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ABSTRACT

W

The quest for perfection has led us to all the scientific developments and technological
advancements. In spite of all the scientific developments, the flaws and imperfection in
materials often leads to catastrophic consequences. Fracture is one of the most prevalént
damage phenomena that society has faced for as long as there have been man-made
structures. Over the past few decades, greater understanding of fracture mechanics has
prevented a substantial number of structural failures. Cracks are inevitable in all
engineering components. External loadings may result in either the propagation of pre-
existing cracks or may initiate new cracks in the structures. This may finally lead .to
catastrophic failure of the components resulting in loss of property and lives.

Due to the scarcity of analytical solutions and also due to the versatility of the
numerical methods in handling complex practical problems, research efforts continue to
focus on improving the numerical schemes. A

A new class of numerical methods known as meshfree method has been developed
over the past 15 years. The meshfree method is a rather interesting complement to the
traditional finite element method. The first advantage of a meshfree method is that it is
possible to construct arbitrarily high order approximation for higher order problems.
Secondly, the numerical integration can be performed on arbitrary cells covering the
computational domain so that the expensive meshing and remeshing process can be
avoided. Moreover, the mesh distortion insensitivity makes them a boon for the problems
involving large deformation. These characteristics together, proffer the potential of
meshfree methods in simplifying adaptive analysis and crack growth modeling in fracture
mechanics.

Present reséarch work focuses on the implementation and extension of the most
popular meshfree method known as the element free Galerkin method (EFGM) to
analyze a variety of fracture mechanics problems under thermal/mechanical loads. The
versatility and the effectiveness of EFGM have been demonstrated through the solution
of various problems. Moreover, few modifications have been proposed and implemented

to enhance the proficiency of EFGM.
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Abstract

Simulating the problem of fracture mechanics requires some suitable crack modeling
criterion. A comparison of various crack modeling techniques in EFGM unveiled the
advantages of intrinsic enrichment criterion. Owing to its accuracy, convergence, ease of
implementation and modifications, the intrinsic enrichment criterion was further
exploited to accomplish the remaining research work.

Weak discontinuities in EFGM were modeled and compared using different existing
criteria. The Jump function approach proved to be best among the available techniques
for the modeling of material discontinuities. A new criterion for modeling bi-material
- interfacial crack using Jump function has been proposed. The proposed method involves
only four enrichment functions in the basis instead of the usual twelve. Thus,
computational complexity is significantly reduced.

In an attempt to simulate and analyze the effect of multiple cracks interaction in both
convex and non-convex domains, a new intrinsic enrichment based criterion has been
proposed, and implemented. Apart from accurate simulation, the proposed criterion
effectively reduces the computational cost of the EFGM.

The EFGM has also been extended to simulate two-dimensional thermo-elastic
fracture problems in isotropic material. Both temperature and mechanical fields were
enriched intrinsically in order to represent the discontinuous temperature, heat flux,
displacement and traction across the crack surface. Some example problems of fracture in
functionally graded materials were tackled by EFGM under thermal/mechanical loads.

Motivated by the wide applicability of EFGM and to establish it as a robust tool for
solving problems of fracture mechanics, the simulation of elasto-plastic fracture
problems has been carried out for two dimensional cracked bodies. The enriched basis
functions were used in order to capture the HRR (Hutchinson-Rice-Rosengren)
singularity.

Finally, a new enrichment based EFGM criterion has been developed for modeling
the kinked cracks. The proposed criterion was used for the simulation of quasi-static
crack growth problems under mixed-mode loading conditions. The ease of modeling
quasi-static crack growth highlights the strength of the proposed criterion. Moreover, the
crack growth simulation also demonstrates the modeling capability of EFGM without any

requirement of re-meshing.
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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

#

1.1 INTRODUCTION

Understanding fracture was important for us even in the stone-age when the primitive
men tried to make stone tools and weapons. Time has changed from stone-age to space-
age but the phenomenon of fracture is still being studied. The quest for perfection has led
us to many scientific developments and technological advancements. In spite of all the
scientific developments, the flaws and imperfection in materials often leads to
catastrophic consequences. Fracture is one _of the most prevalent damage phenomena. It
can be observed right from withering of rocks in nature to crash of an aero-plane.
Loosely speaking, fracture can be defined as the separation of an object or material into
two or more pieces under the action of stress. A crack/flaw is the basic entity which leads-

to fracture of component/structure when subjected to external loads.

Cracks are inevitable in all engineering components. Thermo-mechanical loading
may result in either the propagation of pre-existing cracks or may initiate new cracks in
the structures. Fatigue and quasi-static fracture are two forms of crack growth
phenomenon. Fatigue fracture refers to the slow propagation of cracks under cyclic
loading conditions where the stress intensity factors are below the fracture toughness of
the material. Quasi-static fracture is common near the end of the fatigue life when the
increased crack length leads to stress intensity factors which are above the fracture
toughness (Chowdhury and Narasimhan 2000; Sasikala and Ray 2008; Partheepan et al.

2008).



Chapter 14 Introduction and Literature Review

Fracture is characterized by unstable and extremely fast crack growth. This may
finally lead to failure of the components resulting in the loss of property and lives.
Several experimental (Nurse and Patterson, 1990; Khanna and Shukla, 1995; Maiti and
‘Patil, 2003; Guagliano et al. 2006; Singh and Gope 2009) and simulation techniques
(Choubey et al. 2006; Zhong and Oyadiji 2007; Lam and Ng 2008) are dedicated to crack
detection at an early stage. Research efforts have been made to predict, and retard the
effect of fatigue on the structures (Adrov 1993; Gope 1999; Shang et al. 2001; Liu and
Mahadevan 2005).

In many cases, multiple cracks may exist in the components. These cracks interact
with each other resulting in the variation of stress distribution, stress intensity factor and
propagation direction of the main crack. As such, all important failure phenomena such
as stress corrosion cracking, hydrogen embrittlement, and creep micro cracking are
directly linked to the crack interactions. In past, some efforts have been made using
analytical, experimental and simulation techniques to analyze the effect of interaction
among multiple cracks (Cheung ez al. 1992; Ang and Gumel 1996; Ang and Park 1996;
Denda er al. 1997; Muravin and Turkel 2006a).

Although, a plenty of analytical (Rice 1968; Agarwal et al. 1986; Rao and Rahman
2003; Sills and Dolev 2004) and experimental methods (Khanna and Shukla, 1993,
Chattopadhyay et al., 2005) have been exploited for the calculation of fracture
parameters even then the drawbacks associated with experimental investigation and
scarcity of analytical solution have impelled the analysts towards alternative techniques.

Numerical methods hold the promise in this regard.

Numerical methods along with high-fidelity mathematical models are able to predict

the behavior of an engineering system before the physical system has been built. The
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majority of such models take the form of partial differential equations (PDEs) which
relate variables whose values are confined to a given domain. Excépt for the simplest
cases, the PDE and/or the domain under consideration are complex enough to rule out the
possibility of finding an exact solution, and a suitable numerical .approach is needed to
simulate the modeled phenomenon. Loosely speaking, numerical methods transform a
PDE defined over a continuum into a finite set of equations which are later solved
(exactly or approximately) by using matrix algebra. In many situations, numerical
simulation effectively reduces or replaces expensive experimental studies as an

alternative investigation tool for the engineers.

Due to advances in the computational technologies over past two decades, many
numerical simulation tasks, which were once considered computationally formidable or
could be addressed only by a supercomputer, can now be carried out by a normal desktop.
computer. Due to the scarcity of analytical solutions for most of the practical cases, and
also due to the versatility of computational procedures in handling such problems,
research efforts continue to focus on improving such numerical schemes. .

Over past fifty five years, finite element method (FEM) has been used for solvir_lé a
wide variety of engineering and industrial problems (Giudice et al. 1978; Reddy and
Chao 1980; Corvi 1990; Kant and Menon 1993; Sze and Wang 2000; Chattopadhyay et
al. 2005; Armentani and Citarella 2006; Kant et al. 2007; Goo et al. 2006, 2008a, Yoon
et al. 2010). The method has achieved remarkable success in solving many linear and
non-linear problems (Deodatis 1989; Kant et al. 1992; Yoon et al. 1999; Andreev and
Harmuth 2003; Cardoso et al. 2007; Huang 2007; Dias et al. 2007; Goo et al. 2008b;
Coda 2009). Although FEM is quite successful, the discretization of complex three-

dimensional geometries and re-meshing of the domain changing with time is a very

daunting and time-consuming task. Assembly and solution of the finite element equations
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also often lead to numerical errors (Umar ef al. 1996; Prathap 1999; Meric 2001; Kikuchi
and Liu 2003; Cardoso and Yoon 2007). Despite its numerous advantages and
unparalleled success, FEM is not well suited for certain classes of problems such as crack
propagation and moving discontinuities, moving phase boundaries, continuous casting,
phase transformation, free surface flow, fluid structure interaction, large deformations,
solution of higher order partial differential equations, multi-scale analysis. Difficulties
arise due to the inherent structure of finite element method, i.e. the connectivity defined

through the use of elements.

In the fracture mechanics problems, for instance, element edges provide natural lines
along which a crack can grow. This is advantageous if the crack path is known a priori,
but in most complex fracture phenomenon, the crack path is unknown. Thus, the finite

"element method requires remeshing to ensure that element boundaries coincide with
moving discontinuities. Therefore, a method is needed which may be somewhat more
expensive from the viewpoint of computational time but requires less time in the

preparation of data.

To cope with these problems, a class of new methods has been developed over the
past thirty years. These methods are known as meshfree (meshless) method. The
common feature of the meshfree methods is that they do not require any connectivity
information i.e. a elemental mesh is not required. In meshfree methods, interpolants
(strictly speaking approximants) are constructed solely on the basis of a set of scattered
nodes whereas in case of finite element method, interpolants are constructed using a
number of small elements known as finite elements. The meshfree method is a rather
interesting complement to the traditional finite element method. The first advantage of
meshfree method is that it is possible to construct higher order approximation. Secondly,

the numerical integration can be performed on simple cells covering the computational
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domain so that the expensive meshing and remeshing process can be avoided. The mesh
distortion insensitivity makes them a boon for the problems involving large deformation.
Moreover, these properties make them ideally suited for adaptive analysis, and crack

growth modeling.
1.2 LITERATURE REVIEW

In the past, a number of meshfree methods have been developed to tackle the problems
faced by FEM. These include smooth particle hydrodynamics (Monaghan, 1988;
Monaghan, 1992; Bonet and Kulasegaram 2002; Kulasegaram et al. 2004; Chen and
Kulasegaram 2009), diffuse element method (Nayroles et al., 1992, 1994; Marechal et
al., 1993), element-free Galerkin method (Belytschko ef al., 1994; Lu et al., 1994),
reproducing kernel particle method (Liu ef al., 1995a,b,1996; Chen et al., 1997;’$Jun et
al., 1998; Aluru, 1998), finite point method (Onate er al., 2001), paﬁition of unity
method (Melenk and Babuska, 1996; Babuska and Melenk, 1997), H-p cloud method
(Durate and Oden, 1996), free mesh method (Yagawa and Yamada, 1996; Yagawa and
Furukawa, 2000), boundary node method (Mukherjee and Mukherjee, 1997), natural
element method (Sukumar, 1998a,b), local boundary integral equation method (Zhu et
al., 1998a,b; Atluri et al., 2000; Long and Zhang, 2002, ), meshless local Petrov-Galerkin
method (Atluri and Zhu, 1998; Cho and Atluri, 2001; Atluiri and Shen, 2002; Xiao and
McCarthy, 2003), the method of finite spheres (De and Bathe, 2000, 2001a,b), regular
hybrid boundary node method (Zhang et al., 2003; Zhang and Yao, 2004; Zhang ef al.,
2004), local point interpolation method (Liu and Gu, 2001a; Gu and Liu, 2001) and local
radial point interpolation method (Liu and Gu, 2001b).

All these meshfree methods have a common featﬁre that only nodal data is required
to describe the interpolation of field variables. Although, in most of the meshfree

methods, Galerkin formulation is utilized to develop the discrete equations, the major
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Vdifference among these methods lies in the interpolation (approximation) techniques.
Generally, three different interpolation (approximation) techniques have been used in
meshfree methods, kernel approximation, moving least square approximation and
partition of unity. In meshfree methods, one uses the term approximation rather than
interpolation since the meshfree shape functions do not satisfy the Kronecker-delta
property. This entails certain difficulties in imposing essential boundary conditions.
Probably the simplest way to impose essential boundary conditions is the boundary
collocation methods. Other alternatives are to use the penalty method, Lagrange
multipliers, full transformation technique, and Nitsche’s method. The most important
advantages of meshfree methods compared to finite elements are their higher order
continuous shape functions that can be exploited e.g. for thin shells or gradient-enhanced
constitutive models; higher smoothness; simpler incorporation of % and p-adaptivity and
few advantages in crack problems (no mesh alignment sensitivity; some methods do not
need to enforce crack path continuity). The main drawback of all meshfree methods is
probably their higher computational cost.

Based on an idea of Lancaster and Salkauskas (1981) and probably motivated by the
purpose to model arbitrary crack propagation without computationally expensive
remeshing, Belytschko and his co-workers developed the element free Galerkin method
(EFGM) in 1994.

In 1994, Belytschko et al. first used EFGM for arbitrary shape elasticity problems
and a simple heat conduction problem. The trial and test functions were selected from
moving least square interpolants. They found that the method does not exhibit volumetric
locking, and a higher rate of convergence was achieved. In the same year, Belytschko et
al. implemented EFGM for quasi-static crack growth problems using the visibility

criterion. Moving least square interpolant was used along with Gelarkin method.
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Accurate stress intensity factors were obtained with very irregular arrangement of nodes
and without using any enrichment function to model a near crack tip singularity.

Belytschko et al. (1995a) applied EFGM for static and dynamic fracture problems.
They modeled a growing crack by extending its free boundary. The results were found
quite close to the analytical solution. The need of remeshing during crack propagation
was eliminated but the computational time was increased by almost 50% as compared to
FEM.

" Belytschko et al. (1995b) used EFGM to solve the problems of mixed mode dynamic
fracture in concrete. They suggested that crack tip velocity leads to significant
differences in the crack path, especially in later stages of fracture. Though, the running
time for these calculations were found to be more as compared to finite element
procedure but when viewed in terms of interactive remeshing by user , the increase:in
computer cost were quite modest.

Organ ef al. (1996) developed continuous meshless approximation for the domains
with non-convex boundaries. Two techniques namely diffraction and transparency were
compared to the original visibility criterion. Moderate improvement in accuracy over the
discontinuous approximation was obtained but significant improvements were obtained
for the case with enriched basis with crack tip singular functions.

Belytschko and Tabbara (19962) used the EFGM to solve the problems of dynamic
crack propagation. The essential boundary conditions were imposed by collocation
method and the discrete equations were obtained by Hamilton’s principle. They tested
and applied this method to solve elasto-dynamic non-linear crack growth problems.

Belytschko and Tabbara (1996b) suggested the use of EFGM to solve several
problems involving dynamic crack propagation. The crack growth was modeled using the

concept of dynamic stress intensity factor. A comparison with analytical and other
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numerical solution for linear crack growth showed that the method is capable of

modeling crack growth without re-meshing.

Belytschko et al. (1996) used the EFGM for smoothing the approximétic;')n near
concave boundaries, and incfeased the efficiency of EFGM by computing the
approximation functions and their derivatives by a new methodology. A moderate
improvement in the accuracy of smoothed interpolant was achieved. A comparison with
the original formulation of the method showed a two fold increase in speed in the

computation of derivatives.

Krongauz (1996) in his doctoral thesis proposed a technique for incorporating the
discontinuous derivatives in EFGM for both one and two-dimensional problems. An
approximation function was introduced which has discontinuous first derivative at the
point of discontinuity. The approximation possesses a compact support. In comparison to
standard meshless approximation, oscillations were avoided at the surface of the

discontinuity.

Organ (1996) in his PhD thesis implemented the EFGM for the numerical solution of
dynamic fracture problem. A procedure was developed for coupling of meshless methods
with finite element methods. Dynamic fracture problems were solved ranging from
stationary crack under impact loading to multiple cracks growing in arbitrary directions.
The EFGM solutions compared well with experimental results for both constant and

variable crack velocities.

Sukumar et al. (1997) used EFGM for three dimensional fracture mechanics
problems by coupling it with finite element method. The method allowed the use of

EFGM in crack region and finite element method in the rest of the domain. The stress
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intensity factors obtained for two benchmark problems were found in good agreement
with the reference solution.

Fleming et al. (1997) proposed an enriched EFGM for crack tip fields by adding
asymptotic fields to the trial function and by augmenting the basis with asymptotic fields.
A local mapping for the enriched fields for curved cracks was also described. This
enrichment greatly reduced the stress oscillations and allowed the accurate calculation of
stress intensity factors with fewer degrees of freedom.

Fleming (1997) in his PhD thesis applied the EFGM for fatigue and quasi-static
fracture. Crack growth was modeled by adding an additional segment at the crack tip.
Techniques for enriching and smoothing meshless approximation for linear elastic
fracture were also presented. The method was found to perform well for arbitrary crack
growth in complicated geometries.

Tabbara and Stone (1998) applied the EFGM in quasi-static mixed mode ﬁacfllxre
problems. The expression for normalized critical traction was derived in terms of fracture
resistance (R-curve) and a crack dependent function. This method provided a direct
procedure to resolve an arbitrary crack extension without any change to the o;igi{irlal
geometry. Predictions agreed quite well with the experimental results.

Combe (1998) suggested an automatic mesh adaption approach using EFGM which
can be applied for several linear and physically non-linear problems with high stress-
strain gradients. The adaption criterion was based on strain gradients and a strategy for
node refinement. Continuous mesh refinement in areas of high gradient was used. The
convergence was investigated for the problems having analytical solutions.

Xu and Saigal (1998a) established a discrete formulation for stable crack growth in
elastic solid using EFGM. Inertia force term in the momentum equation was converted

into a spatial gradient term by employing the steady state condition. A good
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approximation of the near tip stress field was achieved. These calculations suggested that
the quality of numerical results was not affected much by the crack tip speed.

Ponthot and Belytschko (1998) presented an arbitrary Lagrangian—Eulerian (ALE)
formulation for EFGM, which continuously relocates the nodes in the computational
domain. By combining EFGM with ALE, the spatial discretization in the neighborhood
of a propagating crack tip was refined locally. The new formulation can be easily
implemented in a pre-existing mesh-free code.

Xu and Saigal (1998b) established an EFGM based formulation for the quasi-static
crack growth in an elastic-plastic material undergoing small scale yielding. A mode-I
crack under plane strain condition is considered in an elastic-perfectly plastic material.
The computed near tip stress distribution and crack opening displacement were found in
good agreement with th§: analytical solutions.

Xu and Saigal (1999) developed an EFGM based formulation for dynamic crack
growth in an elastic-plastic material. Both rate independent and rate dependent materials
were considered. Von-Mises yielding criterion along with an associated flow rule was
used. Crack propagation speed showed a great influence on the results for rate
independent materials.

Dolbow and Belytschko (1999) suggested some improvements in numerical
integration of Gelarkin weak form for meshfree methods. Construction of quadrature
cells without local support to weight function was found to be a source of integration
error. A new structure of integration cells was proposed which reduced the quadrature
erTor.

Krysl and Belytschko (1999) proposed a technique for modeling three-dimensional
dynamically propagating cracks in elastic bodies by EFGM. The crack surface was

defined by a set of triangular elements. Surface updating techniques were also described.

10
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Stress intensity factor was calculated using interaction integral approach. This approach
was only applicable to non-interacting cracks.

Belytschko and Fleming (1999) compared three different methods for smoothing
meshfree approximation near non-convex boundaries. Two different techniques for
enriching the EFGM approximation near the crack tip were also summarized and
compared against each other. The extrinsic enrichment criterion was found to be more
suitable for the simulation of multiple cracks.

Barry (1999) formulated a small strain, three-dimensional elasto-plastic EFGM.
Singular weight functions were used in moving least square approximation. Elasto-
plastic formulations were done on the basis of consistent tangent operator approach and
incremental theory. The computational efficiency was improved by using variable
domain of influence.

Rao and Rahman (2000) developed an efficient meshless method for the analysis of
linear elastic cracked structure subjected to single or mixed mode loading ‘conditio_n. The
method involves an EFGM formulation in conjunction with an exact implementation of
essential boundary condition and a new weight function. The predicted crack trajectories
were found in good agreement with experimental data.

Belytschko et al. V(2OOO) further used EFGM to study the mixed mode .dynamic crack
propagation in concrete. The essential boundary conditions were imposed by explicit
time integration scheme and coupling with finite elements. The discrete equations were
obtained using variational approach. Fracture process zone model was used to replicate
the salient features of dynamic crack growth with arbitrary path.

Yagawa and Furukawa (2000) reviewed recent developments in mesh free methods,
and analyzed the computing efficiency for these methods. A good parallel computing

efficiency was achieved but there was a sudden decrease in computing efficiency with

11
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the increase in number of processors. Parallel computing efficiency was found to be
dependent on the ratio of number of processors to degrees of freedom.

Rao and Rahman (2002) developed a Gelarkin based meshless method for predicting
the first order derivative of stress intensity factor with respect to crack size in a linear
elastic structure. For mode-I loading, the first order derivative of SIF was found quite
close to analytical solution, whereas for mixed mode loading, the maximum error was
found to be 7%.

Gavete (2000) proposed a new way of imposing essential boundary condition in
EFGM. A penalty function was used along with a constrained variational principle. The
method was tested for the case of a complex domain with irregular grid of nodes. The
formulation exhibited very high accuracy and stability when appropriate weighting
function were used. |

Pannachet ahd Askes (2000) come up with some observations on the enforcement of
constraint equations. Both Lagrange’s multiplier and penalty approach were used to solve
two benchmark problems. Inaccuracies such as oscillations were observed due to abrupt
change in the boundary conditions. Instead of Gauss integration, nodal integration was
found to eliminate these deficiencies.

Rao and Rahman (2001) developed a technique for coupling of EFGM method with
traditional finite element method for the analysis of linear elastic crack problems
subjected to mode-I and mixed mode loading conditions. A significant saving in
computational efforts was achieved by coupling the two methods. The calculated stress
intensity factors compared very well with the existing solution.

Gavete and Ruiz (2001) presented an error indicator for EFGM which can be easily
implemented in existing EFGM codes. The calculation was performed on a cell by cell

basis. Performance of error indicator was demonstrated for two different problems with

12
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known analytical solutions. This method allowed a global energy norm to be estimated

with good estimation of local errors.

Ventura ef al. (2001) proposed a new level set method for the description of a
propagating crack in EFGM. This approach helps to model a crack on the basis of nodal
data only without introducing any geometrical entity. The nodal data gets updated with
crack propagation. The method finds a promising application for three dimensional
entities where the geometrical description of a crack surface is a computationally

expensive task.

Yavari et al. (2001) studied the topological aspects of EFGM and compared them
with finite element method. They suggested that EFGM requires large domain of
influence to satisfy the basis. Appropriate size of domain of influence is configuration

dependent. No conclusive result was obtained for node ordering.

Hazama ef al. (2001) suggested an EFGM approach for two-dimensional elasto-
plastic problems. Computer aided engineering seamless systems and digital analysis
procedures were developed for extraction of domain data for practical problems.

Infinitesimal deformation involving material non-linearity was examined. The method
predicted the deformation state as competently as the finite element method.

Belytschko et al. (2002) proposed a new technique for modeling discontinuities.
Jump function was used to model material discontinuity and Westergard’s solution
(Gdoutos, 2005) was used for near crack tip enrichment. Being extrinsic in nature, these
enrichments were only limited to nodes surrounding cracks. Use of vector level set

method in crack modeling requires only nodal data for crack description.

Duflot and Dang (2002) suggested a new body integration technique for the

evaluation of stiffness matrix and body load vector. The new integration technique does

13
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not require the partition of integration domain into small cells. Numerical. results
demonstrated that the method is especially useful when nodes are irregularly scattered.

Xuan ef al. (2002) proposed an EFGM for non destructive testing (NDT)
applications. This method eliminated the requirement of remeshing with probe motion.
The method was validated and applied for two-dimensional magneto-static and eddy
current NDT problems. Results clearly demonstrated the feasibility of using EFGM for
modeling non destructive evaluation problems.

Lee e al. (2003) proposed an adaptive analysis for crack propagation based on error
estimation. Nodes were added or removed from the background integration cell
according to error estimator. The proposed adaptive scheme showed the good validity
and efficiency for several numerical problerﬁs.

Lee et al. (2003) proposed an improved crack analysis technique with auxiliary
support. A singular basis function, which varies only on the auxiliary support, was added
to enrich the standard EFGM approximation. A discontinuous shape function was used in
the vicinity of a crack. Higher accuracy was obtained as compared to standard EFGM
solution.

Rao and Rahman (2003) proposed a technique for calculating the stress intensity
factors for a stationary crack in two-dimensional functionally graded materials of
arbitrary geometry. Material properties were considered to be smooth functions of spatial
coordinates. Two new interaction integrals were developed for mixed mode fracture
analysis. A good agreement was obtained between EFGM solution and reference
solutions.

Muravin (2003) in his PhD thesis proposed a multiple crack weight method for the
solution of strongly interacting cracks. The interaction effect was found to be dependent

on the position of cracks, their orientation, and distance from each other. A satisfactory
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accuracy was achieved when numerical solutions were compared with the analytical
results.

Hagihara (2003) modified an EFGM with Delaunay triangulation for searching the
‘nodes and divisions of integral domain. The incremental formulation of EFGM was used
to deal with several time dependent non-linear -problems. CPU time was greatly reduced
by this approach.

Duflot and Dang (2004) developed a new enriched weight function for the
simulation of fatigue crack growth in two dimensional bodies. A constant amplitude
cyclic loading was used along with Paris law. Numerical results showed good agreement
with results obtained using boundary element method even with lesser degree of
freedom.

Rao and Rahman (2004) proposed an enriched meshless method for the fracture
analysis of cracks in homogeneous, isotropic, non-linear, two dimensional solid
subjected to mode-1 loading. Two new basis functions were introduced to capture the
crack tip singularity. Both the crack tip field and crack mouth opening displacements
were found in excellent agreement with the experimental and finite element method
results.

Rabczuk and Belytschko (2004) suggested a new approach for modeling the discrete
cracks in meshfree rnethod; The crack was modeled using local enrichment of trial and
test function. No representation of crack topology was needed in this approach. The
results were found to be in good agreement with the experimental data.

Chen et al. (2004) implemented EFGM for the classical rate-independent plasticity
problems. Both plane stress and plane strain conditions were chosen for the analysis of

crack growth in elastic-plastic solids.
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Lee and Yoon (2004) proposed an enhanced EFGM to improve the solution accuracy
for linear elastic fracture problems. The enhancement functions were added to the
conventional EFGM approximation for the implicit description of near-tip fields. The
discontinuity of crack surface was efficiently modeled by introducing a discontinuous
function. Crack growth was modeled with initial node arrangement only. The robustness
of the enhanced EFGM was established by examining the stress intensity factor for

various crack problems.

Kargarnovin (2004) extended EFGM for elasto-plastic stress analysis. A system of
elasto-plastic EFGM relations were derived using incremental relations of plastic
deformation. A non-linear Solution technique was selected to examine the stress field
near the crack tip. Power law work hardening was employed in the formulation. Results

were obtained for two different plates, with crack and without crack.

Brighenti (2005) implemented EFGM for the solution of three-dimensional elastic
fracture mechanics problems. The geometrical description of the body was performed by
employing triangles in space to describe edges and by generating grid of internal points.
Visibility criterion (Belytschko et al.,1994) was used along with Gauss type weight

function. The values of SIF’s were found in good agreement with the reference solution.

Chen (2005) extended the EFGM to determine thé stress intensity factor for an
interface crack in a graded orthotropic coating and a homogeneous substrate structure.
Analytical results were obtained using integral transform and singular integral equation
technique. To evaluate thermal SIF, an interaction integral was developed. A good
agreement between analytical and numerical results was obtained.

Duflot (2006) proposed a meshless method with enriched weight function for three-

dimensional crack propagation. Cracks were modeled by a set of triangles. New triangles
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were added as the crack propagé.ted. Crack singularity along crack front was obtained by
enrichment of shape functions by means of appropriate weight function.

Muravin and Turkel (2006a) devised a multiple crack weight method for the solution‘
of strongly interacting cracks by meshless method. Weight functions were constructed so
as to simultaneously characterize the presence of all the cracks in the domain of influence
of a single crack. Sufficiently accurate solutions were obtained with less number of
nodes. The computational cost of the method was reduced by 14% in comparison to
conventional EFGM.

Muravin and Turkel (2006b) also developed spiral weight for modéling crack in
EFGM. These weights preserved all the discontinuities along the entire crack length even
with a linear basis. The need of additional array of nodes at the crack tip was eliminat§d.
The results were found more accurate than the diffraction technique.

Li and Simonsen (2007) used EFGM to simulate ductile crack growth and
propagation under finite deformation and large scale yielding conditions. A parametric
visibility condition was developed to automatically adapt fracture configuration f,'or

arbitrary crack growth in ductile material. The proposed method was found to';"ﬁl;e

versatile in simulating arbitrary crack propagation.

Rabczuk and Belytschko (2007) suggested a new approach for modeling discrete
cracks. The crack growth was represented discretely by activation of crack surfaces at
individual particles. The method was formulated for large deforrhations and arbitrary non
linear and rate dependent materials. Cohesive crack laws were used to govern the
traction-crack opening relations. Rabczuk et al. (2007) proposed a three-dimensional
meshfree method for arbitrary crack initiation and propagation in non-linear material
models. Extrinsic enrichment criterion was used to model a crack. Numerical results

precisely replicated the available experimental data.
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Zhaﬁg et al. (2008) established an improved EFGM for the analysis of two-
dimensional fracture problems. An improved moving least square approximation was
proposed which has a greater computational efficiency and did not lead to ill-conditioned
system of equations. Crack tip singularity was captured in a better way with the use of

enriched basis.

Gu and Zhang (2008) developed a new simulation technique to couple the meshfree
method with finite element method for the analysis of crack tip fields. Meshfree method
was applied to a sub-domain around the crack tip while fhe rest of the domain was treated
with finite element method. Lagrange multiplier method was used to ensure the
compatibility of displacements and their gradients in the transition region. The method
showed a promising potential in solving complicated crack problems.

Zhang et al. (2008) developed an adaptive element free Gelarkin-finite element
(EFGM-FE) coupling model for a thermal elasto-plastic coupling problem. Influence of
steady state frictional heating between two contacting bodies was studied. The method
was verified through the contact analysis of a cylinder with an elasto-plastic plane.
Adaptive refinement reduced the computational time, and achieved a satisfactory level of

accuracy when compared with uniform refinement.

Nguyen et al. (2008) reviewed the EFGM from the viewpoint of computer
implementation. Well structured algorithms were proposed for several one and two-
dimensional problems of elastostatics. Techniques for incorporating weak and strong
discontinuities were also discussed along with the different ways of enforcing essential

boundary conditions.

On the basis of the literature review, it is observed that a lot of research work has

been carried out over past fifteen years in the area of fracture mechanics using EFGM
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under mechanical loading conditions. Both quasi-static and propagating cracks have been
analyzed under static and dynamic loading conditions. A number of EFGM formulations
have been developed for the analysis of brittle and ductile fracture under large scale
yielding. Various techniques have been developed to incorporate the effect of weak and
strong discontinuities. Although, the results obtained by EFGM are found to be more
accurate than conventional FEM (Lu, 1994; Beytschko et al., 1996a; ‘Bouillard and
Suleau, 1998; Dolbow and Belytschko, 1998; Singh ef al, 2005; 2006). The only draw
back of this method is its high computational cost in comparison to FEM (Belytschko et
al., 1996b, c; Dolbow and Belytschko, 1998; Singh er al, 2003, Singh, 2004). A good
agreement between EFGM and analytical results has been achieved for different fracture
modes. However, the failure of engineering components is ‘not only due to the
mechanical loads but also due to the thermal stresses/thermal fatigue. Some of Ehe
practical applications where thermal loads play a significant role are as follows: |

< Turbine nozzles, blades and other components are exposed to cyclic thermal load.

< Aerospace components are exposed to extreme thermal shocks due to varying

operating conditions.

- &

\/
L4

Satellite components are subjected to thermal cycles when they are exposed to

sun for some duration of time and go under the shadow for the remaining period

of time.

< Internal combustion engine, components are subjected to mechanical as well as
thermal loads.

< In military applications, the components are exposed to varying thermal loads e.g.

the gun chamber is subjected to very high temperature and high pressure during

the shell firing and cools down to nominal temperature after that.

L)

% Creep failure in industrial boilers is due to high pressure and temperature.
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< Alternate heating and cooling of the die during die casting process causes thermal
fatigue.

% Cyclic heating and cooling of electronic circuit causes thermal fatigue in solder
joints.

Besides these, there are many other structures/components which fail either due to
pre-existing cracks or thermal/mechanical loading may initiate a crack, causing
catastrophic failure. In this regard, some efforts have already been made to analyze the
cracked structures under thermal loading. In 1976, Chell and Ewing suggested that the
thermally induced stresses can behave like primary or mechanical stresses (redistributed
but not relieved by introduction of a crack) in linear elastic regime. For identical
geometry, the stress intensity factor due to secondary loading is less as compared to
primary loading. In elastic-plastic regime, it is not safe to ignore thermal stresses. Rao
(1976) presented a solution for stresses around the tip of an insulated arbitrary crack in a
thin plate subjected to uniform heat flow. The stress at the crack tip exhibit inverse
square root singularity. Stern (1977) developed a contour integral method for calculating
the stress intensity factor for a crack at the interface of two dissimilar materials subjected
to thermal stresses. Lam er al. (1992) suggested that the presence of crack in a steady
heat flow g.ives rise to local intensification of temperature gradient, resulting in large
thermal stresses at the crack tip. Prasad et al. (1996) suggested that cracked bodies under
thermal loading exhibit a thermal singularity which may be measured in the same way as
the stress singularity. A quarter-point crack tip element was developed in FEM to
accurately measure these thermal singularities. Zohar (1996) computed the generalized
thermal stress intensity factor for a two-dimensional thermo-elastic problem. Singular

behavior of flux was obtained near the crack tip. Thermal loads thus obtained were used

to obtain displacement. Ang and Clements (1999) considered a problem of calculating
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the thermo-elastic stress around an arbitrarily located planar crack in an infinite
anisotropic medium. Hyper-singular integral equations were derived, and solved
numerically to compute the crack tip stress intensity factor. Bruno (2004) presented a
numerical method for the evaluation of stress intensity factors in two dimensional
homogeneous materials under thermal and mechanical loads. The results were found to
be in good agreement with those available in the literature. Simkins and Li (2005)
simulated thermo-mechanical ductile fracture using meshfree Gelarkin method. Johnson-
Cook damage model was irhplemented in the numerical formulation for large scale
yielding. Visibility criterion was used to modify particlé connectivity based on evolving
crack morphology. The proposed model predicted the effect of thermo-mechanical
loading on ductile fracture in an efficient manner.

Dai et al. (2005) presented a meshfree model for the thermo mechanical analysis. of

functionally graded material plates. Shape functions were derived using moving least

square method with C' consistency. First order shear deformation theory was used to
establish the weak form, and a variational principle approach was used for thermo-
electro-mechanical coupling. The effect of volume fraction, loading type and control
gains were discussed in detail.

Dag (2006) proposed a new equivalent domain integral technique for thermal fracture
analysis of orthotropic functionally graded material subj ected to thermal stresses. All the
thermo-mechanical properties were assumed to have continuous spatial variations
through the functionally graded medium. The in-plane component of the coefficient of

thermal expansion has the most significant effect on the mode-I stress intensity factor.
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1.3 SCOPE OF PRESENT WORK

From the literature review, it is clearly seen that both analytical and numerical methods
have been explored to a great extent, but not much work has been reported under thermo-
mechanical fracture using EFGM. Therefore, this gives us an opportunity to explore the
wide field of thermo-mechanical fracture. Therefore, in the present work, EFGM has
been exploited to simulate two~dimensi§nal fracture problems under thermal/mechanical

loads. The broad objectives of present thesis work are as follows:

<+ To study and compare the different crack modeling techniques.

s To simulate the weak/strong discontinuity under thermal/mechanical loads.

% To study the effect of multiple cracks interaction under thermal/mechanical loads.
+ To simulate two-dimensional thermo-elastic fracture problems.

+ To study the fracture in FGMs under thermal/mechanical loads.

¢ To perform elastic-plastic analysis of fracture mechanics problems.

% To simulate the quasi-static crack growth under thermal/mechanical loads.

< To develop the meshfree codes for the above work.
1.4 THESIS ORGANIZATION
A chapter wise breakup of the present thesis work is as follows:
Chapter 1: Introduction and Literature Review

This chapter presents a brief introduction to the various meshfree methods and their
characteristic features which secludes them from conventional mesh-based numerical
methods. Exhaustive literature review of EFGM applied in the area of fracture mechanics
is also presented in this chapter. The gaps in the application of EFGM were indentified,

and then the objectives of thesis are presented.
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Chapter 2: EFGM and Crack Modeling Techniques

This chapter elucidates the EFGM starting from the variational form of governing
equation in elastostatics. Techniques to enforce essential boundary conditions and
numerical integration are also explained. Different crack modeling techniques in EFGM
are implemented and compared against each other. A comparison of various crack
modeling techniques has been presented, and it was found that the intrinsic enrichment
technique performs well for the fracture mechanics problems, and thereby further

endorsed in the present thesis work.
Chapter 3: Modeling of Weak and Strong Discontinuities

In this chapter, EFGM has been extended to simulate the problems involving weak and
strong discontinuities. Different techniques of modeling the derivative discontinuity viz.
domain decomposition method, Lagrange multiplier approach, and jump function
criterion have been implemented and compared against each other. The jump function
criterion proved to be the best among these techniques. Therefore, the jump function is
exploited to model cracks in bi-material (combination of weak and strong discontinuity)
under thermal/mechanical loads. A new criterion for modeling bi-material interfacial
crack has been suggested, which involves only four enrichment functions in the basis

instead of twelve enrichment functions.
Chapter 4: Simulation of Multiple Interacting Cracks

The numerical simulation of multiple interacting cracks under both mechanical and
thermal loading is carried out in this chapter. A new criterion based on intrinsic
enrichment is proposed to simulate the interaction effect of multiple cracks in both
convex and non-convex domains. The proposed criterion was found to be quite effective

in reducing the computational cost of EFGM.
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Chapter 5: Cracks under Thermoelastic Loading

In this chapter, the EFGM has been extended to simulate two-dimensional thermo-elastic
fracture problem in isotropic material. The problem is decoupled in such a way that the
temperature distribution is obtained first. Temperature field thus obtained is employed
then as input for determining the displacement and stress fields. Both temperature and
mechanical fields are enriched intrinsically in order to represent the discontinuous
temperature, heat flux, displacement and traction across the crack surface. The crack

surface is modeled with isothermal or adiabatic boundary conditions.
.Chapter 6: Cracks in Functionally Graded Materials

This chapter covers a brief introduction to fracture in functionally graded materials
(FGMs) along with the modifications in the interaction integral to capture the mixed-
mode stress intensity factor. The EFGM has been applied to simulate the problems of

fracture in FGMs under both mechanical and thermal loads.
Chapter 7: Simulation of Elasto-Plastic Fracture

An application of EFGM to the problems of non-linear fracture mechanics has been
presented in this chapter. Ramberg-Osgood hardening rule has been used for modeling
the non-linearity in the constitutive relations. Temperature dependent material properties
were considered as another source of non-linearity. Enriched basis functions were used in
order to capture the HRR (Hutchinson-Rice-Rosengren) singularity. The values of J-

integral obtained by EFGM were found in good agreement with the FEM solution..
Chapter 8: Crack Growth Modeling

This chapter focuses on the modeling of kinked cracks using intrinsic enriched EFGM. A
new criterion for modeling kinked crack has been proposed and implemented. This

technique is later exploited for the modeling of a crack growth.
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Chapter 9: Conclusions and Future Scope

In this chapter, the key findings of the present work are summarized along with a future

scope of the work.

1.5 MAJOR FINDINGS AND CONCLUSIONS

In the present work, EFGM has been successfully extended to simulate the various
fracture mechanics problems subjected to thermal/mechanical loads. The major findings

of the present thesis work are as follows:

Initially, a comparison of various crack modeling techniques has been presented, and
it was found that intrinsic enrichment criterion gives quite accurate results for cracks
simulations. Owing to its simplicity and accuracy, the intrinsic enrichment criterion was

further exploited to accomplish the remaining research work.

The weak discontinuities in EFGM were modeled using different criteria. The jump
function approach was found most suitable for the modeling of material discontinuity. A
new criterion for modeling bi-material interfacial crack using Jump function has been
proposed. The proposed method involves only four enrichment functions in the 'basis
function instead of the usual twelve.

A new intrinsic enrichment based criterion has been proposed, and implemented to
simulate the interaction effect of multiple cracks in both convex and non-convex
domains. The results were found in good agreement with the FEM solutions. Moreover,
it was found that the proposed criterion also reduces the computational cost of the

EFGM.

The EFGM has also been extended to simulate two-dimensional thermo-elastic
fracture problems in isotropic material. Both temperature and mechanical fields were

enriched intrinsically in order to represent the discontinuous temperature, heat flux,
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displacement and traction across the crack surface., Some example problems of fracture
in functionally graded materials under thermal/mechanical loads were tackled by EFGM.
The results were found quite close to the available analytical solutions.

Next, the simulation of a non-linear fracture mechanics problem has been carﬁed out
using EFGM. The enriched basis functions were used in order to capture the HRR
(Hutchinson-Rice-Rosengren) singularity. The values of J-integral were found to be in
good agreement with the FEM solution.

Finally, a new EFGM criterion has been developed for the modeling the kinked
cracks. This criterion was used for the simulation of quasi-static crack growth. The crack
path obtained using the proposed technique was found to be almost same as that obtained

by other techniques.
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Chapter 2
EFGM AND CRACK MODELING TECHNIQUES

#

2.1 INTRODUCTION

The element free Galerkin method (EFM) is a recently developed meshfree method
(Belytschko et al., 1994) which has been extensively used for simulating various
problems of solid mechanics. The EFGM is considered a meshfree method as it only
requires a set of nodes and description of boundaries to construct an approximate
solution. The connectivity among data points and shape functions are constructed without
any requirement of elements. A Galerkin scheme is used for approximating the solution
to partial differential equation with an approximant written in terms of nodes.. This
method has been extensively used for simulating cracks growth problems as it does not
require remeshing for crack growth simulation. In this method, both trial and test
functions are constructed from the same space using moving least square (MLS)
approximants. The MLS approximation consists of three elements: a compact support
weight function associated with each node, a polynomial basis and a set of coefficient
that depends on node position. The nodal connectivity is ensured by overlapping nodal
domain of inﬂuencé.

The advantage of MLS approximation is that a highly continuous approximation can
be easily generated by the appropriate choice of weight function. Thus, the post
processing required to generate smooth stress fields becomes unnecessary in EFGM.
Although, EFGM is considered to be a meshfree method with respect to construction of
shape function, a background mesh/cell is still required for the evaluation of integrals in

Galerkin weak form.
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2.2 OVERVIEVW OF EFGM

In this section, some basic concepts are discussed along with a general procedure for the

construction of EFGM approximations.,

2.2.1 Moving Least Square (MLS) Approximation

The moving least square approximation scheme was introduced by Lancaster and
Salkauskas (1981) for the interpolation/approximation of data points. Later, it was used
for the construction of meshfree shape functions. Initially, MLS approximation scheme
was used by Nayroles et al (1992) to construct the shape functions for diffuse element
method, which was later used in EFGM for generating the shape functions (Belytschko et
al., 1994).

In EFGM, a field variable u is approximated by MLS approximation, u”(x) which is

given as
@)=, (9, (9 = " (939 @1
where, I:(x) is a vector of complete basis functions (usually a polynomial), which is
given as
pT(x)=[1, X, V, 2, XY, VZ, ZX, ... x*, yk', zk'] 2.2)

and a(x) is a vector of unknown coefficients
a’' (x) =[a,(x), a,(x), a;(x), ... a,, (x)] (2.3)
where, x” =[x y z], k' is degree of the polynomial and m is the number of terms
in the basis.

In 2D, the complete polynomial basis functions and corresponding coefficient vectors
are given as:

Linear basis

p’ (x)=[1,x,y] (m = 3, linear) 2.4
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a’ (x) = [a,(x), a,(x), a;(x)]
Quadratic basis
p’ (x) =[1,x,y,xy,x%,y%], (m = 6, quadratic) (2.5)
T () = [4,(%), a,(X), a5 (x),, (X), a5 (%), 5]
The unknown coefficients a(x) are obtained by minimizing a weighted least square sum
of the difference between local approximation, u"(x) and field function nodal
parameteru,. The weighted least square sum denoted by L(x) can be written in

following quadratic form:
L(x) = Y w(x—x)[p” ®a( - u, ]’ (2.6)
=1

where, u, is the nodal parameter associated with node I at x =x,. However, u, are not
the nodal values of u”(x =x,) because u"(x) is an approximant and not an interpolant.
The difference between u, and u”"(x =x,) is shown in Fig. 2.1. w(x —Xx,) is the weight '

function having compact support associated with node 7, and 7 is the number of nodes

with domain of influence containing the point x, i.e. w(x—x,)#0.

u” (%)
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Fig. 2.1: Difference between u, and u" (x)
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By settingg—L =0, a following set of linear equation is obtained -
a

AX)a(x) =B(x)u 2.7
or
a(x) = A" (x)B(x)u (2.8)

where, A(x) and B(x) are given as:
A(x)= Zw(x=x,)p(x,)p" (x,) 29)

B(x) = {w(x —X,) p(X, ), W(X = X, ) P(X, )yererrvrremcrnrennnn. ,w(x—x,)p(x,)} (2.10)

By substituting Eq. (2.8) in Eq. (2.1), the MLS approximation is obtained as:

u"(x) = éd),(x)u, =@’ (x)u .11
where,

@7 (x) = {D,(x), D,(x), D,(x), ... D,(X)} (2.12)
u’ =y, u,, Uy, ... u,] (2.13)

The mesh free shape function @, (x) is defined as:
?,(x) =% p,(x}(A" (X)B(x)) ; =p'A™B, (2.14)
J=

The linear consistency requirements for the shape function @,(x) (Belytschko et al.,

1996b) are given as:
> P(x) =1, 2 P(X)x, =x 2 o™y, =y
1=1 . 1=l I1=1

The derivatives of MLS shape function are computed as:

@, (x)=(@P"A"B,),=p xA"B,+p (A"),B, +p"A"'B,, (2.15)

where, B, (x)= ﬂ(x—x,)p(x,)
‘ ’ ax
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and A~'x is computed by
Alx=-A"A A"

where,

4 )
A, = zgw(»xf)p(x,)p (x;)

Il

2.2.2 Domain of Influence

(2.16)

The domain of influence (influence domain) is defined as a domain in which a node

exerts its influence. It is related to a node, in contrast to the support domain, which is

linked with an evaluation point. The influence domain is predefined for each node in the

problem domain, and it can vary from one node to another. The concept of influence

domain is a way to select nodes for the interpolation and it works well with highly non-

regular nodal distribution. Different types of influence domain (Fig. 2.2) are used in

practice but among them, circular and rectangular influence domains are most widely

used.

/F
"oul 5
o ™
o o ° o )l
/
X
oLl e
r -—O/
Donain / jj—— Domain
Nodes boundary Nodes .
Domain of influence Domain of boundary
influence

(a) Circular influence domain

(b) Rectangular influence domain

Fig. 2.2: A schematic model for meshfree method showing the domain boundary, nodes and
domain of influence (Nguyen et a/., 2008)
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2.2.3 Weight Functions

The choice of weight function w(x—x;) affects the resulting approximation u"(x,) in
EFGM. Therefore, the selection of appropriate weight function becomes quite essential.
The weight function is non-zero only over a small neighborhood of a node x,, called the
support or domain of influence of node /. The smoothness and continuity of the shape
function @,(x) depends on the smoothness and continuity of the weight function

w(x —x,). If a weight function is C' continuous then the shape function will also have

C' continuity (Fig. 2.3).

0.8

0.7+ B

0.6

0.5

Fig. 2.3: A plot of weight function and corresponding shape function

A typical weight function must satisfy the following conditions (Singh, 2004):

o

It must be positive, continuous and differentiable in the domain of influence.

L)

D)

*

It should decrease in magnitude as the distance from x to X, increases, so that

local character of MLS approximation is maintained.

X4

It should be zero outside the domain of influence.

)

2 It should have a relatively large value for a node, which is closer to the

evaluation point.
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& The nodes in the domain of influence should not be collinear (except 1-D) and
the number of nodes must be larger than the number of terms in the basis function
(n>m).

The different weight functions used in literature can be written as a function of

normalized radius 7 as follow:

Quartic spline weight function (Belytschko et al., 1996b)

1-67% +87° - 3F* 0<F<
w(x—x,)=w(?):{ R8s r=l } (2.17)
r>1
Cubic spline weight function (Belytschko et al., 1996b)
( ]
2 477 147 Fer
3 2
—x.)=wF) = 2.18
W) =W =g S Loref @19
3 3 2
| 0 F>1]
Gaussian weight function (Belytschko et al., 1996b)
-(2.57)2 0<7<1
wx—-Xx,)=wF)= - (2.19)
0 rF>1
Exponential weight function (Belytschko et al., 1996b)
100~ 0<7r <1
wx—-x,)=w{F)= { r_ } (2.20)
0 r>1

_ Ix-x . . . .
where, 7 = lIx-x, , |Ix-x, || is the distance from a sampling point x to a node x,
ml
L . o xexg |l .
and d, is the influence domain of node 7, 7 = ———"—, d,,; =0 €/ Ay = scaling

mi

parameter which defines size of the domain of influence and ¢, at node [ is the distances
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to the nearest neighbors. d,, is chosen such that the matrix is non-singular at every point

in the domain. The cubic-spline weight function has been most commonly used in the

present research work.

2.2.4 EFGM Shape Functions

To compute the meshfree shape functions @, , it is necessary to calculate A™'. In one

dimensional problem, the operation of inverting A matrix is not very difficult and time
consuming but in two-dimensional and three-dimensional problems, this inversion
becomes quite expensive. To overcome this situation, Dolbow and Belytschko (1998)
proposed a computationally inexpensive alternative approach. This approach involves the
LU decomposition of the A matrix. A brief description of this approach is given below.

At any point x, the shape function is given as

&, (x)=P"(x) A7 (x)B,(x) =y" (x)B,(x) (2.21)
where,

y () =p" (NAT ().
This leads to the relationship

A(x)7(x) =p(x) (2.22)
®,(x) =P (x) A" (0B, (x) = 7" (x)B,(x)
The vector ¥(x) is to be calculated using LU decomposition of the matrix A followed

by back substitution.

The partial derivatives of y(x) can be recursively calculated as
Ay (X)=p, (X)) - A, (X)r(Xx) (2.23)

Ay ,(X)=p,(®)-A, X)) (2.24)

The derivatives of shape function are given as
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@, (x)=7"«(X)B,(x)+7" (X)B, (%) (2.25)
@, (x)=7"y(X)B(x)+7" (N)B, ,(x) (2.26)

2.2.5 Enforcement of Essential Boundary Conditions
The proper imposition of essential boundary condition is quite difficult in EFGM since
MLS approximation does not satisfy the Kronecker delta function property i.e.

®,(x,)# &, . Many numerical techniques have been proposed to enforce the essential

boundary conditions in EFGM. Lagrange multiplier method was first proposed by
Belytschko er al., (1994). This technique is quite accurate but its imposition creates
problems such as the system matrix does not remain positive definite and banded. Lu ef
al. (1994) proposed a modified variational principle approach, in which Lagrange
multipliers were replaced by their physical meaning. As a result, banded sets of equations
were obtained but the results were not found as accurate as obtained by Lagrange
multiplier approach. Another approach named as coupling with finite element method
was proposed by Krongauz and Belytschko (1996) for the imposition of essential
boundary condiﬁons. In this approach, EFGM domain was necklaced by FEM domain
and then essential boundary conditions were applied. This method simplified the
enforcement of boundary conditions but the numerical integration became more tedious.
Gavete et al. (2000) used the penalty approach, which is quite easy for enforcing the
essential boundary conditions, and it gives discrete equations in simple form similar to
FEM. Although, system matrix obtained by this method is positive and posses the
bandedness property but improper selection of penalty parameter can lead to wrong
results. Rao and Rehman (2000) presented an efficient full transformation technique to
enforce the essential boundary conditidns, but this technique was found difficult from the
implementation point of view. In the present work, Lagrange multiplier technique has

been used due to its accuracy.
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2.3 ELASTOSTATICS

2.3.1 Governing Equations

Consider small displacement elastostatics, which is governed by the equaﬁon of

equilibrium (Ottosen and Petersson, 1992)
V-o+b=0 in Q 2.27)
along with the following boundary conditions

(Natural boundary condition) chi=t on T,

(Essential boundary condition) u=u on I

u

where, o is the stress tensor, which corresponds to the displacement field u, b is a
body force vector, V is the divergence operator, superposed bar denotes prescribed

boundary values, and n is the unit normal to the domain Q .

The variational (or weak) form of the equilibrium Eq. (2.27) can be written
Lds:c d2- [ su.b d2— [ su.tdr-sW,(ur)=0 (2.28)
where, 5=V (5 u), V., is the symmetric gradient operator, § W, is used to enforce the

essential boundary conditions. Several forms of W, are possible, in the present work,

Lagrange multiplier method has been used as
W, (w,3)= | a(u-w)dr (2.29)
SW,(,2)= | &7 (@-u)dr + [ surar (2.30)

2.3.2 Discrete Equations

Considering linear elastic relations
e=V. u 231

c=De | (2.32)
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where, ¢ is the strain and D is a constitutive matrix.

For the case of plane stress in an isotropic material with coefficient of thermal expansion

B subjected to a temperature changeAT, the thermal strain matrix is given by
BAT

e =B AT
0

Lagrange multiplier 2 used in Eq. (2.29) is expressed as
A(x)=N,(s)%,, Xeu (2.33a)
SA(x)=N,(s)64, xeu (2.33b)

where, N,(s) is a Lagrange interpolant and s is the arc length along the boundary; the

repeated indices indicate summations.

In the variational form of equilibrium Eq. (2.28), u(x) is replaced by EFGM

approximation u”(x), and the variation §u(x) is replaced by Su"(x).

u"(x) = ancp, (x)u, (2.34)
Su"(x) = iqﬁ, (X)8 u, (2.35)

The nodal test function values §u, are arbitrary, except on I', , and can be eliminated

from the equations. Substituting Eq. (2.33) into the weak form Eq. (2.28) yields:

[ -

where,

K,, = [B'DBdQ (2.37)
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Gy =—[ &N dr (2.38)
f,= [t0,d0+ [ bo,dQ (2.39)
q. = —L" N, udl (2.40)
®,_ 0 1-
B=| 0w | N[ O £ L g for pl
= , , D= -v or plane
: P TR 0w, A+v)(1-2v) o | TP
q)l y q)l x O
v 2

E
1-v

0
strain, D = 0 | for plane stress, comma denotes partial derivative with

v
2

2

1
v
0 1

S = <

respect to the indicated spatial variable, £ and v are Young’s modulus and Poisson’s

ratio respectively.

2.3.3 Integration Issues

Computation of stiffness matrix (K ), displacement matrix (G) and force vector (f) in
Egs. (2.37-2.40) requires the integration over the domain, which corresponds to arca
integration in two dimensions. Stiffness matrix and force vector computation requires a
numerical integration scheme such as Gauss quadrature, which in turn, requires a
subdivision of the domain. Unlike finite elements, meshfree methods have no inherent
subdivision of the domain. Hence, it is necessary to introduce a subdivision of the
domain for purpose of integration. Two different types of subdivisions are shown in Fig.
2.4. The quadrature shown in Fig. 2.4a is the most common. It uses a finite element mesh
generator to create a cell structure which matches with the problem domain; this
technique is often called an element quadrature. The vertices of this background mesh are

often used as the initial array of nodes for the EFGM model; however, additional nodes
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may be added where desired such as the nodes at the crack tip in the model shown in Fig.
2.4a. The second iﬁtegration technique, which is often called cell quadrature, uses
background cells, which is independent of the problem domain as shown in Fig. 2.4b.
During integration over the problem domain, a particular quadrature point is checked
whether it lies inside the domain or not. This technique is not widely used because it does
not yield accurate results along curved boundaries. A nodal integration technique,
proposed by Beissel and Belytschko (1996), was an effort to make EFGM a completely
meshfree method. However, in this technique, additional terms are required for stability
purpose. Moreover, the accuracy of this scheme is not as good as cell based integration

schemes. Hence, element quadrature scheme has been adopted in the present work.

(a) Element quadrature (b) Cell quadrature .
Fig. 2.4: Integration techniques for EFGM (Belytschko et al., 1996c¢)
The smoothness which is inherent in meshfree methods not only provides the smooth
approximation functions but also provides smooth derivatives. These approximation
functions possess same continuity as that of the weight functions. This higher order
smoothness leads to difficulties where a discontinuity is present either in the geometry or
in the material. These discontinuities include cases where a boundary of the geometry
can be non-convex e.g. a plate with a hole or a crack. Because of the aforementioned
smoothness of meshfree methods, special procedure is required to simulate the presence

of crack.

39



Chapter 2¢ EFGM and Crack Modeling Techniques

As the present work deals with application of EFGM to fracture mechanics problems,
thereby a discussion on crack modeling techniques is needed. Moreover, before
discussing crack modeling techniques, a brief introduction of linear elastic fracture

mechanics is also presented in the next section.

2.4 LINEAR ELASTIC FRACTURE MECHANICS

The concept of linear elastic fracture mechanics is based on the assumption that the
“plastic zone is significantly small when compared with the dimensions of body. Based on
this assumption stress field near the crack tip is calculated using theory of elasticity.
Analytical expressions derived for plane stress or plane strain depends on the associated

mode of loading/fracture.

2.4.1 Modes of Fracture

The displacement field around a crack can be categorized by three different modes as
shown in Fig. 2.5. The arrow indicates the direction of crack surface displacement.
Mode-I is called the opening mode, and is characterized by the displacements of the
crack normal to the crack plane. Mode-II is called the shearing or sliding mode, and is
characterized by in-plane displacements of the crack faces. Mode-III is called the tearing

or antiplane mode, and is characterized by out of plane shear.

T 1.
e \ﬁ% -

l T
7 U l

(a) Opening mode (b) Shearing mode (¢) Tearing mode

Fig. 2.5: Schematic representation of the different fracture modes
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2.4.2 Stress Intensity Factors

The stress at a point in the vicinity of crack tip exhibits 1/r singularity, where 7 is the
distance from the crack tip. The stress field near the crack tip is dominated by the first
term in the asymptotic expansion (Williams, 1957). For mode-I crack (displacement

perpendicular to the crack faces), the stresses can be written as (Tada et al., 1997)

o, ~ ky cos—g— (1 - sinél sinzg) (2.41)
27y 2 2 2
o, = k cose (1 + sing sinﬁj (2.42)
2xr 2 2 2
k, ) 30
o~ sin@cos— 2.43
Yoo 2nr 2 (243)

The associated compatible displacement fields are as follows

u, = ~—k‘— —r——cos—(tc cosé) (2.44)
2uN2r 2

u ~—]flw Lsm——(rc cos @) (2.45)

Yo 2u\N2r 2

For a mode-II crack (displacement parallel to the crack faces), the stresses can be written

as .
o, ~— k, sing [2 +cos~6— cosﬁj (2.46)
N T T2 2 |
k, . 30
o, = sinfcos— (247
¥ 2\2mr 2 @47
o, ~ ks cos—q (1— sing siniq) (2.48)
\27mF 2 2 2

the associated compatible displacement fields are as follows

u, ~k—2 sm—(2+1<+cos0) (2.49)
2u\N2r 2

u ~-ki cos—(2 K- cosé’) (2.50)

Y 2u\2rx

The variables » and @ denote the distance of an evaluation point from the crack tip and

the angle measured from local coordinate system, respectively (see Fig. 2.6); u is the
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shear modulus and « is the Kolosov constant defined in terms of Poisson’s ratio v as

k=(3-4v) plane stress
_B-v) :
K = (1 - v) plane stra;}n Z‘: ’,

Crack

Fig. 2.6: Local coordinate system (X, ¥ ) at crack tip
The mode-I and mode-II stress intensity factors, £, and k,, depend on the crack length,
specimen geometry and applied loading. It is significant to note that the determination of
these constants completely determines the asymptotic stress and displacement fields
around the crack tip. For this reason, a great deal of analytical and numerical effort has

gone into finding the solutions and techniques for calculating stress intensity factors.

2.4.3 Integration Integral

The interaction integral method is an effective tool for evaluating the mixed-mode
fracture parameters. For a homogenous cracked body, the path independent J-integral is

given as (Rice, 1968)

2.51)

Fig. 2.7: Path I" surrounding a crack with an enclosed area 4
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where, W= J‘aijdeij is the strain energy density and #, is the jth component of the

outward unit vector normal to an arbitrary contour I' enclosing the crack tip (Fig. 2.7).

For linear elastic materials, it can be shown that W= c,E; / 2.

The path independence property allows the J-integral to be evaluated using far field
information which is generally more accurate than near tip solution. In order to enhance
its usefulness, the contour integral in Eq. (2.51) is converted into an equivalent domain
form using divergence theorem (Rice, 1968).

ou, -~ oq 0 ou, ~. |-
J = L(aygx——wuj L d4+ —(ag.—a?—Wé',jjqu (2.52)
1

ox, “ox, 1

J

where, A is the area inside the contour and g is a weight function chosen such that it

has a value of unity at the crack tip, zero along the boundary of the domain, and arbitrary

elsewhere. By expanding the second integrand, Eq. (2.52) reduces to

0 2u. o€
7= {|o, q M aa+ | Oy M | 5 O _ 5 50\ s (2.53)
v ax &x, RN

- Ou,
Using equilibrium 8o, /dx; =0 and compatibility &, = %{%’—-ngij conditions, the

J i

second integrand of Eq. (2.53) vanishes, which results in the following equation

_ 99
J = j( o, ax ]ax, dA (2.54)

This is the classical domain form of J-integral for homogenous materials.

For calculating the interaction integral, two equilibrium states of a cracked body are
considered. State 1 corresponds to be the actual state along with the given boundary

conditions while state 2 is defined as an auxiliary state. The superposition of these two
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states leads to another equilibrium state (state S) for which the domain form of the J-

integral is

T L((O-'y) +O'i§'2))a(u§1;- ufZ))_W(S)glngM (2.55)

1 J

where, superscript i=1, 2, and S indicates fields and quantities associated with state 7.

Also the strain energy density for the superimposed state is given as
~ 1
S) _ i 2 1 2
W = 5 (0',5 ) +a,§. ))(8,5) +£,§. )) (2.56)

By expanding Eq. (2.55),

J®_ g0 70 402 (2.57)
where,
o i
JO - [ Glgn_‘?ff_f___W%U Ky (2.58)
4l Y ox, Ox;
and
@ =
JO I(agz)%—W@él,]a—qu (2.59)
“ ox, 0,

are the J -integral for states 1 and 2 respectively, and

2) @) o
(O'((,]) 5;1; + 0_15_2) % _ W(L2)5U J a_qu (2.60)
1

MO =
J. : ox;

/A4
is expression for the interaction integral.

In Eq. (2.57), Eq. (2.58) and Eq. (2.59), 1/17(')=%0'.(’) 0, FO=Lom 0 ang

gy %y 2 2'] [/

w2 = —;-(O'S) 5,52) +ol 5,5.1) ) represent various strain energy densities, which satisfy
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FOZ O Lo 4 e 2.61)

For linear elastic solid under mixed-mode loading conditions, the J-integral is also equal

to the energy release rate and hence, the J -integral can be written as

J =

L (ki +&3) (2.62)

where, E* = {1 E 5 } Plane strain
-v

E"=E Plane stress

Applying Eq. (2.62) to states 1, 2, and the superimposed state S gives

J('>—; (ko + k) (2.63)
7= (K + k() (2.64)
and

J® 1;} [(K(" + K(2))2 (K9 + K(2>)Z]
=L[(K(1)’ K“)’) (K(1)2 +K‘2’2)+ Z(K(‘)K‘z) +K“)K(2’)] (2.65)
E‘ I + i + I u 1 1 I i :
M, j@ L 2 (gOE® | g0
=D+ I+ (KK + KK
Comparing Eq. (2.57) and Eq. (2.65),

0D = ;— (kK@ + k?)| (2.66)

The individual SIFs for the actual state can be obtained by judiciously choosing the
auxiliary state (state 2). For example, if state 2 corresponds to Mode-I loading i.e. the

mode-I near tip displacement and stress field is chosen as the auxiliary state,

then K® =1 and K{? =0. Hence, Eq. (2.66) can be reduced to

(2.67)
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From above equation, we get

MYDE
K,“) - ; (2.68)

Similarly, if state 2 is chosen to corresponds to pure Mode-II loading, i.e. the mode-II

near tip displacement and stress field is chosen as the auxiliary state, then K» =0,
K{? =1 and following the similar considerations,

M(],II)E‘
K == (2.69)

Thus, numerical evaluation of interaction integral from Eq. (2.60) allows us to calculate
the mixed mode stress intensity factors.

2.5 CRACK MODELING TECHNIQUES

In EFGM, special techniques have been developed for incorporating the singular
functions associated with elastostatic fracture rather than employing a high nodal density
near the crack tip. The latter can be expensive and awkward for problems with complex
geometry. It was found that the incorporation of the singular fields in a meshfree method
is substantially simpler and more trouble-free than in finite element methods. An
enrichment of a meshfree method may be carried out extrinsically or intrinsically. In
EFGM, the crack modeling techniques are broadly classified in two categories

(a) Enrichment Techniques

(b) Smoothening Techniques

2.5.1 Enrichment Techniques

As the name suggests, enrichment theoretically means increasing the order of
completeness. With respect to crack modeling, enrichment techniques involve inclusion
of additional information regarding crack tip ﬁelds in the standard EFGM solution. Few
important enrichment techniques are described below.

2.5.1.1 Extrinsic PU Enrichment
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Extrinsic enrichment of meshfree methods can be carried out using partition of unity
(PU) technique (Duarte and Oden, 1996; Melenk and Babuska, 1996; Belytschko et al.,
1996¢). In this technique, the approximation is augmented by enrichment functions
added extrinsically to the existing EFGM approximation. The enrichment term is
smoothly added to the existing approximation by multiplying it with a factor based on a
partition of unity. The essential element of this technique is the construction of a partition

of unity, which can be obtained by MLS methodology. A partition of unity o, (x)" is

constructed from a complete polynomial basis of order k', and is a local approximation

for which
itb, (x)=1 (2.70)
I=1

It can easily be seen that MLS approximation builds partition of unity since Eq.
(2.70) possesses the reproducing condition for a constant, which must be satisfied
(Belytschko et al. 1996b) by an approximation. The enriched approximation of an

unknown function can be written as

)= 30t 0 + 352,008, .0 @m

I=l i=1

where u, and b,, are nodal coefficients, and » is the number of neighbors of a point x.
The vector g,(x)is called the extrinsic basis of length m,. For linear elastic fracture
problems, this basis can contain radial (\/; ) dependence or radial (\/; ) as well as
angular (@) dependence. A superscript k' is added to the shape functions (@, ) in the
approximation to denote the polynomial order of the basis used in forming the partition

of unity.

PU technique appears to provide a vehicle for local enrichment. The partition of

unity, @, (x)"' can be formed from a linear basis (k' =2), which yields linear consistency.
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Enrichment of the approximation may be carried out locally by adding the known form

of the solution to the extrinsic basis g,(x), at nodes in the region where it is required. It

should be noted that the enrichment is to be added to each node whose domain of
influence extends into the region to be enriched (Sukumar et al. 2000, Ventura et al.

2002).

4

W) =D 0,Xu + 2 O,X)VHX)a, + I (X)) YEbE (2.72)

IeN JeN*® KeN/ a=1

where, @,(x)are MLS shape functions, Heaviside function, H(x) and the branch
functions, V¢ are given as

+1 if(x—x*)n=0

(2.73)
-1 . otherwise

H(x) ={
e =[‘I’,l(,‘{’,‘{,‘{’é,\?}]z[\/;sing,«/;cosg,ﬁsin%cos@,\/;cosgcos0] 279

where, r and @ are polar coordinates in the local crack tip coordinate system, a, and bg
are the additional unknowns, x*is the point nearest to crack segment. The set N°
includes the nodes whose support contains point x and are cut by the crack, see Fig. 2.8,
whereas the set N/ are nodes whose support contains point x as well as crack tip X,ips

see Fig. 2.9. w>0

v <0
Crack line ‘

Fig. 2.8: Nodes whose support contains point x and cut by the crack (Nguyen ef al., 2008)

Crack line

Fig. 2.9: Nodes whose support contains point x and the crack tip x,, (Nguyen ez al,. 2008)

tip
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Using standard Galerkin procedure as described in previous sections, the discrete

equations are obtained with only one difference in B matrix which now becomes
B = [BEFGM I Benr] (2.75)

where BEFGM is the standard B matrix, which can be written as

o, 0
BFM 0 @, (2.76)
¢1 Wy @1 X
and B is the enriched B matrix
(@1 ),x \Pl + q); (LPI ),x 0
B = 0 @)% +9o,(¥,), ‘ 2.77)

(djl ),y qjl + @1 (\PI ),y (Q)I ),x \II] + Ql (\PI ),x
where, enrichment function can be either the Heaviside function H(x), or the branch

functions ¥, (x).

2.5.1.2 Intrinsic Enrichment

Meshfree approximations can be intrinsically enriched by including a special function in

the basis (Fleming et al., 1997). For example, in fracture mechanics, one can include the

asymptotic near-tip displacement field, or an important ingredient such as+r . The
choice of functions depends on the coarse mesh accuracy desired. For higher accuracy,

the full asymptotic field can be included, while for higher computational speed but at

some cost of accuracy, only the Jr function can be included in the basis. These

techniques are described in the subsequent sections.
Full Enrichment
In case of linear elastic fracture problems for full intrinsic enrichment, all terms of near-

tip asymptotic displacement field are included in the basis. After some trigonometric
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manipulation, it can be shown that all the functions in Eqgs. (2.44-2.45, 2.49-2.50) are

spanned by the basis as
p’ (x) = [1, X, ¥, Jr cos g , \/; sin —z— , \/; sin —g— sin 8, \/; cos g— sin 9] (2.78)

First three terms in above equation are not related to the near-tip fields, and are only used
for linear completeness of the EFGM approximation. This basis when used in Eq. (2.1)
leads the approximations of the form

u" (x) = Z p’ WA (DC, (%), (2.79)
1= @I‘éx)

where, @, (x) is the enriched EFGM shape function.
In contrast to the extrinsic techniques, this technique involves no additional
unknowns. However, because of the increased size of the basis, additional computational

effort is required to invert the moment matrix A(x). Moreover, for multiple cracks, four

additional terms needs to be added in the basis for each crack.

2.5.2 Smoothening Techniques

In EFGM, the choice of weight function affects the resulting approximation. The
smoothness and continuity of the shape function depends on the smoothness and
continuity of the weight function. The presence of crack results in the discontinuity in
displacement fields along the crack surface while the stresses become singular at the
crack tip. Smoothening techniques refers to the methods involving modifications of
weight functions so as to simulate the presence of a crack. A brief description of some

smoothening techniques is given below:

2.5.2.1 Visibility Criterion

The first technique for dealing with non-convex boundaries is the visibility criterion
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(Belytschko ef al., 1994). In this approach, the domain of influence is considered as the
field of vision at a node. All boundaries, internal and external are considered to be
opaque so that the field of vision is interrupted as soon as such a boundary is
encountered. Consider node J in Fig. 2.10, where the surface of the crack is within its
domain of influence and is therefore truncated. This truncation will create a discontinuity
in the shape function for node J which will lead to the desired discontinuity in the
solution across the crack (see Fig. 11a, c).

The difficulty with the visibility criterion arises for nodes near the end of a
discontinuity, i.e. near a crack tip. Consider node [ in Fig. 2.10, the field of vision is cut
by the crack, leading to a discontinuity along line 4C, i.e. the line of the crack. However,
the field of vision is also truncated along line AB, which extends into the domain. This
leads to an undesirable discontinuity in the weight function as well as the shape function
along this line as shown in Fig. 2.11b and Fig. 2.11d. Since, the shape functions are
created from the weight functions, thereby discontinuities arise in the shape functions
from other nodes which are having discontinuous weight functions due to the presence of

EY

crack tip.

DOMAIN OF INFLUENCE DOMAIN OF INFLUENCE
FOR NODE J FOR NODE | 1

CRACK

Fig. 2.10: Domain of influence by visibility criterion near a crack (Belytschko et al., 1994)
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J 1
CRACK O CRACK @ )))))))
(a) Weight function for node J (b) Weight function for node I
J I
CRACK ﬁ\\ \ CRACK
(c) Shape function for node J (d) Shape function for node I

Fig. 2.11: Contour plots of weight function w(x — X, ) and shape function @, (x) by visibility
criterion for nodes adjacent to a line of discontinuity due to a crack (Belytschko et al., 1994)
2.5.2.2 Diffraction Criterion
Continuous and smooth approximations near non-convex boundaries can be
constructed quite easily by the diffraction technique (Organ ef al., 1996; Organ, 1996;
Belytschko et al., 1996¢). In diffraction criteria, the nodal support is wrapped around
non-convex boundaries similar to the way light diffracts around sharp corners. This
technique, which is also called the wrap-around technique, is quite general, and can be
used for cracks or smooth boundaries such as interior holes.
Consider Fig. 2.12, where a line between the node x,, and a sampling point x

intersects a crack and the tip is within the domain of influence of the node. The weight

function distance d, ;» 1s modified (lengthened) by
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d, = [%%"—)Jiso (x) (2.80)

5y (8) =[x x|, 50 (x)=[x-x,]

where, s, =[x, —x,

and x, is the node, x is the sampling point, and x, is the crack tip. The parameter A is
used to adjust the distance of the support on the opposite side of the crack. It was found

that 1 =1, 2 perform well. Surface plots of the weight and shape functions obtained by

the diffraction technique are shown in Fig. 2.13.

SUPPORT FOR NODE 1

CRACK

-
N -

Fig. 2.12: Diffraction (wrap-around) technique for constructing smooth weight functions
around non-convex boundaries (Organ et al., 1996) '

\
\
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\
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(a) weight function (b) shape function

Fig. 2.13: Surface plots of (a) weight function and (b) shape function associated with node

near crack tip constructed by diffraction technique (Organ et al., 1996)
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The spatial derivatives of the weight function are computed using the chain rule as

dw 0w ad,

dx,  od, ox, @8y
Since ow/od ; 1s unchanged, that is necessary are expressions for od, ;1 0x,;

ad, _ /T(s’ +5, JLI Os, + (I—I)[s' +s, JZ 0s, (2.82)
ox,; S, Ox, So ox;

where,

The diffraction technique works well for general non-convex boundaries as well. The

tangent point between the node and the non-convex boundary is used as the wrap-around

point x, .

2.5.2.3 Transparency Criterion

Another technique for constructing continuous approximations is the transparency
technique (Organ ef al., 1996; Belytschko et al., 1996c), which will be described here for
cracks. The underlying concept of this technique is to endow the crack tip with a varying
measure of transparency such that it is completely transparent at the tip and becomes
completely opaque at a short distance behind the tip. In this way, the field of vision for a
node near the crack tip is not abruptly truncated when it reaches the crack tip, but rather
diminishes smoothly to zero a short distance behind the crack tip.

When a ray passes between a node x, and a sampling point x, and crosses the crack

as shown in Fig. 2.14, the distance parameter d, in the weight function is modified

(lengthened) by the following:
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SUPPORT FOR NODE 7

CRACK

T - -

Fig. 2.14: Transparency technique for computing smooth weight functions (Organ et al., 1996)

2
4 (x) = s,(x) +d,, [@) 122 (2.83)
S

4
where, 5,(x) = |x —x,|, d,, is the radius of support for node /, and s.(x) is the
intersection distance behind the crack tip. The parameter 5, sets the distance behind the

crack tip at which complete opacity occurs

5. =k h (2.84)

where, 4 is the nodal spacing and k is a constant, usually 0< k <1.

The spatial derivatives of the distance parameter, 4, obtained by chain rule, are

> a-1
od, _ %5, 7q4 SO (2.85)
ox, Ox, st ox, -
—x, 8 - _ _
where, Oy _ Xi=X s S~ _cosp =2t "% , 0s. = —siné =Zb—y—“, @ is the angle
i SO ax[ sc aX] Sc

between the crack and x-axis and x, is the intersection point behind the crack tip. Surface

plots of the weight and shape functions near a crack tip constructed by the

transparency technique are shown in Fig. 2.15.
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(a) Weight function (b) Shape function

Fig. 2.15: Surface plots of (a) weight function and (b) shape function associated with node near

crack tip constructed using the transparency technique (Organ et al., 1996)

One drawback of the transparency technique is that it does not work well when nodes
are placed too close to the crack surface. A trough appears in the shape function ahead of
the crack tip because although the crack tip is transparent for this node, the change in the
degree of transparency with respect to the change in angle is very sharp. There is no
discontinuity in the shape function is observed, only a small dip appears in the shape
function. To circumvent this problem in the transparency technique, a restriction has
been placed on the position of the nodes. All nodes should be placed such that the normal
distance from the node to the crack surface is greater than roughly by 1/4#4, where A is

the nodal spacing.
2.5.2.4 Spiral Weight Criterion

According to spiral weight criterion (Muravin and Turkel, 2006), the distance d,
between node x, and sampling point x is modified when the line segment between

x and x, crosses the crack. The modification is done as follows
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d,=d, +(1-R,)d,, (2-86)
where, d, is initially modified distance between node x, and sampling point X, d, is
the size of nodal domain of influence and R, is an angular ramp function. The initially
modified distance d, can be calculated either by diffraction or transparency criterion.

The area around the crack tip x, is divided into four quarters Q, for i =1...4.

0, :(i-l)%saq'% (2.87)

Let x, be a point that belongs to visibility ray and is located at a distance d,, from the
crack tip. The visibility angle 8, is the angle between the visibility ray and the crack line

Fig. 2.16a. The angle 8, is given as:

/2,6, €0,
0 =4-7/2,6,€0, (2.88)

m

@,,otherwise
The ramp area is the part of invisible area between the ray at angle 6, and the crack line

Fig. 2.16b, c.

The angular ramp function R, (@) is constructed in such a manner that it satisfies the

following conditions:

e The function R, (#) is smooth and monotonically decreasing from 1 to 0.
e TForangle 8, R,(6,)=1
e For the crack surface R,(t7)=0

The ramp function which satisfies the above condition is

R,(0)=csin" & (2.89)

- 1, 8 ~ (6- _
where, k=0...4,c={ NEQI’Z}and9=(0 0,)8, HC)+QC
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The values of @,, 6, ,6, and 6, depends on parameter ¢ and are presented below.

0, |o,] @

c

b,

c=1 1|86, | n |2 v 4

visible area

x, Visibility
\ooray

crack .
X 5
N invisible area °

- -

Fig. 2.16: Definition of spiral weight function parameters (Muravin and Turkel, 2006)

It should be noted that ramp functions and its derivatives are discontinuous at the crack
tip. However, this does not pose any problem since no quadrature points are placed at the

crack tip. For nodes which are located ahead of the crack tip, the visibility angle and

consequently 6, are smaller than 90°. For small visibility angle, the ramp function has

large gradients. The power » in Eq. 2.89 is used as a parameter to adjust the rate of ramp

function which changes in accordance with the value of angle 9, . For 6, =+ /2, the

value of parameter # =1, while for other values of 0, smaller than 90°, a larger value

of # should be considered. The value 7% =5 has been found to work well with all such
cases. Figure 2.17 presents the weight and shape functions and their x derivatives
calculated by the spiral weight methbd. The nodal distribution is equally spaced with
additional nodes around the crack line and at the crack tip. A linear basis is used for the

shape function and its x derivative calculations.
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Fig. 2.17: (a) Spline weight function, (b) its x -spatial derivative, (c¢) shape function, (d) its
x -spatial derivative by the spiral method near the crack tip (Muravin and Turkel, 2006)

2.6 COMPARISON OF CRACK MODELING TECHNIQUES

In order to check the accuracy and efficiency of various crack modeling techniques, a
comparative study of these techniques has been performed in this section. For this
purpose, a single edge cracked plate is considered as shown in Fig. 2.18. The dimensions
of the cracked body are taken as H =200 mm, W = 100 mm. ASTM 36 steel is taken as
a material with modulus of elasticity, £ = 200 GPa, Poisson’s ratio (v ) = 0.3. A far field
stress, o, = 100 MPa is applied. The bottom edge has been constrained along y -
direction, and an external far field stress is applied at the top edge. The problem domain

has been discretized using 800 nodes in intrinsic enrichment criterion while in diffraction
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criterion, 66 additional nodes are defined at the crack surface and crack tip. A regular
nodal distribution has been considered in both simulations havingd , =1.5. Six point
Gauss quadrature has been used for the numerical integration of the Galerkin weak form.
A plane stress condition is assumed. The values of mode-I stress intensity factors i.e. X,

are calculated using domain based interaction integral approach using a square domain of

having edge length of a/3.

BRRERE

 w—
y
(—-——a—)l H ‘ x
o
_ W

Fig. 2.18: Problem geometry along with dimensions and boundary conditions

2.7 RESULTS AND DISCUSSIONS

The value of mode-I stress intensity factors i.e. K, for the above problem, are calculated
using various crack modeling techniques, and the results obtained using these techniques
are compared with the analytical solutions. Figure 2.19 shows the variation of normalized
mode-I stress intensity factor with varying nodal density over the domain. The numerical
values of stress intensity factors are normalized with standard analytical solutions. The
simulation is performed for a constant crack length of @ =40mm. A comparison of
different crack modeling techniques revealed that the intrinsic basis enrichment is found
quite promising as it gives results quite close to the analytical solution even with small
number of nodes. Moreover, the convergence of intrinsic enrichment criterion is also

found good as compared to other crack modeling techniques which can be clearly seen
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from Fig. 2.19. A problem is solved for a fixed nodal density of 800 nodes by intrinsic
enrichment while in diffraction criterion, 66 additional nodes are used at the crack
surface and crack tip. The variation of normalized mode-I stress intensity factor with
varying crack length are plotted in Fig. 2.20. Again a comparative study of different
crack modeling techniques shows that the efficiency of intrinsic enrichment criterion is
good in solving cracks of varying length. The numerical values of stress intensity factor
obtained by intrinsic enrichment for different crack lengths are relatively closer to the
analytical solution as can be clearly observed from Fig. 2.20.

A comparison of various crack modeling techniques has demonstrated the advantages
of intrinsic enrichment criterion over other crack modeling techniques. Owing to its
accuracy and convergence, the intrinsic enrichment criterion has been used in the present
research work. The various factors which motivated the use of intrinsic enrichment in the
present research work are summarized as

*%

% Good convergence and accuracy.

9,
”n

No need of crack tip refinement.

+» Easy implementation (basis modification only).
¢ No additional unknowns are required for solving a problem.
: : et K, (Visibility}
sl : : : : ; et K, (Diffraction)
it A : B T i | gt K, (Transparenicy) |
, , : : _ : , e K, (Spiral Weight)
1_2P--; ......... ARERRLEEEE LR peeseeee ;.........,E......‘...E ..... --g—-K,(PUEnrichment)'
: : : : : : Z = & = K, (intnnsic)
- 1.1-~~§ --------- , ......... R E Fereeee g g K, (Analytical)
I I A e Y Al : ;
o : - - - ; 4 - . . -
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Fig. 2.19: Variation of normalized stress intensity factor vs. nodal density
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Fig. 2.20: Variation of normalized stress intensity factor vs. crack length

2.8 CONCLUSION

A brief introduction of EFGM along with its application to fracture mechanics has been
presented in this chapter. Different crack modeling techniques have been discussed and
implemented for a standard mode-I edge crack problem. A comparison of these crack
modeling techniques shows that the intrinsic enrichment criterion is found quite
appealing owing to its simplicity, accuracy and convergence. Moreover, the intrinsic
enrichment criterion is easy to implement as it only requires modification in the basis
function. Lack of additional unknowns and crack tip refinement add to the proficiency of
intrinsic enrichment criterion. Motivated by the advantages of intrinsic enrichment
criterion along with its ease in implementation and scope for further modification, we

decided to exploit this crack modeling criterion for the present research work.
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Chapter 3
MODELING OF WEAK AND STRONG DISCONTINUITIES

3.1 INTRODUCTION

The element free Galerkin method (EFGM) is quite attractive as compared to standard
finite element methods as it avoids the need for tedious and time consuming element
based mesh. The EFGM utilizes the moving least-square interpolants which require only
nodes unencumbered by elements and elemental connectivity to construct the shape
functions. Furthermore this method leads to the continuous differentiable approximations
so that the derivatives involved in field quantities such as strains in the elastic problems
are smooth, and require no post-processing. This method has been mainly applied to
solve the problems of cracks growth (Belytschko et al., 1995a; Li and Simonsen, 2007;
Belytschko et al., 1996b), where nodes continuously move or even get added so as to
follow the crack tip. It has also been established that the convergence rate for EFGM is
higher than the finite element method. However, the continuity of meshfree
approximations becomes a drawback for such problems where the solution inherently
possesses discontinuities (Cordes and Moran, 1996; Batra et al., 2004; Belﬁschko and
Gracie, 2007; MacKinnon and Carey, 1987) in the derivatives. Smooth solution then
exhibit the well known Gibb's phenomenon (Arfken and Weber, 1985) at the line (or
surface) of discontinuity. These situations are quite common in many engineering and
science problems. For example, the ﬁfst derivative of displacement becomes
discontinuous at the bi-material interfaces (Belytschko and Gracie, 2007) in a continuum

mechanics problem.
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Chapter 3¢ Modeling of Weak and Strong Discontinuities

To model these discontinuities in meshfree methods, few techniques have been
developed over the years namely Domain Partitioning (Liu, 2003), Lagrange Multiplier
(Cordes and Moran, 1996) and Jump Function (Krongauz and Belytschko, 1998). The
first two methods are based on the modifications at the variational level for the treatment
of material discontinuity, while the last technique enriches the EFGM approximation by
the addition of special shape function i.e. Jump function that contains the discontinuity in
the derivative. In the present work, all the three approaches have been explored. These
have been compared among themselves to select the most efficient technique. Moreover,
a new criterion has been proposed to model weak as well as strong discontinuities such as

cracks in bi-materials under thermal/mechanical loads.
3.2 MODELING OF MATERIAL DISCONTINUITY
3.2.1 Governing Equations for Bi-Material

The treatment of ‘material discontinuity in EFGM is demonstrated by considering a two
dimensional linear elastostatic problem in plane stress. For simplicity, two

distinguishable materials represented by domains Q- and Q* is considered. The two
domains are separated by a single interface, I, as shown in Fig. 3.1. This interface is
defined by #_, the unit outward normal of Q- along the material interface. The
governing equilibrium equation is given by

V.e+b=0 on Q 3.1)

along with associated boundary conditions

=t on T, | (3.2)

=

o.

on I (3.3)

u

=l

u=
where, & is the Cauchy stress tensor and b is a body force vector, t is the specified

traction, u is the specified displacement field and W is the unit normal. A perfect
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interface has been assumed, and hence the traction and displacement are assumed to be

continuous across the interface T.

Fig. 3.1: Two-dimensional inhomogeneous body

3.2.2 Modifications for Material Discontinuity

Few modifications and additions are introduced in EFGM to solve the bi-material
problems. These changes give EFGM an ability to solve the problems involving material

discontinuities. The modifications in the approaches are discussed below:

3.2.2.1 Domain partitioning approach

In domain partitioning approach (Liu, 2003), the following weak/variational form of

V.6+b=0 is considered in Q along with associated boundary constraint applied using

Lagrange multipliers A (Cordes and Moran, 1996; Dolbow and Belytschko, 1998,

Krongauz and Belytschko, 1998)

jﬂvsau:cdg- _[Q5ubdQ—- j'r5uidr‘— jr SA (u—w)dl — jr Suldl =0 (3.4)

Corresponding to the satisfaction of the equilibrium equation V.6+b=0 on Q in both

Q*and Q" ; the traction and displacement boundary conditions, 6. =t on I, in both
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I'" and I, , u=wuonT, inboth I, and I']. The discretization of the above Eq. (3.4)

after imposing boundary conditions leads to the following set of linear equations:

N N 09

where,
— T r

K,=[B/DB,dQ, fi = [ @bdl+ | @ tdr, Gy = | ®N,dT,

(Dl,x 0 ‘ 1 v 0
_ Ny O E
gc = [ Nudl, B,=0 @, | N,(=[0 N ] D=—>|v 1 0
“ X 1-v

cDI,y (Dl,x 0 0 2

Q=0Q"+Q ", I,=I,+I) and [,=I, +I}

This method involves considering the inhomogeneous medium as separate homogeneous
bodies, and then some modifications are applied at the interface. The separation of the
body into its homogeneous parts is accomplished through the weight function, and
specifically the neighbors are decided on the basis of the domain of influence. For a
homogeneous part, the neighbors at a point x are the nodes which contain x in their
domain of influence (Belytschko et al., 1996¢). The neighbors for inhomogeneous bodies

are determined by defining the interface by a set of nodes which belong to both materials.

The line drawn by connecting these nodes is considered as the interface T, between two

materials (material-1 and material-2). Therefore, the points contained in material-1 can
only be influenced by the nodes in material-1 plus interface nodes; and points contained
in material-2 can only be influenced by nodes contained in material-2 plus interface
nodes. Figs. 3.2 and 3.3 illustrate the selection of the neighbors for homogeneous and
inhomogeneous materials respectively. The domains of influence are drawn for nodes

labeled 1 through 5 in each figure to determine the neighbors for the points a, b and c.
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The domain of influence for each node is a circle centered at the node. For the
homogeneous case (Fig. 3.2), point a is contained in the domain of influence of both
nodes 4 and 5; therefore, nodes 4 and 5 are considered the neighbors of the point a.
Similarly, point » has nodes 3 and 5 as neighbors, and point ¢ has nodes 1 and 2 as
neighbors. However, when an interface separating two materials is added as in Fig. 3.3,
the neighbors of the points a, b and ¢ change.

The domains of influence for node 4 and node 5 are unaffected by the interface. The
domain of influence for node 4 does not intersect the interface, and node 5 is an interface
node belonging to both materials. Therefore, point a still contains nodes 4 and 5 as
neighbors. The domains of influence for nodes 1, 2 and 3 are truncated at the interface.
The neighbors of point b still include nodes 3 and 5 since each pertain to material-1;
however, point ¢ is not included in the domain of influence of node 2 due to the
truncation of the domain of influence of node 2 at the interface. Similarly, point ‘¢ has

only one neighbor labeled in Fig. 3.3 i.e. node 1.

Material-1>< __§ _ -~ Material-2

o 7 ~

Fig. 3.3: Domains of influence and nearest neighbors for inhomogeneous bodies
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3.2.2.2 Lagrange multiplier approach
In this approach, the following interface constraint is applied apart from essential and

traction boundary conditions (Cordes and Moran, 1996):

jr (u* —u")dl =0 (3.6)
Hence, the following weak form of V.o +b=0 is used on Q using interface condition:

[V,6u:6da- [ subdQ- Jr'ciu't'df—jrué‘ﬂ(u—ﬁ)dl“— Ll&udl"— o
[ @ —u)éydr- [ y(ou*—su)dr=0 '

The Lagrange multipliers A, enforce the essential boundary constraint on I, , while the
Lagrange multiplier 7 enforce the displacement discontinuity. The associated Euler

- equations are as follows:

V.6+b=0in Q" and Q" , (3.8)
t-t=0 on I[and T, , 3.9)
u-u=0 on IJandT,, (3.10)
A—-t=0 on I andl, (3.11)
u'-u =0 on I, (3.12)
y+t'=0 on I (3.13)
y+t =0 on I (3.14)

corresponding to the satisfaction of the equilibrium equation V.6+b=0 on Q in both
Q*andQ; the traction and displacement boundary conditions, e.m=t onI, and
u=u onI, on both I'" and I'", and, the physical interpretation of the Lagrange
multipliers L=t, y=—t* =—t~. Substituting Eq. (3.11) and Eq. (3.13) into Eq. (3.7), the

following equations are obtained:
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[ V.6uicd- [ subdQ- 'frldufdf— '[ruc‘it(u—i)dl“— J;_"té‘udl“— 15
[ (u*-u)St7dl - | ¢ (Su* ~Su)dl =0 '

The discretization of the above Eq. (3.15), leads to the following set of linear equations:
Ku=f ' (3.16)
where, the matrices K and f are defined as

Ky=[B/DB,dQ [ &,sNDB,dT + [, BID'N"S ®,dr -

(3.17)
J, @7 —@)N"D Bydr + [ (B;) (D7) (V) (@] - @;)dT
fi = @jtdr- [ B/D'N"SuAI + [ bode (3.18)
E 1 v O
D= =lv 1 0 | for plane stress (3.19)
l1-v 1-v ’
0 0 —
2
(@, 0
B,=0 o, (3.20)
L @1,y Ql,x
(n, 0 n, s, 0
N = S= (3.21)
0 n, n, 0 s,
1, if theprescribed u,  on T,
s, = . , (3.22)
_ 0, if theprescribed u, on T,
0, if theprescribedu, on I, 3.23)
= 1, if theprescribedu, on I, ©

3.2.2.3 Jump function approach
In this approach, the discontinuities in derivatives are incorporated by using a Jump

function in the solution (Krongauz and Belytschko, 1998). The enrichment of EFGM

approximations is done by adding special shape functions i.e. Jump functions that contain
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discontinuities in derivative (Batra ef al., 2004) to the approximate solution. The Jump
shape functions have compact support which results in banded stiffness matrix.
Consider a two dimensional model (Fig. 3.1) having a line of derivative discontinuity.

The approximation with Jump function becomes -
u" (x) = u®MX)+ g7 (5)¥, (r) 3.24)

where, »™ is the standard EFGM approximation, which is given as:
uM (x) = Z¢1 X)u, (3.25)
I1=1

g’ are amplitude parameters of the jumps, and ¥, (r) are the Jump shape functions. s

provides parameterization of the line of discontinuity, and ¢~ is discretized as follows:
g’ ()=D N,(s)q] (3.26)
. 1 :

where, N, (s) are one dimensional shape functions which need to be ¢! continuous so
that they do not introduce any discontinuities in derivatives other than across the

discontinuity line.

From Eq. (3.24), it is clear that constant and linear fields will still be reproduced
exactly when ¢’ = 0. The distance to the closest point on the line of discontinuity is

denoted by r (positive on one side of the discontinuity and negative on the other side).
The Jump shape function is constructed from polynomials with a built-in discontinuity in

the derivatives. Let ¥, be equal to ¥, (7,), where 7, =r,/d,, ; r,is the distance to the
J"point of discontinuity and d,, is the domain of influence. A cubicspline Jump

function used in the present work is given as

1 .
¥, (7)=46" T3 73 (3.27)

70



Chapter 3¢ Modeling of Weak and Strong Discontinuities

A discontinuity in two dimensions is shown in Fig. 3.4. The distance » from the node to
the line of discontinuity is taken as positive for the nodes lying on the right side of the
line of discontinuity while for the nodes on left side  is taken as negative. For example

r, and 7, are positive while r, and r, are negative.

Line of derivative
discontinuity

® Nodes for Construction of Jump Function

Fig. 3.4: Discontinuity and sign convention for 7 in two dimensions

In order to make a comparative study of the above techniques, the results have been
obtained for two different cases of a bi-material beam. In the first case, the interface has
been kept normal to the length of the beam while in the second case; the interface has

been kept parallel to the length of the beam.

3.2.3 Bi-material Beam with Vertical Interface

A beam of dimensions W x H subjected to traction at the free end is shown in Fig. 3.5.
The problem has been solved for a plane stress condition with the following material
properties: E,= 4x10° nits, v,=0.2, E, = 2x10° units, v, = 0.1. The dimensions of the
beam are W = 8 units, A/ = 1 unit. The material constants are chosen in such a way that
E,/v,=E,/v,, so that the magnitude of strain along the interface remains equal for
both material. This ensures that there is no singularity in field variables at the interface.
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The material interface is vertical (parallel to y-axis) and is halfway along the length of the
beam. The applied traction (P) is 1 unit. The beam has been discretized using 41
uniformly distributed nodes in x-direction and 11 uniformly distributed nodes in y-
direction for both EFGM and FEM. Four point Gauss quadrature (Dolbow and
Belytschko, 1999) i.e. 16 Gauss points are used in each cell to evaluate the stiffness

matrix. The solutions were obtained using a linear basis function (Belytschko et al.,

1994) with cubic-spline weight function with 4, = 1.5.

i 0
/ 7
237 AR
jo !
A : :

Fig. 3.5: A two dimensional bi-material beam with vertical interface

Numerical results obtained by three different EFGM approaches are compared with
those obtained by FEM. Figure 3.6 shows the results obtained using domain partitioning
approach. The variation of stress component o,, and strain component ¢,, is presented
in this figure along the length of the beam at the top surface. It shows that the stress
values exhibit a linear variation along the length of the beam, while a sudden jump is
noticed in strain at the material interface, which is expected. A similar variation of o,
and ¢,, along the length of the beam have been obtained using the Lagrange multiplier
and Jump function approaches as can be seen in Figs. 3.7 and 3.8 respectively. Except the

Jump function approach, all other methods including the FEM solution shows a slight
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kink in the linear variation of stress o, at the material interface. Also, the magnitude of
Jump in strain ¢, values is more for the Jump function approach as compared with FEM
solution as can be seen from Fig. 3.8 (b).

The variations of o, and&,, along the length of beam at the top surface is shown in
Figs. 3.9-3.11 for domain partitioning, Largrange multiplier and Jump function
approaches respectively. The results obtained by these approaches are compared with
FEM solution as shown in Figs. 3.9 - 3.11. From these plots, it is seen that o, remains
nearly zero along the length of beam as expected from the theoretical calculations. In
order to check the effectiveness of these methods, L, error has been calculated for
different parameters (o ,,,0,,,£,.¢,,,U,,U,), and is presented in Table 3.1. From the
results in Table 3.1, it is found that the error in solutions obtained by Jump function
approach is minimum as compared to other two approaches. The error in results obtained
by domain partitioning and Lagrange multiplier methods are almost similar.

For a better understanding of the results, the stress/strain contours have been plotted
over the domain of the problem using jump function technique. Figure 3.5 shows the
schematic diagram of the vertical interface bi-material beam problem subjected to
traction on the right edge. The stress and strain contours, generated due to applied
traction, are shown in Fig. 3.12 and Fig. 3.13 respectively. The stress (o, ) and strain
(£,,) are smooth and continuous along the interface as expected while a jump in the
strain field (&,,) across the interface can be clearly seen from Fig. 3.12b. Moreover, the
stresses along y -axis (o, ) are nearly zero in magnitude as observed from Fig. 3.13a.
Thus, the stress/strain contours show a good modeling capability of Jump function
criterion.
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T I
s FEM
===== Domain Partitioning

o WIS N NN

Fig. 3.8: o, and ¢, variation along length of beam at top nodes (Jump function)
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Fig.3.11: 0, and &, variation along length of beam at top nodes (Jump function)
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Table 3.1: L,-error norms for bi-material beam having a vertical interface

Parameter Domain Lagrange Jump Function
Partitioning Multiplier
. 1.4177 1.4084 1.0970
o 1.7256 1.7256 0.4520
B 1.1996e-005 1.1996e-005 1.0188e-005
8y 4.2719e-006 4.2589e-006 1.1119e-006
U, 9.5176e-006 9.5176e-006 4.0670e-006
7y 9.8266€-005 9.8266e-005 4.2033e-005
L,= i(X 6 — X re )x Lo where X is any field parameter.
i=l no.of cells

Fig. 3.13: Contour plots using Jump Function (a): Stress (a',,y) (b): Strain (s " )
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3.2.4 Bi-material Beam with Horizontal Interface

A bi-material beam of dimensions W x H is subjected to traction P at the free end as
shown in Fig. 3.14. The problem has been solved for a plane stress condition with the
following material properties: E,= 9x10° units, v,=045, E, = 1x10° units, v, = 0.05,
and beam dimensions W = 8 units, H = 1 unit. One end of the beam is fixed whereas
traction (P) of 1 unit is applied at the other end of the beam. The material interface is
kept horizontal (parallel to x-axis) and is made to coincide with the neutral axis of beam.
The neutral axis of the beam is obtained at H/4 by using the compatibility condition for
bi-material ie E,/E,=Z,/Z, where Z denotes the section modulus. A regular
arrangement of (35x9) nodes has been used for domain discretization. In each
integration cell, 4 x4 Gauss quadrature is utilized to evaluate the stiffness matrix. The

EFGM simulations are performed using a linear basis function with the cubic-spline

weight function for 4, = 1.5.

E, H/4

Fig. 3.14: A two dimensional bi-material beam with horizontal interface
Numerical results obtained using three different EFGM approaches namely domain
partitioning, Lagrange multiplier, and Jump function approaches, are compared with
FEM solution. Figure 3.15 shows the variation of o,, and &, along a line normal to the

material interface at x =W /2 for domain partitioning approach. Figure 3.15(a) shows
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that o, values exhibit a linear variation in both the materials but the slopes are different.
At the interface the value of o, becomes zero. The zero value of o, is due to the fact
that the material interface coincides with the neutral axis of beam where all the stresses
are zero. The variation of strain component ¢&,, along a line normal to material interface
shows a linear variation as can be seen from Fig. 3.15(b). A similar variation of &, and
£, has been obtained using the Lagrange multiplier and Jump function approaches as
can be seen in Fig. 3.16 and Fig. 3.17 respectively. From these plots, it is seen that the
results obtained by Jump function technique are more close to the FEM solutions.

The variation of & and &, obtained by the above three approaches along a line
normal to the interface at x = W/2 is shown in Figs. 3.18 - 3.20. The magnitude of &,
remain nearly zero along a line normal to material interface. The variation of strain
component &,, again shows a linear variation on both sides of interface with different
slopes. At the material interface, the value of £, becomes zero as it is the neutral axis of
the beam.

The results obtained by all three techniques are compared with those obtained by
FEM as shown in Figs. 3.15-3.20. L;-error norm are obtained for o,,,¢,, 0,,.¢€,,U,,
U,, and are presented in Table 3.2. From Table 3.2, it is found that Jump function
technique possess the least error for all parameters. Due to better accuracy, Jump
function has been used to generate stress/strain contours for the horizontal interface
problem as shown in Fig. 3.21 and Fig. 3.22. The contour plots reveal that Jump function

has got good modeling capability as the results are found to be quite at par with those

expected analytically.
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Fig. 3.16: o, and ¢, variation along depth of beam (Lagrange multiplier)
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Fig. 3.17: o, and &, variation along depth of beam (Jump function)
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Fig. 3.18: o, and &, variation along depth of beam (Domain partitioning)
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Fig.3.19: 0,, and &, variation along depth of beam (Lagrange multiplier)
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Fig. 3.20: 0,, and &, variation along depth of beam (Jump function)
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Table 3.2: L,-error norms for bi-material beam having a horizontal interface

Parameter Domain. Lagrange Jump Function
Partitioning Multiplier
O 92.82176 93.42694 92.68715
Ty 10.34732 10.97538 10.08384
e 3.2547e-004 3.2548e-004 2.8378e-004
By 4.847e-005 4.8275e-005 4.6998e-005
-+ 0.0016866 0.0016867 0.001485
s 0.01016618 0.01016641 0.009575

L = \/Z(XEPG = X g )>< \/ LR i where X is any field parameter
i

no.of cells

(a) (b)

Fig. 3.22: Contour plots using Jump Function (a): Stress (ayy) (b): Strain (e » )
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3.3 MODELING OF MATERIAL AND GEOMETRIC DISCONTINUITIES

The increasing demand of multifunctional materials (having resistance to corrosion,
wear, thermal and chemical environment) in mechanical, aerospace and biomedical
applications has imparted the layered materials, a coveted place in the world of
engineering materials. Layered materials are found in a variety of important structures
such as adhesive joints, composite laminates, and various electronics components. The
overall mechanical behavior and response of layered systems depend on the mechanical
properties and fracture behavior of the interface. The interaction between materials
results in local load distribution, which determines the overall strength and fracture
behavior. The abrupt change in properties at the interface of layered materials is a source
of failure. A problem of great practical importance in composite laminate is a crack lying
along the interface of two layers with different elastic properties. Unlike crack problems
in homogeneous bodies, the bi-material interface crack always induces both opening and
shearing under mode-I loading. This coupling of stress intensification was first
demonstrated by Williams (1959) who used an Eigen function expansion approach, and it
was found that the stress singularity in the vicinity of a crack tip of a bi-material interface
crack is oscillatory in nature along with the presence of 1/ Jr singularity.

Various numerical methods for evaluating the stress intensity factors of bi-material
interface cracks have been developed including FEM and BEM. Yau and Wang (1984)
applied the M- integral approach in conjunction with FEM. Matos et al. (1989) used the
virtual crack extension method in conjunction with the superposition method and FEM.
Miyazaki et al. (1993a,b) applied the virtual crack extension technique and M- integral

approach along with BEM. Ikeda and Sun (2001) presented an efficient numerical
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procedure in conjunction with FEM for the analysis of an interface crack under thermal
stresses. Some studies on bi-material interface cracks have also been performed using
extended finite element method (Nagashima ef al., 2003).

At first, FEM appears to be an ideal method for the stress analysis of cracked
components. Unfortunately, FEM solution converges very slowly if the conventional
elements, which do not include stress singularities, are used. The high accuracy elements
using higher order polynomials as interpolation functions cannot improve the rate of
convergence. The error from the element immediately adjacent to the point of singularity
is found to be the same order as that obtained from the remaining elements. Also, the use
of small size elements cannot improve the situation either. The preparation of finite
element meshes for effective product analysis usually requires considerable amount of
labour and time as many products are composed of complex parts. To overcome these
problems, a number of meshfree methods have been developed over past 15 years.
Element free Galerkin method (Belytschko et al., 1994; Krongauz, 1996, Lu ef al., 1994,
Phu er al., 2008; Liu, 2003) is one of them, which is found quite attractive in comparison
to standard finite element method as it avoids the need for tedious and time consuming
finite element mesh.

3.3.1 Modeling of Bi-material Interfacial Cracks

In this work, a simplified approach for modeling bi-material interface crack has been
proposed. Material discontinuity i.e. weak discontinuity has been modeled by a Jump
function (Batra et al., 2004) and geometric discontinuity (crack) i.e. strong discontinuity
has been modeled by intrinsic enrichment criterion (Li and Simonsen, 2007). In this

approach, the crack lying at the interface of two materials has been modeled by using
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same enrichment functions as were used for modeling the cracks in homogeneous
materials. Only four standard enrichment functions are used for modeling an interfacial
crack rather than the twelve enrichment functions used by Sukumar e al., 2004. Thus,
the use of four enrichment terms along with Jump function provides us a simplified
approach to solve bi-material interface crack problem. At the same time it reduces the
computational cost significantly. The mixed mode stress intensity factors X; and K
are evaluated using the modified domain form of interaction integral (Sukumar et al.,

2004).
3.3.1.1 Modeling of geometric discontinuity by intrinsic enrichment

In enrichment criterion (Li and Simonsen, 2007), the presence of a crack i.e. geometric
discontinuity is modeled by adding extra terms either in the basis function or in the
approximation function. According to this criterion, physically there is no crack in the
domain. The meshfree standard basis functions are intrinsically enriched by the near-tip
asymptotic field functions to solve the problems involving strong discontinuities. The
number of enrichment functions depends on the coarse mesh accuracy desired. For higher
accuracy, full asymptotic field functions can be included in the basis, whereas for higher
speed at some cost of accuracy, only Jr can be included in the basis. An enriched basis

function used in the present work is given as:

- -
P'(x)=|1 x» ,J;cos‘g,-\/;sing-,x/;singsin G,J;cosesinﬂ (3.32)
N/ 2 2 2 27
standard enrichment terms
| basis )
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where, P(x) is the enriched basis function, » and @ are the local crack tip parameters.
The first three terms of Eq. (3.32) represent the standard basis function (1,x, y) while
the remaining four terms obtained from the crack tip solution makes up the enrichment
part.

3.3.1.2 Interaction integral approach for an interfacial crack

The J-integral remains globally path independent for bi-material interface crack problems
when no material inhomogenity exists in the direction parallel to the crack (Smelser,
1977). In this case, the mixed mode stress intensity factors K, and K, can be readily
evaluated using the domain form of the interaction integral (Moran and Shih, 1987). This
is a well established technique for determining the mixed mode stress intensity factors for
two-dimensional interfacial cracks (Nahta and Moran, 1993). In the interaction integral
approach, the two dimensional auxiliary fields are introduced and superposed on the
actual fields that arise from the solution of the boundary value problem. By judicious
choice of auxiliary fields, the stress intensity factors can be directly linked to the
interaction integral. The domain form of interaction integral (Sukumar e# al., 2004; Yau

et al., 1980) can be written as:

M =-[(o4658,, —o,ult —o,“u,,)q , dd (3.33)
A

where, § is an arbitrarily smooth scalar weighting function which is unity at the crack tip
and zero on the contour C' (Fig. 3.23). The auxiliary displacement fields for an interfacial

crack can be extracted using stated equations, and the interaction integral is related to the

stress intensity factors through the following relation (Sukumar et al., 2004).

2

=" (K, K +K,K7*) withi=12 3.34
i Ecoshz(;ri:')( 1By 1y ) ! ( )
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K™ and K™ are local auxiliary stress intensity factors for the auxiliary fields and E is
the equivalent Young’s modulus given as 2EE,/ (E,+E,) and ¥ is the bi-material
constant (Sukumar ef al., 2004) of the bi-material system. K, can be computed by taking

K™ =1 and K;* =0 from I,, and X, can be computed in a similar fashion.

Fig. 3.23: Domain integral representation (Domain 4 is enclosedby C*, C and C)

3.3.2 Bi-metallic Plate with an Interfacial Edge Crack

A bi-metallic plate having an edge crack of length a , is subjected to a tensile load on
upper and lower boundaries as shown in Fig. 3.24. The plate dimensions are scaled with
W =3 units, H =9 units, and far field applied stress o, =1 unit . The values of Poisson’s
ratios are taken as v, =v, =0.3. In order to demonstrate the validity of the proposed
method for interface crack problems, the results are obtained for several ratios of
Young’s moduli E,/E, =2, 3,10, 100, where E, is kept constant at 100 units and crack
lengths a/W =0.2, 0.3, 0.4, 0.5, 0.6. Normalized stress intensity factors are shown in
Fig. 3.25-3.28 where the results marked as Ref.1 and Ref.2 are taken from Matsumoto ef

al., (2000) and Liu ef al., (2004) respectively.
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TR EEE

E, v,

.

Fig. 3.24: A bi-metallic interface edge crack

Figure 3.25 shows the variation of normalized stress intensity factors i.e. X, and K
with varying crack length for E,/E, =2. The results show that with increase in crack
length, X, is increasing while k, goes on decreasing. Next, the EFGM results are
obtained for E,/E, =3,10and 100 as shown in Fig. 3.26-3.28 respectively. It can be

clearly seen from Figs. 3.25-3.28 that the values obtained by EFGM are quite close to the
reference values, and the maximum percentage difference in EFGM results with
reference solutions is less than 5%.

In order to have a clear visualization of the crack tip fields, the contours of stress
component ( oy, ) and strain component (&,, ) have been generated for different ratios of
E,/E, with a/W =0.4. Figure 3.29a and Figure 3.29b show the stress and strain
contours respectively for E,/E, =1 i.e. for homogeneous plate. It can be clearly seen

that both stress and strain fields are continuous and symmetric about x-axis as expected.

For non-homogeneous cases, the contours have been plotted for E,/E, = 2, 10, 100.
For E,/E, =2, the stress field o, is nearly symmetric with a very small distortion as

can be seen in Fig. 3.30a, but the strain contours for this case shows a small discontinuity
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at the interface. Next, the stress contours have been plotted for the ratio of £,/E, =10,
and a small variation in o, from the homogeneous case is obtained as can be seen in
Fig. 3.31a, while a strong discontinuity in the strain field is observed in Fig. 3.31b. The
contours have also been plotted for a higher material mismatch ratio of E,/E, =100
which again shows a nearly continuous and symmetric stress field for o, as shown in

Fig. 3.32a, 3.33a while the strain field is highly discontinuous as can be seen in Fig.
3.32b, 3.33b. From these simulations, it is noticed that the discontinuity in strain field i.e.
first derivative has been clearly observed due to the change in material property i.e.

Young’s moduli at the interface.
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Fig. 3.29: o, and ¢, contours for E,/E, =1
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Fig. 3.31: o, and ¢, contours for E,/E, =10
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0 0.06 0.1 0.1 0.2 0.25 o o(.ss 0.1 0.;6 0.2 0:4'6
(a) (b)
Fig. 3.32: o, and &, contours for E,/E, =100

(b)

Fig. 3.33: o, and &, contours for E,/E, =100

3.3.3 Bi-metallic Plate with an Interfacial Center Crack

A bi-metallic rectangular plate with an interface crack at the center has been considered
as shown in Fig. 3.34. The width () and height ( H ) of the plate are taken as 100 mm

and 200 mm respectively. The material interface is kept horizontal at a distance of H/2

from the bottom of plate. A tensile load of 9.8 MPa is applied in a direction normal to the

interface.
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Fig. 3.34: Bi-metallic plate with an interface centre crack

Three different crack length (2a), i.e. 40, 60 and 80 mm are considered. Young’s
modulus of the lower material ( E,) is kept constant at 205.8 GPa. For both materials, the
values of Poisson’s ratio are taken as 0.3. The results are obtained for different ratios of
Young’s modulus E,/E,= 1, 2, 3, 4, 10, 100. The normalized stress intensity factor is
defined as X, / oma (i=1, 2) so as to obtain non-dimensional values corresponding to
both mode-I and mode-II stress intensity factors. The EFGM results are compared with
those obtained by BEM (Ref.1 (Miyakazi et al., 1993)) and X-FEM (Ref.2 (Nagashima et
al., 2003)). Figure 3.35 shows the variation of normalized stress intensity factors with the
variation of E,/E, for a crack length of 40 mm. The values of stress intensity factors
have been evaluated at the right tip of the center crack. The analysis shows that the
normalized values of K, and K, show a decreasing trend with the increase in E,/E,.
Moreover, the results obtained by EFGM are found to be quite close to the reference
solutions. Another simulation is performed for a crack length of 60 mm, and the resuits
are plotted in Fig. 3.36. From the results presented in Fig. 3.36, it can be clearly seen that

the EFGM results are in good agreement with the reference solutions available in the
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literature. The simulations are alse performed for a crack length of 80 mm, and the
normalized values of K, and K, are plotted for different ratios of E,/E,. The EFGM
results are plotted along with the reference solution as shown in Fig. 3.37. The values of
K, are found to be quite close to Ref.l solution with a maximum error of 4% for
E,/E =100.

The contours of o,, and ¢&,, are also plotted in order to have a clear visualization of
stress and strain fields. A centre crack of length 2a = 40 mm is considered for generating
the contours with different ratios of Young’ moduli. In the first case, the ratio E,/E, is
unity i.e. a case of homogeneous material, and the stress and strain contours are plotted
as shown in Fig. 3.38a and Fig. 3.38b respectively. Both o, and &,, are found to be
continuous and symmetric about x-axis as expected. In non-homogeneous case, a bi-
material plate with E,/E, =2 is considered as shown in Fig. 3.39. From the stress
contour presented in Fig. 3.39a, a continuity of stress component oy, is noticed with a
small distortion at the interface, while the strain contour for this case shows a clear
deviation from the symmetry about x-axis as can be seen in Fig. 3.39b. The third set of
contours is generated for a higher ratio of Young’s moduli i.e. E,/E, =10, again the
contours show a continuous nature of stress component oy, as shown in Fig. 3.40a,
while the strain exhibits a high degree of discontinuity across the bi-material interface as
can be seen in Fig. 3.40b. In order to fully validate the technique, a large material
mismatch at the interface is considered i.e. E,/E, =100. In this case also, the stress
contour of o,, is almost continuous as shown in Fig. 3.41a and Fig. 3.42a, while strain
contour of &, shows a discontinuity at the interface as shown in Fig. 3.41b and Fig.

3.42b.
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(b)
Fig.3.42: o, and ¢, contours for E,/E, =100

3.3.4 Crack-Interfacial Crack Interaction in Bi-material

Fracture usually starts at a defect in the interface, especially at an interface or an edge of
the microcrack. The interaction effect of interfacial crack-microcrack plays an important
role in determining the fracture behaviour of bi-material. The present problem aims at
studying the interaction effect between an interfacial crack and a microcrack parallel to
the interface. The effect of transverse and longitudinal interaction distances between
interfacial crack and the microcrack is investigated. A two dimensional bi-metallic
rectangular plate is considered. The width (W) and height ( /) of the plate are taken as
152.4 mm and 203.2 mm respectively as shown in Fig. 3.43a. The length of the
interfacial crack (a ) and the microcrack (g, ) are taken as 20 mm and 5 mm respectively.
The bi-material assembly comprises of two elastic materials. The material properties are
listed in Table 3.3. The plate is subjected to a far field tensile stress (o ) of 100 MPa. A
plane stress condition is assumed. The domain has been discretized by taking 34

uniformly distributed nodes along both x and y-directions. A 4x4 Gauss quadrature has
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been used in each integration cell to evaluate the stiffness matrix. The simulation is

performed with an enriched basis function and cubicspline weight function for 4,,, = 1.5.

The variation of mode-I stress intensity factor (K,) of an interfacial crack is shown in

Fig. 3.43b as a function of offset (E ) For all values of offset (ﬁ ), the tip 1 of the
microcrack lies on a line normal to the interfacial crack passing through tip 3. It was
observed that for 4 =1.27 mm, X, has got a maximum value of 32.5 MPa. Increasing the
offset value results in a gradual decrease of the stress intensity factor until the offset
reaches a value of % =5.1mm. Beyond this value of %, the SIF becomes constant as can
be clearly seen from Fig. 3.43b. Thus, one can say that the interaction effect almost
disappear beyond a critical distance i.e. 52 =5.1 mm. It was also observed that a larger
difference in mechanical properties of bi-materials results in greater interaction effect.
Next, the variation of mode-I stress intensity factor (X,) of an interfacial crack is
studied as a function of a longitudinal movement of the microcrack. For this study, the
movement of microcrack is made parallel to x -axis while the interfacial crack remains
fixed as shown in Fig. 3.44a. The transverse distance between interfacial crack and
microcrack is kept constant at 4 = 1.27 mm. Figure 3.44b represents the variation of X,
with distance, d where, d is distance between the left edge of the plate and centre of
microcrack). From the results presented in Fig. 3.44b, it is observed that for 4 <10 mm,
the interaction effect between interfacial crack and microcrack remains constant as can
be seen from nearly constant values of K,. For 4 >10 mm, the shielding effect of
microcrack over the interfacial crack goes on increasing, and reaches its maximum for

d =20 mm. Physically this happens when the tip 3 and tip 2 lies in the same vertical

line. This configuration leads to a minimum value of K, =11.023 MPa+vm for the

interfacial crack. With further increase in the longitudinal distance d, the value of X,
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gradually increases and reaches a maximum value of 32.50 MPa+/m . This happens

when the tip3 and tipl lie in the same vertical line. This becomes a case of nearly

collinear crack which causes the well known stress amplification effect. The interaction

effect of microcrack over the interfacial crack tends to become smaller with further

increase of distance d as can be seen from Fig. 3.44b. For d > 30 mm, the value of X,

becomes nearly constant at 26 MPa+/m as the interaction effect between the stress field

of microcrack and interfacial crack becomes negligible. In order to check the modeling

capability of EFGM and for a clear visualization of crack tip stress field of both

interfacial crack and microcrack, the stress and strain contours of &, &

o s By, NEWE

been generated over the problem domain as can be seen in Figs. 3.45-3.46.

Table 3.3: Bi-material properties

Material No. | Material Name E (GPa) v
1 Silicon Nitride (Si;N,) | 304 0.27
2 Steel (S45C) 206 0.30
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Fig. 3.43: Geometry description and SIF variation with offset (/7 )
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Fig. 3.44: Geometry description and SIF variation with distance (&)

(a) (b)
Fig. 3.45: o, and g, contours for bi-metallic interacting cracks

(a) (b)
Fig. 3.46: o,, and &,, contours for bi-metallic interacting cracks
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3.3.5 Sub-interface Crack at Ceramic-metal Interface

Ceramics are the centre of attraction for advanced technological applications owing to
there wide range of properties and characteristics. They are used in various industrial
sectors such as electronics, electro-mechanics and energetic. Most of the ceramic
application requires them to be functionally or structurally interfaced with metallic
structures. Joining of metal and ceramic is quite difficult because of their distinctly
different properties. With the development of newer bonding techniques in recent years it
has become possible upto a certain extent. In the ceramometallic assembly, the sub-
interface region is highly prone to defects, which leads to crack initiation due to
weakness of bond, variation of material property, etc. Moreover, a bi-material joint
typically contains residual stresses that arise due to fabrication process when the
assembly is cooled from a high temperature (near to the melting point of metal) to the
ambient temperature. A combination of residual stresses with operating stresses can
promote the failure of components. In the present problem, the variation of residual
stresses near the crack tip in sub interface region of a ceramometallic assembly has been
studied and highlighted.

A bi-material assembly comprising of a thin layer of copper sandwiched between
alumina has been considered. Geometric dimensions along with boundary constraints are
shown in Fig. 3.47. The material properties of the constituents of the bi-material
assembly are presented in Table 3.4. A sub-interface crack is considered at a distance of
0.6 mm from the interface S1. The length of crack is taken as a= 1.8 mm. A uniform
temperature change of AT =300°C is assumed to prevail throughout the problem
domain. A regular arrangement of 109x15 nodes has been used for domain
discretization. In each integration cell, 4 x 4 Gauss quadrature has been used to evaluate

the stiffness matrix. The EFGM solutions are obtained using an enriched basis function
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with the cubicspline weight function with 4,,, = 1.5. The thermal residual stresses result

from the mismatch between the thermal expansion coefficients and the stiffness of

bonded materials. The distribution of normal residual stresses o, , o, and shear residual
stresses o, has been plotted in Figs. 3.48-3.50 along a path normal to the interface and

near the crack tip. From these plots, it is observed that the temperature change AT,
places copper in tension and alumina in compression. The level of normal and shear
residual stresses are determined by the temperature of bi-material assembly. The
magnitude of compressive stresses is much larger than the tensile stresses. Moreover, the
tensile stresses are almost constant while the compression reaches its maximum value in
the vicinity of crack tip. A comparison of results shows that the magnitude of normal

residual stresses o, is less than that of transverse residual stresses o, as can be seen

from Fig. 3.48 and Fig. 3.49. Although these transverse residual stresses have significant
magnitude, they do not contribute to the crack propagation as they are directed along the

length of crack. The variation of shear residual stresses o, along the interface and near

the vicinity of crack tip is shown in Fig. 3.50. From Fig. 3.50, it is observed that a

significant tangential residual stress o, is present at the crack tip whereas for the points

away from crack tip, its magnitude becomes negligible. Figure 3.51 illustrates the
variation of J -integral as a function of temperature gradient for different values of crack
length (a). For a particular crack length, it is observed that with an increase in
temperature at the time of manufacturing, there is a significant variation in . -integral.
However, for a small change in temperature, the value of J-integral becomes
independent of crack length. Indeed, an increase in temperature gradient causes an

increase in residual stresses which leads to intensification of J -integral.
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Table 3.4: Properties of bi-material assembly constituents
E (GPa) ax10®

Material

Copper | 1135 16.75

Alumina | 385.8 .12
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3.4 CONCLUSION

In this chapter, the EFGM has been successfully implemented to solve the problems of
weak and strong discontinuities. A comparative study of various techniques for modeling
weak discontinuity revealed that the Jump function criterion is the most promising
criterion. A new criterion is proposed for modeling bi-material interfacial cracks using
Jump function approach. The new criterion was found quite effective in reducing the
computational cost as it involves only four enrichment terms in the basis function instead
of twelve enrichment terms. Further, some additional problems of bi-material interfacial
cracks under mechanical/thermal loading were simulated in order to check the robustness
of the proposed criterion, and it was noticed that the proposed criterion is quite successful

in handling a wide range of bi-material interfacial crack problems.
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Chapter 4
SIMULATION OF MULTIPLE INTERACTING CRACKS

e ———

4.1 INTRODUCTION

Cracks are inevitable in all engineering components and structures. Complex loading
conditions in actual working conditions may result in either the propagation of pre-
existing cracks or may initiate new cracks in the structures. The final fracture of a
component is always initiated by multi site cracks. The crack tip stress ficlds of all such
cracks interact with one another and lead to formation of one dominant crack which
paves the way for final failure of a component. As such, all important failure
phenomenons such as stress corrosion cracking, hydrogen embrittlement, and creep
micro cracking are directly linked to the crack interactions (Muravin and Turkel, 2006a).
Interaction among multiple cracks is one of the most important but less investigated
phenomena in fracture mechanics. An accurate evaluation of stress intensity factor is
quite essential for the prediction of failure and crack growth rate. Thus, the study of crack
interactions (Muravin and Turkel, 2006a; Loehnert and Belytschko, 2007) under
thermal/mechanical load is of great importance as it helps us to understand some basic
phenomenon such as

& The effect of micro and macro cracks in non-uniform materials e.g. composites,

concrete, piezoelectric;

% Amplification and shielding effect (Hori and Nemat, 1983) of cracks;

% Direction of crack propagation and crack branching;

Simulation of multiple interacting cracks by conventional finite element method

requires an enormous mesh refinement near each crack tip along with use of singular
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elements near the crack tips. Moreover, simulation of moving discontinuities requires
tedious and time consuming remeshing at every time step. Even with the use of adaptive
remeshing, the mapping of variables is a computationally expensive task and a source of
cumulative numerical errors. Some efforts have been made in the past to study the
multiple crack interactions. Horii and Nemat (1983) estimated the stress intensity factor
for interacting cracks. Chen (1984) studied the general case of multiple crack problems in
an infinite body. Kachanov and Laures (1989) solved some three-dimensional problems
of strongly interacting arbitrarily located penny shaped cracks. Wu and Chudnovsky
(1993) studied the effgct of micro-crack array on stress intensity factor of the main crack.
Kachanov (1985) proposed a simple technique for the stress analysis of elastic solids
with cracks. Lam ez al. (1993) simulated the interaction among micro-cracks and main
crack in semi infinite medium. A most recent review of micro/macro crack interaction
problems is given by Tamuzs and Petrova (2002). Budyn et al. (2004) devised a method
for the study of multiple growing cracks, and their interactions in brittle materials
without re-meshing, and Zi et al. (2004) further used this method for the fatigue analysis
of multiple cracks. Loehnert and Belytschko (2007) investigated the amplification and
shielding effect of micro crack on the macro crack. Muravin and Turkel (2006a)
investigated the crack interactions by modifying the weight functions for each crack
using EFGM. This criterion is not simple from the implementation points of view as each
additional crack requires special treatment of weight function. In spite of a lot of
analytical and numerical research, not much effort has been made to study the effect of
crack interactions using meshfree methods.

In the present work, EFGM has been used to analyze crack interactions in linear
elastic fracture mechanics problems under thermal/mechanical loads. Few modifications

have been suggested in the intrinsic enriched basis to incorporate the interaction effect. A
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comparison of the results obtained by diffraction criterion (Fleming ef al. 1997; Organ et
al. 1996; Belytschko and Fleming, 1999), analytical solution (Anderson, 2005) and FEM
shows that the modified intrinsic enrichment is quite effective in capturing the effect of
créck interactions. A new partial domain enrichment criterion has also been» suggested to
simulate cracks lying in non-convex domains. This proposed criterion not only eliminates
the error in results due to non-coﬁvexity of the domains, but also reduces. the overall

computational cost of the method.

4.2 PROBLEM FORMULATION
Consider a two-dimensional domain with small displacements in the domain Q bounded

by I' as shown in Fig. 4.1. The governing equilibrium equations are given as
Veo+b=0inQ @4.1)
along with the following essential and natural boundary conditions

u=u onr, ' “4.2)

cn=tonT _ (4.3)

T

u u
Fig. 4.1: Domain along with essential and natural boundary conditions
where, o is the stress tensor which is defined as ¢ = D(¢-g;), D is the linear elastic

material property matrix, £ is the strain vector, €, is the thermal strain vector, b is the

body force vector, u is the displacement vector, t is the traction force and 1 is the unit
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normal. For the case of plane stress in an isotropic material with coefficient of thermal
expansion f subjected to a temperature change AT, the thermal strain matrix is given by
BAT

={BAT (4.4)
0

Enforcing essential boundary conditions using Lagrange multiplier approach, and

applying variational principle, the following discrete equations are obtained using Eq.

@.11):
K Glf|u f

IR e
where K, = [B]DB,dQ, fi =(fDmeen + (/) Derma NCY)

(1) meen= thj dr, s (S thermar = _[BTDSTCD dQ,G = J.(D N, dl,, gx :_INK udl,,

1 rll

¢1,x Y N 0 1 14 0
B,={0 D, | NK=[0" }, o E —|v 1 0 for plane stress
. N _
o, 0, . Yo 0 a-v)2

4.3 INTRINSIC ENRICHMENT FOR SINGLE CRACK

In enrichmeht based criterion (Fleming et al., 1997), the presence of a crack is ensured
by enrichment terms i.e. by adding extra terms either in the basis function or in the
approximation function. In this criterion, the presence of crack is modeled by use of
enrichment functions. In the intrinsic enrichment criterion, the meshfree standard basisv
functions are intrinsically enriched by including the near-tip asymptotic field to solve
problems with strong discontinuities such as cracks. The choice of enrichment functions

depends on the coarse mesh accuracy desired. For higher accuracy, one can include the

full asymptotic field, while for higher speed at some cost of accuracy; only Jr can be
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included in the basis. A regular/standard enriched basis function can be given as

-
P'(x)=|1, x, y,«/r_cosg,«/;sing,«/;singsin&‘/;COS'QSing ' @.7)
A 2 2 2 2 y
standard enrichment terms
| basis -

where, P(x) is the enriched basis function, » and @ are the local crack tip parameters.
First three terms of Eq. (4.7) represents the standard basis function (1,x, y) and

remaining four terms obtained from the crack tip solution makes up the enrichment part.

A single edge crack along with an evaluation point and local crack tip parameters
(r,0) is shown in Fig. 4.2. In the single crack configuration, the enrichment terms are to
be added with reference to the only crack tip present in the domain at the
evaluation/Gauss point during numerical integration, which can be easily done either for

a part of the region near crack tip or over the entire solution domain.

Evaluation/Gauss point

rs

i

a
>
v

Crack

Fig. 4.2: Single edge crack along with crack tip parameters

The above intrinsic enrichment criterion works well only for single crack, but can not be

used for multiple crack tip configurations.
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- 4.4 INTRINSIC ENRICHMENT FOR MULTIPLE CRACKS

The intrinsic enrichment criterion is based on the addition of extra terms in the standard
basis function. These additional terms are generally obtained from the theoretical
background of the problem. The simulation of a crack using intrinsic enrichment requires
four additional functions in the basis corresponding to each crack tip, whereas the
simulation of multiple cracks using intrinsic enrichment criterion will require many
enrichment terms depending upon thg number of crack tips present in the domain
(Muravin, 2003). Hence, the simulation of multiple cracks using this approach will be
very expensive from the computational time point of view. Therefore, a simple and

efficient method has been proposed to simulate the multiple cracks.

4.4.1 Modified Intrinsic Enrichment Criterion

In case of a single crack, the enrichment is done for the each evaluation/Gauss point of
the domain, which consists of four additional terms related with the 6n1y crack present in
the domain. Therefore, in the present work, regular intrinsic enrichment criterion has
been modified for handling multiple cracks. According to the proposed criterion, the
enrichment decision with reference to a particular crack tip has to be made i.e. it is to be
ensured that the additional terms need to be added with respect to a particular crack tip
from the all the available crack tips in the domain. This decision is made on the basis of
normalized distances between the evaluation/Gauss points and the crack tips. According
to this criterion, the distances of an evaluation point from all the crack tips are evaluated
and normalized by their corresponding crack lengths, and then the enrichment is decided

on the basis of minimum normalized distance. For example, three cracks of length 4,, g,
and a, are taken as shown in Fig. 4.3, and the location of a particular evaluation/Gauss

point with respect to different crack tips are (r,,6,), (1,6,) and (7;,0;) respectively.

108



Chapter 44 Simulation of Multiple Interacting Cracks

Now at particular evaluation point during numerical integration over the domain, the
enrichment terms are to be added with respect to the only one crack tip from all available
‘crack tips. This decision of enrichment with respect to a particular crack tip is based on

the normalized distances of each crack tip i.e. r,/a, with i =1, 2, 3. The enrichment of

the basis function with respect to a particular crack tip is decided on the basis of
minimum normalized distance. This criterion works well while studying and analyzing
the interaction effect of similar size cracks, but can not handle significantly unequal size
cracks properly. Hence, the existing intrinsic enriched criterion required further
improvement for the study of both nearly equal and significantly unequal size multiple
cracks. Therefore, a new weightcd criterion was established, which can be used to study

the interaction effect of both nearly equal and significantly unequal size multiple cracks.

a, >
“'.gz
R,
ni O &
¥ ol
a, :: 01

Fig. 4.3: Three edge cracks along with crack tip parameters

4.4.2 Weighted Intrinsic Enrichment Criterion

In the intrinsic enrichment criterion proposed in the previous section, it becomes difficult
to handle significantly unequal size multiple cracks. Therefore, this enrichment criterion
is further modified to handle multiple cracks of equal/unequal sizes. In the proposed

criterion, all cracks contributes to the stiffness matrix ( K, in Eq. 4.6) at each evaluation

point in contrast to the existing criterion where only one crack contributes to K, at each
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evaluation point. For example, three cracks of length a,, a, and a, are taken as shown

in Fig. 4.3, and the location of a particular evaluation/Gauss point with respect to various
crack tips are (r,6,), (r,6,) and (r,0;) respectively. Now, during numerical

integration at a particular evaluation/Gauss point, enriched basis and shape functions are
constructed separately for each crack tip. Once the shape functions are obtained using
enriched basis for each crack tip at an evaluation point, then the contribution of each
crack tip to the stiffness matrix is decided on the basis of the normalized distances i.e.

d.=r/a, with i =1, 2, 3. Mathematically, total K,, at an evaluation/Gauss point (in Eq.

4.6) is evaluated as
. N
[K, ], =K, 1 xR +[K L 1ox Ry + o) [, xRy =D [Ky] xR, (4.8)
i=1

where, N denotes the number of cracks present in the domain, R, is a parameter which

decides the contribution of a particular crack, and [K ,J],. is evaluated by Eq. 4.6 as

x,]= IBf'DB ,dQ with a different B, for each crack. The value of R, in Eq. 4.8 is
Q

numerically evaluated as

N
R =—2— with 'R =1 (4.9)
ZS i=1
J
=1

where, S, :d,.a and d, represents normalized crack tip distance (d, =7 /a,;) for a

particular crack and C is a predefined constant, which is calculated by performing the

sensitivity analysis of C, and its acceptable range is found to be -50< C <-100.
As the proposed criterion considers the effect of all cracks at each evaluation point, it
can be used to simulate both equal and unequal size multiple cracks. The existing

intrinsic enrichment criterion can be seen as a particular case of the proposed criterion

110



Chapter 44 Simulation of Multiple Interacting Cracks

where at each evaluation point, the contribution of one crack is taken as 100%, while the

contribution of other cracks is taken as zero.

4.5 RESULTS AND DISCUSSIONS
4.5.1 Crack Interactions under Mechanical Loading

The dimensions of the cracked body used in the present study are taken as H = 200 mm,
w = 100 mm as shown in Fig. 4.4. The material selected for present study is ASTM 36
steel (Beer et al., 2002) with modulus of elasticity ( E ) = 200 GPa, Poisson’s ratio (v) =

0.3. A far field stress, (o, ) = 100 MPa is applied at the top edge.

Few cases of edge crack problems have been solved to study the effect of crack
interactions. The first crack has been taken at a distance of H/2 i.e. 100 mm from the
bottom with an orientation of a =0° (& =0°implies that the crack is parallel to the x -
axis, Fig. 4.4), whereas, the second and third crack (if present) has been placed ‘at
different locations and orientation to study and analyze the effect of crack interactions.
To validate the EFGM results, single edge crack problem has been solved under mode-I
loading by both intrinsic enrichment and diffraction criterion using multiple crack weight
approach (Muravin and Turkel, 2006a).

Single edge crack along with its geometry and boundary conditions is shown in Fig.

4.4. The bottom edge has been constrained along y -direction, and an external far field

stress is applied at the top edge as shown in Fig. 4.4. The problem domain has been
discretized using 800 uniformly distributed nodes for intrinsic enrichment while for
diffraction criterion, additional nodes has been defined at the crack surface and crack tip.
Six point Gauss quadrature (Dolbow and Belytschko, 1999) has been used for the
numerical integration (Dolbow and Belytschko, 1998) of the Galerkin weak form. A

plane stress condition has been assumed. The values of mode-I and mode-II stress
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intensity factors i.e. K, and K, have been calculated using domain based interaction

integral (Dolbow and Belytschko, 1999; Dag, 2006) approach.

BEREEE

[ 1 L

w

Py

Fig. 4.4: Problem geometry along with boundary conditions

The results have been obtained by EFGM for various crack configurations. Figure
4.5a shows a single edge crack configuration subjected to external far field stress. Both

mode-I and mode-II stress intensity factors have been calculated at the crack tip for
different values of crack lel_1gth a, as presented in Fig. 4.5b. A comparison of results
obtained by both diffraction criterion and intrinsic enrichment shows a similar trend of
K, and K, but the values of K, obtained by intrinsic enrichment are closer to the
analytical solution (Anderson, 2005) as compared to diffraction criterion as can be
clearly seen from Fig. 4.5b.

Figure 4.6a shows two cracks of equal length (4, = a, = 40mm) on the same edge of
cracked specimen. The first crack has fixed orientation along the width while the
orientation of the second crack is varied. Both K, and K, are calculated at the tip of the
first crack. Figure 4.6b presents the variation of the stress intensity factors of the first

crack with the orientation of the second crack. It can be seen that K, shows an
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increasing trend with the increase of a with a minimum value of 59.92 MPavm

(Intrinsic enrichment) while K, has a maximum value of 11.85 MPa+/m (Intrinsic
enrichment) for a =0°, which tends to zero with the increase of « . At higher values of
o , the tip of the first crack is far away from the second crack tip, thereby K, of the first
crack remains almost unaffected. However, when « is small, K, of the first crack is

reduced due to the presence of lower stress region below second crack. Figure 4.6b also
shows that the values obtained by modified intrinsic enrichment are in good agreement
with those obtained by diffraction criterion.

The effect of offset i.e. d (as shown in Fig. 4.7a) between two parallel cracks of
equal length (a1 =a, =40 mm) lying on the same edge has been analyzed next. Figure
4.7b shows the effect of offset on the stress intensity factors of first crack (lower crack).
From the results presented in Fig. 4.7b, it can be seen that the presence of equal length
second crack lowers the value of K, of the ﬁrst crack while K, becomes non-zero.
With the increase of offset, K, increases continuously, and approaches a value
corresponding to a single crack only. The value of X, is found to be maximum at d =20
mm and thereafter decreases with the increase in offset. The results obtained by both
diffraction and modified intrinsic enrichment approaches are quite close to each other,
and have a maximum 2.4% difference in values of X, .

Figure 4.8a shows two parallel cracks configuration both lying on the same edge. The
length of the first crack (a,) i.e. lower crack is taken as 40 mm, while the length of
second parallel crack (a,) i.e. upper crack is varied. The distance between two parallel
cracks is taken to be equal to length of lower crack i.e. d = a,. The stress intensity factors
have been evaluated at the tip of first crack. For a,<q,/2, K, of first crack has been

found nearly same as that of a same length single edge crack (Fig. 4.8b). The value of

113



-Chapter 4¢ Simulation of Multiple Interacting Cracks

K, keeps on decreasing and K, shows an increasing trend with the increase in the
length of second crack. The decreasing trend in value of K, of lower crack is due to the

fact that with the increase in length of upper crack it tends to become the major crack

there by reducing the stress concentration at the tip of lower crack.

A specimen with two cracks on the opposite edges has been considered as shown in
Fig. 4.9a. The crack on left edge is kept at & =0° with the horizontal, while the crack on
right edge has a variable orientation (a). Both cracks have equal length i.e.

a, = a, =40mm . The values of stress intensity factors have been calculated at the tip of
first crack (tip of the left edge crack). K, shows an increasing trend with the increase in
a , while K, reaches its peak value around « =20°, and thereafter nearly approaches

zero at & =60° as shown in Fig. 4.9b. At a =0° the value of K, calculated by diffraction
criterion is 53.10MPav/m while the proposed intrinsic enrichment criterion predicts

nearly a same value i.e. 52.92 MPavm . For a>50°, intrinsic enrichment criterion

predicts SIF values on higher side as compared to diffraction criterion, and a maximum

difference of 5% is noticed between them.

The effect of offset (vd) between two parallel cracks of same length i.e.
a, =a, =40mm lying on opposite edges (Fig. 4.10a) has been analyzed next.K, and
K, have been evaluated at the tip of left edge crack. Fof an offset of d =0, the
geometry behaves as two collinear cracks of equal length, and both diffraction and
intrinsic enrichment criterions predicts an equal K, valuesi.e. 53.10 MPa+/m which are
quite close to the analytical value (Anderson, 2005) i.e. 53.43 MPa+/m . For offset less

than 30 mm, the values predicted by both criteria are close to each other but for offset

greater than 30 mm, the value predicted by intrinsic enrichment is more as compared to
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diffraction. Figure 4.10b shows that the variation of X, and K, predicted by diffraction
criterion and intrinsic enrichment are same.
Three different cases of collinear edge cracks have been considered. Figure 4.11a

shows the configuration where length of both cracks is incremented by equal magnitude.

The values of K, and K, have been evaluated at the tip of left edge crack. A

comparison of results obtained by diffraction criterion and intrinsic enrichment with that

of analytical solution suggests that intrinsic enrichment predicted values are close to the

analytical solution as can be clearly seen from Fig. 4.11b. The values of K, remain
nearly zero for all values of crack length.

For the second case of collinear cracks, the length of left edge crack is kept constant

i.e. 40 mm, while the length of right edge crack is varied continuously as shown in Fig.

4.12a. The values of K, and K, are evaluated at the tip of left edge crack. For smaller
values of a,, the value of K, for left edge crack ié higher but as a, increases, the value
of XK, goeé on decreasing as can be seen in Fig. 4.12b. Both diffraction and intrinsic
enrichment criteria predict a similar trend of K| ; although for smaller values of crack
length q,, intrinsic enrichment predicts SIF values are on higher side as compared;_,gto-
diffraction criterion.

In third case of two collinear cracks, the length of right edge crack is kept constant
i.e. 40 mm, while the length of left crack i.e. @, is changed as shown in Fig. 4.13a. The
values of K, and K, have been evaluated at the tip of left edge crack. Both diffraction
and intrinsic enrichment predict nearly equal values of SIF as can be clearly seen from

Fig. 4.13b. The negative values of K, shows the dominance of right edge crack for

smaller values of crack length g, . The results obtained for different crack configurations
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show that proposed intrinsic enrichment criterion works well, and produces better results
as compared to the diffraction criterion.

Next, the intrinsic enrichment is used to solve three edge crack problems subjected to
plane stress condition. Different crack orientations have been chosen for this study and
the results obtained by modiﬁed intrinsic enrichment criterion are compared with those
obtained by FEM. Figure 4.14a shows three edge crack configuration with one crack on
left edge and two cracks on right edge. Two right edge cracks were placed at an offset of
d = 40mm. The values of K, and K, have been evaluated at the tip of leﬂ'edge crack.
The values of crack length are kept same for all three cracks, and then same increment in
the crack length is made in all three cracks for this study. A finite value of K, is
obtained at the crack tip, whiie the value of K, nearly remains nearly zero. The SIF
values and their trend show a close prdximity with FEM solution as shown in Fig. 4.14b.

The effect of offset distance between two right edge cracks on K, and K, of the left
edge crack has been considered in Fig. 4.15a. The length of all three cracks chosen for
this analysis is taken as 40 mm. The values of K, and K, havé been evaluated at the tip
of left edge crack. For smaller offset, the results obtained by intrinsic enrichment
estimates X, on lower side in comparison to FEM but with the increase in offset, the
results comes closer to each other as can be seen in Fig. 4.15b.

A similar geometry having three cracks as above is considered again. The lengths of
all three cracks are equal i.e. 40 mm. The effect of inclination of the two right edge
cracks on left edge crack is shown in Fig. 4.16a. The inclination (a ) has been changed in
such a way that tip of two right edge cracks move away from each other. The values of

K, and K, are evaluated at the tip of left edge crack. The results show that with the

increase in «, the values of K, keep on increasing, while K, remains nearly zero for
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all values of « . The results obtained by both intrinsic enrichment and FEM are almost

similar for all values of a as shown in Fig. 4.16b.

Another three cracks configuration is considered as shown in Fig. 4.17a, where the
inclination of right edge cracks has been taken in such a way that the crack tip

approaches to each other. The values of K, and K, have been evaluated at the tip of left
edge crack. K, values initially have a decreasing trend up to 30° crack inclination, then

an increasing trend up to 70° inclination and become constant after that as shown in Fig.

4.17b. The results obtained by intrinsic enrichment are quite close to the FEM solution.

In order to have a clear visualization of crack tip stress field and interaction effect of

second crack, the contours of stress component o, have been plotted over the specimen

geometry. For inclined cracks, three different cases with the inclination of 10°, 30° and
50° have been considered as shown in Fig. 4.18 & 4.19. The interaction effect has been
found to be more prominent with lower angle of inclination. For specimen geometry with
two parallel cracks, the contours have been plotted for 30 mm, 50 mm and 70 mm offset
as shown in Fig. 4.20. Figure 4.21 shows the effect of crack interaction for two parallel
cracks lying on the opposite faces. In this case, the length of two cracks has been kept -
constant i.e. 40 mm each while the offset has been changed from 0 to 70 mm. The
contours have been plotted for three different values of offset i.e. 30, 50 and 70 mm.
Figure 4.22 shows contour plots over the domain for two collinear cracks. Three different
models have been considered with crack tip distance equal to 40, 30 and 20 mm
respectively. Plot shows that the interaction effect tends to fade away when the distance
between crack tips is increased. It can be clearly observed from these contours that both
angular and spatial location of crack have a prominent effect over thé degree of

interaction which leads to distortion of the contour lines over the problem domain.
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Fig. 4.7: Problem geometry and variation of SIF with offset
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Fig. 4.22: Stress contours of &, for different crack configurations
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4.5.2 Crack Interactions under Thermal Loading

The dimensions of the cracked plate used for investigating thermal loading are taken as
H=200 mm, W= 100 mm as shown in Fig. 4.23a. The material used in study is ASTM

36 steel (Beer et al., 2002) with modulus of elasticity E = 200 GPa, Poisson’s ratio
v =0.3 and coefficient of thermal expansion 8 =11.7x107° . For the case of thermal
loading, both top and bottom edges are constrained along y -direction and thermal
stresses are developed due to the change in temperature. A uniform temperature change

AT = —43.7°C has been assumed such that it produces an equivalent mechanical stress

EBAT =200x10° x11.7x107° x43.7 = 99.9 ~ 100 MPa . Different crack configurations
under thermal loading have been analyzed in this section.

Figure 4.23a shows two cracks lying on the same edge in a specimen. The first crack
lying on the left edge has a fixed orientation along the width, while the orientation of
second crack is varied. The length of both cracks is taken as 40 mm. Both X, and X,
are calculated at the tip of first crack. Figure 4.23b presents the variation of the stress
intensity factors of the first crack with the angular orientation (a) of the second crack.
From the results presented in Fig. 4.23b, it is noticed that the values of X, increases With
the increase of a, whereas K, decreases with the increase of a At ¢ =0°K, and K,
are found to be minimum and maximum respectively. A good agreement between the
results obtained by diffraction criteria and intrinsic enrichment can be clearly seen from
Fig. 4.23b.

The effect of offset distance i.e. d (as shown in Fig. 4.24a) between two paraliel
cracks of equal length (40 mm) lying on the same edge has been analyzed in this sub-
section. Figure 4.24b shows that effect of d on the stress intensity factors of lower

crack/first crack. From the resulted presented in Fig. 4.24b, it is seen that the presence of
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equal length upper crack lowers the value of K, to 23.25 MPavm whereas K, becomes
non-zero due to change in applied stress field for the lower crack. With the increase in
offset distance, K, increases continuously, while K, shows a decreasing trend. From
Fig. 4.24b it is clear that the results obtained by the intrinsic enrichment and diffraction

criterion are in good agreement with each other.

Figure 4.25a shows two parallel cracks configuration both lying on the same edge.
The length (a,) of the first crack i.e. lower crack is taken as 40 mm, while the length
(a,) of second crack i.e. upper crack is varied. The distance between two parallel cracks
(d) is taken as 40 mm. The stress intensity factors have been evaluated at the tip of first
crack. From the results presented in Fig. 4.25b, it is found that with the increase in the

length of the second crack, K, decreases, and K, increases. The decrease in value of

K, for the first crack with the increase in the length of upper crack is due to the tendency
of upper crack to become the major crack. Moreover, the results presented by diffraction
criterion and intrinsic enrichment are quite close to each other.

A specimen with two cracks of equal length (40 mm) lying on the opposite edges is
considered as shown in Fig. 4.26a. The crack on left edge is kept at o =0 with the
horizontal, while the orientation (& ) of the crack on the right edge has been varied from
0° to 60°. The values of stress intensity factors have been calculated at the tip of the left
edge crack. From the results presented in Fig. 4.26b, it is observed that with the increase

in o, K, keeps on increasing, whereas K, initially increases upto « =20°, and
decreases after that. The variation in value of K, for a 60° change in inclination is less as

compared to the same in mechanical loading. From the results presented in Fig. 4.26b, it
is seen that the results obtained by diffraction criterion are slightly on the higher side as

compared to the intrinsic enrichment. However, the trend is similar in both techniques.
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Two parallel cracks of same length i.e. g, =a,=40mm lying on opposite edges
(Fig. 4.27a) have been analyzed by varying the offset (d) between them. K, and X,
have been evaluated at the tip of left edge crack for various values of d. The effect of d
on K, and K, is presented in Fig. 4.27b evaluated by diffraction criterion and intrinsic
enrichment. The minimum value of K, is obtained at d =0, then K, increases
continuously with the increase of d . The maximum value of K, is found at d = 20mm .

Next, a case of collinear edge cracks have been considered. Figure 4.28a shows the
configuration where length of both collinear cracks is increased by equal amount. The
values of K, and K, are evaluated at the tip of left edge crack. A comparison of the
results obtained by diffraction criterion and intrinsic enrichment suggests that the values
are quite close for crack length a, > 25mmas can be seen from Fig. 4.28b. For all values
of crack length, X, values obtained by diffraction criterion are smaller in comparison to
intrinsic enrichment, whereas K ;, nearly remains zero for all values of crack length.

Again stress (o,,) contour plots for different spatial and angular orientation have
been generated for the case of thermal loading as shown in Figs. 4.29- 4.33. It is

observed that the contour patterns for thermal loading are different from those of

mechanical loading.
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Fig. 4.30: Stress contours of o, for different crack configurations

(a) (b)

200 1—

1754 .
150
125
100
ECE | YN
:
sod o2 7

1)

Fig. 4.31: Stress contours of &, for different crack configurations

*200

175

150

2

100 1

78

s0d:

25

(b)

Fig. 4.32: Stress contours of o, for different crack configurations

129

200

20 40 60: Y 100

()



Chapter 44 Simulation of Multiple Interacting Cracks

Fig. 4.33: Stress contours of o, for different crack configurations

4.6 CRACKS IN NON-CONVEX DOMAINS

A domain is said to be non-convex if a line joining any two points of the domain intersect
the domain boundary. Figure 4.34 represents a non-convex domain as a line joining
points 4 and B intersect the domain boundary at two points. It has been found in the
present simulation that the full domain intrinsic enriched criterion .gives misleading
results for cracks lying in non-convex domains. This happens due to the enrichment of
the evaluation points lying in the non-convex domain. It has been found that the use of
enriched basis for the entire domain not only increases the computational cdst of the
method but also gives misleading results for the cracks lying in non-convex domains.
Therefore, a new partial domain enrichment based criterion has been proposed in this

section.

Fig. 4.34: A non-convex domain
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4.6.1 Full Intrinsic Enrichment Cfiterion

In full intrinsic enrichment based criterion (Fleming et al., 1997), the presence of a crack
is ensured by enrichment terms i.e. by adding extra terms in the basis function. In
intrinsic enrichment criterion, the meshfree standard basis functions are intrinsically
enriched by few functions obtained from near crack tip displacement field to solve the
problems with strong discontinuities such as cracks. A regular/standard enriched basis

function can be given as

PP(x)=|1, x, » ,\/;cosg,\/;sing,\/;singsin G,x/;cosgsine (4.10)
A/ 2 2 2 27
standard enrichment terms
i basis )

where, P(x) is the enriched basis function, » and 6 are the local crack tip parameters.
The first three terms of Eq. 4.10 represent the standard basis function (1,x, y) while.
remaining four terms obtained from the near crack tip solution makes up the enrichment
part.

A single edge crack along with an evaluation point and local crack tip parameters (7 ,,
) is shown in Fig. 4.35. According to full domain enrichment (FDE) criterion, the entire
problem domain has to be enriched, which is unnecessary from the computational time
point of view. The other drawback of full domain enrichment criterion lies in its inability
to solve problems involving cracks lying in non-convex domains.

It has been found during the present simulation that the full domain intrinsic enriched
criterion gives misleading results for cracks lying in non-convex domains. This happens
due to the improper enrichment of the evaluation points lying in the non-convex domain.
However, the proposed partial domain enrichment criterion eliminates this problem as

the enrichment is made locally in the region around the crack tip. This ability of partial
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domain enrichment (PDE) criterion to deal with the cracks present in non-convex
domains makes it a very useful, computationally efficient and versatile technique for

handling crack problems.

4.6.2 Partial Domain Intrinsic Enrichment Criterion
In the partial domain enrichment (PDE) criterion, two concentric circular regions are
defined around a crack tip as shown in Fig. 4.36. The location of an evaluation point
within these regions decides the degree of enrichment. Figure 4.36 represents the
problem domain with an edge crack of lengtha. Two concentric circular regioné are
defined. The radius of the inner circle is equal to the crack lengtha, and the radius of
outer circle is €xa (¢ >1). In the present study an optimum value of ¢ =2 has been
considered after performing é parameter sensitivity analysis as discussed later. In doing
so, three different regions namely 4,B and C are obtained. During implementation of
this criterion, the distance of each evaluation point from the crack tip is calculated in
order to decide its location. If the point lies within the inner most region 4, then the full
intrinsic enrichment basis is used. No enrichment is done for those evaluation points
which lie in region C i.e. inregionC , only standard linear basis is used.

If the evaluation point lies in region B, then the approximation functions are
constructed using both linear basis and enriched basis, and their contributions to the

stiffness matrix are decided as:
[K]Tala'l = [K]Enrichedbasis X R + [K]Linearbasis X (1 - R) (4'1 1)

whete, [K,, nasss 1S the stiffness matrix obtained using enriched basis as given by Eq.
(4.10), [K],earsas 1S the stiffness matrix evaluated using linear basis only, R is a

parameter which decides the contribution of each component to the stiffness matrix. The

value of R can be numerically evaluated from the Eq. 4.12 given below:
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_ (cxa-r,)

“@-Dxa @-12)

where, ¢ is a constant which decides the size of region B, a is the crack length and r,

is the distance of an evaluation point from the crack tip. At any point in th'e region B
near the boundary of region A4, the contribution of enriched basis part to the total stiffness
matrix will be maximum while that of the linear basis part will be minimum. Moving
“from region A4 toregion B the value of R follows a linear variation and approaches zero
on outer part of region B . Thus, the contribution of enrichment part keeps on decreasing
as the location of evaluation point shifts from region 4 to region B. At the outer
periphery of region B, the contribution of linear basis to the total stiffness matrix
becomes maximum. This proposed criterion not only accurately simulates the cracks in

non-convex region but also reduces the computational time.
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, J
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------- B‘..f
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Fig. 4.35: Full domain enrichment Fig. 4.36: Partial domain enrichment criterion

4.7 RESULTS AND DISCUSSIONS

4.7.1 Cracks lying in Convex Domain

Two test problems of cracks lying in a convex domain have been solved by both FDE

and PDE criteria under plane stress condition. The dimensions of the cracked body used
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in the present study are taken as H =200 mm, # = 100 mm, modulus of elasticity (E) =

200 GPa, Poisson’s ratio (v) = 0.3. A far field stress, (o,) = 100 MPa is applied to the

problem. A uniform nodal density of 800 nodes along with six point Gauss quadrature for
numerical integration is utilized for this simulation.

In first case, two collinear edge cracks lying on two opposite edges are solved by
both PDE and FDE criteria as shown in Fig. 4.37a. The first crack has been taken at a
distance of H/2 i.e. 100 mm from the bottom on left edge with crack inclination o =0°
(a =0°means that the crack is parallel to the x—axis), while the second crack is placed on
right edge with crack inclination & =0°. The lengths of both cracks are incremented by
equal amount. The results obtained by both PbE and FDE are presented in Fig. 4.37b.
The values of K, and K, have been evaluated at the tip of left edge crack. The results
predicted by PDE are compared with those obtained by FDE, and it is noticed that the
results obtained by both the criteria are quite close to each other. The maximum
difference in K, values is found to be less than 4%. The values of K, nearly remain zero
for all values of crack length as can be seen in Fig. 4.37b.

In the second case, the proposed PDE criterion is used to solve three edge crack
problems subjected to mode-I loading under plane stress condition as shown in Fig.
4.38a. The lengths of all three cracks are kept equal i.e. a;= 40 mm. The effect of two
right edge cracks inclination on the left edge crack is analyzed as shown in Fig. 4.38a.
The inclination angle a has been changed in such a way that the tips of the two right

edge cracks move away from each other. The values of K, and K, are evaluated at the
tip of left edge crack. The results show that with increase in « , the values of K, keeps
on increasing, while K, remains nearly zero for all values of « . The results obtained by

PDE and FDE are almost identical for all values of « as shown in Fig. 4.38b.
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On the basis of above simulations, it is clearly seen that the results obtained by both
partial domain enriched and full domain enriched criteria are in good agreement with
each other for the cracks lying in convex domain. Therefore, a crack lying in a non-

convex domain has been analyzed next to show the superiority of the proposed partial

domain enriched criterion.
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Fig. 4.37: Problem geometry and variation of SIF with crack length
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Fig. 4.38: Problem geometry and variation of SIF with crack inclination
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4.7.2 Computational Cost Analysis

As in PDE criterion, the enriched basis has been used over a small region around the
crack tip, it is expected that there will be some reduction in computational cost as
compared to FDE, hence the computational cost comparison of the proposed and existing
criteria are also performed. In order to estimate the computational cost of the proposed
criterion, the simulations are performed for an edge crack configuration as shown in Fig.
4.37a with a crack length a,= 40 mm. The total time required in the computation of
stiffness matrix has been calculated for both partial domain enrichment and full domain
enrichment criteria. The computational time has been calculated for a set of nodal data.
Figure 4.39 shows the plot of computational time with nodal density for both partial
domain enrichment and full domain enrichment criteria. From this plot, it is clearly seen
that for lower nodal density of nodes there is not much difference in computational time,
but as the number of nodes in the domain increases, a significant difference in
computational time is observed, which can be clearly seen from Fig. 4.39. Figure 4.40
shows the plot of computational time difference between two criteria with increasing
nodal density, which shows a steep rise in the slope of curve beyond a nodal density of
1000 nodes. This suggests that with the increase in nodal density, the computational time
difference between two criteria keeps on increasing. This proves the worth of proposed

partial domain enrichment criterion from computational time point of view.
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4.7.3 Cracks lying in Non-Convex Domain

Two model problems of cracks lying in non-convex domain have been taken to show the
strength of the proposed PDE criterion over the FDE criterion. A nodal density of 657
nodes along with 4 point Gauss quadrature has been employed to simulate the problems.
Figure 4.41 shows an annular metallic disc (= 100 mm and r,= 300 mm) having an
edge crack of length a with material properties same as that of the plate considered
earlier. This problem has been solved by both full domain intrinsic enrichment and
partial domain enrichment criteria under plane stress condition. The values of stress
intensity factor K are evaluated for different crack lengths using both PDE and FDE
criteria. Figure 4.42 shows a comparison of results obtained by PDE and FDE criteria
with FEM solution. It is clearly seen that for all values of crack length, the results
obtained by PDE criterion are in good agreement with those obtained by FEM, whereas

the results obtained by FDE are not matching with FEM solution.

160
150 H
% w
é 1
?: 120+
E 110
2 i
| R —
B soromd
[%]
70 i L ] i
4 [] 8 10 12 14 16
Crack Length (mm)
Fig. 4.41: Annular disc with an interior Fig. 4.42: Variati‘on of stress intensity
edge crack configuration factor K; with crack length
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For a better understanding of the results obtained by both FDE and PDE criteria, the
contours of stress and displacement field components are plotted as shown in Figs. 4.43-
4.46. Figure 4.43a shows the displacement contour of U, obtained by partial domain
enrichment criterion, whereas Figure 4.43b shows the displacement contour obtained by
full domain enrichment criterion. From Fig. 4.43, it can be seen that U, is symmetric
about x-axis. The displacement contours of U obtained by PDE and FDE criteria are
shown in Fig. 4.44a and Fig. 4.44b. Although, the results obtained by both criteria look
symmetric about crack line but in FDE, it seems that a non-existent discontinuity is
inadvertently modeled in the domain at another location as can be seen in Fig. 4.44b.

Figure 4.45a shows the contour of stress component o, over the problem domain
using the proposed PDE criterion. This contour shows that the crack surfaces are almost
traction free in x-direction as expected. The stress contour of o,, generated using FDE
criterion shows a nearly zero stress level throughout the domain along with some
compressive stress region opposite side of the crack as shown in Fig. 4.45b. Thus, o,,
values obtained by FDE criterion are misleading and incorrect. The stress contours of
o, are plotted and analyzed using both the criteria. Figure 4.46a presents the contour of
o, using PDE criterion. The crack surfaces are almost traction free in y-direction as per
expectation. The stress level at the crack tip is high in comparison to the rest of the
domain, which represents stress singularity at the crack tip. Figure 4.46b shows contour
of &, obtained by FDE criterion. In this contour, the high stress zone at crack tip is
completely missing. Moreover, a uniform stress field has been observed throughout the

domain, which is incorrect.
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(a) (b)
Fig. 4.43: Contours of displacement component U,

() (b)

Fig. 4.44: Contours of displacement component U,

Fig. 4.46: Contours of stress component o,
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Next, a disc with two cracks as shown in Fig. 4.47 is solved next by both FDE and
PDE criteria. The values of mode-I stress intensity factor (X;) are evaluated at the tip of
left edge crack for various values of a,, and are plotted in Fig. 4.48. From the results
presented in Fig. 4.48, it can be clearly noticed that the results obtained by PDE criterion

are in good agreement with those obtained by FEM for all values of crack length,

whereas the results obtained by FDE are not reliable.
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Fig. 4.47: Annular disc with two edge Fig. 4.48: Variation of stress intensity
cracks configuration factor K; with crack length

From all the above comparisons and discussions, it can be concluded that the
proposed partial domain intrinsic enrichment criterion works well for all type of crack
problems including cracks in non-convex domain, whereas the full domain intrinsic
enrichment criterion gives misleading and wrong results for cracks lying in non-convex

domains.

4.7.4 Sensitivity Analysis for domain parameter ()
In order to select an optimum value of domain parameterc, a sensitivity analysis has
been carried out for the both the annular crack configuration shown in Fig. 4.41 and 4.47.

The same material property and boundary conditions were used for this simulation.
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Figure 4.49 shows the variation of stress intensity factor for different values of domain
parameter ¢ . At first an annular disc with a single edge crack of length @ =15mm was
analyzed by varying the value of domain parameter and the results were plotted as shown
in Fig. 4.49a. The value of stress intensity factor obtained by PDE are quite close to the
FEM solution for ¢ = (1.75—2.5), with a maximum error of 0.08 %. The next study was
done for double crack annular disc as shown in Fig.4.47. The crack lengths were taken as
a, =6 mmand a, = 5mm. The value of stress intensity was calculated at the tip of crack
having length a,. The variation of stress intensity factor for different values of domain
parameter is shown in Fig. 4.49b. Again, the SIF values obtained by PDE criterion are
close to the FEM results for ¢ =(2-2.5) with a maximum error of 0.03%. Taking in
consideration the above two simulation for sensitivity analysis of domain parameter we

chose an optimum value of ¢ =2 for all the previously simulated problems.
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Fig. 4.49: Variation of stress intensity factor with domain parameter (C )

4.8 CONCLUSION

In this Chapter, EFGM have been successfully employed for the simulation of multiple

interacting cracks in both convex and non-convex domains. Two new criteria have been
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proposed for simulating multiple interacting cracks. The first criterion is based on
discrete contribution scheme in which the whole contribution of an evaluation point is
imparted to only one crack while the second criterion is based on weighted contribution
methodology in which the contribution of an evaluation point is shared among all the
cracks present in the domain. In order to prove the worth of the proposed criteria, results
were compared with those obtained by diffraction based multiple crack weight approach
and FEM solution. A good agreement in results was obtained for both mechanical and
thermal loading. The modeling capabilities and accuracy of the proposed criteria are
amply demonstrated. Further, a partial domain intrinsic enrichment criterion was
proposed in order to accurately simulate the cracks lying in non-convex domains.
Numerical simulations were performed for few edge cracks lying in convex and non-
convex domains under plane stress conditions. The proposed criterion not only simulates
the problems of non-convex domains but also reduces the computational cost of the
EFGM. The capability of the proposed partial domain intrinsic enrichment criterion to
handle the cracks in both convex and non-convex domain along with less computation
time in comparison to the full domain enrichment criterion establishes its potential for

simulating real life crack problems.
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Chapter 5
CRACKS UNDER THERMOELASTIC LOADING

O —

5.1 INTRODUCTION

The determination of stress intensity factor for cracks subjected to thermal boundary
condition is a topic of keen interest in fracture mechanics. The study of thermo-elastic
fracture mechanics (Prasad and Aliabadi, 1994), which deals with the catastrophic
propagation of existing cracks under thermal loading, is considered to be of great
importance in the design of structures such as aerospace components, combustion
chambers, turbines and nuclear pressure vessels. Whenever a steady heat flow is
disturbed by the presence of a crack, there is a local intensification of thermal gradients
accompanied by large thermal stresses in the neighborhood of crack tip (Sih, 1962). This
may finally lead to sudden failure of the components resulting in loss of property and
lives. Thus, the computation of stress intensity factor plays an important role in the safety

assessment of components.

A lot of analytical research work has been carried out on some common
configurations such as a crack in infinite and finite domains. Sih (1962) considered the
singularities of two dimensional thermal stresses at the crack tips in an infinite medium,
and showed that the 1/ stress singularity is preserved in the thermal stress problems.
Sekine (1974) obtained the numerical solution for thermal stress intensity factors for a
Griffith crack in two dimensional semi-infinite body under uniform heat flow by using
thermal dislocation concept and complex variable method. Sumi (1980) utilized the
modified mapping collocation method to obtain the numerical solution for thermal stress

intensity factor for Griffith crack in finite rectangular plates subjected to uniform heat
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[ A &

where ,K,, = [B] DB, dQ, f;=[t®,dl', g, =—{N, #dl,
Q T, T,

!

P 0 1 v 0
B, =0 D, |» Ng =[ } D= v 1 0 (for plane stress)
@, . 0 0 (1-v)/2

5.2.1 Governing Equations of Thermo-elasticity

The equations for static linear isotropic thermo-elasticity problem with small

displacements on the domain Q2 bounded by I" is given as

q=—kVT (5.5)
-Vq+Q0 =0 (5.6)
g£=V,u (5.7) ’
g, =BT -THI (5.8)
6=C:(s—¢,) (5.9
V.o+b=0 (5.10)

In the above equations , 7 is temperature, q is heat flux vector, u is displacement
vector, € is strain tensor, ¢ is stress tensor, and €, thermal strain vector defined with
respect to a reference temperature 7, , £ is thermal expansion coefficient, k¥ is thermal
conductivity, C is isotropic fourth order Hooks tensor, b is prescribed body force and O

is the prescribed heat source. I represents the second order identity tensor and V, is the

symmetric gradient operator on vector field. The essential and natural boundary

conditions are given as

u=uonl, (5.11)

146



Chapter 54 Cracks Under Thermoelastic Loading

oc.n=t on [ (5.12)
T=TonT, (5.13)
qn=gonl, (5.14)

where, T is the traction force, m is the unit normal with I UT,= I, UT,=I" and
I,NT,=T,NT,= ¢. The crack surface within the domain is represented by I', and is

considered traction free.

To obtain the solution of a thermo-elastic problem, initially Eq. (5.5) and Eq. (5.6)
are solved for thermal solution. This solution is then used in Eq. (5.7) to Eq. (5.10) to
obtain the solution of thermo-elastic problem. Two different cases are chosen by

assuming crack surfaces as either adiabatic or isothermal.

5.2.2 Modeling of Adiabatic Crack

For an adiabatic crack, both displacement and temperature ficlds become discontinuous
across the crack surface and heat flux is found singular at the crack tip (Sih, 1962). The

boundary condition for an adiabatic crack can be stated as
< qn=0 on I, hence T is discontinucus across I',
% ¢.n=0 on I, hence u discontinuous across I,

Thus, the case of adiabatic crack is a simple extension of EFGM in elasticity. Here both
temperature and displacement fields are to be enriched intrinsically. Once the
temperature distribution is obtained, it can be employed as input for determining the
stress and displacement fields. According to intrinsic enrichment criterion, the presence
of a crack is ensured by enrichment terms i.e. by adding extra terms in the basis function.
The choice of enrichment functions depends on the accuracy desired. For higher

accuracy, one can include the full asymptotic field, while for higher speed at the cost of
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accuracy; only Jr can be included in the basis. A full intrinsic enriched basis function

used in the present analysis for adiabatic crack is given as

Pix)=| 1, x, y ,\/;cosg,x/;sing,-\/;singsinﬂ,\/-r_cos—qsim? (5.15)
. 2 2 2 2 )
standard enrichment terms
L basis i

where, P(x) is the enriched basis function, r and @ are the local crack tip parameters.
The first three terms of Eq. (5.15) represent the standard basis function (1, x, y) while

the remaining four terms obtained from the crack tip solution makes up the enrichment
part. For modelling an adiabatic crack, the above equation is used as basis function for

the modelling of the thermal and mechanical parts.
5.2.3 Modelling of an Isothermal Crack

In case of an isothermal crack, the temperature is prescribed at the crack surface. The
basic features of an isothermal crack formulation (Duflot, 2008) are described below

e Temperature is specified on crack surface (I';) and hence, the heat flux becomes
discontinuous across the crack.
e The crack surface (I’C) is considered as a part of essential boundary (I'.), hence

the variational formulation changes accordingly.
e Angular variation of singularity at the crack tip is different from a crack under

mechanical load.
The thermal boundary condition for an isothermal crack can be stated as T=T on [,.

The imposition of essential boundary condition over the crack surface is carried out by

Lagrange Multiplier scheme (Yagawa and Furukawa, 2000; Phu et al., 2008). For this
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purpose, extra nodes are defined over the crack surface I',, which is a part of the

essential boundary. The leading terms of the asymptotic expansion of temperature and

flux near an isothermal crack are as follows (Duflot, 2008)

T= Ky |2r cos(g) (5.16)
k \nm 2
5)
e CcOs E’
_ &y (5.17)

q~27zr {9)
sin} —
2

The crack tip enrichment is carried out using first term of enrichment function used

previously, hence the basis for isothermal crack in the present analysis becomes

[~ n

PTx)=| 1 % v, w/rcos% (5.18)
\_...V—J
standard ’

enrichment terms
basis

The above Eg. (5.18) is used as enrichment function for the thermal solution only while

Eq. (5.15) is used as basis for the mechanical solution.

5.3 EVALUATION OF STRESS INTENSITY FACTORS

For thermo-elastic problems (Khandelwal and Kishen, 2007), the detailed procedure of
evaluating the stress intensity factors is described below for the sake of completeness.
5.3.1 Conservative M -Integral for Thermo-Elastic Loading

Consider a homogeneous cracked body subjected to a two-dimensional deformation
fields (plane strain, generalized plane stress, anti-plane strain). Suppose the body

contains a crack of the type shown in Fig. 5.2 having flat surfaces parallel to x, -axis. Let

" be a path surrounding the crack with an enclosed area 4, .
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Fig. 5.2: Path I surrounding a crack with an enclosed area 4,

For an isothermal problem, the path independent .J - integral near a crack tip is given by

(Wilson and Yu, 1979).

~ ou,
J = j(W&U -o, i]nfdr (5.19)
: o

where, W is the strain energy density and » , is the j, component of outward unit
normal to an arbitrary contour I' enclosing the crack tip. For linear elastic models, it can
be shown that W = £;0; / 2. J-integral defined in Eq. (5.19) is not path independent for a
thermo-elastic problem. Suppose the integral in Eq. (5.19) is taken on a closed path T,

then the contour integral can be converted into an equivalent area integral

1 1

~ , V ot
J, = W5,,—0',..% n,dl = I d—W-—cr,;,. “0 | (5.20)
I T e ax,

where, A4, is the area enclosed by the path I';and W is the strain energy density given by

~ 1
W= 5(0'11311 +O0,E 0,8y +0'22£22) (5.21)

~ _ 5
%?/_zl(o.” 08y, +0, osy, +0,, 05 o 5'22] +

) x, x, ox, O ox
1{ 8oy, oo, 00, do,,
— &, + &, + &, + & 5.22
2( axl 11 ax] 12 axl 21 ax] 22 ( )
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aw 1 _ Og, ~
—=—0; + X2 5.23
a2 ' oy, (5.23)
oo oo oo oo
where, X=| —t¢, +—2¢ D, +—2¢ J (5.24)
( 6x| 1 axl 12 axl 21 axl 22
The constitutive relations for thermal loading are
1 E
1" ='E_(0'11"V°'22)+5T ’ Oy =1—_‘;T[£|1+V522"(1+V)ﬁT]
1 E
€x =‘E(°'22 _Vo'u)'*'ﬂT ) On =1—_“V_2[‘922 +vey _(1+V)ﬁT]
1 1+v E
812=£2|=2—5612=—E—0‘]2 > 512=021=m512 =i:-_V€21
Substituting above constitutive relations in Eq. (5.24), we get
E |0 Oe
X= Ly 21+ £, +o 2+
]_—-V2 [ ax1 axl ( )ﬁ i| 11 12 axl
0¢,, E | 0Oe,, &, oT
+ +v -(1+v)f— ¢
21 ax] 1—V2 [ axl axl ( )IB axl 22
o0&y, E \0g,, EB|[OT 0€,, 0g,,
= +VE, ) —+ +ve — Ey +
E (‘5'11 i 22) 1o (522 n) T 1-vie kk 12 o, 21 o,
EBT \Oe,, [ EBT \0eg,, EB|OT o€, 0¢,,
= +——|—+ + - £, +0O +o
[6“ 1—VJ6xl T2 e, l-viex, ) % P ooy
Oe,
X= 0,20 +( Ep )Tag"" —[ Ep )1918“ (5.25)
ox, \l-v) ox 1-v jox
Substituting the value of X from Eq. (5.25) into Eq. (5.23), we get
dW g, 05y 0T ~ Ef
== T—% _B—¢, | where f=——-
dx, "Bx 2[‘6 ox, ox, ""J F=12,
Hence, from Eq. (5.20) domain form of J -integral for thermal loading becomes
[(ﬂri%—k*— z J dA (5.26)
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1 ~ O¢ ~ oT
J —— Tk _ g2t dA=0 5.27
b2 d ax, ox, 8""J (527)
Bl o aT _
7] T
J,—IgTekké'Unde-i-ﬂ —gkde 0 (5.29)
r Ao

Substituting the expression of J, from Eq. (5.19), the integral on a closed path T,

B Bu, eT
W-—-—=Te¢g, [0, — dry + —&,d4, =0 5.30
j‘:{ > |91 — Oy le n; ﬂ PR ( )

A, 1

and hence, J-IIW —%T akkJé -0, —gxi}n dal + ,B I— g, dA, is path independent for
r

I l

the case of thermal loading.

5.3.1.1 Thermal Interaction Integral for Homogeneous Materials

For calculating the thermal interaction integral for a homogeneous body, we consider two
equilibrium states of a cracked body. State 1 is the actual state with given boundary
conditions while state 2 is an auxiliary state. Superscript a represents the parameters for

auxiliary state problem. Temperature for auxiliary state is considered zero.

Actualstate: o, &, u, T J

a a

Auxiliary state: o, £; o J

Defining thermal J - integral for both states

~ B du, oT
J' = T[[(m-;fsu)&,—af o | dr+ﬂgglekkdx4 (5:31)
2 = aauia
7= 07, 5,)-02 2 |n, ar (5.32)
r ax,

The J -integral for the two superimposed state will be given as
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o = rIH(WI +W, +W,, )—%T(ekk +el )}51,- - (Gy +o; )(%l +%1;—:]}”, dr

~ 0T "
+ B I?ax_(g“" +&5 )dA, (5.33)
A, 1
o =J +J° + M, (5.34)
where,
— T E a 6uxa a aui " aT @
MIZ—J|:{M2—ET8H( 511-—0'3-51——0'”51— nde+ﬂJ§ls,d,dAo (535)

In order to enhance the usefulness and convenience, the contour form of Af integral in
Eq. (5.35) can be converted to equivalent domain integral form. Figure 5.2 is modified by

defining an another path I, around the crack tip such that the area enclosed within the

closed domain is 4 . The two paths I' and T, are connected by two different paths C,

and C_ defined parallel to X - axis as shown in Fig. 5.3.

_ / ‘ y
C+3 Ao l"l
C 7 X
2 I
‘I/I/;E o
&

Fig. 5.3: Path independent closed contour around the crack tip

Hence, Eq. (5.35) can be converted to a path integral on a closed path consisting of

I,C_,Tand C,.

~ B . oui 0w | _ = (0T .
M|2 :—("[{le —‘gTé‘kk}(su —O'y- ;}‘—O’U gl:lnjq dS+ﬂ ngekk dAo (5.36)
A,
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where, g is a weight function chosen such that it has a value of unity at the inner pathI",

zero along the outer path I, and arbitrary elsewhere. The (-) sign in Eq. (5.36) appears

because the path ' is being traversed in clockwise sense as opposed to the counter

clockwise sense in Fig. 5.2,

Converting the line integral into area integral using Gauss divergence theorem, we get

u’ ou, (~ B o ~ 08T
M. = g |\ W, —CTep 16, |——dA++p |—¢,dA
12 leo'g o, Lo o, ( 27 u} 1 axj ﬁA{axl Kk

0 out L ou, (= E . _
+Jax[ o, o +a,15x—-( . -? M}c?j:|qcb4 (5.37)

W,, may be expressed as

W, ZEP"'S" +o' E; ]
-1 _o‘ e +~—E (a" +vey Jo, +—— & (g &+ € )+L(e" +ve )a
N i i 12 21 22 11 /%22
) i ¥ “if 1—V2 11 22 ~1 1+v 12 21 1—V2
1[ E @ , .0 a E a
=—|o, & +— (511 +V522)511 + &0, + €50y + (Vgn +322)322
20 7Y 1=y 1-

N =

a E a a a E a
[dy &y "'(o'u +‘1'__V.BTJ311 +£),0); +630y ’*‘[0'22 +1—_;.3TJ£22:|
_1 T
—E a,.je +o ,j+1—,6 &
1
= 5[ € +T; & +ﬂTgk,,]

=0, &; +~’§«T£k‘; (5.38)
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Substituting the value of W’,z in Eq. (5.37), we get the following expression of interaction

integral

Ox

J

au;] aaut a 6‘7 ~ 0T a
M, = G’~~——+O'--5x——0',~k gik‘slj)—‘_dA'FﬁA:[g]Ekde

ou’ ‘
v (Lo, P or Mg st |7 ad (5.39)
Aaxj axl axl
3 ou] , ou, a oq ~ 0T _
M12 —-A a; 6x1 +o‘ijg‘_aik giké‘ljjngdtq_i_ﬂ;!éx_]_gkk dA+!Zq (540)
0 ou; Ou,
where, Z = o, ——+0o; ——0,6,0; (5.41)
,axj[ Yox, Tay " “}
do, uf o (auf) G0y w0 (ow)_ 8 .
- O toy - (ou Sy)
ox, o, ax, | ox, | ox, o, EACH
— Og, o ¢, _ o¢; _ oo, |
i i iy i
1 axl axl axl
¢, Oa,
= gr Zu D% g (5.42)
y axl axl i

Also,

do, , 0 [ E " +ng2..(1+v),61T'}11s,"l +6xi[1 E —en +vey "'(1+V)ﬂT}:|€§2
|

“ow, [ 1-v? -

£
ox, ° ox

E (0e,) . E (08 4
+ &+ £3
1+v ox 1+v\ 0Ox

o¢ E a a O a ¢ a o E a a or a
=__'l|: {€1|+V622}]+_12‘012+?21022+_ﬂ-|: 7 {322"“’51:}}_(1""’)/858*"

6x, l'—V2 1 1 ax] 1-v 1
Oe, ~oT
= o° i _FI g (5.43)
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Hence, Z = ﬁa—Tg,fk (5.44)
a'xl

Substituting the value of Z in Eq. (5.40), we get

ou’ ou, oq ~ 0T ~ 00T _
M.=llo.——+06?— -0, 55, |——dA+ —&h dA+ B |—e&, gdd (545
12 . i o, i ax, ik Ca U)ax- ﬁ/{!-axl ik ﬁ;!axl e q ( )

J
In its limiting case, the inner path I'is taken so small that it nearly shrinks to the crack
tip, and the enclosed area can be considered as zero i.e. 4, 0. Hence, expression of

interaction integral becomes

ou’ Ou, oq ~ 0T , _
M,=lo,——+0!——0, 6.0, |—dA+ B |—¢&, g dA 5.46
12 ) i o, i o, & Sir Ujaxj ﬁJax! wq ( )
e 17V
Kk g Ok
ngk = foyu
ou’ ou, dq or -
M, = ol —L -0, 35, | ——dA+ P |—o0oc, gdA 5.47
12 gy o, Oy o, Ty €a 11]axj ﬂ!@x, Cud ( )

!
For a bi-material interface crack having the crack as well as the interface in x, direction

the above expression of interaction integral gets modified in a very simple way. It may be

expressed as

2 du’ u, o7 Y
M, = o, —+0°——0, .8, | —=dA+Y B |-——of § d4 (5.48)
12 ;A!{ if ax if 6x ik ik I;Jax é A_!‘axl kk

1 1 J

~

where, & =1,2 represents the two materials of the bi-material domain

For linear-elastic solids under mixed mode loading conditions, the J-integral is also

equal to the energy release rate and hence, it can be written as
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J—%(KZ +K2)

V/E; +1/E,

where, H = E" for isotropic material and L -
H 2cosh’7g

Plane strain

E ={1-y?
E Plane stress

Applying Eq. (5.49) to both main and auxiliary state, we get

J= (k0 k)

me

1 2 2
JP=—=K® +KP
74 ( ! b )
The superimposed state can be written as

7= ke + k@ F + (kD kY]

:q —

(ko + k0 ) (k@ + k@ )r 2k PEP + KP K )

r-"ull —

=J' +J+ %(K,‘”K}z) +KPKD)

Comparing Eq. (5.54) with Eq. (5.34), we get

2
M, == (KPP + KPK)

=71 T2 for bi-material.

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

The individual SIFs for the actual state can be obtained by judiciously choosing the

auxiliary state (state 2). For example, if state 2 is chosen to correspond to a mode I state,

then K® =1 and K?’ =0. Hence Eq. (5.55) is reduced to

2K

M, = 77
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HM,

or Kf =22

(5.57)

Similarly, if state 2 is chosen to correspond to a mode II state, then K{” =0 and

KP =1, then following the same considerations, we get

(5.58)

The interaction integral evaluated from Eq. (5.47) and Eq. (5.48) can be used further for

calculating the SIFs under various mixed mode loading conditions.
5.4 RESULTS AND DISCUSSIONS

Numerical results are presented for different problems in order to validate the
applicability of EFGM in thermo-elastic problems. Plane strain condition is assumed in

all examples due to availability of reference solutions. The boundary conditions are given

with respect to the reference temperature ® =T — T, where, T is the applied temperature
and T, is the reference temperature. The value of Poisson's ratio is taken as 0.3. The

problem domain has been divided into background cells, and in each background cell, six
points Gauss quadrature (Krongauz and Belytschko, 1996} i.e. 36 Guass points have been
used for the numerical integration (Phu et al., 2008) of the Galerkin weak form. During
numerical integration, the number of nodes in the domain of influence varies for each
evaluation point but an average number of nodes in the domain of influence are
prescribed for each solved example.

5.4.1 Edge Crack under Constant Heat Flux

The first example considered is an edge cracked rectangular strip as shown in Fig. 5.4a
having the dimensions H =1, W =0.5 and a=0.25. The problem domain has been
discretized by taking 20 uniformly distributed nodes along x -direction and 40 nodes

along y -direction i.e. total 800 (20x40) nodes.
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The crack is modelled as an adiabatic crack. Known temperature is applied on right
and left sides such that the crack is subjected to a constant heat flux (parallel to crack
surface). In this case, heat flux and temperature remain unaffected by the presence of
crack as can be clearly seen in Fig. 5.4b. Displacement boundary conditions are
prescribed in such a way that the vertical displacement of top and bottom sides is
restrained. The body is free from any external traction. A pure mode-I loading is
generated under the prescribed thermal and mechanical boundary conditions.

Numerical values of stress intensity factor have been evaluated by modified M-
integral, and are normalized according to the relation

- K (5.59)

£ pevm
1-v

e

where, £ is the Young's modulus, v is the Poisson's ratio, f is the coefficient of linear
expansion, a is the crack length and ® =7 -7, with 7 is the applied temperature and
T, is the reference temperature. In order to validate the domain independence of the

modified M- integral, the value of F, has been evaluated for different domains

surrounding the crack tip. The results show a good agreement with the results available in

literature (Duflot, 2008) with the maximum error of 0.08 percent.
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Fig. 5.4: Edge crack under constant flux: (a) Problem geometry (b) Temperature Profile
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Chapter 5 Cracks Under Thermoelastic Loading

5.4.2 Square Plate with Centre Crack
Next we consider a centre crack in a square plate subjected to two different set of
bo