
GENETIC FUZZY CONTROL OF PUMA 560
ROBOT MANIPULATOR

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

ELECTRONICS AND COMMUNICATION ENGINEERING
(With Specialization in Control and Guidance)

By
MONA SUBRAMAINIAM 	A

ostfTRAL
C•602044V j9

z'ACCNo 	
Date.0 // U

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2010

CANDIDATE'S DECLARATION

I hereby declare that the work, which is presented in this dissertation report entitled,

"Genetic Fuzzy control of PUMA 560 Robot Manipulator" towards the partial

fulfillment of the requirements for the award of the degree of Master of Technology

with specialization in Control and Guidance, submitted in the Department of

Electronics and Computer Engineering, Indian Institute of Technology Roorkee,

Roorkee (India) is an authentic record of my own work carried out during the period

from July 2009 to June 2010, under the guidance of Dr. M. J. Nigam, Professor,

Department of Electronics and Computer Engineering, Indian Institute of

Technology Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other

Degree or Diploma.

Date: 2 g! 0 612010
Place: Roorkee 	 MONA SUBRAMANIAM A

CERTIFICATE
This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Dr. M. J. NIGAM,

Professor, E&C Department,

IIT Roorkee,

Roorkee —247 667 (India).

Date: 26 . o6 2®I D
Place: Roorkee

ACKNOWLEDGEMENTS

I would like to extend gratitude and indebtedness to my guide and supervisor,

Dr. M. J. NIGAM for his guidance, attention and constant encouragement that inspired

me throughout my dissertation work.

I would also like to thank the Lab staff of Control Systems Lab, Department of

Electronics and Communication Engineering, IIT Roorkee for providing necessary

facilities.

I gratefully acknowledge my sincere thanks to my family members for their

inspirational impetus and moral support during course of this work.

I am greatly indebted to all my friends, who have graciously applied themselves

to the task of helping me with ample morale support and valuable suggestions. Finally,

I would like to extend my gratitude to all those persons who directly or indirectly

contributed towards this work.

MONA SUBRAMANIAM A

ii

Abstract

Designing of control systems for a robot manipulator has many practical and

theoretical challenges due to the complexities of the robot dynamics involved while

achieving high precision- high velocity trajectory tracking in varying load conditions.

Conventional robot control methods require highly accurate mathematical modeling,

analysis and synthesis. Fuzzy Logic Controllers are a class of non-linear controllers

that make use of human expert knowledge. Genetic algorithm is a class of

evolutionary algorithms that can be applied to any problem which can be formulated as

function optimization problem and it provides a way of optimizing fuzzy controller

design.

PUMA 560 is a six Degree of Freedom robot arm that has to be controlled. A

Fuzzy PD+I controller is used for the control of this robot arm. In this dissertation

Genetic Algorithm is used to optimize, approximate and minimize the Fuzzy Logic

Controllers. An algorithm is proposed which has a faster convergence when compared

to Genetic Algorithm. Simulations and computations are carried out using MATLAB

version 7.0.1.24704(R14).

Tuning of fuzzy parameters using genetic algorithm is carried out on reference

Fuzzy PD+I controller. The parameters tuned are Rules, Rule-weights and Membership

functions. As a part of the initial study, the parameters mentioned are tuned

independently and it is seen that there is improvement in the performance. With this

preliminary study, progressive tuning of parameters in three stages is carried out. At the

end of second stage, tuning the rules in the rule base and then assigning weights to

individual rule antecedent, considerable effect on the performance of the system is

observed. Proceeding further with the third stage, membership function tuning is

performed. There is an improvement in the performance from the second stage. In this

study it is also observed that progressive tuning performs better than simultaneous

tuning of parameters.

One of the objectives in machine learning is to learn any system from data.

Approximation of system from input-output data presents a way to learn a system. With

the input and output data points collected from the reference Fuzzy PD controllers of

individual joints, bi-variate polynomial approximation function and Weighted-rule

Fuzzy approximation function is generated through interpolation process using genetic

algorithm. The results of above two approximation functions are compared. The results

obtained with that of a weighted Fuzzy approximation function is found to be superior

with respect to the other.

For any given input trajectory, all the rules in the rulebase are not fired and

those fired may not be the best. This suggests that the rulebase can be minimized with

only the best rule entries. The rule base so obtained is an optimally minimum rulebase

which is achieved by tuning the rulebase in such a way that the number of rules is

minimized and the rules in them are optimized simultaneously. A small disturbance is

given to the robot arm and the trajectory tracking is evaluated.

One of the main drawbacks of Genetic algorithm is its slow convergence rate. A

simple stochastic optimization algorithm is proposed which has a good convergence

rate. This algorithm is used for tuning the gains of the Fuzzy PD+I controller. The

convergence is compared with that of Genetic algorithm and results of the proposed

algorithm are quite encouraging. All the results are presented in Chapter 6.

iv

Contents

Candidate's Declaration and Certificate

Acknowledgements 	 ii

Abstract 	 iii

Contents

List of Figures 	 vii

List of Tables

Chapter 1. Introduction 	 01

1.1 Problem statement 	 03

1.2 Literature review 	 03

1.3 Motivation 	 04

1.4 Organization of the Thesis 	 05

Chapter 2. Robot Manipulator control 	 07

2.1 Robot manipulator 	 07

2.2 Robot manipulator control problem 	 09

2.3 Dynamic Model 	 11

2.4 Manipulator control schemes 	 13

2.5 PUMA 560 	 15

Chapter 3. Fuzzy Logic Systems 	 16

3.1 Fuzzy logic 	 16

3.2 Fuzzy controllers 	 18

3.3 Fuzzy PD+I controller 	 20

3.4 Weighted-rule fuzzy control systems 	 23

Chapter 4. Genetic algorithm and Genetic Fuzzy Systems 	 25

4.1 Genetic Algorithm 	 25

4.2 Genetic Fuzzy Systems 	 29

Chapter 5. Implementations 	 34

5.1 Parameter tuning 	 34

5.1.1 Preliminary tuning 	 34

5.1.1.1 Rule tuning 	 35

5.1.1.2 Rule-Weight tuning 	 35

5.1.1.3 Membership function tuning 	 35

5.1.2 Two stage tuning 	 36

5.1.3 Three stage tuning 	 37

5.1.4 Simultaneous tuning 	 37

5.2 Approximations of a system 	 38

5.2.1 Bi-Variate Polynomial Approximation 	 39

5.2.2 Weighted-Rule Fuzzy Approximation 	 41

5.3 Optimally Minimum Rulebase 	 42

5.4 A Novel Stochastic Algorithm for optimization 	 43

Chapter 6. Simulation results and discussions 	 47

6.1 Results for parameter tuning 	 47

6.1.1 Preliminary tuning 	 48

6.1.1.1 Base system 	 48

6.1.1.2 Rule tuning 	 51

6.1.1.3 Rule weight tuning 	 53

6.1.1.4 Membership function tuning 	 55

6.1.2 Two stage tuning 	 58

6.1.3 Three stage tuning 	 61

6.1.4 Simultaneous tuning 	 63

6.2 Results for Approximations of systems 	 68

6.2.1 Bivariate polynomial approximation 	 68

6.2.2 Weighted-rule Fuzzy approximation 	 70

6.3. Results for Optimally minimum rulebase 	 76

6.4 Results for proposed Stochastic Algorithm 	 81

Chapter 7. Conclusions and Future Scope 	 86

References 	 87

Research and publications by the author 	 91

Appendix A.1: PUMA560 Dynamic parameters 	 92

Appendix A.2: Default Genetic Algorithm settings 	 95

Appendix A.3: Generated Bivariate Polynomial coefficients 	 96

Appendix A.4 Pseudo-random joint angle generation 	 99

vi

List of Figures

Figure 2.1 Classification of robots 	 08

Figure 2.2 Input- output representation of a robot 	 I I

Figure 2.3 General structure of Joint space control 	 13

Figure 2.4 General structure of operational space control 	 14

Figure 2.5 Structure of PUMA 560 	 15

Figure 3.1 Fuzzy controller architecture 	 19

Figure 3.2 Structure of the Fuzzy PD+I controller 	 21

Figure 3.3 Block diagram of the Fuzzy PD+I controlled PUMA560 robot model 23

Figure 4.1 Pseudo-code for structure of a Basic GA 	 29
Figure 4.2 Genetic Fuzzy System 	 31

Figure 4.3 Variation in the mean of a Gaussian MF 	 32

Figure 4.4 Variation in the spread of a Gaussian MF 	 33

Figure 5.1 Structure of the approximate of Fuzzy PD+I controller 	 39

Figure 5.2 Symmetric rulebase used in the Weighted-Rule Fuzzy Approximation 41

Figure 5.3 Flow chart of the proposed stochastic optimization algorithm 	46

Figure 6.1 Structure of the Fuzzy PD+I controller used in base system 	48

Figure 6.2 (a) The surface view, (b) membership function and (c) rulebase of the

reference Fuzzy PD controller used 	 49

Figure 6.3 Input trajectory signal given to the individual joints of Puma 560 	50

Figure 6.4 Joint error generated by the given input trajectory for reference

Fuzzy PD+I controller 	 50

Figure 6.5 Rule base after Rule tuning using Genetic Algorithm 	 51

Figure 6.6 Control surfaces of the rulebase after rule tuning 	 52

Figure 6.7 Joint error generated by the robot arm with Rule-tuned

Fuzzy PD+I controller 	 52

Figure 6.8 Weight tuned rulebase, with weights written within brackets 	53

Figure 6.9 Control surface of weight tuned rulebase 	 54

Figure 6.10 Joint error generated by the robot arm with Rule-weight tuned

Fuzzy PD+I controller 	 54

Figure 6.11 Membership functions of the Fuzzy PD+I controller after MF tuning 55

vii

Figure 6.12 control surfaces of the Fuzzy PD+I controller after MF tuning 	56
Figure 6.13 Joint error generated by the robot arm with Membership

functions tuned Fuzzy PD+I controller 	 56

Figure-6.I4 Joint error generated by the robot arm after stage II tuning 	58

Figure 6.15 Weighted-rule rulebase after Stage II tuning 	 59

Figure 6.16 Weighted-rule control surface after Stage II tuning 	 60
Figure-6.17 Membership functions(MF) of the Fuzzy PD+I

controller after Stage III 	 61

Figure-6.18 Control surface of the Fuzzy PD+I controller after Stage III 	62

Figure-6.19 Joint error plot of the Fuzzy PD+I controller after Stage III 	62

Figure 6.20 Joint error of the Fuzzy PD+I controller after Simultaneous tuning 	63

Figure 6.21 Weighted-rule rulebase after simultaneous tuning 	 64

Figure 6.22 Control surfaces of the Fuzzy PD+I controller after

simultaneous tuning 	 65

Figure 6.23 Membership functions (MF) after simultaneous tuning 	 66

Figure 6.24 Surface plots of the bi-variate polynomials generated 	 69

Figure 6.25 (a) Joint error by the bivariate polynomial approximated

controller and (b) joint error of the reference Fuzzy PD+I controller 70

Figure 6.26 Membership functions of the weighted-rule fuzzy

approximate system 	 71

Figure 6.27 Rulebase of the weighted-rule fuzzy approximate system 	 72

Figure 6.28 Control surface of the weighted-rule fuzzy approximate system 	73

Figure 6.29 (a) Joint error by the weighted-rule fuzzy approximate system

and (b) joint error of the reference Fuzzy PD+I controller. 	74

Figure 6.30 Input joint trajectories for genetic algorithm based optimally gain

tuning of reference system used for optimally minimum rulebase

study 	 76

Figure 6.31 Joint errors of the reference system (for optimally minimum rulebase

study) after genetic algorithm gain tuning 	 77

Figure 6.32 Optimally minimum rulebase created by genetic algorithm 	78

Figure 6.33 Control surface of optimally minimum rulebase 	 79

Figure 6.34 Joint errors for optimally minimum rulebase 	 79

Figure 6.35 Plot of the disturbance signal given to the robot arm at 1 sec 	80

viii

Figure 6.36 Joint errors for optimally minimum rulebase with disturbance

signal given at 1 sec 	 80

Figure 6.37 Input and output joint trajectory for optimally minimum rulebase 	81

Figure 6.38 Plot of the Rastrigin's Function 	 82

Figure 6.39 Comparative plot for objective function value of Rastrigin's

function by Genetic algorithm and proposed algorithm 	 83

Figure 6.40 Pseudo-random input joint angle trajectories 	 83

Figure 6.41 Convergence plot of Genetic algorithm and the proposed algorithm 84

Figure 6.42 Joint errors plot for gain tuning by Genetic algorithm 	 84

Figure 6.43 Joint errors plot for gain tuning by proposed algorithm 	 85

ix

List of Tables

Table 6.1 Tabulated results of the preliminary tuning 	 57

Table 6.2 Tabulated results of the stage wise and simultaneous tuning 	67

Table 6.3 Tabulated results of the joint errors of polynomial approximation and

weighted-rule fuzzy approximation methods 	 75

Table 6.4 Tabulated results of the approximation errors of polynomial

approximation and weighted-rule fuzzy approximation methods 	75

Table 6.5 Results for Rastrigin's function by Genetic algorithm and

proposed algorithm 	 82

Chapter 1: Introduction

Designing of control systems for a robot manipulator has many practical and

theoretical challenges due to the complexities of the robot dynamics involved while

achieving high precision- high velocity trajectory tracking in varying load conditions.

Conventional robot control methods require highly accurate mathematical modeling,

analysis and synthesis. These methods are not suitable for controlling robots in

unstructured environment, which is a major challenge. There are always uncertainties

present in the dynamics, unpredictability in environmental characteristics and also due to

sensor impressions.

Fuzzy set techniques are a powerful tool for solving demanding real world

problems with uncertain and unpredictable environment. Fuzzy Logic Controllers are a

class of non-linear controllers that make use of human expert knowledge and an

implicit imprecision to apply control to such systems. The construction of these

controllers can be quick and effective in the presence of expert knowledge; conversely,

in the absence of such knowledge, their design can be slow and based on trial-and-

error rather than a guided approach.

When the traditional PID controller has to be replaced .by a fuzzy equivalent,

generally Fuzzy PD+I controllers are used as it has the following advantages of being

Simple , having Less overshoot, Removes steady state error, and smoothens control signal.

A three-input and one-output fuzzy system is too complex to construct the PID controller.

It is very difficult to decide the fuzzy control rules intuitively. Fuzzy PD + I control system

uses two-input fuzzy system for the proportional and derivative gain and linear control for

the integral gain. Two-input fuzzy controller uses "error" and "change in error" as the

input variables. In this structure, the proportional and derivative gains vary with the output

of the system under control. The integral gain is kept constant. The proportional signal and

the derivative signal are dominant to decide the transient response. But the integral signal

whose major roll is to eliminate the steady state error has fixed gain. This is due to

difficulty of designing the rules for the integral action. In fact, these methods do not

require the knowledge of the dynamic model of the controlled system. This feature

becomes of major importance when dealing with complex non-linear systems. The

1

dynamic modeling of robot arms shows a dependency on their mechanical parameters,

subject to lifetime modifications (friction factors affected by the abuse of joints), and on

their dynamical parameters that vary with the performed task (centers of gravity of the

links affected by tool's replacements). These considerations also give advantage to fuzzy

control methods on other non-linear method.

Initially when the fuzzy controller is designed by an expert, it is done heuristically

based on his experience. Most of the times the controller designed will have certain

amount of error present in it since different experts will have varying experience, thereby

resulting in a non optimum performance by the controller. In order to get better results,

tuning of the Fuzzy controller is required. Fuzzy controllers can be tuned by various

strategies, like changing the scaling factor, Modifying the support and spread of

membership functions, modifying the rules of the rulebase and changing the type of a

membership function itself. In addition to these the Rule-weights can also be changed to

perform a local tuning of linguistic rules, this enables the linguistic fuzzy models to cope

with inefficient and/or redundant rules and thereby enhances the robustness, flexibility and

system modeling capability. If a rule weight is applied to the consequent part of the rule, it

modifies the size of the rule's output value. By assigning a rule weight to each of the fuzzy

rules, complexity is increased while its accuracy is improved. This suggests a tradeoff

relation between the accuracy and complexity.

Genetic algorithm is a class of evolutionary algorithms; they can be applied to any

problems that can be formulated as function optimization problems. Genetic Algorithms

provide a way of overcoming the shortcoming with fuzzy controller design. These

algorithms use some of the concepts of evolutionary theory, and provide an

effective way of searching a large and complex solution space to give close to

optimal solutions in much faster times than random trial-and-error.

A PUMA 560 robot arm is the system that needs to be controlled. It is a 6 Degree

of Freedom robot. A Fuzzy PD+I controller is used for control of the robot arm. In this

report Genetic Algorithm is used to optimize, minimize and approximate. Fuzzy Logic

Controllers. An algorithm is proposed in the end that will have a faster convergence when

compared to Genetic Algorithm.

1.1 Problem statement

In light of the discussion, the prime objectives of the research work will focus on

using genetic algorithm in combination with fuzzy controllers for control of PUMA 560

robot arm. The objectives of the thesis can be summarized as follows:

1 — Study the various Tuning strategies of weighted fuzzy system by genetic algorithm and

provide a comparison among them. The various tuning strategies are listed below

1. Fuzzy rules tuning

2. Fuzzy weights tuning

3. Fuzzy membership functions tuning

4. Two stage tuning (rules followed by weights)

5. Three stage tuning (rules followed by weights and then membership function)

6. Simultaneous tuning of rules, weights and membership functions.

2 — Study Approximation of the controller by

1. Bivariate polynomial approximation

2. Weighted fuzzy system approximation

And provide a comparative study of both the cases.

3 — Generate an optimally minimum rule fuzzy control system using genetic algorithm for

the PUMA560 arm

4 — Develop a novel stochastic algorithm for optimization which has a faster convergence

compared to genetic algorithm.

1.2 Literature review

One of the main contenders of the control field which has benefited from the study

of the computational intelligence has been robotic control. The main reason for this is that

non linear and coupled complexities are present in the dynamics of robots [1]. And

computational intelligence provides an efficient way to combat with this. Study of

hybridization of the techniques in computational intelligence is done in [2]. The Fuzzy

PD+I controllers are the most general use controller as it has the following advantages of

being Simple , having Less overshoot, Removes steady state error, smoothens control

3

signal [3]. The most popular technique in evolutionary computation research has been the

genetic algorithm. Evolutionary algorithms can be applied to any problems that can be

formulated as function optimization problems [4]. The design of fuzzy PD+I control was

discussed bong et all [5]. The study of fuzzy PD+I controller for PUMA560 shows better

results when compared with normal PID controller [6]. By tuning the gains of the Fuzzy

PD+I controller using genetic algorithm, Simulated Annealing and Generalized Pattern

Search Techniques better results are obtained [7]. Gain tuning of the Fuzzy PD+I

controller using heuristic search is carried out in [8].

The various structures of Genetic Fuzzy systems were discussed in [9] [10]. Fuzzy

controllers can be tuned by various strategies, like changing the scaling factor, Modifying

the support and spread of membership functions, modifying the rules of the rulebase and

changing the type of a membership function itself. In addition to these the Rule-weights

can also be changed to perform a local tuning of linguistic rules, this enables the linguistic

fuzzy models to cope with inefficient and/or redundant rules and thereby enhances the

robustness, flexibility and system modeling capability [11]. By assigning a rule weight to

each of the fuzzy rules, complexity is increased while its accuracy is improved. This

suggests a tradeoff relation between the accuracy and complexity [12]. If a rule weight is

applied to the consequent part of the rule, it modifies the size of the rule's output value

[13].
The interpolation and approximation theory are quite mature fields in by

themselves which has received and continues receiving not deep but constant attention

[14]. Various methods of polynomial interpolation give efficient results but are

mathematically quite rigorous and difficult for a multi-variate case [15]. The methodology

of optimally minimizing the rule base was examined in [16], where it was used it for

control of the cart pole problem.

1.3 Motivation

Fascinated by the abilities of genetic algorithm, a stochastic optimization method,

the various operations on fuzzy control design is carried out. Studying the tuning of

individual parameters should give a fair idea about fuzzy systems. Performing the tuning

4

of the rules of fuzzy controller initially and then fine tuning its weight for fuzzy PD+I

control of PUMA560 robot will suggest how the system performance varies. It is expected

that the tuning of rules will produce considerable change in the control of the fuzzy

controller, but changing the rule weight results will result in finer details getting adjusted.

In order to make a comparison between stage-wise tuning and simultaneous tuning,

the parameters for weighted-rule fuzzy controller are tuned using genetic algorithm.

Parameters like rules, membership functions and rule-weights play an important role in any

fuzzy controller, and optimizing them is a necessary task, since these parameters are

always built by designers with trial and error along with their experience or experiments.

By stage-wise, it is meant that one set of parameters are taken and tuned at a time. And in

the simultaneous tuning, all the parameters considered are tuned in one go. This study is

done on Fuzzy PD+I controller of Puma 560 robot. After comparison an inference is drawn

as to which procedure is better than the other with reference to ISE criterion.

Genetic algorithms can solve any problem that can be formulated as an

optimization problem; with this in mind it is employed to determine the coefficients of

polynomial that approximates a system without getting into rigorous mathematical

analysis. It is also employed for creating a Weighted-Rule fuzzy approximate model and a

comparison of both will throw some light on their individual abilities.

Rule base optimization and minimization task an important facet in the study of

genetic fuzzy systems. This method creates only the best possible rules in the rule base and

eliminates the unnecessary ones, with this approach a lot of computation and memory

resources are conserved.

Proposing an algorithm for optimization and evaluating it can be a worthwhile

undertaking. If the algorithm performs better than any standard one then it suggests that

there is scope for it to be improved still further.

1.4 Organization of the Thesis

The report has been organized into seven chapters. Chapter 1 gives an introduction

to this thesis work, Problem statement, literature survey and Motivation and organization

of the thesis. Chapter 2 briefly discusses the Robot Manipulator control. Chapter 3 contains

5

the Introduction to Fuzzy Logic Systems. Chapter 4 briefly talks of Genetic algorithm and

Genetic Fuzzy Systems. Chapter 5 describes Implementation of the topics discussed in the

problem statement Chapter 6 presents the Simulation results and discussions. Chapter 7

gives Conclusions and suggestions for future work.

6

Chapter 2: Robot Manipulator control

The word robot has its origins from Czech where robota means executive labour. It

was Karel Capek, a science fiction writer who introduced the word 'robot' in his play

"Rossum's Universal Robots". Ever since, the concept has transformed from the idea of an

artificial superhuman into the reality of animated autonomous machines. Robots today are

making a considerable impact on many aspects of modem life, from industrial

manufacturing to healthcare, transportation, and exploration of the deep space and sea. The

study of robotics is inter-disciplinary science covering domains of mechanical, electrical,

electronics and computer science. Robot manipulators are basically multi-degree of

freedom positioning devices. The robot, as the plant to be controlled, is a multi-input/

multi-output, highly coupled, nonlinear dynamic system. Robot control is the backbone of

robotics. The tasks of robot control is to find the force(torque) or the actuator input vectors

which results in the desired motion tracking with required accuracy by the robot end-

effectors [1 7].

2.1 Robot manipulator

Robotics is concerned with the study of those machines that can replace human

beings in the execution of a task, with respect to both physical activity and decision

making [1]. Robots can be classified into two, those with a fixed base known as robot

manipulators, and the other with a mobile base called mobile robots. The Figure 2.1 gives

the classification of robots.
Both mobile robots and manipulators play an important role in the field of robotics.

This thesis is exclusively devoted to robot manipulators. Robot manipulators are designed

to perform a wide variety of tasks in automotive industry which are used primarily in

material handling, welding, assembly, spray painting, grinding and other manufacturing

applications. In industrial application, robot manipulators are commonly employed in

repetitive tasks of precision and which may be hazardous for human beings. Manipulators

are used in industries primarily because they reduce the production cost, enhance precision,

quality and productivity with an added advantage of having greater flexibility over

7

specialized machines. In addition to this there are applications which can be done only by

robot manipulators, these applications involve tasks in hazardous conditions such as in

radioactive, toxic zones or where a risk of explosion exists, as well as deep space and

submarine applications.

Robot
manipulator

Ground
robots

Wheeled
robots

Mobile Legged
Robot robots robots

Submarine
and aerial
robots

Figure 2.1 Classification of robots

The definition of an industrial robot according to the International Federation of

Robotics is as follows:

`A manipulating industrial robot is an automatically controlled, programmable

multipurpose manipulator programmable in three or more axes, which may be either fixed

in place or mobile for use in industrial automation applications'

The mechanical structure of a robot manipulator consists of a sequence of rigid

bodies known as links interconnected by means of articulations called joints; a manipulator

is characterized by an arm that ensures mobility, a wrist that confers dexterity, and an end-

effector that performs the task required of the robot. The fundamental structure of a

manipulator is the serial or open kinematic chain. From a topological viewpoint, a

kinematic chain is termed open when there is only one sequence of links connecting the

two ends of the chain. Alternatively, a manipulator contains a closed kinematic chain when

a sequence of links forms a loop. In an open kinematic chain, each prismatic or revolute

joint provides the structure with a single degree of freedom (DOF). A prismatic joint

creates a relative translational motion between the two links, whereas a revolute joint

creates a relative rotational motion between the two links. Revolute joints are usually

8

preferred to prismatic joints in view of their compactness and reliability. On the other hand,

in a closed kinematic chain, the number of DOFs is less than the number of joints in view

of the constraints imposed by the loop. In this work we consider robot manipulators

formed by an open kinematic chain.

The degrees of freedom should be properly distributed along the mechanical

structure in order to have a sufficient number to execute a given task. In the most general

case of a task consisting of arbitrarily positioning and orienting an object in three-

dimensional (3D) space, six DOFs are required, the first three joints determine the position

of the end of the last link in the Cartesian space and the last three specify its orientation

with respect to a reference. coordinate frame. If more DOFs than task variables are

available, the manipulator is said to be redundant from a kinematic viewpoint and are of

prime importance when obstacle avoidance is concerned.

2.2 Robot manipulator control problem

Manipulator control has been the subject of many years of research, and continues

to attract much attention. The main challenges in the manipulator control problem are the

complexity of the dynamics, and uncertainties, both parametric and dynamic. Parametric

uncertainties arise from imprecise knowledge of the dynamics, while dynamic

uncertainties arise from joint and link, actuator dynamics, friction, sensor noise and

unknown environment dynamics.

The reasons posed by these systems which add to the challenges are:

• The highly nonlinear dynamics of both manipulator and actuator, including inertia,

gravitational, Coriolis and centrifugal effects, friction, mechanical flexibility,

backlash, hysteresis and actuator geometry.

• Accurate control required over a wide range of operating conditions

• Cross-coupling between neighboring inputs and outputs of the system

• The system dynamic parameters are time varying, due to changes in payload,

configuration, speed of motion and component wear.

9

Control of robot manipulators is the problem of determining the time history of

joint inputs required to cause the end effector to execute a commanded motion. For the

analytical purposes, considering an n-DOF robot manipulator, the joint positions are

collected in the vector q,

q1

q =
q2 (2.1)

qn

Physically, the joint positions q is measured by sensors conveniently located on the

robot. The corresponding joint velocities may also be measured or estimated from joint

position evolution. To each joint, an actuator which may be electromechanical, pneumatic

or hydraulic is in contact. The actuators generate the forces or torques which produce the

movement of the links and in turn the movement of the robot as a whole. For analytical

purposes these torques and forces are collected in the vector r ,

r

Zi

T 2 (2.2)

1-„

For robots moving freely in their workspace, i.e. without interacting with their

environment, the output y to be controlled, may correspond to the joint positions q and

joint velocities q or alternatively, to the position and orientation of the end-effector (also

called end-tool). For robots that have physical contact with their environment, the output y

may include the torque v and force fexerted by the end-tool over its environment.

Hence, the corresponding output y of a robot system — involved in a specific class of tasks

in general, be of the form,

Y y(q,q,f)
	

(2.3)

On the other hand, the input variables that may be modified to affect the evolution of the

output are basically the torques v and forces f applied by the actuators over the robots

joint. Figure 2.2 shows the block diagram corresponding to the case when the outputs are

- 10 -

the joint positions and velocities while z is the input. In this case, robot with n joints has

2n outputs and n inputs.

q

Robot

q

Figure 2.2 Input- output representation of a robot

2.3 Dynamic Model

Robot manipulators are articulated mechanical systems composed of links

connected by joints [17]. The dynamic model of robot manipulators is typically derived in

the analytic form, using the laws of mechanics due to the mechanical nature. The dynamic

models of robot manipulators are highly nonlinear and non autonomous (depend on the

state variables and time) differential equations.

Consider a robot manipulator of n-DOF composed of rigid links interconnected by

frictionless joints. The kinetic energy function K(q, q) associated with such an articulated

mechanism may always be expressed as,

1 . K(q,4)=
2
—qT M(q)4 	 (2.4)

where M(q) is a matrix of dimension n xn referred to as the mass inertia matrix. M(q) is

symmetric and positive definite for all q E R". The potential energy U(q) does not have a

specific form as in the case of the kinetic energy but it is known that it depends on the

vector of joint positions q.

The Lagrangian L(q, q) of a robot manipulator of n-DOF is the difference between its

kinetic energy K and its potential energy U,

1 .
L(q,q)= —qT M(q)4 — U(q) 	 (2.5)

2

With this Lagrangian, the Lagrange's equations of motion is written as

d[a T 	.11 a 1 .7, 	.1 OU(q)
4- 2 - 	 F4 2 q AA& -- 	M(q)q 	

= r
dt F aq

On the other hand, it holds that

em(04]=A1(04

--cciit[f4 [-21 4,A1(0411=m(q),+ f1(04

Considering these expressions, the equation of motion takes the form

m(q)41+ aU(q) =
M(q)4 +11;1(q)4 	

v 	
aq

or, in compact form,

M(q)R' +C(q,q)4 + g(q) = r 	 (2.10)

where

C(q,q)q = M(q)4
2 a 	M(q)q] 	 (2.11)

q

g(q) =
OU(q) 	 (2.12)

aq

Equation (2.10) is the dynamic equation for robots of n-DOF. C(q,q)q is a vector

of dimension n called the vector of centrifugal and Coriolis forces, g(q) is a vector of

dimension n of gravitational forces or torques and T. is a vector of dimension n called the

vector of external forces, which in general corresponds to the torques and forces applied by

the actuators at the joints. Each element of M(q), C(q,q) and g(q) is in general, a relatively

complex expression of the positions and velocities of all the joints q and q . The elements

of M(q), C(q, q) and g(q) depend of course, on the geometry of the robot in question. Note

that computation of the vector g(q) for a given robot may be carried out as its simply the

gradient of the potential energy function U(q).

(2.6)

(2.7)

(2.8)

(2.9)

-12-

2.4 Manipulator control schemes

Manipulator controllers can be classified into two broad categories, namely joint

space control scheme and Cartesian space control scheme [1]. The joint space control

problem is actually articulated in two sub-problems. First, manipulator inverse kinematics

is solved to transform the motion requirements xd from the operational space into the

corresponding motion qd in the joint space. Then, a joint space control scheme is designed

that allows the actual motion q to track the reference inputs. However, this solution has the

drawback that a joint space control scheme does not influence the operational space

variables xe which are controlled in an open-loop fashion through the manipulator

mechanical structure. It is then clear that any uncertainty of the structure (construction

tolerance, lack of calibration, gear backlash, elasticity) or any imprecision in the

knowledge of the end-effector pose relative to an object to manipulate causes a loss of

accuracy on the operational space variables. Figure 2.3 shows the general structure of Joint

space control.

Actuator
Cid

Inverse
kinematics

Drives controller
xe

Manipulator

Transducers

Figure 2.3 General structure of Joint space control

The operational space control problem follows a global approach that requires a

greater algorithmic complexity; the General structure of operational space control is shown

in Figure 2.4, inverse kinematics is now embedded into the feedback control loop. Its

conceptual advantage regards the possibility of acting directly on operational space

variables; this is somewhat only a potential advantage, since measurement of operational

space variables is often performed not directly, but through the evaluation of direct

kinematics functions starting from measured joint space variables. This work focuses on

the joint space control scheme and it is assumed that the inverse kinematic is already

performed and the trajectory is available at hand.

-13-

controller

Actuator

Drives

Manipulator
x

Transducers

Figure 2.4 General structure of operational space control

There are two main control objectives of robot manipulator Position control

(regulation) and motion control (trajectory tracking) [17]. The simplest way to specify the

movement of a manipulator is the so called "point to Point" method. This methodology

consists in determining a series of points in the manipulator workspace, which the end

effector is required to pass through. The position control problem consists of making the

end effector to reach a specified point regardless of the trajectory followed from its initial

configuration. A more general way to specify a robot motion is by continuous trajectory. In

this case, a (continuous) curve, or path in the state space and parameterized in time, is

available to achieve a desired task. Then, the motion control problem consists of making

the end-effector follow this trajectory as closely as possible. This control problem, whose

study is our central objective, is also referred to as trajectory tracking control. The main

interest of this work is the study of motion controllers and therefore, we assume that the

problems of path planning and trajectory generation are previously solved.

The problem of motion control in joint space for robot manipulators may be

formulated in the following terms.

Given a set of vectorial bounded functions qd ,qd and qd referred to as desired

joint positions, velocities and accelerations, find a vectorial function r such that the

positions q, associated to the robot's joint coordinates follow qd accurately.

In more formal terms, the objective of motion control consists of finding z such

that

limq(t) = q d (t) 	 (2.13)

Where qd E R" stands for the desired joint position vector, or in other words,

-14-

lime(t) = 0
	

(2.14)

Where e E R" stands for the joint position errors vector called position error defined by,

e(t) = qd (t) — q(t) 	 (2.15)

The control objective is achieved if the manipulator joint variables follow asymptotically

the trajectory of the desired motion.

The computation of the vector r involves, a vectorial nonlinear function of qd ,qd

and qd . This function is called the "control law" or simply, "controller". In general, a

motion control law may be expressed as

= 	,qd ,q d ,qd ,M(q),C(q,q),g(q)) 	 (2.16)

2.5 PUMA 560

PUMA 560 is one of the most popular industrial robots. It is used in most robotics

publications to illustrate various concepts, computational developments and research issues

on robot manipulators. PUMA stands for "Programmable Universal Machine for

Assembly". It was created by Unimation. PUMA 560 is a six DOF robot manipulator with

six revolute joints. Its structure bears close similarities with the human arm in other words

it is anthropomorphic, articulated robot arm. It consists of a waist rotation, a shoulder

rotation, an elbow rotation and a three-DOF wrist that allows arbitrary orientation of the

gripper within its workspace. The Figure 2.5 shows the structure of PUMA560 [18]. The

dynamic parameters are given in the Appendix A.1

Figure 2.5 Structure of PUMA 560

-15-

Chapter 3: Fuzzy Logic Systems

Conventional control methods require highly accurate mathematical modeling,

analysis and synthesis, described using one or more differential equations that define the

system response to its inputs. This involves assumptions being made with respect to the

system dynamics and any non-linear behavior that may occur. Fuzzy set techniques are a

powerful tool for solving demanding real world problems with uncertain and unpredictable

environment. Fuzzy Logic Controllers are a class of non-linear controllers that make

use of human expert knowledge and an implicit imprecision to apply control to

such systems. The construction of these controllers can be quick and effective in the

presence of expert knowledge. Fuzzy controller are particularly useful in the case where

the mathematical model of the control process may not exist, or may be too "expensive" in

terms of computer processing power and memory, and a system based on empirical rules

may be more effective.

3.1 Fuzzy logic

Fuzzy logic was first developed by Zadeh in the mid-1960s for representing

uncertain and imprecise knowledge [2]. It provides an approximate but effective means of

describing the behavior of systems that are too complex, ill-defined, or not easily analyzed

mathematically. Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory

to deal with reasoning that is approximate rather than precise. Fuzzy logic is a superset of

conventional (Boolean) logic that has been extended to handle the concept of partial truth—

truth values between "completely true" and "completely false" [19]. In binary sets with

binary logic, in contrast to fuzzy logic named also crisp logic, the variables may have a

membership value of only 0 or 1. Just as in fuzzy set theory with fuzzy logic the set

membership values can range (inclusively) between 0 and 1, in fuzzy logic the degree of

truth of a statement can range between 0 and 1 and is not constrained to the two truth

values {true (1), false (0)) as in classic predicate logic. Zadeh argues that the attempts to

automate various types of activities from assembling hardware to medical diagnosis have

been impeded by the gap between the way human beings reason and the way computers

- 16 -

are programmed [2]. Fuzzy logic uses graded statements rather than ones that are strictly

true or false. It attempts to incorporate the "rule of thumb" approach generally used by

human beings for decision making. Thus, fuzzy logic provides an approximate but

effective way of describing the behavior of systems that are not easy to describe precisely.

Fuzzy logic controllers, for example, are extensions of the common expert systems that use

production rules like "if-then." With fuzzy controllers, however, linguistic variables like

"tall" and "very tall" might be incorporated in a traditional expert system. The result is that

fuzzy logic can be used in controllers that are capable of making intelligent control

decisions in sometimes volatile and rapidly changing problem environments.

Fuzzy logic has been applied to diverse fields, from control theory to artificial

intelligence. Fuzzy logic addresses such applications perfectly as it resembles human

decision making with an ability to generate precise solutions from certain or approximate

information. It fills an important gap in engineering design methods left vacant by purely

mathematical approaches (e.g. linear control design), and purely logic-based approaches

(e.g. expert systems) in system design.

While other approaches require accurate equations to model real-world behaviors,

fuzzy design can accommodate the ambiguities of real-world human language and logic. It

provides both an intuitive method for describing systems in human terms and automates

the conversion of those system specifications into effective models.

The various definitions of the terms used in a fuzzy system are given below.

• Fuzzy set - A set that can contain elements with only a partial degree of

membership.

• Membership function (MF) - A function that specifies the degree to which a given

input belongs to a set or is related to a concept. It represents the degree of truth as

an extension of valuation.

• Degree of membership - The output of a membership function, this value is always

limited to between 0 and 1. Also known as a membership value or membership

grade.

• Linguistic variables -A linguistic variable is a collection of fuzzy sets representing

linguistic terms of a concept. Variables in mathematics 'usually take numerical

values, in fuzzy logic applications, the non-numeric linguistic variables are often

-17-

used to facilitate the expression of rules and facts. A linguistic variable such as age

may have a value such as young or its antonym old.

• Antecedent - The initial (or "if') part of a fuzzy rule.

• Consequent - The final (or "then") part of a fuzzy rule.

• Fuzzification - The process of generating membership values for a fuzzy variable

using membership functions. In other words, the process of converting a crisp input

value to a fuzzy value.

• Defuzzification - The process of transforming a fuzzy output of a fuzzy inference

system into a crisp output.

• Implication - The process of shaping the fuzzy set in the consequent based on the

results of the antecedent in a Mamdani-type FIS.

• Aggregation - The combination of the consequents of each rule in a Mamdani fuzzy

inference system in preparation for defuzzification.

3.2 Fuzzy controllers

The core of a fuzzy controller is a collection of verbal or linguistic rules of the if—

then form [3]. Several variables may occur in each rule, both on the if -side and the then-

side. Reflecting expert opinions, the rules can bring the reasoning used by computers

closer to that of human beings.

The fuzzy controller has four main components: 1. The "rule-base" holds the

knowledge, in the form of a set of rules, of how best to control the system. 2. The inference

mechanism evaluates which control rules are relevant at the current time and then decides

what the input to the plant should be. 3. The fuzzification interface simply modifies the

inputs so that they can be interpreted and compared to the rules in the rule-base. 4. The

defiwification interface converts the conclusions reached by the inference mechanism into

a crisp control action [20]. Figure 3.1 shows the Fuzzy controller architecture.

-18-

Process
inputs
u(t)

Fuzzy CoUtroller

— —
f
u
z
z
i
f
i
c

i
o
n

d
e
f

ill. Inference
mechanism

u
OP 	z

z

t

i
f

lc. a
t
i
0
a

1
I Rule-base 	I

_ 	 —

Reference input r(t) outputs
y(t)

Figure 3.1 Fuzzy controller architecture

To design the fuzzy controller, the control engineer must gather information on

how the artificial decision maker should act in the closed-loop system. Sometimes this

information can come from a human decision maker who performs the control task, while

at other times the control engineer can come to understand the plant dynamics and write

down a set of rules about how to control the system without outside help. These "rules"

basically say, "If the plant output and reference input are, behaving in a certain manner,

then the plant input should be some value." A whole set of such "If-Then" rules is loaded

into the rule-base, and an inference strategy is chosen, then the system is ready to be tested

to see if the closed-loop specifications are met.

Two forms of FLC are,

• Mamdani

• Sugeno

Both of these architectures are similar in all respects except for the formulation of

the output crisp value. In the Mamdani FLC, the output is formulated using fuzzy sets

whereas the Sugeno type FLC uses single -spike output MFs (i.e. singletons) rather than

distributed functions. In this work a Mamdani type fuzzy system is used.

Even though fuzzy controllers are widely used there are a few reasons as to why

one would not use a fuzzy controller:

-19-

• The PID controller is well understood, easy to implement — both in its digital and analog

forms — and it is widely used. By contrast, the fuzzy controller requires some knowledge of

fuzzy logic. It also involves building arbitrary membership functions.

• The fuzzy controller is generally nonlinear. It does not have a simple equation like the

PID, and it is more difficult to analyze mathematically; approximations are required, and it

follows that stability is more difficult to guarantee.

• The fuzzy controller has more tuning parameters than the PID controller. Furthermore, it

is difficult to trace the data flow during execution, which makes error correction more

difficult.

The main reasons for the success of fuzzy controller's usage in industry are

• Since the control strategy consists of if—then rules, it is easy for a plant operator to read.

The rules can be built from a vocabulary containing everyday words such as -'high', 'low',

and 'increasing'. Plant operators can embed their experience directly.

• The fuzzy controller accommodates many inputs and many outputs. Variables can be

combined in an if—then rule with the connectives 'And' and 'Or'. Rules are executed in

parallel, implying a recommended action from each. Fuzzy logic enables non-s e_cialists to
iy design control systems, and this is one of the key reasons for its success 0041RAL Lig

0. ate' Litt
z' ACC

.......
3.3 Fuzzy PD+I controller 	 Date

1.4 RO(Yi
In this structure, the fuzzy system is applied only to the proportional and derivative

signal of the linear PID controller [5]. The integral signal uses conventional linear method.

The major roll of the integral signal is to eliminate the steady state error. The transient

response is affected mostly by the proportional signal and the derivative signal. For the

enhancement of the transient response, the varying gains are implemented on, the

proportional and derivative parts using two-input fuzzy system. The nonlinearities that

make the varying gains possible are added by the fuzzy control rules and the membership

functions. The nonlinearities emphasize the proportional gain when the tracking error is

relatively large and accelerates decreasing speed of the tracking ,error. The nonlinearities in

the derivative gain suppress the overshoot and increases damping as the signals starts to

- 20 -

settle down. In this structure, the fuzzy system is normalized with respect to the maximum

range of the signal. Figure 3.2 shows the structure of the Fuzzy PD+I controller

E

output

error

Integrator 	 IE

Figure 3.2 Structure of the Fuzzy PD+I controller

If the closed-loop system exhibits a sustained error in steady state, integral action is

necessary. The integral action will increase (decrease) the control signal if there is a

positive (negative) error, even for small magnitudes of the error. Thus, a controller with

integral action will always return to the reference in steady state

The integral error IE = GIE fe(t)dt is proportional to the accumulation of all

previous error measurements in discrete time, with [3].

fe(t)dt 	e(j)T, 	 (3.1)
=1

the control signal U(n) after the gain GU, at the time instant n, is a nonlinear

function of error, change in error, and integral error,

U(n) =[f (GE * e(n), GCE * e(n)) + GIEt e(j)7",]* GU (3.2)
=i

The function f is again the control surface of a PD rule base. The mapping is

usually nonlinear, but with a favorable choice of design, a linear approximation is Equation

(3.3)

f (GE * e(n),GCE * e(n)) GE * e(n) + GCE * e(n) 	 (3.3)

-21 -

Substituting this in Equation (3.2) yields the control action,

U(n) 	* e(n) + GCE * e(n) + GIE ±e(j)T,1* GU 	(3.4)
J=1

G] U(n) = GE* GU *[e(n)+CE * e(n)+ GIE e(i)Ts
GE 	GE .1,4

In the last line we have assumed that GE is non-zero.

Ideal continuous PID controller is given by the Equation (3.6)

) u K [e+ — 1 fe(t)dt +Td de Tit

In digital controllers, the Equation (3.6) must be approximated. Replacing the

derivative term by a backward difference and the integral by a sum using rectangular

integration, and given a constant – preferably small – sampling time T„ the simplest

approximation is

u(n) = K p e(n) + Li_i e(j)T, +Tde(n") e(n –1)
	

(3.7)
j

Comparing Equations (3.5) and (3.7) the gains are related as follows:

GE* GU = K p 	 (3.8)

GCE T 	 (3.9)
GE -

GIE 1
GE T,

The FPD+I controller provides all the benefits of PID control, but also the

disadvantages regarding derivative kick. The integral error removes any steady state error,

but can also cause integrator windup.

(3.5)

(3.6)

(3.10)

Figure 3.3 shows the block diagram of the Fuzzy PD+I controlled PUMA560 robot.

-22-

trajectory fuzzyPD+l tau 	q ■ •■•■1•1■■■•••111111101

SCope torque regulator

PUMA560 Dynamic model

Figure 3.3 Block diagram of the Fuzzy PD+I controlled PUMA560 robot model

3.4 Weighted-rule fuzzy control systems

The use of weights flexibilizes the rule structure, whose output lies in an explicit

point between the most distant consequents which is determined by the corresponding rule

weights [21]. Rule weights suppose an effective extension of the conventional fuzzy

reasoning process that allows tuning of the system to be developed at the rule level. This

approach improves the accuracy of the learned model since they induce a good cooperation

among rules. However, they come with the drawback of a small interpretability loss which

lies in the difficulty to interpret the actual action performed by each rule in the

interpolative reasoning process. From other point of view (rule level), when weights are

applied to complete rules, the corresponding weight is used to modulate the firing strength

of a rule in the process of computing the defuzzified value. For human beings, it is very

close to consider this weight as an importance degree associated to the rule, determining

how this rule interacts with its neighbouring ones. In addition, only weight values in range

[0, 1] are considered, since this preserves the model readability. In this way, the use of rule

weights represents an ideal framework for extended Linguistic Fuzzy Modeling while

searching for a trade-off between accuracy and interpretability. If a rule weight is applied

to the consequent part of a rule, it modifies the size of a rule's output value [13]. By

assigning a rule weight to each fuzzy rule, the complexity is increased while its accuracy is

- 23 -

improved. This also suggests a tradeoff relation between the accuracy and the complexity

[12].

In order to do so, the weighted rule structure and the inference system extended for

multiple output variables is followed which is taken from [22] and given by the statement

below:

IF Xi is Al and . . . and X„ is An

THEN Yl is B1 and . . . and Ym is B m with [w],

Where, X, and Y are.the linguistic input and output variables respectively, A, and Bi

are the linguistic labels used in the input and output variables respectively, w is the real-

valued rule weight, and with is the operator modeling the weighting of a rule.

With this structure, the fuzzy reasoning must be extended. The classical approach is

to infer with the FITA (First Infer, Then Aggregate) scheme and compute the defuzzified

output of the j-th variable as the following weighted sum:

E mh.wh.Ph(i)
Y(j) 	hr 	 (3.11)

L.dh mh

with mh being the matching degree of the h-th rule, wh being the weight associated to the h-

th rule, and Ph(j) being the characteristic value of the output fuzzy set corresponding to that

rule in the j-th variable. In this contribution, center of gravity will be considered as

characteristic value and the minimum t-norm will play the role of the implication and

conjunctive operators.

- 24 -

Chapter 4: Genetic algorithm and Genetic Fuzzy Systems

The most popular technique in evolutionary computation research has been the

genetic algorithm. Evolutionary algorithms can be applied to any problems that can be

formulated as function optimization problems The genetic algorithm is a method for

solving optimization problems that is based on natural selection, the process that drives

biological evolution. The genetic algorithm repeatedly modifies a population of individual

solutions. At each step, the genetic algorithm selects individuals at random from the

current population to be parents and uses them to produce the children for the next

generation. Over successive generations, the population "evolves" toward an optimal

solution. Genetic algorithm can be applied to solve a variety of optimization problems that

are not well suited for standard optimization algorithms, including problems in which the

objective function is discontinuous, non differentiable, stochastic, or highly nonlinear[23].

4.1 Genetic Algorithm

Genetic Algorithms are general purpose search algorithms which use principles

inspired by natural genetics to evolve solutions to problems [24]. Genetic Algorithms were

envisaged by Holland in the 1970s as an algorithmic concept based on a Darwinian-type

survival-of-the-fittest strategy [2], where stronger individuals in the population have a

higher chance of creating an offspring. A genetic algorithm is implemented as a

computerized search and optimization procedure that uses principles of natural genetics

and natural selection. The basic approach is to model the possible solutions to the search

problem as strings of ones and zeros. Various portions of these bit-strings represent

parameters in the search problem. If a problem-solving mechanism can be represented in a

reasonably compact form, then GA techniques can be applied using procedures to maintain

a population of knowledge structure that represent candidate solutions, and then let that

population evolve over time through competition (survival of the fittest and controlled

variation). The GA will generally include the three fundamental genetic operations of

selection, crossover and mutation. These operations are used to modify the chosen

- 25 -

solutions and select the most appropriate offspring to pass on to succeeding generations.

GAs consider many points in the search space simultaneously and have been found to

provide a rapid convergence to a near optimum solution in many types of problems; in

other words, they usually exhibit a reduced chance of converging to local minima. GAs

show promise but suffer from the problem of excessive complexity if used on problems

that are too large.

Generic algorithms are an iterative procedure that consists of a constant-sized

population of individuals, each one represented by a finite linear string of symbols, known

as the genome, encoding a possible solution in a given problem space. This space, referred

to as the search space, comprises all possible solutions to the optimization problem at

hand. Standard genetic algorithms are implemented where the initial population of

individuals is generated at random. At every evolutionary step, also known as generation,

the individuals in the current population are decoded and evaluated according to a fitness

function set for a given problem. The expected number of times an individual is chosen is

approximately proportional to its relative performance in the population. Crossover is

performed between two selected individuals by exchanging part of their genomes to form

new individuals. The mutation operator is introduced to prevent premature convergence.

Every member of a population has a certain fitness value associated with it, which

represents the degree of correctness of that particular solution or the quality of solution it

represents. The initial population of strings is randomly chosen. The strings are

manipulated by the GA using genetic operators, to finally arrive at a quality solution to the

given problem. GA converges rapidly to quality solutions. Although they do not guarantee

convergence to the single best solution to the problem, the processing leverage associated

with GAs make them efficient search techniques. The main advantage of a GA is that it is

able to manipulate numerous strings simultaneously, where each string represents a

different solution to a given problem. Thus, the possibility of the GA getting stuck in local

minima is greatly reduced because the whole space of possible solutions can be

simultaneously searched. A basic genetic algorithm comprises three genetic operators.

- 26 -

• Selection

• Crossover, and

• Mutation.

Starting from an initial population of strings (representing possible solutions), the

GA uses these operators to calculate successive generations. First, pairs of individuals of

the current population are selected to mate with each other to form the offspring, which

then form the next generation. Selection is based on the survival-of-the-fittest strategy, but

the key idea is to select the better individuals of the population, as in tournament selection,

where the participants compete with each other to remain in the population. The most

commonly used strategy to select pairs of individuals is the method of roulette-wheel

selection, in which every string is assigned a slot in a simulated wheel sized in proportion

to the string's relative fitness. This ensures that highly fit strings have a greater probability

to be selected to form the next generation through crossover and mutation. After selection

of the pairs of parent strings, the crossover operator is applied to each of these pairs.

The crossover operator involves the swapping of genetic material (bit-values)

between the two parent strings. In single point crossover, a bit position along the two

strings is selected at random and the two parent strings exchange their genetic material as

illustrated below.

Parent A = al a2 a3 a4 I as a6

Parent B = b1 b2 b3 b4 I bs b6

The swapping of genetic material between the two parents on either side of the selected

crossover point, represented by "I", produces the following offspring:

Offspring A'= al a2 a3 a4 I b5 b6

Offspring B'= b1 b2 b3 b4 I a5

-27-

The two individuals (children) resulting from each crossover operation will now be

subjected to the mutation operator in the final step to forming the new generation.

The mutation operator alters one or more bit values at randomly selected locations

in randomly selected strings. Mutation takes place with a certain probability, which, in

accordance with its biological equivalent, typically occurs with a very low probability. The

mutation operator enhances the ability of the GA to find a near optimal solution to a given

problem by maintaining a sufficient level of genetic variety in the population, which is

needed to make sure that the entire solution space is used in the search for the best

solution. In a sense, it serves as an insurance policy; it helps prevent the loss of genetic

material.

Genetic algorithms are most appropriate for optimization type problems, and have

been applied successfully in a number of automation applications including job shop

scheduling, proportional integral derivative (PID) control loops, and the automated design

of fuzzy logic controllers. The reason for a great part of this success is their ability to

exploit the information accumulated about an initially unknown search space in order to

bias subsequent searches into useful subspaces, i.e., their adaptation. This is their key

feature , particularly in large, complex and poorly understood search space, where classical

search tools(enumerated, heuristic...) are inappropriate, offering a valid approach to

problems requiring efficient and effective search techniques. The pseudo-code in Figure

4.1 shows the structure of a Basic GA [24], where P(t) denotes the population at generation

t and Recombine(t) will consists of both the crossover and mutation operations.

A genetic algorithm is typically initialized with a random population consisting of

between 20-100 individuals. This population is usually represented by a real-valued

number or a binary string. How well an individual performs a task is measured by the

objective function. The objective function assigns each individual a corresponding number

called its fitness value. The fitness of each chromosome is assessed and a survival of the

fittest strategy is applied.

- 28 -

Procedure Genetic Algorithm
Begin (1)

t=0;
Initialize P(t);
Evaluate P(t);
While (Not termination-condition) do
Begin (2)

t=t+1;
Select P(t) from P(t-1);
Recombine P(0;
Evaluate P(t);

End (2)
End (1)

Figure 4.1 Pseudo-code for structure of a Basic GA

4.2 Genetic Fuzzy Systems

One of the major drawbacks of Fuzzy Rule Base Systems (FRBS) discussed in the

chapter 3 is that they are not able to learn, but require the Knowledge Base (KB) to be

derived from expert knowledge [10]. The first step in designing a Genetic FRBS is to

decide which parts of the (KB) are subject to optimization. The KB of a descriptive

Mamdani-type FRBS is comprised of two components: a Data Base (DB), containing the

definitions of the scaling factors and the membership functions of the fuzzy sets associated

with the linguistic labels, and a Rule Base (RB), constituted by the collection of fuzzy

rules. Fuzzy Logic Controller (FLC) contains a number of sets of parameters that can be

altered to modify the controller performance, they are 1. Scaling factors for each variable,

2. The fuzzy sets representing the meaning of linguistic values, 3. The If-Then rules. Each

of these parameters has been used as the controller parameter to be adapted in different

adaptive FLCs. GAs have been used to modify the fuzzy set definitions, to alter the shapes

of the fuzzy sets defining the meaning of the linguistic terms, to determine the membership

functions that produce maximum control performance according to the inference system

- 29 -

(fuzzy implication and conjunctive operators) and the defuzzification strategy used. That

is, to tune the Fuzzy set, in order to make the FLC behaves as closely as possible to the

operator or expert behavior [9]. Changing any of the above parameter will result in

considerable change in fuzzy control system. In addition to these the Rule-weights can also

be changed to perform a local tuning of linguistic rules. In Linguistic Fuzzy Modeling,

tuning of any fuzzy set will influence all the rules that are involved [21].

The objective of a genetic fuzzy system is to automate the knowledge acquisition

step in fuzzy system design, a task that is usually accomplished through an interview or

observation of a human expert controlling the system [25]. An evolutionary algorithm

adapts either part or all of the components of the fuzzy knowledge base. At this point, it is

important to notice that a fuzzy knowledge base is not a monolithic structure but is

composed of the data base and the rule base which each play a specific role in the fuzzy

reasoning process. According to the distinction between data base and rule base, genetic

fuzzy systems are discriminated along two major approaches, genetic tuning processes and

genetic learning processes. The first method is targeted at optimizing the performance of

an already existing fuzzy system. The tuning process involves the adaptation of the fuzzy

database, namely parameters of membership functions and input-output scaling factors.

The second method is concerned with the automatic derivation of fuzzy rules in the rule

base. A genetic learning process faces a much more difficult task as it has to establish the

proper relationship between input and output states from scratch, rather than optimizing the

performance of a fuzzy system that already operates at least approximately correct.

Designing a fuzzy rule based system is equivalent to finding an optimal configuration of

fuzzy sets and/or rules, and in that sense can be regarded as an optimization problem. The

optimization criterion is the problem to be solved at hand and the search space is the set of

parameters that code the membership functions, scaling functions and fuzzy rules. The

genetic learning process emerges from the hybridization of an evolutionary algorithm,

which by means of selection and genetic operators optimizes parameters of the knowledge

base, with the fuzzy system supposed to demonstrate a desired behavior.

-30-

Plant
or

Fuzzy
Sets

"Fuzzy
Rules

7<- 	 Data base Rtile base
IfX,is...

Then Y is ...
	 N Fuzzifi- 	Inference 	Defuzzifi- 	if

cation 	engine cation
---4.

Fuzzy' System'
'Output.

Input +,

Performance.' fitness
Evaluation 	•

Genetic Algerithin

Figure 4.2 Genetic Fuzzy System

The fuzzy system lies at the core of the hybrid structure; it fuzzifies the input state,

performs the inference based on the fuzzy rules and aggregates the result of the inference

process into a crisp output. Depending on the context, the environment can be a plant to be

controlled, a system to be modeled or a set of data to be classified. An external critic or

trainer evaluates the performance of the fuzzy system with regard to the control task, the

model accuracy or the classification error. The performance is aggregated into a scalar

fitness value on which basis the evolutionary algorithm selects better adapted

chromosomes. A chromosome either codes parameters of membership functions, scaling

factors, fuzzy rules or a combination thereof. By means of crossover and mutation, the

evolutionary algorithm generates new parameters for the database and/or rule base which

usefulness is tested in the fuzzy system.

It is important to distinguish between tuning and learning problems. Tuning is more

concerned with optimization of an existing FRBS, whereas learning constitutes an

automated design method for fuzzy rule sets that starts from scratch. Tuning processes

assume a predefined RB and have the objective to find a set of optimal parameters for the

membership and/or the scaling functions. Learning processes perform a more elaborated

search in the space of possible RBs or whole KBs and do not depend on a predefined set of

rules.

In the case of tuning membership functions, 'an individual represents the entire DB

as its chromosome encodes the parameterized membership functions associated to the

-31 -

linguistic terms. Triangular membership functions are usually encoded by their left, centre

and right point, whilst Gaussian membership functions by their centre and width. When

tuning the membership functions in a linguistic model, the whole fuzzy partitions is

encoded into the chromosome and they are globally adapted to maintain the global

semantic in the RB. On the other hand, tuning the membership functions of an approximate

model is a particular instantiation of KB learning since the rules are completely defined by

their membership functions instead of referring to linguistic terms in the DB. In this thesis

work, Gaussian membership function is used. A small analysis of how the variations in the

mean and spread change the shape of the membership function. Gaussian membership

function is characterized by Equation 5, where 1u is the center and o denotes the spread.

-(x- p)2
f (X, CT, C) = e 2'72 	 (4.1)

Figure 4.3 shows the variation of the Gaussian membership function when the

mean (center) is varied. Initially the MF is centered at `p ', a change of `cS ' introduced in

' resulting in the center getting shifted to `p-f-J Figure 4.4 shows the variation of the

Gaussian membership function when the spread 'a' is varied. The plot 'cr = b' is the initial

MF, when `o-' is increased to 'a' the plot = a' is formed and when 'a' is decreased to `c '

the plot 'a = c' is formed.

Figure 4.3 Variation in the mean of a Gaussian MF

-32-

Figure 4.4 Variation in the spread of a Gaussian MF

On the other hand, Genetic learning of the RB assumes a predefined set of fuzzy

membership functions in the DB to which the rules refer to by means of linguistic labels.

The GA adapts the RB, either working with chromosomes that describe a single fuzzy rule

or an entire RB. The RB is either represented by a relational matrix, a decision table or a

list of rules. In case each chromosome represents an individual rule, the population as a

whole constitutes the solution, namely the optimal set of rules. The ruleS that form the RB

are either evolved simultaneously.

- 33 -

Chapter 5: Implementations

In this chapter, implementation of parameter tuning methods, approximation of

systems, obtaining minimally optimal rule base and proposal of a novel algorithm is

discussed.

5.1 Parameter tuning

Fuzzy controllers can be tuned by various strategies, like changing the scaling

factor, modifying the support and spread of membership functions, modifying the If-Then

rules of the rulebase and changing the type of a membership function itself. Tuning the

scaling factors, rules and shape and support of a membership function will result in change

of the control surface and hence the output of the fuzzy controller [26]. GAs have been

used to modify the fuzzy set definitions, to alter the shapes of the fuzzy sets defining the

meaning of the linguistic terms, to determine the membership functions that produce

maximum control performance according to the inference system (fuzzy implication and

conjunctive operators) and the defuzzification strategy used. That is, to tune the Fuzzy set,

in order to make the FLC behaves as closely as possible to the operator or expert behavior

[9].In addition to these the Rule-weights can also be changed to perform a local tuning of

linguistic rules, which enables the linguistic fuzzy models to cope with inefficient and/or

redundant rules thereby enhancing the robustness, flexibility and system modeling

capability [11]. By assigning a rule weight to each of the fuzzy rules, complexity is

increased while its accuracy is improved. This suggests a tradeoff relation between the

accuracy and complexity [12]. If a rule weight is applied to the consequent part of the rule,

it modifies the size of the rule's output value [13]. In Linguistic Fuzzy Modeling the tuning

of any fuzzy set will influence all the rules that are involved. [21].

5.1.1 Preliminary tuning

As part of the preliminary studies three types of tuning are performed. Namely,

Rule tuning, Rule-weight tuning, and membership function tuning. This is performed on

the reference Fuzzy PD+I control system mentioned in the section 3.3. After this

- 34 -

preliminary studies and inference is drawn as to which of the tuning strategy is better than

the other.

5.1.1.1 Rule tuning

In this ;subsection the chromosomes are encoded with the values of consequent part

of the if-then rule of the fuzzy rule base, in other words contains the parameters of the

consequent. Genetic algorithm is run until the terminating condition. Genetic algorithm

varies these parameters stochastically and on convergence produces a rule base which will

have optimal rules in it. Since we are using a 3x3 rulebase we will require chromosomes to

consist of 9 variables per fuzzy system corresponding to the 9 rules.

Structure of chromosome: C1, C2, ... C.

Where Ci is the consequent, i varies from 1 to n. In this case n=54 (i.e.

9rul e*6j oints) .

5.1.1.2 Rule-Weight tuning

In this subsection the chromosomes are encoded with the values of weighting for

consequent part of the if-then rule of the fuzzy rule base. Genetic algorithm is run until the

terminating condition. Genetic algorithm varies these parameters stochastically and on

convergence produces a rule base which will have rules with optimal rule-weights in it.

Since we are using a 3x3 rulebase we will require chromosomes to consist of 9 variables

per fuzzy system corresponding to the 9 'rule weights.

Structure of chromosome: W1, W2, 	Wn.

Where VT; is the rules-weight, i varies from 1 to n. In this case n=54 (i.e. 9rule-

weights*6joints).

5.1.1.3 Membership function tuning

In this subsection the chromosomes are encoded with the values of parameters of

the membership function. Gaussian membership function is used. A Gaussian membership

function is characterized by a mean and a spread. The centers of the extreme end

membership functions are kept as it is since changing them will affect the universe of

discourse and it is desired that the universe of discourse is kept a constant. Genetic

- 35 -

algorithm is run until the terminating condition. Genetic algorithm varies these parameters

stochastically and on convergence produces a fuzzy system which will have membership

functions with mean and spread. Since we are using a 3x3 rule fuzzy system there will be 9

membership functions altogether, 6 for input and 3 for output. Considering this there will

be 9 means and 9 spreads, of these 6 extreme centers are kept untouched hence the total

number of parameters tuned is 12. We will require chromosomes to consist of 12 variables

per fuzzy system

Structure of chromosome: MF1, MF 2, 	MF n.

Where MF is the membership function parameter, i varies from 1 to n. In this case

n=72 (i.e. 12Mf parameters*6joints).

5.1.2 Two stage tuning

With the foundations of the preliminary studies, an attempt is made to tune the

Fuzzy controller in two stages. In the first stage the rules are tuned and in the second stage

the rule-weights is tuned. This progressive approach is studied to see if there are any

performance improvements. Changing the rules will produce considerable change in the

control of the fuzzy controller, but changing the rule weight results in finer details getting

adjusted.

Stage 1: The chromosomes are encoded with the values of consequent part of the if-then

rule of the fuzzy rule base, in other words contains the parameters of the consequent.

Genetic algorithm varies these parameters stochastically and on convergence produces a

rule base which will have optimal rules in it. Since we are using a 3x3 rulebase we will

require chromosomes to consist of 9 variables per fuzzy system corresponding to the 9

rules.

Structure of chromosome: Ci, C2, 	Cn.
Where C is the consequent, i varies from 1 to n. In this case n=54 (i.e.

9rule* 6j oints).

Stage 2: With the rulebase obtained in the previous stage weight tuning is

performed as follows. The chromosomes are encoded with the values of weighting for

consequent part of the if-then rule of the fuzzy rule base Genetic algorithm varies these

parameters stochastically and on convergence produces a rule base which will have rules

- 36 -

with optimal rule-weights in it. Since we are using a 3x3 rulebase we will require

chromosomes to consist of 9 variables per fuzzy system corresponding to the 9 rule

weights.

Structure of chromosome: / W., W2, • • • W.

Where W, is the rules-weight, i varies from 1 to n. In this case n=54 (i.e. 9rule-

weights* 6j oints).

5.1.3 Three stage tuning

As an extension to the previous subsection a third stage tuning is performed. In this

section the membership function of the fuzzy system obtained from the two-stage tuning

process is tuned. All the constraints described in the preliminary study of tuning for

membership function applies here as well.

Structure of chromosome: MF1, MF 2, ... MF •

Where MF , is the membership function parameter, i varies from 1 to n. In this case

n=72 (i.e. 12Mf parameters*6j oints).

5.1.4 Simultaneous tuning
In contrast to the previous two subsection where tuning was carried out

progressively, tuning one parameter at a time, in this section the implantation of

simultaneously tuning Rule, Rule-weight and Membership functions is discussed. The

chromosomes are encoded with the parameters of the consequent, weighting of consequent

part and membership function. Genetic algorithm is run until the terminating condition.

Genetic algorithm varies these parameters stochastically and on convergence produces a

fuzzy system which will have optimal rules, rule-weights and membership function in it.

Since we are using a 3x3 rulebase we will require chromosomes to consist of 30 variables

per fuzzy system corresponding to the 9 rules, 9 rule 'weights and 12 membership function

parameters.

Structure of chromosome: CI, C2, • • • , Cn, W1, W2, • • • ,Wn, MF1, MF 2, 	, MF m

Where C, is the consequent, W, is the rules-weight, i varies from 1 to n. MF is the

membership function parameter, j varies from 1 to m. In this case n=54, tn--72, total

-37-

number of parameters per structure is 180 (9 rule*6joints+9 rule weights*6joints+12 Mf

parameters*6joints)

5.2 Approximations of a System

Many applications exist in the control and signal processing areas that utilize

nonlinear function approximation. One such application is system identification, which is

the process of constructing a mathematical model of a dynamic system using experimental

data from that system [20]. The interpolation and approximation theory are quite mature

fields in by themselves which has received and continues receiving not deep but constant

attention [14].

This section begins by defining the function approximation problem, in which a

synthesis of a function to approximate another function that is inherently represented via a

finite number of input-output associations is required [20]. Appropriate input-output data

points that allow for the construction of an approximate model are gathered.

Given some function

g : 	 (5.1)

Where X c R" and Y c R , it is desired to construct an approximate model of the system

f : X --> Y 	 (5.2)

Where X c X and Y c Y are some domain and range of interest, by choosing parameter

vector Ofwhich includes, polynomial coefficients in case of polynomial interpolation and

rules, membership function centers, widths, etc in case of a fuzzy system.)

So that

g(x) = f (x 19) + e(x) 	 (5.3)

For all x = [xi ,x2,...,x,,]T E X where the approximation error e(x) is as small as

possible. If it is required to refer to the input at time k, then use x(k) for the vector and xj(k)

for its jth component. In this work x/k) will consists of input data pair, this input data pair

set is the training data 'T'. Evaluation of the error in approximation between g and an

approximate function f(x10) based on a training data set may or may not be a true measure

of the error between g and f for every x E X, but it is the only evaluation we can make

based on known information. Hence, measures like 'sum of squares of error' given in

- 38 -

Equation (5.4) to measure the approximation error are used. Accurate function

approximation requires that expression of this nature be small;

E(g(x,)- f(x,(9)) 2 	 (5.4)

While the method for adjusting the parameters 0 of f(x10) is critical to the overall

success of the approximation method, there is virtually no way of succeeding at having f

approximate g if there is no appropriate information present in the training data set 'T'.

Basically, we would like 	to contain as much information as possible about g.

Unfortunately, most often the number of training data pairs is relatively small, or it is

difficult to use too much data since this affects the computational complexity of the

algorithms that are used to adjust 0.

In this thesis work, two types of approximations, namely Bivariate polynomial

approximation and Weighted-rule Fuzzy system approximation are studied and their

results are compared. Figure 5.1 shows the. Structure of approximate of Fuzzy PD+I

controller.

-Mtge:
rtiOder

,

Figure 5.1 5. Structure of the approximate of Fuzzy PD+I controller

5.2.1 Bi-Variate Polynomial Approximation
Various methods of polynomial interpolation give efficient results but are

mathematically quite rigorous and difficult for a multi-variate case [15]. The simplest

context to study here is interpolation by uni-variate polynomials. Hence interpolation by

uni-variate polynomials is a very classical topic. However, interpolation by polynomials of

several variables is much more intricate and is a subject which is currently an active area of

research. A bi-variate polynomial is a polynomial in two variables [27]. Bi-variate

polynomials have the form as given in Equation (5.5).

-39-

f(x, y) = E 	yj
	

(5.5)

A bi-variate polynomial when evaluated over a grid of input values for both x and

y, traces a surface defined by f(x,y) of the Equation (5.5). This section proposes to

approximate the control surface of the fuzzy controller using bi-variate polynomial

function. Approximation is performed using genetic algorithm, which is one of the

stochastic optimization algorithm, to determine the coefficients of polynomial that

approximates a system without getting into rigorous mathematical analysis.

In this work the bi-variate polynomial chosen for the approximation of the

reference fuzzy control surface is given as (x+y+1) 0 with all the coefficients being

replaced by variables that can get modified by genetic algorithm so that an optimal value

of these coefficients can be found. The polynomial so found closely approximates fuzzy

controller behavior in the region of operation for which the data points were collected.

Let us assume that the data points collected from the reference fuzzy controller are

xl and x2 for inputs and y for outputs, where xl, x2 and y are vectors of same size: With

these data points an estimate bi-variate polynomial model is created, bi-variate in terms of

xl and x2 variables. The squared error between the estimate model output vector f(x,y) and

the y vector is calculated. This squared error is minimized by the Genetic Algorithm. This

minimization is done by manipulating the coefficients of the polynomial by genetic

algorithm to obtain an approximate model of fuzzy controller in terms of bi-variate

polynomial function. This approximate model is employed in the reference Fuzzy PD+I

control block by replacing the Fuzzy PD controller as shown in Figure 5.1. Equation 5.6

shows the relation between the polynomial P(xl, x2) and Fuzzy PD function F(e,e).

P(xl, x2) F(e, e)
	

(5.6)

Where P(xl, x2) is of the form specified in Equation 5.5

Structure of chromosome Pi, P22 • • • Pn•

-40-

Where P, is the polynomial coefficients, W, is the rules-weight, i varies from 1 to n. In this

case n=67 the number of coefficients present for polynomial with structure as that equation
(x±y+1)10

5.2.2 Weighted-Rule Fuzzy Approximation
The basic problem to be studied here is how to construct a Weighted-Rule fuzzy

system from numerical data, where linguistics is used as the starting point to specify a

fuzzy system. If the numerical data is plant input-output data obtained from an experiment,

we may identify a fuzzy system model of the plant. This may be useful for simulation

purposes and sometimes for use in a controller [20]. On the other hand, the data may come

from other sources, and a fuzzy system may be used to provide for a parameterized

nonlinear function that fits the data by using its basic interpolation capabilities. For

instance, suppose that we have a human expert who controls some process and we observe

how he or she does this by observing what numerical plant input the expert picks for the

given numerical data that she or he observes.

Let us assume that the data points collected from the reference fuzzy controller are

xl and x2 for inputs and y for outputs, where xl, x2 and y are vectors of same size. From

the numerical data, the maximum and minimum are calculated and the universe of

discourse (UOD) is assigned ± 1.5 times the maximum of the absolute values of maximum

and minimum. The membership function chosen is Gaussian membership functions for

both input and output. A 3x3 rulebase system is being developed so the centers of the

Gaussian membership function are assigned as [-UOD value, 0, +UOD] . The spread for

these membership functions are assigned as Range/(1.5*pi), where Range is (2 times

UOD),this is done so that the cross-point of the membership functions occurs at 0.5. A

symmetric rulebase as shown in the Figure 5.2 is chosen and assigned to the fuzzy system

being created.
ci\e\
e Z P

NNN2

Z N Z P

Z PP

Figure 5.2 Symmetric rulebase used in the Weighted-Rule Fuzzy Approximation

-41 -

The weights are assigned to this rulebase genetically to obtain the approximate

model of the reference system. The sum of squared errors between the estimate model

output vector F,„(x1,x2) and the y vector is calculated. This sum of squared errors is

minimized by the Genetic Algorithm. The chromosomes are encoded with the values of

weighting for consequent part of the if-then rule of the fuzzy rule base. Genetic algorithm

is run until the terminating condition. Genetic algorithm varies these parameters

stochastically and on convergence produces a rule base which will have rules with optimal

rule-weights in it. Since we are using a 3x3 rulebase we will require chromosomes to

consist of 9 variables per fuzzy system corresponding to the 9 rule weights.

Structure of chromosome: W1, W2, • • Wn.
Where Wi is the rules-weight, i varies from 1 to n. In this case n=9.

This approximate model is employed in the reference Fuzzy PD+I control block by

replacing the Fuzzy PD controller as shown in Figure 5.1. Equation (5.7) shows the

relation between the reference Fuzzy function F(xl, x2) and Weighted-rule Fuzzy PD

approximate function Fs, (e,e).

F(xl, x2) F„,(e,e) 	 (5.7)

Where F(x 1, x2) is the fuzzy function of the reference Fuzzy PD+I for the inputs x 1 and

x2. Fs, (e, e) is the fuzzy function of the weighted-rule Fuzzy approximate model.

5.3 Optimally Minimum Rulebase
For any given input trajectory, all the rules in the rulebase are not fired. This

suggests that the rulebase can be minimized. Along with minimization if the rules present

in the minimal set are tuned, then an optimally minimum rulebase is obtained. Rulebase is

tuned in such a way that the number of rules is minimized and optimized simultaneously.

In this section the chromosomes are encoded in such a way that the chromosome is

broken down into two sub-chromosomes, the first contains the parameters of the

consequent and the second contains binary weights [16]. Genetic algorithm is run until the

terminating condition. Genetic algorithm varies these parameters stochastically and on

- 42 -

convergence produces a rule base which will have an Optimally Minimum Rules in it. In

other words, with the various genetic operations the best consequent and the binary

weights are obtained. The consequents with weights '0' is equivalent to considering this

rule non existent.

Structure of chromosome: C1, C2, .. • , Cn, W1, W2, • • • ,Wn
Where C, is the consequent and W,, is the associated binary weight, i varies from 1

to n. Overall to find an optimally minimum rulebase for a rule base of size 'n' the length of

the chromosome required is '2n', 'n' for consequents and 'n' for weights. Here we are

using a 3x3 rulebase and hence we will have n=9. In case of consequent sub-chromosome

each consequent requires as much size as a positive integer and for weights one bit is

sufficient since it is a binary weight.

A small disturbance is given to the robot arm and the trajectory tracking is

evaluated to check if the created Optimally Minimum Rulebase is able to cope up with the

disturbance.

5.4 A Novel Stochastic Algorithm for optimization

Given a space S-2 of individual solutions CO E R" and an objective function s f,'

f (co) ---> R , optimizing f is the process of finding the solution cog which minimizes

(maximizes)f.

Random search consists of picking up random potential solutions and evaluating

them. The best solution over a number of samples is the result of random search.

Stochastic algorithm is nothing other than a random search, with hints by a chosen

heuristics (or meta-heuristics) to guide the next potential solution to evaluate [28].

Stochastic optimization algorithms were designed to deal with highly complex

optimization problems. There are a number of stochastic search algorithms present,

Genetic algorithm, simulated annealing, ant colony optimization, etc to name a few. In this

section the proposed algorithm is compared with the genetic algorithm, the scope of work

is restricted to comparison with genetic algorithm only.

The proposed stochastic search algorithm is initially tested on Rastrigin's function

and then later is used to minimize the ISE of the joint for trajectory tracking control of the

PUMA560.

- 43 -

The search algorithm is divided into three phases. In the first phase the search space

is searched thoroughly and if the solution exists outside this search space then the space is

extended, this can be considered as a global search. In the second phase the search space

restricted but still able to change its neighborhood considerably, this can be considered as a

local search. And in the third phase the search is completely restricted to a very small

space in the neighborhood of the solution, this can be considered as a highly restricted

local search phase.

Before starting the algorithm, as part of initialization a random number vector `x' is

generated within the range specified as the search space, this is done just once. With the

start of the algorithm, value of x is used as the centre and absolute value of x is used as

spread of the normal distribution in the first iteration. The spread should always be

positive. The random numbers are generated by a Gaussian function, in other words they

are normally distribution. After the first iteration the number generated by the normal

distribution is taken as `x'. The algorithm is discussed phase by phase. Let y be the

function to be minimized.

Phase I: This is the phase of global search, so the neighborhood to be searched

from the present solution has to be very large. This is ensured by making the spread of the

normal distribution equal to the arithmetic mean of the best solution of y so far and the

absolute value of random number x generated in the previous iteration by the normal

distribution. By using the number generated in the previous iteration in calculating the

spread, it is ensured that there is certain degree of randomization or perturbation in search

neighborhood, which will ensure that unknown better solutions can be explored. The mean

of the normal distribution will be the values of x corresponding to the solution of best y. If

a better solution is obtained the best x and best y are updated. When best x is updated the

centre of the distribution also moves to this location. This way it is ensured that the search

space is made variable moving towards better solution. The reason for using arithmetic

mean for spread in this stage is that the value spread will be half way between the x and y.

For example let us consider that y is a function of x where x is a vector of size 1. Now if

for x=10, best y = 0.2, then the spread that will be used for next search will be (10+0.2)/2

which is a value 5.1. This is a pretty large value of spread considering the value of x.

- 44 -

Phase II: This is the phase of moderate local search, so the neighborhood to be

searched from the present solution has to be moderate. This is ensured by making the

spread of the normal distribution equal to the geometric mean of the best solution of y so

far and the absolute value of random number x generated in the previous iteration by the

normal distribution. The mean of the normal distribution will be the values of x

corresponding to the solution of best y. If a better solution is obtained the best x and best y

are updated. When best x is updated the centre of the distribution also moves to this

location. The reason for using geometric mean for spread in this stage is that the value of

spread will be very close to the minimum value of x and y. For example let us consider that

y is a function of x where x is a vector of size 1. Now if for x=10, best y = 0.2, then the

spread that will be used for next search will be VI O*0.2 which is 1.141. This is a

moderate value of spread considering the value of x.

Phase III: This is the phase of extreme local search, so the neighborhood to be

searched from the present solution has to be very small. This is ensured by making the

spread of the normal distribution equal to the harmonic mean of the best solution of y so

far and the absolute value of random number x generated in the previous iteration by the

normal distribution. The mean of the normal distribution will be the values of x

corresponding to the solution of best y. If a better solution is obtained the best x and best y

are updated. When best .x is updated the centre of the distribution also moves to this

location. The reason for using harmonic mean for spread in this stage is that the value of

spread will be very close to the minimum value of x and y. For example let us consider that

y is a function of x where x is a vector of size 1. Now if for x=10, best y = 0.2, then the

2)
spread that will be used for next search will be

2*(10*0. which is 0.39. This is a small
(10 + 0.2)

value of spread considering the value of x.

The value of the x corresponding to the best y is returned as a result of possible

solution. Flow chart of the proposed algorithm is shown in Figure 5.3.

-45-

Initialize : range, noOlVariables, maxIteration,etc

besty 	inf
bestx <- random number vector within the range

	Yes 	111(Stop) maxiteration?

besty <- y
bestx <- x
mu <- x

y < besty ? —Yes

sigma <- AM(abs(x), besty)

–11[
—Yes 	sigma <- GIV1(abs(x) besty) Phase 11?

sigma <- HM(abs(x), besty)

x normRanci(rriu,sigma)
y obj(x)

Figure 5.3 Flow chart of the proposed stochastic optimization algorithm

This algorithm is initially used to find the minimum of Rastrigin's function. A

comparison of Rastrigin's function results by the proposed algorithm and Genetic

algorithm is made. Based on the success it is implemented for tuning the gains of the

Fuzzy PD+I controlled Puma 560 arm for pseudo-random joint trajectories. A comparison

of results by the proposed algorithm and Genetic algorithm is made.

-46-

Chapter 6: Simulation results and discussions

In this chapter, the results of different methodologies mentioned in chapters 5 are

discussed. Initially a preliminary study of tuning individual parameters in fuzzy PD+I

controller for joint control of PUMA560 robot -arm is carried out and an inference is

drawn. Next two stage tuning procedure and three stage tuning procedure are carried out

and three stage tuning is compared with simultaneous tuning procedure. Following this,

approximations of the Fuzzy PD+I are studied. Two methods of approximating the fuzzy

PD+I from input-output data, namely Bivariate Polynomial approximation and weighted

fuzzy logic approximation are carried out and a comparison is made. Further, optimally

minimum rulebase generation is discussed. Finally an algorithm is proposed which has

faster convergence than genetic algorithm.

Default Genetic Algorithm settings for the MATLAB GA toolbox are used and are

given in the Appendix A.2

The objective function considered here is based on the error criterion. In this

dissertation, performance of membership functions, rules and weight tuning are evaluated

in terms of Integral Square Error (ISE) error criteria. The error criterion is given as a

measure of performance index. The ISEs of individual joints are added together to obtain

an overall ISE. This is done to simplify the task of Genetic Algorithm. The objective of

Genetic Algorithm is to minimize this overall ISE. The overall ISE is given by Equation

(6.1).
6

ISE = E fe; (t)dt (6.1)

Where ei(t) is the error signal for the ith joint. Here i can take values from 1 to 6

corresponding to 6 joints.

6.1 Results for parameter tuning

Tuning of rules, weights and membership functions has been carried out genetically

till a best fitness is achieved. Some of the details that are to be taken care of are, the

weights need to be within the range [0 1], the rules generated must be valid, the universe of

-47-

du/dt
de

Fuzzy PD controller GE CE

IE

error

discourse should be kept same as the base system, the centers of the membership functions

mfl and mf3 are kept at -1 and 1 respectively and the center of the membership function

mfg is varied by the genetic algorithm to obtain an optimized location. The spread of all

the membership functions are changed by the genetic algorithm. Both the spread and center

are optimized in parallel while MF tuning. In this section the results for the section 5.1 are

presented. For the preliminary tuning the minimum number of generation for which the

GA is run is 200 and there after a stall limit of 50 is used upto a maximum of 500

generations.

6.1.1 Preliminary tuning

In this section the results of Base system, Rule tuning, Rule weight tuning and

Membership function tuning are discussed.

6.1.1.1 Base system

Figure 6.1 shows the structure of the Fuzzy PD+I controller, where GCE, GE, GIE

and GU are the gains of Fuzzy PD+I controller and more often called scaling factors which

can be varied to tune the controller. Here Genetic Algorithm is used to coarsely tune (to

represent manual tuning) these gains initially in order to produce base or reference system.

All other parameter tuning in this section is carried out on this base system. Figure 6.2

shows the surface view, membership function the rulebase of the reference Fuzzy PD

controller used.

Figure 6.1 Structure of the Fuzzy PD+I controller used in base system

-48-

(a)

0.8

0.6
E
E
"a
g3 0.4
rn co O

0.2

0

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
e / de / u

(b)

:le
e mfl mf2 mf3

mfl mfl mfl mf2

mf2 mfl mf2 mf2

mf3 mf2 mf3 mf3

(c)

Figure 6.2 (a) The surface view, (b) membership function and (c) rulebase of the
reference Fuzzy PD controller used.

• -49-

While providing the input to the robot, care has to be taken that the trajectory used

is continuous and smooth. The input trajectory used in this subsection is 1-cos (pi/0 since

it is a continuous and smooth function which can be double differentiated, t is time in

seconds. This trajectory is used for all the joints.

Figure 6.3 shows Input trajectory signal given to the individual joints and Figure

6.4 shows the joint error generated by the given input trajectory for reference Fuzzy PD+I

controller.

2

0
0 	0.2 	0.4 	0.6

	
0.8

Time (s)
Figure 6.3 Input trajectory signal given to the individual joints of. Puma 560

0.05

0.04:

0.03

-C7.c 0 0.02

"6- 0.01

E 0

-0_01

lirni::11"1144°114ftli 4111011ft

	 Joint I
	 Joint 2
	Joint 3
	 Joint 4
	 Joint 5
	Joint 6

-0_02

-0.03

-0.04 	
0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

Figure 6.4 Joint error generated by the given input trajectory for reference

Fuzzy PD+I controller.

0.7 0:8 0.9

-50-

6.1.1.2 Rule tuning

The result of rule tuning is presented here. The number of parameters tuned is 54 (9

rules > 6 joints). Figure 6.5 shows the Rule base after tuning of the rules and Figure 6.6

shows the control surface view of this rule base. Figure 6.7 represents the joint error

generated by the robot arm with Rule tuned Fuzzy PD+I controller.

Joint 1 rule base

N
e
le mfl m12 mf3

Si mfl mf2 mf3

m12 mfl mf2 mf3

mf3 mf3 mf3 mf3

Joint 3 rule base

NIeN
e 'al mfl mf3

mfl mf3 mf3 mfl

mfl mfl mfl mf3

mf3 mf2 mfl mfl

Joint 5 rule base

de
e mfl mfl mf3

mfl mfl mfl mfl

mfl mfl mfl mf3

m13 mfl mfl
,

mfl

Joint 2 rule base

NI e

e
1 mfl mfg mf3

mfl mfl mfl mf3

m12 . 	mfl mf2 mf3

mf3 mf2 mf3 mf2

Joint 4 rule base

N
e
le mfl m12 mf3

mfl mfl mfl mfl

mfl mfl mfl mf3

mf3 mf3 mf2 mf2

Joint 6 rule base

de
e mfl mfl m13

mfl mfl mfl mfl

mfl mfl mfl mf3

mf3 mfl mfl mf3

Figure 6.5 Rule base after Rule tuning using Genetic Algorithm

-51-

0.5

0

-0.5
1

joint 3 rule base surface

0.5

0

-0.5
1

0
de -1 -1 e

joint 4 rule base surface

004

0 03

0 02

-Z‘ 0 01
CO

0.4 	0 5 	0.6 	0.7 	0.8 	0.9
time(s)

O 0.1 	0.2 	0 3

jointl
joint2
joint 3
joint4
joints
joint6

.e) -0_01

-0.02

-0 03

-004

joint 1 rule base surface
	 joint 2 rule base surface

joint 5 rule base surface joint 6 rule base surface

0.5

0

-0.5
1

Figure 6.6 Control surfaces of the rulebase after rule tuning

Figure 6.7 Joint error generated by the robot arm N% ith Rule-tuned Fuzzy PD+I controller

- 52 -

6.1.1.3. Rule weight tuning

The result of Rule weight tuning is presented here. The weights of the rules are

tuned and the number of parameters tuned is 54 (9 weights x 6 joints). Figure 6.8 shows

the weight tuned rulebase, with weights written within brackets.

Joint 1 weighted Rulebase

de
e mfl mf2 mf3

mfl mfl
(0.0643)

Si
(0.9544)

mfl
(0.1449)

mf2 (0
m

1
fl

2) (0
m

7
2

8) (0.0
n

6)

mf3 ma
(0.9295)

mf3
(0.9741)

mf3
(0.9884)

Joint 3 weighted Rulebase

de
e mfl f2 ml? mf3

mfl mfl
(0.7259)

mfl
(0.9823)

mfl
(0.2038)

mf2 mfl
(0.7317)

mfl
(0.0133)

ma
(0.3173)

mf3 mf2
(0.9548)

mf3
(0.0624)

mf3
(0.9994)

Joint 5 weighted Rulebase

de
e mil mf2 mf3

mfl. mfl
(0.9643)

mfl
(0.1898)

ma
(0.7628)

mf2 mfl
(0.6462)

ma
(0.0799)

mf2
(0.5111)

mf3 ma
(0.8092)

mf3
(0.2067)

mf3
(0.9495)

Joint 2 weighted Rulebase

N
eN
Ie mfl mfl mf3

mil mfl
(0.9902)

mfl
(0.2041)

mf2
(0.0231)

mfl mfl
(0.2558)

m#2
(0.0666)

mf2
(0.7322)

mf3 ma
(0.1519)

mf3
(0.4503)

mf3
(0.9818)

Joint 4 weighted Rulebase

N
e
le mfl mfl mf3

mfl mfl
(0.3509)

mfl
(0.3401)

mf2
(0.2646)

mfl
mfl

(0.7820)
mf2

(0.0468)
mf2

(0.00004)

mf3 mf2
(0.962 2)

mf3
(0.6189)

mf3
(0.8178)

Joint 6 weighted Rulebase

N
e
le mfl mfl mf3

mfl mfl
(0.703)

mfl
(0.9276)

mf2
(0.039)

mf2 Si
(0.9975)

mf2
(0.0454)

mf2
(0.0486)

m f3 mf2
(0.902)

mf3
(0.9922)

mf3
(0.9340)

Figure 6.8 Weight tuned rulebase, with weights written within brackets

- 53 -

CO a_

s- 43,

0

0

0

025

0 02

015

0 01

005

0
CD

0 2 	OA 	0.6
time (s)

Figure 6.10 Joint error generated by the robot arm with Rule-weight tuned

Fuzzy PD+1 controller

-0_005

-0.01

-0.015

-0.02

-0 025
0 0.8 	 1

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6

Figure 6.9 shows the control surface of weight tuned rulebase and Figure 6.10

represents the joint error generated by the robot arm with Rule-weight tuned Fuzzy PD+I

controller.

Joint 1 control surface

0.5

0

-0.5
1

1

Joint 3 control surface

0.5

0

-0.5

1

Joint 5 control surface

Joint 2 control surface

0.5

0

-0.5

1
1

Joint 4 control surface

05

0
-0.5

1
1

Joint 6 control surface

0.5

0

-0.5

1
1

Figure 6.9 Control surface of weight tuned rulebase

-54-

1.5
1

0.5
0

1.5
1

0.5
0

mfg mf3

e de

mf1 1

e de

-0.5 	0 	0.5 	1

-0.5 0 0.5

1.5
1

05
0

_c 	-1 U)
D 15
4, 	1
E

68 0

vo

0 15
1

0.5
0
-1

1 . 5

0. 5
0

-05

1.5

-0.5

-0.5

1 mf1 mf3

0.5
0

e
1 .5

1

0.5

-1 	-0.5 0
de

05 	1

0 0.5
0

I 	- -0.5 0.5 -0_5 0 0.5
e

e

0 0_5

0.5

1

1

05
0
-1 	-05 	0

de

1.5
1

0.5 1

15
1

0.5
0

1 	-1

0.5
0

1.5
1

-0.5

-0.5

0

0

05

0.5 1

6.1.1.4. Membership function tuning

The result of membership function tuning, is presented here. The number of

parameters tuned are 72 ((9 for 'a' + 3 for bp')x 6 joints). Figure 6.11 shows the

Membership functions (MF) of the Fuzzy PD+I controller after ME tuning. Figure 6.12

shows the control surface after ME tuning and Figure 6.13 represent the joint error

generated by the robot arm with Membership functions tuned Fuzzy PD+I controller.

Figure 6.1 I Membership functions of the Fuzzy PD+1 controller after MF tuning

-0 03
0 	0 1 	0.2 	0.3 04 	05 	06 	0.7 	0.8 	0.9

time(s)

-0 02

003

0 02

0_01

ca

O

-0.01

Alk 1411 , ‘14

1

	 Joint 1
	 Joint 2

	 Joint 3

	 Joint 4 	

	

 Joint 5 	
 Joint 6

Joint 1 control surface

0
-0.2
-0.4
-0.6
-0.8

1

Joint 3 control surface

Joint 5 control surface

0.4
0.2

0
-0.2
-0.4
-0.6

1

Joint 2 control surface

0.2

0

-0.2

1

Joint 4 control surface

Joint 6 control surface

Figure 6.12 control surfaces of the Fuzzy PD+1 controller after MI' tuning

Figure 6.13 Joint error generated by the robot arm with Membership functions tuned Fuzzy

PD+1 controller

-56-

Ta
bl

e
6.

1 T
ab

ul
at

ed
 re

su
lts

 o
f t

he
 p

re
lim

in
ar

y
tu

ni
ng

y
(t

)d
t

en
9
W it a.
Cl

"a
9
4.1 m-
%.0
ci 3.

45
E-

04
 •1-

9
4.1 crN 1/4c
efi

[e
: (

t)
dt

 1/40
N
Cl d
o
o
6

1/40
9
i-11 vil
Cl
.1-

In
0 1
W in
N
gti: 0.

00
01

47

Jo
in

t 5
 IS

E

fe
:
 (t
)d

t

1.
88

E-
06

 \c, o LT!
o
-4.

.-s

to 0
.7:1

in
co
\O

■0
0
41
,--1
tin

Jo
in

t 4
 IS

E

(t
)d

t Rd-
N
1/40
0
0
0
c; 0.

00
01

15
 tn

9
Ca4
rn
In
a,

In
0
LT!)
 N

1/40. ip-1

[e
: (

t)
dt

 C1/4
o
0 0
6

in
0 al

co
—.
c o

0 1/40

i 41 n
in
ixi

9
tn

44 \O
ult.
c^4

Jo
in

t 2
 IS

E

le
:
 (t
)d

t .--4
1/4.0
en

O o cZ3

g Z 0 00'0

in
0

.4- -I

in
9
en
In

(t
)d

t ri-I
ON
‘0
0
o
o
6

in
0 al

in
r-:

'n
9
w en
rn
tr.;

cn ■0 1■1
0
0 ci
o

(A 1-1

	

LI■1 	el)

	

0 	re 	7,
d

Pi

I 1-
In

.:1- In
1

cv
N

tu

H

L

Ba
se

 sy
st

em

Ru
le

 tu
ni

ng

W
ei

gh
t t

un
in

g
7

M
F

tu
ni

ng

09 0.1 	0.2 	0.3 	0.4 	0.5 	0.6

time(s)
0.7 0.8 1

X 1 0 -3

	 joint 1
	 joint 2
	 joint 3
	 joint 4

joint 5
	 joint 6

0
CI)

0

Table 6.1 gives the number of parameters tuned; break up of the ISEs of the

individual joints and the overall ISE that is minimized by Genetic Algorithm. It provides

results of the preliminary tuning strategies in a tabular form.

The inference which is drawn from Table 6.1 is that the weights tuning provides

better results (overall ISE) than others for this system.

6.1.2 Two stage tuning

The result of the section 5.1.2 is presented here. As a first step of progressively

tuning the fuzzy controller, rule tuning is carried out. The results of rule tuning of section

6.1.1.2 are taken as the stage I results and the proceeded further with the stage II. The

number of generations of optimization in genetic algorithm is 500 for the stage I

(maximum generation in 6.1.1.2). After the rule tuning, the weights of the rules are tuned

in the second stage. The number of generations of optimization in genetic algorithm k

1000. The number of generation is so chosen such that weight tuning is done more

thoroughly. The number of parameters tuned is 54 (9 weights x 6 joints). Figure 6.14

represents the joint error generated by the robot arm with Rule-weight tuned Fuzzy PD+1

controller, Figure 6.15 shows the weight tuned rulebase, with weights written within

brackets and Figure 6.16 shows the control surface of weight tuned rulebase.

Figure-6.14 Joint error generated by the robot arm after stage II tuning

-58-

Joint 1 weighted Rulebase

Nle
e mfl mfl me

mfl mil
(0.0306)

mfl
(0.9316)

mf3
(0.1008)

mf2 mfl
(0.8930)

mfl
(0.0443)

mf3
(0.1213)

mf3 mf3
(0.0289)

mf3
(0.9404)

mf3
(0.0100)

Joint 3 weighted Rulebase

N
e
le mfl m12 mf3

mfl mf3
(0.3153)

mf3
(0.0281)

mfl
(0.2572)

mf2 mfl
(0.9398)

mf2
(0.1810)

mf3
(0.9393)

mf3 mf2
(0.2207)

mfl
(0.1864)

mf2
(0.8373)

Joint 5 weighted Rulebase

N
e
ie mfl mfl mf3

inn mf2
(0.7691)

mfl
(0.9942)

mfl
(0.2588)

mfl me
(0.009)

mf2
(0.9882)

mf3
(0.9936)

mf3 mf2
(0.8763)

mf2
(0.9907)

mfl
(0.9653)

Joint 2 weighted Rulebase

N
e
ie mfl mfg me

mfl
mf2

(0.5867)
mil

(0.9734)
mf3

(0.0853)

mfl mfl
(0.9697)

mf2
(0.0270)

mf3
(0.9136)

me mfl
(0.8997)

mf3
(0.9754)

mf2
(0.7711)

Joint 4 weighted Rulebase

N
e
le mfl mfl mf3

mfl mf2
(0.0796)

mfl
(0.8884)

mfl
(0.9974)

mf2 mfl
(0.7155)

mf2
(0.0229)

mf3
(0.9551)

mf3 mf3
(0.7841)

mfl
(0.9899)

mf2
(0.3016)

Joint 6 weighted Rulebase

N
e
le mfl m12 mf3

mfl mfl
(0,9584)

mf2
(0.0570)

mf2
(0.0353)

ml? mfl
(0.9719)

mf2
(0.2378)

mf3
(0.9400)

mf3 mfl
(0.9382)

mfl
(0.7952)

mf3
(0.9465)

Figure 6.15 Weighted-rule rulebase after Stage II tuning

0. 5

0

-0.5
1

0.5

0

-0.5
1

0.5

0

-0.5
1

Joint 4 control surface

Joint 6 control surface

Joint 1 control surface 	 Joint 2 control surface

0.5

0

1

Joint 3 control surface

0.5

z 0

-0.5
1

Joint 5 control surface

0.5

0

-0.5
1

Figure 6.16 Weighted-rule control surface after Stage II tuning

Rule tuning followed by rule-weight tuning using Genetic Algorithm is

successfully applied to the Fuzzy PD+I controller of the PUMA560. It is seen from the

plots of Figure 6.4 and Figure 6.7 that tuning the rules of rule base results in a good

performance. Further from Figure 6.14 it is evident that tuning the weights of rule tuned

rulebase makes fine tuning of the fuzzy controller possible. The control surface obtained

after the Stage II is smoother than that of Stage I, observed from Figure 6.6 and Figure

6.16. With this two-stage approach better and finer tuning of fuzzy controllers can be

implemented even for complex coupled systems.

-60-

e de
1.5

1

0.5

0

1.5

1

0.5

0
0
e

0
de

0

1_5

1

05

0

mf1

1_5

1

0.5

0
-1

1.5

1

05

0

1.5

1

0.5

0

mf1

...1111....41111111111*Alb..
1 0

de
1

mf1

1 0
de

mf1

-1 0 1

CL

E
E
0
au
a)

a)
D

15

1

05

0

e

e

0

1.5

1

05

0

15

1

0.5

0

1.5

1

0.5

0
-1

1.5

1

0_5

0
-1 0 1

1.5

1

05

0
-1

1.5
1

0_5

0

0 1

_Enf1

mf1

mf1

6.1.3 Three stage tuning

The result of the section 5.1.3 is discussed here. After the rules and their weights

are tuned in two stages above, the tuned rulebase is taken and tuning is extended in stage 3

by tuning the membership functions. The number of generations of optimization in genetic

algorithm is 500 for this case. The number of parameters tuned are 72 ((9 for 'a' + 3 for

'pe)x 6 joints). Figure 6.17 shows the Membership functions (MF) of the Fuzzy PD+I

controller after Stage III, top row denoting joint 1 MF. next row for joint 2 MF. and so on.

Figure-6.18 shows the control surface after Stage III. Figure-6.19 shows the joint error plot

of the Fuzzy PD+I controller after Stage 111.

e

de 	 U

Figure 6.17 Membership functions (MF) of the Fuzzy PD+1 controller after Stage III

- 61 -

0.5

0

-0.5
1

0
-0.2
-0.4
-0.6

1

1

0.5

0

-0.5

1

05
0

-n5
1

0.5

0

-0.5
1

Joint 4 control surface

Joint 6 control surface

05

0

-0.5
1

0
de -1 -1 e

Joint 3 control surface

Joint 5 control surface

Joint 1 control surface 	 Joint 2 control surface

Figure-6.18 Control surface of the Fuzzy PD+I controller after Stage III

8

6

Cu 4

0

0
rib
cv

'5 -2

-4

-6

joint 1

joint 2

joint 3

joint 4

joint 5

joint ji

0.1 	0.2 	0.3 	0.4 	0.5 	0.6

Time (s)

Figure-6.19 Joint error plot of the Fuzzy PD+I controller after Stage 111.

-62-

0.8 0.4 	0.6

tirne (s)
1

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6

Jo
int

 e
rr

or
 (r

ad
)

6.1.4 Simultaneous tuning

The result of the section 5.1.4 is presented here. In this section, Rules, weights and

MFs of the reference Fuzzy PD+I controller are tuned simultaneously. The number of

generations of optimization in genetic algorithm is 4000 for this case. The number of

parameters tuned is 180 ((9 rules +9 weights + (9 for '6' + 3 for V)) x 6 joints). Figure

6.20 represents the joint error generated in simultaneous tuning. Figure 6.21 shows the

weighted rulebase, with weights written within brackets. Figure 6.22 shows the control

surface. Figure 6.23 shows the Membership functions (MF) generated in simultaneous

tuning, top row denoting joint 1 MF, next row for joint 2 MF, and so on.

Figure 6.20 Joint error of the Fuzzy 131)+1 controller after Simultaneous tuning.

- 63 -

Joint 1 weighted Rulebase

e
Nie mfl mf2 mf3

mfl mf2
(0.9898)

mf1
(0.9842)

mf2
(0.1759)

mf2 mf1
(0.9532)

mf2
(0.0309)

mf3
(0.8517)

mf3 mf2
(0.7509)

mf3
(0.8802)

mf3
(0.9341)

Joint 3 weighted Rulebase

de
e mfl mf2 mf3

mfl mf1
(0.9996)

mf1
(0.9404)

mf2
(0.9771)

mf2 mf1
(0.2116)

mf2
(0.0915)

mf1
(0.1318)

mf3 mf2
(0.6531)

mf1
(0.8848)

mf2
(0.9321)

Joint 5 weighted Rulebase

:le
e mfl mf2 mf3

mfl mf2
(0.9843)

mf1
(0.9506)

mf3
(0.9409)

mfg mf1
(0.6940)

mf3
(0.9444)

mf1
(0.5144)

mf3 mf2
(0.9878)

mf1
(0.8708)

mf3
(0.9312)

Joint 2 weighted Rulebase

de
e mfl mf2 mf3

mfl mf2
(0.8871)

mf2
(0.776)

mf2
(0.8782)

mfg mf1
(0.1292)

mf3
(0.0525)

mf3
(0.9305)

mf3 mf2
(0.8273)

mf3
(0.8607)

mf3
(0.9134)

Joint 4 weighted Rulebase

de
e mfl mf2 mf3

mfl mf2
(0.2602)

mf1
(0.6198)

mf1
(0.9148)

mf2 mf1
(0.9816)

mf2
(0.9540)

mf2
(0.9483)

mf3 mf2
(0.9354)

mf3
(0.9065)

mf3
(0.9273)

Joint 6 weighted Rulebase

;le
e mfl mf2 mf3

mfl mf1
(0.1206)

mf2
(0.9719)

mf2
(0.8943)

mfg mf1
(0.9782)

mf2
(0.6448)

mf1
(0.7751)

mf3 mf2
(0.9326)

mf3
(0.9129)

mf2
(0.2038)

Figure 6.21 Weighted-rule rulebase after simultaneous tuning

1

0.5

0

-0.5

1

0.2
0

-0.2
-0.4
-0.6

1

0.2
0

-0.2
-0.4

1

de -1 -1 	e

Joint 1 control surface
	 Joint 2 control surface

0.5

z 0

-0.5
1

0.6
0.4
0.2

0
-0.2

1

de -1 -1
	

de -1 -1

Joint 3 control surface 	 Joint 4 control surface

de -1 -1 	e 	 de -1 -1

Joint 5 control surface 	 Joint 6 control surface

0.5

0

-0.5
1

de -1 -1 	e

Figure 6.22 Control surfaces of the Fuzzy PD+I controller after simultaneous tuning

- 65 -

1.5
1

0.5
0
-1 0 1

1.5
1

0.5
0

de

-1
	

0
	

1

1.5
1

0.5
0
-1
	

0
e

e)c nin m2niz

0
	

1

1.5
1

0.5
0
-1

1.5
1

0.5
0
-1

	

1.5 	
1 mtl

0.5

	

0 	
-1

1.5
1

0.5
0
-1

1.5
1

0.5
0

1 	_i

1.5
1

0.5
0

mf1 mf2 mf3

u
1.5

1
0.5

0
-1

1.5
1

0.5
c, 0
:E 	-1 m
21.5
E 1
E 0.5
o

	

e 0 	
e -1 cn
3 1.5

1
0.5

0
-1

a 1.5
1

0.5
0

1 -1

1.5
1

0.5 0;

de

mf1 	mf2 	mg,
7

0
	

1
u

mf2 rre

0
	

1
u

, ..-
_, 	

....-
...---

0 1

1.5
1

0.5
0
-1

de

0
de

u

1.5
1

0.5
0
-1 0

u

mf1 	mr2 	mf3

NA 1

0
	

1

0
	

1 0
e

0
	

1 -1
	

0
e

mf1 rrif2 	mf3

0
e

1 0
	

1
u

0
	

1 -1
de

Figure 6.23 Membership functions (MF) after simultaneous tuning

Table 6.2 provides the details of the number of parameters tuned, break up of

individual joint errors, and the overall ISE after optimization by GA for stage wise and

simultaneous tuning strategies.

Ta
bl

e
6.

2
Ta

bu
la

te
d

re
su

lts
 o

f t
he

 s
ta

ge
 w

is
e

a n
d

si
m

ul
ta

ne
o u

s t
un

in
g

O
ve

ra
ll

IS
E

6 2.
94

E-
03

L

•zr 0
I

wt
1/40
4

tn 0
W 0
00
4

kr) co I
en
N
ri

In
9
W
N
cn
4

Jo
in

t 6

IS
E

0.
00

02
76

 lc
9,
W kn
N

to
o
w o0
ki

to
cz?
w •zr
to .

‘ci 0
ail oo
,--1

Jo
in

t 5

IS
E

1/40
0

00
°°.
.-4

1/40
0 th
g
a

W

1/4©
0
W 00
N
r-:

1/40
0
r.0 to
N e■I

1/40
9
rsi N
0
en

Jo
in

t 4

IS
E

Tr
N
1/40
0
o
0
0

tr) a
0
0
0
o

N
9
14
N

1/40. en

■ 9
D

141
0
'41 —

'
0
0
4
00 en
r■

Jo
in

t 3

IS
E

(7% cr‘ o
o cm
o

in
9
w 00
co. r•

1/40
9
w
a,
Cr;

1/40
co al
kin
N
er;

in
9
W en .
l 	

.
i

Jo
in

t 2

IS
E

TI
14C
reI
0
0
0
6

CZ000.0

1/40
9
V-1
C■
CT
re;

00
0
414
0
N
NI

In
0 iii
0•%
CIN: ri

Jo
in

t 1

IS
E

,-1
O'N
1/4.0
0 o o
c;

in
0
W
in
N

14r)
9
C-•
c4

 o

1/40
9
1[4
•ct- cao

N
0 I

'71-
c:

N
o.

 o
f

pa
r a

m
e t

er
s

tu
n e

d

I itt
la

in 1
tn

N N e
VI
4
In

0
00

0
PL4
>1
H

B
as

e s
ys

te
m

St
ag

e
I :

 R
ul

e
tu

ni
ng

St
ag

e
II

 :
R

ul
e-

W
ei

g h
t

tu
ni

ng

St
ag

e
II

I :
 R

ul
e-

W
ei

gh
t-

M
F

tu
ni

ng

Si
m

ul
ta

ne
ou

s t
un

in
g

A comparative study of two different parameter tuning methods of the Fuzzy

Controller is carried out. In the first method Fuzzy controller tuning in three stages is

carried out and in the second method simultaneous tuning of all the mentioned parameters

is done. Table 6.2 provides a comparison of the two strategies mentioned in terms of the

performance criterion. The performance used for evaluating the performance is according

to the Equation (6.1) which is presented in the last column of the Table 6.2. It can be seen

from the table that progressively tuning the fuzzy controller for the control of PUMA 560

has lesser overall ISE than simultaneously tuning procedure. The total number of

generations of optimization required to obtain the result in case of the progressive tuning is

2000 generations (500 for rules + 1000 for weights + 500 for membership functions),

Which is half of that for simultaneous tuning. The main problem with simultaneous tuning

procedure is that the number of parameters in use (180 parameters). To find an optimum

solution with 180 parameters is searching a space of dimension 180 to find one optimum

solution. Due to this the solution gets stuck in a local minimum. On the other hand in the

progressive tuning we take only one set of parameters at a time for tuning and then proceed

with the next. The problem that could arise in this situation is that we might end up with a

sub-optimal solution which tends to get oriented towards the solution of the first stage.

This is clearly seen in control surface plots in the Figure 6.6, Figure 6.16 and Figure-6.18.

6.2 Results for Approximations of systems

The results of two approximation methods discussed, namely Bi-variate

Polynomial approximation and Weighted Fuzzy approximation are presented here.

Approximation of the reference Fuzzy PD+I controller of section 6.1.1.1 is performed

using the input-output data points. Both the methods are compared at the end of this

section.

6.2.1 Bivariate polynomial approximation

The result of bivariate polynomial approximation is presented here. The bi-variate

polynomial chosen for the approximation of fuzzy control surface is given as (x+y+1)1°,

with all the coefficients being replaced by variables that can get modified by genetic

algorithm so that an optimal value of these coefficients can be found. Figure 6.24 shows

- 68 -

the surface plot of the bi-variate polynomials generated. Figure 6.25 shows the joint error

by the both bivariate polynomial approximated controller and the reference Fuzzy PD+I

controller.

Joint 1
	

Joint 2
	

Joint 3

Joint 4
	

Joint 5
	

Joint 6

Figure 6.24 Surface plots of the bi-variate polynomials generated.

The Bivariate polynomial equation and its coefficients are given in the Appendix
Al. It is seen from Figure 6.25, that the Bi-variate polynomial of sufficiently high degree

can approximate a fuzzy controller with certain approximation error. The approximation

error can act both constructively and destructively. The aim of the section was to create a

method which will extend to approximating a multivariable and a complex system. With

this approximation technique any systems approximate model can be created. This

particularly is useful when we need to make an approximate model of a real time system

without going through rigorous mathematical procedures.

- 69 -

V 	 V 	 V

481111111113"4.1, watmovivriii

	 Joint 1
	 Joint 2
- Joint 3

Joint 4
Joint 5

	 Joint 6

0.05

0.04

0.03

-vc• 0 02 co

c, 001

ac•
0

-0.01

1

Joint 1

Joint 2

Joint 3
Joint 4

Joint 5

Joint 6

0_1 	0.2 	0_3 	0.4 	0.5 	0.6
Time (s)

-0.02

-0 03

-0.04
o 0.9 0.7 0.8

- 41

0.06

0.04

0 02

0

-0.02

-0.04

-0 06
0 0.1 	0.2 	0.3 	0.4 	0.5 	0.6

Time (s)
0.7 0.8 0.9

(a)

(b)

Figure 6.25 (a) Joint error by the bivariate polynomial approximated controller and (b)

joint error of the reference Fuzzy PD+ I controller.

6.2.2 Weighted-rule Fuzzy approximation

The result of the weighted-rule fuzzy approximate system is presented here. The

weighted fuzzy approximate system so found approximates fuzzy controller behavior in

the region of operation for which the data points were collected. Figure 6.26 shows the

Membership functions (MF) generated, top row denoting joint 1 MF, next row for .joint 2

MF, and so on. Figure 6.27 shows the weighted rulebase, with weights written within

- 70 -

0
error

0-5

0
-0.05

1

0.5

0
0.05

1

0.5

0

1
	 Z 	p

0.5

0
0.05 0

error
-0.05 -0.1 0 	0.1

derror
-1 0 	1

output 	X 10
-3

5 0
output X 10-4

1
0.5

0

1

05

0
-0 2 	0 	0.2

derror

1

0.5

0

1

0.5

0

1 N 	 Z 	P 	1

0.5 	 0.5

0 	0
-002 	0 	0.02

error

1

0.5

0

w

-1?

0.5 0
0

0
-0.01-0 005 0 0 005 0 01

error

1

0.5

0
-2

1
0.5

0
-4 0

error
2 	4

x 10-3

0
error x 10-3

7 P

0.02 0
derror

-0.02 2

x 10

-2 	0
output

N 	Z

0
output

1

X 10-4

-0.4 -0-2 0 0-2 0.4
derror

1

0.5

0

1
05

0
-05 	0 	0.5 	 -0.01 	0 	0.01

derror 	 output

-0.05 	0 	0.05
derror

N 1

0.5

0

z

brackets. Figure 6.28 shows the control surface. Figure 6.29 shows the joint error by the

both weighted rule fuzzy approximate controller and the reference Fuzzy PD+I controller

Figure 6.26 Membership functions of the weighted-rule fuzzy approximate system

-71-

Joint 1 Rulebase

de
e N Z P

N N
(0.7482)

N
(0.9366)

Z
(0.1492)

Z N
(0.9828)

Z
(0.0195)

P
(0.4181)

P Z
(0.0331)

P
(0.1178)

P
(0.5807)

Joint 3 Rulebase

de
e N Z P

N N
(0.0155)

N
(0.8018)

Z
(0.9517)

Z N
(0.9764)

Z
(0.0388)

P
(0.2159)

P Z
(0.2292)

P
(0.1106)

P
(0.1669)

Joint 5 Rulebase

de
e N Z P

N N
(0.0649)

N
(0.9553)

Z
(0.6651)

Z N
(0.839)

Z
(0.1698)

P
(0.377)

P Z
(0.9653)

P
(0.7023)

P
(0.4319)

Joint 2 Rulebase

de N e Z P

N N
(0.7919)

N
(0.9318)

Z
(0.1021)

Z N
(0.5848)

Z
(0.0118)

P
(0.3798)

P Z
(0.1012)

P
(0.321)

P
(0.5908)

Joint 4 Rulebase

de N Z P

N N
(0.8136)

N
(0.0718)

Z
(0.9437)

Z N
(0.8637)

Z
(0.0584)

P
(0.0638)

P Z
(0.0301)

P
(0.1019)

P
(0.1282)

Joint 6 Rulebase

de
e N Z P

N N
(0.0449)

N
(0.9376)

Z
(0.6917)

Z N
(0.9659)

Z
(0.0053)

P
(0.1416)

P Z
(0.3410)

P
(0.0512)

P
(0.0281)

Figure 6.27 Rulebase of the weighted-rule fuzzy approximate system

5

0

x 165 	Joint 5 control surface

0

0

0
x 10

0.05 0
-0.05

derror
-2

error

x 10 5 	Joint 6 control surface

Figure 6.28 Control surface of the weighted-rule fuzzy approximate system

5 0 0

5

0

-5

0.05

x 10 	
Joint 1 control surface

x 10.4 	Joint 3 control surface

x 10
4 	Joint 2 control surface

x 10.3 	Joint 4 control surface

005

0.04

0.03

0.02

0.01

0
-se
a

-001

-0 02

-0.03

rIA I 	, I I 	, 	_.

-

-

-

Joint 1

Joint 2

I

--

--- _

Joint 3

— Joint 4

Joint 5

Joint 6

I

0 	0 1 	0 2 	0 3
	

0.4 	0.5
	

0 6 	0.7 	0.8 	0.9 	1
Time (s)

(a)

0.05

004

0.03

0_02

0.01

-0.01

-0.02

-0.03

I I
1 ' 	i

--1-

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

l I

Joint 6

' -004 1
0 0 1

i
0-2 0.3 0 4 	0.5 	0.6

Time (s)
0_7 0.8 0.9 1

(b)

Figure 6.29 (a) Joint error by the weighted-rule fuzzy approximate system and (b) joint

error of the reference Fuzzy PD+I controller.

Table 6.3 shows the tabulated results of the joint error ISEs of polynomial approximation

and weighted-rule fuzzy approximation strategies. Table 6.4 shows the tabulated results of

the approximation errors of polynomial approximation and weighted-rule fuzzy

approximation strategies

co

-a

- 74 -

Table 6.3 Tabulated results of the joint errors of polynomial approximation and weighted-
rule fuzzy approximation methods

Type
Joint I

ISE

Joint 2

LSE

Joint 3

ISE

Joint 4

ISE

Joint 5

ISE

Joint 6

ISE

Total

ISE

Base sys 0.000691 0.000361 0.00099 0.000624 1.88E-06 0.000276 2.94E-03

Bivariate polynomial

approximation
5.20E-06 0.000694 0.001036 0.000449 0.000521 0.000717 3.42E-03

Weighted-Rule fuzzy

approximation
0.000837 0.00015 0.000624 0.00062 3.00E-06 0.000208 2.44E-03

Table 6.4 Tabulated results of the approximation errors of polynomial approximation and
weighted-rule fuzzy approximation methods

Type Joint I Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
Total

ISE

Bivariate polynomial

approximation error (ISE)
0.000751 0.000959 0.003183 0.000672 0.000537 0.001214 7.31E-03

Weighted-Rule fuzzy

approximation error (ISE)
9.32E-05 5.33E-05 8.93E-05 1.78E-05 9.79E-07 9.49E-05 3.49E-04

Comparing the Figure 6.25 and Figure 6.29 and from the data in Table 6.3 it is
evident that the approximation by weighted fuzzy systems is a better option when
compared to the bivariate-polynomial approximation technique. The approximation error
from the Table 6.4 also verifies the same. Approximation by weighted fuzzy systems is
convenient for a two input one output systems, but when the number of inputs is large then
approximation by weighted fuzzy system will become tricky because of the explosion in
the number of rules. In this case the approximation by an n-variate polynomial will be of
use.

- 75 -

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6

5

4

3

6.3. Results for Optimal!) minimum rulebase

For any given input trajectory, all the rules in the rulebase are not fired and those

fired may not be the best. This suggests that the rulebase can be minimized with only the

best rule entries. The rule base so obtained is an optimally minimum rulehase which is

achieved by tuning the rulebase in such a way that the number of rules is minimized and

the rules in them are optimized simultaneously. The result of the section 5.3 is presented

here.

The Fuzzy PD controller design used in section 6.1.1.1 is used here, except that the

gains are tuned optimally for the given input Sinusoidal signal with frequency of 2 rad/sec

and amplitude of [1 2 3 4 5 61 rad, amplitude of 1 for joint 1, 2 for joint 2 and so on. The

Fuzzy PD-1-1 controller after genetically gain tuning for the input shown in Figure 6.30

input applied only for l sec, the reference system for this section is obtained. The Joint

errors plot for this reference system is shown in Figure 6.31.

I 	I 	I 	I 	1
0.1 	02 	0.3 	0.4 	0.5 	0.6

Time (s)

Figure 6.30 Input joint trajectories for genetic algorithm based optimally gain tuning of

reference system used for optimally minimum rulebase study.

0_7
	

0_8
	

0.9
	

1

-76-

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6

0.7

0.6

0.5

:173 0.4
(s.!

 03

4E1
—30 0.2

0.1

-0.1
0 	0.1 	02 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9

Time(s)

0

1

Figure 6.31 Joint errors of the reference system (for optimally minimum rulebase study)

after genetic algorithm gain tuning.

After the reference system for this section is obtained, generation of optimally

minimum rulebase by genetic algorithm is carried out. Figure 6.32 shows the optimally

minimum rulebase of the Fuzzy PD+I controller created by genetic algorithm. Figure 6.33

shows its control surface, and Figure 6.34 shows the joint error plot for input signal shown

in Figure 6.30.

Joint 1 Rulebase

N
e
ie mfl mf2 mf3

mf1 mfl

mf2

mf3 mf3

Joint 3 Rulebase

N
e

e mfl mf2 mf3

mfl

mf2 mf1

mf3 mf3 mf3

Joint 5 Rulebase

N
e

o mfl
r

mf2

/

mf3

mfl mf1

mf2

mf3 mf3

Joint 2 Rulebase

Ns ,leNN k
e mfl mfg mf3

mfl mf1

mf2 mf1 mf3

mf3 mf2 mf3 mf2

Joint 4 Rulebase

N
e
s mfl mf2 mf3

mil mfl

mf2 mf1 mf2 mf2

mf3 mf3 mf2

Joint 6 Rulebase

N
e
le mfg mf2 mf3

mfl mf1 mfl

mf2 mf3

mf3

Figure 6.32 Optimally minimum rulebase created by genetic algorithm

0.8 07 0.9 1

0.7

0.6

0.5

04

03

0.2

0.1

-0.1
0 0 4 	0.5 	0 6

Time (s)
0.1 02 03

Joint 1
Joint 2

Joint 3

Joint 4

Joint 5
Joint 6

Joint 1 control surface 	 Joint 2 control surface

0.5

-0.5
1

0.5

0

-0.5
1

Joint 3 control surface 	 Joint 4 control surface

0.5
0

-0.5
1

05

0

-0.5
1

Joint 5 control surface 	 Joint 6 control surface

0.5

0

-0.5
1

0.5

-0.5
1

Figure 6.33 Control surface of optimally minimum rulebase

Figure 6.34 Joint errors for optimally minimum rulebase.

-79-

Di
stu

rb
an

ce
 a

t O
utp

ut
(ra

d)

-0.02

-0.04

-0 06

0 04

0.02

0 06

0

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

1

-0_2 	
0 	0_5 1.5 	2

	
2.5 	3

Time (s)

0_7

0.6

0_5

0_4
co

0_3

0 2

0 1

-0.1

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

After the generation of the optimally minimum rulebase, disturbance analysis is

done on this system. The input is now extended till pi sec, and a disturbance as shown in

Figure 6.35 is applied at 1 sec to the output joint angle. Figure 6.36 shows the joint error

plot for this disturbance. The input and output joint trajectory for the optimally minimum

system is shown in Figure 6.37. From the plot in Figure 6.36 and Figure 6.37 it is seen that

this rulebase can handle small disturbances as well.

0.8 	0.9 	1 	1.1 	1_2 	1_3 	1.4 	1 5

Time (s)

Figure 6.35 Plot of the disturbance signal given to the robot arm at 1 sec

Figure 6.36 Joint errors for optimally minimum rulebase with disturbance

signal given at 1 sec

- 80 -

o

Joint 1 input
Joint 2 input
Joint 3 input
Joint 4 kW
Joint 5 input
Joint 6 input
Joint 1 output
Joint 2 output
Joint 3 output
Joint 4 output
Joint 5 output
Joint 6 output

I 	I 	I
0.5 	1 	1.5

Time (s)

ma*

2 2.5 3

Figure 6.37 Input and output joint trajectory for optimally minimum rulebase.

6.4 Results for proposed Stochastic Algorithm

The results of the proposed algorithm are presented here. To verify the functioning

of the proposed algorithm, it is first tested on Rastrigin's function. Rastrigin's function is

often used to test the algorithm, because has many local minima. Once the algorithm works

on Rastrigin's function, it can be tested on other functions. For two independent variables,

Rastrigin's function is defined as in Equation (6.2)

Ras(x) = 20 + x,2 + x.; —10(cos 2;rx 1 + cos2nx 2) 	 (6.2)

Rastrigin's function has many local minima but the function has just one global

minimum [23], which occurs at the point [0, 0] in the x-y plane, where the value of the

function is 0. At any local minimum other than [0, 0], the value of Rastrigin's function is

greater than 0. The farther the local minimum is from the origin, the larger the value of the

function is at that point. Figure 6.38 show the plot of Rastrigin's function.

00

20

0
-5

....... 	C^: 	1 .7-• 	1 ss . -- 0.-- 	• -.0 •, e

5 5

0

Global minimum al lo cil

Figure 6.38 Plot of the Rastrigin's Function

Table 6.5 shows the tabulated results for Rastrigin's function by Genetic algorithm

and proposed algorithm. The initial range of search space was [9, 101

Table 6.5 Results for Rastrigin's function by Genetic algorithm and proposed algorithm

Algorithm used xl x2 y
Genetic Algorithm 0.0011 0.99877 0.99808
Proposed algorithm 2.06E-07 -2.21E-07 1.81E-11

Figure 6.39 shows the comparative plot for objective function value of Rastrigin's

function by Genetic algorithm and proposed algorithm with the x axis denoting the

objective function value of Rastrigin's function and y axis denoting the number of

iteration. Since we are using genetic algorithm with population size of 20, one generation

corresponds to 20 iterations. Genetic algorithm is run for 50 generations, in other words

1000 iterations.

1.5
Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6

0 5

-0 5

Ob
jec

tiv
e f

un
cti

on
 va

lue
 of

 R
as

tr ig
in s

 fu
nc

tio
n 10-

100

10 -

10
-10

10-''
0 200 400 600 800 1000 1200 1400 1600 1800 2000

function count (no of iterations)

Proposed algorithm
Genetic algorithm

Figure 6.39 Comparative plot for objective function value of Rastrigin s function

by Genetic algorithm and proposed algorithm

With the encouraging Rastrigin's function result, the algorithm is used for tuning

the gains of the reference Fuzzy PD+1 controller described in section 6.1.1.1. Now a

Pseudo-random joint angle trajectory is used as input to robot arm as shown in Figure 6.40.

Pseudo random joint trajectory generation is discussed in Appendix A.4.

0 	0 1 	0.2 	0_3 	0.4 	0.5 	0.6 	0-7 	0.8 	0.9 	1
Time (s)

Figure 6.40 Pseudo-random input joint angle trajectories

inp
ut

joi
nt

tra
j ec

to
ry

 (ra
d)

- 83 -

10
o

10
-3

0

1 	 T 	 I 	 I
. 	 .

GA results

. 	 ,
Proposed Algorithm results

. 	 .

. 	 .

li

- 	 --i--,__ 	 -
i

. 	 ,

i
200 	400 	600 	800

function count (no. of Iterations)

1000

The objective function used is same as Equation (6.1). Figure 6.41 shows the

convergence of both Genetic algorithm and the proposed algorithm. Figure 6.42 shows the

joint error plot for gain tuning by Genetic algorithm and Figure 6.43 shows the joint error

plot for the gain tuning by the proposed algorithm.

Figure 6.41 Convergence plot of Genetic algorithm and the proposed algorithm.

0 12

0 1

0 08

cu 0 06

ILL)

004
a)

-5 0.02

0

-0 02

-004
0
	

0.2
	

04
	

06
	

0.8
Time(s)

Figure 6.42 Joint errors plot for gain tuning by Genetic algorithm

-84-

-C3
cv

01

0.08

0 06

004

002

0.7 0_8 0.9 1
-0.06

0 	0_1 	0_2 	0.3 	0.4 	0.5 	0 6

Time (s)

0

-0.02

-004

Figure 6.43 Joint errors plot for gain tuning by proposed algorithm

The value of the performance index by the Equation (6.1) is 4.15E-03 for Genetic

algorithm after 1000 iterations (50 generation) and 3.63E-03 for the propose algorithm

after 1000 iterations

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Chapter 7: Conclusions and Future Scope

In this dissertation, Genetic fuzzy system for the joint control of PUMA560 is

evaluated using various methodologies. As part of the preliminary studies Rule tuning,

Rule-weight tuning and Membership function tuning were successfully carried out using

Genetic algorithm and it has been established that Rule-weight tuning gives a better

performance index when compared with the other two. Later two stage tuning method of

Rule followed by Rule-weight tuning is evaluated and it was seen that there is performance

improvement. Next, three stage tuning method consisting of two stage tuning followed by

Membership function tuning is evaluated and it was established that there is still better

performance improvement. Simultaneously tuning of all these parameters were carried out

and based on the results, it was found that its performance is inferior to the three stage

tuning method.

Approximation of the fuzzy function is carried out from its input output data. Of

the two methods used for approximation, namely Bivariate polynomial approximation and

Weighted-Rule Fuzzy approximation, The Weighted-Rule Fuzzy approximation is better.

The bivariate Polynomial approximation can be easily extendable to multi-variate scenario,

but will have a large approximation error on the other hand extending Weighted-Rule

Fuzzy approximation for multiple inputs can get complicated.

Optimally minimum rule base was generated successfully by genetic algorithm and

employed for control of joint trajectory of PUMA560. It was seen that this rule base can

successfully handle small disturbances as well.

Evaluation of the proposed stochastic algorithm based on the empirical and

graphical data are encouraging. It proves its worth by being able to converge at a faster rate

when compared to Genetic algorithm for the Rastrigin's function and gain tuning of Fuzzy

PD+I controller of PUMA560.

As part of future work, improvement of the simultaneous tuning method can be

undertaken by studying the effects of genetic fitness, scaling and other option on it. The

Weighted-Rule Fuzzy approximation can still be improved by tuning other parameters

along with the weights. Improving the proposed algorithm can be a worthy undertaking.

- 86 -

References

[1]. Bruno Siciliano , Lorenzo Sciavicco, Luigi Villani and Giuseppe Oriolo, "Robotics:

Modelling, Planning and Control", Advanced Textbooks in Control and Signal

Processing series, ISSN 1439-2232, ISBN 978-1-84628-641-4, Springer-Verlag

London Limited, 2009.

[2]. Lakhmi C. Jain and N.M. Martin, "Fusion of Neural Networks, Fuzzy Systems and

Genetic Algorithms: Industrial Applications", CRC Press, CRC Press LLC,

ISBN: 0849398045, 1998.

[3]. Jan Jantzen, "Foundations of Fuzzy Control", ISBN 978-0-470-02963-3, John Wiley

& Sons Ltd, 2007.

[4]. S.N.Sivanandam and S.N.Deepa, "Introduction to Genetic Algorithms", ISBN 978-3-

540-73189-4, Springer-Verlag Berlin Heidelberg 2008.

[5]. Bong Joo Kim and Chung Choo Chung, "Design of Fuzzy PD + I Controller for

Tracking Control", Proceedings of the American Control Conference Anchorage, AK

May 8-1, AACC ,p: 2124-2129, 2002.

[6]. Srinivasan Alavandar and M.J. Nigam, "Fuzzy PD + I control of a six DOF robot

manipulator", Industrial Robot: An International Journal, Volume 35, Number 2,

p:125-132, 2008.

[7]. Sufian Ashraf Mazhari and Surendra Kumar, "PUMA 560 Optimal Trajectory Control

using Genetic Algorithm, Simulated Annealing and Generalized Pattern Search

Techniques", International journal of electrical, computer and systems engineering

2;1, p:71-80, winter 2008.

- 87 -

[8]. Sufian Ashraf Mazhari and Surendra Kumar, "Heuristic Search Algorithms for

Tuning PUMA 560 Fuzzy PID Controller", International journal of computer science

3;4 , fall 2008.

[9]. O.Cordon, F.Herrera, E.Herrera-Viedma and M.Lozano, "Genetic Algorithms and

Fuzzy logic in control processes", Department of computer science and artificial

intelligence (DECSAI), Technical report # DECSAI-95109, March, 1995.

[10]. Oscar Cordon, Francisco Herrera, Frank Hoffmann and Luis Magdalena, "Genetic

Fuzzy Systems.. Evolutionary Tuning And Learning Of Fuzzy Knowledge Bases",

Advances in Fuzzy Systems — Applications and Theory, World Scientific

Publishing Co. Pte. Ltd. Vol. 19, ISBN 981-02-4016-3, 2001.

[11]. Rafael Alcala, Oscar Cordon, and Francisco Herrera, "Combining Rule Weight

Learning and Rule Selection to Obtain Simpler and More Accurate Linguistic Fuzzy

Models", Modelling with Words, LNAI 2873, pp. 44-64, 2003.Springer-Verlag

Berlin Heidelberg 2003.

[12]. Hisao Ishibuchi, Yutaka Kaisho, and Yusuke Nojima, "Complexity,. Interpretability

and Explanation Capability of Fuzzy Rule-Based Classifiers", FUZZ-IEEE 2009,

Korea, August 20-24, 2009.

[13]. D. Nauck, "Adaptive Rule Weights in Neuro-Fuzzy Systems", Neural Computing &

Application, Springer-Verlag London Limited, 2000 vol.9 p: 60-70, 2000.

[14]. Mariano Gasca and Thomas Sauer "On the history of multivariate polynomial

interpolation", Journal of Computational and Applied Mathematics 122, p: 23-35,

2000

[15]. Mariano Gasca and Thomas Sauer, "Polynomial interpolation in several variables",

Advances in Computational Mathematics, vol 12; part 4, p: 377-410, 2000

- 88 -

[16]. K. Belarbi, F. Titel, W. Bourebia and K. Benmahammed, "Design of Mamdani fuzzy

logic controllers with rule base minimisation using genetic algorithm", Engineering

Applications of Artificial Intelligence vol.18 p: 875-880, 2005

[17]. Srinivasan Alavandar, "Intelligent control of Robot manipulators using soft

computing techniques", PhD. Thesis report, Indian Institute of Technology Roorkee,

December 2008

[18] Structure of PUMA 560 robot manipulator. Web Resource available at,

http://www.emeraldinsight.com/fig/0490250605009.png

[19]. D.K. Chaturvedi, "Soft Computing: Techniques and its Applications in Electrical

Engineering", Studies in Computational Intelligence, Volume 103, ISBN 978-3-540-

77480-8, Springer-Verlag Berlin Heidelberg 2008.

[20]. Kevin M. Passino and Stephen Yurkovich, "Fuzzy Control", Addison Wesley

Longman, Inc., ISBN 0-201-18074—X, 1998

[21]. Rafael Alcala, Jose Ramon Cano, Oscar Cordon ,Francisco Herrera, Pedro Villar and

Igor Zwir, "Linguistic modeling with hierarchical systems of weighted linguistic

rules", International Journal of Approximate Reasoning 32, p:187-215, 2003

[22]. M. Mucientes, R. Alcala, J. Alcala-Fdez, and J. Casillas, "Learning Weighted

Linguistic Rules to Control an Autonomous Robot", International Journal of

Intelligent Systems, Vol. 24, Issue 3, p: 226-251, 2009

[23]. MATLAB Help file, MATLAB Version 7.0.1.24704 (R14 with Genetic algorithm &

Direct search toolbox and Fuzzy Logic Toolbox), The MathWoks Inc, 2004

- 89 -

[24]. F. Herrera and L. Magdalena. "Genetic Fuzzy Systems: A Tutorial", R.Mesiar,

B.Riecan (Eds) Fuzzy structures, Current trends. Lecture Notes of the Tutorial:

Genetic Fuzzy Systems. Seventh IFSA world congress (IFSA97), Prage, June 1997,

Tatra Mountains Mathematical Publications Vol. 13, p: 93-121, 1997.

[25]. F. Hoffmann, "Evolutionary algorithms for fuzzy control system design," Proc. IEEE,

vol. 89, p: 1318-1333, 2001

[26]. D. Drainkov, H. Hellendoorn and M. Rienfrank "An Introduction to fuzzy control",

ISBN 81-7319-069-0, Springer-Verlag Berlin Heidelberg, 1993

[27]. David Terr. "Bivariate Polynomial", MathWorld, Web Resource,

http://mathworld.wolfram.com/BivariatePolynomial.html

[28]. Pierre Collet and Jean-Philippe Rennard, "Stochastic Optimization Algorithms",

Handbook of Research on Nature Inspired Computing for Economics and

Management, ISBN: 1-59140-984-5, 2006

- 90 -

Research and publications by the author

I. Singh Vivekkumar Radhamohan, Mona Subramaniam A and M.J.Nigam, "Fuzzy

Swing-up and Stabilization of Real Inverted Pendulum using single Rulebase", Journal

of Theoretical and Applied Information Technology, vol 14. no. 1 , pp. 43-50,

April-2010.

2. Mona Subramaniam A, Manju A and M.J.Nigam, "Bi-variate Polynomial approximation

of Fuzzy controller using Genetic Algorithm for Trajectory control of Puma560",

International conference on advances in information and communication technologies

2010, Proceedings will be published by Springer LNCS-CCIS (accepted for conference

on 07-09 Sep 2010)

3. Mona Subramaniam A, Manju A and M.J.Nigam, "Two-stage weighted Fuzzy Rulebase

tuning using Genetic Algorithm for Trajectory control of Puma560", International

Journal of Computational Cognition (submitted for review)

4. Mona Subramaniam A, Manju A and M.J.Nigam, "Comparative Study on parameter

tuning of weighted Fuzzy Rulebase using Genetic Algorithm for Trajectory control of

Puma560", Journal of Intelligent and Fuzzy Systems. (Submitted for review)

5. Mona Subramaniam A, Manju A and M.J.Nigam, "A study on parameter tuning of

weighted Fuzzy Rulebase using Genetic Algorithm for Trajectory control of

Puma560", (under writing)

6. Mona Subramaniam A, Manju A and M.J.Nigam, "Optimally minimum fuzzy rulebase

generation using Genetic Algorithm for Trajectory control of Puma560", (under

writing)

7. Mona Subramaniam A, Manju A and M.J.Nigam, "A Novel Stochastic Algorithm using

Pythagorean mean for minimization", (under writing)

-91-

Appendix Ai: PUMA560 Dynamic parameters

For the dynamic equation M(q)q+C(q,4)q + g(q) = r , the values of the mass

inertia matrix, Coriolis matrix, gravitational matrix and the actuator torque limitations of

PUMA560 are given in this section.

Mass inertia matrix

m 1 1 = 2.57 + (1.38*c2*c2) + (0.3*s23*s23) + (0.744*c2*s23);

m12 = (0.69*s2) + (-0.134*c23) + (0.0238*c2);

m13 = (-0.134*c23) + (-0.00397*s23);

m14 = 0;

m15 = 0;

m16 = 0;

m21 =m12;

m22 = 6.79 + (0.744*s3);

m23 = 0.333 + (0.372*s3) + (-0.011*c3);

m24 = 0;

m25 = 0;

m26 = 0;

m31 = m13;

m32 = m23;

m33 = 1.16,

m34 = -0.00125*s4*s5;

m35 = 0.00125*c4*c5;

m36 = 0;

m41 = m14;

m42 = m24;

m43 = in34;

- 92 -

m44 = 0.2;

m45 = 0;

m46 = 0;

m51 = m15;

m52 = m25;

m53 = m35;

m54 = m45;

m55 = 0.18;

m56 = 0;

m61 =m16;

m62 = m26;

m63 = m36;

m64 = m46;

m65 = m56;

m66 = 0.19;

Coriolis matrix

corll = (-1.38*cl*s1* qdl) + 0.5* qd2*(0.6*s23*c23 - 0.744*s2*s23 +0.744*c2*c23)

+0.5* qd3*(0.6*s23*c23 - 0.744*s2*s23 +0.744*c2*c23);

cor12 = 0.5* qd1*(0.6*s23*c23 - 0.744*s2*s23+ 0.744*c2*c23) + 0.5* qd2*(1.38*c2 +

0.268*s23- 0.0476*s2) + 0.5* qd3*(0.268*s23 - 0.00397*c23);

cor13 = 0.5* qd1*(0.6*s23*c23 + 0.744*c2*c23) + 0.5* qd2*(0.268*s23 - 0.00397*c23) +

0.5* qd3*(0.268*s23 - 0.00794*c23);

cor21 = 0.5* qd1*(-0.6*s23*c23 + 0.744*s2*s23 -0.744*c2*c23) + 0.199* qd3*c23;

- 93 -

cor22 = 0.372* qd3*c3;

cor23 ----- 0.00199* qdl*c23 + 0.372* qd2*c3+0.5* qd3*(0.744*c3 + 0.022*s3);

cor31 = 0.5* qd1*(-0.6*s23*c33 +0.744*s2*s23 - 0.744*c2*c23) + 0.00199* qd3*c33;

cor32 = 0.372* qd3*c3;

cor33 = 0.00199* qdl*c23 + 0.372* qd2*c3+ 0.5* qd3*(0.744*c3 + 0.022*s3);

All other Coriolis matrix elements are zeros.

Gravity matrix

gl = 0;

g6 = 0;

g2 = -37.196*c2-8.445*s23+1.023*s2;

g3 = -8.445*s23 + 1.023*c23 + 0.248*c23*c45+ c5*s23;

g4 = 0.028*s23*s4*s5;

g5 = -0.028*(c23*s5 + s23*c4*c5);

Actuator torque limitations

-97.6Nm 	97.6Nm

-186.4Nm r2 186.4Nm

-89.4Nm < r3 89.4Nm

-24.2Nm r4 5 24.2Nm

-20.1Nm r4 20.1Nm

-21.3Nm 	21.3Nm

-94-

Appendix A.2: Default Genetic Algorithm settings

Genetic Algorithm settings used for simulation are as follows.

Population size 	 20

Creation function 	 uniform

Scaling function 	 Rank

Selection function 	 stochastic uniform

Elite count 	 2

Crossover fraction 	 0.8

Mutation function 	 Gaussian

Crossover 	 scattered

Migration direction 	 forward

Migration fraction 	 0.2

Migration interval 	 20

Appendix A.3: Generated Bivariate Polynomial coefficients

The Bivariate polynomial equation used in this thesis is given below, where 'x'

corresponds to the error signal and 'y' corresponding to differential of error signal of the

input signal. 'z' is the output of the bivariate polynomial equation.

z=k01 +k02*x +k03*y +k04*x^2 +k05*x^3 +k06*x^4 +k07*x^5 +k08*x^6 +k09*x^7

+k10*x"8 +kl 1*x^9 +k12*x^10 +k13*x^9*y +k14*y^2 +k15*x"8*y^2 +k16*x^8*y

±k17*xA7*yA3 +k19*xA7*yn2 +k20*xA7*y +k21*x^6*y^4 +k22*x^6*y^3 +k23*x^6*y^2

+k24*x^6*y +k25 *xA5*yA5 +k26*yA3 +k27*yA4 +k28*yA5 +k29*yA6 +k30*yA7

+k31*y^8 +k32*y^9 +k33*x^5*y^4 +k34*x^5*y^3 +k35*x^5*y^2 +k36*x^5*y

+k37*x^4*y^6 +k38*x^4*y^5 +k39*x^4*y^4 +k40*x^4*y^3 +k41*x^4*y^2 +k42*x^4*y

+k43*x^3*y^7 +k44*x^3*y^6 +k45*x^3*y^5 +k46*x^3*y^4 +k47*x^3*y^3

+k48*x^3*y^2 +k49*x^3*y +k50*x^2*y^8 +k51*x^2*y^7 +k52*x^2*y^6 +k53*x^2*y^5

+k54*x^2*y^4 +k55*x^2*y^3 +k56*xA2*y^2 +k57*x^2*y +k58*x*y^9 +k59*x*y^8

+k60*x*y^7 +k61*x*y^6 +k62*x*y^5 +k63*x*y^4 +k64*x*y^3 +k65*x*y^2 +k66*x*y

+k67*y^10;

The coefficients corresponding to the individual joints are given below.

Joint 1:

[k01, k02, k03... k67] =

[0.010273, 8.7365, 0.41901, -2.85871, 4.241, 1.067, 7.0696, 0.59125, -12.315, 3.6649, -

2.2925, -1.8594, 6.0014, 1.9456, -2.1864, 0.78301, -0.87877, 3.2321, -4.7972, 2.625,

0.58673, -6.5208, 6.5712, 5.5778, -2.3628, -3.3356, -0.58435, 2.889, 3.6344, 3.3768,

10.866, -2.2693, -1.8696, -0.90739, 0.9869, 6.7456, -4.887, 11.52, 1.5316, -5.7521,

0:1186, -2.5928, -1.5918, 3.5707, 7.0395, 4.418, -1.4488, -13.936, 0.97954, -1.3975,

6.1484, -0.41037, 1.5403, -3.019, -0.67027, 11.886, 3.2339, -0.94888, -7.207, -11.424,

2.0959, 3.9007, -0.35742, 0.99464, 6.6465, -2.7345, -1.4256]

- 96 -

Joint 2:

[k01, k02, k03... k67] =

[0.12649, 2.6033, -0.262, -3.5966, 0.36729, -2.2843, 0.56984, -1.8815, 2.7008, -1.6964,

1.4381, 2.9295, -2.5835, -0.52444, -4.2097, 0.62167, -0.81735, -3.2166, -0.45181,

0.62772, 2.9052, 2.8338, 4.2895, 0.95544, -2.332, 1.7665, 1.5009, -2.1396, 0.036002, -

0.11559, 0.068517, -1.0346, -3.3376, 1.6122, -0.71706, -2.5954, 2.8828, 0.10273, -

0.99928, -1.7763, 2.2104, 0.43455, -2.6442, 1.7593, -2.1607, 1.5638, 4.4682, 3.302,

3.2059, -0.31763, 3.962, 1.6336, -5.2005, 0.58978, 2.9963, -6.1126, 3.0573, -0.57701, -

5.1248, 0.025224, -3.1621, -1.3979, -0.44632, 0.011013, -0.93754, -2.0152, -0.23502]

Joint 3:

[k01, k02, k03... k67] =

[0.024088, 1.6854, 0.32903, -0.52849, 3.3456, 2.1944, 0.1832, -3.7514, -3.4691, 3.3083,

2.27, 5.7663, -5.765, 1.623, -5.7849, -3.8574, 7.7911, -0.51643, -1.5596, 0.34314, 1.804, -

5.9742, -0.34928, -7.8166, 1.0588, 0.71373, -5.2484, 0.38928, -3.104, 7.1072, -5.6535,

0.024452, -6.7972, -0.46925, -3.0937, -1.3376, 1.3929, -4.7838, -4.4375, -2.4539, -3.7927,
11.327, 10.294, 2.6641, -7.6788, 1.3956, 4.7812, 3.0276, -7.369, -12.96, 3.1703, -0.33661,

3.5123, -7.5074, 3.1822, -3.5109, 0.82953, 3.336, -0.2182, -0.43886, 0.45385, -1.6026,

8.6831, -2.8549, 1.5969, -2.24, 2.018]

Joint 4:

[k01, k02, k03... k67]

[0.054477, 0.43617, 1.1639, 0.073118, -4.1871, 1.2638, 2.5211, -0.57512, 0.054364, -

0.67051, -0.14753, -0.40329, -4.1555, -0.50988, -1.3793, 3.9382, 0.24933, -1.428,

0.17447, -0.093334, 3.5392, -0.34272, 2.0568, 0.317, 1.6275, 1.8276, -0.033226, -0.63566,

-1.3519, -0.47436, -3.3963, -1.4397, -1.7317, 1.7834, -3.5767, -3.8629, 6.5307, 3.9697,

1.3647, 1.3671, 4.842, 1.4482, -0.09259, -2.9185, 0.64998, 1.0115, -0.73422, 0.33906,

1.0492, -1.1322, -1.6762, 3.3944, 4.0375, -0.25804, 0.97167, 3.8698, -0.38227, -0.73333,
1.527, 0.22165, 1.88, 0.38171, -3.1831, 1.5559, 0.3509, 0.54328, -0.68954]

- 97 -

Joint 5:

[k01, k02, k03... k67] =

[0.0062423, 3.4804, -0.50602, 9.8647, -8.6976, 1.8486, 0.66285, 9.4293, 6.4105, -0.35998,

-1.2956, -4.8808, -2.8242, 0.85335, 1.6532, -6.6514, 0.47995, 11.201, -6.8947, 6.4095,

3.554, 12.809, 6.3687, -18.201, -12.349, 8.3508, -9.299, 11.978, 3.7647, 0.27453, -4.367, -

19.379, -1.8882, -8.0287, -4.9577, -2.711, 11.632, -0.37066, -1.7626, 4.5, -7.7601, 21.454,
4.775, 4.6865, 8.24, 4.1203, 16.918, -0.61899, 0.73133, -0.77481, -1.3856, -6.8247, -

0.86129, -7.4409, 6.4234, 6.7247, 22.572, -3.4313, -6.9884, 4.4085, 4.4158, 4.7642, -

0.41725, -10.915, -3.1059, 4.3855, -1.0823]

Joint 6:

[k01, k02, k03... k67] =
[0.018756, 6.5793, 0.81454, -6.6895, 2.056, 4.5492, -1.9612, -6.6103, -2.72, 1.3182, -

2.4076, 1.2005, -8.2849, -0.1919, -5.6496, -3.6659, 2.4988, 2.2695, 0.64721, 1.189,
11.908, -9.0725, 8.0553, -7.1208, -4.2526, 2.1453, -4.7682, -3.3904, 2.8624, -8.3699,

0.95776, 2.9075, -4.5973, 9.0179, -0.32626, -8.3611, 12.642, 2.7972, -1.9189, -10.353,
3.9204, 4.4522, -0.82404, 6.1365, -1.9169, -2.2623, 9.5643, 0.43796, 3.0672, 3.333,

7.8186, -0.026312, 7.9934, 4.1317, -11.759, 5.7567, 6.3169, 6.9623, 10.968, -2.4448, -

1.9186, 5.3805, -5.1223, -2.7587, -3.257, -8.4084, 2.9673]

- 98 -

Appendix A.4 Pseudo-random joint angle generation

A sequence of Pseudo random numbers is passed through a system with transfer

function given chosen by trial and error. Transfer function chosen is 2
100 	

. When
s +s+100

the pseudo random numbers are passed through this system a continuous pseudo-random

signal is obtained which is given to the joint angles.

Time intervals at which the numbers in the sequence appears are

[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1], that is at time = 0 the first element in the sequence

appears, at time = 0.1 the second element and so on.

Joint I Pseudo-random sequence: [0.1 0.1 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -0.2 0]

Joint 2 Pseudo-random sequence: [0 0.1 0.3 0.2 0.5 0.4 0.3 0.2 0.1.0 0]

Joint 3 Pseudo-random sequence: [-0.3 0.2 0.4 0.3 0.4 0.6 0.8 0.2 0.4 -0.2 0]

Joint 4 Pseudo-random sequence: [-0.2 -0.1 0.3 0.2 0.4 0.1 0.4 0.3 0.5 0.08 0]

Joint 5 Pseudo-random sequence: [0.2 -0.1 0.4 0.2 -0.4 -0.2 0.1 -0.3 -0.5 -0.08 0]

Joint 6 Pseudo-random sequence: [0.3 -0.5 0.4 -0.2 0.4 0.6 0.5 0.3 0.5 0.2 0]

-99-

	G20444.pdf
	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Appendix

