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ABSTRACT
ANALYSIS OF PLATE BENDING BY FINITE ELEMENT
(DISPLACEMENT) METHOD

A study of bending of plates for small
deformations by applying the finite element method
is presented in this thesis.

This thesis is mainly concerned with the
development of new di5p1acement functions for
rectangular and triangular elements., For reotangular
elements, a method has been proposed for seleoting
displacement funotions_in which trigonometric
expression that had apparently failed to give
satisfactory results in earlier attempts, can be
used along with polynomial terms. The method leads
to conforming displacemept functions which satisfy
the oonvergence criteria, Not many sultable
conforming functions have been reported so far,

Buty the method developed here for rectangular
elements shows how many more new displacement functions
“can be found, all of them satisfying‘the gonvergence
oriterias In fact, the number of such functions

is almost unlimited.

A oonforming displacement function has been
suggested for triangular elements by using simple
polynomial expressions, Continuity of normal
slopes have been achieved by forecing them to wvary
linegrly along the elcment boundaries. To acoomplish

_ﬁhis; additional oorrection functions have been used.



Several plate bending problems have been
solvéd using an IBlf 1620 Model I oomputer., Results
are presented for four different displadement
functions; three are for rectangular clements and
one for triangular elements,

All the functions converge towards the
true answers with suoccssive refinements in the
sub-division analysis.‘ The convergence is

monotonic inm all ocases,
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Notations

The list below contains the important symbols
used in this thesis. All these symbols are defined as

they arise in the text.

a, b dimensions of rectangular elements
D Ep” ,
—2tee—, Tflexural rigidity of plate,
12{ 1= =)
elenent
B modulus of elasticity, correction functions
¥ nodal forece vector of an clement
h thickness of plate, element
1 identity matrix
k stiffness matrix of an element
K stiffness matrix of an assemblage
L plate dimension
MX moments in planes parallel to xoz plane
Ny moments in planes parallel to yoz plane
P concentrated load
q uniformly distributed load
r joint displacement vector of an assemblage
R applied joint load vector of an assemblage
T ~ transformation matrix
u nodal displacement vector of an element
Y deflection of plate, element mormal to
middle plane
W dw/ d x, slope in plate, element

W dw/ @ y, slopec in plate, clement



'3wv/arh slope in normal direction
avy/aih slope in tangential direction
EZW/BEQQ curvature in plate, element
VOEW/uayQ , curvature in plate, element

5%w/3}c3y’ twist in plate, element

cartesian co-ordinate systems

coefficient in displacement expressions
coefficients in HX and My expressions
strain

poisson's ratio

inoremeﬁt

matrix

column matrix



CHAPTER ONE

INTRODUCTION
INTRODUCTION

Bending of a thin laterally loaded plate is
governed by Lagrange's equation when deflections w
are small compared to the plate thickness. This
equation is (1)
Tt o A% (1.1)
\ D
where, a(x,y) is the intensity of lateral loading
and D is the flexural rigidity of the plate. The
derivation of this equation is based on the assumptions
that there is no straining of the middle plane of the
plate, the plane section remains plane before and
after bending and the no?mal stresses in the transverse
direction can be ignored. Thus the mathematical
analysis of a plate problem reduces itself to finding
a solution of the above equation satisfying the
prescribed boundary conditions.
It may be observed that this approach becomes
difficult for a vast majority of practical situationg,

especially due bteo the complexities at the boundaries,

i

Besides this, the method cannot be app}ied easily if,
the domain contains arbitrary openings. These difficul=-
ties have led to the development of several approximate
methods and they possess various degrees of accuracy

depending on the nature of approximation introduced.
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Three apnroaches based on variational principles
have wide applications. ZEach one of them involves
the selection of a suitable shape function for the
bent plate in terms of unknown parametcrs, whigh ne ed
satisfy only the gecometric boundary conditions. The

function may be taken as

w=a,f.(x). £;(y) + apfo(x) . Toly)+ ,.....+anfﬁ(x).fn(y)
)

In the well known Rayleigh-Ritz msthod (2),

these unknown paramcters are determined by minimising

the total potential energy of ths system for eachh

of the modes of deformations associated with them.

Since the state of minimum potential is also the state

of complcte equilibrium, an exact solution i; possible

by taking infinite number of such parameters. The

second avproach is dus to Galerkin (2). In this method,

the unknqwn parameters are determined by minimising

ar

w

rror. This is donc by equating the work done by

the actual loads and the indirect loading from the
equation (1.1), for cach of the assumed shaepe functions,
during a virtuval di?placomunt. The third is the

method of Keantorovich (2), Here, a part of the shape
function say f(x), is sclected by satisfying the
boundary conditions in one direction. The paremeters
arc then obtained by solving the equation_(1.1) to

satisfy the remaining boundary ¢onditions.
y g

The me thod of finite difference (2,3) 38

another powerful approximate approach infhich, the



the governing differential equation is appro;imated
by a system of linear simultaneous equations. These
equations express the values of the fgnction at

certain selected points in the domain. The method

has been applied to analyse several problems of plate
bending, but it engounters difficulty in treating
certain boundaries. In many sitgations, the convergence

is neither fast nor satisfactory.

Several praoticgl problems have been analyssd
by collogation methods, These can be formulated in
two ways. One apnroacﬁ consists in selecting a
function with unknown parameters, which gatisfies
only the governing differential equation. The unknown
parameters are then obtained by satisfying the
conditions at certain selected points on the boundary.
In the other ap»nroach the function satisfies the
boundary conditions and the parameters are determined
to satisfy the differential equation at some selected

points in the domain,

Hrennikoff's framework snalogy (4,5) is an
example of the Liscretisation techniqu? for the
analysis of the problems in elasticity. The method
employs the concept of replacing the continuum by a
discrete system having finite degrees of freedom.
This idealised system is composed of analogous framework
molecules whioh are three dimensional pin-connected
structures. The bar areas of the mathematical model

are determined from the condition of equal
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deformability of the actual plate structure and the
and the analogous model under the action of uniform
stress. The stiffness matrix of the molecule is then

determined by the principles of frame analysis.

The advent of high speed clectronic digital
computers and their availability at most centres of
study hRYV revolutionized the avoroach to strfuctural
analysis. As a consequence, the older methods have
been rcoriegted to make them suitasble for machine
computation. In addition, new methods which are
particularly suitable for computers are being developed.
The widg use of matrix methods may be cited as an

example,

In recent years, a new technique known as the
Finite Element Method has successfully been applied
to the solgtion of a large class of problems in
elasticity. The origin of this method may be traced
to the approach suggested by Hrennikoff cmploying the
concert of replacing a continuum by a discrete system.
In this study the method has becen applied to the
analy=is of thin plates . in bending within the framework

of the limitaetions stated earlier.

BRIEBF DESCRIPTION OF THE FINITE ELZMENT METHOD

The finite element re thod WaLS originally
developed in the aircraft industry. The earliest
contribution was by Argyris (6,7,8). Clough (9,10)
demonstrated the possibility of applying

-

it to several problems of structural engineering.
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The most attractive feature of the method is its extreme
versatility and the votential it has for handling
problems for which solutions are not now availall e.
This is evident from the wide range of apnlications
attemptad since its incention. To-day, the method
covers problems relating to two and three dimensional
continuum (11,12). The problems may be structural
(13,14,15) or non—structural, for example, secepage flow

and heat conduction (39),

The basic phileosonhy of the finite element e thod
consists in regarding the continuum as an assem blage
of finite number of elements interconngcted at a
discrete number of points called nodes. Figure 1.1
shows arnossible idealisation of a plate structure in
bending. The behaviour of the actual structure is ]
predicted from the anélysis of this idezlised system,
The choice of elements to obtain the idealised system°
depends on the nature of the anzlysis to be performed.
For example, in two dimensional plane stress problems
two dimensional elements are the answer. The same
elements again find use in problems of bending of
plates and shells. Intuitively, it is possihle to
think in terms of three dimensicnal elements, such as
tetrahedrons, while treating the problems of solids,
Once the idealised system is finalised, the
analysis of the continuum reduces to a series of
standard matrix operaﬁ%cns 2as in one dimensional’

systems such as frames.,



FIG. 11 AN I[DEALISED - PLATE STRUCTURE




The formulation of the method can be based on two
distinct approaches._ They are the well known force and
displacement methods. Depending on the type of approach,
the nodal force - displacement relationships can be
expresse@ as, either element Tlexibility or stiffness

)

matrices. In this dissertation the formulation is

based on the displacement approach. The correspondipg

element property 1s, therefore, its stiffness maLrise

The analytical procedure involved in the finite
element method can be explained very conveniently
through the following steps:

(1) Visualisation of the continuum as an assemblage
of finite number of elemgnﬁs interconnected at
suitable nodes, Figure 1,1. For plate bending.
problems, the elements are flat plate elements.
They are the actual representation of the area
they cover in the conpinuum, retaining all the

associated

L]

roverties,

. . AL

(ii) Bvaluation of element stiffness matrlx,{kh
This requires the knowledge of stress - strain
relations.

(iii) Appropriate summation of the individual
element stiffness, applying prover co-ordinate
transformations, if necessary, to generate
the overall stiffness matrix{KL of the entire
assemblage. This involves the consideration

of equilibrium of forces and continuity

of displacements at all nodes,
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(iv)  Computation of nodal displacements, r, due to

applied forces, R, from
-1 :
{rg = [x] {R% (1.3)
ofter incornorating the boundary conditions.

(v) Determination of element forces due to the

nodal deformations, from their individual analysis.

SCOPE
The scope of this dissertation is limited to the
analytical study of the bending of plates using the

finite element method. The 2im is to explore the
possibilities of new displacement functions and study
their behaviour and usefulness in solving plate bending
problens.,

Various functions have been proposed (22), from
time to time, to determine the element stiffness matrices.
Their performance has been studied by comparisop with

he available results obtained by other methods. Some
of them converge while others divergs; the'convergenco
being either monotonic or oscillating (3%9).

The type of functions proposed in this digfertar

tion is different from those already investigated.

The behavicur of these functions have been studied

with an open mind to assess their usefulness in the
analysis of bending of plates. This has been accomplished
by compering the results of the analysis of some selected
plate bending problems for which either exact or
acceptable approximate results are available. The func-

tions rerorted in this thesis show monotonic convergence.
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CHAPTER TWO

THE FINITE ELEMENT METHOD
DISPLACEMENT APPROACH

GENERAL REMARKS

From the description of the finite element
method, it is clear that the most vital part in the
entire analysis is'the derivation of the element
stiffness matrices, They decide the stiffness of the
entire assemblage and consequently the quality of the
final results.' This part, therefore, needs utmost
skill and care.

A direct formulation of these matrices, using
the method adopted for one dimensional elementg, for
example Eeams, (16,17) is almost impracticable.
Nevertheless, an alternative method can be dgvised
which is approximate, but simple and elegant, The
approach consists in assigning a suitable strain
distribution over the element and deriving the corres-
ponding stiffness relations from the principle of
virtual work (18). This approach known as displacement
method, has been adopted in this dissertation.

The alternative formulation that resultskin
elemenp flexibility relations is called the force
method. nge, the eelection is of a suitable stress
field (18). This approach has been successfully

applied to the plane stress problems (19,20)%



252

-

On the other hand, the study of plate bending problems
by the finite element method is almo;t restricted to
the use of the displacement approach, This is because
of the difficulty in selecting a suitab%e stress

field for the plate elements in bending.

DISPLACEMENT APPROACH

The strain in a plate in bending is oompletely
defined by its deflection normal to the middle plane.
Therefore, the approach here reduces itself to the
selection of a suitable displacement function for the
element which can be a rectangle, triangle or any
other polygon. It is obvious that at a node where
several elements of the assemplage meet, continuity
of displacements should exist., If at such nodes only
the dgflections are matched, the structure will”develop
kinks, To avoid this, ﬁhe associated slopes nust
also be made continuous. For this purpose slopes

along any two perpendicular directions, for

example W and w_ are considered. Thus at any

y’ ’
node, continuity of these three quantities has to be

established. The numper of equilibrium conditions
thereby becomes three.

The overall state of deformation of an element
can be uniquely defined.by selecting its di§placement
pattern in terms of its nodal displacements. If this
is done, an element will have three degrees of
freedom at each node. Hence, the total degrees of

freedom of the element become three times the number
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of its nodes. A rectangular or quadrilateral element
will have twelve and a triangle nine dggrees of freedom,
1f their corners are selected as nodes. Thus, the
infinlte degrées of freedom of a continuum is rgduced
to a finite number in the finite element method.,
Therefore, it is reasonable to expect that by
increasing the number of elements convergence should
result.

In general, convergence to the exact results .
will never be possible, because the idealised system?
Figure 1.1, can never have infinite degrees of freedom.
Mathematically speaking, this happens only in the
limit, when the element dimensions become microscopic.
In all practical problems, reasonable accuracy is
sufficient. This can be achieved, provided the results
tend to converge. Any displacement fupction, sel ected
at random, may not lead to convergence. For this _

purpose they must shtisfy certain requirements (21,3%9).

CONVERGENCE REQUIREMENTS

In order to achieve convergence, the selected
di splacement function must be able to represent
i) all rigid body motions of the element
without self straining, and '

ii) the state of constant strain.

The first criterion follows from the reasoning
that the elements should be able to accommodate all

possible states of deformations while representing the
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continuum. Strain in an element deyelops from the
relative displacements at its nodes. The el ements of
continuum, in general, will travel some distance as
rigid bodies before developing strains. These
movements do not induce any strain in the elements.

For plate bending, three types of such movementé are
possible - one translation and two rotations about

two perpendicular axes. As the strains here are the
three curvatures, the requirement means that the
displacement function should reduce to a first degreeA
expression in the co-ordinates when the nodal displace-
ments conform to the rigid body movements.

The second condition is essential for
convergence. With successive subdivision, the strain,
in the l;mit, will tend to become constant in the
elements, If the elements are incapable of representing
this state, convergence wil} not be possible, no matter
how fine the subdivision is. The selected displacement
function must be testeg to make sure that it dQes
satl sfy this criterion. In mathematical terms, this
means that the displacement function for s plate
element in bending should reduce to a general quadratic
expression, when thé nodal d;splacements conform to the
condi tion of constant strain. This implies that if
for any reason, this condi?ion is violated, the

solution will diverge (22),

CONFORMING AND NON-CONFORMING FUNCTIONS

The displacements at a node in the assemblage
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are un?que because continuity is established at these
points., This nodal continuity may not lead to their
cont%nuity all along a boundary where two el ements
meet. Generally, it is observed that the continuity
of the slopg in the direction normal to such a boundary»
.is violated. However, the deflection and its associated
slope in the vertical plang containing the eleme nt
boundary remain continuous. A displacement funopion
of this type is called a non-conforming funétiorh
The use of such functions results in the ideglised
structure'becoming too shiff or %oo flexible. In
principle, there is no objection to their use as long as
they satisfy the two requirements for convergence
already stated. Several au?hors have used such
functions successfully (39). The strain energy in
such a case is contributed by the elements individually
due to the absence of complete ;nteraction between the
elements along their boundaries. Results oscillate
above and below the exact answer depending on whether
the resulting assemblage is too stiff or too flexible
at the various stages of the analysis.

Convergence 1is possible even if complete
continuity is not ensured. ‘But monotonic convergence
demands complete continuity. If the displacement
function assumed results in complete con?inuity the
structure will consistently be overstiff. That is!
its strain energy will always be below the minimum,
With successive subdivision the structure will

progressively become less and less stiff and approach
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the actual stiffness, while at the same time strain

energy will approach the true level as a lower bound.

SELECTING A DISPLACEMENT FUNCTION

The choice of funptions to represent the el ement
deformation is unlimited, In principle, any functiqn
that satisfies the above requirements is acceptable.

As already stated, the method allows the use of any
shape of elemgnts such as rectangle, triangle or any
other polygon. For rectangular boundaries elgments
of the same shape become the automatic choice. Other
shapes, for example, triangle or quadrilatergl, can
be employed to approximate a curved boundary.
Parallelogram elements have becen used for skew plates.

The first step in selecting a displacement
function is to.deoide on the position of the nodes
of the element. For this purpo se the corners of an
element boundary are suitable. Thus, the shape of an
elemept itself decides the number and positions of its
nodes. The selection of the displacement function
can be made'in_several different ways once the nodes
are located.

In the simplest approach, the displacement pattern
of an element is considered as a combination of several
independent modes of deformations of unknown amplitudes.
According to this, phe function for a rectangular
element of Figure 2.1 can be expressed by simple

polynomial as



FIG. 21 A RECTANGULAR ELEMENT
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This function has been used by‘Clough (22) and
Zienkiewicz (23). The number of independent modes
have been kept equal to the number of total degrees

of freedom of the element. Thus the amplitude
coefficients are uniquely determined in terms of the
nodal displacements of the element. 1t is observed
that the function reduces to a cubic expression

along lines x = constant and y = constant. This is an
advantage because & cubic function is completely
defined by four constants. These four constants are
uniquely defined in terms of deflection and the slope
in the same vertical plane at the two nodes Jjoining

a boundary. Therefore, the equalitity of the nodal
displacements leads to identical expressions for the
deflections along the common boundaries for the
elements lying on either side. Thus in the entire
assemblage, along all the boundaries where two elements
meet, the deflections and slopes in the corresponding
vertical planes are continuous. ~Along these boupdaries
there is one more slope in the normal directions.

Here the expressions for these normal slopes are also
cubic., This leads to the discontinuity of the normal
slopes along the common faces of the elements

because they are equal only at two points on a

boundary. Thus this particular displacement function
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is of the non - conforming type. It is one of the
few such functions which have proved tQ be extremely
suitable for a large class of problems. This very
function after suitable transformation into skew
co-ordinates has been used by West (24) and
Ramstad (25,26) for parallelogram elements. TFor the
same rectangular elements, Melosh (27,28) has suggested
two different function in two different ways. The
deflection function becomes a cubic express;on in
both the cases along the element boundaries. The
continuity of normal slope is again violated.

The displacement function for parallelogram
and rectangular glements can also be obtained in a
different manner. This is done by assuming that the
complete deformation of an element consists of a set
of rigi@ body motions and those producing uniform
strains., As already statéd, three types of rigid
body motions are possible in plate bending. Therefore,
the method proceeds by forming mathematical expressions
for each of these motions and those resulting in
uniform strains and, {inally adding up these
expressions to obtain the total displacement function.
This approach is due to Argyris (29). Here also the
normal slopes are discontinuous along the common
boundaries. Results of several examples demonstrate
the inherent merit of the technique.

A conforming function for a rectangular

element may be selected in a very simple and elegant
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manner as follows., The first step here is to clamp

éll the nodes excepting one. Then at this node,

unit deflection w and unit slopgs QX and wy are

applied one at a time, Figure 2,2, For each of these

nodal displacements the corresponding mathematical

expressions for the deformed shape of the plate

element is now written. This process is repeated

in turn at all the nodess Thé complete displacement

function is then obtained by combining all these

expressions. As an example, the expression for unit

deflection 2t the node 1 of a rectangular element is

shown in Figure 2.3 This method was attempted by

Papenfuss (30), but the selected function has not

led to satisfactory results because of its inabllity

to represent uniform twist., The successful use of this

method is due to Butlin (3%1,32) and Hansteen (33).

Both of them proposed the same function independently.

Continuity of twist Wy has been considered additionally,

to overcome the deficiency in the approach of the

earlier investigator. The other confoming functionv

for rectangular elements is due to Schmit et al (34).

The function has been derived by using the Hermitian

interpolation formulae. Here also, the continulty Qf

wxy has been considered in addition to w, He and wy;
The displacement function for a triangular

element oan also be teken as a simple polynomial

expression. A triangle has nine degrees of freedom

and the vomplete cubic expression contains ten terms



FIG. 2.2 APPLICATION OF UNIT NODAL
DISPLACEMENTS.
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- 17 -

(Eq. 2.1). Clearly, it is necessary to drop one of
thems This can be done in several ways. But none of
the resulting functions is reported to have led %o
satisfactory results (22). Adini (%5) excluded the
ﬁniform twist term xy from the complete cubic expression
(Eg. 2.71); hence his solution does not convergees
Tocher (36) tried two different functions, one by
combining the higher twist terms X2y and xy2 and
next, the complete cubic expression. In both these
methods total ten terms are involved but the functions
do not provide satisfactory convergence (22).
Moreover, the second function leads to a singular
characteristic for certain orientation of the sides
of the triangle, for example, when two sides are
parallel to x and y co-ordinate axes (39)., Nevertheless,
these pioneering contributions have helped later
investigators in their search for better displacement
functions.

The successful use of the polynomial function
for triangular elements has been achieved by Clough
et al (22) through a very elegant approach which has
the mefit that it leads to complete continuity of the
displacements. The triangle is first divided into
three sub-elements by joining the three corners and
its centre of gravity, Figure 2.4. Then for each of
these sub-elements an independeht cubic displacement
function of nine terms is selected with reference to

—

their independent local co-ordinate systems (X, ¥y, Z)e



Z AXIS UPWARD

FIG. 2.4 DIVISION INTO SUB-ELEMENTS
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These functions are such that they provide a linear
variation of normal slopes alopg the exterior
boundaries of the sub-elements. The normal slope
varies parabolically along the interior boundaries
because of selecting a cubic displacement function.
In all, twenty seven constants are involved and these
are determined from the sqlution of an equal numbe:
of simultaneous equations. Nine of these equations
express the nodal displacements of the original
undivided triangle, fifteen the continuity of di splace~-
ments at the nodes i, j, k and o, and the remaining
three are obtained by equating the normal slopes at
the mid;points 1, m and n for the corresponding
elements. These las? three conditions lead to
conforming behaviour. This is possid!e because the
normal slopes have parabolic variations along these
internal boundariés and a parabola is uniquely defined
through three points. |

A significant contribution in the methods of
selecting a displacement function foria triangular ele-
ment is due to Zienkiewicz et al (37). This has been
achieved by using the area co-ordinates which'was
independently suggested earlier by Irons (38). The
method leads to a cubic digplacement function which is
of the non-conforming type. A recent publication by
Zienkiewigz (%39) provides information on this
technique, This displacement function can be
transformed into a conforming function by using

additional correction functions as suggested by
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Beseley et al (40). The use of correction function
leads to the linear variation_of normal slopes along
the boundaries of the element. This displacement
function has givgn excellent results when applied to
several problems. .

The task of selecting a displacement function
for an arpitrary quadrilateral element is extremély
difficult. Though an arbitrary quadrilateral has the
same number of nodes as a rectangle, the polynomigl :
function selected fo; the rectangular element (Eq. 2.1
is not suitable here. Excepting the lines x = constant
an@ y = constant the displacement function of equation
(2.1), reduces to a fourth degree expression. For an
unique definipion of such an expression five conditions
are necessary. Thus the deflection and the slope in the
corresponding vertical plane can remain continuous
along a common boundary provi@ed five conditions are
available on these boundaries. This is not availalle
here and, therefore, TaT & quadrilateral’the uga of
equation (2.1) leads to complete discontinuity of all
the displacements along the common boundaries in the
assemblage. The simplest apvroach seems to be to
divide a quadrilateral into two or four arbitrary
triangles and obtain the stiffness matrix‘using
sulitable functions for these sub-elements. Sander
and Veubeke (39) have suggested a me thod using three
separate displacement functions with a total of
sixteen constants. The continuity of normal slopes

has been achieved by selecting four mid-point
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nodes at the boundaries. At these nodes, the normal
slopes have been taken as extra degrees of freedom.
Thus the approagh involves the use of two types ofv
nodes, the corners, where all the three displacements
are specified and the mid-point nodes for the normal
slopes.s The interested reader may obtain the details
from the original publications (41,42).

30 far only the use of polynomial expressions
has been discussed. For plate bending analysis one
basic reason for adopting these functions, in addition
to their simplicity, is the ease with which they may
be made to satisfy the convergence requirements. In
Principle, any other function such as'trigonbmetric
expressions can also be used. But unfortunately the
experience with these functions so far has not been
rewarding and very few investigators have reported
the use of such. functions., Butlin (32) observed that
the displacement function of this type for a rectanguler
element failed to represent the rigid body motions
without self-straining. The results became poor with
successive_sub—diViSions and ultimately diverged.
Henshell et al (43) report a similar experience for
rectangular elements, They felt that "the reason for
this divergence is that with trigonometric shape
functions, unlike polynomial types, the deflected form
of one large finite element cannot be represented with
a large number of small finite elements". A careful
study shows that the reason given cannot account for

the unsatisfactory performance of trigonometric
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type of functions. 1In fact the selected
displacement function does not satisfy the requirements
of convergence and this is really responsible for the
reported behaviour.

The main difficulty which precludes the use of
such functions for representing element displacements
lies in satisfying the convergence requirementss This
thesis has mainly been concerned with the search for
new displacement functions. After several initial
failures, the author has at last developed a means_of
employing functions hitherto considered unsuitable,

The number of suitable functions is rather limited.

But the method developed in this thesis for rectangular
elements enables many new displacement functions to be
used successfully. The technique employed is set out
in detail in the next chapter.

Another problem studied in this dissertation
is the triangular element using the polynomial displace-
ment function. Such a function has been successfully
employed only by Clough (22). The technique adopted in
this study is a variation of the method used by Cloughe
The triangle is first divided into three sub-elements by
joining the three corners and its centre of gravity. For
each one of these sub-elements a conforming type of dis-
placement function has been derived using additional
correction functions which are also simple polynomial
expressions, The method differs in two ways

when comparcd with Clough's approach. First additional
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correction functions have been used. Secondly, the
normal slopes vary linearly instead of parabolically
along the inner boundaries of the sub-elements, The

approach is presented in detail in the next chapter,
ELEMENT STIFFNESS MATRIX

The stiffness matrix of an element is derived
from the principle of virtual displaoements using the
selected displacement functioms A typical rectangular
element with its co~ordinate system is shown in
Figure 2¢1. Here the entire process of obtaining the
Stiffness matrix for this element is illustrated with
the help of few steps which are applicable to all
other shapes,

fa Let the element displacement field be

W= gt a; Mi {xpy) ey

F M

whefe Mi (x,y) are the assuned modes of deformations
with unknown amplitudes ai;

In matrix_notation this is written as (omitting the
brackets),

w = Mg (23 3)
where, M and'a, are row and column matrices
respectively,

The number of constants a, are taken equal to
the totgl degrees of freedom of an element as stated

earlier. Thus, a rectangular element involves the



use of twelve of them. At a node, displacements
consist of the deflection and two slopes. The

displacenent vector Uy at the node i of the element is

o 1T |

) L — oW ;
T T e G

v fe | ow

The complete displaocement vector u of the element is

given by the displacements of all the nodes. Therefore,

U.i ™
5 4
o
u = k \ (2a 5)
fi:
C44) The constants a are evaluated by writing the

equations of nodal displacements and solving them
simultaneously. Let these equations be _

u = Ca. (2.6)
The matrix C involves the co-ordinates of the nodess

By inversion,

Ch (2:7)

a

I

(iii) Strains e at a point in the plate element
‘are given by the curvatures when the deformations are
small (1) These are w_ ., W and w_ . Therefore,

3 Xz vy Xy 5

" A ? Yy
+
e B

(2.8)



w34 -

These are obtained by appropriate partial differentia-
tions of equation (2.2). This leads $o

¢ = Ba _(2'9)
The elements of B matrix are in terms of x and y.
Using relations (2,7),

& = BCTH (2.10)
(iv) Stress resultants (5 , i.c., the moments are

given by the relations (1)

M, = =D (WXX + _mwyy)
M, = =D (v, + wyy) (€:17)
B = O (1=a2 )%
Xy ( s ) Yy
where,
D 1,15
12 31-7u§)
Hence,
“}:) 1 /L)L = “VYox
BEL T M1 0 ST (2.12)
t I{xyf SRR o & ;Ay Vs
or, 0 =3 8 (225
From equation (2.10)
G = EBC-‘J_,W_ (2.14—)
(v) Strain energy in the volume dv of the element is
AU = o' 5 av (2.15)

r

S
where, e is the transpose of e.
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Since there are two twisting oouples, and their
contributions in the energy are equal, the matrix D

of the equation (2.12) is modified to

——
—

1 ! 0 ’
D = | m 1 0 (2,16)
0 0 2(1- )

The internal work done in the volume dv of the
element during a virtual displacement is the product
of the actual stressesf§\and the strains ¢ due to

such displacement. Therefore,

aw; = 'e'Tf)/dv (2.17)
‘Using equation (2.10)

g = BC—1 fS u (2,18)
whére, CSu denotes the virtual nodal displacements.
These virtual displacements can be selected as unit
nodal displacements. If only one is applied at a
time, keeping all the remaining displaocements equal to

ZET0o, Q§Llcan be taken as a unit matrix, I,

Then,
R . S S |
8 = BE'Ou=3B0"1I ='EY (2.19)
Therefore, the total virtual work done by the
internal stresses becone
v, = [(BCUDBC 1uj dv (2.20)
Yol .| _
or, W, = Uf1ﬂ?['[quB dv T ¢t (2.21)

/ -

~

vol
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Only B matrix involves x and y and therefore, it is
kept inside the brackets, |
(vi) Work done by the nodal forces are now calculated
for the same virtual displacements. At a node three
forces are present.

They are, one vertical force FZ and two couples FX
and Fy. The vector for the nmode i 1is

F .
xi

F. = gas

5 - ot (2.22)

-
L T

'\_,,_.-'\\/_—.—-..__, 4

and, for the element it is

The total virtual work done by the nodal forces is

i, o= S0F = fP =P (2.24)
Equating we = Wi_
Ti"]'_ - i |
T = (0‘1) ?(BTDB) iy | By { 2.25)
vol :

This equation represents the relations between the nodal
forces and displacements. Thus, these are the required

stiffness relations which may be written as

Somc ‘ ¢
s [ x ]/u( (2.26 )

-
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Here,

' T / _
K = (c‘1)/ EB 58) av| (¢ N (2.27)
vol

and, it is the stiffness matrix of the element.

ANALYSIS OF THE ASSEMBLAGE

Analysis of the idealised system
requires the formulation of the stiffngss matrix{jKW
of the entire assemblage to start with. It states ghe
relations between the forces and the‘displacements
at the nodes of the entire structure. The next phase
consists in calculating the deformations at these nodes
due to the applied loading. Once the nodal deflections
become known the deformation§ of the individual |
elements are easily obtained. The corresponding
internal forces developing in the element§ are finally
determined from their individual analysis.

(a) Stiffness of the assemblage

The stiffness matrix[}K] y of the entire assemblage
is obtained by summing up the individua} element
stiffness matrices in a suitable manner. This summing
up actually involves the setting up of the equat§ons
of equilibrium at all the nodes of the structure,.

For this purpose, one important point has to be
recognised., A nodg of the structure connects the
elements around it. Thus, these connected elements
have identical displacements at such points. Generally,

the individual element stiffness matrices are expressed



in terms of their independent local co-ordinate Systems,
These oo-ordinates may differ amongst themselves
and at the same time from the co-ordinate system of

the entire structure which may be designated as global

T . |
{ {13 formulated
-l

with respect to this global system. Hence, appropriate

co~ordinates, The stiffness matrix [F

co-ordinate transformations become necessary to write
the equations of equilibrium,

The steps involved in deriving the stiffness
matrix are best illustrated by means of an exanple.
Here, an assembly of four elements as shown in
Figure 2.5, is considered. In this parfioular example,
the local co-ordinates of the elements are parallel %o
the global system. Therefore, the neoessity of
oco-ordinate transformations does not arise, However?
this particular aspect is discussed at a later stage.

The stiffness matrices of the individual

elenents of the assemblage are

iF(K)g = [lz(x>j{ u(X)g (2.28)
Iy 255

7 e
Lo - L] L}

This matrix can be expanded as

() {x) (x)
o Sp By e S ey
Fj: kyp gyl kjl ] ug [
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ELEMENTS
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g ¥

jg os and U uj, .. are the corner forces and
displacements of any element as already explained in

i’

section 2.6. k e o are the 3 x 3 sub-matrices of

id
the element stiffness matrix.

For equilibrium at a node of the st ructure, the applied
forces at this point must be equal and opposite to

- the internal forces developed at that point within

the connected elements. The general form of the

equations of equilibrium at a node i is

A x)
o
R, = >k

Here, R represents the applied forces at any node i

iJ 9 e g 1’2’5, s 00 (2.50)

of the assemblage, which is

z /

For the particular problem selected here, the equations

of equilibrium are

{13

R1 = F.
ATl
(1) (2)
R = ity + e TS
2 3 i
=) \
Ry = Fj {2, 32)
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R, = Fl(3) M Fk(4)
4)
g - @ Fl(

The displacements r at the nodes of the entire

structure are defined as

-
-

1 =8 \ (20 53)

where, Ty, Tp, Iz « « « are the displacements at

joints 1;2,3%; » » » . of the strueture. At a joint

ill5 r; is defired as

r; = (P, | (2.34)

The corner displacements of the connected elements

at a joint of the structure can be eagily obtained
from the considerations of continuity. This is

done by observing that at a node 1, the displgcements
of all the connected el aments are equal to Tse Thus,

in the present example the following rela tions are

valid,



(1)

(2.35)
(1) (2)

ir et — i o 23
dJ - = r2 etc.

These relations can be easily incorporated in the
equations of equilibrium of this example. Using
relations of the type (2.29) and (2.%5), equations
(2.32) become

oy o kii(1)r1 i kij(1)r2 2 kik(1)r4 - kil(1)r5
iy = kji(1)r1 2 (kjj(1) 5 kii<2)) Ry kij(Z)rB
- kik(1)r4 + (kjl(1)+ kik(g))r5 |
+ 1y, P (2.36)
and so on. |
These equations are now written as
R11 kii(1) kij(1) e
Rl e ey B [y
) ' ' ' (2.37)
s o
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Equations (2.37) state the relations between the forces
and displacements at the nodes of the structure
considered here. Thus, the matrix within the square
bracket is the stiffness matrix of the structure. The
same approach, results in a similar set of'gquations

if applied for any other arbitrary geometry, Only
difference will be in the sizes of the matrices which
are governed by the number of joints and degrees

of freedom at the connections.

Equations (2.37) can be abbreviated as:

;Rjk' [ ] {2:38])

where, [K] is the stiffness matrlx of the structure.

It is observed that only the surrounding nodes
of the structure contribute their effects to the
equations of equilibrium at a point. This makes the
resul ting [K:} matrix well conditioned. Ceneration of
this matrix while using a digital computer presents
no problems. This is explained in the appendix.

If the independent co—ordinate‘systems of the
elements have different orientations, their stiffness
matrices are first transferred to the global system.
When this is done, the formulation of equations of
equilibrium using these transformed stiffness
matrices follows the usual steps. Let, the x
co-ordinate axis of an element be inclined at an angle
/? with respect to the x axis of a system

(%, ¥, z) taken parallel to the global system of the
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entire structure, Figure 2.5. All the directions of
the for&es and displacéments are also indicated.
At any point i, the displacements with reséect to the
element co-ordinate system can be expressed in terms
of the displacements of the auxiliary system

(x,¥s2) ast

o r 1 -
gen ‘} -'-cosﬁ) sind 0 i ?1__ |
}j?% = s—sinp cos/ 0 ! ey (2.39)
gy B 0 L T
or
iul)’ 2 ha‘l} (2.40)

where, uy and u; are the displacements of the

(x,y,2) and (X,y,z) co-ordinate systems

respectively. T is the transformation matrix,
Now, expressing the forces in (x,y,2) co~-ordinate
system with respect to those belonging to the element
co-ordinate system (x,y,2z), at the same point i, one
obtains,

il T ; g :

gFiz = [T _] { Fi} (2.41)

where, fi and Fi are the forces with respect to

(x,7,2) and(x,y,z) systems respectively, T

is the tranpose of T,

A similar set of equations result if the displace-
ments and forces at all the nodes of the element are

considered one at a time. They can be combined as
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ke L ® | . ik (2.42)

or, F;’ =[Te:‘ EF} (2.43)

sl

r——-,“q___..‘/\‘—-—-'—
L} *
\___-
L
1 ]
/’—‘%-—»v. SRS
L] » .
.
e s [

(2.44)

3 = H:;;
""-'"-\/‘—.__‘/'
il
o)
|
el

or,

s 5
iuj= [TGJ % u§ (2.45)

Here, i, j, .. refer to the nodes of the element,

T

Te is the transformation matrix for the element. Te

is the transpose of Te.
The element stiffness relations expressed in terms of
its own co-ordinate system is (Eq. 2.26)
: )
73= [2]}
{ } EIREX
Using equations (2.43%) and (2.45)
F .
“ 1 i s ~ .
iF}- [Te] [k‘,[Te—]{u} (8:446)
This equation expresses the stiffness relations of the

element with respect to the global system and the

transformed stiffness matrix [E-l is
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2o SO Fa 4
[1-7!: [Tc S H'Tn'} (2.47)
RN
When several elements with their independent orientations

/3 3;‘% «v. are involved, individual transformation
matrices can be formed simply by inserting their
respective angles in place of/3 in equation (2.39),
The transformed stiffness matrices for the
elements of the structure can now be expressed as
o bk W al=ie sl
? T j- :i.k i u

X = 1,273 s s

k_—\r-«

(2.48)

Thus, this becomes the starting point for the formula~
tion of the equations of equilibrium. From this

stage onward the formulation of the stiffness matrix[?]
proceeds as indicated earlier,

(b) Nodal deflections

For a set of apnlied loads, the deformations at
the nodes of the structure are easily obtained from
an equation of the type (2.38). Generally, the
structures have certain restrictions of movements
depending on the manner in which they are supnorted.
These are the boundary conditions. Thus, for example,
if the idealized plate of Figure 2.5 is'clamped
along the edge 123, all the deformations at joints
1~3 should vanish, This means that

ry, = I, = 1r; = 0 (2.49)
It is also obvious that the effect of the external

forces apnlied at these points on the overall



deformations of the structure is zero. Therefore,

—

K ] may be modified taking

the stiffness matrix['
these intovacoount.v Et is clear that these forces
and the displacements can be left out in the formula-
tion of the stiffness matrix. This means that the
effective size of the [.K:]matrix is reduced. The
reduction in size is cafried out in two stages. The
first step consists in wiping out the rows and colwns
of the unwanted forces and displacements respectively
and keeping these places blank., After this, the
matrix is condensed by omitting all these blan spaces
so that its size is {Qduoed. This reduced stiffness
matrix may be termed[_K.J. Therefore, the relations
(2.%8) are now written as,

/RQ - lﬂ%) (2.50)

The joint displacements, due to the forces applied

at such points are obtained from

r 5 —1 \ b
S [K ji '} R, 2,51
gk ! 3 | ( )

(c) Joint loads

The derivation as such allows the application of
concentrated forces only. On many occasions the
applied forces consigt of distributed loads of uniform
or varying intensity. These forces have to be
represented by a set of concentrated nodal forces,
This can be done in two ways. The simplest way is
to assign simple concentrated loads at the nodes

on the basis of the area that they command.
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This solubtion is suitall e for most cases and with the
increase in the number of elements the associated
errors get reduced.

In the second approach, equivalent nodal forces
are calculated from thé prind ple of virtual work,

A set of nodal forces for which the work done during
a virtual displacement becomes equal to that due

to the actual distributed forces is taken as the
equivalent loading. These equivalent forces are
calculated for the individual elements.

Let, the actual distributed force‘on an element
be q(x,y) and its equivalent forces PE . The work
done during the virtual displacement (UW by nodal
forces Pp is

W | = (C(;:)T ¥a s I P

P ., ® " E = PE (2.52)

Here the virtual displacement has been considered
in the way stated in section 2.6.

For the same displacements, the work done by the

distributed forces is

/ T - A
W, = j{/ (dw ) alx,y) dx dy (2.53)

From equations (2.3) and (2.7)

w = Ma = MC 'u (2.54)
c.. ‘:fw = MC—‘1C§' = MC—1 (2055)
Equating'wp = ,VD
. T ;
Pp = ‘/[;(Mc—q) al x,y)dxdy (2.56)
o
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The vector PE will have couples in addition to the
vertical forces. When more than one element meets
at a node, contribution of each of them are to be

considered to calculate the joint loads.

(d)  Calculation of element forces

The nodal displacements of an element become
known once the solution of equations (2.51) is
obtained. Using them, the internal forces are obtained

from the equation (2.14).

G = (b)) u

When several elements meet at a node of the st ructure,
only the deflection and its first derivatidas are equal
for each of these elements at that point. This

leads to discontinuity of corner forces. Therefore,
for design purpose the average magnitudes of the.
respective forces are to be considered. However, these
forqes can be calculated at some interior point,

say, the centre of gravity of the elements.: This avoids

the calculation of average values.

FINITE ELEMENT METHOD AS A SPECIAL FORM OF
RAYLEIGH - RITZ METHOD

The description of the finite element method
developed so far helps one to visualise that a plate
structure is divided into a large number of small

elements interconnected at certain selected points;
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such a picture is certainly usefu} in gaining a
physical insight into the process. Variational
principles may be employed po provide a much deeper
understanding of the method. That the finite element
method is a special form of the well known Rayle;gh -
Ritz method has been fully realised only of lates
According to this new line of thinking, a plate
Structure need not be considered as divided into small
elements physically separated from each other along
their common boundaries in the domain; instead, the
domain may be visualised as divided into a number of
zones by drawing a set of imaginary lines. The
displacement function selected for a typical element,
according to this concept, becomes a representation
of the deformations assumed;in a typical ::one bound
by a set of imaginary lines,

In the Rayleigh - Ritz method, the selected
displacement function is valid for the entire structure;
The function assumed in terms of some undetermined
parameters, satisfies the prescribed_boundary
conditions of a particular situation. The parameters
are determined by minimising the total potential energy
of the system for eagh of the modes of deformations
associated with them. As more parameters are
considered, the approximations in defining the deforma~
tions of the structure approach more closely the
actual deformations and the results converge towards
the true answers with the total potential energy

approaching the true minimum,
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This entire process is achieved in the finite
element method, but this fact remains
obscure. Here the deformations of the entire structure
are visualised from the displacement functions selected
for the restricted zones. A function for a divided Zone
involves a fixed number of parameters, and as a result,
the deformations are poorly represented‘if the division
is coarse. Increasing the number of zones improves the
representation and indirectly increases the number
of parameters,

However, a subtle difference exists between
the two methods in respect of determining the parameters.
In the finite element method, unlike in the Rayleigh -
Ritz method, the parameters are determined by forming
equations of equilibrium at the nodes (using the
principle of virtual displacements) which can be
expressed in the form of a stiffness matrix. So far
as the results are concerned, it makes no difference
whether one elects to use the principle of virtual
displacement or the minimum potential, because they are
the two different forms of the same principle. Thus
the true level of minimum potential energy is reached
when the zones become microscopic,

The advantage of this new concept over the
classical approach of Rayleigh - Ritz method is in the
extreme generality in the formulation. A function
of a divided zone is designed to accept all possible
boundary conditions. The additional feature of the

method is the convergence criteria,
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They are necessary due to the discretisatign
introduced. In the Rayleigh - Ritz method, the selected
displacement function provides complete continui ty

of both displacements and the stress resultants over
the entire domain., Here the overall stiffness of

the structure will be consistently higher than its
actﬁal stiffness, On the other hand, in the finite
element method, the stress resultants are usually
discontinuous across the boundaries of the divided
zones. The displacements may or may not be continuous
across these boundaries. When the displaqements are
continuous, the overall stiffness of the structure
exhibits a behaviour similar to that observed in the
Rayleigh - Ritz method. But if the displacements are
discontinuous, the overall stiffness of the structure
oscillates about its true value depending on whether -
the resulting assemblage is too stiff or too flexible
at the various stages of sub-divisions assum2d,
However, as the number of sub-divisions is increased,
the strains, in the limit, tend to become uniform over
the restricted zones, This finally'leads to the
continuity of the stress resultants. Thus ultimately
complete continuity and eQuilibrium are achieved
throughout the entire domain. Herein, the convergence

oriteria play a vital mle.
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CHAPTER THREE

NEW DISPLACEMENT FUNCTIONS
PURPOSE
The displacement functions proposed in this

dissertation are derived in this chapter. Two shapes

of elements have been adopted; one is rectangular

- and the other triangular, The former is most suitable

for rectangular plate problems and the latier
any arbitrary shape. For both these shapes, the

functions derived are of the conforming types

RECTANGULAR ELEMENT

Figure 3.1 shows a rectangular element
with its four nodes i, j, k and 1. The element is
in the x - y plane and the z - axis is taken vertically
downward., For this element, the displacement function
has been obtained by deriving the expressions for
the deformed shape of the plate element due to the
application of unit displacements af its nodes. 1In
this derivation, the following relations have been

used throughout:

= X
Xm - ik a
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FIG. 3.

A RECTANGULAR ELEMENT
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(a) Shape Functions for the deflections at the nodes

(i) Node i

In order to derive the expression for unit

deflection at this node, the shape function is taken

as
X i g
w = BB (3.2)

Equation (3.2) results in unit deflection at the node
i, and the deflection varies linearly along x = - a
and y = - b as shown in Figure 3.2.

From equation (3.2) the slopes are

Y
_ 1 m
b - T & J.
2 ) o Xm (3.3)
y b 4

Since the expression to be obtained is for unit
deflection at the node i, these slopes should be made
zero at all the nodes. This can be very easily
achieved by eliminating the normal slopes along the
element boundaries.

It is observed that L0 is independent of the
x - co-ordinate and varies linearly along the y - axis.
That is, Wy is constant for a particular value of the
y co-ordinate. A similar behaviour is noticed for w

y
with respect to y and x co-ordinates,

Along X = i" 2y (qu 303)
n e
RiW, = e Zg (3e4)

In order to make W vanish along these edges a correc=
tion funection is required which will produce equal

and opposite w_ along these very edges, without

X



FIG. 3.2 LINEAR EDGE DISPLACEMENTS FOR
UNIT DEFLECTION AT NODE i
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altering the existing values of nodal deflections,
Obviously, the function should give zero deflection
along x = + a for this purpose. From equation (3.4)
it is seen that the normal slopes, i.e., w. are the
same in magnitude and direction at x = + a for a
particular value of y. Therefore, a function in x
alone can be used for eliminating W at the edges
mentioned above. Let this be any function f(x).
This function f(x) is taken such that it produces w =
but zero deflection at x = + a. Assuming for the
timc being, that such a function f(x) exists, the
required correction is

g, = %"f(x)] (3.5)

Introducing this in equation (3.2) the deflection

aquation becomes

v o= Sl & EQ flx) (3.6)
4 - 5 '
Now the slope wy isg
O e 1
¥, o =g L‘ Zﬁ i f(x)-J (30T)

Here, wy is constant for all y and is.same i
magnitude and direction at y = + b for a particular
value of x. To eliminate wy at y = + b, a function
f(y) with similar properties as that of f(x) is
required. That means f(y) should produce L. 175,
but no deflection at y = + b. Thus, the correction

required to eliminate wy along these particular edges

¥
s g, - % P 1) ] ‘{ £y) | (3.6)
! |

L | |
. el N

1/37
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Therefore, the shape function for unit deflection

at the node i, becomes

i - T
= o ¥ i Fl s
i S ~EJ—-f(x;}+ BRI £(x) | f(y)\ (%.9)
S Ll s

In this equation (3%.9), the slopes W, and w_ are
e J
eliminated at all the nodes and elons all the edges
the normal slopes are zero. %is W, is applied at
node i instead of unit deflection, the equation (3

after simplification can be written as

w = wi £ 'r { | 7 GO
= T{:%+I&qL%+qu [ 310
The expressions for deflections at the remaining
nodes are obtained in the same way as outlined
above. They are, for

(549 Node j

W ; {7{ ;
— o + f7° )
W ;. {%p f(x ,Ym £(y) 3011,
3
(iii) Node k _
\ . - I \-‘ - 3
e Zg { - A f(x)][.Yp L(y/{ Pt
- A
(iv) Node 1
W=;—z; X —:ﬂy;[Y - f£{y) {2,43)
4 p ; | P =y Al
(b) Shape functions for the slopes

The derivation of the cxpressions fir the
deformed shape of the element due %to the application
of unit nodal slopes involves a little more trial

and manipulation. Since the functions f(x) and f(y)
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have already been used in the expressions for the
nodal deflections, they cannot be left out here. It
is difficult to fulfil the convergence requirements,
if thcj ars omiﬁted. Thus, the process actually
reduces to adjusting the functions f(x) and f(y) with
the help of certain other suitable expressions, so
that the derived shape functions ultimately satisfy
the requirements of convergence.

Nods i

Following the above reasoning, the expression
Fal

for the deformed shape of the element due to unit

slope W applied at node i,

i
G}
W"Vq o [ﬂx) + —‘S—E”Ym + £(y) (3.14)

3

and, for unit slope w _ epplied at the same node i,
v

as

v i R

2 ' = b_ r _;_“L__Q_ ‘ 4 i

.;/ 2 =g t—f(y) ¥ = ‘5ﬁm f(x) (3.15)
: gt K

Applying @Xi and Gvi instead cof unit slopes, ths

respective expressions are modified as

I -~ a 6 r / XT"‘ X"»’) i r - &
_— B figl + g } R ¥ f(y) (3416)
i AL
— "!_
. R A s
y.//z el bRl “L—P-J Xo T () (3.17)
- N : -

The steps involved in deriving these functions are

guite simple. Here these are explained only with



reference to "qu; similar steps are used for

arriving at\#/z.

First, a function is selected to satisfy

following conditions:

at x = + a, W = 0, w, = 0
at x = - a, woe By wx = =

These are satisfied by .
‘ s s
¢ (X) = %[f(}() + m2 EJ i (3-19)
where, f(x) is as already defined. The function\%/q

is then %taken as

\7//1 = af (0.9 W) (3.20)

The function W@ﬁ‘ is selected such that it satisfies
the following conditions

at y = -b, w1 w, =0
+b, W=D w =8 (3.21)

it

at vy

These are satisfied by

gizs = 7}[ f(y)J (3.22)

already used in equation (3.10). Several functions
satisfy the conditions of equations (3.18) and (3.21)4
If these functions # (x) and ¢ (y) are selected

only on the basis of these conditions, the resulting
function may not satisfy the requirements of
convergence. These expressions were finalized after
several trials remembering the conditions of

convergence, especially the requirements relating
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to rigid body motions at this stage. Considering
the remaining nodes, one at a time, the corresponding

functions are derived on similar lines. They are,

{%n'+ f(y{} (3.23)
J ; y

| b@.w o
/BZ/4 s [:f<y) + {%p - f(xi] (3.24)

% Node k

B.if % 1 -
q¢/}5 = a4X& i ~%—PJ[:YP - f(fﬂ (3.25)
| WO frAr
ﬁ%y . = _ZYK f(y) - —%—P{ X, + f(xf} (3.26)

(iv) Node 1

for

{ii) Node j

>
4

a@%l— ; meﬁ'r
’»A/7 e n f(x) - =5 Yp - £(y) ety

- Y
-

.bb,w ) r ._Y l 2
'}A’S = —Zy— f(y) - —g—%l Xp - f(X)f (3.28)

(c) Complete displacement function for a

rectangular element

The cowplete displacement function is
obtained by adding up the expressions

for the nodal displacements derived above.

Let,
= |
F, (x) = %{“ I(X)J
F, (x) = %/ X, - f(x)]
1T : X xoq
7 (0 = 3| 20 +y
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1
— 1

_ ___pj
x f(y J (3-29)

Y - f£(y)

=
N
P
i
1
rof—

bof

-—

.
1

rof—

Ay Tgsave. r'—’

<

+

1 YmYD—

Fy (y) = 3 [E(yd -
1 ¥ YmY B

Fy (¥) = 3 l—f(y) - 3P
il

In these expressions f(x) and f(y) are hot yet
defined. But the requirements which these functions
have to satisfy have been already stated. These
functions will be discussed in dstail at a later
stage. Using these above definitiong, the complete
displacement function for the rectangular element

is written as:

wo= Wy By (0. Fy(y) +oa 8y By (x).Fy(y)

+ b eyi F1(X g F3(y) + W F2(x)° F1(y)

+ a 6_. F4(X). F1(y) + b ©

Xj Fz\lx)v FB(y>

S i

b eyk F1(x). F4(y) + wy Fo(x). Foly)

-+

“+

050 Fglx). Fply) + b 8y Folx). Fy(y)

i (3.30)
The resulting displacement function written above
satisfies fully the requirements of rigid body
motions. It is also capable of representing the
state of uniform moments in x and y directions, but

unfortunately fails to represent the condition of
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uniform twist, Examination of this function reveals
that the quantity Wyy OF the twist is zero at all the
Lx
nodes. To make wvy non-zero at the nodes, it is
L

taken as an additional degree of freedom at the

nodes. The shape functions givine twist are talken as
1 5 (= 7

at node i, w = ab 8 .F.(x).FB(y)

Xy~ 3
at node j, w = ab 8v_r.I‘4(::).F3 V)
"5'|:!‘ Ll

at node ky, w = ab 6_ 1Ej(:c)..FL,_(y)
A L / hY
gt node 1, w= &b erTlx,(X),Wﬂ\y,

These expressions are added to the function of
equation (3.30) to arrive at the final displacenent

funetion.

W o= F1(x).F1(y)wi B aFB(X)'F1(y)6xi % bF1(X)'FB(y)®yi

+ abFB(x).FB(y)nyi + T,

* R (R F 500y + DR (x)Py{y)8, g +

+ abF4(x)F3(y)0ij - f1(x)12(y)wk

2 011(;:)1-'4(1'.r)6:/_k o abl'g(}-’i)fﬂ(y)@

+ :Q(x)Fz(y)wl + aF, X)Fgﬁy)oxl

- bFZ(X)F4(y)eyl + abFA(x)F4(3)@

Xyl
The displacement function with these additional
degrees of freedom now satisfies all the recul rements
of oonvergence. That the function is of the

conforning type is obvious from the approach outlined,
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and it is interesting to note that the f£(x) and £(y)
have not yet been derived explicitly. This part will

be taken up nows

(a) Function f(x) and f(y)

So far it has been assumed in the derivation
shat it is possible to find functions f(x) and f(y).
NWothing has been stated explicitly about thelr fo;ms
excepting the conditions thrt they are to satisfy.

These gonditions are

#(x) =0, £'(x) =xat x=%a (3.33)
for the funotion f(x), and’ |
fy) =0, #H) = % ab y =+ 1 (3:34)

for the function f(y), where, f'(x) and f'(y) are

the respective first derivatives.

If the shape is now drawn for any one of them
with respect to the element co~ordinate systém, an
anti—symmetric function is obtained as shown in
Figure 3.3. Iwo approaches, with a subtle difference,
are available to determine the mathematical expression
for the shape; one is by physical intuition and the
other by solving equations of boundary oonditions,

If we opt for the latter, the simplest procedure_is
to assume a cubic expression with four constants,

Therefore, let

£(x) = Ay + Ay (B) + &g (B + 4,57 (5.35)
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FIG. 3.3 FUNCTIONS  f(x) AND f(y)




These four oconstants are then solved for the boundary
conditions stated in equations (3.3%%)., The simplified

form of the functions with known constants is

f(x) = 3 (B | (B -1 (3436)

A similar expression in y is seleoted for f£(y).

Now the explicit forms of the relations defined in
equations (3.29) are easily obtained using the
expressions for f(x) and f(y)e If the relations of
the type of equation (3.%6) are used, the final
displacement function arrived at is the same as the
one suggested by Butlin (31,32) and Hansteen (33).

he results given by this function are extremely
satisfactory as reported in the above publications.
This function, therefore, has not been discussed
further in this study. No other variation is possible
with simple polynomial expressions, Partial fracﬁions
can be tried, but integration becomes complicated. Care
is required in such a case to make sure that the
function does not possess singularity within the
domaine

The physical approach on the other hand proves

to be extremely convenient; the most important feature
of this approach being that the use of trigonometric
functions becomes possible, Such functions, as

already stated, did not lead to convergence on previous
attempts (32,43)., But the method outlined in this
section clearly indicates that trigonometric functions

ocan be easily used to define functions f(x) and £(y).
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Since the resulting displacement function (Equation 3.32)
satisfies all the requirements, the results of the
analysis will show convergence. Moreover, convergence
is bound to be monotonic because the displacement
function is of the conforming type.

A sine function is an anti-symmetric function

with reference to the selected co—-ordinate system

shown in Figure 3.1. Thus, the following expressions

are sclected for the function f(x) shown in Tigure 3.3

. 4 1 . Ilx

£ 31 S 8 g e
g i A g I = = IT(«}{ ‘I

gy $lx) - L_(a) - sin &g |

(iii) flx) = l;’(z>3; Sin.liz ' { R STH

piS 5 L. o e [

: F g 5 (X Ty

(iv) £(x) = +12 (5= 33 + sin5E

il

(v) { x)

The functions f(y) are obtained simply by replacing

x by v in the above expressions, All these expressions
satisfy the conditions of eaquations (3.%%) and (3.34),
and it is obvious that jthese are by no means the only
functions that are possible. In fact, the number of
such functions is endless, This derivation,

therefore, clearly demonstrates the possibility of
employing a large class of sulitable displacement

functions (Ege 3.32).
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The displacement function for rectangular
element derived as described above is used to obtain
the stiffness matrix as outlined in the séotion el
An explioit form of the stiffness matrix, unlike in
the case of simple polynomialsg is mo re involved
when trigonometric functions are used. Therciore,
the stiffness matrix was generated in the machine
for which a scparate programme has been written.

The size of this matrix is 16 x 16 because of the
assignment of four degrees of freedom at a node,

The extra degree of freedonm is the twist w COrIreS—

xy*
ponding to which an extra force is obtained at each
node, This force is a fictitious couple, oSince
the boundary conditions involve the specification
of known displacements only, for a fixed edge, the
displacement wXy is teken as Zero. Ior other
conditions such as free or simply supportecd edges,
this is not zero. Table 5«1 shows the form of the

stiffness matrix.

TRIANGULAR ELEMENT

A displacement function for a triangular
element derived by using simple polynomial expressions
is presented in this section. The method adopted
is a variation of the technique employed by Clough (22),
discussed earlier. TFigure 3,4 shows a triangular
elenent whioh has been divided into three sub-elements

by joining the three corners and its centre of graviiy.



Z, AXIS UPWARD

FIG. 3.4 DIVISION INTO SUB-ELEMENTS
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The clement is in the plane and the Z

axis is directed upward. An independent polynomial
displacement function of nine terms is selected

for each of these sub-elements with respect to their
local co~ordinates (X,7,2)s The function for the
element a , for example, is taken as

Aa) _ T 3 X D

LG}
L]
LGN
w@
oS

-
+ A7x) + AByB + Agxy2 ' (7

I"! =

Le selecebion of such a funotion has two advantages.
First, it aubtomatioally provides the continuity of
defleotion and slope in the vertical plane along all
the boundaries, ©Secondly, the normal slopes vaxry
linearly along the exterior edges (y=0) of the
sub-clement. However, the variation of normal slopes
is parabolio along the inturior cdges of sub-elements.
This means that they are discontinuous along the
interior boundaries. If the normel slopes cre made
gontinuous along bthese boundaries the resulting
displacement function will Dbe a oconforming type of
functi ona.

Two approaches are possible to achieve the
continuity of these slopes. This can bebaocomplished
either by equating the normal slopes at the mid-points
of the internal bouncaries or by foreoing them to vary
linearly along these boundaries, Clough adopted
the formér approach and the latter has been selected
here« The method opted here requires the use of

additional oorrection functions. These functions
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have been determined independently for the sub~elements,
The stiffness matrices of the sub-elements are
determined in the usual manner using their corrected
displageuent funotions. Onoe this is done, the
stiffness matrix of the total clement is obtained by
summing up the indivi dual sub-element stiffness
matrices, All the steps involved are discussed in
detail at a later stage and at present the method

of determining suitable correction function is
considered.

The steps involved in determining the
correction functions are disoussed in detail for the
sub-elenent a « For the remaining two Subwelements

h and ¢ %these are determined on similar lines,
Before going into the mathematical formulation of

the correction functions it is important to study

the variation of normal slope along a boundary of

the sub-element, TFigure 3.5 shows the element a with
its local co-ordinates (%x,7,z). The parabolic ¢
variali on of normal slope along the boundary 15 is
represented in Figure 3.6. 4% any point between
the nodes 1 and 3, the normal slope is obt;ined by
measuring the ordinates upto the ourve pdr. The
slope at the mid- point of the boundary is equal to
f5 as shown in the figure., If the variation
is to be linear, the slope at this point should be
the average value of the slopes f1 and f3 a2t the nodes,

and at any other point the normal slope will be
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FIG. 3.5 SUB-ELEMENT (a)
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FIG. 3.6 VARIATION OF NORMAL SLOPE

ALONG A BOUNDARY
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obtained by measuring the ordinates upto the
straight line pr, Figure 3.6. Presently, the variation
is parabolic, and because of this, the deviation

from linearity at the mid-point is given by

O = 5 - (£ + £5)/2 (3439)

At other points the deviation is obtained by measuring
the difference between the ordinates upto the curve
par and the straight line pr. It is obvious that

this deviation from linearity also follows a parabolic
variation. This means, it can be_represented by a
parabola with the rise equal to CS at the centre and
zero at ends.

The aim of using correction functions is to
eliminate these deviations so that the ﬁormal slopes
vary linearly along the edges 13 and 23 of the sub-
element a. Therefore, for each of the sides where
linear variation of normal slope is to be prescribed,
a function is selected such that (39):

(i) The function itself is zero on all sides,

(it) The normal slope varies parabolically
with a value of unity at the mid=point
of the side for which it is selegted,

(iii) The first derivatives are zero on all
the remaining sides,

(iv) The function and its first derivatives

are continuous within the domain.
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A correction function with the above properties does
not alter the conditions at the nodes of the sub-
element. For the sub~elements under consideration
two Sﬁoh functions are necegsary; one of them remains
overative at the edge 1% and the other at 23. These
functions are added to the original displacement
function (Ed. 3.38) in suitable proportions to nullify
the existiug deviation from linearity on the interior
sides,

The steps involved in correcting the displace-
ment function are simple. Let the selected displace-

ment function (Eq. 3.3%8) be written as

§LA } (3440)

The normal slopes at the mid-points of the sides 23

% M(x,y)

S8

W( a)

| TSP, |

and 13 are, Figure 3.5

sy Ko

a
| n4

| (a)

L L

1l
o]
(O |

A§ {TaAt)

For linear variation of normal slopes along these
sides, the values at the mid-points should be the
average of the slopes at the nodes. These can be

written as

%.(a) e ‘,WHJT';A; (3.42)

W »
n(av)g
Therefore, the deviation from linearity at these points

are



cg (a)?
i\(a) 4 | T g , 5
) " T AL e (2] 14} (s3]
g
D v
1. E1 and E2 are the correction functions for the
sides 2% and 13 respectively, the corrected displace-
ment function of the sub-elenent is given by

wlal o %[i‘i(:c,y)j ;131’32](@]"[5])}{% (344)

In order to obbtain a corrected displaccment
function the first stev, therefore, is to calculate
the normal slopes at the gid—points of the intarior
sides of the sub-elements. The normal slope along
a boundary inclined at an angle zﬁ as shown in

Figure 3.7 1s given by

0 /
in¥d + Wy COS X {3.45)

n

Tdl o T Xlgc
For the sub—-element a, considering only the terns
giving parabclic variations the normal slope is given
by

{

2 2 ;
W = =~ BT opin hg + %y~ Cos ) Ag

=

) /
+ (2 xvy mozg-— yv< sin B )A9 (%e46)
The deviation from linearity at the mid—points of
the sides 23 and 13 are determined by considering
the inward normal slopes as shown in Iigure 3.8,
The reason for this will be olear at a later stage.
Equation (3.45) gives inward normal slope

Bl 5
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W s 2 - 3x5 Sin‘b o A7 + 3y5 aﬂsaé A8
Bk
- (y5 sin 2{; - 2x5y5 cos ﬁ/2> Ag (3:47)
at 3 for the side 13
(a) N 2
W3 e - 53{3 Sln%{i A7 -+ 53]5 oosK2 A8

= D e .
(y3 sin 5/2 2X3y3 cos 2) A9 (3.48)
and at 1 for the same side 13

(a)

il

W

Average value of the-noraal slopes at the nodes

1and 3 is

(a)

YVt ) = (wn,l + wp7)/2 (3.50)
Therefore, the deviation from linearity at point 5

38 given by

¢ (a) (8) - (a) ,
CS5 PR R P [(¥a51)

The deviation at point 4, the mid-point of the side
23 is calculated on similar lines, Whea this is

calculated, these deviations can be expressed as

(a) e (
: a)
5 4 81 2 Bye (A
i Ag »  (3.52)
<§ (a)
v 859 800 893 A9
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where,
S ™ =y Sin&/1
i w
- R o WL
2 & /
8413 = == (’%3 Sln01 - L‘ZgyB 00551) (5053)
3 0 .
a21 = i— X3 Sln?)é
2
Say = “"43‘3”3 Cosz{2
ye *X Xy 3}
a23 - LZB sin §, - _%_g cos 2)

Let E%a) and Eéa) be
the corrective funstinns assnriated with the sides
23 and 13 respectively. Following the reasoning given

in the previous paragraphs, the corrected displacenment

function of the sub-element a is given by

ey Ay + byx + Agy + A4x2 + Agxy + A6Y2
+ A [XB SEN. L a21E(28‘)J
+ Ag [VB s a12Ega) = aQZEéa)J
+ A [xyg - 8B - aQBEéa{] (3.54)

These correction functions nullify the deviation from
the linearity of the normal slopes given by the

original displacement function ( Eq. 3,38 ),
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along the inner boundaries 1% and 23 (Figure 3.5) of
the sub—element a. Since the normal slopes now vary
linearly along the edges 13 and 23, the equation
(3.54) represents a conforming displacement function
for the sub-clement a, because the normal slope along
the exterior edge 12 has already a linear variation
due to the selection of the original displacement
function of equation (%3.38)s Buch conforming functions
are determined for the remaining two sub-elements.
The individual stiffness matrioces are then

determined from their displacement functions with
respect to their own local co-ordinabtes. Once this
is done, the stiffness matrix of the total element
‘composed of these three sub-elements 1s easily'

determined with respect to (xo, Yo zo) syshen.

Derivation of the Gorrection IFunctions

These functions are determined such that they
fulfil the requirements stated in a previous
paragraphe. But unfortunately it is almost impossible
to derive a simple function which satisfies the
conditions., Zienkiewicz (%9) has suggested o fow
functions one of which was nroposed by Irons ( 38 ).
An explicit evaluation of the integrals of stiffness
matrix beoomes extremely involved due to the complex
nature of these correction functions. Therefore,
it beoomes necessary to resort to numerical integratbion.

In this study the oorreotion_funotions have

been derived in a piece-wise manner, For this purpose,



the sub-element & is now divided into three zones
by joining the three corners and its centre of gravity
as shown in Figure 3.9. The local co~ordinates
(%X,742) are also indicated. Let these divided zones
be denoted as I, II and III, The correction functions
E(a) : E(a) : =y : T

i and 5 are defined piece-wise over the zones

I, II and 11T as follows

= -
b'l {1} = A11}/ +A,]2y + A,lwAy
BaN11) = % 2 (%~ 2)F + By T
1 SRR e T
B
+ By ,J° + Dy%F° ‘ (3.55)
1 A = wh
L o e e o1 - S 2l
B { XL = CyqF° 0127 5 01323[
and,
(2)(7) = =2 =3 =
Ej (1) = ApqT" + ApoF 7 + A23xy
—1(8«) ik ;"2 | "3 """2 ki 1
B, (I1). = By~ + Byp¥~ + BysXY (3.56)

B*) ()= 4% (z- %7 + 7

Nume rical integration is avoided when the correction
functions are selected in this manner. Bach one of
‘these functions involves nine undetermined constants.
The terms involving no oonstant provide unit inward
normal slopes at the mid-points of the sides vai |

of the zones II and II1., Because of this reason,
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(8) C (a)

-

the deviations 1), and 5 were determined by

caloculating the inward normal slopes. At this stage,
few important oharacicristics of the selected functions
are to be reocognised. TFirst, these functions beocoms

zero along the edges y = O of the zones I, II and III,
Secondly, these functions and their first derivatives
vanish at the nodes of the sub-eclement a. Thus the zeq
required correction functions are defined completely
after evaluating the undetermined oonstants. These
constants are determined by solving an ccual number of
sinultaneous equations which are formned by observing
that the oorreotion functions defined piece-wise

over the zones I, II and III, and the oorresponding
first derivatives, should match perfectly along the

interfaces of the divided zones of the sub-—el ement,

(]

Pigure 3.9

F

Tor this purpose, continuity is considered
first at the oentre of gravity g of the sub-element
where the zones I, II and III nmeet (Figure 3.9). At

this point the continuity conditions are as follows:

S (1I1)
9 = w

(11) (1II) \Se5T)
u, = ¥

-

where the vector u denotes the function and the first

O
derivatives with respect to the co—ordinate system

m

(x,7,2) of the sub-element, Figure 3.9, Therefore,
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g
=

O‘Qg
!
b
LS il?'ﬁ

= (3.58)

e e
£

|

3
e

g
where, £ is a gorrection funotions BEquations (3.57)
thus, provide six conditions., These conditions lead

t0 the continuity of the corrective function and

the derivative %&% along the lines separating the
FF o

zones I, II and'III, Figure 3.9, However, the

I

conbtinuity of the derivativejgﬁ in the direction Ny
=

normal to these lines is yet to be established. These
derivatives are made continuwous by equating them
at the mid-points of the three lines separabting the

above mentioned zones. This gives,

(III) (I)
W1 ¥ Yl
(1) A -
. s u (3587
Firn (I1I)
Yin - Yhn
where u, = 2@- (3,60)

Equations (3.57) and (3.59) provide nine simultaneous
equations to determine the constants of the correction
funotions defined piece-wise in equations (3.55) and
(3.56)., The conforming displacement funotion of

the sub-element a given by the equation (3.54)

is completely defined once these constants are



determined. Similar displacement functions are
derived for the remaining two sub-elements b and c.
When this is done, the stiffness matrices of all
the three sub-elements are derived in the usual
way described in section 2.6. The stiffness matrix
of the total element is then derived by using the
stiffness matrices of the sub-elements,

Following the steps outlined in section 2.7,
the stiffness matrix of the total element composed

of three sub-elements a, b and ¢ is obtained as

Ri Ty
R. "" ] -
J J
:\'K —,[ (3.61)
Rk ( =) Ty
Ro/f o

All the above notations have the same meaning as was
assigned to them when they appeqred Tfirste The
stiffness matrix of equation (3.61) has the size of
12 x 12, It expresses the force-displacement
relationships at the four nodes i,j, k and o. This
matrix is now reduced %o 9 x 9 size, expressing the
force-displacement relationships at the external
nodes i, j and k by observing that no forces are
applied at the internal node o, Figure 3.4. For this
purpose, the matrices of equation (3.61) are

partitioned as below

e Yo an7)
O R T 2 0w B
LEOJ 2 ] e L rOJ |



whers,
¢ Ry .
i
R = ¢ Ry 3 (346%)
2 IHSJ
K
and,
7 T, 1
o
i o = rj (5064)

rkj

Since no external forces are applied at the node 0,
the oonditions of equilibrium are satisfied by

2
writing the equation (3.6p) as

] T L)l
Gy | Ky |
S | (3.65)

/
K Koo ] rOJ

KK
l
I‘O ( L~ 21
The above relations can be broken up as (omitting

the brackets)

X = Kk Boem (3.66)

C = KpqT + Kporg (3,87
From equation @5.67)

r = ~Kpb Koyr (3.68)

Substituting r, in equation (3.66)
ot 7d g 7""'1 r
R = (111 i Ix12k22 1&21) x (3-69)
Equation (%.69) states the force~displacement

relationships at the nodes i, j and k of the total



o= B

element. Therefore, the required stiffness matrix of the
total element is

: : ~1

k= (Kqq - Kqp Kpp Kpy) (3.70)
Th¢ vectors R and r denoting the forces and the displace-
ments respectively at the nodes i, j and k are now replaced
by the usual notations for the nodal forces and displace-
ments of an element. Therefore, the stiffness matrix
of the total element 1is |

F = ku (3,71)

_where, : is defined in cquation (3.70)

The selection of equation (3.3%8) as the original
displacement function for a sub-element did automatically
lead to the linear variation of normal slope along y = O,
but because of it, the symmetry in the appearance of the
displacement function is lost. However, the loss 1s
almost fully recovered by using the total element of the
Figure 3.4, composed of three sub-elementss This is
because the sub—elements tend to compensate for each other,
Moreover, with successive refinements in the sub-divisions
symmetry property will improve., Similar behaviour is to
be expected of the function proposed by Clough (22).

In this study quadrilateral elements have not been
considered separately. A quadrilateral can be divided
into two or four sub-elements as shown in Figure Z.10.
Therefore, the stiffness matrix of these elements can be
very conveniently obtained by using the stiffness

natrices of the triangular clement discussed aboves



FIG. 3.10. COMPOSITE QUADRILATERAL ELEMENTS
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CHAPTEIl FOUR

EXAMPLES AND DISCUSSION ON RESULTS

To test the reliability of the functions
proposed in the previous chapter, severel plate
bending problems were solved using an IBM 1620
Model I Computer. Results of the analysis are
presented here_for sorne of these problems attempted.
All the examples have been selected from among the
large number of nroblems solved by earlier
investigators to demonstrate the merits of the
functions proposed by them. The sources from which
the problems have been selected arc also indicated
to facilitate comparative study. While pre$entimg
the results of the examples considered here, the
results of an analyais by a standard method have
also been given. This standard method is either
the exact or an acceptable approximate approach
that has been used for comparison to serve as &
yard stick in the source referenoe from which the

exanmple 15 selected.
DISPLACEMENT TUIICTIONS TESTED
Only two funotions need be considered, one

for rectangular and the other for triangular

elements, to test the oorrectness of the derivations.
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However, the results are presented for four different
funotions; three are for regtangular elements and
one for triangular elements., This has been done in
order to assess the relative perfofmanoe of the
different functions proposed for rectangular elements.
In presenting the results, the displacement functions
have been identified in the following manner:
(i) TE, for triangular eclement,

equation (3.54)

(ii) RE-1, for rectangular element where
& T
_[(A.) =0 WY T'? Bl a
TC
¥
£(y) = —— sin—a

in equation (3.32)

(iii) RE-2, for rectangular element where
e
X Hx
Xx) = = - sin—==
f(_) ; s

f(y) AR Sll’lﬁ

O - 2b
in equation (3¢32)
(iv)  RE-3%, for rectangular element where
1 X\ 2 X . Tx
(%) & 3 el - 3(;) T Sl

il

J
20y) = 5 2@ - 3D + sinlgL

in equation (3.3%2)



W

EXAMPLES WORKED QUT

Study of eight different plate bending problems

using the displacement functions described above,

are presented in section 4.5. All the plates are

assumed to be isotropic and of constant thiokness.

The examples are described as:

Problem -~ 1

Problen 2-7

Problem - 8

Deflection analysis of a square plate
subjected to pure twist (22). The
plate is oonsidered to be simply
supported at three corners and free at
the fourth corner. Deflections have
been determined at the centre and
under the concentrated load of five
pounds, acting at the free corner,
Figure 4.7. This case has been studied

only by using rectangular elements.

0
Described in table 4.4

Study of deflections in a rhombic
cantilever plate subjected to uniformly
distributed load (22). This example |
has been studied only by using
triangﬁlar el ements, TFigure 4.9 shows
the plate and the assumed finite

clement idealisation,



PROBLEM , GROMBIRY 7 ELGHE CONGLEIONS [ Lol | Ra T BLOMEN SOURCE
} i : :
2 square all cdges (SS) i WoM_ M R, £d,26,32
3 " " C v t 224526 ,39
4 L all edges (C) U 22,26,39
5 n i G 1 B 28426 ,39
6 " Cantilever U 8 R 23,585
’ rectangle three adjacent edges U MX,M " 33
(1:2) (C), one (F) y

(83) = simply supported, (GC) =Clamped, (F) = free
U = uniformly distributed load,
R = rectangular,

C = concentrated load at the centre,
T = triangular

TABLE 4.0 DESCRIPTION OF PLATE BENDING PROBLEMS
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_The results are presented in the form of
tables, Tables were preferred as the results of the
analysis by the displacement functions for rectangular
elemnents are very close and become indistinguishable
from each other, if plotted, even when the sub-
division is coarse., However, some of the results of
the analysis by the function TE have been plotted
(Figures 4.10 to 4.15). The results are presented
separately for rectangular and triangular elements,
This is because convergence is faster when rectangular
elements are used.

To investigate convergence, the problemns have been
studied for different sub-divisions. Tigure 4.1 shows
the sub-divisions used for rectangular elements. All
the elements are of the same size and square in geome try.
The mesh systems used for triangular elements are shown
in Figure 4,2. Here also, square mesh_systens have heen
adopted by using the built-up elements. Whenever
possible, single or double symmetry has been considered,

Moments MX and My are tabulated only for the
finest sub-division analysis. For rectangular elements
these moments have been calculated in two-ways:

(i) from moment—curvature relations using

the displacement function,

{E%) from the element stiffness matrix I = ku

9]

When more than one element meets at a node, the
individual corner forces are different. Therefore,

the results presented for the moments refer to their



n=2

FIG. 41 SUB-DIVISIONS FOR RECTANGULAR
ELEMENTS
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n=4
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FIG. 4.2 SUB-DIVISIONS USED FOR TRIANGULAR

ELEMENTS
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mean values at the nodes., For triangular elements the
moments have been calculated from the finite difference
equations using the known values of nodal displacements.
When a plate is subjected to uniformly
distributed load, the forces to be applied at the nodes
of an assemblage ocan be,
either, simple concentrated nodal loads on the basis
of the area that a node commands in the
entire assemblage,
or, equivalent nodal forces determined from the
principle of virtual work as disoussed in
section 2.7
In all the examples, the nodal forces have
been determined by the first method. However, for
problem~2 the nodal forces have been calculated
by both methods when rectangular elements are used.
Results of analysis by using these two different
nodal forces are presented side by side to facilitate
easy oompari.on. For problem-5, both the methods
give same nodal forces. Tigure 4.3 shows the
tributary areas for calculating the nodal loads by
the first method for a 2 x 2 sub-division. ZFor
triangular elements only the first method has been
used.
The sub-=division analysis can be done in
two ways. One way‘is to use the stiffness matrix

of an element whose sides are successively reduced
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in 8ize in linear prdportion with the successive
increase in the number of elements in the mesh systems -
For example, in the analysis of a square plate of
side L the element side lengths for 1 x 1 sub-division
should be L, L/2 for 2 x 2, L/3 for 3 x 3 and L/n for
the n x n system. Because of this the output will
always be for the same plate and for each sub-—
division analysis a new element stiffness matrix
has to be read,

Alternatively, the same element stiffness
matrix ocan be used for each sub-division analysis.
If this is done, the results for n x n system refers
to the analysis of a plate of side lengths equal
to n times the side lengths of the element. However,
these results can be easily converted to the
results for the actual plate. In this method only

one element stiffness matrix is needed.
Lod BRIEF DESCRIPTION OF COMPUTER WORK OIl IBM 1620

The equations of eduilibrium, i.€.y the
stiffness matrix of the entire assemblage is generated
by summing up the individual element stiffness
matrioes, This stiffness matrix, by suitable
numbe ring of the nodes of the assemblage, can be
represented as shown in Figure 4.4. The band-
width depends on the numbering of the nodes.

At first a FORTRAN program was written
which generates the entire stiffness matrix of the

assemblage. The matrix is then condensed by



q 5 6
EERY RN RRNIRTRIIH!
7 8 9
n=2
FIG. 43 NODAL LOADS FROM TRIBUTARY
AREAS

N bw = band-width

FIG. 4.4 STIFFNESS MATRIX [K]
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applying the bouhdary conditions of the problem
which leads to the elimination of some columns and
rows of the matrix, After this the matrix is
inverted by using a library sub-routine based on the
Gauss elimination method. The nodal displacements
are then obtained by performing the matrix multipli-
cation operation on the inverted matrix and the
load vector. This method is very simple and straight
forward, but unfortunately because of the limited
capacity of the available IBM 1620 computer
(60,000 digit locations including additional core
storage) this program could not be used beyond
a very coarse sub-division. This was so even when
the element stiffness matrix was obtained from a
separate program and another program was written
for calculating the moments. However, the program
served the purpose of checking the derivations to a
large extent.

The computer work was, therefore, modified
so that reasonable accuracy is achieved in the

analysise. These features are described below:

b1 Separate programs have been written for

generating the element stiffness matrices.,

(ii) A "MAIN PROGRAM" was written to generate
half the band matrix as shown in Figure 4.4,
taking advantage of the symmetry of the
stiffness matrix.

In this program, the most signi ficant
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saving has been achieved by storing the nett
or the effective band matrix whose size
depends on the boundary conditionse. Obviously,
this saving has been nade by ignoring the
unwanted rows and columns of the stiffness
matrix during its generation. To do this, one
extra column matrix of size equal to total
number of nodes for any sub-division times
the assumed degrees of freedom at the nodes
has been used for incorporating the boundary
conditions. This matrix is read as data;

its elements are either Zero or non-zZero,
Whenever an element, say the i th element,

is zero, the nodal displacement corresponding
%o the 1 th ocolumn of the stiffness matrix of
the assemblage is considered to be zero as
shown in Figure 4,5, Thus, during the
generation of the stiffness matrix, the rows
and ocolumns corresponding to all the zero
elements in the auxiliary column matrix are
ignored.

The band matrix generated as above has
been solved by using a library sub-routine
"SYMBND", This is based on Cholesky's method,
The nodal displacements are then calculated
using another library sub-routine "SYMSOL"
which performs the multipliéation operation

on the solved band matrix and the load matrix.
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FIG. 45 [K] AND {F} MATRICES
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The résults, i.e., the nodal displacements are:
stored in the space used for reading the loads.
All the examples have been analysed
by using elements of thé same size. Therefore,
to perform all the computations described upto
the last paragraph only one element stiffness
matrix is required. This element stiffness
matrix is read in the beginning as data and
stored in the memory. After determining the
nodal displacements, the corner displacements
of all the elements are related to them. The
corner forces of all the elements are then
calculated by using the element stiffness
matrix stored in the beginning and the
element displacements determined from the nodal
displacements of the assemblage.
(iii) A third program "STRESS" has been written
to calculate the moments from the moment—
curvature relations., In this program the
output of displacements from the "MAIN"

program is fed as input data.

The planning of the computer work as described
above has taken considerable time but it has improved
the computational work in two significant ways. First,
more number of equations can be generated, Secondly,
computation time is reduced by the use of band matrix.
The size of band matrix that can be sbored is B2 x 40,
when the nodal forces are determined in the MAIN program

by using the element stiffness matrix,
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The programs developed, have Some iimitations
and the work has been divided into parts which is
not ideal from the point of convenience., But
all these limitations can be easily overcome by
altering a few ocards and the entire work can be
converted into a single program by treating the
first and the thirds parts as sub-programs of the
main routine, to be used advantageously in a faster
machine with larger memory space. All these space
saving techniques have been adopted to suit the
extremely limited memory space of IBM 1620, Moreover,
the problems have been selected carefully so that
reasonabie accuracy is aohieved within the framework
of the available facilities. By assuming a unifom
mesh system, wherein the elements are square and of
the same size, only one element stiffness matrix
need be read and stored in thg mach ine during the
execution of the MAIN program. This has helped in
keeping the data preparation to a minimum. Flpure 4.6

gives the flow chart of the MAIN program,
TABLES OF RESULTS

Plate geometry and the portions analysed for
the various examples are shown in Figure 4.7 through
4.9, The results presented for the first and the
last examples represent the actual deflections at
the points mentioned in the tables., For the
remaining problems the results given are the

oco—~efficients of deflections and moments MX and My‘



NOTE:

N@E =TOTAL READ AND PUNCH, TITLE
ELEMENTS ‘ |
ND@F = DEGREES OF
FREEDOM AT READ, ND@F, [k]
NODE }

READ, MESH (nxm), NO. OF Egs. [

|

READ, {F} |
" MODIFY
» CHECK F() |={F(I)=0. ROW & COL.
# NUMBERING
IF- F(D#0

&

GENERATE LOWER HALF OF [K]

l

IF NELE < N@E[=— CHECK NO. OF ELEMENTS

|IF NELE > NQE

‘

CALL SYMBND
READ, {R}  ——{ PuNCcH,{r}
CALL SYMS@L

l

=~ GENERATE {u} FROM {r}

PUNCH, {F} FIND ELEMENT FORCES FROM {F}[k]{u}

L{IF NELE < N@E CHECK NELE

FIG. 46 MAIN PROGRAM FLOW CHART

[F NELE >NQE |-
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The expressions for w, MX and My may be obtained in
each oase as indicated below:
ta) when the plate is subjected to uniformly

distributed load ¢

- /1. -
_ . qb e
W - (_/ . ‘.:' ,'
> X {0 :
) pe 2 ,'.ﬁ_
I‘ix (¥ ﬁ;— NlL >( s (4’0 1 )
~ 2 =5
o al™ x 1>
Yy TIYY ]
(ii) when the plate is subjected to a concentrated

load P at the centre

2 ke
W O S%%“ X 10

) i [/")*2'
M mfdy & L (4.2)

= af,
2
/», P x 10

bt
[y
1l

In tables of moments for the functions RE-1, RE-2

and RE-3 two sets of results are given. The results
for method (1) represent the values obtained from the
elenent stiffness matrices (Bq. 2.26) and the results
from the moment-curvature relations (BEq. 2.,11) are
under the heading method (2). In all the examples
the nodes are to be located by counting the rows
first and next the columns on which they lies An

example of numbering is shown in Figure 4.8.

o5 95
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P=51lbs

y
Z AXIS DOWNWARD

t =1 il{
E = 100000 psi
p,: 03

FIG. 4.7 SQUARE PLATE UNDER PURE
TWIST
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TABLE 4.1.1

DEFLECTINNS IN A SQUARE PLATE UNDER PURE TWIST WITH 2X2 MESH

FUNCTION AT k8 AT G
RE=1 06249595 0.062298
REa=g 06249597 0,062399
REwE 06249597 0.062399
EXACT 0e2496 0.0624

TAPLE 46201 A

CONVERGENCE OF CENTRAL DEFLECTION , EX=2
RESULTS FOR RECTANGULAR ELEMENTS
NODAL FORCES CALCULATED FROM TRIBUTARY AREAS

MESH RE=1 RIE=2 RE=3

b | 1a2972 2+4948 25200
2X2 364857 3.5998 3.6114
3X3 367993 368496 e B552
4X4 3.9119 37402 369438

EXACT 4.0624

TABLE 4.2.,1 B

CONVERGENCE OF CENTRAL DEFLECTION 3 FX=2
RESULTS FOR RECTANGULAR ELEMENTS
USING £Qe FORCES FROM VIRTUAL WORK

MESH REs2 RE=3
1X1 40,7217 467887
2X2 443097 403266
3X3 4,1780 441849

4X4 461277 40,1318

EXACT 4.0624
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BLE 44242 A

DEFLECTIONS AT SEVERAL POINTS AT 4X4  SUB=DIVISION o EX=2

NODAL FORCES CALCULATED FROM

POTNTS

22
33
44
55
54
53
52

RE=]

12668
200332
303746
3.9119
36332
28198
1.5510

TABLE 4

PEFLECTIONS AT SEVERAL POINTS AT 4X4  SUBR=DIVISION , F
USING EQe FORCFS

BOTINTS

POINTS

22
23
44
55
54
53
52

RE=2

Ne6661
21697
35691
461277
2e8379
2.9891]
146549

MX AT SEVERAL POINTS AT 4X4 SUR=DIVISION , FEX

TRTBUTARY ARFAS
RE=2 RE~3 EXACT
1.2869 1.2899 De6589
200548 260573 2041322
34010 34043 365109
300407 300438 4.0624
306604 3.663% 367762
2084131 268460 20,9387
15650 Y =B BH5 1e6232
0202 B
X=2
FROM VIRTUAL “WORK
RE=3 EXACT
Ne 6680 Neb589
21725 201322
3.5728 365109
401318 4eN624
3e8418 367762
229923 209382
1.6568 1lo6222
TABLE 44242 A
e
NODAL FORCFS CALCULATED FROM TRIBUTARY AREAS
RE~2 RE~3
ETHOD METHOD METHOD METHOD
Felsd (2) (1) (21
44148 Loe3344 4o4 160 403561
402314 401516 42330 401781
36092 5o i ) 36115 35719

RE=1
METHOD  METHOD M
(1) (2)
4olh125 442630
402265  4,0646
34600 343962
2.3182  2,0375

263264 262506 203284

203154

EXACT

4oe4203
462411
3.6272
203442
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TABLE 4+2.3 B

MX AT SEVERAL POINTS AT 4X4 SUB«DIVISION 5 EX=2
USING EQe FORCFS FROM VIRTUAL WORK
RE=2 RE=2 EXACT
METHOD METHOD METHOD  METHOD
ROTNTS (1) (2) (R, (2)
55 4,5640C LalB66 LoeS6RG 4Le5075 4et203
54 443602 4+3084 443922 be2362 442411
i 37884 37104 37911 27504 346272
52 25405 246412 265430 2520 263442

TARLE &4e¢2e04 A

MY AT SEVERAL POINTS AT 4X4 SUB-DIVISION s EX~2
NODAL FORCES CALCULATED FROM TRIRUTARY AREAS

RE-1 RE=2 RE-3 EXACT
METHOD  METHOD  METHOD  METHOD  METHOD  METHOD
POINTS 2l (2) (1) (2) (1) (2)
55 406125 442639  4.4148 44,3344 4,4160 443561 444203
54 401257  3.9787 461272 400456 401280 440663 41254
53 3.2753 341327 342756 341906 342756 3.2088 3,253
52 148978 147552  1.9001 148091 18995  1.8258 143476

TARLE 40204 B

MY AT SEVERAL POINTS AT 4X4 SUB=DIVISION s EX-2
USING EQe. FORCES FROM VIRTUAL WORK

RE-2 RE—=3 EXACT
METHOD METHOD METHOD METHOD
BOTNTS (50 (2) (60 1) (2
&5 44,5669 Lo LRBRES Le 5684 405075 4e42072
54 4e2726 41913 462737 402109 4e1254
55 3¢4012 363164 34014 303335 22 33

52 19933 lo9024 1w G2 19182 1.8476



CONVERGENCE OF CENTRAL DEFLECTION »

TABLE 44301

EX=3

RESULTS FOR RECTANGULAR ELEMENTS

EXACT

550572

11,023
560564
240361

EXACT

)

55,572 ()

16897
945398

ME SH DE=) RE=2 RE-3
1X1 7.9889 949792 1041202
2X2 106249 11.2%26 1122927
X3 1141359 1144402  11.4640
4x4 113232 11.%9674 11,5223
EXECT 116
TABLE &GasXa?
DEFLECTIONS AT SEVERAL POINTS AT 4X4 SUB=DIVISION s EX=3
POINTS RE-1 RE=2 RE~3 EXACT
22 1.2668 1,2R69 12899 1,3167
33 4e7001 4.7258 447305 4.T7677
A BeRT44 849297 89372 8.9864
55 Y1.3232 113076 1145223 1145
54 90,9217 10,001 10,008 10,066
53 7.0407 7.0907 7.0564 T.31367
52 9.56163 2 .6409 3,6441 4.6684
TABLE &¢%48
MX AT SEVERAL POINTS AT 4X4 SUB=DIVISION » EX=3
RE=1 RE=-2 RE-3
METHOD  METHOD  METHOD  METHOD  METHOD  METHOD
SOINTS (1) (2) (1) (23 (1) (2)
55 3345433 1R2.7800 32.7983 29,2737 3246598 32,7464
54 1006986 12.9499 11.2230 1061101 11.2681 12,3356
53 449452 5,2214  5,0281  4.9041  5.0403 447706
52 169501 260725 169934  1.9653 19994 1.9265
TABLE 4.344
MY AT SEVERAL POINTS AT 4X4 SUB=DIVISION » EX-3
RE=1 RE-2 RE=3
METHOD  METHOD  METHOD  METHOD  METHOD  METHOD
DOINTS (1) 1 (1) (2) (1) (2
55 93,5483 18,7800 22,7983 29,2737 32.6598 32,7484
54 $7:1918 14,7989 17,3139 16,7159 17,3890 1T.2i84
53 5.5%826 B.9284 9.6670 926301 9.6767 G857F
52 LeiBT? 402282  4.4937 G 4947  4,4964 A.5739

464555
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TABLE 40441

CONVERGFNCE OF CENTRAL DEFLECTION s EX-=4
RESULTS FOR RECTANGULAR ELEMENTS

MESH RE~1 RE®2 RE=3

1X1 De7750 12832 143319
2X2 11544 Ta 2555 le 2649
3X3 le2161 12630 142649
4xX4 12375 1.2640 1e¢2650

EXACT 1.2653

TABLE 44462

DEFLECTICONS AT SEVERAL POINTS AT 4X4 SUB=DIVISION s EX*4 '

POINTS RE*1 RE=2 RE=S EXACT
22 060573 0.0643 De0645 00645
33 0.4398 De4593 04600 De4601
44 N.9837 l1.0088 1.01C0 1.,0102
85 12375 162640 12650 12653
54 ' 1.1029 l.1289 Tl 799 L1302
55 067333 0e7572 0.7581 0.7583
e 0e2598 De2774 02781 0e2783

TABLE 4e4e3

MX AT SEVERAL POINTS AT 4X4 SUB=DIVISION » EX=4

RE#1 RE=2 REF3 EXACT
METHOD ME THOD METHOD METHOD METHOD METHOD
POINTS (1) {22 (1) (2) (1) (23
55 262206 20440 242125 21323 AR2118 2¢1616 211473
54 1.9861 1,7771 Te9Me5 1.8977 1 ¢% 155 19371 1,8738
5% 1la1172 Co8045 11077 1.0328 lel070 1.1044 09898
52 “0,9038 21,4075 =0,8985 =0s9683 =0.8979 =0.8372 =1.0455
51 “4,9950 ®2,C183 =4,9412 =4,5132 =449380 =~5.0067 541334
TABLE 4eb4e4
MY AT SEVERAL POINTS AT 4X4 SURB=DIVISION o EX=4
RE~1 RE=2 REF3 EXACT
METHOD METHOD MF THOD METHOD METHOD  METHOD
POINTS 1y (o (1) 627 (1) 24
S 22206 240440 B2 125 221323 20217063 261616 201143
.54 1,9775 1.8040 149745 1.8917 19746 ¥ 589 148747
¥ 12778 11067 1.2883 161978 12847 102243 1,1823
52 Ne2704 D 04309 0.2588 0el547 042827 NelR45 01378
Gl “lo4446 =0o5836 =14629 =0.9026 =1.4566 -1.0013 ~=1e0267
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TABLE 44541

CONVERGENCE OF CENTRAL DEFLECTION ,
RESULTS FOR RECTANGULAR ELFMENTS

ME SH RE=~1 RE=2 RE=13
1X1 30,1002 501329 53276
2X2 448766 544510 54865
AXT 542485 55391 555580
4x4 - R 55704 565796
FXACT 5.6
TABLE 44562
DEFLECTIONS AT SFVERAL POINTS AT 4X4 SUBR-DIVISION s EX-
POINTS RE=1 PE=2 RE~3 EXACT
22 061045 0e1068 061067 Nel07
33 1le2028 162247 = 162256 123
44 365845 36360 3.638 3.64
55 53925 55704 EeB796 560
54 443199 443953 463972 4440
53 204159 246563 204680 2ol
h2 07376 Ce7687 De76C9 077
TABRLE 4.:.5.2
MX AT SEVERAL POINTS AT 4X4 SUB=DIVISION s EX-5
RE~1 RE=2 RE~3
METHOD METHOD METHOD METHCD METHOD METHOD
20INTS (41145 (2) (k) (2) BIE (2)
3 28.6£20 13,8579 27.8875 2443653 277439 27,8486
54 567436 749005 62313 51232 62707 401745
She =0e5057 =0,5025 —=0,4733 =0,5832 04675 =046359
52 =563165 =5.8881 =5,3094 =5,2698 -5,3067 -5,1218
51 ~12e4161 =8e7519 =12,23124 ~11.4659 =1243001 =12.304
TARBLE 4¢5e4
MY AT SEVERAL POINTS AT 4X4 SUB~DIVISION s EX=5
RE-1 RE=2 RE-3
METHOD METHOD ME THOD METHOD METHOD METHOD
OINTS (1) (2) (1) (2) (1) (2)
%5 28656620 1348579 27,8875 2443653 ?2Te7439 27.8486
54 12.35684 Q.0377 124750 11,8753 125264 A 283795
2 449521 4,1983 5.0864 560364 50950 502689
52 064453 05185 05383 05015 Ne5434 06030
91 - _2ETD -l TEMNS . T A I T N | . - PR e T R

EX=5

3,

EXACT

36.8
5295
~06547
"50"-1
~124.58

=)

EXACT

3608

11.8
4e88
0e433

~ -

(52



TABLE 44661

DEFLECTIONS AT SEVERAL POINTS AT 4X4 SUR=DIVISION , FX=g

POINTS

23
33
43
53
52
51

POINTS

1
12
13
23
35
43

POINTS

LI
12
13
23
33
43

RE=~]

Ne2135
07257
13757
240750
2.0682
240516

RE=2

0,2212
0.7389
1,3939
20944
20879
2.0717

RE-3

0e2215
N0.7396
103048
20955
2.0889
240727

POINT

MATCHING
SOLUTICN

0.2191
07280
13676
20479
20385
2.0139

TABLE 44662

MX AT SEVERAL POINTS AT 4X4 SUB=-DIVISION »

RE=~1
METHOD METHOD
(1) 2
2067127 =0.4764
~0e6935 -0:4830
=0:3200 =0N43397
-=0,0991 ~0e1116
00,0237 =0.0009

RiE=d
METHOD METHOD
G (2)
20,5519 =0es4544
20,7240 =0,5305
047139 =0.6010
2063127 =0e3287
“0.0932 =04,0755
0.0240 00115

TABLE 446.3

MY AT SEVERAL POINTS AT 4X4 SUB-DIVISION s EX«=6

RE~1
METHOD METHOD
(1) (2)
=14707C =1,5142
‘200962 ~-145883
“2.0984 _106102
=1 1278 =1 ,2C48
~-0.4890 =0,5507
-041240 =0,1835

RE=2
METHOD METHOD
(1) (2)
Slle7 2300 = 06 147
22,0779 =1.9685
=2,1037 =2.0034
11274 -7 ¢+ 2624
~044919 =0,4585
=1e2430 =0.13258

FINITE
DIFFERENCE
SOLUTION
01745
07291
143946
2.0981
240903
20701
EX-6
RE=3 POINT
METHOD METHOD MATCHING
(33 (2) SOLUTION
=0e5346 =0444656 06369
G007248 —0.6258 —0.693
~0e7139 =0.6370 =0.699
~0e¢31209 -0.3286 «0e354
~0e0951 -0.1070 =0,105
0.0238 0«0159 0.028
RE=3 POINT
METHOD METHOD MATCHING
i (2) SOLUTION
=1e7373 =1e4987 =1,26
=260779 =240836 =2,141
=2 1052 =23.1238 =251l
11273 =11207  =1532]
~0e4920 =044885 =0,48
“1.2434 —001209 —00117



POINTS

11
21
al
41
51
15
25
35
45
55

POINTS

G
5.7
53
54
55
44
35
25
15

..885..

TABLE 44701

MX AT SEVERAL POINTS AT 4X4 SUB-DIVISION

METHOD
(1)

—701510 E

—541290
-3.0623
-0.9921
061160
25804
201098
1.2764
0e3762
144192

RE~1

METHOD
(2)

-443384
-3.1041
—-1.8594
-0,6375
0.0
25779
1.8863
1.0814
0.0076

METHOD
(1)

-6.,9717
~3.0778
~1.,0426
0.0694
265414
21061
1.,2860
0e3421

RE~-2

METHOD
¢20

—5.5089
~4 46897
=~2.8587
0.0
26276
2,0187
141931
01249
-0.0090

TABLE 4e742

METHOD
(1)

—699456
~541187
~3.0780
—]'OL'S-,
00559
2.5388
21053
1.285¢€
De3119
-1.4322

MY AT SEVFRAL POINTS AT 4X4 SUB-DIVISION

METHOD
(1)

N0.1160
~0s3955
"3000]5
=444711
—4,9874
-1.1810C

Oebtiti]

07249

0,00

RE-1

METHOD
(2)

0s00
-].o 2039
-2.7178
-3,0504
=T 0
00849
0.4248
063782

METHOD
{1)

N.0694
-1.,0451
“3000"36
—b 4444
"101900

064231

07079

Ne00

RE~2

METHCD
(2)

0,00
-1.01473
27696
-Q.OROO
=4,4,5459
-1.2592

03487

06297

00431

METHOD
(G0

0«0558
~-1.,0483
-3.0023
"4.442 1
449496
= +1899

Cel222

Ce7069

000

®

Ex=T7

RE=3

b

ME THOD
(2)

~T7+2981
~541730
-3.1616
141267
00
26483
20612
12265
041575
~1.0009

EX=7

RE=3

METHOD
(G

D00
-1.1208
-3.0615
~4 44968
-5.0047

=1 w1203

0el344

0e6965
-00545

HELLAN

=Fil4
-5.18
53527
w1y 1B
0400
2454
1.98
1317
0e11
0«00

HELLAN

=1+13
~-3417
—4064
-5.16

“'1.32
0435
0e68
000



DEFLECTIONS AT SE

POINTS

TE
Expat22)

1

021155
Ne297

ME SH

1X1
2x2
23X 3
4x4
5X5

EXACT

CONVERGENCE OF CFNTRAL

)

TABLE 44.861

Z 3 £
DelbRE7 009930 Ne11280
0s204 Ne121 Nel290

TARLE 44941
DEFLECTION IN EX=2

RESULTS FOR FUNCTION TE

EX=2 EX=3 E X =i
13130 562520

3.,1156 QeZ847

305674 10,3071

367243 1006983

3.,8014 1N R924

4.0624 11.6 126573

5

DeN7195
Ne056

1,1032
347269
£,5601
("591"3‘)
5.0815

VERAL POINTS IN A RHOMBIC CANTILEVFR PLATE

6

D0e0412°
0022
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DISCUSSION 01l R3BSULTS

General observations

A study of the tables brings out certain
O

interesting features of the analysis.

(

[
—

& e

All the new displacement functions investigated
show convergence towards the true answers. The
convergence is monotonic in all the cases.
This, however, is to be expected because all

the displacement functions considered are of

the conforming type.

The convergence is fast when rectangular
element functions RE-1, [E-2 and RE-3 are used
and slow when function TE, for the triangular
elements, is used. In triangular elements the
normal slopes have bgen foroed to vary linearly
along the boundaries., This artifice did

help in developing the conforming function TE,
but because of it the elements have beconme
stiff. Absence of such restraint in the
displacement functions RE-1, [E-2 and [E-3

for rectangular elements have made these
elements relatively more flexible and this
makes for faster convergence, Besides,

these elements possess greater degrees of

freecdom.
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(iii)  The results of the analysis by the functions
RE-1, RE-2 and RE-3 are almost the same
particularly for deflections, for the finest
sub—-division used; although for coarser
sub~divisions the results given by the functions
do not agree so very closely. The function
RE-3 gives the best results,

(iv) Tunction TE shows very reasonable accuracy for
the deflections, Still further improvement

is expected by using finer sub-divisions,

Detailed Discussion of Examples

(1) Deflections

Example - 1 has been analysed by using rectangular
element functions RE-1, RE-2 and i&E~3, All the three
functions give same results upto the 5th place of
decimals and the accuracy is practically 100% compared
with the exact solution even when a very coarse 2 x 2
sub-division is used,

R

Convergence has been studied by observing the
variation of the central deflection in examples 2 to 5,
In example - 2, the nodal forces have been calculated
by two methods when the functions RE-2 and RE-3% have
been used; first, considering the tributary areas

and secondly, using the method of virtual worke It

i1s observed that the distributed load is overestimated

when the equivalent nodal forces are calculated from



o O
the prineiple of virtual displacements. On the other
hand, the load is undercstimated in the first approabh.
This is, of oourse, obvious as the loads assigned to
the nodes which lie on boundaries are directly trans~
nitted to the supports. Thus, in example - 2, the
functions RE-2 and RE-3 overestimate the central
deflection for the equivalent nodal forces and
underestimate for the loads calculated  from the
tributary arcas. However, the discrepancy gets
reduced with finer sub-divisions and with a 4 x 4
grid, the maximum error in the central deflection is
about 3 % when the nodal forces are calculated by the
first approach for the function RE-2, For the same
type of nodal forces, BE~3 gives result which is
97.09 % of the exact answer. With successive increase
in the number of elements, the results oonﬁerge towards
the exact answer. This indicates that the errors in
estimating the nodal forces decrease, as one may expect,
for both the methods by increasing the fineness of the
sub~division and at some stage both types of nodal
forces will give practically the same results.
Function TE gives very reasonable accuracy for central
deflection. For 5 x 5 sub-~division the errr is
about 6.42 %.

Better accuracy in central deflecction is
obtained in exampie - 3 by all the functions for
rectangular elements. Maximum error forvthe 4 x 4

sub—-division is given by RE~1 which is 2,38 %.
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Lrrors for RE-2 and RE-3 are less than 1 %. In this
example TE also gives reasonable results. For the
finest sub-division the error is 6.09 %,

RE-1, RE-2 and RE-3 again yield the best results
in example - 4. Functi ons RE-2 and RE~-% give almost
the exact value for the central deflection even for
the 2 x 2 coarse sub-division.,' With 4 x 4 sub-division
RE-3 shows practically 100% accuracy compared with the
exact answer, while RE-1 and RE-2 results reach an
accuracy of 97.81 % and 99.8 % respectively. At other
points, RE-3 gives deflections which are indentical
with the exact values wto three places of dgo;mals,
for the finest (4 x 4) sub-division (Table 4.432)
Results from RE-1 and RE-2 for these deflections are
extremely satisfactory althqugh they do not match the
remarkable accuracy of RE~%, Results from TE are not
S0 accurate. Yor 5 x 5 sub-division, the error in
central deflection is 7.79 %.

In example - 5, the errors in the central
deflection are negligible for IRE-2 and RE-3 at 4 x 4
sub-division. RE~3 gives better results right from
the beginning followed by RE~2 and RE~1 in that order.
Function RE~2 and RE-3 give the same deflections
upto the second place of decimals at several othe
points. These results very closely agree with the

exact answers. As before, TE is less aceuratc,
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In example - 4, RE~-2 and RE-3 give deflections
higher than the exact answer only for the 1 x 1 sub-
division and the results for all the three functions
are four times the values given by the same functions
for the same 1 x 1 sub-division in example - 5. This
is obvious beoause the nodal load applied at the
centre in example - 4 is four times the load taken in
wample - 5. In both the examples double symmne try
has been used. The nodal load for the concentrated
load is 0,25 and for the distributed load it is 1.0,
as the area of one square element is 4 unit sq.

Results of deflections at several points
in the cantilever plate (Table 4.6.1) are extremely
satisfactory for all the funoctions RE-1, RE-2 ani RE-3
when compared with those given by Point-Matching and
Finite Difference solutions (55 Je«.

Deflections at several points in the rhombic
cantilever plate computed Dby using triangular elements
(TE) are presented in Table 4.8.1. The results for
4 x 6 sub-division analysis are very reasonable,

In examples 2 to 5 where the second quadrant

{ =

of the plate (Figure 4.8) was analysed {by using the
mesh systems shown for triangular elements in rigure
'442), the results of the displacenents showed
extremely good symmetry properties at 5 x 5 sub~

division.
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lonents MX and “y have been studied in all the
examples exocepting the first and the last. The figures
in the tables represent the mean values of the moments

M, and My at the nodes.

X
For the functions RE-1, RE-2 and RE-3, the
maximum moments as well as the moments at several
other points agree very satisfactorily with the results
obtained by the exact and other approximate methods
used for comparison and indicated in tables., TFunction
TE does not give satisfactory accuracy with 5 x 5
sub-divisions., However, similar bchaviour is
observed in several other displacement functions
proposed for triangular elements (22,39). Finer
sub-divisions are neoessary to obtain better results
with these elements,.
It is observed that the results of Mx and My
calculated by the first method (from the element
fn

tiffness matrices) agree closely with those obtained

4]

by the seccond nethod (from the moment—curvature
relations given by a displacement function). The above
statement refers to the results obtained by using the
functions RE-1, RE-2 and RE-3, The moments calculated
by the first method are the concentrated moments at

the nodes, which in some way revresenti the forges

distributed along the element boundaries; whereas
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the second method gives the moments at a point., It
1s observed in the tables that the moments calculated
by the first method are gencrally a 1ittle higher
than those obtained by the second me thod.

For triangular elements the moments were
calculated by using the finite difference formulae,
Therefore, these results once agasin demonstrate the

accuracy of deflectl ons.
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CHAPTER FIVE

APPLICATION OF THE METHOD TO SHELL STRUCTURES

INTRODUCTION

Shells support applied loads by developing
both bending and membrane (in-plane) forces. The
latter contributes significantly to the overall
strength of a shell structure. ZTFor several shapes,
such as shells of revolution, the in-plane forces
are predominant. In such shells, bending forces

develop near the supports and penetrate into the

body of the shell only to_a short distance before they

completely die down. A mathematical analysis of a
shell problem is obtained by solving the governing
differential equations and satisfying the boundary
conditions., Because this process can becdome quite
involved, several simplified methods of analysis
have been proposedvfrom time to time. A detailed
disoussion on the methods is beyond the scope of
this study and interested reader may refer to a
number of available books and publications on the

subject (44-46).
ANALYSIS BY THE FINITE ELEMENT METHOD

In the finite element method, the shell
structure is idealised as an assemblage of finite

elements interconnected at a finite number of:

points'(47—52). Obviously, curved elements are ideal



FIG. 51 A SHELL IDEALISED BY FLAT
ELEMENTS.
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for representing a shell surface, but their analysis
is extremely diffioult., Therefore, as a further
simplification, flat elements are used. With the
introduction of flat elements, a physioal error
oreeps into the analysis., This error, however, gets
reduced as more eleménts are employed in approximating
a ourved surface. Figure 5.1 shows a shell idealised
by means of flat elements, 1t is obvious that
triangular elements are ideal for approximating a
shell of arbitrary shape., Rectangular elements have
been employed for oylindrical shells. This is
possible beoause the surface is developable,

The elements chosen to represent a shell
should have both membrane and bending characteristics.
It is assumed that the bending and membrane actions
do not interaot with each other, i.e., they are
independent aoctions. Thus the total stiffness
matrix of a element 1is obtainéd by summing up its
bending and membrane stiffness matrices which are
formed separately.

If the bending stiffness is given by,
P ow £531)
and membrane stiffuness by !
P oa Byt [5a2)
the total stiffness matrix of the element is
obtained as

7P

)

(55%5)
:E‘m km‘ um
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(@) BENDING ACTION

N -

- (b) MEMBRANE ACTION

¥

FIG. 52 FORCES AND DISPLACEMENTS IN

AN ELEMENT USED IN SHELL
ANALYSIS,
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The superscripts b and m refer to bending and membrane
actions respectively.

Of the two actions, the bending part is
already discussed in previous chapters. TFor the
membrane action, the derivation of the element
stiffness matrix follows the same steps outlined
in section 2.6, by selecting suitable displacement
functions. The only difference is that the deforma~
tions now occur in the plane of the flat elements,
Also, the stress-strain relations are now different.

C

flowever, the convergence requirements remain the
same as stated in seotion 2.%. The problem of
seleoting a displaocement function for membrane action
ié much simpler. A function is easily obtained by
prescoribing a linear variation of the nodal
deformations, lMoreover, such an assumption l@ads

o a conforming type of displacement function. Thus,
for example, the displacement u along x-axis, for

a recbtangular element may be taken as
u = Ay o+ Aox + ABY + Ayxy (534 )

A similar exp;ession is teken for the displacement
v along the y-axis. For other shapes such as
triangles and quadrilateral elements, functions
which provide linear variation of edge displacements
are available (39).

When a conforming type of displaocement
functl on is used, the displacements are continuous

along the boundaries of the elements, he continuity
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of displacements is preserved when all the clements

lie in a single plane; generally it will be violated

_d'
if the elements are oriented in different planes.,

my

hus for shell analysis simple non-conforming

y

functions are used, Tor an arbitrary configuration,

)

the elements of the idealised system will be in
different planes. The stiffness matrix of the entire
assemblage is obtained in the usual manner, using

a1

appropriate co~ordinate transformation matrices.
Number of equatdi ons for an average analysis will now
be very large because of the greater number of
degrees of freedom prescribed for a shell elenment.
Therefore, in order to obtain a fairly good

approximation, a fast computer with large memory

spaoce is essentlal.



CHAPTER SIX
CONCLUSIONS

Conclusions derived from the present study may be

sumarised as follows:

(1) All new functions proposed in this study
converge towards the exact answers. OConvergence
is monotonic with successive refinements in the

sub-division analysis.

(2) The method deveioped for deriving the.displaoe—
ment functions for rectangular elements proves
that many more suitable conforming type of
displacement functions can be easily founde.

In fact, the number of such functions is
practically unlimited and all of them satisfy

the convergence criteria.

(%) Trigonometric functions can be suitably used
along with polynomial terms to derive displace-
ment functions for rectangular elements as

shown in the method developed for these elements.

(4) The displacement function using polynomial
functions proposed for triangular elements has
very satisfactory accuracy and can be used for

plates of arbitrary shapes.

(5) Convergence is rapid for the rectangular element
displacement functions and little slow for the

triangular element function.



(6)

(1)

(8)

(9)

(10)

- 102 -
The results for displacements are more accurate

than for the stress resultants.

The comparative study of the performance of
the three different compatible displgcement
functions proposed for rectangular elements
shows that all of them have almost the same
accuracy at 4 x 4 sub-division although they
exhibit different degrees of accuracy for
coarser sub-divisions, The function RE-3
gives the best results and it is recommended

for the analysis of rectangular plates.

For all practical purposes, uniformly distributecd
lcads can be represented hy sets of oconcentra-
ted loads calculated from the tributary

areas,

Mean values of bending moments at the joints

in an assemblage represent the actual wvalues

with extremely good accuracy.

Moments computed frdm the stiffness matrices
of the rectangular elements may be employed
in practical designs as they are geperally a
little highef than those obtained by using

the moment curvature relations.
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APPENDIX - 1

GENERATION OF K  MATRIX IN THE COMPUTER

The programming logic for generating K ror
regular mesh systems is illustrated in Figures A-1
and A~2 which are self-explanatory.

Stage I: Only individual element stiffness
metrioes k are involved. In all the
sub-divi sions reported earlier the
elements uscd are of the same shape and
size. - Thus a sub-division analysis

involves the use of only one k mabtrix.

Stage II: This is a summing-up operation in the
horizontal direction. The operation is
continued for n elements in the horizontal
direction., Result is shown for 2 elements

in Figure A,

Stage IIl: This is suwaming-up in the vertical
direction using the results of stage Il.
The operation is Continugd foer m sets
of n horizontal elements. Generation of
the K matrix completes with this

operatione.

The main program thus generates the stiffness mabrix

for n x m sub-divisionse.
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