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A rovier of the existing methods for analysing 

the dynamic and transient stability of pouor systems has 

been made. The mathematical models of the various compo-» 

nentn of the system required for analysis are outlined. 

The dynatiicdynamic stability of Bhakra-Nangal fertilizer 

factory system vrhon it is run isolated from the system 

using state apace method is analysed. Field observation 

indicated that the cystca is dynamical unstable and 

is also confirmed from the analysis presented here. 

To stabilize the system food back signalsin the AVR 

based on first and eocond derivatives of rotor angle are 

tried and their results presented. Higher order derivua 

tivoc of rotor angle are suggested. 
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All the quantities are o zprosaed in per unit 

on a common bane unloac other units are given. 

od, c q terminal voltages on direct and quadrature 
aaoa of machine 

ot, Vt.magnitude of terminal voltage of machine 
direct and quadrature axis currents on machine 

B 	 encitation voltage or open circuit voltage of 

machine 
0 fdaY0d9Oka internal flux linkages of synchronous machine 

Sq#Okg 	bolds d-r is armatures c1» .a au►ortisseurt 
quaxia zirmctturo and q1.5iD atnortissour tAnding 
rotor circuit currents of synchronous machine 

2aW -p fd' coupling and self reactances of synchronous machine 

`a i' 1kd' 
a qPI 
x 	armature resistance  of synchronous machine 
r rdta kd,~; kq rotor circuit resistances o.f synchronous machine e 
110 	rated angular frequency, electrical. radians per 

socond a 2if 

w 	instantaneous angular frequency of machine rotor 
v -pw 

n`M w 	per unit apood deviation of machine rotor 
Q 

b 	rotor angle of machine in electrical radians 
notuork terminal  curr+ is ozpreased with roapoct 
to nettiork roforenoo axes 



eD, eq 	notrrork terminal voltages expressed vith 
roopo+ct to notrork reference arcs 
roa3 component of a nettrork self-or mutual 
admittance 

bi j 	imaginary component of a notvork self or 
mutual admittance 

Xd  direct aris synchronous reactance 
xq  quadraturo aria anchronoua reactance 

direct a Lis transient reactance 
direct sins subtroneiont reactance 

X1 quadrature axis subtran iont reactance 
Teo  direct axis open circuit transient time 

constant S 
T"o  direct azic open circuit s ubtranoient time 

constant S 
quadrature axis open circuit eubtransi ent time 
constant s 

TD 	dnnpor vinding time constant 
a 	inertia constant Ifl7a/X 
M 	intrtia constant 
Ti 	initial torque input to rotor 
T9 

 
air gap torque of synchronous machine 

Tu 	armature time constant 
Tm  2I 	inertia time constant 
Kd.D 	damping coefficient 
g, of d/dt 	differential. operators 
1 	incremental opert tor 
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CHAPTER I 

REVIEV1 OF METHODS APPLIED TO POWER SYST1 4 STABILITY 

1. INTRODUCTION 

Vith the growth of power systems to their present 

size with large capacity generators and long distance 

transmission lines, stability studies have become an 

essential part of power system planning. As transmission 

distances are'extonded, load centres tend to be widely 

separate and partially supplied b remote generation 

with large angular displacements between remote genera-

tore and those near load centres. The shift in load 

between generators is a nonlinear function of the diff -  

€rrence. in rotor angles, and above a certain angle diff-

erence. the incremental load shift due to incremental 

angle change .reverses, and the forces which tended to 
reduce speed differences become forces tending to 

increase speed differences, leading to lose of ayfnchro~-
nicr phenomena. Power system etbbility is primarily 
concerned with variations in speed, rotor positions and 

generator loads. One of the aspects of stability study 

is to determine the stability regions and to improve these 

by suitable means. 

cocot of Stbty  

A system is defined to be stable when 

subjected to bounded disturbance it produces a bounded 
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response. 'Bounded' means 'of less than some finite 

magnitude for all finite intervals of time'. Clearly if 

a system is subjected to an unbounded disturbance and 
produces an unbounded responses nothing can be said about 

its stability. But if it is subjected to a bounded 

disturbance and produces an unbounded response, it is 
by definition unstable. 

In the absence of input excitation any time 

invariant physical system can be represented mathemati-

cally as a not of Gimultctheoue differential equations 
of the foam 

x{ t) 	f(X) 	 (1.1) 

where X represents the system state variable vector. The 

function f(X) may be linear or nonlinear, 

In physically  sically realizable, linear, time invariant 

systems, there is only one equilibrium otato, which may 
be made to be origin of the state space coordinate 

system. If this equilibrium state is stable, the entire 

state space represents stable region of system. response. 

It may or may not be true in the case of nonlinear systems, 

i.e., a nonlinear system may have both stable and 

unstable equilibrium states and both stable and unstable 

rogiont of response. 

If the System of equations (1.1) is perturbed 

slightly from its equilibrium state Xe  and all subsequent 

notions remain in a correspondingly small neighbourhood. 
of the equilibrium state, then the system is said to be 



stable. tiathematically the definition can be stated as: 

The response of the system of equations (1.1) 
in stable if, for any given arbitrary small real positive 
number 6 , there can be found another ,  positive number 
b(G) such that if 

0 	X(o) < b 
then the system solutions are defined for all time by 
the relation 

0 \< X(t) 	e 

Within the n-dimensional state space, the region 
5(€) in said to bo stable if for any S(s) , a transient 
starting in S(b)_ does not leave S(6) as ohorm in Figure 
ll. It the system response is stable as defined above 
and, in addition if every notion originating sufficiently 
near Xe  converges to Xa  as time approaches infinity, 
then the system is said to be asymptotically stable. 
These concepts are illustrated in Figure Li. 

2. STEJU)Y STATE D tiIA VIIC MD TRfNSIEiT STABILITY 

In poor©r system stability studies, the terms 
steady state, dynamic and transient stability are v ido1,y 
used to distinguish botrr©on three binds of studios. 

Str adv State Stability (1] is the stability of a 
system under conditions of gradual or relatively Oslo r 
changes in load. The load is assumed to be applied at 
a rate r:hich is slov then compared eLther t°tith the 
natural frequency of oscillation of major parts of the 
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UNSTABLE 

SYMPTOTICALLY 
STABLE 

X o  _ REPRESENTS THE INITIAL STATE 

Xe  _ REPRESENTS- THE EQUILIBRIUM STATE 

FIG.1.1 _ DEFINITION OF STABILITY 



oyatom or vil..tli the rata of change of t .olc flux in the 

rotating aachino in rooponao to Ch go in 3.uading. Za 
otcady otato stability it la aooutied that the control, of 

ozcit atlon is very alorr and ouch cts to correct the vole 

ch go after oach a1i load change hen occurred 
An the effect of thin Ia no giblo boccueo of oaauuod 

aloe roaponaoo it is a atability limit for an Infiuitoiznal 
chango vltb conotant fiold current. 

1' -c Stability . If the change in oucitation in assumed 

to talto placo rritb or inodlato1y $oliorLnL the chunCo 

In loads tho stability limit under ouch conditions 2s 
to mod an dynamic otobility. The effect of volthgo rogtla 

toro and covcmera to iuportant in dyncxiic otabil ty otudioo 

Dynamic stability onalyoio is concentrated on the problczo 
associatod t th undampod or poorly doopod occillation a 

of anall anplltudo. If the ocolllntiono moulting from 
any initial change diuiuioh nth t ine3 the oyatcu is 
aaid to by dynamically stable. If, on the other hand, 

the oaciflationo Increase vitth ti iov the ayntcin is 
dy.ornic,a . r unstable. 

Oac lationo tray occur boi rocn ono L~.E' 2c no or 
Plant and the root of the a otcn or botvoon large nachino 

groupa. Spontaneous occillationo are initiated bb minor 
dioturboncoa ouch as variationsin load inherent in 

nom1 operation. Duo to the offoct of. uonlinooritiao 

Ouch oaciliationo may be United at some nctgnitude 
short of loco of synchroniom cud ayot 'break up. 
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The only effective way to deal with spontaneous 000illa-

tions is to alter the inherent system characteristics 
which cause them. 

Dynamic stability studies cover real time inter» 
vale, usually 5 to 10. aeoouds and occasionally upto 30 
seconds. Spontaneous oscillations do not initially involve 
nonlinear behaviour in any way, and therefore linearized 
mathonaticalT models are used to study the problem. 

Tra , cent Stability  analysis is primarily concerned with 
large and sudden disturbances such as they occur with the 
effects of transmission line faults on generator eynohrono 
$sm or sudden changes in load. During a faults electrical 
,power from nearby generators is reduced drastically# 
while power from machines somewhat removed.from the fault 
may be scarcely changed. The resultant differences in aocelo- 
ration produce speed differences over the time inter 
val, of the fault, and it is important to clear the 
fault quickly to limit these speed differences and 
the associated changes in angle differences. Clearing 
the fault removes one or more transmission lines from 
service and at least temporarily weakens the system. 
This change in transmission system also implies that 
the generator angle differences which a .ated prior 
to the fault no longer represent equilibrium conditions 
If speed differences and accumulated angle differences. 
at the time of fault clearing are sufficiently "bounded 
and if transfer impedances between generators subsequent 



to the fault clearing are sufficiently lots, the accolora-
tod machines viiil pick up load due to their advanced 
angular positions, slow dori and eventually a new syn-
chronous equilibrium will be established. Loss of synch-
ronis n if it occurs is usually evident within dine second 
for the first wring stability, and within ten seconds 
for mu .ti siring stability. Therefore, transient stability 
studies are limited to short time intervals. They 
are most often used to determine the stability of a single 
unit or plant during the initial period of high stress 
immediately following a nearby fault. Such studies may 
require the representation of a large system. The effects 
of volto-Se regulators and governors are usually limited 
and often neglected for generators remote from the 
fault. 

3. R VIE J 
Power system stability has been the subject of 

intensive study in the US and Canada since 1920 when the 
first large hydro,electrlc installations were being developed 
Long Lines and relatively slow circuit breakers and 
relays made the system stability a 'serious problem. 
The nonlinear behaviour of the alternator was known 
for a long time. It led to the development of two axis 
theory by Park in 1929. Since then many investigators 
have shown that voltage regulators can improve the 
alternator stability in many ern. Ov. ry (2) and Kimbar k 
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have emphamicod tho importance of automatic voltage 
rogulatoro in iuproving stability limit. 

Mothodo suited to stability analysis are: 
1. Dynamic stability (a) Frequency response methods 

(b) State space methods 
2. Transient stability (a) Point by point solution of 

differential equations 

(b) Liapunov's second method. 

Dynamic Stabi1i L 

The classical approach to the study of dynamic 
stability problems has been through frequency response 
iiothodo. It rrao Concordia [ h] who discucoed the subject 
at length. Starting from the basic machine equations, 
he applied the Routh's criterion to the equation of 
motion for ascertaining the stability of a system 
under the effect of voltage regulators and secondly, to 
obtain the steady state limit for a- synchronous machine 
connected through a tie line to an infinite bus and also 
to the case of to machines pith a voltage roguiator responsive 
to the common bus voltage magnitude, by varying 
the regulator amplification factor, machine field time 
conotant,a regulator and exciter time constant. The reoulto 
obtained by Concordia ohonod that nith properly dosigued 
voltage regulator, the ateady state limit can be increased 
to as such as 1.6 times its value rrithout regulator 
and that the system remains stable for a value of the 



load angler 6 as high as 31,E°. 

Messerle and Bruck 153 in. 1956 studied the 
effect of voltage and angle regulation on the steady 
eta to stability limit of a single machine connected 
to an infinite bus and extended the work to aliorr 
for the control of the prime mover torque by means of 
governors. For analysis, the authors represented oynch-
r noun machine with Park's equations to ddfino transfer 
function for the machine. The transfer function so obtained 
was used together with the Ny uist criterion to give the 
results in the form of stability contour diag'ams. The 
advantage of this approach is that the results are obtained 
in a general form and only the axis need to be shifted 
for finding the effect of changing controller gains.Thoy 
concluded that the gain margin increases considerably by 
using a stabilizer, while increase in controller gain 
reduces the gain margin. 

The authors also claimed that instability of 
the alternator with feedback usually shows up at the 
dynamic limit in the form of self excited oscillations 
in feedback systems as opposed to the steady state case 
where the inability occurs with slow falling out of 
synchronism with continuously increasing load angle. 

Alderpd and Shackshaft (61 applied the 
N quist criterion for the predetermination of synchronous 
machine stability with and without voltage regulator 
•and connected to an infinite bus treating it as a closed 

S 



loop system. The effect of main regulator loop parameters 
such as gain, Exciter and main field time constant etc. 
on the stability of the systemwere examined and curves 
obt .ncd to that effect. They- concluded that tbilo the 
steady state limit increased considerably by the use of 
voltage regulator, the transient stability limit 
remained practically unaffected. They also considered 
the saturation type of non linearity and found that 
its effect uaa to make the system more stable at higher 
gains resulting in reduced self excited oscillation. 

Jacovides and Adkins 117) made a detailed study 
of the effects of voltage regulator on the stability 
limit. The stability was analysed by the Nyquist method. 
They consideroo .the different types of voltage regulators 
and concluded that 1 ith increased voltage regulator gains 
the system rrae stable having operation in the dynamic 
zone, but after a certain value, further increase in the 
gain made the system unstable at an angle 6 lose than 900 . 

They also noted that tho effect of resistance and damper 
winding was to make the system more stable. 

Stapleson (81 applied the root locus technique 
to study the stability and dynamic response of a synchronous 
machine by plotting a family of loci which indicated 
on one diagram the damping tap tor and oscillation 
frequency of each term in the time response for 
all values of trio parameters such as regulator gain and 
exciter time constant. Though the system equations wore 
based on the small perturbation theory and valid one 
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near tho chosen operating point, the slow variations of 
poles and zeros with the operating conditions led them 
to conclude that the results deduced fora specific 
operating point would be valid over a considerable range. 

Swart mnd DeMello C 9] implemented a digital computer 
program for plotting the Nyquist diagram and compute t he 
dynamic stability, limit for a single machine connected 
to an infinite bus through a transmission line. They 
evaluated the offocte of generator„ excitation system 
and tr4ncmiosion line parameters on the dynamic stability 
limit. They found that the increase in machine inertia 
decreases the dynamic stability limit in contrast to 
the opposite effect on transient stability in the case 
studied. They also found that in the overexcited region 
poorly damped oscillations may be encountered at load 
levels considerably lower than the absolute stability 
limit. 

Recently, the approach to the study of the 
stability problems has boon towards the utilization of 
the state space techniques for describing the system. 
behaviour. the state of a system changes with respect 
to come independent variable which is. usually time. 
State variables are those sot of variables (a minimum 
set) which describe, the present state of the system, 
and which also allow one to use the past history and the 
present state to determine the future state. The variables 
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in such a set are called state variables. The state 

variables in a particular system do not form a unique 

set , but rather that several arbitrarily chosen sets 

can be found. The state variables are usually chosen 

based on the following considerations: 

(i) 	the ability to measure all the states. 

(.i) 	the ability to specify a more meaningful perfor- 

Nance index. 

It a set of state variables is properly chosen, it 

contains sufficient information to describe the transient 

behaviour of the linear system bed studied. 

Laughton 1101 investigated the dynamic stability 

using state space approach. ie starts with the description 

of the performance of a single machine without excitation 

and prime mover control by general nonlinear equations 

and linearizes them using small perturbation technique. 

Relations between system variables are expressed by 

operating matrix, and using the matrix reduction method, 

all variables which are not of interest are eliminated 

to yield relations of the form 

X = AX + Du 

Y = BX 
where A, B and Dare matrices of constant coefficients, 

X is the state vector, Y is the output vector. The paper 

extends the representation to include the voltage regulator 

and applies eigenvalue analysis  to determine the stability 

limits. Finally, he has also considered the case of 

dynamic stability in multimachine system. 

11 



Undrill (113 has also otudied the dynamic stability 
of a multicnachino system including the effects of 
voltage regulators and governors employing the eigon values 
analysis. The state variables chosen are the flux linkagos of 
the direct and quadrature axis armature and rotor circuits. 

Trenniont stability analysis is undertaken to do-
termine the response of a pot or system to large and 
,sudden disturbances. Obtaining transient response of 
a poorer system essentially involves solution of 
non linear and linear equations. 

The system of equations describing the pov►er 
system may be divided into three categories 

(1) - 	Differential equations of the form 
D(X,V,1) X a 
:her'e 

X is the vector of state variables 
V is the vector of bus voltages 
I is the vector of bus currents. 

These are the equations which describe the time 
dependence of the prime movers/. 

(2) Non-linoar algebraic equations of the form 
Tl (x, v'r  I) 0 0 
At each generator there is a pair of equations  
which connect the flux linkages vector tith the 
terminal voltage. 

12 
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( ) 	Linear algebraic equations of the form 

L(I,V) = 0 

Much of the effort involved in transient eta-

bility analysis is in developing programs for the solu-► 

tion of above equations. 

Rtes []2l studied the transient stability of 

multimachino system allowing for the representation of 

saliency, variable flux and damping and the effects of 
voltage regulators and governors on the analogue as v:ell 

as digital computer. He concluded that the transient 
stability studies with normal notrork analyzer €s pp 

tone give substantially correct results for system 

predominantly composed of round rotor machines equipped 

Ctith excitation systems of moderate response. 

Brown, Happe  Person and Young [131 developed 

matrix computational methods using impedance matrix for 

solving power system transient stability problems ru .th. 

the inclusion of transient saliency, variable imped tnce 

type of load, , voltage regulators and governors. They 

also reported good convergence characteristics for 

the impedance matrix method and a significant increase 

in speed of solution an compared to the nodal iterative 

method. 

01ive (14) developed a program vuhieh can be 
applied for the calculation of transient stability of 

multi-machine systems (upto 100 machines) . He represented 



the synchronous machine on the d-r,2nd q,--muffs including 
saturation. Governors and voltage regulators can also 
be represented to a close approximatoion. Non-►lint r 
loads can also be represented. Iterative procedure has 
been outlined for the solution of the network, synchro-
nous machine equations and non-linear loads. According 
to the author, the iterative procedure is remarkably 
effective and has not failed even once when the stability 
was lost. 

Dineloy and Kennedy [151 investigated the effect 
of using an operating signal derived from rotor acceleration 
for the control of input power as opposed to the convonr- 
tional velocity feedback on the transient stability of 
the power system. A governor actuated from the compound 
of velocity and acceleration aiglial is described and 
its effect on the traneiat stability is studied. he 
effect on stability of varying Como of the parameters 
of the system, the machine and Governor are described. 
The paper concludes with a brief study of the oftocta 
of various governors on the transient stability of a 
synchronous generator connected to a large system by 
a single faulted transmission 11ne that is fitted with 
auto-roc losing circuit breakers. 

Talukdar C 161 investigated the multistep inteA-
gration algorithms suitable for transient stability 
studies by combining conventional# implicit multistep 
formulae with new iterative procedures. Ho concluded 
that multistep algorithms require significantly loss  



computing time. 

Fulior j Hirsch and Iarabie 1171 have developed 
a net transient stability algorithm which employs auto-
matic variable stop size, automatic variable order of 

integration and an implicit integration algorithm. The 

differential equations representing the generations and 
algebraic equati©nn representing the not cork are solved 
simultaneously thus minisising the interface error due 
to the time skev in sequential solution of the differen-
tial oquat one and the algebraic equations in each fined 
small time step. The scheme outlined in the paper is 
significantly factor and advantageous for long time 
.spans. 

State apace methods have been applied in recent 

years to study the transient stability problems. The 

second method of Liapunov is based on the concept of 

energy and th© relation of stored energy and system 

stability. Fundamental to the Liapunov's method is the 
idea that for a stable system the stored energy rill 

decay vtth time. Since the system is characterized by 

the state variables which represent the energy state of 

the system, the stability can be determined by examining 
a function of the state variables vtithout an 'explicit 
solution of the system differential equations. The 

ebored energy in a homogeneous (undriren) stable linear 

system can be shovn to be a non"increasing function 

of time. If it can be proved that a positive definite 
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eneryliko function of system state, generally 
referred to as Liapanov function or a V functions  is a 
monotonically decreasing time function, that system is 
gssuredly stables, vhother linear or nonlinear. Mathemati-
ca: ,y, a system is asymptotically stable in some region 
of the state space if, in that region 

V(X) > 0 	 for X 	Xe  

VX)<0 
	 for X ;/ xe  

V(x) = 0 	 forX / Xe  

V(s) • co 	 forIX $1 # +D 

uhero Xo  is the equilibrium state 

and ti X `t 	(XTX) i/a  is the Euclidean ' length of the 
vector from the origin. 

Tho ]Aapunov function may be thought of as a 
measure of the distance from the equilibrium state. The 
chief merit of the Liapunov'e second method lies in the 
fact that the system equat±ons need not be solved for 
determining the regions of stability. How ever, finding 
the desired V function is not in general a simple task 
and failuro to find V does not indicate instability, but 
if atleaet one V function can be found, the system is 
proved stable. Much of the effort has, therefore been 
directed tot arda finding V functions . GLeot (18],  E1 
Abiad and Nagappan t 191 and many others t2O-251 have 
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succcscfu .ly applied Liapunov's second mothod to analyoe 

p3vres systen st:abllity problems. 

4' STAT1 E 1T OF i HE PROBLEM 

The probleu studied is stated briefly as below: 

Three units of Bhakra poswr house, 100 MVA each 
are supplying po rer to ikinga1. fertilize factory whose 
load is 180 UVA . The electrolysis plant constitutes 
the major load. In addition, there are a number of 
synchronous motors whose aggregate capacity is 19 MW. 
The motors are not equipped with voltage regulators. 
It is I norm. that above system is dynamically unstable 
when it is operated isolated from the rest of the 
system. Therefore methods to stabilize such a system 
are required to be suggested 
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CRAPTER II 
MATH TICAL MODELLING OF POWER S!ST 4 COMPONENTS 

1. INTRODUCTION 

For analysing a complex physical system on 
a digital computers, a mathematical model which charac-
torizes the system behaviour is Pseential. A set of 
equations which accurately relate the input and output 
quantities constitutes a mathematical model. Topoj;ogically 
mathematical model may be represented by a flow graph 
or a block diagram. 

A continuous physical system such as a power 
system is described in terms of physical leas governing 
its behaviour by decomposing it intoa schematic repro - 
sontation of individual elements, say as in Fig. (2.1) 
The term continuous is used to indicate that the system 
variables (angular velocity,voltage etc) are functions 
of a continuous independent variable, time. The applica-
tion of Kirchho f f's lays to lumped parameter circuits 
and Netitons second lacy of motion to the dynamical 
part of the system give a set of equations which cons. 
titute a mathematical model of the porror system. 

A mathematical model may be formulated in 
different formats. The first format is the classical 
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FIG. 2.2 - SCHEMATIC LAYOUT OF WINDINGS OF A 
SYNCHRONOUS MACHINE 



formulation in which a mathematical model consists of 

a set of differential equations. The second format is 

topologically oriented in that it represents a system 

by a block diagram. This is the classical frequency 

domain representation. The vector matrix reprosentaa 

tion is the third format which has been rridely employed 

in modern system analysis. 

The purpose of this chapter is to revier and 

examine the various mathematical descriptions of the 

salient pole .synchronous machines. and other components 

of the control and poorer system such as voltage 

regulators hydraulic turbine and speed governing system 

transmission lines and loads. 

2. SYNCHRONOUS i4J CHINES 

The synchronous machine constitutes an important 

part of the poser system as the transient and dynamic 
behaviour of the system is largely determined by the 

machine characteristics and its controls. For multimachine 
dynamic analysis on a digital computer#  it is desirable 

that the mathematical model be such that 

(i) knorm mathematical techniques may be applied 

for the analysis and optimization of the system. 

(ii) the model either uses the data supplied by the 
machine manufacturers or the model may be such. 

that its significant parameters maybe easily 

determined by toots or calculated. 

10 



All the mathematical models in use in varying, 
degrees of detail are derived from the Park's equations 
of the machine having a field vrinding and one damper 

circuit in each axis as shorn in Fig. 2.2 by applying 
the d-q,-O transformation to the equations of the machine 
in phase variables. The equations of thin transformation 

are (26] 

Kd  = 	(KacosQ+Kb  cos (9 -120) '* Kccoss (92i40)] (2.1) 

K = - t Ka  sin 9 + Kb  sin (0 x-120) + Kein(9 +]20) ] 
(2.a) 

Ko  M f r
r 	xL = c c 	 (2.3)  3  

The symbol K is replaced by is 0 or e to give the 
currents  flux linkage or voltage transform respectively. 
This transformation (equation 1 and 2) resolves the 
stator quantities into components along the direct and 
quadrature axes respectively. Equation 3 relates to 
zero sequence effects in the generator. 

When Park's transformation is applied to the 
equations of the machine in phase variables, the follow 
ing equations are obtained (26] 

Direct a=is flux linkages 

'o fd ' Z ffdi fd * E fkdikd -"afdtd 	 (2.L4)  

'akd kd `' td 	 (2.5) 

20 

i 
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01zd ° 3fL-d: ̀  'd + Ith2bd -'Ialtd d 
	 (2.6)  

Quadrctturo rnio f1u t li.nhntjoo , 

~' 	° ,,ci q 

D rcct zip► voltatjoc 

2d '  

(2.7) 

(2.3) 

(a.9) 

0d 	 0 

r , 	4. c "t rhd 	.d 

(udrcttwo elLta vol twjco 

(2.11) 

Tho Ocutttivno are in pciY unit #dorm. In per unit Dogs 
aocb volt o, flux, currant and 	oanco Ia czprcood  
0.0 the ratio of ito actual value to n ocloc ed baao 
voluo. Ono po .' unit Mold v'oltho C.vco Ono per unit +ate 
c cultvolt,* on the oar cp lino and ono per unit torquo 
in Irtood on rated porror at oynclironoua o}ecd. 

The 'ollov na aoau mpti ono lrnvo baca judo in doriv°i 

the cebovo oquati ono . 

1. Tho c2thtributod tl.ndin of the otator are eonoidorcd 
ao conCait atod rAndint optiaU 2ictri tod 

e 
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2. The mmf produced by each stator and rotor winding 
is sinueoidally distributed in the air gap. 

3. Hysteresis and eddy current losses are neglected. 

14. The sign convention is such that the generator action 

is considered positive and positive field flux is 
that which induces a positive voltage in the rotator 

grindings. 

The follow ag equations are necessary to complete 
the description of the synchronous machine. 

Generator terminal voltage 

o 	ez + e2  

Mechanical equations 
T9 	Od~.q 0q .d 	 (2.15) 

i = Mp26 + T9 + Kdpb + Q T 	 (2.16) 

3. SYNCHRONOUS MACHINE MODELS 

The models of the synchronous machine and the 
simplifications made in formulating them from the basic 

five winding Park's 'equations are indicated., The resulting 
equations are stated in the form which are easily solvable 

by numerical calculation. The models are presented starting 
with the least oompleu and finishing with the detailed one 

The classical synchronous machine model 1 es 

a constant voltage magnitude behind transient reactance. 
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It is the simplest of the machino model. The follordng 
cimplificationo have been mado. 

	

(o) 	Transformer voltages in the stator equations 
are neglected. 

(b) Speed is assumed constant except in the equations 
of motion. 

(c) Damper vindinge are neglected. 

(d) Saturation is neglected. 

	

(o) 	Thin flux linkages are assumed to be constant. 

	

(f) 	Transient saliency is neglected by npprozimating 

aq to z~ . 

The machine equations are 

	

ed 	-or 	X 	id 	0 

r 	i 
 
	Q1 

Ta 	Ogiq + ed id 

Mi = Ti T9 

1281 

Trnaient saliency is taken into account. The field flux 

linkages rer.inin constant and all other simplifying ansubp-

tiono as in case of model 1 still hold. The machine equations 

become 

	

ed 	'r 	Q 	id 	0 

o 	~d 	-r 	iq 	oiq 
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T 	0~ + ed1d 

1'1p2 b a Ti - Tg 

e , is calculated from initial Qonditioris and is anaumod 
constant. 

d 1 [28] 

The field flux linkages are assumed variables, but all other 

assumptions still bold, 

4 

-3-r--- .0 0~,d W of -~~-~n 
dt 	

T' 	4 

sad 	-r 	Eq 	id 	0 

eq 	- d 	-r 	i$ 	o~ 

T9• 	( Ogiq ' °did ]. 

fl p2 	Ti -T9 

(291 

The synchronous machine equations are reprosontod by. 
r Park's voltage equationsreferred to the direct and 

quadrature axes on the machine rotor position. 

poi 	Kl 	od 	K3 	od 	0 
+ 	 O 'd 

poi 	K2 o'J 	K'4 eq 5 

ed  e~  r  

04 	oq 	xa 	r.  

t 



where 
x =  .. SL  

T' 	z' qo q 

x -Z' 
K = q q 

Pt 
qo 

K 
Tdo xd 

K 
do 

fig 	Cq  iq  + od  id  

Mp2b Ti -Tg  
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It is the simplest of the representations in 
which damper windings are included « The main flux 
linkages are assumed variable but the transformer voltages 
in the stator equations are neglected. Saturation is 
ala neglected. The equations are; 



	

pa+ 	 0 q TO 

	

~n 	f — .~.. + ~..~.F .. ..,.~ 

	

4 	Tdo 	Tdo 	T ® 

	

pet? 	0 	 0 

0 

0  o. 

e" 
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do  do 

	

0 	-(Td 	Td"p 	d  $d 
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do  do 
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G+ 	1 
do 
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do do 

all 	 .,r 0 

'ado -Tdo 
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_ -ç 
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r. d ~d 

T Ctiniq +eftid +idig (Xq 	) 
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Spb =Ti - T9  

4. INQR ENTAL MODELS 

The most commonly used models rere derived by 

Concordia (4]1 'Heffron and Philips (30]. Laughton (10] 

and Undrill [111. 

5. EXCITATION SYST1 4S 1311 

After considering various types Of excitation 
systems in use, IEEE Committee has defined four excita-
tion system types to be used in computer representation. 

Typo, 	continuously acting -rebu1ator,  end excitor 
Type 2 rotating rectifier system 

Type 3 static. with terminal potential and current 

supplies 
Type 4 non continuously acting. 

In this chapter only type 1 is discussed. 
Fig. 2.3 shown the significant transfer function,  ti rLch 

arc included for reprosontatton in computer studios. 

The first transfer function is a simple time constant TR  

roprosenting tho regulator input ,a Zorine. TR  is generally 

very small and is considered an zero. The first stunning 

point compares tho reCulatos roferonco riith the output 

of the input filter to determine tho voltage error input 

to the regulator mp ii.fior. The second summing point 

combines voltage error input viith the excitation major 

27 
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FIG. 2.3 _TYPE I EXCITATION SYSTEM REPRASENATION, 
CONTINUOUSLY ACTING REGULATOR AND 
EXCITER 
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damping loop signal. The main regulator transfer function 
is represented as a gain KA and a time constant T. Following 

this , the maximum and minimum limits of the regulator 
are imposed so that large input error signals cannot 
produce t regulator output ihich exceeds practical 

limits. The next summing point subtracts a signal which 
represents the saturation function SE of the exciter 

The resultant is applied to the exciter transfer function 

1 
KE + STE 

The excitation system equations may be rzritten 
in the following general form 

(XI 	(A](x3 + (B](u3 

where 
CA] is the system matrix 

(Xi is the state vector 

BI is the control matrix 
Eu] is the control vector 

For typos excitation system shorn in Fig. 2.3 the 
equations are 

KE¢SE)   0 E AE 0 

I f E SE  
..~ ... 

K 
4 	_.. 	.,.... 	 p 	l6et 

El TF El 
_ 	LSE 

4 	TA TA 
1~ 



whoro C1' , two and LEA are defined in the figure. 

For dynamic stability studies (small pertur-
bation analysis) the saturation function can be nogi-
ected. However, in transient stability studios# because 
of large changes in bB, saturation function fiE which 
represents the saturation in the main exciter cannot 

be regarded as a constant and the above equation 
become nonlinear. The limits V 	and V 	have 

~r-ut 	min 
an important effect on the tratiiout behaviour of the 
machine, and computer representation must be incorporated 

for these limits. ' 

Typical constants for type 1 excitation system 
are as follows: 

r. R Regulator input filter time constant 0.0 to 0.06 
KA Regulator gain 25 to 50 
TA Regulator amplifier time constant 0.06 to 020 

ax V"m l .mum value of VR 1.0 

V Rain 
Minimum value of ' VR i.0 

Xr Regulator stabilizing circuit gain 9.01 to 0.08 
Regulator stabilizing circuit time 
constant 035 to 1.0 
Exciter constant related to ee1f- 
excited field 0.05 

TB Excitor time constant 0.5 
S S turation function (max.) 0.267 
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3 

SE 0.75iutx. 
Saturation function (0.75  man) 	0.074 

6. 	RAULIC TURBINES JND SPEED GOVERNING SYST] JSS 

Turbine speed-governing systems play an important 
role in the behaviour of belated systems which have 
eithe r excess load or generation in significant amounts. 
They also influence damping in dynamic stability studies 
and have some effect on traneisit stability behaviour. 

The representation of hydraulic  turbine and 
speed governing system for power system stability studies 
has been investigated by Undrill and CWoodward 132). Ramoy 
and Skooglund (331 and Young 134] . IEEE Committee report 
1351 has defined basic models for speed governing systems 
and turbines for pot'er system stability studies. The 
model suggested by the Committee for eleotrohydrau .ic 
governor and mechanical governor is the same as the 
dynamic performance of the olectrohydraul c governor 
is necessarily adjusted to be essontially the same 
as that for the mechanical governor in an interconnected 
system. 

The transient characteristics of hydraulic 
turbine are determined by the dynamics of rater florr 
in tho ponotoch. The conversion of flog and 
head by the turbine involves only non-d nanic relation-
ships. The precise models of mater pressure and floe 
in penstock which take into consideration the travelling 
crave phenomena are not usually used for poser system 
stability studios. 



The representation of hydraulic turbine and 

speed governing system for computer simulation is 

shown in Figure 2.4. Neglecting the turbine and penstock 

representation, the governing system equations may be 

written in the following general form 

11] g IA] [Xl + (B] NJ 

For the governing system shovm in. the figure the equation 
are 

po 1M 	 — .:,» 	C  
P 	P 	P 	Tp 

	

0 	0 	S + 0 n) 

pg fb 	6 	0 	~~ 	19fb 	0 
t 

The effect of water column can be represented 

by the differential equation derived by Hovey (32) 
that is 

	

2' _ 	h 
dt 	dt 

Then the equations for the governing system become 

po 

	

.~ T 	..-.~.- 	.~ T 	0 

	

P 	P 	P 
C 

P 
Pe T1 	0 	0 	0 a 0 

gfb r 	0 	` TR 	0 gfb 

ph 
2 0 	o.g. 0.g.  

0 	 TV 
h 0 

"' 

3' 
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SPEED CONTROL MECHANISM 
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FIG. 2.4_MECHANICAL HYDRAULIC SPEED-- GOVERNING 
SYSTEM FOR HYDROTURBINES 



where 
h a per unit head deviation at scrol casing 

H 
g = gate position deviation 
T = water column time constant in seconds 
H = rated head 
'h = speed deviation in per unit 

Tri  * the water column time constant or the crater 
starting time is associated with the acceleration time 
for crater in the penstock between the turbine inlet 
and the forebay and can be calculated from the 
equation 

LV 
TV 	HS 

whore 
L 	length of penstock in feet 
V = velocity of crater in Feet per second. 
H = head in feet 

acceleration due to gravity in feet 

per second per second 

Typical values of the parameters for speed 
governing system for hydro' turbinos are given in Table 1. 

Parameter 	 Typical Value 	Range 
Dashpot time constant TR 	.0 	2.5 - 25.0 
Onto servomotor time 
constant T4 	 0.2 	0.2 - 0.4 
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Pilot value time constant T'p, 	Q.Ol 	0.03 0.05 
Transient speed drop coefficient h 0.3 	0.2 *» 1.0 
Permanent speed droop co©fficient~' 0.0.5 	0.03 - 0.06 

7. NETWORK 

Equations defining the voltage/ current role

tionsbip in a note ork, relating among them the voltages 
and currents at the machine terminals als through the notvork 
impedencos can be vritten doom easily to satisfy Kirchhoffra 
laws. There are two main types of equations, namely, 
mesh current and nodal voltage. The mesh current equations 
can 

 
generally be represented by the matrix equation 

CV] t iz)[13 
Similarly, no ail voltage equations can be represented 

by the matrix equation 

CI] 	ty] [v] 
	

(2.17) 

Nodal voltage oquativnn have distinct advantage 
over the mesh current equations in that the number of 

equations. particularly in a large power system, is 

a]. i ya loss and the solution gives the required voltage 
directly. 

The constant coefficients of (2.17) are the 
Functions of branch impedances. Those are computed 

at the rated frequency rhich introducer error,, since 
the frequency at the different network points is 

generals variable around the rated value. Rowevor, 
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in dynamic stability studied* m ximum frequency variations 
are usually smalll and the simplification is justified. 

8. LOADS t361 

In this section the structural modelling of 
loads as a function of voltage and frequency is conai"e 
dared. It is quite different from the dynamic modelling 
of loads as a function of time. 

Both the active and reactive components of a 
load are important in power system calculations. The 
variations of active load affect directly the generator 
owinga and tie line loadings, wrhile the reactive load 
variations affect the bus voltages and thus indirectly 
the synchronizing power and i 	ant impedances of the 
liner. 

An accurate representation of electric loads 
in a power system is of interest for the purposes of 
more detailed system-behaviour stud es by simulation. 
In dealing vrith the proiblem of load modelling, the major 
difficulty encountered. slates to the nature of system 
loads in general, their v 	ioty and change; compai- 
tion. The exact load characteristics are rarely lions 
for a particular bus bar and time. 

The load at any bus can be represented as a 
function of voltage at that bus, V an the yatom fro» 
quoncy to . The basic load model chosen can be described 
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by tho follouN ng equation 

DP 	 AV 

(2.18) 

Tiara l and a\Q are changes in the active and reactive 

load demand due to changes in voltage and frequency. 

This model results by assuming that the active and reactive 

components of load are differentiable functions of voltage 

magnitude and frequency, and# using Taylors  expansion 

of those functions, by omitting higher order terms. The 

mod01 is thorofore applicable primarily for moderate 

changes in voltage V and frequency co. 

The above equation applies to any load situation 

there the concept of average power applies. For a parti-

ruler, ordinary type of load, the derivatives in the 

equation (2.18) knocn as the characteristic coefficients 

may be found from theoretical considerations or ezperi-
mentally [2] . 

However, in power system load flow and stability 

calculations It is customary to assume that the load. 
at the bus is independent of the voltage at that bus 

and the cysts. frequency. Thus the usual ray of representing 
loads as constant impedencos fits very well into equation 

(2.17) and avoids analytical complications. This ; ad 

representation is only approximate and in practical 

calculations may produce optimistic results#  especially 

in the cases where relatively large voltage variations 



CHAPTER III 

DYNAMIC STABILITY CALCULATIONS 

1. INTRODUCTION 

The dynamic analysis of power system requires 
that the state of the system at any instant be described 
by a vector y in an n-dimensional state space and the 
dynamic response of the system by a set of differential 
equations of linear form 

yJ 	= (A] (yJ 

where (Aj [Al.is the system matrix 

The basic system studied is sho%Ta in Figure 3.1 
which is a reduced model combining all synchronous machines 
at sending and receiving ends into equivalent machines. Thus 
it becomes a two equivalent machine system coupled by a 
short transmission line. The equations are written for 
two machine system and these can be easily extended to 
the n machine case. Where equations are written in the 
symbolic form. The dimensions are given for the nuraachine 
case. The synchronous machine is described by a acct of 
Parks equation. The set of state variables chosen to 
describe the synchronous machine is the flux lint ages of 
the direct and quadrature axis armature and rotor circuits, 
This set of variables has an advantage over a set of 
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current and voltages because it is not necessary to compute 
nevi initial values after each change in system parameters 
because of the 'requirement (Lent's Lazy) that the flux linkages 
in the machine remain constant through any instant(t t+) 

at which such a change occurs. The network is assumed to 

be described by the nodal admittance matrix equation 

III 	(Y) t v] 	 (3.2)  
vhere all non•-synchronous loads are represented by 
constant admittances. The excitation system for the generator 
is assumed to be of type 1, and the prime mover is controlled 

by a conventional daahpot type governor. The differential 

equations for the excitation system and the governing 
system are given in Chapter I. 

2. S711CHRONOUS MACHINE EQUATIONS [261 

Park's equations for the synchronous machine are 

Ofd - X 'fd 	fd + Xfkdikd  

+ Xakdfkd " Lid (3.L ) 

$'kd fkd i fd +9kkd: kd 	Zakdi cl • 5 ~1 

0q xakq tkq - 2qi q (3.6) 

0kq q ikq 	E0giq (3• ?) 

a fd 1. P Ofd + rfd ifd (3.8) 

ed , 	- P 0d 	rid - Q 0 (3.9) 
0 

0 '~ 	p Old 	+rkd ~"kd 0 
(3.10) 



eq 	' ' p0q 06 riq + N-- 0d 	 (3.11) 
c~ 	 o 

0 	W p 0kq rkq ikq 	 (3.1a) 
0 

T9 	Old -q " 0q id 	 (3.13) 

a 	e 	+ e 	 (3.114) 

For siaU perturbations the above equations can be 

linearized by usinC Taylor series expansion about an operating 

point. 

3. APPROACH TO THE CONSTfUCT10J3 OF [A) mix 

The first stage in the construction of ( 1 is the 

selection of the frame of reference for the electrical 

quantities. The equations for each machine are enpressed 

with reference to pairs of axes (d, q) which rotate in 
synchronism with the rotors of the machines; but the 
equations of the transmission network which fixes the 
relationship between the internal quantities of the machines 

refer to the axes (D, Q) which rotate at the angular frequency 
of the network current. In steady state all these axes %7111 

rotate at the same speed with angular displacements defined 
in FiGure (3.2 ), but in transient Conditions the angles 
bi will vary as tho machine spoors vary.. Therefore it is 
necessary to obtain a relationship between the deviations 

of the variables im,cam and the variables 6 from their steady 

state equilibrium values. Section 7 gives the derivation 
of this relationship from (3.23) . The equation is 



0 

9 

all 

iA 

FIG.3.2 - ANGULAR RELATIONSHIP BETWEEN 
NETWORK AND SYNCHRONOUS MACHINE 
REFERENCE AXES 

0 

FIG. 3.3 



(l ) a (!m](aom] + (K](A8l 

ihoro the matrices (Y~] and ( as given by (27) and (28) 
two functions of the steady state values of m' t°3' and 

(o] . 

The second stage ±n'the construction process involves 

the elimination of the variables (1 tmI and (Lem] from 
the linearized synchronous machine equations to give 
a set of differential equations describing the performance 

of tho rotor and stator circuits in terms of state 

variables only The set of differential equations in 
2 atrii fords 

tray= (Z3 (P]. , (w 0 (xi ti [X3 

tihieh' can bo written in the form 

rhero 

(H) = (x][1 
(F3 = (11,0) 	[x](Q3) 

and the matrices (X) • (P) rand (Q] are derived in section: 8. 

The vector (pL f] contains 5 n variables, the 
vector (n) contains 8 n variables, and (a) contains 5 n 

independent differential equations. The 3n additional. 

difforcnt .al equations needed to give one independent 
equation per state variable and to pE, pb and pn terms 
into the derivative vector are the exciter, rotor speed. 

and rotor angle expressions. These expressions arc derived 
in .(3.1414), (3.52) and (3.3). Equation (a) when. augmented 
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40, 

ru th equations (3.44) ► (3.52) and (3.53) giv©s a 
sot of 8 n differential equations in the $ n state variables 
which constitute the vector 	1: 

(if'] Ci] a (F'] tz3 
	

(b) 

The equations of the additional elements in 
the voltage regulator and governor can now be added 
subject to the condition that one, and only ones  state 

variable is added to each additional equations to give 
13 n equations in the final form 

CHm3 Cdr] 

 

= [Fm ] Cy3 
	 (c) 

The above equations yields the required form 
(3.1) directly since 

[,y3 	a. (RR j`1  [Fm ] {y] 
and 

The effect of damper winding is small and 
can be neglected and/ or accounted as extra damping 
term for the machine by dropping the terms kdl ' 

40kd2 and Ljkg2  from the state vector and the corresponding 
rorzo and columns from the matrices - ( E'1 and (F'] , or 
(B5] and (Fm]  before performing inversion. This leaves 
matrices [H'] and (F'3 of size 6n z 6n. 

A. OBTAINING INCR1 4 l'TAL EQUATIONS 

Equation (3.3) - (3.7) in the linearized form 
can be written as 



Zffd -̀Zafd  Xfkd 
Xafd *Xd Xakd 

X fkd -Xakd Xkkd 

'fd 

ad 
ltikd  

	

.bxq X1q 	iq 

	

'Xakq Xkkq 	t"kq 
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Equation (3,$) can be written for small perturbations as 

	

Aifd 	fd _ 14 
rfd 	worfd 

But by definition (2?] 

E ' Xafd r fd 

and the field circuit equation becomes 

• fd 

	

L13` fd 	Xafd 	We rfd 

OX' 	 -- ptfd 	Ai fd afd 	o fd 
Similarly for small perturbations about an operating point 

equation (3.10) and (3.12) become 

1 

	

0 	war p L' Okd ; L'i  

1 

	

0 	w 	_ 	kq  + LAkq  

Equations (3.9) , (3.11), (3.13) and (3.14) linearize to 
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rid la ~► -'a Lw~ - L\ 
o o  Q. 

1 	 pJ 
o q, 	q 	wo 	d 

	

6T9 	Od ra3.q + iq d • 0q Lid » : d ©oq 

e 	e 
Lie  

	

t 	d I Lie + 	W tae 
t 	t 

Summarizing, the linearized equations of the synchronous 

machine are 

'0f d 	Xffd -Xafd -1fkd 

bOd 	afd -xd 	Xakd 

41k4 	2 'kd 'Xakd Zkkd 

q 

kq 

afd 

bid 

L' 'kd 

XakQ 

-Xaltq Xkkq 	 'kq 

(3.15) 

azu  
0 fd. 

1 
Q 	w--' r- 	kd + A i 

0 	 ~l + Likq 
6)o rkq 

0 
4 ed 	z1 	»rAi 	LAW «M LO 

o ~  

(3.16) 

(3.17) 

(3.18) 

(3.19) 
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~d D °Q 	" PAOq ' r Liq 4̀ 	pw 4 LØ4 	(3.20) 
0 

ATg 	Odb-i q 'q d - Oq d  
Lot 	= d 60d 1 '---- peq 	 (3.22) 

t 	et 

5. NET''IOI K 

The network can be represented by an admittance 
matrix those coefficients are the driving point and transfer 

admittances of only those nodes to which machines are connected 

For a network having two nodes to which machines are connected, 
the matrix equation relating node currents to node voltages in 

the (D,Q) reference frame is 

'Di g11 	 b̀11 	912 	tab3.2 eDl 

1Q1 I1 	Gil 	b12 	C12 eQ1 

iD2 g21 	"b 21 	622 	i"b22 e' ►2 

iQ b21 	g21 	b22 	622 eQ2 

which is in symbolic form 

1 0N] 

(3.23) 

The above equations is a result of expanding a set 

of two simultaneous complete equations into a set of four 
real equations. The,DjQ axis are common to all the nodes# 

so that suffixes D and. Q are acsocis'tod with real and 



imaginary parts respectively of the complex quantities. 

6. CONNECTION OF MACHINES AND NETWORK 

In the previous sections two. sets of equations have 
been given, one set representing the unconnected machine 
and the other network in terms of the nodes to which the 
machines are to be connected. The connection implies a 
relationship 	the machine quantities (rotor based 
voltages) and the network based voltages. The relationship 
must take into account the displacement b of the reference 
axis 6, q for each machine with respect to the reference 
axis, D#  Q for the .network. The components of the network 
voltages in the D, Q reference frame are related to the 
terminal voltage of the machine in the d*q reference 
frame by the matrix equation rig. (3.3) 

[CD 1 	sinb 	ed  
a 

[oQ j 	s n b 	Cos b 	eq  

7 • R1NSOR4ATION OF THE TRANSMISSION NETWORK EQUATIONS 

The transformation relating the network based. 

voltages to the rotor based voltages for the system is 
'D 	1coo bl 	-'sinbl 	 ®dl 1 
©QJ. 	ainbl 	coebi 	 0ql  

eD2 	 coo b2 	-w5jnb2 	+ed 

e _ 	 sine 	cosb2 	0q2 
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In symbolic form 

[eN 3 	tT]CCm.11 
	

(3.2h) 

For small perturbation around the operating point 

the above equation becomes 

d t~Di 	 bedl 

Lt e 	 aoq. 
LOD2 	(TI 	6e 

'5 

~zdls .nb1 egiCQSbi) 

(odlcosbi eqi sin b1 

( edaeinb2000gaoocba) 	 2 

(ed2co b d0q28in ) 

which is in symbolic form 

(ASN] 	(TI tAOm] + (I] tAb) 	 (3,25) 

The power invariance theorem of Kron (Z O ) roqu s 

(j] 

which for small perturbationsan be wrItten as 

t 13 = [Tlt(t- Q + IJ) E,Ab] 	 (3.26) 



-16 

3q1 	0 

"Iid1 	0 
L Jl 	•o 	q2 

0 	-id. 

The values of t~.m3 a (em) and C] used in construct- 
in the matrices (T), t i3 and ( ) are the steady state 
operating point values vrhioh are deduced from the load 
flow data 

For small perturbations about an operating point 
(3.23) is 

tom] = tY~I 1 N3 

rhonce, from (3.25). and (3.26) 

[ .m] a (YZI tLee] + (K) (a) 	 (a) 

whore 

CYNI (T] 	 (3.27) 

(iU 	= (T)t tY ] ti] ~ (i3 	 (3.28) 

Tho equation (a) is tho expression of the constraint 
irnpocod by the transmission network on the performance 
of each synchronous machine. It involves only quantities 

which are referred to the internal reference axes of the 

machines, and hence no further transformations are needed 
for the machine internal variables to be taken as a, sat of 
numbers defining a vector in state space. 
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8. EXPRESSION OF SYSTk +i EQUATIONS IN TERMS OF STATE VARIABLES 

The second stage of the construction process involves 
the elimination of the variables L1 	 ] and tAe ] 	from the 
linearized synchronous machine equations to give a got of 
differential equations describing the performance of the 
rotor and stator circuits in terms of state variables only. 

The perturbation forms of the Park terminal voltage 
equations (3.19) and (3.20) for each machine can be expressed 
collectively as 

rLlod l 	p't d . 	-O  l 
Qegi 	pbog1 	0dl 	 1 

Led2 	WO  p d2 	 - 	n 

©off 	p q2 	 Oct 

rl 	 dl  

	

rl 	 1 ql 
	 " d1 

ra 	
Liaa 
	"Aq2 

r2 	lL,q2 	L'Od2  

which may bo raritton in symbolic form as 

(c\Om] 	1 m3' 	1 	+(PDQ3 tu.) - try(Aim) (3.z2. o 	 dl 
q2 



Combining a and 2a gives 

$Aim] a EC] tpLØm3 +'w4[C] 	dl 

~+d 1 

W` 	2 
LØd2 

In] 
+wo (CP] [KC) (LIE) 

rrh©ro 

ICjL = 	[ (1) + [ tm] CrI ]0* ` (Ti 
0 

[KC3 = t[11 + tYrnl(rl)• ' (K] 

LCP1 : IC] IPDQI 

(3.30) 

(3.32) 

(3.35) 

Equation (30) may not, be rearranged by -simple row and column  

operations to take the form 

Lidi woCl2 -woC11 woClh -woC1. KC11 KC1 w0CP31 W0CP2 

L~igl woC22 ..0C21 c̀ 'oC2j -w0C23 "e21 KC22wwCP21 woCP22 
C) (pA1 	] m 

bli 0C32 -woC31 *)oC3L1 o033 KC31 KC, 2 woCP 	woCP32 

Aid, woC42 	'o¼i w0C~ah ""WOC 3 KC11 Kc12 %CPhl (i'0CP,42 

t 
'dl. LOCI '60d2 'Lo ,L1$1 ©'2r nit n21 

wh` ch is written symbolically as 

[A 	~(CHH~m)+[U] 1m 	6, n 	 (3.3Z) 

F 	tion (3.340 can now be ozpanded to include the 

'orb- c- 	equations (3.16) r (3.17)1(3.1$) . This operation 



involves the expanding of the vectors [Limi t EplOmi. and 
t[0m, 46, ni to the vectors (ni]. [p L Ol t and [NI; and 
corresponding expansion of the matrices [C] and tUl to give 

the following matrix oquation. 

0 0 0 0 0 0 00 
wo
r
fd1 

a 0 	C 1 0. C 	0 	Ol 	0 Cl 	
3. 

- 	~ 0 0 0 0 0 	0 0 
• ()orkdl 

o C22 .ç 0 c23 0 	c2A 0 

0 0 0 0 .0 	0 0 

0 0 0 
-~ fda 0 0 	0 0 

o o 0 0 033 0  C3 0 

0 	•0 • 0 0 0- 0 
4)o'rkd2 

0 

0 042 0 0 Chi 0 	044 0 

1 
0 0 • 0 0 0 00 

Iwo 

fdl' 	dl 	kdl` 	ql 	,k l' 	fd2' 	d2' I` kd~1' 	2' 	k I t q 	 q. 
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C 

0. 

0 

2 

11 

0 

021 

0 

0 

0 

' 	0 

0 	Ch i 

0  0 



00 00 	0 0 0 00 ~J 1 0 0 0 0 	0 
xafdl 

0 W0, 	0 'woCll 0 0 woclh 0 -woC 0 0 	0 	KC KC waCPll w0CPla 

0 0 	0 0 	0 0 0 	0 0 .0 0 	0 
	

0 	0 	0 	0 

0 WoC22 0 •woca.1 0 0 'WoC24 0 )0 23 0 0 	0 
	

KC21 KC22 w0CP2 . w0CP22 

00 	00 	0 0 0 00 	00 	0 	0 	0 	0 	0 

00 	0 0 0 0 0 00 0 0 '~- 0 0 0 	0 
'afd2 

0 WOC 0 WOC31 0 0 %C 0-tv0C33 0 0 	0 	K031 KC "0CP31 woCP 

00 	0 0 00 00 0 0 0 0 	0 0 	0 	0 

0 sOC42 0-4'0041 0 0 %044 0 -woC43 0 0 	0 	KC41 KC42 WOCP41 WOCP 

Q0 	0 	0 0 0 	0 	0 	0 0 0 0 	0 	0 	0 	0 

t 
140 fdl' ad1' 40kd1''Vt1$ Lokg1' fci2' d2 f 4okd2' 	$ 40kg2 m 1' L"2''6'lr "62 r ,,l' 

This equation is written symbolically as 

[Li] ° tP] tp A 0 1 -+ IQ] [X] 
	

(3.35) 

The elimination of vector [AL] from this equation leaves 

a set of differential equations involving only variables contained in 

tho required state vector [n) and in ( ]. 

The generator fluit link ago equations (3.15) for each machino 

may be collated to form the matrix equation 

(EM] 12 [n] [Ail 	 (3.36) 

where the matrix IX] is a 10110 square matrix in vthieh each 5x5 aubmatriX. 
on its diagonal is the matrix of (3.15) for one machine. Combining (3.35) 



and (336) then gives directly 

IF] Lx] 

txl (P3 

[1,0] — Cx]CQl. 

(o) 

Rene the matrix (1.03 is the 5nx5n unit matrix augmented vith 
3n additional zero columns to a ..low it to be added to the 
5n x 8 n matrix (XI C QI 

9. EXCITATION SYSTEM! EQUATIONS 

The expressions for the terminal voltage deviations, 
required in the voltage regulator equations is obtained by 

rearranging (3.29) in the form 	 - 
0 --3. 0 0 0 0 	0 	L'Odl 

~l 
1 	1 0 0 0 0 0 Odl 0  qi 

Lem) 	( p Li 0] + 
o 	0 0 0 -1 0 0 0 	Ø 	d2 

0 1 0 0 0 0 	Od2 	~ 1 

ni 

.,.,.112 

Cr] LLim] 

which is written symbolically as 

IUarvI a 1 tp L 0.J +IV] I LOm.LB. n 1t - (r1 C 2im] 	(3 37) 
0 

Rearranging (3.37) and using (3.34) gives 

[tom] a (vp) (p Q O~]+ (VS) (IOm,tabfn )t 	 (3.38) 
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~rhoro 

Ivv] = 	t 	Ii) — (R] [cl 3 	(3.39) 
0 

(vs] = 	C Cv] — (R3[u1] 	(5.4O) 

• The expressions for the absolute changes in the terminal 
voltages of the machines is 

detl  e  0  4  Ae~l 
tl  tl 

cal 
tie 	 tI e 

	

L
t2 	 ta 	eta 	d2 

io 0 	e  

bega 

In symbolic form 

tLet3 = IEV] tQem] 	 (3.41) 

which Than combined viith (3.38 gives 

[ae. = tEv)EVP]( 	]+ (V]EVS][OmbL) ►]t 	 (3.42) 

The voltage regulator equatiou for type one representation 
(noglooting saturation) is 

PbE, 	^' r 	0 	 AE- - 	0 
E 	 E 

	

S 	TETF 	Ti TE T F 

pLEA 	0 ...__ 	- "`..,• 

©2 

zhich in symbolic form is iritten as 
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(p L EF I = (VR L EF) + (FF) ( aet  ) 
	

(3.43) 

Substituting 	 t:.1 from (3.J2) a in (3.1i3) gives 

(pAEF = IVR1 t1 EF) + (FF) L (EV) (VP] E fm3+(F'VJ (VS) [1Om,Ab•n) t] 

(3.1414) 

CVR] JtBF] +fppj 1 	' m3 +I ES11bom,r  Ab.,nj t  ] 

(3.145) 

where 

[BPI = C Eva C vP] 

Liss a GET] (V'S] 

Writing (3.144) in the expanded form 

0 

ci 
0 

0 

0 

m 

m 
EP  

EP 
21. 

EP12 '13 EP114 

EP FP "P 
22 23 24 

0 

❑ ' 

TA2 . 



El 	 El

K 

1 
.. !, 1 	0 	T -- 	 LE 

K. -  1 	 ~ 
T 	 $Z 

TE1TFl 	
F1 	TE1T `l 

KAI 	1 	 , 
TA1 	TAl 	 A3. 

TM 

... 	E?K 	...:L 	F 	. 	LE 

• TE2T '2 	T 	TE2TF 

0 	K 	r.l - 	LE 
TA2 	T  

o 0 	 adl

• o 	0 	 a$1 

o ESl 	ES12 ES13 ES11+ ES 	ES16 ES17 ESA 8 	-Lod2 

o 0 	ES21ES22 	ES23, ES2 4 ES25 ES26 E327 ESa8  

o 0 	 L%b1 

TA2 
Lib2 

nl 

n2 

(3. h6) 

14. ROTATION SYSTEM AND GOVERNING SYSTi 4 EQUATIQNS 

The expression for the incremental air gap torques of 

the machines is 

1+ 
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£T51 -0ql 0d1 

GTE 0 0 

LAdl~ 

0 	0 	ql 	f ql ~idl 0 

	

'0q2 0 	a2 	? 	0 1 q2 

L 	̀ q2 

Symbolically 

ILaT93 	, CST] (Ai J •I IT] CL\Sm] 

Incorporating (3.34) to eliminate (Li) yields 

EAT91 =,CST][Cl(pt.Lm1 +1STJ(II]E40M#a8:ni t +CIT)(L m) 

(ST)(C][pl.ØmJ+ ([STUD* CITI(l,0) ]LA0 ,LLb,n]t 

.[STC](pL c3 4, [BTT3 [gim,Gb,n]t 

vrher e, 

LSTG] 	tSTILC] 

t,STT3 a • tsTU] ' • CIT] [ ..,o] 

(3.4?) 

(3.48) 

(3.49) 

(3.50) 

Here the matrix t 1, 03 ' is 2n s2n unit matrix augmented rrith 2n 
additional zero columns to allorz it to be added to the nzL+n matrix 

[STU). 

The acceleration equations of the machines are 

Tml 
	• 	pn1 	T 	Ol 	nI 

Tm2 	pn2 . 	.~ Tg2 	 02 	n2 



Symbolically 

[Tm] ( pn] = -t [T91 - [D3 [n] 	 (3.51) 

which after substituting (3.48) becomes 

[TTJ [ ptn]+ [STC) [ P60M] a -[STT'I [Lom, 6,n3 t 4D] [nl (3.52) 

In the expanded form 

Tmi 	Pn, 	STC11STC32 5TC13  STC14 	PAOdl 

TP j5TC215TC22 STC STC 4 	4 
d~ 

q2 

STT11 STT 	ST 'l3 STT14 STT15 STm,1b STT17 

STT21 STT22 STT23 STT2. STT25 STT26 S 'T2 ? STT B 

n 

U2 

D~  ni 

In ~ 

2 

In angular velocity relationship may be introduced in the 

form 
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pal 	wo 	 ni 

Wo 	112 

Symbolicallyfir 	r~ru 

Cpabl ()03 In] 
	

( .53) 

which incorporates the assumption that the network 
roferonce axes rotate at constant speed. 

The governing system equations are 

tT 

p  p  P  p 

Fg  T~  0  0  + 0 Cn3 

0 Pg fh 	1'G 	 TR 

(3.54) 

11. SEL2CTION OF ANGULAR REFERENCE 

Equation Cc) contains a sot of equations (3.53) 

rhich inply that the network reference axes (D, Q) rotate 
at constant speed. Hovrover► this is only the case for 
steady state equation where a l the synchronous machines 
rotate at the same speed; and during transients the 

actual instantaneous speed of the CD. Q) axes is unknocm 

even though the instantaneous speed of each machine 

is known. Therefore it is necessary to make some assumption 
iritb regard to the behaviour of the network reference axes. 



The assumption that (D, Q) rotate at a constant speed 
of w0 is not valid since this would force the vrhole 
system to remain in synchronism at a speed of wo  t hi .e 
the physical situation indicates that the system 
remains in synchronism at some frequency rzhich is 
determined by the collective permanent droop action. 
of all its governors and the speed-torque character-
istics of all its loads. 

An alternative and reasonable assumption is 
that the network frequency is $arrays Identical to that 
of one arbitrarily chosen machine so that the atos (D, Q) 
.rotate in synchronism crith the azea Cdr, q) of that 
machine. This implies that the rotor anglo deviation 
Abs, of the rth machine is ou rs zero and that (3.53) 
must be modified to 

ppb1  
Pall, 	Wo 	'"WQ  

i 
Wo"'WO  

fir$  

n 	 ""wo 	('o 

nl  
na  

nr-1 
nr  

• 

nn 
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The resulting change in equation (c) can bo 
affected conveniently by 



(a) deleting Abp, and b Pbbr  from the vector Cyr) 

and (jr] 

(b) deleting the appropriate rows and columns corres-
ponding to &b , and pl,b . 

	

c) 	placing (-w©) in the rows of the new right 
hand side of the matrix corresponding to the 
remaining angle deviations and the column corr-
esponding to nr. 

This change leaves equation (c) of order l3n. -1 with 
all rotor angles referred to the rth machine. The lamest 
machine or the machine which is likely to have the most 
influence on the frequency of the network current is 
usually chosen as the reference machine. 

12. EIGLNVALUES AND THEIR SIGNIFICANCE 

The stability of an equilibrium point In the state 
space of a free, linear, stationary system depends solely 
on the roots of the matrix differential equation 

(ii = 	(A3 (x] 
	

(3.55) 

The roots of the matrix differential equation 
are called the olgenvaluos of the system. Other terms used 
interchangeably with the eigenvalues are proper values# 
natural modes, free frequencies# characteristic roots,. 
and characteristic values. 

Using the Laplace operator to replace the derivative, 
the equation becomes with zero initial conditions 
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s9 

(GI "A) X(a) 	U 0 

Since the state vector X is not zero under all conditions 

then the determinant of the term in the brackets must be 
zero$ i.e.3. 

lei - it I 	=0 	 (3.56) 

The polynomial in a resulting from the expansion of the 
doterminant 

a_Gn  + aqs 	+ U......+ an-,$ + 	= 0 

is the common denominator polynomial (characteristic equation) 
of all transfer functions between an input vector and 
an output vector. 

A linear, stationary# free system is asymptotically 

stable at an equilibrium state X = 0 if and only if all 
roots of equation (3.56) are located in the left half of the 
complex S"plane. It is precisely this condition that the 
Liapunov theorems are checking 1373. However in thc;ae 
cases'there the characteristic equation is savallable 
6r easily derived, there is an alternative to the Liapunov 
approach which involves less work and is more straight 
forward. 

There are two such alternatives* both of which 
involve obtaining information about the asymptotic stability 
of a system from its characteristic polynomial without solving 
for the polynomial roots. One method is that of Routh and 
another# by Hurwitz. Both furnish much the same information 



fit 

and involve similar amounts of necessary computation. 

In the program developed the characteristic 
equation is never formed as such. Instead, the eigenvaluea 
of the matrix A of the first order differential equations 
that describe the system are found by QR transform method 
[38] . These are identical with the roots of the character-
iotioe equation. 

If the coefficients .cients of the differential equation 
are all real, the roots will either be real or appear as 
conjugate pairs of complex number. A real root a, would 
give rise to a torn in the solution of the form Ce(t  
A conjugate pair a ! ,gip , would give a term of the 
form Ce''' p  sin (Ot +9) , In both oases, the C and 0 are 
arbitrary constants determined by initial conditions. In 
the aolrtion, the arbitrary constants contain the informa-
tion on the initial conditions, while the roost contain 
the information on the system represented by differential 
equations. The eigenvaluoe gate the response character-
isties of a system's modes. 

If all of the roots are plotted on a complex 
plans, their location gives much information. Any of the 
roots which lie in the right half of the plane will have 
positive real parts. They represent terms in the solution 
which vill grow with time, and thus they indicate an unstable 
system. Roots which lie in the left half plane will 
represent terms that die out. The farther they are to 
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the left, the larcor tho value of a and faster the term Trill 

disappear. To improve the transient response it is 
necessary to move the roots to the loft* thus increasing 
damping. The distance of the c:omplon roots from the real 
axis indicates the frequency of the oscillatory terms 
in the transient response. Those roots near the real axis 
vili have loner frequency#  a hilo those further ate will 
have a higher frequency. 

The significance of the root location in the a- 
plane is illustrated in Fig. 3.4. 

13+ SYSTEA ANALYSIS 
DATA 
Machines. (Machine data in p.u. referred to machine rated 
voltage and apparent pover) 
1. Generators - 3 nos. 

VA rating 	 100 14VA 
Coe 0 	 0.9 
H 	 4.04 17s/JA 
Rd  

xq 
r 

Tdo 
2of'd 

2. Motor (I ciuivalent) 

VA rating 
cos 0  

0.913 

0.30  

0.56 
0.004 

7.66 a 
1.0 

1 No.( Representative data has been 
assumed) 

19MVA 
1.0 



REAL =C4 

Im=p 

S _PLANE 

FIG.3.4 _SIGNIFICANCE OF ROOT LOCATION IN 
S- PLANE 
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B 	 2.0 KWs/KVA 
Xd 	 1.25 
X$ d 	 0.34 
X4 	 0.7 
r 	 0.002 

Tdo 3.1 5 

Xafd 	 1.0 

3. Transformers (Sending end) 3 Nos. (Representative data 
has been assumed) . 

VA rating 	 100 
Voltage ratio 	 W66 KV 
Reactance z 	 0.15 

I4 . Transformers (Receiving end) 
VA rating (7 nos) 5 14VA 
Voltage ratio 66/11 XV 
Reactance z 0.Ili5 
VA rating (1 No.) 6.5  MVA 
Reactance x 0.0783 

5. 	Transmission line 
No. of circuits 3 
Transmission voltage 66 XV 
Length of line 6 miles 
Reactance per phase per 

mile 4.587 0 

Total series reactance 
per circuit 0.587 x 6 	3.522 



Rase MVA 

Base lmpodence of line 

P..0 reactance 

6. Load 

100 

base NVA 
(66 )2 
l  0 43.59 

zs .52a  
43.5 

00081 

t 

Total load (including motor load) 
Shunt admittance 

 

1. A6 Jo  

 

The actual network and equivalent nettiork 
configuration are shown in Fig. (3.1) 

7. Automatic Voltage Regulator 
In the absence of suitable data# the following 

have been assumed as typical valuoa: 

Regulator amplifier time constant TA 	 0.1. 
Regulator stabilizing circuit time constant T , 	0.6 
Regulator stabilizing circuit gain 	KF 	0.05 
Exciter constant related to self excited field Kj .. 0.05 
Exciter time constant 	 T 	0.5 

Regulator gain IAA  made variable from 10 to hO 

8. Turbine 'Governor 

In the absence of siitablo data, the following 
have been assumed as typical values. 
Daohpot time constant T 	 5.0 



Gate servomotor time constant T. 	0.2 

Pilot 'value time constant T , 	 0.04 
Transient speed droop coefficient b 	0.3 

Permanent speed. droop coefficient 	made variable from .02-.0E 

By Definition ( 27,. 

C ~d M 	 ) 

X 
fd 	J 

Zd  d 

For the generator 

1.0 
Xf1 	0.913 - 0.3  

a 1.63 

For the motor 

By definition 

l 

 

T o 	_. 
rfd 

 

( Tdo is in radians) 

rfd ~= 
Tdo 

For the generator 

rf~d ffi 2410 a 0.000678 

For the motor 

r f d = 	= .0011 



For tho motor 

012 =1.O LO  
62  a -3 -©o  

id2  = Q.1089 	; 

1q2 a -0.1556 
ed2  a -0.5736 

042 a 0.8192 

Ode  eQ  0.8192 

0q2  a - e 0.5736 

For the generator 

eta a 1.0258 L 12.90  

bi  a 27.3°  
1dl  a 1.1533 

1q1  a 1.3647 

edl  a 0.2920 

eq1  = 0.9935 

0d1 a 0.9935 
041 °dl  -0.2920 

14 . DIGITAL COMPUTER IMPLE'ME! TAT TON 

After forming complete (Em)  and (Fm] matrices, 

the generator ie selected as the reference machine and the 
variable Abl  and its derivative p 6b1  , are dropped. 
After forming CA], the program given in Appendix I is used 
to compute the oigonvaluoe. The program given in Appendix 
II used library subroutines HSBG and ATEIG 139] 

66 



to compute eigen values of the system matrix A. The eigen 
values for various values of regulator gain KA,, damping D 
and permanent speed droop Cr are ,given below: 

(1) IAA  a to * D = 4 , (O a 0.06 

1. -17143 + .1 394.11 
a. --l7Ii3 J 3914.11 

3. -04.52 +j 330.37 

4 . -4.52 - j 330.37 
5.  -23.03 
6.  -2.88 + j 11.32 
7.  -2.88 -k 1 11.32 
8.  -6.015 + j 1.596 
9.  -6.015 - 31.596 
10.  --2.137 
U. +1.126 
32. -0.8707 
13.  -0.6470 
14.  -0.0306 
15.  -0.0061 

(2) KA =25, D= 4 b  oa0.46 
1. -1743 + i 3914.11 
2. -1743 - j 394.11 
3. -4.52 + 3 

4. -4.52 - 3 330.37 



5.  .23.03 
6.  -2.88 + 3 U.32  

7.  -2.88 - 3 11.32 
8♦ -6.18 + 3 5.149 
9.  -6.18 - J 5.49 

10.  -2.137 

U. +1.519 
32. -0.9378 
13. -0.6323 
114. -0.030? 
15. -0.001+9 

(3) K~c 40; Da4 # t- x0.06 

14 •►1743 + 3 391.11 
2.  -17143 - 3 3914.11 
3.  -l. 	+ 1 330+38 
4 • -1. 	- 3 330.38  

5.  -23.03 
6.  -2.88 +3 1..32 
7.  -2.88 -j 11.32 
8.  -6.27 +3 7.52 
9.  -6.27 -j 7.52 
10.  -2.137 
11.  +1.712 
12.  0. /544. 
13.  -0.6293 

14.  -0.030x7 
15,. -0.00146 



(G) KA  a 40 ;D a 14 1 c *r 0.02 

1. -1743 + j 394.0 

2• 1743 	j 3/4f11. 

3. _4.52 + j 330.37 

14 -14.52 - A330.37 
5i -23126 

6.  -a.88 + 	,U. 
7.  -2.88- 	11.3 K"r 

8.  -6.27 + J 7.52 
9.  -6.27 -J 7.52 
10.  -1.922 
31.  
12.  -0.951414 
13.  - 0.6292 
114. - 0.0116 

V5. -0.001,5 

(5) KA=25; D=4; c" =0.03. 

1. -17'3 + j 394.11 
2. -17143 - 3 3914.11 

3 • -4,52 + 3 330.37 
14« -.4.53- 3330.37 

5.  -23.20 
6.  -2.88 + 3 11.32 
7.  -2.88 - 3 U.32 
8.  .6. 18 + j 5.149 
9• -6.18  - 3 5.49 

. -1.975 

m 



11. .1.519 
1; 2. - .0379 
13.  -0.6323 
14.  -0.0166 
15 • -0.00149 

(6) KA = 10.0 E D =12.00 o = 0.06 

1. -1743 + J39Z.1I. 
2i '.17143 "- 3 394.11 

3. -4.52 + J 330.37 
14. 4.52 - j 330.37 

5.  -23.03 
6.  -8.2.g+38.81 
7.  --3.29-38.81 
8.  -6.017 + 3 1.606, 
9.  -6.017 - 3 1.6068716 
10.  -2.137 
11.  +1.097 
.12.  -0.81413 
.13.  .4047 
14.  -0.2883 
15.  -0.0298 

13. fIT PRfl AT ION OF RESULTS AND CONCIIIJSION 

The oiC mvalues give corp1ute information on the 

dynamic stability of the system. Those correspond to the 
natural modes of response. The real part a of each eigon value 

CEUPAL L1~RIPY UNIVERSITY OF ROORKEE 
ROORILE19 
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given a noaaure of the decrement of the oscillation of a 

mode; it is the reciprocal of the time constant of the decay 

of oscillation. The imaginary part A indicates the natural 

angular frequency of the mode concerned. 

The necessaryr and sufficient condition for dynamic 

stability of the system is that all real parts of the elgen 

values should be negative. Negative real parts indicate 

positive decrements and thus positive system damping. 

The system .studtod In evidently unstable, because 

of the existence of an eigin value (No.11) having positive 

real pert* The last tcro eigenvaluee lie close to the 

origin and may move to the right half of s-plane iriitb 

parameter variations. As the regulator gain is increased 
from 10 to AO, the eigen value (No.11) moves further to 

the right; the natural angular frequency of the modes correa-

ponding to the eigen values (No. 3 azd 9) increases, leaving 
the damping torn practically unaffected, thus making the 

system more oscIllatory and less damped. 

The reoulta obtained corroborate vith the large severe 

000illationa obsorvdd on the actual system. 

tbi1&pttpno  

The dynamic stability limit can b© improved by the 
use of other input signals to the voltage regulators in addition 

to the terminal voltage. The signals are chosen to provide 

a pocitivo damping of the poor system oscillations to 

improve generator stability and damp do line oncillationo. 

Some Of those signals are: rotor apeir , rotor acceleration, 



3. 
6. 
1• 
8, 
9.  

10.  
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aceolorating powers frequency and rate of change of voltctgo. 
lhon used# they arc added as sboun in Fig. 3.5. Ueua1iy the 
otabilizing signal is inserted through a transfer function 
providing gain adjustment and lead-lag compensation for 

phase shifting. Usually a combination of proportional, and 
first derivative signals is not cuffieiont and a second or 
higher dori rativea are z lso required (311#14?-], Therd fora 

a combination ®8 and Lb signals derived from rotor angle 
woro tried to stabilize the system. Time constants of the 

input filter circuit ubich are very small havo been neglected 
to simplifyr the calculations. The values of KAP D and rs 

are the same for all the seta* as ely 

KA = AO, Dx A , d' =0.06 

The Cigon values of the system matrix for different 
values of K1  end % are given bolov. 

$o K1  = Q q,3 K22 5 
-1742 + 3 388 
.1742-3388  

'.5.72 # 3 330 
-5,72-33!_ 

-28.96 
9.43 + 3 22.63 
9.43 -' .3  22.65 
-23.03 

-2.84 + 3 11.30 
-2.84 -- 3 11.30  

-1745 + 3 389 
-17h5 3 339 
-3.57 J 33L 
-3.57 3 331 

+9.70+ 3  22!97 
•9.70 » 3 22.97 

-23.03 

-2.77 + j 11.37 
"2.77 - 3 11.37 

-1742+3390 
-1742 4 3390  

-541+3331 
M 5.41 - 3 331 
-28.08 
+9.89 + 3 22.78 
49.89- 322.78 
-23.03 
-2.80 + 3 11.,,E 
-2.80 - 3 11.33 



FIG. 2.5 TYPE 1 EXCITATION SYSTEM WITH 5 AND 
FEED BACK SIGNALS 

TION 



U. -2.137 -2.137 --z .137 
12.  -1.676 -1.681 -1.699 
13.  -0.711i -0.7116 -0.9988 
IA. -0.0400 -0.2009 .0.7901 
15. -0.0306 -0.0303 -0.03014 

The results indicate that the system is still 
unstable. 

Per different values of K1  and R, tried#  the 
system is unstable. The values of 4 was not varied. 
Possibly the system can be made stable if the value of 
gain K2  is varied from 0 to 5. Still higher derivatives of L6 
could also be tried to achieve stability 141. 
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4DIX-1 ''EIGENVALUEt BY OR TRANSFORM METHOD* 

t  . 

EIGENVALUES BY OR TRANSFORM METHOD 
DIMENSION A(15s15),d(l5s15),C1(15)sC(15s15),D(15s15)sE(15,15) 
DIMENSION Q(15I5),ll(15s1i),Q2t1515) Z(15s15),H1(15,15) 
DIMENSION H2(15,1:) 
COMMON MyNsJ1sE1s).risJsNlsAsBsC19CPDPEsQ+QlPQ2sZsN39N4tiHlPH2~►~(2sN5 
REAU50sN,ElsMt 1 
PUNCH 54sN.E1.MN1 
IFCMN1)22,20s20 
REAt)51, ((AC I,J),J*1sri),I=1sN) 
PUNCH 51,1(A(I,j),J=].sN),I=1,N) 
GOT023 
READ54s( (Al I,J),Jal,U),I=l,N) 
PUNCH 54,1(A(Isj)sJ=1sN)sIII=1,N) 
DO 52 I =1.N 
DO 52 ,J=1,N 
8(I,J)=D.O 
DO 53 11,N 
t3(I.I)=l.O 
FORMAT(I2,F1O.7,12) 
FORMAT(5F14.6) 
M=N 
N3=M-1 
N4=M-2 
DO .s Jv1,N3 
C1CJ)=ABSF(A(Msj) ) 
CALL MAX 
CALL INTCH 
CALL MULT(AsC,E,NsN#N) 
CALL MULT(C,E,Z,N,N,T ) 
CALL MATEQ(Z,EsN,N) 
CALL TMATRX 
CALL MULT(EsD,Z,N,N,N) 
CALL MATI:Q(Z,E, ,N) 
DO 6 Jz1.N4 
D(M—I.J)=(-1.)*D(M-1,J) 
CALL MULT(D,E.Z,NsN,t4) 
CALL MATEQ(ZsE,Nst ) 
M*iM-1 
CALL MATEQ(EsA,N,1.) 
IF(2—M)2s9:9 
CONTINUE 
FORMAT ( 5E16.8) 
Kn0 
K&K+1 
CALL QRTRAN 
CALL MULT(Q,EsZ,NsN, 1) 
CALL MATEQ(Z,EsN,N) 
CALL TRNSPZ(QsQl,t',N) 
IFIK—lih,llsl2 
CALL MULT(Q1,Bsrl2,N,t!sN) 
IF(K-1)14,14,15 
CALL MULTtQ2,Q1oZTNsNsN) 
CALL MATEQ(Z,Q2,N,N) 
N2=M-1 
IF(K—N2)14,16,16 
CALL MULTCE,Q2,Z,N,N,N) 
CALL MATEQ(Z,E,N,NI 
f A i I ru G'rV 
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IF( Y2—E1)17,11,31 
IF(I—N)17,10,17 ,t, 
IF(N1-N5) 75,75'72 
IF(N1-2)76p76.73 
CALL MATEQ(H1,A,Ni,NX) 
N-Ni 
GOTU21 
IF(N5-2)76,76,78 
CALL MATEQ(H2,A,NF,1S) 
N-N5 
GOT021 
STOP 
END 

SUBROUTINE CHECK 
DIMENSION A(15,15)t8(15,15)sCl(15),C(15,15tsD(15,15),E(15t15) 
DIMcNSION Q(15.15)tQ1(35,1),u2(15,15)s2(15t15),H1(15,15) 
DIMENSION H2(15,15) 
COMMON MrNtJlsEl,Ktl•JiN1tAt.E3*CltCtDPE*QIQ1*4t2sZrN3tN49Hl,tH29Y2oN5 
Ina 

I 1=I+1 
IF(I—N)243,251,251- 

I  I3I+1 
Y1E(I3I) 
Y2CABSF(Yl) 
IF (Y2—E1) 242,242,240 
DO 252 K=1,I 
DO 252 L=1,I 
H1(K,L)=E(KtL) 
N1=I+1 
DU 244 K=NI,N 
00 244 L=N1tN 
K1=K—N1+i 
L1=L—N1+. 
H2.(r.1,L1)=E(KrL) 
N1zN1-+1 
N5mN—N 1 
PUNCH 300 
FORMAT(1OX,9HMATRIX H1) 
PUNCH254t1(H1(I,J)tJ=ItN1)tt=1tNI) 
PUNCH 303 
F0RMAT(1OX99HMATRIX H2) 
PUNCH25©s((H2(I,J)tJ=1,N5)+I=1,N5) 
FORMAT (5F16.8) 
CONTINUE 
RETURN 
END 

SUBROUTINE TMATRX 
DIMENSION A( 15t15)t8(15,15),C1(15)sC(15t15),D(15,15)*E(15t15) 
DIMENSION Q(15915)+QI(15,15),Q2(15.15).Z(15,15)+H1(15s15) 
DIMENSION H2(15,15) 
COMMON MPN,J1,E1,KrItJtNliArE3tClsCsDtE,sQtQ1:Q4t2PN3tN4tHl9H2tY2tN5 
Do 161 I=1,N 
DO 161 J=1,N 
D(I,J)-8(I,J) 
00 162 J=1,N4 
X6ZABSF(E(MtM-1)) 
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IF( X6—O.0000U1)16; 
163 D(M-1.J)(--1.)*E(I 
162 COrNIINUE 

RETURN 
END 

.162P163 
f_1) 

SUBROUTINE QRTRAN 
DIMENSION A(15915),B(15s15)+C1(15),C(15,15),D(15,15) E(15+15) 
DIMENSION Q(15915),Q1(15,15).Q2(15f15) Z(15,15) ,H1(15.15) 
DIMENSION H2(15,15) 
COMMON M,N,J1,E1rK, I,JsNl rAa B,Cl.C,DiE,Q,Q1.Q2,Z.N3sN4,H1.H2,Y2.N5 
DO 201 Ic1,N 
DO 201 JO1,N 

201 Q(19J)=k3(I,J) 
200 JaK 

G3=t1.)/SQRTF(E(JsJ)*E(J,J)+E(J+1,J)*E(J+1.J)) 
G1=E(J,J•)*G3 
G2=E(J+1,J)*G3 
Q(J,J)=G1 
t~iJ+1~J+11=G1 

Q(J,J+1)OG2 
RETURN 
END 

SUBROUTINE MAX 
DIMENSI©N A(15,15),t3(j.5,15),C1(15),C(13s15).D(15o15)iE(15p15) 
DIMENSION Q(15915) Q1(15,15).Q2(15,15),Z(15,15)*H1(15r15) 
DIMENSION H2(15,15) 
COMMON M.N.J1sE19K,I.JtN1,Ayb,C1,C.D,E,Q,Q1,Q2s2,N3oN4,H1,ii2,Y2.N5 

100 X=C1(1) 
DO 101 Jt1,N4 
IF( X—C 1fJ+1))102,102,101 

102 X=C.(J+1) 
101 CONTINUE 

JO 
103 J=J+l 

I F (X—C 1(J)) 104,10~r,103 
104 J1aJ 

C1(J1) X 
RETURN 

END 

SUBROUTINE INTCH 
DIMENSION A(15,15),B(15,15)PC1(15),C(15,15),0(15,15),E(15,15) 
DIMENSION Q(15s15),Q1(15,1.i)'O2(15►15),Z(15,15)+H1(15sl5) 
DIMENSION H2(15,1c) 
COMMON M.N,J1,Elr1.rI,J,Nl,A,B,C1rC,D,E,Q,Q1,Q2,Z,N3,N4.H1,H2,Y2.N5 

120 DO 121 I=1,N 
00 121 J-1,N 

121 C(I,J)=t3(I•J) 
I1=M-1 
I2aJ1 

122 C(I1:I1)z0.0 
C(12,12)=0.0 
C(12,I1)=1.0 
C( 11,I2)=1.0 
RETURN 
END 
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SUBROUTINE MULT(A,6tC+N,M,L) 
DIMENSION A(15.15)h8(15,15),C(15f15) 
D041ImlpN 
DU41J+~l+L 
SUM=0 
D042K=1:M 

42 	SUM%SUM+A(I,K)*B(K,J) 
41 	C(I,►J)aSUM 

RETURN 
END 

SUBROUTINE MATEQ(A,BsM9N► 
DIMENSION A(15915),B(15,15) 
DO 11 Ie1,M 
DO 11 J1  ,N 

11 	B(I,J)aA(I,J) 
RETURN 
END 

SUBROUTINE TRNSPZ(A,n,M,N) 
DIMENSION A(15,15),b(15,15) 
DO 14 7=1tM 
DO 14 J=1►N 

14 	B(J,I)=A(I,J) 
RETURN 
END 

C 	SOLUTION OF QUADR/TIC EQUATION 
1 	READ 2+A11,Al2:A2: ,A22 
2 	FQRMAT (4E16.8) 

Xg(0.5)*(A11+A22) 
Y1=(-0.25)*(Ail--A', 2)*(All-122)—Al2*A21 
IF(Yl)5'4,4 

4 	YZtSQRTF(Y1) 
GOT06 

5 	Y1=—Y1 
Y=SQRTF(Y1) 
R1-X+Y 
R2=X—Y 
Z*010 
PUNCH 3,R1,2 
PUNCH 3,R2,Z 
GOT07 

6 	PUNCH 3,X,Y 
Y=--Y 
PUNCH 3sX,Y 

3 	FQRMATIF14,8,F14.8) 
7 	G0T©1 

END 

77 
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C 	.IG1.NVALUZS ;3Y QR TWNSFORM METHOD 
DII4 ,NSIOUA(15,15).Rf't 15)tRl (151 ►IANA( 151,PRRta),P'RI IZl 
REAR) 21.N:IA 

21 	FOR'IAT 1215 ) 
READ 22'((A(IsJ}.JaliN)*I=.oNl 
PRINT 22.((A(I.j)sJ+~IrN)sIa1:NI 

22 FCRMAT(5E16.8) 
CALL HSUG(N,A9IA) 
PRIdT 23 

22 	FOkAAT(1UX.MATRIX A IN HE$SE NBERG FORM) 
PRINT 24,UUAII,Jl,Jwl,f):I*1,N~ 

24 	FORMAT 4 5E16*8) 
CALL ATEIGIN*A,RR,RIsIANA,IA) 
PRINT 25 

25 FORMAT (1 ,EIGENVALJE3 OF A MATRIX) 
PRINT 26 

26 	FORMAT U IiiX,RR,20XsRI ,, 
PRINT 27v(RR(t),fA4t)rx=l:N) 

27  FORMAT#2 16.81 
END 

?s 
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