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ABSTRACT

Owing to the large specific surface area and other superior properties over their
bulk counterparts arising from quantum size effect, nanoscaled and nanostructured
materials have attracted considerable research interest. Many novel nanoscale materials
have been synthesized in the past 10 years. It is well known that the behaviors of
nanomaterials strongly depend on the sizes, shape, dimensionality and morphologies,
which are thus fhe key factors to their ultimate performance and applications. Therefore,
it is of great interest to synthesize nanomaterials with a controlled structure and
morphology.

Manganese, cobalt and zinc oxides are important materials due to their wide
applications in the area of catalysis, magnetic material and electrode material for
batteries. These oxides were prepared by calcinations of their respective hydroxides under
specific conditions. Manganese, Cobalt, and Zinc hydroxides in turn were prepared from
liquid ammonia and their nitrate salts by the precipitation method. Their characterization
was done using TGA/DTA, XRD, SEM and SQUID.

TGA studies of manganese oxide (Mn,O;) suggested that it existed in hydrated
form at low temperature and converted to anhydrous manganese oxide at around 650°C.
While Cobalt and Zinc hydroxides existed in hydrated form at low temperatures and
converted to anhydrous oxides at around 200°C and 150°C respeétively. XRD studies
suggested that their oxides have di_fferent Size with different form of oxides in different
atmoéphere. The particle size as calculated from the XRD data using the Sherrere
‘Formula suggested that the particles were in nano-range. The Particle size, in different
atmosphere, determined wa§ in the range 16-76nm, 1-46nm and 23-43nm for the
manganese oxides, cobalt oxides and zinc oxides, respectively. The results obtained from

SEM and SQUID were also in good agreement with XRD results.
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CHAPTER-1
INTRODUCTION AND LITERATURE REVIEW

1.1 METAL OXIDES

Metal oxides constitute an important class of inorganic materials which are widely
applied and have many different varieties. For example, zinc oxide sintered together with
other metal oxide additives have been made into non linear resistor which are called
varistors for surge suppressing function. The suppressing function has been applied for
switching and for random voltage protections. The corundum structure is adopted by the A
oxides of titanium, vanadium, chromium, iron and gallium in their +3 oxidation states as

well by alumina:

Transition metals form a wide variety of oxides. Metal oxides are protected from
further oxidation by forming a hard scale of oxides when it is oxidized. Not all metal
oxides form a scale. If the metal oxide per mole of mefal is greater than the molar volume
of metal, the oxide will form a protective scale. Iron oxide and other metal oxides are
used in thermite reactions, and this has been applied in many ways, including welding in
spaceship repairs. Iron oxides are also the raw material for all magnets and magnetic

materials used for computer disks and recording tapes [1].

Metal oxides that dissolve in water react with water to form basic solutions.

e.g. BaOg)+ HyO( —>Ba2+(aq) + ZOH-(aq)
Whereas, nonmetal oxides react with water to form acidic solutions.
e.g. CO, ) + HzO(]) ’ HzCO_?,(aq‘)

P4O10¢s) + 6H20() > 4H3PO04(aq)



1.2 PREPARATION OF METAL-OXIDES

Many oxides can be directly prepared as most elements do react with oxygen at
appropriate temperature and pressure conditions. Most metal in massive form react with
oxygen only slowly at room temperatures because the first thin oxide coat formed
protects the metal. The oxides of the alkali and alkaline-earth metals, except for beryllium
and magnesium, are porous when formed on the metal surface, and they provide only
limited protection to the continuation of oxidation, even at room temperatures. Gold is
exceptional in its resistance to oxygen, and its oxide (AuyO3) must be prepared by indirect
means. Noble metals react at high temperatures to form gaseous oxides although

ordinarily they are resistant to oxygen.

Co-precipitation and Precursor method are commonly used methods for synthesis
of oxides apart these ion exchange and alkali flux method, sol-gel method, topochemiéal
method, electrochemical method, high pressure method (Including hydrothermal

synthesis) and combustion method are also widely used.

Some of the typical reactions that occur in oxide synthesis:

YBa;Cu304(s) + Oag) — > YBaCu3Oxs)
ZnOg) + Fe O3y —» ZnFe;04)
BaOs) + TiO2(s) — > BaTiOs
ZnSs) + CdOgs) —>CdS(s) + ZnOgs)
LiFeO;s)+ CuCly, | —PCuFeOss) + LiClgs)
Another route is to obtain a solid product from a gas phase reaction. MgO and
Cr,0; do not react to form MgCr,04, but Cr,0j3 reacts with O, giving CrOj () which can
react with MgO.

MgO(S) + Cr203(S) —’02 _Ngcr204(5)
3



> Difficult to guarantee a single-phase product.
> Different phases in the product are hard or impossible to separate.

Despite of these shortcomings the technique is widely used and quite successful for
cation substitution reactions. Improvements can be obtained by smaller particles size

(<lpm instead of 10 pm), e.g. by spray-drying, freeze-drying, co-precipitation.

1.2.2 Precursor Method
The diffusion length problem of solid-state reactions can be avoided if the
necessary cations can be included in a suitable precursor. Oxide is formed by the

decomposition of the precursor:

Precursor Product
LaCo(CN)s.5H,0 LaCoO;

LaFe(CN).6H,0 LaFeO;

BafTiO(C,04)2] BaTiO;

Li[Cr(C204)2(H20)s] LiCrO, )
M;Feg(CH;-CO0)170;0H.12CsHsN MFe;O4 Spinels

Organometallic precursors, especially carboxylates and alkoxides, used for synthesis of
some of the perovskite oxides ha;/e been reviewed by Chandler et al. [3]. Many metals
can be combined in a precursor by using carbonates. Various carbonates have a similar
calcite structure and can be readily prepgred as solid solutions. During heating in nitrogen
or vacuum, an oxide Mn;.xMxO is formed. The oxide has a rock salt structure. Metals
that have been used include Mg, Mn, Fe, Zn, Ca, Co, Cd. The simple oxidgs can be used

as precursors for further synthesis.

1.2.3 Topochemical Reactions



Hydrogen can be intercalated into various oxides. Iodine has been intercalated into high-

Tc oxides like Bi,CaSr,Cu,;0g without destroying superconductivity.

1.2.5 Sol-Gel Synthesis
This method avoids the problems of powder ceramic synthesis. The process involves

steps as follows:

1. Prepare a sol: a colloidal suspension of inorganic precursor in a liquid

(Alkoxysilane).
2. Adjust the pH of the solution to promote the formation of a gel
3. Dry the gel, forming a xerogel (or an aerogel or cryogel)
4. Sinter

Advantages of the sol-gel technique:

% Precursors are very finely mixed

e

¢ Relatively easy to adjust the stoichiometry
% Can be used for coating, thin films

¢ Due to the small particle sizes, processing temperatures can be relatively low.

1.2.6 High-Pressure Synthesis
High pressures are used for the synthesis of phases that would not otherwise form.,

The free energy is affected by the following processes.

1. Pressure delocalizes outer d electrons by increasing orbital overlap.



LiMnO; has been prepared by the ion exchange reaction of NaMnO; and LiCl or LiBr in

hexagonal [5].

1.2.8 Alkali Flux and Electrochemical Method

Use of strong alkaline media in the form of either solid fluxes or molten solutions
has enabled the synthesis .of novel oxides. The alkali flux stabilizes higher oxidation
states of the metal by providing an oxidizing atmosphere. Alkali carbonates fluxes have
been used to prepare transition metal oxides such as LiNiOs. For examples LagNi;Oy was

prepared by bubbling Cl, gas through a NaOH solution of lanthanum and nickel nitrates.

Electrochemical methods have been employed to advantage for the synthesis of
many solid materials, including oxides. Vanadate spinels of the formula MV,0, as well
as tungsten bronzes (AxWO;3), have been prepared by the electrochemical route (6).
Tungsten bronzes are obtained at the cathode when current is passed through two inert
electrodes immersed in a molten solution of the alkali metal tungstate A;WO4 and WOs3;
oxygen is liberated at the anode. Oxides containing metals in high oxidation states are

prepared by electrochemical methods. | , .

1.2.9 Crystal Growth Method

In techniques that are discussed above, result in powder samples. It is often necessary

to obtain single crystals. The basic methods are:

1. Solid-Solid
2. Liquid-Solid

3. Gas- Solid (Sublimation and Sputtering)



ions) in these systems control the relative rates of these reactions. In addition, small-
tunnel materials are usually more active and selective for such oxidations than large-
tunnel materials. The other reactions catallyzed by manganese oxides include
decomposition of several reactants. Amorphous manganese oxide materials have been
found to photo-chemically and thermally decompose phosphine oxide materials that are
model complexes for chemical warfare agents. Also, they have been used as catalyst for
decomposition of H,O; [3], for selective oxidation of cyclohexane to cyclohexanol and
cyclohexanone [4], and also for the oxidative dehydrogenation of ethanol [5]. Iron oxide
has been studied as selective catalyst for the production of butadiene in the partial
oxidation of butane. The catalytic properties of iron and zinc cations for the water gas
shift reaction: (CO+H,O ———C 0O, +H>) are also observed [6]. The catalytic dehydration
of ethanol to ethylene was investigated using different transition metal oxides such as
_titanium oxide, magnesium oxide, cobalt oxide, chromium oxide [7] etc. TiO; is used as
photo catalyst because of its high catalytic activity. Doping of TiO; with transition metal
ions was used as a good tool to improve the photo catalytic properties and enhancj,%{nent
of visible light response. Do et al. and Papp et al. have published the result on the
catalytic role of TiO/WQ; and TiO,/Mo0Q; and found that the degradation rates of 1, 4-

dichlorobenzene ‘was enhanced significantly [8].

1.4.2 Superconductor

The superconducting oxides and metal composite oxides are provided in a variety
of useful forms. A superconductor comprised of a polycrystalline metal oxide such as
YBa,CuO7.x [0<X<0.5] exhibits superconducting properties [9] and capable of
conducting very large current densities. Lin et al. [10] prepared TI-Ca-Ba-Cu-o

superconductor with thallium oxide. The precursor was obtained by sol-gel method from
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electrodes were tested by Miura et al. [15] for detecting NO and NO; potentiometrically

and ampero-metrically at high temperature.

1.4.5 Electrode

Several transition metal oxides are used as electrode materials. Among several
transition metal oxide electrode materials for super capacitors, hydrous ruthenium oxide
show a high capacity of over 700 F/g {16] and excellent cyclability in aqueous sulphuric
acid. Because of its high cost, alternative metal oxide electrode materials are being
developed to replace ruthenium oxide e.g., NiOy, CoOy, MnO; etc. Lithiurh intércalation
and deintercalation in amorphous MoOj; electrodes were investigated in situ using grazing
incidence reflection mode X-ray absorption spectroscopy. Iron based oxide such as
LiFeO; is regarded as a positive electrode material for lithium ion battery [17]." Metal
electrode coated by thin oxide film (e.g. PtOx on Pt, TiO, on Ti) is frequently encountered
in electrochemical measurement. Li-Fe-Mn positive electrode is used in automobiles.
Solid oxide fuel cell which is a ceramic device that operates at temperature range 800-

1000°C. The design based on zirconia electrolyte with (La, Sr) MnOs is preferred as

cathode and Ni/ZrO, as anode [18].

1.5 MANGANESE

Manganese is widespread in nature, but is found only in compounds, it makes up
0.091% of the Earth’s crust. It is the 13" most abundant element, and the third most
abundant transition element, after iron and titanium. Useful manganese deposits were
formed by weathering of primary silicate .sediments, and essentially contain manganese

oxides.
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sterility among other symptoms. Excess manganese causes irritation of the respiratory

passages and impairment of movement.

1.5.4 Chemical properties
Manganese is somewhat more reactive than its neighbors in the peribdic table, Cr,
Tc and Fe. In compact form, it is only superficially oxidized by oxygen, but in finely

divided form, it burns in air to form Mn3Oj4. It does not form a passivating oxide layer.

1.5.5 Manganese in compounds
In its compounds, manganese is usually in oxidation state +2,43,+4,+7(e.g.MnCl,,
MnO,, MnF;, Mn,07). However there are also compounds in which it occurs in +5 and

+6 states (e.g., MnO4>, MnO4*), as well as the states +1, 0,-1,-2 and -3(e.g.,
Mn1(CN)s’,Mn’,(CO),0, Mn"'(CO)s , Mn-II (phthalocyanin) and Mn-III(NO3)(CO). "fhe

+2 and +7 oxidation states are very important. The basicity of the oxides in water
decreases with increasing Mn valence, while their acidity increases. Thus Mn(II) oxide is
a base anhydride while Mn(VII) oxide is amphoteric. The manganese (II) ion, is the most
important oxidation state of manganese, it has half filled 3d shell and is thus isoelectronic
with Fe™. In acid solu;tion it is particularly stable with respect to both oxidation and
reduction. Manganese combines with oxygen in molecular ratio to form various oxides,

hydroxides and oxidé hydroxides of manganese.

The most important compounds of manganese are the oxides, MnO, MnyO;

MnOyj, and MnO,, potassium peﬁnanganate. They are used in the production of pigments,
~metal soaps, magnets, dry cells, corrosion protection, as additives to feed and fertilizers,
and as oxidizing agents in organic synthesis, water treatment; exhaust gas purification,

oxidimetry and medicine.
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MnO is produced on heating the higher oxides in flowing oxygen or upon thermal
decomposition of Mn(II) carbonate or oxalate in H, or N, atmosphere [31]. Also it is
produced from manganese dioxide and coke at 400-1000°C. Decomposition of Mny(CO)s
also gives MnO with Mn;03; as impurity [32].MnO nanocrystals capped with organic
ligands is prepared by decomposition of manganese acetate in a mixture of triactylamine
and oleic acid [33]. MnO is also prepared .by decomposition of manganese acetyl
acetonate in oleylamine [34]. MnO with averége diameter 6-14 nm has been prepared by
decomposition of manganese cupferronate {Mn(C¢HsN,O;),} in presence of
trioctylphosphineoxide (TOPO) under solvothermal conditions [35]. Decomposition of

Mn(cup); at 325°C in toluene in presence of TOPO as capping agent gives MnO.

1.5.6.2 Diamanganese Trioxide
Manganese - sesquioxide (Mn,0O3) is obtained in its a-form, on heating Mn(IV)

oxide in air to above 550°C, as brown powder. On further heating to over 9000(3, it 1s
converted into reddish brown trimanganese tetraoxide, Mn3;O4 Oxide, which is found in
nature as hausmannite. The black y-form of Mn(III) oxide is obtained by oxidation of
freshly precipitated Mn(OH), in air followed by drying the resulting hydrate
Mn;03.xH,0, above 500°C. An intermediate hydrate is manganese oxide hydroxide. The
latter occurs in nature as manganite. At 300-500°C, MnO(OH) is converted to MnsOg

which can also be obtained by heating Mn;Oy in air at 250-550°C [31].

Manganese (II) acetylacetonate [CH3;COCH=COCH;3];Mn and manganese (III)
acetylacetonate [CH3;COCH=COCHj3]3;Mn are dissolved in acetone at room temperature.
The SBA- 15 powder is then added into solution after Mn compounds have dissolved
completely. The precursors are obtained by stirring until solvent evaporates. The obtained

precursor is then washed with acetone. This is followed by calcinations in air at 773K for

17



ethanol and finally dried at 60°C in air. Hydrothermal reaction between Mn,O3 and NaOH

for a long duration also gives MnQO, [42].

1.5.7 Applications of Manganese Oxide

MnO; is used as depolarizer in dry cells (especially zinc-carbon and leclanche’s
cells), as a pigment for bricks (red to brown to grey), as an oxidizing agent (e.g. for
producing hydroquinone from aniline, or in the production of polysulphide rubbers), as a
catalyst for oxygen transfer, in the production of manganese (II) salts such as MnSQO4 and
as glassmaker’s soap. These oxides are used as electfochromic materials. They have a
wide range of applications in catalysis and battery technologies [43]. Among the series of
manganese oxides Mn3O, is known to be an active catalyst in various oxidation and
reduction reactions e.g., it can be used as a catalyst for the oxidation of methane and
carbon monoxide or the selective reduction of nitrobenzene [44]. Moreover the catalytic
application of Mn30O4 has been extended to the combustion of organic compounds at
temperatures of the range 373-773K [45]. Polymorphs of Mn,0; havé been used as

catalysts for removing carbon monoxide and nitrogen oxide from waste gas [46]. Mn203

is used as an electrode material for rechargeable lithium batteries [47].

1.6 COBALT

Cobalt is a ferromagnetic metal. Pure cobalt is not found in nature, but compounds
of cobalt are common. Small amounts of it are found in most rocks, soil, plénts, and
animals. It is the element of atomic number 27. The Curie temperature is 1388 K, and the
magnetic moment is 1.6-1.7 Bohr magnetons per atom. In nature, it is frequently
associated with nickel, and both are characteristic minor components of meteoric iron.
Metallic cobalt occurs as two crystallographic structures: hep and fcc. The ideal transition

temperature between hep and fcc structures is 722K, but in practice, the energy difference

19



1.6.4 Cobalt oxides-
Cobalt (IT) Oxide

It appears as olive-green to red crystal, or grayish of black powder. It is used
extensively in the ceramics industry as an additive to create blue colored glazes and
enamels as well as in the chemical i_ﬁdustry for producing cobalt(I) salts. CoO crystals
adopt the rock salt structure with a lattice constant of 4.2615A. Cobalt (II) oxide is anti-

ferromagnetic below 16°C. Cobalt (ILITI) oxide decomposes to cobalt (II) oxide at 950°C.
2C0304 ——6Co00 + O,
Cobalt (IT) Oxide

Cobalt (III) Oxide, Co304, is a black substance that could be obtained by adding

cobalt (II) nitrate to an aqueous solution of sodium hypochlorite (also known as bleach).

In that case, it is used as a catalyst to speed up chemical reaction.

Cobalt (I1, IIT) Oxide

This oxide has a chemical formula as Co30;4. It is a black solid, and mixed valence
compound, containing both Co(Il) and Co(IlI) oxidation states. It can be formulated as
Co"Co™,04 or C00.C0,05. Co304 adopts the normal spinel structure, with Co*" ions in
tetrahedral interstices and Co>" ions in the octahedral interstices of the cubic close-packed

lattice of oxide anions.

1.6.5 Chalcogen compounds
Several oxides of cobalt are known. Green cobalt (II) oxide (CoO) has NaCl
structure and is readily oxidized with water and oxygen to brown cobalt (III) hydroxide

[Co(OH)s]. At temperaturés of 400-500°C the CoO is oxidized to the blue cobalt (ILIII)
21



Cobalt and its compounds, especially cobalt carboxylates, are good oxidation catalysts.
They are used in paints, varnishes, and inks as drying agents through the oxidation of
certain compounds. The same carboxylates are used to improve the adhesion of the steel

to rubber in steel-belted radial tires.[52].

1.7 ZINC

Zinc is the 23™ most abundant element in the earth’s crust. The most heavily
mined ores tend to contain roughly 10% iron as well as 40-50% zinc. It occurs in two

oxidation states +1 (rare) and +2 with hexagonal crystal structure.

1.7.1 Isotopes
Naturally occurring zinc is composed of the S stable isotopes $7n, %Zn, ¢Zn,

871, and °Zn with **Zn being the most abundant. This element also has four Meta states.

1.7.2 Compounds

| Zinc oxide is the best known and most widely used zinc compound, as it makes a
good base for white pigments in paint. It also finds industrial use in the rubber industry,
and is sold as opaque sunscreen. A variety of other zinc compounds find use industrially,
such as zinc chloride (in deodorants), zinc pyrithione (anti-dandruff shampoos), zinc

sulfide (in luminescent paints), and zinc methyl or zinc diethyl in the organic laboratory

[53].

1.7.3 Electrochemistry

Electrochemical properties of zinc make it a good mate;ial for anode materials.
Zinc is used as part of batteries. The most widespread such use is as the anode in alkaline
batteries [54]. Zinc is >used as the anode or fuel of the zinc-air battery/fuel cell providing

the basts of the theorized zinc economy [55].
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on substrates with cubic lattice structure. In both cases, the zinc and oxide are tetrahedral.

The rocksalt NaCl-type structure is only observed at relatively high pressures10GPa.[57]

P Y STE ET

Fig: 1.7.1 Wurtzite Structure Fig:1.7.2 A Zincblende unit cell -

None of these three ZnO structures possesses inversion symmetry (reflection of a crystal
relatively any given point does not transform it into itself). This important property results

in piezoelectricity, pyroelectriciy and spontaneous polarization of zinc oxide.

1.7.7 Mechanical Properties .
Among the tetrahedrally bonded semiconductors, it has been stated that ZnO has
the highest piezoelectric tensor or at least one comparable to that of GaN and AIN. This

property makes it a technologically important material for many piezoelectrical

applications, which require a large electromechanical coupling.

1.7.8 Electronic properties

ZnO has a relatively large direct band gap of ~3.3e¢V at room temperature;

therefore, pure ZnO is colorless and transparent. Advantages associated with a large band
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oxide removes significant amounts of HCN and H,S from tobacco smoke without

affecting its flavor.

1.7.9.4 Zinc oxide nanorod sensor

Zinc oxide nanorod sensors are devices detecting changes in electrical current
passing through zinc oxidé nanowires due to adsorption of gés molecules. Selectivity to
hydrogen gas was achieved by sputtering Pd clusters on the nanorod surface. The addition
of Pd appears to be effective in the catalytic dissociation of hydrogen molecules into
atomic hydrogen, increasing the sensitivity of the sensor device. The sensor detects
hydrogen concentrations down to 10 parts per million at room temperature, whereas there

1s no response to oxygen.

1.8 AIM OF THE PROJECT

According to literature survey, many transition metal oxides constitute an
important class of compounds as they possess properties suitable for catalyst,
superconductor, adsorbent, sensor and electrodes. There are various uses of tran___sition
rﬁetal oxides as electrode material, catalyst, electrochromic material, depolarizer in dry
cells, pigment for bricks, oxidizing agents, additives to feed and fertilizers and also in
production of magnets etc. Several applications of manganese oxides, cobalt oxides and
zinc oxides have been stated in 1.5, 1.6 and 1.7 sections respectively. In view of the

i

above, it is proposed to study more about these oxides.

Due to their low cost, low toxicity and environmentally friendly character, these
transition metal oxides are very promising material as electrode materials in super —
capacitors and catalyst. Several studies have been carried out on amorphous or nano-

crystallized MnO, ZnO, and Co;04 compounds obtained by precipitation method. These
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CHAPTER-2

EXPERIMENTAL

2.1 MATERIALS USED

The materials used for carrying out experiments:

S.No. Compounds Marketed by Grade
1. Manganese Nitrate E-Merck LR
2. Cobalt Nitrate E-Merck LR
3. Zinc Nitrate E-Merck LR
4. Ammonia Liquid Rankem LR

All the chemicals used in this synthesis were used as received without further

purification.

2.2 EQUIPMENTS USED

Characterization and structural elucidation of the synthesized oxides were

performed using techniques like powder X-ray diffraction, Thermo gravimetric analysis

(TGA), and Magnetic Susceptibility Measurement Using SQUID and Scanning electron

microscopy (SEM).

2.2.1 Thermo Gravimetric Analysis - Differential Thermal Analysis

The TGA/DTA curves were recorded on a Perkin Elmer (Pyris Diamond) TGA-DTA

.High Temperature 115 instrument at Institute Instrumentation Centre (IIC), IIT Roorkee

under the following conditions:
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The mean crystallite size was calculated from the XRD pattern using Deby-Scherrer

equation [48]. Deby-Scherrer Formula is-

D=0.9 )Jp cosO

Where, A = X-Ray wavelength

B = Full Width at half maxima (FWHM in radians)

0 =Bragg’s‘angle

D = Mean crystallite size (A%
2.2.3 Field Emission-Scanning Electron Microscopy (FE-SEM)
To observe the morphology and particle size FE-SEM analysis were made. The
instrument used for conducting FE-SEM was QUANTA 200 FEG made by NEI
Netherlands. High voltage (20kV) electron beam was produced by using Field Emission#%-
Gun (FEG). The detector used for identifying back scattered electron beam was.
Secondary Electron Detector (SED). EDAX was used for semi quantitative analysis. The

detector used for EDAX was Si-Li detector (X-ray detector). This equipment was -

available at Institute Instrumentation Centre, IIT Roorkee.

2.2.4. SQUID
The magnetic studies were carried out using SQUID (Superconducting Quantum
Interference Device). It was Quantum Design MPMS XL model available at Institute

Instrumentation Centre, IIT Roorkee. The conditions used were as follows: -

Field —eeee= 10000 Gauss

Temperature = ------- 10K-200K

2.3 SYNTHESIS OF MANGANESE OXIDE

The synthesis of manganese oxide was carried out using precipitation method [48]. The

manganese oxide was synthesized by mixing 500 mL of aqueous solution of 0.1M
31



A flow chart detailing the synthesis of manganese oxides is shown below:

1M Mn(NO3) + 0.5M lig. Ammonia Solution Stirring Brownish ppt.
Dried in oven at ’ Washed with Distilled
65°C A water
Calcinations
A 4
N, 450°C
! Ar 650°C
Air Mn304 A 4
Mn304
i
180°C 650°C 950°C
\ 4
Y A 4 Mn;O4
Mn;04 Mn;0;

Fig: 2.1 Synthesis of various oxides of Manganese
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A flow chart detailing the synthesis of Cobalt oxides is shown below:

.IM Co(NO;) + 0.2 M liq. Ammonia Solution |-Strring Co(OH>) ppt.
Dried inovenat | Washed with Distilled
65°C water

Calcinations
y

N, 450°C
] Ar 650°C
Air Co0 '
CoO
\
200°C 150°C 950°C
\ 4 A 4 CO (‘)' -
C0304 . C03O4 I

Fig: 2.2 Synthesis of various cobalt oxides
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A flow chart detailing the synthesis of Zinc oxides is shown below:

37

. - ; Stirring
AM Zn(NO3) + 0.2 M liq. Ammonia Solution Zn(OHy)
y
Dried in oven at ~ Washed with Distilled
65°C h water
Air C%cinations
Jzoo"c 450°C 950°C
A Y
Z
ZnO Zn0 no

Fig: 2.3 Synthesis of various zinc oxides




CHAPTER-3
RESULT AND DISCUSSION

All synthesized transition metal oxides namely; manganese, cobalt and zinc

oxides were characterized using different techniques as given below:

3.1 Thermo Gravimetric Analysis—Differential Thermal Analysis

Thermo gravimetric analysis is the technique in which the mass of the sample in a
controlled atmosphere is recorded continuously as a function of temperature or time as
the temperature of the sample is increased. Air or inert atmosphere such as helium or
argon is used for the measurement. TG curves are applied for transitions that involve
decomposition, dehydration, oxidation reaction and physical processes like vaporization,
sublimation, desorption etc. This technique is used for to know about thermal stability,
composition of initial sample and intermediate compound that may be formed. TGA
curves are characteristic of physical transitions and chemical reactions that occur over

definite temperature range [59].

In Differential thermal analysis (DTA) the difference in temperature between a
substance and a reference material is measured as a function of temperature while the

substance and the reference material are subjected to a controlled temperature program.

The temperature of the sample T increases linearly with time. The difference in

temperature (AT= T,-Ts) is monitored and plotted against temperature to give a

differential thermogram. DTA peaks result from both physical changes and chemical
reactions induced by temperature changes in the sample. Exothermic process shown by a

maximum whereas a minima is corresponds to an endothermic process [59].
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Each crystalline substance has a unique X-ray diffraction pattern with specified d-values

and the relative peak intensities. The diffracting phase in a sample can be identified.

The different X-ray diffractograms of precursors and different forms of oxides of
manganese, cobalt and zinc are shown in the Figure [4-9], [12-17] and [18-21]

respectively.

The X-ray diffraction data for each of above mentioned compounds are given in tables [7-

21].

3.2.1 X-RAY DIFFRACTION ANALYSIS OF MANGANESE OXIDES
The precursor of different manganese oxides is obtained by hydrolysis of

manganese nitrate salt by liquid ammonia. This precursor was heated under different

LSS

temperatures and atmospheres. Resuits obtained are discussed below:

The X-ray diffraction pattern shown in Fig.4 of different manganese oxide shows

that the manganese oxide Mn3O4 formed is tetragonal in shape at room temperature in air.

The oxide formed due to the calcinations at 1800C in air atmosphere is a Mn;0;4

tetragonal system. The Cell parameters for the Mn3O, are,
a=5.7621, b=1.6434 and c=9.4696 (Fig. 5)

Similar results were obtained with Mn3;O4 when calcinated at 1000°C (Fig. 7).
Calcination of Mn3;04 650% gave all different result in the form of Mn;O; which exist in

orthorhombic crystal system. The observed cell 'parameters are,
a=9.4118, b=9.4177 and c=9.4233 (Fig. 6).

When the precursor of Mn3Qj is treated in the N, and Ar environment the results

are same as obtained when calcinated at 180°C & 1000°C (Fig. 8 & 9).
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Fig. 18 indicates that the precursor of zinc oxide formed is e-Zn(OH), which shows it

presence in orthorhombic system. The cell parameters are-
a=8.490, b=5.162 & ¢=0.9525

When this precursor is heated in presence of air at different temperatures 200°C,
450°C & 950°C respectively the result obtained shows that ZnO which is in Hexagonal

crystal system (Fig. 19-21).

The XRD data from the line broadening experiments helped to calculate the

particle size. Particle size is determined using the Scherrer formula.
D =0.89)/P cos 0
Where, A= X-Rays wavelength (1.5418 A)
B = Full Width at half maxima (Radians)
6 = Bragg’s angle
D = Crystallite size (A)

We got the particle size of the synthesized oxides in the nano range. The sizes of

the particles are given in Table [21].

3.3 SQUID

The magnetic susceptibility of the samples of manganese precursor as a function
of temperature was recorded using superconducting quantum interference device
(SQUID); The plots for magnetization vs. temperature were plotted for each and are
shown in Figures (10-11). The magnetization plot for manganese oxides formed in

nitrogen and argon environment is shown in Figure 10 and Figure 11 respectively. In our
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CHAPTER-4
CONCLUSION

Manganese, cobalt and zinc oxides were prepared in nanocrystalline size using

precipitation method. All precursors of oxides were calcined at different temperatures to get
nanocrystalline oxides. These precursors and oxides were characterized by powder XRD,

TGA-DTA, SQUID and SEM.

The XRD studies show that different oxides can be prepared using a single precursor.
Mn;04 formed ‘at room temperature changes to Mn,O; when heated to 650°C in air
atmosphere. Co304 is formed at 200°C and 950°C in bresence of air from the cobalt
hydroxide whereas CoO is formed at 6500C- but ‘in argon atmosphere from the same
precursor. Zinc oxide showed a variation in size with the temperature. The size of zinc oxides
in the temperéture range of 200°C to 950°C was 23.80 — 43.97nm. Thé other oxides bf
manganese and cobalt also showed similar results with temperature. These all synthesized
oxides have the particle size, as calculated from Debye-Scherrer equation, was in nano meter.
Size of particle also changes with the changing atmosphere of calcinations like nitrogen and
argon. The particle size is smaller in nitrogen atmosphere as éo.mpare to argon atmosphere. In

FE-SEM images the particles look agglomerated with irregular morphology.
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Table 4: Weight loss for Manganese Oxides Precursor (From TGA data)

0 % Weight Loss % Weight Loss
$.No Temperature (°C) (Calculated) (Theoretical)
1. 950 Low impurities 35

Table 5: Weight loss for Cobalt Oxides Precursor (From TGA data)

0 % Weight Loss % Weight Loss
SN Temperature (°C) (Calculated) (Theoretical)
1. 650 11.12 11.21
2. 950 Low impurities 5.37

Table 6: Weight loss for Zinc Oxides Precursor (From TGA data)

- S.No

Temperature ( °C)

% Weight Loss
(Calculated)

% Weight Loss
(Theoretical)

200

18.03

16.2
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Table 8:X-Ray Diffraction data for Manganese oxide (Air/ 180°C)

d - value (4) I/1, x 100
S.No.
Experimental Literature Literature Literature
1. 2.49162 2.4871 100 100
2. 1.54487 1.5427 65 50
3. 2.76819 2.7624 70 76
4. 3.09654 3.0854 40 40
5. 1.58339 1.5764 25 27
6. 2.86973 2.854 40 60

Oxide Form: Mn3O4

System: Tetragonal
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Table 10:X-Ray Diffraction data for Manganese oxide (Air/1000°C)

d - value (A) I/T;, x 100
S.No.
Experimental Literature Literature Literature
1. 2.48821_ 2.4871 100 100
2. 2.77027 2.7624 80 90
3. 1.54445 1.5427 65 75
4. 3.09120 3.0854 70 80
5. 1.79957 1.7945 55 60
6. 1.57668 1.5764 60 60
7. 2.03833 2.0382 45 45
8. 2.36817 2.3605 20 20
9. 2.71957 2.7624 20 20
10. 4.93817 4.9203 12 15

Oxide Form: Mn3;0q,

System: Tetragonal
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Table 12:X-Ray Diffraction data for Manganese oxide (Ar/650°C)

d - value (A) /1y x 100
S.No.
Experimental Literature Literature Literature
1. 2.49143 2.4871 100 100
2. 2.77459 2.7624 70 80
3. 1.54598 1.5427 40 60
4. 3.09502 3.0854 50 60
5. 1.57808 1.5764 30 20
6. 2.04044 2.0382 40 20
7. 1.80195 1.8262 35 30

Oxide Form: Mn3Oy4

System: Tetragonal
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Table 14:X-Ray Diffraction data for cobalt hydroxide (Air/450°C)

Due to low crystalline at 200°C there is no sharp peaks obtained. Hence no table is available
for the Cobalt oxide at 200°C.

d - value (A) I/Ip x 100
S.No.
Experimental Literature Literature Literature
1. 2.43710 2.43 100 100
2. 2.85847 2.85 55 60
3. 1.42762 1.42 30 45
4. 2.02134 2.02 10 20

Oxide Form: C0304

System: Cubic
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" Table 16:X-Ray Diffraction data for cobalt hydroxide (Ar/650°C)

d - value () 1Ty x 100
S.No.
Experimental Literature Literature Literature
1. 2.13266 2.13 100 100
2. 2.46463 2.46 40 46
3. 1.50575 1.50 30 50
4. 1.38935 1.30 25 28
5. 1.80271 1.81 10 15
6. 1.89483 1.89 10 12

Oxide Form: CoO

System: Cubic
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Table 18:X-Ray Diffraction data for Zinc Precursor (Air/200°C)

d - value () 1Ty x 100
S.No.
Experimental Literature Literature Literature
1. 2.48210 2.48 100 100
2. 2.82264 2.82 50 56
3. 2.61065 2.61 30 50
4. 1.62741 1.62 25 40
5. 1.47929 1.47 30 30
6. 1.38005 1.38 20 25
7. 1.91420 1.91 10 12
8. 1.36027 1.36 15 14

Oxide Form: ZnO

System: Hexagonal
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Table 20:X-Ray Diffraction data for Zinc Precursor (Air/950°C)

d - value () I/, x 100
S.No.
Experimental Literature Literature Literature
1. 2.49040 2.48 iOO 100
2. 2.83452 2.82 70 80
3. 2.61877 2.61 55 75
4. 1.63031 1.63 70 60
5. 1.48162 1.48 40 45
6. 1.38177 1.38 ‘30 50
7. 1.91991‘ 1.91 15 30

Oxide Form: ZnO

System: Hexagonal
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- 4 XRD graph for Manganese oxide precursor at room température.

75



LL

“ITe Jo adussaid ur aamyeradweg 0,081 2 9p1x0 esaueduepy 1oy yderd IX S 31

bodui} | 05L°0 1NN 8feS A | 051°0 toowS suoneledo
T 00§52 E38UL -, 000°G “EIUL-Z - § |1 PRUEIS S - (wo0Y) D, GZ ~dwey - $ 9'6 ‘oun dalS - , 610°0 0RIS - . B00'06 PUT - , 000'S EIS - PaYOO] ULALLZ 90K - MRIOBL-Y =14 - 081w

3eds - eyeyL-g

06 08 0L 09 os or [+1 0z 13 s

{!_L____.r._.b.ul__f_w_~_~Lr~_W_F~_~___..b»..»..~p._.~..—!__Fr__h_!._._P_L._-\_._r_;_r‘_._~|.

o 1269 0285y | =P
o bL'ST "EEBES'E=R

< LI8'6S L8PS L=p
. 02285 '6€€8S | =P

- LOV'VE ‘60229 2=P

- VIE'CE BL89LT=P
o HWiTIE €4698'2=p

o LL0'9E '2916¥°2=D

?"I171’!IXle—TTTI"—rT"Iffl[f’r({l.rflflflll’ri'l

<A

ooe

00%

(sjuno9) ur



o LSB°EL "6508C V=P

o TLT197S006E L=P
. ZBL'S9 6281V L=P
- 880%9 ¥BISHI=D

« 415709 '28825" ) =P

- L£8'8S '$2895 L=p g

SO0/155 Greaa = >

TZ6C6v 05eva =P ’}

- E91°6°00900°2=P

- £228E '€L2GEZ=P

0926728 2081 L2=P

- SLL'ET L9rrBE=P

lITIT]IIT|7II‘I)TI{ll-"_{[l’lll)?'TfT’Fi(!llT1ii‘l’]Tﬁ1rL‘lle{I|II'ler‘[ll‘ll]lv‘—rlIilljﬁ

11'1'1'Jr|1r]|1vvJTITI;I:ll[tlﬁlf1f1ljltvl]lll1[llll]rllr
o

g g g g g -
w N ~

(s)unoD) ur

70

&0

30

20

10

2-Theta - Scale
* - End: 90.006 ° - Step: 0.618 ° - Step time: 8.6 5 - Temp.: 25 °C (Room) - Time Started: 14 s - 2-Theta: 5.000 ° - Theta: 2.600 *- C

RAIM-650 - Flle: M-850.raw - Type: 2Th/Th locked - Start: 5.000

Operations: Smooth 0.150 | Y Scate Mul 0.750 | Import

Fig. 6 XRD graph for Manganese oxide at 650°C temperature in presence of air.
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Fig. 7 XRD graph for Manganese oxide at 1000°C temperature in presence of air.
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Fig. 8 XRD graph for Manganese oxide at 450°C temperature
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Fig. 9 XRD graph for Manganese oxide at 650°C temperature in Argon environment.
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Fig. 18 XRD graph for Z

Inc oxide precursor.
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