PDEs with Dirichlet Boundary Conditions. Writing equation in finite 
difference form using second order centered difference approximations of the exact 
partial derivatives (Figure 6.1) 
First equation Eq. (6.8b) 

	

x1+1, - 2x1.1 + x1 	 2 n 	.X,+1 j+1 - 	- 	x1-1.1-1 	 - 2x1 ,./ + x1,1 1 a
r.l 	Adz 	 P1,j 	 +

y 
1, 

	

A 	 A 2 

( X 	- . ,.. _ ji2), 	1-1-1,j 	Xi1,i P 	Xi, j±i - .X,. ,_, 
ri•-i + 	j 	Q,,i ) 

	

2.6. 	 2A 77 

Second Equation Eq. (6.9) 

	

Y +I J 2Yi,J 	Yi- 	Y1+11+1 - Y r-ii Y 	Y 	Yi.j+1 - 2Y ij Y ii-t a 1.J 	• 	 " 	2131 , j 	' 	 1,f 2 

	

4,64A 	2 

	

y", - YI-1,i 	Yi, j+I Y 1, f 2A r/ 

(6.12), 

(6.13) 



where the finite approximation for coefficients are 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

a. = q 

=x 	 x1.(. j 	Y77 

12 12 

= 

,j = 1 x• 	 Y 	±x I )1 i,j 	ri,j 	 eli,i 

Similarly the finite difference approximations of xe 	and yl  are, 

X , + , ,j  - 	x,_, ,j  

II,) 2 A 

Y  1+1 , j 	i->> j  
Y e I; , j  — 	2 A (6.19) 

X , j 

 

2 A 77 

Y/ 	

1, j+ 1 - X  i, j- 
, j 	

1  

2 A 77  

Multiplying Eq.(6.12) by .642 and collecting terms yields 

( A ; 64.  
Xj_Li_i  -=- -1-X14,i  Cro  

2 A/7  

2xi,/ (a,,/ 71,/ 	)  

p 	 64)+ 	Ae J2 Oi

l  2 tx"')+1  2 A/7 x"-ir"  6.7-12 	2607 

(6.20a) 

	

i Ae  .1 n  AV 	
i

A j
a J  +4,JPi.., 1 + Xi+i, j+1  fli 'l  64.  =0 )+xj+1,i_iiL ili  '64771+xi+Li  

	

1-xu+1 7''.1  A/72  + l'f '.1  2.6.77 	 2 A77 

Similarly, multiplying Eq. (6.13) by 0 2 and collecting terms yields 
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( fl
u  Al 	( 	_ j?  .,, At)+ ,,, 	[ A,- ,64  )4_ yi  , 

Y1-1,j-1I 	2 Al  ± YI-1,./ ceia 	,,fli,J —2 	Y -1'
j+1 

2 Ali 

      

      

      

     

(6.20b) 

     

Y,,i+I(Yi, 
Ae2  r  642 	Ae 	 Ae 	Ad 	 n  

Yi+1,j(ai,J Ji2,; 1,j 	j+ 	 = A77 2 	" 2A17 	2 Ali 	 2 	2 A/ 

In our case A4 = O 77 =1, simplifying, first equation for x variable, one has. 

x1 _1 , j  (ci,,i  —0.5J ,2  J P, j  )+ x,_, J±, /30
+ xe7j _1 6/ ; ,i  — 0.5.P . i,J) 1 ./ ,j-1 	132ij ) (  	

0 

— 2xi1(ot1.1 + yi , j ) (6.20c) 

xi,j+ (It, + 0.5Ji2jQi,j )+ x1+1,j-1 1132.if I + 	+0.5.1i2J 13i,j )+
2 	

= 0 

Again the second equation will be for y variable 

( 	11- - 	 P• • 	..i...  
yi-14-1 	2.j  + YI-1,i(aa. -13.5 -1ZiPid )+ .Y1-.1J+1 2ij  . Yi J-1 (70 0  .5  -1,i2  i Qi, j ) 

–2yi,j(a1,1 + 

+ Yij+,(7i,j Al2 
2 	± 0.5 ji2ja,i 	j_l 

6.2.3. SOLUTION ALGORITHM 

(i j  +0.5.1i2J P,J )+ y1+1 J+1  

(6.21) 

 

Using ADI (Alternate Direction Implicit Explicit) Scheme, 
For any / th  iteration 

Step-1  

Row wise solutions is obtained 

Writing equation Eq.(6.20) in tri-diagonal matrix form for unknowns in a row i.e 

x,_1, j , 	x,+1,1 .one has, 
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Li(ai  -0.54 J Pi,i )-2x(zu  + )+ 	+0.5J,2  J )= x
"
•_• 

j-1  2 x1-1.1±1  2 
(6.22a) 

(x,,,_1 (,,_, — o.5f,2,Q,,,)— x,,,+, (7,, 4- 0.5.L2,Q,,i )— x,+,,,_, 

 

)4.  Xi 	
/go 

+1,j-i-1( 2 -= indicating) 

 

Above equation simplified in terms of three consecutive row wise variables at internal 
nodes, 

x 1 _1  , j (a , j  — 0.5J,2dP,J )- 2; 	̀ a,1  + yi,j )+ x i+i  

Similarly for y values, Eq. (6.21) is rearranged, 

.(a, J  —0.5.1;2  J P, j ) — 2y, ,i(cto  + ri, j )± yi+i, j(cri j  ± 0.54jPi,j)= 

Or, 

(yi_l, 

,i (ot i./  + 0.5J i2  J  P:,i )= D,  (6.22b) 

(6.22c) 

(6.22d) 

Yi-1, .1-1 2 

13, - =g(indicatinj 

Yi-1, j+I( 

E,  

2 YE+1' +' 	2 -' 

(a)Thomas algorithm for tri-diagonal matrix form for row wise solution 

Using appropriate terminologies, Eqs. (6.22b) and (6.22d) can be written in the following 
form. 

At / th  iteration 

1 	 •i• 
Ai x 	 = D. 	 (6.22e) 

Ai y 	 yi÷i  = E, 	 (6.221) 

where, * evaluated on the latest best known values ofx and y 
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where, 

= 

= 	+ i,j 

C,= +0.5J,2  

Stepwise one can compute intermediate variables (TDMA) as follows to get the solution, 

(i) Generate array of co and 0 , 

col  = BI  

Co, = B — Ai  x 0, 

C, 	 (Array recursively generated) 
co, 

(ii) Generate another array ( 0); 

A =
D, 

 col  

Di - Ai X  0i-I  = 	CO i  

(iii) Finally, one can generate solution array (in terms of x or y) 

xn = On 

xi  = 0, — 0, x 

Step-2 

(6.23) 
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(6.24c) 

= Ej(Indicatir) 

Column-wise solutions are obtained. 
Writing equation Eq. (6.20) in tridiagonal matrix form for unknowns (column-wise) 

XrArij -1154dQ)-2Xijk +ri,j)+Xi,Arij +a54,j0=  

(6.24a) 

( .,
14  

xi-LJA -- --;-,A, —0.54.X., )—x,4,)+1 ''2  --x,A,,,i -11- —xi-0✓(c4 +a5J P )+x 	---1-  .1 J 	sj kJ 	1+14+1 	j= D (Indicat) 

Or, 

	

/ 	 t, 	/ , 

	

Oxi, 	j 	.Q. 	 1,1all + y. 	x 

	

.)+. 	+ .5J,2J Q, i )= Di  

Similarly one can rearrange Eq. (6.21) for y, 

—13.5J12,J0-2Yuk +71,J)+Yi,Aru 1-4154JQ,J)= 

, 	 Ad 	Ad  

	

y,_,,,_, — —Yi_li  (cc,)  —a5.4,JF,',.,)—x-u+i —2  —Yi-fu-4 	--Yitu ki ±C15-ii2A)+Yi-0,J+1 ( 

Or, 

\ 

YE, 
( 	

1- 2  Yij 
( 

kaki  + ) + Yij+i 
( 
kri, + 	)= Ei 

(6.24b) 

(6.24d) 

(b)Thomas algorithm for tri-diagonal matrix form for column wise solution 

Using appropriate terminologies, Eqs. (6.24b) and (6.24d) can be written in following 

form 

1-1 
j+Ci  xia+1 = 	 (6.24e) 

1-1 
.Y,, j+ 	= Ej 	 (6.240 

where, 
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A, = (y,, j  — 

= 	+ ,,j ) (6.25a) 

= 	0.5J/2,Q, 

One can stepwise compute intermediate variables (TDMA) as follows to get the solution 

(i) Generate array of w and 0 

co . = B --A x J 	J 

C. 
of  = 

0)J  

(Array recursively generated) 

(ii) Generate another array (q5 ) • 5 

DJ  - Ai  x 01_i  

(iii) Finally, one can generate solution array (in terms of x or y), 

xn  = On  

x j  = Oj  — O x x j+i  

One can update the entire coefficients and go for (i±oth  iteration until solution 

converges. 
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(c) Convergence Criteria 

Iteration continues until the following condition fulfills, 

	

1(1) 	(1-1) 
Max x — x 

	

, J 	, j  & &Max. 
(0 (1-0 

si (say = .0002) 	 (6.25b) 

  

where 1 =number of iteration 

6.3. DATA PREPARATION FOR BOUNDARY VALUES 

The grid point distribution on the boundaries of the physical space is determined. The 

boundaries are in one dimensional space. The required grid point distributions can be 

obtained by Algebraic methods. For the study done in this thesis, Algebraic method using 

polynomials has been used. 

The range of the transformed variable 	is arbitrary. The most common (used in this 

calculation) are 0 	1 and 1 	.Where 	is an integer. The transformed 

variables and are related as follows. 

—1 
max - 1  

(6.26) 

Polynomial expansion can be written as follows, 

x= a +b +c 
—2 

 +d 
3 
 +e 

4 
+

5 

Differentiating and solving for 	yield transformation matrix 

2 
b +2g +3.1 +4e

3 
 +5f 

2 
 

(6.27) 

(6.28) 

The coefficients a, b, c, d, e, f and so on are determined by applying boundary conditions, 

constraints and requirements. 
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X=X1 ---->=0 —>=1; 

x X2  —> = 1 —›= max 

X = X i 	= 

(6.28b) 

Algorithm steps 

(i) Give number of boundaries and constrains 

(ii) Select corresponding degree of polynomial 

(iii)Generate simultaneous equations of a, b, c, d, e and so on by putting in boundary 

values in polynomial equations. 

(iv)Solve simultaneous equations through matrix inverse multiplication for a, b, c, d 

(v) Using polynomial, determine value of x for corresponding integer values of for 

the range of 1 	max ( max  is fixed by the user appropriately to get desired 

mesh resolution 

(vi)Evaluate corresponding values of y from cubic interpolation from curve data. 

(vii) Same procedure is adopted for 77 if the boundary is aligned by and large along y 

axis. 

6.4. NUMERICAL COMPUTATION OF NON-HOMOGENEOUS 
TERMS 

6.4.1 INTERIOR GRID POINT CONTROL 

Poisson's equation used in grid generation Eq. (6.1b) and Eq. (6.2b) essentially contains 

non homogeneous terms P and Q. The finite difference form also contain the 

aforementioned terms naturally. Specific functional forms must be chosen for P(, z) and 
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Q(,77) to control the interior grid points to desire level of their distribution to optimize 

orthogonality. If one considers top boundary then the boundary points are fixed. Non-
zero values of P tends to move the interior points right or left, thus influencing the angle 

of intersection of the -line with the boundary. Non-zero values of Q tends to move the 

interior points up and down, thus influencing the spacing of the 77- lines adjacent to the 

boundary. Similar results can be developed for left, right, and bottom boundaries. 
Consequently, the angle of intersection of interior grid lines with boundaries and spacing 

of interior grid lines adjacent to the boundaries can be controlled by the choices for 

P(,77) and Q(,77) (Hoffman, 1992). 

Numerous numerical approaches have been found in literature to tackle this specific 

problem.For details reader may refer to Thompson et al. (1985), Thomas and Middlecoff 
(1980), Steger and Sorenson (1979), and Hilgenstock (1988). 

The general approach for interior grid point control has two steps. 

(I) 	Specification of P(, 7-7) and Q( ,77) on the boundary to achieve the desired 

effect at the boundaries. 

(ii) 	Extrapolation of the boundary values of P(,77) and Q(,77) into the interior 

of the domain to achieve the desired effect in the interior. 

6.4.2 IMPLIMENTATION OF THE TECHNIQUE FOR COMPUTING P'AND 
tQl 

Several techniques for implementing the two steps presented in Secion-6.4.1 are 
available. Though none of them are foolproof still the technique here, adopted for 
implementing the interior grid control is implemented by Hilgenstock (1988), which is 

an iterative approach and quite comfortably implemented to evaluate P(, i) and 

Q(,77), widespread in use to effectively solve the problem as presented in 

Hoffman(1992). After the values of P(,77) and Q(,77) are determined at the 

boundaries, interior values are extrapolated exponentially. 
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Initially P(,77) and Q(,q) are not known. So the initial values of P and Q is set to 

zero and Poisson's equation is solved to get interior points and updated recursively while 
evaluating P and Q for each iteration as follows. 

Let us say at nth  iteration P and Q are Pn and Q" 

So at n+ iteration new value of P and Q will be, 

pn+1 = P"  AP" 
	

(6.29a) 

Qn+1 = Qn .66Q" 	 (6.29b) 

n=denotes the iteration level. The initial values of P and Q is set to zero. 

Let us define some terminologies, 

4 =Tangent vector to the -line at the boundary. i',7 = Tangent vector to the ri -line at 

the boundary. The dot product will give the angle between tangent vectors (see Figure 

6.2), 

•t, • 11;7  cos a (6.30a) 

  

One has then, 
=4. 

j a =cos 	 a  
141.1T  \ 

(6.30b) 

Let a* is the desired angle of intersection. Then, the required correction AP' to 13" is 

AP"  = tan -1(an  a* ) 
a 

(6.31) 

To make the line orthogonal a* is taken 
2  
—IT . The spacing As between the boundary point 

and the first interior point on line is given by 
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AS  = (( jC 	Xid)12 -1- (Y 	Y )2  y2 
	

(6.32) 

Let's As* be the desired spacing, then the required correction AQ" to Q" is, 

AQ" = +tan -1(Asn As' ) 
As* 

(6.33) 

As*  may be set as per the domain resolution or conveniently may be taken by user as the 

smallest permissible spacing of the domain, between the boundary point and the first 

interior point on 	-line. Either or both of the correction AP" and AQ" can be over 

relaxed or under relaxed. 

6.4.2.1 Top boundary implementation 

For the top boundary, one can calculate 	and 	as follows, 

T 
. 	- Xj.

jmm 
	

+ 

(Yi 	- Yijmax  
Asi 	 As1 

AC1 = KX  iamax -1  — X  1,Imax) 	( 1)  dmax -1 	1,Jmnx)2  

4,- 	dr. 	dy -2  +—i 
dt dt 

(6.34) 

(6.35) 

(6.36) 

clx where i and j are unit vectors along x and y axis. — and 	can be determined as 
dt 	dt 

follows, 

cbc 	1 	A  dt = (At, + At_ 	"( Att: 
(At) 

)+ At_+ 
	- xi _Ljr.x ) (6.37a) 

   

dy 	1 	At_ 
dt 	At+  + A 	t_1(At+  (Y1-1-1,„1„,„„ 

\ At+  
)+( At  Vi d „,„ (6.37b) 
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After computing and T , one can compute a from Eq. (6.30b) and AP" from Eq. 

(6.31). Using value of As, from Eq. (6.35), AT is computed. Then, P and Q for next 

step are updated. 

x 

Figure 6.2 Effect of P and Q adjacent to top boundary (Hoffman, 1992) 

6.4.2.2 Bottom boundary implementation 

For the bottom boundary, one 

	

) 7. 	
'
1 	i,2) T = 	z 

can calculate 	and f; as follows, 

(6.38) 
'AS2 As2 

1 

'6S2 	[(Xi,1 

dx 	dy 

(71,1 - Y1,2 )2  r (6.39) 

(6.40) =1 	— j 
dt 	dt 

where land 	 dx are unit vectors along x and y axis. — and 	can be determined as 
dt 	dt 

follows, 
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13,17)= P( ,1 )e 

W,77)= W,1)e 

a(7-1)  
Ornax-0 (6.42a) 

(6.42b) 

(77„,„„-1) 	 rimax  

c(77-0 	 d(nm.-v) 

(qm'' —1)  ± QVMmax 

cbc1 	At 	 ) At, 
dt = 	 ( x1+1,1 xi,' + At_ 	"(At+ 	 At 	kx1'1  

y = 	1 	)[(At_j ( y,  
— 

) (At+ )  6, 	)] 
dt 	At+  + At_ 	At+ 	4" y1,1  ÷ At_ 

(6.41a) 

(6.41b) 

After computing and , one can compute a from Eq. (6.30b) and AP" from Eq. 

(6.31). Using value of As., from Eq. (6.39), AQ" is computed. Then, P and Q for next 

step are for bottom boundary updated. 

6.4.2.3 Extrapolation of boundary values to interior points. 

Extrapolation of the boundary values of P(, r7} and Q,7-7) into interior points of the 

domain is done to achieve the desired effect in the interior grid points. For this 

exponential extrapolation is adopted herein (Hoffman 1992). 

Where first term represents boundary control on the bottom boundary and second term 

represents the boundary control on the top boundary. Large value of exponential term 

gives rapid decay and vice versa. Here in the model, the adopted values of coefficients 

were 9.0. Similarly, for downstream, upstream boundaries P and Q were evaluated and 
extrapolated. P and Q were averaged to include the effect of all four boundaries of the 
domain. 

6.5 IMPROVED MESH GENERATION SYSTEM 

6.5.1 EFFECT CONTROL FOR SMOOTHNESS 
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A good balance of orthogonality and smoothness without distortion and overlapping, 
method proposed by Zhang and Jia (2005) is applied by introducing effect control factor 
on non homogeneous terms P and Q as follows. 

For each grid point factor such as (1-rp) and (1-rq) were applied to the terms P and Q to 
get improved P and Q for incorporation of smoothness as 

P* =(1— r p )P 	 (6.43a) 

Q* =(1— rq )Q 	 (6.43b) 

In Eqs. (6.43a) and (6.43b), 

r = 
— (6.44a) 

P 	17 

(6.44b) r = 

Ps  and Q* are improved terms, and k and 17,7  are locally averaged scale factor along 

and 77 direction. 

6.6 MEASURE OF QUALITY OF THE GENERATED GRID. 

6.6.1 MEASURE OF MESH QUALITY 

Zhang and Jia (2005) mentioned three indices to evaluate the quality of a mesh system 

i.e. uniformity, orthogonality and adaptivity. Uniformity indicates how uniform the mesh 

spacing is; Orthogonality is a measure to what extent the mesh lines are perpendicular to 

each other; and adaptivity indicates the degree of the mesh density distributed in areas 

where higher resolution and accuracy are desired (Zhang and Jia, 2005). The adaptivity 
of the mesh is measured by the functional, 

w  = Sw(x,y)JdA 
	

(6.45) 
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Where the Jacobian J, which represents the area of a mesh cell in two dimensions and 

w(x,y) is the weighing factor. When this integral is minimized, w(x,y)J (with 

w(x, y) > 0) should have a uniform distribution, so that where the weighting function is 

large, the mesh size J should be small. 

The weighting function w is often formulated using water depth or bed bathymetry to 

handle the complex hydrodynamic problems. If the numerical solutions such as the 

concentration or the velocity gradients are selected, the mesh shall be adaptive 

dynamically with the numerical solution (Zhang and Jia, 2005). The uniformity of a mesh 

is measured by the functional 

Is  = fl(V02  ± (V 02  flA 
	

(6.46) 

The orthogonality which is vital for ease in numerical solution can also be measured as 

Io  = fev•v 02  J 3  dA 
	

(6.47) 

Where the factor J3  is added to enforce the orthogonality with higher weighting for large 

cells. If the three indices approach their minimum values, the mesh would have the 

optimal combination of uniformity, orthogonality and adaptivity. In general, a mesh can 

be generated by minimizing the sum of the three integrals. 

I=2 	 As Is  + /{.D/o 	 (6.48) 

Since it is impossible to achieve these three objectives at the same time, for a particular 

mesh one needs to select the appropriate combination of the coefficients oft , A.S  and k . 

In our case A is for orthogonality has been stressed upon more than other indices for 

numerical ease of hydrodynamic solution. It is further to be mentioned here that 
topographical variations are irregular and large as well as mesh used in this thesis is of 
fixed domain. So optimizing indices like adaptivity and uniformity may increase 
complication to get feasible mesh generation with nearly orthogonal grid. 
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6.6.2 MESH EVALUATION 

Zhang and Jia (2005) have suggested a number of indices to evaluate quality of mesh 

quantitatively by several indicators which have been applied here to check the quality. 
These are Maximum Deviation Orthogonality (MDO), Averaged Deviation from 
Orthogonality (ADO), Maximum Aspect Ratio (MAR) and Average grid aspect ratio 
(AAR) (Zhang and Zia, 2005). 

MDO = max(O~1 )  

1 	ni-1 n1-1 
ADO = 	 

(ni — 2) (nj — 2) td 7' 

MAR = max(max( 	 h711 ) 
h 

(6.49a) 

(6.49b) 

(6.49c) 

where ni and nj are the maximum number of mesh lines in 	and 77 directions 

respectively; and 0 is defined as 

= arccos 

1 	1 	ni-1 	h 
AAR = 	E E max( 	, 	) 

(ni — 2) (nj — 2) 2 2 	h 	h, l7 

(6:50a) 

(6.50b) 

For generated mesh to be perfectly orthogonal, ADO and MDO should be 1.570/2). For 
perfectly smooth mesh, MAR and AAR should have same for perfect mesh smoothnes0' 

6.7 COMPUTATION OF COEFFICIENT MATRICES FOR THE 
GRID 

Difference formulas for derivatives developed in Hoffman (1992) have been chosen 

suitably to compute coefficient matrices which are various derivatives or combination of 
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X = 	 
A 2  

a2x x,+1,; — 2x1  + x. ,1 

X = 	 

	

a2 	 ,642 

2 a x -x;_3„ +4x1_21  -5x,_, +x,„, 

derivatives between independent variables x and y with 	and i  depending upon the 

availability of neighborhood nodes. 

(6.51) 

Or, 

a2x  

xee = 	 
2x, — 5xi+la  

.642  

 

(6.52) 

 

Or, 
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Similarly 	and 	can be computed by substituting y in place of x in Eqs. (6.51) and 

(6.52). Similarly following coefficient matrices can be determined depending upon the 
availability of neighborhood nodes and suitability. 

ox  -11x0  +18x; J+1 -9xi.;+2 +2xi j+3  
x = = 	  or/ 	 6Ari 

Or, 

ax 	- 2x,,>-,  - 	+ 6x1 	- x, x  au 	 6A 77 

Or, 

ax 	Xi j_2 	 — 	 2X1 j+1  
X = 	= 	  

6A 

Or, 

ax 	- 2x11; _3  -F9x,„_2  - 	+ 1 lx,„ 
x = — = 77  

a 2x 	X1,1+1  — 2x,11  + x1,1-1  
X = 	= 'pi 377z 	0772 

Or, 

02x  2x1 >I  5xii+i  + 4xi j+2 —  x I  J+3 x1777  = 	aq2 = 
 

0772 

Or, 

(6.53) 

6A77 

(6.54) 

2
.X 

XT  = 	 2 M 1977  

-x, j_3  + 4xi j_2 	+x11  
Aq2  
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Similarly y,l and y1,7  can be computed by substituting y in place of x in Eqs. (6.53) and 

(6.54). Other coefficients used in the transformed equations are functionally related to 
above basic derivatives. Functional relations have been derived and presented in Chapter 

5 of this thesis in relevant sub-sections. Flow chart of the grid generation algorithm has 

been presented in Figure 6.3a and continued to Figure 6.3b. 

6.8 GRID GENERATED FOR DIFFERENT DOMAINS FROM 

DEVELOPED CODE 

The computer code in C++ based on the algorithm has been developed to generate 

efficient meshes starting from simple to curvilinear domain to assess the efficacy of the 
developed algorithm. The parameters to measure the quality have also been computed to 

observe the control functions performance while adjusting the internal nodal points to 

optimize orthogonality and aspect ratio. Some developed meshes in variety of flow 

domain are presented here illustrate the quality of generated meshes. 

Case-I: 

In Figure 6.4, a rectangular domain has been discretized with 6 x41 nodal points. MDO 

and ADO is 1.57, indicating the grid to be perfectly orthogonal. Moreover Maximum 

Aspect Ratio (MAR) and Average Aspect Ratio (AAR) are also same, indicating the mesh 

to be perfectly smooth. 

Case-II: 

In the Figure 6.5, a tapered domain has been taken and the grid quality is assessed. The 

orthogonality and aspect ratio have been computed with maximum and average values. 
Generated mesh is orthogonal with slight deviation with perfect orthogonality while 
computing maximum deviation from perfect orthogonal mesh lines. Still mesh is 

reasonably perfect orthogonal in character. Aspect ratio deviation from maximum and 
average is quite high indicating reduced smoothness in comparison to Figure 6.4. 
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Loop-I 
Compute row wise 
TDMA Coefficients 

Compute xz, 3/4; xn. and A 
Compute au, 	Jij 

Update xe, y. x,i and 
Update au, 1341, Ai and 

,Jf j  

Compute column wise 
TDMA Coefficients 

Solve for x and y for internal nodes 
(column wise) 

no 

yes 

Continued 
to next 
page 

1+1 iteration 

Solve for x and y for internal nodes 
(rowwise) 

Start 

V 

Set grid resotut on by selecting 
integer values for 4 and a as fmax 

and ,j,,, 

For boundary points, compute x and y 
coordinates by algebraic method. P and 

Q set to zero. 

Ith iteration 

Figure 6.3a Flow chart of grid generation algorithm 

133 



Continued 
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page 

Compute coefficient matrices for the 
generated mesh for transformed 

equations 
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2. Modify for smoothness 

Iteration<= user assigned value 

	/  
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extrapolate at interior 
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iterate 
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Figure 6.3b Flow chart of grid generation algorithm 

134 



.. 
..... ....... rmOrATMEMMmo 

.............. "Ionommurummo 

lavall!!!!! 	1 ..... Emma= . 
MD0=1.61 

ADO=1.57 

MAR=10 

AAR=5.95 

0 
	

500 

300 - 

250 - 

200 - 

150 

100 - 

50 - 

0 - 

NoN11111111101  
WWW1110111010811411  NOMMIN 	1111111111111111  

N111•1111111111MEN  
OMMOMMO  

MMI1111 

1111111•111111111 1111•1•1111111•1 

immul■marman• 

1000 
	

1500 
	

2000 

X (m) 

1110 
NO 
MN RN 

WomMINUMMIIIMEMM 

MEI 

MimMOM 
11111111=11•M 

111 

0 
	

1000 
	

2000 
	

3000 
	

4000 
	

5000 
	

6000 

X (m) 
Figure 6.6 A mesh of domain with 11x51 nodes for curved shape 

135 

3000 -  

2000 - 
MD0=220 

ADO=1.57 

MAR=6.0 

AAR=2.1 1000 - 
›- 

0 

-1000- 

000 Ilk 40011111111.0t4, ... 000011111011Mmareve... 
	.1koggsamummuminativa=- 	 	.. SlumMEMEMEMEMMEMmialt  .  

	

.. ,..mmilimmIMMOMMINIMENImpow. 	 
......................... -■IvolOommummo000.0.--' Op,  

4141 	1100' 

200 - 

150 - 

100 - 

s.e 

 

s. 50 

O - 

MIDC)=1.57 
ACPC)=1.57 
NILAIR=10 
INAFt=10 

0 
	

2000 
	

4000 
	

6000 
	

8000 
X (m ) 

Figure 6.4 A mesh of rectangular domain with 6x41 nodes 

Figure 6.5 A mesh of domain with 21x41 nodes for tapered shape 



00.0000srawasprrllattilliall  r irlirairAw" 001010141 1  

•
.

mmm.

..m

mmm.mmmmmmmmm•.mmmmm•••.mmm

m•• 	

m

•mm••.• 
 -.••m

•mm

••
•
•••••••
...

m•• 

 .•.•

.m

.•
.• mm

•m

•

m•

••m•
• 

 mm

•

m

•

mm

•
•

m

o
•

mm

•

m

•

l

mm

or

•

m

•o

m

•
l

mm

••

m

o•

mm

••

mm

•s
•

m

••

m

s■

mm

•
•o

m

•

mmm

••

m

•

m

•

m

m••

mm

•

mmmmm

•

mm

•.

o

m

1

m

11

m

1

m

••

mm

1..

M••

m

•

mmm

I

mmm

•

m

•M

mm

NmM

•

m

••

mm

M

mm

•

mm

••

mm

M•

m

•

I

m

H

E

mm•Mm

••

ImmmN

N•

mmmmM

IiM

IO

mmm

•••

mN

I•

m

ImIMM

m•

•

mm

•

m

••
M.

m

M•

ImEmm

••
N•=
N

mm

I••M
llm
Im• 

•

m

MOIN

m

•
N

mm

•

IINI

m

IN

mMm

•

m

•MIMmm

I

m

••MMmImIN

mm

•
••

m

IIIIlM

mMmm

•

m

•M

mmm

•m•

mmIm

••Nm••
I

INNm••

IDI•m•N
• 
 
•

l
I

m 

 Im  
lE

•

m

•

mm

•

•m•r

mmm

•a

a

m

•

m

U•

m

sM

m•m

s

mm

i

mm

•
•

mm

io

m•

ImC

m•mn•m

•ma
I•m•mA
••  

m• 

 

g

mm

.•i•0

mm•m

•

•0

mm

•

m•

,m0•

m0m

••0•••m•
1o0
•.•

m•m•m

•0

mo

.•

m

••
,00•••m
•

•m•m•m

•
•
11 
_ 

......".SgmmmmmmmmmmmmmmmmmmmmmmmmmmlI•

••2••m
1 •
.
•0

m

•1m

.........mmz.......mmanaainaaaeMaramemlwSow 

mmmmmmmmm 	 mm 	 mmmm mmmmmmmmmmmmm••.i    . i ........ mamma, aillinr._ 1■11•1■1111111 •INNINegralummismarlIMMIMpasoillefoolli 11111111111111110 IMINIOni —ssi 
-1111.1111111.11.111.1  

MDO=2.45 
ADO=1.70 
MAR=1.90 
AAR=1.227 
Iteration=15 

Case-HI: 

A symmetric curved shape as depicted in Figure 6.6 with 11x51 nodal points has been 

discretized using orthogonal and smoothness effect control to get the mesh quality for 

curvilinear symmetric meshes. The computed value of ADO suggests mesh to be 

perfectly orthogonal but MDO gives the indication of maximum deviation from 

orthogonality to be 2.20., which indicates that code has to adjust some nodal points to 

achieve the general mesh characteristic to be orthogonal. So far AAR and MAR depend on 

the number of lines and ri lines by user to achieve a close proximity between contra- 

varient metric scale factors to make the meshes smoother. It should be kept in mind that 
there should be a reasonable balance between smoothness and orthogonality, as forced 

smoothness may decrease orthogonality and vice versa (Zhang and Jia, 2005). 

6.8.1 COMPARISON OF MESH QUALITY WITH AND WITHOUT 
SMOOTHNESS CONTROL 

Algorithm is modified in view of the effect control procedure described in Section 

6.4.3(a) and mesh for an asymmetric curved domain is generated with and without 

smoothness measure as follows. 
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Figure 6.7a A mesh of domain with 21x51 nodes with smoothness control 
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Figure 6.7b A mesh of domain with 21x51 nodes with smoothness control 
Figures 6.7a and 6.7b are presented to demonstrate the effect of the smoothness control 

over the mesh generated. Figure 6.7a depicts the internal control through applying low 

values non homogeneous terms P and Q through iterating 15 times only to estimate 

them, whereas Figure 6.7b. the P and Q terms are kept high with 100 iteration, yet on 

account of smoothness control, grid remains nearly unaltered keeping the orthogonality 

and smoothness controlled at its optimum values resulting in the grid to be independent 

of the iteration done to estimate non homogeneous terms P and Q. This gives a perfect 

balance between orthogonality and smoothness at a time without deciding much for the 

number of iteration done to evaluate P and Q (as described in section 6.4.2) to get 

optimum quality of the grid. 
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Figure 6.8a A mesh of domain with 21x51 nodes without smoothness control 
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Figure 6.8b A mesh of domain with 21x51 nodes without smoothness control 

Figures 6.8a and, 6.8b are presented here to observe the grid quality without smoothness 

control. When P and Q values are increased, the nodal points adjust to make the grid 

more skewed thereby changing the average orthogonality considerably at the same time 

there is no control over aspect ratio also. So, Figure 6.8a is more orthogonal and smooth 

when compared to Figure 6.8b. Whereas in Figures 6.7a and 6.7b, the orthogonality and 

smoothness remains unchanged and optimized irrespective of the relative absolute values 

of the non-homogeneous terms. 

6.9 SUMMARY 

In this chapter numerical scheme for developing a code for generating grids in the flow 

domain using Poisson's equation is described in detail. The computer code has been 

developed in C++ using finite difference method as stated earlier and clubbed with the 
flow simulation numerical scheme to facilitate prime input for domain variables and 
coordinate transformation coefficients to be used in the governing equations for flow 

simulation boundary fitted flow domain (details in Appendix VI). The evaluation criteria 
for assessing mesh quality and efficiency have also been described. To make the 
generated mesh smooth and nearly orthogonal, certain modifications suggested by Zhang 

and Jia (2005) have also been incorporated in the developed computer code. To illustrate 

the performance evaluation of the developed computer code, some chosen physical 
domains with different geometry have also been discretized and quality parameters were 

evaluated and described further to provide an insight into the mesh evaluation. 
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CHAPTER-7 

NUMERICAL DEVELOPMENT OF 2-D HYDRODYNAMIC 

MODEL FOR COMPLEX PHYSICAL DOMAIN 

7.1 GENERAL 

The governing differential equations for mass and momentum in curvilinear coordinate 

system have been formulated step by step in Chapter 5 of this thesis. As mentioned 
earlier, finite difference methods for solving these differential equations in particular 

require that the continuous physical space be discretized into uniform orthogonal 

computational space (Hoffman 1992). In the process of formulating these controlling 

equations, coefficients of transformation introduced into the PDEs which have to be 
evaluated through mesh generation algorithm separately, for a given domain. Moreover, 

boundary conditions have to be implemented very cautiously to adequately represent and 

simulate the real physical conditions to solve these equations. In addition, .the 
independent variables x and y change to uniform and variables. Similarly, dependent 
variables like Cartesian physical velocities also changes to contra-variant counterparts 
resulting in requirement of complete transformation of the PDEs. Numerical model 
development for determination of coefficient matrices for transformed controlling 
equations and appropriate coordinate transformation has been dealt in detail in chapter 6 

of this thesis. The complete transformed governing equations in curvilinear coordinate 

system (fang and Shimizu, 2007) to be solved in finite difference method is mentioned 
herein under. 

ah a h a 
ar —(—

J
)+—(u)— 

J 
+—(v").1=o 

(7.1a) 

)au  +kr 	+ a
' 
 UM +a2U'V"  +a3V"V" ar 	 aq   

.7 OH = _g px2 +. .).;) ______ +(r),xx+7.a,,,,, 	 y 	y  ) 4511 ) Cd U4 V(77 	- 	+(-71.rW + .,,V1 +De  
71 hf 	 (7.1b) 
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avo   ±(uoari   ± fr.„\
)
ar ,  

-Fa4LIql +a5  UV "  +a6  v7v"  

afir 	 affj_Cd -.77 77; r 	y.,71 	 x"r , 	7'1 	'rs- 
= 4(77  x ± YY ) 	(77,  + 7e)- 	 v AI( u'  c v )2+ ( u +v )2+  

an ILI 	 (7.1c) 

	

82x 	82 y a =2(  a2x 	a2y  ), ce, 	.55772x2 y aori2y2  
In Eqs. (7.1b) and (7.1c), a, = 	+ 	2 	x  aoo  Y  0077 

a2 	 32x  

a4 
= 

a2 
x  ae +77,  jo,  a,  = 20r  aoli  

+71 
aag),  a6 li a2x + rf a2Y ),  and q= spatial 

a77 2 	Y (912 

coordinates in the boundary-fitted coordinate system, r =time coordinate in the 

coordinate system, x and y=spatial coordinate components in the Cartesian coordinate 

system, H =water surface elevation(h +zb  ), h=water depth, zb=bed elevation referred 

to a horizontal plane, g --gravitational acceleration, Cd  =bed friction coefficient, which is 

written using Manning's roughness coefficient as gn 2  1 h 3  , n=Manning's roughness 

coefficient, J=Jacobian of the coordinate transformation, W .  and VI = contra-variant 

	

components of flow velocity in the 	and i  directions, Ux  and U y  = depth-averaged 

velocity components in x and y directions, respectively, v1= depth-averaged diffusion 

coefficient (= KU sh / 6), ic =Von Karman constant(=0.4), U' (shear velocity)= 
1, 

n[g(Ux2  Uy2  t 2 /h6 . 

There are number of nonlinear terms introduced (for example terms with coefficients al -

a6) in Eqs. (7.1b and 7.1c) while transforming it from Cartesian coordinate system to 

Boundary fitted coordinate System. Flow variables such as Cartesian velocities are also 
transformed to their counterpart such as contra-variant velocities. The introduced 

additional non-linear source terms are difficult to handle while solving it with numerical 
procedure. Moreover, solutions are obtained in terms of contra- variant variables which 

again have to be transformed to get Cartesian physical velocities with mathematical 
correlations to get as actual set of final results. It introduces additional computations at 

each computational step. So, models with finite difference solver generally are used for 
orthogonal grids or nearly orthogonal grids to avoid non-linear curvature source terms, 
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which in-advertently get introduced in complete coordinate transformation in curvilinear 

system on account of non-orthogonality which is significant with increasing geometric 

complexity. This may introduce considerable error propagation when dealing with 

complex domain with highly non-prismatic channels (i.e. Lien et al., 1999; Jang and 

Shimizu, 2005 and 2007). These models may work efficiently for simple experimental 

flumes but applied to complex flow geometry like simulating alluvial river. Other 

investigators (Seo et al., 2008 etc.) applied finite element methods, which is though 

efficient but requires more computational efforts with enhanced mathematical 

complexity. Kuiry et al. (2008) implemented finite volume method with an implicit 

solution of the discretized equations. They tested the model theoretically as well as on 

field problem taken from a tidal reach of River Hoogly in India. For simulating large 

rivers, finite volume method (FVM) of discretizing conservative form of partially 

transformed controlling equations in • curvilinear coordinate system seems most 

appropriate to use with much computational ease. FVM is used because of its simplicity 

of implementation and good flexibility for space discretization over other methods, as 

discussed by Tan (1992) and Zhao et al. (1996) as reported by Kuiry et al. (2008). 'FVM 

schemes maintain conservation properties in the presence of shocks Hirsch (1988) and 

their stability is independent of Froude number (Beffa 1994), reported by Kuiry et al. 

(2008). As FVM solver additionally conserves mass-momentum, hence it can be suitably 

applied for highly complex geometry using non-orthogonal grids. 

The details with regard to transformed governing equations and secondary flow 

correction with mathematical derivation are dealt in Chapter 5 of this thesis. Here, 

development of 2-D numerical model with modified dispersion stress tensor is focused. 

7.2 NUMERICAL SOLUTION PROCEDURE 

7.2.1 GOVERNING EQUATIONS 

The governing equations presented in Chapter 5 (Eqs. 5.21b, 5.41 and 5.42) are 

discretized using the finite volume method in curvilinear, non-staggered grid. In the 

curvilinear co-ordinate system, mass and momentum equation can be written in 

conservative tensor notation form as 
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Continuity equation 

a(phi)  a + 	(phJii,n )= 0 ar ai m (7.2) 

Momentum equations 

a(puu,)  +  a r ja —Fhjaj,,,aj„, 
Or 	ar 

au,  _ 
(7.3) 

In Eq. (7.2) and (7.3), um  (m=1, 2) are the velocity components in the curvilinear 

coordinate ( 	,r ) which relates to Ux  , Uy  and others as follows, where a7 = 

64 )( u.) _ (  ey )rur )  
( c 	)(1 y 	x 	y 	) (7.4) 

In Eq. (7.3), F = pv, =diffusitiity; 

Ui  stands for depth averaged velocities (i=x, y), Sid  is the corresponding source term in 
the equation for U,, J is the Jacobian of transformation between Cartesian coordinate 
system xi  (x j=x, x2 y) and the computational curvilinear coordinate system 4, (6=- and 

6=q) 

Source terms includes cross derivative diffusive terms, dispersion stress terms and 

external forces but excludes the second derivatives of coordinates (curvature terms) that 
are very sensitive to grid smoothness (Wu, 2007). Expanding Eq. (7.3) 

or (ich-64E4 aul± —a (chslu, -m1722671-- aq 	
h14+cia4, ari 

4111J4 a 	 au 	 a 

2 	2 	2 2 	2 	 2 5-2 	1 1 	1 1 where a2  = 	+ ri y  = 	+ a2  a2  and 	= ± Cy - al a2 a2 

Eq. (7.5), can be written for i=x, y 

(7.5) 

(7.6) 
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°Wu- ) a 	u riaa, au+  (pun U FhJa„31/  or  	- - 	phJu4  „ 	 ail 	 aq 
1 a hJal  )--- 	phJS„ aq  

(7.7a) 

auy  aj+  a [rhA uy-FizJa22—anj- 
4A1Uy )  + a (hxpy-rhiaii7x 077 	7 aT  

hJoelyH)--'2-(pghb:,H)+ riaJ4,  au 	 (7.7b) 

7.2.2 CONTROL VOLUME SETUP 

The computational domain is discretized into finite number of control volumes by a 

computational body fitted grid. The gridlines are identified as cell faces. The control 
volume centered at point P is embraced by four faces w, s, e and n (Figure 7.1). It is 
connected with four adjacent control volumes centered at points W, E, S and N. Here, W 

denotes west (the negative c  direction), E the east (positive direction), S the south 

(negative i  direction) and N the north (positive i  direction). The convection terms in Eq. 

(7.3) are discretized by Hybrid Linear/Parabolic Approximation (HLPA) scheme (Zhu 
and Rodi, 1991). The HLPA scheme is reported to be good at stability and accuracy (Wu, 

2007). The diffusion terms are discretized by central difference scheme. The time 

derivative term is discretized by first order backward scheme. 

Figure 7.1 Two dimensional control volume 

For discretization, non staggered grid is used. It stores all variables on the same set of 

grid points. Number of coefficients is minimized. It handles more complex geometry 
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i71U Pp  

For Uy  

y 

easily. It encounters difficulty in coupling of pressure and velocity (Wu, 2007). It may 
induce numerical oscillation in pressure field. Rhie and Chow (1983) gave momentum 

interpolation technique to improve pressure velocity coupling in non staggered grid, 

which has been adopted to avoid spurious solution. 

7.2.3 DISCRETIZATION 

Momentum equations in Eqs. (7.7a) and (7.7b) are discretized term wise using FVM 

through integrating over the control volume in Figure 7.1 as follows 

i. Transient term 

Transient mass of the control volume in At 

For Ux  

— xk   

p 

p 

• (MAO p 

(hti646i 77)p 

(7.8a) 

(7.8b) 

At 

, Ici 
y 

At 

ii. Convection term 

For Ux  

(phJArkii Y+1(tI xk+11—(phJA7 wkr „k+1  (phIA„its j:1(Uxkin —WilAV,1 ys+I(uxkl., 

Whichcan be writtenas 

Tk4-1 	......1c+177k+1 + k+li pc-1-1 	Ic+IT Tk+I 
x e "154,  x w 	n x n 	s 	x s (7.9a) 
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For Uy  
(phorAr 

	
)k+1 (4+1) e  _( chirAlwits )1sk+1 (11 yk+1)ie  ( phjA. 	yn+I yk+1) n  ( ph/A. ys+1 yk+1) ssub 

Whichcan be writtenas 

thek+Iu171 e  nikvi-luk+1 w riik+Iuk+1 	• M k+I k+ 
I  Yn 	S 	Ys 

In Eqs.(7.9a) and (7.9b) 

= (phJii „,Am)i  

(7.9b) 

(7.10) 

where Am=a or Art and 1 represent cell faces w, e, s, n. 

iii. 	Interpolation of dependent variables at cell faces 

Dependent variables are interpolated at cell faces to substitute their values in Eqs. (7.9a) 

and (7.9b). The interpolation has been done through Linear/Parabolic Hybrid Scheme 

(HLPA) scheme as suggested by Zhu and Rodi (1991) for non-uniform non -orthogonal 

grids. The implementation of the HLPA scheme is as follows. 0 stands for dependent 

variables (Ux  or Uy). 

(a) West face 

mw  >= 0 

a+
w  {

1  10p — 20w + 0ww I <10p 0ww 
 0 	otherwise ; 

(7.11a) 

mw  < 1 

{

1 10w  20 p 0 El < 10w 0E1 
0 	otherwise (7.11b) 
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0 = U:Ow  +v;93,,  + 64)w 

Incl) 
ni„ 

U: = 0.5(1+ U; = (1— ) where tic # 0 
(7.11c) 

(7.11d) 
AO = (Op Ow  U„ 	w0 Oww  u ;a;  Op — 0E1 

Op — OWW 	OW — OE 

= u:Ow + U:Op 4-  (0p - Ow U:a: Ow — Oww  U„ce,-;  Op 0E] 

OP — OWW 	OW — OE (7.11e) 

(b) East face 

th >= 0 

{1  I0E —20p + Owl <10E — Owl 
0 	otherwise (7.11f) 

me <1 

ce; 
{

1  10p —20E + OEEI < IOP 
0 	otherwise (7.11g) 

0e = U:Op +U;OE +APe 

rit 
tref = 0.5(1+ e 	Ue = 	U:) where me  # 0 

me  (7.11h) 

= 

	

p Ue Lre ‘bP C311P  tr a 		 
OE OW 	e e  (7.11i) 

  

(7.11j) 
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A0s = (0p – Os fUs - 
as OP ON  

OS ON (7.11n) 

Os =(-1:93s + Us Op + (Op Os OS 	OSS a+ OP 	ON US 
s 	s OP 	OSS 

u-
s s 

a- 
OS 	ON (7.11o) 

(c) South face 

ms >= 0 

a: 
11 10p – 20s +0.ssi<10p 
0 	otherwise (7.11k) 

ms <1 

as 
{
1 lOs -20P ONI<IOS ON1 
0 	otherwise 

Os = u:Os +U:Op +A(03. 

Us = 0.5(1+-1th sl ) 	= (1– U: ) where Ms ~ 0 .  
(7.11m) 

(d) North face 

I TN –2Op + OsI<ION –Os' 
otherwise (7.11p) 

lOP -20N + ONN I < 10P ONNI 
otherwise • (7.11q) 
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= U:Op +U;ON  + A9„ 

lhn 
	U; = (1— U; ) where tian  # 0 	

(7.11r) 

AO, = (ON —OP 
u:a+ Op — Os  u- 

n  
a- ON — ONN  

n 	 n  ON —OS 	OP — ONN 

 

(7.11s) 

  

On = ,1 0p ±U;ON -1- (ON —OP 
ua+ Op —Os  u a - ON — ONN  

n  ON — OS 	n  OP — ONN (7.11t) 

  

iv. Convection term discretization using HLPA 

Expressions in Eqs.(7.9a) and (7.9b) can be written using HLPA scheme in 

Eqs.(7.11e),(7.11j), (7.110) and (7.11t) in terms of variables at cell centers. 0 stands for 

dependent variables (Ux  or Uy). Then Eqs. (7.9a) and (7.9b) can be expressed as follows. 

Using HLPA scheme, substituting relations given in Eqs. (7.11e), (7.11j), (7.11o) and 

(7.11t), one obtains 

the  IU:Op  + U;OE f3e (OE — OA —  mw  [U:00, + U;Op iSiv (0p — Ow ).1+ 

nen  [U:Op + U; ;ON i3n(ON OP)]—  th, [Us  Os  + U s  OP + Yes (0p — 

Or, 

Opkti: rh je 	th.j. 	rhn(6n 	— MA) 

4-  Ow( thwU: lilw7f3w)±0E(rheU e  rfriA)-1-  0S 1(— 	rils .4)+ ON (ThnU; rilA) 

Or, 

(7.12a) 

(7.12b) 
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Op(the(U: — (e) — 	+ .)+th„(U: i3„) — th.,(U; + 

— Ow 	i)w)÷ 0Efile (U e 0e )—  Oglits (U: (3,)+ 0 pin' 1 n (U; (ĥ„) 
	

(7.12c) 

Thus convection term can be expressed in terms of variables at cell centers i.e. at W, E, S, 
and N using the expression obtained in Eq. (7.12c). 

v. Diffusive term 

In Eqs. (7.7a) and (7.7b), diffusive terms can be discretized using central difference 

scheme as follows. 

(1, hi  au  IA 77.  a  x l  _ 0, hi  an  Al  (u „), -  (u „)p 
a . 

 
I. 

	

e 	
4■4' 

(rhJ a „),., A 7 7., au  r l  = (rhj  a  n  )., A 1..  (u „)p - (u „)w  

	

a I 	 AC.. 
(rhf a as 	

l 	 (u .),
A 
 -(u.),  „ )„ .„ • 	 „)„ .!1 „ 

	

aq 
r 
 ,, 	

(FhJa   

(U  x ), -(U x )s  
(Fh.1 cr221'64, °au 	x - (ThJa22)sAfs 

	

77 s 	 A 77„ 

  

 

(7d3). 

 

 

  

Segregating expressions of diffusing terms in Eq . (7.13) for Eq. (7.7a) 

11  
x
L -- (  

x P  +(rhial)wA71,, 
(u

x
) e (ux) w  (FhJa22),,Aen (Ux)N —(Ux)p  

A 77n  

( )1,  —(u 
+(chJa22)s.gs (-/ x 	x  ?is  

 

(7.14a) 

Or 

(rhia„ 	 
x 
) + (rive„ ) "e  (u

x  )P 
 “FhJa„)

Die 	 E 	e  .64e 	 W  A 
(u„ ), 

 

-(Flaalt).  	xw  ) 	(rhJa22)  	) 

	

n 	 x N 

4- 0.1ila 2213 An x 1.+ (rhla22)5 As  (u 	(rilf 6r 22)s As  (LIxs Aqn 	 Ors 
 

(7.14b) 
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Or, 

Aq (

- 

FhJaa . 
	w w  (U..)w (rhJa22)" Aqn  (Ux)ry A4  

—(EhJa22) 	(Ws +[(rhJail +04 632LP  0/%2) '64n  +Whke22) 	 (OP 

	

s 	 n 	s Atis 	(7.14c) 

Same operations can be done in Eq. (7.7b) for Uy  

—011411 AAI (Uy)E. —(rhfCc) A71ww  (Uy )w  —Whic122)„ 	(//1 

- ("ivan). s 	 )s  +[(Fh4,)
c 	

-ALLy +Pilo:2 j AL' +(rhia22 )s  --s.](u)P  " Aqn 	Aris   (7.14d) 

vi. Final discretized equations for momentum equations 

Substituting Eq.(7.12c) in (7.9a) and (7.9b) and collecting discretized expressions for 

transient term, convection term and diffusive term obtained in Eqs.(7.8a), (7.8b), 

(7.9a) , (7.9b), (7.14c) and (7.14d), one can obtain the following final expression 

(Pr j  ,)kP+' 	 U; )kP  (17.Z64Ati)E 	 SOLIA4A0p  (7.15) 

(7.16a) 

(7.16b) 

= awUsw  +aEU,E  + a NU 	— a pU ,p  + 
At 

where, 

a,w  = 	t-c„,)+ (pvihJocii )H, 

a,E  = —(the fte,)±(Pv thiceil)e 

a,s  = rhs  (1 — 	)+ (Pvilace22), 

a,A, = 	+(pv,hicr22)n 

(7.16c) 

(7.16d) 
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a iP = e (1 ^ uei)—m w u wt + th  n(1 u ni 	 sfisi -V(Pv thJait 

+ (pv hIce 	+ (Pv iila 22) + (pv, a 22 ) 22 

Source term can be linearised in Eq (7.15) as follows. 

S hJMAril p  Su  + S ip  

(7.16e) 

(7.17) 

In Eq. (7.17) Su, and Sp are coefficients. Sp must be non positive (Patankar-1980). 

Eq.(7.15) can be written as 

dpu,p = 	al ua  + Sz ,' 
1=-IV ,S,E,W 

In Eq. (7.18), one has 

a' = a +
Coh.16.00p 

 S P P 	 p 
At 

Sui 	
(phJA0,77)°

P ° = Su, + 	 Ui p 
At 

(7.18) 

(7.19a) 

(7':19b) 

where subscript k indicates the immediate value at kth  time step and k+ I s' subscript is the 

value after At. Pressure value at cell faces can be computed through linear interpolation 

as, 

= f„,pH p +(1— fwp )Hw  

He  = fePH P 	feP)I1  E 

H „ fnpH p 	fnp )H AT  

Hs = f st,H p +(1— f sp )Hw  

In Eq. (7.20), fvp  = 	AL  	, 
ALp,v + Akw 

AL E 	 AL  
feP — 	e 	fnp = 

AL,,e  + ALeE 	ALN + ALmv  

(7.20) 

Acs  and f p  = 
ALP,+ Aks 
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where AL gives segment length between given nodes indicated in its subscript in the 

control volume. 

Final discretized equation in Eq. (7.15) can be written using the relations developed in 

Eqs. (7.18), (7.19a), (7,19b) and (7.20) 

U P 	l, EalUk1+1 +Su, + 	— He )+ R2(Hs  
a 

I 
p 1=N,S,E,W 

where in Eq. (7.21a) DI 	Aq)p and D,2  .(Pghla64 )p  
a;, 

Denoting first term of R.H.S of Eq. (7.21a) as Hi p , i.e. 

U i,+' = 1 	E alUiki+1 +Sid )+ Di! (H. — H e ) + Di2 	— H n ) 
ap  1=N ,S E W 

H,p 

(7.21a) 

(7.21b) 

(7.21c) 

Under relaxation is introduced to stabilize the iteration solution for Eqs. (7.21c), one can 
write the Eq. (7.21c) as 

U,kp+1 =au k" i p + (I I wk+I 	ek+1)÷ D 	sk+1 	:`+'1+ 0 — au )(1,°p 	 (7.22a) 

where o stands for an old value of variable at k+./ h̀  time step and a,, is under relaxation 
factor (usually taken as 0.8). 

One can conveniently write the relation obtained in Eq. (7.22a) for intermediate guessed 
velocities designated with "3' ' superscript as 

= ce [II; D,! (H ): — H:)+ DE2(H: — H :)1+ 0 — a Y/,`; 	 (7.22b) 

UZ I , au, gm, , Su* i  are guessed velocities, under-relaxation factor (taken as=0.8), old 

values of velocities and source term respectively. H*w, H*e, H*, and H*, are guessed 
water surface level at cell faces of the control volume centered at P. 
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Subtracting Eq. (7.226) from Eq. (7.22a), and neglecting H,k,,+' - H , one has 

U = 	a„[D,1 (11:„ - II;)+ D. (His  - 	 (7.23) 

where in Eq. (7.23), H' with w, e, n, s subscripts denote pressure corrections at cell faces. 
Pressure correction has the following relation, 

Hk+1  +H' 	 (7.24) 

vii. Implementation of momentum interpolation technique proposed by Rhie and 
Chow (1983). 

The scheme uses the non-staggered grid as stated earlier. Velocity and pressure coupling 
is poor in this case as all dependent variables are stored at the cell centers. It leads to 

spurious solution. To improve pressure velocity coupling, Rhie and Chow (1983) 

interpolation technique is implemented. It computes U, at cell faces as follows. 

U = a „k1 - f 	J x,PG 1+ ce. 	 fx,PP 413,  + f x,P / aP 

x (pelf A 77).,(H - H ;)+ - a u #1 - 	+ 	 (7.25) 

We  7--  u  [(1  f x,P) G 	 fx,pGrph a uK1 - f x,P)1a PE f x,P 

x (pghJa:68 77)e  (H; H sp )-F (1-  a. )[(1  fx.p )U,°,E fx,pU;9,p 	 (7.26) 

In Eq. (7.25) and Eq. (7.26), G,1; = 	+ D,2(H: - H ). Where Gil  ;w  and arpw  are the 

values of Gi; and cij; for the neighbouring control volume centered at point W. Gil;E  

and arpE  are the values of Gil; and af-; for the neighbouring control volume centered at 

point E. 

Similarly the values of Ui at cell faces s, n are calculated as, 
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(17:s 	 s  + f y.pGir pl+ a„[(1- f y,p)I a pus  + f y" I a pu  

x(pghJa,2.6)S (H; - H;)+ (1- a„)[(1- fy.p 	fx ,PU i°, p 	 (7.27) 

U ."; au [(I— f y,p)Gi2,ps  N  + 	]+ a„[(1- fy.,)14, + 	I ap] 

x(pghJa,2,6,d,(H Ara — H ;)+ (1 — a u )K1 — f y  ,p)U °y -F f x ,pU 	 (7.28) 

In Eqs. (7.27) and (7.28), Gi2; = 11,7x  + D,1 (H„,* - H:). Where G  
,P'

A. 	Y S 	L,P5 and a 	are the i  

values of Gi,/,'* and all. for the neighboring control volume centered at point S. Gi j:N  

and al i, pN  are the values of Gi2;: and ag for the neighbouring control volume centered at 

point N. 

Substracting expressions in Eqs. (7.25), (7.26) and (7.27), (7.28) from same relation 

[Eqs(7.25-28)] at k-Fl th  time-step, for the interpolated Uk+1 fik+1 and U171  ,111c i+1  , one 

can get following correlations. 

u '+I i,w 

uk+' ie (7.29) 

 

774+1 
is 

r k+1 
i,n 

 

 

where in Eq. (7.29), 

[(1— fx , p )I dpfw  + fx „ a p toghcOrA, 

=[(1- f x p)/ apuE  + 	ali,jpgha ,! A 771 

=[(1 - fy,p)/ dp's fy,p di f, Ifigha 12  Ad 

Qi2,n =[(1-  fy,P)/ 	 y,p 

(7.30) 
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Convection Fluxes 	Fe, Fs and Fn ) at cell faces w, e, s, and n can be approximated by 

mid point integral rule as 

Fw
k• +1 

= p,„ (nJ• 771  

Fe = Ve 	 e,e 
(7.31) 

Fs  = psk+1(h.JA ) 
s 

Fn p nk+loliexa 

Equations (7.29) can be written in terms of fluxes at the faces using correlations given in 

Eqs. (7.4) and (7.31) 

F. = + (1-4, — H ip ) 

F. =Fe +aP(HP — H E )  

Fe  = Fè  -1-  af 	— 

F„ = F„ + 	 — 

where in Eqs.(7.32a), one obtains 

4 au pwk4-10 	Ow 	and aE = au  P eic+1  (hJ ; A 77)e  Qt e  

(7.32a) 

 

 

as .
a.upsk+i 	 Qi2,s  and 	a NP = au 

pri+10ilail A  1, Q. 12,n  
(7.32b) 

Using relations given in Eq. (7.6), one obtains 

k arr  =a„(phL
+1 
 (J077).(4,911,,„+ al„Q21  ,u,) and af = au(ph)ek+VAri) 	 +  sv le l e 	2e 2e„ „  

(7.33) 

as = au(ph)s (J077) 	 sLs + (a2  Q2  L 	,s ) and 4 = a„(ph)n+1(,16,77)„(4,0„ + (4,  Q2  ) n _2,n , 
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Guessed fluxes (F*) are determined in terms of guessed velocities U* for using it in Eqs. 

(7.32a). 

viii. 	Discretization of continuity equation. 

Equation (7.2) can be written 

(phJ .fi)+ a (pia
• 
c
" 
), 0 a r 	 Dri  

Integrating first order backward difference for Eq.(7.34a) 

(7.34a) 

PhrP+1A (pht 	. JAA71 ,+ phItt Arie —(phJu).Aq, +(phJu)n 	(phJi) 	= 0 	(7.34b) 

Substituting correlation given in Eq.(7.31), one has 

(ph)P 1—  (ph)P  .AAp  + Fe  — + F„ —Fs  =0 
At (7.35a) 

For incompressible flow and rigid bed condition, above equation can be approximated 

using relation given in Eq. (7.24) 

H p  + H; — H k  
P  .p p AAp  + Fe — F., + F,,— Fs  = 0 

At (7.35b) 

In Eq. (7.34), substituting the values of fluxes from Eqs. (7.32a) and writing it in the 

following form 

aP H' = aP H' + aP + aP H' + aP +  PP WW EE SS NN Si,, 

Whereas in Eq. (7.35c) 

(7.35c) 

aPP  = aPW  + aPE  + aP + aPN  + ' 	P AA  P  S At (7.35d) 
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* 	(H  — H k )p AA 

	

SP = —Fe  s  -F-FW 	n —Fs +Fs  s 	P 	PPP  
At (7.35e) 

Equation (7.35c) can be solved through well known iterative ADI scheme explained in 
Chapter 6. 

ix. Implementation of SIMPLEC algorithm 

SIMPLEC Algorithm mentioned in Wu (2007) and Majumdar et al. (1992), adopted in 
this numerical code in view of the modification in descritized equations, suggested by 

Van Doormal and Raithby (1984). 

Equation (7.23) is modified as, 

k+1 u  
`-1 i,P 	I, + a u [fijH'u, - Hfe )+ j512 	; Hin )] 

where Dm = Dim/(1- a„ E 4 I dpij 
1=-E,W ,S 

(736a) 

(7.36b) 

Using the momentum interpolation technique, the velocity corrections at cell faces in 

Eqs. (7.29) can be modified as follows 

LI" = U + 	Hip)iw  ,,w 

HE
)) 

=U:,s + aua2,s (Hfs  - 11;,) 

U" =U + au a2,u (11;, — 111N ) i,n 

In Eq. (7.37), 

 

(7.37) 

 

 

Qq[1- a.(1— f x,p)( E al/aii",)w  -au f;,p( E 4 14' )p) 
Ir 1=E, 	 1=E,W ,N,S 

a7e=a7e1(1-auf.,p( 	il; flanp 
,N ,S 

- 	- L,p)( 	) Ej 
I=E,W ,N,S 

017 = Q I - au  (1 - fyjs X 	414' ), -a. Jr l  Ea/ I4,) p) 
1=E,W ,N ,S 	 1=E,W ,N ,S 
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0,7„=Q71(1-ccu f y, p( E 	4,) p  ai,(1- fy,p 	E 14)N ) 
I=E,FV,N,S 	 I.E,W ,N,S 

For depth averaged 2-D SIMPLEC algorithm implementation, coefficients ac,, aE, as 

and 4, are determined by Eqs. (7.33) only by replacing Qtw  , 121,s  , Qte  and Qi2;r1  with 

modified coefficients such as IP n2 iw 	 and Qi n  respectively. 

x. Cross derivative source term computation 

Cross derivative terms are kept as pure source term to avoid instable solution as it is 
sensitive to grid resolution. Linearising both momentum source terms, 

Sx hJA0,77 

S yhJA6.77 = Suy  + S pyt xp  (7.39) 

  

First term of the source term is cross derivative term of the momentum equations to be 

dealt specially, integrating over the Control Volume. One can get, 	 (7.40a) 

a2Ux  S =FhJa,, 	 2111 43017  

Suy  =I./IA(12 n
a2u y 

AA  .0077 (7.40b) 

One can represent the Eqs. (7.40a) and (7.40b) as below 

Ul rhJa12 a 2  U1  

(7.41) 

where in Eq. (7.41), i=x or y; 

  

Integrating over the control volume, Eq. (7.41) becomes 

 

su, = (WhJa,2  )e  A rie 	Whial2 ) A 77 °UI  077 e  

Or, 

  

 

(7.42a) 

 

S  Ux S  pxU  xP 
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( ,)„,—(U,)se  
S, =((rhf cri2),A 71. 	  Aq 

e 

(Fhla12 )w 077,4, 	  

(7.42b) 

 

Or, 

	

Su, = krhIc€12 )leOL 	—(L i )se )— (Fhloci2 ),,OU 	—(1 ,),,v )) 	 (7.42c) 

Equation (7.42c) is used to evaluate cross derivative source terms in terms of velocities at 

the neighbourhood. 

xi. Broad outline steps for SIMPLEC algorithm 

a) Guess the pressure field H*; 
b) Solve the momentum equations to obtain L/1 and U; using (7.22b) 

c) Calculate 1Y using ADI [Eq. (7.35c)] 

d) Calculate H using Eq. (7.24) 

e) Calculate //ri  and Ur-  using Eq. (7.36b) 

0 Treat the corrected pressure H as new guessed pressure Ha' and repeat the 

procedure from step b) to 0 until converge solution is obtained, and 
g) Conduct the calculation of next time step if unsteady flow is to be simulated. 

7.2.4 BOUNDARY IMPLIMENTATION 

i. 	Side boundary 

S 

Figure 7.2 Control volume at side boundary 
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For side boundary implementation, wall function approach given by Wu (2007) is 

adopted. For south boundary, velocity at wall (point's') is assumed non-slip and assigned 

zero value. The convection flux is zero when x-momentum is integrated over the CV and 

shear stress is determined as (Figure 7.2), 

T xy = { xy UP , 	 (7.43a) 

where in Eq. (7.43a), Up is flow velocity at P. 2xy is determined using the relations given 
in Eqs. (7.43b). 

Axy  puac  
ln(Ey;',) 

where yp = usyp 	
(7.43b) 

where yr is the distance from the wall to the point P, shear velocity is the shear velocity 

on the wall defined as u+  = Txy. E is the roughness parameter given as 

E = e (B° 

0 
{ 	

k: < 2.25 
1 AB = (B 0  – 8.5 + —In k+) sin [0.4258 (In k: – 0.811)] 2.25 < k: < 90 
lc 	s  

	

Bo  –8.5 +11n k+ 	 k: > 90 lc 	s 

(7.43c) 

(7.43d) 

In Eq. (7.43d), Bo=additive constant of 5.2 and Roughness Reynolds number lc: =l ac  

(Cebeci and Bradshaw,. 1977) in zero equation model. This shear stress is moved to 

source term thus yielding zero coefficients 4- in Eq. (7.22b). Second momentum 

equation is integrated over CV, the convection flux and normal stress Tyyat face s should 

be zero. Thus as'' will be zero as well in Eq. (7.22b). Flux Fs  is zero. So pressure 

correction at face s is not needed. as in Eq.(7.33) becomes zero. The pressure (water 
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level) at boundary point S can be extrapolated from values at adjacent internal points. No 

slip condition (Ux=0, Uy=0) is the appropriate condition at solid walls. Since the wall 

velocity is known, it is also unnecessary to perform a pressure correction here. 

Same analogous boundary condition implemented in north side boundary. 

ii. Inlet boundary 

)%. The depth averaged stream-wise velocity at each computational point of the inlet 

located in a nearly straight reach may be assumed to be proportional to the local 

flow depth, i.e. Ua hr, where 	2/3 for uniform flow (Wu, 2007), given as 

Qhr  U= 8  
fer dy r 

0 (7.44a) 

where, Q=total inflow discharge, B= width of channel at discharge Q and y' 

= transverse co-ordinate. For assumed uniform flow 

2 

Q 
j 	B 	5 

fh 3 dy' 
(7.44b) 

where denominator in Eq. (7.44b) can be evaluated through trapezoidal 

rule to evaluate integration along the inflow boundary. 

For a specified discharge Q, formulation will not give directly unique 

value of inflow flux at each cell if flow depth is unknown. Iteration is 

needed (Wu, 2007). 

A Water level is assumed at face w, and inflow velocity and flux is obtained 

uniquely using the formula from Eq. (7.44b) (Figure 7.3). 

A Flux Correction at face w is zero. 

U 
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Figure 7.3 Control volume at inlet boundary 
> Pressure correction equation becomes. 

414  =af.Hvf +af H' +al„'H NI  +Sp 

where, a =af +a: +47JA,' +'  o AAand, 
At 

(II*  —11k  )p AA SP---Fe* +FW* —Fns  +Fs 	P P  
At 

(7.44c) 

(7.44d) 

(7.44e) 

> Flow calculation is then carried out over internal points. 

> After internal pressure field is obtained, the pressure (water level) at 

the w-face of each inlet can be extrapolated from pressure value at 
adjacent internal points and new inflow flux can be obtained from 
usual formula. 

> The above procedure is repeated till convergent solution is obtained. 

> Source term computations for inlet boundary is done as follows 



n 

P EV  w 
e 

S 

S 

s„ = (riace,,),Kux )„,e  —(ux ),,e1--(rua,,LKux ),„, —(ux),1 	 (7.44f) 

SUY  = orkaaje  Ku, )Ne  	)Pe oilcow 	- (u), 	 (7.44g) 

iii. Outlet boundary 

N 

E 

Figure 7.4 Control volume at outlet boundary 

A 	At outlet boundary, pressure (Water Level) is specified for sub-critical 
flow. 

➢ It is specified at the center of the control volume, i.e. at P 
➢ Pressure correction at point P is as earlier stated. 

af,H p' = aW Hyy  +afH E.' +a,P5 H,' +af„H N  + Sp 	 (7A5) 
In this case, pressure correction at point P is zero. 

➢ Flow velocity at the outlet can be extrapolated from the values at adjacent 
internal points. 

➢ The diffusion flux at the outlet (face e) is zero due to zero gradients 

(Versteeg and Malalsekera, 1995). Because, the convection terms are 

usually discretized using an upwind scheme, the coefficient at (where 

is Ux  or Uy ) may actually be zero. 
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ax = Jc4Ari 	al/ 
ay )Ari b2 = Ja26,77 

al? 

Ja; A 
} ax = Ja:An a~ A71 

(7.48) 

7.2.5 COMPUTATION OF PHYSICAL DOMAIN VARIABLES FOR THE 
CONTROL VOLUME 

In the Figure 7.1, area of Control Volume (AAp) can be given using only the parameter in 
the Cartesian coordinate system without involving the increment A4 and Aq (Perk, 1985; 
Zhu, 1992a). 

I " AP
1 
— I \X XswXYnw se)— (Xnw XseXY ne Y sw) 2 (7.46) 

where in Eq. (7.46), Cartesian independent variables (x and y) with subscripts indicate the 
values at cell vertices located at North-East (ne), South-West (sw), North-West (nw), 
South-East (se) and North-West (nw). For neighborhood nodes W, E, S, N and w, e, s, n 
area of control volumes (AA kv, LtAE, AAs, AAN, AAw, bale, ei615 and &In) are computed 
using the formula (Eq.7.46) by symmetry, substituting the corresponding x, y values, 
fluxes can be computed as follows 

rhw = p„,(JAri),„4;51,= pw(Nux +bluyr 

the pe(JA0e ir;;1 = pe(bliux -E-buy ) ±1 

rigs = ps(J Ps(biux + b22uyr 

p,,(1•12ux +11;it yri (7.47) 

where in Eqs. (7.47), 
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The difference equations can be written for cell faces w and s for the Control Volume 
(Figure 7.1). 

bip = — 	= Y.. Y. 	= YP YS 

b21  p X s  — Xn  b21  w  X sw —  X nw  b21  s  = X s  — xP  

b2  lP = Y. — 	Yw Y P 	Y sw Y se 

b22p = xe 	x p  —xw 	b22, = x,e  —xsw, (7.49) 

For cell face n and e, difference equations can be written using formulae given in Eq. 
(7.49) by symmetry, substituting the corresponding x, y values. 

Diffusion parameters can be written at cell faces w and s as 

(1'h/02_11. .6.0W  / Aew= l
(bIli

t
' +bib' 2 )w  

(b2  + b)s  (FhJai  tg) 	77 =F 		1 	2 2  
J 	s / 	s 	s 	b2 AA s  

(7.50a) 

(7.50b) 

For cell face n and e, diffusion parameters can be written using formulae given in 
Eqs.(7.50a) and (7.50b) by symmetry, substituting corresponding bin, (i=1 or 2 and m=1 

or 2) and AA/ (/ is n or e). 

7.2.6 SOURCE TERM COMPUTATION FOR DISPERSION TERMS OVER THE 
CONTROL VOLUME 

For first momentum equation (Eq. 5.41) and second momentum (Eq. 5.42) explained in 
Chapter 5, dispersion terms are 
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2 apxy 	l aDyy 	2 ODyy + 	+ a 2 	± a2
aij 

S dY = Pa' a (7.52b) 

apxx  apxy = apx„ +,7x 3Dxx +y 	
Y

aipxy aDxy  
ax + ay (7.51a) 

a, 	 apyy  apyy x aD  ±rix  aD + y 	+7-4 a77  
aDxy  apw 	, 
ax ay (7.51b) 

Integrating Eqs. (7.51a) and (7.51b) over the CV—shown in Figure 7.1 One has 

,aDxx s delApai = S, = !Sal   
() 

NJ [ OD ap 
+cr 	±ce 	-131  + a 2 	13' i 

2 	
2 	 a4. 	2 	al  (7.52b) 

From Eqs. (7.52a) and (7.52b), one has 

Sd, = (.1(4.1)„„+ .Ia;.Dxy 	- (la; 	+..Ia.D.„yt A 

+ 	.D + Ja; .D xyt gA„ - 	.D_„„ + Ja2 .D xy ).,  Ads 	 (7.53a) 

and 

S dy  = (la; .D xy  + Ja;.D yy )e  A lie  -(A4.Dxy  + Ja;.D yy  A q,„ 

+ 	3 + Ja:.D yy  .64„ - 	..Dxy  + Ja; .D yy ),  64, 	 (7.53b) 

Using relations in Eqs.(7.48), for Eqs.(7.53a) and (7.53b), one obtains 

S dr  (bile .Dxx  bL.Dxy )e 	.Dxx  b21  .Dxyt +(b12 	+ 	(b12s  .Dxx  +b22s.
DxY )s (7.54a) 

and 

Sdy  =(bile.Dxy  ±b;e.Dyy )e -Nw.Dxy+ aL.Dyyt+Wn.Dxy  +14„.Dyyt-(1)12s.Dxy+Ns.Dyy), (7.54b) 
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i. 	Computation of Cartesian dispersion tensor from curvilinear dispersion tensor 

Modified empirical expressions were obtained in Chapter 4 for curvilinear dispersion 

tensor. The curvilinear dispersion components are transformed to Cartesian dispersion 
terms for using them in Eqs. (7.54a) and (7.54b). Following correlations were used to 

obtain Cartesian components from curvilinear components of dispersion terms (Duan, 

2004) 

Dxx  = D cos2  Bs. +2D:y  cost?, cost„ + 	cos2  0„ 

Dyy  =D sin2  +2D:y  sines  sinOn  + 	sin2  0„ 

Dxy  = D coses  sines  + 2(R; sines  cost„ +D,, cos9, sine,,)+ Dyye  sin0n coss9„ 

 

(7.55) 

where 0, and On  are angles between stream-wise, transverse directions pointing outward 

and positive x-axis respectively (Derivation of the formulae for computing es  and On  is 

detailed in Appendix-II). 

ii. Computation of streamline radius of curvature 

Radius of curvature is required to determine the curvilinear dispersion stress tensor 

explained in Chapter 4. Following correlations used to compute streamline radius of 

curvature (Tang and Shimizu, 2005; 2007). 

 

ux2i,x 	+ux auyi fuxuyi,auy +,,auy ) 
au  ) 	"' 	) 

) k, +77y 	 aq 
aux 	aux ) , 	au 	au —UxUy 	 + 

 

1 	1 
rs  — U3  

(7.56a) 

 

  

Or, 
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1 	1 
r3  U3  

(7.56b) 
Ux  y al 	 + a2 a 	 (-42 	 2 al  r 	aUx  2 aux ) ,(,, aux  + a  aux

a?
) 

In Eq. (7.56b), r3  is radius of curvature, U is stream-wise velocity, others terms are 
already explained in previous Chapters of this thesis. Multiplying L.H.S. and R.H.S of Eq. 

(7.56) with AA,, W  JA0,77 

U.32pVa;A17),Uye  — 	A77)„,Uym, + (Jai2  AD n 	 - (Jai A)s Uys) 

(7.56c) 

AAp  1 
rs  U 3  

+U xpU yp((Ja: eUye  (Jail 	y  + (J464) n U yn — (Ja22,g)„ 

- UxpUyp Pall  A 77)e  U — (Jail  A Ow  Ux,„ + (.1464)„U„,— (Ja22,g)„ 11,„ 

Up Pot12 A 77), 	 - (Ad A77) Ux„, + (Jc.6,Dn U xn —(Jc4A)s tf xs ) 

Or, 

1 	1 
rs

= 
A4p.U3  

[ 

UL,((b; ), Uye  —(b; )wUy,,, +(b; ),, ilyn  —012 ),U ys )- f- UxpU yp((b:),U ye  — 0: )wU y., -1-(1?),,U y„—(bD,,U 3,,,) 

—Ux,,U.,pkb,1 )ellx,—N),„Ux,,,+(10„Ux„—(b2 )„Ux,,)—U32,pkg,LUxe —(02 )„,Ux„„+(4)„Ux,,—(o4)sU xx.) (7.56d)  

Equation (7.56d) is used for computing radius of curvature; it is the function of Cartesian 
velocities at cell vertices and physical domain variables. 

7.2.7 COMPUTATION OF BED FRICTION COEFFICIENT 

The bottom shear stress appears in momentum equation used explicitly as source term in 
2-D modelling, i.e., it affects every cell rather than being a condition that it affect only 
boundary cells. It is commonly assumed that the shear stress can be expressed as a square 
law of depth averaged velocity (U) using; 
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To  = kpU 2 	 (7.57a) 

The parameter k is then expressed in terms of roughness parameters, such as Chezi's C or 
Manning's n. For uniform flow it is readily found that equation is equivalent to the 

Darcy- Weisbach equation with k=f/8, Comparing with Manning's equation (Lane and 

Ferguson, 2005) one has, 

CD =k= 
(7.57b) 

C D  =lc= gn 
2  

h 3 	 (7.57c) 

Using uncertainty approach it is established that, over a non-uniform river reach U is 

likely to have far greater spatial variability than 11, so will be the dominant control over 

spatial variation in shear stress as defined in the above equation (Lane and Ferguson, 

2005). Physically based alternative to estimate n, is used as mentioned in the following 

equation (Lane and Ferguson, 2005). The assumption considered is that law of wall holds 

throughout the full depth to estimate value of CD  at each node. 

Kh6 

h 	
(Lane and Ferguson, 2005) 

e • zo 	 (7.57d) 

z0  (Roughness height) = — (Nikuradse, 1930) or more recently 0.1D84 , h=flow depth, 
30 

e=2.71. 

7.2.8 MOVING BOUNDARY IMPLIMENTATION (wetting and drying technique) 

A number of approaches are available in literature. The methodology, appropriate and 

extensively used for structured meshes with FDM solver is Fixed Grid Method with 

"discontinuous stair case discretization" (Bates and Horritt, 2005) (Figure 7.5). 
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Figure 7.5 Discontinuous staircase discretization at boundary 

Such methodology was published in Bradbrook et al. (2004). Point wise assumptions and 

methodology adopted for this model is mention herein. 

✓ Bed slope at each computational cell is assumed to be zero. 

✓ Topography is represented as series of planer horizontal element forming 

discontinuous staircase. 

✓ Entire element is switched on /off depending upon the computed water level. 

✓ Assume instantaneous wetting of each element in a manner that conserve 

mass. However, momentum equations are not still conserved. 

✓ Boundary should move with the momentum of fluid which generally is small 

in shallow water flows. 

✓ Logical 'flag' need to be assigned to each cell to indicate when it becomes 

wet. So that correction may be applied. 

✓ Numerical simulation of flow in open channels with slope banks, sand bars 
and island, the water edges changes with time, with part of nodes being 
possibly wet or dry. 

✓ Even for steady flow, the water edges are not known until the computation is 

finished. So whole domain has to be included initially to solve for momentum 

equation and water depth is computed for the whole domain implicitly. So 
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fully implicit solver is used in the model for water depth, all the wet and dry 

nodes participate in the solution. 

✓ A threshold flow depth (a small value such as 0.02 m in natural rivers) is used 

to judge drying and wetting front. If the flow depth is lower than the threshold 

value, the node is dry. The dry nodes are assigned zero velocity in stream wise 

and transverse direction. 

7.5 OVERALL SOLUTION PROCEDURE AND FLOW CHART 

A brief flow chart for the developed numerical scheme is shown in Figures 7.6a as part-A 

and continued to part-B in Figure 7.6b (computer code details in Appendix-VI and VIB). 

The SIMPLEC Algorithm being semi implicit scheme, the stability of solution is ensured 

using the Courant-Fredrich-Lewy(CFL) condition (Lien et al., 1999). 

CFL =maxij  
U, i  + 1UY tal]Atl<  1.O 

\  
Ax, 	Ay, 

(7.58) 

In the program, the courant number for each computational node is checked at each time 

step. If, it is greater than one, it is automatically adjusted by reducing the time step. The 

convergence criteria of this scheme is when difference of calculated velocity and the flow 

depth at current and previous time step approaches zero which is expressed as 

w k+1 

tsk 
	--> 0 

where, &P = Ux ,tly or h 

A smallno. is added (lx 10.6 ) beforedivision b avoidzero denominator (7.59) 

171 



A— 
Guess t-i*, UxtUy* at 
each cell centers of 

Cu • 

yes 

Compute all involved 
pressure coefficients for H' 

no 

•  
Interpolate cell face 

guessed flow 
variables at w, e, s, n 

Fix dt from CFL 

Compute coefficients of 
discretized momentum 

equations 

Compute source 
terms 

iterate 

Compute 
coefficients of 

pressure source 
terms 

Solve for Wand Uy* from discretized 
momentum equations 

Solve for H' 
(ADI scheme) 

Update I-r and h 

iterate 

Computed 
Grid 

coefficients 
and domain 

variables 

---) Continued 
to next 
Page 

Figure 7.6a Flow chart of numerical scheme (part-A) 
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Figure 7.6b Flow chart of numerical scheme (part-B) 

7.6 SUMMARY 

In this chapter, a detail and comprehensive step wise procedure for solving the governing 

flow equations in curvilinear co-ordinate system by finite volume method has been given. 

A C++ program module (Appendix-VI) has been developed using this numerical code to 

solve flow equations. For solving governing mass momentum equations derived in 

Chapter 5, SIMPLEC algorithm with incorporated Rhie and Chow's (1983) interpolation 

technique in non-staggered grid has been adopted. In the solution algorithm moving 

boundary implementation using wetting and drying technique has been incorporated to 

simulate moving boundaries, braid bars, islands and no flow zones within the flow 

domain. 

* * * * * * * * * * * * * * * *** * * * * * * * * * * * * * * * * * * * * * * 
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CHAPTER-8 

DATA ACQUISITION, PRE-PROCESSING AND 
APPLICATION 

8.1 GENERAL 

One of the characteristic features of Brahmaputra River is that it has three to four 

constricted nodal points where the cross-sections remain unaltered and stable with 

time and space, moreover, around the vicinity within an extent, Brahmaputra follows 

uniform aligned channel configuration. This gives different segments of Brahmaputra 

separated with well defined nodal points (with uniform channel width) which is 

adequately and favourably suited for applying 2-D hydrodynamic mathematical 

model with relative ease so far as upstream and downstream boundary 

implementation is concerned. Still, process representation of fully developed braided 

stream is challenging task on account of the presence numerous 3-D flow structures 

within the flow domains. 

The sediment discharges and flood discharges at certain locations of the river have 

been continuingly recorded and the river cross sections surveyed periodically. Still, 

the limitation in the human capacity, instrumentation, the difficulties of the 

measurement and the risk involved, the actual data acquisition often remain off-set by 

errors. The importance of the information that could be derived from the analysis of 

the data is very high in the design, management and future risk and hazard prediction 

and strategies. 

Taking in to account the situation as described above, the present study is a maiden 

attempt to implement a 2-D hydrodynamic flow simulation model based on the 

controlling equation and specified boundaries specially keeping in mind the flow 

behavior of River Brahmaputra in chosen study reach. The algorithms established by 

the researchers/modelers in the relevant literatures advocate that the success of flow 

simulation model application depends on the size of the data covering wide patterns 

of phenomena. More the data sets, better is the result's reliability. The technique is a 

data driven model requiring gamut of data patterns representing the actual phenomena 

to accommodate all the possibilities within the patterns of independent and dependent 

variables. 
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The study has been carried out on the following data sets and the area of interest. 

1. Study domain of the river channel (from Pandu to Jogighopa) -112 km 

2. No. of the measured river cross sections ( 1997)- 14 Numbers 

3. Hydrological Data( Jogighopa-Pandu) for the same year(1997) 

8.2 DATA SOURCES AND DATA TYPES 

8.2.1 HYDROGRAPHIC DATA 

Morpho-metric data: the reduced levels of the river cross-sections of post-monsoon 

period for the year 1997 have been collected in respect of all the 14 pre-defined river 

cross-sections (Appendix-III) from the Brahmaputra Board, Government of India. 

8.2.2 DISCHARGE AND STAGE DATA 

Discharge and stage data of the river Brahmaputra collected for various cross-sections 

from Central Water Commission (CWC), Assam Water Resources Department and 

Brahmaputra Board have constituted main data resource to the model 

implementation. The length of data record was for 1997. 

8.3 PRE- PROCESSING OF HYDRO GRAPHIC DATA 

The Brahmaputra River Basin in terms of its complexity calls for well-defined 

response models. In the study, the significant steps followed are outlined. The steps 

are the abstraction of outliers and errors in the data sets. Conceptual or statistical tools 

as regression and curve fitting were implemented on the variables pertaining to 

specific river / stream to identify the irrational points; they were either discarded or 

rectified based on the earlier trends or pattern of the data. 

8.4 FRAMING OF THE DATA-SET FOR MODEL APPLICATION 

The system contains 2-D hydraulic analysis component for steady flow water surface 

profile computations. A key element is that component will use geometric data 

representation and geometric and hydraulic computation routines. 
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8.4.1 DATA REQUIREMENTS AND INPUT 

The basic input data required for 2-D model can be grouped into following categories. 

8.4.1.1 Geometric data 

(i) Domain discretization 

Geometry of the physical system is represented by cross sections, specified by 

coordinate points (stations and elevations), and the distance between cross sections. 

The 2-D surface is represented by grid with appropriately chosen nodal point with 

know x, y and z coordinates. Moreover Hydraulic roughness is computed in case of 2-

D by Manning's n values and can vary from node to node depending upon the depth 

averaged velocity. The river domain boundaries (main channel and largely low flood 

plain) for the study period is extracted in geographical coordinate system from the 

remote sensing imagery [Courtesy: NDMA(2011)]' shown in Figure 8.1a and 8.1b and 

transformed to Cartesian coordinate system to accurately represent the domain in 

Cartesian Plane (Figure 8.2a). It is to be understood that the whole cross section 

includes main channel, low flood plains, and high flood plains. Some reaches within 

the river study stretch have dykes built for flood protection purposes. These dykes 

have poor maintenance and are often breached during high flood seasons. The main 

channel and low flood plains (Primary Flood Plains) are inundated in low and 

medium flood periods. Keeping in view, care has been taken to extract the flow 

domain to include priniary flood plain and cross sections were fit that must include 

main channel and low flood plain. 

The geo-referenced image covering the river stretch in 1997 was delineated using GIS 

software tool by the digitizing the bank lines through identifying river sandy ,bed 

fringes with vegetative cover along the bank line. The coordinate system of the geo 

referenced image was WGS 84. Thus, x and y of boundary grid points were obtained. 
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Figure 8.1a Domain delineation through imagery (IRS LISS III, Year 1997) 

Figure 8.1b Domain delineation through imagery 
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Figure 8.2b Domain in x-y Cartesian coordinate 
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Furthermore, boundary grid points have been refined and evenly redistributed through 

algebraic method into 451 points along the positive x-axis (south and north 

boundaries) and 51 points along y-axis. Domain is re-oriented as, positive x-axis 

aligned with the direction of the flow for convenience in sign convention while 

applying the controlling transformed partial differential equations for computation of 

flow field and water depth. Some of the extreme grid points at upstream and 

downstream of the flow domain is corrected and rectified to fit the measured cross-

section in the given orientation which is supposed to be crept in due to manual 

digitization error while delineating the flood plain from inhabited area in the vicinity 

of prime inhabited land at Pandu (at upstream location) and Jogighopa (at downstream 

location). Boundaries are slightly smoothened through three point-Finite Fourier 

Transform (FFT) using a math-processing software to generate an efficient mesh 

without changing the basic characteristic of the domain (Figure 8.2b). 

(ii) Hydrographic data 

As discussed in earlier Chapter 3, morpho-metric data in the form of the reduced 

levels of the river cross-sections of post-monsoon period for the 1997 have been 
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collected in respect of all the 14 pre-defined river cross-sections from the 
Brahmaputra Board, Government of India. 

The data for the cross-section have been normalized and as per their position and 
orientation (chainage, and bearings), these points are fit accordingly into the domain 
taken under study. The bearing at cross section-22 is zero and physically identified 
position on the imagery used to extract the domain, taking reference of C/s -22, cross-
sections can be positioned and oriented if chainage and bearing are known (Table-8.1, 
and standard Brahmaputra map in Appendix- V, Brahmaputra Board Govt. of India). 

Table 8.1 Study reach of Jogighopa-Pandu(Appendix-V) 

S.No. Name of Site X-section chainage 
(km) 

Downstream 
Reach Length 

(km) 

Bearing of X-section 

1 Jogighopa 9 82.62 0 0°  -30 
2 10 92.82 10.2 24 ° -40' 
3 Dubapara 11 100.98 8.16 16°  -00 
4 Dalgoma 12 109.65 8.67 5°  -36 
5 Simlitola 13 119.85 10.2 358°-30 
6 Nagarbera 14 128.01 8.16 310°-30 
7 Rangapani 15 137.70 9.69 340°-30' 
8 Rangapani 16 146.37 8.67 349°-30 
9 Barakhat 17 156.06 9.69 22°  -00' 
10 Bitartari 18 167.28 11.22 3°  -00' 
11 Ganimara 19 175.95 8.67 13° -30' 
12 Palasbari 20 182.50 6.55 3°-00' 
13 Dharapur 21 189.21 6.71 356°  -00' 
14 Pandu 22 197.37 8.16 0°  -00' 

It is further elaborated that boundary geometry for the analysis of flow in natural 
streams is specified in terms of ground surface profiles (cross sections) and the 
measured distances between them. Measured cross sections are located at intervals 
along a stream to characterize the flow carrying capability of the stream and its 
adjacent floodplain. They extend across the entire floodplain and perpendicular to the 

anticipated flow lines. Occasionally, it is necessary to layout cross-sections in a 
curved or dog-leg alignment to meet this requirement (Table 8.1). Every effort has 
been made to obtain interpolated stream bed data at mesh nodes based on these 
measured cross-sections so that data will accurately represent the stream and 
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floodplain geometry. The adopted process of bed interpolation appropriate for the 

available data set is discussed in subsequent sections. Thus, the river domain is 

specifically delineated with the flow area with flood plain (outlines the sandy bed of 

river, see Figure 8.1). 

As discussed earlier, cross-sections are fit at the position and bearing as per Table 8.1. 

The measured cross-sectional data from the left bank of the river is normalized (0-1) 

and 101 points are extracted through linear interpolation technique to get nodal points 

for the structured matrix for bed interpolation, discussed in the subsequent section. 

Figure 8.3 X-section data point interpolation (a) cross section -22 (b) cross section-9 

0 0 	0.2 	0.4 	0.6 
	

0.8 
	

10 
Normalized X 

(C) 

Figure 8.3 X-section data interpolation (c) cross-section-20, (d) cross-section-15 
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In Figures 8.3a- 8.3d. X-sectional data interpolation of 101 points from measured and 

domain fitted cross-sections numbering 22, 20, 15 and 9 have been depicted for 

illustration. 

(iii) Stream bed interpolation 

Stream bed interpolation is a process of interpolating bed elevation from the topology 

or bathymetrical database onto the mesh nodes. A number of methods and algorithm 

are available in the literature. For the type of , observed data available, Inverse 
Distance weighing method with structured data base is used which has been also one 

of the methods as described by Zhang and Jia (2005). Inverse Distance weighing 

method can be described as follows. Suppose there are known bed level Z where 1=1, 
2, 3 ...n and Zb is the bed level at the known grid point (P) which has to be 
interpolated. The Zb  can be given as 

E £; •Z, 
Zb  = 	 E el 

(8.1a) 

where, e, =weighting factor of the respective interpolated point i, weighting factor is 

taken proportional to inverse of the distance from P to the interpolation points. So 
finally Zb can be given as 

n  Z 

—Lil 

b 	

el. 

Z 	I 	 

E- d , 

(8.1b) 

where d,= distance between interpolation point (i) and grid point P (Figure 8.4). As 

the data base is structured, so structured interpolation of Zhang and Jia, 2005 
Algorithm is adopted to interpolate the data at grid points using Eq. (8.1). In the 
structured interpolation, the cross-sectional measured data set is normalized and 
refined to improve the accuracy of the interpolation by considering the flow direction. 
The algorithm is as follows: 

1. Refinement is done through normalizing and expanding to desired data points 
in the transverse direction along each cross section using linear interpolation 
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2. Each cross section is divided into three parts, left bank, main channel, and 

right bank appropriately as per the cross section configuration. 
3. Equal number of points in these three parts is distributed. 

4. Again the database in the longitudinal direction between cross sections is 
normalized and expanded to desired data points between cross sections, the 
linear interpolation will be conducted between the corresponding parts of each 

cross section, 
Adopting aforementioned procedure, a structured matrix of data points from measured 

data points is generated. Now from the quadrilateral formed from these matrix 
elements, each grid point which has to be interpolated is identified, and using Eq. 

(8.1b), bed elevation is determined as the x, y co-ordinates of all the neighborhood 

points and the grid point are already known. This method is stable and reasonable as it 

interpolates the data along the thalweg if one can appropriately and judicious identify 

the left over bank, right over bank and main channel for each measured cross 

sectional data. 

As discussed above, X-section is positioned and oriented as per the chainage and 

bearing given in Table 8.1 numbering X-section-9 (Downstream) to 22 (Upstream) in 

Figure 8.5. Out of the measured data of each X-section, data are normalized and 101 
equally distanced data points are extracted for each X-section (illustrated in Figures 

8.3a-8.3d). 

P1  P2 

P(x.y) 

d4 
P3  

P4 

Figure 8.4 Inverse distance weighing method of interpolation 
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Figure 8.5 Positioning of measured X-seetions into the domain 

Thereafter, from the normalized data point of each X-section, 21 data points are 

linearly interpolated for each set of two adjacent X-sections through the HEC-RAS 

geometric interpolation application software (HEC,1997) so as to interpolate the data 

along the thalweg (deepest bed level), for continuity in the main channel 

configuration. Thus, a structured matrix of dimension 101 x261 for data points is 

generated, presented in Figure (8.6a) in graphical form and corresponding contour 

plot of bed elevation is presented in Figure 8.6b and colour map in Figure 8.7a. 

0 	 20x10° 	 40x10° 	 130x100  

X (km) 

Figure 8.5a Structured matrix for measured data points in the domain 

Discretization of the domain is done through the developed computer code (Figure 

8.6) and bed level matrix (51 x451) is generated by applying the relations mentioned 

Eq. (8.1), namely ID W method. 
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Figure 8.5h Contour plot of structured matrix (zb in m) 
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Bed interpolation has also been done by for discretized array[x, 	using Matlab tool 

using nearest neighborhood technique for comparing and checking the accuracy of the 

interpolated bed variation from the developed computer code using IDW method. 
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Figure 8.6 Domain discretization in Cartesian co-ordinate system 
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Figure 8.7a Map of structured matrix depicting bed variation from measured data 
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Figure 8.7b Contour map of interpolated bed level using coded IDW method 
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Figure 8.7c Contour map of interpolated bed level using Matlab code 
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The generated bed data from IDW method using the C++ code and nearest 

neighborhood method using the Matlab code is presented in Figure 8.7b and 8.7c. 
Though the pattern of the bed variation in Figs 8.7b and 8.7c is similar to the 
structures data processed from measured bed variation, yet data generated by IDW 

method do contain some localized discrepancy in comparison to nearest neighborhood 
method from Matlab code, which is almost identical to Figure 8.7a. Hence, Matlab 
generated matrix is preferred. Surface Plot is shown in Figure 8.7d. 

8.4.1.2 Hydrological data 

The hydrologic data consist of water discharges, temperatures and flow durations. The 
discharge hydrograph is approximated by a sequence of steady inflow discharges each 

of which occurs for a specified numbers of days or hours depending upon the 
acquisition of data. Water surface profiles are computed by using the 2-D depth 

averaged mass momentum equations. 

(1) Flow data 

The flow in long reaches of river is 3-D dimensional and essentially an unsteady flow. 

To simulate 2-D flow for such a long reach with width varying from 2km to 22km is 

heavily data driven. Practically, data required for simulating unsteady flow in 2-D are 
hard to acquire for such a large alluvial river like the Bralunaputra. Yet for practical 

engineering purposes, steady flow simulation using 2-D model for large alluvial river 
provides desirable information and enough insight to approximate realistic flow 

situation. 

Observed flow field data were required in order to perform a steady water surface 

profile computation and velocity field. Initial steady flow was taken as the peak flow 
to assure that the whole domain (primary flood plain and full bank flow scenario) is 

included into the computational domain in 2-D model. The chosen peak steady flow 
will also provide the initial conditions if the unsteady flow computation is to be 

performed. 

Boundary conditions are necessary to establish the water surface at the ends of the 

river system (upstream and downstream). In a sub critical flow regime, boundary 

conditions are necessary at the downstream ends of the river system with hydrograph 

in the upstream. Figure 8.8 is the rating curve (R-Square=0.95 and Standard Error of 
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Estimation= 0.229) at extreme downstream node (C/s-9) of the flow domain i.e the 

relation between stage and discharge derived from the data for several years. The 

trend-line power equation may be fit into downstream C/s in the flow code to compute 

the corresponding water level for a given flow discharge. 
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Figure 8.8 Stage-discharge relation at Cis-9 (Jogighopa site) 
Similarly, data for measured water level with corresponding discharge have been 

plotted for last ten years and rating curve (R-square=0.85 and Standard Error of 

Estimation=0.50) is drawn to establish a mathematical relation of water level with 

discharge at Pandu. This is to be mentioned here that both the cross sections(9 and 22) 

are highly stable and configured of rock-outcrops, and straight, considered to be 

perfect nodal points and quite suitable for boundary implementation for inlet and 

outlet. 
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Figure 8.9a Stage-discharge relation at C/s-22 (Pandu site) 
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Figure 8.9b Stage-time series at C/s-22 (Pandu site) for monsoon period 1997-98 
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Figure 8.9c Observed discharge at C/s-22 (Pandu site) 

Measured daily water level with time is plotted for Monsoon period, 1997-98 in 
Figure 8.9b. The proposed simulation period is kept from 12th  July 1997(00 hrs) to 
31St  July 1997(2400 hrs) when flood recedes locally to simulate the braiding pattern in 
the flow domain. The measured discharge data for Pandu (C/s-22) for the specific 
period is not available from the field. Observed discharge at Pandu is approximated 

from Figure 8.9a for observed water level since observed water level at Pandu is 

known from Figure 8.9b for the simulation period. Figure 8.9c depicts plot between 
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the approximated observed discharge verses observed water level at upstream location 

at Pandu. Hence, 20 discharge profiles for the receding flood of 1997 (12th  July 1997 

to 31n  July 1997) is available to conduct simulation in developed 2-D flow model. 

00 Bed Gradation 

For computing frictional parameters, gradation of bed material should be known to 

compute Djo or D84. Bed gradation data for each gauge site within the domain 

predefined X-sections could not be procured on account of unavailability. However, 

character of bed material within the entire study reach can presumed to be similar in 

nature in downstream reach of Brahmaputra reach. In view of the above, bed material 

gradation at X-section-20 (Palasbari) is taken as representative bed gradation (Figure 

8.10) through out the alluvial study reach except where outcrops were present. 2-D 

flow model was used for 20 discharge profiles for receding flood of 1997 (12th  July 

1997 to 31n  July 1997) 

Seth:meal Dim (sr) 

Figure 8.10 Representative bed gradations at Palasbari 

8.5 SUMMARY 
	

a 

In this chapter, input data for simulating the flow field in Brahmaputra River braided 

stretch have been pre-processed and designed suitably to make them mathematically 
compatible with the developed numerical model. The river geometry of the study 

stretch is reproduced mathematically using the available observed field cross- 
sectional data for the year 1997. Bed interpolation has been done mathematically to 

determine bed elevation at each grid point of the generated mesh for the study flow 
domain, which is otherwise, impossible to acquire from the field for grid points with 

such fine grid spacing in both stream-wise and transverse directions. 
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CHAPTER-9 

EVALUATION OF THE DEVELOPED NUMERICAL 

MODEL 

9.1 GENERAL 

In this chapter of the thesis, the developed two dimensional enhanced depth averaged 

model with incorporated modified dispersion stresses tensor as source term in 

transport equations is used for simulating the flow field in curved flow domain of a 

laboratory flume. The work utilizes dispersion stress tensor, as developed in Chapter 4 

and 5 of this thesis. The proposed model uses boundary fitted non-orthogonal 

curvilinear coordinate system with irregular boundaries. For numerical solution 

procedure, the finite volume method with the SIMPLEC algorithm and Rhie and 

Chow's momentum interpolation technique on non-staggered grid is adopted. The 

details of numerical model development are elaborated in Chapter 6 and 7. The 

governing equations presented in Chapter 5, are discretized using the finite volume 

method in curvilinear, non-staggered grid. 

For model verification, an experimental flume data with channel contraction was 

used. The comparison of the simulated velocity field and water surface elevation with 

new dispersion stress tensor indicated that the incorporation of modified dispersion 

stress term has the potential for simulating the flow field. 

9.2 EXPERIMENT 

For validation of the numerical scheme, experimental data were collected in the 

Hydraulic Lab. of GED, LIT. Roorkee (Figure 9.1a and 9.1b). An experimental 

rectangular flume of test section 0.15 m and 4.25 meter length and 0.20m deep, was 

used. The side wall and bottom wall was made of fiber-glass with thin layer of 

uniform sand sprinkled (D50=0.44mm) at the bed to artificially create roughness. To 

model the curved bank-lines with opposite sinuosity, a transition of 0.25m was 

provided at middle with sharp bend for 0.08 meter followed by mild expansion for 

0.17m. The schematic line diagram of the experimental setup is shown in Figure 9.2. 
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Figure 9.1a Photograph of experimental setup in Hydraulic Lab. C'ED I.I.T. Roorkee 

Figure 9.1b Photograph of experimental setup showing flow contraction and inlet 
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2m 	 0.25m 	 2m 

Figure 9.2 Schematic line diagram of experimental setup 

Upstream boundary and downstream boundary nodes are kept 2 meters away from the 

transition boundary to minimize the effect of boundary disturbances on the channel 

transition part. The bed slope of the channel is kept (1/400). The water is dropped 
through a galvanized pipe of 102 mm external diameter in the inlet tank. Flow 
strengtheners in the form of vertical metallic plates of about 6 cm long are placed 
parallel to channel after the inlet point of channel. A movable carriage with pointer 
gauge (least count= lmm) is mounted in the pipe rail. Rail has been fixed at the entire 

length of channel. A mechanical tailgate is also provided at the end of the channel to 
control the flow discharge and flow characteristics. Discharge is measured using 

venturi-meter (Specification: pipe diameter 38 mm, throat diameter 19mm, discharge 

coefficient(CD) as 0.98 (pre-calibrated)). Water is released into the channel for 
sometimes with tailgate partially open (to ensure lowered shear Reynolds Number to 
avoid incipient motion condition in order to maintain channel bed undisturbed). At the 
transition, flow changes occur. Tail gate is lowered down gradually to a sufficient 
level in order to reduce the flow considerably to completely diminish the hydraulic 
jump formation at the downstream of the transition and thus ensuring full sub-critical 

(Froude Number(F) <1) flow all along the channel. 

9.2.1 RESULTS 

The constant discharge is maintained for sometimes to ensure full development of 
flow with steadiness. Then, the measurements were taken from venturi-meter reading 

for measuring discharge. Through pointer gauge average water level is measured at 
regular intervals from upstream nodes to downstream node. The measured discharge 

computed with venturi-meter formula was 0.001907 cumecs. Measured water levels at 

the inlet, out let, and at lowest water level were 7.86 cm (water depth=6.79 cm), 6.9 
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cm(water depth=6.9 an), 6.69 ern(water depth 6.16cm) keeping the outlet bed level as 

zero reference (Figure 9.4). (Measured experimental data attached as Appendix-VII) 

9.3 MODEL SIMULATION 

The flow domain is discretized into structured curvilinear mesh of 16 x426 (6816) 

nodes and 6375 cells (Figure 9.3), Non-staggered grid is used for the finite volume 

solver. All the state variables (Cartesian velocities, water depths) are computed at the 

geometric center of each cell control volume. The time step is controlled using 
Courant—Frkdriche—Levey (CFL) condition in order to ensure stability in view of 
adopted SIMPLEC algorithm. While simulating steady flow, calculation is repeated 

for a number of time steps until solution converges. Convergence criteria adopted was 

that maximum incremental water depth at the last iteration will be lesser then 0.001 

m. Furthermore, mass residual is also computed while solving the momentum 

equations, iteratively. As the water depth at the inlet is not known priory so initially it 

is guessed and computation is performed. The water depth is updated at each time 

step through extrapolating it from internal cell water depth. Computation is iterated 

until convergence. 

0.15 

0.1 
Y(meter) 

0.05 

0 

Figure 9.3 Constructed mesh for numerical simulation in the laboratory flume 

Flow simulation was conducted for the flume with models without dispersion, with 

modified dispersion stress terms (derived in Chapter 4 of this thesis) and with 

dispersion stress terms suggested by Duan (2004) into the momentum transport 

equations. These flow simulations are designated as Case-1 and Case-2 and Case-3 
respectively. In Case-3, value of C in Duan(2004)'s expression (dealt at detail in 
Chapter 4 of this thesis) for computing Doc), was kept as unity. Results were analyzed 
for the whole flow domain with special attention to the transition zone of the flume. 

The computed discharge after the simulation at the down-stream was 0.001902 
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-e- Observed Water level(m) 

o Observed Average Water surface level(m) 
Computed Average Water Surface level (m) 
(Case-1) 

(Percentage Error 0.259) and almost same in all cases. (Detail model 
results:Appendix-VII). 

9.3.1 COMPARISON OF SIMULATED WITH OBSERVED WATER LEVELS 
FOR THREE CASES 

The comparison of water level with observed water levels is presented in Figures 9.4 

and 9.5 and corresponding contour plot of water surface elevations in Case-1 and 
Case-2 is presented in Figure 9.6. The statistical results for all three cases are 
presented in Table 9.1. Standard error estimators were appropriately chosen to assess 

the degree of match of computed water levels with observed one. Forty six data points 

were chosen to show the agreement between simulated and observed values. 

Statistical parameters demonstrated, suggest that Case-2 has statistically closer and 
exhibit better accuracy of prediction with observed data than Case-1 and Case-3. 
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Figure 9.4 Plot of observed WSL and comparison plot for computed WSL (Case-1) 
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Figure 9.5 Comparison plot for computed WSL for Case-2 and Case-3 

Table 9.1 Statistical tests for computed and observed data points 
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Statistical 
S No. 	Parameters 

Estimation 

Correlation 
Coefficient 

2 Standard Error 
3 R- Square 
4 F-Test 

No. of data 
points=46 

	

0.988 
	

0.991 
	

0.986 

0.00059 
	

0.000520 	0.000523 

	

0.976 
	

0.999 	 0.972 

	

0.903 
	

0.967 	 0.928 

The simulated velocity flow field has also been compared statistically to examine to 

assess the flow field (ti, and U,,) improvement (Table 9.2). 

9.3.2 COMPARISON OF FLOW FIELD IN THREE CASES 

The correlation and variability of the velocity flow field for Case-2 and Case-3 were 
computed and with respect to velocity matrices of Case-1 and are shown in Table 9.2. 
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The vector plot of Case-2 is shown in Figure 9.7. Vector plot for stream-wise 

velocities and transverse velocities at transition are Figures 9.8a, 9.8b and 9.8c. 

Correlation coefficient for U.,-matrix is more than Up-matrix indicating that U y  field 

has registered a change while including dispersion terms into the governing 

momentum equations. It is supported by the values of standard error. It also implies 

that improvement in the flow field is more evident in Case-2 than Case-3. 
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Figure 9.7 Vector plot for stream-wise velocity (U) for Case-2 
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Coefficient 	 15 x425 

Standard 	 (6375) 
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Table 9.2 Statistical parameters estimation for velocities for Case-2 and Case-3 with 
respect to Case-1 

Case-1 vs. Case-2 	Case-1 vs. Case-3 

Figure 9.8a Vector plot of stream-wise velocity (U) in transition for Case-1 
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Figure 9.8c Vector plot of transverse velocity (Uy ) in transition for Case-2 

The computed flow field at computational grid nodes in q-direction (transverse 

direction) is averaged and mean (ii), standard deviation (a) were computed for Ux and 

Uy, for Case-1, Case-2 and Case-3 respectively. It is plotted against longitudinal 

distance from U/s boundary (Figures 9.9a and 9.9b). The mean velocities and its 

variations, are though close-valued yet if one looks at the corresponding tr-plot 

(Figure 9.9b), the variation in Uy is quite high in compare to Ur (For Ux, a ranges 0.0 

to 0.04 whereas U,,, o- ranges from 0 to 0.12). Standard deviation registered though 

similar trend, but have lower values in Case-2 and Case-3. 

To elaborate the findings, mutual column-wise co-variances of Ux and Uy for Case-2 
and Case-3 with Case-1 were computed for computational cell centers transversely 

(n-direction) and plotted spatially along the channel (Figure 9.11). Spatial changes in 

co-variances in case of Uy registered a sharp increase in respect to Ux which is 

marginal. That amply indicates that, when dispersion terms are included in the 2-D 

flow model, it considerably affects transverse secondary flow pattern which is also 

quite a good agreement with the expected results with flow dispersion inclusion into 

the flow simulation. 

The contour plot of velocity variation i.e. stream-wise velocity U and secondary flow 
Uy in Case-2 for transition location is presented for illustration (Fig 9.10a and 9.10b). 

Velocity flow field for the whole domain is shown in Figure 10c. 
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Figure 9.10c Contour plot of U for Case-2 for the whole flow domain 
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9.4 ESTIMATION OF NON-DIMENSIONAL VELOCITY 

DEVIATION INTENSITIES (IL and IT) 

To express the shear flow effect by the distribution of the vertical profile, Seo et aL 
(2008) calculated the velocity deviation intensities from their longitudinal and 

transverse velocity experimental data as follows. 

hi  
r  2 

U2  

 

(9.1) 

   

(9.2) 

st 

In Eqs. (9.1) and (9.2), 
4
'f and u'n =longitudinal and transverse velocity deviations 

with respect to depth avenged velocities, 111 and lin in and direction respectively. 
The values of IL and IT  were computed for experimental data by Seo et at. (2008). In 

the presented numerical model, the flow dispersion stress terms are adequately 

accounted for, into the controlling flow equations, hence IL and IT can numerically be 
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computed and analyzed spatially in-depth for possible explanation of associated 

physical process in the secondary flow scenario in the curvilinear flow domain. 

For the whole flow domain, h and IT are computed for Case-2 for all computational 

cell centers. From the obtained matrices, for each column (transversely in n- 
direction), mean and standard deviation of both variables are computed and plotted 

spatially (Figure 9.12a) along the channel. The corresponding contour plot of 

transition location is presented in Figure 9.12b. Analyzing the plot of spatial variation 

of mean longitudinal deviation intensities, k (Figure 9.12 a), it can be easily inferred 

that at transition location it dips and again attains to higher values at the end of the 

transition to its values before the transition. At the same time, Standard deviation of IL  
(um) increases at the transition. Interestingly, contrary to the trend of IL, transverse 

velocity deviation intensities (ft) plotted (Figure 9.12b). It can be seen that changes 

occur with considerable increase in IT in the transition location, associated spatial 

variations of Standard deviations of IT  (an) also increases more than Standard 

deviations of I. an, at the channel transition ranges from 0 to 0.005 whereas an-at the 

channel transition ranges from 0 to 0.35. The interpretations of these plots strongly 

and incisively suggest that while in channel transition, on account of secondary flow 

dominance; the diffusion process becomes predominant, resulting in more turbulence 

in the flow. 

IT increases with relatively higher magnitude with high o-n- at the transitions and 

indicates that significantly large variations in true transverse velocity distribution 

persists in respect to corresponding depth averaged transverse velocity (As transverse 

true velocity distribution along the depth is assumed to be linear, (See Chapter 4 of 

this thesis). It is easily inferred that at curvilinear flow domain, owing to persisting 

centrifugal forces, generation of vertical vortices occurs which instigates 

redistribution of the flow concentration along the longitudinal and transverse direction 

with decrease in convective and increase in diffusive process at the channel 

transitions. The physical interpretations can further be supported with Figures 9.13a, 

9.13b, 9.14a and 9.14b. These plots are presented to show distribution of II, and IT 
and the concentration of D. (Longitudinal Flow Dispersion Stress Term) and D3,), 
(Transverse Dispersion Stress Term) on the flow domain through contour map. 
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9.5 CONCLUDING REMARKS 

In this chapter, flow simulation was conducted in a laboratory flume with contraction 

using the developed 2-D flow model. Streamwise and transverse simulated velocities 

in the flow domain were analyzed along with the simulated water depth at constant 

discharge of 0.001907 cumecs. The developed 2-D model was verified and evaluated. 

The flow field using the developed numerical scheme in this thesis indicates that the 

use of modified dispersion tensor in the governing flow equations leads to better 

agreement with observed flow variables. Further, it has been observed that flow field 

simulation using Duan (2004)'s approach is also possible, however the present work 

indicates the limited potential of the Duan(2004)'s approach in flow field simulation, 

as compared with the use of the present approach. 

* * * * * * 	* * * * * * * * * * * 	* * * * * * * * 
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CHAPTER-10 

RESULTS AND ANALYSES OF 2-D FLOW 

SIMULATION FOR BRAHMAPUTRA RIVER STRETCH 

10.1 GENERAL 

In this chapter of the thesis, the developed two dimensional enhanced depth averaged 

model with incorporated modified dispersion stresses tensor as source term in 

transport equations is used for simulating the flow field in the Brahmaputra River 

stretch. The work utilizes dispersion stress tensor, as developed in Chapter 4 and 5 of 

this thesis. The model uses boundary fitted non-orthogonal curvilinear coordinate 

system with irregular boundaries. The details of numerical model development are 

discussed in Chapter 6 and 7. The governing equations presented in Chapter 5, are 

discretized using the finite volume method in curvilinear, non-staggered grid. 

As stated earlier in Chapter 8, significant morphological feature of the Brahmaputra 

River is that it has a number of constricted nodal points where the cross-sections 

remain unaltered and stable. In addition, the Brahmaputra follows generally uniform 

aligned channel configuration in the study stretch under consideration. This gives a 

segment of Brahmaputra separated with well defined nodal points (with stable 

upbraided channel width) which is adequately suited for applying 2-D developed 

mathematical model conveniently so far as upstream and downstream boundary 

implementation is concerned. Still, process representation of fully developed braided 

stream is challenging due to the presence of numerous 3-D flow structures within the 

flow domains and difficulty in mathematical reproduction of highly complex river 
geometry. 

Notably, the River Brahmaputra is one of the rivers which are well under the 

observation of different government agencies. The sediment discharges and flood 

discharges at certain locations have been continuingly recorded and the river cross 
sections periodically surveyed. Still, the limitation in the human capacity, 

instrumentation, the difficulties of the measurement and the risk involved, the actual 
data acquisition often remain off-set by errors. The importance of the information that 
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could be derived from the analysis of the data is very high in the design, management 
and future risk and hazard strategies. Taking in to account the situation as described 
above, the present study is done to implement a 2-D flow simulation model based on 

the controlling equations and specified boundaries specially keeping in mind of the 

flow behavior of River Brahmaputra on chosen study reach. The algorithms 
established by the researchers /modelers in the literature advocate success of flow 

simulation model application depends on the size of the data covering diverse patterns 
of phenomena. More the data sets better is the result's reliability. The study has been 
carried out for the study domain of the river channel (from Panda to Jogighopa) - 

(Approx. 100 km) with 14 numbers of the field measured river cross sections (1997) 

and hydrological data ( Jogighopa-Pandu) for the same year. The details with regard to preprocessing 
 of the data acquired for the model compatible input for the 

developed model have been described in Chapter 7 of this thesis. 
10.2 

RESULTS AND DISCUSSIONS 

The generated flow domain (primary flood plain with bank full discharge) from 
satellite imagery and constructed mesh is presented 

in Figure 10.1. The generated bed 
elevation with the measured cross-sectional data at predefined locations is shown in Figure 10.2. 

calookm aoximn  
Figure 10.1 Generated mesh for Brahmaputra study river 

stretch 
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X 
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in Figure 10.3. 
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10.2.1 MODEL VALIDATION 

Attributes of the study stretch make the Brahmaputra River an ideal example for 

undertaking the application of the model. At both ends of the reach under study, two 

important towns are situated namely Guwahati at the upstream end and Goalpara at 

the downstream end. At these locations, gauge and discharge measurements are made 

daily by the Water Resources Department, Govt of Assam. The contribution from 

the tributaries in this stretch forms hardly 0.5 to 1 percent of the main stem peak flow 

at Pandu (Sharma, 1995). Model verification was done with the help of comparing 

measured water stages at Pandu site with model simulated water stages. Measured 

stages at downstream Jogighopa were implemented as downstream boundary 

condition. Observed discharges were assigned at Pandu as upstream boundary 

condition and discharge at the downstream boundary were computed from model 

results as simulated discharges for comparison. 2-D Flow Model was used for 20 

discharge profiles (designated as profile-1 to profile-20 respectively) for the flood of 

1997 (12th  July 1997 to 31st  July 1997) and validation results are presented in Figure 

10.4 and Table 10.1. It can be seen that the simulated stages are in fair agreement with 

the measured. Amongst the hydrological data, water level can be considered to be 

the most reliable primary data with minimum error in comparison to other data. 

In the above context, the good reproduction of stages is quite encouraging for the 

enhanced 2-D depth averaged modelling approach considered, for such a highly 

braided curvilinear stretch of Brahmaputra River. 

O 

46.0 

55000 - 
-a- uls WL(m)[Observedi 

US WL(m)[Computed) 
50000 - 

45000 - 

tU 40000 

ra,  

40. 	 R 35000 

.e 0 30000 

25000 

20000 

••4F. ,  Observed Discharge(Curnecs) 
--v-• Computed Discharge(Cumecs) 

0.0 

ti3 r§raefWarti trfl 

-Irin 21-12 ;011,1*Aaz 
tttnniffrn 

 u 
ttrft 

7-71 1m7 ggcul, 
rn
a7liu,7, 

Date  Date 

Figure 10.4 Observed verse computed WSL plot and discharge for d/s location 

209 



Table 10.1 Comparison between measured water stages and discharges upstream and 
downstream locations respectively for designated profiles 

profiles Date 
Observed 
WL(m) 

Computed 
WL(m) 

Actual 
Discharge 
(Cumecs) 

Computed 
Discharge 
(Cumecs) 

Absolute 
Error in 
WL (cm) 

Absolute 
Error in 
Discharge 
(Cumecs) 

1 12-Jul-1997 48.93 48.83 49389.69 49241.40 10.00 148.29 
2 13-Jul-1997 48.72 48.77 46269.77 46141.35 5.00 128.42 
3 14-Jul-1997 48.4 48.4 41866.74 41769.65 0.00 97.09 
4 15-Jul-1997 48.15 48.1 38725.74 38616.61 5.00 109.13 
5 16-Jul-1997 48.07 48.02 37854.29 37753.99 5.00 100.30 
6 17-Jul-1997 48,07 48.02 37834.47 37692.20 5.00 142.27 
7 18-Jul-1997 47.98 47.91 36788.31 36697.66 7.00 90.65 
8 19-Jul-1997 47.81 47.87 34808.59 34691.10 6.00 117.49 
9 20-Jul-1997 47.74 47.8 34119.5 34055.45 6.00 64.05 

10 21-Jul-1997 47.65 47.69 33153.9 33077.78 4.00 76.12 
11 22-Jul-1997 47.48 47.47 31330.32 31240.26 1.00 90.06 
12 23-Jul-1997 47.26 47.21 29289.57 29213.12 5.00 76.45 
13 24-Jul-1997 47.08 47.15 27649.36 27570.90 7.00 78.46 
14 25-Jul-1997 46.94 46.98 26419.21 26357.51 4.00 61.70 
15 26-Jul-1997 46.84 46.87 25590.78 25552.40 3.00 38.38 
16 27-Jul-1997 46.76 46.77 24936.58 2491233 1.00 24.05 
17 28-Jul-1997 46.59 46.57 23547.83 23530.02 2.00 17.81 
18 29-Jul-1997 46.47 46.44 22663.52 22650.32 3.00 13.20 
19 30-Jul-1997 46.37 46.32 21920.12 21893.58 5.00 26.54 
20 31-Jul-1997 46.32 46.27 21562.88 21541.23 5.00 21.65 

10.2.2 VARIATION OF FLOW VARIABLES 

10.2.2.1 Variation in water depth and water surface elevation 

The contour plot of model simulated water depth for discharge profiles 1, 3, 6, 9, 13, 
16 and 20 have been shown in Figures 10.5a and 10.5b for the flow domain of the 

study stretch. One can observe that with decreasing discharges into the flow domain, 
from profile-1 to profile-20, flow area shrinks around the deepest bed level with 

increasing no flow zone or zones with shallow water depths. Highest water depth is 
around 10-12 m found in the inlet and outlet of the flow domain where the river 
constricts to narrow with incised configurations. Water depths across the river are as 

low as 2 m where the river fans out at Palasbari (20 km to 40 km from the inlet at 

Pandu). Such a large variation of water depth along the thalweg (Deepest bed level) 

is one of the special features of Brahmaputra River. This special character due to 

typical bed geometry of 
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Figure 10.5b Contour-plot for water depth for profiles 13, 16 and 20 

the river at a particular instance of time induces a very high dissipation of flow energy 

to the bank-lines through evolution and diminishing of secondary flow field. High 

dissipation of flow energy makes bank-lines vulnerable to severe river bank erosion. 

It further increases the sediment load into the river, making the river prone to 

aggradation in the downstream. When aggradation occurs, it increases the braiding 

intensity in the downstream. The associated physical process is complex and inter- 

dependent, making Brahmaputra River prone to relentless bank erosion severed 
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Figure 10.6b Contour-plot for water surface level (WSL) for profiles 13, 16 and 20 

gradually in geological time-scale. Contours for water surface elevation (WSL) for the 

same profiles i.e. 1, 3, 6, 9, 13, 16 and 20 are presented in Figure 6a and 6b in 

sequence. Simulated average water surface levels along the river stretch for above 

mentioned profiles are shown in Figure 10.6c. In Chapter 7, one may recall that the 

developed 2-D model, wetting and drying technique was incorporated to judge 

individual grid to be wet or dry by assigning a threshold depth of 0.02m (For natural 

rivers). In the pressure solver, all wet and dry grids participated in the solution. While 

computing water surface elevation, those nodes where computed WSL was less than 
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or equal to bed elevation (i.e.H<=zb), H value was assigned numerical threshold value 

of 0.02m for solving momentum equations. In the final results, for practical purposes, 

H values with 0.02 or lesser were considered as dry nodes with water depth assigned 

to zero. 
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Figure 10.6c Simulated average water surface level (WSL) for profiles 1, 3, 6, 9 13, 16 
and 20 

Adopting the methodology mentioned above, the dry zones in the flow domain were 

simulated for different discharge profiles. The dry zones with zero water depth have 

been shown in black shades in Figures 10.6a and 10.6b for simulated discharge 

profiles namely 1, 3, 6, 9, 13, 16 and 20. At channel bifurcations, although flow-fields 

are essentially three dimensional, yet braid bars or side bars (simulated dry zones) 

were approximated with reasonable accuracy using the developed enhanced model 

through implementing wetting and drying technique without developing numerically 

more expensive 3-D model for such macro-scale flow field scenario. Looking at the 

Figures 10.6a and 10.6b, it was observed that braiding intensity was increasing with 

decreasing discharges, more and more braid bars and side bars were evolved, thereby 

increasing the proportionate no flow zone in the flow domain. 

10.22.2 Variation in flow field 

Simulated stream-wise velocity vector plots for the study flow domain are presented 

in Figure 10.7 for discharge profiles 13, 16 1 nd 20 for illustrating decreasing 

concentration of flow with decreasing discharges. Figures 10.8a, 10.8b, 10.8c, 10.8d, 

215 



10.8e and 10.8f showed here to illustrate the simulated velocities at some important 

specific locations for profile-1. Figures 10.8a and 10.8b are shown to depict the 

streamwise velocity vector near Goalpara Town (40 to 80 km downstream of 

Guwahati). Variation of stream-wise velocity along the bank-line of Brahmaputra 

River in upstream location of Golapara Town is shown in Figure 10.8a and in 

downstream location of Goalpara Town in Figure 10.8b. The important location 

chosen was near Guwahati (0 km to 25 km from inlet location at Pandu). At Pandu 

(Guwahati), river is incised and stable with rock out-crops. Figure 10.8c shows the 

velocity profile from 0 to 10 km from Guwahati where river is narrow and velocity is 

high. In Figure 10.8d, velocity vector plot is shown for the location 12-25 km from 

Guwahati, from where river width starts widening almost to 20 km at Palasbari. 

Similarly, Figures 10.8e and 10.8f are presented to depict the transverse velocity field 

near Guwahati and Goalpara Town. Figure 10.8f vividly depicts the significant 

variation of transverse velocities near the bank-lines, which is one of the causative 

factors for intermittent river bank failure. 

The contour plot for the magnitudes of stream-wise velocities for the discharge 

profiles 1, 3, 6 and 6 and profiles 9, 13, 16 and 20 are shown in Figures 10.9a and 

10.9b respectively. From the figures, it was observed that concentrations of high 

velocities are confined to certain specific flow regions. 

Figure 10.7 Vector-plot for stream-wise velocity for profiles 13, 16 and 20 
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Figure10.8a Vector-plot(U) near Goalpara 	Figure10.8b Vector-plot(U) —Goalpara(w) 

Figure10.8c Vector-plot for U (Guwahati) 	Figure10.8d Vector-plot(U) —Guwahati(w) 

Figure10.8e Vector-plot for U (Guwahati) 	F igure 1 0.8f Vector-plot (U) —Guwahati(w) 

These location are at the inlet of the flow domain near Guwahati (streamwise velocity 

almost 3.5 m/s at discharge profile-1, Location- X=0-5 km, Y=0), at 55km 

downstream of Guwahati near Goalpara Town (streamwise velocity is 2.5m/s at 

profile-1; Location- X= 52-58 km, Y=0-4 km ), at 65 to 75 km (Location: X=65- 
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75km, Y=8 to -6 km) and at the outlet at Jogighopa (X=112 km, Y=4-7km) .In this 

simulated flow field these locations did not change due to rigid bed consideration in 

the developed model. Apart from these locations, magnitude of the velocity in the 

flow-field is lowered down almost to 0.5 m/s. Moreover, flow field shrinks around the 

thalweg (deepest bed level) with decreasing discharges. 
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Figure 10.9a Contour-plot for stream-wise velocity for profiles 1, 3 and 6 

218 



0.6 
	

1 
	

1.6 
	

2 
	

2.5 
	

3 
	

3.6 
	

4 
	

4.5 
	

6 

OS 
	

1 
	

1 
	

2 
	

2.5 
	

3 
	

3.5 
	

4 
	

4.6 
	

5 

Figure 10.9b Contour-plot for stream-wise velocity for profiles 9, 13, 16 and 20 
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10.2.3 VARIATION OF LONGITUDINAL VELOCITY DEVIATION 
INTENSITY 

Longitudinal velocity deviation intensity (IL ) and transverse velocity deviation 
intensity (Jr) give the fractional deviations of discrepancy with respect to depth 
averaged velocity in stream-wise and transverse direction (Seo et aL, 2008). IL and Jr 
and their variation in curved flow domain have been discussed in detail in Chapter 9 

of this thesis. While conducting flow simulation for the Brahmaputra River Stretch, IL  
and IT were computed for all discharge profiles. For further analysis, stream-wise 
deviation IL  was chosen to see its variations along the river stretch under study. Mean 
IL  was obtained through averaging IL  for all cell centers lying at each transverse g-line 
in the study domain. Thereafter, it was plotted against longitudinal distances from 

inlet to outlet locations for profiles 1, 6, 9, 13, 16 and 20 (Figure 10.10). Spatial 
variations of 4 helped to identify the meandering behavior of the braided river. It 

changes rapidly wherever stream has well developed curved flow domain (Figure 

10.10). As the discharge decreases (profile-1 to 20), mean IL along the reach has more 
fluctuations with increased numbers of peaks and dips. It indicates that as the 

discharge decreases, dispersion is more predominant. In other words, when intensity 
of braiding increases, it evolves multiple channels with meandering configurations. 

Meandering and bend in evolved multiple channels instigate more discrepancy in the 

flow-field if it is approximated with depth averaging. So velocity deviations 

intensities are more prominent fluctuations at low discharges in braided rivers. 

Hence, at lower discharges with high braiding, dispersion stress terms are well 

justified to include into the flow model for better assessment of the flow field. 

10.2.4 MEASURE OF BRAIDING INTENSITY BY A NEW BRAIDING 

INDICATOR BASED ON MODEL RESULTS 

Contour plots shown in Figures 10.6a and 10.6b were further analyzed. Simulated dry 
cell nodes (where water depth was zero) for each profile were identified and sum of 

the area of dry cells for each profile simulation was evaluated. Thus, area of no flow 

zone is calculated for each profile simulation. Dividing it by total area of flow 

domain, fractional no flow ratio (f,f) was calculated. No flow area was subtracted 

from total flow area and fractional flow ratio (ff) was estimated. Simulated fractional 
flow ratio and no flow ratio for profile 1 to 20 were tabulated in Table 10.2. It was 
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observed that with decreasing discharges, no flow ratio (f,f) decreases. Simulated no 

flow ratio verses corresponding observed discharge was plotted and shown in Figure 

10.11(a). The rate of decrease of no flow ratio with observed discharge also depends 

upon the geometric configuration of the flow domain along with other factors. 
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Figure 10.10 Mean longitudinal velocity deviations (IL) for profiles 1, 6, 9 13 16 and 
20 

Based on the obtained results and information from flow simulation for twenty 

discharge profiles at receding flood of 1997, an indicator namely braid power is 

proposed based on the model output to express the measure of braiding for a river 

reach as follows. 

7Qinlet S  braid power(N/m 2  - = ) f 
flow Area of Inlet of the Reach 

(10.1) 

In Eq. (10.1), f t f =Ratio of no flow zone area with respect to whole flow domain area, 

y=Unit weight of water (N/m3) and S=Average longitudinal slope of the study reach. 

Flow area (m2) is the cross-sectional flow area of the inlet boundary at the given 

discharge. The unit of braid power is N/m2-s. If one attempts to fix threshold value of 
braid Power, the following conditions might be the possibility (Table 10.3). 
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Table 10.2 Model simulated computation of 'No flow Zone' and Estimation of braid 
power 

profiles Date 
Fractional Flow Ratio 

(simulated) 
No Flow Ratio 

(Simulated) 
braid-power 

1 12-Jul-1997 0.9703 0.0297 0.110 
2 13-Jul-1997 0.9684 0.0316 0.111 
3 14-Jul-1997 0.9581 0.0419 0.139 
4 15-Jul-1997 0.9493 0.0507 0.161 
5 16-Jul-1997 0.9462 0.0538 0.168 
6 17-Jul-1997 0.9461 0.0539 0.168 
7 18-Jul-1997 0.9451 0.0549 0.169 
8 19-Jul-1997 0.9384 0.0616 0.180 
9 20-Jul-1997 0.9352 0.0648 0.187 
10 21-Jul-1997 0.9298 0.0702 0.200 
11 22-Jul-1997 0.9173 0.0827 0.228 
12 23-Jul-1997 0.9042 0.0958 0.254 
13 24-Jul-1997 0.8979 0.1021 0.258 
14 25-Jul-1997 0.8867 0.1133 0.278 
15 26-Jul-1997 0.8797 0.1203 0.290 
16 27-Jul-1997 0.8739 0.1261 0.299 
17 28-Jul-1997 0.8606 0.1394 0.320 
18 29-Jul-1997 0.8503 0.1497 0.336 
19 30-Jul-1997 0.8398 0.1602 0.352 
20 31-Jul-1997 0.836 0.164 0.357 
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Figure 10.11 (a) Plot for observed discharge vs. no flow ratio (Af) for the Study Reach 
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Table 10.3 Threshold values of braid power at extreme values offnf 

Br
ai

dp
ow

er
  (N

/m
-s

2)
  

0.25 

0.20 

0.15 

0.10 

0.05 
20000 	25000 	30000 	35000 	40000 

0.40 

0.35 

0.30 	 '0"•. 

No Flow 	Flow 
Ratio 	Ratio 	 Slope Flow Area 

Conditions (f„D 	(i) 	Qinter (5) 	(Inlet) 	braid power  
1 	1 	 0 	0 	 co 
2 	0 	 1 	 0 

f,fx(Unit Stream Power per unit 
depth of the flow at the inlet 

location of the Reach 
3 	 considered) 

Extreme values of faf , values of braid power were assessed, For a given river reach, 

when fif approaches 1, 0 l  approaches zero, at the same time flow area at inlet also 
approaches zero. Braid power becomes very large and approaches infinity. Similarly, 
when Ai- approaches zero, braid power approaches zero (Eq. 10.1). Within the range 
offif between 0 to 1, braid power is nothing but a fraction of unit stream power per 
unit depth of flow at the inlet location of reach under consideration. The reported 

average longitudinal slope of the study reach is 0.11 tn/lcm (Figure 3.2 of Chapter 3). 
Hence, braid power was computed for twenty simulated profiles and braid power 

verses observed discharge was plotted and presented as Figure 10.13b. It was 

observed that braid power increases with decrease in incoming discharge into the 
reach at a particular instance of time (Figure 10.11b). The rate of decrease or increase 
of braid power depends upon geometric configuration of the reach at the particular 
instance of time along with other factors. 

•••••• Observed Discharge(Cumecs) vs Braid power(N/m-s2) 

v, 

• 0. .0.
a. 

45000 
	

50000 

Discharge(Cumecs) 

Figure 10.11 (b) Plot for observed discharge vs. braid power for the study reach 
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10.3 CONCLUDING REMARKS 

In this study, for the first time, two dimensional enhanced numerical model with 

boundary fitted coordinate system and secondary flow corrections for the 

Brahmaputra River stretch with highly braided configuration, has been developed and 

verified. Braiding induces severe bank erosion, due to dominant transverse flow field. 

So, improved and realistic flow-field estimation will lead to realistic assessment of 

predictions of bank erosion and river bed evolution for braided alluvial rivers. Better 

erosion models can be developed with reasonable accuracy using estimated flow field 

as the prime input. 

**************************************** 
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CHAPTER-11 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

11.1 CONCLUSIONS 

Conclusions and major contributions of the present research work are summarized as 
follows. 

1. Comprehensive literature review discussed in Chapter 2 succinctly suggests 

that 1-D flow models are insufficient to tackle problems of braided streams 
due to lack of information with regard to transverse flow field. In lieu of this, 
2-D or 3-D numerical models are to be used. In addition, 3-D models have 
many imponderables for prediction of flow simulation with braided 
complexities as well as are computationally tedious for macro scale river 
reaches. Hence, 2-D enhanced model with secondary flow correctionsk in 
governing equations has been developed in this study. 

2. Most of the 2-D models developed especially for braiding rivers did not 
account for secondary flow correction probably presuming these corrections to 
be insignificant for turbulent flows and mild curved bank-lines. 

3. In complex flow situation with considerable braiding, the secondary flow 

correction is suitably justified to achieve, improved flow scenario by 
enhancing the model capability through incorporating secondary flow 
correction using modified flow dispersion stresses with nominal additional 
expense of computational effort. 

4. Based on model result, it was observed that redistribution of flow 
concentration in longitudinal and transverse directions are adequately 
accounted for, using the formulation in curvilinear flow field and was suitably 

capable of assessing realistic flow prediction with reasonable approximation. 

5. For the first time, two dimensional enhanced numerical model with boundary 

fitted coordinate system for the Brahmaputra River Stretch with highly braided 
configuration, has been developed and verified. 
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6. It has been observed that effect of dispersion stress tensor in flow field 

increases with increase in braiding intensity. Model results discussed in 

Chapter 10 adequately supported this statement. 

7. When intensity in braiding increases, it evolves multiple channels with 

meandering configurations. Meandering and bend in evolved multiple 
channels instigate more discrepancy in the flow-field if it is approximated with 

depth averaging. 

8. Braiding induces severe bank erosion, due to dominant transverse flow field. 

So, improved and realistic flow-field estimation will facilitate realistic 
assessment of predictions of bank erosion and river bed evolution for braided 

alluvial rivers. 

9. Based on the obtained results and information from flow simulation for twenty 

discharge profiles at receding flood of 1997 for Brahmaputra River stretch 

under this study, an indicator namely braid power is proposed in this work 

based on the model output to express the measure of braiding for a river reach 

as follows. 

S  braid power(N/m 2  - = f 	 7Qinler 
 

flow Area of Inlet of the Reach 

where,fif =ratio of no flow zone area with respect to whole flow domain area, 

y=unit weight of water (N/m3) and S=average longitudinal slope of the study 

reach. Flow area (m2) is the cross-sectional flow area of the inlet boundary at 

the given discharge. 

10. It was observed that braid power increases with decrease in incoming 

discharge into the reach at a particular instance of time (Figure 1+113b). 

11. The rate of decrease or increase of braid power depends upon geometric 

configuration of the reach at the particular instance of time along with other 
factors. 
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112 FUTURE SCOPE OF THE STUDY 

The prime thrust of the present research work is to bring to the fore persistent 
shortcomings in relation to flow field estimation for rivers with highly braided 
configuration. The present research work has desirably brought about a significant 
improvement in dominant transverse flow field estimation in highly braided rivers. 
The transverse flow field is one of the significant causative factors for stream bank 
erosion resulting in huge land loss around the vicinity of braided rivers such as 
Brahmaputra River. However, to model bank erosion and bed - evolution with high 
degree of accuracy, after further research, a robust 2-D sediment transport module 
with incorporated bank erosion mechanism, clubbed with the present enhanced flow 
simulation model is required to be developed. To model the moving boundaries, 
present developed model uses fixed boundary method through implementation of 
wetting and drying technique including the whole flood plain under the flow domain. 

However through conducting further research on advanced algorithm using depth 

adaptive grid generation and temporal deformed mesh technique; a moving boundary 
can possibly be implemented to simulate the multiple channels actual flow zones 
instead of considering the whole flood plain. However, at present numerical 
implementation of the aforesaid process is quite complex for highly braided rivers 
with multiple channels like Brahmaputra and possibly be a potential area of research. 

************************************** 
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APPENDIX-I 

Derivation of Duan (2004)'s Approach 

Duan(2004) has suggested the expressions for evaluating dispersion stress terms in 

curvilinear coordinate system as follows. 

Df x  = z 2U sU s h[- ri o  ln 77 0 (1n 77 0  - 2) + 277 0 (1 -77 0 )(1 - In 77 0 ) - 	o  - 	I 1(1a) 

2 Dom, = 3.5Cx 2 —h .1) U sti, ([—. 770  In 770  + 770  In 77 0   – 0  + Tic; D 
( h3 	qg 	_ 770 +  1  D yyc  = 49 	- + 	—+ — 

r 	3 2 4 12 

Where x = 	 ; 	= = Dimensionless zero bed elevation, Us  =Depth 
770 – 1– 

1 
 in(%) 	h 

averaged velocity in stream-wise direction. C=constant of integration, 

Stepwise derivation of Duan(2004) correlations 

Assuming the stream wise velocity profile satisfies the logarithmic distribution law as. 

= 1  14 z  
U* 	zo  I (2) 

Where z = vertical coordinate, zo  -= zero bed elevation, us= streamwise actual velocity, 

U* = Shear velocity, K = Von kormann's coefficient (0.4 for clear water), zo  = zero bed 

elevation, can be calculated according to flow Reynold number as follows. 

*k 
z0  =0.11 v* 	 U 	s 5; 

U sk, zo  = 0.033k,  	 > 70; 
V 

U* = 0.11—v +   70 
U s  

v = kinematic viscosity; lc, = Roughness height; U5  = Shear Velocity 

I (lb) 
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Stream wise depth averaged velocity (Us) 

h 

Su s dz 
U = —lhfu z -- U z° 

h s =  h g
d 	>  

Let, rho 
h 

=—cLz  =Dimensiordsszerobedelevatior 

Putting the value of Eq.I (2) in Eq.I (3), one obtains, 

U 

o 

* = =hfin±jdz, 
U 	Kh zo 	zo 

Or, 

— — U,_ 1 zo 	in[z 	(z 
U • 	K h 	zo 	2o 

Or, 

U, = r h I zo 	h in 	h 	_ h— zo in 

20 

U •  0 	o 

	

z0 

[ z 
	

zo 	4_ z 
zo z 	zo 	zo 

Or, 

U  • = 1  

=- 1-c  -11-1n070)7 

ln 	
z
h
o 

Z o  
— 

= KI 

1 	r  

Z o  4. 

In(ii.)] 

h 
 

U• 

Or 

Us 

h 

, 
1 +RA= [go 

h 

—1— 

zo  

Dividing Eq.I (1) with Eq.I (5e), one can readily get, 

In z  
us 	zo  
U 	rho  —1— ln(770 ) 

Or, 
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us  rio h 
—1 = 	  

s U rio  —1 — ln(70 ) I (6b) 

(rn 	 = 7.011  
Ts  1 	U s  b  

ln( 770 + 1+ ln 770  

Or, 

— ln rio  — rho  +1+ ln 770In 
us  — U 	h 

U, 	= 	770  —1- 1n(170 )  

Or, 

us  — U = 	U 	 fri(z 
7 —1 — 147 o)( 

	
— rho 1) 

I (6c) 

I (6d) 

The transverse velocity profile 

The transverse velocity profile of the secondary flow is assumed linear. The profile of the 

transverse velocity proposed by Odgaard (1989a) is adopted. 

) un =U n  + 2v, 	1 ( z71  
I (7a) 

un  = actual transverse velocity, Un = depth averaged transverse velocity and vs  =- 
Transverse velocity at the water surface. 

Engelund and Skovgaard (1973) derived the deviation angle of the bottom shear and gave 
that, 

I (7b) 

r = radius of channel curvature, According to Eq.I (7a), the secondary flow velocities at 

the surface and the bottom are equal. Therefore, Eq.I (7b) was used as transverse velocity 
at surface. 

So one can write, 
(ur )b= 7.0(h/r)(u) b 	 I(7c) 
At surface, one has from Eq. I (7a) 
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I (70 

u„ =U„ +7.0-11-Ukz- - 1 ) 
r h 2 I (7d) 

Let 

1 
co  -1-In(co )  

Thus, in terms oft, Eq. I (5b) and Eq.I (7d) become, 

u s  - Us  = zUs (In( Tiz  )- rio  +1) 

-Un  = 7.0-h  U*,( - 
r h 2 

Curvilinear dispersion stress terms are as follows 

= f(t, - U 3 )2  dz 

Dc  = .1.(u -U ,)(un -U ,i )dz 
zo 

h 

Dc = f(u„-U „Y dz 
zo  

The First Term Dxrc  

Subtituting the value of Eq.I (8a) in Eq.I (10), one has, 
2 

hf Df = z 2 L1 sU s 	z ln 	+ 1) dz 

Or, 

D 	 (1 )2 	z  
= z 2U s LI s h  ln —h- dz — 2070 —1)51n

( 

7)c/z + 	— 02  fidz 
zo 	 zo 	n 	 =0  

I (13a) 

I (13b) 
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Now consider z/h=m, then; dz=h.dm, ml=zo/h=10 lower integral bound, m2=h1h= I, 

upper integral bound. 

Transforming Eq.I (13b), one has, 

D: = x 2 U sr' sh[ fOn(m))2 dm - 207 0 -1) fln(m)dz + (1- 0 )(77 0 - 1) 2 	 I (13c) 
40 	 SO 

Or, 

D =X 2UsUs hl.(m(lnm)2 - 2minm+24o -2(70 -1)(minm -m)~.0 -(1- qc, )3 

Or, 

D. = X2UsUsh12-77o(1n770)2 +2170 1n770 -2170 -2070 -1X-1-710 1n770 +770) -(1-770)3.1 

Or, 

D : = 	2 U 	,14— 77 0 In ri o (In 77 0 - 2) + 277 0 (1 - 77 0 )(1 - In 77 0 )- (g o - 1 )3 

The expression Eq.I (130 is identical with Duan(2004) as shown as in Eq.I (la) 

The Second Dispersion Term D,c yc 

Putting the value of from Eqs.A(8) and A(8b), in Eq.A(11); one has, 

(1 z = f 	(14—) - 0 +1)x 7.0 —h U, 
2 
-- --)dz 

Zo 

Or, 

D =
hU,U 3 	770 +

(2 
- 

h 
1 	1  

Or, 

D = 	ln —h U s t x(-1 	z dz - Iln dz + —1 (1- 77 0 ) dz - (17 0 -1).r dz 
r 	

) 
2 h 	h h 2 zo 	20 	 .0 	zo h 

I (14a) 

I (14b) 

I (14c) 

Again taking m=z/h and integrating and transforming the upper and lower bound as done 

earlier, taking h common, one obtains, 
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1 r 	-II 	r 	2 -0 	1, 	\ 	1 	\r g y  =14.0,f Intio  -/2-- usu.,. Lmlnm-mk - -
4 

[2/W1nm - m +-20-710A1-710)--  vio  -1Am2.0 ) 
r 	2 	 I( 14d) 

Or, 

= -7 .0 —V 1(4-1- 77 0  In 770 + 	 -- 1 27102  in qo + Oil x  
4 20-7700-70+ 2070  -141-17O] 

Or, 

	

2 - 27h In /0  + 2770  +1+ 2ig In 770 	+2i - 21i; - 2 + 277c1i) 
D; = -1.75 x —h2 U sU 

+ 2- 4770 +277,2, 

Z  D`  =1.75 z 1  x) 	 -U sU s thrh, in 77 0 - 277 Inqo  - 377,; + 27h; +11) 

Eq. I (14g) is comparable with Eq.I (2b). 

The Third Dispersion Term Dvvc 

Substituting the values of Eq. I (8b) in Eq.I (12), one can get, 

h2 	z 1)2  
D;y  = 49.0-UzUs  j —

li 2
dz 

zo   

One can write Eq. I (15a) as 

h2 	hit Z 1 
DC  = 	 USUS  SU h — — — dz 

Zo  2)

2  

Or, 

h2 	
2 	h 

Dn = 49.0 US  US 
hr 

	
dz — ( -1d z + 1 hfCIZI 

h 	4 z  ) zo 	zo 	0 

I (14e) 

I (15a) 

I (15b) 

I (15c) 

Again taking m=z/h and integrating and transforming the upper and lower bound as done 

earlier, taking h common, one can get, 
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170  2  ) 4_ 1  
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I (15e) 2 4 

I (15g) 

I (15f) 

g i  +-770 
2 4 4 

	

7702  	770 +4 —  — 

	

2 	4 

Or, 

Dyyc = 49.0 Up,(— 17°3  + 11°2 71°  + 
r 	3 2 4 12 

Eq.I (15h) is identical to Eq.I (1c). 
I (15h) 
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APPENDIX-II 

(I) 
	Determination of streamline and transverse velocities from cartesian 

velocities in on orthogonal, non uniform mesh 

Os=Angle between the streamwise direction and the positive x-axis; 

0,2=Angle between transverse direction pointing towards outer bank and positive x-axis; 

ux  = us  cos Os  + un  cos On  
uy  = us  sin Os  + un  sin 0„ 

In Matrix form one can write, 

rux i [cos Os  cos On  irus i = 
LuY 	sin Os  sin On  lun  

Matrix inverse operation is done as follows, 

[us 1 .... rcos Os  cos On  -1-11-ui 
Lun i L sin Os  sin On i Lu Y 	One obtains, 

i us  = 1 1.71  kux  sin On  — uy  sin Os  ) 

1 ( 
14 n =— k--- ux  cos On  + /4 y  cos 0 s ) 

VI 

(Duan, 2004) 	 II (1) 

II (2) 

II (3) 

II (4) 

Figure II (la) Streamwise curve fitting 	Figure II (lb) Transverse curve fitting 
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P2 

tan B = 	= b 2cx2  
dx II (6) 

where, J = cos O sin On  — sin O cos On  

(ii) 	Determination of 0,(Theta s) and OnTheta (n) 

Polynomial Fitting Curve passing through three points 
Consider each set of three consecutive grid points P id  (x„y,) follow polynomial curve in 
stream-wise or tranverse direction in 2-D plane (See Figure II(1a) and II(1b) as shown 
namely Pi(xl,yd; P2(x2,y2 and P3(x3,y3); 
Considering simplified approach, the following equation may be adopted for the curve 
passing through Pi, P2 and P3. 

y=a+bx+cx2 	 II (5) 
Tangent to the curve Eq.II (1) can be expressed as, 

s
,
or

, 
n
,= tan-1  (b +2cx2 ) 

One can evaluate 0. or On  in Eq II(3) if and 	are known. 

Computation of coefficients a, b and c 
One can write; for point P1,P2 and P3 satisfy Eq. II(5) as below; 

yi = a +bx,+ cx; 
y2  = a + bx2  + cx22  
y3  = a + bx3 + cx32  

Writing in matrix form; 

II (7) 

II (8a) 

y, 
Y21= 
Y3 

abi 

ci 

1 

1 
1 

x1 

x2  2 

x3  

Xi2  
le  2 ev 2 

X32  
II (8b) 

Matrix inverse application, one gets 

a 
b 

_C 

[y, 
= y2  

y3 

1 

1 

1 

X1  

X2  

x3  3 

— Xi2  

X22  

2 x2 3 

—I 

II (8c) 

255 



Or, 

(x2  x3 X3 X22  ) — (X32  — X22  ) (X3 — X2 ) 
— (XiX32  — X3  Xi2  ) (X32  — X12  ) — (X2  — ) 

(Xi  X22  — X2  Xi2  ) — (X22  — x1) (x2 — xl ) 

111 
Y2 

 

_y3 _ 

 

II (8d) 

where Determinant value is DET 
1 
1 
1 

xl  

X2  
Xi 

xi  
2 

X2  

X
2 
3 

II (8e) 

Using Eqs. II (8d) and II (8e), for each set of known grid points one can obtain b and c 

values. Using II (7), Os  or On  can be determined. Hence, Substituting the values of Os  and 
On  in Eq. 11(4), streamwise and transverse velocity can be evaluated and vice versa from 
Eq. H(1). 

(iii) Trapezoidal rule for area computation for non uniform interval 

\, 	1 N 
ff(x)ax 	k - x k_iXf (x x) - f (x k_i)) 

a 	 z-k=i (Wikipedia references) 
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APPENDIX-III 

Graphical data for fourteen field measured predefined cross sections of 

the study reach (Pandu-Jogighopa) for the year 1997 
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APPENDIX-IV  

Preprocessed graphical data of interpolated and measured cross 

sections data points for the image extracted flow domain of study reach 
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APPENDIX-V 

Scanned soft copy of standard Brahmaputra map showing chainage and bearings of 
pre-defined cross sections (Brahmaputra Board, Go!) 

(a) Cross-section-2 to Cross-section-43 
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(b) Cross-section-43 to Cross-section-65 
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APPENDIX-VI 

Computer Code modules in C++ language for numerical coding for mesh 
generation/ flow model) 

1. Salient information about the developed computer program 

The complete programming code written in C++ using Object oriented programming 
(Oop) is attached as a soft copy in CD-ROM with this thesis as Appendix-VI B. 

Microsoft Visual Studio.NET 2008 with C++ console application was used to run the 

developed program. File system was used to input the extensive data of domain 
independent boundary variables and bed level data in the form of matrices along with 

other data like stage discharge relations wherever required. The data was typed in text file 
(**.txt) and read through programming file system through including header file fstream 
in C++ plate-form. 

Certain input such as name of the input file (**.dat), number of row, number of columns, 

number of iteration for internal control of grids, discharge and upstream guessed water-

level were fed through console application including **.txt. Created **.txt is kept in the 

same directory to read the file by the code while running the program. 

All the given input is written through program file system into created data file (**.dat) to 

cross check the input data. When the program ends after simulation, the entire user 
required results is written through file system into the output file (**.OUT file) by calling 

the appropriate member function of created Class type in the main program. Output file 
(**.OUT) is created in the same directory in which program file exists. Output may be 

obtained as per user's choice by writing it in output file through calling class member 

function by declared object into the main program for writing the data into the output file. 

The broad features of Object oriented programming used here are creation of a Class 
`mat' with two types of declared arrays ar[N1][N2] and arr [N3][N4j as its private 
members. Where N3=1N1-1 and N4=2N2-1. Dynamic programming has been done to 
optimize the computer memory use. Objects of the class type mat are created wherever 

needed and deleted if the requirement is over. The functional flowchart is given in 
following figures (in sequence), followed by list of member functions of the class 'mat'. 

** User given fife name 
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2. Functional Flow Chart 

•  
(Declaration of 

Variables 
maxemmexerm maxerrh, WL, 

WLL, frowarea,nollowarea, moffow, 
iterr, Qs, 

+  

< Declaration of Character name 
filein, fileout, inp 

< 

 Declaration of 
Iterate-I, iterate2, r, c 

< 	File declaration of 
fx, fy,fxin, fyin, fp, fq, tout, finout 

< Open files xin.dat, yin.dat, p.dat, 
q.dat, x.dat, y.dat 

( 	Print on Console (cout) 
" 20 Flow Package" 

By 
Parwez M Akhtar 

Pis, WRD&M, IIT Roorkee(IN)" 

Print on Console (cout) 
Enter the file name with ext 

". DAT: " 

'If  
Input from Consote(cin) 

"fileout" (name of file input) 
Copy the file into "filein" and 

change axle. To "out" 

Enter Number of Rows "r", 
Enter Number of Columns "c", 

Enter iteration for internal control "iterr, 
Enter Discharge at U/s Qs, 

Enter corresponding water level at Upatream 

(Declaration of matrices of class type mat for 
Xin, X, Yin, Y, P, Q, Xzeta, Yzeta, Xeta, Yeta, (Jacob, 

Alpha, Beta, Gamma, a, b, c, d, Omega, Theta, Phi, Px, 
Qx, Py, Qy, Delx, Defy, Ux, Uy, Us, Un, Zo, OFL, En, CO, 

Ustar, Nu, H, Zb, aWp, aEp, aNp,aSp, aPp, hll, 1-12, 
BetaO, 77ieta0, RO, h, axVV, ayW, axE, ayE, axS, 

ayS, ayS, axN, ayN, axP, ayP, Hp, Hein, lambdaW, 
lambdaE, lambdaN, txwP, fxeP, fynP, fysP, Fe, Fw, 

Fn, Fs, Mw, Me, Ms, Mn, HU% Sp 

Open file "fileout" 

if  
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Test Convergence 
Criteria-2 

Iterate2<=iterr 

Yes 

Enter input file name 
input.txt 

Open file 
input.txt 

< 	> 

Read Xin, Yin, (boundary values) 
Zb, and Initial Guessed I-I from 

input.txt for the nodes 

 

Call getcoeffil 
Call getcoeff2 

Call getmatrlxrowl 
Call gettmatrixrow2 
Call getmatrix rowl 
Call getmatrixrow2 

Call getcoeffl 
Call getcoeff2 

Call getmatrixcoll 
Call getmatrixcol2 
Call getmatrixcoll 
Call getmatrixcol2 

Compute maxerrx and maxerry 
Call maxerr 
Call maxerr 

Copy X to Xin 
Copy Y to Yin 

Test for Convergence 
Criteria-1 

Maxemc<0.0001 and 
Maxerry<0.0001 

Yes 

Call pqupboundry 
Call pgbotboundry 
Call expolatecol 
Call expolatecol 
Call pqupbondry 
Call pqbotbondry 
Call expolaterow 
Call expolaterow 

Call average 
Call average 
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Test for convergence 
Maxemc<0.0001 and 

maxerry <0.0001 

Call convert 
Call expnmat 
Call expnmat 

Compute maxerrx and maxeny.  
Call maxerr 
Call maxerr 

/ Delete a, b, c, d, 
Alpha, Beta, 

Gamma, Px, Py, 
Qx, QY, P. Q. 
Xzeta, Yzeta, 
Xeta, Yeta 

Yes 

Cell coeffss 
Call modterm 
Call getcoeffl 
Call getcoeffl 

Call getmatrixrowl 
Call getntatrixrow2 
Call getmatrixrowl 
Call getmatrixrow2 

Call coeffss 
Call modterm 
Call getcoeffl 
Call getcoeffl 

Call getmatrixeoll 
Call getmatrbccol2 
Call getmatrIxcoll 
Call getmatriccol2 

( Declare b11P,b11w, 
bile, buls, b11n, 

b12P,b12w, b12e, b12s, 
b12s, b12P,b21w, b21e, 
b21 s, b21n, b22P,b22w, 
b22e, b22s, b22n, Ap, 

Aw, Ae, As, An, Thetas, 
Thetan 
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Computation of Grid 
Quality Parameters: 

Call coelfs 

Initial. Compuation 
Call shear 

Call cf/ 
Call maxxl for CFL 

Compute Delt 
Call Marcia 
Call Flux 
Call fil_PP 
Call me 

Compuate control volume 
coefficients 
Call volume 

Compute linear weightage 
factor for Water Level 

Compute grid Quality 
parameters 

Call mdo for MDO 
Call ado for ADO 
Call mdo for MAR 
Call ado for AAR 

Write initial output on file on fin.OUT 

Initialisation of dependent 
variables and initial boundary 

implimentation 
Call delta 

Call hinitlal 
Call Intl for CD, En, Ustar, Nu 

Cal velbond 
Call angle 

Call Cartesian 

(Declare 
rux, niy, Dx1, Dy1, Dx2, Dy2, 

Hxp, Hyp, Uxw, Uyw, Uxe, Uye, 
Uxs, Uys, Uxn, Uyn, Upw, Umw, 

Upe, Ume, Ups, Urns, Upn, 
Umn, Sux, Suy, Sdx, Sdy, Dxx, 

Dxy, Dyy, D1, D2, D3, Gam, 
Psi, Xi, Rc, V, Uxin, Uyin, IL, IT, 

aW, aE, aS, aN, aP 
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270 

Dispersion source 
computation 

Call streamver 
Call curvtre 
Call disprs 
Call diapers 
Call CartD 
Call source 

Guessed velocity computation 
Call VEL 

Call FILPP 
Call me 
Call flux 

Call shear 
Call cfl 

Call maxxl 
Compute deft 
Call lamda 
Call factorr 

Call streamvel 
Call curvtre 

Call disprsduanldisprs 
Call CartD 

Call dis source 
Call source 

Call RES 
Call sum 

Call maxerr 
Copy Uxin to Ux 
Copy Uyin to Uy 

Calf Hrow 
Call tdmarow 

Call Index 
Call Hcol 

Call tdmacol 
Call Index 

Call maxerrl 
Copy Hp to Hpin 

Do loop 

Do loop 

Do loop 



Do loop 

Copy H to Hin 
Call Updateif 

Call linger 
Cat; updath 

Call updateUxy 
Call maxx2 

Call ("won't!, 
Call deviation 

SU1P  

The input through console application for the developed program is shown in Figure VI 
(1) for illustration. 

111' dAcanada-ctesktopiABRAHMAPUTRA‘progzamlbtahmaputralDebug‘brahmaputra.ece 

.,..0., 	i, 0.,..ID 	1,u ,9  9 c. 	.s P. 	O,' 	 IL L  1 41 l 

LAy. 

1V:11,11-0.1•  

11 IkA ,  04,  

0 rig' ■;4,  

u ad: dq, 

q‘.- 	LOP 	11 .C:, 

,.)1., 	.4.1 	,. ,,,,Tku-,, - 

q, 	•..1 	, ci.,.o -aP 

0 . • 

q-• 	0  ..I,  .i:rM 	,'.S. 11111-  1'41 	• 	,doq' ,, 	', 

11,Ati.Cly , 17.1  4)111,  .1/,  

it,  

I,  top ,q-,. to)o. 	, 11.. ,fikk, 	4+' 4.,. g• 	D. 	0  . ',-, 1,-.4 	• 	,r6,10 •-. 	' 4. 	att. .(,, r,,Q. ow 11,1, 	.$, a , ir141:yil,,k, r74 

0 (VI' l. 0.1.1du 	qw-,51mx, 	. ,1 .. 4, -1,-t.„., 	.1 10. 

4 r_OI [0. 43001 	II 	I), 	ri,o... c, 	f.'n [11,14 	OD 1'. 4 .-4.. 

._._._._■_._._._._.____, 
■-• 

Figure VI (1) Console application window for the developed program 
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3. Member Functions of Class type 'mat' 
(For detail programming code refer the soft copy in CD-ROM) 

S N Name of function Functional Activity 
MF1 rowbond Reads input boundary coordinates rowwise from note pad(**.txt) 
MF2 colbond Reads input boundary coordinates columnwise from note pad(**.txt) 
MF3 getm Reads array of notepad(**.txt) 
MF4 stagein Reads stage discharge values from notepad(**.txt) 
MF5 printm Print matrix (mxn) into console 
MF6 print Print expanded matrix into console 
MF7 expnmat Expand matrix with dimension (mxn) to (2m-lx 
MF8 maxerr Returns element of maximum value from two matrices (mxn) 
MF9 maxerrl Returns element of maximum valueof errors from two matrices (2m-

1 x2n-1) 
MF10 getcoeff1 Compute derivatives .x, x, y6 y, and J from x and y matrices 
MF11 getcoeff2 Compute tdma coefficients from matrices evaluated from MF10 
MF12 getmatrixrowl Compute rowwise Tridiagonal coefficient matrix from tdma coefficients 

evaluated from MF11 
MF13 getmatrixrow2 Solves for x and y rowwise from Thomas Algorithm from matrices 

obtained in MF12 
MF14 tdmarow Computes columnwise solution using Thomas algorithm for pressure 

equation 
MF15 getmatrixcol l Compute columnwise tridiagonal coefficient matrix from tdma 

coefficients evaluated from MF11 
MF16 getmatrixcol2 Solves for x and y columnwise from Thomas Algorithm from matrices 

obtained in MF15 
MF17 tdmacol Computes columnwise solution using Thomas algorithm for pressure 

equation 
MF18 writearray Writes array into outputfile (**.dat or **.out) 
MF19 writearrayx Writes expanded matrix into output file(**.dat or **.out) 
MF20 pqupbondry Estimates P and Q for upper boundary of discretized domain 
MF21 pqbotbondry Estimates P and Q for bottom boundary of discritized domain 
MF22 pqdnsbondry Estimates P and Q for downstream boundary 
MF23 pqupsbondry Estimates P and Q for upstream boundary 
MF24 expolatecol Coulmnwise exponential extrapolation of P and Q 
MF25 expolaterow Rowwise exponential extrapolation of P and Q 
MF26 average Computes element wise mean of two matrices (mxn) 
MF27 convert Converts elements of matrix (mxn) from km to meter. 
MF28 delta 	 , Computes Az or Ay for matrix x or y of dimesions(mxn) 
MF29 ratingcurve Computes stage from input discharge for a given functional stage 

discharge relation for a extreme downstream location 
MF30 hinitial Computes initial guessed value of h and H using linear interpolation of 

stage at extreme points 
MF31 HLPP Interpolates cell face values of flow variables (Ux  and Uy) using HLPA 

Scheme for nonorthogonal grids 
MF32 fxy Computes linear weighing factors of cell center w.r.t. cell faces for 

each cell from x and y matrices. 
MF33 linear Compute linear interpolation of variable at cell center from cell faces 

based on distance. 
MF34 flux Compute fluxes at cell faces and cell centers 
MF35 factorr Compute input coefficients of discretized momentum equations 
MF36 source Compute source terms 
MF37 volume Compute grid coefficients for matrix(mxn) 
MF38 VEL Compute Cartesian velocitities from discretized momentum equations 
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MF39 RES Compute residual errors in velocity computation from MF 38 
MF40 sum Computes sum of elements of matix(mxn) 
MF41 Hrow Compute rowwise trigonal coefficient matrix of pressure solver 
MF42 Hcol Compute columnwise trigonal coefficient matrix of pressure solver 
MF43 cfl Compute CFL matrix(mxn) of each cell node 
MF44 shear Compute matrices for Manning's n, Cd, shear velocity , eddy viscosity 

and zero elevation(zo) 
MF45 lamda Compute wall function coefficient A.,„,(Wu, 2007) for each cell centers 
MF46 velbond Compute initial guessed streamwise velocity at cell centers from 

discharge (Wu,2007) 
MF47 angle Compute 0, and 0„ at cell centers 
MF48 cartesian Compute Cartesian volcities from streamwise and transverse velocities 
MF49 maxxl Returns maximum elemental values of marix(mxn) 
MF50 maxx2 Returns maximum elemental value from all cell centers 
MF51 meanHp Returns mean elemental value from all cell centers 
MF52 coeffs Returns Grid Quality parameters 
MF53 coeffss Compute xe, x„, ye, yr!, and metric coefficients from final generated grid 
MF54 modterm Modifies non homogeneous terms P and Q using metric coefficients for 

smoothness of the generated grid 
MF55 disprsduan Computes dispersion stress tensor using Duan's(2004) approach 
MF56 curvtre Computes streamwise radius of curvature and other input parameters for 

computing dispersion terms 
MF57 disprs Computes dispersion stress tensor using modified approach 
MF58 deviation Computes longitudinal and transverse velocity deviation intensities at 

cell centers 
MF59 streamvel Computes streamwise velocities from Cartesian velcities 
MF60 CartD Computes Cartesian dispersion tensor from curvilinear dispersion tensor. 
MF61 dis_source Computes sources terms for flow dispersion tensor. 
MF62 shrnmat Shrinks matrix(2m-lx2n-1) to matrix(mxn) 
MF63 index Converts the index of matrix elements. 
MF64 updateH Updates water level with depth increment at each timestep 
MF65 updateUxy Corrects velocity after pressure calculations 
MF66 sideH Updates side boundary waterlevel 
MF67 updath Updates water depth after pressure increnment compuations 
MF68 ado Returns average deviation from orthogonality (ADO) for generated mesh 
MF69 mdo Returns maximum deviation from orthogonality(MDO) for generated 

mesh 
MF70 flowarea Returns flow area of the domain 
MF71 noflowarea Returns noflow area of the domain 
MF72 rile Interpolates cell variables using Rhie and Chow(1983) approach 

273 



APPENDIX-VII 

1. Laboratory Experimental details and experimental observed data 

Type of Experiment: "Transition in open channel", Civil Engineering Lab. I.I.T. Roorkee 
Venturimeter Details to measure discharge in the flume: 
Pipe Diameter: 38mm, venturi-meter Throat Diameter: 19mm 

Cd=0.98, 

Discharge through venturimeter= Q = Cd . 	
a

112gAH 

A) A ) VII (1) 
a=Area of Throat; A = area of Pipe; Mercury Sp. Gravity=13.6 

Manometer reading (after steady condition attained) 

h1=34.20 cm 
• 34. 

h2=17.65 cm 

Manometer gauge difference =h1-h2=16.55 cm Hg=16.55 x 13.6=225.08 cm of water 

Hence, 

AH=2.2508 m of water and 

a----Ex (0.0192)/4=0.000284 m2, 

A=7CX (0.0382)/4=0.001134 m2  

Substituting the values of A, a, Cd and Ali in Eq VII (1) the 
computed is 0.001907 cumecs (Through the experimental flume). 

The observed water level for the simulated flowfield of discharge 
presented in Table VII (I). 

2. Important model results 

measured discharge 

0.001907 cumecs is 

..; 
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Table VII (1) Observed data for the conducted experiment 

S.N. 

Distance 
from U/s 
boundary 

Gauge 
reading of 
bed level 

Gauge 
reading of 
water level 

Ave. 
water 
depth 

Ave. water level with 
respect to D/s boundary 

bed level as zero reference 
cm cm cm cm cm 

1 0 39.92 46.71 6.79 7.85 
2 10 39.89 46.70 6.81 7.84 
3 20 39.87 46.69 6.82 7.83 
4 30 39.85 46.68 6.83 7.82 
5 40 39.82 46.67 6.85 7.81 
6 50 39.80 46.65 6.85 7.79 
7 60 39.77 46.64 6.87 7.78 
8 70 39.75 46.63 6.88 7.77 
9 80 39.72 46.62 6.9 7.76 
10 90 39.7 46.61 6.91 7.75 
11 100 39.67 46.60 6.93 7.74 
12 110 39.65 46.59 6.94 7.73 
13 120 39.62 46.58 6.96 7.72 
14 130 39.60 46.56 6.96 7.7 
15 140 39.57 46.55 6.98 7.69 
16 150 39.55 46.54 6.99 7.68 
17 160 39.52 46.53 7.01 7.67 
18 170 39.50 46.52 7.02 7.66 
19 180 39.47 46.51 7.04 7.65 
20 190 39.45 46.5 7.05 7.64 
21 200 39.42 45.97 6.55 7.11 
22 205 39.41 45.55 6.14 6.69 
23 210 39.40 45.71 6.31 6.85 
24 215 39.38 45.87 6.49 7.01 
25 220 39.37 45.97 6.6 7.11 
26 225 39.36 45.98 6.62 7.12 
27 235 39.33 45.96 6.63 7.1 
28 245 39.31 45.95 6.64 7.09 
29 255 39.28 45.94 6.66 7.08 
30 265 39.26 45.93 6.67 7.07 
31 275 39.23 45.92 6.69 7.06 
32 285 39.21 45.9 6.69 7.04 
33 295 39.18 45.89 6.71 7.03 
34 305 39.16 45.88 6.72 7.02 
35 315 39.13 45.87 6.74 7.01 
36 325 39.11 45.85 6.74 6.99 
37 335 39.08 45.84 6.76 6.98 
38 345 39.06 45.83 6.77 6.97 
39 355 39.03 45.82 6.79 6.96 
40 365 39.01 45.81 6.80 6.95 
41 375 38.98 45.80 6.82 6.94 
42 385 38.96 45.78 6.82 6.92 
43 395 38.93 45.77 6.84 6.91 
44 405 38.91 45.76 6.85 6.9 
45 415 38.88 45.75 6.87 6.89 
46 425 38.86 45.75 6.89 6.89 
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Table VII (3) Observed and computed water level 

S.N. 

Distance 
from U/s 
boundary 

Observed 
Ave. water 

level 

Computed 
Ave. water 
level 

Computed 
Ave. 	water 

level 

Computed 
Ave. water 
level 

case-I Case-2 Case-3 
CM cm cm cm cm 

1 0 0.0785 0.0786 0.0786 0.0786 
2 10 0.0784 0.0785 0.0785 0.0785 
3 20 0.0783 0.0784 0.0784 0.0784 
4 30 0.0782 0.0783 0,0783 0.0783 
5 40 0.0781 0.07821 0.07821 0.0782 
6 50 0.0779 0.07799 • 0.078 0.0780 
7 60 0.0778 0.0779 0.0779 0.0779 
8 70 0.0777 0.0778 0.0778 0.0778 
9 80 0.0776 0.07769 0.0777 0.0777 
10 90 0,0775 0.0777 0.0776 0.0776 
11 100 0.0774 0.07751 0.07739 0.0774 
12 110 0.0773 0.0774 0.0773 0.0773 
13 120 0.0772 0.0772 0.0772 0.0772 
14 130 0.077 0.0771 0.0771 0.0771 
15 140 0.0769 0.077 0.077 0.0770 
16 150 0.0768 0.0769 0.0769 0.0769 
17 160 0.0767 0.0768 0.0768 0.0768 
18 170 0.0766 0.07671 0.07671 0.0767 
19 180 0.0765 0.07656 0.0765 0.0765 
20 190 0.0764 0.0764 0.0764 0.0764 
21 200 0.0711 0.06913 0.06853 0.0685 
22 205 0.0669 0.07 0.06871 0.0701 
23 210 0.0685 0.06981 0.06972 0.0697 
24 215 0.0701 0.07129 0.07096 0.0708 
25 220 0.0711 0.0712 0.07119 0.0712 
26 225 0.0712 0.0712 0.0712 0.0712 
27 235 0.071 0.0711 0.0711 0.0711 
28 245 0.0709 0.07091 0.07089 0.0709 
29 255 0.0708 0.07079 0.0708 0.0708 
30 265 0.0707 0.0707 0.0707 0.0707 
31 275 0.0706 0.0706 0.0706 0.0706 
32 285 0.0704 0.07042 0.07039 - 0.0704 
33 295 0.0703 0.0703 0.0703 0.0703 
34 305 0.0702 0.0702 0.0702 0.0702 
35 315 0.0701 0.0701 0.0701 0.0701 
36 325 0.0699 0.07 0.06999 0.0700 
37 335 0.0698 0.06985 0.06985 0.0698 
38 345 0.0697 0.06977 0.06973 0.0698 
39 355 0.0696 0.06959 0.06959 0.0696 
40 365 0.0695 0.0695 0.0695 0.0695 
41 375 0.0694 0.0695 0.0694 0.0694 
42 385 0.0692 0.0693 0.0693 0.0693 
43 395 0.069] 0.0692 0.0692 0.0692 
44 405 0.069 0.0691 0.0691 0.0691 
45 415 0.0689 0.069 0.069 0.0690 
46 425 0.0689 0.0689 0.0689 0.0689 
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Table VII (4) Mean and std dev. of IL and IT at cell centers og the generated mesh for 

Case-2 

S.N. 

Distance 
from U/s 
boundary -IL IT 

(m) Mean Std.dev.(u) 	Mean Std. Dev.(u) 
1 2 3 4 5 

1 0.0049 0.017700 0.000000 0.000000 0.000000 
2 0.0146 0.017700 0.000000 0.000000 0.000000 
3 0.0244 0.017700 0.000000 0.000000 0.000000 
4 0.0342 0.017700 0.000000 0.000000 0.000000 
5 0.0439 0.017700 0.000000 0.000000 0.000000 
6 0.0537 0.017700 0.000000 0.000000 0.000000 
7 0.0634 0.017700 0.000000 0.000000 0.000000 
8 0.0732 0.017700 0.000000 0.000000 0.000000 
9 0.0829 0.017700 0.000000 0.000000 0.000000 

10 0.0927 0.017700 0.000000 0.000000 0.000000 
11 0.1024 0.017700 0.000000 0.000000 0.000000 
12 0.1121 0.017700 0.000000 0.000000 0.000000 
13 0.1219 0.017700 0.000000 0.000000 0.000000 
14 0.1316 0,017700 0.000000 0.000000 0.000000 
15 0.1413 0.017700 0.000000 0.000759 0.002941 
16 0.1511 0.017700 0.000000 0.000776 0.003005 
17 0.1608 0.017700 0.000000 0.000000 0.000000 
18 0.1705 0.017700 0.000000 0.000000 0.000000 
I9 0.1802 0.017700 0.000000 0.000000 0.000000 
20 0.1899 0.017700 0.000000 0.000000 0.000000 
21 0.1996 0.017700 0.000000 0.000000 0.000000 
22 0.2093 0.017700 0.000000 0.000000 0.000000 
23 0.2190 0.017700 0.000000 0.000000 0.000000 
24 0.2287 0.017700 0.000000 0.001874 0.005451 
25 0.2383 0.017700 0.000000 0.001927 0.005577 
26 0.2480 0.017700 0.000000 0.000000 0.000000 
27 0.2577 0.017700 0.000000 0.000000 0.000000 
28 0.2674 0.017700 0.000000 0.000000 0.000000 
29 0.2770 0.017700 0.000000 0.000000 0.000000 
30 0.2867 0.017700 0.000000 0.000000 0.000000 
31 0.2963 0.017700 0.000000 0.000000 0.000000 
32 0.3060 0.017700 0.000000 0.000000 0.000000 
33 0.3156 0.017700 0.000000 0.000000 0.000000 
34 0.3253 0.017700 0.000004 0.000072 0.000280 
35 0.3349 0.017700 0.000000 0.000000 0.000000 
36 0.3445 0.017700 0.000000 0.000000 0.000000 
37 0.3542 0.017700 0.000000 0.000000 0.000000 
38 0.3638 0.017700 0.000000 0.000000 0.000000 
39 0.3734 0.017700 0.000000 0.000000 0.000000 
40 0.3830 0.017700 0.000000 0.000000 0.000000 
41 0.3926 0.017700 0.000000 0.000000 0.000000 
42 0.4023 0.017700 0.000000 0.000000 0.000000 
43 0.4119 0.017700 0.000005 0.000000 0.000000 
44 0.4215 0.017700 0.000000 0.000000 0.000000 
45 0.4311 0.017700 0.000000 0.000000 0.000000 
46 0.4407 0.017700 0.000000 0.000000 0.000000 
47 0.4503 0.017700 0.000000 0.000000 0.000000 
48 0.4599 0.017700 0.000000 0.000000 0.000000 
49 0.4695 0.017700 0.000000 0.000000 0.000000 
50 0.4791 0.017700 0.000005 0.000000 0.000000 
51 0.4887 0.017700 0.000007 0.000000 0.000000 
52 0.4983 0.017700 0.000004 0.000000 0.000000 
53 0.5078 0.017700 0.000005 0.000000 0.000000 
54 0.5174 0.017700 0.000000 0.000000 0.000000 
55 0.5270 0.017700 0.000000 0.000000 0.000000 
56 0.5366 0.017700 0.000000 0.000000 0.000000 
57 0.5462 0.017700 0.000000 0.000000 0.000000 
58 0.5557 0.017700 0,000000 0.000000 0.000000 
59 0.5653 0.017700 0.000024 0.000212 0.000821 
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S.N. 1 2 3 4 5 
60 0.5749 0.017700 0.000014 0.002265 0.008094 
61 0.5845 0,017700 0.000006 0.002322 0.008513 
62 0.5941 0,017700 0.000004 0.000000 0.000000 
63 0.6036 0.017700 0.000003 0.000000 0.000000 
64 0.6132 0.017700 0.000000 0.000000 0.000000 
65 0.6228 0.017700 0.000000 0.000000 0.000000 
66 0.6323 0.017700 0.000000 0.000000 0.000000 
67 0.6419 0,017600 0.000112 0.000937 0.003113 
68 0.6515 0.017600 0.000028 0.001349 0.004008 
69 0.6610 0.017700 0.000012 0.000398 0.001543 
70 0.6706 0.017700 0.000003 0.000094 0.000366 
71 0.6802 0.017700 0.000000 0.000000 0.000000 
72 0.6897 0.017700 0.000000 0.000000 0.000000 
73 0.6993 0.017700 0.000000 0.000000 0.000000 
74 0.7088 0.017700 0.000000 0.000000 0.000000 
75 0.7184 0.017700 0.000000 0.000000 0.000000 
76 0.7279 0.017500 0.000368 0.001625 0.004885 
77 0.7375 0.017600 0.000065 0.011300 0.037600 
78 0.7471 0.017600 0.000029 0.000843 0.003266 
79 0.7566 0.017600 0.000004 0.000393 0.001044 
80 0.7662 0.017700 0.000000 0.000000 0.000000 
81 0.7757 0.017700 0.000000 0.000000 0.000000 
82 0.7853 0.017700 0.000000 0.000000 0.000000 
83 0.7948 0.017700 0.000000 0.000000 0.000000 
84 0.8044 0.017600 0.000000 0.000000 0.000000 
85 0.8140 0.017400 0.000508 0.000749 0.002453 
86 0.8235 0.017600 0.000186 0.019100 0.060900 
87 0.8331 0.017600 0,000075 0.000290 0.000614 
88 0.8426 0.017600 0.000008 0.001036 0.003298 
89 0.8522 0.017600 0.000000 0.000000 0.000000 
90 0.8618 0.017600 0.000000 0.000000 0.000000 
91 0.8713 0.017600 0.000000 0.000000 0.000000 
92 0.8808 0.017600 0.000000 0.000000 0.000000 
93 0.8904 0.017600 0.000004 0.000000 0.000000 
94 0.9000 0.017500 0.000360 0.000102 0.000394 
95 0.9095 0.017600 0.000055 0.011700 0.045300 
96 0.9191 0.017600 0.000023 0.000103 0.000400 
97 0.9286 0.017600 0.000009 0.000180 0.000697 
98 0.9382 0.017600 0.000004 0.000000 0.000000 
99 0.9477 0.017600 0.000000 0.000000 0.000000 

100 0.9573 0.017600 0.000000 0.000000 0,000000 
101 0.9669 0.017600 0.000000 0.000000 0.000000 
102 0.9765 0.017600 0.000000 0.000000 0.000000 
103 0.9860 0.017600 0.000125 0.000000 0.000000 
104 0.9955 0.017600 0.000039 0.002221 0.008603 
105 1.0051 0.017600 0.000013 0.000000 0.000000 
106 1.0147 0.017600 0.000006 0.000095 0.000368 
107 1.0243 0.017600 0.000003 0.000000 0.000000 
108 1.0337 0.017600 0.000004 0.000000 0.000000 
109 1.0434 0.017600 0.000000 0.000000 0.000000 
110 1.0529 0.017600 0.000000 0.000000 0.000000 
111 1.0625 0.017600 0.000003 0.000000 0.000000 
112 1.0721 0.017500 0.000281 0.000152 0.000402 
113 1.0817 0.017600 0.000079 0.007398 0.028300 
114 1.0912 0.017600 0.000022 0.000094 0.000364 
115 1.1008 0.017600 0.000009 0.000265 0.000704 
116 1.1102 0.017600 0.000003 0.000000 0.000000 
117 1.1199 0.017600 0.000000 0.000000 0.000000 
118 1.1295 0.017600 0.000000 0.000000 0.000000 
119 1.1389 0.017600 0.000000 0.000000 0.000000 
120 1.1486 0.017600 0.000000 0.000000 0.000000 
121 1.1582 0.017500 0.000521 0.000239 0.000658 
122 1.1678 0.017600 0.000144 0.022000 0.084900 
123 1.1774 0.017600 0.000021 0.000000 0.000000 
124 1.1870 0.017600 0.000003 0.000190 0.000737 
125 1.1966 0.017600 0.000000 0.000000 0.000000 
126 1.2062 0.017600 0.000000 0.000000 0.000000 
127 1.2157 0.017600 0.000000 0.000000 0.000000 
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1 2 3 4 5 
128 1.2252 0.017600 0.000000 0.000000 0.000000 
129 1.2348 0.017600 0.000000 0.000000 0.000000 
130 1.2444 0.017600 0.000000 0.000000 0.000000 
131 1.2540 0.017600 0.000064 0.000115 0.000444 
132 1.2636 0.017600 0.000064 0.000695 0.001292 
133 1.2732 0.017600 0.000014 0.000165 0.000637 
134 1.2827 0.017600 0.000003 0.000098 0.000379 
135 1.2924 0.017600 0.000000 0.000000 0.000000 
136 1.3021 0.017600 0.000000 0.000000 0.000000 
137 1.3115 0.017600 0.000000 0.000000 0.000000 
138 1.3212 0.017600 0.000005 0.000000 ' 0.000000 
139 1.3308 0.017500 0.000114 0.000139 0.000537 
140 1.3404 0.017500 0.000119 0.001187 0.002658 
141 1.3500 0.017600 0.000024 0.000180 0.000696 
142 1.3596 0.017600 0.000008 0.000270 0.000783 
143 1.3691 0.017600 0.000000 0.000000 0.000000 
144 1.3788 0.017600 0.000000 0.000000 0.000000 
145 1.3884 0.017600 0.000000 0.000000 0.000000 
146 1.3980 0.017600 0.000000 0.000000 0.000000 
147 1.4076 0.017600 0.000004 0.000000 0.000000 
148 1.4172 0.017500 0.000136 0.000167 0.000647 
149 1.4268 0.017600 0.000067 0.001904 0.005982 
150 1.4366 0.017600 0.000008 0.000306 0.001187 
151 1.4462 0.017600 0.000003 0.000000 0.000000 
152 1.4557 0.017600 0.000000 0.000000 0.000000 
153 1.4654 0.017600 0.000003 0.000000 0.000000 
154 1.4749 0.017600 0.000000 0.000000 0.000000 
155 1.4846 0.017600 0.000000 0.000000 0.000000 
156 1,4942 0.017600 0.000000 0.000000 0.000000 
157 1.5038 0.017600 0.000004 0.000000 0.000000 
158 1.5136 0.017500 0.000236 0.000268 0.000797 
159 1.5232 0.017500 0.000117 0.003615 0.013600 
160 1.5329 0.017600 0.000011 0.000000 0.000000 
161 1.5425 0.017600 0.000003 0.000087 0.000336 
162 1.5521 0.017600 0.000000 0.000000 0.000000 
163 1.5619 0.017600 0.000000 0.000000 0.000000 
164 1.5715 0.017600 0.000000 0.000000 0.000000 
165 1.5812 0.017600 0.000000 0.000000 0.000000 
166 1.5908 0.017600 0.000000 0.000000 0.000000 
167 1.6005 0.017600 0.000004 0.000000 0.000000 
168 1.6101 0.017400 0.000385 0.000381 0.001027 
169 1.6197 0.017500 0.000230 0.004145 0.015000 
170 1.6295 0.017600 0.000019 0.000000 0.000000 
171 1.6392 0.017600 0.000003 0.000169 0.000656 
172 1.6489 0.017600 0.000000 0.000000 0.000000 
173 1.6585 0.017600 0.000000 0.000000 0.000000 
174 1.6683 0.017600 0.000000 0.000000 0.000000 
175 1.6780 0.017600 0.000000 0.000000 0.000000 
176 1.6877 0.017600 0.000004 0.000000 0.000000 
177 1.6973 0.017400 0.000529 0.002204 0.007573 
178 1.7071 0.017400 0.000385 0.004883 0.017200 
179 1.7168 0.017600 0.000022 0.000000 0.000000 
180 1.7265 0.017600 0.000003 0.000273 0.000794 
181 1.7364 0.017600 0.000000 0.000000 0.000000 
182 1.7461 0.017600 0.000000 0.000000 0.000000 
183 1.7558 0.017600 0.000000 0.000000 0.000000 
184 1.7655 0.017600 0.000005 0.000000 0.000000 
185 1.7753 0.017500 0.000006 0.000171 0.000664 
186 1.7851 0.017500 0.000017 0.000450 0.001196 
187 1.7948 0.017500 0.000007 0.000742 0.000735 
188 1.8047 0.017600 0.000003 0.000069 0.000268 
189 1.8145 0.017600 0.000000 0.000000 0.000000 
190 1.8242 0.017600 0.000000 0.000000 0.000000 
191 1.8341 0.017600 0.000000 0.000000 0.000000 
192 1.8439 0.017600 0.000000 0.000000 0.000000 
193 1.8538 0.017600 0.000000 0.000000 0.000000 
194 1.8636 0.017500 0.000004 0.000000 0.000000 
195 1.8735 0.017500 0.000008 0.000352 0.000609 

S.N. 
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S.N. 1 2 3 4 5 
196 1.8834 0.017500 0.000043 0.001432 0.002042 
197 1.8932 0.017500 0.000010 0.002777 .0.002436 
198 1,9031 0,017500 0.000007 0.001861 0.001895 
199 1.9129 0.017500 0.000009 0.001412 0.001884 
200 1.9229 0.017300 0.000225 0.001432 0.002113 
201 1.9329 0,015300 0.001701 0.023800 0.022000 
202 1.9428 0.012700 0.003003 0.048200 0.061000 
203 1.9526 0.011200 0.003940 0.053500 0.066000 
204 1.9625 0.009940 0.004641 0.053600 0.070400 
205 1.9722 0.011300 0.004365 0.113100 0.158800 
206 1.9821 0.012600 0.004400 0.096300 0.103800 
207 1.9918 0.012900 0.004039 0.070800 0.066300 
208 2.0015 0.014900 0.002950 0.126600 0.123000 
209 2.0113 0.016300 0.002210 0.108000 0.106800 
210 2.0210 0.017000 0.002567 0.068000 0.074600 
211 2.0308 0.017100 0.002043 0.031600 0.043600 
212 2.0403 0.016300 0.003311 0.039200 0.067400 
213 2.0499 0.015700 0.004062 0.020100 0.026200 
214 2.0597 0.016100 0.002950 0.143500 0.239900 
215 2.0692 0.016100 0.002997 0.088900 0.157000 
216 2.0788 0.015800 0.002900 0.134200 0.244000 
217 2.0886 0.015900 0.002254 0.088000 0.134000 
218 2.0981 0.015800 0.002140 0.174700 0.261800 
219 2.1076 0.015800 0.002157 0.177100 0.281600 
220 2.1172 0.016100 0.001908 0.176800 0.297100 
221 2.1269 0.015100 0.004511 0.148900 0.237300 
222 2.1366 0.016300 . 0.001646 0.143900 0.216700 
223 2.1461 0.016600 0.001703 0.123800 0.166800 
224 2.1556 0.016800 0.001219 0.164300 0.283600 
225 2.1652 0.017100 0.000901 0.092500 0.143600 
226 2.1749 0.017700 0.000154 0.056300 0.061000 
227 2.1845 0.017800 0.000046 0.012000 0.012800 
228 2.1942 0.017900 0.000028 0.002931 0.004611 
229 2.2038 0.017800 0.000010 0.000196 0.000517 
230 2.2134 0.017800 0.000006 0.000596 0.000950 
231 2.2232 0.017800 0.000000 0.000072 0.000280 
232 2.2329 0.017800 0.000000 0.000152 0.000402 
233 2.2426 0.017800 0.000000 0.000000 0.000000 
234 2.2524 0.017800 0.000000 0.000000 0.000000 
235 2.2620 0.017800 0.000010 0.000000 0.000000 
236 2.2718 0.017800 0.000015 0.000286 0.001107 
237 2.2815 0.017800 0.000007 0.000107 0.000413 
238 2.2913 0.017800 0.000009 0.000000 0.000000 
239 2,3011 0.017800 0.000004 0.000000 0.000000 
240 2.3109 0.017800 0.000004 0.000000 0.000000 
241 2.3206 0.017800 0.000004 0.000000 0.000000 
242 2.3304 0.017800 0.000012 0.000101 0.000390 
243 2.3401 0.017700 0.000581 0.000304 0.001178 
244 2.3499 0.017600 0.000645 0.001967 0.004397 
245 2.3596 0.017800 0.000089 0.000362 0.001400 
246 2.3695 0.017800 0.000008 0.000865 0.003351 
247 2,3793 0.017800 0.000000 0.000000 0.000000 
248 2.3892 0.017800 0.000000 0.000000 0.000000 
249 2.3990 0.017800 0.000000 0.000000 0.000000 
250 2.4089 0.017800 0.000004 0.000000 0.000000 
251 2.4187 0.017800 0.000013 0.000142 0.000551 
252 2.4285 0.017600 0.000592 0.000305 0.001182 
253 2.4384 0.017600 0.000645 0.001987 0.004434 
254 2.4483 0.017800 0.000090 0.000352 0.001363 
255 2,4580 0.017800 0.000008 0,000904 0.003220 
256 2.4679 0.017800 0.000000 0.000000 0.000000 
257 2.4777 0.017800 0.000000 0.000000 0.000000 
258 2.4877 0.017800 0.000003 0.000000 0.000000 
259 2.4977 0.017800 0.000015 0.000164 0.000635 
260 2.5076 0.017600 0.000610 0.000317 0.001227 
261 2.5175 0.017600 0.000667 0.002053 0.004706 
262 2.5274 0.017800 0.000089 0.000354 0.001370 
263 2.5372 0.017800 0.000008 0.000845 0.003271 
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S.N. 1 2 3 4 5 
264 2.5471 0.017800 0.000005 0.000000 0.000000 
265 2.5571 0.017800 0.000000 0.000000 0.000000 
266 2.5670 0.017800 0.000000 0.000000 0.000000 
267 2.5770 0.017800 0.000015 0.000174 0.000675 
268 2.5869 0.017600 0.000616 0.000333 0.001288 
269 2.5968 0.017600 0.000670 0.001952 0.004670 
270 2.6068 0.017800 0.000089 0.000658 0.001740 
271 2.6168 0.017800 0.000008 0.000867 0.003359 
272 2.6267 0.017800 0.000000 0.000000 0.000000 
273 2.6366 0.017800 0.000000 0.000000 0.000000 
274 2.6465 0.017800 0.000005 0.000000 0.000000 
275 2.6565 0.017800 0.000016 0.000178 0.000689 
276 2.6665 0.017600 0.000604 0.000336 0.001301 
277 2.6765 0.017600 0.000653 0,001919 0.004565 
278 2.6865 0.017800 0.000085 0.000642 0.001695 
279 2.6965 0.017800 0.000005 0.000783 0.003031 
280 2.7065 0.017800 0.000000 0.000000 0.000000 
281 2.7165 0.017800 0.000000 0.000000 0.000000 
282 2.7265 0.017800 0.000000 0.000000 0.000000 
283 2.7365 0.017800 0.000004 0.000000 0.000000 
284 2.7465 0.017800 0.000015 0.000176 0.000680 
285 2.7566 0.017600 0.000566 0.000326 0.001264 
286 2.7667 0.017600 0.000605 0.001898 0.004188 
287 2.7768 0.017800 0.000075 0.000272 0.001055 
288 2.7868 0.017800 0.000005 0.000698 0.002703 
289 2.7969 0.017800 0.000000 0.000000 0.000000 
290 2.8070 0.017800 0.000000 0.000000 0.000000 
291 2.8171 0.017800 0.000017 0.000166 0.000641 
292 2.8271 0.017200 0.001722 0.000781 .0.001652 
293 2.8371 0.017200 0.001817 0.033600 0.123000 
294 2.8473 0.017800 0.000065 0.002281 0.007951 
295 2.8574 0.017800 0.000006 0.000747 0.002309 
296 2.8676 0.017800 0.000000 0.000000 0.000000 
297 2.8777 0.017800 0.000000 0.000000 0.000000 
298 2.8878 0.017800 0.000000 0.000000 0.000000 
299 2.8979 0.017800 0.000000 0.000000 0.000000 
300 2.9081 0.017800 0.000012 0.000153 0.000592 
301 2.9181 0.017200 0_001499 0.000459 0.001300 
302 2.9283 0.017200 0.001795 0.028400 0.104200 
303 2.9385 0.017700 0_000051 0.002530 0.009179 
304 2.9487 0,017800 0.000005 0.000551 0.001672 
305 2.9589 0.017800 0.000000 0.000000 0.000000 
306 2.9691 0.017800 0.000003 0.000000 0.000000 
307 2.9793 0.017800 0.000013 0.000135 0.000523 
308 2.9894 0.017300 0.001252 0.000706 0.001887 
309 2.9998 0.017300 0.001343 0.020400 0.074300 
310 3.0099 0.017700 0.000041 0.001378 0.004927 
311 3.0201 0.017800 0.000006 0.000437 0.001256 
312 3.0304 0.017800 0.000000 0.000000 0.000000 
313 3.0408 0.017800 0.000000 0.000000 0.000000 
314 3.0512 0.017800 0.000000 0.000000 0.000000 
315 3.0614 0.017800 0.000000 0.000000 0.000000 
316 3.0716 0.017800 0.000013 0.000091 0.000353 
317 3.0819 0,017400 0.000907 0.003637 0.012800 
318 3.0922 0.017500 0.000922 0.007368 0.024800 
319 3.1027 0.017700 0.000027 0.000909 0.003155 
320 3.1128 0.017800 0.000004 0.000292 0.000782 
321 3.1233 0.017800 0.000000 0.000000 0.000000 
322 3.1336 0.017700 0.000000 0.000000 0.000000 
323 3.1439 0.017700 0.000000 0.000000 0.000000 
324 3.1545 0.017700 0.000000 0.000000 0.000000 
325 3.1648 0.017700 0.000008 0.000000 0.000000 
326 3.1752 0.017600 0.000538 0.001854 0.006041 
327 3.1856 0.017600 0.000476 0.003746 0.009894 
328 3.1962 0.017700 0.000019 0.000815 0.002400 
329 3.2069 0.017700 0.000003 0.000170 0.000451 
330 3.2172 0.017700 0.000000 0,000000 0.000000 
331 3.2276 0.017700 0.000003 0.000000 0.000000 
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S.N. 1 2 3 4 5 
332 3.2382 0.017700 0.000007 0.000000 0.000000 
333 3.2486 0.017600 0.000295 0.001255 0.003855 
334 3.2592 0.017700 0,000237 0.003041 0.007594 
335 3.2698 0.017700 0.000012 0.001789 0.006928 
336 3.2804 0.017700 0.000000 0.000000 0.000000 
337 3.2911 0.017700 0,000000 0.000000 0.000000 
338 3.3018 0.017700 0.000000 0.000000 0.000000 
339 3.3125 0.017700 0.000000 0.000000 0.000000 
340 3.3231 0.017700 0.000000 0.000000 0.000000 
341 3.3337 0.017700 0.000006 0.000000 0.000000 
342 3.3444 0.017700 0.000089 0.000372 0.001020 
343 3.3554 0.017700 0.000077 0.000208 0.000551 
344 3.3660 0.017700 0.000006 0.000000 0.000000 
345 3.3769 0.017700 0.000004 0.000000 0.000000 
346 3.3879 0.017700 0.000000 0.000000 0.000000 
347 3.3985 0.017700 0.000000 0.000000 0.000000 
348 3.4095 0.017700 0.000000 0.000000 0.000000 
349 3.4205 0.017700 0.000000 0.000000.  0.000000 
350 3.4314 0.017700 0.000011 0.000000 0.000000 
351 3.4426 0.017500 0.000770 0.002964 0.008709 
352 3.4535 0.017500 0.000819 0.009290 0.033400 
353 3.4646 0.017700 0.000028 0,000354 0,001371 
354 3.4757 0.017700 0.000005 0.000209 0.000556 
355 3.4868 0.017700 0.000003 0.000000 0.000000 
356 3.4981 0.017700 0.000000 0.000000 0.000000 
357 3.5092 0.017700 0.000000 0.000000 0.000000 
358 3.5205 0.017700 0.000000 0.000000 0.000000 
359 3.5318 0.017700 0.000132 0.000227 0.000603 
360 3.5432 0.017700 0.000103 0.000356 0.001127 
361 3.5545 0.017700 0.000008 0.000000 0.000000 
362 3.5658 0.017700 0.000000 0.000000 0.000000 
363 3.5773 0.017700 0.000000 0.000000 0.000000 
364 3.5887 0.017700 0.000000 0.000000 0.000000 
365 3.6003 0.017700 0.000000 0.000000 0.000000 
366 3.6117 0.017700 0.000000 0.000000 0.000000 
367 3.6233 0.017700 0.000172 0.000638 0.001790 
368 3.6347 0.017700 0.000113 0.001151 0.003126 
369 3.6462 0.017700 0.000013 0.000000 0.000000 
370 3.6578 0.017700 0.000000 0.000000 0.000000 
371 3.6693 0.017700 0.000000 0.000000 0.000000 
372 3.6806 0.017700 0.000000 0.000000 0.000000 
373 3.6924 0.017700 0.000000 0.000000 0.000000 
374 3.7037 0.017700 0.000000 0.000000 0.000000 
375 3.7151 0.017700 0.000004 0.000000 0.000000 
376 3.7266 0.017600 0.000382 0.002578 0.005485 
377 3.7379 0.017700 0.000126 0.006551 0.016400 
378 3.7492 0.017700 0.000052 0.000999 0.003870 
379 3.7606 0.017700 0.000004 0.000642 0.001775 
380 3.7720 0.017700 0.000000 0.000000 0.000000 
381 3.7832 0.017700 0.000000 0.000000 0.000000 
382 3.7943 0.017700 0.000000 0.000000 0.000000 
383 3.8055 0.017700 0.000000 0.000000 0.000000 
384 3.8165 0.017700 0.000000 0.000000 0.000000 
385 3.8276 0.017700 0.000004 0.000375 0.001452 
386 3.8386 0.017700 0.000006 0.000396 0.001532 
387 3.8496 0.017700 * 0.000004 0.000000 0.000000 
388 3.8606 0.017700 0.000000 0.000000 0.000000 
389 3.8714 0.017700 0.000000 0.000000 0.000000 
390 3.8824 0.017700 0.000000 0.000000 0.000000 
391 3.8931 0.017700 0.000000 0.000000 0.000000 
392 3.9039 0.017700 0.000000 0.000000 0.000000 
393 3.9146 0.017700 0.000000 0.000000 0.000000 
394 3.9252 0.017700 0.000000 0.000000 0.000000 
395 3.9358 0.017700 0.000000 0.000000 0.000000 
396 3.9464 0.017700 0.000000 0.000000 0.000000 
397 3.9571 0.017700 0.000000 0.000000 0.000000 
398 3.9675 0.017700 0.000000 0.000000 0.000000 
399 3.9782 0.017700 0.000000 0.000000 0.000000 
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S.N. 1 2 3 4 5 
400 3.9886 0.017700 . 0.000000 0.000000 0.000000 
401 3.9991 0.017700 0.000000 0.000000 0.000000 
402 4.0094 0.017700 0.000000 0.001085 0.002862 
403 4.0199 0.017700 0.000003 0.001121 0.002959 
404 4.0302 0.017700 0.000000 0.000000 0.000000 
405 4.0406 0.017700 0.000000 0.000000 0.000000 
406 4.0508 0.017700 0.000000 0.000000 0.000000 
407 4.0614 0.017700 0.000000 0.000000 0.000000 
408 4.0715 0.017700 0.000000 0.000000 0.000000 
409 4.0817 0.017700 0.000000 0.000000 0.000000 
410 4.0920 0.017700 0.000000 0.000000 0.000000 
411 4.1025 0.017700 0.000000 0.000000 0.000000 
412 4.1128 0.017700 0.000000 0.000000 0.000000 
413 4.1228 0.017700 0.000000 0.000000 0.000000 
414 4.1332 0.017700 0.000000 0.000000 0.000000 
415 4.1432 0.017700 0.000000 0.000000 0.000000 
416 4.1534 0.017700 0.000000 0.000000 0.000000 
417 4.1637 0.017700 0.000000 0.000000 0.000000 
418 4.1738 0.017700 0.000000 0.000000 0.000000 
419 4.1839 0.017700 0.000000 0.000000 0.000000 
420 4.1943 0.017700 0.000000 0.000000 0.000000 
421 4.2044 0.017700 0.000000 0.000000 0.000000 
422 4.2145 0.017700 0.000000 0.000000 0.000000 
423 4.2246 0.017700 0.000000 0.000000 0.000000 
424 4.2350 0.017700 0.000000 0.000000 0.000000 
425 4.2450 0.017700 0.000000 0.000000 0.000000 
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APPENDIX-VIII 

List of relevant research papers: 

Name of the journal Month & year of 
publication 

Title of the research 
paper 

Single or with Co- 
author(s) 

1. Journal of 
Hydraulic 

Under Review "2-D depth averaged 
modelling for braided 

Akhtar, M.P., 
Sharma, Nayan and 

Research stretch of River Ojha C.S.P. 
(IAHR) Brahmaputra in 

India" 

"Modified Flow 
2. Journal of Under Review Dispersion Stress 

Hydraulic 
Engineering 
(ASCE) 

Tensor in 2-D 
Curvilinear Flow 
Domain 

Akhtar, M.P., Ojha, 
C.S.P.,Sharma, 
Nayan and 

Part-A: Model Bergstrom, D. J 
Development" 

"Modified Flow 
Dispersion Stress 

3. Journal of 
Hydraulic 
Engineering 

Under Review Tensor in 2-D 
Curvilinear Flow 
Domain 

Akhtar, M.P., Ojha, 
C.S.P.,Sharma, 
Nayan and 

(ASCE) Part-B: Flow Field Bergstrom, D. J. 
Simulation" 
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