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ABSTRACT 

The quest for perfection has led us to all the scientific developments and technological 

advancements. In spite of all the scientific developments, the flaws and imperfection in 

materials often leads to catastrophic consequences. Fracture is one of the most prevalent 

damage phenomena that society has faced for as long as there have been man-made 

structures. Over the past few decades, greater understanding of fracture mechanics has 

prevented a substantial number of structural failures. Cracks are inevitable in all 

engineering components. External loadings may result in either the propagation of pre-

existing cracks or may initiate new cracks in the structures. This may finally lead to 

catastrophic failure of the components resulting in loss of property and lives. 

Due to the scarcity of analytical solutions and also due to the versatility of the 

numerical methods in handling complex practical problems, research efforts continue to 

focus on improving the numerical schemes. 

A new class of numerical methods known as meshfree method has been developed 

over the past 15 years. The meshfree method is a rather interesting complement to the 

traditional finite element method. The first advantage of a meshfree method is that it is 

possible to construct arbitrarily high order approximation for higher order problems. 

Secondly, the numerical integration can be performed on arbitrary cells covering the 

computational domain so that the expensive meshing and remeshing process can be 

avoided. Moreover, the mesh distortion insensitivity makes them a boon for the problems 

involving large deformation. These characteristics together, proffer the potential of 

meshfree methods in simplifying adaptive analysis and crack growth modeling in fracture 

mechanics. 

Present research work focuses on the implementation and extension of the most 

popular meshfree method known as the element free Galerkin method (EFGM) to 

analyze a variety of fracture mechanics problems under thermal/mechanical loads. The 

versatility and the effectiveness of EFGM have been demonstrated through the solution 

of various problems. Moreover, few modifications have been proposed and implemented 

to enhance the proficiency of EFGM. 
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Abstract 

Simulating the problem of fracture mechanics requires some suitable crack modeling 

criterion. A comparison of various crack modeling techniques in EFGM unveiled the 

advantages of intrinsic enrichment criterion. Owing to its accuracy, convergence, ease of 

implementation and modifications, the intrinsic enrichment criterion was further 

exploited to accomplish the remaining research work. 

Weak discontinuities in EFGM were modeled and compared using different existing 

criteria. The Jump function approach proved to be best among the available techniques 

for the modeling of material discontinuities. A new criterion for modeling bi-material 

interfacial crack using Jump function has been proposed. The proposed method involves 

only four enrichment functions in the basis instead of the usual twelve. Thus, 

computational complexity is significantly reduced. 

In an attempt to simulate and analyze the effect of multiple cracks interaction in both 

convex and non-convex domains, a new intrinsic enrichment based criterion has been 

proposed, and implemented. Apart from accurate simulation, the proposed criterion 

effectively reduces the computational cost of the EFGM. 

The EFGM has also been extended to simulate two-dimensional thermo-elastic 

fracture problems in isotropic material. Both temperature and mechanical fields were 

enriched intrinsically in order to represent the discontinuous temperature, heat flux, 

displacement and traction across the crack surface. Some example problems of fracture in 

functionally graded materials were tackled by EFGM under thermal/mechanical loads. 

Motivated by the wide applicability of EFGM and to establish it as a robust tool for 

solving problems of fracture mechanics, the simulation of elasto-plastic fracture 

problems has been carried out for two dimensional cracked bodies. The enriched basis 

functions were used in order to capture the HRR (Hutchinson-Rice-Rosengren) 

singularity. 

Finally, a new enrichment based EFGM criterion has been developed for modeling 

the kinked cracks. The proposed criterion was used for the simulation of quasi-static 

crack growth problems under mixed-mode loading conditions. The ease of modeling 

quasi-static crack growth highlights the strength of the proposed criterion. Moreover, the 

crack growth simulation also demonstrates the modeling capability of EFGM without any 

requirement of re-meshing. 
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Chapter 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION 

Understanding fracture was important for us even in the stone-age when the primitive 

men tried to make stone tools and weapons. Time has changed from stone-age to space-

age but the phenomenon of fracture is still being studied. The quest for perfection has led 

us to many scientific developments and technological advancements. In spite of all the 

scientific developments, the flaws and imperfection in materials often leads to 

catastrophic consequences. Fracture is one of the most prevalent damage phenomena. It 

can be observed right from withering of rocks in nature to crash of an aero-plane. 

Loosely speaking, fracture can be defined as the separation of an object or material into 

two or more pieces under the action of stress. A crack/flaw is the basic entity which leads 

to fracture of component/structure when subjected to external loads. 

Cracks are inevitable in all engineering components. Thermo-mechanical loading 

may result in either the propagation of pre-existing cracks or may initiate new cracks in 

the structures. Fatigue and quasi-static fracture are two forms of crack growth 

phenomenon. Fatigue fracture refers to the slow propagation of cracks under cyclic 

loading conditions where the stress intensity factors are below the fracture toughness of 

the material. Quasi-static fracture is common near the end of the fatigue life when the 

increased crack length leads to stress intensity factors which are above the fracture 

toughness (Chowdhury and Narasimhan 2000; Sasikala and Ray 2008; Partheepan et al. 

2008). 
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Fracture is characterized by unstable and extremely fast crack growth. This may 

finally lead to failure of the components resulting in the loss of property and lives. 

Several experimental (Nurse and Patterson, 1990; Khanna and Shukla, 1995; Maiti and 

Patil, 2003; Guagliano et al. 2006; Singh and Gope 2009) and simulation techniques 

(Choubey et al. 2006; Zhong and Oyadiji 2007; Lam and Ng 2008) are dedicated to crack 

detection at an early stage. Research efforts have been made to predict, and retard the 

effect of fatigue on the structures (Adrov 1993; Gope 1999; Shang et al. 2001; Liu and 

Mahadevan 2005). 

In many cases, multiple cracks may exist in the components. These cracks interact 

with each other resulting in the variation of stress distribution, stress intensity factor and 

propagation direction of the main crack. As such, all important failure phenomena such 

as stress corrosion cracking, hydrogen embrittlement, and creep micro cracking are 

directly linked to the crack interactions. In past, some efforts have been made using 

analytical, experimental and simulation techniques to analyze the effect of interaction 

among multiple cracks (Cheung et al. 1992; Ang and Gumel 1996; Ang and Park 1996; 

Denda et al. 1997; Muravin and Turkel 2006a). 

Although, a plenty of analytical (Rice 1968; Agarwal et al. 1986; Rao and Rahman 

2003; Sills and Dolev 2004) and experimental methods (Khanna and Shukla, 1993; 

Chattopadhyay et al., 2005) have been exploited for the calculation of fracture 

parameters even then the drawbacks associated with experimental investigation and 

scarcity of analytical solution have impelled the analysts towards alternative techniques. 

Numerical methods hold the promise in this regard. 

Numerical methods along with high-fidelity mathematical models are able to predict 

the behavior of an engineering system before the physical system has been built. The 
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majority of such models take the form of partial differential equations (PDEs) which 

relate variables whose values are confined to a given domain. Except for the simplest 

cases, the PDE and/or the domain under consideration are complex enough to rule out the 

possibility of finding an exact solution, and a suitable numerical.approach is needed to 

simulate the modeled phenomenon. Loosely speaking, numerical methods transform a 

PDE defined over a continuum into a finite set of equations which are later solved 

(exactly or approximately) by using matrix algebra. In many situations, numerical 

simulation effectively reduces or replaces expensive experimental studies as an 

alternative investigation tool for the engineers. 

Due to advances in the computational technologies over past two decades, many 

numerical simulation tasks, which were once considered computationally formidable or 

could be addressed only by a supercomputer, can now be carried out by a normal desktop. 

computer. Due to the scarcity of analytical solutions for most of the practical cases, and 

also due to the versatility of computational procedures in handling such problems, 

research efforts continue to focus on improving such numerical schemes. 

Over past fifty five years, finite element method (FEM) has been used for solving a 

wide variety of engineering and industrial problems (Giudice et al. 1978; Reddy and 

Chao 1980; Corvi 1990; Kant and Menon 1993; Sze and Wang 2000; Chattopadhyay et 

al. 2005; Armentani and Citarella 2006; Kant et al. 2007; Goo et al. 2006, 2008a, Yoon 

et al. 2010). The method has achieved remarkable success in solving many linear and 

non-linear problems (Deodatis 1989; Kant et al. 1992; Yoon et al. 1999; Andreev and 

Harmuth 2003; Cardoso et al. 2007; Huang 2007; Dias et al. 2007; Goo et al. 2008b; 

Coda 2009). Although FEM is quite successful, the discretization of complex three-

dimensional geometries and re-meshing of the domain changing with time is a very 

daunting and time-consuming task. Assembly and solution of the finite element equations 
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also often lead to numerical errors (Umar et al. 1996; Prathap 1999; Meric 2001; Kikuchi 

and Liu 2003; Cardoso and Yoon 2007). Despite its numerous advantages and 

unparalleled success, FEM is not well suited for certain classes of problems such as crack 

propagation and moving discontinuities, moving phase boundaries, continuous casting, 

phase transformation, free surface flow, fluid structure interaction, large deformations, 

solution of higher order partial differential equations, multi-scale analysis. Difficulties 

arise due to the inherent structure of finite element method, i.e. the connectivity defined 

through the use of elements. 

In the fracture mechanics problems, for instance, element edges provide natural lines 

along which a crack can grow. This is advantageous if the crack path is known a priori, 

but in most complex fracture phenomenon, the crack path is unknown. Thus, the finite 

element method requires remeshing to ensure that element boundaries coincide with 

moving discontinuities. Therefore, a method is needed which may be somewhat more 

expensive from the viewpoint of computational time but requires less time in the 

preparation of data. 

To cope with these problems, a class of new methods has been developed over the 

past thirty years. These methods are known as meshfree (meshless) method. The 

common feature of the meshfree methods is that they do not require any connectivity 

information i.e. a elemental mesh is not required. In meshfree methods, interpolants 

(strictly speaking approximants) are constructed solely on the basis of a set of scattered 

nodes whereas in case of finite element method, interpolants are constructed using a 

number of small elements known as finite elements. The meshfree method is a rather 

interesting complement to the traditional finite element method. The first advantage of 

meshfree method is that it is possible to construct higher order approximation. Secondly, 

the numerical integration can be performed on simple cells covering the computational 
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domain so that the expensive meshing and remeshing process can be avoided. The mesh 

distortion insensitivity makes them a boon for the problems involving large deformation. 

Moreover, these properties make them ideally suited for adaptive analysis, and crack 

growth modeling. 

1.2 LITERATURE REVIEW 

In the past, a number of meshfree methods have been developed to tackle the problems 

faced by FEM. These include smooth particle hydrodynamics (Monaghan, 1988; 

Monaghan, 1992; Bonet and Kulasegaram 2002; Kulasegaram et al. 2004; Chen and 

Kulasegaram 2009), diffuse element method (Nayroles et al., 1992, 1994; Marechal et 

al., 1993), element-free Galerkin method (Belytschko et al., 1994; Lu et al., 1994), 

reproducing kernel particle method (Liu et al., 1995a,b,1996; Chen et al., 1997; Jun et 

al., 1998; Alum, 1998), finite point method (Onate et al., 2001), partition of unity 

method (Melenk and Babuska, 1996; Babuska and Melenk, 1997), H-p cloud method 

(Durate and Oden, 1996), free mesh method (Yagawa and Yamada, 1996; Yagawa and 

Furukawa, 2000), boundary node method (Mukherjee and Mukherjee, 1997), natural 

element method (Sukumar, 1998a,b), local boundary integral equation method (Zhu et 

al., 1998a,b; Atluri et al., 2000; Long and Zhang, 2002, ), meshless local Petrov-Galerkin 

method (Atluri and Zhu, 1998; Cho and Atluri, 2001; Atluiri and Shen, 2002; Xiao and 

McCarthy, 2003), the method of finite spheres (De and Bathe, 2000, 2001a,b), regular 

hybrid boundary node method (Zhang et al., 2003; Zhang and Yao, 2004; Zhang et al., 

2004), local point interpolation method (Liu and Gu, 2001a; Gu and Liu, 2001) and local 

radial point interpolation method (Liu and Gu, 2001b). 

All these meshfree methods have a common feature that only nodal data is required 

to describe the interpolation of field variables. Although, in most of the meshfree 

methods, Galerkin formulation is utilized to develop the discrete equations, the major 
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difference among these methods lies in the interpolation (approximation) techniques. 

Generally, three different interpolation (approximation) techniques have been used in 

meshfree methods, kernel approximation, moving least square approximation and 

partition of unity. In meshfree methods, one uses the term approximation rather than 

interpolation since the meshfree shape functions do not satisfy the Kronecker-delta 

property. This entails certain difficulties in imposing essential boundary conditions. 

Probably the simplest way to impose essential boundary conditions is the boundary 

collocation methods. Other alternatives are to use the penalty method, Lagrange 

multipliers, full transformation technique, and Nitsche's method. The most important 

advantages of meshfree methods compared to finite elements are their higher order 

continuous shape functions that can be exploited e.g. for thin shells or gradient-enhanced 

constitutive models; higher smoothness; simpler incorporation of h and p-adaptivity and 

few advantages in crack problems (no mesh alignment sensitivity; some methods do not 

need to enforce crack path continuity). The main drawback of all meshfree methods is 

probably their higher computational cost. 

Based on an idea of Lancaster and Salkauskas (1981) and probably motivated by the 

purpose to model arbitrary crack propagation without computationally expensive 

remeshing, Belytschko and his co-workers developed the element free Galerkin method 

(EFGM) in 1994. 

In 1994, Belytschko et al. first used EFGM for arbitrary shape elasticity problems 

and a simple heat conduction problem. The trial and test functions were selected from 

moving least square interpolants. They found that the method does not exhibit volumetric 

locking, and a higher rate of convergence was achieved. In the same year, Belytschko et 

al. implemented EFGM for quasi-static crack growth problems using the visibility 

criterion. Moving least square interpolant was used along with Gelarkin method. 

6 



Chapter 1+ Introduction and Literature Review 

Accurate stress intensity factors were obtained with very irregular arrangement of nodes 

and without using any enrichment function to model a near crack tip singularity. 

Belytschko et al. (1995a) applied EFGM for static and dynamic fracture problems. 

They modeled a growing crack by extending its free boundary. The results were found 

quite close to the analytical solution. The need of remeshing during crack propagation 

was eliminated but the computational time was increased by almost 50% as compared to 

FEM. 

Belytschko et al. (1995b) used EFGM to solve the problems of mixed mode dynamic 

fracture in concrete. They suggested that crack tip velocity leads to significant 

differences in the crack path, especially in later stages of fracture. Though, the running 

time for these calculations were found to be more as compared to finite element 

procedure but when viewed in terms of interactive remeshing by user , the increase: in 

computer cost were quite modest. 

Organ et al. (1996) developed continuous meshless approximation for the domains 

with non-convex boundaries. Two techniques namely diffraction and transparency were 

compared to the original visibility criterion. Moderate improvement in accuracy over the 

discontinuous approximation was obtained but significant improvements were obtained 

for the case with enriched basis with crack tip singular functions. 

Belytschko and Tabbara (1996a) used the EFGM to solve the problems of dynamic 

crack propagation. The essential boundary conditions were imposed by collocation 

method and the discrete equations were obtained by Hamilton's principle. They tested 

and applied this method to solve elasto-dynamic non-linear crack growth problems. 

Belytschko and Tabbara (1996b) suggested the use of EFGM to solve several 

problems involving dynamic crack propagation. The crack growth was modeled using the 

concept of dynamic stress intensity factor. A comparison with analytical and other 
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numerical solution for linear crack growth showed that the method is capable of 

modeling crack growth without re-meshing. 

Belytschko et al. (1996) used the EFGM for smoothing the approximation near 

concave boundaries, and increased the efficiency of EFGM by computing the 

approximation functions and their derivatives by a new methodology. A moderate 

improvement in the accuracy of smoothed interpolant was achieved. A comparison with 

the original formulation of the method showed a two fold increase in speed in the 

computation of derivatives. 

Krongauz (1996) in his doctoral thesis proposed a technique for incorporating the 

discontinuous derivatives in EFGM for both one and two-dimensional problems. An 

approximation function was introduced which has discontinuous first derivative at the 

point of discontinuity. The approximation possesses a compact support. In comparison to 

standard meshless approximation, oscillations were avoided at the surface of the 

discontinuity. 

Organ (1996) in his PhD thesis implemented the EFGM for the numerical solution of 

dynamic fracture problem. A procedure was developed for coupling of meshless methods 

with finite element methods. Dynamic fracture problems were solved ranging from 

stationary crack under impact loading to multiple cracks growing in arbitrary directions. 

The EFGM solutions compared well with experimental results for both constant and 

variable crack velocities. 

Sukumar et al. (1997) used EFGM for three dimensional fracture mechanics 

problems by coupling it with finite element method. The method allowed the use of 

EFGM in crack region and finite element method in the rest of the domain. The stress 
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intensity factors obtained for two benchmark problems were found in good agreement 

with the reference solution. 

Fleming et al. (1997) proposed an enriched EFGM for crack tip fields by adding 

asymptotic fields to the trial function and by augmenting the basis with asymptotic fields. 

A local mapping for the enriched fields for curved cracks was also described. This 

enrichment greatly reduced the stress oscillations and allowed the accurate calculation of 

stress intensity factors with fewer degrees of freedom. 

Fleming (1997) in his PhD thesis applied the EFGM for fatigue and quasi-static 

fracture. Crack growth was modeled by adding an additional segment at the crack tip. 

Techniques for enriching and smoothing meshless approximation for linear elastic 

fracture were also presented. The method was found to perform well for arbitrary crack 

growth in complicated geometries. 

Tabbara and Stone (1998) applied the EFGM in quasi-static mixed mode fracture 

problems. The expression for normalized critical traction was derived in terms of fracture 

resistance (R-curve) and a crack dependent function. This method provided a direct 

procedure to resolve an arbitrary crack extension without any change to the original 

geometry. Predictions agreed quite well with the experimental results. 

Combe (1998) suggested an automatic mesh adaption approach using EFGM which 

can be applied for several linear and physically non-linear problems with high stress-

strain gradients. The adaption criterion was based on strain gradients and a strategy for 

node refinement. Continuous mesh refinement in areas of high gradient was used. The 

convergence was investigated for the problems having analytical solutions. 

Xu and Saigal (1998a) established a discrete formulation for stable crack growth in 

elastic solid using EFGM. Inertia force term in the momentum equation was converted 

into a spatial gradient term by employing the steady state condition. A good 
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approximation of the near tip stress field was achieved. These calculations suggested that 

the quality of numerical results was not affected much by the crack tip speed. 

Ponthot and Belytschko (1998) presented an arbitrary Lagrangian—Eulerian (ALE) 

formulation for EFGM, which continuously relocates the nodes in the computational 

domain. By combining EFGM with ALE, the spatial discretization in the neighborhood 

of a propagating crack tip was refined locally. The new formulation can be easily 

implemented in a pre-existing mesh-free code. 

Xu and Saigal (1998b) established an EFGM based formulation for the quasi-static 

crack growth in an elastic-plastic material undergoing small scale yielding. A mode-I 

crack under plane strain condition is considered in an elastic-perfectly plastic material. 

The computed near tip stress distribution and crack opening displacement were found in 

good agreement with the analytical solutions. 

Xu and Saigal (1999) developed an EFGM based formulation for dynamic crack 

growth in an elastic-plastic material. Both rate independent and rate dependent materials 

were considered. Von-Mises yielding criterion along with an associated flow rule was 

used. Crack propagation speed showed a great influence on the results for rate 

independent materials. 

Dolbow and Belytschko (1999) suggested some improvements in numerical 

integration of Gelarkin weak form for meshfree methods. Construction of quadrature 

cells without local support to weight function was found to be a source of integration 

error. A new structure of integration cells was proposed which reduced the quadrature 

error. 

Krysl and Belytschko (1999) proposed a technique for modeling three-dimensional 

dynamically propagating cracks in elastic bodies by EFGM. The crack surface was 

defined by a set of triangular elements. Surface updating techniques were also described. 
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Stress intensity factor was calculated using interaction integral approach. This approach 

was only applicable to non-interacting cracks. 

Belytschko and Fleming (1999) compared three different methods for smoothing 

meshfree approximation near non-convex boundaries. Two different techniques for 

enriching the EFGM approximation near the crack tip were also summarized and 

compared against each other. The extrinsic enrichment criterion was found to be more 

suitable for the simulation of multiple cracks. 

Barry (1999) formulated a small strain, three-dimensional elasto-plastic EFGM. 

Singular weight functions were used in moving least square approximation. Elasto-

plastic formulations were done on the basis of consistent tangent operator approach and 

incremental theory. The computational efficiency was improved by using variable 

domain of influence. 

Rao and Rahman (2000) developed an efficient meshless method for the analysis of 

linear elastic cracked structure subjected to single or mixed mode loading condition. The 

method involves an EFGM formulation in conjunction with an exact implementation of 

essential boundary condition and a new weight function. The predicted crack trajectories 

were found in good agreement with experimental data. 

Belytschko et al. (2000) further used EFGM to study the mixed mode dynamic crack 

propagation in concrete. The essential boundary conditions were imposed by explicit 

time integration scheme and coupling with finite elements. The discrete equations were 

obtained using variational approach. Fracture process zone model was used to replicate 

the salient features of dynamic crack growth with arbitrary path. 

Yagawa and Furukawa (2000) reviewed recent developments in mesh free methods, 

and analyzed the computing efficiency for these methods. A good parallel computing 

efficiency was achieved but there was a sudden decrease in computing efficiency with 

11 



Chapter 14 Introduction and Literature Review 

the increase in number of processors. Parallel computing efficiency was found to be 

dependent on the ratio of number of processors to degrees of freedom. 

Rao and Rahman (2002) developed a Gelarkin based meshless method for predicting 

the first order derivative of stress intensity factor with respect to crack size in a linear 

elastic structure. For mode-I loading, the first order derivative of SIF was found quite 

close to analytical solution, whereas for mixed mode loading, the maximum error was 

found to be 7%. 

Gavete (2000) proposed a new way of imposing essential boundary condition in 

EFGM. A penalty function was used along with a constrained variational principle. The 

method was tested for the case of a complex domain with irregular grid of nodes. The 

formulation exhibited very high accuracy and stability when appropriate weighting 

function were used. 

Pannachet and Askes (2000) come up with some observations on the enforcement of 

constraint equations. Both Lagrange's multiplier and penalty approach were used to solve 

two benchmark problems. Inaccuracies such as oscillations were observed due to abrupt 

change in the boundary conditions. Instead of Gauss integration, nodal integration was 

found to eliminate these deficiencies. 

Rao and Rahman (2001) developed a technique for coupling of EFGM method with 

traditional finite element method for the analysis of linear elastic crack problems 

subjected to mode-I and mixed mode loading conditions. A significant saving in 

computational efforts was achieved by coupling the two methods. The calculated stress 

intensity factors compared very well with the existing solution. 

Gavete and Ruiz (2001) presented an error indicator for EFGM which can be easily 

implemented in existing EFGM codes. The calculation was performed on a cell by cell 

basis. Performance of error indicator was demonstrated for two different problems with 
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known analytical solutions. This method allowed a global energy norm to be estimated 

with good estimation of local errors. 

Ventura et al. (2001) proposed a new level set method for the description of a 

propagating crack in EFGM. This approach helps to model a crack on the basis of nodal 

data only without introducing any geometrical entity. The nodal data gets updated with 

crack propagation. The method finds a promising application for three dimensional 

entities where the geometrical description of a crack surface is a computationally 

expensive task. 

Yavari et al. (2001) studied the topological aspects of EFGM and compared them 

with finite element method. They suggested that EFGM requires large domain of 

influence to satisfy the basis. Appropriate size of domain of influence is configuration 

dependent. No conclusive result was obtained for node ordering. 

Hazama et al. (2001) suggested an EFGM approach for two-dimensional elasto-

plastic problems. Computer aided engineering seamless systems and digital analysis 

procedures were developed for extraction of domain data for practical problems. 

Infinitesimal deformation involving material non-linearity was examined. The method 

predicted the deformation state as competently as the finite element method. 

Belytschko et al. (2002) proposed a new technique for modeling discontinuities. 

Jump function was used to model material discontinuity and Westergard's solution 

(Gdoutos, 2005) was used for near crack tip enrichment. Being extrinsic in nature, these 

enrichments were only limited to nodes surrounding cracks. Use of vector level set 

method in crack modeling requires only nodal data for crack description. 

Duflot and Dang (2002) suggested a new body integration technique for the 

evaluation of stiffness matrix and body load vector. The new integration technique does 
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not require the partition of integration domain into small cells. Numerical results 

demonstrated that the method is especially useful when nodes are irregularly scattered. 

Xuan et al. (2002) proposed an EFGM for non destructive testing (NDT) 

applications. This method eliminated the requirement of remeshing with probe motion. 

The method was validated and applied for two-dimensional magneto-static and eddy 

current NDT problems. Results clearly demonstrated the feasibility of using EFGM for 

modeling non destructive evaluation problems. 

Lee et al. (2003) proposed an adaptive analysis for crack propagation based on error 

estimation. Nodes were added or removed from the background integration cell 

according to error estimator. The proposed adaptive scheme showed the good validity 

and efficiency for several numerical problems. 

Lee et al. (2003) proposed an improved crack analysis technique with auxiliary 

support. A singular basis function, which varies only on the auxiliary support, was added 

to enrich the standard EFGM approximation. A discontinuous shape function was used in 

the vicinity of a crack. Higher accuracy was obtained as compared to standard EFGM 

solution. 

Rao and Rahman (2003) proposed a technique for calculating the stress intensity 

factors for a stationary crack in two-dimensional functionally graded materials of 

arbitrary geometry. Material properties were considered to be smooth functions of spatial 

coordinates. Two new interaction integrals were developed for mixed mode fracture 

analysis. A good agreement was obtained between EFGM solution and reference 

solutions. 

Muravin (2003) in his PhD thesis proposed a multiple crack weight method for the 

solution of strongly interacting cracks. The interaction effect was found to be dependent 

on the position of cracks, their orientation, and distance from each other. A satisfactory 
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accuracy was achieved when numerical solutions were compared with the analytical 

results. 

Hagihara (2003) modified an EFGM with Delaunay triangulation for searching the 

nodes and divisions of integral domain. The incremental formulation of EFGM was used 

to deal with several time dependent non-linear problems. CPU time was greatly reduced 

by this approach. 

Duflot and Dang (2004) developed a new enriched weight function for the 

simulation of fatigue crack growth in two dimensional bodies. A constant amplitude 

cyclic loading was used along with Paris law. Numerical results showed good agreement 

with results obtained using boundary element method even with lesser degree of 

freedom. 

Rao and Rahman (2004) proposed an enriched meshless method for the fracture 

analysis of cracks in homogeneous, isotropic, non-linear, two dimensional solid 

subjected to mode-I loading. Two new basis functions were introduced to capture the 

crack tip singularity. Both the crack tip field and crack mouth opening displacements 

were found in excellent agreement with the experimental and finite element method 

results. 

Rabczuk and Belytschko (2004) suggested a new approach for modeling the discrete 

cracks in meshfree method. The crack was modeled using local enrichment of trial and 

test function. No representation of crack topology was needed in this approach. The 

results were found to be in good agreement with the experimental data. 

Chen et al. (2004) implemented EFGM for the classical rate-independent plasticity 

problems. Both plane stress and plane strain conditions were chosen for the analysis of 

crack growth in elastic-plastic solids. 

15 



Chapter 14 Introduction and Literature Review 

Lee and Yoon (2004) proposed an enhanced EFGM to improve the solution accuracy 

for linear elastic fracture problems. The enhancement functions were added to the 

conventional EFGM approximation for the implicit description of near-tip fields. The 

discontinuity of crack surface was efficiently modeled by introducing a discontinuous 

function. Crack growth was modeled with initial node arrangement only. The robustness 

of the enhanced EFGM was established by examining the stress intensity factor for 

various crack problems. 

Kargarnovin (2004) extended EFGM for elasto-plastic stress analysis. A system of 

elasto-plastic EFGM relations were derived using incremental relations of plastic 

deformation. A non-linear solution technique was selected to examine the stress field 

near the crack tip. Power law work hardening was employed in the formulation. Results 

were obtained for two different plates, with crack and without crack. 

Brighenti (2005) implemented EFGM for the solution of three-dimensional elastic 

fracture mechanics problems. The geometrical description of the body was performed by 

employing triangles in space to describe edges and by generating grid of internal points. 

Visibility criterion (Belytschko et al.,1994) was used along with Gauss type weight 

function. The values of SIF's were found in good agreement with the reference solution. 

Chen (2005) extended the EFGM to determine the stress intensity factor for an 

interface crack in a graded orthotropic coating and a homogeneous substrate structure. 

Analytical results were obtained using integral transform and singular integral equation 

technique. To evaluate thermal SIF, an interaction integral was developed. A good 

agreement between analytical and numerical results was obtained. 

Duflot (2006) proposed a meshless method with enriched weight function for three-

dimensional crack propagation. Cracks were modeled by a set of triangles. New triangles 
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were added as the crack propagated. Crack singularity along crack front was obtained by 

enrichment of shape functions by means of appropriate weight function. 

Muravin and Turkel (2006a) devised a multiple crack weight method for the solution 

of strongly interacting cracks by meshless method. Weight functions were constructed so 

as to simultaneously characterize the presence of all the cracks in the domain of influence 

of a single crack. Sufficiently accurate solutions were obtained with less number of 

nodes. The computational cost of the method was reduced by 14% in comparison to 

conventional EFGM. 

Muravin and Turkel (2006b) also developed spiral weight for modeling crack in 

EFGM. These weights preserved all the discontinuities along the entire crack length even 

with a linear basis. The need of additional array of nodes at the crack tip was eliminated. 

The results were found more accurate than the diffraction technique. 

Li and Simonsen (2007) used EFGM to simulate ductile crack growth and 

propagation under finite deformation and large scale yielding conditions. A parametric 

visibility condition was developed to automatically adapt fracture configuration for 

arbitrary crack growth in ductile material. The proposed method was found to be 

versatile in simulating arbitrary crack propagation. 

Rabczuk and Belytschko (2007) suggested a new approach for modeling discrete 

cracks. The crack growth was represented discretely by activation of crack surfaces at 

individual particles. The method was formulated for large deformations and arbitrary non 

linear and rate dependent materials. Cohesive crack laws were used to govern the 

traction-crack opening relations. Rabczuk et al. (2007) proposed a three-dimensional 

meshfree method for arbitrary crack initiation and propagation in non-linear material 

models. Extrinsic enrichment criterion was used to model a crack. Numerical results 

precisely replicated the available experimental data. 
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Zhang et al. (2008) established an improved EFGM for the analysis of two-

dimensional fracture problems. An improved moving least square approximation was 

proposed which has a greater computational efficiency and did not lead to ill-conditioned 

system of equations. Crack tip singularity was captured in a better way with the use of 

enriched basis. 

Gu and Zhang (2008) developed a new simulation technique to couple the meshfree 

method with finite element method for the analysis of crack tip fields. Meshfree method 

was applied to a sub-domain around the crack tip while the rest of the domain was treated 

with finite element method. Lagrange multiplier method was used to ensure the 

compatibility of displacements and their gradients in the transition region. The method 

showed a promising potential in solving complicated crack problems. 

Zhang et al. (2008) developed an adaptive element free Gelarkin-finite element 

(EFGM-FE) coupling model for a thermal elasto-plastic coupling problem. Influence of 

steady state frictional heating between two contacting bodies was studied. The method 

was verified through the contact analysis of a cylinder with an elasto-plastic plane. 

Adaptive refinement reduced the computational time, and achieved a satisfactory level of 

accuracy when compared with uniform refinement. 

Nguyen et al. (2008) reviewed the EFGM from the viewpoint of computer 

implementation. Well structured algorithms were proposed for several one and two-

dimensional problems of elastostatics. Techniques for incorporating weak and strong 

discontinuities were also discussed along with the different ways of enforcing essential 

boundary conditions. 

On the basis of the literature review, it is observed that a lot of research work has 

been carried out over past fifteen years in the area of fracture mechanics using EFGM 
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under mechanical loading conditions. Both quasi-static and propagating cracks have been 

analyzed under static and dynamic loading conditions. A number of EFGM formulations 

have been developed for the analysis of brittle and ductile fracture under large scale 

yielding. Various techniques have been developed to incorporate the effect of weak and 

strong discontinuities. Although, the results obtained by EFGM are found to be more 

accurate than conventional FEM (Lu, 1994; Beytschko et al., 1996a; Bouillard and 

Suleau, 1998; Dolbow and Belytschko, 1998; Singh et al, 2005; 2006). The only draw 

back of this method is its high computational cost in comparison to FEM (Belytschko et 

al., 1996b, c; Dolbow and Belytschko, 1998; Singh et al, 2003, Singh, 2004). A good 

agreement between EFGM and analytical results has been achieved for different fracture 

modes. However, the failure of engineering components is not only due to the 

mechanical loads but also due to the thermal stresses/thermal fatigue. Some of the 

practical applications where thermal loads play a significant role are as follows: 

❖ Turbine nozzles, blades and other components are exposed to cyclic thermal load. 

❖ Aerospace components are exposed to extreme thermal shocks due to varying 

operating conditions. 

❖ Satellite components are subjected to thermal cycles when they are exposed to 

sun for some duration of time and go under the shadow for the remaining period 

of time. 

❖ Internal combustion engine, components are subjected to mechanical as well as 

thermal loads. 

❖ In military applications, the components are exposed to varying thermal loads e.g. 

the gun chamber is subjected to very high temperature and high pressure during 

the shell firing and cools down to nominal temperature after that. 

❖ Creep failure in industrial boilers is due to high pressure and temperature. 
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❖ Alternate heating and cooling of the die during die casting process causes thermal 

fatigue. 

❖ Cyclic heating and cooling of electronic circuit causes thermal fatigue in solder 

joints. 

Besides these, there are many other structures/components which fail either due to 

pre-existing cracks or thermal/mechanical loading may initiate a crack, causing 

catastrophic failure. In this regard, some efforts have already been made to analyze the 

cracked structures under thermal loading. In 1976, Chell and Ewing suggested that the 

thermally induced stresses can behave like primary or mechanical stresses (redistributed 

but not relieved by introduction of a crack) in linear elastic regime. For identical 

geometry, the stress intensity factor due to secondary loading is less as compared to 

primary loading. In elastic-plastic regime, it is not safe to ignore thermal stresses. Rao 

(1976) presented a solution for stresses around the tip of an insulated arbitrary crack in a 

thin plate subjected to uniform heat flow. The stress at the crack tip exhibit inverse 

square root singularity. Stern (1977) developed a contour integral method for calculating 

the stress intensity factor for a crack at the interface of two dissimilar materials subjected 

to thermal stresses. Lam et al. (1992) suggested that the presence of crack in a steady 

heat flow gives rise to local intensification of temperature gradient, resulting in large 

thermal stresses at the crack tip. Prasad et al. (1996) suggested that cracked bodies under 

thermal loading exhibit a thermal singularity which may be measured in the same way as 

the stress singularity. A quarter-point crack tip element was developed in FEM to 

accurately measure these thermal singularities. Zohar (1996) computed the generalized 

thermal stress intensity factor for a two-dimensional thermo-elastic problem. Singular 

behavior of flux was obtained near the crack tip. Thermal loads thus obtained were used 

to obtain displacement. Ang and Clements (1999) considered a problem of calculating 
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the thermo-elastic stress around an arbitrarily located planar crack in an infinite 

anisotropic medium. Hyper-singular integral equations were derived, and solved 

numerically to compute the crack tip stress intensity factor. Bruno (2004) presented a 

numerical method for the evaluation of stress intensity factors in two dimensional 

homogeneous materials under thermal and mechanical loads. The results were found to 

be in good agreement with those available in the literature. Simkins and Li (2005) 

simulated thermo-mechanical ductile fracture using meshfree Gelarkin method. Johnson-

Cook damage model was implemented in the numerical formulation for large scale 

yielding. Visibility criterion was used to modify particle connectivity based on evolving 

crack morphology. The proposed model predicted the effect of thermo-mechanical 

loading on ductile fracture in an efficient manner. 

Dai et al. (2005) presented a meshfree model for the thermo mechanical analysis of 

functionally graded material plates. Shape functions were derived using moving least 

square method with Cil  consistency. First order shear deformation theory was used to 

establish the weak form, and a variational principle approach was used for thermo- 

electro-mechanical coupling. The effect of volume fraction, loading type and control 

gains were discussed in detail. 

Dag (2006) proposed a new equivalent domain integral technique for thermal fracture 

analysis of orthotropic functionally graded material subjected to thermal stresses. All the 

thermo-mechanical properties were assumed to have continuous spatial variations 

through the functionally graded medium. The in-plane component of the coefficient of 

thermal expansion has the most significant effect on the mode-1 stress intensity factor. 
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1.3 SCOPE OF PRESENT WORK 

From the literature review, it is clearly seen that both analytical and numerical methods 

have been explored to a great extent, but not much work has been reported under thermo-

mechanical fracture using EFGM. Therefore, this gives us an opportunity to explore the 

wide field of thermo-mechanical fracture. Therefore, in the present work, EFGM has 

been exploited to simulate two-dimensional fracture problems under thermal/mechanical 

loads. The broad objectives of present thesis work are as follows: 

❖ To study and compare the different crack modeling techniques. 

❖ To simulate the weak/strong discontinuity under thermal/mechanical loads. 

❖ To study the effect of multiple cracks interaction under thermal/mechanical loads. 

❖ To simulate two-dimensional thermo-elastic fracture problems. 

❖ To study the fracture in FGMs under thermal/mechanical loads. 

❖ To perform elastic-plastic analysis of fracture mechanics problems. 

❖ To simulate the quasi-static crack growth under thermal/mechanical loads. 

❖ To develop the meshfree codes for the above work. 

1.4 THESIS ORGANIZATION 

A chapter wise breakup of the present thesis work is as follows: 

Chapter 1: Introduction and Literature Review 

This chapter presents a brief introduction to the various meshfree methods and their 

characteristic features which secludes them from conventional mesh-based numerical 

methods. Exhaustive literature review of EFGM applied in the area of fracture mechanics 

is also presented in this chapter. The gaps in the application of EFGM were indentified, 

and then the objectives of thesis are presented. 
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Chapter 2: EFGM and Crack Modeling Techniques 

This chapter elucidates the EFGM starting from the variational form of governing 

equation in elastostatics. Techniques to enforce essential boundary conditions and 

numerical integration are also explained. Different crack modeling techniques in EFGM 

are implemented and compared against each other. A comparison of various crack 

modeling techniques has been presented, and it was found that the intrinsic enrichment 

technique performs well for the fracture mechanics problems, and thereby further 

endorsed in the present thesis work. 

Chapter 3: Modeling of Weak and Strong Discontinuities 

In this chapter, EFGM has been extended to simulate the problems involving weak and 

strong discontinuities. Different techniques of modeling the derivative discontinuity viz. 

domain decomposition method, Lagrange multiplier approach, and jump function 

criterion have been implemented and compared against each other. The jump function 

criterion proved to be the best among these techniques. Therefore, the jump function is 

exploited to model cracks in bi-material (combination of weak and strong discontinuity) 

under thermal/mechanical loads. A new criterion for modeling bi-material interfacial 

crack has been suggested, which involves only four enrichment functions in the basis 

instead of twelve enrichment functions. 

Chapter 4: Simulation of Multiple Interacting Cracks 

The numerical simulation of multiple interacting cracks under both mechanical and 

thermal loading is carried out in this chapter. A new criterion based on intrinsic 

enrichment is proposed to simulate the interaction effect of multiple cracks in both 

convex and non-convex domains. The proposed criterion was found to be quite effective 

in reducing the computational cost of EFGM. 
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Chapter 5: Cracks under Thermoelastic Loading 

In this chapter, the EFGM has been extended to simulate two-dimensional thermo-elastic 

fracture problem in isotropic material. The problem is decoupled in such a way that the 

temperature distribution is obtained first. Temperature field thus obtained is employed 

then as input for determining the displacement and stress fields. Both temperature and 

mechanical fields are enriched intrinsically in order to represent the discontinuous 

temperature, heat flux, displacement and traction across the crack surface. The crack 

surface is modeled with isothermal or adiabatic boundary conditions. 

Chapter 6: Cracks in Functionally Graded Materials 

This chapter covers a brief introduction to fracture in functionally graded materials 

(FGMs) along with the modifications in the interaction integral to capture the mixed-

mode stress intensity factor. The EFGM has been applied to simulate the problems of 

fracture in FGMs under both mechanical and thermal loads. 

Chapter 7: Simulation of Elasto-Plastic Fracture 

An application of EFGM to the problems of non-linear fracture mechanics has been 

presented in this chapter. Ramberg-Osgood hardening rule has been used for modeling 

the non-linearity in the constitutive relations. Temperature dependent material properties 

were considered as another source of non-linearity. Enriched basis functions were used in 

order to capture the HRR (Hutchinson-Rice-Rosengren) singularity. The values of J-

integral obtained by EFGM were found in good agreement with the FEM solution..  

Chapter 8: Crack Growth Modeling 

This chapter focuses on the modeling of kinked cracks using intrinsic enriched EFGM. A 

new criterion for modeling kinked crack has been proposed and implemented. This 

technique is later exploited for the modeling of a crack growth. 
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Chapter 9: Conclusions and Future Scope 

In this chapter, the key findings of the present work are summarized along with a future 

scope of the work. 

1.5 MAJOR FINDINGS AND CONCLUSIONS 

In the present work, EFGM has been successfully extended to simulate the various 

fracture mechanics problems subjected to thermal/mechanical loads. The major findings 

of the present thesis work are as follows: 

Initially, a comparison of various crack modeling techniques has been presented, and 

it was found that intrinsic enrichment criterion gives quite accurate results for cracks 

simulations. Owing to its simplicity and accuracy, the intrinsic enrichment criterion was 

further exploited to accomplish the remaining research work. 

The weak discontinuities in EFGM were modeled using different criteria. The jump 

function approach was found most suitable for the modeling of material discontinuity. A 

new criterion for modeling bi-material interfacial crack using Jump function has been 

proposed. The proposed method involves only four enrichment functions in the basis 

function instead of the usual twelve. 

A new intrinsic enrichment based criterion has been proposed, and implemented to 

simulate the interaction effect of multiple cracks in both convex and non-convex 

domains. The results were found in good agreement with the FEM solutions. Moreover, 

it was found that the proposed criterion also reduces the computational cost of the 

EFGM. 

The EFGM has also been extended to simulate two-dimensional thermo-elastic 

fracture problems in isotropic material. Both temperature and mechanical fields were 

enriched intrinsically in order to represent the discontinuous temperature, heat flux, 
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displacement and traction across the crack surface. Some example problems of fracture 

in functionally graded materials under thermal/mechanical loads were tackled by EFGM. 

The results were found quite close to the available analytical solutions. 

Next, the simulation of a non-linear fracture mechanics problem has been carried out 

using EFGM. The enriched basis functions were used in order to capture the HRR 

(Hutchinson-Rice-Rosengren) singularity. The values of J-integral were found to be in 

good agreement with the FEM solution. 

Finally, a new EFGM criterion has been developed for the modeling the kinked 

cracks. This criterion was used for the simulation of quasi-static crack growth. The crack 

path obtained using the proposed technique was found to be almost same as that obtained 

by other techniques. 
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Chapter 2 

EFGM AND CRACK MODELING TECHNIQUES 

2.1 INTRODUCTION 

The element free Galerkin method (EFM) is a recently developed meshfree method 

(Belytschko et al., 1994) which has been extensively used for simulating various 

problems of solid mechanics. The EFGM is considered a meshfree method as it only 

requires a set of nodes and description of boundaries to construct an approximate 

solution. The connectivity among data points and shape functions are constructed without 

any requirement of elements. A Galerkin scheme is used for approximating the solution 

to partial differential equation with an approximant written in terms of nodes. This 

method has been extensively used for simulating cracks growth problems as it does not 

require remeshing for crack growth simulation. In this method, both trial and test 

functions are constructed from the same space using moving least square (MLS) 

approximants. The MLS approximation consists of three elements: a compact support 

weight function associated with each node, a polynomial basis and a set of coefficient 

that depends on node position. The nodal connectivity is ensured by overlapping nodal 

domain of influence. 

The advantage of MLS approximation is that a highly continuous approximation can 

be easily generated by the appropriate choice of weight function. Thus, the post 

processing required to generate smooth stress fields becomes unnecessary in EFGM. 

Although, EFGM is considered to be a meshfree method with respect to construction of 

shape function, a background mesh/cell is still required for the evaluation of integrals in 

Galerkin weak form. 
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2.2 OVERVIEW OF EFGM 

In this section, some basic concepts are discussed along with a general procedure for the 

construction of EFGM approximations. 

2.2.1 Moving Least Square (MLS) Approximation 

The moving least square approximation scheme was introduced by Lancaster and 

Salkauskas (1981) for the interpolation/approximation of data points. Later, it was used 

for the construction of meshfree shape functions. Initially, MLS approximation scheme 

was used by Nayroles et al (1992) to construct the shape functions for diffuse element 

method, which was later used in EFGM for generating the shape functions (Belytschko et 

al., 1994). 

In EFGM, a field variable u is approximated by MLS approximation, u h(x) which is 

given as 

u" (X) = 	pi (x)ai (x)= p T  (x) a(x) 
	

(2.1) 

where, p(x) is a vector of complete basis functions (usually a polynomial), which is 

given as 

p T ) [1, x, y , z, xy, yz, zx,... xk  , y ir' 	k' Z ] (2.2) 

and a(x) is a vector of unknown coefficients 

a T  (X) = [al (x), a2 (x), a3 (x), 	a„, (x)] 	 (2.3) 

where, xT  = [x y z], k' is degree of the polynomial and m is the number of terms 

in the basis. 

In 2D, the complete polynomial basis functions and corresponding coefficient vectors 

are given as: 

Linear basis 

p T  (X) = [1 x, 	 ( m = 3, linear) 	 (2.4) 
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a T  (X) = [al (x), a2  (x), a3  (x)] 

Quadratic basis 

pT (x)=[1,x,y,xy,x2 ,y 2 ], 	 (m = 6, quadratic) 	(2.5) 

aT  (x) [ a (x) , a2  (x) , a3  (x) , as  (x) , a5  (x) , a6  (x)] 

The unknown coefficients a(x) are obtained by minimizing a weighted least square sum 

of the difference between local approximation, u" (x) and field function nodal 

parameter u1 . The weighted least square sum denoted by L(x) can be written in 

following quadratic form: 

L(x) = Ew(x—x,)[pT(x)a(x) — u, i 2 
	 (2.6) 

1=1 

where, u 1  is the nodal parameter associated with node I at x = x, . However, ul  are not 

the nodal values of U h  (x = x/  ) because u" (x) is an approximant and not an interpolant. 

The difference between u1  and uh  (x = x, ) is shown in Fig. 2.1. w(x — x/ ) is the weight 

function having compact support associated with node I , and n is the number of nodes 

with domain of influence containing the point x , i.e. w(x — x,) # 0 . 

U h  (X) 

• 

uh  (x = x1 ) # u 

• • • • 
x 

• 
U 

• XI  

h U kX = X 1 

Fig. 2.1: Difference between u/  and u" (x) 
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By setting as = 0, a following set Of linear equation is obtained 

A(x)a(x) =B(x)u 	 (2.7) 

or 

a(x) = A-1(x)B(x)u 	 (2.8) 

where, A(x) and 8(x) are given as: 

A(x)= iw(x – xi)POOPT (xr) 	 (2.9) 

B(x) = fw(x – x,)p(xl  ), w(x – x2 )p(x2 ), 	 ,w(x – xn )p(xn )} 	(2.10) 

By substituting Eq. (2.8) in Eq. (2.1), the MLS approximation is obtained as: 

uh  (x) = (13, (x)u, = (DT  (x)u 	 (2.11) 
7=1 

where, 

T  (X) = {CP 	2 (x), P3  (x), 	 (x)) 

U T = [lel , u2 , u3 , 	un ] 

The mesh free shape function 01(x) is defined as: 

(x) = P (x)(A-1  (x)B(x)) = PTA-1  B  I 
= 

(2.12) 

(2.13) 

(2.14) 

The linear consistency requirements for the shape function T., (x) (Belytschko et al., 

1996b) are given as: 

Zoi(x)=1, 
1=1 

E 0,(x)x, =x 
I=1 

n 

Eq./ (x) = Y 
I = I 

The derivatives of MLS shape function are computed as: 

, x  (x) = (pr 	,) = pT 	B, +pT (A-1 ),.Bi  +pTA-1B,, 	 (2.15) 

where, B/,x (x) = 
dx 
—dw (x – x,)p(x ) 
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and A-1,a is computed by 

= 	 (2.16) 

where, 

A, = n dw
i(x — xi)POOP (xi) 

2.2.2 Domain of Influence 

The domain of influence (influence domain) is defined as a domain in which a node 

exerts its influence. It is related to a node, in contrast to the support domain, which is 

linked with an evaluation point. The influence domain is predefined for each node in the 

problem domain, and it can vary from one node to another. The concept of influence 

domain is a way to select nodes for the interpolation and it works well with highly non-

regular nodal distribution. Different types of influence domain (Fig. 2.2) are used in 

practice but among them, circular and rectangular influence domains are most widely 

used. 

(a) Circular influence domain 	 (b) Rectangular influence domain 

Fig. 2.2: A schematic model for meshfree method showing the domain boundary, nodes and 
domain of influence (Nguyen el al., 2008) 
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2.2.3 Weight Functions 

The choice of weight function w(x — x1 ) affects the resulting approximation u h  (x1 ) in 

EFGM. Therefore, the selection of appropriate weight function becomes quite essential. 

The weight function is non-zero only over a small neighborhood of a node x/  , called the 

support or domain of influence of node / . The smoothness and continuity of the shape 

function 0, (x) depends on the smoothness and continuity of the weight function 

w(x — x, ) . If a weight function is C1  continuous then the shape function will also have 

C1  continuity (Fig. 2.3). 
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Fig. 2.3: A plot of weight function and corresponding shape function 

A typical weight function must satisfy the following conditions (Singh, 2004): 

❖ It must be positive, continuous and differentiable in the domain of influence. 

❖ It should decrease in magnitude as the distance from x to x, increases, so that 

local character of MLS approximation is maintained. 

❖ It should be zero outside the domain of influence. 

❖ It should have a relatively large value for a node, which is closer to the 

evaluation point. 
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+ The nodes in the domain of influence should not be collinear (except 1-D) and 

the number of nodes must be larger than the number of terms in the basis function 

(n > m) . 

The different weight functions used in literature can be written as a function of 

normalized radius 7 as follow: 

Quartic spline weight function (Belytschko et al., 1996b) 

0<7 <1 
7 > 1 

Cubic spline weight function (Belytschko et al., 1996b) 

—47 2  +47 3 	 r < 
2 

_ 
—47+472-473     

1 —<r 
3 	2 

(2.17) 

(2.18) w(x — x,) = w(F) = 

7 >1 

Gaussian weight function (Belytschko et al., 1996b) 

Exponential weight function (Belytschko et al., 1996b) 

w(x - xl  ) = 	= 
0<1.<1 

7 > 1 
(2.20) 

where, 7 = II x  -  , II x - x1 11 is the distance from a sampling point x to a node x/  

x - x/  and dm , is the influence domain of node / , F = 	, d,,1  = 	c, , 1 ma„= scaling 
d mi 

parameter which defines size of the domain of influence and c, at node I is the distances 

1-672  +873  —374  
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to the nearest neighbors. d„,, is chosen such that the matrix is non-singular at every point 

in the domain. The cubic-spline weight function has been most commonly used in the 

present research work. 

2.2.4 EFGM Shape Functions 

To compute the meshfree shape functions 0, , it is necessary to calculate A-1 . In one 

dimensional problem, the operation of inverting A matrix is not very difficult and time 

consuming but in two-dimensional and three-dimensional problems, this inversion 

becomes quite expensive. To overcome this situation, Dolbow and Belytschko (1998) 

proposed a computationally inexpensive alternative approach. This approach involves the 

LU decomposition of the A matrix. A brief description of this approach is given below. 

At any point x , the shape function is given as 

05, (x) = PT  (x) A -] (x)13, (x) = y (x)B, (x) 	 (2.21) 

where, 

y (X) = pT (x)A-1 (x).  

This leads to the relationship 

A(x) y(x) =p(x) 	 (2.22) 

(x) = P T  (x) A-1(x)B, (x) = YT (x)  BI (x) 

The vector y(x) is to be calculated using LU decomposition of the matrix A followed 

by back substitution. 

The partial derivatives of y(x) can be recursively calculated as 

A(x)y,x  (x) = p,x (x) — A (x) y(x) 	 (2.23) 

A(x)y,y (x)= p y  (x) — A,y  (x)7(x) 	 (2.24) 

The derivatives of shape function are given as 
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(13/x(x)= YT  (x)B, (x) + r (X)I 	(X) 
	 (2.25) 

01,),(x)= YT ,y  (x)B I (x)+Y T (X)B y  ( X) 	 (2.26) 

2.2.5 Enforcement of Essential Boundary Conditions 

The proper imposition of essential boundary condition is quite difficult in EFGM since 

MLS approximation does not satisfy the Kronecker delta function property i.e. 

(I) /  (x j ) # gu . Many numerical techniques have been proposed to enforce the essential 

boundary conditions in EFGM. Lagrange multiplier method was first proposed by 

Belytschko et al., (1994). This technique is quite accurate but its imposition creates 

problems such as the system matrix does not remain positive definite and banded. Lu et 

al. (1994) proposed a modified variational principle approach, in which Lagrange 

multipliers were replaced by their physical meaning. As a result, banded sets of equations 

were obtained but the results were not found as accurate as obtained by Lagrange 

multiplier approach. Another approach named as coupling with finite element method 

was proposed by Krongauz and Belytschko (1996) for the imposition of essential 

boundary conditions. In this approach, EFGM domain was necklaced by FEM domain 

and then essential boundary conditions were applied. This method simplified the 

enforcement of boundary conditions but the numerical integration became more tedious. 

Gavete et al. (2000) used the penalty approach, which is quite easy for enforcing the 

essential boundary conditions, and it gives discrete equations in simple form similar to 

FEM. Although, system matrix obtained by this method is positive and posses the 

bandedness property but improper selection of penalty parameter can lead to wrong 

results. Rao and Rehman (2000) presented an efficient full transformation technique to 

enforce the essential boundary conditions, but this technique was found difficult from the 

implementation point of view. In the present work, Lagrange multiplier technique has 

been used due to its accuracy. 
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2.3 ELASTOSTATICS 

2.3.1 Governing Equations 

Consider small displacement elastostatics, which is governed by the equation of 

equilibrium (Ottosen and Petersson, 1992) 

V • a +b=0 in S2 	 (2.27) 

along with the following boundary conditions 

(Natural boundary condition) 	cr.ii = t 	on 	Ft 

(Essential boundary condition) 	U= Tit 	on 

where, a is the stress tensor, which corresponds to the displacement field u, b is a 

body force vector, V is the divergence operator, superposed bar denotes prescribed 

boundary values, and ri is the unit normal to the domain C2 . 

The variational (or weak) form of the equilibrium Eq. (2.27) can be written 

	

8E:0 dS2— fa cY u.b d,Q — fr  gu.idr—gWu (u,k)=0 	 (2.28) 

where, 8 E = V, (o u), V s  is the symmetric gradient operator, gWu  is used to enforce the 

essential boundary conditions. Several forms of Wu  are possible, in the present work, 

Lagrange multiplier method has been used as 

Wu  (u,1,)= f k (u — r„  (2.29)  

(u, 	= fru 81, 	— tii)dr + fr  u di (2.30) 

2.3.2 Discrete Equations 

Considering linear elastic relations 

(2.31) 

a = D c (2.32) 
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where, c is the strain and D is a constitutive matrix. 

For the case of plane stress in an isotropic material with coefficient of thermal expansion 

13 subjected to a temperature change AT , the thermal strain matrix is given by 

flAT} 

er = {flAT 
0 

Lagrange multiplier 2 used in Eq. (2.29) is expressed as 

A,(x) = NI (s)k1 , 	x E u 

8~ (x)=N1 (s)82.1 X E U 

(2.33a) 

(2.33b) 

where, N1 (s) is a Lagrange interpolant and s is the arc length along the boundary; the 

repeated indices indicate summations. 

In the variational form of equilibrium Eq. (2.28), u (x) is replaced by EFGM 

approximation u" (x) , and the variation 8 u (x) is replaced by 8 u" (x) . 

U h (X) = E 01 (x) u, 
1 =1 

n 

*15 U h (X) = IGO I (X) a 1 4 
1=1 

(2.34) 

(2.35) 

The nodal test function values 8 u1 are arbitrary, except on ru , and can be eliminated 

from the equations. Substituting Eq. (2.33) into the weak form Eq. (2.28) yields: 

[K 	Gl{:} = {f} 
LG 

o q 
 

(2.36) 

where, 

K u = LBTDBAI 	 (2.37) 
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GIK 	.1 OI N K  CIF 	 (2.38) 

fl  = fiOi dS2+f b0). c/S2 	 (2.39) 

= 	NK  fidr 	 (2.40) 

(13 	0 Ix 
B, = 0 	,y 

CD CD 1,y 	1,x 

Nk  = [ N k 	1, D = 	  
0 Nk 	0+0(1-2v) 

	

1 — v V 	0 
v 	1— v 	0 	for plane 
0 	0 	1— 2v 

2 

E D= strain, 
1 
v 
0 

v 
1 
0 

0 
0 

1 — v 1—v 2  
2 

for plane stress, comma denotes partial derivative with 

respect to the indicated spatial variable, E and v are Young's modulus and Poisson's 

ratio respectively. 

2.3.3 Integration Issues 

Computation of stiffness matrix (K ), displacement matrix (G) and force vector (f) in 

Eqs. (2.37-2.40) requires the integration over the domain, which corresponds to area 

integration in two dimensions. Stiffness matrix and force vector computation requires a 

numerical integration scheme such as Gauss quadrature, which in turn, requires a 

subdivision of the domain. Unlike finite elements, meshfree methods have no inherent 

subdivision of the domain. Hence, it is necessary to introduce a subdivision of the 

domain for purpose of integration. Two different types of subdivisions are shown in Fig. 

2.4. The quadrature shown in Fig. 2.4a is the most common. It uses a finite element mesh 

generator to create a cell structure which matches with the problem domain; this 

technique is often called an element quadrature. The vertices of this background mesh are 

often used as the initial array of nodes for the EFGM model; however, additional nodes 

38 



Chapter 24 EFGM and Crack Modeling Techniques 

may be added where desired such as the nodes at the crack tip in the model shown in Fig. 

2.4a. The second integration technique, which is often called cell quadrature, uses 

background cells, which is independent of the problem domain as shown in Fig. 2.4b. 

During integration over the problem domain, a particular quadrature point is checked 

whether it lies inside the domain or not. This technique is not widely used because it does 

not yield accurate results along curved boundaries. A nodal integration technique, 

proposed by Beissel and Belytschko (1996), was an effort to make EFGM a completely 

meshfree method. However, in this technique, additional terms are required for stability 

purpose. Moreover, the accuracy of this scheme is not as good as cell based integration 

schemes. Hence, element quadrature scheme has been adopted in the present work. 

(a) Element quadrature 
	 (b) Cell quadrature 

Fig. 2.4: Integration techniques for EFGM (Belytschko et al., 1996c) 

The smoothness which is inherent in meshfree methods not only provides the smooth 

approximation functions but also provides smooth derivatives. These approximation 

functions possess same continuity as that of the weight functions. This higher order 

smoothness leads to difficulties where a discontinuity is present either in the geometry or 

in the material. These discontinuities include cases where a boundary of the geometry 

can be non-convex e.g. a plate with a hole or a crack. Because of the aforementioned 

smoothness of meshfree methods, special procedure is required to simulate the presence 

of crack. 
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As the present work deals with application of EFGM to fracture mechanics problems, 

thereby a discussion on crack modeling techniques is needed. Moreover, before 

discussing crack modeling techniques, a brief introduction of linear elastic fracture 

mechanics is also presented in the next section. 

2.4 LINEAR ELASTIC FRACTURE MECHANICS 

The concept of linear elastic fracture mechanics is based on the assumption that the 

• plastic zone is significantly small when compared with the dimensions of body. Based on 

this assumption stress field near the crack tip is calculated using theory of elasticity. 

Analytical expressions derived for plane stress or plane strain depends on the associated 

mode of loading/fracture. 

2.4.1 Modes of Fracture 

The displacement field around a crack can be categorized by three different modes as 

shown in Fig. 2.5. The arrow indicates the direction of crack surface displacement. 

Mode-I is called the opening mode, and is characterized by the displacements of the 

crack normal to the crack plane. Mode-II is called the shearing or sliding mode, and is 

characterized by in-plane displacements of the crack faces. Mode-III is called the tearing 

or antiplane mode, and is characterized by out of plane shear. 

(b) Shearing mode 

Fig. 2.5: Schematic representation of the different fracture modes 
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2.4.2 Stress Intensity Factors 

The stress at a point in the vicinity of crack tip exhibits 1/ VT singularity, where r is the 

distance from the crack tip. The stress field near the crack tip is dominated by the first 

term in the asymptotic expansion (Williams, 1957). For mode-I crack (displacement 

perpendicular to the crack faces), the stresses can be written as (Tada et al., 1997) 

0 
2 
0 30) 

o - 	
.V 

xx 	,   cos-
2 
 1— sin— sin— 

2 	
(2.41) 

27rr  

k1 	0 	. 9 . 30) 
„„ 	,   cos— 1+ sin— sin— 	 (2.42) 
— A/27r r 	2 	2 	2 

a 

	

	, 	 sin 0 cos —30 	 (2.43) 
2V27-c 	2 

The associated compatible displacement fields are as follows 

— cos 0) cos 
2 

kl 
 2

r ux  — — — k(K
2,u R-   

(2.44) 

    

r u 	— sin— 0 
(K — cos 0) 	 (2.45) 

2,u 27r 2 

For a mode-II crack (displacement parallel to the crack faces), the stresses can be written 

as 

9  
xx i

k
2    sin-9 (2 + cos-- cos 30  

A/27r r 	2 	2 	2 

Cr    sin 0 cos-30 
YY 	

k2 
 2-arc r 	2 

k  2  	30) 
CY 'At    cos-  1 —sing sin --- 
  V27r r 	2 	2 	2 

the associated compatible displacement fields are as follows 

(2.46) 

(2.47) 

(2.48) 

sin 0 u 	— 	+ + cos 0) 
2,u 27r 2 

(2.49) 

    

u 	 f, k 	r 	0 — cos — — K - cos 0) 	 (2.50) 
2, 

2 
 u 227r 

cos 

The variables r and 0 denote the distance of an evaluation point from the crack tip and 

the angle measured from local coordinate system, respectively (see Fig. 2.6); id is the 
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shear modulus and lc is the Kolosov constant defined in terms of Poisson's ratio v as 

= (3 — 

= 	— v) 
+ v) 

plane stress 

Fig. 2.6: Local coordinate system (x, 57) at crack tip 

The mode-I and mode-II stress intensity factors, lc, and k2 , depend on the crack length, 

specimen geometry and applied loading. It is significant to note that the determination of 

these constants completely determines the asymptotic stress and displacement fields 

around the crack tip. For this reason, a great deal of analytical and numerical effort has 

gone into finding the solutions and techniques for calculating stress intensity factors. 

2.4.3 Integration Integral 

The interaction integral method is an effective tool for evaluating the mixed-mode 

fracture parameters. For a homogenous cracked body, the path independent J-integral is 

given as (Rice, 1968) 

.fr 
au 

— 
axe 

n
j
dI 

 
(2.51) 

Fig. 2.7: Path F surrounding a crack with an enclosed area A 
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where, LT = fo- y de y  is the strain energy density and Fi j  is the jth component of the 

outward unit vector normal to an arbitrary contour F enclosing the crack tip (Fig. 2.7). 

For linear elastic materials, it can be shown that W = ay  s y  /2 . 

The path independence property allows the J-integral to be evaluated using far field 

information which is generally more accurate than near tip solution. In order to enhance 

its usefulness, the contour integral in Eq. (2.51) is converted into an equivalent domain 

form using divergence theorem (Rice, 1968). 

	

J = (cs au' 	j  ) 	+ 	(cr,,.. au' — 	sYdA 	 (2.52) 

 

axe  axe  A ax 	' axt  

where, A is the area inside the contour and q is a weight function chosen such that it 

has a value of unity at the crack tip, zero along the boundary of the domain, and arbitrary 

elsewhere. By expanding the second integrand, Eq. (2.52) reduces to 

a6 ;f  au; 	52u i— J = 1(0- 	
,.  

axe  
i  WS1j ) 	dA+ 	ax 	 + ay ca.)  "1 	ax, 

(2.53) 

Using equilibrium acru  /axe  = 0 and compatibility c.. = 1 — au. au 
+ 	conditions, the 

2 axe  ax;  

second integrand of Eq. (2.53) vanishes, which results in the following equation 

f 
 (

0_ au, 
aX 1 

- tiV(5, 4   dA 
ax, 

(2.54) 

This is the classical domain form of J-integral for homogenous materials. 

For calculating the interaction integral, two equilibrium states of a cracked body are 

considered. State 1 corresponds to be the actual state along with the given boundary 

conditions while state 2 is defined as an auxiliary state. The superposition of these two 
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states leads to another equilibrium state (state 5) for which the domain form of the J- 

integral is 

Jo) = 
JA 
f 	(ao) 	(2) 

\ 	+ Cr  11 
\ akl)  + 14 2 )) 
) 

(3x1 

4 7 (S) a )1947 .4 A  
11 1 j 	(4 

ax j  
(2.55) 

where, superscript 1=1, 2, and S indicates fields and quantities associated with state i . 

Also the strain energy density for the superimposed state is given as 

W (s) = _1  (cr(i) 

2 

y(2 ) )(6,1) + 412) ) 
iJ (2.56) 

By expanding Eq. (2.55), 

j (S) = j(')±j(2 ) m  (',2) 
	

(2.57) 

where, 

(1) all (1) 	
iv (1)8 	U 

n
ti
w  

ax, 	 aX J 

 

dA 	 (2.58) 

and 

J (2) = 
( 	au; 	— (2) ci 	cm (2) 	 W 	j 

7°  aX1 	 °X.1 
(2.59) 

are the J -integral for states 1 and 2 respectively, and 

M(''2) = 
( (I) atli(2) 	(2) aU1) 	w (1,2)8 

+ (2.60) 

is expression for the interaction integral. 

In Eq. (2.57), Eq. (2.58) and Eq. (2.59), ff (') = 1cr(!) 8(1) w(2) =  16(2) 8(2) 

2 	 2 
and 

rk-  (',2) _ 1 
2  (

a ; 
(i) ey  (2) 

+ au (2)  cif  
(i) 

— — 	 represent various strain energy densities, which satisfy 
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W(S) = W(1) 	(2) + W(1.2) (1,2) (2.61) 

For linear elastic solid under mixed-mode loading conditions, the J-integral is also equal 

to the energy release rate and hence, the J -integral can be written as 

1 i 	2 \ J = — C I2  +K fi ) 
E*  

where, E5 = 	E 	 Plane strain _ v 2 

E* = E 	Plane stress 

Applying Eq. (2.62) to states 1, 2, and the superimposed state S gives 

Jo)  =. 
Es   

(K.(1)2 Ko ) 

j (2)  = s (K(2)2  + K (2)2  ) 

E
I  

and 

(2.62) 

(2.63) 

(2.64) 

j(S) rf _..(1) 	/2, N2 
7, VI  Ig )1 + (K;;) 

1 + K;) )2 )+(1<;' )2  

+ Kj? )  

KT2  )+ 2(KI)K2)  4 ) /(T (2.65) 

J(I) j(2) + 2*  (Ky) Kr2) KT)K.(u2)) 

Comparing Eq. (2.57) and Eq. (2.65), 

m(1,2) 	K v(1) v(2) + v (1) v(2) )] 
E

s 	 ',// 11.11 (2.66) 

The individual SIFs for the actual state can be obtained by judiciously choosing the 

auxiliary state (state 2). For example, if state 2 corresponds to Mode-I loading i.e. the 

mode-I near tip displacement and stress field is chosen as the auxiliary state, 

then K;2)  =1 and 143)  = 0. Hence, Eq. (2.66) can be reduced to 

mod) 2K1)  

E s  
(2.67) 
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From above equation, we get 

IC;
1  =  m(1,0E. 

2 
(2.68) 

Similarly, if state 2 is chosen to corresponds to pure Mode-II loading, i.e. the mode-II 

near tip displacement and stress field is chosen as the auxiliary state, then K?)  = 0 , 

KW)  =1 and following the similar considerations, 

Thus, numerical evaluation of interaction integral from Eq. (2.60) allows us to calculate 

the mixed mode stress intensity factors. 

2.5 CRACK MODELING TECHNIQUES 

In EFGM, special techniques have been developed for incorporating the singular 

functions associated with elastostatic fracture rather than employing a high nodal density 

near the crack tip. The latter can be expensive and awkward for problems with complex 

geometry. It was found that the incorporation of the singular fields in a meshfree method 

is substantially simpler and more trouble-free than in finite element methods. An 

enrichment of a meshfree method may be carried out extrinsically or intrinsically. In 

EFGM, the crack modeling techniques are broadly classified in two categories 

(a) Enrichment Techniques 

(b) Smoothening Techniques 

2.5.1 Enrichment Techniques 

As the name suggests, enrichment theoretically means increasing the order of 

completeness. With respect to crack modeling, enrichment techniques involve inclusion 

of additional information regarding crack tip fields in the standard EFGM solution. Few 

important enrichment techniques are described below. 

2.5.1.1 Extrinsic PU Enrichment 
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Extrinsic enrichment of meshfree methods can be carried out using partition of unity 

(PU) technique (Duarte and Oden, 1996; Melenk and Babuska, 1996; Belytschko et al., 

1996c). In this technique, the approximation is augmented by enrichment functions 

added extrinsically to the existing EFGM approximation. The enrichment term is 

smoothly added to the existing approximation by multiplying it with a factor based on a 

partition of unity. The essential element of this technique is the construction of a partition 

of unity, which can be obtained by MLS methodology. A partition of unity (13(x)k' is 

constructed from a complete polynomial basis of order k' , and is a local approximation 

for which 

(x) =1 
	 (2.70) 

1=1 

It can easily be seen that MLS approximation builds partition of unity since Eq. 

(2.70) possesses the reproducing condition for a constant, which must be satisfied 

(Belytschko et al. 1996b) by an approximation. The enriched approximation of an 

unknown function can be written as 

n m, 
tih  (X) = E (x)u, E o, (x)b q (x) 

1=1 	 1=1 1=1 

(2.71) 

where u1  and bl , are nodal coefficients, and n is the number of neighbors of a point x. 

The vector q, (x) is called the extrinsic basis of length me  . For linear elastic fracture 

problems, this basis can contain radial ( \57) dependence or radial (J) as well as 

angular (0) dependence. A superscript k' is added to the shape functions ( 01 ) in the 

approximation to denote the polynomial order of the basis used in forming the partition 

of unity. 

PU technique appears to provide a vehicle for local enrichment. The partition of 

unity, 0/  (x)k' can be formed from a linear basis (k' =2), which yields linear consistency. 
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Enrichment of the approximation may be carried out locally by adding the known form 

of the solution to the extrinsic basis q1  (x) , at nodes in the region where it is required. It 

should be noted that the enrichment is to be added to each node whose domain of 

influence extends into the region to be enriched (Sukumar et al. 2000, Ventura et al. 

2002). 

4 
Uh  (X) = E 0, (x)u1 E (x)H(x) a j  + E OK  (X)E fica  bKa  

IEN 	 JEN` 	 KEW 	a=1 
(2.72) 

where, 01(x) are MLS shape functions, Heaviside function, H(x) and the branch 

functions, tY; are given as 

 0 n 	sin 2 IF" = FP1 	tif1 p1  i= Air sin — Air cos — -yr sin-2 cos 0 cos-
2

cos° K 	 KP K 	 2 	2 

1 
H(x) = { +_ i  if (lc x *).n 0 

otherwise 
(2.73) 

(2.74) 

where, r and 0 are polar coordinates in the local crack tip coordinate system, a j  and bK" 

are the additional unknowns, x* is the point nearest to crack segment. The set Nc 

includes the nodes whose support contains point x and are cut by the crack, see Fig. 2.8, 

whereas the set Nf are nodes whose support contains point x as well as crack tip x„p  , 

see Fig. 2.9. 

Crack line 

Fig. 2.8: Nodes whose support contains point x and cut by the crack (Nguyen et al., 2008) 

Fig. 2.9: Nodes whose support contains point x and the crack tip x„p  (Nguyen et al,. 2008) 
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Using standard Galerkin procedure as described in previous sections, the discrete 

equations are obtained with only one difference in B matrix which now becomes 

B 	[BEFGM I Benr] 	 (2.75) 

where BEFGM is the standard B matrix, which can be written as 

0 
[
0 ],x 

BEFGM = 	0 
01,y 

(2.76) 
I 

and Be" is the enriched B matrix 

(11 )1),x t 	GDI (tif  I) ,x 0 

Be," = 0 jyti I) ,y (2.77) 

( 	I) ,y 4  I + 	I ( 	I) ,y )1),x qj  + I I) ,x 

where, enrichment function can be either the Heaviside function H(x) , or the branch 

functiohs1'J (x) . 

2.5.1.2 Intrinsic Enrichment 

Meshfree approximations can be intrinsically enriched by including a special function in 

the basis (Fleming et al., 1997). For example, in fracture mechanics, one can include the 

asymptotic near-tip displacement field, or an important ingredient such as VT- . The 

choice of functions depends on the coarse mesh accuracy desired. For higher accuracy, 

the full asymptotic field can be included, while for higher computational speed but at 

some cost of accuracy, only the VT- function can be included in the basis. These 

techniques are described in the subsequent sections. 

Full Enrichment 

In case of linear elastic fracture problems for full intrinsic enrichment, all terms of near-

tip asymptotic displacement field are included in the basis. After some trigonometric 
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manipulation, it can be shown that all the functions in Eqs. (2.44-2.45, 2.49-2.50) are 

spanned by the basis as 

0 n.0 ,—.0 	n [ 	 0 P 7'  (X) = , ,,../T- cos — , -Vr sm — ,i—sin ,-0 cos — sin 6) 
2 	2 	2 	 2 

(2.78) 

 

First three terms in above equation are not related to the near-tip fields, and are only used 

for linear completeness of the EFGM approximation. This basis when used in Eq. (2.1) 

leads the approximations of the form 

14 h  (x) = 	pT  ( x)A -1( x) (x) u, 	 (2.79) 
/.1 	01(x) 

where, 0, (x) is the enriched EFGM shape function. 

In contrast to the extrinsic techniques, this technique involves no additional 

unknowns. However, because of the increased size of the basis, additional computational 

effort is required to invert the moment matrix A(x) . Moreover, for multiple cracks, four 

additional terms needs to be added in the basis for each crack. 

2.5.2 Smoothening Techniques 

In EFGM, the choice of weight function affects the resulting approximation. The 

smoothness and continuity of the shape function depends on the smoothness and 

continuity of the weight function. The presence of crack results in the discontinuity in 

displacement fields along the crack surface while the stresses become singular at the 

crack tip. Smoothening techniques refers to the methods involving modifications of 

weight functions so as to simulate the presence of a crack. A brief description of some 

smoothening techniques is given below: 

2.5.2.1 Visibility Criterion 

The first technique for dealing with non-convex boundaries is the visibility criterion 
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(Belytschko et al., 1994). In this approach, the domain of influence is considered as the 

field of vision at a node. All boundaries, internal and external are considered to be 

opaque so that the field of vision is interrupted as soon as such a boundary is 

encountered. Consider node J in Fig. 2.10, where the surface of the crack is within its 

domain of influence and is therefore truncated. This truncation will create a discontinuity 

in the shape function for node J which will lead to the desired discontinuity in the 

solution across the crack (see Fig. 11a, c). 

The difficulty with the visibility criterion arises for nodes near the end of a 

discontinuity, i.e. near a crack tip. Consider node I in Fig. 2.10, the field of vision is cut 

by the crack, leading to a discontinuity along line AC, i.e. the line of the crack. However, 

the field of vision is also truncated along line AB, which extends into the domain. This 

leads to an undesirable discontinuity in the weight function as well as the shape function 

along this line as shown in Fig. 2.11b and Fig. 2.11d. Since, the shape functions are 

created from the weight functions, thereby discontinuities arise in the shape functions 

from other nodes which are having discontinuous weight functions due to the presence of 

crack tip. 

CRACK 

Fig. 2.10: Domain of influence by visibility criterion near a crack (Belytschko et al., 1994) 
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• • • • 

     

(a) Weight function for node J 	 (b) Weight function for node I 

• 
	

• 

(c) Shape function for node J 	 (d) Shape function for node I 

Fig. 2.11: Contour plots of weight function w(x — x/  ) and shape function 0/  (x) by visibility 

criterion for nodes adjacent to a line of discontinuity due to a crack (Belytschko et al., 1994) 

2.5.2.2 Diffraction Criterion 

Continuous and smooth approximations near non-convex boundaries can be 

constructed quite easily by the diffraction technique (Organ et al., 1996; Organ, 1996; 

Belytschko et al., 1996c). In diffraction criteria, the nodal support is wrapped around 

non-convex boundaries similar to the way light diffracts around sharp corners. This 

technique, which is also called the wrap-around technique, is quite general, and can be 

used for cracks or smooth boundaries such as interior holes. 

Consider Fig. 2.12, where a line between the node x/  , and a sampling point x 

intersects a crack and the tip is within the domain of influence of the node. The weight 

function distance d1 , is modified (lengthened) by 
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d, 

(Si  ± S2  Oil'  
 SO (x) 

SO (X) 

(2.80) 

where, sl  = x/ 	s2 (x)= 11x —x1, s0  (x)= Ilx—x1 II 

and x/  is the node, x is the sampling point, and x, is the crack tip. The parameter 2 is 

used to adjust the distance of the support on the opposite side of the crack. It was found 

that A. =1, 2 perform well. Surface plots of the weight and shape functions obtained by 

the diffraction technique are shown in Fig. 2.13. 

Fig. 2.12: Diffraction (wrap-around) technique for constructing smooth weight functions 
around non-convex boundaries (Organ et al., 1996) 

(a) weight function 	 (b) shape function 

Fig. 2.13: Surface plots of (a) weight function and (b) shape function associated with node 

near crack tip constructed by diffraction technique (Organ et al., 1996) 
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The spatial derivatives of the weight function are computed using the chain rule as 

dw = 	aw 
dx, ad, ax, 

Since aw/ OW, is unchanged, that is necessary are expressions for ad, /5x, 

ad, _ ( s +s, 	as, + v I. ;11  s, +s2 	aso  
Dx, \ so 	 8 	 So 	ax; 

(2.81) 

(2.82) 

where, 

	

aSo  X — X /i  aS 2 	 

ax 	S 	
3 
 8X 	s2 

The diffraction technique works well for general non-convex boundaries as well. The 

tangent point between the node and the non-convex boundary is used as the wrap-around 

point xc  . 

2.5.2.3 Transparency Criterion 

Another technique for constructing continuous approximations is the transparency 

technique (Organ et al., 1996; Belytschko et al., 1996c), which will be described here for 

cracks. The underlying concept of this technique is to endow the crack tip with a varying 

measure of transparency such that it is completely transparent at the tip and becomes 

completely opaque at a short distance behind the tip. In this way, the field of vision for a 

node near the crack tip is not abruptly truncated when it reaches the crack tip, but rather 

diminishes smoothly to zero a short distance behind the crack tip. 

When a ray passes between a node x, and a sampling point x , and crosses the crack 

as shown in Fig. 2.14, the distance parameter el, in the weight function is modified 

(lengthened) by the following: 
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Fig. 2.14: Transparency technique for computing smooth weight functions (Organ et al., 1996) 

1  
c l 1 (x) = S° (x) + dm, 

s
c 
 (x)) 	A,  2 

"Cc 

(2.83) 

where, so  (x) = Ilx – x,11, cl,,,, is the radius of support for node /, and sc(x) is the 

intersection distance behind the crack tip. The parameter Y, sets the distance behind the 

crack tip at which complete opacity occurs 

= k h 	 (2.84) 

where, h is the nodal spacing and k is a constant, usually 0< k <1. 

The spatial derivatives of the distance parameter, d, obtained by chain rule, are 

aj, 	= as 0 + /1.7d" 
ax i 	ax, 	s'c-1  

(2.85) 

 aS  X b — X c  as, = sin = Yb  Y c  
where, 	 , 0 is the angle as 	x – x 

— 	, cos u =  
ax, 	so 	ax/ 	sb 	sax, 	 sc  

between the crack and x-axis and xb  is the intersection point behind the crack tip. Surface 

plots of the weight and shape functions near a crack tip constructed by the 

transparency technique are shown in Fig. 2.15. 
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(a) Weight function (b) Shape function 

Fig. 2.15: Surface plots of (a) weight function and (b) shape function associated with node near 
crack tip constructed using the transparency technique (Organ et cd., 1996) 

One drawback of the transparency technique is that it does not work well when nodes 

are placed too close to the crack surface. A trough appears in the shape function ahead of 

the crack tip because although the crack tip is transparent for this node, the change in the 

degree of transparency with respect to the change in angle is very sharp. There is no 

discontinuity in the shape function is observed, only a small dip appears in the shape 

function. To circumvent this problem in the transparency technique, a restriction has 

been placed on the position of the nodes. All nodes should be placed such that the normal 

distance from the node to the crack surface is greater than roughly by 1/ 4h , where h is 

the nodal spacing. 

2.5.2.4 Spiral Weight Criterion 

According to spiral weight criterion (Muravin and Turkel, 2006), the distance d/  

between node x, and sampling point x is modified when the line segment between 

x and x/  crosses the crack. The modification is done as follows 
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= 	+(1— R p )d,,,, 	 (2.86) 

where, di  is initially modified distance between node x/  and sampling point x , d,,,,/  is 

the size of nodal domain of influence and R p  is an angular ramp function. The initially 

modified distance d can be calculated either by diffraction or transparency criterion. 

The area around the crack tip xc  is divided into four quarters Q, for i 	. 

2 	
(2.87) 

 2 

Let xv  be a point that belongs to visibility ray and is located at a distance d,,,/  from the 

crack tip. The visibility angle 0, is the angle between the visibility ray and the crack line 

Fig. 2.16a. The angle Om  is given as: 

={

7r/2 ,O, E Ql } 
— 2r/2 , ev  E Q3  

0„otherwise 

(2.88) 

The ramp area is the part of invisible area between the ray at angle Om  and the crack line 

Fig. 2.16b, c. 

The angular ramp function R p(0) is constructed in such a manner that it satisfies the 

following conditions: 

• The function R p(0) is smooth and monotonically decreasing from 1 to 0. 

• For angle Om , R p(0,,,)=1 

• For the crack surface R p(±- ii- )= 0 

The ramp function which satisfies the above condition is 

R p (e)=- C sin"l  9 	 (2.89) 

where, ic.  = 0...4 , c = 
} 

{1, U e Q12 and  lc), = (0 — 0, Oa  — 0c ) 
	 + 19 

— 1, 	C Q34 	 64i, —Oa 	
c 
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The values of Oa  , Oh ,Oc  and Od  depends on parameter c and are presented below. 

Oa  Oh  Oc  Od  

C=1 Om  g TO Tr 

C= —1 —1t Om  —A. —42 

Fig. 2.16: Definition of spiral weight function parameters (Muravin and Turkel, 2006) 

It should be noted that ramp functions and its derivatives are discontinuous at the crack 

tip. However, this does not pose any problem since no quadrature points are placed at the 

crack tip. For nodes which are located ahead of the crack tip, the visibility angle and 

consequently 6„, are smaller than 90° . For small visibility angle, the ramp function has 

large gradients. The power n in Eq. 2.89 is used as a parameter to adjust the rate of ramp 

function which changes in accordance with the value of angle 19„, . For 61 ,,, = ± 	, the 

value of parameter n =1, while for other values of Om  smaller than 90° , a larger value 

of n should be considered. The value n = 5 has been found to work well with all such 

cases. Figure 2.17 presents the weight and shape functions and their x derivatives 

calculated by the spiral weight method. The nodal distribution is equally spaced with 

additional nodes around the crack line and at the crack tip. A linear basis is used for the 

shape function and its x derivative calculations. 
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Fig. 2.17: (a) Spline weight function, (b) its x -spatial derivative, (c) shape function, (d) its 
x -spatial derivative by the spiral method near the crack tip (Muravin and Turkel, 2006) 

2.6 COMPARISON OF CRACK MODELING TECHNIQUES 

In order to check the accuracy and efficiency of various crack modeling techniques, a 

comparative study of these techniques has been performed in this section. For this 

purpose, a single edge cracked plate is considered as shown in Fig. 2.18. The dimensions 

of the cracked body are taken as H = 200 mm, W = 100 mm. ASTM 36 steel is taken as 

a material with modulus of elasticity, E = 200 GPa, Poisson's ratio ( v ) = 0.3. A far field 

stress, a0  = 100 MPa is applied. The bottom edge has been constrained along y - 

direction, and an external far field stress is applied at the top edge. The problem domain 

has been discretized using 800 nodes in intrinsic enrichment criterion while in diffraction 
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criterion, 66 additional nodes are defined at the crack surface and crack tip. A regular 

nodal distribution has been considered in both simulations having d„.=1.5. Six point 

Gauss quadrature has been used for the numerical integration of the Galerkin weak form. 

A plane stress condition is assumed. The values of mode-I stress intensity factors i.e. K1  

are calculated using domain based interaction integral approach using a square domain of 

having edge length of al 3 . 
Cro 

   

  

,x 

  

Fig. 2.18: Problem geometry along with dimensions and boundary conditions 

2.7 RESULTS AND DISCUSSIONS 

The value of mode-I stress intensity factors i.e. K1  for the above problem, are calculated 

using various crack modeling techniques, and the results obtained using these techniques 

are compared with the analytical solutions. Figure 2.19 shows the variation of normalized 

mode-I stress intensity factor with varying nodal density over the domain. The numerical 

values of stress intensity factors are normalized with standard analytical solutions. The 

simulation is performed for a constant crack length of a= 40 mm . A comparison of 

different crack modeling techniques revealed that the intrinsic basis enrichment is found 

quite promising as it gives results quite close to the analytical solution even with small 

number of nodes. Moreover, the convergence of intrinsic enrichment criterion is also 

found good as compared to other crack modeling techniques which can be clearly seen 
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Fig. 2.19: Variation of normalized stress intensity factor vs. nodal density 
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from Fig. 2.19. A problem is solved for a fixed nodal density of 800 nodes by intrinsic 

enrichment while in diffraction criterion, 66 additional nodes are used at the crack 

surface and crack tip. The variation of normalized mode-I stress intensity factor with 

varying crack length are plotted in Fig. 2.20. Again a comparative study of different 

crack modeling techniques shows that the efficiency of intrinsic enrichment criterion is 

good in solving cracks of varying length. The numerical values of stress intensity factor 

obtained by intrinsic enrichment for different crack lengths are relatively closer to the 

analytical solution as can be clearly observed from Fig. 2.20. 

A comparison of various crack modeling techniques has demonstrated the advantages 

of intrinsic enrichment criterion over other crack modeling techniques. Owing to its 

accuracy and convergence, the intrinsic enrichment criterion has been used in the present 

research work. The various factors which motivated the use of intrinsic enrichment in the 

present research work are summarized as 

Good convergence and accuracy. 

No need of crack tip refinement. 

Easy implementation (basis modification only). 

No additional unknowns are required for solving a problem. 
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Fig. 2.20: Variation of normalized stress intensity factor vs. crack length 

2.8 CONCLUSION 

A brief introduction of EFGM along with its application to fracture mechanics has been 

presented in this chapter. Different crack modeling techniques have been discussed and 

implemented for a standard mode-I edge crack problem. A comparison of these crack 

modeling techniques shows that the intrinsic enrichment criterion is found quite 

appealing owing to its simplicity, accuracy and convergence. Moreover, the intrinsic 

enrichment criterion is easy to implement as it only requires modification in the basis 

function. Lack of additional unknowns and crack tip refinement add to the proficiency of 

intrinsic enrichment criterion. Motivated by the advantages of intrinsic enrichment 

criterion along with its ease in implementation and scope for further modification, we 

decided to exploit this crack modeling criterion for the present research work. 
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Chapter 3 

MODELING OF WEAK AND STRONG DISCONTINUITIES 

3.1 INTRODUCTION 

The element free Galerkin method (EFGM) is quite attractive as compared to standard 

finite element methods as it avoids the need for tedious and time consuming element 

based mesh. The EFGM utilizes the moving least-square interpolants which require only 

nodes unencumbered by elements and elemental connectivity to construct the shape 

functions. Furthermore this method leads to the continuous differentiable approximations 

so that the derivatives involved in field quantities such as strains in the elastic problems 

are smooth, and require no post-processing. This method has been mainly applied to 

solve the problems of cracks growth (Belytschko et al., 1995a; Li and Simonsen, 2007; 

Belytschko et al., 1996b), where nodes continuously move or even get added so as to 

follow the crack tip. It has also been established that the convergence rate for EFGM is 

higher than the finite element method. However, the continuity of meshfree 

approximations becomes a drawback for such problems where the solution inherently 

possesses discontinuities (Cordes and Moran, 1996; Batra et al., 2004; Belytschko and 

Gracie, 2007; MacKinnon and Carey, 1987) in the derivatives. Smooth solution then 

exhibit the well known Gibb's phenomenon (Arflcen and Weber, 1985) at the line (or 

surface) of discontinuity. These situations are quite common in many engineering and 

science problems. For example, the first derivative of displacement becomes 

discontinuous at the bi-material interfaces (Belytschko and Gracie, 2007) in a continuum 

mechanics problem. 
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To model these discontinuities in meshfree methods, few techniques have been 

developed over the years namely Domain Partitioning (Liu, 2003), Lagrange Multiplier 

(Cordes and Moran, 1996) and Jump Function (Krongauz and Belytschko, 1998). The 

first two methods are based on the modifications at the variational level for the treatment 

of material discontinuity, while the last technique enriches the EFGM approximation by 

the addition of special shape function i.e. Jump function that contains the discontinuity in 

the derivative. In the present work, all the three approaches have been explored. These 

have been compared among themselves to select the most efficient technique. Moreover, 

a new criterion has been proposed to model weak as well as strong discontinuities such as 

cracks in bi-materials under thermal/mechanical loads. 

3.2 MODELING OF MATERIAL DISCONTINUITY 

3.2.1 Governing Equations for Bi-Material 

The treatment of material discontinuity in EFGM is demonstrated by considering a two 

dimensional linear elastostatic problem in plane stress. For simplicity, two 

distinguishable materials represented by domains Sr and fI+  is considered. The two 

domains are separated by a single interface, rs  as shown in Fig. 3.1. This interface is 

defined by ns , the unit outward normal of cl-  along the material interface. The 

governing equilibrium equation is given by 

V. a + b = 0 on c 	 (3.1) 

along with associated boundary conditions 

a.ri=i on Fe 	 (3.2) 

u=1.1 on ru 	 (3.3) 

where, a is the Cauchy stress tensor and b is a body force vector, t is the specified 

traction, ti is the specified displacement field and ii is the unit normal. A perfect 
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interface has been assumed, and hence the traction and displacement are assumed to be 

continuous across the interface rs . 

Fig. 3.1: Two-dimensional inhomogeneous body 

3.2.2 Modifications for Material Discontinuity 

Few modifications and additions are introduced in EFGM to solve the bi-material 

problems. These changes give EFGM an ability to solve the problems involving material 

discontinuities. The modifications in the approaches are discussed below: 

3.2.2.1 Domain partitioning approach 

In domain partitioning approach (Liu, 2003), the following weak/variational form of 

V. a + b = 0 is considered in sz along with associated boundary constraint applied using 

Lagrange multipliers A (Cordes and Moran, 1996; Dolbow and Belytschko, 1998; 

Krongauz and Belytschko, 1998) 

LVS ou:ac/51— LgubdS2— fr  8 u i dF — Sr  &I ( u — ii)dr — Sr  guAdr = 0 	(3.4) 

Corresponding to the satisfaction of the equilibrium equation V. a+ b = 0 on Q in both 

C2+ and SY ; the traction and displacement boundary conditions, a.K = t on F, in both 
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and F,-  , u = u on ru  in both F: and F. . The discretization of the above Eq. (3.4) 

after imposing boundary conditions leads to the following set of linear equations: 

[GKT 	01{:}  = f  
(3.5) 

where, 

K = L1371'1)11 3 dS2 , 	 c13,13c/ + fr 	 Gm 	431:0 = 	K  dr , 

0 
1, D= 	 

N K 	1—v2  
q K  = N dr , 131 = 0 	(13 /,y 	NK[  Jr 	 0 

(131,x 

431,y (DI,x_ 

0 
N K  

1 v 0 
v 1 0 

1  0 0 1—v  
2 

S2 = + 	, F„ = F„-  + F: and F, = r, + rt+ 

This method involves considering the inhomogeneous medium as separate homogeneous 

bodies, and then some modifications are applied at the interface. The separation of the 

body into its homogeneous parts is accomplished through the weight function, and 

specifically the neighbors are decided on the basis of the domain of influence. For a 

homogeneous part, the neighbors at a point x are the nodes which contain x in their 

domain of influence (Belytschko et al., 1996c). The neighbors for inhomogeneous bodies 

are determined by defining the interface by a set of nodes which belong to both materials. 

The line drawn by connecting these nodes is considered as the interface T's  between two 

materials (material-1 and material-2). Therefore, the points contained in material-1 can 

only be influenced by the nodes in material-1 plus interface nodes; and points contained 

in material-2 can only be influenced by nodes contained in material-2 plus interface 

nodes. Figs. 3.2 and 3.3 illustrate the selection of the neighbors for homogeneous and 

inhomogeneous materials respectively. The domains of influence are drawn for nodes 

labeled 1 through 5 in each figure to determine the neighbors for the points a, b and c. 
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The domain of influence for each node is a circle centered at the node. For the 

homogeneous case (Fig. 3.2), point a is contained in the domain of influence of both 

nodes 4 and 5; therefore, nodes 4 and 5 are considered the neighbors of the point a. 

Similarly, point b has nodes 3 and 5 as neighbors, and point c has nodes 1 and 2 as 

neighbors. However, when an interface separating two materials is added as in Fig. 3.3, 

the neighbors of the points a, b and c change. 

The domains of influence for node 4 and node 5 are unaffected by the interface. The 

domain of influence for node 4 does not intersect the interface, and node 5 is an interface 

node belonging to both materials. Therefore, point a 'still contains nodes 4 and 5 as 

neighbors. The domains of influence for nodes 1, 2 and 3 are truncated at the interface. 

The neighbors of point b still include nodes 3 and 5 since each pertain to material-1; 

however, point c is not included in the domain of influence of node 2 due to the 

truncation of the domain of influence of node 2 at the interface. Similarly, point c has 

only one neighbor labeled in Fig. 3.3 i.e. node 1. 

Fig. 3.2: Domains of influence and nearest neighbors in homogeneous bodies 

Fig. 3.3: Domains of influence and nearest neighbors for inhomogeneous bodies 
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3.2.2.2 Lagrange multiplier approach 

In this approach, the following interface constraint is applied apart from essential and 

traction boundary conditions (Cordes and Moran, 1996): 

11„(u-i- _u-)c/1" = 0 
	

(3.6) 

Hence, the following weak form of V. cr +b = 0 is used on n using interface condition: 

LV,Su:adQ— L8ubc/c2— fr  5uidF— 82(u—ift)dr— Agudl-- 

Jr, (u+  — u-  ) 87 dr — 7 (8u+ — 8u-  ) dF = 0 
(3.7) 

The Lagrange multipliers 2 , enforce the essential boundary constraint on r„ , while the 

Lagrange multiplier r enforce the displacement discontinuity. 

equations are as follows: 

V. a + b =0 in Q+ and Q-  , 

The associated Euler 

(3.8) 

t —I =0 	on 	F,± and F1-  , 

u-1+1=0 	on 	F1-  and F„-  , 

= 0 	on F: and 

(3.9) 

(3.10) 

(3.11) 

u+ — u-  =0 	on Fs  (3.12) 

y+t+ =0 	on Fs  (3.13) 

y+t-  =0 	on Fs  (3.14) 

corresponding to the satisfaction of the equilibrium equation V.a + b =0 on Q in both 

Q+ and Q-  ; the traction and displacement boundary conditions, cr.K=i on F, and 

u =VI on F,„ on both F+ and F-  , and, the physical interpretation of the Lagrange 

multipliers A, = t , = — t+ = — t-  . Substituting Eq. (3.11) and Eq. (3.13) into Eq. (3.7), the 

following equations are obtained: 
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in V,Su:adS2— in gubd0— Sr 	fr  ot(u—ii)dF-1, t8ud1"— 

1 (u+ 	 (5e - uldr = 0 
(3.15) 

The discretization of the above Eq. (3.15), leads to the following set of linear equations: 

K u = f 

where, the 

= LB; 
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3.2.2.3 Jump function approach 

In this approach, the discontinuities in derivatives are incorporated by using a Jump 

function in the solution (Krongauz and Belytschko, 1998). The enrichment of EFGM 

approximations is done by adding special shape functions i.e. Jump functions that contain 
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discontinuities in derivative (Batra et al., 2004) to the approximate solution. The Jump 

shape functions have compact support which results in banded stiffness matrix. 

Consider a two dimensional model (Fig. 3.1) having a line of derivative discontinuity. 

The approximation with Jump function becomes 

uh ( x ) u EFGM ( x) eirJ (s)T! (r) 	 (3.24) 

where, u'm  is the standard EFGM approximation, which is given as: 

n 
u  EFGM (X) = Ei, (x) u 	 (3.25) 

1=1 

q' are amplitude parameters of the jumps, and tlif  (r) are the Jump shape functions. s 

provides parameterization of the line of discontinuity, and q' is discretized as follows: 

(s) = E N (s) q 	 (3.26) 
I 

where, N, (s) are one dimensional shape functions which need to be C' continuous so 

that they do not introduce any discontinuities in derivatives other than across the 

discontinuity line. 

From Eq. (3.24), it is clear that constant and linear fields will still be reproduced 

exactly when q f  = 0. The distance to the closest point on the line of discontinuity is 

denoted by r (positive on one side of the discontinuity and negative on the other side). 

The Jump shape function is constructed from polynomials with a built-in discontinuity in 

the derivatives. Let T., be equal to tiff  ) , where if, = I d ; r, is the distance to the 

Jth point of discontinuity and d m, is the domain of influence. A cubicspline Jump 

function used in the present work is given as 
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A discontinuity in two dimensions is shown in Fig. 3.4. The distance r from the node to 

the line of discontinuity is taken as positive for the nodes lying on the right side of the 

line of discontinuity while for the nodes on left side r is taken as negative. For example 

r1  and r j  are positive while rK  and 	are negative. 

Fig. 3.4: Discontinuity and sign convention for r in two dimensions 

In order to make a comparative study of the above techniques, the results have been 

obtained for two different cases of a bi-material beam. In the first case, the interface has 

been kept normal to the length of the beam while in the second case; the interface has 

been kept parallel to the length of the beam. 

3.2.3 Bi-material Beam with Vertical Interface 

A beam of dimensions W x H subjected to traction at the free end is shown in Fig. 3.5. 

The problem has been solved for a plane stress condition with the following material 

properties: El  = 4x105  units, v1 =0.2, E2  = 2x105  units, v2  = 0.1. The dimensions of the 

beam are W = 8 units, H = 1 unit. The material constants are chosen in such a way that 

E1  / vl  = E2  /1/2  so that the magnitude of strain along the interface remains equal for 

both material. This ensures that there is no singularity in field variables at the interface. 
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The material interface is vertical (parallel to y-axis) and is halfway along the length of the 

beam. The applied traction (P) is 1 unit. The beam has been discretized using 41 

uniformly distributed nodes in x-direction and 11 uniformly distributed nodes in y-

direction for both EFGM and FEM. Four point Gauss quadrature (Dolbow and 

Belytschko, 1999) i.e. 16 Gauss points are used in each cell to evaluate the stiffness 

matrix. The solutions were obtained using a linear basis function (Belytschko et al., 

1994) with cubic-spline weight function with dma. = 1.5. 

ru 	 rs  

y 

Fig. 3.5: A two dimensional bi-material beam with vertical interface 

Numerical results obtained by three different EFGM approaches are compared with 

those obtained by FEM. Figure 3.6 shows the results obtained using domain partitioning 

approach. The variation of stress component o and strain component exx  is presented 

in this figure along the length of the beam at the top surface. It shows that the stress 

values exhibit a linear variation along the length of the beam, while a sudden jump is 

noticed in strain at the material interface, which is expected. A similar variation of o 

and ex, along the length of the beam have been obtained using the Lagrange multiplier 

and Jump function approaches as can be seen in Figs. 3.7 and 3.8 respectively. Except the 

Jump function approach, all other methods including the FEM solution shows a slight 
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kink in the linear variation of stress 	at the material interface. Also, the magnitude of 

Jump in strain e,„ values is more for the Jump function approach as compared with FEM 

solution as can be seen from Fig. 3.8 (b). 

The variations of ayy  andeyy  along the length of beam at the top surface is shown in 

Figs. 3.9-3.11 for domain partitioning, Largrange multiplier and Jump function 

approaches respectively. The results obtained by these approaches are compared with 

FEM solution as shown in Figs. 3.9 - 3.11. From these plots, it is seen that o- yy  remains 

nearly zero along the length of beam as expected from the theoretical calculations. In 

order to check the effectiveness of these methods, L2 error has been calculated for 

different parameters ( a,o- yy  ,ex,,e,,U„,U,), and is presented in Table 3.1. From the 

results in Table 3.1, it is found that the error in solutions obtained by Jump function 

approach is minimum as compared to other two approaches. The error in results obtained 

by domain partitioning and Lagrange multiplier methods are almost similar. 

For a better understanding of the results, the stress/strain contours have been plotted 

over the domain of the problem using jump function technique. Figure 3.5 shows the 

schematic diagram of the vertical interface bi-material beam problem subjected to 

traction on the right edge. The stress and strain contours, generated due to applied 

traction, are shown in Fig. 3.12 and Fig. 3.13 respectively. The stress ( a,„ ) and strain 

(e yy ) are smooth and continuous along the interface as expected while a jump in the 

strain field (e yy ) across the interface can be clearly seen from Fig. 3.12b. Moreover, the 

stresses along y -axis (crxx  ) are nearly zero in magnitude as observed from Fig. 3.13a. 

Thus, the stress/strain contours show a good modeling capability of Jump function 

criterion. 
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Fig. 3.9: cr yy, and e yy  variation along length of beam at top nodes (Domain partitioning) 

Fig. 3.10: o and en, variation along length of beam at top nodes (Lagrange multiplier) 

Fig. 3.11: cr yy  and eyy  variation along length of beam at top nodes (Jump function) 
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Table 3.1: L2-error norms for bi-material beam having a vertical interface 

Parameter Domain 
Partitioning 

Lagrange 
Multiplier 

Jump Function 

cr. 1.4177 1.4084 1.0970 

CI 
YY 1.7256 1.7256 0.4520 

C xr 1.1996e-005 1.1996e-005 1.0188e-005 

5ry 4.2719e-006 4.2589e-006 1.1119e-006 

Ux  9.5176e-006 9.5176e-006 4.0670e-006 

U,, 9.8266e-005 9.8266e-005 4.2033e-005 

n 	 Domain Area 
L2 = 	 — X. )x 1.1 	  no. of cells 

where X is any field parameter. 
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3.2.4 Bi-material Beam with Horizontal Interface 

A bi-material beam of dimensions W x H is subjected to traction P at the free end as 

shown in Fig. 3.14. The problem has been solved for a plane stress condition with the 

following material properties: El  = 9x105  units, vl  = 0.45, E2  = 1 x105  units, v2  = 0.05, 

and beam dimensions W = 8 units, H =1 unit. One end of the beam is fixed whereas 

traction (P) of 1 unit is applied at the other end of the beam. The material interface is 

kept horizontal (parallel to x-axis) and is made to coincide with the neutral axis of beam. 

The neutral axis of the beam is obtained at H/4 by using the compatibility condition for 

bi-material i.e E, /E2  = Z2  /Z1  where Z denotes the section modulus. A regular 

arrangement of (35 x 9) nodes has been used for domain discretization. In each 

integration cell, 4 x 4 Gauss quadrature is utilized to evaluate the stiffness matrix. The 

EFGM simulations are performed using a linear basis function with the cubic-spline 

weight function for dm ax = 1.5. 

  

  

x 

Fig. 3.14: A two dimensional bi-material beam with horizontal interface 

Numerical results obtained using three different EFGM approaches namely domain 

partitioning, Lagrange multiplier, and Jump function approaches, are compared with 

FEM solution. Figure 3.15 shows the variation of o and ex, along a line normal to the 

material interface at x= W/2 for domain partitioning approach. Figure 3.15(a) shows 
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that o-xx  values exhibit a linear variation in both the materials but the slopes are different. 

At the interface the value of o-xx  becomes zero. The zero value of o is due to the fact 

that the material interface coincides with the neutral axis of beam where all the stresses 

are zero. The variation of strain component exx  along a line normal to material interface 

shows a linear variation as can be seen from Fig. 3.15(b). A similar variation of six  and 

e xx  has been obtained using the Lagrange multiplier and Jump function approaches as 

can be seen in Fig. 3.16 and Fig. 3.17 respectively. From these plots, it is seen that the 

results obtained by Jump function technique are more close to the FEM solutions. 

The variation of 	and e yy, obtained by the above three approaches along a line 

normal to the interface at x = W/2 is shown in Figs. 3.18 - 3.20. The magnitude of an, 

remain nearly zero along a line normal to material interface. The variation of strain 

component E yy again shows a linear variation on both sides of interface with different 

slopes. At the material interface, the value of en, becomes zero as it is the neutral axis of 

the beam. 

The results obtained by all three techniques are compared with those obtained by 

FEM as shown in Figs. 3.15-3.20. L2-error norm are obtained for cr, e cr yy  , 

Uy  and are presented in Table 3.2. From Table 3.2, it is found that Jump function 

technique possess the least error for all parameters. Due to better accuracy, Jump 

function has been used to generate stress/strain contours for the horizontal interface 

problem as shown in Fig. 3.21 and Fig. 3.22. The contour plots reveal that Jump function 

has got good modeling capability as the results are found to be quite at par with those 

expected analytically. 
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Fig. 3.15: o and s variation along depth of beam (Domain partitioning) 
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Fig. 3.17: crxz  and s.„ variation along depth of beam (Jump function) 
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Table 3.2: L2-error norms for bi-material beam having a horizontal interface 

Parameter Domain. 
Partitioning 

Lagrange 
Multiplier 

Jump Function 

Cr  2:r 
92.82176 93.42694 92.68715 

aYY 10.34732 10.97538 10.08384 

6 . 3.2547e-004 3.2548e-004 2.8378e-004 

6YY 4.847e-005 4.8275e-005 4.6998e-005 

U , 0.0016866 0.0016867 0.001485 

U ,, 0.01016618 0.01016641 0.009575 

Domain Area 
L2  = (XEFG - X,,,) X 

i=1 

	
no. of cells 

where X is any field parameter 

Fig. 3.21: Contour plots using Jump Function (a): Stress (o- x j (b): Strain 

K 10  

Fig. 3.22: Contour plots using Jump Function (a): Stress (cr yy ) (b): Strain (e yy  
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3.3 MODELING OF MATERIAL AND GEOMETRIC DISCONTINUITIES 

The increasing demand of multifunctional materials (having resistance to corrosion, 

wear, thermal and chemical environment) in mechanical, aerospace and biomedical 

applications has imparted the layered materials, a coveted place in the world of 

engineering materials. Layered materials are found in a variety of important structures 

such as adhesive joints, composite laminates, and various electronics components. The 

overall mechanical behavior and response of layered systems depend on the mechanical 

properties and fracture behavior of the interface. The interaction between materials 

results in local load distribution, which determines the overall strength and fracture 

behavior. The abrupt change in properties at the interface of layered materials is a source 

of failure. A problem of great practical importance in composite laminate is a crack lying 

along the interface of two layers with different elastic properties. Unlike crack problems 

in homogeneous bodies, the bi-material interface crack always induces both opening and 

shearing under mode-I loading. This coupling of stress intensification was first 

demonstrated by Williams (1959) who used an Eigen function expansion approach, and it 

was found that the stress singularity in the vicinity of a crack tip of a bi-material interface 

crack is oscillatory in nature along with the presence of 1/1i: singularity. 

Various numerical methods for evaluating the stress intensity factors of bi-material 

interface cracks have been developed including FEM and BEM. Yau and Wang (1984) 

applied the M- integral approach in conjunction with FEM. Matos et al. (1989) used the 

virtual crack extension method in conjunction with the superposition method and FEM. 

Miyazaki et al. (1993a,b) applied the virtual crack extension technique and M- integral 

approach along with BEM. Ikeda and Sun (2001) presented an efficient numerical 
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procedure in conjunction with FEM for the analysis of an interface crack under thermal 

stresses. Some studies on bi-material interface cracks have also been performed using 

extended finite element method (Nagashima et al., 2003). 

At first, FEM appears to be an ideal method for the stress analysis of cracked 

components. Unfortunately, FEM solution converges very slowly if the conventional 

elements, which do not include stress singularities, are used. The high accuracy elements 

using higher order polynomials as interpolation functions cannot improve the rate of 

convergence. The error from the element immediately adjacent to the point of singularity 

is found to be the same order as that obtained from the remaining elements. Also, the use 

of small size elements cannot improve the situation either. The preparation of finite 

element meshes for effective product analysis usually requires considerable amount of 

labour and time as many products are composed of complex parts. To overcome these 

problems, a number of meshfree methods have been developed over past 15 years. 

Element free Galerkin method (Belytschko et al., 1994; Krongauz, 1996, Lu et al., 1994; 

Phu et al., 2008; Liu, 2003) is one of them, which is found quite attractive in comparison 

to standard finite element method as it avoids the need for tedious and time consuming 

finite element mesh. 

3.3.1 Modeling of Bi-material Interfacial Cracks 

In this work, a simplified approach for modeling bi-material interface crack has been 

proposed. Material discontinuity i.e. weak discontinuity has been modeled by a Jump 

function (Batra et al., 2004) and geometric discontinuity (crack) i.e. strong discontinuity 

has been modeled by intrinsic enrichment criterion (Li and Simonsen, 2007). In this 

approach, the crack lying at the interface of two materials has been modeled by using 
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same enrichment functions as were used for modeling the cracks in homogeneous 

materials. Only four standard enrichment functions are used for modeling an interfacial 

crack rather than the twelve enrichment functions used by Sukumar et al., 2004. Thus, 

the use of four enrichment terms along with Jump function provides us a simplified 

approach to solve bi-material interface crack problem. At the same time it reduces the 

computational cost significantly. The mixed mode stress intensity factors K1  and K11 

are evaluated using the modified domain form of interaction integral (Sukumar et al., 

2004). 

3.3.1.1 Modeling of geometric discontinuity by intrinsic enrichment 

In enrichment criterion (Li and Simonsen, 2007), the presence of a crack i.e. geometric 

discontinuity is modeled by adding extra terms either in the basis function or in the 

approximation function. According to this criterion, physically there is no crack in the 

domain. The meshfree standard basis functions are intrinsically enriched by the near-tip 

asymptotic field functions to solve the problems involving strong discontinuities. The 

number of enrichment functions depends on the coarse mesh accuracy desired. For higher 

accuracy, full asymptotic field functions can be included in the basis, whereas for higher 

speed at some cost of accuracy, only -s1T- can be included in the basis. An enriched basis 

function used in the present work is given as: 

P 
 T ( x)  0. 

 2 
0 	

2 	
-4 r — 

2 1 x, y 	cos— 2  , r sin — ,-vr sin — sin 0, cos — sin 0 
standard  enrichment terms 

basis 

(3.32) 
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where, P(x) is the enriched basis function, r and 0 are the local crack tip parameters. 

The first three terms of Eq. (3.32) represent the standard basis function (1, x, y) while 

the remaining four terms obtained from the crack tip solution makes up the enrichment 

part. 

3.3.1.2 Interaction integral approach for an interfacial crack 

The .I-integral remains globally path independent for bi-material interface crack problems 

when no material inhomogenity exists in the direction parallel to the crack (Smelser, 

1977). In this case, the mixed mode stress intensity factors K1  and Kll  can be readily 

evaluated using the domain form of the interaction integral (Moran and Shih, 1987). This 

is a well established technique for determining the mixed mode stress intensity factors for 

two-dimensional interfacial cracks (Nahta and Moran, 1993). In the interaction integral 

approach, the two dimensional auxiliary fields are introduced and superposed on the 

actual fields that arise from the solution of the boundary value problem. By judicious 

choice of auxiliary fields, the stress intensity factors can be directly linked to the 

interaction integral. The domain form of interaction integral (Sukumar et al., 2004; Yau 

et al., 1980) can be written as: 

M 	(Cr  7kux  a j Cr  ij u i,l — cru'ui  4r j dA 
	 (3.33) 

A 

where, "47  is an arbitrarily smooth scalar weighting function which is unity at the crack tip 

and zero on the contour C (Fig. 3.23). The auxiliary displacement fields for an interfacial 

crack can be extracted using stated equations, and the interaction integral is related to the 

stress intensity factors through the following relation (Sukumar et al., 2004). 

KM = _ 2 	( 1 Kr + K, Kr) with i =1, 2 
E cosh'  (ii) 

(3.34) 
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Kr and Kr are local auxiliary stress intensity factors for the auxiliary fields and E is 

the equivalent Young's modulus given as 2E,E2 /(E, + E2 ) and E is the bi-material 

constant (Sukumar et al., 2004) of the bi-material system. Kr  can be computed by taking 

Kr =1 and Kr = 0 from /1 , and Kli  can be computed in a similar fashion. 

Fig. 3.23: Domain integral representation (Domain A is enclosed by C+  , C-  and C ) 

3.3.2 Bi-metallic Plate with an Interfacial Edge Crack 

A bi-metallic plate having an edge crack of length a , is subjected to a tensile load on 

upper and lower boundaries as shown in Fig. 3.24. The plate dimensions are scaled with 

W = 3 units , H = 9 units, and far field applied stress co  =1 unit . The values of Poisson's 

ratios are taken as vi  = v2  = 0.3 . In order to demonstrate the validity of the proposed 

method for interface crack problems, the results are obtained for several ratios of 

Young's moduli E2 	= 2, 3, 10, 100 , where E1  is kept constant at 100 units and crack 

lengths a / W = 0.2, 0.3, 0.4, 0.5, 0.6 . Normalized stress intensity factors are shown in 

Fig. 3.25-3.28 where the results marked as Ref.1 and Ref.2 are taken from Matsumoto et 

al., (2000) and Liu et aL, (2004) respectively. 
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Fig. 3.24: A bi-metallic interface edge crack 

Figure 3.25 shows the variation of normalized stress intensity factors i.e. lc and Kll  

with varying crack length for E2  / E, = 2 . The results show that with increase in crack 

length, K1  is increasing while K B  goes on decreasing. Next, the EFGM results are 

obtained for E2  / E, = 3, 10 and 100 as shown in Fig. 3.26-3.28 respectively. It can be 

clearly seen from Figs. 3.25-3.28 that the values obtained by EFGM are quite close to the 

reference values, and the maximum percentage difference in EFGM results with 

reference solutions is less than 5%. 

In order to have a clear visualization of the crack tip fields, the contours of stress 

component ( o- y ) and strain component (en ) have been generated for different ratios of 

E2  1E, with alW =0.4. Figure 3.29a and Figure 3.29b show the stress and strain 

contours respectively for E2 /E1  =1 i.e. for homogeneous plate. It can be clearly seen 

that both stress and strain fields are continuous and symmetric about x -axis as expected. 

For non-homogeneous cases, the contours have been plotted for E2  /E1  = 2, 10, 100. 

For E2  1E1 = 2 , the stress field cr is nearly symmetric with a very small distortion as 

can be seen in Fig. 3.30a, but the strain contours for this case shows a small discontinuity 
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at the interface. Next, the stress contours have been plotted for the ratio of E2  /E1  =10 , 

and a small variation in arr  from the homogeneous case is obtained as can be seen in 

Fig. 3.31a, while a strong discontinuity in the strain field is observed in Fig. 3.3 lb. The 

contours have also been plotted for a higher material mismatch ratio of E2  /E1  = 100 

which again shows a nearly continuous and symmetric stress field for err  as shown in 

Fig. 3.32a, 3.33a while the strain field is highly discontinuous as can be seen in Fig. 

3.32b, 3.33b. From these simulations, it is noticed that the discontinuity in strain field i.e. 

first derivative has been clearly observed due to the change in material property i.e. 

Young's moduli at the interface. 
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Fig. 3.29: o-  and exx  contours for E2  /E1  = 1 

Fig. 3.30: ox, and exi  contours for E2  /E1  = 2 
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Fig. 3.31: o- and exx  contours for E2  /E1  =10 
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Fig. 3.32: o and exx  contours for E2  /E1  =100 
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Fig. 3.33: crxx  and s contours for E2  /E1  =100 

3.3.3 Bi-metallic Plate with an Interfacial Center Crack 

A bi-metallic rectangular plate with an interface crack at the center has been considered 

as shown in Fig. 3.34. The width ( W ) and height (H) of the plate are taken as 100 mm 

and 200 mm respectively. The material interface is kept horizontal at a distance of H/2 

from the bottom of plate. A tensile load of 9.8 MPa is applied in a direction normal to the 

interface. 
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o-, 

Fig. 3.34: Bi-metallic plate with an interface centre crack 

Three different crack length (2a), i.e. 40, 60 and 80 mm are considered. Young's 

modulus of the lower material (E1 ) is kept constant at 205.8 GPa. For both materials, the 

values of Poisson's ratio are taken as 0.3. The results are obtained for different ratios of 

Young's modulus E2 	= 1, 2, 3, 4, 10, 100. The normalized stress intensity factor is 

defined as Ki i/cr,fra ( i =1, 2) so as to obtain non-dimensional values corresponding to 

both mode-I and mode-II stress intensity factors. The EFGM results are compared with 

those obtained by BEM (Ref. 1 (Miyakazi et al., 1993)) and X-FEM (Ref.2 (Nagashima et 

al., 2003)). Figure 3.35 shows the variation of normalized stress intensity factors with the 

variation of E2  E1  for a crack length of 40 mm. The values of stress intensity factors 

have been evaluated at the right tip of the center crack. The analysis shows that the 

normalized values of K1  and K fi  show a decreasing trend with the increase in E2 	. 

Moreover, the results obtained by EFGM are found to be quite close to the reference 

solutions. Another simulation is performed for a crack length of 60 mm, and the results 

are plotted in Fig. 3.36. From the results presented in Fig. 3.36, it can be clearly seen that 

the EFGM results are in good agreement with the reference solutions available in the 
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literature. The simulations are also performed for a crack length of 80 mm, and the 

normalized values of K1  and K11  are plotted for different ratios of E2  /El . The EFGM 

results are plotted along with the reference solution as shown in Fig. 3.37. The values of 

K1  are found to be quite close to Ref.1 solution with a maximum error of 4% for 

E2  /E, =100. 

The contours of a, and syy are also plotted in order to have a clear visualization of 

stress and strain fields. A centre crack of length 2a = 40 mm is considered for generating 

the contours with different ratios of Young' moduli. In the first case, the ratio E2  /El  is 

unity i.e. a case of homogeneous material, and the stress and strain contours are plotted 

as shown in Fig. 3.38a and Fig. 3.38b respectively. Both a, and eyy are found to be 

continuous and symmetric about x -axis as expected. In non-homogeneous case, a bi-

material plate with E2  /E1  = 2 is considered as shown in Fig. 3.39. From the stress 

contour presented in Fig. 3.39a, a continuity of stress component ayy is noticed with a 

small distortion at the interface, while the strain contour for this case shows a clear 

deviation from the symmetry about x-axis as can be seen in Fig. 3.39b. The third set of 

contours is generated for a higher ratio of Young's moduli i.e. E2  /E1  =10, again the 

contours show a continuous nature of stress component an  as shown in Fig. 3.40a, 

while the strain exhibits a high degree of discontinuity across the bi-material interface as 

can be seen in Fig. 3.40b. In order to fully validate the technique, a large material 

mismatch at the interface is considered i.e. E2  /E1  = 100. In this case also, the stress 

contour of an, is almost continuous as shown in Fig. 3.41a and Fig. 3.42a, while strain 

contour of syy  shows a discontinuity at the interface as shown in Fig. 3.41b and Fig. 

3.42b. 
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Fig. 3.35: SIFs variation for 2a = 40 mm 	Fig. 3.36: SIFs variation for 2a = 60 mm 
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(a) 
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Fig. 3.39: cyx„ and ex, contours for E2 /E1  = 2 
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Fig. 3.42: o and ex, contours for E2 /Ei  =100 

3.3.4 Crack-Interfacial Crack Interaction in Bi-material 

Fracture usually starts at a defect in the interface, especially at an interface or an edge of 

the microcrack. The interaction effect of interfacial crack-microcrack plays an important 

role in determining the fracture behaviour of bi-material. The present problem aims at 

studying the interaction effect between an interfacial crack and a microcrack parallel to 

the interface. The effect of transverse and longitudinal interaction distances between 

interfacial crack and the microcrack is investigated. A two dimensional bi-metallic 

rectangular plate is considered. The width ( W ) and height ( H ) of the plate are taken as 

152.4 mm and 203.2 mm respectively as shown in Fig. 3.43a. The length of the 

interfacial crack (a) and the microcrack 	) are taken as 20 mm and 5 mm respectively. 

The bi-material assembly comprises of two elastic materials. The material properties are 

listed in Table 3.3. The plate is subjected to a far field tensile stress (a) of 100 MPa. A 

plane stress condition is assumed. The domain has been discretized by taking 34 

uniformly distributed nodes along both x and y -directions. A 4x4 Gauss quadrature has 
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been used in each integration cell to evaluate the stiffness matrix. The simulation is 

performed with an enriched basis function and cubicspline weight function for dmax --- 1.5. 

The variation of mode-I stress intensity factor (K1 ) of an interfacial crack is shown in 

Fig. 3.43b as a function of offset (r o. For all values of offset (17:), the tip 1 of the 

microcrack lies on a line normal to the interfacial crack passing through tip 3. It was 

observed that for :I; =1.27 mm, K1  has got a maximum value of 32.5 MPa. Increasing the 

offset value results in a gradual decrease of the stress intensity factor until the offset 

reaches a value of i=5.1mm. Beyond this value of the SIF becomes constant as can 

be clearly seen from Fig. 3.43b. Thus, one can say that the interaction effect almost 

disappear beyond a critical distance i.e. /2 =5.1 mm. It was also observed that a larger 

difference in mechanical properties of bi-materials results in greater interaction effect. 

Next, the variation of mode-I stress intensity factor (K1 ) of an interfacial crack is 

studied as a function of a longitudinal movement of the microcrack. For this study, the 

movement of microcrack is made parallel to x -axis while the interfacial crack remains 

fixed as shown in Fig. 3.44a. The transverse distance between interfacial crack and 

microcrack is kept constant at r, = 1.27 mm. Figure 3.44b represents the variation of ICI  

with distance, d where, d is distance between the left edge of the plate and centre of 

microcrack). From the results presented in Fig. 3.44b, it is observed that for d < 10 mm, 

the interaction effect between interfacial crack and microcrack remains constant as can 

be seen from nearly constant values of IC I . For d> 10 mm, the shielding effect of 

microcrack over the interfacial crack goes on increasing, and reaches its maximum for 

d= 20 mm. Physically this happens when the tip 3 and tip 2 lies in the same vertical 

line. This configuration leads to a minimum value of K, = 11.023 MPa-/Fn for the 

interfacial crack. With further increase in the longitudinal distance d, the value of ICI  
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gradually increases and reaches a maximum value of 32.50 MPan. . This happens 

when the tip3 and tipl lie in the same vertical line. This becomes a case of nearly 

collinear crack which causes the well known stress amplification effect. The interaction 

effect of microcrack over the interfacial crack tends to become smaller with further 

increase of distance d as can be seen from Fig. 3.44b. For d > 30 mm, the value of K, 

becomes nearly constant at 26 MPa-"Fn as the interaction effect between the stress field 

of microcrack and interfacial crack becomes negligible. In order to check the modeling 

capability of EFGM and for a clear visualization of crack tip stress field of both 

interfacial crack and microcrack, the stress and strain contours of cr.„ g.,„,cr y , e„ have 

been generated over the problem domain as can be seen in Figs. 3.45-3.46. 

Table 3.3: Bi-material properties 

Material No. Material Name E (GPa) v 

1 Silicon Nitride (Si 3N4 ) 304 0.27 

2 Steel (S45C) 206 0.30 

K, 

tS 
4 29  

m 2B 

27 

5 	10 	15 	20 	25 
Offset (h) mm 

(a) 
	 (b) 

Fig. 3.43: Geometry description and SIF variation with offset (T1 ) 
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Fig. 3.44: Geometry description and SIF variation with distance (d) 
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Fig. 3.46: cr and Ey3, contours for bi-metallic interacting cracks 
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3.3.5 Sub-interface Crack at Ceramic-metal Interface 

Ceramics are the centre of attraction for advanced technological applications owing to 

there wide range of properties and characteristics. They are used in various industrial 

sectors such as electronics, electro-mechanics and energetic. Most of the ceramic 

application requires them to be functionally or structurally interfaced with metallic 

structures. Joining of metal and ceramic is quite difficult because of their distinctly 

different properties. With the development of newer bonding techniques in recent years it 

has become possible upto a certain extent. In the ceramometallic assembly, the sub-

interface region is highly prone to defects, which leads to crack initiation due to 

weakness of bond, variation of material property, etc. Moreover, a bi-material joint 

typically contains residual stresses that arise due to fabrication process when the 

assembly is cooled from a high temperature (near to the melting point of metal) to the 

ambient temperature. A combination of residual stresses with operating stresses can 

promote the failure of components. In the present problem, the variation of residual 

stresses near the crack tip in sub interface region of a ceramometallic assembly has been 

studied and highlighted. 

A bi-material assembly comprising of a thin layer of copper sandwiched between 

alumina has been considered. Geometric dimensions along with boundary constraints are 

shown in Fig. 3.47. The material properties of the constituents of the bi-material 

assembly are presented in Table 3.4. A sub-interface crack is considered at a distance of 

0.6 mm from the interface S 1. The length of crack is taken as a= 1.8 mm. A uniform 

temperature change of AT = 300°C is assumed to prevail throughout the problem 

domain. A regular arrangement of 109 x15 nodes has been used for domain 

discretization. In each integration cell, 4 x 4 Gauss quadrature has been used to evaluate 

the stiffness matrix. The EFGM solutions are obtained using an enriched basis function 
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with the cubicspline weight function with dm  = 1.5. The thermal residual stresses result 

from the mismatch between the thermal expansion coefficients and the stiffness of 

bonded materials. The distribution of normal residual stresses ax, cryy  and shear residual 

stresses 0-xy  has been plotted in Figs. 3.48-3.50 along a path normal to the interface and 

near the crack tip. From these plots, it is observed that the temperature change AT, 

places copper in tension and alumina in compression. The level of normal and shear 

residual stresses are determined by the temperature of bi-material assembly. The 

magnitude of compressive stresses is much larger than the tensile stresses. Moreover, the 

tensile stresses are almost constant while the compression reaches its maximum value in 

the vicinity of crack tip. A comparison of results shows that the magnitude of normal 

residual stresses cry  is less than that of transverse residual stresses o-yy  as can be seen 

from Fig. 3.48 and Fig. 3.49. Although these transverse residual stresses have significant 

magnitude, they do not contribute to the crack propagation as they are directed along the 

length of crack. The variation of shear residual stresses crxy  along the interface and near 

the vicinity of crack tip is shown in Fig. 3.50. From Fig. 3.50, it is observed that a 

significant tangential residual stress crxy  is present at the crack tip whereas for the points 

away from crack tip, its magnitude becomes negligible. Figure 3.51 illustrates the 

variation of J -integral as a function of temperature gradient for different values of crack 

length (a ) . For a particular crack length, it is observed that with an increase in 

temperature at the time of manufacturing, there is a significant variation in J -integral. 

However, for a small change in temperature, the value of J -integral becomes 

independent of crack length. Indeed, an increase in temperature gradient causes an 

increase in residual stresses which leads to intensification of J -integral. 
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Table 3.4: Properties of bi-material assembly constituents 

Material E (GPa) v ax le 

Copper 113.5 0.345 16.75 

Alumina 385.8 0.245 7.12 

h = 6mn 

.4  41n1 

S =30mn  

L = 55mm  

Fig. 3.47: Geometry description for ceramic-metal interface crack 
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3.4 CONCLUSION 

In this chapter, the EFGM has been successfully implemented to solve the problems of 

weak and strong discontinuities. A comparative study of various techniques for modeling 

weak discontinuity revealed that the Jump function criterion is the most promising 

criterion. A new criterion is proposed for modeling bi-material interfacial cracks using 

Jump function approach. The new criterion was found quite effective in reducing the 

computational cost as it involves only four enrichment terms in the basis function instead 

of twelve enrichment terms. Further, some additional problems of bi-material interfacial 

cracks under mechanical/thermal loading were simulated in order to check the robustness 

of the proposed criterion, and it was noticed that the proposed criterion is quite successful 

in handling a wide range of bi-material interfacial crack problems. 
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Chapter 4 

SIMULATION OF MULTIPLE INTERACTING CRACKS 

4.1 INTRODUCTION 

Cracks are inevitable in all engineering components and structures. Complex loading 

conditions in actual working conditions may result in either the propagation of pre-

existing cracks or may initiate new cracks in the structures. The final fracture of a 

component is always initiated by multi site cracks. The crack tip stress fields of all such 

cracks interact with one another and lead to formation of one dominant crack which 

paves the way for final failure of a component. As such, all important failure 

phenomenons such as stress corrosion cracking, hydrogen embrittlement, and creep 

micro cracking are directly linked to the crack interactions (Muravin and Turkel, 2006a). 

Interaction among multiple cracks is one of the most important but less investigated 

phenomena in fracture mechanics. An accurate evaluation of stress intensity factor is 

quite essential for the prediction of failure and crack growth rate. Thus, the study of crack 

interactions (Muravin and Turkel, 2006a; Loehnert and Belytschko, 2007) under 

thermal/mechanical load is of great importance as it helps us to understand some basic 

phenomenon such as 

❖ The effect of micro and macro cracks in non-uniform materials e.g. composites, 

concrete, piezoelectric; 

❖ Amplification and shielding effect (Mori and Nemat, 1983) of cracks; 

❖ Direction of crack propagation and crack branching; 

Simulation of multiple interacting cracks by conventional finite element method 

requires an enormous mesh refinement near each crack tip along with use of singular 
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elements near the crack tips. Moreover, simulation of moving discontinuities requires 

tedious and time consuming remeshing at every time step. Even with the use of adaptive 

remeshing, the mapping of variables is a computationally expensive task and a source of 

cumulative numerical errors. Some efforts have been made in the past to study the 

multiple crack interactions. Horii and Nemat (1983) estimated the stress intensity factor 

for interacting cracks. Chen (1984) studied the general case of multiple crack problems in 

an infinite body. Kachanov and Laures (1989) solved some three-dimensional problems 

of strongly interacting arbitrarily located penny shaped cracks. Wu and Chudnovsky 

(1993) studied the effect of micro-crack array on stress intensity factor of the main crack. 

Kachanov (1985) proposed a simple technique for the stress analysis of elastic solids 

with cracks. Lam et al. (1993) simulated the interaction among micro-cracks and main 

crack in semi infinite medium. A most recent review of micro/macro crack interaction 

problems is given by Tamuzs and Petrova (2002). Budyn et al. (2004) devised a method 

for the study of multiple growing cracks, and their interactions in brittle materials 

without re-meshing, and Zi et al. (2004) further used this method for-the fatigue analysis 

of multiple cracks. Loehnert and Belytschko (2007) investigated the amplification and 

shielding effect of micro crack on the macro crack. Muravin and Turkel (2006a) 

investigated the crack interactions by modifying the weight functions for each crack 

using EFGM, This criterion is not simple from the implementation points of view as each 

additional crack requires special treatment of weight function. In spite of a lot of 

analytical and numerical research, not much effort has been made to study the effect of 

crack interactions using meshfree methods. 

In the present work, EFGM has been used to analyze crack interactions in linear 

elastic fracture mechanics problems under thermal/mechanical loads. Few modifications 

have been suggested in the intrinsic enriched basis to incorporate the interaction effect. A 

104 



Chapter 4+ Simulation of Multiple Interacting Cracks 

comparison of the results obtained by diffraction criterion (Fleming et al. 1997; Organ et 

al. 1996; Belytschko and Fleming, 1999), analytical solution (Anderson, 2005) and FEM 

shows that the modified intrinsic enrichment is quite effective in capturing the effect of 

crack interactions. A new partial domain enrichment criterion has also been suggested to 

simulate cracks lying in non-convex domains. This proposed criterion not only eliminates 

the error in results due to non-convexity of the domains, but also reduces the overall 

computational cost of the method. 

4.2 PROBLEM FORMULATION 

Consider a two-dimensional domain with small displacements in the domain S2 bounded 

by F as shown in Fig. 4.1. The governing equilibrium equations are given as 

V.a+b = 0 in n 
	 (4.1) 

along with the following essential and natural boundary conditions 

u = T1 on 
	 (4.2) 

a. n = i on F, 	 (4.3) 

Fig. 4.1: Domain along with essential and natural boundary conditions 

where, a is the stress tensor which is defined as a = D(g — C r ), D is the linear elastic 

material property matrix, e is the strain vector, E r  is the thermal strain vector, b is the 

body force vector, u is the displacement vector, t is the traction force and n is the unit 
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normal. For the case of plane stress in an isotropic material with coefficient of thermal 

expansion /3 subjected to a temperature change AT, the thermal strain matrix is given by 

&={

13 AT  
fl AT 
0 

(4.4) 

Enforcing essential boundary conditions using Lagrange multiplier approach, and 

applying variational principle, the following discrete equations are obtained using Eq. 

(2.11): 

[K G o  lf )  uj..... {f q} 
GT 	1 

where ,Kij  = 5137;DBI A2, fl =(.1,)mech+(f1)then.., 

(4.5) 

(4.6) 

(f, ),,,„ch = poi  dr„(L)thennai = P37;087, 01d12 G1 K 	fOI N K cirl, qK  — IN K  WdF,, , 

01,x 
B1  = 0 

0 

'p1.y 

(r:11,x 

0 
K N0] 

, D= 1 
1— V 2  _ K  

1 	v 	0 
v 	1 	0 	for plane stress 
0 	0 (1— v)/2 

 

(1,y 

   

     

4.3 INTRINSIC ENRICHMENT FOR SINGLE CRACK 

In enrichment based criterion (Fleming et al., 1997), the presence of a crack is ensured 

by enrichment terms i.e. by adding extra terms either in the basis function or in the 

approximation function. In this criterion, the presence of crack is modeled by use of 

enrichment functions. In the intrinsic enrichment criterion, the meshfree standard basis 

functions are intrinsically enriched by including the near-tip asymptotic field to solve 

problems with strong discontinuities such as cracks. The choice of enrichment functions 

depends on the coarse mesh accuracy desired. For higher accuracy, one can include the 

full asymptotic field, while for higher speed at some cost of accuracy; only V; can be 
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included in the basis. A regular/standard enriched basis function can be given as 

0 I-- 0. 
2  
0 	r- 	. 1, x, y 	cos— 	

2 2 
, r sin — , r sin — . 	

2 0, r cos — sin 0 	 (4.7) 
standard 	 enrichment terms 

basis 

where, P(x) is the enriched basis function, r and 0 are the local crack tip parameters. 

First three terms of Eq. (4.7) represents the standard basis function (1, x, y) and 

remaining four terms obtained from the crack tip solution makes up the enrichment part. 

A single edge crack along with an evaluation point and local crack tip parameters 

(r, 0) is shown in Fig. 4.2. In the single crack configuration, the enrichment terms are to 

be added with reference to the only crack tip present in the domain at the 

evaluation/Gauss point during numerical integration, which can be easily done either for 

a part of the region near crack tip or over the entire solution domain. 

Evaluation/Gauss point 

r: 
a 

Crack 

Fig. 4.2: Single edge crack along with crack tip parameters 

The above intrinsic enrichment criterion works well only for single crack, but can not be 

used for multiple crack tip configurations. 

PT (x) 
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4.4 INTRINSIC ENRICHMENT FOR MULTIPLE CRACKS 

The intrinsic enrichment criterion is based on the addition of extra terms in the standard 

basis function. These additional terms are generally obtained from the theoretical 

background of the problem. The simulation of a crack using intrinsic enrichment requires 

four additional functions in the basis corresponding to each crack tip, whereas the 

simulation of multiple cracks using intrinsic enrichment criterion will require many 

enrichment terms depending upon the number of crack tips present in the domain 

(Muravin, 2003). Hence, the simulation of multiple cracks using this approach will be 

very expensive from the computational time point of view. Therefore, a simple and 

efficient method has been proposed to simulate the multiple cracks. 

4.4.1 Modified Intrinsic Enrichment Criterion 

In case of a single crack, the enrichment is done for the each evaluation/Gauss point of 

the domain, which consists of four additional terms related with the only crack present in 

the domain. Therefore, in the present work, regular intrinsic enrichment criterion has 

been modified for handling multiple cracks. According to the proposed criterion, the 

enrichment decision with reference to a particular crack tip has to be made i.e. it is to be 

ensured that the additional terms need to be added with respect to a particular crack tip 

from the all the available crack tips in the domain. This decision is made on the basis of 

normalized distances between the evaluation/Gauss points and the crack tips. According 

to this criterion, the distances of an evaluation point from all the crack tips are evaluated 

and normalized by their corresponding crack lengths, and then the enrichment is decided 

on the basis of minimum normalized distance. For example, three cracks of length al  , a2  

and a3  are taken as shown in Fig. 4.3, and the location of a particular evaluation/Gauss 

point with respect to different crack tips are (r, , 	( r2  , 02 ) and ( r3  , 03 ) respectively. 

108 



a2 

r 

AP' 
r  I 09;\ 	a3  4 	 

Chapter 44 Simulation of Multiple Interacting Cracks 

Now at particular evaluation point during numerical integration over the domain, the 

enrichment terms are to be added with respect to the only one crack tip from all available 

crack tips. This decision of enrichment with respect to a particular crack tip is based on 

the normalized distances of each crack tip i.e. r, / at  with i = 1, 2, 3 The enrichment of 

the basis function with respect to a particular crack tip is decided on the basis of 

minimum normalized distance. This criterion works well while studying and analyzing 

the interaction effect of similar size cracks, but can not handle significantly unequal size 

cracks properly. Hence, the existing intrinsic enriched criterion required further 

improvement for the study of both nearly equal and significantly unequal size multiple 

cracks. Therefore, a new weighted criterion was established, which can be used to study 

the interaction effect of both nearly equal and significantly unequal size multiple cracks. 

Fig. 4.3: Three edge cracks along with crack tip parameters 

4.4.2 Weighted Intrinsic Enrichment Criterion 

In the intrinsic enrichment criterion proposed in the previous section, it becomes difficult 

to handle significantly unequal size multiple cracks. Therefore, this enrichment criterion 

is further modified to handle multiple cracks of equal/unequal sizes. In the proposed 

criterion, all cracks contributes to the stiffness matrix (Ku  in Eq. 4.6) at each evaluation 

point in contrast to the existing criterion where only one crack contributes to Ku  at each 
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evaluation point. For example, three cracks of length al  , a2  and a3  are taken as shown 

in Fig. 4.3, and the location of a particular evaluation/Gauss point with respect to various 

crack tips are (r, , GO, (r2  02 ) and (r3  , 03 ) respectively. Now, during numerical 

integration at a particular evaluation/Gauss point, enriched basis and shape functions are 

constructed separately for each crack tip. Once the shape functions are obtained using 

enriched basis for each crack tip at an evaluation point, then the contribution of each 

crack tip to the stiffness matrix is decided on the basis of the normalized distances i.e. 

di = r, / a with i = 1, 2, 3 . Mathematically, total Ku  at an evaluation/Gauss point (in Eq. 

4.6) is evaluated as 

N 

[K „] [o(ai  =[K „] I X R,+[Ku ] 2 x R2  + 	[K LI ]N  X RN  =E[K LI ] i X R, 	(4.8) 
1=1 

where, N denotes the number of cracks present in the domain, R. is a parameter which 

decides the contribution of a particular crack, and [Ku ];  is evaluated by Eq. 4.6 as 

[K11  = SW' D B, (K2 with a different B1  for each crack. The value of R, in Eq. 4.8 is 

numerically evaluated as 

R =  N  S 	with ER, = 1 	 (4.9) 
E s;  
j=1 

i=1 

where, S, = d,e  and d, represents normalized crack tip distance (d, = ;11 a,) for a 

particular crack and C is a predefined constant, which is calculated by performing the 

sensitivity analysis of C, and its acceptable range is found to be -50< <-100. 

As the proposed criterion considers the effect of all cracks at each evaluation point, it 

can be used to simulate both equal and unequal size multiple cracks. The existing 

intrinsic enrichment criterion can be seen as a particular case of the proposed criterion 
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where at each evaluation point, the contribution of one crack is taken as 100%, while the 

contribution of other cracks is taken as zero. 

4.5 RESULTS AND DISCUSSIONS 

4.5.1 Crack Interactions under Mechanical Loading 

The dimensions of the cracked body used in the present study are taken as H = 200 mm, 

W = 100 mm as shown in Fig. 4.4. The material selected for present study is ASTM 36 

steel (Beer et al., 2002) with modulus of elasticity ( E ) = 200 GPa, Poisson's ratio ( v ) = 

0.3. A far field stress, ( co ) = 100 MPa is applied at the top edge. 

Few cases of edge crack problems have been solved to study the effect of crack 

interactions. The first crack has been taken at a distance of H / 2 i.e. 100 mm from the 

bottom with an orientation of a = 0° (a = 0° implies that the crack is parallel to the x - 

axis, Fig. 4.4), whereas, the second and third crack (if present) has been placed at 

different locations and orientation to study and analyze the effect of crack interactions. 

To validate the EFGM results, single edge crack problem has been solved under mode-1 

loading by both intrinsic enrichment and diffraction criterion using multiple crack weight 

approach (Muravin and Turkel, 2006a). 

Single edge crack along with its geometry and boundary conditions is shown in Fig. 

4.4. The bottom edge has been constrained along y -direction, and an external far field 

stress is applied at the top edge as shown in Fig. 4.4. The problem domain has been 

discretized using 800 uniformly distributed nodes for intrinsic enrichment while for 

diffraction criterion, additional nodes has been defined at the crack surface and crack tip. 

Six point Gauss quadrature (Dolbow and Belytschko, 1999) has been used for the 

numerical integration (Dolbow and Belytschko, 1998) of the Galerkin weak form. A 

plane stress condition has been assumed. The values of mode-I and mode-II stress 
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intensity factors i.e. K1  and K11  have been calculated using domain based interaction 

integral (Dolbow and Belytschko, 1999; Dag, 2006) approach. 
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Fig. 4.4: Problem geometry along with boundary conditions 

The results have been obtained by EFGM for various crack configurations. Figure 

4.5a shows a single edge crack configuration subjected to external far field stress. Both 

mode-I and mode-II stress intensity factors have been calculated at the crack tip for 

different values of crack length al  as presented in Fig. 4.5b. A comparison of results 

obtained by both diffraction criterion and intrinsic enrichment shows a similar trend of 

K1  and Kll  but the values of K1  obtained by intrinsic enrichment are closer to the 

analytical solution (Anderson, 2005) as compared to diffraction criterion as can be 

clearly seen from Fig. 4.5b. 

Figure 4.6a shows two cracks of equal length (al  = a2  = 40 mm) on the same edge of 

cracked specimen. The first crack has fixed orientation along the width while the 

orientation of the second crack is varied. Both K1  and Kn. are calculated at the tip of the 

first crack. Figure 4.6b presents the variation of the stress intensity factors of the first 

crack with the orientation of the second crack. It can be seen that Ki  shows an 
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increasing trend with the increase of a with a minimum value of 59.92 MPaVT-n 

(Intrinsic enrichment) while K„ has a maximum value of 11.85 MPalfi—n (Intrinsic 

enrichment) for a =0°, which tends to zero with the increase of a . At higher values of 

a , the tip of the first crack is far away from the second crack tip, thereby K, of the first 

crack remains almost unaffected. However, when a is small, K1  of the first crack is 

reduced due to the presence of lower stress region below second crack. Figure 4.6b also 

shows that the values obtained by modified intrinsic enrichment are in good agreement 

with those obtained by diffraction criterion. 

The effect of offset i.e. d (as shown in Fig. 4.7a) between two parallel cracks of 

equal length (a, = a2  = 40 mm) lying on the same edge has been analyzed next. Figure 

4.7b shows the effect of offset on the stress intensity factors of first crack (lower crack). 

From the results presented in Fig. 4.7b, it can be seen that the presence of equal length 

second crack lowers the value of K1  of the first crack while KII becomes non-zero. 

With the increase of offset, K, increases continuously, and approaches a value 

corresponding to a single crack only. The value of Kll  is found to be maximum at d= 20 

mm and thereafter decreases with the increase in offset. The results obtained by both 

diffraction and modified intrinsic enrichment approaches are quite close to each other, 

and have a maximum 2.4% difference in values of K1 . 

Figure 4.8a shows two parallel cracks configuration both lying on the same edge. The 

length of the first crack ( GO i.e. lower crack is taken as 40 mm, while the length of 

second parallel crack ( a2  ) i.e. upper crack is varied. The distance between two parallel 

cracks is taken to be equal to length of lower crack i.e. d = al . The stress intensity factors 

have been evaluated at the tip of first crack. For a2  <a, /2 , K, of first crack has been 

found nearly same as that of a same length single edge crack (Fig. 4.8b). The value of 
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K, keeps on decreasing and K„ shows an increasing trend with the increase in the 

length of second crack. The decreasing trend in value of K1  of lower crack is due to the 

fact that with the increase in length of upper crack it tends to become the major crack 

there by reducing the stress concentration at the tip of lower crack. 

A specimen with two cracks on the opposite edges has been considered as shown in 

Fig. 4.9a. The crack on left edge is kept at a =0° with the horizontal, while the crack on 

right edge has a variable orientation (a). Both cracks have equal length i.e. 

a, = a2  = 40 mm . The values of stress intensity factors have been calculated at the tip of 

first crack (tip of the left edge crack). K1  shows an increasing trend with the increase in 

a , while K„ reaches its peak value around a =20°, and thereafter nearly approaches 

zero at a= 60° as shown in Fig. 4.9b. At a = 0° the value of K, calculated by diffraction 

criterion is 53.10 MPa-rm-  while the proposed intrinsic enrichment criterion predicts 

nearly a same value i.e. 52.92 MPalin-  . For a >50° , intrinsic enrichment criterion 

predicts SIF values on higher side as compared to diffraction criterion, and a maximum 

difference of 5% is noticed between them. 

The effect of offset (d) between two parallel cracks of same length i.e. 

al  = a2  = 40mm lying on opposite edges (Fig. 4.10a) has been analyzed next. K and 

K„ have been evaluated at the tip of left edge crack. For an offset of d = 0 , the 

geometry behaves as two collinear cracks of equal length, and both diffraction and 

intrinsic enrichment criterions predicts an equal Ki  values i.e. 53.10 MPaJ which are 

quite close to the analytical value (Anderson, 2005) i.e. 53.43 MPan . For offset less 

than 30 mm, the values predicted by both criteria are close to each other but for offset 

greater than 30 mm, the value predicted by intrinsic enrichment is more as compared to 
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diffraction. Figure 4.10b shows that the variation of K1  and K11  predicted by diffraction 

criterion and intrinsic enrichment are same. 

Three different cases of collinear edge cracks have been considered. Figure 4.11a 

shows the configuration where length of both cracks is incremented by equal magnitude. 

The values of K1  and K11  have been evaluated at the tip of left edge crack. A 

comparison of results obtained by diffraction criterion and intrinsic enrichment with that 

of analytical solution suggests that intrinsic enrichment predicted values are close to the 

analytical solution as can be clearly seen from Fig. 4.11b. The values of K„ remain 

nearly zero for all values of crack length. 

For the second case of collinear cracks, the length of left edge crack is kept constant 

i.e. 40 mm, while the length of right edge crack is varied continuously as shown in Fig. 

4.12a. The values of K1  and K„ are evaluated at the tip of left edge crack. For smaller 

values of a, , the value of K1  for left edge crack is higher but as a, increases, the value 

of K1  goes on decreasing as can be seen in Fig. 4.12b. Both diffraction and intrinsic 

enrichment criteria predict a similar trend of K1 ; although for smaller values of crack 

length a1 , intrinsic enrichment predicts SIF values are on higher side as comparedltto 

diffraction criterion. 

In third case of two collinear cracks, the length of right edge crack is kept constant 

i.e. 40 mm, while the length of left crack i.e. a, is changed as shown in Fig. 4.13a. The 

values of K1  and K„ have been evaluated at the tip of left edge crack. Both diffraction 

and intrinsic enrichment predict nearly equal values of SIF as can be clearly seen from 

Fig. 4.13b. The negative values of K1  shows the dominance of right edge crack for 

smaller values of crack length a, . The results obtained for different crack configurations 
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show that proposed intrinsic enrichment criterion works well, and produces better results 

as compared to the diffraction criterion. 

Next, the intrinsic enrichment is used to solve three edge crack problems subjected to 

plane stress condition. Different crack orientations have been chosen for this study and 

the results obtained by modified intrinsic enrichment criterion are compared with those 

obtained by FEM. Figure 4.14a shows three edge crack configuration with one crack on 

left edge and two cracks on right edge. Two right edge cracks were placed at an offset of 

d = 40 mm . The values of K1  and Ku  have been evaluated at the tip of left edge crack. 

The values of crack length are kept same for all three cracks, and then same increment in 

the crack length is made in all three cracks for this study. A finite value of K1  is 

obtained at the crack tip, while the value of Km  nearly remains nearly zero. The SIF 

values and 'their trend show a close proximity with FEM solution as shown in Fig. 4.14b. 

The effect of offset distance between two right edge cracks on K1  and K11  of the left 

edge crack has been considered in Fig. 4.15a. The length of all three cracks chosen for 

this analysis is taken as 40 mm. The values of K1  and K11  have been evaluated at the tip 

of left edge crack. For smaller offset, the results obtained by intrinsic enrichment 

estimates K1  on lower side in comparison to FEM but with the increase in offset, the 

results comes closer to each other as can be seen in Fig. 4.15b. 

A similar geometry having three cracks as above is considered again. The lengths of 

all three cracks are equal i.e. 40 mm. The effect of inclination of the two right edge 

cracks on left edge crack is shown in Fig. 4.16a. The inclination ( a ) has been changed in 

such a way that tip of two right edge cracks move away from each other. The values of 

K1  and Kll  are evaluated at the tip of left edge crack. The results show that with the 

increase in a , the values of K1  keep on increasing, while Ic remains nearly zero for 
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all values of a . The results obtained by both intrinsic enrichment and FEM are almost 

similar for all values of a as shown in Fig. 4.16b. 

Another three cracks configuration is considered as shown in Fig. 4.17a, where the 

inclination of right edge cracks has been taken in such a way that the crack tip 

approaches to each other. The values of K1  and K„ have been evaluated at the tip of left 

edge crack. K1  values initially have a decreasing trend up to 30° crack inclination, then 

an increasing trend up to 70° inclination and become constant after that as shown in Fig. 

4.17b. The results obtained by intrinsic enrichment are quite close to the FEM solution. 

In order to have a clear visualization of crack tip stress field and interaction effect of 

second crack, the contours of stress component ayy  have been plotted over the specimen 

geometry. For inclined cracks, three different cases with the inclination of 10°, 30° and 

50° have been considered as shown in Fig. 4.18 & 4.19. The interaction effect has been 

found to be more prominent with lower angle of inclination. For specimen geometry with 

two parallel cracks, the contours have been plotted for 30 mm, 50 mm and 70 mm offset 

as shown in Fig. 4.20. Figure 4.21 shows the effect of crack interaction for two parallel 

cracks lying on the opposite faces. In this case, the length of two cracks has been kept 

constant i.e. 40 mm each while the offset has been changed from 0 to 70 mm. The 

contours have been plotted for three different values of offset i.e. 30, 50 and 70 mm. 

Figure 4.22 shows contour plots over the domain for two collinear cracks. Three different 

models have been considered with crack tip distance equal to 40, 30 and 20 mm 

respectively. Plot shows that the interaction effect tends to fade away when the distance 

between crack tips is increased. It can be clearly observed from these contours that both 

angular and spatial location of crack have a prominent effect over the degree of 

interaction which leads to distortion of the contour lines over the problem domain. 
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Fig. 4.5: Problem geometry and variation of SIF with crack length 

Fig. 4.6: Problem geometry and variation of SIF with crack inclination 

Fig. 4.7: Problem geometry and variation of SIF with offset 
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Fig. 4.8: Problem geometry and variation of SIF with crack length 
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Fig. 4.9: Problem geometry and variation of SIF with crack inclination 
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Fig.. 4.10: Problem geometry and variation of SIF with offset 
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Fig. 4.11: Problem geometry and variation of SIF with crack length 

(a) 	 (b) 

Fig. 4.12: Problem geometry and variation of SIF with crack length 
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Fig. 4.13: Problem geometry and variation of SIF with crack length 
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Fig. 4.16: Problem geometry and variation of SIF with crack inclination 
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(a) 
	 (b) 

Fig. 4.17: Problem geometry and variation of SIF with crack inclination 

Fig. 4.18: Stress contours of a yy for different crack configurations 

Fig. 4.19: Stress contours of a yy  for different crack configurations 
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Fig. 4.21: Stress contours of cr yy  for different crack configurations 

Fig. 4.22: Stress contours of aYY  for different crack configurations 
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4.5.2 Crack Interactions under Thermal Loading 

The dimensions of the cracked plate used for investigating thermal loading are taken as 

H= 200 mm, W= 100 mm as shown in Fig. 4.23a. The material used in study is ASTM 

36 steel (Beer et al., 2002) with modulus of elasticity E = 200 GPa , Poisson's ratio 

v = 0.3 and coefficient of thermal expansion p =11.7 x 10-6  . For the case of thermal 

loading, both top and bottom edges are constrained along y -direction and thermal 

stresses are developed due to the change in temperature. A uniform temperature change 

AT = —43.7 °C has been assumed such that it produces an equivalent mechanical stress 

E p AT = 200 x 103  x 11.7 x 10-6  x 43.7 = 99.9 100 MPa . Different crack configurations 

under thermal loading have been analyzed in this section. 

Figure 4.23a shows two cracks lying on the same edge in a specimen. The first crack 

lying on the left edge has a fixed orientation along the width, while the orientation of 

second crack is varied. The length of both cracks is taken as 40 mm. Both K1  and K„ 

are calculated at the tip of first crack. Figure 4.23b presents the variation of the stress 

intensity factors of the first crack with the angular orientation (a) of the second crack. 

From the results presented in Fig. 4.23b, it is noticed that the values of K increases with 

the increase of a , whereas ICH  decreases with the increase of a . At a =0°, K1  and K11  

are found to be minimum and maximum respectively. A good agreement between the 

results obtained by diffraction criteria and intrinsic enrichment can be clearly seen from 

Fig. 4.23b. 

The effect of offset distance i.e. d (as shown in Fig. 4.24a) between two parallel 

cracks of equal length (40 mm) lying on the same edge has been analyzed in this sub-

section. Figure 4.24b shows that effect of d on the stress intensity factors of lower 

crack/first crack. From the resulted presented in Fig. 4.24b, it is seen that the presence of 
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equal length upper crack lowers the value of K1  to 23.25 MPaI whereas Kil  becomes 

non-zero due to change in applied stress field for the lower crack. With the increase in 

offset distance, K1  increases continuously, while K„ shows a decreasing trend. From 

Fig. 4.24b it is clear that the results obtained by the intrinsic enrichment and diffraction 

criterion are in good agreement with each other. 

Figure 4.25a shows two parallel cracks configuration both lying on the same edge. 

The length ( a, ) of the first crack i.e. lower crack is taken as 40 mm, while the length 

( a2  ) of second crack i.e. upper crack is varied. The distance between two parallel cracks 

(d) is taken as 40 mm. The stress intensity factors have been evaluated at the tip of first 

crack. From the results presented in Fig. 4.25b, it is found that with the increase in the 

length of the second crack, K1  decreases, and K„ increases. The decrease in valtie of 

K1  for the first crack with the increase in the length of upper crack is due to the tendency 

of upper crack to become the major crack. Moreover, the results presented by diffraction 

criterion and intrinsic enrichment are quite close to each other. 

A specimen with two cracks of equal length (40 mm) lying on the opposite edges is 

considered as shown in Fig. 4.26a. The crack on left edge is kept at a= 0 with the 

horizontal, while the orientation (a ) of the crack on the right edge has been varied from 

0° to 60°. The values of stress intensity factors have been calculated at the tip of the left 

edge crack. From the results presented in Fig. 4.26b, it is observed that with the increase 

in a, K1  keeps on increasing, whereas K11  initially increases upto a=20°, and 

decreases after that. The variation in value of K1  for a 60° change in inclination is less as 

compared to the same in mechanical loading. From the results presented in Fig. 4.26b, it 

is seen that the results obtained by diffraction criterion are slightly on the higher side as 

compared to the intrinsic enrichment. However, the trend is similar in both techniques. 

125 



K1 (Difraction) 

	K11  (Difraction) _ 

x K, (Intrinsic) 

• Kll  (Intrinsic) 

.............  

O 10 	20 	30 	40 
	

50 
Crack Angle (deg) 

35 

30 

25  
0. 

20 

0_ 15 

10 

5 

Cl) 0 

.5 

Chapter 44 Simulation of Multiple Interacting Cracks 

Two parallel cracks of same length i.e. al  = a2  = 40mm lying on opposite edges 

(Fig. 4.27a) have been analyzed by varying the offset (d) between them. K, and K,1  

have been evaluated at the tip of left edge crack for various values of d . The effect of d 

on K, and Kit  is presented in Fig. 4.27b evaluated by diffraction criterion and intrinsic 

enrichment. The minimum value of K, is obtained at d = 0 , then K, increases 

continuously with the increase of d . The maximum value ofic is found at d = 20 mm 

Next, a case of collinear edge cracks have been considered. Figure 4.28a shows the 

configuration where length of both collinear cracks is increased by equal amount. The 

values of K„ and KH  are evaluated at the tip of left edge crack. A comparison of the 

results obtained by diffraction criterion and intrinsic enrichment suggests that the values 

are quite close for crack length a, > 25 mm as can be seen from Fig. 4.28b. For all values 

of crack length, K, values obtained by diffraction criterion are smaller in comparison to 

intrinsic enrichment, whereas Ku  nearly remains zero for all values of crack length. 

Again stress (o ) contour plots for different spatial and angular orientation have 

been generated for the case of thermal loading as shown in Figs. 4.29- 4.33. It is 

observed that the contour patterns for thermal loading are different from those of 

mechanical loading. 

(a) 
	

(b) 
Fig. 4.23: Problem geometry and variation of SIF with crack inclination 
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Fig. 4.24: Problem geometry and variation of SIF with crack offset 
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Fig. 4.26: Problem geometry and variation of SIF with crack inclination 
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Fig. 4.27: Problem geometry and variation of SIF with crack offset 

Fig. 4.28: Problem geometry and variation of SIF with crack length 

Fig. 4.29: Stress contours of o- yy  for different crack configurations 
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(a) 	 (b) 	 (c) 
Fig. 4.30: Stress contours of o- yy  for different crack configurations 

Fig. 4.31: Stress contours of Cr yy  for different crack configurations 

Fig. 4.32: Stress contours of o- yy  for different crack configurations 
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Fig. 4.33: Stress contours of cryy, for different crack configurations 

4.6 CRACKS IN NON-CONVEX DOMAINS 

A domain is said to be non-convex if a line joining any two points of the domain intersect 

the domain boundary. Figure 4.34 represents a non-convex domain as a line joining 

points A and B intersect the domain boundary at two points. It has been found in the 

present simulation that the full domain intrinsic enriched criterion gives misleading 

results for cracks lying in non-convex domains. This happens due to the enrichment of 

the evaluation points lying in the non-convex domain. It has been found that the use of 

enriched basis for the entire domain not only increases the computational cost of the 

method but also gives misleading results for the cracks lying in non-convex domains. 

Therefore, a new partial domain enrichment based criterion has been proposed in this 

section. 

Fig. 4.34: A non-convex domain 
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4.6.1 Full Intrinsic Enrichment Criterion 

In full intrinsic enrichment based criterion (Fleming et al., 1997), the presence of a crack 

is ensured by enrichment terms i.e. by adding extra terms in the basis function. In 

intrinsic enrichment criterion, the meshfree standard basis functions are intrinsically 

enriched by few functions obtained from near crack tip displacement field to solve the 

problems with strong discontinuities such as cracks. A regular/standard enriched basis 

function can be given as 

   

PT (x) 0 
1, 	y , Al; cos— 0  , r sin — , r sin 0 — sin 0, VT- cos 0 — sin 0 

2 	2 	2 	2  
standard enrichment terms 

basis 

(4.10) 

   

   

where, P(x) is the enriched basis function, r and 0 are the local crack tip parameters. 

The first three terms of Eq. 4.10 represent the standard basis function (1, x, y) while 

remaining four terms obtained from the near crack tip solution makes up the enrichment 

part. 

A single edge crack along with an evaluation point and local crack tip parameters (r 

0) is shown in Fig. 4.35. According to full domain enrichment (FDE) criterion, the entire 

problem domain has to be enriched, which is unnecessary from the computational time 

point of view. The other drawback of full domain enrichment criterion lies in its inability 

to solve problems involving cracks lying in non-convex domains. 

It has been found during the present simulation that the full domain intrinsic enriched 

criterion gives misleading results for cracks lying in non-convex domains. This happens 

due to the improper enrichment of the evaluation points lying in the non-convex domain. 

However, the proposed partial domain enrichment criterion eliminates this problem as 

the enrichment is made locally in the region around the crack tip. This ability of partial 
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domain enrichment (PDE) criterion to deal with the cracks present in non-convex 

domains makes it a very useful, computationally efficient and versatile technique for 

handling crack problems. 

4.6.2 Partial Domain Intrinsic Enrichment Criterion 

In the partial domain enrichment (PDE) criterion, two concentric circular regions are 

defined around a crack tip as shown in Fig. 4.36. The location of an evaluation point 

within these regions decides the degree of enrichment. Figure 4.36 represents the 

problem domain with an edge crack of length a . Two concentric circular regions are 

defined. The radius of the inner circle is equal to the crack length a , and the radius of 

outer circle is c x a 	> 1) . In the present study an optimum value of c = 2 has been 

considered after performing a parameter sensitivity analysis as discussed later. In doing 

so, three different regions namelyA,B and C are obtained. During implementation of 

this criterion, the distance of each evaluation point from the crack tip is calculated in 

order to decide its location. If the point lies within the inner most region A, then the full 

intrinsic enrichment basis is used. No enrichment is done for those evaluation points 

which lie in region C i.e. in region C , only standard linear basis is used. 

If the evaluation point lies in region B, then the approximation functions are 

constructed using both linear basis and enriched basis, and their contributions to the 

stiffness matrix are decided as: 

[K ] Total = [K ] Enriched basis x R + .K, Linear basis x (1 — R) 
	 (4.11) 

where, [K1 -.Enriched basis is the stiffness matrix obtained using enriched basis as given by Eq. 

(4.10), [K-.Linear basis is the stiffness matrix evaluated using linear basis only, R is a 

parameter which decides the contribution of each component to the stiffness matrix. The 

value of R can be numerically evaluated from the Eq. 4.12 given below: 
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(cxa —rg ) 
R= 	 (E —1)x a 

(4.12) 

where, c is a constant which decides the size of region B, a is the crack length and rg  

is the distance of an evaluation point from the crack tip. At any point in the region B 

near the boundary of region A , the contribution of enriched basis part to the total stiffness 

matrix will be maximum while that of the linear basis part will be minimum. Moving 

from region A to region B the value of R follows a linear variation and approaches zero 

on outer part of region B . Thus, the contribution of enrichment part keeps on decreasing 

as the location of evaluation point shifts from region A to region B . At the outer 

periphery of region B , the contribution of linear basis to the total stiffness matrix 

becomes maximum. This proposed criterion not only accurately simulates the cracks in 

non-convex region but also reduces the computational time. 

Evaluation/Gauss point 

a 

Crack  

Evaluation/Gauss point 
........ ..• 

..... 	\ 

a 	119 

• 

. Crack A 
.." ........ **** 
........... . .. ..** 	C  

Fig. 4.35: Full domain enrichment 	Fig. 4.36: Partial domain enrichment criterion 

4.7 RESULTS AND DISCUSSIONS 

4.7.1 Cracks lying in Convex Domain 

Two test problems of cracks lying in a convex domain have been solved by both FDE 

and PDE criteria under plane stress condition. The dimensions of the cracked body used 
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in the present study are taken as H= 200 mm, W= 100 mm, modulus of elasticity (E) = 

200 GPa, Poisson's ratio ( v ) = 0.3. A far field stress, ( cro ) = 100 MPa is applied to the 

problem. A uniform nodal density of 800 nodes along with six point Gauss quadrature for 

numerical integration is utilized for this simulation. 

In first case, two collinear edge cracks lying on two opposite edges are solved by 

both PDE and FDE criteria as shown in Fig. 4.37a. The first crack has been taken at a 

distance of H /2 i.e. 100 mm from the bottom on left edge with crack inclination a = 0° 

(a = 0° means that the crack is parallel to the x—axis), while the second crack is placed on 

right edge with crack inclination a = 0° . The lengths of both cracks are incremented by 

equal amount. The results obtained by both PDE and FDE are presented in Fig. 4.37b. 

The values of K1  and Kn. have been evaluated at the tip of left edge crack. The results 

predicted by PDE are compared with those obtained by FDE, and it is noticed that the 

results obtained by both the criteria are quite close to each other. The maximum 

difference in K, values is found to be less than 4%. The values of Kil  nearly remain zero 

for all values of crack length as can be seen in Fig. 4.37b. 

In the second case, the proposed PDE criterion is used to solve three edge crack 

problems subjected to mode-I loading under plane stress condition as shown in Fig. 

4.38a. The lengths of all three cracks are kept equal i.e. al  = 40 mm. The effect of two 

right edge cracks inclination on the left edge crack is analyzed as shown in Fig. 4.38a. 

The inclination angle a has been changed in such a way that the tips of the two right 

edge cracks move away from each other. The values of K1  and Ku  are evaluated at the 

tip of left edge crack. The results show that with increase in a , the values of K1  keeps 

on increasing, while lc remains nearly zero for all values of a . The results obtained by 

PDE and FDE are almost identical for all values of a as shown in Fig. 4.38b. 
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On the basis of above simulations, it is clearly seen that the results obtained by both 

partial domain enriched and full domain enriched criteria are in good agreement with 

each other for the cracks lying in convex domain. Therefore, a crack lying in a non-

convex domain has been analyzed next to show the superiority of the proposed partial 

domain enriched criterion. 

(a) 
	 (b) 

Fig. 4.37: Problem geometry and variation of SIF with crack length 

(a) 
	 (b) 

Fig. 4.38: Problem geometry and variation of SIF with crack inclination 
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4.7.2 Computational Cost Analysis 

As in PDE criterion, the enriched basis has been used over a small region around the 

crack tip, it is expected that there will be some reduction in computational cost as 

compared to FDE, hence the computational cost comparison of the proposed and existing 

criteria are also performed. In order to estimate the computational cost of the proposed 

criterion, the simulations are performed for an edge crack configuration as shown in Fig. 

4.37a with a crack length a, = 40 mm. The total time required in the computation of 

stiffness matrix has been calculated for both partial domain enrichment and full domain 

enrichment criteria. The computational time has been calculated for a set of nodal data. 

Figure 4.39 shows the plot of computational time with nodal density for both partial 

domain enrichment and full domain enrichment criteria. From this plot, it is clearly seen 

that for lower nodal density of nodes there is not much difference in computational time, 

but as the number of nodes in the domain increases, a significant difference in 

computational time is observed, which can be clearly seen from Fig. 4.39. Figure 4.40 

shows the plot of computational time difference between two criteria with increasing 

nodal density, which shows a steep rise in the slope of curve beyond a nodal density of 

1000 nodes. This suggests that with the increase in nodal density, the computational time 

difference between two criteria keeps on increasing. This proves the worth of proposed 

partial domain enrichment criterion from computational time point of view. 

MO 000 800 1000 1200 1400 1800 
Number of nodes 

(b) 
Fig. 4.40: Variation of computational 

time difference with nodal density 
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4.73 Cracks lying in Non-Convex Domain 

Two model problems of cracks lying in non-convex domain have been taken to show the 

strength of the proposed PDE criterion over the FDE criterion. A nodal density of 657 

nodes along with 4 point Gauss quadrature has been employed to simulate the problems. 

Figure 4.41 shows an annular metallic disc ( r,= 100 mm and ro  = 300 mm) having an 

edge crack of length a with material properties same as that of the plate considered 

earlier. This problem has been solved by both full domain intrinsic enrichment and 

partial domain enrichment criteria under plane stress condition. The values of stress 

intensity factor K1 are evaluated for different crack lengths using both PDE and FDE 

criteria. Figure 4.42 shows a comparison of results obtained by PDE and FDE criteria 

with FEM solution. It is clearly seen that for all values of crack length, the results 

obtained by PDE criterion are in good agreement with those obtained by FEM, whereas 

the results obtained by FDE are not matching with FEM solution. 

Fig. 4.41: Annular disc with an interior 
edge crack configuration 

Fig. 4.42: Variation of stress intensity 
factor IC/ with crack length 
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For a better understanding of the results obtained by both FDE and PDE criteria, the 

contours of stress and displacement field components are plotted as shown in Figs. 4.43-

4.46. Figure 4.43a shows the displacement contour of U, obtained by partial domain 

enrichment criterion, whereas Figure 4.43b shows the displacement contour obtained by 

full domain enrichment criterion. From Fig. 4.43, it can be seen that U„ is symmetric 

about x -axis. The displacement contours of U, obtained by PDE and FDE criteria are 

shown in Fig. 4.44a and Fig. 4.44b. Although, the results obtained by both criteria look 

symmetric about crack line but in FDE, it seems that a non-existent discontinuity is 

inadvertently modeled in the domain at another location as can be seen in Fig. 4.44b. 

Figure 4.45a shows the contour of stress component o-,„ over the problem domain 

using the proposed PDE criterion. This contour shows that the crack surfaces are almost 

traction free in x -direction as expected. The stress contour of cr,„ generated using FDE 

criterion shows a nearly zero stress level throughout the domain along with some 

compressive stress region opposite side of the crack as shown in Fig. 4.45b. Thus, o 

values obtained by FDE criterion are misleading and incorrect. The stress contours of 

a are plotted and analyzed using both the criteria. Figure 4.46a presents the contour of 

o using PDE criterion. The crack surfaces are almost traction free in y-direction as per 
YY 

expectation. The stress level at the crack tip is high in comparison to the rest of the 

domain, which represents stress singularity at the crack tip. Figure 4.46b shows contour 

of o obtained by FDE criterion. In this contour, the high stress zone at crack tip is 

completely missing. Moreover, a uniform stress field has been observed throughout the 

domain, which is incorrect. 
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Next, a disc with two cracks as shown in Fig. 4.47 is solved next by both FDE and 

PDE criteria. The values of mode-I stress intensity factor (K1) are evaluated at the tip of 

left edge crack for various values of al  , and are plotted in Fig. 4.48. From the results 

presented in Fig. 4.48, it can be clearly noticed that the results obtained by PDE criterion 

are in good agreement with those obtained by FEM for all values of crack length, 

whereas the results obtained by FDE are not reliable. 

Fig. 4.47: Annular disc with two edge 	Fig. 4.48: Variation of stress intensity 
cracks configuration 	 factor K1 with crack length 

From all the above comparisons and discussions, it can be concluded that the 

proposed partial domain intrinsic enrichment criterion works well for all type of crack 

problems including cracks in non-convex domain, whereas the full domain intrinsic 

enrichment criterion gives misleading and wrong results for cracks lying in non-convex 

domains. 

4.7.4 Sensitivity Analysis for domain parameter ( 

In order to select an optimum value of domain parameters , a sensitivity analysis has 

been carried out for the both the annular crack configuration shown in Fig. 4.41 and 4.47. 

The same material property and boundary conditions were used for this simulation. 
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Figure 4.49 shows the variation of stress intensity factor for different values of domain 

parameter . At first an annular disc with a single edge crack of length a = 15mm was 

analyzed by varying the value of domain parameter and the results were plotted as shown 

in Fig. 4.49a. The value of stress intensity factor obtained by PDE are quite close to the 

FEM solution for E (1.75 — 2.5), with a maximum error of 0.08 %. The next study was 

done for double crack annular disc as shown in Fig.4.47. The crack lengths were taken as 

= 6 mm and a2  = 5 mm . The value of stress intensity was calculated at the tip of crack 

having length a1 . The variation of stress intensity factor for different values of domain 

parameter is shown in Fig. 4.49b. Again, the SIF values obtained by PDE criterion are 

close to the FEM results for = (2— 2.5) with a maximum error of 0.03%. Taking in 

consideration the above two simulation for sensitivity analysis of domain parameter we 

chose an optimum value of E = 2 for all the previously simulated problems. 

(a) 	 (b) 

Fig. 4.49: Variation of stress intensity factor with domain parameter ( ) 

4.8 CONCLUSION 

In this Chapter, EFGM have been successfully employed for the simulation of multiple 

interacting cracks in both convex and non-convex domains. Two new criteria have been 
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proposed for simulating multiple interacting cracks. The first criterion is based on 

discrete contribution scheme in which the whole contribution of an evaluation point is 

imparted to only one crack while the second criterion is based on weighted contribution 

methodology in which the contribution of an evaluation point is shared among all the 

cracks present in the domain. In order to prove the worth of the proposed criteria, results 

were compared with those obtained by diffraction based multiple crack weight approach 

and FEM solution. A good agreement in results was obtained for both mechanical and 

thermal loading. The modeling capabilities and accuracy of the proposed criteria are 

amply demonstrated. Further, a partial domain intrinsic enrichment criterion was 

proposed in order to accurately simulate the cracks lying in non-convex domains. 

Numerical simulations were performed for few edge cracks lying in convex and non-

convex domains under plane stress conditions. The proposed criterion not only simulates 

the problems of non-convex domains but also reduces the computational cost of the 

EFGM. The capability of the proposed partial domain intrinsic enrichment criterion to 

handle the cracks in both convex and non-convex domain along with less computation 

time in comparison to the full domain enrichment criterion establishes its potential for 

simulating real life crack problems. 
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Chapter 5 

CRACKS UNDER THERMOELASTIC LOADING 

5.1 INTRODUCTION 

The determination of stress intensity factor for cracks subjected to thermal boundary 

condition is a topic of keen interest in fracture mechanics. The study of thermo-elastic 

fracture mechanics (Prasad and Aliabadi, 1994), which deals with the catastrophic 

propagation of existing cracks under thermal loading, is considered to be of great 

importance in the design of structures such as aerospace components, combustion 

chambers, turbines and nuclear pressure vessels. Whenever a steady heat flow is 

disturbed by the presence of a crack, there is a local intensification of thermal gradients 

accompanied by large thermal stresses in the neighborhood of crack tip (Sih, 1962). This 

may finally lead to sudden failure of the components resulting in loss of property and 

lives. Thus, the computation of stress intensity factor plays an important role in the safety 

assessment of components. 

A lot of analytical research work has been carried out on some common 

configurations such as a crack in infinite and finite domains. Sih (1962) considered the 

singularities of two dimensional thermal stresses at the crack tips in an infinite medium, 

and showed that the ti,/T- stress singularity is preserved in the thermal stress problems. 

Sekine (1974) obtained the numerical solution for thermal stress intensity factors for a 

Griffith crack in two dimensional semi-infinite body under uniform heat flow by using 

thermal dislocation concept and complex variable method. Sumi (1980) utilized the 

modified mapping collocation method to obtain the numerical solution for thermal stress 

intensity factor for Griffith crack in finite rectangular plates subjected to uniform heat 
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rK G 1{xu} = 
LGT 

o  
 

(5.4) 

where , K, = f137; DB, d12, fi = PO/  df , qx. = — f NK  iidf , 
rt  

,N K  = O [NK  N L g  

1 
D=  v 

v 
1 
0 

0 
0 

(1-012 
(for plane stress) 

1—V 2  

[ 

0 

°1,x 0 
01y  Bi  = 0 

5.2.1 Governing Equations of Thermo-elasticity 

The equations for static linear isotropic thermo-elasticity problem with small 

displacements on the domain 0 bounded by F is given as 

q = —kVT 	 (5.5) 

— Vq + Q = 0 	 (5.6) 
• 

E=V 	 (5.7) 

= fl(T To)i 	 (5.8) 

cr=C:(c—cT ) 	 (5.9) 

V•a+b= 0 	 (5.10) 

In the above equations , T is temperature, q is heat flux vector, u is displacement 

vector, c is strain tensor, a is stress tensor, and cr  thermal strain vector defined with 

respect to a reference temperature To  , /3 is thermal expansion coefficient, k is thermal 

conductivity, C is isotropic fourth order Hooks tensor, b is prescribed body force and Q 

is the prescribed heat source. I represents the second order identity tensor and V,. is the 

symmetric gradient operator on vector field. The essential and natural boundary 

conditions are given as 

u = u on F„ 	 (5.1 1 ) 
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cr.ii=i on F, 	 (5.12) 

T = T on FT 	 (5.13) 

q • n = q on rq 	 (5.14) 

where, i is the traction force, n is the unit normal with FT  U Fl  = F„ U F, =F and 

FT  n Fq  = F,, n F, = O. The crack surface within the domain is represented by F, and is 

considered traction free. 

To obtain the solution of a thermo-elastic problem, initially Eq. (5.5) and Eq. (5.6) 

are solved for thermal solution. This solution is then used in Eq. (5.7) to Eq. (5.10) to 

obtain the solution of thermo-elastic problem. Two different cases are chosen by 

assuming crack surfaces as either adiabatic or isothermal. 

5.2.2 Modeling of Adiabatic Crack 

For an adiabatic crack, both displacement and temperature fields become discontinuous 

across the crack surface and heat flux is found singular at the crack tip (Sih, 1962). The 

boundary condition for an adiabatic crack can be stated as 

❖ q.11 = 0 on I", , hence T is discontinuous across F, 

❖ a. n = 0 on F„ hence u discontinuous across r, 

Thus, the case of adiabatic crack is a simple extension of EFGM in elasticity. Here both 

temperature and displacement fields are to be enriched intrinsically. Once the 

temperature distribution is obtained, it can be employed as input for determining the 

stress and displacement fields. According to intrinsic enrichment criterion, the presence 

of a crack is ensured by enrichment terms i.e. by adding extra terms in the basis function. 

The choice of enrichment functions depends on the accuracy desired. For higher 

accuracy, one can include the full asymptotic field, while for higher speed at the cost of 
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accuracy; only VT- can be included in the basis. A full intrinsic enriched basis function 

used in the present analysis for adiabatic crack is given as 

pr (x) = 0 1, x, y ,-Nir cos-2 , n 	0 	n sin 2 . r sin-
2 	

r sin-
2 

sin r- 	0 . r cos-2 sin 0 (5.15) 
standard 

basis 
enrichment terms 

where, P(x) is the enriched basis function, r and B are the local crack tip parameters. 

The first three terms of Eq. (5.15) represent the standard basis function (1, x, y) while 

the remaining four terms obtained from the crack tip solution makes up the enrichment 

part. For modelling an adiabatic crack, the above equation is used as basis function for 

the modelling of the thermal and mechanical parts. 

5.2.3 Modelling of an Isothermal Crack 

In case of an isothermal crack, the temperature is prescribed at the crack surface. The 

basic features of an isothermal crack formulation (Duflot, 2008) are described below 

• Temperature is specified on crack surface (re ) and hence, the heat flux becomes 

discontinuous across the crack. 

• The crack surface (rc ) is considered as a part of essential boundary ( rp  ), hence 

the variational formulation changes accordingly. 

• Angular variation of singularity at the crack tip is different from a crack under 

mechanical load. 

The thermal boundary condition for an isothermal crack can be stated as T = T on . 

The imposition of essential boundary condition over the crack surface is carried out by 

Lagrange Multiplier scheme (Yagawa and Furukawa, 2000; Phu et al., 2008). For this 

148 



Chapter 5+ Cracks Under Thermoelastic Loading 

purpose, extra nodes are defined over the crack surface F„ which is a part of the 

essential boundary. The leading terms of the asymptotic expansion of temperature and 

flux near an isothermal crack are as follows (Duflot, 2008) 

Kr  T = COS 	 (5.16) ( -e2 ) 

(5.17) 
' 60 
,..„2 

COSH0Y 

L; 

si n 

k  

K T 
27r- 

The crack tip enrichment is carried out using first term of enrichment function used 

previously, hence the basis for isothermal crack in the present analysis becomes 

pT ( x)  0 
1, x, y , 	jr. cos — 

2 
standard enrichment terms 

(5.18) 

basis 

The above Eq. (5.18) is used as enrichment function for the thermal solution only while 

Eq. (5.15) is used as basis for the mechanical solution. 

5.3 EVALUATION OF STRESS INTENSITY FACTORS 

For thermo-elastic problems (Khandelwal and Kishen, 2007), the detailed procedure of 

evaluating the stress intensity factors is described below for the sake of completeness. 

5.3.1 Conservative M -Integral for Thermo-Elastic Loading 

Consider a homogeneous cracked body subjected to a two-dimensional deformation 

fields (plane strain, generalized plane stress, anti-plane strain). Suppose the body 

contains a crack of the type shown in Fig. 5.2 having flat surfaces parallel to xl  -axis. Let 

F be a path surrounding the crack with an enclosed area Ao  . 
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x2 

  

Fig. 5.2: Path r surrounding a crack with an enclosed area A°  

For an isothermal problem, the path independent J integral near a crack tip is given by 

(Wilson and Yu, 1979). 

au, 
J = (W.  - n

J
ar 

r  
(5.19) 

where, W is the strain energy density and n J  is the jth  component of outward unit 

normal to an arbitrary contour F enclosing the crack tip. For linear elastic models, it can 

be shown that W = 	/2. J-integral defined in Eq. (5.19) is not path independent for a 

thermo-elastic problem. Suppose the integral in Eq. (5.19) is taken on a closed path ro  

then the contour integral can be converted into an equivalent area integral 

= 11V(5# 
au,)n dr = f(

d147 	ago dA  
1 	,J ix Oxi 

(5.20) 

where, A0  is the area enclosed by the path Fo  and W is the strain energy density given by 

gi 
" = 2161 te1t + 4712612 +621621 + (722E22 ) (5.21) 

dW 1 	3611 	'3612 	1e21 	3622) + +612 	+621 
	

+622  dx 2 ax 	ax 	ax 	ax 

 

1 (acrIIc 	
°X 

a612 6 + 162121 c 	a62222  6 
2 	n__ 	11 	12 	21 	22 ax 611 

	

 , 	UX1 	WC1 

  

 

(5.22) 
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cal  1 	ag,, , = _0- 	./1/ 
(IT] 2 ex, 

17012 	17621 621
622 where, X— 	 E11 + 	E l2 	C21 + 	 

ax, 	ex! 	(3x, 	 ax, 

The constitutive relations for thermal loading are 

1 f 	 E r  
ell = —E 	vc722)+  PT 	 = 1—v 2 fell +v822  — (1 V) fill 

1 f 	 E 
622 =

E 
kt:r  22 — VCrl 1 ) QT 	1722 =  1  _ v 	2 [622 ven  — (1+ v)/3T] 

1 	1+ v 
612 = 821 = 2G 0-12 = 	(112 5  C712 = 1721 = 

1+V 
6.12 =E 1+ v

e21 

Substituting above constitutive relations in Eq. (5.24), we get 

E  [ae 	 6T1 	 19E12 _,_ 
X — 	

11  ±v 22 (1 + v) P 	n 	 ' — e  
1—v 2  ex, ax, 	 17x1  

621  

	

a£21  +  E  [6E22 	6 
+v —(1+v)/3-

13T
le22 

aXi 	1 — V 2  aX1 	ax, 	 aX1  

(5.23) 

(5.24) 

	

E 	 a611 	E  (6 +1,6 ) a622  E/3  [aT 	 17si2 	0821 

	

2 	 ksi V622 

	

1— v 	 2  ) ax, 	i — v 2 
1622 	11 / 

ax 

	

1 	 1 	
v  73x  glik (712 

1 	 ax, 
62! ,„ 

"4'1 

E f3T  )ag,, 	 E fiT .x6 22  Efl  (aT) 	 0812  + 	a621  
-I- 

	

= (0)1 + 	 22 	 ekk 1712 	1721 
1—  v ) ex, 	 1— v) ex 	1— v ex ] 	 17x1 	ax, 

as p  
X = ai 	+ Efl 	a'kk 	Efi )--aT  Ekk 

ax, \1— v ) 8x, 	v 6x,  

Substituting the value of X from Eq. (5.25) into Eq. (5.23), we get 

dW 	 ;aTaskk OT  
chc  = aY ax + 2 	ex 	ax 	

where 
l 	 , 	 i 	, 

 
E/3  

1 — v 

Hence, from Eq. (5.20) domain form of J -integral for thermal loading becomes 

 aT 
2 

1 h,,,,,ac

ax 	
e," k, 

—ekk) d
, 	ax, 

(5.25) 

(5.26) 
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ae 	aT — —1  113T 
a:C 

a  fl —e kk )dA = 0 
2 	1  

J, 	(T e k k ) — 2 13T  — E k  ,t ) d A = 0 
A. 2 ax 

(5.27) 

(5.28) 

J — ,,raT e k k dA  = 0 e kk  gnu JcirP F.' 	 A. 	I 
(5.29) 

Substituting the expression of J1  from Eq. (5.19), the integral on a closed path F0  

--' 	\ 
cf w — --fi Te id

If 
 —a. — n dr

° 
 + 13 1 —e

kk 
 dif o  = 0 	 (5.30) 

F., 2 	kk 	if  ax 
, 	

i 	Ao  a i 	i 

Q 	 au, 	, aT and hence, 	W — —T ekk  d1  j  — o-i j 	dr + p i— £ a  dA0  is path independent for it 
2 	n . j  ax I r 	 " t 

the case of thermal loading. 

5.3.1.1 Thermal Interaction Integral for Homogeneous Materials 

For calculating the thermal interaction integral for a homogeneous body, we consider two 

equilibrium states of a cracked body. State 1 is the actual state with given boundary 

conditions while state 2 is an auxiliary state. Superscript a represents the parameters for 

auxiliary state problem. Temperature for auxiliary state is considered zero. 

Actual state: o 	su  u, 	T 

Auxiliary state: d 	e, 	0 	J 

Defining thermal J - integral for both states 

J' 

 

(Pk; — P-1-2  T Ekk jaii  au.] 	aT 
n 	+ fekk  dAo  ax, 	ax A.., 	1  

 

r 
(5.31) 

   

auc` J 2  = (FY 51 j )— a; 	n dr 
axi  

The J -integral for the two superimposed state will be given as 

(5.32) 
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{(wi+ki7;+ 4712 )-4T(skic +4)}(51j  
au, au°  

axi  

 

Total n dF 

    

J- aT + j—(ekk  + siad,)dA, 
ax A. 

Totai 	j1 + T 2 
+ M12 

(5.33) 

(5.34) 

where, 

M = 	—ATE' M12 	 } 
12 	2 	kk 

VUa 

ax, 
au 	aT e, _df + n f—e:k  

A. aX l 

(5.35) 

In order to enhance the usefulness and convenience, the contour form of M integral in 

Eq. (5.35) can be converted to equivalent domain integral form. Figure 5.2 is modified by 

defining  an another path F1  around the crack tip such that the area enclosed within the 

closed domain is A . The two paths F and F1  are connected by two different paths C, 

and C_ defined parallel to X - axis as shown in Fig. 5.3. 

Y 

Fig. 5.3: Path independent closed contour around the crack tip 

Hence, Eq. (5.35) can be converted to a path integral on a closed path consisting  of 

F ,C_, F, and C... 

M12 cf 
g T W12 ---' ek

a 
 k ."A  1j — cry — { 2 	

DV/ 	a  au ; 

Oxi 

	a au 	niFi ds+p —ekk  dilo  

	

aX1 	A.aXI 
(5.36) 
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where, 4-  is a weight function chosen such that it has a value of unity at the inner path r , 

zero along the outer path r, , and arbitrary elsewhere. The (-) sign in Eq. (5.36) appears 

because the path r is being traversed in clockwise sense as opposed to the counter 

clockwise sense in Fig. 5.2, 

Converting the line integral into area integral using Gauss divergence theorem, we get 

—  M12 = 	
aU 7 j_ a y a NE — W12 	 T  e )8 	 d.4 + + .1.-5T  611  dA kk 

A 	aX1 	 ox j 	4, axi 

a 	au c,' 	a  au, (Di, 	,a )s 1—„,44  - 12 — Gkk 	4" 

A t3X 	 ex  1 	 41 ax 

(5.37) 

W12  may be expressed as 

1 r 
= — La i . S: + 	E 0 1 12 2  J J 

1 E  Lcr , 	
+ 1—v2 1 —1/ 2  (e +v422 )11 E 	 (612 612 + 621 621 )+ 	E (612 +veil)e22 1+v 	 1—v 2  

1 	E 	 E 
= 	el "1- 1— 	 4-  2 1.811 + vs22 )611 ela24712 +621x21 a 	+ 1 v2 	 Wel 1 + 6  2 2 ) 612 

2 	 v 	 —  

= —
1

[(3- 	
E  

,̀1 + 	
+ 1 — v 	ell + 420'12 + 8 2'7 07 21+ a22 2 	 1—v 

	p714] 

r = -1.0" 	, S i ft. + ;637' EL] 2 1.1 4.1 

a S a =a;i s y +-2 Tekk  (5.38) 

154 



Chapter 5+ Cracks Under Tnermoelastic Loading 

Substituting the value of T;V12  in Eq. (5.37), we get the following expression of interaction 

integral 

j( 
au" 	au 	 (3(7 	– OT ±M12  = cr 0 	+ cr 7 	 o-  i k 	. — dA 13 j—ax Era  dA 
aX 	ii  a, 	E r; (51./ „.. 

A 	1 	 14 4  J 	A. 	I 

a [ au; 	u, + 	cr, ax 	ax  + 	 a — lc  e 	dA 
1 aX " 

m12 = J ay 
au .a 	, –crik 	dA+ f---aT  dA+ izq au 

A. 

a[ au° au, 
where, Z 	a, 	+ 

a 	
cr – ikerOv ax . 	8x1 	"1 

A axi 	 ax;  axi 	 Ao  a X 1 

(5.39) 

(5.40) 

(5.41) 

au,' 	a au7 	au;a  a  au, 	a ea) 	+Cri• 	 0 
ax;  ax,  

	

j ax, ajCi 	aX  aX, 	
ax, ax 

 

as . acr y a 	 a, — 
ax, ax, 8x1 

crasu aCro 
;j ax, aX,  

(5.42) 

Also, 
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22 + ve11 – + VW} 42 
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E 862,  ) c211 (8812 ) 
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Hence, Z = aT ekk 	 (5.44) 

Substituting the value of Z in Eq. (5.40), we get 

au:, 	a  au, 
M 12  = ‘..cry 	+ 	ax 	 ax  

1 
+ p 

11. 

car dA+  ea  
A 

far Ea  4,114 	(5.45)  ax 	kk 
I 

kk 
1 

In its limiting case, the inner path F is taken so small that it nearly shrinks to the crack 

tip, and the enclosed area can be considered as zero i.e. AO  AI 0 . Hence, expression of 

interaction integral becomes 

( au a au  aq 
M12 = at/ ax  Crr — Cr ik eia 61,/  J 

A\ 	1 	 erX 

aT 
Ekk g dA 

axi  
(5.46) 

1 — v a kk 
E kk 

TgEkak ficrkka  

i au 	au, 	
ax 	

aT 
CSMI2 = f CY 	1- 4-1  — — Crik e tha 5  1 	dA + fi f—  Cr  kka  --- dA Y n__ 	fi -.3.... 	 _ j 	..,_ 	aX A\ 	UX 1 	e X 1 	 M C  J 	A 1 

(5.47) 

For a bi-material interface crack having the crack as well as the interface in xl  direction 

the above expression of interaction integral gets modified in a very simple way. It may be 

expressed as 

2 

	

Ea 	 a 	(31Y 
+M12 	Cif 	 — dA 	 dA J 	 11 

Ak A-1. 11/4 	"1 	u't 	 " " J 	k=1 	aX i  
(5.48) 

where, ic =1,2 represents, the two materials of the bi-material domain 

For linear-elastic solids under mixed mode loading conditions, the ./ -integral is also 

equal to the energy release rate and hence, it can be written as 
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J = ri(K; + K?, ) 

1 °  
where, H = E *  for isotropic material and 

1 
= 

1  1  E*  +/E 
2  for bi-material. 

H 2 cosh' res 

E  
— 11 —  v 2  

E 	Plane stress 

Plane strain 

Applying Eq. (5.49) to both main and auxiliary state, we get 

J 1 = 	(K(02 

H ' 

J2 	
r 

= —

H

kK (2)2  + K 1(12)1 ) 

The superimposed state can be written as 

Js = 1 k

/ 	// 	//
w 

IC

,,,(2) + (K0) + K (2) )2 I 

H 

rt 
— _ ikK;D' +102)+(xj2)2 +42)2 )+2(Ko)K(2) + K ;;) IC 
 11 	 I 1 II 

= J1 + j2 2 (v(1) v(2) + K(tif.)/(1(12)) 
Er 

Comparing Eq. (5.54) with Eq. (5.34), we get 

M 
=.____(K(0K-(2) +K (

+K (1)K(2) )
) ) 

12 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

The individual SIFs for the actual state can be obtained by judiciously choosing the 

auxiliary state (state 2). For example, if state 2 is chosen to correspond to a mode I state, 

then IC 2)  =1 and K12)  = 0 . Hence Eq. (5.55) is reduced to 

M11 = 2K
0) 	

(5.56) 
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or K(' )  = H  Mir  
2 

(5.57) 

Similarly, if state 2 is chosen to correspond to a mode II state, then 102)  = 0 and 

KT =1, then following the same considerations, we get 

K(' = H M 1I1  

2 
(5.58) 

The interaction integral evaluated from Eq. (5.47) and Eq. (5.48) can be used further for 

calculating the SIFs under various mixed mode loading conditions. 

5.4 RESULTS AND DISCUSSIONS 

Numerical results are presented for different problems in order to validate the 

applicability of EFGM in thermo-elastic problems. Plane strain condition is assumed in 

all examples due to availability of reference solutions. The boundary conditions are given 

with respect to the reference temperature O = T —To , where, T is the applied temperature 

and To  is the reference temperature. The value of Poisson's ratio is taken as 0.3. The 

problem domain has been divided into background cells, and in each background cell, six 

points Gauss quadrature (Krongauz and Belytschko, 1996) i.e. 36 Guass points have been 

used for the numerical integration (Phu et al., 2008) of the Galerkin weak form. During 

numerical integration, the number of nodes in the domain of influence varies for each 

evaluation point but an average number of nodes in the domain of influence are 

prescribed for each solved example. 

5.4.1 Edge Crack under Constant Heat Flux 

The first example considered is an edge cracked rectangular strip as shown in Fig. 5.4a 

having the dimensions H =1, W = 0.5 and a= 0.25. The problem domain has been 

discretized by taking 20 uniformly distributed nodes along x -direction and 40 nodes 

along y -direction i.e. total 800 (20x40) nodes. 
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The crack is modelled as an adiabatic crack. Known temperature is applied on right 

and left sides such that the crack is subjected to a constant heat flux (parallel to crack 

surface). In this case, heat flux and temperature remain unaffected by the presence of 

crack as can be clearly seen in Fig. 5.4b. Displacement boundary conditions are 

prescribed in such a way that the vertical displacement of top and bottom sides is 

restrained. The body is free from any external traction. A pure mode-I loading is 

generated under the prescribed thermal and mechanical boundary conditions. 

Numerical values of stress intensity factor have been evaluated by modified M-

integral, and are normalized according to the relation 

(5.59) 

where, E is the Young's modulus, v is the Poisson's ratio, /3 is the coefficient of linear 

expansion, a is the crack length and O = T — To  with T is the applied temperature and 

To  is the reference temperature. In order to validate the domain independence of the 

modified M- integral, the value of P, has been evaluated for different domains 

surrounding the crack tip. The results show a good agreement with the results available in 

literature (Duflot, 2008) with the maximum error of 0.08 percent. 

	x 
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(a) (b) 

Fig. 5.4: Edge crack under constant flux: (a) Problem geometry (b) Temperature Profile 
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5.4.2 Square Plate with Centre Crack 

Next we consider a centre crack in a square plate subjected to two different set of 

boundary conditions: 

❖ An adiabatic crack subjected to a heat flux perpendicular to the crack surface. 

❖ An isothermal crack at a temperature different from the temperatures at the 

boundary. 

Figure 5.5a shows the geometry of a square plate along with mechanical and thermal 

boundary conditions. The length parameter W =1 unit while a varies from 0.1 to 0.6 

with a step increment of 0.1. Temperatures are prescribed at the top and bottom edges of 

the plate. The applied temperatures are equal but opposite in magnitude so that a constant 

heat flux is obtained which is normal to the crack surface. 

The right and left edges are considered to be insulated so that there in no heat flow 

through them. The crack surfaces are considered adiabatic, and hence a temperature 

discontinuity is expected across them. Figure 5.5b shows the temperature profile over the 

cracked rectangular plate having an adiabatic crack at the centre. The presence of a crack 

generates a discontinuity in temperature as can be clearly seen from the figure. Moreover, 

the temperature profile has a symmetric pattern about the crack line. 
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	s. X 

  

   

(b) 

Fig. 5.5: Adiabatic Centre crack: (a) Problem geometry (b) Temperature profile 
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In the next case, a similar geometric configuration has been considered but with a 

different set of thermal boundary conditions. Figure 5.6a shows a square plate with a 

centre crack subjected to equal temperature at all four edges. Here, the crack surface is 

considered a part of essential boundary, which is also subjected to a different prescribed 

temperature. Thus, unlike the previous case, a continuous temperature profile is obtained 

across the crack surface as can be seen from Fig. 5.6b. In case of isothermal crack, the 

angular variation of singularity in temperature at the crack tip differs from the adiabatic 

case. This difference of angular variation is accounted during the selection of enrichment 

function for generating temperature profile over the domain. 

T2  

(a) 	 (b) 
Fig. 5.6: Isothermal Centre Crack: (a) Problem geometry (b) Temperature profile 

The first set of boundary condition induces a pure sliding mode (mode-II) while the 

second produces a pure opening mode (mode-I). The value of stress intensity factor (K11 ) 

( have been evaluated for different ratio of —a with a nodal density of 1152 nodes. The 
W 

value of SIF's are normalized by )6(02  – 0, )E-NiTV . Figure 5.7a shows the variation of 

normalized mode-II stress intensity factor for an adiabatic crack while Fig. 5.7b shows 

the variation of normalized mode-I stress intensity factor for an isothermal crack with 
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(different a ratio. The numerical values evaluated by EFGM in the present work are 

found to be in good agreement with the reference values (Prasad et al., 1994; Duflot, 

2008). 

Fig. 5.7: Variation of normalized stress intensity factor with crack length 

5.4.3 Rectangular Plate with Inclined Centre Crack 

A rectangular plate with an adiabatic inclined central crack is shown in Fig. 5.8a with the 

following dimensions, W =1 and H = 0.5 . The plate geometry has been discretized by 

taking 24 and 48 uniformly distributed nodes in x and y -directions respectively. The 

crack surface is considered adiabatic. The equal and opposite temperature values are 

imposed at the top and bottom edges of plate, whereas the right and left edges are 

considered insulated with no heat flow through them. The presence of the crack at the 

centre of the plate generates a discontinuity in the temperature field which is clearly 

visible in Fig. 5.8b. 

Further, a rectangular plate having an isothermal central crack is analyzed. The plate 

has been discretized using 32 uniformly distributed nodes in x -direction and 64 

uniformly distributed nodes in y -direction. Figure 5.9a shows the geometry of plate with 
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following dimensions W =1 and H = 2 . All four edges of the plate are subjected to the 

same temperature T2 , while the crack surface is prescribed a different value of 

temperature T, such that T, < . Since the crack surface is considered a part of essential 

boundary with a prescribed temperature value, the temperature profile across it remains 

continuous as can be seen from Fig. 5.9b. 

Crack inclination and presence of finite temperature gradient at the crack tip results in 

mix mode loading for the crack tips. The value of stress intensity factor K1  and Kll  have 

been evaluated for different values of crack inclination a (varying from 0 to 90 degree) 

with a constant (a/w) ratio of 0.3. The value of stress intensity factors are normalized 

by /3 O (W/1-1)EV2TV for the adiabatic crack and (T2  — TI )EV21V for the isothermal 

crack. 

Figure 5.10a shows the variation of normalised stress intensity factor for an adiabatic 

crack with different inclination angle. The value of mode-II stress intensity factor i.e. 

is found maximum for a = 0° which finally decreases to zero for a = 90° . The value of 

mode-I stress intensity factor is found maximum at a = 45° but approaches to zero for 

a= 0° and 90° as can be seen from Fig. 5.10a. Moreover, the values of K1  and Kll  are 

found in good agreement with the results available in literature (Prasad et at, 1994; 

Duflot, 2008). 

The variation of normalized stress intensity factor for an isothermal crack with 

different angular orientation is shown in Fig. 5.10b. Both mode-I and mode-II stress 

intensity factors are obtained. The value of K11  becomes maximum for a =45° and 

approaches to zero for a = 0° and 90° . The value of mode-I stress intensity factor K1  

exhibits a decreasing trend with a maximum value at a = 0° to a minimum value at 
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a = 90°. The values of K, and Kll  are quite close to the results available in literature 

Fig. 5.8: Adiabatic Inclines crack: (a) Problem geometry (b) Temperature profile 
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Fig. 5.9: Isothermal Inclines crack: (a) Problem geometry (b) Temperature profile 
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Fig. 5.10 Variation of Normalized stress intensity factor with crack inclination 
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5.4.4 Bi-Metallic Interface Cracks under Thermoelastic Loading 

The increasing demand of multifunctional materials (having good resistance to corrosion, 

wear, stiffness, thermal and chemical resistance) in mechanical, aerospace and 

biomedical applications has imparted the layered materials, a coveted place in the world 

of engineering materials. Layered materials are found in a variety of important structures 

such as adhesive joints, composite laminates, and various electronics and optic 

components. The overall mechanical behavior and response of layered systems depends 

on the mechanical properties and the fracture behavior at the interface. The abrupt 

change in properties along with weakness of interface bond is an additional source of 

failure of layered materials. Thermoelastic loading of bi-material results in the 

development of residual stresses at the interface due to mismatch in material properties. 

These residual stresses may initiate a new crack or may result in the propagation of a pre-

existing crack leading to final failure of the component. Hence, the study of bi-metallic 

interfacial crack under thermoelastic loading is of great importance. Motivated by this 

thought, and to extend the applicability of EFGM for bi-metallic interfacial cracks under 

thermoelastic loading, few problems have been tackled in this subsection. 

5.4.1.1 Bi-material Body with Edge Interface Cracks 

A bi-material body containing interface cracks is shown in Fig. 5.11. The two materials 

are assumed to be linear elastic, homogeneous and isotropic. This problem has been 

solved analytically by Brown and Erdogan, (1968) and numerically by Ikeda and Sun, 

(2001). Plane strain conditions were assumed. The same material properties as used by 

Ikeda and Sun (2001) are employed in this work (Table 5.1). To produce a 'semi infinite' 

body, the dimensions are taken such that W = 200 b and H = 400 b with b =10 mm 
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o is the value of stress which can be evaluated as o = 
k1 k2  

go-A/32772k - fl1mik2) where, 

Table 5.1: Material properties 

Material E (GPa) v fl x 10-6  

1 100 0.3 0.1 

2 1000 0.3 1.0 

Chapter 54 Cracks Under Thermoelastic Loading 

Thermal conductivity for both materials are kl  = k2  = 100 W/m °C . In this problem, a 

constant heat flux, q =105  W/m2  is applied in the negative X2-direction. The crack faces 

are considered to be non-insulated which causes a linear temperature distribution. A 

uniform nodal density of 1250 nodes has been used to discretize the problem domain. 

The numerical results obtained using thermal interaction integral for bi-material 

problems are normalized as F = KW 1(crjzTb), where, W and b are length parameter, 

4,u1 p2  cosh lie' a()  = 	  and 	v l+ 
Pi + P2k1+ ii2+ 1-11 1c2 	

77 = 
 

fc represents the shear modulus of the respective material. 

The values of stress intensity factors obtained by analytical (Sills and Daley, 2004) 

approach are P, = 0.4885 and PH  = 0.1516 whereas the values obtained from the 

present study are found to be Pr  = 0.4852 and PH  = 0.1412 . 

Fig. 5.11: Bi-material body with interface crack 
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5.4.1.2 Bi-material Body with Central Interface Cracks 

Next, a central crack is taken along the interface of an infinite body composed of two 

linear isotropic materials as shown in Fig. 5.12. The body is subjected to a constant heat 

flux q =105  W/m 2  in the negative X2-direction. The values of thermal conductivity are 

chosen to be same i.e. kl  = k2  =100 Whn °C . In this case, the crack surfaces are assumed 

to be insulated. The material properties are taken same as given in Table 5.1. So as to 

approach infinite dimensions, the height and width of the body are taken to be 

H =W = 40a with a =1 mm . Plane strain condition is assumed to prevail over the body. 

The insulation of crack causes a temperature gradient in the neighborhood of the crack 

tip. Again a uniform nodal density of 1250 nodes is employed to discretize the domain. 

The numerical results obtained by thermal interaction integral for bi-material problems 

are normalized as 

= KW I cr“ a , 

where, W and a are length parameter, and 

2p1 p215qa C r 	 
ki k2  cosh 

/81 qi k2(itii K2 	1122)-1-  fl2 r12 ki(1-12 K1 	/-11)  
where, r-  = 	 ; p denotes the shear modulus, K is 

(PIK2 + P2 )(P2ici + Pt ) 

the Kolosov constant, q is the heat flux, k is the thermal conductivity of the material, 

is the oscillatory parameter for bi-material. In the present study, the values of normalized 

stress intensity factors are found to be P, = —4.130 and Fri  = —0.232 , which are in good 

agreement with the reference solution (Sills and Dolev, 2004) i.e. P, = —4.132 and 

—0.227 . 
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Fig. 5.12: Bi-material body with a finite crack along the interface 

5.4.1.3 Bi-material Brazilian Disc with Central Interface Cracks 

A bi-material Brazilian disc specimen composed of epoxy and glass is taken as illustrated 

in Fig. 5.13. This problem is solved by Ashkenazi (1999) employing weight functions 

under plane strain condition. The geometric parameters chosen for this study are taken as 

alR= 0.5 with radius of disc R= 20 mm. The material properties are presented in Table 

5.2. The disc is subjected to a constant temperature change of — 5 °C . The stress intensity 

factors are evaluated using the expression of thermal interaction integral for bi-material. 

The numerical values of stress intensity factor are normalized as F = KLIo- 71F-ia, with 

L= a and 0. = (1 — v1 )fl1 — 	V2 )132  X AT , where v is the Poisson's ratio, a is the 
(1/E2  —1/E1 ) 

coefficient of linear expansion, AT denotes the change in temperature and 

E = El(1—v 2 ) for plane strain condition. A comparison of results obtained by EFGM as 

presented in Table 5.3 shows a good agreement with the previous studies. 
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Table 5.2: Brazilian disc Properties 

Material E (GPa) v /3 x 104  

Glass 73 0.22 8 

Epoxy 2.9 0.29 73 

Chapter 5+ Cracks Under Thermoelastic Loading 

Table 5.3: Normalized SIF's for Brazilian disc 

Method ;4i '1.....2 

EFGM (Present) -0.3523 0.2342 

Weight Function -0.3654 0.2455 

FEM -0.3466 0.2389 

5.5 CONCLUSION 

In this Chapter, element free Galerkin method has been extended to solve thermo-elastic 

fracture problems in homogeneous and non-homogeneous materials (bi-materials). A 

thermo-elastic fracture problem is decoupled into two separate problems. At first, the 

temperature distribution is obtained by solving the heat conduction problem. The 

temperature field obtained from the solution of the thermal problem is then employed as 

input for the mechanical problem to determine the displacement and stress fields. The 

disturbances due to the presence of the crack results in a non-smooth temperature 

distribution, and induces a singularity in the heat flux at the crack tip. Thermal as well as 

mechanical problems are enriched intrinsically in order to represent the discontinuous 
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temperature, heat flux, displacement and traction across the crack surfaces. Both 

isothermal and adiabatic conditions are assumed at the crack surfaces. The 

conservative M -integral technique has been modified in order to extract the mixed mode 

stress intensity factor for thermo-elastic fracture mechanics problems. The present 

analysis establishes the EFGM as a robust tool for the analysis of fracture problems 

subjected to thermoelastic loading. 
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Chapter 6 

CRACKS IN FUNCTIONALLY GRADED MATERIALS 

6.1 INTRODUCTION 

Many structures and components are subjected to adverse thermo-mechanical 

environments. Quite often these components are required to fulfill widely different 

requirements at different locations in the same component. This has fuelled the 

development of a new class of composite materials called functionally graded materials 

(FGMs). The FGM concept originated in 1984 in Japan during a space-plane project, in 

the form of a proposed thermal barrier material capable of withstanding a surface 

temperature of 2000 K and a temperature gradient of 1000 K across a cross section <10 

mm. FGMs were initially designed as thermal barrier materials for aerospace structural 

components. They are now being developed for general use as structural components in 

extremely high temperature environments. FGMs are characterized by gradual spatial 

variation in composition, microstructure and material properties of each component. The 

goal of producing such engineered material systems is to utilize the strength of each 

material at specific locations. The significant proportions of an FGM contain the pure 

form of each component, and the need for compromise is eliminated by properly utilizing 

the properties of each component. For example, the toughness of a metal can be mated 

with the refractoriness of a ceramic, without any compromise in the toughness of the 

metal side or the refractoriness of the ceramic side. Ideally, functionally graded materials 

are continuously graded leading to the reduction of residual stresses developed at the 

interface of bi-material systems developed for the same purpose. However, in practice 

FGMs are often composed of a number of layers in which the volume fraction of second 
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phase increases with addition of each layer. As a result the interface stresses gets 

redistributed across multiple layers. These advantages have led to application of FGMs in 

many areas including civil and mechanical engineering, biomechanics and optics etc. 

FGMs offer great promise in applications where the operating conditions are quite 

severe, e.g. wear-resistant linings for handling large heavy abrasive ore particles, rocket 

heat shields, heat exchanger tubes, thermoelectric generators, heat-engine components, 

plasma facings for fusion reactors, piezoelectric devices, graded refractive index 

materials, thermionic converters, dental and other implants, fire retardant doors, solid 

oxide fuel cell and electrically insulating metal/ceramic joints. FGMs are also ideal for 

minimizing the thermo-mechanical mismatch in metal-ceramic bonds. 

6.2 FRACTURE IN FUNCTIONALLY GRADED MATERIALS 

The microstructure of functionally graded materials is generally heterogeneous in nature 

and the dominant type of failure is crack initiation and growth from inclusions. The 

extent to which constituent material properties and microstructure of FGMs can be 

altered remains an area of keen interest. This situation has lead to a lot of analytical and 

computational research in the area of fracture behavior of FGMs. Analytical work on 

FGMs goes back to 1960s with modeling of soil as a non-homogeneous material by 

Gibson (1967). Crack problems for non-homogeneous materials subjected to mechanical 

loading were solved by Atkinson and List (1978), Dhaliwal and Singh (1978) and Delale 

and Erdogan (1983). The asymptotic crack tip stress field in FGMs is found to possess 

the square root singularity as that of homogeneous material (Delale and Erdogan, 1983). 

The thermal stress intensity factors for non-homogeneous solids were computed by Jim 

and Noda (1993) assuming an exponential variation of thermal properties. Gu and Asaro 

(1997) analyzed a semi-infinite crack in a strip of FGM. They obtained the SIFs for 

commonly used fracture specimens. An equivalent domain integral technique was 
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presented by Gu et al. (1999) for calculating the crack tip fields of functionally graded 

materials. Anlas et al. (2000) evaluated the stress intensity factors in FGMs using finite 

element method, where the material property variation is achieved by assigning different 

homogeneous elastic properties to each element. Both experimental and FEM analyses 

were carried out by Marur and Tippur (2000) for a crack lying normal to elastic gradient. 

Kim and Paulin (2002) evaluated the mixed-mode fracture parameters in FGMs using 

FEM. 

From above literature review, it is observed that most of the numerical work in FGMs 

is performed using FEM. However, due to inherent structure of FEM and other mesh 

based methods, the analysis of crack growth problems becomes cumbersome. The only 

way to cope with this problem is to remesh the domain again and again so as to ensure 

the coincidence of crack geometry with the FEM mesh. This is quite a tedious and time 

consuming job and often leads to numerical complexities and degradation in solution 

accuracy. Thereby, in recent years, Rao and Rahman (2003) used the EFGM to solve the 

problems involving cracks in isotropic functionally graded materials. They proposed two 

new interaction integrals formulations for the analysis of fracture in FGMs. Thermo-

mechanical analysis of functionally graded plates using EFGM was performed by Dai et 

al. (2005). So far, very little work has been performed in FGMs using EFGM. Thus, 

motivated by the wide applicability and advantages of FGMs over conventional 

materials, the present Chapter extends the application of EFGM in functionally graded 

materials under mechanicaUthermal loads. 

6.3 EFGM FORMULATION FOR FUNCTIONALLY GRADED MATERIALS 

In EFGM, the field variable u is approximated by moving least square approximation 

function (x), which is given as 
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U 
h (X) E 0, (x)., 	 (6.1) 

Consider a two-dimensional domain with small displacements on the domain Si bounded 

by F (Fig. 6.1). It is assumed that the material properties such as modulus of elasticity 

E , Poisson's ratio v thermal conductivity, k and coefficient of thermal expansion, 13 

vary as follows: 

E E(x i ,x 2 ) = E(x) 	 (6.2) 

v = v (x i  , x 2 ) = v(x) 
	 (6.3) 

k = k(x l , x 2 ) = k(x) 
	 (6.4) 

= fl(x1,x2)= Q(x) 
	 (6.5) 

The governing equilibrium equations are given as 

V.6 + b = 0 in SI 
	 (6.6) 

with the following essential and natural boundary conditions: 

u=u on F„ 	 (6.7) 

a.h-=i on F, 	 (6.8) 

Fig. 6.1: Domain along with essential and natural boundary conditions 

where, a is the stress tensor which is defined as a = D(x) [s — ET ] , D(x) is the material 

property matrix, c is the strain vector, c, = /1 AT I is the thermal strain vector, b is the 
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body force vector, u is the displacement vector, t is the traction force and ri is the unit 

normal. 

By enforcing essential boundary conditions using Lagrange multiplier approach, and 

applying variational principle, the following discrete equations are obtained from Eq. 

(6.1): 

[

K G Sul if 
G T  011X = lq 

(6.9) 

where, K r = 937; DB, an 	 (6.10) 

f1= 	dr„ qK  = -INK dr„ 	 (6.11) 

[-N, 0]  
L0 N K  _1 9  

N K = (6.12) 

D(x) = 
1 

1 — v (x)2 U 	0 0— v(x))/ 

E(x)  [v 
2 

I .0 	1 	0  
v (x) 	0 

1. 

[1 + v(x)][0 — 2v (x)).1 
E(x)  „ v(x) 	1— v(x) 	0 

[ — v (x) 	v (x) 

0 	0 (1— 2v(x))/ 2 
(for plane strain) 	(6.13) 

(for plane stress) 

In functionally graded materials, the elasticity matrix D(x) is spatially dependent because 

of functionally graded material properties. The effect of material gradation on stiffness 

matrix K can be incorporated directly by calculating the material properties at Gauss 

points lying over the domain 

6.4 THERMAL INTERACTION INTEGRAL FOR FGMs 

Similar to monolithic materials, the J-integral approach can also be used to compute the 

stress intensities for FGMs; however, it must account for material gradients. Generally, 

during formulation of interaction integral, terms such as derivatives of the elastic 

constants are discarded. For a monolithic material, the derivatives of elastic constants are 
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zero, and have no contribution in calculation of stress intensities. However, for the case 

of a continuously graded material, these terms are non-zero and must be retained in order 

to maintain the path independence of the J-integral. Several formulation of interaction 

integral for non-homogeneous materials have been developed (Sladek and Sladek, 1997; 

Rao, 2003; Paulino and Kim, 2004). In the present work, thermal interaction integral will 

be used to account for both mechanical/thermal loading. For a homogenous cracked 

body, the path independent J-integral (Wilson and Yu, 1979) is given as 

= Wgi  — 
au, 

axi "Jai 
(6.14) 

X2  

 

  

Fig. 6.2: Path F surrounding a crack with an enclosed area A 

where, W is the strain energy density and n1  is the j -th component of the outward unit 

vector normal to an arbitrary contour F enclosing the crack tip (Fig. 6.2). For linear 

elastic materials subjected to thermal loads 

= cru641"  = a (E t  —BATS 
2 	'1 g  

(6.15) 

where 6:7 denotes the mechanical part of strain, e„ the total strain, /3 = /3(x) the 

coefficient of thermal expansion that varies with spatial coordinates, AT = T — To  with 

To  is the reference temperature and rS,1  is the Kronecker delta. 

In order to enhance its usefulness, the contour integral in Eq. (6.14) can be converted 

into an equivalent domain form using divergence theorem (Rice, 1968). 
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f (0.  au, wal ag dA+ ara j j aaxu, Ayij j dA  
A 	axl 

(6.16) 

where, A is the area inside the contour and ,y is a weight function chosen such that it 

has a value unity at the crack tip, zero along the boundary of the domain, and arbitrary 

elsewhere. 

For calculating the interaction integral, two equilibrium states of a cracked body are 

considered. State 1 corresponds to be the actual state with the given boundary conditions 

while state 2 is defined to be an auxiliary state. The superposition of two states leads to 

another equilibrium state S for which the domain form of the J-integral (Amit and Kim, 

2008) is given as 

JS = f (ai  + 0-.1")(141  +U a" )-1  (Cr&  +CTiausk  )e: + e,r)Su lCi,i  dA + i 	u 	,1 	i,1 2 

f ((To- ± cr;" )(uo + u7 )— (crik + air ) (s.: + e 7)5  if} ti dA 1 
j 

The Eq. (6.17) can be decomposed into 

JS = j1 +  JaUX 

where, the interaction integral M is given by 

A 

(6.17) 

(6.18) 

PUS 
uil  

1 r + crauxu — — 	+ 	s ,7 )5  , y 	i, 1  2  
dA + 

j
{ Cr ij  t i :7 + CS i faux  Li 0  

A 

1 
'1c6 iar +Cr iauxk 617)811 q dA (6.19) 

Based on non-equilibrium formulation for FGMs, we have 

0'0 E7 = C 	ka; our = 6k! 	 = 6ij E ij  

Again rewriting Eq. (6.19) as M = M 1  + M 2  

aux  aUX 
= Juju! 

+ au  u,.1 — aikerSij k, dA + Ito- le" + ce"tt — a. e'S 	dA (6.20) t,1 	 t1 	rk dr 1 j 
A 	 A 
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The last term of integral M 2  in Eq. (6.20) is expressed as 

1(cr ikc ik 	j) = (Cry 6. Jima) 1 = (C ijklL 	
_

C 	f.ff,- 	C ijkl Cikni ij ,1 

" 	7"7 	 our 
	 (6.21C ficoe £:±CY ey, +crue, 	 )  

Substituting Eq. (6.21) into M 2  of Eq. (6.20) leads to 

M2 = f(Cr  j,j 147,ux11 +cruu,7 +arjuo +aru,, j )•Y 

	

+ ar + s. 07: dA 	 (6.22) 

A 

Using compatibility conditions (actual and auxiliary) and equilibrium condition (actual) 

i.e. a, = 0, Eq. (6.22) can be simplified as 

M2  = fto-477 uz., —C uwek; e +o-  (u,,1, — 6,7,)}4" dA 	 (6.23) 

A 

aux . m e aux + Cr:1" (13 AT +fl(AT)1 )541 )4.dA “ — C 	kl - ij  
A 

Therefore, the resulting interaction integral (M) becomes 

M = floneux.14 —C Eklm  Ef-lux ijkl ,1 	crr 	+ fl(AT),, )(5,./ } dA 
A 

(6.24) 

jtau 4"x + Q.  u"xu,,— Q,k£kdA 	 (6.25) 

where, the term cruuT appears due to non-equilibrium of auxiliary stress fields. 

6.4.1 Evaluation of Stress Intensity Factors 

For linear elastic solid under mixed-mode loading conditions, J-integral is also equal to 

the energy release rate and hence, J -integral can be written as 

J. 
E s 	" 

( K 2 +10 ) 
	

(6.26) 
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1E  Plane strain 
where, E* = 1 – v 2  

E 	Plane stress 

Applying Eq. (6.26) to states 1(actual), state 2(auxiliary), and the superimposed state S 

gives 

Jo), 1 
*  
(K (02 K G),) 

E 

p ia) = 1  (K(aux)1  K(aux)2 ) 

E*  

(6.27) 

(6.28) 

and 

j(S) = 	[W I)  Klaux) y +(4)+Kroyi • 

= * 
kw' + lq)2 )+ (K;1)2  + Kr' )+ 2(1q )  K°14)̀ )  + IC: )Kr ) )] 	(6.29) 

2 ./(') + — ( IC/(1) /C(a1")  K ,(111 )1( ial")) 
E*  

By comparing Eq. (6.18) with Eq. (6.29), 

17 M = -E•  VC(1)K(')  + K K( fail I 	I (6.30) 

The individual SIFs for the actual state can be obtained by judiciously choosing the 

auxiliary state (state 2). For example, if state 2 (auxiliary state) is chosen in mode-I i.e. 

mode-I near tip displacement and stress field is chosen as the auxiliary state, 

then K,F)  =I and K;12)  = 0. Hence, Eq. (6.30) can be reduced to 

M(1'') 210)  
E ,*0  

(6.31) 

Or 

M(1.1) Et*rp 10 )  = 
2 

(6.32) 

= 
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Similarly, if state 2 is chosen to be in mode-II, i.e. the mode-II near tip displacement and 

stress field is chosen as the auxiliary state, then K, 2)  = 0 and KT = 1. Following the 

similar considerations, where E;',/, is calculated using Eq.6.2. 

Thus, numerical evaluation of interaction integral from Eq. (6.25) allows us to calculate 

the mixed mode stress intensity factors. 

6.5 RESULTS AND DISCUSSIONS 

Some example problems have been solved to show the capability of EFGM by modeling 

the fracture mechanics problems in FGMs. 

6.5.1 Edge Crack Plate Subjected to Mode-I Mechanical Loading 

An edge crack plate of dimensions, H = 8 units, W =1 unit and a crack of length of a is 

considered as shown in Fig. 6.3. The elastic modulus of the FGM plate is assumed to 

follow an exponential gradation as given by the function E(xl ) = El  exp(ri x1  / W) , 

0 x1  W with E1  = E(0) , E2  = E(W) and 17 = ln(E2 /E1  ). A uniform nodal 

distribution is used for the simulation, and six point Gauss quadrature is used in each cell. 

The results are obtained under plane strain condition with E1  =1 unit, v = 0.3 , 

E2 /E, = exp(77) = 0.1, 0.2,5,10 with a varying ratio of a/W = 0.2, 0.3,0.4,0.5, 0.6 . The 

values of mode-I stress intensity factor are normalized according to the relation 

= r--1 	 Figure 6.4a shows the variation of normalized stress intensity factor (ICI )  
Cro  

with varying (a/W) ratio for E2 /E1  = 0.1 . Figure 6.4b shows the variation of modulus of 

elasticity (E). The results obtained by EFGM exhibit a good agreement with available 

solutions in Ref.! (Erdogen & Wu, 1997) and in Ref.2 (Chen et al., 2000). Similar results 
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are obtained by varying the E2 /E, ratio as shown in Fig. 6.5a-6.7a along with the 

corresponding spatial variation of modulus of elasticity (E) as shown in Fig. 6.5b-6.7b. 
at, 

Fig. 6.3: Problem geometry along with dimensions and boundary conditions 
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Fig. 6.4: SIF variation and modulus of elasticity gradation for E2 /E1  = 0.1 
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Fig. 6.7: SIF variation and modulus of elasticity gradation for E2  /E1  =10 

6.5.2 Edge Crack Plate Subjected to Thermal Loading 

6.5.2.1 FGM with linear gradation of material properties 

Next, an edge crack plate (W =1 unit and H = 4 units) subjected to thermal load is 

considered. The material properties of plate follow a linear variation from left edge to 

right edge. The geometrical dimensions of plate along with boundary conditions are 

shown in Fig. 6.8a along with its boundary conditions. Temperature is prescribed on left 

and right edges, while the top and bottom edges are considered to be insulated. A 
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uniform nodal distribution of 784 nodes along with six point Gauss quadrature in each 

cell is used to simulate the problem. A plane strain condition is assumed over the 

problem domain. The values of mode-1 stress intensity factors i.e. K1  are calculated 

using domain based interaction integral approach. The following numerical data is used 

in the present analysis: El  =1 x105  units, E2  = 0.5 x105  units, v1  = 0.3, v2  = 0.35 , 

=1.67 x10-5 /°C units, )62  =1x10-5 /°C units, 7; =0°C , T2  =1°C. 

A plot of steady state temperature distribution is shown in Fig. 6.8b. This plot shows 

that the temperature distribution remains unaffected by the presence of the crack as the 

heat flux is parallel to the crack surface. The prescribed boundary conditions generate a 

pure mode-I loading as can be clearly seen from displaced nodal positions in Fig. 6.9a. 

The values of mode-I stress intensity factor i.e. K1  have been calculated for different 

( a  ratio as shown in Fig. 6.9b. The results obtained by EFGM are found to be in good 
W 

agreement with those obtained by FEM (Amit and Kim, 2008). 
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Fig. 6.8: Problem geometry and temperature distribution over the domain 
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Fig. 6.9: Displaced nodal positions and variation of stress intensity factor 

6.5.2.2 FGM with hyperbolic-tangent gradation of material properties 

An edge cracked functionally graded plate with material properties variation defined by 

hyperbolic tangent function is analyzed in this sub-section. Figure 6.10a shows the 

dimensions ( W = 2 units and H = 4 units) of FGM plate along with an edge crack of 

length a. The top and bottom edges are constraint in the y -direction. The problem 

domain is subjected to a steady state thermal loading having T1  = —10°C and T2  =0°C . 

The top and bottom edges are assumed to be insulated so that there is no flow of heat flux 

across them. A uniform arrangement of 1250 nodes along with six point Guass 

quadrature has been used to simulate the problem under plane strain conditions. The 

gradation of Young's modulus (E), Poisson's ratio (v), thermal expansion coefficient (,8) 

is defined by hyperbolic tangent function as follows: 

E(X) =  E 
2 
+ E+ 	

2 
E — E+ 	1"7.- 	tanhp (X, + ci)] (6.34) 

v(X1 ) = v- 	
2  
+ v+  + v 	

2 
 v+  tanh[3(X, + c/A 	 (6.35) 
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,(3(X,),(3(X,) +  i) 	2 
fl+  fl 

2 
r  tank [S 	+ d)1 

k(X1)=
k- 

2 
+4+ 	— 

2 
k+ 	tat-th[a (X + d)] 

(6.36) 

(6.37) 

where, (E- ,E+)= (1,3), 	(1,- , v+). (0.3,0.1), 	(13- ,fl+). (0.01,0.03), (1c- ,k+)= (1,3) 
S =15, S = 5 , d = 0 . 

Figure 6.10b shows the temperature distribution over the domain under steady state 

condition. In order to visualize the gradation in material properties, Eq. (6.34) - Eq. 

(6.37) are plotted across the problem domain as shown in Fig. 6.11-6.12. The magnitude 

of material properties exhibits a sharp jump at the middle of domain. 
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(a) 	 (b) 

Fig. 6.10: Problem geometry and temperature distribution over the domain 
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Fig. 6.11: Gradation of coefficient of thermal expansion and condictivity 
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(b) 

Fig. 6.12: Gradation of modulus of elasticity and Poisson's ratio 

Under the prescribed thermal loading and boundary conditions, the edge crack exhibits a 

mode-I displacement as can be clearly observed from the displaced nodal positions 

shown in Fig. 6.13a. The values of mode-I stress intensity factor i.e. K /  has been 

Wcalculated for different ( -
w 

ratio as shown in Fig. 6.13b. Again, the EFGM results are 

found in good agreement with the FEM solution (Amit and Kim, 2008). The decrease in 

value of K /  with the increase in crack length is due to the gradation in material 

properties. 
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Fig. 6.13: Displaced nodal positions and variation of stress intensity factor 
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6.5.3 Crack in Functionally Graded Thermal Barrier Coating (TBC) 

Thermal barrier coating (TBC) can be defined as a highly advanced material system 

usually applied to metallic surfaces operating under elevated temperatures such as gas 

turbine blades, aero engines, ducting and nozzles, turbocharger casing, cutting tools etc. 

TBCs are characterized by their low thermal conductivity, bearing a large temperature 

gradient when exposed to heat flow. Modem engineering and industrial applications not 

only require a restriction on heat transfer but also prevent the surface from the damaging 

effect of oxidation and corrosion. Since, no single coating composition is able to satisfy 

all the desired requirements, the idea of coating system came into existence. Functionally 

graded thermal barrier coating (FTBC) introduces more reliability and reduces interfacial 

thermal stress between metallic and ceramic layers. FTBC provides less inter-layer 

thermal stress since the gradient will vary smoothly across the coating thickness. 

Discontinuities in thermal expansion coefficients between the bond coat and substrate 

also gets reduced. Each FTBC layer will act as a TBC layer with various material 

compositions thereby it gives more life cycles than that of TBC layers of same thickness 

under the same loading. 

Applications of functionally graded thermal barrier coating at elevated temperature 

along with corrosive environment make them highly susceptible for crack initiation. In 

the present problem, an edge crack in FTBC under thermal loading has been modeled and 

analyzed using EFGM. Figure 6.14 shows a functionally graded thermal barrier coating 

deposited on the bond coat and the metallic substrate. The FGM coating consist of 

100% Zirconium-Yttria at X1  = 0 and 100% nickel-chromium-aluminum-Zirconium 

(NiCrAIY) bond coat at X1  = TVI  The metallic substrate is made up of nickel based 
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super-alloy. The material properties of different constituents of thermal barrier coating 

are listed in Table 6.1. The dimensions of FGM thermal barrier coating along with 

thermal loading and boundary conditions are shown in Fig. 6.14. Initially the system is 

assumed to be at a uniform temperature (To  = 1000°C). 

Table 6.1: Properties of TBC constituents 

Material Property Zirconia-Yttria 
(FGM) 

Bond Coat 
NiCrA1Y 

Metallic Substrate 
(Ni) 

E (GPa) 27.6 137.9 175.8 
v 0.25 0.27 0.25 

/3('C-1) 10.01x10 15.16x10-6  13.91 x 10-6  
k(W/mK) 1 25 7 

Fig. 6.14: A crack in a functionally graded thermal barrier coating 

The top and bottom edges of the TBC system are assumed to be insulated. Application of 

temperature boundary conditions drives the system to a steady state condition with 

temperature T1  = 0.2T0  and T2  = 0.5T, at left and right edges respectively, The gradation 

of Young's modulus (E), Poisson's ratio (v) and thermal expansion coefficient (16) for the 

FGM coating region (0 < X <1) is defined by the relations given below: 
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E(X i ). k 	(Eb, — Ec )X 2  (6.38) 

v(X, ) = vc  + (vbc  — vc  )X (6.39) 

AX,) = fic+Gobc —  AV( (6.40) 

k(X,). kc  +(kb,— kc )X 2  (6.41) 

where, subscript (c) symbolizes FGM coating and subscript (bc) denotes the bond coat. 

The gradation of material properties along the width of TBC has been shown in Fig. 

6.15-6.16. Along the width of FGM coating i.e. W the modulus of elasticity of the 

material exhibits a quadratic variation (Fig. 6.15a) while Poisson's ratio and coefficient of 

thermal expansion vary linearly, as shown in Fig. 6.15b and Fig. 6.16a respectively. The 

variation of thermal conductivity is plotted across the width (W) of the thermal barrier 

coating as shown in Fig. 6.16b. From Fig. 6.16b, it can be clearly observed that upto the 

thickness of FGM coating (W1 ), the thermal conductivity follows a quadratic variation, 

and its value reaches to a maximum at the bond coat layer. At the interface of bond coat 

and metal substrate, there is a sharp decline in the magnitude of the thermal conductivity 

and further its value remains constant for the remaining thickness of metal substrate. 

(a) 

Fig. 6.15: Gradation of modulus of elasticity and Poisson's ratio across the 
width (V) of the domain 
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Fig. 6.16: Gradation of coefficient of thermal expansion and conductivity 

across the width (V) of the domain 

A uniform nodal density of 1250 nodes along with six point Guass quadrature has been 

used to simulate the problem under plane strain conditions. Temperature field remains 

unaffected by the presence of crack as shown in Fig. 6.17 as the heat flux is parallel to 

the crack surface. Figure 6.18a shows the variation of normalized temperature i.e. 

(T(X, ) 
along the width of TBC assembly. A quadratic variation of thermal 

conductivity along the width of FGM layer is quite justified by a resulting quadratic 

variation of temperature as can be clearly seen from Fig. 6.18a. The values of mode-I 

(stress intensity factor i.e. K1  is calculated for different 
W  
—a  ratio as shown in Fig. 

6.18b. A good agreement in numerical results with the FEM solution (Amit and Kim, 

2008) demonstrates the modeling capability of EFGM. In order to visualize the presence 

of crack, the stress/strain field contours have been generated for the functionally graded 

TBC assembly for a ratio of a/W = 0.4 as shown in Fig. 6.19-6.20. 

To  
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Fig. 6.19: Stress/strain contours along x-direction over the cracked TBC domain 
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• 
Fig. 6.17: Temperature distribution over the cracked TBC assembly 

Fig. 6.18: Variation of normalized temperature and stress intensity factor 
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Fig. 6.20: Stress/strain contours along y-direction over the cracked TBC domain 

6.6 CONCLUSION 

The present chapter demonstrates the crack modeling capability of EFGM in functionally 

graded materials. The values of stress intensity factors were calculated using a modified 

form of interaction integral which accounts for the gradation of material properties in 

FGMs. The crack problems were modeled and analyzed under both mechanical and 

thermal loading conditions. A comparison has been made among the SIF values predicted 

by EFGM and available reference solutions generated analytically or numerically. On the 

basis of analysis performed in this chapter, it was found that the EFGM is an efficient 

method for modeling cracks in functionally graded materials, which reflects its potential 

to solve a variety of practical fracture problems. 
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Chapter 7 

ELASTO-PLASTIC FRACTURE ANALYSIS 

7.1 INTRODUCTION 

The development of linear elastic fracture mechanics (LEFM) is associated with the 

study of crack growth and fracture under elastic conditions. Most of the early work on 

fracture was applicable only to linear elastic materials under quasi-static conditions. The 

basic assumption of LEFM is that the plastic zone is confined to a very small region 

surrounding the crack tip. However, such conditions are met only under plane strain 

fracture of high strength metallic materials and fracture of brittle materials such as 

ceramic, rocks, ice, etc. The theory of linear elastic fracture predicts a state of infinite 

stress at the crack tip which is not possible for a real material. Later on, subsequent 

advances in fracture research modeled other types of material behavior. Elastic-plastic 

fracture mechanics is applicable for materials that exhibit time-independent, non-linear 

behavior i.e. plastic deformation. The extension of theory of fracture mechanics to 

include elasto-plastic materials is based on deformation theory of plasticity. In the 

elastic-plastic materials, the size of plastic zone exceeds the small scale yielding 

approximation. In the present work, deformation theory of plasticity has been used to 

model the elasto-plastic material behavior by means of a generalized Ramberg-Osgood 

relation. 

So far, the developments in meshfree methods have mainly focused on fracture of 

linear elastic materials. Research in elastoplastic materials using meshfree methods has 

not been widespread. It has been received some attention during last decade. Xu and 

Saigal (1998) proposed an EFGM based formulation for quasi-static and dynamic crack 
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growth in elastoplastic material undergoing small scale yielding. Rao and Rahman (2004) 

proposed an enriched meshfree EFGM for fracture analysis in two-dimensional solids. 

Kargarnovin et al. (2004) extended the EFGM for elasto-plastic stress analysis using 

incremental formulation of plastic deformation. Dynamic meshfree methods were 

formulated by Chen et al. (2002) using local and non-local field theories for the 

simulation of two crack problems. Liu et al. (2006) suggested an EFG-FE coupling 

procedure to simulate an elasto-plastic contact problem. Belinha and Dinis (2006) carried 

out the elasto-plastic analysis of plates using EFGM. 

Motivated by the wide applicability of EFGM and to establish it as a robust tool for 

solving problems of fracture mechanics the present chapter focuses on simulating the 

elastoplastic analysis of a two dimensional cracked body. Rao and Rahman (2004) 

analyzed the cracks in non-linear elastic materials using enriched basis function. They 

employed the Newton-Raphson iterative scheme to solve the non-linear constitutive 

equations. In the present work, a constitutive relation for incremental plasticity have 

been used which accounts for non-linear material behavior using Ramberg-Osgood 

material model. For a material exhibiting power law hardening, the nature of dominant 

stress singularity near the crack tip is described by Hutchinson-Rice-Rosengren (HRR) 

relations. Enriched basis function (Rao and Rahman, 2004) is employed to capture the 

HRR stress singularity. 

7.2 ELASTO-PLASTIC CONSTITUTIVE EQUATIONS 

Consider a solid undergoing elastic-plastic deformation, then the plastic potential 

function can be treated as a function of stresses (au ) and work hardening parameter (k) . 

Mathematically it can be expressed as (Hsu, 1986) 

F = F (o-  , 	 (7.1) 
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For a Von-Mises type material, the plastic potential (yield function) for an isotropic 

strain hardening material has the form 

F = J2  — as  = J2  — 3 ay 2 	1  2 	 (7.2) 

where, a„ ay  are respectively the yield strength of material in pure shear and uniaxial 

tension, J2  is the second deviatoric stress invariant. 

The second invariant of stress J2  can also be expressed as 
1 	

a' 
	 (7.3) 

where, o represents the deviatoric stresses given by 

= o- y  — 6m8J 	 (7.4) 

al 1 + a22 633  is the mean stress, and gu  is the Kronecker delta. 
3 

Taking the partial derivative of deviatoric stress invariant (J2  ), we get 

3J2 	 =a! 	 (7.5) 

During small incremental plastic deformation in solids, equilibrium conditions requires 

that the plastic energy variation must be stationary dF = 0 (Hsu, 1986), hence 

differentiating Eq. (7.2) by chain rule of partial differentiation, we obtain 

dF =  aJ2  da, 2  a-  aa„Y  arc = 0 	 (7.6) 
sa„ 3 ak 

or 

o- a 2 —0-, 	Y dk = 0 	 (7.7) 
3 ak 

For a plane stress problem, = o-  = o  = 0 and Eq. (7.7) reduces to 

2 	a 0-, 
+ criydo- y +2crxydo-xy  = — ay  „ dk 

3 ak 
(7.8) 
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Let us assume that 

ada x  + o-  ; do-  y  + 2o-  xydo-  xy  = Ad), 	 (7.9) 

ao- - where, AdA 2 = —a y 	dk , &I. being a proportionality factor 
3 Ok 

(7.10) 

According to the additive decomposition of strains, the total strain may be written as 

deu  = 	+ de 	 (7.11) 

where, cis; is the increment in elastic strain, and de,' is the increment in plastic strain. 

de: is proportional to the corresponding deviotric stress component, i.e. 

de: = 	 (7.12) 

hence, for a plane stress problem 

de x  = (du x  — v do-  y )+ o-; d.Z. 	 (7.13) 

1 de y  = —E-kda y  — v da x )+ a; &I, 	 (7.14) 

dy xy  = 2(1+ v)  du x), +2o-'4.1. 	 (7.15) 

Rearranging Eq. (7.13) and Eq. (7.14), we have 

1 
E 

 v2  de x  + vde
Y  = 
	do-x  +(a: + vo-y )d.1, 	 (7.16) 

1—v E 2  de, +vde, = 	da y  +(o-; + 	 (7.17) 

Simplifying and rearranging Eq. (7.15) — Eq. (7.17), we get 

dcrx (1 
E 

 2 	+ yds ), )— Sicbt 
— v 

(7.18) 

da y  =( i_Ev 	2  )(de ), VdS x  S2  Cu 
	 (7.19) 
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dux  = 	 E  d yx  - S3d2 
Y  2(1+ v) 	Y  

where, 

=  E 	+ vo-' 
1- v2 x 	Y  

S2  =  E (cr + vcr',) 
1 - v2 Y  

S3  = 	cfx  
1+ v Y  

(7.20) 

(7.21) 

(7.22) 

(7.23) 

Substituting the values of do-  x  , do-  y  and dozy  from Eq. (7.18) — Eq. (7.20) into Eq. 

(7.9), we get 

Ad/1= 	E  o-lx kdes  + v de y 	E  )+ 	o-
Y
' (de

Y 
 + v de x )- 	+ (s'S2  + 2o-  xyS )dA. + 

1-V 2 	 1 - V 2   

E 	o-x  
1+v Y

dy 
 xY  

(7.24) 

(A+ cs'SI + 6fyS2  + 26 xyS3 )d), = Si de x  + S2dey  + S3dyxy 	 (7.25) 

(7.26) 

where, So  = A+ a'S, + 6yS2  +2o-xyS3 	 (7.27) 

Substituting the value of dl, from Eq. (7.26) into Eq. (7.18), Eq. (7.19) and Eq. (7.20), 

we get 

	

E 	 5?dex  + S I S2de y  + S1S3dyxy  
do-  x  = 	2  vies  + vc/sy ) 	  

	

1-v 	 So  

do- 	
E 	 SIS2dex  + S:ds-  y  +S2S3d7xy  = 	 Y 1  _ v  2 kdsY + vdex ) 

So  

(7.28) 

(7.29) 

E 	S, S3  dex  + S2  S3  de y  + S;dy-xy  
dcrxy  = 

2(1 + v) dr xY 
(7.30) 

dA = S
ide x  + S2de y  + S3dyxy  

So  
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1 v 0 
v 1 0 

1 — v 0 0 	 

S1 sis2  sis3  
S; S2  S3  

SYM — S23  
Cep = 

 1 V 2 
E 1 (7. 33) 
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Eq. (7.28), Eq. (7.29), and Eq. (7.30) can be further written in matrix form as 

-dux 
 

do- y  
do- xy_ 

0 

	

1 	0 
1 — v 0 	0 

dex  
de y  
dy xy  

1 --s-- 
S12 	S, S2 	Si  S3  

— 	SZ 	S2  S3  

SYM 	S32 - 

de x  
de y  

_dyxy 
(7.31) 

1—v 2  

2 

de r  
=Cep  (7.32) 

dy i 

dyxy  

du, 
do- y  
do- xy 

where, Cep  denotes the elastoplastic stiffness matrix and is given by 

2 

In the elasto-plastic stiffness matrix Cep  , S, , S2  and S3  are known in terms of a . 

contains an yet undetermined term A. From Eq. (7.10), 

	

1 2 	ao- A=--a, 	dk 	 (7.34) 

	

d/1.3 	ak 

The work hardening parameter dk may be expressed as (Hsu, 1986) 

d12 = o-,1 dsp 	 (7.35) 

Using Eq. (7.12), 

dk = 	o cr dA=2J 2dA, 	 (7.36) 

Hence, A=-4 a J 2 
aay 

3 Y 2 ak 

For uniaxial loading in the plastic regime, 

direction of the applied stress de p  then, 

values in Eq. (7.37), 

(7.37) 

the stress is ay and the strain increment is the 

2 
clic= Y de p and J.,. = crY 	 . Substituting these J2 3 
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A= —
4
a 

2 day 
9 Y deP  

(7.38) 

day is the plastic modulus( H') of the stress-strain curve in uniaxial tension. Hence, 
de p  

A = 41  cry 2 H' 
9 ' 

(7.39) 

H' can be measured experimentally. However, H' can be obtained using Ramberg-

Osgood relation, which may be written as 

— = 	ce(—cr  
So ar aY 

(7.40) 

where, ay  denotes the yield strength, a' and n' are the Ramberg-Osgood material 

constants. From Eq. (7.40), we get 

de 1 n' 0-( 1-n') (w-1) 
Y  	= 

do-  E 
(7.41) 

Hence, H' = 	  
E 
	 (7.42) nr 

" r 0
_(1-n') (n' -1) 

7.3 EVALUATION OF J- INTEGRAL 

For a homogenous cracked body, the path independent J-integral is given as (Wilson and 

Yu, 1979) 

( 
J = 	W81j — 

au , n  dr  (7.43) 

Fig. 7.1: Path r' surrounding a crack with an enclosed area A 
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where, W is the strain energy density and ni  is the j -th component of the outward unit 

vector normal to an arbitrary contour F enclosing the crack tip (Fig. 7.1). The Ramberg-

Osgood power law describing the non-linear uniaxial stress-strain curve is given by 

n,  

—  
C = + a 
£0 	 Y 6Y 

(7.44) 

where ay is the reference stress (yield strength), co  = ay /E is the reference strain, E is 

the Young's modulus, a' is a material constant and n' the hardening exponent. For 

n' =1 Eq. (7.44) represents a linear elastic material. For multiaxial stress state, the 

Ramberg-Osgood law can be generalized with respect to strain rate partition as 

e..=e+ Y 1.1 e Y 

+. 	1
E 

 v .s 	1 2v .- o where L I = 	 .. + 	
3E 	kk ij 

(7.45) 

(7.46) 

n'-1 
3 	o- 

and 	= —a 	:so 	 (7.47) 
2E o- y 

are the elastic and plastic components of strain rate, v is the Poisson ratio, 

if = 	 C  kk 8,, /3 is the deviatoric stress rate, o-, = V3so so  /2 is the Von-Mises stress 

and I/  is the Kronecker delta. If elastic strain rates are negligible compared with plastic 

strain rates (i.e., i.„/ •=1Z.,i; ) then the asymptotic crack tip fields under mode-I loading are 

(Hutchinson, 1968; Rice and Rosengren 1968) 

a o = 60  [ 	
J  

a'o-yeolnr 	
Ei y  0,n ) r 	 (7.48) 
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°(a'o-yEnInr 	
0 ui  = alE r  	W;(0,  (7.50) 

where, r and 0 are polar coordinates with origin at the crack tip, In  is a dimensionless 

constant that depends on n' . 	-en  and 	are dimensionless angular function of 0 

and n' . Eq. (7.48) — Eq. (7.50) represents the well known HRR field under mode-I 

loading conditions. The same HRR field also exists in mixed-mode fracture but in that 

case the dimensionless angular functions also depend on the magnitude of mode-mixity 

(Pan and Shih, 1992). 

7.4 ENRICHED BASIS FUNCTION FOR ELASTO-PLASTIC FRACTURE 

The enrichment of basis function in EFGM is a convenient way of capturing the stress 

singularity at the crack tip. The basis function used to study the cracks under linear 

elastic fracture mechanics (LEFM) regime are not appropriate for the simulation of 

cracks under elasto-plastic conditions as the singularity of crack-tip fields is different 

than in LEFM. As HRR displacement and stress fields are known for elasto-plastic 

simulation, thereby enriched basis function can be developed for elasto-plastic fracture 

problems by enriching the standard basis function using information from elasto-plastic 

HRR solution. The enriched basis function developed by Rao and Rahman (2004) is used 

in the present study, which is given as 

   

PT (x)  
1 	1 	i 0 — 0 	0  0 

1, x, y ,r n' +1  cos —, rn'+' sin—, r " sin sin 0,r n' +I  cossin/9 s___.,,_.., 	2 	2 	2 	 2 
Standard basis 	 Enrichment terms 

(7.51) 

   

   

where r and 0 are the local crack tip parameters of evaluation point having (x, y) the 

spatial coordinates and n' is the Ramberg-Osgood parameter for the material. It should 

be noted that the linear terms in the basis function are not related to crack tip fields, but 

are required for linear completeness of EFGM solution. 
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7.5 RESULTS AND DISCUSSIONS 

A two dimensional edge crack body along with its geometry and boundary conditions is 

shown in Fig. 7.2. The dimensions of the cracked body used in the present study are 

taken as H = 200 mm, W = 100 mm, a= 40 mm. The bottom edge has been constrained 

along y -direction, and an external far field stress is applied at the top edge. A regular 

nodal distribution of 648 nodes has been considered in all simulations. Six point Gauss 

quadrature has been used for the numerical integration of the Galerkin weak form. A 

plane stress condition has been assumed. 

0-0  

Fig. 7.2: Problem geometry along with boundary conditions 

The material selected for the present study has a modulus of elasticity ( E ) = 206 

GPa, Yield strength (6p )=154 MPa. Poisson's ratio (v ) = 0.3. A far field stress, (co  ) = 

100 MPa is applied as an external load. Fifty load steps are taken with each load step of 

size 2 MPa. J-integral has been calculated for different values of Ramberg-Osgood 

parameters (n', a') along with the enriched basis function. Figure 7.3 shows the variation 

of J- integral with applied stress. In order to validate the formulation, results have been 

simulated for different values of Ramberg-Osgood parameter (n', a'). The EFGM results 

were found in good agreement with FEM solutions obtained using ABAQUS software. 
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Fig. 7.3: J vs. stress plots for different values of n' and a' 

The present elasto-plastic analysis is found to be quiet sensitive to the domain scaling 

parameter (d) . Initially the results were obtained with the scaling parameter 

dina„=1.5. For linear elastic analysis din., =1.5 was giving accurate results. For elasto-

plastic problems d90  =1.5 was not adequate and the results did not match with the FEM 

results. Hence in order to optimize the value of the scaling parameter, a sensitivity 

analysis is also carried out as discussed in next subsection. 

7.5.1 Sensitivity Analysis for scaling parameter (d max ) 

In order to optimize the value of scaling parameter 	for elasto-plastic simulations, a 

sensitivity analysis is performed. An edge crack problem (as shown in Fig. 7.2) is 
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considered having same material properties and boundary conditions as discussed in 

previous section. The value of Ramberg-Osgood parameter for this study is taken as 

n' = 4 and a' = 3 . Figure 7.4a shows the variation of J -integral values for different 

magnitude of scaling parameter d.. For d.< 2.5 , the EFGM results shows quite 

large deviation from the FEM results. Similarly, Fig. 7.4b shows the variation of nodal 

displacement (of a specific node) for different values of scaling parameterd„.„. On the 

basis of results presented in Fig. 7.4a and Fig. 7.4b, an optimum value of d. is found to 

be 2.75 by taking into consideration both convergence and computational time. The 

results presented in Fig. 7.3 have been obtained for dmax = 2.75 only. 

cox  

(a) 	 (b) 

Fig. 7.4: Variation of J and displacement with scaling parameter d. 

7.6 CONCLUSION 

In this chapter, EFGM has been employed for the simulation of elasto-plastic fracture 

problem. A new formulation based on incremental plasticity has been suggested and 

implemented in order to model the non-linear material response. The enriched basis. 

function successfully captured the Hutchinson-Rice-Rosengren (HRR) stress singularity 

at the crack tip and the results were found in good agreement with the FEM solutions. It 

is_ concluded that scaling parameter dm»  should be larger in the elasto-plastic analysis_ as. 

compared to elastic analysis. 
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Chapter 8 

QUASI-STATIC CRACK GROWTH MODELING 

8.1 INTRODUCTION 

The modeling of crack growth in a general direction plays an important role in predicting 

the life of engineering components and structures. Crack growth modeling remains one 

of the most challenging and interesting problem for computational mechanics. In the 

past, finite element method and boundary element method were mostly used for the 

modeling of crack growth. The limitations and disadvantages associated with these two 

methods restricted their application to a variety of problems. 

The major drawback associated with finite element method is the remeshing scheme 

which must ensure the coincidence of element boundaries with moving discontinuities. 

The remeshing process requires a considerable amount of human effort and can be a 

source of numerical error. Moreover, the remeshing process involves interpolation of 

field variable such as displacement, stresses and strains to a new set of nodes and 

quadrature points. The use of various projection techniques for this interpolation process 

may further add to computational error. 

The boundary element method has reduced the meshing process to a minimum as 

only the crack surface needs to be remeshed. However, the requirement of Green's 

function (Rice, 1968) for the underlying partial differential equation restricts the scope of 

boundary element method for solving a wide variety of problems. In addition to this 

drawback, the equations resulting from boundary element method are not sparse or 

banded, and tend to become ill-conditioned for large systems. This further hinders its 

application to engineering problems. 
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Meshfree methods have proven to be a powerful alternative in simulating growing 

cracks. A common feature of all these meshfree methods is that they do not require any 

fixed nodal connectivity information i.e. mesh. The ability of meshfree methods to 

simulate arbitrary crack growth without any remeshing makes them a promising 

alternative to the traditional approaches. Belytschko et al. (1995a) implemented EFGM 

for the modeling of crack growth in static problems. Xu and Saigal (1998a) further 

improved the formulation for stable crack growth in elastic solids. Tabbara and Stone 

(1998) developed a computational EFGM for quasi-static mixed-mode fracture problem. 

Ventura et al. (2001) proposed a new level set method for the description of a 

propagating crack in EFGM. Duflot (2006) proposed a meshfree method with enriched 

weight function for three-dimensional crack propagation. Li and Simonsen (2007) used 

the EFGM to simulate ductile crack growth and propagation under finite deformation and 

large scale yielding conditions. In general, the crack grows in an arbitrary direction under 

mixed-mode loading so a numerical method must be able to track the crack trajectory at 

each step. Since, the basis function used in the intrinsic enriched EFGM is capable of 

modeling the discontinuity along a straight crack only, some suitable techniques are 

required to model the crack growth for a kinked crack. Various methods have been 

proposed for the modeling of kinked cracks (Fleming et al., 1997; Belytschko and Black, 

1999; Duflot, 2006). 

In the present Chapter, a new intrinsic enriched EFGM criterion for the modeling of 

kinked cracks has been proposed and implemented. In order to validate the proposed 

criterion, some kinked cracks problems in two-dimensional domain have been modeled. 

Next, the proposed criterion is employed for simulating the quasi-static crack growth in 

two-dimensional domain subjected to mixed-mode loading. 
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8.2 MODELING OF KINKED CRACKS 

In intrinsic enriched EFGM, functions from the near-tip asymptotic displacement fields 

are included in the basis for the simulation of fracture mechanics problems. An enriched 

basis used in the present work is given as 

[
P71(10 = 1, X, y, VT- cos --e 

2 ' 
Irr sin --e 

2 ' 	2 
VT- sin —G  sin 0, VT- cos 2  —6  sin 0 	 (8.1) 

where, r denote the distance of an evaluation point from the crack tip, and 0 is the angle 

measured in local coordinate system as shown in Fig. 8.1. 

Fig. 8.1: Local coordinate system (x, v) at crack 

The basis function given by Eq. (8.1) predicts a discontinuity along 0 = ±,r from the 

crack line. However, for a kinked crack modeling, mapping is required to align the field 

discontinuity with actual crack segments. The proposed criterion for modeling a kinked 

crack is based on the modification in angular position of an evaluation point/node. The 

angular position of an evaluation point/node is modified in such a way that all points in 

the vicinity of the crack segments approximate the discontinuity along 0 = ±-71-  . Figure 

&2 shows a kinked crack with segments AB and BC. The local coordinate system is 

aligned along the leading segment i.e. BC with the origin at the tip. Consider an 

evaluation point P located in the vicinity of crack. Let, the angular orientation of point P 
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be a . In order to represent the discontinuity along the crack line, the angular orientation 

a should be mapped to a new coordinate system such that a —> ± r . The angular 

orientation of all the evaluation points are mapped to a new coordinate system in such a 

way that the evaluation points lying near the crack line exhibits a discontinuity in 

displacement fields. 

A 

Line of discontinuity 

Fig. 8.2: Mapping scheme for kinked crack 

The first step involved in the process of angular mapping is the division of domain 

into different regions. Figure 8.3 shows a kinked crack having segments AB, BC where 

C is the crack tip of the leading crack segment. A local coordinate system is fixed at the 

tip of leading crack. Normals are drawn at a common point to both crack segments, i.e. 

point B , so as to discretize the region above the crack. Thus, BQ and BP become normal 

to crack segments AB and BC respectively. Another normal is drawn at the tip of leading 

crack BC. The bisector of angle ABC is drawn. so_that the region below the crack gets 

divided into two parts. In this way, the entire region near the crack segments gets divided 

into six different regions. A similar process is involved for cracks having multiple kinks. 

The next step involves mapped new location of-an evaluation point. This is done by some 

geometrical and mathematical calculations. Finally, a suitable mathematical mapping (for 

angular orientation) is applied depending upon the spatial location of an evaluation point. 
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Fig. 8:3: Domain description for modeling kinked crack 

For the region in front of the tip of leading crack i.e. region 1, all the angular 

measurements are made with respect to local coordinate axis in such a way that 

60'.8 	for --1±<6)<-7--. 	 (8.2) 
2 	2 

For regions 2,3,4,5 

t.  

the angle is modified as 

above the crack 

given below 

= 
- 71' + sin-1(1-1  above the crack 

(8.3) 
} 

where, h' is the normal distance between the evaluation point/node and the crack 

segment lying in that region, r is the distance between an evaluation point and the tip of 

leading crack i.e. point C. For the points lying in shaded region Q113P, the distance h' is 

measured between an evaluation point and the point representing kink i.e. point B . In 

209 



Chapter 84 Quasi-Static Crack Growth Modeling 

doing so, a transformation is made as the point approaches to the crack line, h' —> 0 then 

0' —> ±7r , and thus a clear discontinuity is obtained along the crack line. 

Finally, the standard enriched basis function is written in terms of modified angle 0' 

as follows 

PT  (x) = 
 1, x, y 0 cos -- , 

2 
0 	n 	0 	 0 

r sin — , -V r sin—sing , -V r cos— sin 0 
2 	2 	 2 

(8.4) 

standard 
basis 

enrichment terms 

where, the first three terms represent the standard basis function (1, x, y) while 

remaining four terms make the enrichment part for a kinked crack. 

8.3 QUASI-STATIC FRACTURE 

Quasi-static fracture and fatigue are two forms of crack growth. Fatigue refers to crack 

propagation under cyclic loading in cracked bodies where the SIF is below the fracture 

toughness, while in case of quasi-static fracture the crack propagation takes place when 

SIF is above the fracture toughness. Crack growth may be classified as stable and 

unstable depending upon the variation of stress intensity factor with crack growth. In 

stable fracture, the stress intensity factor decreases as the crack propagates and finally a 

crack is arrested when the SIF falls below the fracture toughness whereas in case of 

unstable fracture, the stress intensity factor increases with the crack length and crack 

continue to propagate until final failure occurs. 

The simulation of quasi-static crack growth consists of evaluating equivalent stress 

intensity factor, and if it exceeds the fracture toughness of the material then the crack is 

extended by some finite length Aa in a particular direction found out by a suitable crack 

growth criterion. The step size Aa is a user defined parameter, and should be chosen 
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small enough to get an accurate crack growth path. The stress intensity factors are 

recalculated for the new crack geometry, and the crack is again extended in a new 

direction. This phenomenon continues until either the crack gets arrested or final failure 

takes place. 

8.3.1 Crack Growth Direction 

The propagation of crack requires a suitable criterion for a crack growth. The commonly 

used criteria are: the maximum principle stress criterion, the maximum energy release 

rate criterion, and the minimum strain energy density criterion. In the present work, the 

maximum principle stress criterion (Erdogan and Sih, 1963) is used which states that a 

crack will grow in a direction normal to the maximum stress (coo  ). For a general mixed- 

mode state of stress, the stresses at the crack tip are given by (Wang, 1996). 

   

{C 00} 	1  
COS(1 

Cr  re 	V271-  r 	2 

2 0 3 
2 

K cos — — —K sin 0 
2 	" 

2 
1 	1 

" 
—K, sin 0 +-

2
K (3 cos —1) 

-  

(8.5) 

  

  

The direction of maximum hoop stress is the orientation for which the shear stress 

vanishes (Erdogan and Sih, 1963), i.e. 

01 1 	—
2 

a cos ( I  K 

	

sin 0 + —
2 	

(3 cos 	— 01= —
2 

IC 	1 

leads to the condition 

—1)= 0 

0 (8.6) 

(8.7) 

r0 
271-  r 

The solution of Eq. (8.6) 

K, sin g. +K 11 (3cos0,,, 

which can be solved to get the crack propagation angle (9,7, ) 
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K + 
K„ 

12 
+8 = 2 tan- —1 

4 
(8.8) 

For this value of 0 , 668  is a principle stress field thus, ao  may be written in terms of 

equivalent mode-I stress intensity factor (./Cieg  ) which provides a single measure of the 

mixed-mode stress field. 

bee   
	2  ) 3 	cos ) [K , cos 	KH  sin 0 ] = ee — 	

1 
 V22-t-  r 	2 	2 	2 

K 

V 2ir r 
(8.9) 

where, 

0 K leg  = K cos3 H1— 3K„ cos 2 2 sin(--e2"1 	 (8.10) 
2  

8.4 RESULTS AND DISCUSSIONS 

• 8.4.1 Kinked Crack Modeling 

In order to justify the modeling capability and effectiveness of the proposed criterion, 

few kinked crack problems are simulated. Figure 8.4 shows the dimensions of the 

cracked body having H = 200 mm, W = 100 mm. The bottom edge has been constrained 

along y -direction, and an external far field stress is applied at the top edge. A regular 

nodal distribution of 648 nodes has been considered in all simulations. Six point Gauss 

quadrature has been used for the numerical integration of the Galerkin weak form. A 

plane stress condition has been assumed. The material properties for this study are taken 

as: modulus of elasticity (E) = 200 GPa, Poisson's ratio ( v ) = 0.3. A far field stress, 

(ac ) = 100 MPa is applied at the top edge. Three different crack configurations having 

two, three and four kinked segments have been modeled as shown in Fig. 8.4a, b, c 

respectively. In order to have a clear visualization of near tip stress fields, stress contours 
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have been generated for different crack configurations as shown in Figs. 8.5-8.8. The 

modeling capability of proposed criterion has been verified for different crack 

configurations with different spatial and angular orientation. 

cro  

(a) 
	

(b) 
	

(c) 

Fig. 8.4: Kinked crack geometry along with boundary conditions 
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Fig. 8.5: Stress contours for kinked cracks: (a) cr yy  ; (b) 
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Fig. 8.6: Stress contours for kinked cracks: (a) 	; (b) 
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Fig. 8.7: Stress contours for kinked cracks: (a) cr yy ; (b) a' 
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Fig. 8.8: Stress contours for kinked cracks: (a) 	; (b) cr 

The stress contours generated for different kinked crack configurations reveal the 

effective modeling capability of the proposed criterion. In the next section the proposed 

criterion is used for modeling quasi-static crack propagation in two dimensional domains 

subjected to mixed-mode loading conditions. 

8.4.2 Quasi-Static Crack Growth 

In this sub-section, five different model problems of quasi-static crack growth have been 

simulated by the proposed criterion for modeling the kinked cracks. All problems are 

subjected to mixed-mode loading either due to crack orientation or applied loading. 

Although, small crack segments predict a crack path more accurately than larger ones but 

we have taken crack segment of 10 mm for quasi-static crack growth with initial crack 

length of 20 mm. The crack propagation angle 9,n  and equivalent mode-I stress intensity 

factor Kiel  are calculated using Eq. (8.8) and Eq. (8.10) respectively. 

Figure 8.9a shows the geometrical configuration of . a plate with an inclined crack 

subjected to tensile stress of 100 MPa at the top edge. The crack located on the left edge 
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has an initial inclination of 40° with the horizontal. The crack propagation path obtained 

for this case is shown in Fig. 8.9a, and the variation of equivalent mode-I stress intensity 

factor ( ICkg  ) with crack length is plotted in Fig. 8.9b. From the crack growth path shown 

in Fig. 8.9a, it is observed that although initially the crack is under mixed mode loading 

but it propagates in such a way that it attains a mode-I loading condition. Another 

problem with same loading and boundary condition is shown in Fig. 8.10a. The geometry 

of this model problem is similar to that of Fig. 8.9a except an additional crack is 

introduced on the right edge. The crack path looks quite similar to previous model except 

some minor change in the crack growth direction due to the presence of the right edge 

crack. A similar trend in the values of equivalent mode-I SIF is observed in Fig. 8.10b. 

From the results presented in Fig. 8.9b and 8.10b, it is seen that the value of equivalent 

stress intensity factor keeps on increasing with the increase in crack length. 

Figure 8.11a shows the geometrical configuration of a plate having zero degree crack 

inclination with the horizontal. The plate is subjected to mixed mode loading as shown in 

Fig. 8.11a with a tensile stress (60 ) of 50 MPa and shear stress (z0 ) of 25 MPa at the top 

edge. Figure 8.11a shows that as crack grows, it deviates from its initial path, and tries to 

come under mode-I loading. The variation of equivalent mode-I intensity factor with 

crack length is plotted in Fig. 8.11b. Another model problem with same loading and 

boundary condition is shown in Fig. 8.12a. The only difference is that a right edge crack 

is introduced. The crack path nearly remains same except minor change in crack growth 

direction due to the presence of right edge crack. The trend of equivalent mode-I SIF as 

shown in Fig. 8.12b is found to be almost similar to that of Fig. 8.11b. However, a 

significant difference in the values of equivalent SIF is noticed. From the results 
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presented in Fig. 8.11b and 8.12b, it is seen that the values of equivalent stress intensity 

factor keeps on increasing with the increase in crack length. 

Finally, the crack growth of an edge crack in the presence of a hole is investigated. 

The geometry of the plate along with loading and boundary conditions is shown in Fig. 

8.13a. The crack is located on the left edge with an inclination of 40° with the horizontal. 

The crack propagation path for this problem is shown in Fig. 8.13a. From the crack 

growth path, it can be seen that the-crack propagates in such a way that it gets arrested at 

the hole. From Fig. 8.13b, it is seen that the equivalent mode-I SIF keeps on increasing 

with the increase in crack length, and a sudden rise in the value of SIF is found near the 

hole. 

On the basis of these simulations, it can be seen that the crack growth problems in a 

general direction under mixed-mode loading can also be easily simulated by the proposed 

criterion. 
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Fig. 8.9: (a) Crack growth path (b) Equivalent mode-I stress intensity factor vs. crack length 
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Fig. 8.10: (a) Crack growth path (b) Equivalent mode-I stress intensity factor vs. crack length 
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Fig. 8.11: (a) Crack growth path (b) Equivalent mode-I stress intensity factor vs. crack length 
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Chapter 8+ Quasi-Static Crack Growth Modeling 

8.5 CONCLUSION 

This Chapter presents the application of EFGM in quasi-static crack growth under 

mixed-mode loading. Since, the modeling of quasi-static crack growth requires crack 

tracking at each incremental step hence a new criterion for modeling the kinked cracks 

has been proposed. The proposed criterion has been used to simulate quasi-static crack 

growth in two-dimensional domains subjected to mixed-mode loading. The modeling 

capability of the proposed criterion has been demonstrated by simulating kinked crack 

problems. The ease of modeling quasi-static crack growth highlights the value of 

proposed criterion. Moreover, the crack growth simulation also demonstrates the 

modeling capability of EFGM without any requirement of re-meshing. 
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Chapter 9 

CONCLUSIONS AND FUTURE SCOPE 

9.1 CONCLUSIONS 

A review of literature indicates that the meshfree methods are interesting complement to 

the traditional finite element method. The advantages of meshfree methods include the 

requirement of nodal data for geometry description, smooth shape functions for higher 

order approximations, various choices for the enrichment such as weight function, basis 

function and approximation function, and simple integration schemes. These 

characteristics together proffer the potential of meshfree methods in simplifying adaptive 

analysis, and crack growth modeling. 

In the present work, a widely used meshfree method known as EFGM was employed 

and extended to study and analyze a variety of fracture mechanics problems under 

thermal/mechanical loads. 

A comparison of various crack modeling techniques unveiled the advantages of 

intrinsic enrichment criterion. Owing to its accuracy, convergence, implementation issues 

and ease in modifications, it was further exploited to accomplish the present research 

work. 

Weak discontinuities in EFGM were modeled using various criteria. The analysis 

shows that the Jump function approach is the best among the available techniques for the 

modeling of material discontinuities. A new criterion for modeling bi-material interfacial 

cracks using Jump function has been proposed. The proposed criterion involves only four 

enrichment functions in the basis instead of the usual twelve. This reduces the 

computational cost of the method significantly. 
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Chapter 9+ Conclusions and Future Scope 

For modeling multiple interacting cracks, a new intrinsic enrichment criterion has 

been proposed and implemented. The proposed criterion performed well for nearly equal 

size cracks. However, most of the practical situations demand modeling unequal size 

multiple cracks; hence a new weighted enrichment criterion was further established to 

accomplish this task. 

The existing intrinsic enrichment criterion failed to simulate the cracks lying in non-

convex domains so a partial domain enrichment criterion was used to solve such 

problems. This criterion was found to be quiet effective in simulating the cracks lying in 

non-convex domains. Moreover, it also reduces the computational cost of EFGM. 

The EFGM was extended further for the simulation of two-dimensional thermo-

elastic fracture problems in isotropic materials. Both temperature and mechanical fields 

were enriched intrinsically in order to represent the discontinuous temperature and 

displacement fields across the crack surface. Some example problems of fracture in 

functionally graded materials were solved by EFGM under thermal/mechanical loads. 

The simulation of elastoplastic fracture mechanics was carried out using EFGM. A 

new formulation based on incremental plasticity has been proposed and implemented in 

order to model the non-linear material response. The enriched basis functions were used 

in order to capture the HRR (Hutchinson-Rice-Rosengren) singularity. The values of J-

integral were found to be in good agreement with the FEM solution. 

Finally, EFGM was employed for the modeling of quasi-static crack growth under 

mixed-mode loading. A new criterion for modeling of kinked cracks was proposed. The 

ease of modeling quasi-static crack growth showcases the strength of the proposed 

criterion. Moreover, crack growth simulation by EFGM demonstrates its capability 

without a need of remeshing. 
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Chapter Conclusions and Future Scope 

Thus the significant contribution of the present research work lies in its exploration of 

intrinsic enrichment criterion for solving a variety of fracture mechanics problems under 

thermal/mechanical loading. Development of some new criteria for the .problems of 

multiple interacting cracks, bi-material interfacial cracks, cracks lying in non-convex 

domains and quasi-static crack growth further enhances the capability of intrinsic 

enrichment criterion. The suggested modifications are also justified on the basis of 

reduction in computational time and the associated computational complexities. 

Moreover, the application of intrinsic enrichment criterion was extended to fracture 

problems in functionally graded materials, cracks subjected to thermoelastic loading and 

elastoplastic fracture problems. 

To sum up, it is concluded that the present research work establishes EFGM as an 

accurate, robust and indispensable method for solving a wide variety of fracture 

mechanics problems under thermal/mechanical loads. Moreover, the proposed 

modifications add to the proficiency of EFGM. 

9.2 FUTURE SCOPE 

The present study is generalized in nature and it establishes the capability of EFGM in 

tackling a wide variety of frcature mechanics problems. The objective of the present 

work was to employ and extend EFGM as an effective and efficient tool for modeling a 

variety of fracture mechanics problems. The present work can be extended further in 

many directions. Some of the recommendations for future work are listed below 

• Crack interactions under coupled thermo-mechanical loading may be explored. 

❖ Simulation of bi-metallic interfacial cracks under thermo-elastic loading may be 

performed. 

❖ Intrinsic enrichment criterion is computationally expensive so a suitable 

technique may be developed to reduce the computational time. 

223 



Chapter 9+ Conclusions and Future Scope 

❖ Elasto-plastic analysis may be extended to incorporate temperature dependent 

material non-linearity. 

❖ These fracture simulations may be performed by using extrinsic PU based EFGM. 

❖ EFGM may be further extended to simulate multifield and multiscale problems. 

❖ EFGM may be extended to simulate crack growth involving large deformations. 

❖ EFGM may be used to simulate cracks in piezoelectric materials. 

❖ EFGM may be extended for three-dimensional fracture mechanics problems. 
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