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SYNOPSLS

A review of the existing methods for analysing
~ the dynamic and transient stability of power systems has
 been made. The mathematical models of the varlous compo~

. nents of the system required for analysis are outlined.

The dynanic ptabllity of Bhakra-Nangal fertilizer
factory system whon it is run isolated from the system
using state space mothod is analysed. Field observation
.indicated that the systen is dynemically unstable and
is algo confirmed from the analysis presented here.

To stebilize thé systen feed back sipgnals in tho AVR
baged on first and socond derivatives of rotor angle are
tried and thelr rcsults pregented. Highor order deriva-

tives of rotor angle arc suggested.
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1ST_OF _PRINCIPAI, SYMBOLS

All the quantities are expressed in per unit

on o common base unlesg other unita are given.

cg* Cq torninal voltages on direct and quadrature
axes of machine

040V, magnitude of terminal voltage of machine

idaiq | direc¢t and quadrature axis currents on machige

E excitation voltago or open circult voltage of

maching
Poqpfgs% g Ainternal flux linkages of synchronous machine
ﬂq,ﬁkq' fiecld, d~astls armaturey d-anis amortisseurs
graxios armaturo and geasntic anortisseur winding
ifﬁ'ikd‘ikq rotor circuit currents of synchronous nachine
“nfd’xffd" coupling and self reactances of synchronous machine
*akd? Msked’
Takq' *
r -+ armaturo reolotance ¢f synchronous machine
rfd.rkd.rkq rotor circuit reaiatancea_of gynchronous nachine
w rated angular froquency, olectrical radians per

socond = 2%nf

w inpgtantonoous angular froquoncy of machine rotor
© - :
n's ==—=2  por unit opood doviation of machine rotor
0 .
> rotor angle of machinc in olectrical radians
iDaiQ network terminal currents expressed with rospoct

to network roference axes



eD.eQ notvork terminal voltages expressed with

respect to network refercence azes

Gy 4 real component of a network self-or mutual
adpittance

by imaginary conponent of a network self or
mutual admittance

X4 direct axls synchronous rcactance

xq quadrature axia synchronous regctance

xé direct axis transient reactance

xg direct amis subtransiont renctonce

xg | quadrature auis subtranslent reactance

Téo direct axis open cireuit tronsient time

7 constant S

Tﬁo direct awxis open circuit subtransient time
constant S

Tgo ‘ guadrature axio open c¢ircuit subtransient time
constant S

Tb ‘ demper winding time congtant

H inertia constant Kils/KVA

M indrtie constant

Ti initial torque input to rotor

Tg air gap tortme of synchronous machine

Ta arnature timo constant

Tma 2H inertia time conctant

Kd,D dapping coofficient

D6, d/dt  difforential operators

fa) incremontal operator
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CHAPTER 1

REVIEY OF METHODS APPLIED TO POVER SYSTEM STABILITY

1. INTRODUCTION

Uith the growth of pover systems to their present
size with large capacity génarators and long distance
tranemission lines, stability studies have become an
essential part of power system planning. As transmission
distances are extended, load centres tend to be widely
separated and partially supplied by remote generation
vith large angular displaccments between remote genera-
tors and those near load contres. The ghift in load
botwoen gonerators is a nonlincar function of the diff -
erence Ain rotor angles, and above a certain angle diff-
erence, the incremental load shift due to incremental
angle change reverses, and the forces which tended to
reduce speed differences become forces tending to
increase epeed diffeorences, leading to loss of synchro-
nism phenomena. Power system sthbility is primarily
concerned with variatione in speed, rotor pos;tions and
goenerator loads. Onc of the aspects of stability study
is to determine the stablility reglons and to improve these
by osuitable mecans.

Concept of Stability

A system 1s defined to be gtable when

subJected to bounded disturbance it produces a bounded



responso. 'Bbunded' means 'of less than some finite
magnitude for all finite intervals of time'. Clearly if

a system is subjected to an unbounded disturbance and -
produces an unbounded response, nothing can be saidvabout
its stability. But 1f it is subjected to a bounded
disturbance and produces an unbounded response, it is

by definition unstable.

In the absence of input excitation any time
.invariant physical agysten c¢an be represented mathemati-
cally as a pet o2 simultaneous differential equations
of the form

v
vhere X represents the system state variable vector. The

function £(X) may be linear or nonlinear.

In physically realizable, lincar, time invariant

syetems, there is only one cquilibrium gtate, which may

be made to be origin of the state space coordinate

syctem. If this equilibrium state is stable, tho cntire
otate space represents stable reglon of system response.

It may or may not be true in the case of nonlinecar systems,
i.e¢, a nonlinear system may have both stable and
unatable equilibrium states and both stable and unstable

regionp of rosponse.

If tho system of equations (1.1) is perturbed
alightly from itpo equilibrium state Xe and all subsequent
notions remain in a correspondingly smnall neighbourhood
of the equilibrium state, then the system 1s sold to be

A



stablo. Hathematically the definition can be stated ass

The response of the system of equations (1.1)
io stable 1f, for any given arbitrary small real positive
number € , there can be found another positive number
5(8) such that if |

0 £ X(0) £ 8
then the system solutions are defined for all time by
the relation

o0 L x(t) £ ¢

Uithin the n-dimensional state space, the region
S(€) 4is smaid to bo stable 1f for any 5(d) , a transient
gtarting in S(d)_ does not leave S(€) as showm in Figure
1.1. If the system responge is stable as defined above
andy in‘addition if every motion originating sufficliently
near Xa converges to Xe a8 timo approaches infinity,
then the gystem is oald to be asymptotically stable.
These concepts are 1llustrated in Figure l.1.

2. STEADY STATE DYNAMIC AND TRANSIENT STABILITY

In power gystem stability studies, the terms
stcady state, dynamic and transient otability are widely
uscd to distinguish between threo kinds of studies.

Stoady State Stability [1] is the stability of a

oystom under conditions of gradual or relatively slow
changes in load. The load is assumed to be applied at
a rate which is slow when compared clther with the
natural frequency of oscillation of major parts of the



UNSTABLE

ASYMPTOTICALLY
STABLE

Xo -REPRESENTS THE INITIAL STATE

Xe - REPRESENTS' THE EQUILIBRIUM STATE

FIG.1.1 - DEFINITION OF STABILITY



oyotom or vith tho ratc of echange of {lold flun in the
rotating pachine in respongo to.chnnac in londinp. in
otcady atato otability it 1o ancumed that tho control of
oucitation in very olow and such as Uo corroct the voltago
chnango aftor cach cmall load change has occupred .

Ap tho cffect of thio 1o nogligiblo becoune of asouned

nlom rosponse, it is a otability limlt for on ininitosinal

¢hango with conotant £lold curront.

Dynomic Stability . Ig¢ tho chonge in cxcitotion is acocuned
to takoe placo with or immodlatoly folloning theo chango

in load, theo otability limit¢ undor ouch conditions ic
termed as dynanlc otablility. The offcet of voltaoge rogulo~-

tors and governors io inportant in~dyn¢nic ptabllity atudico
Dynamic ostabllity analysic io conccuntratcd on the problcao
agsociated with undamped or poorly doanpoed oceillationn

of small anplitudo. If tho oscillations remulting from

any initial change Qininich with tine, the systoen 1o

pald to bo dynanleally stadble. Ifs on tho othor hand,

tho osclillations increasoe with tincy tho gyston is
ﬁynamiaally unstablo.

Oscillations nay occur botwocn ono pachine or
plont and tho rest of tho oysten or botween lorge nachino
groups. Spontancous oscillationso aro initiated by ninor
dioturbances cuch ao variations in load inhoront in
noral oporation. Duo to tho effoet af.nonlincarieieé
ouch ooclllations may be linitod at some nagnitude
pshort of locs of gynchroniom ond syotem break up.



The only offective way to deal with gpontancous ogocilla=
1t19ne i to alter tho inherent system characteristics

vthioh cause then.

Dynamic stability studies cover real time inter=-
vals, usually 5 to 10 seconds and occaslionally upto 30
seconds. Spontaneous oscillations do not initially involve
nonlinear behaviour in any way, and thereforo linearized

mathematical  models are used to study the problem.

Trangiont Stability analysis is primarily concerned with
large and sudden disturbances such as thoy occur with the
effects of transmission line faults on generator eyﬁchrono
iocm or suddon changes in load. During a fault, electrical
' poﬁer from nearby pgenorators is reduced drastically,

vhile power from machines somevhat removedfrom the fault
may be scarcely changed. The resultant differencos‘in accele-
ratlion producc speed diffeiences over the time interw
val of the fault, and it ic important to clear the

fault quickly to limit these spoed differences and

the associated changos in angle differcnces. Clearing

the fault removes one or moro tronsmission lines from
sorvice and at lcast temporarily weakens the system.

This change in trancmicsion system also implies that

the gonerator angle difforoncen wvhich oxistod prior

to the fault no longer roprescnt equilibrium conditions .
If opood differences and accumulated angle differences

at the time of fault clearing are sufficiently bounded

and 1f trancfer impodences betvreen gonerators subsequent



to the fault clearing are sufficiently low, the accolera-
ted machines will pick up load due to their advanced
angular positions, slow down and eventually a nev syn-
chronous equilibrium will be established. Logs of synch=
roniem if it occurs is usually ovident within dne second
for the firet swing stability, and within ten seconds

for multi swing stability. Therefore, transient stability
gtudies are limited to short time intervals. They

are most often used to determine the stability of a single
unit or plant during the initial pericd of high stress
immediately following a nearby fault. Such studies may
require the representation of a large system. The effects
of voltaze regulators and governors are usually limited
and often neglected for generators remote from the

fanlit.

5. REVIEV

Power system stability has been the subject of
intengive study in the US and Canada since 1920 when th€
first large hydroelectric installations were being developed
Long Rines and relatively slow circuit breskers and
relays made the system stability a serious problem.
The nonlinear behaviour of the alternator was knowm
for a long time. It led to the develomment of two axis
theory by Park in 1929. Since then many investigators
havoe qhonn that voitagelregulators can 1mpr6ve the
alternator stability in many ways. Cvary {2] and Kimbar k
{3] in their discussions of tho factors affecting stability



have cmphagisod the importance of automatlc voltage
roegulators in improving stability limit.

Mothodo culted to stability analysis aret
1. Dynamic stability - (a) Frequency response methods

(b) State space methodse
2. Trangient stability (a) Point by point solution of
differential equations

{b) Liapunov's second method.

Dynamic Stobility

The clasgical approach to the study of dynemic
stability problems has boen through frequency response
gothods. It was concordia [4) who discucsed the subject
at longth. Starting from the basic machine equations,
he applied the Routh's c¢riterion to the equation of
notion for ascertalning the stability of a systen
under the coffect of voltage regulators and secondly, to
obtain the steady state limit for a'eynchronoﬁs machine
connoccted through a tie lino to an infinitc bus and also
to the ¢casc of tto machines with a voltage rogulator respongive
to the common bus voltage wmagnitude, by varying
the regulator amplification factor, machine field time
conotant, regulator and exciter timo constant. The resulto
obtainod by Concordin chowod that with properly desipmed
voltage regulator, tho otoady state limit can be increased
to as much as 1.6 times its value without regulator

and that the system rcomains stable for a value of the



load angle b as high as 115°.

Messerle and Bruck [5] in 1956 studied the
effect of voltage and angle regulation on the steady
sta te stability limit of a single machine connected
to an infinite bus and extended the work to allow
for the control ¢f the prime mover torque by means of
governors., Fbi analysis, the authors representod synch-
r nous machine vith Park's equations to ddfine tranafer
function for the machine. The transfer';unction so obtalned
vas used together with the Nyquist criterion to give the
results in the form of stability contour dlagrams. The
advantage of this approach is that the results are obtalnod
in a general form and only the axis need to be shifted
for finding the effect of changing controller gains,Thoy
concluded that the gain marpgin increases considerably by
using a stabilizer, while increase in controller gain

roGuces tho gain nargin,.

The authors also claimed that instability of
the alternator with feedback usually shows up at the
dynamic limit in the form of self excited oscillations
in fecdback systems as opposed to the steady state case
where the imtabllity occurs with slow falling out of

synchronism with continuously increasing load angle.

Aldered and Shackshaft [6] applied the
Nyquist criterion for the predetermination of synchronous
machine stability vith and without voltage regulator

and connected to an infinite bus treating it as a closed

o



loop system. The effect of main regulator loop parameters
such as gain, ecxciter and main field time constant etc.
on the stability of the system were examined and curves
obtained to that effect. They concluded that while the
steady state limit incrcased considerably by the use of
voltage regulator, the transiont stability limit
remained practically unaffected. They also considered
the saturation type of non linearity and found that
its effoct wao to make the system morc stable at higher
gains resulting in reduced self eﬁcited oscillation.
Jacovides and Adkdns [17] mnade a detailed study
of the effects of voltago regulator on the stability
limit. The stabllity was analysed by the Nyquist method.
They conslderod the different types of voltage regulators
ard concluded that with increaeed voltage regulator gaine
the syctem was gtable having operation in the dynamic
zone, but 'aftei a certain value, further increase in.the
gain made the system unstable at an angle & less than 90°.
They also notcd that tho effect of resistance and damper
vinding vas to make the system more stable.

- Stapleson {8] applied the root locus technique
to study the stablility and dynamic reéponae of a synchronous
nachine by plotting a famlly of 1061 which indicated
on one diagram the demping fLaptor and oscillation
frequency of eoach term in the time response for
all values of two parameters such as regulator gain and
exciter time constant. Though the system equations were
based on the small perturbation theory and valid only



near the chosen operating point, the nlow variations of
polos and zeros with the operating conditions led them
to conclude that the results deducod for a specific

opserating point would be valid over a considerable range.

Evart and DeMello [9] implemented a digital computer
program for plotting the Nyquist diagram and compute t he
dynamic stability limit for a single machine connected
to an infinite bus through a transmiseion line. Théﬁ
evaluated the offecto of generator, excitation system
and trgnsmicsion line parameters on the dynamic stabllity
limit. They found that the increase in machine inertia
decreanes the dynamic stablility limit in contrast to
the opposite effect on transient stability in the case
studied., They also found that_in the overexcited region
poorly damped oseillations may be encountered at load
levels considerably lower than the absolute stability
limit.

Recently, the approach to the study of the
stabili?y problems has been towards the utilization of
the state space techniques for describing the system
behaviour.‘fhe state of a system changes wifh respoct
to oome indopendent variable vwhich is usually timc.

State variables are those sct of variables (a minimum

get) which describe the presont state of the systen,

and vhich also allow one to use the past history and the
present state to determine the future state. The variables



in such a set are called state variables. The state
variables in a particular system do not form a unigque
get , but rather that several arbitrarily chosen sets
can be found. the state variables are usually chosen
baged on the following considerations:

(1) the ability to measure all the states.

(ii) the ability to specify a more meaningful perfore

mance index.

If a set of state variables is properly chosen, it
containg sufficient information to describe the transient

‘behaviour of the linear system beig studied.

Laughton [10] investigated the dynamic stability
using state space approach. He starts with the description
of the performance of a single machine without excitation
and prime mover control by general nonlinear equations
and linearizes them using small perturbation technique.
Relations betveen gystem varlables are expressed by
operating matrix, and using the matrixz reduction method,
all variables vhich aro not of intcrest are eliminated
to yield relations of the form |

| X = AX+ Du

¥ = X
where 4,B and D are matrices of constant coefficients,

X is the state vector, Y is the output vector. The paper
extonds the representation to include the voltage regulator
and applies eigenvalue analyslis to determine the stability
limits. Finally, he has also ¢onsidered the case of |
dynamic gtability in multimachine systenm.

1l



Undrill [11] hasc also studied the dynamic otability
of a multicmachine gyotom including the offoects of
voltage repgulatoro and governors cmploying the eigen values
analysis. The state variables chogen are the flux linkagos of

the direct and quadrature'auis armature and rotor circults.

1 bil

Tranoiont stability anglyeis is undertaken to de-
termine the responsc of a power gystem to large and
oudden disturbances. Obtaining transient response of
a pover system cssentially involves solution of

non linear and lincar equations.

The systom of equations describing the power
syatem may be divided into three categories:

(1).  Differential equations of the form
DL V,I) X =0
vhere

X is the vector of state variables
V 18 tho voctor of bus voltages
I is the vector of buoc currents.
These are the equations which describe the time

dependence of the prime movers/.

(2) Non-linear algebraic equations of the form
nx,v,1) so0
At each gencrator there‘ia a pair of equations
. which connoct the flux linkages vector twith the
terminal voltage.
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(3) Linear algebraic equations of the form

L(IQV) =0

Much of the effort involved in tranelent sta-
bility analysis is in developing programs for the solu-

tion of above eguations.

Miles [12] studied the transient stabllity of
multimachine system allowing for the representation of
salioncy, variable flux and damping amd the effects of
voltage regulators and governors on the analogue as vell
as digital computer. Ho concluded that the transien£
stability studies with normal network analyser ascump~
tions give substantially correct results for system
predominantly composed of round rotor machines equipped

with excitation systems of moderate response.

Browm, Happ., Person and Young [13] developed
matriz computational methods using impedance matrix for
solving power system transient stability problems with
the incluslion of transient saliency, variable impedance
type of loads, voltage regulators and governors. They
also reported good convergence characteristics for
the impedence matrix method and a significant increase
in spced of polution am compared to the nodal iterative
method. |

Olive [14] developed a program which can be
applied for the calculation of transient stability of

pulti-machine systems (upto 100 machines). He represented
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the synchronous machinc on the d-and g-axis including
paturation. Governors and voltage rogulators can also

be represcnted to a close approximateion. HNon-lincar
loads can also be represented. Iterative procedure has
been outlined for the solution of the network, eynchro-
nous machine equations and non=linear loads. According

to the author, the itorative procedure is remarkably
effective and has not failed even once when the stability

wag lost.

Dincley and Kennedy [15] investigated the effect
of usiné an operating signal derived from rotor acceleration
for the control of input power as opposed to the convone |
tional velocity foodback on the transient stability of
the power system. A govornor actuated from the compound
of velocity and accoleration signal io described and
its offect on the traneimt stability is studied. Fhe
effect on stability of varying some of the parameters
of the system, the machine and governor are deseriboed.

The paper concludes with ﬁ brief atudy of‘the offocta
of various govérnora on the tranciont stabllity of a
aynchronous'generator connectod to a large system by
a pingle faulted trancmission line that is fitted with

auto-reclooing circuilt broakers.

Talnkdar [16] inveotigated thé multistep inte~
gration alpgorithme suitable for transient stabllity
studico by combining conventional, implicit multistep
formuloe with new iterative procedures. He concluded

that multistep algoritms require significantly loss
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conputing time.

Fuller, Hircch and Lambie [17] have developed
a newr transicent stability algordithm which employa auto-
natic variable step oige, automatic variable order of
integration and an implicit integration algorithm. The
differentinl equations representing tho generation, and
algebraic equations represonting thc notviork are solved
simltaneously thus minimising the interface error due
to the time skew in scquential solution of the differenw
tial cequat ons and the algebraile cquations in each fized
small time step. The scheme outlined in the paper is
plgnificantly faoter and advantageous for long tinme
spans. |

Statec spaco methods have been applied in recent
years to study the transient stability problems. The
second method of Liapunov is based on the concept of
energy and tho relation of stored energy and systen
stability. Fundamental to the Liapunov?'s method ig the
idea that for a stable system the stored energy will
docay with time. Since the system is characterized by
the state variables which represent the energy state of
the system, the stability can be determined by examining
a function of tho state variables without an explicit
golution of the gystem differential equations. The
sborsd energy in a homogenecous (undriven) stable linear
system can be showm to be a non-increasing function

of time. If it can be proved that a positive definite



enorgy~like function of system state, gonorally

referred to as Liapunov function or a V function, is a
nonotonically decreasing time function, that system is
assuredly stablo, vhother lincar or nonlinear. Mathemati-
cally, a system is asymptotically stable in some reglon
of the statg gpace ifs; in that region

V(X)) > 0O for X # X,
& s 9x)< 0 for X £ X,
WX) = 0 for X # X,
VW in) » o forlxfl » ®

vthero Xe ic the ecquilibrium state

and nxl » xTx)Y2 15 the Euclidean length of the

vector from the origin.

The liapunov function may be thought of as a
measure of éhe distance from the equilibrium state. The
chief merit of the Liapunov's sccond method lies in the
fact that the system equations nced not be solved for
dotornining the rogions of stability. Hoviever, finding
the desired V  function is not in general a simple task
and failure to find V does not indicate inptability, but
if atleast one V function can be found, the system is
proved stable. Much of the effort has, thercfore been
directed tovards finding V functions. Gless [18], El
Abiad and Nagappan [19] and many others [20-25] have



succogofully applied Liapunov's second mothod to analyse

poucr systen stability problems.
4, STATEMRIT OF THE PROBLEM

The problem studied is stated briefly as belom

Three units of Bhakra powor house, 100 MVA each
are supplying power to Nangal fertilimr factory whose
load ic 180 IIVA . The electrolysis plant constitutes
the najor load. In addition, there are a number of
synchronous motors vhose aggregate capacity is 19 MU.
The motors are not equipped with voltage regulators.

It is lmowm that above system is dynamically unstable
vhen it is operated'isolated from the rest of the
system. Therefore moethods to stabilige such a system

ere required to be suggested.

17



CHAPTER II
MATHEMATICAL MODELLING OF POVER SYSTEM COMPONENTS

1. INTRODUCTION

For analysing a complex physical system on
a digital computer, a mathematical model which charac-
torizes the system behaviour is 8ssential. A set of
equations wvhich accurately :elate the input and output
quantities constitutos a mathematical model. Topologically
nathematical model may be represented by a flow graph
or a block diagram.

A continuous physical system such as a power
system is described in terms of physical lavs governing
its behaviour by decomposing it intoa schematic repre-
sontation of individual elements, say as in Fig. (2.1)
The term continuous 1o used to indicate that the system
variables {angular velocity.,voltage etc) are functions
0of a continuous independent variable,time. The applica-
tion of Kirehhofffs laws to lumped parameter circuits
and Nevwtons second law of motion to the dynamical
part of the system give a set of equations which cons-

titute a mathematical model of the power system.

A mathematical model may bo formulated in
different formats. The first format is the classical
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formulation in which a mathematical model conaists of
& set of differential equations. The second format is
topologically oriented in that it represents a system
by a block diagram. This 18 the clessical frequency
domain represcntation. The vector - matrixz represcnta-
tion is the third format vhich has been widely employed

in modern system analysis.

The purpose of this chapter is to review and
examine the various mathematical descriptions of the
salient pole synchronous machines and other components
of the control and power system such és voltage
regulators fiydraulic turbine and speed governing systenm »

transmigsion lines and loads.

2. SYNCHRONOUS MACHINES

The synchronous machine constitutes an importaﬁt
part of the povier system as the transient and dynamic
behaviour of the system ie largely determined by the
wachine characteristics and its controls. For multimachine
dynamic analysis on a digital computer, it is deeiréble
that the mathematical model be such that '

(1) knorm mathematical techniques may be applied
for the analysis and optimization of the systen.

(1i) the model either uses the data supplied by the
machine manufacturers or the model may be such
that its significent parameters may be easily
dotermined by tests or calculated.
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All tho mathematical modols in uée in varying
dogrees of detail are derived from the Park's oquations
of the machine having a field winding and one damper
circuit in each axis aé éhomn in Fig. 2.2 by applying
the d=-q-0 transformation to the equations of the machine
in phase variables. The equations of thig transformation
are [26]

Ry = [Kacoseﬂih cos (@ «120) ¢ K co8 (e-240)1 (2.1)

Wi

R, =~ % [ R, oin 6 + K, sin (8 =120) + Kcein(e +120)1
(2.2)

K, =3[ X +K +K] (2.3)

The symbdl K is replaced by i, @ or e. to give the |
current, flux linkage or voltage tranafbrm respectively.
This transformation (equation 1 and 2) resolves tho
stator quantities inté compbnents along the direct and
quadrature axes respectiveiy. Equation 3 relates to

zero seguence effects in the generator.

When Park's transformation is applied to the
equations of the machine in phasc variabless the follovm
ing cquations aro obtailned [26]

Direct axis flux linkages
Pea * Bopalea ¥ Epealxq “Tagata (2.4)

Pa = Tapalea ¢ Fakalke “Fald - @.5)
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Pra © Bonatea ¥ Bkatre ~Pakala (2.6)
Quadrature anio 2lug linkagos

Dircet axto voltapes

-l-)}-
°2¢ ", 7P Bog * Teateg (2.9)
Q‘d n (‘30 ?ﬁd r id mo ﬁq (2010)
. 1 &
0 =P g ¢ g hig (2.11)

Cundraturc anio voltagen

| - L
%% n%;pﬁq T o Py (2.12)
A—. | i
0 s o P gkq ¢ Tyg g (2.13)

Tho oguationo are in por unit form. In por unit oyotca
cach voltago, flug, currcat and inpodonco 1o czpressed
ao the ratio of ito actual value to a sclecicd base
valno. Cae por unit €iold voltage gives one per unit opon
ciprenlt voltane on tho air oy line and one per unid tprquo
io baccd on roatod povor at cynchronous gpocds

Tho folloming aooumptions havo doch noade in dordiving

tho abovo cquationo.

1. Tho diotributoed windingo of tho otator arc congldared
oo concontrated winding opatinlly Gletributad %—’:
rodlang apart.



2+ The mmf produced by each stator and rotor winding
is sinusoidally distributed in the air gap.

3. Hystoresis and eddy current losses are neglected.

4. The sign convention is such that the generator action
is considered positive and positive field flux is
that vhich induces a positive voltage in the stator
wihdings;

Tho follow ag equations are nocessary to complete

the description of the synchronbus naching.

Generator terminal voltage
2 2 2
Mechanical equations

Tg = gdiq - ¢qid (2.15)

- Wl T
T, = MgTp ¢+ Tg + Kupd + 4 (2.16)

5. SYNCHRONOUS MACHINE MODELS

The models of the synchronous machine and the
simplifications made in formulating them from the basic
fivo winding Park's equations aro indicated. The resulting
equationg are stated in the form which are easily solvable
by numcrical calculation. The models arc presented starting

vith the least complex and finighing with the dotailed one

Hodel, 2, [28]

The classical synchronous machine model wses

a constant voltage magnitude behind traneiont reactance.
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It 18 the simpleat of the machine model. The following
pimplifications have been made.

(a) Transformer voltages in tho stator equations

are neglected.

() Speed is assumed constant except in the equations
of motion.

(c) Damper windings are neglected;

(a) Saturation is neglected.

(o) Main £lux linkages are assumed to be constant.

(£) - Translent saliency is noglected by approgimating
xd to xé.

The machine equations are
84 =T xa i 0

wyl E ]
-eq 3 r | _iq eq

&
Tg = eq;q 4 id

Hodel 2 (28]
Transient saliency ig taken into account. The field flux

linkages renain conatant and all other simplifying assump~

tions as in case of model 1 still hold. The machine equationc

becone
84/ - xq id 0
n &
‘ Eﬁ r iq e q
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T =z g i

&
g atq * Cata

.Mpza = Ty =T,

e&  is calculated from initial_ﬁonditians and is assumcd

constant.

Mpdel3 [28]
The field flux linkages are assumed variables, but all other
assumptions still hold.

de! | |
4 = ke [ oy, = 0} - 1y(x4wY)]

]
dt Tdo
eq ~r xq id 0
= - +
‘ -y - L |
eq >3 r iq eq
MPb = T, ~T,

Model 4 ([29]

. The synchronous machine equations arc reprecented by
Park's voltage equations referred to the direct and

quadrature axes on the machine rotor position.

pay K, el Ky g | |©
= + & ef d
pe& i Ké Le& Kh eq KB
- ] " | - I
eq 63 r *1:& 1&
Pq ‘.o' | x& T ] wiq
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where
X
Kl AU S
| 1}
Tho ¥4
g oot
T30 %4
; - 1
. s a %
3 -
T X
@ 9
- 1
Kb o R! xd
Tio *§
- -
5 =
do
Tg S iq *eq iy
2
Mp™d = Ti - Tg
Madal § [28]

It is the aimplest of the representatione in
which damper windings are included. The main flux
linkages are assumed variable but the transformer voltages
in the stator equations are neglected. Saturation is

ako neglected. The equations arej
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. - 1 " .
_pe& - §§;~ 0 0 eq
o1, 1.y o1 .
pea s ( T&o + Tg@ ) - 0 eq
do-
pel 0 0 §%- e;
L 7d) L | 20 - | a ]
- . I L 0 e
T 1 G
do do
, -yl g1 -yl ‘ .
- ‘ ) mn
do | do Tdo Ldo
< ._:x" '
‘ 1 9 0 4 4L T JdL 0 -
Trl
| Q0
where o .
‘L .
o = do D' . 1
M -
do Tdo
T o7
Gﬂ - ~ O
-’}
Téo Tdo
by o
[~ é T 4 x“ i e“
q d & q
k- . %
ed_ - "Xa o id,, _93

4 (LI
T, = gs iq + el 14 *idiq (xq =4 )
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4. INCREMENTAL MODELS

The most commonly used models were derived by
Concordia [4], Heffron and Philips [30], Laughton [10]
and Undrill [11]. |

5. EXCITATION SYSTRMS [31]

After considéring various types of excitation
systems in use, IEEE Committee has defined four excita=-

tion system types to be used in computer representation.

Typel ‘continubusly acting regulétorvand excitor

Type 2 rotating rectifier system

Type 3 static with terminal potential and current
supplies

Type 4 non continuously acting.

In this chapter only type 1 is discussed.
Fig. 2.3 shows the significont transfer function'which
aro included for reprcsentation in computer studies.
The first transfer function is a simple time constant TR
roprosenting the regulator input»zﬂgéering. TR is generally
very caall and i congldered as zero. The first sumning
point compares the regulator roference with the output
of the input filter to détermine tho voltage error input

to the'rogulator amplifier. The sccond summing point

combines voltage error input with the excitation major
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damping loop signal. The main regulator transfer function

is represented as a gain KA and a time constant TA‘ Following
this , the maximum and minimum limits of the regulator

are imposed so that large input error signale cannot

produce a regulator output which exceeds practical

limita. The next summing point subtracts a signal vhich
represents  the saturation function SE of the execiter

The resultant is applied to the exciter transfer function

R
KE % STE

The exclitation system gquations may_be written

in the following general form

[X] = [AllX] + [B(D)
where
(Al is the system matrix
{X] is the state vector
[é] is the control matrix

(0] is the control vector

For typetexcitation system showm in Fig. 2.3 the

equations are

(K +8.) 17 10 3
pAE - ..IEE._....E.. 0 - AN 0
TE B
K.(K +5.) K
B 1 0y
pAE. |- P S AND 0 Le
] TETF TF TETF 8 # _ t
K
4 - ..o]—'-—- K
E LBy 0 T T oE -4
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vhore &F , AEB and LE, are defined in the fipgure.

For dynamic stability etudies (small pertur-
bation analysis) the saturation function can be negl-
acted., However, in transient stability studicas, because
of large changes in AB, saturation function Sp which
represents the saturation in the main eiciter coannot
be regarded as a constant and the above oquation

become nonlinear. The limits VRm and VR have
o

in
an important effect on the tralRsient Thehaviour of the

ax

machine, and computer representation must be incorporated

for these limlts.

Typical constants for type 1 excitation gystea

are as follovs:

Ta Regulator input filter time constant 0.0 to 0,06
Kﬁ Ropulator gain 25 to 50
T, Regulator amplifior time constant 0.06 to 0.20
vaax Maxinum valuo o? vR : 1;0 |
thin Minimum value of Vj, =10
Kp Regulator stabilizing circuit gain 8.01 to 0.08
Ty Regulator stabilizing circuit time

constant 0.35 to 1.0
KE Exciter constant:related to self-

excited field _ 0.05
TE Exciter time constant . 0.5
Sg Saturation function (max.) 0.267



3 Saturation function (0.75 max)  0.074
E 0.75 nax.

6+ HYDRAULIC TURBINES AND SPEED GOVERNING SYSTEMS

Turbine speed-governing systema play an important
role in the behaviour of igolated systems vhich have
eithe r oxcess load or generation in gignificant amounts.
They also influence damping in dynamic stabllity studles
and have some effect on transimt stability behaviour.

The rcpresentation of hydraulic turbine and
speed governing gystem for power systom stability studies
has been investigated by Undrill and Woodward [32], Romey
and Skooglund [33] and Young [34]., IEEE Committee report
[35] bhas defined basic models for speed governing systems
and turbines for power system otability studies. The
model suggested by the Committee for electrohydraulic
governor and mechanical povernor is the same as the
dynamic¢ performance of the electrohydraunlic governor
is necessarily adjusted to be essontially the same
as that for the mechanical governor in an interconnccted

gysten.

The transient characteristics of hydraulic
turbine aro dotermined by the dynamics of water flow
in tho ponstock. Tho converoion of flow and
head by the turbilne involves only non~dynanic relation=-
chips. The preciso models of water pressure and flow
in penstock which take into conslderation the travelling
wave phcnomena are not usually used for pover systenm

stability studies.



The representation of hydraulic turbine and
pspoed governing system for computer simulation is
shovm in Figure a;n. Neglecting the turbine and penstock
reprosentation, the governing system equations may be

written in the following general form
[X)] = [a} [x] + [B) [uU]

~ For the governing eysteﬁ showvn 1in. the figure the equations

are
ol -k - -l [e ] ot
¢ P Tp Ip Tp
g |, | % 0 0 g | .| o©
Tg [n]
rg & 0 - B¢y 4 L O |
£b -i-;G TR 4 -

The effcct of water column can be represented
by the differential equation derived by Hyvey [32]
that is

dh _ _ ae - 2.
at 2 a4t T b

Thon the equations for the governing system become

- e L
- -~

Py ',r‘(l; 0 0 o||s 0
®gn| "%E ° '%R 0 ||eg!f 0o | ™
-Ph—-- LJ‘%G: 0 ° -’%;,—h d -o-e—*
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vhere
h = per unit head deviation at scrol casing

LH

- S

H
gate position deviation

= T
i}

= water column time constant in Béponda
rated head

i)

B om
u

speed deviation in per unit

TW.. the water column time qonstant or the water
starting time is assoclated with the acceleration time
for water in the penstock between the turbine inlet

and the forebay and can be calculated from the

equation
Ly
Tw = ﬁg
vhere
L = length of penstock in feet
V = velocity of water in feet per second
H = head in feet
g = acceleration due to gravity in feet

per sccond per second
Typical values of the parameters for speed
governing eystem for hydro-turbines arc given in Table 1.

TABLE 1
Parameter Typical Value ’ Renge
Dashpot time constant TR : 5.0 2.5 = 25.0

Gate servomotor time '



Pilot wvalue time constant Tp 0.04 0.03 - 0.05
Transient speed drop coefficient 3 0.3 0.2 - 1.0
Permanent spoed droop coefficients 0.05 0.03 « 0.06

7+ NETUORK

Equations defining the voltage/ current rola-
tionship in a netuork, relating among them the voltages
and currents at the machine terminals through the network
impedences can be written dowm eaa;ly to satisfy Kirchhoff'o
laws. There arc two main types of eqﬁatidns,.namely. |
mesh current and nodal voltage. The mesh current cquotions

can ~ - generally be represented by the matriz eguation

(vi = [2)[1)
Similarly, nodqnl voltage equations can be repropentod

by the natrixz equation
(r] = [Yl Lv} (2.17)

Nodal voltage eqﬁations have digstinct ndvantage
over the Qeahvcurrent cequations in that the number of
equations, particularly in a large pouer system, is
alwayo less and the solution gives the required voltage
directly. |

Tho constant coofficients of (2.17) are the
functiono df branch impedencoes. Theso aro computed
at the rated frequency vhich introduces crrors sinCQ
the frequency at the different nctwork points is

genorally variable around the rated value. Hovever,
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in dynomic stability studies, maximum frequency variations
arc usually small and the simplification is Justified.

8. LoADS [36]

In this pection the stgucturﬁl nodelling of
loads as a function of voltage and frequency is consis
dered. It ic quite different from tho dynamic modelling
of loads ae a function of time.

Both tho acpive and reactive components of a
load arc important in pover system calculiétions. The
variations of active load affect directly the generator
puings and tie line loadings, wvhile the reactive load
variations affect the bus voltages and thus indirectly
the pynchronizing power and apparant impedences of tho
lines. |

An accurate repregontation of electric lo&ds
in a power system 18 of interest for the purposes of
more detailed gystem=-bohaviour studies by simulation.
In dealiqg with the pwoylem_of‘load'modelling. the major
difficulty encbuntered‘rélates-to the nature of system
loads in gemeral, their vgriety and changing composi-
tion. The exact load characteristics are rarely knowm
for a particular bus bar and time.

The load at any'bué can bo ropresented as a
- function of voltage at that bus, V and the system fro-

quency w . Tho vasic load model chosen can be described
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by tho following oquation -

AP -g% ﬁ% ov |
= . (2.18)
el | H 0 R | |

ﬁhere AP and & are changes in the active and reactive
ioad demand due to chaﬁgea in voltage and frequency.

This model results by assuming that the active and reactive
components of load are differentiable functions of voltage
nmagnitude and froquencys and, using Taylor's expansion

of those functions, by omitting ‘higher order terms. The
modgl is tharefore applicable primarily for moderate

changes in voltage V and frequency w.

fhe above equation applies to any load situation
tvhere theeconcept of average povier applies. For a partli=
cular..ordinaéy type of load, the derivatives in the
equation {(2.18) lmowm as the characterictic coefficients
méy be found from theoretical conmideratlions or experie
mentally Iél .

Hoviover, in powver system load f£low and stability
calculations it io customary to assume that the load
at thc bus is indepondent of the voltage at that bus
and tho oystem frequency. Thus the usual way of representing
loads as constant impedences fits very well into equation
{(2.17) and avoids analytical complications. This 'load
reprceentation is only approximate and in practical
calculations may produce optimistic results, especially

in the cases where relatively large voltage variations
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CBAPTER 111

DYNAMIC STABILITY CALCULATIONS
1. INTRODUCTION

The dynemic analysis of power system requires
that the state of the system at any instant be described
by a vecﬁor ¥ in an n~dimensional state gpace and the
dynanic response<of the system by a set of differential

equations of linear form

(y] = [A} [y) (3.1)

vhere [A] 1is the system matrix

The basic gystem studied is shovm in Figure 3.1
which is a redﬁced model combining all synchronous machines
at sending and receiving ends into equivalent machines. Thus
it becomes a two equivalent machine system coupled by a
short transmission line. The equations are written for
two machine system and these can be easily extended to
the n machine case. Where equations are written in the
symbolic form. The dimensions are given for the n=machine
case. The synchronous machine is described by a sct of
Park's equation. The set of state variables chosen to
describe the synchronous machine is the flux linkages of
the direct and quadrature axis armature and rotor circuits,

This set of variables has an advantage over a set of
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currcnt and voltages because it is not necessary to compute
newt initial values after each change in system paramcters
because of the requirement {Lenz's Law) that the flux linkages
in the machine remain constant through any instant(t = t+)

‘at which such a change occura. The network is assum@d to

be doescribed by the nodal admittance matrix equation

(1} = (¥)V] | (3.2)
vhere all non-gynchronous loads are represented by
conptant admittances. The excitation system for the generator
is assumed to be of type 1y, and the prime mover is controlled
by a conventional dashpot type governor. The differential
equations for the excitation system and the governing

system are given in Chapter I.
2. SYNCHRONOUS MACHINE EQUATIONS [26]

Park's equations for the synchronous machine are

Pea = *ppq 1o * Texalka - Tarala - (5.3
Pa = Fagaled * Tamala = Zala G
fra = Tprq Lpg *Tacalea = Zakdld (3.5)
¢q nvxakq ikq'“ 2., | (3.6)
gkq " kg ikq " Zakqlq | (3.7)
Opa = i PPra* Toq g (3.8)
oy = %.; p B, .- rig - % féq. (3.9)
o = %; P By *Tig ixg (3.10)



o
o

A - W .
€q o o pﬂq riq + w ﬁd (3.11)
1
0 5 ;; p ﬁkq * Tiq ikq (3.12)
2 2 2 ’ ~
et “ ed + eq < (3-1&)

TFor small perturbations the above equations can be
linearized by using Taylor series expansion about an operating

point.
3%, APPROACH TO THE CONSTRUCTION OF [A] MATRIX

The first stage in the construction of [A] is the
selection of the frame of reference for the electrical
quantiticse. The equations for each machine are expreassecd
with reference to pairs of axes (d,q) which rotate in
synchronliem with the rotors of the machinesy but the
equations of the tranemission network which fixes the
relationship between the internal quentities of the machines
refer to the axes (D,Q) which rotate at the angular frequency
of the network current. In steady state all theme axes will
rotate at the same speed with angular digplacoments defined
in Figure (3.2), but in transient conditions the angles
b, will vary as tho machine gpocds vary. Therefore it is
nocescary to obtain a relationship betwoeen the deviations
of the variables i ,e and the variables & from their steady
state equilibrium values. Section 7 glves the derivation

of this relationship from (3.23) . The equation is
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[Alml d [Im]{Aqm] + [Kllbo8]

whore tho matrices [Y ] and [K] as given by (27) and (28)

are functions of the steady state values of [im].[em]. and
(8] .

The second stagé in the construction process involves
the olimination of the variables [Aim] and [be ] from
the 11néarized'§yncﬁronous machine equatione to give
a set of differentidl equations describing the.performance
of tho rotor and stator circuits in terms of astate

variables only. The set of differential equations in

patrix form,
(ag) = [x)IP] [pogl o [X] [Q) [x)
which can be uritten in the form
() [pg) = () [x) T (a
ﬁherg | :
~[H] = [x1IP)
[Fl = [[1,0] -~ [X1[Q)]
and the matrices [X] , [P] and {Q] are derived in section 8.

The vector [pig) contains 5 n variables, the
vector [z] contains 8 n variableé, and (a) contains 5 n
indepcndent differential equations. The 3n  additional
difforcntial equations needed to give one independent
cquation per state variable and to pBEs »pb and pn terms
into the derivative vector are the exceiter, rotor apeed
and rotor angle expressions. These expressions arc derived

in (3.44), (3.52) and (3.53). Equation (a) when augmented
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L=

vith equations (3.44) , (3.52) and (3.53) glves a
sot of 8 n differential equations in the 8 n state variebles

vhich constitute the vector Izl

(B'] (2] = [F*] [x] | (b)

The equations of the additional elements in
the voltage regulator and governor can novw be added
subject to the condition that one, and only one, state
variablo is gdded to each additional equations to give

13 n ocquations in the final form
[Hm] [yl = [Fm] (yl {c)

The above equations ylelds the required form
(3.1) directly since

L] hl
[yl = (R ] [F ] {y]
and '
-1
(Al = [H 17" [F,]
The effect of damper winding is small and
can be neglected and/ or accounted as extra damping

term for the machine by dropping the terms bBiaq ¢ Aﬂkql »

Agkda and Aﬁkqa from the state vector an@ the corresponding
rowe and columns from the matrices -[H'] and [F'] - or

[Hm] and [Fh] before performinz inversion. This leaves
matricos [H'] and (F'] of sizo 6n x 6én.

4, OBTAINING INCREMENTAL EQUATIONS

Equation (3.3) ~ (3.7) in the linearigzed form

can be twritten as



[ Wog| [ ®era  “Fara’ Frka - E™ ]
0y Tagd ¥4 Zang Ol
ha| | *mka  "Xakd ik | “ia
L\ﬁq | COTEg g 4q

) wkq 1L “Xakq izj:kkcg,_ i Aikq |

Equation (3,.8) can be writtenm for small perturbations as

Moy = 282q _ PPy

r
fa ( wor £3

But by definition [27 ]

e ¢\

E
Tea

® Xatq
and the fleld circuit equation becomes
Mg, = LB Bl iR

Zatd Wo Teg

X.¢d W, Teq £d fa

or

Similarly for small perturbations about an operating point

equation (3.10) and (3.12) become

1l
0 = pof v L
Wy Tq kd k4
1
0O = — Pﬂg + 4O ’
Wy Tq kg kq

Equations (3.9) , (3;11); (3.13) and (3.14) linearize to
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[.\Tg = ﬁd Aiq iq Md - ﬂq md 1-6 Mq
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Summarizing, the linearized equations of the synchronous

machine are

- - ~ T " A4
Mogl | *eea “Ragd  Fud 8o
Mg e % 2ok Mg
eq| | Ed “Taka  Fied Ly
o, “®e *axq —

~A¢qu i xakq xkkq Aikq~

afd %o Tgd
0 : ply} | (3.17)
C 8 eea—— L Y 017
g PPk * b g
‘#
0 = — pAﬂkq + m‘kq | (3.18)
0 "kq
1 %

O ed =g P L\ﬁd - rily - Ly - O (3.19)

(3.15)
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1 @
. oy g, B Mo v 08, (3.20)
e e
Dey = =4 poy ¢ —B— fe (3.22)
C¢ e e
t
5. NETYORK

The network can be represented by an admittanco
natrix tthose coefficionts are the driving point and transfer
admittances of only those nodes to which machines are connected
For a notwork having tvo nodes to which machines are connected,
the matrix equation relating node currents to node voltages in

the (D,Q) reference frame is

- ot -1 i
im 813  *Py3 812 “Pp2 epy |
in b o b1p By Q1 |
] : (5.23)
=D i b (i :
ipa 821 21 22 P22 P2 -
&3 P21 8 b2 B2 ) Lo

vhich is in symbolic form
(1) = (W) Loyl
The above equations is a result of expanding a set

of two mimultancous complete equations into a set of four
real oquations., The D,Q axis are common to all the nodes,

B0 that suffixes D and Q@ are associa~ted with real and
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imaginary parts respectively of the complex quantities.

6. CONNECTION OF HACHINES AND NETVORK

In the previous sections two sets of équations have
been given, one set nepreaenting:the unconnected machine
and the other network in terms of the nedes to which the
machines are to be connected. The connection implies a
relationship ‘between the machine quantities (rotor based
voltages) and the network based voltages. The relationship
nust take into account tﬁe-displacement b of the réference
éxia dsq for each machine with reaspect to the reference
axis, DyQ for the metwork. The components of the netvork
voltages in the Dy, Q@ reference frame are related to the
terminal voltage of the machine in the d,q reference
frame by the matrix equation Fig. (3.3)

eD | cos ol -glind ed

e gin cos & e
Q 8 ©aq

7+ TRANSFORMATION OF THE TRANSMISSION NETVORK EQUATIONS

The transformation relating the network based

voltages to the rotor based voltages for the system is

r - r

e i . X - T
te ) ainbl ) coabl | eql
e | ‘ cog by -gind, | €42
B - L sinba cosd, | | ®q2 |




In symbolic form

fog 1= (21 [ &  (3a2)

For small perturbation around the operating point

the above equation becomes

- N ¥ ]
A epy begy
Fal te ‘ e Aeql
bep, = [78 be g,
Do, Ae
| e "e2 |
(wedlsinbl - ?q1°°$61) |
Abi
(adlcoebl - e sin bl)
+ f | | («adaéinbé&eqacoaba) b3,
- (adacosba “qusinba{_
which igs in symbolic form
[oey]l = [Tl Tae,) + [11 (o8] | (3.25)

The power invariance thoorem of Kron [LO ] roquiies

(1,0 = (0% )

m

which for small perturbations can be written as

legg) = I13°Teay) +1330a8) | (3.26)



i i1 0
~141 °
[J] = 0 iqa
| 9 “1g2 |

The values of [4 ] a-[eml and [3] used in constructe
ing the matrices [T),{I) and [J) are the steady state
operating poiﬁt valuos wvhich sre deduced from the load

flow datal

For small perturbations about an operating point
(3.23) is

(o] = (9] [dgy]

whonce, from (3.25), and {(3.26)

faa 1 = [¥,] [oe ] + [K] [&0) - (a)
vhero N
. |
{.le = [7] [yl (7] .. | (3.27)
(Kl = (m%y) (1) + (3] (3.28)

The equation (a) is tho exprossion of the constraint
imposed by the tranamieeion notwork on the performance
of each synchronous machine. It involves only quantitics
vhich are roferred to the internal reference axes of the
mac¢hines, and hence no further transformations are needed
for the machine internal variables to be taken as a sot of

numbere defining a vector in state space.
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8. EXPRESSION OF SYSTEM EQUATIONS IN TERMS OF STATE VARIABLES

The second stage of the construction process involves
tho elimination of the variables (A1 ] and [4e ] from the

linearized synchronous machine equations to give a set of

differential equations describing the performance of the

rotor and stator circuits in terme of state variables only.

The perturbation forms of the Park terminal voltage

equations (3.19) and (3.20) for each machine can be expressod
collectively as

[ beog; ] (2035, ] a1
Aeql _pﬁﬂql ﬁdl "
Bey, l”ﬁ% pAd o * -ﬂqa n
b | | P | | Pa2
ry 1 Mg "0
b Mg 8041
) T2 Ags * "Aqa
.raly Aiqa ! Mda _
vhich may be uritﬁen }n aymbelic fc;rm as
e el T e |
el = 3; lp{.@m]* od *{ppQ) [n) ~ [rllod 1 (5.29)
) a1
. Mqa
B ]



Comdbining a and 2a glves_ T
- -0
log ) = [C1Ipag ] + w [C] al
A‘a‘(il
-0
L Ya
[n]

— -~ o - - ‘1
Mgy Wl "Wy WoCqy “WyCq3 KCpy KCypw 0Py w,CPy,
oy [0oCas *wolaq woChy ~woCszg KOsy KCopw CPsq w CP5,

= {cl pAﬂ 1+

| Mga fooCuz =woChy oLy ~w,Cyz XCyy KOy w0 CPpy 0,CP), |

| t
[ﬂﬁdl' éﬁql’wda iquo%lsﬂbai nlb na]

wh {ch ig written eymboliCally as

(46n] = [CHpag ) + [U) [ag s 06 , n 1% (3.34)

ﬂuo[ cpl¢ [KC] [ob]
vhere

1
ol = &= U1l « [x) (21374 (y,)

[kcl = ([1) + [y 1(r))"F (K]

{cp]l = [c] [PDQ]

e
o

(3.20)

(3.31)

(3.32)

(3.33)

Equation (30) may now be rearranged by simple row and column

operations to take the form

Eo wtion (3.34) can now be cxpanded to include the

nefev Civeuwp oquations (3.16),(3.17),

(3.18) . This operation
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involves the expanding of the vectors [Aiml. [pﬂﬂml. and
[Aﬂm. 03, nl  to the vectors [oil, [p & g), and [x); and
corresponding expansion of the matrices [C} and [U) to give

the following matrix equation.

. 1 o .
- 0 ) 0 ) 0 0 0 0 0
l\ WoT a1 , | ‘ : o
0 Cw -~ 0. Gy O 0 ¢ 0 ¢ 0
11 A - 13 14
0 0 ==t 0 o o o o o 0
1 W rkdl |
0 0, 0 Cso 0 0O C3 0 Gy O
o o0 °o o --= L o o0 0 o 0
1= o oTkql L
0 0 0o 0 0 - =
2 - WL pgo 0 0O o0
0 0 0 0 0 0 Cxg Cay,
w | S SEE 0
5 0 0 0 0 ) o o° oy 0
0 Cip 0 Cio 0 0 Cuz 0 Cy O
0 1
0 0 0 0 0o 0 0O 0 =
2 “o%kq2

B0 g1 PAP g1 P0Pieq1 1 DBy P10 BB g0 P s POBy 530 DB 0 DM p 1




(>}
1

6 0 0 0 oov0°°o_’_}_oo;ooo

0 0 0 ©° 0 0 0 00,0.00000 0

0wC vaoca:l 00 woﬂah ovmoca} 0 0 0 | Kcal Kcaa CPZ]. GPaa

0 0 e ©o 0 0 0 0 o 00 ¢ 0 0 0 0

0 wocl‘a 0 ""’mccl’l 0 0O wochk 0 "(l.)QchB 00 0 KCi'l KCha wocplll u)oCPha

R 0 0 0 0 0 0 0 0 0 ¢ 0 0 0 0

£
e A T i B
This equation is written symbolically as

(ad} = [P [p o g ] + [Q) [x] (3.35)

The elimination of vector [l from this equation leaves
a set of differontial equations involving only variables contained in

the roquired state voctor [x] and in [pxl.

1088 4R

Tho generator fluxt linkage equations (3.15) for each machine
pay be collated to form the matrix equation

04

(ag] = [x] (AL) (3.36)
vhere the matriz [X] is a 10210 square matrix in which each 535 subtmatriz
on ite diagonal is tho matriz of (3.15) for one machine. Combining (3.35)



and (3.36) then gives directly

(gl {po gl = [F] [x]

where [H] = (%] [P)

(Fl = [1,0] ~ [xI(Q]

{c)

Hene the matrix [1,0) 1s the SnxS5n unit matrix augmented with

3n additional zero columms to allow it to be added to the
5n x 8 n matrix [X1[Q]

9. EXCITATION SYSTEM EQUATIONS

" The expressions for the terminal voltage deviations,

required in the voltage regulator equations is obtained by

rearranging (3.29) in the form

fAemJ = ‘%6[p.a g, +

- [r]} Iéim]

0
1l

0

<1 0 O
0 00O

0O 0 -1

0 1 0

which is written symbolically as

t
ooyl = 5-lp &80 +IV] [ 88,08, 0 1 =

@

al

0

a1 ©

{r] {1 )

Rearranging (3.37) and using (3.34) gives

[oe,] = [VP] [p A @1+ [VSI[og ,08,n 3°

5

L84y
Aﬁql
Mo
Aﬂqa
1561
fA%. >

et |

(3.37)

(3.38)



e .

vhore

(vp] = [ 2-[1] - (R [c] ]
O

(vs]

{ vl - [r1[U]]

ot
N

(3.39)

(3.40)

The expressions for the absolute changes in the terminal

voltages of the machines is

i i

Aetl

Aeta

La1
1

In symbolic form

loe,} = [EVI[fe,]

vhich when combined vwith (3.38) glves

Sa1
Ct1

0

0

edg
%2

0

Sa2
82

-~

-

b

Aedl
Aeql

bo
Caz

92 |

be

(3.541)

[Bo,) = LEVIIVP)[pod )+ [EVILVS1Lod 08, nl®

(3.42)

The voltage regulator equation for type one ropresentation

{noglecting saturation) is

r -y

pAE.

PAEg

_PAE,

which in symbolic form is wmwitten as

-

Ty

_KB Kp

TpTy

0

-
F

1 .
T

T

E

E

Tp'
1.

Ty |




[p aBF ] = [VRI[ABF] + [FF] [le] . (3.43)

Substituting Eﬁet;] from (3.42) a in (3.43) gives

[pAEF) = [VR)[AEF) + [FFIC [EVIIVP][pig 1+ (EVIIVS][Ag ,a8,n] %]
| (3.44)

= [VRI[ABF) +[FFI[(EP)[pog ] +[ESIIF,000,0]")
(3.45)
whers
[EP] = [EVIIVP]
{ES] = [EVI({vs]
Writing (3.44) in the expanded form
pE o 07 (ol
0 0
%1 "EP EP.  EP.. EP P
K. - 11 12 13 1
PAB) A1 ¢ pogs
Tax EP EP EP EP de
. - 21 22 23 24
pAEa 0 e Pﬂﬂda
pLEq, K? ] pﬂﬂqu
pAE, 0 A2 |
L. AZ.J L. TAa -




10, ROTATION SYSTEM AND GOVERNING SYSTEM BQUATIONS

N i}
K
0 § 0 L
TE]_ El
K..K 1 K
- JELFL g I 2
Tt Fl TpiTm
Kpp - L .
S R v
Al Al
K
i, A
T, £
_Epfp a1 Epe
T
Tratre T,  TpTre
o % =
1 Tpo Tan
0 0o |
O 0
Epa -
" 0 ES), BS;, BSy3 ES, BS)g 5S¢ ES;, ESpg
0 0 ES, ES,, ES,3 ES,, ES,c ESys ES,, BS,g
0 0
K
0 V-4
’TM

(3.L46)

stl

The expression for the incremental air gap torques of

the machines is




| ar

Mgy Mgy
gl| 111 © O “a ql g3 0 O a1
= 1 L
sl Lo 0 By B, | M o o i -ig]|Ye
a2 |2 |
Symbolically . |
for,] = [sPlfoa ) «L1Tileg ) | (3.47)
Incorporating (3;3&) to eliminate [Aim] yields
lar,) = (srllc)ipag] +[sTl(ullod ,08,n)% #(17) 008, )
= (s)lcllpog J* [LsTule [I7101,0) 104g ,s08,n1t
= [s7C)(pid.) + [SIT) [68 ,60,0)" (3.48)
vhere,
[s7C] {srilcl (3.49)
[st?] = - [sTU0)] <.-[1I7]1(1,0] (3.50)

Here the matrixz [1,0] 48 2n %2n unit matrix augmented with 2n
additional zero columns to allow it to bs added to the nxin matrix

[STU] -

The acceleration equationg of the machines are

. h 1
Tn1 ' Pp1 | Tgl " Dy 1

Tp2) L Pz [Tz 4 L D, B,



Symbolically

(z,] ( m] = = [a7] - [Dlln) (3.51)

which after substituting (3.48) beconmes

[z 1lpml+ [s7C) [ pag ) = -[STTI(48,,00,0]% ~[DI(n] (3.52)

In the expanded form

Tm1 Pny |
| o+ c c Pﬂﬁql
o Tl | P STC,,STC,, STC,5 STC, "
) ‘ . a2
L g
C ST, STT.., STT,, STT,, STT,. STT., STT.. STT.q ] Y
11 STy, 13 STy SIT g SIT;g SITy, STThg N
Q.
| . &0 4o
»S-TTal STT,, SPT,z ST, STT,g ST, STT,, srfra& o,
vy
os,
3
-
D .
1 ny
92_ n2

In angﬁlar velocity'relationship may be introduced in the

fornm



p=

v

poby W By

pid, ) Yo -

‘Symbolically o

(pod) = [wd (o] _(3.53)

vhich incerporates the assumption that the network

referonce axes rotate at constant speed.

The governing system equations are

- ~ - ™ T
pc -y eskmmn ., —— L ——— c e
‘l‘p ’I'p ‘I‘P Tp
P8 = Té‘ 0 (8} g + 4] [n] (5 . 51' )
2. o) L. Bgv 0
ngb; i TG Th" L i L

11. SELECTICN OF ANGULAR REFERENCE

Equation (¢) contains a set of equations (3.53)
vhich inply that the network referonce axes (D, Q) rétate
at constant speed. However, this is only the casc for
ateady state cquation where all the synchronous'machines
rotate at the same speed; and during transiente the
actual instantancous speed of the (D,Q) axes is unknowm
even though the instantaneous speed of ecach machine
is known. Therefore 1£ is necessary to make some assumption

with regard to the behaviocur of the netvork reference axes.



Tho assumption that (D,Q) rotate at a constant spoed

renains in synchronism at some frequenty which is
determined by the collective permanent droop action .
of all ite governors -and the speed-torque character=-

istics of all ite loads.

of w, is not valld since this tould force the whole

(S}

pystem to remain in synchronism at a speed of w, while

the physical situation indicates that the system

An alternative and reasonable assumption is

that the network frequency is always ldentical to that
of one arbitrarily chosen machine so that the axes (D,Q)

rotate in synchronism with the azes (d,..q,) of that
machine. This implies that the rotor angle deviation

Lb, of the rth machine is alvays zero and that (3.53)
nust be modified to

ur

PAB,

;%..‘E%

affected conveniently by

b)a -wo
wo “'wo
Wo™t

)

-

s

r+l

d‘:‘d-

Tho resulting chenge in equation (c¢) can be

0



(a) deleting Ob,, and & pbd, from the vector lyl
and [y]
(b) deleting the appropriate rows and colunns corres-

ponding to Abr and pod,,

(c) placing (-w,) in the rows of the new right
hand aide of the matrix corresponding to the
remaining angle deviations and the colunn corr-

esponding to n..

This change leaves cquation {(¢) of order 13n -1 with
all rotor angles raferred to the rth machine. The largost
machine or the machince which is likely to have tho nmost
influence on the freguency of the network current is

usﬁally chosen as the reference machine.
2. BIGENVALUES AND THEIR SIGNIFICANCE

The stability of an equilibrium point in the state
space of a free, linear, atationary system dépends solely

on the roots of the matrix differential equation

[x] = [A)Ix] (3.55)

The roots of the matriz differential squation
aro callod the oigenvalues of the system. Other terms used
intorchangeably with the elgenvalues are proper values,
natural modes, froe frequencies, characteristic rooto,

and characteristic values.

Using the Laplace operator to replace the derivative,
the equation becomes vith zero initial conditions
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(eI ~A) X(8) = ©

Since the state #ector ¥ is not zero under all conditioms

then the determinant of the term in the brackets must be

28r0; 1.C.s
le1 =4l =0 (3.56)

The polynomial in s resulting froﬁ the cxpancion of the
doterminant

n n~1 =
aos + &15 Tasneast an‘“:LS + an 0

is the common denominator polynomial (characteristic equation)
of all transfer functions botween an input vector and

an output vector.

A linear, stationary, frse system is asymptotically

gtable at an equilibrium state X = O if and only if all
roots of equation (3.56) are located in the left half of tho
complex S-plane. It is proeciscly this condition that the
Liapunov theoremsare checking [37]. However in those

cages vwhere the characteristic equation is savailable

or easily deriveds there is an alternative to the Liapunov
approach whigh involves less work and is more straight -

forvard.

There are two such alternatives, both of vhich
involve obta;ning information about the asymptotic stabllity
aofa system from its characteristic polynomial without solving
for the polynomial roots. One method is that of Routh and

another, by Hurvitz. Both furnish much tho same information
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and involve similar amounts of necessary computation.

In the program developed the characteristic
equation is never formed as such. Instead, the eigenvalues
of the matrix A of the first order differential equations
that describe the system are found by QR transform method
[38]. These are identical with the roots of the character=

istics equation.

If the coefficients of tledifferential equation
aro all real, thé roots will either be real or appsar as
conjugate pairs of complex number. A real root a, would
glve rise to a torm in the solution of the form Ceat .

A conjugate pair a 2 48 » would give a term of the

form Ce*® nin (Bt #8) . In both cages, the C and © are
arbitrary-constaﬁts determinéd by initial conditions. In
the solutidn. the arbitrary constante contain the informaw
tion on the initial conditions, while the roots contain
the information on the system represcnted by differential
IQQuations. The eipgenvalucs givé the response character=

istics of a gystem's modes,

If all of the roots are plotted on a complex
plano, their location gives much information. Any of the
roots which lio in the right half of the plane will have
yopltive real parts. They represont terms in the soluiion
which will grow with time, amithus they indicate an unstable
| system. Roots vhich lie in the left half plane yill
represent terms that die ouf. The farther they are to



the left, the larpger tho valuc of « and faster the teém vill
digsappcar. To improve the transient response it is
necoscary to move the rpots to the left, thus increasing
danping. Tho distance of the comploxn roots from the real |
axis indicates the frequency of the oscillatory terms

in the transient response. Those roots near the real axis
vill havo lower frequency, while those further awny rill
have a higher freguency.

The significance of the root location in tho a-
plane is illustrated in Fig. 3.4,

13. SYSTEM ANALYSIS

DATA -

Machines. (Machine data in p.u. referred to machine ratcd
voltage and apparent pover) |

1. Generators - 3 nos.

VA rating 100 MVA
Cos @ 0.9
H 4,04 Kis/KVA
z} 0.30
Xy 0.56
o 4] .0014
T% 7.66 a
2. Hotor (Lguivalent) 1 No.( Representative data has been
asgumed)
VA rating 19 MVA

cos @ 1,0
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H 2.0 KWs/KVA
X3 1.25

x‘d | C.34

2y 0.7

r 0.002

Tio _ 3.18 s
2,24 | 1.0

3. Transformers (Sending end) 3 Nos. (Representative data
: has been assumed).

VA rating ' 100
Voltage ratio 11/66 KV
Reactance x 0.15

L, Transformers (Recelving end)

VA rating (7 nos) 35 MvA
Voltage ratio 66/11 KV
Reactance x 0.1145
VA rating (1 No.) 6.5 MVA
Reactance x 0.0783

5. Trapnsmisgion line

No. of circuits 3
Transmission voltage 66 KV
Length of line 6 miles
Reactance per phase per

mile 0.587 @

Total series reacﬁanae
per ¢ircuit 0.587 2 6 = 3.522



Base MVA 100
\ 2
(Kv, ;)
Bage impedence of line —dell
bage MVA

(66)°

= 355 ° 43,58

P.U reactance = 22228
: L3.5

L 00081

6- Load

Total load (including motor load) 180 MVA
Shunt admittance 1.46 = §,

'The actual network and equivalent network

confipguration are shown in Fig. (3.1)

7. Automatic Voltage Regulator
Iin the absence of suitable data, the following

have been assumed as typical valuest

Regulator amplifier time constant TA 0.1
Regulator stabilizing circuit time constant Ty 0.6
Rogulator stabiliging circult gain KF 0.05
Exciter constant related to self excited fiold KEfu 0.05
Exciter time constant Th ) 0.5

Rogulator gain K, made variable from 10 to L0

8. Turbine Gyyernor
In tho abgence of suitable data, the follovting
have becn assumed as typical values.

Dashpot time constant T 5.0
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Gate servomotor timé constant TG

Pilot value time constant TP

Transient speed droop coefficlient B

 Permanent gpeed droop'coefficient § medo variable

By Definition [ 27]

x& = [ xd - ..-@i‘i_ ]
Zoea
X 5 Wxg‘fd
££d ,
s

For the generator

1.0

X =
£1d 0;913 - 00%

For the motor

= 1063

=

Xera

By definition

T4 = Xopd
Tea

£d o1

do

For the generator

Teqg ™ %ﬁ%g“”

For the motor

r i.1
£d 1000

=2

t

= 1.1

1025 -~ n3Lf

( T4, 18 in radians)

= 0.000678

= ,0011

865

0.2

0.04
0.3
from .02-.0t
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Tor the motor
= 1.0/0
ida = OIOI-OBQ /

®t2

eda = '0‘5?56
Bqa 2] 0‘.8192.
Bo == eg = 0.573%

For the generator

epq = 1.0258 / 12.9°
3y = 27.3°

1a1 z 1,1533

iq,l = 1.3647

edl = 0.2920

841 =|eqy = 0.9935
¢q1 = ~6g1 = ~0.2920

14. DIGITAL COMPUTER IMPLEMENTATION

After forming complete [Hh] and [Fh] matrices,
the generator ig selected as the reference machine and the
variable Abl and its derivative p Abl » are dropped.
Aftor forming [Al, the program given in Appendiz I is used
to compute the eigenvalues. The program given in Appendix
II used 1library subroutimes HSBG and ATEIG [39)
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to compute elgen values of the system matrix A. The eigen
values for various values of regulator gaixi KA' damping D

and permanent speed droop ¢ are given below:

(l)KA'*lGnD'%hnG_“O.OG

1. ~17h3 + 3 394.11
2. ~1743% « § 394,11
3. 4,52  +3 330.37
4, -4,52 - 4§ 330.37
5. - =23.03

6. -2,88 + J 11.32

7. «2,88 = § 11.32

8. «6.015 + J1.596

9. =6.015 = J1.596
10. -2.137 o
11. +1.126

12. ~0.8707

13. ~0.6470

1k, -0.0306

15. -0.0061

(Z)KA=25.D=IJ.0=O.06

1. "'1?‘33 + J 5913.11
e «1743 - 3 394.11
3. -h.52 + 3§ 33.37

4. -4,52 - § 330.37



1
2.
3.
i

6.
7.
8.

10.
11.

13,
1.
150

-23.0%

-2.88 + § 11.32
-2,88 - § 11.32
«6.18 + 3 5.49
~6.18 = 3 5.49
2.137
+1.519

~0.9378
~0.6323
-0.0307
~0.00L9

KA::&O; De b , 0 = 0.06
~1743 + 3§ 394.11
~1743 = 3§ 39h.11
-4,52 + 3§ 3%0.38
~4.52 - 3 330.38
-23%.03

-2.88 4] 11.32
2,88 -3 11.32
-6.27 +3 7.52
~6.27 =3 7.52

2.137
+1.722
0,954k
-0.6293
-0.0307
-0.00k6



(h)xﬂ_nho i D = by o= 0.02

1.
24
3.
L.
5e
6o

5.

(5) K, =253 D=4ji o =0.03

1.
2.
3
b,
5.
6.
7.
8.,
9.
10.

-1743 + § 394.11
~1743 - § 394.11
~l4.,52 + 3 330.37
-h.52 = § 330.37
-23.26

~2.88 +jl1.32
-2.88-3 11.32
“6.27 + 3 7.52
6,27 =] 7.52
-1.922

+1,712

~0.954k

~ 0.6292

- 0.0116

~0.0045

~1753 + 3 394.11
~1743 - § 394.11
«i,52 + § 330.37
~L.52 = 3 330.37
~23.20

-2.88 + 3§ 11.32
«2.,88 - 3 11.32
-6.18 + 3 5.49
-6.18 - 3§ 5.49
-1.975
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11.  +1.519

2. - 0379
13.  -0.6323
., - -0.0166
15.  =0.0049

(6) KA = 10.0 H D= 12,00 o = 0.06

1. -1743 + 3394.13

2. =743 - § 29411

3. ~b,52 + J 330.37

4o o = B.52 - § 330.37

5, -23.03 i
6. -8.20 + § 8.81

7. ~8.29 = j 8.81

8. -6.017 + 3 1.606

9. -6.017 - 3 1.6068716

10. -2, 137

11. +1.097

2. ~0.8413
13. =0.40L47
14, -0.2883
15, ° -0,0298

15. INTERPRCTATION OF RESULTS AND CONCLUSION

The cigenvalues give complote information on the
dynamic stablility of the system. These correspond to the

natural modes of response. The real part a of cach eigen value

CENTRAL LISRZRY UNIVERSHY OF ROORKEE
ROORKEE
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gives a noosure of the decrement of the oscillation of a
nodo} it is the roeciprocal of the time constant of the docay
of oscillation. The Ilmaginary part § indicates the natural

ansular froquency of the mode concerned.

The necessary and sufficient condition for dynamic
stability or the system is that all real parts of the eigen
values should be negative. Negative real parts indicate

positive decrementeé and thus poslitive system damping.

The system studied is evidently unstable, because
of the exictence of an eigen value (Ho.ll) having positive
rcal part. The last two elgenvalues llie ¢lose to the
origin and ray move to the right half of s-plane with
parameter variatlions. As the regulator gain is increased
from 10 to 40, the eigen value (No.ll) moves further to
the rights the natural angular frequenéy of the modes corres-
ponding to the cigen values (No. § and ©) increases, leaving
tho daaping torm practically unaffected, thus making the

system more oscillatory and less damped.

The rensultoc obtalned corroborato with the large severe

ogeillations obsorved on the actual systenm.
Stabllization og'szﬂggg~_

The dynoanic stabllity limit can be improved by the
use of other input signals to the voltage rogulators in addition
to tho torminal voltage. The signals are chosen to provide
a pooitive damping of the pomer systom oscillations to
improve generator gtability and damp tic line oseillations.

Some of these signals are: rotor speed, rotbr accoleration,
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accolorating powver, frequency and rate of change of voltagoe.
Uthon used,; thoy aro added ao shotm in Fig. 3.5. Usually tho

stabilizing

gignal io ingerted through a transfer function

providing gain adjustment and lead=lag conpensation for

phaso shifting. Usually a combination of proportional and

first derivative sighala is not sufficient and a second or

hipher dorivatives are alsc required [31),(42].

Therdéforoe

L] (2] '
a combination Ad and Ad signals derived from rotor angle

woro tried to stabilize the system.

Time constants of the

input filter c¢ircuit vhich are vory amall havé boen neglectod
to sinplify the calculations. The valucs of KA’ D and o

are the sanc for all the oets,; namely

K

Tho clgen values of tho systen matrix for difforont

A = Lo , D= 4 4, & = 0.06

valuca of Kl-and K, arc given below.

] F=02K=5 |K =1L K=5 |K=5K=5
1. =174 + § 308 “1745 ¢ § T390 -1742 + § 390
2. =174 - 3 388 “1745 = 3 389  ~1742 - 3 390
3. =5.72¢ 3330  ~=3.57 % 351  -5.41¢ 3 331
b =5.72 = § 330 «3.57 = § 351 =5.41 = 3 331
5. =28.96 | =27.88 -28.08
6+  9.43 + 3 22.65 49.70 ¢ § 22.97 +49.89 + 3 22.78
7.  9.43 =} 22.65 29,70 = } 22,97 9.89 - 3 22.78
8.  ~23.03 . -23.03 ~25.03
9¢  =2.84 + J 1130  ~2.77 + 3 11.37 =2.80 + 3 11.35
10, ~2.84 - J 11.30 - =2.77 = 3§ 11.37 ~2.80 = J 11.35
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11, -2.137 -2.137 ~2.137
12, -1.676 ~1.681 ~1.699
13. ~0.714 -0.7116 ~0.9988
14, =0.0%00 ~0.2009 =0.7901
15. -0.0306 ~0.0303 ~0.0304
"The réeulfs indicate that the system is still

unatable,

For different values of K, and Ka tried, the
system is unstable. The values of Ké was not wvaried.
Posglbly the system can be made stable if the value of
gain Ké ise varied from O to 5. 8till higher derivatives of 08
could alsc be tried to achieve stability [41].
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PRECESION E4
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(A) MATRIX (SUBROUTINE MAX)

|
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\DIX-1 *EIGENVALUE! BY QR TRANSFORM METHOD#
4 t 1]

EIGENVALUES BY QR TRANSFORM METHOD
DIMENSION Al{15915)s8(15315)9C1{15)9C(15915)9D(15915)19E(15915)
DIMENSION Q(15915)9Q1(15510)9Q2(15915)9Z2{(15915)9sH1(15+15)
DIMENSION HZ2(15,1%)

COMMON MaN9sJL19E] ot 9 IsJsN1sAsB»ClaCoDrErsQeQ1rsQ29Z9N39NGsH1oH29Y2sN5
READSO s NsEL19MN]1

PUNCH 50sNsElsMN1
IFIMN1)22920920 .

READSLs ({AlTI o J) g Jum=loli)el=1sN)
PUNCH 51s((A{lsJ)leJmleN)yIsleN)
GOTO23

READS4s {(A{I 9sJ)yu=mlsli)sl=19sN)
PUNCH 543 ((A(ls j)sJ=1lsN)sI=lsN)
DO 52 I=1sN

DO 52 J=slsN

B(lyJ)m0e0

DO 533 J=1eN

B{lsl)=1a0

FORMAT(129sF1l0e7,12)

FORMAT (5F14.6) '

MeN -

N3=M~-1

NG=M~2

DO 3 J=1lyN3

Cl(J)=ABSF{A{M» ))

CALL MAX

CALL INTCH

CALL MULT(ASCrE NsNsN)

CALL MULT(CIEsZ NoN2M)

CALL MATEQ(ZsEsnNsN)

CALL TMATRX

CALL MULT(EsDsZ,4NsNN)

CALL MATLQ(ZHEsNeN)

DO & J=1.N4&
DiM=laJ)s{=1la)#¥p{M=10J)

CALL MULT(DsEsZyNaNsii)

CALL MATEQU(ZsEsNsi )

MsMe=l

CALL MATEQ(EsAsNsi.)

IF(2-~M) 25959

CONT INUE

FORMAT (5E164.8)

K=

KakK+]l

CALL QRTRAN ‘

CALL MULT{(QoEsZyNoNii)

CALL MATEQ{ZsEsnNsN)

CALL TRNSPZ(QsQ} sl sN)
IF(K=1)11911912

CALL MULT(Q1sB2n2sNstaN)
IF{K=1)14914415

CALL MULT(Q2sQ1l4sZsNsNsN)

CAiLLL. MATEQ(ZsQ2,NsN)

N2s=jj=~1

IF(K=N2)14»1691p

CALL MULTIEsQ22Z9NelNaN)

CALL MATEQ{(ZsEsNsN)

[l WU | Fal B i ol g
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IF(Y2=-E1)1T7s17931
IF(I-N)Y1ITe10,17
IF{N1=NS)T5975972
IFIN1=2)T76sT76973

CALL MATEQ(H1»AyNisN1}
NaN1

GOTLZ21
IFINS=2)T76976978

CALL MATEQ(HZsANFsNS)
N=N5

GoTO21

STOP

END

SUBROUTINE CHECk
DIMENSION A(15915)9B{15915)9C1(15)9C(15915)90(15915)9E(15915)
DIMCNSION Q(15915)9Q1(15915)9W2(15915)92(15915)9H1{15915)
DIMENSION H2(15,15)
COMMON MoNoJLoE1sKsIoJsNLsAsBsCleCoDoErsQrQLrUZsZIN3INGsHLsHZsY29NS
I=d :
I I=l+l
IF{1~N) 24392514251
b I3=]1+1
Yi=c(13s1)
Y2=ABSF (Y1)
IF(Y2~E1)242+2429240
' DO 252 K=1lel
DO 252 L=1l»sl
' HI(KL)®E(KsL)
Ni=I+1 '
DO 244 KaN1lsN
DO 244 L=N1lsN
Kl=K=N1+1
Ll=stL-Nl+.
b H2UR1eL1l)=E(KoL)
Nl=Nl1l-1
N5=aN=N1 .
PUNCH 300
} FORMAT(10Xs9HMATRIX H1)
PUNCH250» ({H1(I,J)eJ=1sN1)slI=19N1)
PUNCH 303
v FORMAT (10X 9s9HMATRIX H2)
PUNCH250 s { (H2(14J)9Jm1sN5)esl=1eN5)
} FORMAT(5F1648)
., CONTINUE
RETURN
END

SUBROUTINE TMATRX

DIMENSION A(15915)9B(15915)9C1(15)9C{15s15)9D(15915)9E(15915)

DIMENSION Q{159315)9Q1(15515)9Q2(15915)9Z(15+15)9H1{15»15)

DIMENSION H2(15,15)

COMMON MoNsJLeE1oKoIoJoNL2A»BsCloCsDIEsQsQLsQGLrZIN3 NG sHLIsHZ29 Y2 NS
b DO 161 I=1sN

DO 161 J=1lsN

D(IsJ)=Bllsd)

DO 162 Je=lsN4

X6=ABSFIE(MsM=1))
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163
162

201
200

100

102
101

103

104

120
121

122

IF(X6~0¢000001)16:1+1629163
DiM=1lsJ)al=1la)%r(} 9J) /E{My.i=1)

CONTINUE »
RETURN .
END .

SUBROUTINE QRTRAN

DIMCNSION A(15915?OB(15:15)!Cl(153§C(l5$15)$0(l5515!95(15$15)
DIMENSION Q{15915)+QL(15+15)9Q2(15915)9Z{(15915)9H1(15+15)
DIMENSION H2(15,15)

COMMON MoNoJIsE1roKeloJaN1sAsBeCleCoDrEsQoQLloGi2rZoN3eNGsHI»HZsY29NS
DO 201 I=1lsN

DO 201 J=1sN

GllsJ)=BllsJ)

J=K

G3={1a)/SARTFIE(JJIFE(I s JIH+EII+L1 o JIHE(J+19J))

Gl=E({JsJ)#G3

G2=E(J+19sJ) #G3

Q(JsJ) =Gl

WlJ+1leJ+1)eGl

GlJ+leJdini{=1l,)%G2

UlJed+l) G2

RETURN

END

SUBROUTINE MAX

DIMENSION A(15915)98(u5+15)9C1(15)9C(13s15)s0(15915)19E(15515)
DIMENSION Q(15915)»Q7(15915)5Q2(15915)92(15+15)sH1(15e15)
DIMENSION H2(15,15)

COMMON MaNsJ1sEJsKoIrJasNLsAsBrClesCoDrErsQrQLlsQ29Z9N39N4sHLIIHZsY24N5
X=C1(1)

DO 101 J=1ysN4

IF{X-C1{U+1))10251029101

X=C.(J+1)

CONTINUVE

J=0

Jud+l

IF{X~C1(J))1049104,103

Jl=Jd

Cl(Jly=sX

RETURN

ENOD

SUBROUTINE INTCH

DIMENSION A(15’153OB‘15015)!Cl(l5)9C(15,15)10(15’15)9E(15’15)
DIMENSION Q€15915)9Q1(15915)9Q20(15915)92015+15)9sH1(15915)
DIMENSION H2{15,1%)

COMMON M’NvdlvElnl’leoNl9AvboC19CvDsEanQloQZ,Z:N3!N4DH19H21720N5
DO 121 I=1sN

00 121 JU=lHN

Cllad)=8(1IsJ)

IlsM~1

12=J1

C(IlsI1)=040

ClI2+12)=040

CllI2511)=1.0

Clllel2)=140

RETURN

END
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42
41

11

14

~ W

SUBROUTINE MULT(AsBsCoNsMyL)
DIMENSION A{15s15}19B(15+15)9C(15515)
00411=1»N

DOGiJ=lsl

SUM=0,

DO42K=19M

SUMsSUM+A (1K) *¥8(KsJ)

C{IsJ)=5SUM

RETURN

END

SUBROUTINE MATEQ{AsBaMsN)
DIMENSION A(15915)+8(15515)
DO 11 I=1sM

00 11 J=1sN

BllsJ)mA(lsd)

RETURN

END

SUBROUTINE TRNSPZ(A»DsMeN)
DIMENSION A(15915)98(15915)
DO 14 I=1lsM

DO 14 J=1»N

BtJsI)=Al1lsJ)

RETURN

END

SOLUTION OF QUADR/ TIC EQUATION
READ 2+A119A12972:9A22
FORMAT{4E1648)
X={Qa5)#(A11+A22)
Y1=({=0425)%{A11~Ar 2)%(A11~A22)=A12%A21
IFIY1)59494
Y=SQRTF{Y1l)

GOTO6

Yli=-Y1

YaSQRTF(Y1l)

Rl=X+Y

R2=X=~Y

30 o0

PUNCH 3sR192

PUNCH 39R2+2

GOTO7

PUNCH 3s9X»Y

Yz=Y

PUNCH 33 X»Y
FORMAT{Fl448sF1648)
GOTOol

END
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C

21

22

e2
24

23
26
27

EIGINVALUES 3Y QR TRANSFORM METHOD
DIMENSIONA(LIS»15sRRULS)IsRICLSI s IANACLS ) sPRREZ) PPRILE)
REAU 21sNslA

FOR4AT(215)

READ 22+¢({A(IoJ)edulsN)rla sN)

PRINT 22+ (¢ALIs ) 0JdmloN)ela]l N}
FCRMAT(5E1648)

CALL HSBGI(NsAsIA)

PRINT 23

PORAAT CIUXIMATRIX A [N HESSENBERG FORM)
PRINT 26U (AlLsg)adnlslN)elaleN)
FORMAT(5E1648)

CALL ATEIGI(NsASRRIRIsIANASIA)

PRINT 25

FORMAT LIUX»EIGENVALVED OF A MATRIX)
PRINT 26

FORMATIIUXsRRe20X9RI)

PRINT 279(RR{IDRICIY2I=1 9N}
FORMAT(2E16,.,8)

END
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