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Abstract 

Designing of control systems for a robot manipulator has many practical and 

theoretical challenges due to the complexities of the robot dynamics involved while 

achieving high precision- high velocity trajectory tracking in varying load conditions. 

Conventional robot control methods require highly accurate mathematical modeling, 

analysis and synthesis. Fuzzy Logic Controllers are a class of non-linear controllers 

that make use of human expert knowledge. Genetic algorithm is a class of 

evolutionary algorithms that can be applied to any problem which can be formulated as 

function optimization problem and it provides a way of optimizing fuzzy controller 

design. 

PUMA 560 is a six Degree of Freedom robot arm that has to be controlled. A 

Fuzzy PD+I controller is used for the control of this robot arm. In this dissertation 

Genetic Algorithm is used to optimize, approximate and minimize the Fuzzy Logic 

Controllers. An algorithm is proposed which has a faster convergence when compared 

to Genetic Algorithm. Simulations and computations are carried out using MATLAB 

version 7.0.1.24704(R14). 

Tuning of fuzzy parameters using genetic algorithm is carried out on reference 

Fuzzy PD+I controller. The parameters tuned are Rules, Rule-weights and Membership 

functions. As a part of the initial study, the parameters mentioned are tuned 

independently and it is seen that there is improvement in the performance. With this 

preliminary study, progressive tuning of parameters in three stages is carried out. At the 

end of second stage, tuning the rules in the rule base and then assigning weights to 

individual rule antecedent, considerable effect on the performance of the system is 

observed. Proceeding further with the third stage, membership function tuning is 

performed. There is an improvement in the performance from the second stage. In this 

study it is also observed that progressive tuning performs better than simultaneous 

tuning of parameters. 

One of the objectives in machine learning is to learn any system from data. 

Approximation of system from input-output data presents a way to learn a system. With 

the input and output data points collected from the reference Fuzzy PD controllers of 

individual joints, bi-variate polynomial approximation function and Weighted-rule 



Fuzzy approximation function is generated through interpolation process using genetic 

algorithm. The results of above two approximation functions are compared. The results 

obtained with that of a weighted Fuzzy approximation function is found to be superior 

with respect to the other. 

For any given input trajectory, all the rules in the rulebase are not fired and 

those fired may not be the best. This suggests that the rulebase can be minimized with 

only the best rule entries. The rule base so obtained is an optimally minimum rulebase 

which is achieved by tuning the rulebase in such a way that the number of rules is 

minimized and the rules in them are optimized simultaneously. A small disturbance is 

given to the robot arm and the trajectory tracking is evaluated. 

One of the main drawbacks of Genetic algorithm is its slow convergence rate. A 

simple stochastic optimization algorithm is proposed which has a good convergence 

rate. This algorithm is used for tuning the gains of the Fuzzy PD+I controller. The 

convergence is compared with that of Genetic algorithm and results of the proposed 

algorithm are quite encouraging. All the results are presented in Chapter 6. 
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Chapter 1: Introduction 

Designing of control systems for a robot manipulator has many practical and 

theoretical challenges due to the complexities of the robot dynamics involved while 

achieving high precision- high velocity trajectory tracking in varying load conditions. 

Conventional robot control methods require highly accurate mathematical modeling, 

analysis and synthesis. These methods are not suitable for controlling robots in 

unstructured environment, which is a major challenge. There are always uncertainties 

present in the dynamics, unpredictability in environmental characteristics and also due to 

sensor impressions. 

Fuzzy set techniques are a powerful tool for solving demanding real world 

problems with uncertain and unpredictable environment. Fuzzy Logic Controllers are a 

class of non-linear controllers that make use of human expert knowledge and an 

implicit imprecision to apply control to such systems. The construction of these 

controllers can be quick and effective in the presence of expert knowledge; conversely, 

in the absence of such knowledge, their design can be slow and based on trial-and-

error rather than a guided approach. 

When the traditional PID controller has to be replaced .by a fuzzy equivalent, 

generally Fuzzy PD+I controllers are used as it has the following advantages of being 

Simple , having Less overshoot, Removes steady state error, and smoothens control signal. 

A three-input and one-output fuzzy system is too complex to construct the PID controller. 

It is very difficult to decide the fuzzy control rules intuitively. Fuzzy PD + I control system 

uses two-input fuzzy system for the proportional and derivative gain and linear control for 

the integral gain. Two-input fuzzy controller uses "error" and "change in error" as the 

input variables. In this structure, the proportional and derivative gains vary with the output 

of the system under control. The integral gain is kept constant. The proportional signal and 

the derivative signal are dominant to decide the transient response. But the integral signal 

whose major roll is to eliminate the steady state error has fixed gain. This is due to 

difficulty of designing the rules for the integral action. In fact, these methods do not 

require the knowledge of the dynamic model of the controlled system. This feature 

becomes of major importance when dealing with complex non-linear systems. The 
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dynamic modeling of robot arms shows a dependency on their mechanical parameters, 

subject to lifetime modifications (friction factors affected by the abuse of joints), and on 

their dynamical parameters that vary with the performed task (centers of gravity of the 

links affected by tool's replacements). These considerations also give advantage to fuzzy 

control methods on other non-linear method. 

Initially when the fuzzy controller is designed by an expert, it is done heuristically 

based on his experience. Most of the times the controller designed will have certain 

amount of error present in it since different experts will have varying experience, thereby 

resulting in a non optimum performance by the controller. In order to get better results, 

tuning of the Fuzzy controller is required. Fuzzy controllers can be tuned by various 

strategies, like changing the scaling factor, Modifying the support and spread of 

membership functions, modifying the rules of the rulebase and changing the type of a 

membership function itself. In addition to these the Rule-weights can also be changed to 

perform a local tuning of linguistic rules, this enables the linguistic fuzzy models to cope 

with inefficient and/or redundant rules and thereby enhances the robustness, flexibility and 

system modeling capability. If a rule weight is applied to the consequent part of the rule, it 

modifies the size of the rule's output value. By assigning a rule weight to each of the fuzzy 

rules, complexity is increased while its accuracy is improved. This suggests a tradeoff 

relation between the accuracy and complexity. 

Genetic algorithm is a class of evolutionary algorithms; they can be applied to any 

problems that can be formulated as function optimization problems. Genetic Algorithms 

provide a way of overcoming the shortcoming with fuzzy controller design. These 

algorithms use some of the concepts of evolutionary theory, and provide an 

effective way of searching a large and complex solution space to give close to 

optimal solutions in much faster times than random trial-and-error. 

A PUMA 560 robot arm is the system that needs to be controlled. It is a 6 Degree 

of Freedom robot. A Fuzzy PD+I controller is used for control of the robot arm. In this 

report Genetic Algorithm is used to optimize, minimize and approximate. Fuzzy Logic 

Controllers. An algorithm is proposed in the end that will have a faster convergence when 

compared to Genetic Algorithm. 



1.1 Problem statement 

In light of the discussion, the prime objectives of the research work will focus on 

using genetic algorithm in combination with fuzzy controllers for control of PUMA 560 

robot arm. The objectives of the thesis can be summarized as follows: 

1 — Study the various Tuning strategies of weighted fuzzy system by genetic algorithm and 

provide a comparison among them. The various tuning strategies are listed below 

1. Fuzzy rules tuning 

2. Fuzzy weights tuning 

3. Fuzzy membership functions tuning 

4. Two stage tuning (rules followed by weights) 

5. Three stage tuning (rules followed by weights and then membership function) 

6. Simultaneous tuning of rules, weights and membership functions. 

2 — Study Approximation of the controller by 

1. Bivariate polynomial approximation 

2. Weighted fuzzy system approximation 

And provide a comparative study of both the cases. 

3 — Generate an optimally minimum rule fuzzy control system using genetic algorithm for 

the PUMA560 arm 

4 — Develop a novel stochastic algorithm for optimization which has a faster convergence 

compared to genetic algorithm. 

1.2 Literature review 

One of the main contenders of the control field which has benefited from the study 

of the computational intelligence has been robotic control. The main reason for this is that 

non linear and coupled complexities are present in the dynamics of robots [1]. And 

computational intelligence provides an efficient way to combat with this. Study of 

hybridization of the techniques in computational intelligence is done in [2]. The Fuzzy 

PD+I controllers are the most general use controller as it has the following advantages of 

being Simple , having Less overshoot, Removes steady state error, smoothens control 
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signal [3]. The most popular technique in evolutionary computation research has been the 

genetic algorithm. Evolutionary algorithms can be applied to any problems that can be 

formulated as function optimization problems [4]. The design of fuzzy PD+I control was 

discussed bong et all [5]. The study of fuzzy PD+I controller for PUMA560 shows better 

results when compared with normal PID controller [6]. By tuning the gains of the Fuzzy 

PD+I controller using genetic algorithm, Simulated Annealing and Generalized Pattern 

Search Techniques better results are obtained [7]. Gain tuning of the Fuzzy PD+I 

controller using heuristic search is carried out in [8]. 

The various structures of Genetic Fuzzy systems were discussed in [9] [10]. Fuzzy 

controllers can be tuned by various strategies, like changing the scaling factor, Modifying 

the support and spread of membership functions, modifying the rules of the rulebase and 

changing the type of a membership function itself. In addition to these the Rule-weights 

can also be changed to perform a local tuning of linguistic rules, this enables the linguistic 

fuzzy models to cope with inefficient and/or redundant rules and thereby enhances the 

robustness, flexibility and system modeling capability [11]. By assigning a rule weight to 

each of the fuzzy rules, complexity is increased while its accuracy is improved. This 

suggests a tradeoff relation between the accuracy and complexity [12]. If a rule weight is 

applied to the consequent part of the rule, it modifies the size of the rule's output value 

[13].  
The interpolation and approximation theory are quite mature fields in by 

themselves which has received and continues receiving not deep but constant attention 

[14]. Various methods of polynomial interpolation give efficient results but are 

mathematically quite rigorous and difficult for a multi-variate case [15]. The methodology 

of optimally minimizing the rule base was examined in [16], where it was used it for 

control of the cart pole problem. 

1.3 Motivation 

Fascinated by the abilities of genetic algorithm, a stochastic optimization method, 

the various operations on fuzzy control design is carried out. Studying the tuning of 

individual parameters should give a fair idea about fuzzy systems. Performing the tuning 
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of the rules of fuzzy controller initially and then fine tuning its weight for fuzzy PD+I 

control of PUMA560 robot will suggest how the system performance varies. It is expected 

that the tuning of rules will produce considerable change in the control of the fuzzy 

controller, but changing the rule weight results will result in finer details getting adjusted. 

In order to make a comparison between stage-wise tuning and simultaneous tuning, 

the parameters for weighted-rule fuzzy controller are tuned using genetic algorithm. 

Parameters like rules, membership functions and rule-weights play an important role in any 

fuzzy controller, and optimizing them is a necessary task, since these parameters are 

always built by designers with trial and error along with their experience or experiments. 

By stage-wise, it is meant that one set of parameters are taken and tuned at a time. And in 

the simultaneous tuning, all the parameters considered are tuned in one go. This study is 

done on Fuzzy PD+I controller of Puma 560 robot. After comparison an inference is drawn 

as to which procedure is better than the other with reference to ISE criterion. 

Genetic algorithms can solve any problem that can be formulated as an 

optimization problem; with this in mind it is employed to determine the coefficients of 

polynomial that approximates a system without getting into rigorous mathematical 

analysis. It is also employed for creating a Weighted-Rule fuzzy approximate model and a 

comparison of both will throw some light on their individual abilities. 

Rule base optimization and minimization task an important facet in the study of 

genetic fuzzy systems. This method creates only the best possible rules in the rule base and 

eliminates the unnecessary ones, with this approach a lot of computation and memory 

resources are conserved. 

Proposing an algorithm for optimization and evaluating it can be a worthwhile 

undertaking. If the algorithm performs better than any standard one then it suggests that 

there is scope for it to be improved still further. 

1.4 Organization of the Thesis 

The report has been organized into seven chapters. Chapter 1 gives an introduction 

to this thesis work, Problem statement, literature survey and Motivation and organization 

of the thesis. Chapter 2 briefly discusses the Robot Manipulator control. Chapter 3 contains 
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the Introduction to Fuzzy Logic Systems. Chapter 4 briefly talks of Genetic algorithm and 

Genetic Fuzzy Systems. Chapter 5 describes Implementation of the topics discussed in the 

problem statement Chapter 6 presents the Simulation results and discussions. Chapter 7 

gives Conclusions and suggestions for future work. 
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Chapter 2: Robot Manipulator control 

The word robot has its origins from Czech where robota means executive labour. It 

was Karel Capek, a science fiction writer who introduced the word 'robot' in his play 

"Rossum's Universal Robots". Ever since, the concept has transformed from the idea of an 

artificial superhuman into the reality of animated autonomous machines. Robots today are 

making a considerable impact on many aspects of modem life, from industrial 

manufacturing to healthcare, transportation, and exploration of the deep space and sea. The 

study of robotics is inter-disciplinary science covering domains of mechanical, electrical, 

electronics and computer science. Robot manipulators are basically multi-degree of 

freedom positioning devices. The robot, as the plant to be controlled, is a multi-input/ 

multi-output, highly coupled, nonlinear dynamic system. Robot control is the backbone of 

robotics. The tasks of robot control is to find the force(torque) or the actuator input vectors 

which results in the desired motion tracking with required accuracy by the robot end-

effectors [ 1 7]. 

2.1 Robot manipulator 

Robotics is concerned with the study of those machines that can replace human 

beings in the execution of a task, with respect to both physical activity and decision 

making [1]. Robots can be classified into two, those with a fixed base known as robot 

manipulators, and the other with a mobile base called mobile robots. The Figure 2.1 gives 

the classification of robots. 
Both mobile robots and manipulators play an important role in the field of robotics. 

This thesis is exclusively devoted to robot manipulators. Robot manipulators are designed 

to perform a wide variety of tasks in automotive industry which are used primarily in 

material handling, welding, assembly, spray painting, grinding and other manufacturing 

applications. In industrial application, robot manipulators are commonly employed in 

repetitive tasks of precision and which may be hazardous for human beings. Manipulators 

are used in industries primarily because they reduce the production cost, enhance precision, 

quality and productivity with an added advantage of having greater flexibility over 
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specialized machines. In addition to this there are applications which can be done only by 

robot manipulators, these applications involve tasks in hazardous conditions such as in 

radioactive, toxic zones or where a risk of explosion exists, as well as deep space and 

submarine applications. 

Robot 
manipulator 

Ground 
robots 

Wheeled 
robots 

Mobile Legged 
Robot robots robots 

Submarine 
and aerial 
robots 

Figure 2.1 Classification of robots 

The definition of an industrial robot according to the International Federation of 

Robotics is as follows: 

`A manipulating industrial robot is an automatically controlled, programmable 

multipurpose manipulator programmable in three or more axes, which may be either fixed 

in place or mobile for use in industrial automation applications' 

The mechanical structure of a robot manipulator consists of a sequence of rigid 

bodies known as links interconnected by means of articulations called joints; a manipulator 

is characterized by an arm that ensures mobility, a wrist that confers dexterity, and an end-

effector that performs the task required of the robot. The fundamental structure of a 

manipulator is the serial or open kinematic chain. From a topological viewpoint, a 

kinematic chain is termed open when there is only one sequence of links connecting the 

two ends of the chain. Alternatively, a manipulator contains a closed kinematic chain when 

a sequence of links forms a loop. In an open kinematic chain, each prismatic or revolute 

joint provides the structure with a single degree of freedom (DOF). A prismatic joint 

creates a relative translational motion between the two links, whereas a revolute joint 

creates a relative rotational motion between the two links. Revolute joints are usually 
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preferred to prismatic joints in view of their compactness and reliability. On the other hand, 

in a closed kinematic chain, the number of DOFs is less than the number of joints in view 

of the constraints imposed by the loop. In this work we consider robot manipulators 

formed by an open kinematic chain. 

The degrees of freedom should be properly distributed along the mechanical 

structure in order to have a sufficient number to execute a given task. In the most general 

case of a task consisting of arbitrarily positioning and orienting an object in three-

dimensional (3D) space, six DOFs are required, the first three joints determine the position 

of the end of the last link in the Cartesian space and the last three specify its orientation 

with respect to a reference. coordinate frame. If more DOFs than task variables are 

available, the manipulator is said to be redundant from a kinematic viewpoint and are of 

prime importance when obstacle avoidance is concerned. 

2.2 Robot manipulator control problem 

Manipulator control has been the subject of many years of research, and continues 

to attract much attention. The main challenges in the manipulator control problem are the 

complexity of the dynamics, and uncertainties, both parametric and dynamic. Parametric 

uncertainties arise from imprecise knowledge of the dynamics, while dynamic 

uncertainties arise from joint and link, actuator dynamics, friction, sensor noise and 

unknown environment dynamics. 

The reasons posed by these systems which add to the challenges are: 

• The highly nonlinear dynamics of both manipulator and actuator, including inertia, 

gravitational, Coriolis and centrifugal effects, friction, mechanical flexibility, 

backlash, hysteresis and actuator geometry. 

• Accurate control required over a wide range of operating conditions 

• Cross-coupling between neighboring inputs and outputs of the system 

• The system dynamic parameters are time varying, due to changes in payload, 

configuration, speed of motion and component wear. 

9 



Control of robot manipulators is the problem of determining the time history of 

joint inputs required to cause the end effector to execute a commanded motion. For the 

analytical purposes, considering an n-DOF robot manipulator, the joint positions are 

collected in the vector q, 

q1 

q = 
q2 (2.1) 

   

qn 

Physically, the joint positions q is measured by sensors conveniently located on the 

robot. The corresponding joint velocities may also be measured or estimated from joint 

position evolution. To each joint, an actuator which may be electromechanical, pneumatic 

or hydraulic is in contact. The actuators generate the forces or torques which produce the 

movement of the links and in turn the movement of the robot as a whole. For analytical 

purposes these torques and forces are collected in the vector r , 

r 

Zi  

T 2 (2.2) 

 

   

1-„ 

For robots moving freely in their workspace, i.e. without interacting with their 

environment, the output y to be controlled, may correspond to the joint positions q and 

joint velocities q or alternatively, to the position and orientation of the end-effector (also 

called end-tool). For robots that have physical contact with their environment, the output y 

may include the torque v and force fexerted by the end-tool over its environment. 

Hence, the corresponding output y of a robot system — involved in a specific class of tasks 

in general, be of the form, 

Y y(q,q,f) 
	

(2.3) 

On the other hand, the input variables that may be modified to affect the evolution of the 

output are basically the torques v and forces f applied by the actuators over the robots 

joint. Figure 2.2 shows the block diagram corresponding to the case when the outputs are 
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the joint positions and velocities while z is the input. In this case, robot with n joints has 

2n outputs and n inputs. 

q 

Robot 

q 

Figure 2.2 Input- output representation of a robot 

2.3 Dynamic Model 

Robot manipulators are articulated mechanical systems composed of links 

connected by joints [17]. The dynamic model of robot manipulators is typically derived in 

the analytic form, using the laws of mechanics due to the mechanical nature. The dynamic 

models of robot manipulators are highly nonlinear and non autonomous (depend on the 

state variables and time) differential equations. 

Consider a robot manipulator of n-DOF composed of rigid links interconnected by 

frictionless joints. The kinetic energy function K(q, q) associated with such an articulated 

mechanism may always be expressed as, 

1 . K(q,4)= 
2 
—qT  M(q)4 	 (2.4) 

where M(q) is a matrix of dimension n xn referred to as the mass inertia matrix. M(q) is 

symmetric and positive definite for all q E R". The potential energy U(q) does not have a 

specific form as in the case of the kinetic energy but it is known that it depends on the 

vector of joint positions q. 

The Lagrangian L(q, q) of a robot manipulator of n-DOF is the difference between its 

kinetic energy K and its potential energy U, 

1 . 
L(q,q)= —qT  M(q)4 — U(q) 	 (2.5) 

2 

With this Lagrangian, the Lagrange's equations of motion is written as 



d[a T 	.11 a  1 .7, 	.1 OU(q)  
4-  2 - 	 F4 2 q   AA&  -- 	M(q)q 	

= r 
dt F aq 

On the other hand, it holds that 

em(04]=A1(04 

--cciit[f4 [-21 4,A1(0411=m(q),+ f1(04  

Considering these expressions, the equation of motion takes the form 

m(q)41+  aU(q)  = 
M(q)4  +11;1(q)4 	

v 	
aq 

or, in compact form, 

M(q)R' +C(q,q)4 + g(q) = r 	 (2.10) 

where 

C(q,q)q = M(q)4
2 a 	M(q)q] 	 (2.11) 

q 

g(q) = 
OU(q) 	 (2.12) 

aq 

Equation (2.10) is the dynamic equation for robots of n-DOF. C(q,q)q is a vector 

of dimension n called the vector of centrifugal and Coriolis forces, g(q) is a vector of 

dimension n of gravitational forces or torques and T.  is a vector of dimension n called the 

vector of external forces, which in general corresponds to the torques and forces applied by 

the actuators at the joints. Each element of M(q), C(q,q ) and g(q) is in general, a relatively 

complex expression of the positions and velocities of all the joints q and q . The elements 

of M(q), C(q, q) and g(q) depend of course, on the geometry of the robot in question. Note 

that computation of the vector g(q) for a given robot may be carried out as its simply the 

gradient of the potential energy function U(q). 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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2.4 Manipulator control schemes 

Manipulator controllers can be classified into two broad categories, namely joint 

space control scheme and Cartesian space control scheme [1]. The joint space control 

problem is actually articulated in two sub-problems. First, manipulator inverse kinematics 

is solved to transform the motion requirements xd from the operational space into the 

corresponding motion qd in the joint space. Then, a joint space control scheme is designed 

that allows the actual motion q to track the reference inputs. However, this solution has the 

drawback that a joint space control scheme does not influence the operational space 

variables xe  which are controlled in an open-loop fashion through the manipulator 

mechanical structure. It is then clear that any uncertainty of the structure (construction 

tolerance, lack of calibration, gear backlash, elasticity) or any imprecision in the 

knowledge of the end-effector pose relative to an object to manipulate causes a loss of 

accuracy on the operational space variables. Figure 2.3 shows the general structure of Joint 

space control. 

Actuator 
Cid 

Inverse 
kinematics 

Drives controller 
xe  

Manipulator 

Transducers 

Figure 2.3 General structure of Joint space control 

The operational space control problem follows a global approach that requires a 

greater algorithmic complexity; the General structure of operational space control is shown 

in Figure 2.4, inverse kinematics is now embedded into the feedback control loop. Its 

conceptual advantage regards the possibility of acting directly on operational space 

variables; this is somewhat only a potential advantage, since measurement of operational 

space variables is often performed not directly, but through the evaluation of direct 

kinematics functions starting from measured joint space variables. This work focuses on 

the joint space control scheme and it is assumed that the inverse kinematic is already 

performed and the trajectory is available at hand. 
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Figure 2.4 General structure of operational space control 

There are two main control objectives of robot manipulator Position control 

(regulation) and motion control (trajectory tracking) [17]. The simplest way to specify the 

movement of a manipulator is the so called "point to Point" method. This methodology 

consists in determining a series of points in the manipulator workspace, which the end 

effector is required to pass through. The position control problem consists of making the 

end effector to reach a specified point regardless of the trajectory followed from its initial 

configuration. A more general way to specify a robot motion is by continuous trajectory. In 

this case, a (continuous) curve, or path in the state space and parameterized in time, is 

available to achieve a desired task. Then, the motion control problem consists of making 

the end-effector follow this trajectory as closely as possible. This control problem, whose 

study is our central objective, is also referred to as trajectory tracking control. The main 

interest of this work is the study of motion controllers and therefore, we assume that the 

problems of path planning and trajectory generation are previously solved. 

The problem of motion control in joint space for robot manipulators may be 

formulated in the following terms. 

Given a set of vectorial bounded functions qd ,qd  and qd  referred to as desired 

joint positions, velocities and accelerations, find a vectorial function r such that the 

positions q, associated to the robot's joint coordinates follow qd  accurately. 

In more formal terms, the objective of motion control consists of finding z such 

that 

limq(t) = q d  (t) 	 (2.13) 

Where qd  E R" stands for the desired joint position vector, or in other words, 
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lime(t) = 0 
	

(2.14) 

Where e E R" stands for the joint position errors vector called position error defined by, 

e(t) = qd (t) — q(t) 	 (2.15) 

The control objective is achieved if the manipulator joint variables follow asymptotically 

the trajectory of the desired motion. 

The computation of the vector r involves, a vectorial nonlinear function of qd ,qd  

and qd  . This function is called the "control law" or simply, "controller". In general, a 

motion control law may be expressed as 

= 	,qd ,q d ,qd ,M(q),C(q,q),g(q)) 	 (2.16) 

2.5 PUMA 560 

PUMA 560 is one of the most popular industrial robots. It is used in most robotics 

publications to illustrate various concepts, computational developments and research issues 

on robot manipulators. PUMA stands for "Programmable Universal Machine for 

Assembly". It was created by Unimation. PUMA 560 is a six DOF robot manipulator with 

six revolute joints. Its structure bears close similarities with the human arm in other words 

it is anthropomorphic, articulated robot arm. It consists of a waist rotation, a shoulder 

rotation, an elbow rotation and a three-DOF wrist that allows arbitrary orientation of the 

gripper within its workspace. The Figure 2.5 shows the structure of PUMA560 [18]. The 

dynamic parameters are given in the Appendix A.1 

Figure 2.5 Structure of PUMA 560 
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Chapter 3: Fuzzy Logic Systems 

Conventional control methods require highly accurate mathematical modeling, 

analysis and synthesis, described using one or more differential equations that define the 

system response to its inputs. This involves assumptions being made with respect to the 

system dynamics and any non-linear behavior that may occur. Fuzzy set techniques are a 

powerful tool for solving demanding real world problems with uncertain and unpredictable 

environment. Fuzzy Logic Controllers are a class of non-linear controllers that make 

use of human expert knowledge and an implicit imprecision to apply control to 

such systems. The construction of these controllers can be quick and effective in the 

presence of expert knowledge. Fuzzy controller are particularly useful in the case where 

the mathematical model of the control process may not exist, or may be too "expensive" in 

terms of computer processing power and memory, and a system based on empirical rules 

may be more effective. 

3.1 Fuzzy logic 

Fuzzy logic was first developed by Zadeh in the mid-1960s for representing 

uncertain and imprecise knowledge [2]. It provides an approximate but effective means of 

describing the behavior of systems that are too complex, ill-defined, or not easily analyzed 

mathematically. Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory 

to deal with reasoning that is approximate rather than precise. Fuzzy logic is a superset of 

conventional (Boolean) logic that has been extended to handle the concept of partial truth—

truth values between "completely true" and "completely false" [19]. In binary sets with 

binary logic, in contrast to fuzzy logic named also crisp logic, the variables may have a 

membership value of only 0 or 1. Just as in fuzzy set theory with fuzzy logic the set 

membership values can range (inclusively) between 0 and 1, in fuzzy logic the degree of 

truth of a statement can range between 0 and 1 and is not constrained to the two truth 

values {true (1), false (0)) as in classic predicate logic. Zadeh argues that the attempts to 

automate various types of activities from assembling hardware to medical diagnosis have 

been impeded by the gap between the way human beings reason and the way computers 
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are programmed [2]. Fuzzy logic uses graded statements rather than ones that are strictly 

true or false. It attempts to incorporate the "rule of thumb" approach generally used by 

human beings for decision making. Thus, fuzzy logic provides an approximate but 

effective way of describing the behavior of systems that are not easy to describe precisely. 

Fuzzy logic controllers, for example, are extensions of the common expert systems that use 

production rules like "if-then." With fuzzy controllers, however, linguistic variables like 

"tall" and "very tall" might be incorporated in a traditional expert system. The result is that 

fuzzy logic can be used in controllers that are capable of making intelligent control 

decisions in sometimes volatile and rapidly changing problem environments. 

Fuzzy logic has been applied to diverse fields, from control theory to artificial 

intelligence. Fuzzy logic addresses such applications perfectly as it resembles human 

decision making with an ability to generate precise solutions from certain or approximate 

information. It fills an important gap in engineering design methods left vacant by purely 

mathematical approaches (e.g. linear control design), and purely logic-based approaches 

(e.g. expert systems) in system design. 

While other approaches require accurate equations to model real-world behaviors, 

fuzzy design can accommodate the ambiguities of real-world human language and logic. It 

provides both an intuitive method for describing systems in human terms and automates 

the conversion of those system specifications into effective models. 

The various definitions of the terms used in a fuzzy system are given below. 

• Fuzzy set - A set that can contain elements with only a partial degree of 

membership. 

• Membership function (MF) - A function that specifies the degree to which a given 

input belongs to a set or is related to a concept. It represents the degree of truth as 

an extension of valuation. 

• Degree of membership - The output of a membership function, this value is always 

limited to between 0 and 1. Also known as a membership value or membership 

grade. 

• Linguistic variables -A linguistic variable is a collection of fuzzy sets representing 

linguistic terms of a concept. Variables in mathematics 'usually take numerical 

values, in fuzzy logic applications, the non-numeric linguistic variables are often 
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used to facilitate the expression of rules and facts. A linguistic variable such as age 

may have a value such as young or its antonym old. 

• Antecedent - The initial (or "if') part of a fuzzy rule. 

• Consequent - The final (or "then") part of a fuzzy rule. 

• Fuzzification - The process of generating membership values for a fuzzy variable 

using membership functions. In other words, the process of converting a crisp input 

value to a fuzzy value. 

• Defuzzification - The process of transforming a fuzzy output of a fuzzy inference 

system into a crisp output. 

• Implication - The process of shaping the fuzzy set in the consequent based on the 

results of the antecedent in a Mamdani-type FIS. 

• Aggregation - The combination of the consequents of each rule in a Mamdani fuzzy 

inference system in preparation for defuzzification. 

3.2 Fuzzy controllers 

The core of a fuzzy controller is a collection of verbal or linguistic rules of the if—

then form [3]. Several variables may occur in each rule, both on the if -side and the then-

side. Reflecting expert opinions, the rules can bring the reasoning used by computers 

closer to that of human beings. 

The fuzzy controller has four main components: 1. The "rule-base" holds the 

knowledge, in the form of a set of rules, of how best to control the system. 2. The inference 

mechanism evaluates which control rules are relevant at the current time and then decides 

what the input to the plant should be. 3. The fuzzification interface simply modifies the 

inputs so that they can be interpreted and compared to the rules in the rule-base. 4. The 

defiwification interface converts the conclusions reached by the inference mechanism into 

a crisp control action [20]. Figure 3.1 shows the Fuzzy controller architecture. 
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Figure 3.1 Fuzzy controller architecture 

To design the fuzzy controller, the control engineer must gather information on 

how the artificial decision maker should act in the closed-loop system. Sometimes this 

information can come from a human decision maker who performs the control task, while 

at other times the control engineer can come to understand the plant dynamics and write 

down a set of rules about how to control the system without outside help. These "rules" 

basically say, "If the plant output and reference input are, behaving in a certain manner, 

then the plant input should be some value." A whole set of such "If-Then" rules is loaded 

into the rule-base, and an inference strategy is chosen, then the system is ready to be tested 

to see if the closed-loop specifications are met. 

Two forms of FLC are, 

• Mamdani 

• Sugeno 

Both of these architectures are similar in all respects except for the formulation of 

the output crisp value. In the Mamdani FLC, the output is formulated using fuzzy sets 

whereas the Sugeno type FLC uses single -spike output MFs (i.e. singletons) rather than 

distributed functions. In this work a Mamdani type fuzzy system is used. 

Even though fuzzy controllers are widely used there are a few reasons as to why 

one would not use a fuzzy controller: 
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• The PID controller is well understood, easy to implement — both in its digital and analog 

forms — and it is widely used. By contrast, the fuzzy controller requires some knowledge of 

fuzzy logic. It also involves building arbitrary membership functions. 

• The fuzzy controller is generally nonlinear. It does not have a simple equation like the 

PID, and it is more difficult to analyze mathematically; approximations are required, and it 

follows that stability is more difficult to guarantee. 

• The fuzzy controller has more tuning parameters than the PID controller. Furthermore, it 

is difficult to trace the data flow during execution, which makes error correction more 

difficult. 

The main reasons for the success of fuzzy controller's usage in industry are 

• Since the control strategy consists of if—then rules, it is easy for a plant operator to read. 

The rules can be built from a vocabulary containing everyday words such as -'high', 'low', 

and 'increasing'. Plant operators can embed their experience directly. 

• The fuzzy controller accommodates many inputs and many outputs. Variables can be 

combined in an if—then rule with the connectives 'And' and 'Or'. Rules are executed in 

parallel, implying a recommended action from each. Fuzzy logic enables non-s e_cialists to 
iy  design control systems, and this is one of the key reasons for its success 0041RAL Lig  

0. ate'  Litt .. 	..... 
z' ACC 	............. 

....... 
3.3 Fuzzy PD+I controller 	 Date .............  

1.4 RO(Yi 
In this structure, the fuzzy system is applied only to the proportional and derivative 

signal of the linear PID controller [5]. The integral signal uses conventional linear method. 

The major roll of the integral signal is to eliminate the steady state error. The transient 

response is affected mostly by the proportional signal and the derivative signal. For the 

enhancement of the transient response, the varying gains are implemented on, the 

proportional and derivative parts using two-input fuzzy system. The nonlinearities that 

make the varying gains possible are added by the fuzzy control rules and the membership 

functions. The nonlinearities emphasize the proportional gain when the tracking error is 

relatively large and accelerates decreasing speed of the tracking ,error. The nonlinearities in 

the derivative gain suppress the overshoot and increases damping as the signals starts to 
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settle down. In this structure, the fuzzy system is normalized with respect to the maximum 

range of the signal. Figure 3.2 shows the structure of the Fuzzy PD+I controller 

E 

output 

error 

Integrator 	 IE 

Figure 3.2 Structure of the Fuzzy PD+I controller 

If the closed-loop system exhibits a sustained error in steady state, integral action is 

necessary. The integral action will increase (decrease) the control signal if there is a 

positive (negative) error, even for small magnitudes of the error. Thus, a controller with 

integral action will always return to the reference in steady state 

The integral error IE = GIE fe(t)dt is proportional to the accumulation of all 

previous error measurements in discrete time, with [3]. 

fe(t)dt 	e(j)T, 	 (3.1) 
=1  

the control signal U(n) after the gain GU, at the time instant n, is a nonlinear 

function of error, change in error, and integral error, 

U(n) =[f (GE * e(n), GCE * e(n)) + GIEt e(j)7",]* GU (3.2) 
=i 

The function f is again the control surface of a PD rule base. The mapping is 

usually nonlinear, but with a favorable choice of design, a linear approximation is Equation 

(3.3) 

f (GE * e(n),GCE * e(n)) GE * e(n) + GCE * e(n) 	 (3.3) 
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Substituting this in Equation (3.2) yields the control action, 

U(n) 	* e(n) + GCE * e(n) + GIE ±e(j)T,1* GU 	(3.4) 
J=1 

G] U(n) = GE* GU *[e(n)+CE * e(n)+ GIE e(i)Ts  
GE 	GE .1,4  

In the last line we have assumed that GE is non-zero. 

Ideal continuous PID controller is given by the Equation (3.6) 

) u K [ e+ — 1 fe(t)dt +Td de Tit  

In digital controllers, the Equation (3.6) must be approximated. Replacing the 

derivative term by a backward difference and the integral by a sum using rectangular 

integration, and given a constant – preferably small – sampling time T„ the simplest 

approximation is 

u(n) = K p  e(n) + Li_i e(j)T, +Tde(n") e(n –1) 
	

(3.7) 
j 

Comparing Equations (3.5) and (3.7) the gains are related as follows: 

GE* GU = K p 	 (3.8) 

GCE  T 	 (3.9) 
GE - 

GIE 1 
GE T, 

The FPD+I controller provides all the benefits of PID control, but also the 

disadvantages regarding derivative kick. The integral error removes any steady state error, 

but can also cause integrator windup. 

(3.5) 

(3.6) 

(3.10) 

Figure 3.3 shows the block diagram of the Fuzzy PD+I controlled PUMA560 robot. 
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Figure 3.3 Block diagram of the Fuzzy PD+I controlled PUMA560 robot model 

3.4 Weighted-rule fuzzy control systems 

The use of weights flexibilizes the rule structure, whose output lies in an explicit 

point between the most distant consequents which is determined by the corresponding rule 

weights [21]. Rule weights suppose an effective extension of the conventional fuzzy 

reasoning process that allows tuning of the system to be developed at the rule level. This 

approach improves the accuracy of the learned model since they induce a good cooperation 

among rules. However, they come with the drawback of a small interpretability loss which 

lies in the difficulty to interpret the actual action performed by each rule in the 

interpolative reasoning process. From other point of view (rule level), when weights are 

applied to complete rules, the corresponding weight is used to modulate the firing strength 

of a rule in the process of computing the defuzzified value. For human beings, it is very 

close to consider this weight as an importance degree associated to the rule, determining 

how this rule interacts with its neighbouring ones. In addition, only weight values in range 

[0, 1] are considered, since this preserves the model readability. In this way, the use of rule 

weights represents an ideal framework for extended Linguistic Fuzzy Modeling while 

searching for a trade-off between accuracy and interpretability. If a rule weight is applied 

to the consequent part of a rule, it modifies the size of a rule's output value [13]. By 

assigning a rule weight to each fuzzy rule, the complexity is increased while its accuracy is 
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improved. This also suggests a tradeoff relation between the accuracy and the complexity 

[12]. 

In order to do so, the weighted rule structure and the inference system extended for 

multiple output variables is followed which is taken from [22] and given by the statement 

below: 

IF Xi is Al and . . . and X„ is An 

THEN Yl is B1 and . . . and Ym  is B m  with [w], 

Where, X, and Y are.the linguistic input and output variables respectively, A, and Bi  

are the linguistic labels used in the input and output variables respectively, w is the real-

valued rule weight, and with is the operator modeling the weighting of a rule. 

With this structure, the fuzzy reasoning must be extended. The classical approach is 

to infer with the FITA (First Infer, Then Aggregate) scheme and compute the defuzzified 

output of the j-th variable as the following weighted sum: 

E mh.wh.Ph(i) 
Y(j) 	hr 	 (3.11) 

L.dh mh 

with mh being the matching degree of the h-th rule, wh being the weight associated to the h-

th rule, and Ph(j) being the characteristic value of the output fuzzy set corresponding to that 

rule in the j-th variable. In this contribution, center of gravity will be considered as 

characteristic value and the minimum t-norm will play the role of the implication and 

conjunctive operators. 
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Chapter 4: Genetic algorithm and Genetic Fuzzy Systems 

The most popular technique in evolutionary computation research has been the 

genetic algorithm. Evolutionary algorithms can be applied to any problems that can be 

formulated as function optimization problems The genetic algorithm is a method for 

solving optimization problems that is based on natural selection, the process that drives 

biological evolution. The genetic algorithm repeatedly modifies a population of individual 

solutions. At each step, the genetic algorithm selects individuals at random from the 

current population to be parents and uses them to produce the children for the next 

generation. Over successive generations, the population "evolves" toward an optimal 

solution. Genetic algorithm can be applied to solve a variety of optimization problems that 

are not well suited for standard optimization algorithms, including problems in which the 

objective function is discontinuous, non differentiable, stochastic, or highly nonlinear[23]. 

4.1 Genetic Algorithm 

Genetic Algorithms are general purpose search algorithms which use principles 

inspired by natural genetics to evolve solutions to problems [24]. Genetic Algorithms were 

envisaged by Holland in the 1970s as an algorithmic concept based on a Darwinian-type 

survival-of-the-fittest strategy [2], where stronger individuals in the population have a 

higher chance of creating an offspring. A genetic algorithm is implemented as a 

computerized search and optimization procedure that uses principles of natural genetics 

and natural selection. The basic approach is to model the possible solutions to the search 

problem as strings of ones and zeros. Various portions of these bit-strings represent 

parameters in the search problem. If a problem-solving mechanism can be represented in a 

reasonably compact form, then GA techniques can be applied using procedures to maintain 

a population of knowledge structure that represent candidate solutions, and then let that 

population evolve over time through competition (survival of the fittest and controlled 

variation). The GA will generally include the three fundamental genetic operations of 

selection, crossover and mutation. These operations are used to modify the chosen 
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solutions and select the most appropriate offspring to pass on to succeeding generations. 

GAs consider many points in the search space simultaneously and have been found to 

provide a rapid convergence to a near optimum solution in many types of problems; in 

other words, they usually exhibit a reduced chance of converging to local minima. GAs 

show promise but suffer from the problem of excessive complexity if used on problems 

that are too large. 

Generic algorithms are an iterative procedure that consists of a constant-sized 

population of individuals, each one represented by a finite linear string of symbols, known 

as the genome, encoding a possible solution in a given problem space. This space, referred 

to as the search space, comprises all possible solutions to the optimization problem at 

hand. Standard genetic algorithms are implemented where the initial population of 

individuals is generated at random. At every evolutionary step, also known as generation, 

the individuals in the current population are decoded and evaluated according to a fitness 

function set for a given problem. The expected number of times an individual is chosen is 

approximately proportional to its relative performance in the population. Crossover is 

performed between two selected individuals by exchanging part of their genomes to form 

new individuals. The mutation operator is introduced to prevent premature convergence. 

Every member of a population has a certain fitness value associated with it, which 

represents the degree of correctness of that particular solution or the quality of solution it 

represents. The initial population of strings is randomly chosen. The strings are 

manipulated by the GA using genetic operators, to finally arrive at a quality solution to the 

given problem. GA converges rapidly to quality solutions. Although they do not guarantee 

convergence to the single best solution to the problem, the processing leverage associated 

with GAs make them efficient search techniques. The main advantage of a GA is that it is 

able to manipulate numerous strings simultaneously, where each string represents a 

different solution to a given problem. Thus, the possibility of the GA getting stuck in local 

minima is greatly reduced because the whole space of possible solutions can be 

simultaneously searched. A basic genetic algorithm comprises three genetic operators. 
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• Selection 

• Crossover, and 

• Mutation. 

Starting from an initial population of strings (representing possible solutions), the 

GA uses these operators to calculate successive generations. First, pairs of individuals of 

the current population are selected to mate with each other to form the offspring, which 

then form the next generation. Selection is based on the survival-of-the-fittest strategy, but 

the key idea is to select the better individuals of the population, as in tournament selection, 

where the participants compete with each other to remain in the population. The most 

commonly used strategy to select pairs of individuals is the method of roulette-wheel 

selection, in which every string is assigned a slot in a simulated wheel sized in proportion 

to the string's relative fitness. This ensures that highly fit strings have a greater probability 

to be selected to form the next generation through crossover and mutation. After selection 

of the pairs of parent strings, the crossover operator is applied to each of these pairs. 

The crossover operator involves the swapping of genetic material (bit-values) 

between the two parent strings. In single point crossover, a bit position along the two 

strings is selected at random and the two parent strings exchange their genetic material as 

illustrated below. 

Parent A = al a2 a3 a4 I as a6 

Parent B = b1 b2 b3 b4 I bs b6 

The swapping of genetic material between the two parents on either side of the selected 

crossover point, represented by "I", produces the following offspring: 

Offspring A'= al a2 a3 a4 I b5 b6 

Offspring B'= b1 b2 b3 b4 I a5 
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The two individuals (children) resulting from each crossover operation will now be 

subjected to the mutation operator in the final step to forming the new generation. 

The mutation operator alters one or more bit values at randomly selected locations 

in randomly selected strings. Mutation takes place with a certain probability, which, in 

accordance with its biological equivalent, typically occurs with a very low probability. The 

mutation operator enhances the ability of the GA to find a near optimal solution to a given 

problem by maintaining a sufficient level of genetic variety in the population, which is 

needed to make sure that the entire solution space is used in the search for the best 

solution. In a sense, it serves as an insurance policy; it helps prevent the loss of genetic 

material. 

Genetic algorithms are most appropriate for optimization type problems, and have 

been applied successfully in a number of automation applications including job shop 

scheduling, proportional integral derivative (PID) control loops, and the automated design 

of fuzzy logic controllers. The reason for a great part of this success is their ability to 

exploit the information accumulated about an initially unknown search space in order to 

bias subsequent searches into useful subspaces, i.e., their adaptation. This is their key 

feature , particularly in large, complex and poorly understood search space, where classical 

search tools(enumerated, heuristic...) are inappropriate, offering a valid approach to 

problems requiring efficient and effective search techniques. The pseudo-code in Figure 

4.1 shows the structure of a Basic GA [24], where P(t) denotes the population at generation 

t and Recombine(t) will consists of both the crossover and mutation operations. 

A genetic algorithm is typically initialized with a random population consisting of 

between 20-100 individuals. This population is usually represented by a real-valued 

number or a binary string. How well an individual performs a task is measured by the 

objective function. The objective function assigns each individual a corresponding number 

called its fitness value. The fitness of each chromosome is assessed and a survival of the 

fittest strategy is applied. 
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Procedure Genetic Algorithm 
Begin (1) 

t=0; 
Initialize P(t); 
Evaluate P(t); 
While (Not termination-condition) do 
Begin (2) 

t=t+1; 
Select P(t) from P(t-1); 
Recombine P(0; 
Evaluate P(t); 

End (2) 
End (1) 

Figure 4.1 Pseudo-code for structure of a Basic GA 

4.2 Genetic Fuzzy Systems 

One of the major drawbacks of Fuzzy Rule Base Systems (FRBS) discussed in the 

chapter 3 is that they are not able to learn, but require the Knowledge Base (KB) to be 

derived from expert knowledge [10]. The first step in designing a Genetic FRBS is to 

decide which parts of the (KB) are subject to optimization. The KB of a descriptive 

Mamdani-type FRBS is comprised of two components: a Data Base (DB), containing the 

definitions of the scaling factors and the membership functions of the fuzzy sets associated 

with the linguistic labels, and a Rule Base (RB), constituted by the collection of fuzzy 

rules. Fuzzy Logic Controller (FLC) contains a number of sets of parameters that can be 

altered to modify the controller performance, they are 1. Scaling factors for each variable, 

2. The fuzzy sets representing the meaning of linguistic values, 3. The If-Then rules. Each 

of these parameters has been used as the controller parameter to be adapted in different 

adaptive FLCs. GAs have been used to modify the fuzzy set definitions, to alter the shapes 

of the fuzzy sets defining the meaning of the linguistic terms, to determine the membership 

functions that produce maximum control performance according to the inference system 
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(fuzzy implication and conjunctive operators) and the defuzzification strategy used. That 

is, to tune the Fuzzy set, in order to make the FLC behaves as closely as possible to the 

operator or expert behavior [9]. Changing any of the above parameter will result in 

considerable change in fuzzy control system. In addition to these the Rule-weights can also 

be changed to perform a local tuning of linguistic rules. In Linguistic Fuzzy Modeling, 

tuning of any fuzzy set will influence all the rules that are involved [21]. 

The objective of a genetic fuzzy system is to automate the knowledge acquisition 

step in fuzzy system design, a task that is usually accomplished through an interview or 

observation of a human expert controlling the system [25]. An evolutionary algorithm 

adapts either part or all of the components of the fuzzy knowledge base. At this point, it is 

important to notice that a fuzzy knowledge base is not a monolithic structure but is 

composed of the data base and the rule base which each play a specific role in the fuzzy 

reasoning process. According to the distinction between data base and rule base, genetic 

fuzzy systems are discriminated along two major approaches, genetic tuning processes and 

genetic learning processes. The first method is targeted at optimizing the performance of 

an already existing fuzzy system. The tuning process involves the adaptation of the fuzzy 

database, namely parameters of membership functions and input-output scaling factors. 

The second method is concerned with the automatic derivation of fuzzy rules in the rule 

base. A genetic learning process faces a much more difficult task as it has to establish the 

proper relationship between input and output states from scratch, rather than optimizing the 

performance of a fuzzy system that already operates at least approximately correct. 

Designing a fuzzy rule based system is equivalent to finding an optimal configuration of 

fuzzy sets and/or rules, and in that sense can be regarded as an optimization problem. The 

optimization criterion is the problem to be solved at hand and the search space is the set of 

parameters that code the membership functions, scaling functions and fuzzy rules. The 

genetic learning process emerges from the hybridization of an evolutionary algorithm, 

which by means of selection and genetic operators optimizes parameters of the knowledge 

base, with the fuzzy system supposed to demonstrate a desired behavior. 
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Figure 4.2 Genetic Fuzzy System 

The fuzzy system lies at the core of the hybrid structure; it fuzzifies the input state, 

performs the inference based on the fuzzy rules and aggregates the result of the inference 

process into a crisp output. Depending on the context, the environment can be a plant to be 

controlled, a system to be modeled or a set of data to be classified. An external critic or 

trainer evaluates the performance of the fuzzy system with regard to the control task, the 

model accuracy or the classification error. The performance is aggregated into a scalar 

fitness value on which basis the evolutionary algorithm selects better adapted 

chromosomes. A chromosome either codes parameters of membership functions, scaling 

factors, fuzzy rules or a combination thereof. By means of crossover and mutation, the 

evolutionary algorithm generates new parameters for the database and/or rule base which 

usefulness is tested in the fuzzy system. 

It is important to distinguish between tuning and learning problems. Tuning is more 

concerned with optimization of an existing FRBS, whereas learning constitutes an 

automated design method for fuzzy rule sets that starts from scratch. Tuning processes 

assume a predefined RB and have the objective to find a set of optimal parameters for the 

membership and/or the scaling functions. Learning processes perform a more elaborated 

search in the space of possible RBs or whole KBs and do not depend on a predefined set of 

rules. 

In the case of tuning membership functions, 'an individual represents the entire DB 

as its chromosome encodes the parameterized membership functions associated to the 
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linguistic terms. Triangular membership functions are usually encoded by their left, centre 

and right point, whilst Gaussian membership functions by their centre and width. When 

tuning the membership functions in a linguistic model, the whole fuzzy partitions is 

encoded into the chromosome and they are globally adapted to maintain the global 

semantic in the RB. On the other hand, tuning the membership functions of an approximate 

model is a particular instantiation of KB learning since the rules are completely defined by 

their membership functions instead of referring to linguistic terms in the DB. In this thesis 

work, Gaussian membership function is used. A small analysis of how the variations in the 

mean and spread change the shape of the membership function. Gaussian membership 

function is characterized by Equation 5, where 1u  is the center and o denotes the spread. 

-(x-  p)2  
f (X, CT, C) = e 2'72 	 (4.1) 

Figure 4.3 shows the variation of the Gaussian membership function when the 

mean (center) is varied. Initially the MF is centered at `p ', a change of `cS ' introduced in 

' resulting in the center getting shifted to `p-f-J Figure 4.4 shows the variation of the 

Gaussian membership function when the spread 'a' is varied. The plot 'cr = b' is the initial 

MF, when `o-' is increased to 'a' the plot = a' is formed and when 'a' is decreased to `c ' 

the plot 'a = c' is formed. 

Figure 4.3 Variation in the mean of a Gaussian MF 
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Figure 4.4 Variation in the spread of a Gaussian MF 

On the other hand, Genetic learning of the RB assumes a predefined set of fuzzy 

membership functions in the DB to which the rules refer to by means of linguistic labels. 

The GA adapts the RB, either working with chromosomes that describe a single fuzzy rule 

or an entire RB. The RB is either represented by a relational matrix, a decision table or a 

list of rules. In case each chromosome represents an individual rule, the population as a 

whole constitutes the solution, namely the optimal set of rules. The ruleS that form the RB 

are either evolved simultaneously. 
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Chapter 5: Implementations 

In this chapter, implementation of parameter tuning methods, approximation of 

systems, obtaining minimally optimal rule base and proposal of a novel algorithm is 

discussed. 

5.1 Parameter tuning 

Fuzzy controllers can be tuned by various strategies, like changing the scaling 

factor, modifying the support and spread of membership functions, modifying the If-Then 

rules of the rulebase and changing the type of a membership function itself. Tuning the 

scaling factors, rules and shape and support of a membership function will result in change 

of the control surface and hence the output of the fuzzy controller [26]. GAs have been 

used to modify the fuzzy set definitions, to alter the shapes of the fuzzy sets defining the 

meaning of the linguistic terms, to determine the membership functions that produce 

maximum control performance according to the inference system (fuzzy implication and 

conjunctive operators) and the defuzzification strategy used. That is, to tune the Fuzzy set, 

in order to make the FLC behaves as closely as possible to the operator or expert behavior 

[9].In addition to these the Rule-weights can also be changed to perform a local tuning of 

linguistic rules, which enables the linguistic fuzzy models to cope with inefficient and/or 

redundant rules thereby enhancing the robustness, flexibility and system modeling 

capability [11]. By assigning a rule weight to each of the fuzzy rules, complexity is 

increased while its accuracy is improved. This suggests a tradeoff relation between the 

accuracy and complexity [12]. If a rule weight is applied to the consequent part of the rule, 

it modifies the size of the rule's output value [13]. In Linguistic Fuzzy Modeling the tuning 

of any fuzzy set will influence all the rules that are involved. [21]. 

5.1.1 Preliminary tuning 

As part of the preliminary studies three types of tuning are performed. Namely, 

Rule tuning, Rule-weight tuning, and membership function tuning. This is performed on 

the reference Fuzzy PD+I control system mentioned in the section 3.3. After this 
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preliminary studies and inference is drawn as to which of the tuning strategy is better than 

the other. 

5.1.1.1 Rule tuning 

In this ;subsection the chromosomes are encoded with the values of consequent part 

of the if-then rule of the fuzzy rule base, in other words contains the parameters of the 

consequent. Genetic algorithm is run until the terminating condition. Genetic algorithm 

varies these parameters stochastically and on convergence produces a rule base which will 

have optimal rules in it. Since we are using a 3x3 rulebase we will require chromosomes to 

consist of 9 variables per fuzzy system corresponding to the 9 rules. 

Structure of chromosome: C1, C2, ... C. 

Where Ci is the consequent, i varies from 1 to n. In this case n=54 (i.e. 

9rul e*6j oints) . 

5.1.1.2 Rule-Weight tuning 

In this subsection the chromosomes are encoded with the values of weighting for 

consequent part of the if-then rule of the fuzzy rule base. Genetic algorithm is run until the 

terminating condition. Genetic algorithm varies these parameters stochastically and on 

convergence produces a rule base which will have rules with optimal rule-weights in it. 

Since we are using a 3x3 rulebase we will require chromosomes to consist of 9 variables 

per fuzzy system corresponding to the 9 'rule weights. 

Structure of chromosome: W1, W2, 	Wn. 

Where VT; is the rules-weight, i varies from 1 to n. In this case n=54 (i.e. 9rule-

weights*6joints). 

5.1.1.3 Membership function tuning 

In this subsection the chromosomes are encoded with the values of parameters of 

the membership function. Gaussian membership function is used. A Gaussian membership 

function is characterized by a mean and a spread. The centers of the extreme end 

membership functions are kept as it is since changing them will affect the universe of 

discourse and it is desired that the universe of discourse is kept a constant. Genetic 
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algorithm is run until the terminating condition. Genetic algorithm varies these parameters 

stochastically and on convergence produces a fuzzy system which will have membership 

functions with mean and spread. Since we are using a 3x3 rule fuzzy system there will be 9 

membership functions altogether, 6 for input and 3 for output. Considering this there will 

be 9 means and 9 spreads, of these 6 extreme centers are kept untouched hence the total 

number of parameters tuned is 12. We will require chromosomes to consist of 12 variables 

per fuzzy system 

Structure of chromosome: MF1, MF 2, 	MF n. 

Where MF is the membership function parameter, i varies from 1 to n. In this case 

n=72 (i.e. 12Mf parameters*6joints). 

5.1.2 Two stage tuning 

With the foundations of the preliminary studies, an attempt is made to tune the 

Fuzzy controller in two stages. In the first stage the rules are tuned and in the second stage 

the rule-weights is tuned. This progressive approach is studied to see if there are any 

performance improvements. Changing the rules will produce considerable change in the 

control of the fuzzy controller, but changing the rule weight results in finer details getting 

adjusted. 

Stage 1: The chromosomes are encoded with the values of consequent part of the if-then 

rule of the fuzzy rule base, in other words contains the parameters of the consequent. 

Genetic algorithm varies these parameters stochastically and on convergence produces a 

rule base which will have optimal rules in it. Since we are using a 3x3 rulebase we will 

require chromosomes to consist of 9 variables per fuzzy system corresponding to the 9 

rules. 

Structure of chromosome: Ci, C2, 	Cn. 
Where C is the consequent, i varies from 1 to n. In this case n=54 (i.e. 

9rule* 6j oints). 

Stage 2: With the rulebase obtained in the previous stage weight tuning is 

performed as follows. The chromosomes are encoded with the values of weighting for 

consequent part of the if-then rule of the fuzzy rule base Genetic algorithm varies these 

parameters stochastically and on convergence produces a rule base which will have rules 

- 36 - 



with optimal rule-weights in it. Since we are using a 3x3 rulebase we will require 

chromosomes to consist of 9 variables per fuzzy system corresponding to the 9 rule 

weights. 

Structure of chromosome: / W., W2, • • • W. 

Where W, is the rules-weight, i varies from 1 to n. In this case n=54 (i.e. 9rule-

weights* 6j oints). 

5.1.3 Three stage tuning 

As an extension to the previous subsection a third stage tuning is performed. In this 

section the membership function of the fuzzy system obtained from the two-stage tuning 

process is tuned. All the constraints described in the preliminary study of tuning for 

membership function applies here as well. 

Structure of chromosome: MF1, MF 2, ... MF • 

Where MF , is the membership function parameter, i varies from 1 to n. In this case 

n=72 (i.e. 12Mf parameters*6j oints). 

5.1.4 Simultaneous tuning 
In contrast to the previous two subsection where tuning was carried out 

progressively, tuning one parameter at a time, in this section the implantation of 

simultaneously tuning Rule, Rule-weight and Membership functions is discussed. The 

chromosomes are encoded with the parameters of the consequent, weighting of consequent 

part and membership function. Genetic algorithm is run until the terminating condition. 

Genetic algorithm varies these parameters stochastically and on convergence produces a 

fuzzy system which will have optimal rules, rule-weights and membership function in it. 

Since we are using a 3x3 rulebase we will require chromosomes to consist of 30 variables 

per fuzzy system corresponding to the 9 rules, 9 rule 'weights and 12 membership function 

parameters. 

Structure of chromosome: CI, C2, • • • , Cn, W1,  W2, • • • ,Wn, MF1, MF 2, 	, MF m  

Where C, is the consequent, W, is the rules-weight, i varies from 1 to n. MF is the 

membership function parameter, j varies from 1 to m. In this case n=54, tn--72, total 
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number of parameters per structure is 180 (9 rule*6joints+9 rule weights*6joints+12 Mf 

parameters*6joints) 

5.2 Approximations of a System 

Many applications exist in the control and signal processing areas that utilize 

nonlinear function approximation. One such application is system identification, which is 

the process of constructing a mathematical model of a dynamic system using experimental 

data from that system [20]. The interpolation and approximation theory are quite mature 

fields in by themselves which has received and continues receiving not deep but constant 

attention [14]. 

This section begins by defining the function approximation problem, in which a 

synthesis of a function to approximate another function that is inherently represented via a 

finite number of input-output associations is required [20]. Appropriate input-output data 

points that allow for the construction of an approximate model are gathered. 

Given some function 

g : 	 (5.1) 

Where X c R" and Y c R , it is desired to construct an approximate model of the system 

f : X --> Y 	 (5.2) 

Where X c X and Y c Y are some domain and range of interest, by choosing parameter 

vector Ofwhich includes, polynomial coefficients in case of polynomial interpolation and 

rules, membership function centers, widths, etc in case of a fuzzy system.) 

So that 

g(x) = f (x 19) + e(x) 	 (5.3) 

For all x = [xi  ,x2,...,x,, ]T E X where the approximation error e(x) is as small as 

possible. If it is required to refer to the input at time k, then use x(k) for the vector and xj(k) 

for its jth  component. In this work x/k) will consists of input data pair, this input data pair 

set is the training data 'T'. Evaluation of the error in approximation between g and an 

approximate function f(x10) based on a training data set may or may not be a true measure 

of the error between g and f for every x E X, but it is the only evaluation we can make 

based on known information. Hence, measures like 'sum of squares of error' given in 
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Equation (5.4) to measure the approximation error are used. Accurate function 

approximation requires that expression of this nature be small; 

E(g(x,)- f(x,(9)) 2 	 (5.4) 

While the method for adjusting the parameters 0 of f(x10) is critical to the overall 

success of the approximation method, there is virtually no way of succeeding at having f 

approximate g if there is no appropriate information present in the training data set 'T'. 

Basically, we would like 	to contain as much information as possible about g. 

Unfortunately, most often the number of training data pairs is relatively small, or it is 

difficult to use too much data since this affects the computational complexity of the 

algorithms that are used to adjust 0. 

In this thesis work, two types of approximations, namely Bivariate polynomial 

approximation and Weighted-rule Fuzzy system approximation are studied and their 

results are compared. Figure 5.1 shows the. Structure of approximate of Fuzzy PD+I 

controller. 

       

       

-Mtge: 
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Figure 5.1 5. Structure of the approximate of Fuzzy PD+I controller 

5.2.1 Bi-Variate Polynomial Approximation 
Various methods of polynomial interpolation give efficient results but are 

mathematically quite rigorous and difficult for a multi-variate case [15]. The simplest 

context to study here is interpolation by uni-variate polynomials. Hence interpolation by 

uni-variate polynomials is a very classical topic. However, interpolation by polynomials of 

several variables is much more intricate and is a subject which is currently an active area of 

research. A bi-variate polynomial is a polynomial in two variables [27]. Bi-variate 

polynomials have the form as given in Equation (5.5). 
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f(x, y) = E 	yj 
	

(5.5) 

A bi-variate polynomial when evaluated over a grid of input values for both x and 

y, traces a surface defined by f(x,y) of the Equation (5.5). This section proposes to 

approximate the control surface of the fuzzy controller using bi-variate polynomial 

function. Approximation is performed using genetic algorithm, which is one of the 

stochastic optimization algorithm, to determine the coefficients of polynomial that 

approximates a system without getting into rigorous mathematical analysis. 

In this work the bi-variate polynomial chosen for the approximation of the 

reference fuzzy control surface is given as (x+y+1) 0  with all the coefficients being 

replaced by variables that can get modified by genetic algorithm so that an optimal value 

of these coefficients can be found. The polynomial so found closely approximates fuzzy 

controller behavior in the region of operation for which the data points were collected. 

Let us assume that the data points collected from the reference fuzzy controller are 

xl and x2 for inputs and y for outputs, where xl, x2 and y are vectors of same size: With 

these data points an estimate bi-variate polynomial model is created, bi-variate in terms of 

xl and x2 variables. The squared error between the estimate model output vector f(x,y) and 

the y vector is calculated. This squared error is minimized by the Genetic Algorithm. This 

minimization is done by manipulating the coefficients of the polynomial by genetic 

algorithm to obtain an approximate model of fuzzy controller in terms of bi-variate 

polynomial function. This approximate model is employed in the reference Fuzzy PD+I 

control block by replacing the Fuzzy PD controller as shown in Figure 5.1. Equation 5.6 

shows the relation between the polynomial P(xl, x2) and Fuzzy PD function F(e,e). 

P(xl, x2) F(e, e) 
	

(5.6) 

Where P(xl, x2) is of the form specified in Equation 5.5 

Structure of chromosome Pi, P22 • • • Pn• 
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Where P, is the polynomial coefficients, W, is the rules-weight, i varies from 1 to n. In this 

case n=67 the number of coefficients present for polynomial with structure as that equation 
(x±y+1)10 

5.2.2 Weighted-Rule Fuzzy Approximation 
The basic problem to be studied here is how to construct a Weighted-Rule fuzzy 

system from numerical data, where linguistics is used as the starting point to specify a 

fuzzy system. If the numerical data is plant input-output data obtained from an experiment, 

we may identify a fuzzy system model of the plant. This may be useful for simulation 

purposes and sometimes for use in a controller [20]. On the other hand, the data may come 

from other sources, and a fuzzy system may be used to provide for a parameterized 

nonlinear function that fits the data by using its basic interpolation capabilities. For 

instance, suppose that we have a human expert who controls some process and we observe 

how he or she does this by observing what numerical plant input the expert picks for the 

given numerical data that she or he observes. 

Let us assume that the data points collected from the reference fuzzy controller are 

xl and x2 for inputs and y for outputs, where xl, x2 and y are vectors of same size. From 

the numerical data, the maximum and minimum are calculated and the universe of 

discourse (UOD) is assigned ± 1.5 times the maximum of the absolute values of maximum 

and minimum. The membership function chosen is Gaussian membership functions for 

both input and output. A 3x3 rulebase system is being developed so the centers of the 

Gaussian membership function are assigned as [-UOD value, 0, +UOD] . The spread for 

these membership functions are assigned as Range/(1.5*pi), where Range is (2 times 

UOD),this is done so that the cross-point of the membership functions occurs at 0.5. A 

symmetric rulebase as shown in the Figure 5.2 is chosen and assigned to the fuzzy system 

being created. 
ci\e\  
e Z P 

NNN2 

Z N Z P 

Z PP 

Figure 5.2 Symmetric rulebase used in the Weighted-Rule Fuzzy Approximation 
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The weights are assigned to this rulebase genetically to obtain the approximate 

model of the reference system. The sum of squared errors between the estimate model 

output vector F,„(x1,x2) and the y vector is calculated. This sum of squared errors is 

minimized by the Genetic Algorithm. The chromosomes are encoded with the values of 

weighting for consequent part of the if-then rule of the fuzzy rule base. Genetic algorithm 

is run until the terminating condition. Genetic algorithm varies these parameters 

stochastically and on convergence produces a rule base which will have rules with optimal 

rule-weights in it. Since we are using a 3x3 rulebase we will require chromosomes to 

consist of 9 variables per fuzzy system corresponding to the 9 rule weights. 

Structure of chromosome: W1, W2, • • Wn. 
Where Wi is the rules-weight, i varies from 1 to n. In this case n=9. 

This approximate model is employed in the reference Fuzzy PD+I control block by 

replacing the Fuzzy PD controller as shown in Figure 5.1. Equation (5.7) shows the 

relation between the reference Fuzzy function F(xl, x2) and Weighted-rule Fuzzy PD 

approximate function Fs, (e,e). 

F(xl, x2) F„,(e,e) 	 (5.7) 

Where F(x 1, x2) is the fuzzy function of the reference Fuzzy PD+I for the inputs x 1 and 

x2. Fs, (e, e) is the fuzzy function of the weighted-rule Fuzzy approximate model. 

5.3 Optimally Minimum Rulebase 
For any given input trajectory, all the rules in the rulebase are not fired. This 

suggests that the rulebase can be minimized. Along with minimization if the rules present 

in the minimal set are tuned, then an optimally minimum rulebase is obtained. Rulebase is 

tuned in such a way that the number of rules is minimized and optimized simultaneously. 

In this section the chromosomes are encoded in such a way that the chromosome is 

broken down into two sub-chromosomes, the first contains the parameters of the 

consequent and the second contains binary weights [16]. Genetic algorithm is run until the 

terminating condition. Genetic algorithm varies these parameters stochastically and on 
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convergence produces a rule base which will have an Optimally Minimum Rules in it. In 

other words, with the various genetic operations the best consequent and the binary 

weights are obtained. The consequents with weights '0' is equivalent to considering this 

rule non existent. 

Structure of chromosome: C1, C2, .. • , Cn, W1, W2, • • • ,Wn 
Where C, is the consequent and W,, is the associated binary weight, i varies from 1 

to n. Overall to find an optimally minimum rulebase for a rule base of size 'n' the length of 

the chromosome required is '2n', 'n' for consequents and 'n' for weights. Here we are 

using a 3x3 rulebase and hence we will have n=9. In case of consequent sub-chromosome 

each consequent requires as much size as a positive integer and for weights one bit is 

sufficient since it is a binary weight. 

A small disturbance is given to the robot arm and the trajectory tracking is 

evaluated to check if the created Optimally Minimum Rulebase is able to cope up with the 

disturbance. 

5.4 A Novel Stochastic Algorithm for optimization 

Given a space S-2 of individual solutions CO E R" and an objective function s f,' 

f (co) ---> R , optimizing f is the process of finding the solution cog  which minimizes 

(maximizes)f. 

Random search consists of picking up random potential solutions and evaluating 

them. The best solution over a number of samples is the result of random search. 

Stochastic algorithm is nothing other than a random search, with hints by a chosen 

heuristics (or meta-heuristics) to guide the next potential solution to evaluate [28]. 

Stochastic optimization algorithms were designed to deal with highly complex 

optimization problems. There are a number of stochastic search algorithms present, 

Genetic algorithm, simulated annealing, ant colony optimization, etc to name a few. In this 

section the proposed algorithm is compared with the genetic algorithm, the scope of work 

is restricted to comparison with genetic algorithm only. 

The proposed stochastic search algorithm is initially tested on Rastrigin's function 

and then later is used to minimize the ISE of the joint for trajectory tracking control of the 

PUMA560. 
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The search algorithm is divided into three phases. In the first phase the search space 

is searched thoroughly and if the solution exists outside this search space then the space is 

extended, this can be considered as a global search. In the second phase the search space 

restricted but still able to change its neighborhood considerably, this can be considered as a 

local search. And in the third phase the search is completely restricted to a very small 

space in the neighborhood of the solution, this can be considered as a highly restricted 

local search phase. 

Before starting the algorithm, as part of initialization a random number vector `x' is 

generated within the range specified as the search space, this is done just once. With the 

start of the algorithm, value of x is used as the centre and absolute value of x is used as 

spread of the normal distribution in the first iteration. The spread should always be 

positive. The random numbers are generated by a Gaussian function, in other words they 

are normally distribution. After the first iteration the number generated by the normal 

distribution is taken as `x'. The algorithm is discussed phase by phase. Let y be the 

function to be minimized. 

Phase I: This is the phase of global search, so the neighborhood to be searched 

from the present solution has to be very large. This is ensured by making the spread of the 

normal distribution equal to the arithmetic mean of the best solution of y so far and the 

absolute value of random number x generated in the previous iteration by the normal 

distribution. By using the number generated in the previous iteration in calculating the 

spread, it is ensured that there is certain degree of randomization or perturbation in search 

neighborhood, which will ensure that unknown better solutions can be explored. The mean 

of the normal distribution will be the values of x corresponding to the solution of best y. If 

a better solution is obtained the best x and best y are updated. When best x is updated the 

centre of the distribution also moves to this location. This way it is ensured that the search 

space is made variable moving towards better solution. The reason for using arithmetic 

mean for spread in this stage is that the value spread will be half way between the x and y. 

For example let us consider that y is a function of x where x is a vector of size 1. Now if 

for x=10, best y = 0.2, then the spread that will be used for next search will be (10+0.2)/2 

which is a value 5.1. This is a pretty large value of spread considering the value of x. 
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Phase II: This is the phase of moderate local search, so the neighborhood to be 

searched from the present solution has to be moderate. This is ensured by making the 

spread of the normal distribution equal to the geometric mean of the best solution of y so 

far and the absolute value of random number x generated in the previous iteration by the 

normal distribution. The mean of the normal distribution will be the values of x 

corresponding to the solution of best y. If a better solution is obtained the best x and best y 

are updated. When best x is updated the centre of the distribution also moves to this 

location. The reason for using geometric mean for spread in this stage is that the value of 

spread will be very close to the minimum value of x and y. For example let us consider that 

y is a function of x where x is a vector of size 1. Now if for x=10, best y = 0.2, then the 

spread that will be used for next search will be VI O*0.2 which is 1.141. This is a 

moderate value of spread considering the value of x. 

Phase III: This is the phase of extreme local search, so the neighborhood to be 

searched from the present solution has to be very small. This is ensured by making the 

spread of the normal distribution equal to the harmonic mean of the best solution of y so 

far and the absolute value of random number x generated in the previous iteration by the 

normal distribution. The mean of the normal distribution will be the values of x 

corresponding to the solution of best y. If a better solution is obtained the best x and best y 

are updated. When best .x is updated the centre of the distribution also moves to this 

location. The reason for using harmonic mean for spread in this stage is that the value of 

spread will be very close to the minimum value of x and y. For example let us consider that 

y is a function of x where x is a vector of size 1. Now if for x=10, best y = 0.2, then the 

2) 
spread that will be used for next search will be 

2*(10*0. which is 0.39. This is a small 
(10 + 0.2) 

value of spread considering the value of x. 

The value of the x corresponding to the best y is returned as a result of possible 

solution. Flow chart of the proposed algorithm is shown in Figure 5.3. 
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Initialize : range, noOlVariables, maxIteration,etc 

besty 	inf 
bestx <- random number vector within the range 
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Figure 5.3 Flow chart of the proposed stochastic optimization algorithm 

This algorithm is initially used to find the minimum of Rastrigin's function. A 

comparison of Rastrigin's function results by the proposed algorithm and Genetic 

algorithm is made. Based on the success it is implemented for tuning the gains of the 

Fuzzy PD+I controlled Puma 560 arm for pseudo-random joint trajectories. A comparison 

of results by the proposed algorithm and Genetic algorithm is made. 
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Chapter 6: Simulation results and discussions 

In this chapter, the results of different methodologies mentioned in chapters 5 are 

discussed. Initially a preliminary study of tuning individual parameters in fuzzy PD+I 

controller for joint control of PUMA560 robot -arm is carried out and an inference is 

drawn. Next two stage tuning procedure and three stage tuning procedure are carried out 

and three stage tuning is compared with simultaneous tuning procedure. Following this, 

approximations of the Fuzzy PD+I are studied. Two methods of approximating the fuzzy 

PD+I from input-output data, namely Bivariate Polynomial approximation and weighted 

fuzzy logic approximation are carried out and a comparison is made. Further, optimally 

minimum rulebase generation is discussed. Finally an algorithm is proposed which has 

faster convergence than genetic algorithm. 

Default Genetic Algorithm settings for the MATLAB GA toolbox are used and are 

given in the Appendix A.2 

The objective function considered here is based on the error criterion. In this 

dissertation, performance of membership functions, rules and weight tuning are evaluated 

in terms of Integral Square Error (ISE) error criteria. The error criterion is given as a 

measure of performance index. The ISEs of individual joints are added together to obtain 

an overall ISE. This is done to simplify the task of Genetic Algorithm. The objective of 

Genetic Algorithm is to minimize this overall ISE. The overall ISE is given by Equation 

(6.1). 
6 

ISE = E fe;  ( t)dt (6.1) 

Where ei(t) is the error signal for the ith  joint. Here i can take values from 1 to 6 

corresponding to 6 joints. 

6.1 Results for parameter tuning 

Tuning of rules, weights and membership functions has been carried out genetically 

till a best fitness is achieved. Some of the details that are to be taken care of are, the 

weights need to be within the range [0 1], the rules generated must be valid, the universe of 
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du/dt 
de 

Fuzzy PD controller GE CE 

IE 

error 

discourse should be kept same as the base system, the centers of the membership functions 

mfl and mf3 are kept at -1 and 1 respectively and the center of the membership function 

mfg is varied by the genetic algorithm to obtain an optimized location. The spread of all 

the membership functions are changed by the genetic algorithm. Both the spread and center 

are optimized in parallel while MF tuning. In this section the results for the section 5.1 are 

presented. For the preliminary tuning the minimum number of generation for which the 

GA is run is 200 and there after a stall limit of 50 is used upto a maximum of 500 

generations. 

6.1.1 Preliminary tuning 

In this section the results of Base system, Rule tuning, Rule weight tuning and 

Membership function tuning are discussed. 

6.1.1.1 Base system 

Figure 6.1 shows the structure of the Fuzzy PD+I controller, where GCE, GE, GIE 

and GU are the gains of Fuzzy PD+I controller and more often called scaling factors which 

can be varied to tune the controller. Here Genetic Algorithm is used to coarsely tune (to 

represent manual tuning) these gains initially in order to produce base or reference system. 

All other parameter tuning in this section is carried out on this base system. Figure 6.2 

shows the surface view, membership function the rulebase of the reference Fuzzy PD 

controller used. 

Figure 6.1 Structure of the Fuzzy PD+I controller used in base system 
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Figure 6.2 (a) The surface view, (b) membership function and (c) rulebase of the 
reference Fuzzy PD controller used. 
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While providing the input to the robot, care has to be taken that the trajectory used 

is continuous and smooth. The input trajectory used in this subsection is 1-cos (pi/0 since 

it is a continuous and smooth function which can be double differentiated, t is time in 

seconds. This trajectory is used for all the joints. 

Figure 6.3 shows Input trajectory signal given to the individual joints and Figure 

6.4 shows the joint error generated by the given input trajectory for reference Fuzzy PD+I 

controller. 

2 
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Time (s) 
Figure 6.3 Input trajectory signal given to the individual joints of. Puma 560 
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Figure 6.4 Joint error generated by the given input trajectory for reference 

Fuzzy PD+I controller. 
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6.1.1.2 Rule tuning 

The result of rule tuning is presented here. The number of parameters tuned is 54 (9 

rules > 6 joints). Figure 6.5 shows the Rule base after tuning of the rules and Figure 6.6 

shows the control surface view of this rule base. Figure 6.7 represents the joint error 

generated by the robot arm with Rule tuned Fuzzy PD+I controller. 
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Figure 6.5 Rule base after Rule tuning using Genetic Algorithm 
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Figure 6.6 Control surfaces of the rulebase after rule tuning 

Figure 6.7 Joint error generated by the robot arm N% ith Rule-tuned Fuzzy PD+I controller 
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6.1.1.3. Rule weight tuning 

The result of Rule weight tuning is presented here. The weights of the rules are 

tuned and the number of parameters tuned is 54 (9 weights x 6 joints). Figure 6.8 shows 

the weight tuned rulebase, with weights written within brackets. 
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Figure 6.8 Weight tuned rulebase, with weights written within brackets 
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Figure 6.10 Joint error generated by the robot arm with Rule-weight tuned 

Fuzzy PD+1 controller 
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Figure 6.9 shows the control surface of weight tuned rulebase and Figure 6.10 

represents the joint error generated by the robot arm with Rule-weight tuned Fuzzy PD+I 

controller. 
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Figure 6.9 Control surface of weight tuned rulebase 
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6.1.1.4. Membership function tuning 

The result of membership function tuning, is presented here. The number of 

parameters tuned are 72 ((9 for 'a' + 3 for bp')x 6 joints). Figure 6.11 shows the 

Membership functions (MF) of the Fuzzy PD+I controller after ME tuning. Figure 6.12 

shows the control surface after ME tuning and Figure 6.13 represent the joint error 

generated by the robot arm with Membership functions tuned Fuzzy PD+I controller. 

Figure 6.1 I Membership functions of the Fuzzy PD+1 controller after MF tuning 
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Figure 6.13 Joint error generated by the robot arm with Membership functions tuned Fuzzy 

PD+1 controller 
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Table 6.1 gives the number of parameters tuned; break up of the ISEs of the 

individual joints and the overall ISE that is minimized by Genetic Algorithm. It provides 

results of the preliminary tuning strategies in a tabular form. 

The inference which is drawn from Table 6.1 is that the weights tuning provides 

better results (overall ISE) than others for this system. 

6.1.2 Two stage tuning 

The result of the section 5.1.2 is presented here. As a first step of progressively 

tuning the fuzzy controller, rule tuning is carried out. The results of rule tuning of section 

6.1.1.2 are taken as the stage I results and the proceeded further with the stage II. The 

number of generations of optimization in genetic algorithm is 500 for the stage I 

(maximum generation in 6.1.1.2). After the rule tuning, the weights of the rules are tuned 

in the second stage. The number of generations of optimization in genetic algorithm k 

1000. The number of generation is so chosen such that weight tuning is done more 

thoroughly. The number of parameters tuned is 54 (9 weights x 6 joints). Figure 6.14 

represents the joint error generated by the robot arm with Rule-weight tuned Fuzzy PD+1 

controller, Figure 6.15 shows the weight tuned rulebase, with weights written within 

brackets and Figure 6.16 shows the control surface of weight tuned rulebase. 

Figure-6.14 Joint error generated by the robot arm after stage II tuning 
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Figure 6.15 Weighted-rule rulebase after Stage II tuning 
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Figure 6.16 Weighted-rule control surface after Stage II tuning 

Rule tuning followed by rule-weight tuning using Genetic Algorithm is 

successfully applied to the Fuzzy PD+I controller of the PUMA560. It is seen from the 

plots of Figure 6.4 and Figure 6.7 that tuning the rules of rule base results in a good 

performance. Further from Figure 6.14 it is evident that tuning the weights of rule tuned 

rulebase makes fine tuning of the fuzzy controller possible. The control surface obtained 

after the Stage II is smoother than that of Stage I, observed from Figure 6.6 and Figure 

6.16. With this two-stage approach better and finer tuning of fuzzy controllers can be 

implemented even for complex coupled systems. 
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6.1.3 Three stage tuning 

The result of the section 5.1.3 is discussed here. After the rules and their weights 

are tuned in two stages above, the tuned rulebase is taken and tuning is extended in stage 3 

by tuning the membership functions. The number of generations of optimization in genetic 

algorithm is 500 for this case. The number of parameters tuned are 72 ((9 for 'a' + 3 for 

'pe)x 6 joints). Figure 6.17 shows the Membership functions (MF) of the Fuzzy PD+I 

controller after Stage III, top row denoting joint 1 MF. next row for joint 2 MF. and so on. 

Figure-6.18 shows the control surface after Stage III. Figure-6.19 shows the joint error plot 

of the Fuzzy PD+I controller after Stage 111. 

e 
 

de 	 U 

Figure 6.17 Membership functions (MF) of the Fuzzy PD+1 controller after Stage III 

- 61 - 



0.5 

0 

-0.5 
1 

0 
-0.2 
-0.4 
-0.6 

1 

1 

0.5 

0 

-0.5 

1 

05 
0 

-n5  
1 

0.5 

0 

-0.5 
1 

Joint 4 control surface 

Joint 6 control surface 

05 

0 

-0.5 
1 

0 
de -1 -1 e 

Joint 3 control surface 

Joint 5 control surface 

Joint 1 control surface 	 Joint 2 control surface 

Figure-6.18 Control surface of the Fuzzy PD+I controller after Stage III 
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Figure-6.19 Joint error plot of the Fuzzy PD+I controller after Stage 111. 
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6.1.4 Simultaneous tuning 

The result of the section 5.1.4 is presented here. In this section, Rules, weights and 

MFs of the reference Fuzzy PD+I controller are tuned simultaneously. The number of 

generations of optimization in genetic algorithm is 4000 for this case. The number of 

parameters tuned is 180 ((9 rules +9 weights + (9 for '6' + 3 for V)) x 6 joints). Figure 

6.20 represents the joint error generated in simultaneous tuning. Figure 6.21 shows the 

weighted rulebase, with weights written within brackets. Figure 6.22 shows the control 

surface. Figure 6.23 shows the Membership functions (MF) generated in simultaneous 

tuning, top row denoting joint 1 MF, next row for joint 2 MF, and so on. 

Figure 6.20 Joint error of the Fuzzy 131)+1 controller after Simultaneous tuning. 
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Figure 6.23 Membership functions (MF) after simultaneous tuning 

Table 6.2 provides the details of the number of parameters tuned, break up of 

individual joint errors, and the overall ISE after optimization by GA for stage wise and 

simultaneous tuning strategies. 
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A comparative study of two different parameter tuning methods of the Fuzzy 

Controller is carried out. In the first method Fuzzy controller tuning in three stages is 

carried out and in the second method simultaneous tuning of all the mentioned parameters 

is done. Table 6.2 provides a comparison of the two strategies mentioned in terms of the 

performance criterion. The performance used for evaluating the performance is according 

to the Equation (6.1) which is presented in the last column of the Table 6.2. It can be seen 

from the table that progressively tuning the fuzzy controller for the control of PUMA 560 

has lesser overall ISE than simultaneously tuning procedure. The total number of 

generations of optimization required to obtain the result in case of the progressive tuning is 

2000 generations (500 for rules + 1000 for weights + 500 for membership functions), 

Which is half of that for simultaneous tuning. The main problem with simultaneous tuning 

procedure is that the number of parameters in use (180 parameters). To find an optimum 

solution with 180 parameters is searching a space of dimension 180 to find one optimum 

solution. Due to this the solution gets stuck in a local minimum. On the other hand in the 

progressive tuning we take only one set of parameters at a time for tuning and then proceed 

with the next. The problem that could arise in this situation is that we might end up with a 

sub-optimal solution which tends to get oriented towards the solution of the first stage. 

This is clearly seen in control surface plots in the Figure 6.6, Figure 6.16 and Figure-6.18. 

6.2 Results for Approximations of systems 

The results of two approximation methods discussed, namely Bi-variate 

Polynomial approximation and Weighted Fuzzy approximation are presented here. 

Approximation of the reference Fuzzy PD+I controller of section 6.1.1.1 is performed 

using the input-output data points. Both the methods are compared at the end of this 

section. 

6.2.1 Bivariate polynomial approximation 

The result of bivariate polynomial approximation is presented here. The bi-variate 

polynomial chosen for the approximation of fuzzy control surface is given as (x+y+1)1°, 

with all the coefficients being replaced by variables that can get modified by genetic 

algorithm so that an optimal value of these coefficients can be found. Figure 6.24 shows 
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the surface plot of the bi-variate polynomials generated. Figure 6.25 shows the joint error 

by the both bivariate polynomial approximated controller and the reference Fuzzy PD+I 

controller. 

Joint 1 
	

Joint 2 
	

Joint 3 

Joint 4 
	

Joint 5 
	

Joint 6 

Figure 6.24 Surface plots of the bi-variate polynomials generated. 

The Bivariate polynomial equation and its coefficients are given in the Appendix 
Al. It is seen from Figure 6.25, that the Bi-variate polynomial of sufficiently high degree 

can approximate a fuzzy controller with certain approximation error. The approximation 

error can act both constructively and destructively. The aim of the section was to create a 

method which will extend to approximating a multivariable and a complex system. With 

this approximation technique any systems approximate model can be created. This 

particularly is useful when we need to make an approximate model of a real time system 

without going through rigorous mathematical procedures. 
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Figure 6.25 (a) Joint error by the bivariate polynomial approximated controller and (b) 

joint error of the reference Fuzzy PD+ I controller. 

6.2.2 Weighted-rule Fuzzy approximation 

The result of the weighted-rule fuzzy approximate system is presented here. The 

weighted fuzzy approximate system so found approximates fuzzy controller behavior in 

the region of operation for which the data points were collected. Figure 6.26 shows the 

Membership functions (MF) generated, top row denoting joint 1 MF, next row for .joint 2 

MF, and so on. Figure 6.27 shows the weighted rulebase, with weights written within 
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brackets. Figure 6.28 shows the control surface. Figure 6.29 shows the joint error by the 

both weighted rule fuzzy approximate controller and the reference Fuzzy PD+I controller 

Figure 6.26 Membership functions of the weighted-rule fuzzy approximate system 
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Figure 6.27 Rulebase of the weighted-rule fuzzy approximate system 
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error of the reference Fuzzy PD+I controller. 

Table 6.3 shows the tabulated results of the joint error ISEs of polynomial approximation 

and weighted-rule fuzzy approximation strategies. Table 6.4 shows the tabulated results of 

the approximation errors of polynomial approximation and weighted-rule fuzzy 

approximation strategies 

co 

-a 
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Table 6.3 Tabulated results of the joint errors of polynomial approximation and weighted- 
rule fuzzy approximation methods 

Type 
Joint I 

ISE 

Joint 2 

LSE 

Joint 3 

ISE 

Joint 4 

ISE 

Joint 5 

ISE 

Joint 6 

ISE 

Total 

ISE 

Base sys 0.000691 0.000361 0.00099 0.000624 1.88E-06 0.000276 2.94E-03 

Bivariate polynomial 

approximation 
5.20E-06 0.000694 0.001036 0.000449 0.000521 0.000717 3.42E-03 

Weighted-Rule fuzzy 

approximation 
0.000837 0.00015 0.000624 0.00062 3.00E-06 0.000208 2.44E-03 

Table 6.4 Tabulated results of the approximation errors of polynomial approximation and 
weighted-rule fuzzy approximation methods 

Type Joint I Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
Total 

ISE 

Bivariate polynomial 

approximation error (ISE) 
0.000751 0.000959 0.003183 0.000672 0.000537 0.001214 7.31E-03 

Weighted-Rule fuzzy 

approximation error (ISE) 
9.32E-05 5.33E-05 8.93E-05 1.78E-05 9.79E-07 9.49E-05 3.49E-04 

Comparing the Figure 6.25 and Figure 6.29 and from the data in Table 6.3 it is 
evident that the approximation by weighted fuzzy systems is a better option when 
compared to the bivariate-polynomial approximation technique. The approximation error 
from the Table 6.4 also verifies the same. Approximation by weighted fuzzy systems is 
convenient for a two input one output systems, but when the number of inputs is large then 
approximation by weighted fuzzy system will become tricky because of the explosion in 
the number of rules. In this case the approximation by an n-variate polynomial will be of 
use. 
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6.3. Results for Optimal!) minimum rulebase 

For any given input trajectory, all the rules in the rulebase are not fired and those 

fired may not be the best. This suggests that the rulebase can be minimized with only the 

best rule entries. The rule base so obtained is an optimally minimum rulehase which is 

achieved by tuning the rulebase in such a way that the number of rules is minimized and 

the rules in them are optimized simultaneously. The result of the section 5.3 is presented 

here. 

The Fuzzy PD controller design used in section 6.1.1.1 is used here, except that the 

gains are tuned optimally for the given input Sinusoidal signal with frequency of 2 rad/sec 

and amplitude of [1 2 3 4 5 61 rad, amplitude of 1 for joint 1, 2 for joint 2 and so on. The 

Fuzzy PD-1-1 controller after genetically gain tuning for the input shown in Figure 6.30 

input applied only for l sec, the reference system for this section is obtained. The Joint 

errors plot for this reference system is shown in Figure 6.31. 
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Figure 6.30 Input joint trajectories for genetic algorithm based optimally gain tuning of 

reference system used for optimally minimum rulebase study. 
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Figure 6.31 Joint errors of the reference system (for optimally minimum rulebase study) 

after genetic algorithm gain tuning. 

After the reference system for this section is obtained, generation of optimally 

minimum rulebase by genetic algorithm is carried out. Figure 6.32 shows the optimally 

minimum rulebase of the Fuzzy PD+I controller created by genetic algorithm. Figure 6.33 

shows its control surface, and Figure 6.34 shows the joint error plot for input signal shown 

in Figure 6.30. 
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Figure 6.34 Joint errors for optimally minimum rulebase. 
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After the generation of the optimally minimum rulebase, disturbance analysis is 

done on this system. The input is now extended till pi sec, and a disturbance as shown in 

Figure 6.35 is applied at 1 sec to the output joint angle. Figure 6.36 shows the joint error 

plot for this disturbance. The input and output joint trajectory for the optimally minimum 

system is shown in Figure 6.37. From the plot in Figure 6.36 and Figure 6.37 it is seen that 

this rulebase can handle small disturbances as well. 

0.8 	0.9 	1 	1.1 	1_2 	1_3 	1.4 	1 5 

Time (s) 

Figure 6.35 Plot of the disturbance signal given to the robot arm at 1 sec 

Figure 6.36 Joint errors for optimally minimum rulebase with disturbance 

signal given at 1 sec 
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Figure 6.37 Input and output joint trajectory for optimally minimum rulebase. 

6.4 Results for proposed Stochastic Algorithm 

The results of the proposed algorithm are presented here. To verify the functioning 

of the proposed algorithm, it is first tested on Rastrigin's function. Rastrigin's function is 

often used to test the algorithm, because has many local minima. Once the algorithm works 

on Rastrigin's function, it can be tested on other functions. For two independent variables, 

Rastrigin's function is defined as in Equation (6.2) 

Ras(x) = 20 + x,2  + x.; —10(cos 2;rx 1 + cos2nx 2  ) 	 (6.2) 

Rastrigin's function has many local minima but the function has just one global 

minimum [23], which occurs at the point [0, 0] in the x-y plane, where the value of the 

function is 0. At any local minimum other than [0, 0], the value of Rastrigin's function is 

greater than 0. The farther the local minimum is from the origin, the larger the value of the 

function is at that point. Figure 6.38 show the plot of Rastrigin's function. 
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Figure 6.38 Plot of the Rastrigin's Function 

Table 6.5 shows the tabulated results for Rastrigin's function by Genetic algorithm 

and proposed algorithm. The initial range of search space was [9, 101 

Table 6.5 Results for Rastrigin's function by Genetic algorithm and proposed algorithm 

Algorithm used xl x2 y 
Genetic Algorithm 0.0011 0.99877 0.99808 
Proposed algorithm 2.06E-07 -2.21E-07 1.81E-11 

Figure 6.39 shows the comparative plot for objective function value of Rastrigin's 

function by Genetic algorithm and proposed algorithm with the x axis denoting the 

objective function value of Rastrigin's function and y axis denoting the number of 

iteration. Since we are using genetic algorithm with population size of 20, one generation 

corresponds to 20 iterations. Genetic algorithm is run for 50 generations, in other words 

1000 iterations. 
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Figure 6.39 Comparative plot for objective function value of Rastrigin s function 

by Genetic algorithm and proposed algorithm 

With the encouraging Rastrigin's function result, the algorithm is used for tuning 

the gains of the reference Fuzzy PD+1 controller described in section 6.1.1.1. Now a 

Pseudo-random joint angle trajectory is used as input to robot arm as shown in Figure 6.40. 

Pseudo random joint trajectory generation is discussed in Appendix A.4. 
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Figure 6.40 Pseudo-random input joint angle trajectories 
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The objective function used is same as Equation (6.1). Figure 6.41 shows the 

convergence of both Genetic algorithm and the proposed algorithm. Figure 6.42 shows the 

joint error plot for gain tuning by Genetic algorithm and Figure 6.43 shows the joint error 

plot for the gain tuning by the proposed algorithm. 

Figure 6.41 Convergence plot of Genetic algorithm and the proposed algorithm. 
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Figure 6.42 Joint errors plot for gain tuning by Genetic algorithm 
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Figure 6.43 Joint errors plot for gain tuning by proposed algorithm 

The value of the performance index by the Equation (6.1) is 4.15E-03 for Genetic 

algorithm after 1000 iterations (50 generation) and 3.63E-03 for the propose algorithm 

after 1000 iterations 
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Chapter 7: Conclusions and Future Scope 

In this dissertation, Genetic fuzzy system for the joint control of PUMA560 is 

evaluated using various methodologies. As part of the preliminary studies Rule tuning, 

Rule-weight tuning and Membership function tuning were successfully carried out using 

Genetic algorithm and it has been established that Rule-weight tuning gives a better 

performance index when compared with the other two. Later two stage tuning method of 

Rule followed by Rule-weight tuning is evaluated and it was seen that there is performance 

improvement. Next, three stage tuning method consisting of two stage tuning followed by 

Membership function tuning is evaluated and it was established that there is still better 

performance improvement. Simultaneously tuning of all these parameters were carried out 

and based on the results, it was found that its performance is inferior to the three stage 

tuning method. 

Approximation of the fuzzy function is carried out from its input output data. Of 

the two methods used for approximation, namely Bivariate polynomial approximation and 

Weighted-Rule Fuzzy approximation, The Weighted-Rule Fuzzy approximation is better. 

The bivariate Polynomial approximation can be easily extendable to multi-variate scenario, 

but will have a large approximation error on the other hand extending Weighted-Rule 

Fuzzy approximation for multiple inputs can get complicated. 

Optimally minimum rule base was generated successfully by genetic algorithm and 

employed for control of joint trajectory of PUMA560. It was seen that this rule base can 

successfully handle small disturbances as well. 

Evaluation of the proposed stochastic algorithm based on the empirical and 

graphical data are encouraging. It proves its worth by being able to converge at a faster rate 

when compared to Genetic algorithm for the Rastrigin's function and gain tuning of Fuzzy 

PD+I controller of PUMA560. 

As part of future work, improvement of the simultaneous tuning method can be 

undertaken by studying the effects of genetic fitness, scaling and other option on it. The 

Weighted-Rule Fuzzy approximation can still be improved by tuning other parameters 

along with the weights. Improving the proposed algorithm can be a worthy undertaking. 
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Appendix Ai: PUMA560 Dynamic parameters 

For the dynamic equation M(q)q+C(q,4)q + g(q) = r , the values of the mass 

inertia matrix, Coriolis matrix, gravitational matrix and the actuator torque limitations of 

PUMA560 are given in this section. 

Mass inertia matrix 

m 1 1 = 2.57 + (1.38*c2*c2) + (0.3*s23*s23) + (0.744*c2*s23); 

m12 = (0.69*s2) + (-0.134*c23) + (0.0238*c2); 

m13 = (-0.134*c23) + (-0.00397*s23); 

m14 = 0; 

m15 = 0; 

m16 = 0; 

m21 =m12; 

m22 = 6.79 + (0.744*s3); 

m23 = 0.333 + (0.372*s3) + (-0.011*c3); 

m24 = 0; 

m25 = 0; 

m26 = 0; 

m31 = m13; 

m32 = m23; 

m33 = 1.16, 

m34 = -0.00125*s4*s5; 

m35 = 0.00125*c4*c5; 

m36 = 0; 

m41 = m14; 

m42 = m24; 

m43 = in34; 
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m44 = 0.2; 

m45 = 0; 

m46 = 0; 

m51 = m15; 

m52 = m25; 

m53 = m35; 

m54 = m45; 

m55 = 0.18; 

m56 = 0; 

m61 =m16; 

m62 = m26; 

m63 = m36; 

m64 = m46; 

m65 = m56; 

m66 = 0.19; 

Coriolis matrix 

corll = (-1.38*cl*s1* qdl) + 0.5* qd2*(0.6*s23*c23 - 0.744*s2*s23 +0.744*c2*c23) 

+0.5* qd3*(0.6*s23*c23 - 0.744*s2*s23 +0.744*c2*c23); 

cor12 = 0.5* qd1*(0.6*s23*c23 - 0.744*s2*s23+ 0.744*c2*c23) + 0.5* qd2*(1.38*c2 + 

0.268*s23- 0.0476*s2) + 0.5* qd3*(0.268*s23 - 0.00397*c23); 

cor13 = 0.5* qd1*(0.6*s23*c23 + 0.744*c2*c23) + 0.5* qd2*(0.268*s23 - 0.00397*c23) + 

0.5* qd3*(0.268*s23 - 0.00794*c23); 

cor21 = 0.5* qd1*(-0.6*s23*c23 + 0.744*s2*s23 -0.744*c2*c23) + 0.199* qd3*c23; 
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cor22 = 0.372* qd3*c3; 

cor23 ----- 0.00199* qdl*c23 + 0.372* qd2*c3+0.5* qd3*(0.744*c3 + 0.022*s3); 

cor31 = 0.5* qd1*(-0.6*s23*c33 +0.744*s2*s23 - 0.744*c2*c23) + 0.00199* qd3*c33; 

cor32 = 0.372* qd3*c3; 

cor33 = 0.00199* qdl*c23 + 0.372* qd2*c3+ 0.5* qd3*(0.744*c3 + 0.022*s3); 

All other Coriolis matrix elements are zeros. 

Gravity matrix 

gl = 0; 

g6 = 0; 

g2 = -37.196*c2-8.445*s23+1.023*s2; 

g3 = -8.445*s23 + 1.023*c23 + 0.248*c23*c45+ c5*s23; 

g4 = 0.028*s23*s4*s5; 

g5 = -0.028*(c23*s5 + s23*c4*c5); 

Actuator torque limitations 

-97.6Nm 	97.6Nm 

-186.4Nm r2  186.4Nm 

-89.4Nm < r3  89.4Nm 

-24.2Nm r4  5 24.2Nm 

-20.1Nm r4  20.1Nm 

-21.3Nm 	21.3Nm 
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Appendix A.2: Default Genetic Algorithm settings 

Genetic Algorithm settings used for simulation are as follows. 

Population size 	 20 

Creation function 	 uniform 

Scaling function 	 Rank 

Selection function 	 stochastic uniform 

Elite count 	 2 

Crossover fraction 	 0.8 

Mutation function 	 Gaussian 

Crossover 	 scattered 

Migration direction 	 forward 

Migration fraction 	 0.2 

Migration interval 	 20 



Appendix A.3: Generated Bivariate Polynomial coefficients 

The Bivariate polynomial equation used in this thesis is given below, where 'x' 

corresponds to the error signal and 'y' corresponding to differential of error signal of the 

input signal. 'z' is the output of the bivariate polynomial equation. 

z=k01 +k02*x +k03*y +k04*x^2 +k05*x^3 +k06*x^4 +k07*x^5 +k08*x^6 +k09*x^7 

+k10*x"8 +kl 1*x^9 +k12*x^10 +k13*x^9*y +k14*y^2 +k15*x"8*y^2 +k16*x^8*y 

±k17*xA7*yA3 +k19*xA7*yn2 +k20*xA7*y +k21*x^6*y^4 +k22*x^6*y^3 +k23*x^6*y^2 

+k24*x^6*y +k25 *xA5*yA5 +k26*yA3 +k27*yA4 +k28*yA5 +k29*yA6 +k30*yA7 

+k31*y^8 +k32*y^9 +k33*x^5*y^4 +k34*x^5*y^3 +k35*x^5*y^2 +k36*x^5*y 

+k37*x^4*y^6 +k38*x^4*y^5 +k39*x^4*y^4 +k40*x^4*y^3 +k41*x^4*y^2 +k42*x^4*y 

+k43*x^3*y^7 +k44*x^3*y^6 +k45*x^3*y^5 +k46*x^3*y^4 +k47*x^3*y^3 

+k48*x^3*y^2 +k49*x^3*y +k50*x^2*y^8 +k51*x^2*y^7 +k52*x^2*y^6 +k53*x^2*y^5 

+k54*x^2*y^4 +k55*x^2*y^3 +k56*xA2*y^2 +k57*x^2*y +k58*x*y^9 +k59*x*y^8 

+k60*x*y^7 +k61*x*y^6 +k62*x*y^5 +k63*x*y^4 +k64*x*y^3 +k65*x*y^2 +k66*x*y 

+k67*y^10; 

The coefficients corresponding to the individual joints are given below. 

Joint 1: 

[k01, k02, k03... k67] = 

[ 0.010273, 8.7365, 0.41901, -2.85871, 4.241, 1.067, 7.0696, 0.59125, -12.315, 3.6649, - 

2.2925, -1.8594, 6.0014, 1.9456, -2.1864, 0.78301, -0.87877, 3.2321, -4.7972, 2.625, 

0.58673, -6.5208, 6.5712, 5.5778, -2.3628, -3.3356, -0.58435, 2.889, 3.6344, 3.3768, 

10.866, -2.2693, -1.8696, -0.90739, 0.9869, 6.7456, -4.887, 11.52, 1.5316, -5.7521, 

0:1186, -2.5928, -1.5918, 3.5707, 7.0395, 4.418, -1.4488, -13.936, 0.97954, -1.3975, 

6.1484, -0.41037, 1.5403, -3.019, -0.67027, 11.886, 3.2339, -0.94888, -7.207, -11.424, 

2.0959, 3.9007, -0.35742, 0.99464, 6.6465, -2.7345, -1.4256] 

- 96 - 



Joint 2: 

[k01, k02, k03... k67] = 

[0.12649, 2.6033, -0.262, -3.5966, 0.36729, -2.2843, 0.56984, -1.8815, 2.7008, -1.6964, 

1.4381, 2.9295, -2.5835, -0.52444, -4.2097, 0.62167, -0.81735, -3.2166, -0.45181, 

0.62772, 2.9052, 2.8338, 4.2895, 0.95544, -2.332, 1.7665, 1.5009, -2.1396, 0.036002, -

0.11559, 0.068517, -1.0346, -3.3376, 1.6122, -0.71706, -2.5954, 2.8828, 0.10273, -

0.99928, -1.7763, 2.2104, 0.43455, -2.6442, 1.7593, -2.1607, 1.5638, 4.4682, 3.302, 

3.2059, -0.31763, 3.962, 1.6336, -5.2005, 0.58978, 2.9963, -6.1126, 3.0573, -0.57701, -

5.1248, 0.025224, -3.1621, -1.3979, -0.44632, 0.011013, -0.93754, -2.0152, -0.23502] 

Joint 3: 

[k01, k02, k03... k67] = 

[0.024088, 1.6854, 0.32903, -0.52849, 3.3456, 2.1944, 0.1832, -3.7514, -3.4691, 3.3083, 

2.27, 5.7663, -5.765, 1.623, -5.7849, -3.8574, 7.7911, -0.51643, -1.5596, 0.34314, 1.804, -

5.9742, -0.34928, -7.8166, 1.0588, 0.71373, -5.2484, 0.38928, -3.104, 7.1072, -5.6535, 

0.024452, -6.7972, -0.46925, -3.0937, -1.3376, 1.3929, -4.7838, -4.4375, -2.4539, -3.7927, 
11.327, 10.294, 2.6641, -7.6788, 1.3956, 4.7812, 3.0276, -7.369, -12.96, 3.1703, -0.33661, 

3.5123, -7.5074, 3.1822, -3.5109, 0.82953, 3.336, -0.2182, -0.43886, 0.45385, -1.6026, 

8.6831, -2.8549, 1.5969, -2.24, 2.018] 

Joint 4: 

[k01, k02, k03... k67] 

[0.054477, 0.43617, 1.1639, 0.073118, -4.1871, 1.2638, 2.5211, -0.57512, 0.054364, -

0.67051, -0.14753, -0.40329, -4.1555, -0.50988, -1.3793, 3.9382, 0.24933, -1.428, 

0.17447, -0.093334, 3.5392, -0.34272, 2.0568, 0.317, 1.6275, 1.8276, -0.033226, -0.63566, 

-1.3519, -0.47436, -3.3963, -1.4397, -1.7317, 1.7834, -3.5767, -3.8629, 6.5307, 3.9697, 

1.3647, 1.3671, 4.842, 1.4482, -0.09259, -2.9185, 0.64998, 1.0115, -0.73422, 0.33906, 

1.0492, -1.1322, -1.6762, 3.3944, 4.0375, -0.25804, 0.97167, 3.8698, -0.38227, -0.73333, 
1.527, 0.22165, 1.88, 0.38171, -3.1831, 1.5559, 0.3509, 0.54328, -0.68954] 
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Joint 5: 

[k01, k02, k03... k67] = 

[0.0062423, 3.4804, -0.50602, 9.8647, -8.6976, 1.8486, 0.66285, 9.4293, 6.4105, -0.35998, 

-1.2956, -4.8808, -2.8242, 0.85335, 1.6532, -6.6514, 0.47995, 11.201, -6.8947, 6.4095, 

3.554, 12.809, 6.3687, -18.201, -12.349, 8.3508, -9.299, 11.978, 3.7647, 0.27453, -4.367, -

19.379, -1.8882, -8.0287, -4.9577, -2.711, 11.632, -0.37066, -1.7626, 4.5, -7.7601, 21.454, 
4.775, 4.6865, 8.24, 4.1203, 16.918, -0.61899, 0.73133, -0.77481, -1.3856, -6.8247, -

0.86129, -7.4409, 6.4234, 6.7247, 22.572, -3.4313, -6.9884, 4.4085, 4.4158, 4.7642, -

0.41725, -10.915, -3.1059, 4.3855, -1.0823] 

Joint 6: 

[k01, k02, k03... k67] = 
[0.018756, 6.5793, 0.81454, -6.6895, 2.056, 4.5492, -1.9612, -6.6103, -2.72, 1.3182, -

2.4076, 1.2005, -8.2849, -0.1919, -5.6496, -3.6659, 2.4988, 2.2695, 0.64721, 1.189, 
11.908, -9.0725, 8.0553, -7.1208, -4.2526, 2.1453, -4.7682, -3.3904, 2.8624, -8.3699, 

0.95776, 2.9075, -4.5973, 9.0179, -0.32626, -8.3611, 12.642, 2.7972, -1.9189, -10.353, 
3.9204, 4.4522, -0.82404, 6.1365, -1.9169, -2.2623, 9.5643, 0.43796, 3.0672, 3.333, 

7.8186, -0.026312, 7.9934, 4.1317, -11.759, 5.7567, 6.3169, 6.9623, 10.968, -2.4448, -

1.9186, 5.3805, -5.1223, -2.7587, -3.257, -8.4084, 2.9673] 
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Appendix A.4 Pseudo-random joint angle generation 

A sequence of Pseudo random numbers is passed through a system with transfer 

function given chosen by trial and error. Transfer function chosen is  2 
100 	

. When 
s +s+100 

the pseudo random numbers are passed through this system a continuous pseudo-random 

signal is obtained which is given to the joint angles. 

Time intervals at which the numbers in the sequence appears are 

[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1], that is at time = 0 the first element in the sequence 

appears, at time = 0.1 the second element and so on. 

Joint I Pseudo-random sequence: [0.1 0.1 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -0.2 0] 

Joint 2 Pseudo-random sequence: [0 0.1 0.3 0.2 0.5 0.4 0.3 0.2 0.1.0 0] 

Joint 3 Pseudo-random sequence: [-0.3 0.2 0.4 0.3 0.4 0.6 0.8 0.2 0.4 -0.2 0] 

Joint 4 Pseudo-random sequence: [-0.2 -0.1 0.3 0.2 0.4 0.1 0.4 0.3 0.5 0.08 0] 

Joint 5 Pseudo-random sequence: [0.2 -0.1 0.4 0.2 -0.4 -0.2 0.1 -0.3 -0.5 -0.08 0] 

Joint 6 Pseudo-random sequence: [0.3 -0.5 0.4 -0.2 0.4 0.6 0.5 0.3 0.5 0.2 0] 
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