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ABSTRACT

The work reported in this thesis includes the

development of a device, based on the method of electro
magnetic induction, for measuring turbulent velocity
fluctuations in water. This method for turbulence measure

ments in water was first used by Grossman (26) and later

studied by Day (14) and Gratz (25) at the University of
Wisconsin, where the experimental work reported here was

carried out. In the present work, the r.m.s, value of

u« fluctuations as well as their spectra were measured.

These measurements were made in a 2"dia. Incite pipe along

a diameter for proving of the equipment. Studies were then

conducted of the decay and energy spectra downstream of

various grids - singly as well as in combination.

The linear decay law, based on Kolmogoroff's

hypothesis has not been found to be adequate to describe
the decay behind a grid. Also it was found that a change

in initial conditions brought about a change in the decay

law as well. This can be attributed to the fact that the

similarity of spectrum of energy does not hold good over

a very wide range of wavenumbers. This deviation from

similarity was also experimentally verified.'



A generalised theory of similarity of spectra

and decay law was proposed by Goldstein, wherein account

was taken of the effect of Reynold's numbers and the

initial conditions on the law of decay as well as on

similarity of spectra. The postulates of this theory

have been confirmed with the experimental data obtained,

in as much as the results can be explained on the basis

of the above theory.
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CHAPTER - I

INT B-Q DUOnOH

1.1 Preliminary Remarks :

Turbulence is a phenomenon encountered in nearly

every field where fluid motion is involved. Though a famili

ar notion, turbulence cannot be defined easily, so as to

describe its detailed characteristics. Various definitions

have been suggested from time to time, to include the essen

tial characteristics of turbulence. Hinze (28, pp. l) sums

up the definition as 'turbulent fluid motion is an irregular
condition of flow in which the various quantities show a

random variation with time and space coordinates, so that

statistically distinct average values can be discerned'.

Thus randomness must be associated with the flow for it to
be turbulent. Any motion described in terms of periodic
functions is not turbulent.

1.2 Classification of Turbulence :

Turbulent flows may be classified according to
the manner in which they occur or according to their charac
teristics. Turbulence can be generated by friction forces
at fized walls or by the flow of adjacent layers of fluids
with different velocities. There is, however, a distinct
difference between the types of turbulence generated in the
two cases. The turbulence generated and continuously influ
enced by fixed wails is generally known as 'wall turbulence'
while the turbulence in the absence of walls is designated as
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'free turbulence'.

Depending on its characteristics, the turbulence

maybe either 'homogeneous' or 'non-homogeneous'. Homoge

neous turbulence has the same quantitative structure at all

points in the flow field i.e. its characteristics are inde

pendent of the coordinate position. Homogeneous turbulence

is further defined as being 'isotropic' when the character

istics are independent of coordinate direction also, other

wise it is 'anisotropic'. If the turbulence structure is

dependent on coordinate position, we have a non-homogeneous

turbulence, which by definition is anisotropic also.

1.3 Equations Governing Turbulent Flows :

The earliest worker to have noticed the exis

tence of two modes (laminar and turbulent) of flow appears to

be Hagen (52), who found that a change in flow characteris

tics invalidated his equation for resistance to pipe flow.

It was, however, Osborne Reynolds (52) who first gave the

specific formulation of a similarity parameter to define the

mode of flow . The parameter, known as Reynolds number, was

first described by him in a paper in 1883 and comprised of

a length, velocity and kinematic viscosity - uL/^> . He

found that the onset of turbulence is associated with a

definite value of uL/v) . It is interesting to note that

the word turbulence was first introduced to define the flow

beyond the laminar range by Lord Kelvin in 1887 (52). Be

sides the formulation of this similarity parameter,

Reynolds also introduced the idea of time averaged (mean)
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velocity and fluctuations in turbulent flow. He assumed that

the instantaneous velocity u may be separated into a mean

velocity . u. and a turbulent fluctuating velocity u' (see

Figure below) and that the instantaneous fluid velocity

a

u = u + -u'

satisfies the Navier-Stokes equations for a viscous fluid.

On the above concept, and using special averaging rules -

known as' Reynolds rules of averages - he extended the Navier-

Stokes equations and formulated a set of equations called

Reynolds equations, applicable t0 turbulent flows. These

differ from the Navier-Stokes equations only in the presence

of additional terms added to the mean values of stresses due

to viscosity. These additional terms are called the 'Reynolds

stresses', 'Eddy Stresses', or 'turbulent stresses'. The

Reynolds equations for an incompressible fluid take the form;
p(aui +u. 9"i ) __ a£_ +a , **k .pT-*-^

3 ax"- «I axD T ax, JVj )+1±

(1.1)

at

where p - mass density of the fluid

u.
i

mean velocity of flow in x. direction

p mean pressure

, /'- - coefficient of viscosity of the fluid
u. and u'.-

1 d turbulent velocity fluctuations in x
i

and %. directions respectively.
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F"^ - body force in x. - direction.

The terms P u! u' represent the turbulent stresses,

The Reynolds equations are very valuable to explain

the existence of eddy stresses in turbulent flow, but at the

present time it has not been possible to solve these equations

for more than a very limited number of problems. Further

hypotheses about Reynolds stresses have to be made in order

to obtain some definite results from these equations.

1,4 Phenomenological 'Theories of Turbulence :

One set of theories, known as the 'phenomenolo

gical' or 'semi-empirical' theories of turbulence is based

on making further assumptions regarding Reynolds' stresses

and thereby studying the mean velocity distribution in turbu

lent flows.

Boussinesq (48), a contemporary of Reynolds, was the

first t0 work on the problem of making further assumptions

about Reynolds stresses as stated above. He introduced the

concept of an 'apparent' or 'turbulent* or 'eddy' viscosity

0m , such that

-u{ul -em (jS + j^L ) (1.2)
" J ax. ax.

j i

According to Boussinesqs' concept, Gm was a

constant scalar quantity , Later it was found, however, that

6m varied with flow conditions and could not be looked upon

as a fluid property analogous to the kinematic viscosity p .

-aven in the case of atmospheric turbulence, where this concept

could be applied with some degree of success, §m was more
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correctly described as a tensor of the second order rather
than a scalar.

Another important advance towards formulating a
semi-empirical theory of turbulence was made by Ludwig

Prandtl (48) in 1925. By analogy with the kinetic theory of
gases, he postulated that as the masses^fluid migrated later
ally, they carried with them the mean velocity (and hence the

momentum) of their point of origin. This momentum was assumed
to be preserved through alength j/> called the 'mixing lengta.'
Working on this premise he gave for turbulent shear stress
the expression

T =f/2 I5- IS- (1.3)

for nearly parallel turbulent flow.

Just as in the case of Boussinesq's eddy viscosity,
the mixing length has to be specified before proceeding further
with the analysis. The main advantage of this approach being
that it is generally easier to make aplausible assumption for
'f which is just alength than for em which is the product
of alength and avelocity. In fact the mixing -length concept
can be considered as an assumption regarding the make-up of e

j— m

2 ^ui
Gm = /( IdX; ' .......(1.4)

Taylor (59) reasoned that there was no physical
justification for assuming conservation of momentum in turbulent
fixing process. This is based on the fact that due to pressure
fluctuations to which each lump of fluid is subjected during
its path over the distance i/», the momentum of the lump will
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not remain constant. Taylor suggested the conservation of

vcrticity instead of the momentum and derived the expression,

d2u
ax, =t-fl^lX 7^ (l-5)
1 2 dX2

He developed the theory to the three-dimensional

case also in his 'generalised vorticity transport theory'

and 'modified vort ic ity transport theory'.

Von Karman (23), in what is known as Karmans'

similarity hypothesis, assumed the local flow pattern to be

statistically similar in the neighbourhood of every point

with only the time and length scales being different. For

parallel mean flow he gave

2 du" 2
? -fX <*£-> (1.6)
where '/' is given by

,2

dX2 / dX2
it - * i fi r/ i -£• i (i.7)

k being the Karman constant, having a value of

0.4 found experimentally.

Improvements over the mixing length theories given

above have been made by Prandtl (48). , Goertler (48), Von

Karman (68) and Lettau (4i). Besides, Reichardt (48)

and Baron (48) have proposed theories which are inductile

in nature as against the deductive nature of mixing length

theories.

The above theories have been subject to con

siderable criticism, mainly because while these predict

the mean velocity distributions in many practical problems
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successfully, they do not give any '.nsight into the mechanism

of turbulence. Discussions regarding them have been given

by Goldstein (23), Lin and Teheh (45) Pai (48), and others

(41,28).

1.5 Statistical Theory of Turbulence s

In order to gain an understanding of turbulent

flow in general, the fields of turbulent fluctuations must

be studied in detail rather than studying the mean velocity

distributions alone, Since the turbulent fluctuations are

random in nature, the application of the methods of statistical

mechanics seems most logical for the study of turbulent

flows, The origin of the modern statistical theory of tur

bulence lies in the poineering work of G.I.Taylor (60,62) who

introduced the correlation between the velocities at two

points as one of the quantities needed to describe the

turbulence. He assumed the turbulence to be statistically

homogeneous and isotropic in order to simplify the analysis

and described measurements which showed that the turbulence

generated downstream from a grid in a wind tunnel was appro

ximately homogeneous and isotropic.

Further important contributions to the subject

were made by Taylor (61,63,64) in 1938, He demonstrated the

skewness of the probability distribution of the difference

between the velocities at two points and also the existence

of an interaction between components of the turbulence having

different length scales. Another of his contributions was

the introduction into turbulence theory of the result that

the Fourier transform of the correlation between two veloci-
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ties is an energy spectrum function in the sense that it

describes the distribution of kinetic energy over the various

Fourier wave-number components of the turbulence. This con

cept has proved to be of immense value for further work in

this field.

Von Karman (69.) perceived that correlations

between velocitj.es at two (or more) points were tensors,,

Karman and Howarth (?l) were able to show that for isotropic

turbulence the two point correlation tensor could be expressed

in terms of .a single scalar. They also gave the well known

Karman-Howarth equation connecting the double and triple

correlation functions, Though the idea of using the Navier-

Stokes equations to relate mean velocity products of different

order had been advanced by Keller and Friedmann (4) in 1924',

they could not proceed f r without the simplification of

homogeneity and isotropy. •-

Robertson's theory of invariants (61), wherein he

showed how an isotropic tensor of arbitrary order could be

expressed in terms of the known invariants of the rotation

group, v/as another big advance in the development of the kine

matics of isotropic turbulence. The came methods have been

used to analyse the kinematic of axisymmetric turbulence.

As already mentioned, the concept of the energy

spectrum function, which is the Fourier transform of the

correlation function, was introduced in turbulence by Taylor,

The spectral approach has proved to be very useful in studying

many problems connected with dynamic aspects of turbulence.

The turbulent kinetic energy per unit mass of flow in any
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/ 2
direction u can be considered as consisting of the sum

of contributions from fluctuations of all frequencies . If

E' (n) dn be the contribution of frequencies between n and

n + dn to u! , then

/ E (n)dn
o 1 1

/2
u

and / Fn(n)dn = 1

where V(n) = E.^ (n) / fl?

The function F (n) is known as Taylor's normalised

spectrum function. It represents the contribution of each

frequency n to the total kinetic energy of flow.

While Taylor had introduced the spectrum function

for one-dimension only, the concept has been extended to the

three-dimensional case as well . Thus for the study of any

turbulence field a study can be made either of the correlation

tensor or of the spectral tensor.

The dynamic equation giving the change of spectrum

with time can be obtained from the Navier-Stokes equations

(or the Reynolds equations), it takes the form

ff + W = - 2v k2 E ,

where E is the three-dimensional spectrum function (related

to double velocity correlation) and W is a quantity represen

ting the transfer of energy among various frequencies (related

to triple velocity correlation), V is the kinematic viscosity

of the fluid and k the wave number given by k = 2n n
u
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where n is the frequency and u the mean velocity of flow.

A similar equation is obtained for the correlations, involvv-

ing,a' correlation of n ,order and another one of (n+l)t:!:i

order.

One cannot proceed much farther with the above

equation without more specific knowledge of W. One of the

approaches in solving the above equation, therefore, has been

to postulate or assume some appropriate form for 9, Such

forms have been suggested by Qbukhoff, Kovasznay, Heisenberg,

and others (4,28,44).

Another approach for obtaining information about

the change of spectrum is based on the concept of 'self-

preservation' or 'similarity' introduced by von-Karman

(2,69,72). According to this concept the shape of the

correlation function or the spectrum remains similar in

e-ourse of time. Assuming that similarity of spectrum holds,

some conclusions about the functional form of E(k) can be

drawn from more basic physical principles such as dimensional

considerations. However, observations indicated that the

spectrum function does not preserve its shape over the whole

range of wave numbers. The assumption of similarity during

decay of turbulence with time , therefore, needs a sound

physical basis in order to understand its limitations. The

required basis for one kind of similarity of the turbulence

viz., the small scale structure, was suggested by Kolmogoroff

(36,37,38) as well as by Obukhoff, Ons.gger, and Von

Weizsacker (4,28) in what is known as the 'equilibrium

theory'. The mechanism of large scale structure of turbulence
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was similarly discussed by Lin (43) , Batchelor and -roadman

('-5) and Batchelor (3).

The various proposals for assuming the non-linear

transfer of energy across the spectrum alongwith the similarity

hypothesis can ba used to determine the spectrum function

completely and suefc solutions have been given by Chandrasekhar

(12), Proudman (49), Gin (44), Goldstein (22) and others.

Various laws for decay of turbulence have been proposed on the

basis of the above concepts and a detailed discussion can be

found in the bocks by Batchelor, Hinze, Lin or Pai (4,28,44,43;

The theories of equilibrium and similarity spectra

and the decay laws obtained therefrom, however, apply under

such conditions where the assumptions underlying the theories

are fulfilled. It is, therefore,quite necessary to know

under what condition will a particular theory fail to give

correct results and to what extent. Goldstein (22) has proposed

a generalisation of the theory of similarity and equilibrium

spectra and derived a general decay law therefrom. In 3

opinion the de«*ay law depends on the initial conditions as

well as the Reynolds number.' The theory has however, to be

supported by experimental evidence which as yet is scanty.

A more detailed discussion of the statistical theories of

turbulence is presented in the next chapter.

1.6 Measurement cf Turbulence :

On thg experimental side, a large number of

measurements of turbulence - both isotropic and anisotropic -

have been made. Q le of the first measurement^- to be made was
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of the decay of kinetic energy of a grid-produced turbulence
which has been repeated many times under different conditions.
Measurements have also been made to test the assumptions under
lying various theories, to determine the shape of the corre
lation and spectrum functions and the micro scales and inte
gral scales. A detailed discussion of the measurements and
their comparison with theories is not possible here and refer
ence may be made to the works of Dryden and Coworkers (15,16,
IV,18), Hall (27), Simmons and Salter (54,55) Batchelor and
Townsend (6,7,8), Baines and Peterson (i), Stewart and
Townsend (5l), Grant and Nisbot (24), Tsuji (66,67), Sato(53),
Frankiel (20,2l), Laufer and coworkers (42), Von Karman (70,73),
er to comprehensive reviews in books on turbulence (4,28,44,48).
The measurements have been made principally with the hot wire
anemometer in awind tunnel. The hot wire anemometer, first
originated by King (34), has been developed to a great extent
wver the period of years and is now more or less a standard

instrument for turbulence measurements in wind tunnels. Along
with appropriate electronic circuits, the hot wire is capable
of undertaking varied types of measurements, examples of which
Cin be found in Papers by Townsend (65), ~orrsin (13),
Hubbard (29) and Dryden and Keuthe (28),

While quite successful for measurements in wind-
tunnel, the hot-wire anemometer is less suitable for use with
liquids because of its delicate construction and the effect
°f "^ bUbblGS °r -Pities in water on the calibration of
the hot wire. Various ir^of , jarious investigators have tried other methods
for turbulence measurements in i,"n,nM0 U1in liquids with varying degrees of \
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success. None of them can, however, be said to have reached

a degree of perfection like that of the hot wire for air.

The measuring techniques for water are thus still in the
development stage.

1.7 The Problem :

As already mentioned, information regarding the
shape of spectrum during decay can be obtained on the basis of
similarity hypothesis and equilibrium theory, and laws

governing the decay of turbulence derived therefrom. A linear

decay law is obtained if one starts with Kolmogoroffs' hypo
thesis. This type of decay law (linear) has also been found
to conform with experimental data obtained by various investi
gators. Goldstein (22), however, proposed ageneralisation
of the equilibrium hypothesis and also ageneralised decay
law. According to this generalisation, the similarity hypo
thesis is probably only asymptotically correct for arange of
large wave numbers, the range depending on initial conditions.
Achange in initial conditions should therefore bring about
changes in the law according to which any grid-produced turbu-.
lence decays.

The present work is a continuation of a project
started at the University of Wisconsin in 1960, with the
purpose of building a device for measuring turbulence in

water in duct-flow, using the method of electromagnetic
induction. The capability of this method for turbulence rneasu-
remencs in water h,s already been demonstrated by the work
of Grossman (26). In principle, the method consists of
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measuring the e.m.f. fluctuations induced in the flow, on

account of turbulent velocity fluctuations, when the duct

carrying the water is placed in a strong magnetic field. The

e.m.f. induced due to any component of velocity fluctuation

is in a direction perpendicular to both the fluctuation

direction and the direction of the magnetic field. The

earlier workers on the Wisconsin Project include Day (l4),
and Grata (25).

The phase of the work reported in this thesis

comprises of the following :-

i) To develop further the measuring device, in order to

improve the frequency response of the system, specially

in the low frequency ranges. Certain changes in the

system, including the addition of a multiple channel

F.M. taperecorder and an operational amplifier im

pedance-isolation circuit, had to be made to this end.

ii) Study of the distribution and spectra of u' - fluctu

ation in a pipe along any diameter and their compari

son with published results to check the performance

of the system,

iii) Study of the decay of kinetic energy and U^ -spectra
downstream from various grids and the effect on these

changing the initial conditions. The change in

initial conditions was effected by inserting one
grid upstream of the other at various distances.

Using .water as a fluid the above studies were carried

out in a 2 Inch diameter Incite pipe with three grids. The

grids had different mesh sizes but the same solidity ratio.

~:o:-
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OHAPTBR - II

^I^iSJ!1^^ THEORIES OF TURBULENCE

2.1 Preliminary Remarks :

As mentioned earlier, due to their complexity and

random nature, the details of turbulent flow require

statistical description. Intensive studies have been

made for isotropic homogeneous turbulence, because of the

comparative ease with which it can be treated mathematically.

Less is known of anisotropic homogeneous turbulence and

very little is known of non homogeneous turbulence. The

basic concepts of the isotropic case, however, gradually
find their way into the study of other types. It is pro

posed to deal with some of these basic concepts in a some

what detailed manner in this chapter.

As in any other case, there are two aspects of tur

bulent motion to be studied - one the mathematical descrip
tion needed to represent the turbulent motion at one in

stant in a statistical manner, taking into account conti

nuity and the symmetry conditions that may exist (kinematics

of turbulent motion) and the other the variation of this

statistical representation with time (dynamics of decay
of turbulence). These two aspects can be studied either
in terms of the correlation tensor or the spectral tensor
and the results of one transformed to the other because of
the Fourier transform relationship between the two.

The discussion in the present chapter will

mainly comprise of the theory for homogeneous isotropic
turbulence.
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2.2 Kinematics of Homogeneous Turbulence :

In order to develop the theoretical concepts used

for the description of the homogeneous turbulence we need to

define the various types of correlations or the spectral

tensor and also show the relationship between the two. The

correlations can be Sulerian or Lagrangian depending on the

method of description. While Lagrangian correlations are

useful for a study of diffusion phenomena, the major develop

ments in the field of statistical theory of turbulence have

been in the study of Euierian correlations. This discussion

will be limited to the Euierian space and time correlations

only,

a) Euierian Correlations:- Some of the commonly encountered

Euierian correlations are defined below. The definitions are

general, without any consideration of the type of turbulence.

The restrictions of homogenity and isotropy become necessary

for further developments.

Double Velocity Correlation:- The double velocity correlation

(Q,- Jab is defined as
i>J -^

('3-; «) a -r • (u! ), (ut )- . .th
*-ti a*15 i A. 3 13 as ij component of a

second order tensor

describing the corre

lation of i Xivelocity

fluctuation at A and

•th
j velocity fluctua

tion at B (2.1)

The related correlation coefficient is given by

&< J* i - (Ui}A ^j}B
1,3 -;i)^

/T^fT^ ~ (2.2)
1 A ^ B



27

A special case exists when A = B , then

(Q< 4)1 . - u!-i,jyA,B - ui uj 'lypifying the Reynolds stress
tensor.

Higher velocity correlations can also be defined in
a similar manner as also the double correlation involving
one velocity component and pressure or any other scalar. In

the latter case, it is a first order tensor.

Euierian Time Correlation :~ The Euierian time correlation is
ordinarily written as a coefficient.

Rij(t) a Ul <f> uj CT -t) = ij"Gh component of a second
a " •• —h order tensor describing the

Urf (T) U'2(T -t) . . th
-1 J correlation between the 1

component of velocity fluctua

tion at a fixed point at time ~

th
and the j component of the

velocity fluctuation at the

same point at time (J - t)

...... ..(,<,. o )

The one dimensional coefficient with the added

restriction of statistical steadiness become
Mt) SB

3

"i (T) u! (T-t)
•11•••1(Ct 4j

U

b) Micro and macro Scales of Turbulence : If the restriction
of homogeneity is placed on turbulence, the double velocity
correlation Q.. is f0und to have only three non-zero comp
nents, out of ,vhich two are equal. Hence only two correlati
coefficients need to be considered. They are

-u±) = 4(?i)^ (5,+x.,)
—.—_ z , = double longitudinal

—s— correlation
up coefficient (2.5)

0-

on
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and (xo) = u» (?Ju'(F, +xj

u.

=s double lateral correla

tion coefficient. ... (2,6r)

Where X-, and X0 are coordinate axes and the points

£ and C. + x-, are separated by the aistance x-, as shown

in Figure below, and similarly for ^ and §+ x„ .

X2.>

U2V?2-X2)"

U2^2)

C2^X2

&CL1
Ci -|

U1 (Ci)
— X1

ui'(£i+Xi)

The initial shape of the correlation curves f(x,)

vs X-, and g(x?) vs x approaches chat of an inverted para

bola. Taylor (60) argued that the intersection of this para

bola with the X, or 2L -axis gives a measure of the average

size of the smallest eddies, Thelength, ^~ cr "X sof g

obtained is known as the'micro' or 'dissipation' scale.

1.0

\

\

*(x0

f(xx) 1

Y\
OSCULATION
PARABOLA

xtr/x aud g(xg) as; 1 *>/>
P2

(2.7)
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The above, alongwith equations (2.5) and (2.6) after

some manipulations give

and

1 1 /32f>i 1 . _ i f a S )
\~2 ~ " 2 l7~2; 5 , 2 2 V—2\ 3xi xl=o g 9Xg x2=o

:.(2.8)

__1_

V

1

( °ul )
1 H -I- 9UQ 2

1 x-^o g 2ug2u
1 2

(2.9)

x2=o

The macro or integral scale is a measure of the

longest connection between velocities at two points in a flow

field: This is defined as

_. /• g(xc) dx.
' *£ = J" f(x )dx, and O To

o (2.10)

If f(xx) = 0 at x a x*, then/if = x* provided
the correlation curve is rectangular. Otherwise, which is the

actual case, Af and x* are different.

In a manner similar to the above, the micro-and

macro-Euierian time scales can be defined as follows :-

IU(t) a- 1 - t2/Cv (2.11)
Ei J~i

2

whence __!__ _1_
1

'E 2u
1

and
E

J Pp (t) dt

)

t=o (2.12)

(2.13)

A general relationship between the Euierian space

and time relationship for any turbulent flow is difficult to

predict. However, if the homogeneous field being considered
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has a constant mean velocity say U, in the x-jg-direction and

if u. >> u' , we can make use of Taylor's hypothesis :
11 g

a/at B= - u, ——- .......(2.14)
1 3x

which gives us ;

f(xx) a' Eg (t) .......(2.15)

and Af B % C7E ••• (2.16)

Such conditions, as are needed for the above appro

ximations to hold fairly well, exist in the case of isotropic

homogeneous turbulent flow generated by grids.

c) Correlations in Isotropic Turbulence :- If in addition

to homogeneity, the conditions of isotropy are also imposed

on the turbulence, the correlations can be studied in more

detail. The deduction of correlation tensors in isotropic

turbulence is greatly facilitated by the theory of invariants

as expounded by Robertson (5l), He showed that an isotropic

tensor of arbitrary order could be expressed in terms of the

known invariants of the rotation group..

In the case of isotropic turbulence, since there is

no preferred choice of the coordinate system, the correlations

must be basically characterised "oy the directions of the

velocity components relative to the vector joining the two

points A and B at which the velocities are considered . We

can in this case define certain correlation coefficients as

shown in the sketch below.
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i(U2')A
Al—_

2'A((ui2)
ii

<i1

(U^JA B

A-L_VT , ^Ui')B 6(rj

Atl^ t(^')B ^;
(Ui) A

Making use of the Robertson's theory of invariants,

the double velocity correlation can be expressed in terms of

f(r) and g(r), and the expression turns out to be
••••.-;-- f(r)-g(r)

(QiJ = u'^ ( . , r±r 4. g(r)6 )
J A.B r4 J lj

C? 17)• s » * • 1 \ t/« i I /

= U' =11 SB U'where u' = u' =11' = u' from iootrooy
12 5

r. B= (x. ) - (x.)
1 A x B

and 6. . is the Kronecker delta.
10

Relation (2.17) was also derived by Von Karman(71, :

direct calculation. Karman and Howarth (7l) also deduced

the relationship ;

o- - f + 2L. 2Ji fo 1ft)

which v/as experimentally verified by MacPhail (47).

Thus from equations (2.17) and (2.18) it can be

seen that in homogeneous isotropic turbulence, all the correla

tion functions of the second order can be expressed in terms

of a single correlation function f(r) or g(r)

.also for this case one obtains ;

>> f == X T2 ,..,,.,..(2.19)
g

In a manner similar to above one can obtain for the

triple velocity correlation ;
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(sik,j} =(fu'2) ( i£-i^ar.r.r ,6..r n
'J A,B r3 i g k ljV

q

lit -i.
•'• r

* ° -i r. ^ ) / 9 9ra

where h, k and q are related as follows

k =• - 2 h

1 = ~h-fi- ) (2.21)

Thus the triple correlation can again be expressed

in terms of a single scalar function.

The same techniques may be applied for higher order

correlations also . Third order correlations were measured bv

Townsend (65) , Stewart (56), and Kigtler, O'Brien and
Corrsin (44).

d) Spectrum of Turbulence :- Taylor (6l) was the first to
introduce the use of spectrum in turbulence theory and obtain

the relation between the correlation function and spectrum
function in the mathematical form,

The kinetic energy of the turbulence fluctuations can

be analysed according to its distribution over the various

frequencies accuring in these fluctuations. Considering a
quasi-steady field of flow, there exists a constant average
value of u' which can be considered to consist of the

sum of the contribution of all frequencies n. If R»(n) dn I

the contribution to u'2 of the frequencies between nand n+dn
then one has

CO

J L' (n) dn = u'2 (o 99\

be

If F1(n) = Ej_ (n)/ uj2

^en, J p (n) dn == 1 i9 PV(
1 imh.i.^,^;
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where P^n) is the normalised Taylor's one dimen

sional spectrum function, as shown by Taylor, this function
is related to the Euierian time correlation as follows :-

oo

PE(t) =/ P (n) cos 2Ttnt dn v2.24)
o

oo

and F1(n) =, 4/ Hj(t) cos 27int dt ,.....(2.25)
o

i.e. one is the Fourier transform of the other.

Taylor made spectrum measurements, behind a grid in

awind tunnel, of the velocity fluctuation as registered by a
hot wire fixed in the wind tunnel. This gives a fluctuation

in time, but his assumption "the sequences of changes in u»
at the fixed point are simply due to the passage of an un

changing pattern of turbulent motion over the point" made the

variation essentially same as that in space. The above assum

ption has been represented mathematically by eqn. 2.14, When

this condition holds, the observed spectrum corresponds to a
one-dimensional fourier analysis of the field of turbulence in
the direction of the flow. Equations (2.14), (2.15), (2.24) and
(2,25) can then be combined to connect the observed time
spectrum with the space correlation function, as follows :_

f(xl> = /\(n) cos 2E?. dn
o un
oo 1

Vn) - 4/ f(x) cos 2%nx dx
o —

ul
......^2. Cl )

ilso.

SS "i(n) •*33--i Af (2.28)
p oo

and 2n

~~2 J n"F (n)dn B 3 .._ (2.29)
f u2 rE2

The above relationships are for the one dimensional
spectrum only and hold saaA vihnti fin- ^i^ • iu ^ooa wnen tne J-low is homogeneous with
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e

a constant mean velnM+w n s\ ,. i ,„ „ . .vexoci-cy U^ >> ux as mentioned earlier whil

obtaining eqns.(2.i4) and (2.15).

Since turbulence is actually three dimensional, its
spectrum should also be three dimensional. The Taylor spect
rum is just a one dimensional cut of the spatial spectrum.
Aharmonic analysis in three dimensions tnen gives the energy
spectrum tensor. Introducing the wave number k± instead of
frequency n, such that k]_ =, 2im/ u± , one has the Fourier
transform relations between the correlation and spectrum
tensors,

-J-oo

VX1> Z2>Vt} "J^ dk^dl^E. ,(kljk2,k3,t)exp

K(klXl +V2 +V3 } 5
-f«o

ana E..Uljk2,k3,t) =J_ //j ax^xgdx^. .(Xl,Xs,Xr5)t) exp.
O^ _oo

j-1(1^X^X^3X3) I (2>30)
In the case of isotropic turbulence, the correlation

tensor can be expressed in terms of two scalars fand g. Since
* and g are different, the one dimensional spectrum func
tions F^) and F2(kx) corresponding to them are also dif-
ferent, though

00 00

{ dkr2(ki} f dkiW • '̂2o

0

-lso ,for isotropic turbulence one can introduce
the wave number kand distance rand get from equation (2.30)

Q±i(r,t) = 2/ dk sin kr
o ~5n— Mk,t)

and E/. .* = 1
00

(k,t) -%J dr-kr sin kr 3u(r,t)W (2.31)
where E (k;t) is the three dimensional energy



T>5

spectrum function such that

E(k,t) = 27ik2E. .(k,t)
oo ii _____

and / dkE(k,t) = 3/2 u'2 (2.32)

The relation between E(k,t), F-^.t) and Fg(k,,t)
can be shown to be

and

+•

Kk.t) 1/2. k ;_____.,t) . x/ _ »'i(*i,*)
i 2 i

akx 9kq
.. .i . . . . . . \ C , OO /

VV - 1/2. (F^k^ -k]_ fW j
l ' 3^ ) (2.34)

Thus the measurement of ^(k^ alone can give the
three dimensional spectrum function for homogeneous isotropic
turbulence . The concept of spectrum of turbulence has been

the subject of many theoretical and experimental studies
(31,32,33,43).

2.3 Dynamics of Homogeneous Turbulence :

The dynamics of turbulence, that is the variation of
the statistical representation of turbulent motion with time,
is governed by the Navier-Stokes equations, there being no
average motion.

au^ 3u!
— + u'- „J_ i ep- o
9t d 9x - " -- *»^u» ....(2.35)

3 f a>T~

The above equation can be used in the investigation
of turbulent motion in one of the following two manners.

The first approach is to obtain an explicit solution
of eqn. (2.35) . If the initial conditions are given numeri
cally, the equations can be solved for arealised field by a
numerical step by step integration with respect to t. Such
a procedure is very laborious and unlikely to reveal the
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fundamental features of a statistical problem. However, in the
absence of awholly successful alternative method it may be
worthwhile to obtain solutions for realised fields in some
sample cases. Such an approach has been used by Emmons (4)

for the hypothetical case of a two dimensional turbulent flow'
between two fixed parallel planes.

The second method is to convert equation (2.35)

into a set of equations for the variation of statistical

quantities with time and then to solve them in terms of the

statistical specification of the turbulence at the initial

To obtain the equation for the change of double-

velocity correlation with time, we can write eqn. (2.35) for
point: A and B, multiply the equation for A by (u ') and -

that for B by (UJ) ,add the two and take an average. The
pressure term vanishes identically from the condition of in-

compressibility and the equation reduces to

%tr\ \- 2vx: Uij;A B .......(2.36)

Thus the equation for change of double correlation
contains the triple-correlation in it. Similarly the equation
for triple correlation contains the fourth order correlation
and so on.

The equation describing the behaviour of energy
spectrum with time and space coordinates can be obtained from
eqn. (2.36) and is

d-|- S.. (kljVVt) =W..(VVVt) -2-,kV.(^^^)
(2.37)
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where W is connected to the triple correlation and
represents th. transfer of energy among various frequencies.

In the case of isotropic turbulence, since the
double ana triple correlations can be expressed in terms of a
single scalar, it should be possible to reduce eqn.(2.36) to a
single equation^ Karman and Howarth (54) foundit to be •

-|_ U'8 f)+2(u.2)3 2(|| ♦ Jb ).2a~z af/ 4_,F)
6r r dr

. ., (2.38)
a direct experimental verification of the above

equation was made by Stewart (56).

Also in the isotropic case, eqn. (2.37) can be
written as follows :

— S(k>t) =W(k,t) -2,-k2E(k,t) .,.....(2.39)
where W(k,t) = 27ik2 W (k,t)

Eqn. (2.39) also shows that
oo

S W (k,t) dk = o
o

which means that no energy is lost or generated
while it is redistributed among various scales. The rate of dis
sipation is obtained from eqn. (2.39) by integreSLng „ ^
respect to k from k = 0 to k - »

p du'^ °° .-, „ r°° p

=~ -r - - / If ak =-2 '• s k* ako °t 0

(2.40)

Here again, without amore specific knowledge cf W,
rt as not possible to proceed much further with eqn. (2.39)
However, it has been found possible to obtain seme plausible
formulas connecting W(k f) 9^ t?/u ±\ig »VXft; and E(k,t) and make reasonable
deductions.
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As seen above, each nth-order equation obtained for
describing the dynamics of turbulent flow contains moments of
order (n+l) as adirect consequence of the non-linearity of
the Havier-Stokes equations. Tne number of Variables is thus
more than the number of equations by one.

Ihe only case where it is possible to solve eqns.
(2.33) or (2.39), directly.!- the limiting case where the
effect of the 'convective' term represented by hor Wis neg
lected i.e. the description holds good for the asymptotic
behaviour of the turbulence for dominating viscous effects.
Ihe solution in this case is

f = exp (- r2/8i>t ) (2.41)
or

E(k't} =E<k'V exp(-2,k2(t-V ] (2.42)
indicating that f has the shape of a Gaussian

error curve, which was found to be approximately true in the
final stages of decay by Batchelor and Townsend (8).

A general feature of the dynamic equation, which
Shown by Loitsianski (28) by taking the fourth moment from
each term of eqn. (2.38) is that

uf f r4f(r,t) dr . J
o

is an invariant under the assumption that

lim (r4 af )
r-**> = 0

or

and lim'
r-oo ( r k(r) < = o

(2.43)

was

The integral (2,43) is 'known as 'Loitsianskis'

invariant! The interpretation given by Loitsianski is that
the integral gives the total amount of disturbance caused by
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the turbulence generating system. Some doubts on the in-

variance of the Loitsianskii's integral have, however,

been cast by Batchelor and Proudman (5).

As already indicated, the non-linearity of the

dynamic equation does not allow a direct solution to be

obtained for eqns. (2.38) or (2.39) , The approaches

for solving eqns. (2.38) or (2.39) can be divided into two

broad classes. In the firstclass, models of dynamical pro

cesses are postulated on physical grounds. Theories of Kolmo-

goroff (36,37,38) Onsager (28), Von Karman and Lin (73)
belong to this class.

In the second class there are two approaches.

One consists of neglecting moments of order n + 1 in equations

for moments of order nu The works of Chou and DeiBaler (28)

belong to this approach. Another approach is to relate fourth

order moments to second order moments on the basis of a normal

probability distribution and thus close the moment equations.

Proudman and Reid, Tatsumi and Ogura (4,28) have worked on
this approach.

In the case of eqn. (2.39) making some assumption

for W(k) in en explicit functional form renders it amenable

to solution. Such theories (physical transfer theories) have

been proposed by Obukhoff ,Kovasznay, Heisenberg, Ohandrasekhar
and 7on-Karman (4,28,44) and Goldstein (22).

a) Physical Considerations :- A physical model for turbulent
-energy production and dissipation at high Reynolds numbers

was suggested by Kolmogoroff (36,37,38). According to him the

ooundary conditions determine the mechanism of turbulence
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production from the instability of the mean flow. Eddies

of small wave numbers (large eddies) produced from the in

stability of the mean flow produce eddies of higher wave

number through inertial interaction and these in turn break

down into eddies of much higher wave number. Turbulence energy

thus cascades from eddies of low wave numbers to eddies of

high wave numbers, the viscosity effects also becoming more

and more important with increasing wave number. This cascad

ing of turbulent energy continues until wave numbers of eddies

are so high that not ail the eit rgy is transferred to the next

higher order, but part is di^s^-ted into heat by viscous

forces.

Eor the large scale structure of turbulence (eddies

of small wave numbers) Lin (44), making use of the Loitsianski's

invariant, snowed that the principal part of the spectrum

function remains unchanged. Thus the large scale motions

are permanent in as far as the time dependence of E(k) dec

reases with decrease in k becoming zero at k = 0.

Regarding the small scale structure of turbulence,
Kolmogoroff reasoned that at high Reynolds numbers, the
range between wave numbers of large eddies and of those

dissipating all their energy by viscosity is large. In this
case in the energy cascading process the region of eddies of

high wave-numbers should be far enough removed from the pro
duction region so as to be independent of the external condi
tions producing forces that generate the initial largest eddies.
Therefore, in any turbulent field at high Reynolds number, a
domain Q can be defined which is small enough that it will

possess local isotropy. The domain Q will contain eddies of
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high wave numbers describing a motion that is isotropic and

steady state.

Obviously, the fundamental quantities upon which the

structure of motionin the domain 4 will depend are the mean

rate of dissipation of energy pv.r unit mass of the fluid 6

(which determines the intensity of the energy flow in the

cascading phenomenon) and the kinematic viscosity V . Based

on these considerations Kolmogoroff made his first hypothesis.

" At sufficiently high Reynolds numbers there is a

range of high wave numbers where the turbulence is statistically

in equilibrium and uniquely determined by the parameters 6

and ..! . This state of equilibrium is universal" (28).

When this equilibrium range is sufficiently wide,

it is further argued that the lower wave number components

in the equilibrium range will contribute so little to the

total viscous dissipation that a subrange will exist in which

the properties will be determined solely by G. Since in this

subrange the inertial transfer of energy is the dominating

factor, this is called the inertial subrange « This farms the

basis of Kolmogoroff's second hypothesis :

" If the Reynolds number is infinitely large, the

energy spectrum in the inert ial subrange is independent of.;,

and solely determined by G" (28).

The concepts introduced by Kolmogoroff in his two

hypotheses can be used to determine the shape of the energy

spectrum function E(k) in locally isotropic turbulence. Since

turbulence in this region is independent of external condi

tions, any change in the length scale and time (or velocity)
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scale of turbulence can only be a result of the effect of

Parameter 6 and y . Prom dimension,! arguments we obtain

for length scale -,. = ( ^ )lA ^^
for velocity scale v , (,e/A (2<4s)

and dimensional considerations also read to a spectrum func-
tion of the form

. N 1/4 5/4
7 *' * ( ; fc) (2.46)

where 0 is a universal dimensionless function of nk.
Por the inertial subrange, according to Kolmogoroff's

second hypothesis, equation (2.46) must reduce to a form

independent of 3, . Here we get from dimensional reasoning
again

B/l, 2/3 -5/3
Mk) =aG k (2.47)

Equation (2.47) is frequently called the Kolmogo
roff 's spectrum law. The same result was, however, obtained
by Onsager (28) and von-Weizsacker (28) independently of
Kolmogoroff and of each other.

Ihe scales y and v defined above also occur in
the study of the small scale structure of turbulence even when
the Reynolds number is not high. This cannot be interpreted
on the basis of Kolmogoroff's theory, but follows from consider
ations of self-preservation during decay, which has been dis-
cussed later,

b) Physical Transfer Theories :- The basis of physical-transfer
theories is the assumption of arelation between -,V(k,t) ana
S(m,t). The specific form of relationship between *(k,t) and
«(fc,t) depends on the particular mechanism of energy transfer
considered. Heisenberg's (44) eddy-viscosity transfer theory
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can be said to be amongst the most successful physical transfer

theories.

While considering the rate of dissipation of energy

by eddies with wave numbers less than a particular value of k,

Heisenberg distinguished between the energy directly dissipated

in the form of molecular motion and thermal energy and the

energy transferred in the form of kinetic energy to all edi.ies

with wave numbers exceeding the specified k. He argued that

the transfer mechanism is essentially similar to viscous dissi

pation provided the molecular viscosity is replaced by a suit

able eddy viscosity. The expression for energy transfer then

becomes

/ W(k) dk =-2 w(k) / k2E(k)dk (2.48)
o ° o

Heisenberg further assumed that .,,(k) can be expressed as
CO

l.'t (k) = kH j /~E( k) dk (2.49)
k / k3

where k.T is a numerical constant of order unity.
H

This gives on substitution in eqn. (2.45) ;

-ft j" s(k)dk =-2 1,.. +kH / rmr dk j
o ( k k° )

k

/ k2 B(k) dk (2.50)
o

For the equilibrium range,
k k

-, CO

^|- J E(k)dke,.-2_. / E(k)dk = ~G=- Bv/ lc S(k)dL
o do O o

...... v -'- .> al j

Combination of eqns. (2.5Q) and (2.5l) results in

0 = 2 >V + kw j °° HIHO"" dk If k2E(k)dk ....(2.52;I H k / 7^3 ) 0
IS.

Bass (4) and independently Ohandrasekhar (4) obtained an

cm N
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exact solution of Eqn. (2.52) in the form . ,„

E(k) =(*£ )̂ k"5/3 (I+ § -|Lk4 )
9kH . kH-e

(2.53)

In the region where the effect of viscosity is

negligible, eqn, \2,53) reduces to
2/3 -5/3

E(k) = (8G/9kH) .. k ' .......(2.5.4)

which it identical with Kolmogoroff's spectrum law

in the inertial subrange. Per large values of k where vis

cosity plays an important part eqn.' (2.53) reduces to ;
2 ' . •

s(k)= .(ekj/sv8) k-7 (2-55)
Kovasznay (4) postulated that the contribution to .

W(k) comes from a narrow wave number band in the immediate

vicinity of k. aince under these circumstances, Hr(k) can only

be a function of -i.(k) and k, it follows from dimensional argu

ments that

k / 3/2 5/2
{ W(k)dk --a jB(k) J k (2.56).

where a is an absolute constant.

Prom eqn. (2.56) and eqn. (2.39) he obtained for E(k)
WvY I 62 ^1/3 "5/3 f 2/3 4/3 ) 2

(2.57)
r %) 1/4

where kd = (e/>! )

Obukhoff (28) assumed that the energy transfer across
the wavt number k is analogous to the energy.transfer from the

main motion to the turbulent-motion through the turbulent shear

stresses; and it follows, therefore, '/n
* ( k P y2 °°

J W(k)dV , -a 2j kcE(k)dk / E(k)dk ....(2.58)
0 K 0 ' «
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where a is an absolute constant. Prom the above

he obtained a solution for E(k) which reduces to constant x
-5/3

k in the inertial subrange.

Von Karman (28) visualised that the transfer function

f(k) may be interpreted as the difference between the energy

supplied by the eddies with wave numbers less than k and the

energy transferred to the smaller eddies with wave numbers

greater than k. On this basis he defined ;

( $ r ,k P' r' B' -' /° B r x iW(k) = 2a E k J E kdk-Ep k^ / Epkrdk)... (2.59)
( o k ') *

which includes, as special cases, the assumptions made by

Obukhoff, Kovaszrav and Heisenberg and obtained
17/6 /. /, n4

E(k) mm E(k )2 U/V 1?/c (2.60)
(1+ (k/ke)2 )
( )

where k is a function of time,
e

c) Similarity and Decay of Turbulence : As already seen,

the general theory of turbulent motion cannot lead to specific

predictions without auxiliary considerations.for this reason,

the concept of self-preservation of correlation functions was

introduced by von Karman and Howarth (7l). The corresponding

hypothesis of similarity of spectra is the work of Heisenberg

(44), which states that the spectrum remains similar in the

course of time.

A similarity solution of the equation for change

of spectrum

2
9E + W = - 2 v k E can be found out as
at

follows.

Let V be a characteristic velocity and / a

Characteristic length. Then from dimensional arguments,
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P mm Y2^ Y ^} JW=V̂ 5 } ; ^=̂
Then the above equation becomes .

(am)

V*

•2iy

-<Y(?) (2.62)

Por the similarity solution to be valid we must have

mm aq
V dt

2/ dj_
V2 dt

= af
(2.63)

ar

-where a-^, a0 and a are all constants. Thus eqn.

(2.62) becomes

*i ^ y' (^)+ (ai+a2} "Y(5 )+2a3 5T 4 >* (5 )
= 0 (2.64)

Besides the above equations we also have

u

du'

dt

mm V" / Y ( ^ ) dI (2.65)

B'2^^ / 1 y(?) d? (2.66)
X o

and the convergence criterion for Loitsianskis' relation as

V2 _5 lim y (^ )
£^0 T™4~ = J (2.67)

The above system of equations presumes that the

transfer term in eqn, (2.62) is considered generally of equal

importance with the term expressing the viscous dissipation.

The above solutions are at variance with eqn.(2.67) i.e. full

similarity is only possible if Loitsianskis' theorem is rejected,
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Experimental evidence also excludes the possibility of adopting
full similarity as a generally valid assumption for all decay
processes.

We can consider four different cases, the first

two belong to the approach where we consider that the Loit

sianski's invariant exists and plays a role in the similarity
of spectrum, while in the other two we assume that the simi

larity of spectrum is occuring only in the eddies contributing
appreciably to the dissipation process, and the. largest

eddies play no role in determining the similarity of the
spectrum.

Case I :- Loitsianski's invariant exists and the transfer

term is negligible for all frequencies i.e. w ( i ) = n
4 2 "*

This leads to F = J}c e~2 k * ......(2.68)

and the law of decay in this case is

"72* t r5/4 2U a (t~V I A - 4,,(t-tQ) (2.69)

Case II :_ Loitsianski's invariant exists and the influence

of visoous dissipation is restricted to high frequencies

whereas for low frequencies the transfer term is the prevailing
factor . Von Karman and Howarth (71) and Kolmogoroff (36,37,38)
have treated this problem. The former authors came to the
conclusion that any power law for the decay - time relation
may prevail in the decay process while Kolmogoroff gave the
law — _10/? g

= constant . t and a = 7* t ....(2.70)

Case III :- Similarity extends over the whole frequency range,
with the exception of the lowest. It is assumed that the
deviation from similarity shall occur for such small values of
k that, whereas the contribution of the deviation is negligible
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for computation of G, it enters the calculation of energy.

The above assumption implies that all the higher •
moments of P(k) are not appreciably influenced by the deviation
from similarity. Lin (44) on this assumption derived the
decay law.

U'2 =a(*-V +b (2.71)
where a and b are constants with a > 0

and -p2 mm io at (1 - 10 uD2a.)
— t (2.72)

o
2

where u is an additive constant giving the

departure of the energy content from that in the case of

similarity and Dq is the initial diffusion coefficient.
•n t • u'2 \ 2L^ mm Lim

t-0 ~^~ (2.73)

Equation (2.7l) can thus be rewritten as

,2 _i

= (V10) t "- u 2 (2.74)
D

Case IV :- The assumptions in Case III are based on the
idea that the low frequency components do not have the time to
adjust themselves to an equilibrium state. It is specifically
assumed that e may be calculated by a similarity spectrum.
Goldstein (22) further generalised the similarity theory and
assumed that similarity spectrum might be adequate only for
the calculation of higher moments of P(k). He assumed that
the statistical properties of turbulence in arange of wave
numbers depend not only on the time rate of dissipation 6per
unit volum. and the viscosity y ,but also on the time rate
of change de/dt of e. Thus the similarity spectrum, accor
ding to Goldstein, is only asymptotically correct for arange
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of large wave numbers, the range depending on the initial con

ditions and decreasing as the decay proceeds. He defined the

Reynolds Number H as R = >u' (t-t ){• . where
{ ° } t-tJv ,

( 2 ) °) u' (t-tQ) \ with a suitably chosen origin, is a function
of time (t-tQ) and is finite at t « t , On this basis the
general decay lav/ is

U'2 (t-tQ) = -,, Rt d(t-tQ) ........(2.75)

where d(t-t ) is an integral function of (t-t ) such

that d(o) mm l and with an asymptotic value for large (t-t ),

such that it gives the correct law of decay for the final

period, i.e. when the viscous dissipation becomes predominant,

R becoming very small. The solution for this case is defi

nitely known (Case I), also d(t) and the number of constants

needed to specify it approximately depend on the initial

conditions*

If the similarity spectrum is taken as accurate for
oo

the calculation of J k E(k)dk and higher moments, the decay

equation is such that u' (*-t0) is a quadratic expression
in (t-t ) and takes the form

u
~2~ , x 2

(t-V = a + b (t-tQ)+-c (t-t ) (2.76)

Partner generalisation of the above equation is also

possible, as the similarity spectrum covers a smaller and

smaller r^nge of wave numbers u'2 (t-tQ) will be expressible
as a polynomial of higher and higher degree.

according to the above arguments, a change in initial

conditions should bring about a change in the decay law. It

should, also bring about increasing departures from similarity
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spectrum for P(k). These departures from similarity spectrum

decreasing for higher moments of P(k).

d) Decay of Isotropic Turbulence :- In practice, isotropic

turbulence is generally produced by means of grids placed in

a uniform stream and the distances downstream of the grids are

taken as corresponding to different times of decay on the basis

of Taylor's hypothesis. Based on experimental work, Batchelor

and Townsend (7,8) have distinguished three different periods

(or zones) of decay. They are (i) the initial period,

(ii) the transition period, and (iii) the final period.

as mentioned above, these three periods correspond to increas

ing distances downstream from the turbulence producing grid.

Pinal Period of Decay :- In the final period of decay, which

occurs at a considerable distance downstream from a grid

producing turbulence, the Reynolds number of turbulence is

very low. The inertial forces are negligible and only the

viscous forces are effective. The •problem is then amenable

to explicit solution and the decay; law is given by eqn.(2.69)
as discussed in Oase I above.

Initial Period of Decay : Much experimental information has

been obtained for the initial period of decay . Stewart and

Townsend (57) and Batchelor and Townsend (6,7,8) have carried
out a very systematic investigation of decay behind grids .

Their measurements of the decay as well as turbulence spectra
behind grids indicate that alinear decay law prevails during
the initial perioj^^expression given for this decay law
by Batchelor (4)#j^f)iof distance from grid is :
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TZ .2 _ c ( x, , /lVfx )u / , . 2 c v x-, / /F\ ;
1 / Ul = — ( ^ - ¥'. ) (2.77)

oD ( M ° )
where 0~ is the drag per unit area on the grid,

c is a constant depending on grid geometry, x. is the dis

tance downstream from the grid and M is the mesh width of

the grid, and (x-./M) represents the x./M value at some
1 o

chosen origin of time (or distance).

Equation (2.77.) represents a decay law of the type
9

u' (t-t ) = constant which conforms to the recommenda

tions of Karman and Howarth as given in Oase II above. Accor

ding to Lin (44) , these authors did not include Oase III in

their discussions but it fits all their experimental findings.

According to him, their measurements of the decay conform to

Case III rather than Case II though the variations are very

small. The measure ents of spectrum by the above authors,

however, according to Lin, provide a more definite verification

of Oase III,

It is to be noted, however, that in the above ex

periments no change in initial conditions v/as brought about

for studying the decay behind various grids. Experiments by

Isaji and Hama (£<. ) on decay behind grids with change of

initial conditions indicate that the decay law depends

strongly on the initial conditions, a result which follows

from assumptions in case IV. The experimental data obtained

by the author has been discussed on the basis of the above

assumptions in Chapter V.
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CHAPTER - III

METHODS OF TuRBULEKCS MEASUREMENT

3.1 Preliminary Remarks :

The discussion in this chapter is devoted to a

brief review of the different methods of measurement of

turbulence and their suitability for measurements of turbu

lence in liquids . However, attention is focussed primarily

on the use of Faraday's lav; and the associated fundamentals

for the development of a turbulence measuring device.

3.2 Methods Other Than Electromagnetic Induction :

There are a number of methods used for measure

ment of turbulence. Important ones amongst them are discussed

in brief under this head.

a) Hot Wire Anemometer : In its basic form, the hot-wire

anemometer is a short length of a fine, temperature-sensitive

wire heated by direct electric current. The wire is commonly

made up of platinum, nickel or tungsten. When placed in a

fluid stream, the hot wire loses heat to the fluid by forced

convection. When the hot-wire is in 'equilibrium', the rate

of heat loss to the stream by forced convection plus the heat

loss to the end supports by conduction equals the rate of heat

input to the wire. The equality between heat input and losses

is the basis for all equations which relatetlae electrical

Parameters of the hot wire to the flow parameters of the fluid.

Por the heat loss from an ideal, infinitely long,

uniformly heated circular cylinder placed normally in a uniform

^a
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stream of a frictionless incompressible flow, King (34) ex

perimentally found

Heat loss =l\ M(a' +B'/jnT~) (^ - T&) ....(3.1)
where I - Electrical current flowing through the

wire,

T^ - Temperature of heated wire.

T - Temperature of the fluid
a

U - Fluid velocity

A', B'- Constants depending on wire and fluid

characteristics.

Since the electrical resistance of a wire is a

function of the temperature , one has

\ =Ro (1 + a(Tw- To )}
and R = E j1+ a (T -T )

a o \ a o

-7! -n R - Ror T_-T = w a
w a — —«

where

aR
o

(3.2)

Rw - "ire resistance at temperature T,.T
" " W

Ea ~ ^ire resistance at temperature- T
a

Rq - fire resistance at reference temperature I

(usually 32 F) at which a is evaluated

a - Temperature coefficientof electrical

resistivity of the wire.

Combining equations (3.l) and (3.2) one gets ;

X\ A< b» /7T-
sc -i - ~~ ' - pr = a + b/ iT~

aR
0 ° (3.3)

In hot-wire anemometer equation (3.3) is used to

relate the heat input to the fluid velocity where the constants
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A and B are found experimentally from the linear curve of

I versus f~\li as shown in the following figure.

This calibration has t0 be done in a gas flow with a

turbulence intensity as low as possible. It has been-found

that such a static calibration may be satisfactorily used in
turbulence measurements.

Two different methods are used for carrying out
the turbulence measurements .

The Constant Current Method : - Hero the current I is

kept constant; the temperature and hence the resistance

changes with the fluctuating velocity. The hot-wire is built

into a Wheatstone bridge as shown schematically in the figure
below. To maintain the constant wire current, the Wheat stone

HW

OSCILLOSCOPE
Of?/AND

THERMAL

MfLLlAMMETEf?
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bridge is supplied with current from ahigh voltage source
and passes tnrough a large current control resistor which is

much larger than the bridge resistance. Therefore changes in
the hot wire resistance will have very little effect on the

current flowing from the battery, thus preserving the constant
current condition.

The Constant Temperature Method : t +,
•- -~—^l£aar_- in the constant temperature

anemometer system, the wire resistance (hence the temperature)
is held constant. A velocity fluctuation Au in the stream
will cause afluctuation in the current passing through the

A e

into a wheat stone bridge, as schematically shown in the follow
ing figure, is automatically sup ,lied by the amplifier, through
afeedback system, with the exact amount of current necessary,
to keep it at a constant resistance S

HW

AMPLIFIER

"a
rv~

s\Zz
j

oscilloscope

and/or
THERMAL

MILLIAMMETER

Por the constant current set, if one introduces

U* = Ui + Ui and H = RU + rw in eqn, (3.3) then one
can writ-, the equation as

u

(S™ ~R )
1

u
1

2u\
(3.4)
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provided u'

r— « 1 so that _JL__ << ,
ii — -•- .

1 % - R
W a

Thus the change e in voltage across the wire,
corresponding to the turbulence-velocity change

(%-*, )2
u' is

lr mm - —H al_ B -— U
w

1

2IR ' ui Z
a x u

or e mm - S u' ,„ „._cc 1 (3.5)
(R..r -R )2 _____

"CC~ "2Ir"™~ B Ul is tlae sensitivity of
1a

i the wire.

Equation (3.5) then governs the response of the hot
Wire' Ul °"n thUB be me;^ured by leading the voltage signal
e via an amplifier to a thermal milliammeter - «t and u'

T. ^3
can oe measured oy making use of the direction -sensitivity
of the hot-wire. The ratio of cooling is determined mainly
by the velocity component perpendicular to the wire. The
effect of the velocity component parallel to the wire becomes
noticeable only when the n-n-m ,i wCt«a<+j inion une normal velocity component is very
small or zero.

For measurement of shear stresses, two wires in
an X-array (as shown b^low)arc used.

51 «i
«1

"2

The response of the two hot wires can be worked
out by considering the rest>o™^ nf Q *ise of a wire m positions I and
J--L as shown in th<= fi ,cn3»<= t-f +.-U(- X1gujee. ±1 the wires are pi; iced in the
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ul ~ u2 Pl--ne, the responses are

In position I : (e) = .(s ) »» -(3J u'
1 1 1 2 1 2

In position II: (e) . _(s ) u' + (S )u<
2 1 2 g g

The wires in the X-array are matched so that

(Sl)! = (31}2 and <V, " (V • ThG signals obtained
c l '2

through the two wire can then be lead to a thermal milliam-
meter (i) directly and (ii) through an addinland subtract
ing circuit resulting in readings for e~2~ , e2 , (T77/)2
and (e - e) from which ua^2 ,u"^" and u~m7~~

a 2 1 ' u2 ana uiu 2 Cdn °e
computed. By changing the plane of the wires in the X-array
one can compute the other shear stresses also.

Por a constant temperature set, the equation
governing the response of the hot wire is

6 = Set ~ u! (3.6)

where S _ w • a 7/' ui
ct "~~Z—

4 I
ul

wnich is similar to eqn. (3.5) except that the sensitiv
"ty Sct iG diffe^nt. Measurements are made in a manner

similar to that of the constant current set.

limit at ions of Hnt Wirv • n+i i -, •^-^l^~o________ Although linear response
equations have br-e-n nej^/s -;-,,-> xv^. u

n USed ln onG abov^ analysis, in practice
the response of the wires is affected by ;

1} "init" taor--a inertia of the wire, causing atime
lag between the rapid fluctuations of the air and
che corresponding fluctuatirm« n-p +-u„iiS nauudTions oi the wire tempera

ture. Compensation for thic ±>>c*«n*i ixux ani0 thermal lag can be made
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electronically, though the compensation is for ampli

tude only and not for the phase shift,

ii) Cooling action of wire supports. This effect can be

minimised by keeping the thermal conductivity of the

support material lower than that of the wire. This

effect has been studied in detail by Betchov (28) and

Lowell (28).

iii) Hon uniform velocity distribution along the wire. This

effect can be minimised by a thin, short wire,

although stability must be reckoned with in deciding

upon the //d ratio of the wire. Generally wires

of 2,5 - 5.0 H d.ia. and 0.5-1 mm length are used.

The hot-wire has become an almost standardised

technique for turbulace measurements in air flow. The develop

ment has come through its extensive use by various investiga

tors such as Townsend, Stewart, Dryden, Laufer, Batchelor,

Oorrsin, Vender Hegge Zi^nen and others (28). The use of

hot wire anemometer in water has been reported by Richardson,

Stevens, and Patterson (ll) though the success has been

limited.

The main limitations of the hot-wire anemometer

as a turbulence measuring device in liquids are :-

_i) Deposition of impurities on the wire, requiring fre
quent cleaning of the wire and recalibrati0n.

ii) Low operating temperatures are needed to prevent

evaporation, electrolysis, formation of scales and

algae etc.

iii) Formation of air bubbles round the wire.
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iv) Tnicker and longer wires are needed to fulfill
strength requirements, having an adverse effect
on the sensitivity of the wire.

b) Hot Film Anemometer : The hot-film anamometer - a
modified version of the hot-wire - was introduced by Hubbard
and Ling (46) for liquid turbulence measurements. It is
similar to the hot-wire , except a heated, very thin plati
num film is used as the sensing element. This film, which
nas a length of 1 mm and a width of 0.2 mm, is fused onto
the wedge-shooed pnd n-r a -ri - -,,-. o iapea end oi a glass or ceramic support. The rest
ef the components arc the samG as for a hot-wire.

The hot-film has the advantage of being more
rugged and staole compared to the hot wire. Later applica
tions of the hot film were reported by Conn (10) and Tan and
^ing (58) . This method, however, shares some of the draw
backs of the hot-wire, such as the formation of bubbles,
evaporation , electrolysis etc., requiring low operating
temperatures. Sensitivity to surface- contamination, however,
as claimed by Hubbard and Ling (46) is "inn- ^"g vaey is low. They also claim

a superior signal to noise ratio compared to the hot-wire,
unoer s 2 mil a r cm •-• >•> •-!--•., -,. ,°P°Mt">g conditions, particularly for the
constant temperature method.

o) Electric Discharge Anemometer : This method, useful for
turbulence measurements in gases only, ls eased on the poten-
tral-electrio-current characteristic of an electric discharge
between two electrodes. For elect>n^fl -,-p - •or electrodes o£ a given shape and
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gap, the characteristic depends on the nature of the gas,

the pressure, temperatures, humidity and velocity. It is ttje
dependence on velocity that makes the electric discharge

applicable to turbulence measurements. Differences in dis

charge potential of the order of 1 volt are obtainable for

velocity differences of 1 m/sec which need little amplifica

tion, also the effects corresponding to the thermal-inertia

effects of the hot-wire are insignificant. Applications of

this method for turbulence measurements have been reported by
Lindvall, Pucks, Agostini, and Werner (28).

d) Total Head Tube : A device, making use of a total head

tube in combination with a capacitance type pressure trans

ducer, was used by Ippen (30) for turbulence measurement in

liquids, A sketch showing the instrument in principle is
as shown below .

0

U1
-*• A-

A total head tube is connected at one end to a

pressure chamber of larger cross-section area CDD'C. The

other end of the chamber is closed by a thin diaphragm DD».

This diaphragm is placed at a short distance from another

fixed plate FF' as shown and.electrically insulated from it.

The tube and the pressure chamber are filled with the liquid
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in the beginning and the tube placed at the paint where the

measurements are to be made. Any fluctuations in the velo

city at the point A give rise to a corresponding change in

pressure in the chamber, which in turn gives rise to dis

placements of the diaphragm DD'. V/hen the diaphragm DD1

moves, the air gap between DD' and FP* changes resulting in a

change of capacitance between the two plates (i.e. DD' and FF')

This capacitance change is measured electronically and from

this the turbulent fluctuations can be obtained. For better

frequency response, the resonance frequency of the diaphragm

DDf should be much larger than the frequency of the fluctua*

tions to be measured. Eagleson (19) used a quartz crystal

as the pressure transducer instead of the capacitance between

DD' and FF' and claims better frequency response. Other

pressure tranducers such as barium titanate ceramic have also

been used (50).

The total head tube in combination with the

pressure transducer gives a stable instrument with repro

ducible results, but its versatility is limited. It can

measure turbulent velocity fluctuations provided the turbu

lent pressure fluctuations are negligible, Further it can

measure the velocity fluctuations, only when there is an

appreciable mean velocity of flow, and that too in the direc

tion of the mean velocity only. Ho transverse velocity fluc
tuations can be measured.
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e) Methods Based on Flow Visualisation : Certain methods for

measurement of turbulence in liquids based upon flow visualisa

tion have also been used by various experimenters. These

consist mostly of introducing some very tiny insoluble parti

cles in the fluid and then observing their paths cinemato-

graphically (28). Use of emulsions - which are mixtures of

benzene and carbon tetrachloride or olive oil and ethylene

dibromide - has been made for applying these methods to water.

The emulsion can be made such as to have the same density as

water and tiny droplets of it introduced in the flow field.

Sometimes a suitable material miscible with the flowing fluid

can be introduced continuously in the flow and its dispersion

measured downstream from the injection point. Sometimes the

tracer can be introduced electrically as well which is espe

cially useful in observations of the boundary layer (29).

These methods have the drawback that they give

only limited information about the flow field and quantities

such as correlation or spectra cannot be measured.

f) Electrokinetic Transducer : Recently Germak -and

Baldwin (lO) have reported the use of electrokinetic trans

ducers for measurement of turbulent flow in water. The method,

still in the development stage, makes use of Helmholtz*s theory

oi streaming-potential for turbulence measurements. Helmholtz's

theory predicted that a d.c. potential difference would be

generated by the laminar flow of liquids through capillary

tubes made of materials which are electrical insulators.

Bocquet (10) was the first to report instantaneous fluctua-
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tions of streaming-potential, due to turbulent flow, at solid-

liquid interfaces. Binder (9), measured the streaming-

potential fluctuations by using copper electrodes flush with

the wall of a glass pipe while, Chuang (10) and Duckstein(lO)

succeeded in adapting the electrokinetic electrodes to the

study of fully developed pipe flow and two-dimensional wall

jets respectively. The transducer used by the latter workers

being in the form of a probe with two closely spaced electro

des, the instantaneous potential difference signal from which

is related to the component of the turbulent velocity fluctua

tion along the line between electrode centres.

This method holds a lot of promise, though more

knowledge must be obtained on the effect of mean velocity

level upon response to velocity fluctuations, the selectivity

of various electrode configurations to velocity fluctuation

direction and the effect of fluctuation magnitude on signal

output. A sound theoretical analysis relating turbulent

velocities in the oncoming flow to the potential differences

sensed by the electrode pair is also wanting.

3.3 Method of Electromagnetic Induction :

The method which is intrinsically most nearly perfect

for measuring velocities (turbulent fluctuations included)

is tint of electro-magnetic induction (26,35). 'It is capable

of indicating over an extremely wide range (of frequencies)

has zero lag, is practically independent of conductivity,

temperature,pressure and gaseous or solid impurities and

indicates the true vector components of velocity' (29). Based

on Faraday's law of electromagnetic induction, this method
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has tremendous potential, though some problems need to be

overcome before it can find widespread application.

a) Electromagnetic Induction in a Fluid in Motion : The

treatment here follows that given by Day (14). When a

force Fq (of electric origin) is exerted on a charged

particle at a point, an electric field E is said to exiit,

Shen» 1 = Pg Al (3.7)

where q is the charge of the particle.

When the charged particle is stationary, an

electrostatic field of intensity E is the only field present.

If the particle moves, an electromagnetic field is superposed

on the electrostatic field. When the charged particle moves

through an electromagnetic field, the additional force per

unit charge exerted upon it will be

2f/q = I x£ .......(3.8)

where V » velocity of the moving charged particle

B mm strength of the electromagnetic field

The total force acting on the moving charged
particle will be the sum of the above two. Therefore

l/l = (Pe + & ) /q mm E + VxB (3.9)

When this force acts on the charged particle

over a distance, work is done. The electrical potential

energy of a unit charged particle at a point is called the

potential at that point. It is in fact the work done or the
electrical potential energy gained when moving aunit charge
from infinity to the point under consideration. The potential
difference between any two points is thus the change in the
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amount of electrical potential energy per unit charge between
the tvwo points.

An electromotive force (e.m.f.) G is defined as

that portion of an electrical circuit in which non-electrical
energy is converted to electrical energy.

Faraday discovered that a source of e.m.f. results
when there is a change of magnetic flux through a conductor
Placed in amagnetic field. The law that bears his name is

binduced = ~ •> at (_ • n ) dA (3#10)

where n mm unit normal vector

A mm Surface area of the conductor

This equation states that the induced e.m.f. in a
circuit is equal to the negative time rate of change of the
magnetic flux through the conductor. Lenz's law states that
the polarity of the e.m.f. is such that it tries to oppose the
field causing it.

The change in magnetic flux may be caused either
% achange in magnetic field (transformer action) or by a
movement of the conductor with respect to the magnetic field
(motional induction). In the case of afluid flow steady
in time relative to aconstant external magnetic field, it is
the motional induction which is operative.

Any e.m.f. may be defined by the integral

e */_/q .11 (3.11)
where / is an arbitrary line enclosing the source.
But for moving charges, the value of F/q can be

substituted from equation (3.9) yielding;
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0 mm § E ,d£ + tf V x B ,d£ (3.12)

mm 0+^Vx|,d| (3,13)

Then equating (3.lo) and (3,13) we obtain

einduced = " { dt™ (£•£> dA =tf I x S.d£
A

The potential difference between two points in an
electric field is

b

4b =~l i -tf. (3.15)
Since the electrostatic vector is irrotational,

the potential 0 and electric field intensity are further
related,

KJ$ =-* (3.16)

b) Induced Voltage - Turbulence Intensity Equations : The
equations mentioned above can be used to develop the relation

ships for measuring turbulence with electromagnetic induction,
as discussed by Grossman (26).

The current density J for a conductor of area

A carrying a current i is given by

J = i/A =m o- F /q ,
- H 13.17)

where o—= electrical conductivity

This gives

i / o-A =P /q =j + Vx B (3.18) '

from equn. (3.16) this yields,

-Kl0 =BxY+ i/TA (3.19)

Considering the following orientation of flow and
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magnetic field in a rectangular coordinate system ;

are then

4X2

ELECTROMAGNETIC

FIELD OF

STRENGTH B

*3

-he three components represented by equation (3.19)

3/

~x
1

30

ex.

00

)xr
0

- B.ug t xl

o^T

- Bn1 + x2
orA

iX3 / o~ A

(3.20)

(3.21)

(3.22)

The above equations relate'the potential gradient.,

velocity and magnetic field in case of a fluid moving through

a magnetic field.

In turbulent flow, the instantaneous velocity

may be replaced by the sum of the mean and the fluctuation.

Doing the same for the induced e.m.f. and the currents we

get for eqn. (3.20)

a ($ .+ 0 » ) = b (' l2 + a2 }~ (
ix-, + i N

)x.
Cr-A

(3.23)

Squaring, averaging and separating Into the mean

and deviation equations we get for fluctuations u'
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0' 2 2 ~P 2B i ' 2( _la__)^ mm B^ U." - ff U' i + x-3x, 2 -cTa 2 •xx _jVl__
1 _2A2

cr~A

and for other directions,

(J£1_;
ax2

= B2U'2
1

2B

o-A
1 x2 + i' 2

X-p

2 2
o" V1

(3.25)

and (W )2
9X3 o-V

lx8 (3.26)

If the induced currents i* are neglected and
x2

the partial derivatives replaced by finite increments,
eqn. (3.25) can be written as

.d 0' 2

<^-x2 B2
^2

Thus equation (3.27) gives the value of the

fluctuations in terms of the potential difference between

two points and the magnetic field strength. A measurement

of the cm.f. between two points separated by a distance £xp
along the Xg -axis therefore gives the value of the

velocity fluctuation along the X^ - direction , if the magne

tic field strength B is known. Similarly . Eqn, (3.25)

can give the fluctuations along the X -axis while a

different orientation of magnetic field will yield the same
values along X^ - axis.

3

ui (3.27)
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One of the shortcomings in using the above

equations is the neglecting of induced currents. A proper

evaluation of induced currents can be made if the orientation

of magnetic field can be changed keeping other quantities the

same. Thus while equ p(3.26) gives the value of i£ ,the
t 3

values of i£, and ix? can be obtained with different

orientations. This calls for a lot of flexibility in the

experimental set up and work in this direction is necessary

before a proper decision about the effect of induced currents

can be made. In the present work, however, the data has been

presented without taking into account these currents.

— • e » —
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CHAPTER - IV .

4.1 Preliminary Remarks -:

The experimental programme consisted of the analog
spectrum measurements for fluctuations of velocity in the x
direction. The e.m.f. generated between two points along the
x2 axis due to the passage of water through aw" -n magnetic
field (in x3 direction) was measured and analysed. The experi.
ments were carried out in a 2"dia. Incite pipe with mean

velocity of flow in the ^-direction only. The measurements
were made for turbulence in the pipe flow and that generated
by various grids singly as well as in combination. The experi
mental programme is considered in four parts :

Experimental Set Up

Experimental Methods

Scope of Tests

Typical Record and its Interpretation

4.2 Experimental Set Oh :

a) Hon Electrical System :- Aschematic diagram of the
system is shown in P-i » a 1 ^t•,-:.,,uvfii m Jig. 4.1. Hater was provided from a

rocircuiatory system. Acentrifugal Pump with a capaoity of
500 g.p.m. against ahead of 100 ft. supplied water to the
overhead distribution lines. Flow rates were measured by
an .A.O.Smith* turMne-met^ connected to apulse rate inte-
grator. Water passed from the distribution lines to the
approach section through a oti -,athrough a2 galvanised pipe. The approacll
section, 20 ft of 2" aalvantn^ rn -galvanised pipe, was preceded by a valve,
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a pressure gauge and a rubber pipe section. The rubber

section v/as used to isolate the approach and the test sections

from the vibrations in the distribution lines. The approach

section was followed by six lengths of 2" diameter Incite

tubing. Each length was 4 ft. 4 in. long and was fitted with

a sot of wall to wall probes. The tubing passed between the

pole faces of an electromagnet and the third length contained

the test section where the radial traverse measurements could

be made j The; lucite tubing was followed by another rubber

section and a 'tee' with a 2" and a 0.75" outlet. The

smaller outlet v/as used for low discharges. The water from

the larger outlet passed directly to the sump, while the water

from the smaller outlet could be diverted to a weighing tank

for discharge measurements. Eor larger discharges, the

readings were taken directly from the 'A.O.Smith' turbine-

meter. The approach section and the lengths of the lucite

tubing were supported on angle iron, A frames and were seated

on sponge rubber cushions to further minimise vibrations.

The test section in the lucite tubing had provision
for the location of screens and access holes for he mser-

tion of the traverse pr0be. The screens used were of the
type shown below.
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The values of 'M' and 'd' used wore

Screen Ho. 1 M = 3/I6" d = 1/16"

Screen Ho. 2 M m= 3/8 " d = l/8"

Screen Ho. 3 1= 3/4" d = 1/4"

The screens were machined from brass discs of

thickness 2 d. They were bi-plane screens made by milling

grooves on the discs halfway through from either side and at

right angles to each other. They were then turned on a lathe

to fit the Inside of the lucite pipe. Two small brass rods

at right angles held the screens in position.

Access to the interior of the pipe was provided by

a lucite boss which v/as cemented to the top of the pipe down

stream from the grids. The boss is shown in Eig. 4.2. There

were sixteen access holes, the first eight at 1" spacing and

the next eight at 2" epncings. The holes were threaded to

accept the O-ring seal shown in Fig. 4.2. The stem of the

probe was inserted through the O-ring seal and into the pipe.

A special wall to wall probe could also be installed in the

access holes.

b) Electrical and Electronic System :- The magnetic field

was developed by a model L 12-A electromagnet manufactured

by the Spectromagnetic Industries Inc., of liayward, California.

The pole faces were 12" dia. and were set at a 3" gap. The

d.c. power for the magnet was obtained directly from the wall

outlets in the laboratory, which in turn were supplied by a

silicon controlled rectifier. Approximately 250 volts d.c.

was necessary to provide 15 amps, which developed a magnetic
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field strength of 9700 gauss, a calibration curve for the

magnet is given in Fig. 4.17. Figure 4.3 is a schematic

diagram of the power supply,wiring and cooling water for the

electromagnet. The supply to the magnet could be controlled

from a control rack, which also contained a voltmeter and an

ammeter in the circuit. Reversal of the polarity of the

magnetic field was brought about by a double-pole, double-

throw switch mounted on the electromagnet. Because of the

high inductance of the windings of the magnet, it was necess

ary to install a device to check objectionable arcs caused

by magnetic field collapse when the supply was shut off.

This was achieved by connecting a selenium rectifier in series

with a 10 ohm 100 watt resistor in parallel with electromag
net coils. T0 provide proper heat transfer near the electro

magnet coils, cooling water was circulated through copper tub

ing, installed within the magnet housing by the manufacturer.

A 'Shur-Elow' automatic interlock was installed in the

cooling water supply line so that a horn sounded if the

supply to the magnet was put on without opening up the cool

ing water supply valve or If the quantity of the cooling
water was inadequate. The magnet could be rotated on both

its horizontal axis as well as its vertical axis. It was
mounted on tracks parallel to the Incite tubing so that it

could be positioned at any location along the lucite section.

The e.m.f. induced, due to the flow of water in
the lucite tubing through th-> marrrvo«-*« -p-t^i* • •, -,° J-uuaIX Wi~ magnetic field, was picked up

by means of two types of probes. Aset of wall to wall probes
is shown in Figs. 4,4 and 4.7. These probes were furnished by
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the Eoxboro Corporation and were mounted diametrically oppos

ed and flush withthe inside of the lucite pipe. The wall to

wall probes picked up the potential across the entire pipe

diameter. 4 wall probe was also installed opposite each

access hole and, used with the special wall probe shown in

Fig. 4.5, provided wall to wall measurements throughout the

test section.

Traverse probe measurements were made with the probe

and holder shown in Figs, 4.2 and 4.5. Tnis probe measured

the potential developed across a gap of 0.08" at any point

along the verticil diameter of the pipe at an access hole. A

close up view and the detailed drawing of the probe are shown

in Figs. 4.6 and 4.8 . The stem of the probe was 1/8" O.D.

type 302 stainless steel tubing, insulated with shrinkable

Teflon tubing. The Teflon tubing was placed over the stem

and the two put in a furnace. At a temperature of 950° F,

the Teflon tubing shrunk onto the stem forming a watertight

and electrically insulated coating. The lower 1/4" of the

stem was left bare and was used to connect the floating in

put ground of the amplifier to the water. The wires inside

the stem were 0.017" dia. type 302 soring temper stainless

steel. They were also insulated with the help of Teflon

tubing. The two wires extended through the stem and up

through the holder to connect with the impedance isolator in

put cable. On the other end of the stem they extended out

ton vary small distance. Ihe Teflon insulation was removed

from the portions of the wire extending out and these portions

were insulated with several coats of duPont 'Formvar' wire
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|G. 4.4 TEST SECTION SHOWING TRAVERSE AND WALL TO WALL PROB



FIQ« 4.5 TRAVERSE PROBE WITH HOLDER AND WALL TO WALL PROBE



FIG. 4.6 CLOSE UP VIEW OF TRAVERSE PROBE
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enamel. The wires were dipped into 'Formvar' and each coat

was baked at 180° F, for 30 mins. The enamel was removed

from the two tips, furnishing two conducting surfaces

separated by a gap of 0.03" .

The traverse probe was positioned with a holder,

shown in Figs.4.2 and 4.5, adapted from a 'Lory Type A' point

gauge manufactured by the A.B.McIntyre Instruments. The

vernier on the holder could read to 0.001 ft.

Figure 4.9 snows the two stacks of electronic

equipment used in the measurement of the induced voltages.

The signal path is shown in Fig. 4.10 . The signal picked

up by the probes was carried through a double shielded in

put cable. The double shielding prevented the input leads

from acting as antenna and prevented any voltage which was

common to both probe tips such as GO cps pick up from being

transformed into a differential signal. In case of the wall

to wall probes, the outer shield was connected to the inner

shield and both were floating at the probe end of the input

cable. For the traverse probe, the inner shield was connec

ted to the probe stem and the outer shield v/as floating at

the probe. For both cases, at the amplifier end, the outer

shield was connected to the earth ground and the inner

--^ • shield was connected to the floating input ground.

The signal was first fed into a 'Philbrick' P 55A

all silicon operational amplifier hooked up as a voltage

follower (Fig. 4.1l). The operational amplifier circuit was

designed to provide a gain of unity alongwith a very high

input impedance and a low output impedance. Thus it acted as
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an impedance isolation between the high impedance probe

and the rest of the system, thereby improving the frequency

response of the system, and decreasing noise level.

The output of the operational amplifier was filtered

by the R-S filter shown in Fig. 4.12. This removed the d.c.

component of the signal which mould otherwise have overloaded

the amplifier. In some of the runs, the operational amplifier

v/as not used and the R-0 filter used had. different component

values. The data for this case was later corrected by

comparison with the data obtained while using the operational

amplifier,

A 'Sanborn' 860-4000 amplifier increased the

strength of the signal upto 1000 times. The amplifier has

the features of floating input and output, chopper stabilisa

tion for low frequenoies and, when used with the double shiel

ded input cable, a high degree of common mode rejection.

The filtered and amplified signal was then subjec

ted to further analysis by

i) feeding it into a 'Ballantine' true R.M.S.vacuum

tube voltmeter.

ii) feeding it into a 'Hewlett Packard' model 302 A wave

form analyser

iii) recording it in a 'Precision-Instruments' 4 channel

FM taperecorder.

iv) displaying it in a 'Tektronix' Type531 Oscilloscope,

Tnc vacuum tube voltmeter gave the total strength

of the signal from which/ uf2 could bo found out#
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The wave form analyser, which was actually used

as a tunable voltmeter measured the voltage contained in a

7 c.p.s. segment of the signal. The analyser was continu

ously tuned at a constant rate by a 'Hewlett-Packard' 297-A

sweep drive. The analyser provided an r.m.s, output voltage

of the frequency component being analysed for a v/ide variety

of stages of attenuation. Because this output was not const

ant, an L-0 filter (Fig. 4.13) was used to dampen out the

fluctuations. The filtered output v/as applied to the Y -axis

of a 'Moseley' 2 DR-2 X-Y plotter. The sweep drive had a

d,c. output proportional to the frequency of the sweep. A

'Moseley' 60-D logarithmic converter took the logarithm of

the sweep drive output and applied it to the X_axis of the

plotter. Thus a plot of frequency vs r.m.s. voltage was

obtained.

The signal recorded on the taperecorder was played

back at ten times the original speed into the wave form ana

lyser. This was done because the analyser could not be used

accurately for frequencies below 20 c.p.s. Playing back at

10 times the speed had the effect of making every frequency

appear ten times larger to the analyser thus reducing its

search bandwidth to 0.7 c.p.s. The waveform analyser could

then be used for frequencies as low as 2 c.p.s. The region

of the plot between 2 c,p,s. and 20 c.p.s. was thus filled up

using the taperecorder after a proper adjustment of the scaleSi

The oscilloscope was used to monitor the signal

at any stage of analysis and detect any 'spikes' etc. in the

signal.
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The final result of the signal analysis was an

aruiog spectrum plot of r.m.s. voltage versus the log

arithm of the frequency.

4.3 Experimental Methods :

After some preliminary work, the following pro

cedure v/as developed for the collection of the experimental

At the beginning of each series the probe and

screens were checked for cleanliness, the electronic equip

ment was turned on for warming up, the flow rate was adjusted

and the X-Y recorder pens were cleaned and filled with ink.

After this» the tape-recorder was calibrated according to

'P.I.Manual'. With the 'MODE' selector, on the control

panel, in the 'CAL' position, the tape recorder input and

output voltages were matched by switching the 'VTVM' selector

from !TI' to ' TO' .

At the beginning of each run, the probe was set

to the desired location and the electromagnet turned on.

The signal from the probe was amplified to such an extent

that it did not overload the tape recorder and the tape

recording of the magnet-on signal was started at 3.75 i.p.s.

For the recording, the 'MOLE' selector v/as kept in 'REG'

position and the 'OHAMEL' selector set for the tape channel

being used. The waveform analyser was then calibrated

according to the 'Hewlett-Packard' Manual, With the analyser

meter reading 1.00 volts and the 'Y-range' selector of the

X-Y recorder on 0,1 volts/div., the L-G filter potentiometers

were adjusted to give full scale deflection on the X-Y recorder



92.

for both 'RESPONSE' and 'DAMPING' positions. The signal,

being recorded in the tape recorder v/as then applied to

the analyser input also and the range selector set to give

maximum resolution on the analyser meter. The sweep drive

output level control was.turned fully clockwise, the fre

quency dial set to zero and the sweep lever was engaged in

the short sweep position. The 'X-Zero' of She X_Y recorder

v/as adjusted to give an X-deflection of eight inches for a

frequency dial reading of 100 with the logarithmic converter

on d.c. and the attenuator and scale factors at 10 and 5

respectively. The frequency dial was turned back to 10 c.p.s

the low speed lever was engaged and the c.c.w. sweep turned

on. The pen was lowered when the dial reached 20 c.p.s. and

the spectrum plotted between 20 to 2000 c.p.s. The necessary

information to describe the run number and conditions were

recorded on the X-Y recorder sheet.

After the above spectrum had been plotted and

about 800 ft of the tape recorded, the electromagnet was

turned off. The tape footage counter reading was noted at

this point. The colour of the recorder ink was changed and

the magnet -off spectrum between 20 to 2000 c.p.s. plotted

by repeating the procedure followed for the magnet on spec

trum. About 8Q0 ft of tape was recorded for this case also.

The spectrum between 2-20 c.p.s. for both the

magnet-on and magnet-off conditions was then plotted by play

ing back the tape recorded signal for each case into the wave

form analyser at a speed of 37.5 <i.p.s. For this the 'MODE'

selector was set to 'PBK' position, the analyser range was
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switched one step count ercloclcwise from the original and

the pen of the X-Y recorder was made to coincide with the

20 c.p.s. mark on the recording sheet for a frequency dial

reading of 200. a frequency dial reading of 20 then corres

ponded to 2 c.p.S.

After thus having recorded the magnet-on and

magnet-off spectra for any one run between 2 to 2000 c.p.s.

the magnet field polarity was reversed and another run

started.

The run numbers were coded to contain information

about probe location, grids, flow rate and the number of the

run at the specified condition e.g. run.no. d - (l-7-°)-90-l.

a. _(1-7-2)-90-l -* ' 'd' designates the fourth

access hole downstream from

the disturbance,

d-(1-7-2)90-1 f1-7-2)designates the grid

placement

(1-7-2) -* '1' is the downstream grid

number.

(1_7__2) '7' represents the spacing-

between grids in inches,

(1-7-2) '2' represents the number of

the upstream grid

a-(j-7-2)-90-1 '90' is the mean flow rate

in gallons per min.

d-(1-7-2)-90-l '1' is the number of the

run made under the specified

conditions.
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When there was only one screen, the whole quan

tity within the brackets i.e. (1-7-2) etc., was replaced
just by the number of the grid.

4,4 Scope of Tests :

The testing programm may be considered in two

phases - preliminary and final. 3?he preliminary phase con

sisted of developing the techniques of measurement, the'

proper design of traverse probe, shielding and cable arrange

ments to reduce 60 c.p.s. pick up and the use of the tape-

recorder to cover the low frequency range. Some work was done

to measure the wall to v/all turbulence level at all sections

of the pipe. Various R-C filter arrangements were tried and

so were various speed ratios for the playback of the tape-

recorded data. The ability to reproduce data v/as confirmed.

Certain arrangements v/ere tried to eliminate the effect of

the high source (probe) impedance, After gaining confidence

in the equipment, the final phase of the test program was

conducted.

The second phase of the work consisted of the

measurement of analog spectra under various conditions. The

total area under the curve recorded at the output of the

harmonic analyse® (plot of r.m.s. voltage vs frequency) also

gives u-J which was checked with the value read from the

r.m.s. vacuum tube voltmeter. Spectral measurements were

made for the following cases :

a) Traverse Probe . Mean discharges 90 and 45 gallons per

min which correspond to velocities of 9.25 ft/sec and 4.625

ft/sec, and R of 1.54 x 105 and 7.7 x 104 respectively.
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No screens - various radial and longitudinal positions

Screen Nos. 1 to 3 - One screen at a time, various
radial and longitudinal positions

Screen Nos. 1 and 2- No.2 upstream of Ho.l at 1"
and 4" spacing, various radial

and longitudinal positions.

Screen No. 1 and 3- No. 3 upstream of No.l at 1", 4"
7" , spacing, various radial and

longitudinal positions.

b) Wall to Wall Probe I The same observations as above
were repeated at the same discharges. Only one observation
at one longitudinal position is possible in this case,

4.5 Typical Record and Its Interpretation :

Figure 4,18 shows a typical record of the analog-

spectrum curve as obtained from the set-up . The upper plot
represents the magnet-on spectrum while the lower one is the
magnet-off spectrum or noise. An average line has oeen
drawn through both the magnet-on and magnet-off spectra.
Along the abscissa are the frequencies on a logarithmic
scale, while the ordinate gives the r.m.s. value of voltages.

From the plot in Fig. 4.16 the various parameters

used later, in discussions, can be obtained in the following

manne r.

a) Determination of Turbulence Intensity and Taylor's
One Dimensional Spectrum :- The ordinates at various fre
quencies are read, Doth for the magnet-on and magnet -off
spectrum. The squareof these give the corresponding mean-

square voltages in a 7 c.p.s. wide band at the indicated
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frequency. The difference between the mean-square voltages

for the magnet-on and magnet-off spectrums gives the net

signal in the 7 c.p.s. band at the indicated frequency.

Dividing the net signal at each frequency by the band

width (7 c.p.s) we get the signal in mean-square volts/c.p.s.

Thus a plot of mean-square volts/c.p.s. vs the frequency can

be prepared. The area under the curve thus prepared gives

the total signal in mean-square volts, while by dividing the

ordinate at each frequency for this curve by the total area

we get a normalised spectrum, which is the same as Taylors
2~

one dimensional spectrum. The turbulence intensity u^

can be obtained from the total signal in mean-square volts

by using equation (3.27) . Sample computations for the

analog-spectrum shown in Fig. 4.16 are presented in Table

4,1, These computations were, however, carried out on an

IBM 1620 Digital Computer.

Using the-relations k = ^ and Fq (k) = __F (n]
u 2 k

the spectrum in terms of wave number v/as also obtained. Here

k represents the wave number, n the frequency, u the

mean velocity of flow and i\{n) is the Taylor's one-dimen

sional spectrum function at a frequency n, F-^k) being the

corresponding spectrum function at a v/ave number k such

that °° °°
J F (k)dk = / F1(n)dn = 1
o ~ o

b) Determination of Micro Scale and Spectra of Vorticity :

From the F (k) vs k curve as obtained above, the microscale

of turbulence a. was computed making use of the relationship ;
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00

t% = \ I k2 F (k) dk
a o

From the values of *A , so computed, the spectra

were non-dimenuionalised by computing F, (k) /'A and a. k ,

The spectra of vorticity was also obtained in the non-

dimensional form by computing ^k2F-(k) corresponding to
various values of -k. Sample computations are presented in

Table 4 II . These computations were also carried out on

an IBM 1620 Digital Computer.

o:

"
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Run No. b-1-90-1; Grid 3/16" only; u
1

TABLE - 4 I

SAMPLE COMPUTATIONS
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u'2 = /:: 0'2

i •x2. B2

. of Analyser = 7 c.p.s.

er Curve = 2 9 48716,91
rt f) _. .., ,

,,U 7.0

= 6959.56 Ms <T

B a 9700 Gauss = 9700 xlO 4 volts-sec/m2

x2 = 0.08 " (Probe gap)
x-12

u'
6959.56 x 10

(9700x10 4f ,0.08n2
S(3.28)2 < 12

6959 .56

= 1.9166 x 10 '

3,6lxl05 ft2/sec2

ul (9.25)2
—- = 44.46 x 10
u,2 1.9166 x 10
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Fx(k) k< Zk^k) Mean
k2!^)

1.36 .7879x10
-1
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-1

-1

3__ 4
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11.56 .601

46.2 1.079
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CHAPTER - V

DISCUSSION OF RESULTS

5.1 Preliminary Remarks :

The present chapter is devoted to analysis of the

data obtained from the analog set up and discussion of the

results obtained therefrom in the light of existing theore

tical and experimental notions regarding turbulence. The

method of interpretation of a typical record obtained from

the analog set up has already been described in Chapter IV.

The data have been used for the proving of the analog set up

and for studying the characteristics of decay of turbulence

behind grids, the energy spectra and their similarity and the

similarity of dissipation spectra (or the spectra of vorticity),

Some qualitative observations regarding the effect of probe

gap on the measurements of spectra have also been made making

use of the spectra obtained with the wall to wall probes.

5.2 Measurement of Telocity Fluctuations in the Pipe Cross

Section :-

As already mentioned, measurements of the one dimen

sional energy spectrum were made in the pipe without any

grid,.from which velocity fluctuations u^2 at that level
were computed. The measurements were made at any cross section,

along a diameter of the pipe at various radial positions.

This was done primarily for checking the behaviour of the set

up by comparison of the results with published work. Figure
5.1 snows aplot of (H^y^ vs (r'/a) . Here u*
represents the shear velocity, r' represents the distance of

the point of observation from the pipe wall and 2a is the dia-
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meter of the pipe. Since no pressure measurements were taken

along the pipe length to find the hydraulic gradient, u

could not be computed directly using the formula U# = /pT^p 2a
ii , , , * ~P 4Lnence the value ox u^ has been computed on the assumption that

the pipe behaves as a hydrodynamically smooth pipe and hence 'f'

can be estimated by the Blassiu* s equation f = 0-316

The term u# is related to f by the equation u = u /~7Z—
* y f/8 ,

is the Darcy-^eisbach resistance coefficient and IR

is the Reynold's number of flow ii^a/,;

For a discharge of 90 g.p.m. (IR = 1.54 x 105) ,

the results are as shown in Fig. 5.1, Also plotted there are

the curves obtained by Laufer (39) for R = 50,000 and 500,000.

The data points conform well t0 the curve given by Laufer for

R = 50,000, except for r'/a values less than 0.2 . This

is probably because of the.disturbance created near the walls

by the access-holes made in order to i Produce the traverse

probe.

Figure 5.2 gives the u| spectra for the various
radial positions of the pipe flow at a Reynolds number of 1.54

x 10^. The spectra obtained by Laufer are reproduced in Fig.5.3,
for comparison. As is evident from the two figures, the spectra
also show the same trend as those given by Laufer.

The seme spectra have been replotted in Fig. 5.4, using
u^U) A f daa »Af/7i- as the parameters, Af being
the integral scale as determined from the energy spectra. The
reference curve shown in the figure is Uj F-[(^) 4

Af i+ 4AV
-2

Ul
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which is the expression obtained if the correlation curve is

approximated by the exponential function exp (- x //\ ) .

The agreement with the curve is not very good, specially away

from the central portion, indicating that the correlation

curve deviates from an exponential shape as one moves towards

the wall.

5.3 Deem/ Behind a Single Grid !

The decay of turbulence behind single grids has been

the subject of many theoretical and experimental studies. Most

of the studies having been carried out in wind tunnels.

Measurements are made at various distances downstream of the

grid; according to Taylor's hypothesis, the rate of decay of

turbulence with distance so obtained corresponds to the rate of

decay with time. The results of the studies on decay are

therefore, generally presented in terms of distance from the

grid.

For the decay pattern behind grids, Taylor (6 0)argued

that for any given type of grid, the micro scale A could be

expressed as

a/M B A/ ~—

u_ G
ul

where M is the mesh width and A an absolute constant

for all grids of a definite type „ On this basis he gave the

decay law as

u

5xn
~^™ = - + constant

2
A~M
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where x represents the distance downstream from

the grid. This equation however,was thought of as applying

only for large values of M /==~/y ^^ experimental
ui* /

data Taylor found a value of A varying between 1.95 and 2.2.

The data collected in the present investigation has

been plotted with u-,/ / a ~~~ and x,/M as the parameters
u '
1 _- i

in Fig.5,5. Shown there is also the line u-,/ ' ,2 =8.9
1

+ 1.035 x-j/M as given by Taylor(60), for square mesh grids.

The present data do not show agreement with Taylor's line. The

value of A for these data v/as worked out and in general it v/a s

found to be very high i.e. varying between 4.0 and 15.0,The

reason for the departure could be the low valuesof M / '' o" /

ul
in the present case, which render the equation for variation

of micro scale and hence the decay law inapplicable. Similar

results were obtained by Taylor (60) using Dryden's data for

which the M / '"a /-y, values were low.
ul

A decay law for turbulence behind single grid can

be obtained on the basis of Kolmogoroff*s theory also.In this

case one gets,for the initial stages of decay,a linear law of
p" _q

the type u'~ at which,interpreted in terms'of distance,
__ •»_

v/ould mean that u£ varies in proportion to the distance

from the grid. Batchelor and Townsend (7,8) carried out a series

of experiments on the decay behind grids of various shapes

and sizes.They gave the following equation for decay of turbu

lence behind square mesh grids during the initial period of

decaye - 2
ul

,2 ' rUl

= 135 ( a - 10)



ill

k
^

n
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They also found that this decay lav/ was replaced by

one representing a faster rate of decay (final period) at

values of x-,/M ranging from 120 onv/ards. The limiting value

of x /M for the above law depending mainly on the initial

ReynoId's number,
_ p p

The decay of relative energy u-^ / u-1 with x /M

for the present work is shown in Fig, 5,6. The decay plots

have been prepared for grids of mesh width, 3/16" , 3/8" and

3/4" (M/d for all is 3). There are two sets of points for eac1
5

grid corresponding to Reynolds numbers of 1.54 x 10 and

7.7 x 10 . Also shown on the plot is the curve given by

Batchelor and Townsend for the initial period. The erperi-

mental data in the present work departs from the linear decay

lav/. Further the points corresponding to various grids do not

follow a single decay law i.e. a single curve cannot be obta.i

for the various grids tested.

The same data are plotted in Fig. 5.7 alongwith the

plot given by Batchelor and Townsend for the decay during

and beyond the initial period. The final period starts to set

in after the absolute energy u' has fallen to a very low

level.

As already mentioned., the linear decay law is based

on Kolmogoroff's hypothesis, the requirements of which are

satisfied only at very high Reynolds' numbers. An extension

of this theory was proposed by Goldstein (22) wherein he

generalised it to make it applicable to moderate Reynolds

numbers as well. On the basis of this extension, he derived
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a generalised decay law

u'2 t = V K. d (t)
i

,2
v/here R. was defined as ( u' t\=0 an(i

U

d(t) was a function depending on initial conditions. This

function is such that the above relationgives correctly the

decay law for the final period, while for very large Reynolds

numbers the above law becomes the same as the linear decay

law.- Goldstein showed that the above law could also be ex
pressed as

uT" t = A + Bt + Ot2 +

and showed that the exact law would depend on the

initial conditions i.e. the initial .Reynolds number, intensity
and scale of turbulence.

The results obtained in the present study can be

explained in the light of the above discussion. There are

three separate curves obtained for the three grids for any one
Reynolds number R. This indicates that the decay law for the
three grids in the initial period is not the same. The mesh
Reynold's number (R}n B u± M/ „ ) for the tliree grMs

will be different and hence, as pointed out by Goldstein,
should reflect in the decay law itself. The range of X-/M (or t)
values for which the data are obtained being not too large, a
definite prediction regarding the final period cannot be made,
but it can be expected that the curves for different grids
should ultimately coincide with the Batchelor and Townsends
Plot for the final period of decay. It is also seen that for
the ,a*e grid, the decay law changes with achange in the
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Reynolds number IF. This could be because of the change in BL,

and the intensity and scale of the approaching turbulence.

The study thus Shows the dependence of the decay during

the initial period on the initial conditions and Reynolds

number as envisaged by Goldstein.

Two sets of points obtained by fsuni and Rama (66)

for decay behind grids of mesh widths 5 cm and 1 cm for the

same Reynolds number of flow IR are also shown in Fig. 5.6,

It is seen that in their oase also, the two grids follow diff

erent decay laws, showing again the dependence of the decay

law on u M/^v for Reynolds' numbers which are not very large

so as to satisfy the requirements of Kolmogoroff's theory.

A more definite proof of the dependence of decay law

on the Initial conditions is provided by the results of decay

behind two grids presented in the next section.

5,4 Decay Behind Two Grids :

The decay of turbulence behind two grids is shown in

Figs. 5.8, 5.9, 5.10, 5.11. Figure 5.8 gives the decay behind

the 3/16" and 3/4" mesh grids alone as well as the decay

behind the 3/l6" grid with the 3/4" grid placed upstream of

it at distances of 1" , 4"and 7" respectively. Figure 5.9

gives the same plot for the 3/16" and 3/8" grids. Both these

figures correspond to a Reynolds number of flow (R ) of 1.54
5

x 10 , Similar plots for a Reynolds number of flow of 7.7 \
A

x 10" are prepared in Figs. 5.10 and 3.11 .

Placing of a grid, say the 3/4" mesh, upstream of

another (the 3/16" mesh) means in effect change of the initial



r

8

7

6

i

°y^

-- ,

d ^y^ i^

5

<
4

/ cy
/ a '

o

1
/13 / yS +

^y^ ^y

t

S+

t lyS

3 H X ±y^V
/ * S^ •

•/ A*^y

2

LEGEND

SYMBOL d/sM,, u/sM SPACING TR -
O 3/16 - - 1.54x10

jy*'

1
L*—•**-

^\ b. 3/4*
# 3/16 3/4' 1
.f '/ "4

D /, " 7"

1 1 1

8 10 12

X1 IN INCHES

FIG.5.8_DECAY OF TURBULENCE BEHIND TWO GRIDS

14 16 18 20 22 24



-3
*10

ul
7

I

i

o ^y

a ^0t^

y^^
a^--""

• '^^^

IV

•a

j
y~^ *•

a

^^•"""D

4 i

/ <y
s^ a

]

f u

LEGEND v

SYMBOL d/s M

O 3/16*

U/S M SPACING TR
5

1.54*10

a 3/8"

• 3/16* 3/P 1

+

J

4*

1. . . .

a/

i

00

10 12 14 16 18 20 22 24

X| IN INCHES

FIG.59-DECAY OF TURBULENCE BEHIND TWO GRIDS



I

vfl

8

7

6

/ /y +
/ °x y

5

5? -3
<>^y*

4

/ 4* y*
3

l
LECEND

SYMBOL <#M u/sM SPACING TR
2

.>-*-—^""^ O 3/16"
4

77x10

1

A 3/4* /»

• 3/16 3/4 1 *

O

4. 4 1,

1*

Q * A -V

i L , 1
16 22 248 10 12

X-| IN INCHES

FIG.5-10-DECAY OF TURBULENCE BEHIND TWO GRIDS

14 18 20



-

/y+ m ^*-

0/ ^

D

*«^^*°^ .

c
D 3 y*"^

LECEND

SYMBOL d/jM u/sM SPACING

O 3/16"' _

TR

4
7.7x10

a 3/8 //

* " «

• 3/16 3/8 1 //

+ 1; „ 4,

L

10 12 14 16

X-l IN INCHES

FIG.5.11.DECAY OF TURBULENCE BEHIND TWO GRIDS

18 20 22

lO

O



lai

conditions. The turbulence produced by the first grid will be

characteristic, of its own, In the present case one would

expect the- large scale (smaller wave number) components to be

predominant in the turbulence produced by the first grid,

owing to its larger mesh width. Thus when the 3/4" grid is

placed 1" upstream of the 3/16" grid, the initial conditions

for the turbulence produced by t.he 3/16 "grid will be those

securing at 1" dov/nstream from the 3/4" grid rather than the

free stream turbulence for the pipe. If Goldstein's sugges

tions regarding the dependence of the decay law on theinitial

conditions are correct, the introduction of the 3/4"' grid

Should result in a change of the decay pattern downstream of

the 3/i6"grid. That this is actually the case is clear from

the Fig. 5.8. When the distance between the two grids is 1" ,

the decay pattern is widely different from that obtained either

for the 3/16" grid or for the 3/4" grid alone. From the

Fig. 5.8 one can also note that as the distance between the

two grids increases, the decay pattern tends to approach that

for the 3/l6"grid alone. Thus, while the points for a spacing

of 1" are very far off from that for the 3/l6" grid alone,

those for a 4" spacing are closer to the latter. The

difference between the two sets of points thus decreases

with increase in the spacing. This seems quite natural

since the turbulence produced by the first grid (i.e. the one

placed upstream) will decay with distance downstream from it.

Thus with a larger spacing between the grids, the effect of the

first grid on the initial conditions for the second grid will

not be so marked as that with a smaller spacing. The same
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Phlng can be observed in Figs. 5.9, 5.10 and 5.11.

The generalised decay law given by Goldstein is in

the form

u{St mV Rfc d(t)
p

where H^ is a Reynolds number defined as tul *'t=so

and d(t) is a function of time. According to Goldstein (22)
"For the turbulence produced by a single grid, d(t) is nearly
constant for a range of t in the initial period; this needs fur

ther explanation and detailed calculation since d(kt) is

certainly not exactly constant. It is also suggested that

the course of d(t) and the number of constants needed to

specify it, depend on the initial conditions ". The first of

these two statements, that d(t) is not exactly constant during
the initial period has been borne aut by the data for a single
grid, while the data for two grids lends support to the second

statement. Results similar to those obtained in this work were

renorted by Isuji and Hama (66,67) while carrying out experi
ments on decay with two grids in a wind tunnel.

J!i-: deca-y law given above can bG expressed in the form
9

X

u

1_ -- d ( xl )
U-

M
"1

where L 13 some length scale. The function d(x /£ )

will again a.o.nd on the initial conditions. Since the initial
conditions can be described fairly well by defining the inten

sity and scale o£turbulenco as well as the Reynolds number R,
a plot between u'2 / u'? -.-^ ,a „>, -> a .

a ' l and V\ should give a
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single curve for various initial conditions for any one

Reynolds number. In the above u' is the value of u'

at the downstream grid and A is the microscale. The data

for decay behind two grids at various spacings is replotted. in

~2
this manner in Figs. 5.12 and 5.13 ,. Here u' was taken as

ii i • o

9

the value of u' produced by the upstream grid at the down

stream grid and A the corresponding microscale. The two
5

figures correspond to Reynolds numbers R of 1.54 x 10

4
and 7,7 x 10 respectively, as can be seen from the figures,

the various points corresponding to different initial condi

tions tend to follow the same trend for any one Reynolds
rp p

number. Thus it would appear that u' J / u' and xA
g 1

should be the relevant parameters to describe the decay down

stream of grids, besides the Reynolds number R,

5.5 Energy Spectra Behind a Single Grid :

The energy spectra behind a single grid are shown in

Figs. 5.14 - 5.16. These plots of Taylor's normalised one-

dimensional spectrum function F (k) vs the wave number k

are prepared for ail the three grids used in the study, viz.

3./16" , 3/8" and 3/4'' mesh. The spectra shown are for a
- 5

Reynolds number of flow R B 1.54 x 10 only, as those obtain

ed for Id = 7.7 x 10 were similar to these. The observed

spectra agree with those already obtained by many other

authors e.g. by Liepmann, laufer and Liepmann (42), Tsuji (66.,

67) etc. Certain features of those spectra can be noted

from these plots, as is well known, F (k) tends to a constant

value Fx(o) as k tends to zero and decreases rapidly as k
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increases. The value of F-^o) increases with increase in

distance downstream from the grid (which also means the

increase in decay time). Since
CO

h« = I ( f(x1 ) cos kx dxl

and Ac \
f

f(xn )dx
1

therefore, »(0) =Lim F(k) =| / f(x,)dx.
a -»o

2
or Mo) A ,

Thus an increase in F^(0) corresponds to an increase

in the integral scale /^f or an increase in the average size
of the eddies present. That this is actually the case is evi

dent from the plots, where the value of F (k) as k becomes

very small, increases for larger values of v .
1

Another feature of the spectra that is evident from

these plots is the effect of mesh width on the energy spectrum.

As the mesh width of the grid increases there is a larger

contribution of energy from the low wave number region. This

is indicated by the increase in the value of F-^k) at low k
values for grids of larger mesh width.

a line with -5/3 slope representing the Kolmogoro-

fi's spectrum law is also drawn on the plots . The agreement
between this line and the observed spectra is however

confined to wave numbers between about 50 to 250 ft'1. Again
the agreement, howsoever small, seems to be better for grids
of larger mesh widths as compared to those for smaller ones.

Similar results were obtained by liepmann and coworkers (42)
who showed that for mesh Reynolds numbers ( IR =~ M/^ )
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of the order of 10" , there was a very narrow wave number

range to approximate the measured one-dimensional spectrum by

the Kolmogoroff spectrum law. However, for larger mesh Reynolds

numbers (of the order of 3x 105) they obtained a much better

agreement with the Kolmogoroff spectrum in the higher part of

the measured wave number range. Stewart and Townsend (57)

showed that in order to have a sufficiently large inertial sub

range , such as is required by Kolmogoroff's theory, the mesh

Reynolds number should be at least of the order of 106.

In tne very high wave number range, another line with

a - 7 slope is drawn representing the Heisenberg*s form of the

energy spectrum. This line also does not seem to give very

good agreement with the observed spectra. Ho definite conclu

sions regarding a power law of spectrum in this region can,

however, be drawn since the signal to noise ratio being small,

the accuracy of the measurements and hence the conclusions drawn

therefrom in the very high wave-number region must remain

tentative.

The spectra for the various grids at two locations have

also been plotted with u F (n) /A - and nA J u, as the

parameters and are shown in Figs. 5.17 ana 5.18. Also shown in

both figures is a curve represented by the equation ^lM1^

4 > "Af~~"
7^2~2T 2 * Tllis eanation corresponds to an exoonential

i+ _nn 'V
2

form of the fCT-j) correlation. From these two figures, it is
apparent that the Reynolds number of flow R does not materially
affect the spectra for any particular grid. Also, there is a
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systematic variation for the various grids and the above

equation cannot be said to be followed. Thus it appears

that the correlation curves donot remain exoonential through-

out.

These measurements of the spectra behind grids

seem to lend further support to the contention that the

similarity spectrum as envisaged in Kolmogoroff's theory is

inadequate to describe the turbulence behaviour at low or

moderate Reynolds numbers and that its range of validity is

accordingly limited by the Reynolds number. The similarity

of the energy spectra has, however, been examined later.

5.6 Energy Spectra Behind Two Grids :

The energy spectra behind two grids are presented

in Figs. 5.19 - 5.21. The spectra were measured for different

spacings of the 3/16" and 3/8" and the 3/l6" and 3/4" grids.

For each case, measurements were made at two Reynolds numbers

of flow i.e. IR = 1.5 x 10° and 7.7 x 104 respectively.

However, only a representative set of three spectra has been

presented in the above figures, the other ones being similar

to these.

thp 3/16" and 3/<±

ectra F-, (k)•j_ww for a spacing of 1" between

grids for a Reynolds number of 1.54 x 1

aro.shown in FiS„ 5,19. The shapes of the F (k) vs k curves

in this case quite resemble those for the 3/4" grid alone.

This is due to the fact that the fine scale turbulence pro

duced by the 3/16" grid decays out rather rapidly and the

large scale turbulence produced by the 3/4" grid remains

comparatively untouched.

0
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The spectra for a 7" spacing betv/een the two
4 and 3/4 "

grids viz. 3/l6'*/are given in Fig. 5.21. The distance bet

ween the two grids being large in this case, the high

wave number components of the turbulence produced by the

3/4" have already decayed out and. the low wave number compo

nents are superposed on the turbulence produced by the 3/16"

grid. Comparison of these results with Fig. 5.14 shows that

^ the effect of the large scale turbulence produced by the

3/4" grid predominates and the value of the spectrum function

F-L(k) at low wave numbers is much larger than that resulting
from the 3/16" grid alone.

The spectra for a 4" spacing between the 3/l6"

and 3/4" grids also show a similar trend. The F. (k) values

for low wave numbers here also are definitely larger than

A those for the 3/16" grid alone. The same tendency was ob

served for the other spectra viz. those for the 1" and 4"

spacings between the 3/16" and 3/8" grids and those for a

Reynolds number of flow of 7.7 x 104 for all the above cases.

These measurements thus show that a change in

the initial conditions, which in this case is brought about

by moans of the 3/4" or 3/8" grids placed upstream of the

4 3/16 "grid, brings about a change in the spectra downstream

of a grid .mid consequently a change in the decay pattern. A

more definite proof of this can bG obtained by examining the

similarity of spectra as has been done in the next section.
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o.7 Similarity of Energy Spectra :

With the values of \\ ,the micro scale, deter
mined iy integratingthe *\(k) CLirVo3y the value of ^(k)^
was plotted against V, k. The results are shown in Figs^.22
t0 5*37'. Tilese plots ** effect are just the non-dimensionali/
sation of the spectra with the help of a characteristic Ion
s'611 '' ' If comPlete similarity of spectra were to hold

K over the entire wave number range i.e. if the sP.ctra prese: -
ved their shape, over all wave numbers, during decay, all the
points on Fl(k)/ % vs Akplot should fall on asingle
curve, irrespective of the distance of the point of observa
tion from the grid. That this is not actually the case is
apparent from Figs. 5.22 - 5.24 and Figs. 5.30 - 5.32. The

varies points, which correspond to observations at different
A distances behind asingle grid, do not full on the same curoa

for all wave numbers. An examination of these plots also
reveals that while the points tend to fall on asingle curve
at larger values of \k, the deviations increase for smaller
A kvalues . This is in agreement with the results of measure
-ments made by many other workers such as Stewart and Townsend
(57) for the turbulence produced by grids in wind tunnel.

^ The scatter of the data at very large .. kvalues is probab
ly more due to the small signal to noise ratio in this region,
which makes the sensitivity of the equipment rather low,

^ than due to departures from similarity itself.

The ^OO/e vs pk plot for the 3/16ir-grid
when the 3/4" wia e- _n -, -, ,.ic <->/ * grid la placed 1"' imerf y»o»th n-p i*. • •,~ x "Pstream of it is shown in
m* 5.25. ai. plot ls preparea for a HeynoiaB
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flow of 1.54 x 10 . If the similarity of spectra and con

sequently the decay law, were independent of the initial con

ditions, this plot should have been similar to Fig. 5.22.

Comparison of the Figs. 5.22 and 5.25 however, show that

there is a large difference between the data points obtained

in the two cases upto >\k values of the order of 4. After

this, the two plots seem to be quite similar to each other.

as the spacing of the two grids increases, the range of V. k

values in which the two sets of eoiuts are wide apart de

creases as is seen from Figs. 5.-25 and 5.26. This indi

cates that the change of initial conditions destroys the

similarity of spectra and hence results in a change of the

decay law. It has already been shown earlier (Figs. 5.8 -

5.11) that the decay law does change with change in initial

conditions. The above plots merely confirm the premise that

this change in decay law is because of the change in initial

conditions, which in turn decrease the range of validity

of the similarity spectrum. The same trend is observable

from the other plots vis. those for 3/16 "and 3/4 "grids at

various spacings for a Reynolds number of 7.7 x 104 and for

5/16" and 3/8" grids at various spacings for Reynolds
numbers of 1.54 x 105 and 7.7 x 104 .

5.8 Similarity of the Spectra of Vorticity :

The plot of k2Fx(k) vs k is known as the dis
sipation spectra and describes the distribution in wave

number of the rate of decay of turbulent energy to heat.

The quantity k ^(k) is also proportional to the spectrum
of vorticity (auJ/dxJ2 . This can be measured directly
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from a frequency analysis of the derivative du'/dt by

using a differentiator circuit along with the harmonic ana

lyser. In the present work, however, it was computed from

the measured energy spectrum Fa (k).

The similarity of the spectrum of vorticity has

been examine'-1- by plotting '.k F (k) vs k. Theplots are

shown in Figs. 5.38 -- 5.43 . 4s can be seen, there is a con

siderable scatter in the data. This may be due to the fact

that the value of p has been determined from the measured

F (k) values and hence the integration of k F (k) for

determining A is not carried out from k = 0 to °° but

upto a finite value of k. However, the data conform well

to the trend obtained for the dissipation spectra by other

workers. One of the feature that is noticeable in the above

figures is that the spectra k F (k) behind the 3/16r' grid,

when the 3/4" grid is placed 4" or 7" upstream of it are

quite similar to those for the 3/16" grid alone, even at

low wave numbers. Only when the 3/4"grid is placed upstream

at 1" , is there a marked departure in the shape of the spec

tra compared to the one for the 3/16 " grid alone. This too

is confined to the lower wave-numbers only. Similar results

are obtained for the other grids also. This indicates that

tne departure from similarity for the dissipation spectra is

smaller than that for the spectrum of energy, while the

initial conditions are changed. The effect of this devia

tion, therefore, will be less in computation of the rate of

dissipation than in the computation of energy on the basis of

similarity spectra. This is also confirmed by observations

made by Stewart and Townsend (57) behind a single grid in a
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a2., t
wind tunnel. They measured the QU1 , ul and "^l

ax1 9x12 ax3

spectra for single grids at various mesh Reynolds number

(R|yr) ? effectively giving measurements of the functions

k2F (k), k4Fx(k) and k^Ck) , and found that the
departure from similarity for different Reynolds numbers

decreased as the order of the function increased, being a

minimum for k F,(k). In the present case, one

can see that the departures from similarity are less

for k F (k) compared to those for F-,(k) alone and it

may be expected that these departures will decrease

further for higher moments i.e. k F (k) etc.

Thus one can see that the spectra of vorti

city conform to the similarity hypothesis better than

the spectra of energy, even when the initial conditions

are changing. It may be expected that the departures

will further decrease with higher moments as envisaged

in the generalised theory of similarity spectra and decay

law proposed by Goldstein,,

5.9 Energy Spectra with Wall to Wall Probes :

The spectra of energy for the 3/16 " grid alone

measured with the v/all to v/all probe at a Reynolds number

of flow of 1.54 x 10w are shown in Fig.5,44. Comparison

of these with Fig.5.14 shows that while for low wave numbers

these spectra are similar to those obtained with the traverse

probe, the difference between the two is considerable for high

wave numbers. The spectrum function F1(k) has a smaller value
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for high wave numbers, when measured with the wall to wall

probes. This may be because of the interaction of smaller

eddies (high wave numbers) within the probe gap, thereby

cancelling the effect of each other. The size of the probe

gap therefore seems to have an, important bearing on the

frequency response. While a small gap will reduce the strength

of the signal and thereby decrease the signal to noise ratio,

a large gap will cut off larger wave number components. This

was observed to be the case for the spectra, with other grids

also, Thus a compromise has to be made between the conflict

ing requirements of high signal to noise ratio and. wider

frequency response vis a vis the probe gap.

o:~
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CHAPTER - VI

COUChUSIOHS AMD SUGGE3TIOHS FOR FURTHER STUDY

6.1 Conclusions :

From the experimental study and subsequent

discussion of results, the following conclusions can be

drawn :

1) The method of electromagnetic induction can be said

to be quite suitable for turbulence measurements In

water. The agreement of the results obtained with

those obtained by Laufer for pipe flows and the

reproducibility of data observed during the experi

mentation further underline the suitability of the

method.

2) The decay of turbulence behind a single grid is

found to depart from the decay law given by Taylor or

from the linear decay law derived on the basis of

Kol.n.ogoroff 's theory. On the other hand, the

results substantiate the ideas put forth by Goldstein

in his generalised theory of equilibrium and simi

larity spectra axid the resulting decay law wherein

the decay law is said to be governed by the Reynolds'

number and initial conditions.

The decay pattern behind a grid depends'on the initial

conditions. With a change in initial conditions the

decay law also changes. Thus if two grids are placed

some distance apart with the grid of larger mesh

width upstream, the decay law is not the same as for

3)
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the downstream grid alonee This change in decay

law depends upon the spacing apart of the two grids..

2™ \ 2~~"
4) If u' and A are used to non dimensionalise '-,'

o _____ —•

and x-, where u' is the intensity and A. the
—- o

microscale of turbulence produced by the upstream

grid at the position of the downstream grid, then

the plot ( u^ / u' ) vs (x / \ ) tends to
o 1

give a single curve for a given value of the Reynolds t

~~2~~ 1
number IR* This seems to indicate that u' and A

g

which represent the initial conditions are the

important parameters governing the decay law in

addition to R. This again is in keeping with

Goldsteins' contention about the dependence of decay

law on initial conditions and Reynolds' number.

5) There exists no complete similarity of the energy

spectra during decay. The similarity however increa

ses with increase in v/ave numbers.

6) A change in initial conditions bring about a strong

departure from similarity of the energy spectra,

consequently bringing about a change in the decay

law.

7) The spectra of vorticity show a smaller departure

from similarity during decay even when the initial

conditions are changed. Accordingly the departure

in practice from any decay law derived on the assum

ption of similarity of spectra of vorticity will be

smaller than that from a law assuming similarity of

energy spectra (Linear decay law). This, in other
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words, means that the effect of deviation from

similarity will be large in computation of energy

and will be smaller for computation of rate of

energy dissipation. It may be expected that this

deviation will further decrease for higher moments

and therefore a generalised decay law as proposed by

Goldstein should hold for all ranges of Reynolds

numbers and all initial conditions.

8) V/all to v/all probe does not give results comparable

to the traverse probe. While the low frequency com-,

ponents are relatively unaffected, the high frequency

components are cut off while using the wall to wall

probe. The size of the probe gap thus has a signi

ficant bearing on the frequency response of the system.
4

* f 6.2 Suggest ions for Further Work :

The following aspects are suggested for continuing

work in the field pertaining to the present work :-

1) A detailed investigation of the induced currents in

the flowing water resulting from electromagnetic

induction in order to express the induced-voltage-

velocity-fluctuation relationship more exactly.

• 2) Building up of three and four wire probes to measure

u' and v' fluctuations and their spectra.
2 3

3) Setting up of a differentiator circuit alongwith

the present set up in order to enable microscale

(A ) measurements t0 be made directly. This will
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also enable the spectra of vorticity to be measured

directly by using another wave form analyser or by

recording the signal on the P.M. tape recorder and

playing it back to the analyser used for measurement

of energy spectra.

4) Setting up of a series of differentiator circuit to

record the spectra of higher moments of ^(k)

These measurements under a wider variety of initial

conditions will give more insight into the nature of

similarity of spectra.

5) Self contained probes may be developed where the

magnet is not a separate one but is a permanent

magnet attached to the probe itself. This will add

to the flexibility of the instrumentation and enable

a wider range of Reynolds numbers to be used for the

investigations. A relationship betv/een the function

d(t) formulated by Goldstein in his decay law and the

Reynolds numbers for various initial conditions could

then be investigatedc

ao:-



Mo

REFERENCES

1. Baines, W.D. and E.G.Peterson 'An Investigation of

Flow Through Screens' Trans. ASMS, 73,

467, 1951.

2. Batchelor G.K. - 'Energy Decay and Self-Preserving

Correlation Functions in Isotropic Turbu

lence' Quart. Appl.Math.6, 97, 1P48,

3. Batchelor G.K.-'The Role of Big Eddjes in Homogeneous

Turbulence' Proc.Roy. Soc (Lend,) ,A 195,

513, 1949,

4. Batchelor G.K.-'The Theory of Homogeneous Turbulence '

Camb. Univ.Press, 1960.

5. Batchelor G.K. and 1« Proudman.- 'The Large Scale

Structure of Homogeneous Turbulence;.Pail,

Trans.Roy.Soc.(Lend).248,Koe949,359,1950.

6. Batchelor G.K, and A.A.Townsend.-'Decay of Vorticity in

Isotropic Turbulence' Proc.Roy Soc,(Lond )

A 190, 534, 1947.

7. Batchelor G.K. A.A,Townsend.-'Decay of Isotropic Turbu

lence in The Initial Period' Proc.Roy,

Soc.(Lond.) a 193,539, 1948,

8. Batchelor G.Kr A,A.Townsend.-'Decay of Isotropic Turbu

lence in the Final Period' Proc.Roy.Soo,

(Lond.) A 194, 527, 1948.

9. Binder G.J, and J.E,German.-'Stream Potential Fluctua

tions Produced by Turbulence', The Physico

of Fluids, "Vol, 6, Ho.8, 1963.

10. Cermak J.E. and L.7„Baldwin.--'Measurements of Turhulp. -

in Water by Electrokinetic Transducers5



171

\

Paper Ho.2, fluid Mech.Papers,Colo.State Univ.

11. Chuang, H. and J.E. Cermak,-'Turbulence Measured by

Electrokinetic Transducers' Proc.A.S.C.E.

91,HY 6, 4526, 1965.

12. Ohandrasekhar S.-'On Heisenberg's Elementary Theory of

Turbulence' Proc.Roy,Soc(lond) A 200,

20, 1949.

13. Corrsin, 3,-'Turbulent Plow1 American Scientist ,49,

300, 1961.

14. Day H.J.- 'Energy Changes in Liquid Turbulent Plow'

Ph.D. Thesis, Univ. of Wisconsin,1963,

15. Dryden H.I.- 'A Review of the Statistical Theory of

Turbulence! Quart.App,Math.1,7, 1943.

16. Dryden H.L .-'Turbulence Investigations at the National

Bureau of Standards1 5th Intl.Cong, for

Appl.Msch. Camb.Mass. 1930.

17. Dryden H.L. and G.B.Schubauer.-' The use of Damping

Screens for the Reduction of Turbulence'

Jour.Aero.Sci.Vol.14,No.4, 221, 1947.

18. Dryden H.L,, Gr,B.Schubauer, W.G.Mock and H.K.Skramstadt-

'Measurement of Intensity and Scale of Wind

Tunnel Turbulence and Their Relation to

Critical Reynolds Number of Spheres'

HACA, TR 581. 1938.

19. Eagleson P.S. and _*.£. Perkins .-'a Total Head Tube

for the Broad Band Measurement of Turbulent

Velocity Fluctuations in Water' I.A.H.R.9th

Convention, Yugoslavia, 1961.



172

20. Frankiel, F.N.- 'Comparison Between Theoretical and

Experimental Results on the Decay of Turbu

lence' Proc.7th Intl.Cong.Appl.Mech.2,112,

1948.

21. Frankiel, P.N.-'The Decay of Isotropic Turbulence'

Trans.A.3.M.E.,Vol.70, 311, 1948.

22. Goldstein, 3., 'On the Lav/ of Decay of Homogeneous

Isotropic Turbulence and the Theories of

the Equilibrium and Similarity Spectra' Proc,

' amb.Phil.See. Vol.47, 554, 1951.

23. Goldstein, S,, 'Modern Developments in Fluid Dynamics.'

Oxford University Press.

24. Grant, H.L. and I.C.T.Hisbet.-'The Inhomogeneity of

Grid Turbulence', Jour.Fl.Mech.Vol.2,

263, 1957.

25. Gratz R.L.- 'Turbulence Spectra for Disturbed Turbu-

lent Flow' M.S. Thesis, Univ. of Wise, 1965.

26. Grossman, L.M,, H.Li and H.A, Einstein.-'Investigations

in Liquid Shear Flow by Electromagnetic

Induction' Proc. A.S.C.E., 83, HY 5, 1394,

1957.

27. Hall, A.A., -'Measurements of the Intensity and Scale

i
of Turbulence' Rep.Memor. Aero.Res.Comm.

(Lond.) He. 1842.

28. Hinze, J.O.,-' Turbulence' McGraw Hill, 1959.

-* 29. Hubbard, P.G.,-' Recent Developments in Electronic

Instrumentation', Proc. of 6th Hyd.Conf.,

State Univ.of Iowa, Bulletin 36, 1955.



m

30. Ippen, A.T. and P.Raichlen.-'Turbulence in Civil

Engineering' Measurements in Free Surface

Streams' Proc. A.S.C.E. Jour.Hyd.Div.,HT 5

1957.

31. Kampe de Feriet, J.,-' The Spectrum of Turbulence'

Jour.Aero.Sci., 7, 518, 1940.

32. Kampe de Feriet, J. -'Le Tenseur Spectral de la Turbu

lence Homogene Hon Isotrope dans un Fluide

Incompressible' Proc. 7th Intl.Cong.Appl,

Mech., introd. Vol. 1948.

33. Karaichnan, R.H.-' The Structure of Isotropic Turbulence

at Very High Reynolds Humbers' Jour, of PI,

Mech. Vol.5, 497, 1959.

34. King, L.V. -' On the Convection of Heat from Small

Cylinders in a Stream of Fluid: Determination

of the Convection Constants of Small Plati

num Wires with Applications to Hot-Wire

Anemometry' Phil.Trans.Roy.Soc.(Lond.) A 214,

373, 1914.

35. Kolin,A„- 'Electromagnetic Velometry: Method for the

Determination of Fluid Velocity Distribution

in Space and Time' Jour.Appl,Phy, 15,

150, 1944.

36. Kolmogoroff, A.N.,-'The L0cal Structure of Turbulence

in Incompressible Viscous Fluids for very

large Reynolds Lumbers'-Comptes Rendus

(Doklady) de 1'Academic des Sciences, l'URSS

30, 301, 1941.



174

37. Kolmogoroff, A.N.-'On Degeneration of Isotropic Tur

bulence in an Incompressible Viscuus Liquid'

Oomptes Rendus (Doklady) de 1'Academie des

Sciences de l'UA33.,31, 538, 1941.

38. Kolmogoroff, A,N,-'Dissipation of Energy in Locally

Isotropic Turbulence* Oomptes Rendus (Doklady)

de l'Acadamie des Sciences de l'TJRSS, 32

16, 1941,

39. Laufer, J.,-' The Structure of Fully Developed Pipe

Plow' Hi-iOA TR 1174, 1954.

40. LettaU H,.,-' A Generalised Mathematical Model of the

Mean-Velocity Distribution in Fully Tur

bulent Flow1 Tech.Rpt.No.3, Depttiof Meteor.

Univ. of Wis. 1961.

41. Lettan , H.,-'A Hew Vorticity -Transfer Hypothesis of

Turbulence Theory' Jour,, of Atmos-Sciences,

Vol.21, No.4, 453, 1964.

42. Liepmann, H.W., J.Laufer and K.Liepmann,-'On the

Spectrum of Isotropic Turbulence' NAOA TH

2473, 1951.

43. Lin C.C.,-' Remarks on the Spectrum of Turbulence'

Proc. 1st Symp. in Appl.Math.Amer,MathfSoc.

81, 1947,

44. Lin C.C.,-'St at 1st ical The ories of Iurbule nc e'

Princeton Aeronautical Paperbakcs,

Princeton University Press, 1961.

45. Lin C.C. and S.P.Tchen.-'Studies of Von-Karman's Simi

larity Theory and Its Extension to Compressible

Plows. A Critical Examination of Similarity



175-

Theory for Incompressible Flov/s' HACA,TH 25.41

1951.

46. Ling S.C.,-'Measurement of Flow Characteristics by the

Hot Film Technique' Ph.D.Dissertation,State

Univ. Of Iowa, 1955.

47. MacPhail,D.C.,-' An Experimental Verification of the

Isotropy of Turbulence Produced by a Grid'

Jour.Aero.Set,8,73, 1940.

48. Pai,S.I., -'Viscous Flow Theory-Vol.Ii' Van H0strand,

1957.

49. Proudman, I.- 'a Comparison of Heisenberg's Spectrum

of Turbulence with Experiment' Proc.Camb.

Phil.Soc. 47, 158, 1951.

50. Rao, M.V. -' A Study of the Structure of Shear Turbu

lence in Free Surf.-.ce Flows' Ph.D.Thesis ,

Utah State University, 1965.

51. Robertson, H.P.,-'The Invariant Theory of Isotropic

Turbulence' Proc.Camb.Phil.Soc.,36,209,1940.

52. Rouse, H., and S.Ince,-' History of Hydraulics' Dover

Paperback.

53. Sato, H.- 'Decay of Spectral Components in Isotropic

Turbulence' Jour.Appl.Phy.22, 525, 1951.

54. Simmons L.P.G., and 0,Salter.- 'Experimental Investi

gation and Analysis of the Velocity Vari

ations in Turbulent Flow' Proc.Roy Soc.

(Lend) A 145, 212, 1934.

55. Simmons, L.F.3., and C.Salter,-' An Experimental Deter

mination of the Spectrum of Turbulence' Proc.

Roy.Soc.(Lond).165,920,73, 1938,



176

56. Stewart R.W.- 'Triple Velocity Correlations in Isotro

pic Turbulence* Proc.Camb.Phil.S0c.47,146,

1951.

57. Stewart, R.W. and A.a.Townsend.-'Similarity and Self-

Preservution in Isotropic Turbulence' Phil.

Trans. Roy Soc.(Lond) A 243, 359, 1951.

58. Tan, H.S. and S.C.Ling.-'Final Stage of Decay of

Grid Produced Turbulence' The Physics of

Fluids, 6, No.12, 1693-1699, 1963.

59. Taylor, G.I., -'The Transport of Vorticity and Heat

Through Fluids in Turbulent Motion' Proc.Roy,

Soc.(Lend.) A 135, 635, 1932.

60. Taylor, G.I., 'Statistical Theory of Turbulence,

Parts I-IV, Proc.Roy.Soc.(Lond.) A 151,

421-478, 1935.

61. Taylor, G.I., 'The Spectrum of Turbulence' Proc.Roy.

Soc.(Lond.) A 164, 47-490, 1938.

62. Taylor, G.I.-'D: g..- i.n by Continuous Moments' Proc. .

Londu Mede See, 2,20, 196-211, 1921.
62. Taylor G.I.- 'Production and Dissipationof Vorticity

in Turbulent Fluid* Proc.Roy.Soc.(Lond)

Vol. 164, 916, 15, 1938.

64. Taylor,G.I. and A.E.Green,- 'Mechanism of the Produc

tion of Small Eddies from Large Ones' Proc

Roy Soc. (Lond) Vol.158, 895, 499, 1937.

65. lownsend, a,a., _'fhe Measurement of Double and Triple
Correlation Derivatives in Isotropic Tur

bulence' Proc.Camb.Phil.Soc. 43, 560, 194?.



177

66. Tsuji, H. and P.R.Hama.-'Experiment on the Decay of

turbulence Behind Two Grids' Jour.of the Aero

Sci.Vol.20,848, 1953.

67. Isuji H,, - 'Experimental Studies on the Spectrum of

Isotropic Turbulence Behind Two Grids' Jour.

Phy.Soc.,Japan, 2, 1096,-1104, 1956.

68. Von Karman, I.- 'Some aspects of the Turbulence

Problem' Proc. 4th Intl.Cong.Appl.Mech. , 54,

1934.

69. Von Karman, T. -'The Fundamentals of the Statistical

Theory of Turbulence' Jour.of the Aero.Sci.

4, 131-138, 1937,

70. Von Karman, 1. -'Progress in the Statistical Theory of

Turbulence' Jour.of Marine Res., 7,252-264,

1948.

71. Von Karman,T.- 'On the Statistical Theory of Isotropic

Turbulence' Proc.Roy Soc,(Lond)., A 164,

192-215, 1938.

72. Von Karman, T. ' and ' a , Lin.-' On the Concept of

Similarity in the Theory of Istoropic Tur

bulence' Reviews of Modern Physics, 21,

516-519, 1949.

73. Von Karman, T. and -a -'.Lin.-'On the Statistical Theory

of Isotropic Turbulence', Advances, in

Applijj Mech. Vol. II, 1-19, 1951.


	STUDY OF LIQUID TURBULENCE SPECTRA BEHIND GRIDS USING ELECTROMAGNETIC INDUCTION
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER-INTRODUCTION
	CHAPTER-2 STATISTICAL THEORIES OF TURBULENCE
	CHAPTER-3 METHODS OF TURBULEKCS MEASUREMENT
	CHAPTER-4 EXPERIMENTAL PROGRAMME
	CHAPTER-5 DISCUSSION OF RESULTS
	CHAPTER-6 CONCLUSIONS AND SUGGESTIOHS FOR FURTHER STUDY
	REFERENCES

