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ABSTRACT

ANALYSIS OF PLATE BENDING BY FINITE ELEMENT

(DISPLACEMENT) METHOD

A study of bending of plates for small

deformations by applying the finite element method

is presented in this thesis.

This thesis is mainly concerned with the

development of new displacement functions for

rectangular and triangular elements. For reotangular

elements, a method has been proposed for selecting

displacement funotions in which trigonometric

expression that had apparently failed to give

satisfactory results in earlier attempts, can be

used along with polynomial terms. The method leads

to conforming displacement functions which satisfy

the oonvergenoe criteria. Not many suitable

conforming functions have been reported so far.

But, the method developed here for rectangular

elements shows how many more new displacement functions

can be found, all of them satisfying the convergence

oriteria. In fact, the number of such functions

is almost unlimited.

A conforming displacement function has been

suggested for triangular elements by .using simple

polynomial expressions. Continuity of normal

slopes have been achieved by forcing them to vary

linearly along the element boundaries. To accomplish

this, additional correction functions have been used.



Several plate bending problems have been

solved using an IBM 1620 Model I computer. Results

are presented for four different displacement

functions; three are for rectangular elements and

one for triangular elements.

All the functions converge towards the

true answers with successive refinements in the

sub-division analysis. The convergence is

mo no tonic in all oases.
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Notations

The list below contains the important symbols

used in this thesis. All these symbols are defined as

they arise in the text.

a, b dimensions of rectangular elements

, flexural rigidity of plate,
12(1-/u2)
element

E modulus of elasticity, correction functions

F nodal force vector of an element

h thickness of plate, element

I identity matrix

k stiffness matrix of an element

K stiffness matrix of an assemblage

L plate dimension

M moments in planes parallel to xoz plane

M moments in planes parallel to yoz plane

P concentrated load

q uniformly distributed load

r joint displacement vector of an assemblage

R applied joint load vector of an assemblage

T transformation matrix

u nodal displacement vector of an element

w deflection of plate, element normal to

middle plane

w 3v/ d x, slope in plate, element

w dw/ d y, slope in plate, element

•



w 5w/'3n-| slope in normal direction

W-j. Ow/^t, slope in tangential direction

j^2/^ 2, curvature in plate, element

d2\>/dv2 ' curvature in plate, element

y c^v/^x^y' twis'fc in plate, element

t

v/x;:

w.

w

Xji'-fZ

x,y,z

Wzo

c<

/6x,/^y
fc

5

[ J

u

cartesian co-ordinate systems

coefficient in displacement expressions

coefficients in M and M expressions
x y

strain

poisson's ratio

increment

mat ri x

column matrix



CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION

Bending of a thin laterally loaded plate is

governed by Lagrange's equation when deflections v;

are small compared to the plate thickness. This

equation is (1)

r?4w ~ —«— l' •'}
\f D

where, q(x,y) is the intensity of lateral loading

and D is the flexural rigidity of the plate. The

derivation of this equation is based on the assumptions

that there is no straining of the middle plane of the

plate, the plane section remains plane before and

after bending and the normal stresses in the transverse

direction can be ignored. Thus the mathematical

analysis of a plate problem reduces itself to finding

a solution of the above equation satisfying the

prescribed boundary conditions.

It may be observed that this approach becomes

difficult for a vast majority of practical situations,

especially due to the complexities at the boundaries.

Besides this, the method cannot be applied easily if,

the domain contains arbitrary openings. These difficul

ties have led to the development of several approximate

methods and they possess various degrees of accuracy

depending on the nature of approximation introduced.
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Three approaches based on variational principles

have wide applications. Each one of them involves

the selection of a suitable shape function for the

bent plate in terms of unknov/n parameters, which need

satisfy only the geometric boundary conditions. The

func tion 'may bo tak en as

w= a^Cx). f\,(y) + a2f2(x). f2(y)+ +anfn(x). f^y)

(1.2)

In the well known Rayleigh-Ritz method (2),

these unknown parameters are determined by minimising

the total potential energy of the system for each

of the modes of deformations associated with them.

Since the state of minimum potential is also the state

of complete equilibrium, an exact solution is possible

by taking infinite number of such parameters. The

second approach is due to Galerkin (2). In this method,

the unknown parameters are determined by minimising

an error. This is done by equating the work done by

the actual loads and the indirect loading from the

equation (1.1), for each of the assumed shape functions,

during a virtual displacement. The third is the

method of Kantorovich (2). Hera, a part of the shape

function say f(x), is selected by satisfying the

boundary conditions in one direction. The parameters

are then obtained by solving the equation (1.1) to

satisfy the remaining boundary Conditions.

The method of finite difference (2f3) is

another powerful approximate approach in^/hich, the
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the governing differential equation is approximated

by a system of linear simultaneous equations. These

equations express the values of the function at

certain selected points in the domain. The method

has been applied to analyse several problems of plate

bending, but it encounters difficulty in treating

certain boundaries. In many situations, the convergence

is neither fast nor satisfactory.

Several practical problems have been analysed

by collocation methods. These can be formulated in

two ways. One approach consists in selecting a

function with unknown parameters, which satisfies

only the governing differential equation. The unknown

parameters are then obtained by satisfying the

conditions at certain selected points on the boundary.

In the other approach the function satisfies the

boundary conditions and the parameters are determined

to satisfy the differential equation at some selected

points in the domain.

Hrennikoff's framework analogy (4,5) is an

example of the discretisation technique for the

analysis of the problems in elasticity. The method

employs the concept of replacing the continuum by a

discrete system having finite degrees of freedom.

This idealised system is composed of analogous framework

molecules which are three dimensional pin-connected

structures. The bar areas of the mathematical model

are determined from the condition of equal
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deformability of the actual plate structure and the

and the analogous model under the action of uniform

stress. The stiffness matrix of the molecule is then

determined by the principles of frame analysis.
•

The advent of high speed electronic digital

computers and their availability at most centres of

study haw- revolutionized the approach to structural

analysis. As a consequence, the older methods have

been reoriented to make them suitable for machine

computation. In addition, new methods which are

particularly suitable for computers are being developed.

The wide use of matrix methods may be cited as an

example.

In recent years, a new technique known as the

Finite Element Method has successfully been applied

to the solution of a large class of problems in

elasticity. The origin of this method may be traced

to the approach suggested by Hrennikoff employing the

concept of replacing a continuum by a discrete system.

In this study the method has been applied to the

analysis of thin plates in bending within the framework

of the limitations stated earlier.

1.2 BRIEF DESCRIPTION OF THE FINITE ELEMENT METHOD

The finite element method was originally

developed in the aircraft industry. The earliest

contri but ion was by Argyri s (6,7,0). Clough (9,10)

demonstrated the possibility of applying

it to several problems of structural engineering.
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The most attractive feature of the method is its extreme

versatility and the potential it has for handling

problems for which solutions are not now available.

This is evident from the wide range of applications

attempted since its inception. To-day, the method

covers problems relating to two and three dimensional

continuum (11,12). The problems may be structural

(13,14,15) or non-structural, for example, seepage flow
and heat conduction (39).

The basic philosophy of the finite element method

consists in regarding the continuum as an assemblage

of finite number of elements interconnected at a

discrete number of points called nodes. Figure 1.1

shows a possible idealisation of a plate structure in

bending. The behaviour of the actual structure is

predicted from the analysis of this idealised system.

The choice of elements to obtain the idealised system

depends on the nature of the analysis to be performed.

For example, in two dimensional plane stress problems

two dimensional elements are the answer. The same

elements again find use in problems of bending of

plates and shells. Intuitively, it is possible to

think in terms of three dimensional elements, such as

tetrahedrons, while treating the problems of solids.

Once the idealised system is finalised, the

analysis of the continuum reduces to a series of

standard matrix operations as in one dimensional'

systems such as frames.





The formulation of the method can be based on two

distinct approaches. _ They are the well known force and

displacement methods. Depending on the type of approach,
the nodal force - displacement relationships can be

expressed as, either element flexibility or stiffness

matrices. In this dissertation the formulation is

based on the displacement approach. The corresponding
element property is, therefore, its stiffness matrix.

The analytical procedure involved in the finite

element method can be explained very conveniently
through the following steps:

(i) Visualisation of the continuum as an assemblage
of finite number of elements interconnected at

suitable nodes, Figure 1.1. For plate bending

problems, the elements are flat plate elements.

They are the actual representation of the area

they cover in the continuum, retaining all the

associated properties,

(ii) Evaluation of element stiffness matrix, |kt
This requires the knowledge of stress - strain

relations,

(iii) Appropriate summation of the individual

element stiffness, applying proner co-ordinate

transformations, if necessary, to generate

the overall stiffness matrixjKJ, of the entire

assemblage. This involves the consideration

of equilibrium of forces and continuity

of displacements at all nodes.
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(iv) Computation of nodal displacements, r, due to

appli ed fo rce s, R, f rom

after incorporating the boundary conditions.

(v) Determination of element forces due to the

nodal deformations, from their individual analysis.

1.5 SCOPE

The scope of this dissertation is limited to the

analytical study of the bending of plates using the

finite element method. The aim is to explore the

possibilities of nev/ displacement functions and study

their behaviour and usefulness in solving plate bending

problems.

Various functions have been proposed (22), from

time to time, to determine the element stiffness matrices.

Their performance has been studied by comparison with

the available results obtained by other methods. Some

of them converge while others diverge; the convergence-

being either monotonic or oscillating (39).

The type of functions proposed in this disserta

tion is different from those already investigated.

The behaviour of these functions have been studied

with e.n open mind to assess their usefulness in the

analysis of bending of plates. This has been accomplished

by comparing the results of the analysis of some selected

plate bending problems for which either exact or

acceptable approximate results are available. The func-

tions reported in this thesis show monotonic convergence.'
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CHAPTER TWO

THE FINITE ELEMENT METHOD

DISPLACEMENT APPROACH

•2.1 GENERAL REMARKS

From the description of the finite element

method, it is clear that the most vital part in the .

entire analysis is_the derivation of the element

stiffness matrices. They decide the stiffness of the

entire assemblage and consequently the quality of the

final results. _ This part, therefore, needs utmost

skill and care,

A direct formulation of these matrices, using

the method adopted for one dimensional elements, for

example beams, (16,17) is almost impracticable.

Nevertheless, an alternative method can be devised

which is approximate, but simple and elegant. The

approach consists in assigning a suitable strain

distribution over the element and deriving the corres

ponding stiffness relations from the principle of

virtual work (18). This approach known as displacement

method, has been adopted in this dissertation.

The alternative formulation that results in

element flexibility relations is called the force

method. Here, the selection is of a suitable stress

field (18). This approach has been successfully

applied to the plane stress problems (I9,20)aj
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On the other hand, the study of plate bending problems

by the finite element method is almost restricted to

the use of the displacement approach. This is because

of the difficulty in selecting a suitable stress

field for the plate elements in bending.

2.2 DISPLACEMENT APPROACH

The strain in a plate in bending is completely

defined by its deflection normal to the middle plane.

Therefore, the approach here reduces itself to the

selection of a suitable displacement function for the

element which can be a rectangle, triangle or any

other polygon. It is obvious that at a node where

several elements of the assemblage meet, continuity

of displacements should exist. If at such nodes only

the deflections are matched, the structure will develop

kinks. To avoid this, the associated slopes must

also be made continuous. For this purpose slopes

along any two perpendicular directions, for

example w and w are considered. Thus at any
x y

node, continuity of these three quantities has to be

established. The number of equilibrium conditions

thereby becomes three.

The overall state of deformation of an element

can be uniquely defined.by selecting its displacement

pattern in terms of its nodal displacements. If this

is done, an'element will have three degrees of

freedom at each node. Hence, the total degrees of

freedom of the element become three times the number
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of its nodes. A rectangular or quadrilateral element

will have twelve and a triangle nine degrees of freedom,

if their corners are selected as nodes. Thus, the

infinite degrees of freedom of a continuum is reduced

to a finite number in the finite element method.

Therefore, it is reasonable to expect that by

increasing the number of elements convergence should

re sul t.

In general, convergence to the exact results

will never be possible, because the idealised system,

Figure 1.1, can never have infinite degrees of freedom.

Mathematically speaking, this happens only in the

limit, when the element dimensions become microscopic.

In all practical problems, reasonable accuracy is

sufficient. This can be achieved, provided the results

tend to converge. Any displacement function, selected

at random, may not lead to convergence. For this

purpose they must satisfy certain requirements (21,39).

2.3 CONVERGENCE REQUIREMENTS

In order to achieve convergence, the selected

displacement function must be able to represent

i) all rigid body motions of the element

without self straining, and

ii) the state of constant strain.

The first criterion follows from the reasoning

that the elements should be able to accommodate all

possible states of deformations while representing the
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continuum. Strain in an element develops from the

relative displacements at its nodes. The elements of

continuum, in general, will travel some distance as

rigid bodies before developing strains. These

movements do not induce any strain in the elements.

For plate bending, three types of such movements are

possible - one translation and two rotations about

two perpendicular axes. As the strains here are the

three curvatures, the requirement means that the

displacement function should reduce to a first degree

expression in the co-ordinates when the nodal displace

ments conform to the rigid body movements.

The second condition is essential for

convergence. With successive subdivision, the strain,

in the limit, will tend to become constant in the

elements. If the elements are incapable of representing

this state, convergence will not be possible, no matter

how fine the subdivision is. The selected displacement

function must be tested to make sure that it does

satisfy this criterion. In mathematical terms, this

means that the displacement function for a plate

element in bending should reduce to a general quadratic

expression, when the nodal displacements conform to the

condition of constant strain. This implies that if

for any reason, this condition is violated, the

solution will diverge (22).

2.4 CONFORMING AND NON-CONFORMING FUNCTIONS

The displacements at a node in the assemblage
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are unique because continuity is established at these

points. This nodal continuity may not lead to their

continuity all along a boundary where two elements

meet. Generally, it is observed that the continuity

of the slope in the direction normal to such a boundary

is violated. However, the deflection and its associated

slope in the vertical plane containing the element

boundary remain continuous. A displacement function

of this type is called a non-conforming function.

The use of such functions results in the idealised

structure becoming too stiff or too flexible. In

principle, there is no objection to their use as long as

they satisfy the two requirements for convergence

already stated. Several authors have used such

functions successfully (39). The strain energy in

such a case is contributed by the elements individually

due to the absence of complete interaction between the

elements along their boundaries. Results oscillate

above and below the exact answer depending on whether

the resulting assemblage is too stiff or too flexible

at the various stages of the analysis.

Convergence is possible even if complete

continuity is not ensured. But monotonic convergence

demands complete continuity. If the displacement

function assumed results in complete continuity the

structure will consistently be overstiff. That is,

its strain energy will always be below the minimum.

With successive subdivision the structure will

progressively become less and less stiff and approach
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the actual stiffness, while at the same time strain

energy will approach the true level as a lower bound.

2.5 SELECTING A DISPLACEMENT FUNCTION

The choice of functions to represent the element

deformation is unlimited. In principle, any function

that satisfies the above requirements is acceptable.

As already stated, the method allows the use of any

shape of elements such as rectangle, triangle or any

other polygon. For rectangular boundaries elements

of the same shape become the automatic choice. Other

shapes, for example, triangle or quadrilateral, can

be employed to approximate a curved boundary.

Parallelogram elements have been used for skew plates.

The first step in selecting a displacement

function is to decide on the position of the nodes

of the element. For this purpose the corners of an

element boundary are suitable. Thus, the shape of an

element itself decides the number and positions of its

nodes. The selection of the displacement function

can be made in several different ways once the nodes

are located.

In the simplest approach, the displacement pattern

of an element is considered as a combination of several

independent modes of deformations of unknown amplitudes.

According to this, the function for a rectangular

element of Figure 2.1 can be expressed by simple

polynomial as
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9 O -2.
rC Jk A v„ -t- A ,rL J. A -*•>A., + A2x + A^y + A4x + A5xy + k^ + A?x'

+Agy5 +A9x2y +k^xy2 +A^x3y +A12xy3 (2.1)

This function has been used by CIough (22) and

Zienkiewicz (23). The number of independent modes

have been kept equal to the number of total degrees

of freedom of the element. Thus the amplitude

coefficients are uniquely determined in terms of the

nodal displacements of the element. It is observed

that the function reduces to a cubic expression

along lines x = constant and y = constant. This is an

advantage because a cubic function is completely

defined by four constants. These four constants are

uniquely defined in terms of deflection and the slope

in the same vertical plane at the two nodes joining

a boundary. Therefore, the equalitity of the nodal

displacements leads to identical expressions for the

deflections along the common boundaries for the

elements lying on either side. Thus in the entire

assemblage, along all the boundaries where two elements

meet, the deflections and slopes in the corresponding

vertical planes are continuous. ' Along these boundaries

there is one more slope in the normal directions.

Here the expressions for these normal slopes are also

cubic. This leads to the discontinuity of the normal

slopes along the common faces of the elements

because they are equal only at two points on a

boundary. Thus this particular displacement function
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is of the non - conforming type. It is one of the

few such functions which have proved to be extremely

suitable for a large class of problems. This very

function after suitable transformation into skew

co-ordinates has been used by West (24) and

Ramstad (25,26) for parallelogram elements. For the

same rectangular elements, Melosh (27,28) has suggested

two different function in two different v/ays. The

deflection function becomes a cubic expression in

both the cases along the element boundaries. The

continuity of normal slope is again violated^

The displacement function for parallelogram

and rectangular elements can also be obtained in a

different manner. This is done by assuming that the

complete deformation of an element consists of a set

of rigid body motions and those producing uniform

strains. As already stated, three types of rigid

body motions are possible in plate bending. Therefore,

the method proceeds by forming mathematical expressions

for each of these motions and those resulting in

uniform strains and, finally adding up these

expressions to obtain the total displacement function.

This approach is due to Argyris (29). Here also the

normal slopes are discontinuous along the common

boundaries. Results of several examples demonstrate

the inherent merit of the technique.

A conforming function for a rectangular

element may be selected in a very simple and elegant
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manner as follows. The first step here is to clamp

all the nodes excepting one. Then at this node,

unit deflection w and unit slopes wx and w are .

applied one at a time, Figure 2.2. For each of these

nodal displacements the corresponding mathematical

expressions for the deformed shape of the plate

element is now written. This process is repeated

in turn at all the nodes. The complete displacement

function is then obtained by combining all these

expressions. As an example,' the expression for unit

deflection *t the node 1 of a rectangular element is

shown in Figure 2.3. This method was attempted by

Papenfuss (30), but the selected function has not

led to satisfactory results because of its inability

to represent uniform twist. The successful use of this

method is due to Butlin (31,32) and Hansteen (33).

Both of them proposed the same function independently.

Continuity of twist w has been considered additionally,
xy

to overcome the deficiency in the approach of the

earlier investigator. The other conforming function

for rectangular elements is due to Schmit et al (34).

The function has been derived by using the Hermitian

interpolation formulae. Here also, the continuity of

w has been considered in addition to w, wv and w.
xy ' x y

The displacement function for a triangular

element oan also be taken as a simple polynomial

expression. A triangle has nine degrees of freedom

and the complete cubic expression contains ten terms
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FIG. 2.2 APPLICATION OF UNIT NODAL
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(Eq. 2.1). Clearly, it is necessary to drop one of

them. This can be done in several ways. But none of

the resulting functions is reported to have led to

satisfactory results (22). Adini (35) excluded the

uniform twist term xy from the complete cubic expression

(Eq. 2.1); hence his solution does not converge.

Tocher (36) tried two different functions, one by

combining the higher twist terms x y and xy2 and

next, the complete cubic expression. In both these

methods total ten terms are involved but the functions

do not provide satisfactory convergence (22).

Moreover, the second function leads to a singular

characteristic for certain orientation of the sides

of the triangle, for example, when two sides are •

parallel to x and y co-ordinate axes (39). Nevertheless,

these pioneering contributions have helped later

investigators in their search for better displacement

functions.

The successful use of the polynomial function

for triangular elements has been achieved by Clough

et al (22) through a very elegant approach which has

the merit that it leads to complete continuity of the

displacements. The triangle is first divided into

three sub-elements by joining the three corners and

its centre of gravity, Figure 2.4. Then for each of

these sub-elements an independent cubic displacement

function of nine terms is selected with reference to

their independent local co-ordinate systems (x, y, z).
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These functions are such that they provide a linear

variation of normal slopes along the exterior

boundaries of the sub-elements. The normal slope

varies parabolically along the interior boundaries

because of selecting a cubic displacement function.

In all, twenty seven constants are involved and these

are determined from the solution of an equal number

of simultaneous equations. Nine of these equations

express the nodal displacements of the original

undivided triangle, fifteen the continuity of displace

ments at the nodes i, j, k and o, and the remaining

three are obtained by equating the normal slopes'at

the mid-points 1, m and n for the corresponding

elements. These last three conditions lead to

conforming behaviour. This is possible because the

normal slopes have parabolic variations along these

internal boundaries and a parabola is uniquely defined

through three points.

A significant contribution in the methods of

selecting a displacement function for a triangular ele

ment is due to Zienkiewicz et al (37). This has been

achieved by using the area co-ordinates which was

independently suggested earlier by Irons (38). The

method leads to a cubic displacement function which is

of the non-conforming type. A recent publication by

Zienkiewicz (39) provides information on this

technique. This displacement function can be

transformed into a conforming function by using

additional correction functions as suggested by
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Beseley et al (40). The use of correction function

leads to the linear variation of normal slopes along

the boundaries of the element. This displacement

function has given excellent results when applied to

several problems.

The task of selecting a displacement function

for an arbitrary quadrilateral element is extremely

difficult. Though an arbitrary quadrilateral has the

same number of nodes as a rectangle, the polynomial

function selected for the rectangular element (Eq. 2.1)

is not suitable here. Excepting the lines x = constant

and y = constant the displacement function of equation

(2.1), reduces to a fourth degree expression. For an

unique definition of such an expression five conditions

are necessary. Thus the deflection and the slope in the

corresponding vertical plane can remain continuous

along a common boundary provided five conditions, are

available on these boundaries. This is not available

here and, therefore, for a quadrilateral the use of

equation (2.1) leads to complete discontinuity of all

the displacements along the common boundaries in the

assemblage. The simplest approach seems to be to

divide a quadrilateral into two or four arbitrary

triangles and obtain the stiffness matrix using

suitable functions for these sub-elements. Sander

and Veubeke (39) have suggested a method using three

separate displacement functions with a total of

sixteen constants. The continuity of normal slopes

has been achieved by selecting four mid-point
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nodes at the boundaries. At these nodes, the normal

slopes have been taken as extra degrees of freedom.

Thus the approach involves the use of two types of

nodes, the corners, where all the three displacements

are specified and the mid-point nodes for the normal

slopes. The interested reader may obtain the details

from the original publications (41,42).

3o far only the use of polynomial expressions

has been discussed. For plate bending analysis one

basic reason for adopting these functions, in addition

to their simplicity, is the ease v/ith which they may

be made to satisfy the convergence requirements. In

principle, any other function such as -trigonometric

expressions can also be used. But unfortunately the

experience with these functions so far has not been

rewarding and very few investigators have reported

the use of such.functions. Butlin (32) observed that

the displacement function of this type for a rectangular

element failed to represent the rigid body motions

without self-straining. The results became poor with

successive sub—divisions and ultimately diverged.

Henshell et al (43) report a similar experience for

rectangular elements. They felt that "the reason for

this divergence is that with trigonometric shape

functions, unlike polynomial types, the deflected form

of one large finite element cannot be represented with

a large number of small finite elements". A careful

study shows that the reason given cannot account for

the unsatisfactory performance of trigonometric
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type of functions. In fact the selected

displacement function does not satisfy the requirements

of convergence and this is really responsible for the

reported behaviour.

The main difficulty which precludes the use of

such functions for representing element displacements

lies in satisfying the convergence requirements. This

thesis has mainly been concerned with the search for

new displacement functions. After several initial

failures, the author has at last developed a means of

employing functions hitherto considered unsuitable,,

The number of suitable functions is rather limited.

But the method developed in this thesis for rectangular

elements enables many new displacement functions to be

used successfully. The technique employed is set out

in detail in the next chapter.

Another problem studied in this dissertation

is the triangular element using the polynomial displace

ment function. Such a function has been successfully

employed only by Clough (22). The technique adopted in

this study is a variation of the method used by Cloughe

The triangle is first divided into three sub-elements by

joining the three corners and its centre of gravity. For

each one of these sub-elements a conforming type of dis

placement function has been derived using additional

correction functions which are also simple polynomial

expressions. The method differs in two ways

when compared with Clough's approach. First additional

'
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correction functions have been used. Secondly, the

normal slopes vary linearly instead of parabolically

along the inner boundaries of the sub-elements. The

approach is presented in detail in the next chapter.

2.6 ELEMENT STIFFNESS MATRIX

The stiffness matrix of an element is derived

from the principle of virtual displacements using the

selected displacement function. A typical rectangular

element with its co-ordinate system is shown in

Figure 2.1. Here the entire process of obtaining the

stiffness matrix for this element is illustrated with

the help of few steps which are applicable to all

other shapes.

(i) Let the element displacement field be

n

w = TL a. M (x,y) (2.2)
i x

where K± (x,y) are the assumed modes of deformations

with unknown amplitudes a- i

In matrix notation this is written as (omitting the
brackets).

w = Ma (2.3)

where, M and a, are row and column matrices

respectively.

The number of constants a, are taken equal to

the total degrees of freedom of an element as stated

earlier. Thus, a rectangular element involves the
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use of twelve of them. At a node, displacements

consist of the deflection and two slopes. The

displacement vector u- at the node i of the element is

1 y •
(2.4)u.

I W J3
The complete displacement vector u of the element is

given by the displacements of all the nodes. Therefore,

u

ui "\

ui

u
k

u
1

(ii) The constants a are evaluated by writing the

equations of nodal displacements and solving them

simultaneously. Let these equations be

u = Ca (2.6)

The matrix C involves the co-ordinates of the nodes."

By inversion,

(2.7)c-1

W
<s

(2.5)

(iii) Strains e at a point in the plate element

are given by the curvatures when the deformations are

small (1). These are w
ex5

w
yy

and w.
xy

Therefore,

-w.
xx

_. ; •w.
yy

(2.8)

+w_
xy
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These are obtained by appropriate partial differentia

tions of equation (2.2). This leads to

e = Ba (2.9)

The elements of B matrix are in terms of x and y.

Using relations (2.7),

e b Be"! (2.10)
(iv) Stress resultants (f , i.e., the moments are
given by the relations (1)

where,

Hence,

or,

M
•\

M

-B ^ + *»oxx •'-yy

y
-D ( py + w )

xy

D = Eh:
T2TT

V^' D e

y

;>

-juc.

2.11)

(2.12)

(2.13)

From equation (2.10)

C~ » DI3C-U (2.H)

(v) Strain energy in the volume dv of the element At
dU = e1 fS" dv (2.15)

T
where, e is the transpose of e.
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Since there are two twisting oouples, and their

contributions in the energy are equal, the matrix D

of the equation (2,12) is modified to

D

e

o

/» o

1 0

0 2(1- fi)

The internal work done in the volume dv of the

element during a virtual displacement is the product

of the actual stresses £) and the strains c" due to

such displacement. Therefore,

_T
dWj_ = e '5*"dv (2.17)

Using equation (2.10)

o = BC f) u (2.18)
where, Cjvl denotes the virtual nodal displacements.

These virtual displacements can be selected as unit

nodal displacements. If only one is applied at a

time, keeping all the remaining displacements equal to

zero, Qu can be taken as a unit matrix, I,

Then,

-1 f .-.1 -1
BC ' O u a BCT'l = BC '

Therefore, the total virtual work done by the

internal stresses become

W± m i j (BC~1) DBC~1u
iol ^ f
vfor, ]il± = {(T B TDB dv

vol

civ

(T1u

(2.16)

(2.19)

(2.20)

(2.21)
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Only B matrix involves x and y and therefore, it is

kept inside the brackets.

(vi) Work done by the nodal forces are now calculated

for the same virtual displacements. At a node three

forces are present.

They are, one vertical force P*. and two couples F
d 2

and F . The vector for the node i is

F,

F . \
XI I

• F
yi

* • \zi j

and, for the element it is

i
i

/

F

F.
l

Fv *i;

X

(2.22)

(2.23)

The total virtual work done by the nodal forces is

c >T,
V = ( <0u)xF

Equating W = W.

.-1

IF = F

TSv ,-rF = (C"') Kb^DB) dv i C"'u

vol

(2.24)

(2.25)

This equation represents the relations between the nodal

forces and displacements. Thus, these are the required

stiffness relations which may be written as

El =
J i

u / (2.26;



Here,
T

k = (C~1) / (B%) dv (C"1) (2.27)

vol

and, it is the stiffness matrix of the element.

2.7 ANALYSIS OF THE ASSEMBLAGE

Analysis of the idealised system

requires the formulation of the stiffness matrix |k"1
of the entire assemblage to start with. It states the

relations between the forces and the displacements

at the nodes of the entire structure. The next phase

consists in calculating the deformations at these nodes

due to the applied loading. Once the nodal deflections

become known the deformations of the individual

elements are easily obtained. The corresponding

internal forces developing in the elements are finally

determined from their individual analysis.

(a) Stiffness of the assemblage

The stiffness matrix K

is obtained by summing up the individual element

stiffness matrices in a suitable manner. This summing

up actually involves the setting up of the equations

of equilibrium at all the nodes of the structure.

For this purpose, one important point has to be

recognised. A node of the structure connects the

elements around it. Thus, these connected elements

have identical displacements at such points. Generally,

the individual element stiffness matrices are expressed

, of the entire assemblage
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in terms of their independent local co-ordinate systems.

These oo-ordinates may differ amongst themselves

and at the same time from the co-ordinate system of

the entire structure which nay be designated as global
f 7

co-ordinates. The stiffness matrix K is formulated

with respect to this global system. Hence, appropriate

co-ordinate transformations become necessary to write

the equations of equilibrium.

The steps involved in deriving the stiffness

matrix are best illustrated by means of an example.

Here, an assembly of four elements as shown in

Figure 2.5, is considered. In this particular example,

the local co-ordinates of the elements are parallel to

the global system. Therefore, the neoessity of

oo-ordinate transformations does not arise. However,

this particular aspect is discussed at a later stage.

The stiffness matrices of the individual

elements of the assemblage are

.(x)

x = 1, 2, 3 .

This matrix can be expanded as

kii

n

k
ki

k-, .
li

ki.i

kjj

kio

Ik

•jk

k
kk

k
Ik

k
il

k
J1

kkl

k
11,

1? 2, 3 . . .

(2.28)

(2.29)



R*.w "
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JOINT FORCES AND

DISPLACEMENTS

FIG. 2.5 AN ASSEMBLAGE OF RECTANGULAR
ELEMENTS
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F. , F., .. and u. , u,, .. are the corner forces and
i j i J

displacements of any element as already explained in

section 2.6. k. . . . are the 3x3 sub-matrices of

the element stiffness matrix.

For equilibrium at a node of the structure, the applied

forces at this point must be equal and opposite to

the internal forces developed at that point within

the connected elements. The general form of the

equations of equilibrium at a node i is

Ri

. (x)

Ri =/Lki3

x

R >
y r

R
z>

x = 1,2,3, ... (2.30)

Here, R represents the applied forces at any node i

of the assemblage, which is

R_

(2.31)

For the particular problem selected here, the equations

of equilibrium are

R
1

R,

R,

F.

F.

(D

'(1)

'(2)
F.

D

(2)
+

(2.32)
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% - hW
The displacements r at the nodes of the entire

structure are defined as

( r1 >
\

r2

< '- (2.33)r =

\ r3 ;

where, t+, r2, r* . . . are the displacements at

joints 1,2,3, . . . . of the structure. At a joint

i, r. is defined as

X Tx. f

» i
I
r

> i.• IV

The corner displacements of the connected elements

at a joint of the structure can be easily obtained

from the considerations of continuity. This is

done by observing that at a node i, the displacements

of all the connected elements are equal to i»j_» Thus,

in the present example the following relations are

valid,
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(D
V = ri

(D (2)
U. ' a u.0 i = r2 etc,

(2.35)

These relations can be easily incorporated in the

equations of equilibrium of this example. Using

relations of the type (2.29) and (2.35), equations

(2.32) become

Ri - : (1)r„ + k C1)r + k (1)r + k (1)rlii r1 Kio r2 klk r4 *il r<

R2 = i(1)'i * (*„(1> ♦*!<»> H'♦*j< 2),
J r3

+ k (1)r + (k (1)+ k (2))rKik r4 ujl + *ik ;r5

+ k (2)rKil r6

and so on.

These equations are now written as

r<

R,

V

kii(1) *<
(D

'3i

ID
. . .

(k (1lk (2))Ujj +lcii }* '

(2.36)

(2.37)
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Equations (2.37) state the relations between the forces

and displacements at the nodes of the structure

considered here. Thus, the matrix within the square

bracket is the stiffness matrix of the structure. The

same approach, results in a similar set of equations

if applied for any other arbitrary geometry. Only

difference will be in the sizes of the matrices which

are governed by the number of joints and degrees

of freedom at the connections.

Equations (2.37) can be abbreviated as:

R ( = K r < (2.38)

where, IK J is the stiffness matrix of the structure.

It is observed that only the surrounding nodes

of the structure contribute their effects to the

equations of equilibrium at a point. This makes the

resulting K matrix well conditioned. Generation of

this matrix while using a digital computer presents

no problems. This is explained in the appendix.

If the independent co-ordinate systems of the

elements have different orientations, their stiffness

matrices are first transferred to the global system.

"When this is done, the formulation of equations of

equilibrium using these transformed stiffness

matrices follows the usual steps. Let, the x

co-ordinate axis of an element be inclined at an angle

0 with respect to the x axis of a system

(x, y, z) taken parallel to the global system of the
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entire structure, Figure 2.5. All the directions of

the forces and displacements are also indicated.

At any point i, the displacements with respect to the

element co-ordinate system can be expressed in terms

of the displacements of the auxiliary system

(x,y,z) as:

€L

t w J
> 1

or

r

;

•)

co a£

-sin$

0

si n#

co s A

0

14 Ui i

6v (2.39)

w

(2.40)

where, u^ and u. are the displacements of the

(x,y,z) and (x,y,z) co-ordinate systems

respectively. T is the transformation matrix.

Now, expressing the forces in (x,y,z) co-ordinate

system with respect to those belonging to the element

co-ordinate system (x,y,z), at the same point i, one

obtains,

W - [ (2.41)

where, Fi and Fi are the forces with respect to

(x,y,z) and(x,y,z) systems respectively. T

is the tranpose of T.

A similar set of equations result if the displace-

ments and forces at all the nodes of the element are

considered one at a time. They can be combined as



FIG. 2.6 ROTATION OF CO-ORDINATES
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tI'

("t

or. i»H*.f H
and

or.

u.

u, V
3 /

;

w-

M

DO

u

F.
l

F.
0

. (2.42)

(2.43)

(2.44)

(2.45)

Here, i, j, .. refer to the nodes of the element.

T is the transformation matrix for the element. T Ta q

is the transpose of T .

The element stiffness relations expressed in terms of

its own co-ordinate system is (Eq. 2.26)

Using equations (2.43) and (2.45)

\rhM [klCTeJ(-] (2.46)

This equation expresses the stiffness relations of the

element with respect to the global system and the

transformed stiffness matrix Ik] is
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•*!
k ! a

When several elements with their independent orientations

/S j/O ... are involved, individual transformation

matrices can be formed simply by inserting their

respective angles in place of A in equation (2.39),

The transformed stiffness matrices for the

(2.47)

elements of the structure can now be expressed as

r ,(x) -_ i(xK _ ?(x)

(2.48)\yi -H {*]
Thus, this becomes the starting point for the formula

tion of the equations of equilibrium. From this

stage onward the formulation of the stiffness matrix

proceeds as indicated earlier*

(b) Nodal deflections

K

For a set of applied loads, the deformations at

the nodes of the structure are easily obtained from

an equation of the type (2.33). Generally, the

structures have certain restrictions of movements

depending on the manner in which they are supported.

These are the boundary conditions. Thus, for example,

if the idealized plate of Figure 2.5 is clamped

along the edge 123, all the deformations at joints

1-3 should vanish. This means that

r1 = r2 r^ = 0 (2.49)

It is also obvious that the effect of the external

forces applied at these points on the overall
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deformations of the structure is zero. Therefore,

the stiffness matrix K

effective size of the K

may be modified taking

these into account. It is clear that these forces

and the displacements can be left out in the formula

tion of the stiffness matrix. This means that the

matrix is reduced. The

reduction in size is carried out in two stages. The

first step consists in wiping out the rows and columns

of the unwanted forces and displacements respectively

and keeping these places blank. After this, the

matrix is condensed by omitting all these blank spaces

so that its size is reduced. This reduced stiffness

matrix may be termed K Therefore, the relations

(2.38) are now written as,

I* K

<M (2.50)

The joint displacements, due to the forces applied

at such points are obtained from

K ! i R

(0)
H-

Joint loads

]; )
(2.51)

The derivation as such allows the application of

concentrated forces only. On many occasions the

applied forces consist of distributed loads of uniform

or varying intensity. These forces have to be

represented by a set of concentrated nodal forces.

This can be done in two ways. The simplest way is

to assign simple concentrated loads at the nodes

on the basis of the area that they command.
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This solution is suitable for most cases and with the

increase in the number of elements the associated

errors get reduced.

In the second approach, equivalent nodal forces

are calculated from the principle of virtual work.

A set of nodal forces for which the work done during

a virtual displacement becomes equal to that due

to the actual distributed forces is taken as the

equivalent loading. These equivalent forces are

calculated for the individual elements.

Let, the actual distributed force on an element

be q(x,y) and its equivalent forces PE . The work
C

done during the virtual displacement GU by nodal

fo rcesPj, is

f T¥ -• ( cJtf. ) PE = IPE = PE (2.52)

Here the virtual displacement has been considered

in the way stated in section 2.6.

For the same displacements, the work done by the

distributed forces is

w

WD = j J{£w ) q(x,y) dx dy (2.53)
From equations (2.3) and (2.7^

= Ma = MC~1u (2.54)

cfw = MCf1<^u = MC"1 (2.55)

Equating W = ^

= JJ
PE \ /(MC"1) q(x,y)dxdy (2.56)
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The vector PE will have couples in addition to the

vertical forces. When more than one element meets

at a node, contribution of each of them are to be

considered to calculate the joint loads.

(d) Calculation of element forces

The nodal displacements of an element become

known once the solution of equations (2.51) is

obtained. Using them, the internal forces are obtained

from the equation (2.14).

C7 = (DBC~1) U

When several elements meet at a node of the structure,

only the deflection and its first derivations are equal

for each of these elements at that point. This

leads to discontinuity of corner forces. Therefore,

for design purpose the average magnitudes of the

respective forces are to be considered. However, these

forces can be calculated at some interior point,

say, the centre of gravity of the elements.• This avoids

the calculation of average values.

2,8 FINITE ELEMENT METHOD AS A SPECIAL FORM OF
RAYLEIGH - RITZ METHOD

The description of the finite element method

developed so far helps one to visualise that a plate

structure is divided into a large number of small

elements interconnected at certain selected points;
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such a picture is certainly useful in gaining a

physical insight into the process. Variational

principles may be employed to provide a much deeper

understanding of the method. That the finite element

method is a special form of the well known Rayleigh -

Ritz method has been fully realised only of late'.'

According to this new line of thinking, a plate

structure need not be considered as divided into small

elements physically separated from each other along

their common boundaries in the domain; instead, the

domain may be visualised as divided into a number of

zones by drawing a set of imaginary lines. The

displacement function selected for a typical element,

according to this concept, becomes a representation

of the deformations assumed in a typical ;:one bound

by a set of imaginary lines.

In the Rayleigh - Ritz method, the selected

displacement function is valid for the entire structure.

The function assumed in terms of some undetermined

parameters, satisfies the prescribed boundary

conditions of a particular situation. The parameters

are determined by minimising the total potential energy

of the system for each of the modes of deformations

associated with them. As more parameters are

considered, the approximations in defining the deforma

tions of the structure approach more closely the

actual deformations and the results converge towards

the true answers with the total potential energy

approaching the true minimum,
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This entire process is achieved in the finite

element method, but this fact remains

obscure. Here the deformations of the entire structure

are visualised from the displacement functions selected

for the restricted zones. A function for a divided zone

involves a fixed number of parameters, and as a result,

the deformations are poorly represented if the division

is coarse. Increasing the number of zones improves the

representation and indirectly increases the number

of parameters.

However, a subtle difference exists between

the two methods in respect of determining the parameters.

In the finite element method, unlike in the Rayleigh -

Ritz method, the parameters are determined by forming

equations of equilibrium at the nodes (using the

principle of virtual displacements) which can be

expressed in the form of a stiffness matrix. So far

as the results are concerned, it makes no difference

whether one elects to use the principle of virtual

displacement or the minimum potential, because they are

the two different forms of the same principle. Thus

the true level of minimum potential energy is reached

when the zones become microscopic.

The advantage of this new concept over the

classical approach of Rayleigh - Ritz method is in the

extreme generality in the formulation. A function

of a divided zone is designed to accept all possible

boundary conditions. The additional feature of the

method is the convergence criteria.
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They are necessary due to the discretisation

introduced. In the Rayleigh - Ritz method, the selected

displacement function provides complete continuity

of both displacements and the stress resultants over

the entire domain. Here the overall stiffness of

the structure will be consistently higher than its

actual stiffness. On the other hand, in the finite

element method, the stress resultants are usually

discontinuous across the boundaries of the divided

zones. The displacements may or may not be continuous

across these boundaries. When the displacements are

continuous, the overall stiffness of the structure

exhibits a behaviour similar to that observed in the

Rayleigh - Ritz method. But if the displacements are

discontinuous, the overall stiffness of the structure

oscillates about its true value depending on whether

the resulting assemblage is too stiff or too flexible

at the various stages of sub-divisions assumed.

However, as the number of sub-divisions is increased,

the strains, in the limit, tend to become uniform over

the restricted zones. This finally leads to the

continuity of the stress resultants. Thus ultimately

complete continuity and equilibrium are achieved

throughout the entire domain. Herein, the convergence

criteria play a vital role.



3.1 PURPOSE

CHAPTER THREE

NEW DISPLACEMENT FUNCTIONS

The displacement functions proposed in this

dissertation are derived in this chapter. Two shapes

of elements have been adopted; one is rectangular

and the other triangular. The'former is most suitable

for rectangular plate problems and the latter

any arbitrary shape. For both these shapes, the

functions derived are of the conforming type.

3.2 RECTANGULAR ELEMENT

Figure 3.1 shows a rectangular element

with its four nodes i, j, k and 1. The element is

in the x - y plane and the z - axis is taken vertically

downward. For this element, the displacement function

has been obtained by deriving the expressions for

the deformed shape of the plate element due to the

application of unit displacements at its nodes. In

this derivation, the following relations have been

used throughout:

X
m

33 1-t
Y

m
a 1-£

X
P

cs 1 + 2
a

yp
= 1+£

(3.1)
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•

FIG. 3.1 A RECTANGULAR ELEMENT

*
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(a) Shape Functions for the deflections at the nodes

(i) Node i

In order to derive the expression for unit

deflection at this node, the shape function is taken

as

X Y
m m /, o',w B — (3.2)

Equation (3.2) results in unit deflection at the node

i, and the deflection varies linearly along x = - a

and y = - b as shown in Figure 3.2.

From equation (3.2) the slopes are

w
x

(3.3)

wy

Since the expression to be obtained is for unit

deflection at the node i, these slopes should be made

zero at all the nodes. This can be very easily

achieved by eliminating the normal slopes along the

element boundaries.

It is observed that w is independent of the

x - co-ordinate and varies linearly along the y - axis.

That is, w is constant for a particular value of the

y co-ordinate. A similar behaviour is noticed for w

with respect to y and x co-ordinates.

Along x = + a, (Eq. 3.3)

a wv - -5s (3.4)
x 4

In order to make w vanish along these edges a correc

tion function is required which will produce equal

and opposite w along these very edges, without
•A.

1 . Ym
a 4

X
l m

b 4



W=1

t
z

t
z
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FIG. 3.2 LINEAR EDGE QISPLACEMENTS FOR
UNIT DEFLECTION AT NODE i
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altering the existing values of nodal deflections.

Obviously, the function should give zero deflection

along x = + a for this purpose. From equation (3.4)

It is seen that the normal slopes, i.e., w are the

same in magnitude and direction at x = + a for a

particular value of y. Therefore, a function in x

alone can be used for eliminating w at the edges

mentioned above. Let this be any function f(x).

This function f(x) is taken such that it produces w = 1/a,
•A.

but zero deflection at x = + a. Assuming for the

time being, that such a function f(x) exists, the

required correction is

0
Y

1
m f(x) (3.5)

Introducing this in equation (3.2) the deflection

equation becomes

f(x)X Y
w = mm

Y (3.6)

Now the slope w is

1

wy = - b \ + 1 f(x)
4 *

(3.7)

Here, w is constant for all y and is same in

magnitude and direction at y = + b for a particular

value of x. To eliminate w at y = + b, a function

f(y) with similar properties as that of f(x) is

required. That means f(y) should produce w = 1/b,

but no deflection at y = + b. Thus, the correction

required to eliminate w along these particular edges
y

i« 0, = i +lfU)
-+ -

f(y) (3.8)

J
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Therefore, the shape function for-

at the node i, becomes

r unit deflection

w -

X Y
m m

4

Y r l
•f(x)|+ I \+ *U) f(y) (3,9)

In this equation (3.9), the slopes wv and w are
x y

elimi.nated at all the nodes and along all the edges
the normal slopes are zero. If, v± is applied at
node i instead of unit deflection, the equation (3,9;
after simplification can be written as

r i
Y + f(y) 'j m v* • :

The expressions for deflections at the remaining
nodes are obtained in the same way as outlined

above. They are, for

(ii) Node j

w- r i

w !i
4 Xm + ^

w f K-fU)

(iii) Node k

w,

W ss Xm + f(x)

(iv) Node 1

w

w =s
1 Xp - f(x)

n

Ym + f(y)

Yn - f(y)

Y - f(v)p ^J

(b) Shape functions for the slopes

(3.10

C5.lt)

(3.12)

The derivation of the expressions for the

deformed shape of the element due to the application

of unit nodal slopes involves a little more trial

and manipulation* Since the functions f(x) and f(y)
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have already been used in the expressions for the

nodal deflections, they cannot be left out here. It

is difficult to fulfil the convergence requirements,

if they arc; omitted. Thus, the process actually

reduces to adjusting the functions f(x) and f(y) with

the help of certain other suitable expressions, so

that the derived shape functions ultimately satisfy

the requirements of convergence.

Node i

Following the above reasoning, the expression

for the deformed shape of the element due to unit

lope w applied at node i, is taken a'

X X,^ = f If(x) ♦ -p Y + f(y)
m w

(3.14)

ind, for unit slope w r applied at the same node i,

r 2
h
4

y y,
"i

2f(y) + -V-
1

,\ + f(x) (3.15)

Applying Q .• and 0,.. instead cf unit slopes, the

respective expressions are modified as

y2

a 6 .
"XI

4

b 0 .

xxi
f(X) + -**-& Ym + f^)

J L

Y Y

f(y) + -Vs Xm - f(x)

(3.16)

(3.17)

The steps involved in deriving these functions are

auite simple. Here these are explained-only with
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reference to '\l/-]i similar steps are used for
arriving at \//2»

First, a function is selected to satisfy

following conditions:

at x = + a, w = 0, wx = 0

at x = - a, w=0,

These are satisfied by

0 (x) « \
where, f(x) is as already defined. The function"W\

w.

f(x) +-&f&

i s then taken as

1 =

1
a

(3.18)

(3.19)

= a0 (x). $ (y) (3.20)

The function 0(y) is selected such that it satisfies

the following conditions

at y = -b, w = 1

at y = +b, w = 0

These are satisfied by

*(*>'- \ \ \ *f(y)
already used in equation (3.10). Several functions

satisfy the conditions of equations (3.18) and (3.21).

If these functions 0 (x) and 0 (y) are selected

only on the basis of these conditions, the resulting

function may not satisfy the requirements of

convergence. These expressions were finalized after
several trials remembering the conditions of

convergence, especially the requirements relating

wy =0

wy =0 (3.21)

(3.22)
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to rigid body motions at this stage. Considering

the remaining nodes, one at a time, the corresponding

functions are derived on similar lines. They are,

for

Node j(ii)

aQ f~ X X 1 f"y, =-f>, fC) - -p bn ♦f(y)j (3.23)
J L

(iii) Node k

b0
XJ

Y Y
m j.
2

f(y) + m Xp - f(x) (3.24)

(iv)

(c)

i '/,= 4

be

a9
xk

V«"T*
Node 1

Y't'i
aO

xl

y/8 =y1

X X

f(x) + -fJ

Y Y '

f(y) - -*•*

x x'
f(x) - -f-P

Yp - f(y: (3.25)

•lXm + f(x) j (3.26)

Yp - f(y) I (3.27)
Y Y If*

f(y) - -i-E Xp - f(x) (3.28)

Complete displacement function for a

rectangular element

The complete displacement function is

obtained by adding up the expressions

for the nodal displacements derived above.

Let,

*i (*) = jf xm +f(x)
F2 (x) - Jj Xfl - f(x)_

X X '1
m v •IP3 (x) = |J f(x) +-f

J



F4 w

F-, (y) -

F2 (y) =

F5 (y) ^

F4 (y) a

In these expressions f(x) and f(y) are not yet

defined. But the requirements which these functions

have to satisfy have been already stated. These

functions will be discussed in detail at a later

stage. Using these- above definitions, the complete

displacement function for the rectangular element

is written as:

w = wi F1 (x). F^y) + a eyj_ F? (xhF^y)

+ b 6yi F-jU). F3(y) + v, F2(x). F^y)

+ a © . F4(x). F-j(y) + b 0y;j Fg( x) . Fj(y)

+ wk Fr(x). F2(y) + a ©^ FjCx). F2(y)

+ b 6yk F<(x). F4('y) + wx F2(x). F2(y)

+ a 6xl F4(x). F2(y) + b 6yl F2(x). F4(y)

(3.30)

The resulting displacement function written above

satisfies fully the requirements of rigid body

motions. It is also capable of representing the

state of uniform moments in x and y directions, but

unfortunately fails to represent the condition of

- 49 a
1

x xf(x) - 2p

2 Ym * f(y)

1
2

1

2

rrp- f(y)~J
r y y

f(y) +-p

«* Y Y -

J f(y) - HP
_ _

(3.29)
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uniform twist. Examination of this function reveals

that the quantity w or the twist is zero at all the
xy

nodes. To make w non-zero at the nodes, it is

taken as an additional degree of freedom at the

nodes. The shape functions giving twist are talzen as,

at node i, w = ab 6 .F-.(x).F*(y)
7 xyi 3x ' 5

at node j, w = ab © HFA(x).F,(y)
xj j °t j

at node k, w = ab 6 ,F«(x).F.(,y)
xyK :; 4

at node 1, w= ab &wLFA(x).FA(y)

(3.31)

These expressions are added to the function of

equation (3.30) to arrive at the final displacement

function.

w = F1(x).F1(y)y. + al^x). ^ (yje^ + bF1 (x) .^{ y)0yi

+ abF3(x).F3(y)exy. + F2(x)F1(y)w;j

+ aF4(x)F1(y)0x. + bFg( x)F.( y)6yj +

+ abF4(x)F3(y)Oxy. + F., (x)F2(y)wk + aF^xjF^y)©^

+ bF.(x)F,(y)d , + abF,(x)F.(y)© ,
1 4 yk 9 4W xyk

+ F2(x)F2(y)w1 + aF4(x)F2(y)0x]_

+ bF2(x)F4(y)9yl + abF4(x)F4(y)Gxyl {y.^

The displacement function with these additional

degrees of freedom now satisfies all the requirements

of convergence. That the function is of the

conforming type is obvious from the approach outlined,
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and it is interesting to note that the f(x) and f(y)

have not yet been derived explicitly. This part will

be taken up now;'

(d) Function f(x) and f(y)

So far it has been assumed in the derivation

that it is possible to find functions f(x) and f(y).

Nothing has been stated explicitly about their forms

excepting the conditions th! t they are to satisfy.

These conditions are

f(x) =0, f'(x) =| at x=+a (3.33)
for the funotion f(x), and

f(y) =0, f"(y) =I at y=+b (3.34)

for the function f(y), where, f'(x) and f'(y) are

the respective first derivatives.

If the shape is now drawn for any one of them

with respect to the element oo-ordinate system, an

anti-symmetric funotion is obtained as shown in

Figure 3.3. Two approaches, with a subtle difference,

are available to determine the mathematical expression

for the shape; one is by physical intuition and the

other by solving equations of boundary conditions.

If we opt for the latter, the simplest procedure is

to assume a cubic expression with four constants.

Therefore, let

f(x) = A1 +A2 (f) +A3 (f)2 * A4(|)3 (3.35)



f (x)

f(y)
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0
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z
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FIG. 3.3 FUNCTIONS f(x) AND f(y)
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These four oonstants are then solved for the boundary

conditions stated in equations (3.33). The simplified

form of the functions with known constants is

(3.36)f(x) . I (f) (f)2 . ,

A similar expression in y is seleoted for f(y).

Now the explicit forms of the relations defined in

equations (3.29) are easily obtained using the

expressions for f(x) and f(y). If the relations of

the type of equation (3.36) are used, the final

displacement function arrived at is the some as the

one suggested by Butlin (31,32) and Hansteen (33).

The results given by this function are extremely

satisfactory as reported in the above publications.

This function, therefore, has not been discussed

further in this study. No other variation is possible

with simple polynomial expressions. Partial fractions

can be tried, but integration becomes complicated. Care

is required in such a case to make sure that the

function does not possess singularity within the

domain.

The physical approach on the other hand proves

to be extremely convenient; the most important feature

of this approach being that the use of trigonometric

functions becomes possible. Such functions, as

already stated, did not lead to convergence on previous

attempts (32,43). But the method outlined in this

section clearly indicates that trigonometric functions

oan be easily used to define functions f(x) and f(y).
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Since the resulting displacement function (Equation 3.32)

satisfies all the requirements, the results of the

analysis will show convergence. Moreover, convergence

is bound to be monotonic because the displacement

function is of the conforming type.

A sine function is an anti-symmetric function

with reference to the selected co-ordinate system

shown in Figure 3.1. Thus, the following expressions

are selected for the function f(x) shown in figure 3.3:

(i) f(x) = -

(ii) f(x) =

1
71

(?

TtV.
sin (

^-2tJ
3(iii) f(x) j[({) - sin 2a

1 2(f)
3

3(f) +(iv) f(x) = 4

(v) f(x) 2

"7? <S — si
j

(3.37)

The functions f(y) are obtained simply by replacing

x by y in the above expressions* All these expressions

satisfy the conditions of equations (3.33) and (3.34),

and it is obvious that these are by no means the only

functions that are possible. In fact, the number of

such functions is endless. This derivation,

therefore, clearly demonstrates the possibility of

employing a large class of suitable displacement

functions (Eq. 3.32).
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The displacement function for rectangular

element derived as described above is used to obtain

the stiffness matrix as outlined in the section 2.6.

An explicit form of the stiffness matrix, unlike in

the case of simple polynomials, is more involved

when trigone metrio functions are used. Therefore,

the stiffness matrix was generated in the machine

for which a separate programme has been written.

The size of this matrix is 16 x 16 because of the

assignment of four degrees of freedom at a node.

The extra degree of freedom is the twist w„ . corres-
xy

ponding to which an extra force is obtained at each

node. This force is a fictitious oouple. Since

the boundary conditions involve the specification

of known displacements only, for a fixed edge, the

disDlacement w is taken as zero. For other
xy

conditions such as free or simply supported edges,

this is not zero. Table 3.1 shows the form of the

stiffness matrix.

3.3 TRIANGULAR ELEi-ZEITT

A displacement function for a triangular

element derived by using simple polynomial expressions

is presented in this section. The method adopted

is a variation of the technique employed by Clough (22),

discussed earlier. Figure 3.4- shows a triangular

element whioh has been divided into three sub-elements

by joining the tliree corners and its centre of gravity.



Z0 AXIS UPWARD

\ to y

/
k /

/l\ / /N.
/ 1 \^^^ \^

/ (c) 1 (b) \ ~~"" ^^_J*

/^^^o\. \
'^—^-J!L^^\

o

FIG. 3.4 DIVISION " INTO SUB-ELEMENTS
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The element is in the x - y plane and the z

axis is directed upward. An independent polynomial

displacement function of nine terms is selected

for each of these sub-elements with respect to their

local co-ordinates (x,y,-)» The function for the

element a , for example, is taken as

w^a' t= A1 +A2x +A.y +A4x2 +A^cy +k&y2
+A^x3 +A8y3 +Agxy2 (3.30)

The seleotion of such a funotion has two advantages,"

First, it automatically provides the continuity of

deflection and slope in the vertical plane along all

the boundaries. Secondly, the normal slopes vary

linearly along the exterior edges (y=0) of the

sub—element. However, the variation of normal slopes

is parabolio along the interior edges of sub-elements.

This means that they are discontinuous along the

interior boundaries. If the normal slopes are made

continuous along these boundaries the resulting

displacement function will be a conforming type of

function.

Two approaches are possible to achieve the

continuity of these slopes. This can be accomplished

either by equating the normal slopes at the mid-points

of the internal boundaries or by foroing them to vary

linearly along these boundaries. Clough adopted

the former approach and the latter has been selected

here. The method opted here requires the use of

additional oorrection functions. These functions
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have been determined independently for the sub-elements.

The stiffness matrices of the sub-elements are

deterEiined in the usual manner using their corrected

displacement funotions. Onoe this is done, the

stiffness matrix of the total element is obtained by

summing up the individual sub-element stiffness

matrices. All the steps involved are discussed in

detail at a later stage and at present the method

of determining suitable correction function is

considered.

The steps involved in determining the

correction functions are disoussed in detail for the

sub-element a . For the remaining two sub-elements

b and c these are determined on similar lines.

Before going into the mathematical formulation of

the correction functions it is important to study

the variation of normal slope along a boundary of

the sub-element. Figure 3.5 shows the element a with

its local co-ordinates (x,y,z). The parabolic %

variation of normal slope along the boundary 13 is

represented in Figure 3.6. At any point between

the nodes 1 and 3, the normal slope is obtained by

measuring the ordinates upto the curve pqr. The

slope at the mid- point of the boundary is equal to

fc as shown in the figure. If the variation

is to be linear, the slope at this point should be

the average value of the slopes f1 and f, at the nodesf

•and at any other point the normal slope will be
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obtained by measuring the ordinates upto the

straight line pr, Figure 3.6. Presently, the variation

is parabolic, and because of this, the deviation

from linearity at the mid-point is given by

O • 15 - (f-j + f3)/2 (3.39)

At other points the deviation is obtained by measuring

the difference between the ordinates upto the curve

pqr and the straight line pr. It is obvious that

this deviation from linearity also follows a parabolic

variation. This means, it can be represented by a

parabola with the rise equal to (j at the centre and

zero at ends.

The aim of using correction functions is to

eliminate these deviations so that the normal slopes

vary linearly along the edges 13 and 23 of the sub-

element a. Therefore, for each of the sides where

linear variation of normal slope is to be prescribed,

a function is selected such that (39):

(i) The function itself is zero on all sides,

(ii) The normal slope varies parabolioally

with a value of unity at the mid-point

of the side for which it is selected,

(iii) The first derivatives are zero on all

the remaining sides,

(iv) The function and its first derivatives

are continuous within the domain.
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A correction function with the above properties does

not alter the conditions at the nodes of the sub-

element. For the sub-elements under consideration

two such functions are necessary; one of them remains

operative at the edge 13 and the other at 23. These

functions are added to the original displacement

function (Eq. 3.33) in suitable proportions to nullify

the existing deviation from linearity on the interior

sides.

The steps involved in correcting the displace

ment function are simple. Let the selected displace

ment function (Eq. 3.38) be written as

w(a) = j M(x,y) I\ A1 (3.40)
The normal slopes at the mid-points of the sides 23

and 13 are. Figure 3.5

| G j ] k r (3.41)

For linear variation of normal slopes along these

sides, the values at the mid-points should be the

average of the slopes at the nodes. These oan be

written as

<(?lv)j - [H][A| ^A2)w
n

Therefore, the deviation from linearity at these points

are
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r C (a)
f (a) r4 c 7O =U Wf. = CLG-J _Ch 1 ) [a] (3.43.

If E. and E« are the correction functions for the

sides 23 and 13 respectively, the corrected displace

ment function of the sub-elenent is given by

1w(a) = |[ii(x,y)] - [EvE2j([G]-fK])^[AJ (3.44)
In order to obtain a corrected displacement

function the first step, therefore, is to calculate

the normal slopes at the mid-points of the interior

sides of the sub-elements. The normal slope a2.ong

a boundary inclined at an angle ^ as shown in

Figure 3.7 is given by

w„ sin ^ + w cos Xw - - w„ sin 7* + w oos X (3.45)
n • x y

For the sub-element a, considering only the terns

giving parabolic variations the normal slope is given

by

w = - 3x sine kr, + 3y" Cos e Ag

+ (2 xy cos g- y2 sin 0 )Ag (3.46)
The deviation from linearity a.t the mid-points of

the sides 23 and 13 are determined by considering

the inward normal slopes as shown in Figure 3.3.

The reason for this will be dear at a later stage.

Equation (3.46) gives inward normal slope

at 5
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(a)

in 2) 2 A7 + 5y5 cos 6 2 A8

- (y2 sin J2 - 2x5y5 cos J 2JA? (3.47)
wn5 = " 3x5

at 3 for the side 13

(a)

n3
w

2

c3 sinj*, A„ + 3y7 cos $2 A
"8

9
(y2 sin^2 - 2x3y3 cos^2)Ag (3.48)

and at 1 for the same side 13

(a)

n1
w 0 (3.49)

Average value of the-normal slopes at the node:

1 and 3 is

(a)

wn(av) = Kl + wn3)/2 (3.50)

Therefore, the deviation from linearity at point 5

is given by

J

I

(a)
4

(a).
5

(a)

a
11

La21

(a)
w

a
12

'2 2

a,

w.no 'n(av)

The deviation at point 4, the raid-point of the side

23 is calculated on similar lines. When this is

calculated, these deviations can be expressed as

L13
(a)

At

8

l25J
A,

(3.51)

(3.52)



where,

a
11

a
12

a
13

a
21

a
22

a
23

X 32 "

Let E^a)
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^x24 x32 si nfl-j

f y3 00S5l
2

Cl3
4

sm J - - i2^3
"2~

3 2
4 x3 -4

Cl3 Bin)(2 - 513

sin

3 2
Ty3 cos

x,

and E2a') be

00 s.
1 ) (3.53)

>os J,

the corrective functions associated with the sides

23 and 13 respectively. Following the reasoning given

in the previous paragraphs, the corrected displacement

function of the sub-element a is given by

w = Ai +A2X +A-$y +A4^2 +Acxy +A6y2

+ Arj x5- a E^airi - a2i4a)

+ A8
r 3

y -
s ra(a)
a12L1 - a^*'

+ A9
" 2
xy - a^ ^E^ - a2^E2

J

] (3.54)

These correction functions nullify the deviation from

the linearity of the normal slopes given by the

original displacement function ( Eq. 3.38 ),



- 62 -

along the inner boundaries 13 and 23 (figure 3.5) of

the sub-element a. Since the normal slopes now vary

linearly along the edges 13 and 23, the equation

(3.54) represents a conforming displacement function

fo.r the sub-element a, because the normal slope along

the exterior edge 12 has already a linear variation

due to the selection of the original displacement

function of equation (3.38). Such conforming functions

are determined for the remaining two sub-elements.

The individual stiffness matrices are then

determined from their displacement functions with

respeot to their own local oo-ordinates. Once this

is done, the stiffness matrix of the total element

'composed of these three sub-elements is easily

determined with respect to (x , yQ, sQ) system.

Derivation of the Oorreotion Functions

These functions are determined such that they

fulfil the requirements stated in a previous

paragraph. But unfortunately it is almost impossible

to derive a simple function whioh satisfies the

conditions. Zienkiewicz (39) has suggested a few

functions one of which was proposed by Irons ( 38 ).

An explicit evaluation of the integrals of stiffness

matrix becomes extremely involved due to the complex

nature of these correction functions. Therefore,

it beoomes neoessary to resort to numerical integration.

In this study the correction functions have

been derived in a piece-wise manner. For this purpose,
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the sub-element a is now divided into three zones

by joining the three corners and its centre of gravity

as shown in Figure 3.9. The local co-ordinates

(x,y,z~) are also indicated. Let these divided zones

be denoted as I, II and III. The correction functions

Eia' and EX are defined piece-wise over the zones

I, II and III as follows

E^a)(l) = A^y2 +Al2y3 +k^lf

E ija)(Il) = -| x (x - x2)y +B^y
x2

«3 .. r, =»2+ B12y^ + B^xy1 ' (3.55!

E^a)(IIl) = C^y2 +C12^3 + Gl3xy2
and.

E2a)(l) ;=, A21y2 +A22y3 +A^xy2

2a)(Il). = B2ly2 +B22y3 +B^xy2 (3.56)E

E^a)(III)= g (x- 5?2)y + <^y2

+ C2y3 +C^xy2
Numerical integration is avoided when the correction

functions are selected in this manner. Each one of

these functions involves nine undetermined constants.

The terms involving no oonstant provide unit inward

normal slopes at the mid-points of the sides y = 0

of the zones II and III. Because of this reason,
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f(a) ({a)
the deviations Q~ and Q g v/ere determined by

calculating the inward normal slopes. At this stage,

few important characteristics of the selected functions

are to be recognised. First, these functions become

zero along the edges y = 0 of the zones I, II and III.

Secondly, these functions and their first derivatives

vanish at the nodes of the sub-element a. Thus the *e*[

required correction functions are defined completely

after evaluating the undetermined oonstants. These

constants are determined by solving an equal number of

simultaneous equations which are formed by observing

that the oorreotion functions defined piece-wise

over the zones I, II and III, and the corresponding

first derivatives, should match perfectly along the

interfaces of the divided zones of the sub-element,

Figure 3.9.
F

jtor this purpose, continuity is considered

first at the centre of gravity g of the sub-element

where the zones I, II and III meet (Figure 3.9). At

this point the continuity conditions are as follows J

(I) (ID
U as U ,

(II) (ill) (3,57}
UP- = up

where the vector u denotes the function and the first
£r
o

derivatives with respect to the co-ordinate system

(x,y,z) of the sub-element, Figure 3.9. Therefore,



3
4

- n.

ji,jt AXB UfW/VRP

FIG. 3.9 DIVISION OF A SUB-ELEMENT INTO

ZONES
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o

(3.58)

g

where, E is a correction funotion. Equations (3.57)

thus, provide six conditions. These conditions lead

to the continuity of the corrective function and

d E

(III)

*nl
(I)

nm

(II)

nn

5:

u

u

E
where u -

n 3ni

the derivative &~f along the lines separating the
On

zones I, II and III, Figure 3.9. However, the

oontinuity of the derivative <-r in the direction n-
dni

normal to these lines is yet to be established. These

derivatives are made continuous by equating them

at the mid-points of the three lines separating the

above mentioned zones. This gives,

(I)

lnl

(ID

lnm

(III)

u.

u
(3.59J

u
nn

(3.60)

Equations (3.57) and (3.59) provide nine simultaneous

equations to determine the constants of the correction

functions defined piece-wise in equations (3.55) and

(3.56). The conforming displacement funotion of

the sub-element a given by the equation (3.54)

is completely defined once these constants are
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determined. Similar displacement functions are

derived for the remaining two sub-elements b and c.

When this is done, the stiffness matrices of all

the three sub-elements are derived in the usual

way described in section 2.6. The stiffness matrix

of the total element is then derived by using the

stiffness matrices of the sub-elements.

Following the steps outlined in section 2.7,

the stiffness matrix of the total element composed

of three sub-elements a, b and c is obtained as

f\}

\

R.

ft

R
kV

K

^

J
X

V.

v

(
(3.61)

All the above notations have the same meaning as was

assigned to them when they appeared first. The

stiffness matrix of equation (3.61) has the size of

12 x 12. It expresses the force-displacement

relationships at the four nodes i,j, k and o. This

matrix is now reduced to 9 x 9 size, expressing the

force-displacement relationships at the external

nodes i, j and k by observing that no forces are

applied at the internal node o, Figure 3.4. For this

purpose, the matrices of equation (3.61) are

partitioned as below

("l
•>

l\)
K11 K12

K21 K22

f

i

I

(3.62)
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where,

R,

< rd ; (3.63)

L y
and,

ri

r - (3.64)

•kV

Since no external forces are applied at the node 0,

the oonditions of equilibrium are satisfied by
2

writing the equation (3.6£) as

R
K

11

f "~

0
K

21

K
12

K
22

fr
_

(
(3.65)

The above relations can be broken up as (omitting

the brackets)

R = K^r + K12rQ

0 =_ Tf

"21
r + K00r

22xo

From equation (3.67)

ro = -K22 K2lr

Substituting r in equation (3.66)

R = (Kni - K12K22 K21) r

Equation (3.69) states the force-displacement

relationships at the nodes i, j and k of the total

(3.66)

(3.67)

(3.68)

(3.69)
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element. Therefore, the required stiffness matrix of the

total element is
-1

k = (FM1 - K12 K22 K21) (3.70)

The vectors R and r denoting the forces and the displace

ments respectively at the nodes i, j and k are now replaced

by the usual notations for the nodal forces and displace

ments of an element. Therefore, the stiffness matrix

of the total element is

F = ku (3.71)

._where, 1: is defined in equation (3.70)

The selection of equation (3.38) as the original

displacement function for a sub-element did automatically

lead to the linear variation of normal slope along y = 0,

but because of it, the symmetry in the appearance of the

displacement function is lost. However, the loss is

almost fully recovered by using the total element of the

Figure 3.4, composed of three sub-elements* This is

because the sub-elements tend to compensate for each other.

Moreover, with successive refinements in the sub-divisions

symmetry property will improve. Similar behaviour is to

be expected of the function proposed by Clough (22).

In this study quadrilateral elements have not been

considered separately. A quadrilateral can be divided

into two or four sub-elements as shown in Figure 3.10.

Therefore, the stiffness matrix of these elements can be

very conveniently obtained by using the stiffness

matrices of the triangular element discussed above.





CHAPTER FOUR

EXAMPLES AND DISCUSSION ON RESULTS

4.1 INTRODUCTION

To test the reliability of the functions

proposed in the previous chapter, severs! plate

bending problems were solved using an IBM 1620

Model I Computer. Results of the analysis are

presented here for some of these problems attempted.

All the examples have been selected from among the

large number of problems solved by earlier

investigators to demonstrate the merits of the

functions proposed by them. The sources from which

the problems have been selected are also indicated

to facilitate comparative study. While presenting

the results of the examples considered here,' the

results of an analysis by a standard method have

also been given. This standard method is either

the exact or an acceptable approximate approach

that has been used for comparison to serve as a

yard stick in the source referenoe from which the

example is selected.

4.2 DISPLACEMENT FUNCTIONS TESTED

Only two funotions need be considered, one

for rectangular and the other for triangular

elements, to test the correctness of the derivations,
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However, the results are presented for four different

functions; three are for rectangular elements and

one for triangular elements. This has been done in

order to assess the relative performance of the

different functions proposed for rectangular elements,

In presenting the results, the displacement functions

have been identified in the following manner:

(i) TE, for triangular element,

equation (3.54)

RE-1, for rectangular element where(ii)

(iii)

(iv)

l.JTx;(x) - - — sin
a

f(y)

t^

7ZT,1 • 'iv
' sin b

in equation (3.32)

RE-2, for rectangular element where

xfU) = { sm
MX
2a

f(y) * %- *
. n
m-

2
b " •""" 2b

in equation (3.32)

RE-3, for rectangular element where

.2a
f(x) «| J2(|) -3(f) +sin-

f(y) = \ 2(©3 -5(« ♦ Bin^
•b 2b

in equation (3.32)
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4.3 EXAMPLES WORKED OUT

Study of eight different plate bending problems

using the displaoement functions described above,

are presented in section 4.5. All the plates are

assumed to be isotropio and of constant tliiokness.

The examples are described as:

Problem - 1

Problem 2-7

Problem - 8

Deflection analysis of a square plate

subjected to pure twist (22). The

plate is considered to be simply

supported at three corners and free at

the fourth corner. Deflections have

been determined at the centre and

under the concentrated load of five

pounds, acting at the free corner,

Figure 4.7. This case has been studied

only by using rectangular elements.

0

Described in table 4./T

Study of deflections in a rhombic

cantilever plate subjected to uniformly

distributed load (22). This example

has been studied only by using

triangular elements. Figure 4.9 shows

the plate and the assumed finite

element idealisation.



PROBLEM - GEOMETRY , E SGE CONDITIONS LO.UB .RESULTS , ELEMENT , SOURCE
! GIVEN ! !

square

3 !i

4 ti

5 tl

6 tl

7 rectangle
(1:2)

,.11 edges CS-S)

all edges (C)

Cantilever

three adjacent edges
(C), one (F)

J v*M_,M,

C *'

u I •

u Mx,My

R

(S3) • simply supported, (C) ^Clamped, (F) = free

U = uniformly distributed load, C = concentrated load at the centre,

R ~ rectangular, T = triangular

TABLE.4.0 DESCRIPTION OF PLATE BENDING PROBLEMS

22,26 539

22,26,39

22,26,39

22,26,39

(do t wO
j

33 ro
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The results are presented in the form of

tables. Tables were preferred as the results of the

analysis by the displacement functions for rectangular

elements are very close and become'indistinguishable

from each other, if plotted, even when the sub

division is coarse. However, some of the results of

the analysis by the function TE have been plotted

(Figures 4.10 to 4.15). The resiuLts are presented

separately for rectangular and triangular elements.

This is because convergence is faster when rectangular

elements are used.

To investigate convergence, the problems have been

studied for different sub-divisions. Figure 4.1 shows

the sub-divisions used for rectangular elements. All

the elements are of the same size and square in geometry.

The mesh systems used for triangular elements are shov/n

in Figure 4.2. Here also, square mesh systems have been

adopted by using the built-up elements. Whenever

possible, single or double symmetry has been considered.

Moments M„ and M are tabulated only for the
y

finest sub-division analysis. For rectangular elements

these moments have been calculated in two—ways:

(i) from moment-curvature relations using

the displacement function,

(ii) from the element stiffness matrix F = ku

When more than one element meets at a node, the

individual corner forces are different. Therefore,

the results presented for the moments refer to their



n=1

n=2

n = 3

n=4

FIG. 4.1 SUB-DIVISIONS FOR RECTANGULAR
ELEMENTS



n-1

n= 2

n = 4

fi:=3

n = 5

FIG. 4.2 SUB-DIVISIONS USED FOR TRIANGULAR
ELEMENTS
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mean values at the nodes. For triangular elements the

moments have been calculated from the finite difference

equations using the known values of nodal displacements,

When a plate is subjected to uniformly

distributed load, the forces to be applied at the nodes

of an assemblage oan be,

either, simple concentrated nodal loads on the basis

of the area that a node commands in the

entire assemblage,

or, equivalent nodal forces determined from the

principle of virtual work as disoussed in

section 2,7*

In all the examples, the nodal forces have

been determined by the first method. However, for

problem-2 the nodal forces have been calculated

by both methods when rectangular elements are used.

Results of analysis by using these two different

nodal forces are presented side by side to facilitate

easy oompari^on. For problem-5, both the methods

give same nodal forces. Figure 4.3 shows the

tributary areas for calculating the nodal loads by

the first method for a 2 x 2 sub-division. For

triangular elements only the first method has been

used.

The sub-division analysis oan be done in

two ways. One way is to use the stiffness matrix

of an element whose sides are successively reduced
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in size in linear proportion with the successive

increase in the number of elements in the mesh system.

For example, in the analysis of a square plate of

side L the element side lengths for 1x1 sub-division

should be L, L/2 for 2x2, L/3 for 3 x 3 and L/n for

the n x n system. Because of this the output will

always be for the same plate and for eaoh sub

division analysis a new element stiffness matrix

has to be read.

Alternatively, the same element stiffness

matrix oan be used for each sub-division analysis.

If this is done, the results for n x n system refers

to the analysis of a plate of side lengths equal

to n times the side lengths of the element. However,

these results can be easily converted to the

results for the actual plate. In this method only

one element stiffness matrix is needed.

4.4 BRIEF DESCRIPTION OF COMPUTER VJDRK ON IBM 1620

The equations of equilibrium, i.e., the

stiffness matrix of the entire assemblage is generated

by summing up the individual element stiffness

matrices; This stiffness matrix, by suitable

numbering of the nodes of the assemblage, can be

represented as shown in Figure 4.4. The band

width depends on the numbering of the nodes.

At first a FORTRAN program was written

which generates the entire stiffness matrix of the

assemblage. The matrix is then condensed by



FIG. 4.3

FT T If
Tn-n^f

W.

7 8*9

n=2

NODAL LOADS FROM

AREAS

TRIBUTARY

bw= band-width

FIG. 4.4 STIFFNESS MATRIX [K]
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applying the boundary conditions of the problem

which leads to the elimination of some columns and

rows of the matrix. After this the matrix is

inverted by using a library sub-routine based on the

Gauss elimination method. The nodal displacements

are then obtained by performing the matrix multipli

cation operation on the inverted matrix and the

load vector. This method is very simple and straight

forward, but unfortunately because of the limited

capacity of the available IBM 1620 computer

(60,000 digit locations including additional core

storage) this program could not be used beyond

a very coarse sub-division. This was so even when

the element stiffness matrix was obtained from a

separate program and another program was written

for calculating the moments. However, the program

served the purpose of checking the derivations to a

large extent.

The computer work was, therefore, modified

so that reasonable accuracy is achieved in the

analysis. These features are described below:

(i) Separate programs have been written for

generating the element stiffness matrices.

(ii) A "MAIN PROGRAM" was written to generate

half the band matrix as shown in Figure 4.4,

taking advantage of the symmetry of the

stiffness matrix.

In this program, the most significant
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saving has been achieved by storing the nett

or the effective band matrix whose size

depends on the boundary conditions. Obviously,

this saving has been made by ignoring the

unwanted rows and columns of the stiffness

matrix during its generation. To do this, one

extra column matrix of size equal to total

number of nodes for any sub-division times

the assumed degrees of freedom at the nodes

has been used for incorporating the boundary

conditions. This matrix is read as data;

its elements are either zero or non-zero.

•Whenever an element, say the i th element,

is zero, the nodal displacement corresponding

to the i th oolumn of the stiffness matrix of

the assemblage is considered to be zero as

shown in Figure 4.5. Thus, during the

generation of the stiffness matrix, the rows

and oolumns corresponding to all the zero

elements in the auxiliary column matrix are

ignored.

The band matrix generated as above has

been solved by using a library sub-routine

"SYMBND". This is based on Choiesky1s method.

The nodal displacements are then calculated

using another library sub-routine "3YMS0L"

which performs the multiplication operation

on the solved band matrix and the load matrix.



m

STIFFNESS MATRIX [k]
BEFORE APPLYING

BOUNDARY CONDITIONS

4 r—i

m

AUXILIARY COLUMN

MATRIX {F}

FIG. 4.5 [K] AND {F} MATRICES
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The results, i.e., the nodal displacements are

stored in the space used for reading the loads.

All the examples have been analysed

by using elements of the same size. Therefore,

to perform all the computations described upto

the last paragraph only one element stiffness

matrix is required. This element stiffness

matrix is read in the beginning as data and

stored in the memory. After determining the

nodal displacements, the corner displacements

of all the elements are related to them. The

corner forces of all the elements are then

calculated by using the element stiffness

matrix stored in the beginning and the

element displacements determined from the nodal

displacements of the assemblage.

(iii) A third program "STRESS" has been written

to calculate the moments from the moment-

curvature relations. In this program the

output of displacements from the "MAIN"

program is fed as input data.

The planning of the computer work as described

above has taken considerable time but it has improved

the computational v/ork in two significant ways. First,

more number of equations can be generated. Secondly,

computation time is reduced by the use of band matrix.

The size of band matrix that can be stored is 82 x 40,

when the nodal forces are determined in the MAIN program

by using the element stiffness matrix.
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The programs developed, have some limitations

and the work has been divided into parts which is

not ideal from the point of convenience. But

all these limitations can be easily overcome by

altering a few oards and the entire work can be

converted into a single program by treating the

first and the thirds parts as sub-programs of the

main routine, to be used advantageously in a faster

machine with larger memory space. All these space

saving techniques have been adopted to suit the

extremely limited memory space of IBM 1620. Moreover,

the problems have been selected carefully so that

reasonable accuracy is achieved within the framev/ork

of the available facilities. By assuming a uniform

mesh system, wherein the elements are square and of

the same size, only one element stiffness matrix

need be read and stored in the machine during the

execution of the MAIN program. This has helped in

keeping the data preparation to a minimum. Figure 4.6

gives the flow chart of the MAIN program.

4.5 TABLES OF RESULTS

Plate geometry and the portions analysed for

the various examples are shown in Figure 4.7 through

4.9. The results presented for the first and the

last examples represent the aotual deflections at

the points mentioned in the tables. For the

remaining problems the results given are the

oo-effioients of deflections and moments M and M .
x y*



note:

N0E =TOTAL
ELEMENTS

ND0F = DEGREES OF
FREEDOM AT

READ AND PUNCH, TITLE

1
READ, ND0F, [k]

NODE 1
READ, MESH (nxm), NO. OF Eqs.

1
READ, {f}

L
MODIFY

ROW & COL.

NUMBERING

r

CHECK F(I) F(I)«0.

i
IF F(I)*0

1
GENERATE LOWER HALF OF[k]

1
IF NELE *=N0E CHECK NO. OF ELEMENTS

1
IF NELE > N0E

J
CALL SYMBND

READ, {r}
CALL SYMS0L

PUNCH,{r}

1
GENERATE {U} FROM {l*}

i
.

punch,{f} FIND ELEMENT FORCES FROM {F}=[k]{u}

1
L IF NELE <CN0E CHECK NELE IF NELE>N0E -J

FIG. 4.6 M,41N PROGRAM FL()W CHART
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The expressions for w, M and M may be obtained in
x y

each oase as indicated below:

(i) when the plate is subjected to uniformly

distributed load q

qL4 -3
• = o i_ X10

2 -2
/7 nT. V |/1

x r^- (4.1)

(ii) when the plate is subjeoted to a concentrated

load P at the centre

2 -3
w

_ /••• PL0/ 5#- X (0
D

"*-At ? X/0^ (4.2)
My =/Sy P* /O

In tables of moments for the functions RE-1, RE-2

and RB-3 two sets of results are given. The results

for method (1) represent the values obtained from the

element stiffness matrices (Eq. 2.26) and the results

from the moment-curvature relations (Eq. 2.11) are

under the heading method (2). In all the examples

the nodes are to be located by counting the rows

first and next the columns on which they lie* An

example of numbering is shown in Figure 4.8.

less"*)

ROORKEE.
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fig. 4.7 square plate under pure

twist"
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2,3

3,2

4,3

n = 4
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y
4
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I. RECTANGULAR

ELEMENT

II. TRIANGULAR

ELEMENT

(e) CO-ORDINATES SYSTEM

(d) EXAMPLE OF NODAL NUMBERING

FIG. 4.8 DETAILS OF EXAMPLES
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q =0 26066 psi

E • 10-5X106 psi

t • 0-125 in
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a
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S

n = 1

TYPE-I

Z AXIS UPWARD

FIG. 4.9 RHOMBIC CANTILEVER
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TABLE 4.1.1

DEFLECTIOMS IM A SQUARE PLATE UNDER PURE TWIST WITH 2X2 MESH

FUNCTION AT X & AT G

RE-1 0.249595 0.062398
RE-2 0.249597 0.062399
RE-3 0.249597 0.062399

EXACT 0.2496 0.0624

TABLE 4.2.1 A

CONVERGENCE OF CENTRAL DEFLECTION , FX-2
RESULTS FOR RECTANGULAR ELEMENTS

NODAL FORCES CALCULATED FROM TRIBUTARY AREAS

MESH RE-1 RF-2 RE-3

1X1 l.Q972 2.4948 2.5 3 00
2X2 3.4857 3.5998 3.6114
3X3 3. 73 93 3.8496 3.8552
4X4 3,9119 3.9402 3.9438

FXACT 4 .0624

TABLE 4.2.1 B

CONVERGENCE OF CENTRAL DEFLECTION » EX-2
RESULTS FOR RECTANGULAR ELEMENTS

USING EO. FORCES FROM VIRTUAL WORK

MESH RF-2 RE-3

1X1 4.7217 4.7887

2X2 4.3097 4.3266
3X3 4.1780 4.1849

4X4 4.1277

EXACT 4.0624

4.1318
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TABLF 4.2.2 A

DEFLECTIONS mi kal 'OINT5 AT 4X4 IB-D
NODAL FORCES CALCULATED FROM "

AT SEVERAL POINTS AT

POINTS

22

3 3

44

55

54

c3

52

RE-1

1 « 2 6 6 8

2.0332

3.3746
3 . 9 11 Q

3.633?

2.8198

1.5510

RE-2

1.2869

2.0548

3.4010

3. 040 2

3.6604

2.8431
1.5659

TRIBUTARY AREAS

RE-3

1 .2800

2.0573
3.4043

3.^438

3.6639

2.8460

1 .5675

EXACT

0.65 89

2.1322

3.5109

4.0624

3.7762

2.9382

1.6232

TABLE 4.2.2 B

•FLECTIONS AT SEVERAL POINTS AT 4X4 SUB-DIVISION , EX-2
USING EQ. FORCES FROM VIRTUAL WORK

01 NTS

5 5

54

53

52

POINTS

22

33

44

55

54

53

52

RE"?

0.6661

2.1607

3.5691

4.1277

3.837°

2.0891

1.6549

RE«3

0.6680

2.1725

3.5728

4.1318

3.84]8

2.9923
1.6568

EXACT

0.6589

2.1322

3.5109
4.0624

3.7762

2.9332

lo6?32

TABLE 4.2.3 A

MX AT SEVERAL POINTS AT 4X4 SUBDIVISION , fx-2
NODAL FORCES CALCULATED FROM TRIBUTARY AREAS

RE-1
METHOD

(1)

4.4125

4.2265
3.600

2.3183

METHOD

(?)

4.2630

4.0646

3.3962

2.0^75

RE-2
METHOD

(1)

4.4148

4.2314

3.60R2

2.^264

METHOD

(2)

4.3344

4.1516

3.5311

2.2 5 06

RE-3

METHOD METHOD
(1) (2)

4.4160
4.2330

3.61 15

2.3 2 84

4.3^61

4.1781

3.5719

2.3154

EXACT

4.4203
4.2411

3.6272

2.344?
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TABLE 4.2.3 B

MX AT SEVERAL POINTS AT 4X4 SUB-DIVISION , FX-2

USING EQ. FORCES FROM VIRTUAL WORK

RE--2 RE-•-3 EXACT

METHOD METHOD MFTHOD METHOD

POINTS (1 ) (?) (1) (2)

5 5 4.5669 4.4866 4,5684 4.5075 4.4203
54 4.3902 4.3 06 4 4.392? 4 . 3 3 6 2 4.24 11

53 3.7384 3.7104 3.7911 3.7504 3.6 2 72

52 2.5405 2.4648 2.5430 2.52O0 2.3 4 42

TABLE 4.2.4 A

MY AT SEVERAL POINTS AT 4X4 SUB-DIVISION • EX-2

NODAL FORCES CALCULATED FROM TRIBUTARY AREAS

RE--1 RE*-2 RE--3 EXACT

METHOD METHOD METHOD METHOD METHOD METHOD

POINTS ( 1) (?) (1 ) (2) (1 ) (2)

55 4,4125 4.26.39 4.4148 4.3344 4.4160 4.3561 4.4203
54 4.1257 3.0787 4.1272 4.0456 4,1280 4.0663 4.1254

53 3.2753 3.1327 3.2756 3.1906 3.2 7 56 3.2088 3.253

52 1.8978 1.7552 1 . 90 0 1 1.30 91 1.8995 1.8258 1.8476

TABLE 4.2.4 B

MY AT SEVERAL POINTS AT 4X4 SUB-DIVISION , EX-
US ING EO. FORCES FROM VIRTUAL WORK

RE--2 RE--3 EXACT

METHOD METHOD METHOD METHOD
DOINTS (1) (2) (1) (2)

55 4.5669 4.4866 4.56 3 4 4.5075 4.4203

54 4.2726 4.1913 4.2737 4.2 109 4.1254
53 3.4012 3.3164 3.4014 3.3335 3.253

5 2 1.0933 1.0024 1.073 2 1.0182 1 .84 76
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TABLE 4.3.1

CONVERGENCE OF CENTRAL DEFLECTION ♦ EX-3

RESULTS FOR RECTANGULAR ELEMENTS

MESH RE-1 RE-2 RE-3

1X1 7.9889 9.9792 10.1202

2X2 10.6249 11.2426 11.2927

3X3 11.1359 11.4403 11.4640

4X4 11.3232 11.5076 11.5223

EXACT 11.6

TABLE 4.3.2

DEFLECTIONS AT SEVERAL POINTS AT 4X4 SUB-DIVISION ♦ EX-3

POINTS RE-1 RE-2 RE-3 EXACT

22 1.2668 1.2*69 1.2809 1.3167

33 4.7001 4.7258 4.7305 4.7677

44 8.8744 8.9297 8.9372 8.9864

55 11.3232 11.5076 11.5223 11.6

54 9.9217 10.001 10.008 10.066

53 7.0407 7.0907 7.0964 7.1392

52 3.6163 3.6409 3.6441 3.6684

TABLE 4.3.3

MX AT SEVERAL POINTS AT 4X4 SUB-DIVISION * EX-3

RE-1 RE-2 RE-3 EXACT
METHOD MFTHOD METHOD METHOD METHOD METHOD

POINTS (1) (2) (1) (2) HI (2)

55 33.5433 18.7800 32.7983 29.2737 32.6598 32.7464 55.572 (^°)
54 10.6986 12.9499 11.2230 10.1101 11.2681 12.3356 11.023
53 4.9452 5.2214 5.0281 4.9041 5.0403 4.7706 5.0564

52 1.9501 2.0725 1.9934 1.9653 1.9994 1.9265 2.0361

TABLE 4.3.4

MY AT SEVERAL POINTS AT 4X4 SUB-DIVISION , EX-3

RE-1 RE-2 RE-3 EXACT
METHOD METHOD METHOD METHOD METHOD METHOD

POINTS (1) (2) (1) (2) (1) <2)

55.572 (,°°)
16.897

9.5398

4.4555

55 33.5433 18.7800 32.7983 29.2737 32.6598 32.7464

54 17.1913 14.7959 17.3139 16.7150 17.3690 17.2089

53 9.5526 8.8234 9.6670 0.6301 0.6767 9.8 5-39'
52 4.4672 4.2242 4.4Q37 4.4947 4.4964 4.5739
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TABLE 4.4.1

CONVERGENCE OF CENTRAL DEFLECTION - EX-4
RESULTS FOP RECTANGULAR ELEMENTS

MESH

1X1

2X2

3X3

4X4

RE-1

0.7750

1.1544

1.2161

1.2375

RE-2

1.2832

1.2595

1.2630

1.2640

EXACT 1.2653

TABLE 4.4.2

RE-3

1.3319

1.2649

1.2649

1.2650

DFFLECTIONS AT SEVERAL POINTS AT 4X4 SUB-DIVISION » EX-4

POINTS

55

54

53

52

51

POINTS

22

33

44

55

54

53

52

RE-1

0.0573

0.4398

0.9837

1.2375

1.1020

0.7333

0.2508

RE-2

0.0643

0.45O3

1.0038

1.2640

1 .1280

0.757?

0.2774

TABLE 4.4.3

RE-3

0.0645

0.4600

1.0100

1.2650

1.1299

0.7581

0.2731

EXACT

0.0645

0.4601

1.0102

1.2653

1.1302

0.7583

0.2783

MX AT SEVERAL POINTS AT 4X4 SUB-DIVISION » EX-4

RE-1

METHOD MFTHOD

(1) (2)

2.2206

1.9861

1.1172

-0.9038
-4.9950

2.0440

1.7771

0.8045

'1.4075
'2.^133

RE-2

MFTHOD METHOD

(1) (?)

2.2125

1.9765
1.1077

•0.8985
•4.9412

2.13 23
1.8077

1.0328

-0.9683

-4.5132

RE«3

METHOD

(1)

2.2113

1.9755

1.1070

-0.8 9 79

-4.9 3 80

METHOD

(2)

2.1616

1.9371

1,1044

-0.8372

-5.0067

TABLE 4.4.4

MY AT SEVERAL POINTS AT 4X4 SUB-DIVISION , EX-4

EXACT

2.1143
1.8738

0.9898
•1.0455

•5.1334

RE--1 RE--2 RE-3 EXACT

METHOD METHOD MFTHOD METHOD METHOD METHOD

POINTS (1) (?) (1) (2) (1) (2)

55 2.2206 2.0440 2.2125 2.1323 2.2113 2.1616 2.1143

54 1.9775 1.8040 1.9745 1.8917 1.9746 1.9199 1.8747

53 1.2778 1.1067 1.2883 1.1978 1.2877 1.2243 1.1823

5 2 0.2704 0.0439 0.2588 0.1547 0.2827 0.1845 0.1378

51 -1.4446 -0.5336 -1.4629 -0.O026 -1.4566 -1.0013 -1.0267
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TABLE 4.5.1

CONVERGENCE OF CENTRAL DEFLECTION , EX-5
RESULTS FOR RECTANGULAR ELEMENTS

MESH RE-1 RF-2 RE-3

1X1 3.1002 5.1329 5.3276
2X2 4.8766 5.4510 5.4865
3X3 5.2485 5,5301 5. 5550
4X4 5.3025 5.5704 5.5706

EXACT 5.6

TABLE 4.5.2

DEFLECTIONS AT SEVERAL POINTS AT 4X4 SUB-DIVISION » EX-5

POINTS RE-1 PF-2 RE-3 EXACT

22

33

44

55
54

53

52

TABLE 4.5.3

MX AT SEVERAL POINTS AT 4X4 SUB-DIVISION » EX-5

0.1045 0.106 3 0.1067 0.107
1.2028 1.2247 1,2256 1 .23
3.5845 3.6360 3.638 3.64
5.3925 5,5704 5.5 706 5.60
4.3199 4,3953 4.3972 4.40
2.4159 2.4663 2.4680 2.47
0.7376 0.7687 0.7699 0.77

RE'
METHOD

-1

METHOD
RE-

METHOD
-2

METHOD
RE-

METHOD
-3

METHOD
EXACT

01 NTS (1) (2) (1 ) (?) (1) (2)

5 5

54
28.6620
5.7436

13.8579

7.9005

27.8875

6.2313
24.3653
5.1232

27.7439

6.2707
27.8486
4.1745

36.8
5.95

53

5?
31

-0.5057

-5.3165
-12.4161

-0.5025
-5.88 81
-8.751°

-0.473 3
-5.3094

-12.3124 -

-0.5832
-5.2098

-11.4659

-0.4675
-5.3067

-12.3001 -

-0.6359
-5.1218

-12.304

-0.547
-5.41

-12.58

01 NTS

55 28.6620 13.8570 27.8875 24.3653 27.7439 27.8486 36.8 ('<**
54 I) 4(t< 000-7-T 1 -1 1 -tr^r\ i,„-,, _„ . .« ._ __ . V

53

52

51 -3.3612 -1.7503 -3.3646 -2.2031 -3.3452 -2.4609 -2.52

TABLE 4.5.4

MY AT SEVERAL POINTS AT 4X4 SUB-DIVISION , EX-5

RE-

METHOD

(1)

-1

MFTHOD

(?)

RE-
METHOD

(1 )

-2

METHOD
<2)

RE-
METHOD

(1)

-3

METHOD

(?)

EXACT

28.6620

12.3684

4.95 21

0.4453

13.8570

9.9377

4.1983

0.5185

27.8375

12.4790

5.0864

0.53 3 3

24.3653

11.8753

5.0 364

0.5015

2 7.74 39
12.5260

5.0950

0.5434

27.8486

12.3775

5.2 6 89

0.6030

36.8

11.8

4.88

0.433

*)V.
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TABLE 4.6.1

DEFLECTIONS AT SEVERAL POINTS AT 4X4 SUB-DIVISION , FX-6

POINT FINITE
INTS RE-1 RE-2 RE-3 MATCHING

SOLUTION

DIFFERFNCE

SOLUTION

23 0.2135 0.2212 0.2215 0.2191 0.1745
33 0.7257 0.7389 0.7396 0.7280 0.7291
43 1.3767 1.3939 1.3 948 1.3676 1.3946
53 2.0750 2.0944 2.0955 2.0479 2.0981
52 2.0682 2.0879 2.0889 2.0385 2.0903
51 2.0516 2.0717 2.0727 2.0139 2.0701

TABLE 4.6.2

MX AT SEVERAL POINTS AT 4X4 SUB-DIVISION , EX-6

RE^-1 RE--2 RE-"3 POINT
METHOD METHOD METHOD METHOD MFTHOD METHOD MATCHING

01 NTS (1) (?) (1 ) (2) (1) (2) SOLUTION

11 -0.5867 -0.4542 "0.5519 -0.4544 -0.5346 -0.4496 0.369
12 -0.7127 «0.4764 -0.7240 -0.5005 -0.7248 -0.6258 -0.693
1 3 -0.6935 -0.4830 -0.7139 -0.6910 -0.7139 -0.6370 -0.699
23 -0.3200 -0.3307 -0.3127 -0.3287 -0.3129 -0.3286 -0.354
3 3 -0.0991 -0.1116 -O.O03Q -0.0755 -0.0951 -0.1070 -0.105
43 0.0237 -0.0009 0.0240 0.0115 0.0238 0.0159 0.028

TABLE 4.6.3

MY AT SEVERAL POINTS AT 4X4 SUB-DIVISION » EX-6

RE--1 RE--2 RE -3 POINT
METHOD METHOD MFTHOD METHOD METHOD METHOD MATCHING

POINTS (1) (2) (1) 12) (1) (2) SOLUTION

11 -1.7070 -1.5142 -1.7390 -1.5147 -1.7373 -1.4987 -1.26
12 -2.0962 -1.5883 -2.0779 -1.9685 -2.0779 -2.0836 -2.141
13 -2.0984 -1.6102 -2.1037 -2.0034 -2.1052 -2.1236 -2.11
23 -1.1278 -1.2048 -1.1274 -1.0624 -1.1273 -1.1207 -1.121
3 3 -0.4890 -0.5507 -0.4919 -0.4585 -0.4920 -0.4885 -0.48
43 -0.1240 -0.183 5 -1.2430 -0.1358 -1.2434 -0.1209 -0.117
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TABLE 4.7.1

MX AT SEVERAL POINTS AT 4X4 SUB-DIVISION » EX-7

RE-1 RE-2 RE -3 HELLAN

METHOD METHOD METHOD METHOD METHOD METHOD

INTS (1) (2) (1) (2) (1) (2)

11 -7.1510 -4.3384 -6.9717 -6.5989 -6.9456 -7.2981 -7.14

21 -5.1290 -3.1041 -5.1125 -4.68 9 7 -5.1187 -5.1730 -5.18

31 -3.0623 -1.8594 -3.0778 -2,8587 -3.0780 -3.1616 -3.22

41 -0.9921 -0.6375 -1.0426 -1.0183 -1.0457 -1.1267 -1.15

51 0.1160 0,0 0.0694 0.0 0.0559 0.0 0.00

15 2.5804 2.5779 2.5414 2.6276 2.5388 2.6483 2.54

25 2.1098 1.8363 2.1061 2.0187 2.1053 2.0612 1.98

35 1.2764 1.0814 1.2860 1.1931 1.2856 1.2265 1.17

45 0.3 76 2 0.0076 0.3421 0.1249 0.3119 0.1575 o.ii
55 -1.4192 -0.0061 -1.4333 -0.0090 -1.4322 -1.0009 0.00

TABLE 4.7.2

MY AT SEVERAL POINTS AT 4X4 SUB-DIVISIQN » EX-7

RE -1 RE-2 RE -3 HELLAN

METHOD METHOD METHOD METHOD METHOD METHOD

POINTS (1) (2) (1 ) (2) (1) (?)

51 0.1160 0.00 0.0694 o.oo 0.0558 0.00 0.0

. 52 -0.9955 -0.6386 -1.0451 -1.0143 -1.0483 -1.1208 -1.13

53 -3.0015 -1,8039 -3.0036 -2.76°6 -3.0023 -3.0615 -3.17

54 -4.4711 -2.7178 -^.4444 -4.0300 -4.4421 -4.4968 -4.64

55 -4.9874 -3.0504 -4.9522 -4.5450 -4.9496 -5.0047 -5.16

44 -1.1810 -1.1710 -1.1900 -1.2592 -1.1899 -1.1203 -1.32

35 0.4441 0.0849 0.4231 0.3487 0.4222 0.4344 0.35

25 0.7249 0.4248 0.7079 0.6297 0.7069 0.6965 0.68

. 15 0.00 0.3782 0.00 0.0431 0.00 -0.0545 0.00
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TABLE 4.6.1

DEFLECTIONS AT SEVERAL POINTS IN A RHOMBIC CANTILEVFR PLATE
INTS 12 3 4 5 6

TE 0.21155 0.14867
:XP.(22) 0.207 0.204

0 .0 9 910

0.121

TA.RLE 4.9.1

0 .11280

0.129
0.07195

0.05 6

CONVERGENCE OF CFNTRAL DEFLECTION IN EX-2 TO EX-5
RESULTS FOR FUNCTION TE

MESH EX-2 EX-3 EX—4 EX-5

1X1

2X2

3X3

4X4

5X5

EXACT

1.3130

3.1156

3,5624

3.7243

3.8014

4o06?4

c, SCI,

10,^071

10.69 3 3

10.8924

u

Z843

0.2758

0.8968

1.0 721
1.1367

1.1667

i e2653

1,103 2

3.7269
4.5691
4,9106

5.0815

5.6

0-04129

0.022
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4.6 DISCUSSION ON RESULTS

General observations

A study of the tables brings out certain

interesting features of the analysis.

(i) All the new displacement functions investigated

show convergence towards the true answers. The

convergence is monotonic in all the cases.

This, however, is to be expected because all

the displacement functions considered are of

the conforming type.

(ii) The convergence is fast when rectangular

element functions KE-1, 'M-2 and RE-3 are used

and slow when function IS, for the triangular

elements, is used. In triangular elements the

normal slopes have been foroed to vary linearly

along the boundaries. This artifice did

help in developing the conforming function TE,

but because of it the elements have become

stiff. Absence of such restraint in the

displacement functions HE-1, ES--2 and RB~3

for rectangular elements have made these

elements relatively more flexible and this

makes for faster convergence. Eesides,

these elements possess greater degrees of

freedom.
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(iii) The results of the analysis by the functions

RE-1, RE-2 and RE-3 are almost the same

particularly for deflections, for the finest

sub-division used; although for coarser

sub-divisions the results given by the functions

do not agree so very closely. The function

RE-3 gives the best results.

(iv) Function TE shows very reasonable accuracy for

the deflections. Still further improvement

is expected by using finer sub-divisions.

Detailed Discussion of Examples

(i) Deflections

Example - 1 has been analysed by using rectangular

element functions RE-1, RE-2 and AE-3. All the three

functions give same results upto the 5th place of

decimals and the accuraoy is practically 100JS compared

with the exact solution even when a very coarse 2x2

sub-division is used.

Convergence has been studied by observing the

variation of the central deflection in examples 2 to 5.

In example - 2, the nodal forces have been calculated

by two methods when the functions RE-2 and RE-3 have

been used; first, considering the tributary areas

and secondly, using the method of virtual work. It

is observed that the distributed load is overestimated

when the equivalent nodal forces are calculated from
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the principle of virtual displacements'. On the other

hand, the load is underestimated in the first approach.

This is, of oourse, obvious as the loads assigned to

the nodes whi-ch lie on boundaries are directly trans

mitted to the supports. Thus, in example - 2, the

functions RE-2 and RE-3 overestimate the central

deflection for the equivalent nodal forces and

underestimate for the loads calculated-from the

tributary areas. However, the discrepancy gets

reduced with finer sub-divisions and with a 4 x 4

grid, the maximum error in the central deflection is

about 3 i° when the nodal forces o„re calculated by the

first approach for the function RE-2. For the same

type of nodal forces, RE-3 gives result which is

97*09 % of the exact answer. With successive increase

in the number of elements, the results converge towards

the exact answer. This indicates that the errors in

estimating the nodal forces decrease, as one may expect,

for both the methods by increasing the fineness of the

sub-division and at some stage both types of nodal

forces will give practically the same results.

Function IE gives very reasonable accuracy for central

deflection. For 5x5 sub-division the error is

about 6.42 %.

Better accuracy in central deflection is

obtained in example - 3 by all the functions for

rectangular elements. Maximum error for the 4x4

sub-division is given by RB-1 which is 2.38 c/°.
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Errors for RE-2 and RE-3 are less than 1 %. In this

example IE also gives reasonable results. For the

finest sub-division the error is 6.09 $.

RE-1, RE-2 and RS-3 again yield the best results

in example - 4. Functions RE-2 and RE-3 give almost

the exact value for the central deflection even for

the 2x2 coarse sub-division. With 4x4 sub-division

RE-3 shows practically 100$ accuracy compared with the

exact answer, while RE-1 and RE-2 results reach an

accuracy of 97.81 %and 99.8 % respectively. At other

points, RE-3 gives deflections which are indentical

with the exact values upto three places of decimals,

for the finest (4 x 4) sub-division (Table 4.4.2).

Results from RE-1 and RE-2 for these deflections are

extremely satisfactory although they do not match the

remarkable accuracy of RE-3. Results from TE are not

so accurate. For 5x5 sub-division, the error in

central deflection is 7.79 $»9

In example - 5? the errors in the central

defleotion are negligible for RE-2 and RE-3 at 4x4

sub-division. RE-3 gives better results right from

the beginning followed by RE-2 and RE-1 in that order.

Function RE-2 and RE-3 give the same deflections

upto the second place of decimals at several other

points. These results very closely agree with the

exact answers. As before, TE is less accurate.
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In example - ?{r EE-2 and RE-3 give deflections

higher than the exact answer only for the 1x1 sub

division and the results for all the three functions

are four times the values given by the same functions

for the same 1 x 1 sub-division in example - 5. This

is obvious beoause the nodal load applied at the

centre in example - 4 is four times the load taken in

example - 5. In both the examples double symmetry

has been used. The nodal load for the concentrated

load is 0.25 and for the distributed load it is 1.0,

as the area of one square element is 4 unit sq.

Results of deflections at several points

in the cantilever plate (Table 4.6.1) are extremely

satisfactory for all the functions RE-1, RE-2 aid RE-3

when compared with those given by Point-Matohing and

Finite Difference solutions (55 )•».

Deflections at several points in the rhombic

cantilever plate computed by using triangular elements

(TE) are presented in Table 4.8.1. The results for

4x6 sub-division analysis are very reasonable.

In examples 2 to 5 where the second quadrant

of the plate (Figure 4.3) was analysed (by using the

mesh systems shown for triangular elements in Figure

4.2), the results of the displacements showed

extremely good symmetry properties at 5- X 5 sub

division.
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(ii) Moments

Moments M and M have been studied in all the
x y

examples excepting the first and the last. The figures

in the tables represent the mean values of the moments

M__ and M. at the nodes,
x y

For the functions RE-1, RE-2 and RE-3'., the

maximum moments as well as the moments at several

other points agree very satisfactorily with the results

obtained by the exact and other approximate methods

used for comparison and indicated in tables. Function

TE does not give satisfactory accuracy with 5x5

sub-divisions. However, similar behaviour is

observed in several othe r displacement functions

proposed for triangular elements (22,39). Finer

sub-divisions are neoessary to obtain better results

With these elements.

It is observed that the results of M and M
x y

calculated by the first method (from the element

stiffness matrices) agree closely with those obtained

by the second method (from the moment-curvature

relations given by a displacement function). The above

statement refers to the results obtained by using the

functions RE-1, RE-2 and RE-3. The moments calculated

by the first method are the concentrated moments at

the nodes, which in some way represent the forces

distributed along the element boundaries5 whereas
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the second method gives the moments at a point. It

is observed in the tables that the moments calculated

by the first method are generally a little higher

than those obtained by the second method.

For triangular elements the moments were

calculated by using the finite difference formulae.

Therefore, these results once again demonstrate the

accuracy of defleotL ons.



CHAPTER FIVE

APPLICATION OF THE METHOD TO SHELL STRUCTURES

5.1 INTRODUCTION

Shells support applied loads by developing

both bending and membrane (in-plane) forces. The

latter contributes significantly to the overall

strength of a shell structure. For several shapes,

such as shells of revolution, the in-plane forces

are predominant. In such shells, bending forces

develop near the supports and penetrate into the

body of the shell only to a short distance before they

completely die down. A mathematical analysis of a

shell problem is obtained by solving the governing

differential equations and satisfying the boundary

conditions. Because this prooess can become quite

involved, several simplified methods of analysis

have been proposed from time to time., A detailed

disoussion on the methods is beyond the scope of

this study and interested reader may refer to a

number of available books and publications on the

subject (44-46),

5.2 ANALYSIS BY THE FINITE ELEMENT METHOD

In the finite element method, the shell

structure is idealised as an assemblage of finite

elements interconnected at a finite number of

points (47-52). Obviously, curved elements are ideal



FIG. 5.1 A SHELL IDEALISED BY FLAT

ELEMENTS.
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for representing a shell surface, but their analysis

is extremely difficult. Therefore, as a further

simplification, flat elements are used. With the

introduction of flat elements, a physical error

oreeps into the analysis. This error, however, gets

reduced as more elements are employed in approximating

a curved surfaoe. Figure 5,1 shows a shell idealised

by means of flat elements. It is obvious that

triangular elements are ideal for approximating a

shell of arbitrary shape. Rectangular elements have

been employed for cylindrical shells. This is

possible because the surface is developable.

The elements chosen to represent a shell

should have both membrane and bending characteristics.

It is assumed that the bending and membrane aotions

do not interact with each other, i.e., they are

independent aotions. Thus the total stiffness

matrix of a element is obtained by summing up its

bending and membrane stiffness matrices which are

formed separately.

If the bending stiffness is given by,

Fb » kb u* (5.D

and membrane stiffness by

!*• - km um (5.2)

the total stiffness matrix of the element is

obtained as

kb

p™ km

b
u

um
(5*3)



?
z

(a) BENDING ACTION

(b) MEMBRANE ACTION

s*
.VA

FIG. 5.2 FORCES AND DISPLACEMENTS IN

AN ELEMENT USED IN SHELL
ANALYSIS
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The superscripts b and m refer to bending and membrane

actions respectively.

Of the two actions, the bending part is

already discussed in previous chapters. For the

membrane action, the derivation of the element

stiffness matrix follows the same steps outlined

in section 2.6, by selecting suitable displacement

functions. The only difference is that the deforma

tions now occur in the plane of the flat elements.

Also, the stress-strain relations are now different.

However,, the convergence requirements remain the

same as stated in section 2.3, The problem of

selecting a displaoement function for membrane action

is much simpler. A function is easily obtained by

prescribing a linear variation of the nodal

deformations. Moreover, such an assumption leads

to a conforming type of displacement function. Thus,

for example, the displaoement u along x-axis, for

a rectangular element may be taken as

u = A1 + A2x + A^y + A4xy (5.4)

A similar expression is taken for the displacement

v along the y—axis. For other shapes such as

triangles and quadrilateral elements, functions

which provide linear variation of edge displacements

are available (39).

Mhen a conforming type of displaoement

function is used, the displacements are continuous

along the boundaries of the elements. The continuitv
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of displacements is preserved when all the elements

lie in a single plane; generally it will be violated

if the elements a.re oriented in different planes.

Thus for shell analysis simple non-conforming

functions are used. For an arbitrary configuration,

the elements of the idealised system will be in

different planes. The stiffness matrix of the entire

assemblage is obtained in the usual manner, using

appropriate co-ordinate transformation matrices.

Number of equati. ons for an average analysis will now

be very large beoauso of the greater number of

degrees of freedom prescribed for a shell element.

Therefore, in order to obtain a fairly good

approximation, a fast computer with large memory

spaoe is essential.



CHAPTER SIX

CONCLUSIONS

Conclusions derived from the present study may be

summarised as follows:

(1) All new functions proposed in this study

converge towards the exact answers. Convergence

is monotonic with successive refinements in the

sub-division analysis,

(2) The method developed for deriving the displace

ment functions for rectangular elements proves

that many more suitable conforming type of

displacement functions can be easily found.

In fact, the number of such functions is

practically unlimited and all of them satisfy

the convergence criteria.

(3) . Trigonometric functions can be suitably used

along with polynomial terms to derive displace

ment functions for rectangular elements as

shown in the method developed for these elements,

(4) The displacement function using polynomial

functions proposed for triangular elements has

very satisfactory accuracy and can be used for

plates of arbitrary shapes,

(5) Convergence is rapid for the rectangular element

displaoement functions and little slow for the

triangular element function.
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(6) The results for displacements are more accurate

than for the stress resultants,

(7) The comparative study of the performance of

the three different compatible displacement

functions proposed for rectangular elements

shows that all of them have almost the same

aocuracy at 4 x 4 sub-division although they

exhibit different degrees of accuracy for

coarser sub-divisions. The function RE-3

gives the best results and it is recommended

for the analysis of rectangular plates.

(8) For all practical purposes, uniformly distributed

leads can be represented by sets of concentra

ted loads calculated from the tributary

areas.

(9) Mean values of bending moments at the joints

in an assemblage represent the actual values

with extremely good accuraoy,

(10) Moments computed from the stiffness matrices

of the rectangular elements may be employed

in practical designs as they are generally a

little higher than those obtained by using

the moment curvature relations.
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APPENDIX - 1

GENERATION OF K MATRIX IN THE COMPUTER

The programming logic for generating K for

regular mesh systems is illustrated in Figures A-1

and A-2 whi ch are self-explanatory.

Stage I: Only individual element stiffness

matrices k are involved. In all the

sub-divisions reported earlier the

elements used are of the same shape and

size. Thus a sub-division analysis

involves the use of only one k matrix.

Stage II: This is a summing-up operation in the

horizontal direction. The operation is

continued for n elements in the horizontal

direction. Result is shown for 2 elements

in Figure A,

Stage III: This is summing-up in the vertical

direction using the results of stage II,

The operation Is continued for m sets

of n horizontal elements. Generation of

the K matrix completes with this

operation.

The main program thus generates the stiffness matrix

for n x m sub-divisions.
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