
DESIGN OF HYDRAULIC STRUCTURES 
ON 

NON-HOMOGENEOUS FOUNDATIONS 

A DISSERTATION 
submitted in partial fulfilment of the 

requirements for the Degree 
of 

MASTER OF ENGINEERING 
in 

WATER RESOURCES DEVELOPMENT 

By 
H. C. HEMANTHA. KUMAR 

/o83 10 	t' 

( 

WATER RESOURCES DEVELOPMENT TRAINING CENTRE 
UNIVERSITY OF ROORKEE 

ROORKEE U.P. (INDIA) 
1975 



CFRTTPTCA_T 

Certified that the dissertation entitled " Design 

of Hydraulic Structures on Non-homogeneous Foundations" 

which is being submitted by Sri H.C.Hemantha Kumar in 

partial fulfilment of the requirements for award of the 

Degree of Master of Engineering in Water Resources 

Development of University of Roorkee is a 'record of the 

Candidate's own work carried out by him under my supervision 

and guidance. The matter embodied in this dissertation has 
not been submitted for the award of any other degree or diploma. 

This is further to certify that Sri H.C.Hemantha Kumar 
has worked for a period of 8 months since October, 1974 to 

May, 1975 staying at Roorkee, in the preparation of this 

dissertation. 

Roorkee 	 ( l.S. CRAWLA ) 
Hay) 29719750 	 Research Officer 

U.P.Irrigation Research Institu 
Roorkee. 



CKN0WL9DG$MRNTS 

The author gratefully acknowledges the valuable 

guidance, offered and tke encouragement given by Dr. A. S.Chawla , 

Research Officer, Uttar Pradesh Irrigation Research Institute, 

Roorkee, under whose supervision and guidance the present diss-

ertation has been prepared. 

The author is grateful to Prof. Prahlad Das, Professor 

and Head, W.R.D.T.C., University of Roorkee, Roorkee for 

extending various facilities for the preparation of this pork. 

Grateful thanks are also due to various authors and 

agencieswhose literature has been of help in bringing out 

this review. 

H.C.Hemantha Kumar 

0 



CONTENTS 

CHAPTER 
	 PAGE 

INTRODUCTION 1 

1.1 Historical background 1 

PERVIOUS MEDIUM OF FINITE DEPTH ?+ 

2.1 General 4 
2.2 Stepped apron with a cutoff 5 

2.2.1 	Calculation of uplift pressures 9 
2.2.2 	Exit 	gradient 10 
2.2.3  Charts 11 
2.2.4 	Mutual Interference of piles 17 
2.2.5 	Safety against piping failures 18 

2.3 Flat Apron (without a step) with an 
Intermediate cutoff 18 

2.4 Effect of Impermeable layer on. uplift 
pressures 22 

2.5 Flat apron with Downstream Cutoff 
under Scoured conditions 26 
2.5.1 Uplift pressures 26 

3 2.5.2 Exit gradient 31 

III STRATIFIED FOU!VDATIONS  35 

3.1 Floor on two strata of equal thickness 	36 
3.1.1 	Uplift pressures 39 
3.1.2 	Seepage discharge 40 

3.2 Cutoff in two strata of equal thickness 41 
3.3 Floor on two strata of unequal thickness 44 
3.i- Floor with end cut off on two strata 47 
3.5 Floor with intermediate cutoff on two 

strata (of equal thickness) 59 
3.6 ' Two layered media (Foundation) with a 

cut off at upstream end 61 
3.7 Two layered media (Foundation) with two 

cut offs 65 
ANISOTROPIC FOUNDATION 68 

I 

II 

IV 

4.1 Equations of motion in homogeneous 
anisotropic medium 	 72 

4.2 Floor with a cut off 	 78 
4.3 Floor with a cutoff founded on anisotro- 

pic soil of finite depth 	 92 
~+• 1+ Experimental studies 	 97 

rj 



Contents (Contd..) 

V 	NUMERICAL METHODS FOR SOLUTION OF NON 
HOMOGENEOUS FOUNDATIONS 105 

5.1 	General 105 
5.2 	Solution of Anisotropic Seepage by 

Finite difference method 105 
5.2.1 	Outline of the method 107 5.2.2 	Application 108 

5.3 	Solution of Anisotropic seepage by 
Finite element method 109 5.3.1 	Theory of flow in Anisotropic 

media 109 5.3.2 	Two dimensional seepage in 
Anisotropic medium 111 5.3.3 	Application 112 

VI 	CONCLUSIONS 115 

APPENDIX I 	 118 

APPENDIX 2I 	 121 

REFERENCES 	 127 



NOTATIONS 

l'b a 	= tanh2 2T 	- A constant in 3 plane 

b = Width 	(or half width) of floor 

b1  and b2  = Widths of floor at upstream and downstream of 

cut off. 

b; and b2 = Widths of floor at upstream and downstream 	of 

cutoff in transformed plane. 

b = Distance between two cut offs. 
C = Correction factor 	for mutual interference of 

piles 

d = Depth of cut off 

d1  = Depth of cut off measured along its upstream 	face 

d2  = Downstream scour depth 

d' = Depth of cut off in transformed plane 

GE  _ Exit 	gradient 

g = Gravitational constant 

H = 	Difference in (Head) upstream and downstream water 

levels. 
h = 	The head at any point 

h0  h1  t h2, = Heads at nodes 0,1 ,2,3,11 
h3, h)- 

grad H\ = Head gradient (vector) in original and changed 
{grad H' 	(new) principal axes of anisotropy respectively 

K and K' - Complete elliptic integrals 



[K] and[K'] _ Permeability matrices in original and new 

principal axes of anisotropy respec-tively 

:Kyy xX 	= '-Seepage coefficients in the directions of 
kx1'ky1 	principal axes of anisotropy  
kx  ,ky  

Kx t x l , Ky t t = Seepage co erfiti 	s in it w prineipai axes of 

anisotropy 

k 	 = Seepage coefficient 
k1 , k2 	= Coefficients of permeability in top and botton 

layers respectively. 

L1  and L2 	= Lengths of floor in semi-infinite plane 

M 	 = TAT = Transformation parameter 

M s 	_ kH 
= Transformation parameter 

2T 

m 	= d/b = Ratio of depth of central cut off to half 
width of floor. 

m f  and m 	= Modulii 

N 	 = Constant of Integration. 

n = T/b 	= Ratio of depth of pervious medium to half wid' 
of floor. 

P 	 = Argument of Sn-1(P,m) 

P 	 = Pressure at any point on seepage fluid 
q 	 = Discharge (seepage) per unit length. 
Sn-1 (P.m) 	= Elliptic integral of I kind 
Sn(U,m) = P = Elliptic function 



s 	= Length of seepage segment 

T 	 = Depth of pervious medium 

T1 ,,T2 	= Depths of upper and lower stratum (pervious) 

respectively. 

t 	= Auxiliary semi-infinite plane. 

U (=Sn 1(P.m)) = Inverse of Elliptic function Sn( U,m)=P 

u and v 	= Components of fictitious dimensionless velocity 

v jvyIV z 	= Seepage velocities in principal directions of 
anisotropy. 

~v} , ~v~ 	= Velocity vectors in original and new principal 

directions (axes) of anisotropy. 

w 	 = Rectangular flow 	fields. 
w' _ (a" +jir') 

w1 = (a'i+iyl) 	
= Complex potentials in upper and lower stratum 

w2 = '2 +it 2) 	respectively 

X,Y 	= Horizontal and vertical coordinate axes 

X,yI z 	= Spatial coordinates 
x,y~z 	Transformed coordinate axes in anisotropic medium. 

x' ,y' ,z' 	= New axes of principal directions of anisotropy 
x~,3' or 	= Axes along principal directions of anisotropy 
IC ,v 

Z 	s Complex potential plane 

= Ai gle between 12 axis (principal axis of 
anisotropy) and horizontal. 

'<) d2 	= Transformation parameters. 



/3 = 	Angle between transformed cut off with w axis. 
Y =  Angle between downstream floor and cutoff in 

fictitious /4 - 0 v plane 

b 	= Angle between transformed straight line (floor line) 

to A axis. 

0 and o-2 = Transformation parameters 

= 	Velocity potential (= kh) 

= 	Velocity potentials in upper and lower stratum 

respec -tively, 

= Potentials under the floor and tip of cut off. 

V , 1, Y2 	Stream functions 

e _ 	tan" 1 	Parameter depending on permeability 

coefficients of upper and lower stratum. 

P 	= 5k,/k2 = Square root of ratio of permeability 
coefficients of upper and lower stratums 

1~ 	= - log mf = Negative logarithm of complementary modulus. 

X = v2 = kyl / kxi _ Ratio of permeability coefficients z~ 

in principal directions of anisotropy 
_ Auxiliary semi infinite plane. 

11' 	= Constant. 



SYNOPSIS 

Approximate or closed - form solutions are available 

for the problem of seepage below the hydraulic structures 

founded on homogeneous and isotropic medium with various 

boundary conditions. But mostly the foundation met with 

below hydraulic structure is rarely homogeneous and isotropic. 

Anisotropy , stratification and non homogeneity to some degree 

or the other are common characters of foundation below 

hydraulic structures . The occurrence of pervious founda-

tions of finite depth is also a common feature. 

In this dissertation an attempt has been made to 

review critically the effect of (1) finite depth of pervious 

medium (2) stratification (3) Anisotropy and (4) Non-homogeneity 

on the uplift pressures below the structure, exit ' gradient 
and seepage discharges. 

The effect of finite depth of pervious medium on' 

uplift pressures (1) below the floor (2) at junction of 

floor A cut off and (3) at tip of cut off has been reviewed. 

Also the effect of downstream' scour depth on uplift press-

ures and exit gradient in the case of an apron (floor) with 

downstream end cut off has been studied . 



In the case of structure on two strata of equal 

thickness and of different permeabilities, general formulae 

are given based on solution obtained by Polubarinova..Kochina, 

to calculate uplift pressures below the floor and also to 

find seepage discharge. 

An attempt has also been made to study the effect 

of anisotropy of foundation soil (with principal directions of 
permeability not coinciding with coordiate axis of physical 

plane) of the pressures (1) at junction of cut off and 	r 

floor and (2) at tip of cutoff, in the case of a floor with 

a downstream and cut off,; A vertical cutoff in an aniso~ropic 

medium, will , after suitable transformation become an inclined 

one in the transformed plane. The effect of both finite depth 

of pervious medium and the depth of inclined cut off on pressures 

at tip of cut off and exit gradient, in the case of a stepped 

floor, has been briefly re 3iewed, 

Finally,the versatility and wide range of applicability 

of finite element method for solution of seepage in Non-homogeneous 

foundations has been reviewed. 



CHAPTER I 
I N T R O D U C TI O N 

1 .1  HISTORICAL BACKGROUND  

Design of Hydraulic structure requires testing their 

stability against forces due to surface flow and against forces 
caused by seepage water. The water seeps under the foundations 

of such structures and exerts pressures on the bottom and tends 

to mash away the soil under it. The structure has to be made 
heavy enough to withstand the uplift pressures and the value 

of the exit gradient of the first streamline has to be kept 

within safe value by providing end cutoff. 

The application of conformal mapping to the solution of 

confined flow below the foundations of hydraulic structures was 

for the first time indicated by Pavlovsky (1t+) and Khosla(7) . 

Based on conformal transformation, general solutions for the 

various boundaries have been given by Muskat (12) , Harr (6) 

and Pollubarinova-Kochina (15) and Arvin and Numerov (3) . These 

solutions are applicable for the seepage below hydraulic struc-

tures Sounded on homogeneous and isotropic permeable soil with 
various boundary conditions. In practice, the homogeneous and 

isotropic soil extending upto infinite depth is seldom encountered. 

The homogeneous permeable soil may be underlain by a homogeneous 
stratum of hydraulic conductivity higher or smaller than that 

of upper stratum. On the other hand, the hydraulic structure 

may be underlain by homogeneous but ani so tropi c stratum extend-

ing upto finite or infinite depth. 
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The  solutions of seepage below hydraulic struc-

tures founded on homogeneous isotropic soil extending 

up to finite depth and underlain by impermeable or highly 

permeable layer were obtained by Pavlov skis (14) 

Kulandaiswamy (8) and Muthukumaran (13) have prepared 

design charts for determining exit gradient and uplift 

pressures below the foundation of the structure founded 

on soil underlain by an impervious layer. 

The solution of the seepage below structures with 

a flat bottom founded on two layers of equal thickness 

is given by polubarinova - Kochina (15) and that for two 

layers of unequal thickness has been obtained by Lenau C.W. 

(9) . The uplift pressures below flat floor with end cut off 

founded on two layers, upper layer being of higher permeability 

has been studied by Alamsingh and Punmia (1) . The effect 

of higher permeability of lower layer has been determined 

bysharma et. al. (22) . They have combined analytical and 

experimental results to provide design curves for determin- 

ing exit gradient and uplift pressures, covering the 

complete range of the values of k2/k1  from 0 to infinity. 

The effect of anisotropic media on the uplift pre-

ssures has been studied experimentally by P.V.Rao (19) , 

Alamsingh and Punmia (2) and by Punmia and Patwa (18) . 
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In the present dissertation an attempt has been 

made to study the effect of non homogeneity of the founda-. 

tion on the stability of the structures. The cases with 

the following boundary conditions have been reviewed 

critically. 

(1) Hydraulic structures founded on permeable 

soil; of finite depth underlain, by imper-

meable or very pervious layer (Chapter II) 

(2) Structures founded on stratified foundations 

(Chapter III) 

(3) Structures founded on homogeneous but art!.-

isotropic soil (Chapter IV) 

( +) Applicati©n of Numerical methods for the 

solution of problem of seepage below 

hydraulic structures founded ' on nonhomogeneous 

soil (Chapter V) . 



CHAPTER II 

PERVIOUS FOUNDATION OF FINITE DPTH 

2.1  GENERAL 

The solution of seepage below hydraulic structure 

founded on finite depth of permeable soil could be obtained 

by conformal mapping, approximate methods such as method 

of fragJment$  or by experimental methods. Pavlovskii (14) 

was the first to treat the problem of seepage as a problem 

of mathematical physics and used the method of conformal 

transformation for its solution. He obtained the solution 

of seepage below a flat apron with a central cut off on 

limited depth of pervious foundation. Muskat (12) analysed 

the case of flat floor with sheet piling anywhere on finite 

depth of permeable soil. Pollubarinova. Kochina (15) gave 

analytical solutions by the method of conformal mapping 

for seepagebelow flat bottomed structures with single and 

two cut offs founded on permeable foundation of finite 

depth. Chugaev O+) while finding a method of determining 

the underground profile of a structure which is safe in 

regard to percolation introduced a method called the 'method 

of resistive coefficients,,  (method of fragments) where in 

the underground profile was divided into seperate elements 

resistive coefficient for each separate element determined, 

and hydraulic head distributed in proportion to these 
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coefficients. The uplift diagram could thus be drawn. 

The method is suitable for any complicated weir profile 

with number of cut-offs on pervious foundations of finite 

depth. 

2.2•  STEPPED APRON WITH CUT OFF 

The general case of a stepped apron with a cut 

off founded on pervious foundation of finite depth has 

been dealt by Sri MuthuKumaran (13) . He has given the 

design procedure and provided charts for determining 

the exit gradients and uplift pressures at salient 

points of weir profile. 

The weir profile is shown in Fig. 2.1. An imp er- 

vious floor AECB of length b1+b2 	located on a permeable 

soil of stratum depth T has been considered. The floor 

has a step of depth, d2  at E and a sheet pile of depth 
(d1.. d2) at the step. The downstream pervious bed is at 

the same level as the down stream impervious bed. The 
n 	 t 

differential equation gove ,ing seepage phenomenon is 

a2g   
2 

+ a29( 

ax  8y- 

where 0 = velocity potential equivalent to 'kh,  , 

h = the head, k=the coefficient of percolation, and 
tt and y are spatial coordinates. 

The foundation profile AEDCB forms the inner boundary 

of flow and represents streamline 	0 , in which 1F =stream 
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function. The lower impervious boundary FHG represents 

the streamline t = q , where q = the total discharge 

per unit width percolating through the foundation. Along 

the boundary AF at the upstream bed level potential p=kH 

i.e.,  the total head, and at the downstream bed, BG poten- 

tial function, pF = 0 . 

Both the profiles of the structure in the z plane 

and the rectangular flow field of the w plane can be trans-

formed on to the lower half of the same semi-infinite p.

plane. Thus 

z = f(p) 	 ,••(2.G) 

and 	w = F(p) 	 • . , (G.3) 

are obtained in which z = x+iy , representing physical 

plane, p = s+it, representing an auxiliary semi=infinite 

plane, and w = i + i'tT , representing the rectang tar flow 

field. For convenience, a new variable w' = yr' + tilt' 

has been introduced which is defined as 

ci' (2.(2.)W 0  K 	 ...  

rr' = v 
kA 

q 
where K and K' are complete elliptic integrals of the 

first kind with modulus 'm' and M I  respectively and m' 

= 1-m . Combining equations 2.2 and 2.3 and replacing 

w by w'  we obtain 

z = f(p) = fF 1̀(w') 	 ...(2.6) 

and 	w' = F(p) = Ff-1  (z) 	 0.0(2.7) 
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The relationship between z and p fields is given 

by 	_ 2 	 1 	( 2 +1) (P-1) 
z -  (T-d2) tanh- 

(o-2 1) (P+1) 

_1 
- 2T tank 	

( +1)(p+1)+id2  
.*J 

The transformation constants are given by 

o, = sec di , (1=1,2)  •.•C2.9) 

s inc( 
= 1 - 	 •••(2.10) sincc2 	T 

d 

a2  ...(2.11) 

(1- d2 ) 
T 

= 2T 	(Oi +1) (/3 -1) 
b 1 	~ tanh 	= 

(0.1-1) (/.31 +1) 

2 	 (o-2-1) (/3f 1) 

	

- 	(T»d2) tanh 	 - • • • (2.12) 
2+1) (,1) 

-1 	(o-2+1 /2 -1) 
b2 	2(T-d2) tanh 

(o-2 1) (/32 +1) 

- 2T- tanh-1-1) C/3 
2 -1) 

...(2.13) 
(o-1+1) (/32+1) 

where /31 , /32' o-~ and o-2 are transformation parameters. 

The relation between w' and p fields after transformatin is 
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w I = ;3n-1 (P,m) 	 . • • (2.14) 

where Sn-1(P,m) is elliptic integral of first kind with 
P as argument and in as modulus. 

+ 	+ a 2 	...(2.15) 
Oi) 

J2 
= 	 ...(2.16) 

(o-2-p) (/31+/3 2) 

Potentials underside of floor and sides of sheet pile as 
a ratio of total differential head are given by 

1 
_ 	~-1(P,m) ...(2.17) 

2.2.1 Calculation of uplift pressures 

-not 
It is,convenient to use equation (2.17) when the 

width of weir is comparable to depth of pervious foundation. 
Under such circumstances m and P are close to unity, the 

elliptic integrals in equation (2.17) vary rapidly and 
the values of in and P have to be computed to many signi-
ficant places to get accurate results. It is therefore, 
necessary to rewrite the solution in some other foam and 
express the elliptic integrals in terms of some other para-
meters. 

Priam equations (2.15) and (2.16) 

m 	1-m (0-2 !3 2) 	
...(2.18) 

°"2 /3  ) (o-.+ /3 2) 
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1 _MP2_  (o-2 —/3 2) (c}4 +P) 
... {•2.19} 

(0-1  + /3 2) } °'2 -p) 

Equation (2.17) is modified as 

0 = 1  do-1 [ji_2) , m 	 ...(2.20) K 

or 	dn2(OK,m) = 1 -m?2  

where *dn (OK, m) is an elliptic function given by 

dn2(U,m) = I - mSn2  (U,m) ,, Sn( U,m) =.P , is an elliptic 

function whose inverse is the elliptic integral of the 

first kind 9 	U = Snf'1(P,rn) 

The elliptic function dn, can be evaluated by 
expanding it in an infinite series of functions of its 

argument and m' . The complete integral K can also be 

computed for given m' . Thus 0 can be computed for given 

values of (1-mP2) and m' 	. The latter quaz.tities can be 

computed from known values of d1, d2, T, b1  and b2, by using 

equations (2.18) (2.19) 	and (2.8) to (2.13) . 
2.2.2  Exit Gradient 

In addition to uplift pressures it is also important 

to find the hydraulic gradient at the downstream end of 

the percolation trajectory. 

Gradient G at any point is given by 



G = 	 ...(2.21) 
ds 

where h = head at any point along the floor or cut off 
H 
r0 

s = distance along the streamline passing- throught the 
point. 
Equation (2.21) can be .rewritten as 

dø G _ H 	 ...(2.22) 
K ds 

At the exit point B where w' = t , exit gradient GE is 

given by 

G = H 	dw~ 
K 	 ••.(2.23) 

dz z = b2+id2 

-= infinity, if b2 > 0 

The quantity of seepage is given by 

q = kHKI/K  

where K' is the complete elliptic integral with modulus m'I nix 

2.2.3 Charts 

The potentials at salient points in the underprofile 
of the weir can be determined by the following steps 

(1) o-1 and 02 are computed using equations (2.9) to 
(2.11) by trial and error. 

(2) /31and /3 2 	are obtained from equations (2.12) and 

(2.13) by trial and error. 

(3) (1-m1P) is calculated from equation (2.19) 



(Note.- p takes values -1 X 0,1 at E,D,C respec-tively) 

(+) m' is determined from equation (2.18) 

(5) Using equation (2.20) and steps (3) and (i+) 0 is 

computed. 

The values of of and /3 ji=1, 2) in the equations 

for potentials are close to unity and hence of - /3 i is 

very small. But it cannot be neglected, since small vari-

ation in this leads to large variations in potential dis-

tribution under the floor. Therefore charts have been provi- 

ded for facilitating the computations of o 	and (03 -/3 i) 
for i = l,2 	For finding o,, 	two charts (Fig.2.2 and 2.3) 

are provided where o,~ can be read for given values of 

d1/T and d2/T . 	Once the value 	of of 	is known O_2 	can 
be worked out using equations (2.10) and (2.11) . For 

finding (co-, - /3 k) for I = 1 i 2, Using Figs. (2.+) and 

(2.5) the following trial and error procedure is adopted. 

First a suitable value for (o-1 . /31) is assumed, based 

on experience. Using this value and known values of on,t , 

RI and RII are read from Figs. (2.-) and (2.5) respect-

ively. Then from equation 
~r d b1 x 2T = RI -► (1- 	2) RTI 	 ...(2.25) 

b1/T is computed and compared with known value of b1/T. 

If b1/T is greater than the computed value, then  

bust be reduced and vice versa. 
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A Similar procedure and the use of equation, 
b 	d 

___ = (1 - T) RI - RII 	 ...(2.26)  
2T 

will enable, determination of the value of (~2 _ /3 ) 
2 
d Since (o- .. p1) is small in practical casesnsince 

RI I does not contain (o. J), R11 can be .read from 
Fig. (2.J) , assuming o-1 = /3 	and RI is then worked 

out by equation (2.25) . Therefore in one single trial 

(o 	/3 ) can be read from figure (2.1+) as RI and owl are 

known. 

Figure (2.6) shows the chart for reading in' 

and (1-mp2) . The following substitution is used since 

the values of m' and (1-m?2) are generally small. 

u = - logm' 	 ,..(2.27) 

x = - log [1..mP2J 	 ...(2.28). 

All the charts prepared, cover the following ranges. 

(1) T/b varying from negligible values W about 2.5 

(2) T/d 1 varying from negligible values to' about 5. 
( 3) b/d1 varying from about 0.5 to about 30. 

The author observed by trial computations that 

when T/b = 2.5 and T/d1 = 5 , the potentials at salient 

points were approximately equal to the corresponding 

values for infinite depth of pervious foundations. 
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2.2.3 Mutual Interference of Piles 

By improving the formula given by Khosla, the 
author gave after experimental verification, formula for 

mutual interference of piles for finite depth of pervious 

foundation, as follows: 

sin ~d1 	sin '—~ + sin ~d2 
2T 	2T 	2T  

C 	19 .,.(2.29) 
irli'

=,  

__ 	 tanh ~b 

s.nh ----- 	 2T 
2T 

Where C = Correction at the corner where sheet pile 

of depth d2 meets the floor, due to the 

presence of sheet pile of depth d1. 

b' = distance between piles 
b = Width of floor. 

It may be seen that equation (2.29) reduces to equation 

given by Khosla when T is large. The correction in equation 
(2.29) is additive if pile of depth d1 is on the down- 

stream side of pile of depth d2 and subtractive if other-

wise. The equation is valid for the following conditions- 

(1) The intermediate pile is longer or equal to 

outer pile. 

(2) The distance between the piles is more than twice 

the length of the outer pile. 

(3) The depth of the pervious stratum below the tip 

of the pile (t) is greater than 0.2b for b/T 

varying from negligible values to 2. When b/T 
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equals 12, the minimum required value of t/b is 

negligible. For values of b/T between 2 and 12 
minimum required value of t/b varies linearly 

from 0.2 to 0 . 

This equation was verified using both experimen-
tal and theoretical results and found to be valid. 

2.2.x+ Safety Against Piping Failures 

Piping failures are caused by seepage erosion or 
heaving. The seepage erosion, in potential theory is 
analysed on the basis of the exit gradient at the point 

on the pervious region nearest to the downstream end of 

the strudture. Khosla, who has derived exit gradient for 
the general case and other simple weirs on infinite depth 
foundation (pervious) has shown that the result of the case 
of a floor with a sheet pile at end is adequate for prac-
tical purposes. 

2.3 FLAT APRON (WITHOUT A STEP) WITH AN INTERMEDIATE 

CUT OFF 

This cas is a particular form of general case 
discussed in previous section where a floor with astep 
and an intermediate cut off was considered. By putting 
d2  = 0 and d1  = d , we get the present case. The solu-
tion for this case was obtained by applying Schwarz-Christoffel 
transformations successively twice, on the same principles 
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adopted in the previous case. Charts for finding potent-

ials at salient points and for finding exit gradients 
were provided by V.C. Kulandaiswamy and Muthu Kumaran(8) . 

The uplift pressures and exit gradient are 

given by 

1 -1 	1-~2 1-p - 	, -, , in  
K 	1+13 2 1+p 

H 
...(2.31) 

Km sinrd 
2T 

where, 
2(/31+/32) 	

...(2.32) in _ - 

(1+/3 1) (1+/3 2) 

The equation (2.31) for exit gradient applies only when 

the cut off is at the end of floor, while the exit gra- 
dient for an intermediate cut off is infinity. As the 
quantities to be used as variables in the chart namely 
m' and (1-rnp2) are generally small, their negative 
logarithms have been used i.e., 

i= -login' 	 ..•(2.33) 
1-/32 1-p 

= - log -  
1+732  1+p 

where, m = 1..in and 

where p = -ac = - sin 2T for point E (Refer Fig.2.1a) 
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p = 0 for point D and p = a = sin.._ for point C. 
2T 

The charts for potentials (Fig. 2.7) are prepared 
using L4 and A as variables. The chart for the exit gra-
dient (Fig. 2.8) is computed using A and d/T as variables. 
The values of A and X can be computed using the available 
data namely b1,b2 , d and T. 

The use of charts to find(1) potentials at points 

E,D and C (Fig. 2.1a) and(2) exit gradient is explained 
in the following steps. 

11 /3 1 	1 _ /3 
(i) The values of +~ 	and 	2 are computed 

1 	1+12 
from the equation, 

1 - /3 	Cos . Td sech 	_bi 
i 	2T 	2T 

	 ...(2.35) l+/3 i 7r 	~r 1 + . 1 - co s2 . d se ch2 7_bi 
2T 	2T 

(ii) m'( 1-m) is computed from 
1 	1 - /3 	1-/3 

m = 	1 x __ 2, 	...(2.36) 
1+/31 	1/32 

(iii) 	is computed from equation (2.33) . 

1- sin — 
(iv) 2T 	is computed and using equation (2.3I1.) A 

1+sin 1rd 
2T 

is determined. 
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(v) With the values of !A and X , the value of 0 

is read from Fig. (2.7) 

(vi) From Fig. (2.8) with the known value of lA on line 
M proceed through the d/T value in line 
D1  or D2  straight to the corresponding line G 

i.e., from D1  to G1  or D2  to G2  and read the 

value of GE / H i•e. , 	0 

K msin d 
2T 

(vii) 	The exit gradient is computed using equation(2.31) 

The formula for correction for mutual interference 
of piles (in case of weirs with more than one pile) and its 
limitations, is the same as given in previous section. 
The validity of this formula was checked by the authors 
by conducting experimental studies and found that the 
variation was within 5%. 

The authors observed substantial variation in 
both potential at salient points and exit gradients (GE  
increased) when the depth of pervious stratum below tip of 
sheet pile was increased from 0.20 to infinity, while 
studying a typical weir profile with two piles. 

2.4  EFFECT OF IMPRMEABLE LAYER ON UPLIFT PRESSURES 

Based on the results of conformal mapping 
Pavlousky (11+) studied the effect of lower impermeable 
layer on the uplift 	pressures. He carried out calcula- 
tions for various combinations o.f the different parameters 
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0 

to determine uplift pressures in the downstream portion 

of floor with central cut off. The parameters affecting 
the pressures are n = Tab and m = d/b where b = half 
width of floor, T = depth of impermeable boundary and 
d = depth of central cutoff. Following values of these 
parameters were considered . 

n = 10.0 and 1.0 

d/1 = 0.3, 0.5 and 0.7 

in 	= 3,5 and 7 for n= 10.0 
= 0.3 , 0.5 and0.7 for n=1.0 

In addition the extreme case of n= eo i.e., the depth of 

permeable stratum extending upto infinite depth was also 
considered. 

The effect of in and n on the uplift pressures 
was studied at two selected points i.e., the point J, imrne-

diately downstream of the piling and a point B, at the 

middistance between the piling and the downstream edge of 

the floor. the uplift pressures are given in Table 2.1 

and plotted in Fig. 2.9. It is seen that- 
(a) 	The effect of impermeable layer is negligible 

for n >,,5 and m £ 0.1 . The difference in th-e 

uplift pressure calculated for n = aD and for n 5 is 
less than 1% when the value of 	0.1 
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(b) 	The difference in uplift pressures calculated 
for n = oo and n >, 3 is less 10% when the value of m 40.x-. 

Pavlovs ky investigated another problem of what 
depth should be given to the piling to make it reasonably 
effective. He gave two graphs drawn from theoretical 
calculations (Fig. 2.10) to show efficiency of piling 
of various depths. The efficiency (he f  f) was presented 
as the ratio of head lost in between points namely upstream 
junction point of pile and floor and downstream junction 
point, expressed as a percentage of total- head. The intere-
sting point in the graph is that line for T/b = 2 for case 
of central pile is a straight line. The curves on one side 
of it are concave while those on otherside are convex. 5o 
if T/b = 2 is taken as critical value it follows, 
from diagram that for T/b < 2 specific efficiency rises. 
with increase in depth of pile while for T/b > 2 it drops 
with increase in depth of pile. 

Thus whilst for infra critical values of T/b 
the piling should be as deep a s technically possible, 
no material advantu.ge is gained in the case of hyper cri-

tical values of T/b , by increasing the piling beyond a 
certain limit. 
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TABLE 2.1 

(a) for T/b = 10.0 

m=3 m=5. m_ 7 
Boint 

=10 n=cn 3ligh n=10 n=cr Ugh n10 n=oo Bli gh 

1 0.099 0.101 0.125 0.060 0.063 0.083 0.039 0.01+5 0.062 
3 0.085 0.088 0.061 0.0+8 0.051+ 0.042 0.031 0.039 0.031 

TABLE 2. 
(b) for T/b = 1.0 

m-0.3  m=0.7 
?oint 

n=1 .0 n=co Bli gh n=1 .0 n=aD Bli gh n=1 .0 n=oo Bli gh 

k 	0.394 0.406 0385 0.328 0.35 0.333 0.256 0.306 0.295 
3 	0.288 0.310 0.192 0.21+9 0.28 ̀  0.167 0.198 0.251 0.17 

2.5  FLAT APRON WITH DOWNSTREAM CUTOFF UNDER SCOURED 

CONDITION,$ 

2.5.1  Uplift Pressures 

In the previous sections, determination of uplift 
pressures and exit gradients below apron with an intermedi-
ate cut off, either with or without a step, was discussed. 

Also the formula and chart for finding the exit gradient 
for the case of a floor with an end cut off were given. 
But when the apron is under scoured conditions, i.e. when 
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there is difference in levels between upstream and downstream 
of an apron (with a downstream end cut off) , the pressure 
below it and the exit gradients differ from the case of 

apron having equal upstream and downstream elevations. One 

such case was investigated experimentally by B.C. Punmia 

et. al. (16) by electrical analogy method. 

In the experimental study the authors studied the 

influence of parameters like b/T , d1/T , and d2/T on 

pressures c"'LL  (1) , below theaprpn (2) at junction of 

floor and downstream end cutoff (3) at tip of cut off, 

where d2  is the downstream scour depth and other symbols 

have the usual notation. The sequence of their study was 

as follows . (a). the values of b/T were kept equal to 1/27 1, 
2 and 4 (b) For each b/T the value of d1/T was taken as 

0.2, 0.-, 0.6 and 0.8 , (c) For each b/T and d1/T 

the value of d2/T was taken as 1/8 , 2/8 9  3/8 and 14/8. 

The influence of the ratios of various parameters 

namely the width of apron, the depth of porous media, depth 

of cut off downstream scour depth on the pressures (i) below 

the apron (OX) (ii) at junction of apron and cut off(d 

(iii) at tip of cut off (0D) are shown in Figures (2.11) to 

(2.18) 

From the results of the experiments the following 

conclusions have been drawn. (1) for a particular width of 

apron and depth of media, the pressures below apron increase 
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as depth of cut off increases. (2) The width of floor, the 

depth of cut off and the scour depth all being fixed, the 
pressures at any point below floor increase as the imper-

vious layer comes nearer the floor (3) The pressure at junc-
tion point (0. ) and that at tip of cut off (J6D) increase 

when width of floor decreases (for constant depths of 

porous media,scour and cut off) . But all the other para-
meters being fixed the pressures 0E  and 16B  slightly incre-

ase with decrease in scour depth ()-) Pressures 468) and 
(16E) increas rapidly with decrease in ratio of width of 

floor to depth of cut off. C5) OD  and 0. increase rapidly 
with increase in penetration ratio . 

It can therefore be concluded that (i) the depth 
of the downstream cut off should be kept minimum required 

for safe value of exit gradient and also from scour 

considerations. 

(ii) The width of floor downstream of the gate line should 

be kept minimum subject to the requirement from surface 
flow considerations, (iii) the depth of scour on the down-

stream, effec is slightly reduction in uplift pressures, 
but at the same time would increase the value of exit 

gradient. 

2.5.2  Exit Gradi en t 

The effect of scour downstream of a structure can 

be studied from the expression for exit gradient at the 

end of floor with a step and downstream cut off. The 
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expression obtained by Muthukumaran is 

T 	T o- 	(1+o-1) 	2 (,/3) +o-) 
G 	- 	2 	2 
~ H d 

2K (1 - T2 ) (o-1 + o-2) 	(1+/31) (1+0-2) 

...(2.37) 

where the symbols have the notations as explained in 
T 

earlier secti{n . The values of GE 	have been evaluated 

for b/T = 1.0 and for following values of d1/T and d2/T. 

d1 d 
1)  = 0.2 ? = 0 , 0.05 , 0.1, 0.15 

T 

2)  - = 0.4 d? = 0 , 0.1 	, 0.2, 0.30 
T T 
d1 d. 

3)  - = 	0. 6 ? = 0 	, 0.3, 0. 	, 0.50 
T 

a1 =o.8 d2 =0,0.5,0.6,0.70 
T T 

The values of o , 02 and /31 	were found using the charts 
given by Muthukumaran (13) the use of which was explained 
earlier. 

d 
The values of GET are plotted against ...a as 

abcissa for all the four values of d1/T in Fig. 2.19. 

A perusal of the figure indicates that the value 
T d,~ 

of G  -increases with increase in the value of 
T 

and d2 . However this rate of increase gradually incre-
T 

aces as the value of d2/ T increases for a particular value 
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of d1 IT . The rate of increase in the value of G 
increases with decrease in the value of d1/T. For example 

for d1/T = 0.8 the value of GE T increases from 0.32 to 0.x+8 
with increase in the value of d2/T from 0.2 to 0.4. But for 
d1/T = 0.6 the value of GE H increases from 0.55 to 1.00 
with increase in the value of d2/T from 0.2 to 0.1+. 

Since the value of GE especially for deeper cut off 
i.e. d1/T > 0.~+ , increases only gradually , limited scour 
downstream of the end cutoff without step may not result in 
significant increase in the value of exit gradient. However, 
excessive scour reduces the effectiveness of cut off in 
controlling the value of exit gradient. It is therefore seen 
that with downstream scour extending over large area, uplift 
pressure below the floor decreases whereas the value of G. 
increases. This information would alsohelp in determining the 
effect of the depth of filter on the downstream side of a 
structure. 



CHAPTER III 

STRATIFIED 	FOUNDATIONS 

3.0 	An exact solution has been obtained by Polubarinova- 

Kochina (15) for seepage below flat bottom weir or a cut off 
founded on soil consisting of two layers of equal thickness. 
Lenau (9) has obtained solution of flow below a flat bottomed 
structure founded on two strata of unequal thickness using 
perturbation technique. The effect of stratification on the 

seepage and uplift pressure below hydraulic structures with 

a flat floor only was also studied by Luthra (11) Gurudasram 

and Awade (5) on electrical analogy model. 

Alamsingh and Punmia (1) conducted electrical analogy 

experiments to determine uplift pressures at key points of a 
floor with cut off at its downstream end founded on soil 
consisting of two layers of equal thickness. In these exper-
iments the permeability of upper layer was taken to be higher 

than that of lower layer. Sharma et al (22) combined theore-

tical and model studies to determine the exit gradient and 

uplift pressures below a floor with an end cut off founded 

on two layered soil with permeability of upperlayer being 
smaller than that of underlying layer. The ratio of the perm-
eabilities of lower and upper layers have been varied between 
zero and infinity. The solutions obtained for various 
boundary conditions are given below. 	- 
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3.1 FLOOR ON TWO STRATA OF EQUAL THICKNESS 

Consider a flat floor AB(Fig.3.1) of length 2b 
resting on a stratum of depth T with coefficient of per-
meability k.1 . This stratum is resting on another stratum 
of thickness T with coefficient of permeability k2 -under-
lain by an impervious layer. Since the structure is symme-

trical about its centre line, only the right half is 
considered. Along the upstream bed AG1 . 0 = -k1H and along 
downstream bed BF1 , 0 = 0. Due to the symmetry CDR is an 
equipotential surface where 0= k1H or k2H . Along 

2 	2 
the lower impermeable boundary FF2, T = 0. The base of 
the structure CB is an impermeable boundary and may be 
taken as the stream line 	q . 

WI = 01 +i1T1 and w2 = Jd2 + iV2 represent the complex 

potentials in the upper and lower stratum. The boundary con-

dition along the various surfaces are expressed in terms of 

w1 and w2 	as follows. 

BF1 01 = k1H or Im(iw1) = k1H 

CB =q 	or Im(w1) 	=q 

CD 01 = k3 . or 	Im(iw )= 	k1H 
2 1 2 

DE ~f 2 = 	k2R or Im(iw
2
) 	= 	k2B 

2 2 
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=0 EF2 	Y2 of Im (w2) = 0 

DF 	01 62 	iw iw k1 - 	or Im( k 1 - k ) = 0 

	

2 	 '~ 	2 

	

IT 1 = 	or r Im (w1-w2) = 0 

The region F1BCDF and FDDF2 are mapped into the 
upper half and lower half of the complex 	plane. In mapping 
the region of upper stratum to the upper portion of the I -plane, 
the points BA D and F are placed at 0.1 and co along the real 
axis and point C lies at 'a' . The point E of the lower stratum 
is placed at 3 = a. 

The Schwartz - Christoffel, transformation equation 
that maps z.. plane into 	plane is 

dz 	M (3 _ a)-1/2(3 _1)-1/2 	...(3.1) 
dl 

or z =M 

= M cosh 

d~ 

N 

J 
(-a) (-1) 

+ 

r;- 2 (1+a) 

L
- 	+N 

(1-a) 
...(3.2) 

At point D , 	= 1 , and z = 0 . Therefore N = 0 . At point C, 

= a and z = iT , Therefore 

iT = M cosh-1 	-1 

- Mi 7►' 
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or M=T/n' 

Eq . 3.2 reduces to 

z = T 	cosh-'1 
[c _i  (1+a) 

...(3.3) 

  

1 or 	= 2 ( 1+a) + 1 (1-a) cosh 7rz 	 •••(3.~ ) 
2 	 T 

At point B, z = b+iT and 9 = 0 t therefore from Eq. 3.1+ 

a = tanh2 lrb 
2T 

The potential functions w1 and w2 for the upper 
and lower layers are given by the following integrals 

2E M' 	( 1-c + 	)2€ +( 1-c - - 	) 
w 1 .~ 	 d 3 +N 

2 
	 ji (1-c3-a) ...(3.6) 

and 	Me 	CJ_ + -3 )2 c - (j1- -j»3 )2£ 
M tanet►'  

w2 -2 	 c(1- (c-a) 
...(3.7) 

where 	E _ - tan-1 	k2 	 . • . (3.£3) 
V 	k1 

Uplift Pressures 

Substituting 9 = sin+2 cc 	, Eq. 3.6 reduces to 
M' 	(cosy +isin O2£ +(cosa -isina) 2e w1  2 	 dc(+ N' 	...(3.9) a - sink 
M I j 	cos (2 o) 	da + N' 	 ... (3.10) 

Ja - sin2( 



At point B I K = 0 and w = 0 , therefore Nf = 0 

At point C , = a and w = k1N 2 therefore 
2 

sin-1~ 
k_ 	cos(264) 
2 

0 	Fa- sin2a 
f M J 

Eq. 3.9 therefore educes to 
sin „T 

k1H 	j 	cos (2 £ a) 	dc( 	 ...(3.12) W1 

	

2J 0 	j a _ sin2c 

Direct integration of Eq. 3.12 i€ is not possible 
It can however be integrated after expanding into an infinite 
series. 

Seepage Discharge 

The seepage discharge can be determined by integra-

ting Eq. 3.6 between limits = - co and 3 = 0 . The seepage 
flow can also be determined by adding the seepage discharge 
passing through upper layer at section CD and the seepage 
discharge passing through the lower layer at section DE. The 
flow rate through the upper layer can be obtained by integra-
ting Eq. 3.6 between the limits 3 = a and S = I and the 
flow rate through the lower layer can be obtained by inte-

grating Eq. 3.7 between the limits 3 = a and 3 = 1 . The 

total flow rate is given by 



q 	 1 

k1 R 	2J cos £ it 

- 1+1 -

sin-1k' 
cos (2k) 

daC 
0 	k12 - Sin2d 

.. .(3.13) 

where q = seepage discharge per unit length of the structure. 

The values of q/ k1H have been plotted against values of £ 
and k2/ k1 for various values of b/T ranging between 0.5 and 
8.0 (Fig.3.2) . A perusal of the figure indicates that the 
seepage discharge increases with increase in the value of k2/k1. 
Also the seepage discharge reduces with the increase in the 

length of floor. This is also evident from Fig.3.2 e It is 
seen that the discharge reduces rapidly for initial increase 
in the value of b/T and the rate of reduction reduces with 
increase in the value of b/T. 

3.2 CUT OFF IN TWO STRATA OF EQUAL DEPTH 

Pollubarinova - Kochina(15) has als obtained expre-
ssion for seepage discharge below a cutoff penetrating to a 
depth Id, in two layers of equal thickness T with coeffi-
cient of permeability being k1 and k2. 

For d <T 
q 	_ 	1 	(cos - T) 2 £ 	J1-1 	

i
2 J + .- 	- tan e 	... (34 4) 

k1H 	J1+J2 	cos £ 	3 	2 

For d> T 
q ~. =  	+ J2 tan 

	e 	 ...(3.15) 
k~H  2Jo 



r re r 

where  2 E 2 "/2 	( 	1-o- sin2Ql + o- cos Q! )
•j 

	

J1 = f 	r 	 do( 	...(3.16)  
• 0 	Ji_ sin2~ 

/2 ( 1-0.. 2sin2al - o- co ss~ 2 £ 
= 	 ...C3.1?) J2  

	

0 	j i_d?  sing 

V/2 cos 2 £ al dø 
33 - 	 ...(3.18) 

0 ji - o= 22 cd 

r 2£ 20- 
=  J1 - J2 + 	 33 	 ...(3.19) 

sin €7 

al = sin-1 	- 	 ... ( 3.20) 
a 

r 	n' d 
o- = sin -~ d 	and o- = cos 	 •••(3.21) 

2T 	2T 
d 	 •••(3.22) 

a = - tang 
2T 

for d =T 

1  =  q 	- tan ~ 7 	1 1 

k1H 	2 	2 . k1 

The values of G$ T have been plotted, in Fig-3-3 

against the values of d/T and k2 / k1 . A perusal of the 

	

figure indicates that the value of G 	— decreases rapidly 

with increase in value of d/T = 3/4 . The reduction in the 

value of G$ t with increase in the value of d/T beyond 3/+ 
H 
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is very small. The ratio of the permeability of lower layer 

to that of upper layer has very little effect on the value 
T of G$ H for d/T less than 31 4. 

3.3 FLOOR ON TWO STRATA ON UNEQUAL THICKNESS 

Lenau (9) has obtained the solution of seepage 
below a flat floor founded on two strata of unequal thick- 
hess using "perturbation technique" Fig. (3.4) , He has 
obtained expressions for the seepage discharge only and has 
not derived any relation for uplift pressures. Expression 
for discharge is 

q 	(1-p) 2P jY /n 
k1H 	~ 

2P 1' 

where 
p = tanh ( 	b .) 

8 
T~ 

T2 

P =- k1/k2 

log (L -) + 0(P) ...(3.2+) 

...(3.25) 

Eq. 3.24 can give relatively accurate values for smaller 
values of P and S j. The values of q/k~ H have been 

plotted against b/T1 for different values of j k1T1fk2T2 

in Fig. 3 .5. A perusal of the figure indicates that the 

length of the floor becomes unimportant as the value of 
k1$1/k2T2 approaches zero and 	the value of q/k1H 
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k2 2  T 
approaches the value of 1 	. A similar tendency 

2 
k1 T1 

is seen fromthe results of the solution given by Polubarinova-

Kochina for floor founded on two layers of equal thickness. 

A comparison between the results obtained from Eq.3.24 
and exact solution given by Polubarinava-Kochina (15) is 
illustrated in Fig. 3.6 (for S = 0.325) . The Eq. 3.24 is 
seen to under-estimate seepage discharge q/k1H, the accuracy 
decreasing with increase in b/I1  . For example when b/T1  =3 
the absolute and relative errors are 0.15 and 15% respectively, 

and when b/T1  = 16 the absolute and relative errors are 0.34 

and several hundred percent. The Eq. 3.2'f can be expected 
(Fromm Fig.3.6) to underestimate the total seepage to a max-

imum of 1.0 3 if b/T1  r< 16 and Y1. For Y> 1 (T1 /I2>1 ) 

the error will be somewhat larger but probably no more than 

Lenau (10) has also obtained an approximate soluti-

ion of seepage below the foundation of a structure without 
cutoff resting on four layers of equal thicknesses. The 

approximate solution is accurate for very small values of 

b/T . However as b/T approaches zero the error approaches 

infinity. Hence the solution is recommended to be used only 

when b/T ? 0.2 . 
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3.4+ FLOOR WITH END CUT OFF ON TWO STRATA 

Alamsingh et. al (1) has studied on electrical 
analogy model the effect of stratified foundation on the 
uplift pressures below hydraulic structures with downstream 
end cut off . The permeability of upper layer was taken 
to be more than the lower layer. Sharma et. al (22) combined 
the theoretical and model studies to determine the exit gra-
dient and uplift pressures below foundations of structures 
founded on two layers, with the permeability of upper layer 
being smaller than that of the underlying layer. 

Alamsingh et al conducted experiments to determine 
uplift pressures only for k1/k2 ratio as 114, 20 and 50, 
b/T ratio equal to 1,'2,4 and 8 and d/T ratio as 0.25, 0.5 
0.75 and practically 1.0 . The results indicate that 
uplift pressures increase with the increase in the per-
meability ratio k1 /k2 and penetration ratio d/T (Fig. 3.7 
to 3.10) . As expected the pressures at the corresponding 
points decrease with increase in the length of floor. The 
authors also found that for a given b/T ratio the uplift 
pressures at D and - E decrease with increase inthe 
value of k /k2 	for d/T ~< 0-.5 and increase with 

increase in the value of k1/k2 for d/T-r0.75(Fig.3.11 and 
3.12) 



-48 

..  

60  

 

~ `  r 

60 	T 	i 	t 	f 	 K̀HCSLA 5 
LINE ` 	~t 

KH0SLAS LINES  

	

~ 	 KI K2 	f 

40 	b D 
0 	0.2 	0.4 	0.6 	0.~s  

z/b 

FIG.3.7—VARIATION OF 	FOR VARIOUS VALUES OF d/T & b/d. 
b/1j AND K1/K2=1 FIXED. 

d/T_0.75 b/d=2.67 

d/T=0.50 b/d.4 

. 	f 

K2 F 

d/T-3,25 
K1=4K7 	 b/d~ 6) 
b 2T 

3C 1  
0 	612 	J4 	6 	19 	10 

x/y 

F;G.3.8-VARIATION OF Ox FOR VARIOUS VALUES OF d/T & bid, 
b/ T=2 AND K1/ K2= 4 FIXED. 



9! 
I 	 I 

9 

	

T 	 d_0.75T 

8 

Tj 

	

E 
	 t~ 	 K2 

k'/kr50 c 

ki 1k2= 2C 

70 

E5 
2 

Y/b 

	

1 G.3,9—VArt A'I 	F VX F& VARICUS VALUES OF K1/K2 b/T-1, d/T=Q•75 AND b/1-4 33F1xE.D - 

100 

90 

80 

70 

6C 
x 

5C 

6( 

3' 

21 

F'&.3'10—VARTAr'0M OF OX FOR VARIOUS VALUES OF b/T, K1/K2=5C d/T=0.75 FIXED. 



50 

~o  

i 	 d/T-' eS. bid=9 33 

25 	
--r...~~ -- 	.r 	,,. - 	_- _ _ 2C 	- { 	 _ .r 

d/T=0.75,b/d= 5 33 

• 0 75, b/dAC.67 

—15 	+— 	-- 	4-- 

t0 —-- -- 	— — -- 

t0' 
0 	2 	4 	6 	8 

Ki /K2 

FIG•3.11-INFLUENCE OF K1/K2 
d/T ON OD FOR b/T=4. 

aZ 

b/d=32 

b=BT 

2 	4 	5 	8 	0 

fK1/ K2 
FIG. 3.11(a)-INFLUENCE OF K1/K2 

d/T, b/d ON t b FOR 
b/T=8. 

0 0 2",1 
	ti 	I~ 

~d/T•-0.50,b/d=8 

II 

b-4 T 	 d/T=0.25 b/d=l6 

60 

50 

30 

20 

10 

0 

b-4T 
15-- ,.~. 	 - 

y_ 
T  

K2 
err; r 	. rnx.S 7nw<r, cc7zrm r._,a 

PE 
 r d/T=0.90/d=4.11 

55 — 

r d/T=C•75,b~d- 533 

r
. 

r d/T=0.50,1 /d= 8 
35 

rd/T-0.25,b/d=16 

5 

b=8T 

2'  K2 

.c.~..cN~r,»•ccnrvrc 	~.~ ;sic 

a/T=0.95,b/d -9.33 

~d/T-0.75I,b/d=10.6 7 

~d1T=Q 50I,b/d = 16 

5,b/d~32 

2 	4 	6 	8  

N Kt /K2 

TKI / K2 

FIG.3-i2-- INFLUENCE OF K1/K2, FIG.3•12(a)- INFLUENCE OF K1/ K2, 
d/ f,b/d ON E FOR 	 d/T,b/d ON OE FOR 
b/ T= 4 FIXED - 	 b/T=8 FIXED. 

} 

o 
c ,,., s i a),;, v nmivroc= n= ctnnrvrr 



- 51 - 

Sharma et al have calculated exit gradient and 

uplift pressures below floor with end cut off from closed 

form solutions for k2/k1 = 0 , 1 and CD and employed 
electrical analogy model for k2/k1 = 0,1 ,10 and 100. The 
theoretical and model test results for k2/k1 = 0 and 1 were 
compared and found almost identical. The uplift pressures 
at the key points i.e., at the junction of the floor and 
cutoff, E and at the tip of the cut off, D for d/T1 = 0.25, 0.5 
are shown in Figs. 3.13 to 3.16. The values of G~ T 
for various values of b/T1 and d/T1 are also shown 
in Fig. 3.17 . Results of the studies indicate that 

(i) With the increase in the value of k2/k1 , the uplift 
pressures increase in the portion of the floor where pres-
sures a.re ] ess tha t X50 )P" i-' ce i and ddcrease in the por-

tion where pressures are more than 50 per cent (Fig. 3.18) . 
(ii) As indicated by the studies conducted by Alamsingh 

the uplift pressures increase with increase in the penetra-
tion ratio and decrease at the corresponding point with 
increase in length of the floor (Fig.3.20) . However the 
pressure s below floor are not affected by increase in 
length of the floor for large value of k2/k1 i . e . , 100 

(iii) Thickness of lower stratum has insignificant effect 
on the uplift pressures (Fig.3.19) . 
(iv) The value of exit gradient, increases with increase 
in the permeability of lower layer (Fig. 3.17) _ Increase in 
the length of the floor has practically insignificant 
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effect on the value of exit gradient for k2/k1  > 10. 

(v) 	Increase in the depth of cut off has little effect 

in reducing the value of exit gradient when the permeabi-

lity of the lower stratum is higher than the upper stratum. 

The study conducted by Alamsingh et. al gives Values 

of uplift pressures at D and E for k2/k1  =1.0, 0.25, 

005 and 0.02. The experimental values for k2/k1  =1.0,0.25?  

0.05 and 0.02 should fall along those for k2/k1  = 1.0 

and between those for k2/k1  = 1,0 and k2/k1  = 0 obtained 

theoretically by Sharma et. al. In order to compare 

these experimental results with those obtained by Sharma 

at al theoretically for k2/kl  = 0 and 1.0 these were 

plotted on Fig. 3.21. However a perusal of this figure 

indicates that the pressures obtained experimentally by 

Alamsingh at al are higher than those calculated theoretically. 

3.5  FLOOR WITH INTERMEDIATE CUT OFF ON TWO STRATA 

(OF  EQUAL THICKNESS) 

Punmia et al(17) conducted electrical analogy model 

studies to determine the uplift pressures below hydraulic 

structures with intermediate cut off founded on two layered 

media of equal thickness. The permeability of the upper 

layer was more than that of lower layer s  Model tests &ere 

conducted with various combinations of b/T, d/T , b1/b and 

k1/k2  where b1  is the distance of cut off from upstream 

end of floor. The results of the studies indicate that - 
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(i) With t"ncrease in value of k1/k2 the pressures on 

the floor on upstream side of cut off increase while the 

pressures decrease on down stream side. 

(ii) While the other parameters are not altered, the pressi re 

at points on the upstream side of cut off increases 
with increase in depth of cut off or penetration ratio 

and the reverse is true for points on downstream of cutoff. 

(iii) With the other parameters being kept constant, the pressure 
at points on upstream side of cut off increases as the width 

of apron decreases and it decreases with decrease in width 
of apron on downstream side. 

(iv) The pressure on the floor on upstream side of cut-off 
decreases as the distance of cut off from upstream floor 

end increases. 

(v) Pressure at key points namely junction of floors 

cutoff (p. 	and tip of cut off decreases as width of apron 

(floor) increases (keeping other parameters unchanged) 

(vi) Both ~E and 0D increase with increase in depth of cut off. 

(vii) O$ and j8D increase with increase in k1/k2 while the 

other ratios are 'kept constant. 

3.6 TWO LAYERED MEDIA (FOUNDATION ) WITH A CUT OFF AT 

UPSTREAM END 

A study of two dimensional seepage under a flat 
bottomed structure with a cut off at upstream and resting 
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on two horizontal layers of different permeabilit:ies 

and equal thicknesses (Fig.3.22) using a simple electrical 

analog was made by Stefan (23) 

By current measurements and by using the well 

known analog 

q/k1H = i/o v 

where 

q = total seepage discharge per unit length. 

k1  = permeability coefficient of upper layer. 

H = Difference in pressure head 

i. = current 

= conductivity of upper layer 

v = voltage applied between electrodes. 

the dimensionless flow rate is q/ k1H was obtained and 

the results were plotted by the author (Fig.3.23) as a 

function of permeability ratio k2/k1  , given by a parameter 

defined by 

tan ire _ 	. k2/k1  

The lengths of the flat bottomed structure and sheet pile 

cut off (each relative to thickness of layers) and also 

the permeability ratio were varied. 

The analytical solutions of pollubarinova-Kochina, 

which are special cases of boundary geometries, investiga-

ted using electrical analogy were also reproduced for com-

pleteness and reference. 
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The author condluded praising the technique of 
investigation as very simple and easy. It may be helpful 
for those not experienced in seepage flow studies. The 
results of the study presented provide a basis for evalua-
ting seepage flow through two layers of different permea-

bilities with upstream cut off. 

3.7.  TWO LAYERED MEDIA (FOUNDATION) WITH TWO CUT OFFS 

The effect of foundation stratification on seepage 
under a hydraulic structure, on the underground contours 

and foundations of the spillways dams of the volga hydro 
electric stations named after V.I. Lenin was studied by 

Ronzhin (20) . The foundation of the first dam was composed 
of three distinct layers and the second dam foundation of 

two layers. The underground contmurs comprised an upstream 
apron, two sheet piling walls and the spillway foundation 
slab. 

The two layered foundation was tested by the elec-
trical analogy method at different ratios of permeability 

coefficients of individual layers and at various permeabili-

ties of sheet pile walls, but without considering the per-
meability of the upstream apron and that of concrete of 
body of dam. In the laboratory models, the upstream apron 
sheet piling and sheet piling under.  the darn were cut to the 
full depth of the first layer of the foundation like in the 
prototype. The test results showed that the diagram of 
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It is noteworthy that experimental curves fall well 

below theoretical ones in the range of high permeability 
ratios, the reason being limited length of model. The author 

indicated that errors in flow rate measurements were caused 

by limited length of wnologypaper. 

A second point of investigation as observed by the 

author related to the pressure distribution along cutoff 

wall and base of structure. Local differential pressure 

heads with reference to downstream water level for various 

lengths of cut off and for various permeability .ratios were 

shown . The author pointed out the permeability had no 

dramatic effect on pressures. However the pressure under 

the horizontal base of the structure increased with increase 
in permeability of lower layer. 

Terming the ratio of difference in pressure head (at 

a point below the floor) to the distance of the point from 
downstream edge of the floor as 'average exit gradients, 

the author studied. its. variation for different ratios of 
width of floor to depth of media, and obtained finite values 

of exit gradient . But the author's conception of a 

finite value of exit gradient (at the downstream edge of 

floor ) is wrong, when there is no cut off at downstream 

edge of floor. In such a case the exit gradient will be 

infinite under any conditions. 

0 
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The author condluded praising the technique of 

investigation as very simple and easy. It may be helpful 

for those not experienced in seepage flow studies. The 

results of the study presented provide a basis for evalua-
ting seepage flow through two layers of different permea-

bilities with upstream cut off. 

3.7.  TWO LAYERED MEDIA (FOUNDATION) WITH TWO CUT OFFS 

The effect of foundation stratification on seepage 

under a hydraulic structure, on the underground contours 

and foundations of the spillways dams of the volga hydro 
electric stations named after V.I. Lenin was studied by 

Ronzhin (20) . The foundation of the first dam was composed 
of three distinct layers and the second dam foundation of 
two layers. The underground contours comprised an upstream 
apron, two sheet piling walls and the spillway foundation 
slab. 

The two layered foundation was tested by the elec-
trical analogy method at different ratios of permeability 
coefficients of individual layers and at various permeabili-
ties of sheet pile walls, but without considering the per-
meability of the upstream apron and that of concrete of 
body of dam. In the laboratory models, the upstream apron 
sheet piling and sheet piling under, the dam were cut to the 
full depth of the first layer of the foundation like in the 
prototype. The test results showed that the diagram of 
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seepage uplift pressure acting on the underground contour 

changed frith the increase in relative permeability of the 

lower layer in comparison with the permeability of the upper 

layer. Head losses on the sheet pilings decreased while 

those on the upstream apron increased. The same phenome-

non took place by increasing the permeability of sheet 

pile, but the character of seepage pattern change was 

different. There was prac-tically no change in the seepage 

pattern in the dam foundation even after increasing the per= 

meabilities of sheet pile and lower soil layer from 

0 to 0.002 . But only after further increasing the perme-

abilities of sheet pile tinder the dam or that of lower 

soil layer, a considerable change of seepage under 

dam occurred. 

Ranzhin also studied the effect of the founda-

tion consisting of three layers of different permeabilities. 

In the tests the permeabilities of upper and lower layers 

were assumed to be equal, with the middle layer having 

different permeabilities. 

The elements of the dam underground were supposed 

to be impermeable in the tests. The first and the second 

layers were modelled to be traversed by the upstream apron 

cut off and cutoff under the dam. Under such conditions the 
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seepage uplift pressures on the upstream apron increased 

and that on the bas of the danspillway decreased 

with the increase of the middle layer permeability. 
However, the seepage uplift pressure on the upstream apron 

was found to be increasing with the increase in the rela- 

tive permeability of the (soil foundation) middle layer 
from 0.05 to 1. 



CHAPTER - IV 

A1NI SOTROPIC 	FOUNDATION 

4.0  GMTERAL 

Pervious soils may be subdivided into isotropic 
and anisotropic. In isotropic soils, the coefficient of 
permeability at any point is independent of direction of 
seepage velocity. I so trop is soils are further Subdivided 

into homogeneous and non homogeneous soils. The permeability 

coefficient of homogeneous soils is independent of the coor. 
dinates of the seepage region and is constant throughout. 

In inhomogeneous soils the permeability coefficient depends 

on the coordinates of the seepage region. In anisotropic 

soils, the permeability coefficient is dependent on the 

direction of seepage velocity. The soil is said to be homo-
geneous and anisotropic if the permeability coefficient is 

dependent on the direction of velocity and if this direct-

ional dependence is the same at all points of flow region. 
In such a case the permeability coefficient is independent 
of coordinates of seepage region. 

In nature, it is very difficult to get isotropic 
soils. Most soils are anisotropic to some degree and hence 
the isotropy of a soil is an, .ideal case and true for theore- 
tical considerations only. One of the marked properties 
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found from the soil samples obtained from river bed is 
,, transverse anisotropy" wherein the permeability coeffi-
cient parallel to bedding planes is different from that 
normal to it. The average permeability of a.natural depo. 
sit of silt in the horizontal direction has been shown to 
be equal to 2 to 10 times that in the vertical direction 
(2'I-). The ratio becomes larger than 10 for distinctly stra-
tified soils. The ratio (k'ky) according to Justin may 

be 1. to 20 and in eceptional cases of horizontal seems, 
may even go upto 20 to 50. Generally, in natural deposits 
of homogeneous nature the permeability coefficient in hori-
zontal direction is greater than that in vertical direction 
with one exception of Loess, where the opposite true. 

If the direction of maximum permeability in_ the 
case of 'inclined anisotropy r caused by geological forma. 
tions of bed, is inclined towards the river bed then it is 
of serious consequence to the stability of structure and 
cannot be overlooked. 

The manner in which the permeability coefficient 

may vary at some point (say 'At)  in an ani so tropi c soil 
is shown schematically in Fig. '-.1. 

I~mEn'
( ZGX 

Fig. -.1 
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The magnitude k of the radius vector is proportional to 

the value of the permeability coefficient and its direction 
coincides with that of the seepage velocity. There are 
two specific directions in which the permeability coeffi-
cient attains a least value of kmin  and greatest valie 

of kmax• as showh in Fig. +.1 These two directions to-
gether with a third one perpendicurto them are referred 

to as ,principal directions of anisotropy of soil,, . A soil 
often proves to be anisotropic because it is made up of 
alternating layers having different permeabilities. If, 
in an anisotropic soil, the principal directions of ani-
sotropy and the values of Kmax  and kmin  are independent 
of the coordinates of the seepage region, then the soil si 
called 'homogeneous anisotropic" . on the other hand, if 
either the principal directions of ani so tropy , or the 
values of kmax  and kmin, or both characterisitics, are 
functions of the coordinates, then the soil is said to be 
tinhomogeneous anisotropic". 

In case the principal direc tions of anisotropic 
soil coincide with the coordinate axes of the physical 
plane ie the principal directions of permeability are 
horizontal or vertical, then seepage below a hydraulic 
structure canbe analysed easily. The shape of the actual 
flow domain is similar to the shape of the transformed, 
fictitious, isotropic system. Let kx ,ky  and kz be the 
principal values of coefficient of permeability in the 

LHTUL LIRRARY VVERSITT OF ROORKEE 
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direction of coordinate axes. , According to Darcy' s 
law 

ah 
vx 

_ 
- kX ox 

ah vy = - k~, 	ay 

Q _ - k 	ah 
Z z az 

From continuity equation, 

avx avy avz 

ax 	ay 	Oz 

From equations (4.1) and (L1 2) we get, 

a2h 	a2h 	a2h 
- kx 82+k7     aY2 + kZ . az2 =0 

... (4-. 1) 

... (!. 2)
. 

...(i+.3) 

This equation (4.3) can be transformed by subs- 
tituting 

x 	- 	y 	 z 
T 	 a 

The transformed differential equation is 

a2 h 	a2h 	82h 

axe + 	ay2 + 8z2 	- 0 	... ( .5) 

which is the Laplace's equation. 
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Thus the effect of anisotropy of the medium is obtained 
by transforming the coordinates system and solving Laplace's 

equation in the transformed plane. 

The equivalent isotropic permeability of the 

transformed system is given by 3,. k k1c kZ  for three 

dimensional flor orj k  ky  for two dimensional flow. 

4.1  EQUATIONS OF MOTION IN HOMOGENEOUS .ANISOTROPIC MEDIUM 

When the principal directions of coefficient of 
permeabilities do not coincide with Horizontal or vertical 
direc tions the simple transformation described above is 
not applicable. In such a case the shape of the boundaries 
is also deformed. 

For isotropic soil 

V = -If grad h 
where K = seepage coefficient 

p 
+ y + constant 

For homogeneous anisotropic soil, a symmetric seepage 

tensor may be written in the form 

K11 	K12 

K21 	K22 

C 
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Taking principal axes of this tensor along x1 y1 axes 
of coordinate system, the tens r is 

0 
kx1 

0 	ky1 

where kx1 and ky1 are seepage coefficients in the direction 

of principal axes. 

The equation of motion in x ,y1 	coordinate, can 

be fatten as 

0 	1 op g 
P ax1 	k x1 u~ 

	g sing 

... (4.7) 
0 _ - 	ap 	g 

P 8y1 - k 1 vi _ g cosy 
Y 

where cc is the angle measured from horizontal axis. 

I 

Figure +.2. 

Putting 	 -p 
(x1 ,y1) I = . 	- x1 sing - y1 cos a 

Pg 
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where 
U1 = - kx1 	ao 	 •..(4.9) 

ax1 

v1 = -  
ay1 

may be called as the 'reduced head '. 

A function ItT (x1,y1) , by means of equalities 

a u1 = kx'1 ky1 	au 	s v1 = - k ky~ 	y 
ay1 	 xl 

is herein introduced. Continuity equation gives 

au1 	8v1 
ax 	+ ay 	= o 

1 	1 

from which it follows that 	satisfies Laplace' s equation 

	

k ago 	ago 

	

x1 ax2 	+ ky1 ay2 	= o  
1 

With further transformation, i.e. x = x19 y1 = Vy 2 V 2 ky1:kx1 , 

0 satisfies Laplace+s equation in the new x,y coordinates 

	

+ a20 	= 0 
ax2 	ay2 

The combination 0 + i1J is a function of complex variable 
z=x+iy. 

The rate of flow through the contour bounded by the 

arc AB is expressed by means of stream function as 
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Q = 	k 1 ky 1 	(VA - TE ) 	 ... ( 4.15) 

The three coordinate systems that were previously introduc-

ed are linked by the equations 

X = ~; cos c( - y1 sin c( = x coca( - vy sinac 
...('t-.16) 

Y = x1 sinoc + y1 cosy = x sin a + vy cosy 

x1 = x=X cos d+ Y sin o( 

y 1 = 'Vy = -x sine( + Y cos of 

(here the notation v = ~1 J kx1 has been introduced) 

In particular, the equations of the horizontal 
lines pQ, RS and of the vertical line MN in the x,y 
coordinate system are 

y= - v x tg cc 

x sins + vy cos a + h = 0  

y = I x ctg cc 
v 

In Fig. +.2 p'Q ► is the position of PQ in the x,y system. 

In the x,y coordinate system, some fictitious 
flow in the region from that in x,Y plane through the trans-
formation (Eq. ;+.16) may be considered. The following 

conditions on the boundaries of flow region in x,y plane 
must be satisfied. 
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(1) On the boundary of water reservoir 

0 (x,y) = constant 

On x1 y1 plane, p (x1y1) = constant 

(2) On impervious boundary 
~T (x,y) = constant 

(3) On the free surface (when the pressure is constant) 

0 + x sin. d + vy cos a = constant 	... (+.19) 

1J(x,y) = constant 

Differentiating equation(-.19) along S on the free sur-

face (in x,y plane) and multiplying by 80 / as 

 

'30 dx 	a d 
( a )+ s i n g 	+ V c o s a g a= 0••• C 4.20 

a s 	 a s ds 	 a 

ao dx  80 dy 
If u- 	 = 	—~ 

as ds 	' v  as ds 

u2 + v2 + u sing + v u cos a = 0 	...(h1.21) 

which is the equation of a circle, in the plane of u,v 
Cu, and v are the components of fictitious dimensionless 
velocity) . 

This circle passes through the origin of coordinates and 
has its center in the point (-1/2 sin ac , -/2 coca). 

(1+~ 	The equation 1-.19 holds good along seepage surface. 
Assuming that seepage segment to be a straight line,making 
an angle J3 with the x axis and differentiating equation 
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(4.19) with respect to 'S' 

d 
y= 

a
p + s sin a d + V cosa 	0 

ds 

aP a16 __ dx a16 dy 
as ax as + ay ds 

80 a~ = cos t3+ sin (3 
ax ay 

=u cos 13 +vsin0 

Hence u cos j3 + v sin $ + sin c( cos 0 + v cos cc sin (3=0 

... 

which is the equation of a straight line . 

This straight line passes through the point (-sino(, v cos co 

and is perpendicular to the seepage surface. 

particular Case of Anisotropy . (a = 0) 

In this case for v < 1 there will be horizontal 
stratification and for v 5 1 vertical stratification. 

Eq. 4.16 becomes X = x1 = x 

Y = y1 = vy 

The directions of the coordinate system coincide, but in 
the region of fictitious flow (x,y) , this change in 
scale along the y axis holds good le the dam foundation 

preserves its length;but the vertical cut off is shortened 
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for horizontal stratification and stretched for vertical. 

The relationship between the reduced flow rate and the 

pressure according to Eq. +.8 is 

A (xi , Y1) _ - p 	- y1 	 ...('4-.23) 
P g 

~-.2 FLOOR WITH A CUT OFF 

Consider an impervious floor AB of length b1+b2 b 

founded on homogeneous anisotropic permeable soil extending 
upto infinite depth (Fig.4.3) . The floor has a out off CD 
of depth d at a distance b1 from the upstream end. On the 
upstream and downstream of the floor is pervious bed extend- 
ing upto . infinity. Along the upstream bed AF, 0 	= -kH 
and along downstream 	bed BG , QS = 0 	. The foundation pro- 

file AEDCB forms the inner boundary and can therefore be 
taken as a stream line t = 0 

Let X(= (k2/k1) ) be the coefficient of anisotropy 

and a be the angle between x-axis and the principal seepage 

axis w . The relation between the physical z- plane and the 
S4 , V plane (where !A and v are the direc tions of principal 
permeabilities) is given by 

u = xco sa + y si n a 
1 	 ... (~-. 24 ) 

V = 
	

(.xsina+Y cos d) 
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The straight line y = 0 (floor profile) becomes the 

straight line 

va 

Let 6 be the angle between the new straight line with 

the A. axis 

tan a 
tan 6 - _ 

jx 

In the same way the equation of cut off (x=0 ) is transformed 

on to the straight line 

V 	cotes 	 - 
...(i+-.27) 

If the angle of the transformed cutoff with !A axis is Pf 

it is given by 

cot d 
tan j3 =  

From the Eqs 4.24 we can find the lengths of upstream 

and downstream aprons in f4 .. v plane 

b 2 = b ( cosc( + 
sin 2a

) 
1 	1 	 7t 

	

2 = 2 	2 	si 
 b 	b ( co s a + 	~ ) 

2 

The depth of cut off is given by , 
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~ 2 	2 	 costa d 	= d (sin( ++ 	) 	 ... (x+.31) 

The relation between the ratio of b/d and b'/d' have 

been plotted against various values of % and c( in Fig. 1f-.1i-. 

The angle 	, 1rY between the downstream floor er 

bed 	and the cut off in fictitious 	.V 	plane is given 

by 

2X 
it Y = tan I ...(+.32) 

( a-1) 	sin2c( 

The value of 'rY 	have been plotted against the various values 
of X 	and a in Fig. . 	Transformation of 	plane 	into 
t-plane 	is given by 

c = 	A 5(1+ t) -Y (t_a)  

Integration of this equation yields 

= - A(1+t)1-Y (1-t) Y 

and a = I - 2 (  

From the boundary conditions, we find 

_ rr Yi 
A d' ' 	e 

 
(1+a)1-Y (1-a) Y 

The transformation Eq. (4.31+) reduces to 
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1+t l-Y t-1 Y 
= d ) \~ ) 	

.••(4.37) 1+a  

This equation can be used to determine the values of L1 

and L2 for the known values of b,' and b2 

The transformation of w- plane onto the lower 

half of the t plane is given by 

kH 	-1 2t +L1-L2 	kH 
W = 	sin 	.-  

L L 1+L2 J 	2 

The uplift pressures at D and E below a horizontal 

structure with an end cut off have been determined and 

plotted in Fig. 4.6 , 4.7 . These uplift pressures have 
been plotted against b'/dl! values for various values of Y 

In order to determine the effect of the principal 
directions of anisotropy on uplift pressures at points D 
and E below floor with an end cut off, curves for b/ d =5,, 
10 and 15 and X =0.5 have been plotted in Fig.4.8 for 
various values ofa . Uplift pressures at thes points 
for isotropic medium have also been plotted in this figure. 
A perusal of this figure indicates that value of p5D is 
minimum for value of a around 120° and maximum at c( 

less than about 30° . The value of c( for maximum values 

of 05D varies with the value of b/d. A perusal of Fig.4.9 
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in which 	values of 15D 	have been plotted against c( for 

values of 	A = 0.5 , 0.2 and 0.1 	and b/d = 5 	indicates 
that the valuesof ~6D are maximum at a = 0 , for X = 0.1 , 
at c( 	equal to about 15° 	for X = 0.2 and o( equal to about 
200 	for ) = 0.5 . A perusal of these figures also indicates 
that for value of 	of ranging between 60° 	and about 160° 
the values of 0D 	are less than those for 	isotropic con- 
ditions. 	For values of ac < 60° 	and greater than 160° the 

values of J6D are larger than those for isotropic conditions. 
The values of 0. have also been plotted in these figures 
for various values of a , a and b/d. It is seen that the 
values of fib. 	are minimum for c( = 900 and maximum for 
d = 00 . The values of 1b$ for anisotropic soil are less 

than those for isotropic soil for the values of d ranging 
between about 45° 	and 11+0° . The minimum value of p~ 
and 6D decrease with decrease in the value of I and 
their maximum values increase with increase in the value 
of l . 

The values of j6D and j6, have also been plotted 
in Fig. x+.10 against values of I , for = 4+50 and values 
of b/d = 5 ., 10, 15 and 20. A perusal of this figure indi-
cates that values of j6D increase with decrease in the 
value of I from 1.0 to about 0.1 and then decrease with 
further decrease in the value oil . The value of A for 

maximum value of j6D is not equal to 0.19 for all values 
of b/d . It increases with increase in the value of b/d. 
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in the values ofA and the decrease is rapid after A =0.2 

The effect of X on the values of j6, and 16D  for b/d =5 
and values of a = 00, 300  , +50 , 900  and 135°  can be 

studied by the curves plotted in Fig. +.11,. A perusal of 

this figure indica tes that values of 16D  increase with 

decrease in the value of A for the values ofa less than 

600  and greater than 160°  and decrese with the decrease 

in the value of X for the range 60°  < d < 1600  . Similarly 

the values of 0. increase with decrease in the value of A 

for a less than 2+50  and greater than 140°  , and decrease 

with decrease in the value of ?A for l5° <c( < 1}+0°  . The 

pressures at R for anisotropic conditions would therefore 

be more than those for isotropic condition when a is less 

than x+50  and greater than 1400 , and the pressures at D 

for anisotropic conditions would be more than those for 

isotropic conditions when cc is less than 60°  and greater 

than 160°. 

4.3  FLOOR WITH A CUT OFF FOUNDED ON ANISOTROPIC SOIL 

OF FINITE DEPTH 

As indicated in para 4.1 and 4.2 the physical 

plane with inclined anisotropic soil can be transformed into 

a fictitious plane in which, the vertical cut off is 

transformed into an inclined cut off. Solution for inclined 

cut off with a step and apron on both sides founded on 
finite depth of permeable medium has been obtained by 
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Sivareddy et. al . (21) . The transformation layout is shown in 

Fig. 4.12. 

The relation between the physical plane and the fic-
titious z plane is given by Eqs 1-.16 and 4.17. Transformation 
of the z plane into the intermediate t-plane is given by 

t 

z 	-- M f 
4 

(t-/3 ) dt 
t(t-c() 1-Y (t,1) Y + 

where values of M, a and /3 can be evaluated from the follow-
ing equations for known values of T, ZD and ZE. 

T ~ - 

M 	

1-Y 

=  
/3 

Z -Z 	1 	 1-Y 
D 	$ M 	 B1 - B 	 ••.(4.41) 

T 	• ( 1) 	 /3 

— oc1-Y ) B (Y, 1—Y) 
_ 	 ...(4.42) 

T 	(-1) Y /31r 

where B1 = B 	 (Y =1-Y) 	is incomplete beta function (/3 -a) / (1-a) 

B = B 	 (Y,1-Y) is incomplete beta function 
2 	(/3 -() / f/3 (1-a)] 

B(Y,1-Y) is complete beta function 

cC and /3 are transformation parameters. 
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Eq 4.39 can then be used to evaluate the values of transfoxma- 

tion parameters L1 and L2 for known values of b1 and b2. 

Transformation of w-plane into t-plane is given 

t 

w = 	J 	
dt  

.,a 
 

Jt(L1..t) (L2-.t) 

where 	k$ 	L 
M = K f 

N t 	= - (kH + iq) 	 0.. (1+. I+5) 

where K = complete elliptic function with modulus 

= L2-L1 
L2 

q = Seepage discharge per unit length of the structure 

kH K f 
K 

K = complete elliptic function with modulus = L1 
L2 

Potential at any point along the floor is given by 

	

~d 	F(8 , m) 

	

kH 	K 

where F(A , m) = incomplete elliptic function 

1 	
L (t..L1) 

8 = sin-  2 

t(L2 L1) 
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m = 
2 

Exit gradient at any point along the down-stream bed is given 
by 

G 1 _ /37T .-FL2t 
	aY-1(t_ a)1.. Y (tr 1) Y 	

... (1+ 19) 
2K (t-.'3) 	t (L1-t) (L2 t) 

Seepage discharge and pressure at the tip of the cut off 

have been obtained for a cut offwithout a step and apron. The 

uplift pressures at D are shown in Fig. 4.13, and the seepage 

discha ,ge in Fig. r-.14. Exit gradient at the end of the cut 
off are also plotted in Fig. 1+.15, for various values of : . A 
perusal of the figure indicates that the value of exit gra-
dient just downstream of the cut off is zero for Y <0.5 and 
is infinite for Y > 0.5. For values of Y <O.5 the value 
of exit gradient first increases, reaches a maximum value 

and decreases as distance from the cut off increases. For 

Y > 0.5 the value of exit gradient decreases with increase 
in distance from the cut off. 

A perusal of Fig. -.13 indicates that the value of 
~SD/kH is a linear function of d'/T 	in the range, these values 
have been plotted. 

4.1a- EXPERIMENTAL STUDIES 

In the previous sections cases of anisotropy where 

its principal directions do not coincide with coordinate axes 
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of physical plane were considered. The case of anisotropy 
with its principal directions parallel to the coordinate 

axes is simple to deal with . However earlier some experi-

mental studies were conducted for this case based on elect-
rical analogy method. 

In the case of a depressed floor on infinite depth, 

P.V. Rao (19) opined that the uplift pressures increased 

in upstream half of floor length and decreased in down-

stream half with increase in anisotropic ratio. The maximum 
deviation in pressure was 8.5% from that of isotropic case, 

for a value of n (= KX/ Ky) equal to 15 . 

The exit gradient was found to increase with ,n' 
value and this increas was found to be 50% of the pressures 
for isotropic case for n = 15. In the case of a flat floor 

with a cut off at either end, the author observed that 
maximum deviation of pressures from that of isotropic case 
to be + 28% for n = 15. 

The uplift pressure distribution below a floor on 
finite depth of anisotropic foundation for two cases viz. 
1) downstream end cut off (2) intermediate cut off, were 
studied experimentally by Alamsingh et al (2) and .Punmia , 
et.al (18)  respec tively. The conclusions of the study were- 

(1) 	Pressure at any point under floor increased with 

increase in d/T ratio for a fixed b/T ratio (Fig.4.16) 
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(2) For a given d/T ratio pressure at any point was 

larger for lesser values of b/T and decreased 
with increas in b/T ratio (Fig. 1f.1?). 

(3) The pressure at any point increased sharply with 
increas in anisotropic ratio (Fig. 4.18) . The 

variation of pressure under floor was smaller for 
greater anisotropic ratios. 

(4) For given T/b and d/T ratios, O and ~6D 
increased with increase in anisotropy (Fig.4.19) . 
Effect of anisotropy was more pronounced for lower 
value of T/b. 

(5) Both jd3 and IOD decreased with increase in b/d 
ratio (Fig. 4.20 and 4.21) 
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CHAPTER 	V 

NUMERICAL METHODS FOR SOLUTION OF NON 

HOMOGENEOUS FOUNDATIONS 

5.1  GENERAL 

The solution of seepage below hydraulic structures 

founded an homogeneous anisotropic medium can be obtained 

by the application of transformation that reduces the prob-
lem to that of a homogeneous isotropic medium (See Chapter 

IV) . This method is however is not applicable when the 

subsoil comprises of several zones of different permeabili-
ties or values of the permeability or its principal direc-
tions vary from point to point. Numerical methods could 

be applied to obtain an approximate solution for 

such problems. 

5.2  SOLUTION OF ANISOTROPIC SEEPAGE BY FINITE 

DIFFERENCE METHOD 

5.2.1 The partial differential equation governing the 

steady state, two-dimensional flow in a homogeneous and 
isotropic medium is given by Eq .2.1 

The medium is subdivided into squares of equal 

area, axay. The sides of the squares, ax, and ay, are 
equal and are of finite length. Lax 	, 	try respectively. The, 
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square grid is shown in Fig. 5.1 . The intersections of 

grid lines are called nodes. The infinitesmal May is 

approximated by ag in which ag is the width of grid 

interval. The area ag , is small compared with the area 
of the rnec~zrx-n%. 

The second differentials of head at node #01 can 
be approximated by 

8211 	h2+ h14- - 211o ...(5.i) 
dx2 w 	a2 

g' 

2 d h 	h1+h3 -2h
0 

ay2 	a2 
g 

Substitution of' Eq s 5.1 and 5.2 in Eq .2° i results in 

h1+h2+ h3+ h4 - ~+ho 

a2 
g 

or h1+h2+h3+h - ti-h0  = 0  

where h0 , h1, h2, h3, and h] are the heads at nodes 

0,1,2,3,4 respectively. 

The heads at every node except those at the up-

stream and downstream boundaries are guessed initially, 

and then by the repeated use of equation (5.i) are adjusted 
towards their correct values. 
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Difficulties often arise from the presence of frac-

tional spaces at boundaries of the mesh. These difficulties 

can be over come by the use of triangular meshes. Suitable 

arrangement of the triangular meshes ensures that there are 

no fractional spaces at the boundaries. 

G.R. Tam].in (25) has analysed seepage through 

soils that are zoned into areas of different permeability 

using the concept of triangular mesh and with the aid of 
* a computer. 

5.2.2 Outline of the Method 

The soil in each zone is assumed to be homogeneous. 

In general each zone can be anisotropic with the principal 

axes of permeability inclined at any angle. In applying 

the method, straight lines are substituted for curved zone 

boundaries and tinfinitet boundaries are reduced to some 

arbitrary finite length, so that the shape of each zone 

becomes a polygon. 

The area within each zone is then" divided into 

triangles by connecting selected pairs of vertices. Within 

each triangle, a fine-.size triangular mesh is constructed 

with its axes parallel to the side of the triangle. The 

head at any node in this system of meshes is expressed 

in terms of heads at surrounding nodes. By the theory of 

finite differences, equations for the heads at various 
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types of nodes have been derived, and thes equations are 

solved by iteration to obtain the values of head at 

every node. A standard computer programme has been 

used for the purpose. 

5.2.3 Application 

The method was tested using several problems which, 

by virtue of their regular boundary geometry, could be 

solved accurately by other methods. A close agreement 

was observed by the author between the solutions by the 

two methods. 

The numerical method of analysis using a triangular 
mesh system, though mathematically approximate is extremely 

versatile. Anisotropic zoned soil sections with irregular 
boundary conditions can be as easily analysed by this method 

as a simple homogeneous section. Solutions of any desired 

accuracy can be obtained by Increasing the number of 

iterations and by decreasing the mesh size. An obvious 

advantage In programming the method for a computer is 

that solutions can be obtained very quickly. 

But the main disadvantage of the method is that 

it cannot be applied for the solution of seepage through 

non homogeneous and anisotropic soils. The method has 

thus limited applicability in the solution of field problems. 
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In contrast to this, finite element method is now-a-days 

very widely used in the solution of seepage through 
soils which are both anisotropic and nonhomogeneouse This 
method is very versatile in the sense it can be applied 
to all types of foundations (soils) irrespective of their 
charac ter, and solutions can 'easily be got with the 
aid of a. standard computer programme. 

5.3 SOLUTION OF ANI SOTROP IC SEEPAGE BY FINITE ELEMENT 

METHOD 

A general numerical method of solution of two 
dimensional seepage problems in anisotropic media, parti-
cularly well suited for digital computation has been 
given by O.C. Zienkiewicz (26) This method is based on 

well known finite element method. 

Ferrandon introduced the concept of a 3x3 p ermeabi.. 
lity matrix and showed that it is always symmetrical. Hence 
it is evident that in any anisotropic material three 
principal axes exist, in the direction of which the 
seepage velocity is always colinear with pressure gradient. 
These directions are known for the material at a particular 
point and the permeability can be described fully by three 
values of the permeability coefficients only. 

5.3.1 Theory of Flow in Anisotropic Media 

The well known Darcy's law of seepage can be 

gen erall 7.AA +- - t• 	 ~3-; r ^r n4 ---1 -4 4--4.4 -- 	T1+ 
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the velocities along three orthogonal axes x,y and z can 
be designated by a column vector (v} 

and head gradients along these axes by another vector 
- {grad H} 	then by Da rcy' s law 

{v } 	[K] k grad H)  

where k is a 3x3 matril of nine coefficients and since, 

it is symmetrical only six coefficients are needed to 
define it. 

If the direction of the axes is changed to x' ,y' 
and z' then it can be shown (Appendix I) that the velocity 
vector in the new system is given by 

v' 	_ ..[K']  {grad H' 	 ... (5. ) 

where [W] =[L][K 	[L-1] 	 .. (5.3) 

where[L] is a transformation matrix of direction cosines. 

[K ' ] can be reduced to a diagonal matrix , by suitably 
choosing the orthogonal directions, procided [K] is symme- 
trical. These directions are kncwn as principal axes 
of the porous material and the particularly simple relation-
ship (Eq. 6 Appendix 1) in the direction of these axes are 
obviously worth noting. The above trans formation is 

identical to that used in 	I  ' _ 



computing stress components where the existence of prin-

cipal axes is well known. 

5.3.2 Two Dimensional -Seepage in Anisotropic medium 

The continuity equation when the x and y directions 

coincide (locally) with principal axes of material is 

av 	av 

	

X 	+ - 	= o 	...(5.1-) 

	

ax 	ay 
Substituting Eq. 8 (of appendix 1) in above equation, 

8 	J3H 	a 	
(5.51 ax (KxX - ax ) + ay ( Yy aay ) 

which is valid for both homogeneous and nonhomogeneous 

situations. The solution of Eq. 5.5 is equivalent to find-

ing a function H, which minimizes the following integral 

taken over the whole region of solution (subject to 
specified boundary 	con.dttions) . 

-  J1K ( aH)2+K ( aH ) 2 dxd '~ a x 	yy ay 	y ...(5.6) 

If the Euler conditions of minimization are applied to 

Eq. 5.6 then Eq. 5.5 will be obtained directly. This is 

valid whether Kxx and I~yy, are constant or variable with 
the x and y coordinates. 

The solution of this type of problem by finite 

element method is explained in Appendix II. 
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The procedure is identical with that of a struc-
tural analysis and standard computer programs have been 

used for both assembly and solution of examples. The pro-
gram first converts the coordinates of the nodal poirs~s 
of each element to its appropriate principal direction 
and then computes 'stiffness matrices, (S) . The assembly 

and solution follows a standard routine common to many 

stiffness analysis problems. The data necessary for 

computation programmed for a digital computer are - 

(i) 	Coordinates of nodal points chosen in some 

common coordinate systems. 

(ii). 	Nodal numbers specifying the elementary triangles 

along with Kxx and Kyy $ and 

(iii) 	A direction angle specifying the direction of 

the principal axes with reference to common coordinates. 

5.3.3 Application 

Two examples were chosen by Zienkiewicz(26) to 
illustrate the accuracy and wide range of applicability 
of the method! respectively. The first was the study 

of head distribution under an inclined layer of sheet 
piling on a stratified anisotropic foundation, for which 

analytical s lution was known. 

The equipotentials computed on the bbsis of 

exact solution and the number of values of heads com- 

puted at the nodes of triangles of finite element trian-
gulation , on comparison were found to be in close afireement. 
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The second example is illustrated in Fig. 5.2 
and 5.3 respectively, which is designed exclusively to 
illustrate the versatility of the computer programme 
and deals with the flow through a foundation of perhaps 
unusual complexity. But it should be noted that once 

the data pertaining to the characteristics of each 
element were specified no additional difficulty is 
presented by the computation. 
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CHAPTER VI 

C 0 N CL U S I O N ;S 

6.1 	Closed-form or approximate solutions are available 
from the problem of seepage below the hydraulic structures 
founded on homogeneous and isotropic medium with various 

boundary conditions. But in practice the foundation mate-
rial below the hydraulic structure is ' mostly non-homogeneous 

and anisotropic. The effect of finite depth, stratification, 

and anisotropic on the uplift press ures and finite element 

method for the solution of seepage below hydraulic structure 
founded on anisotropic and non-homogeneous mediums have been 

discussed. Following conclusions are drawn from these studies: 

1. Design curves are given for determination of exit gradi- 

ent and uplift pressures at key points below a flat 

floor with an end cut offfounded an finite depth 

of permeable medium. The effect of impermeable layer is 

negligible for T/b ? 5 and d/b C' 0.1 

2. With the increasing scour downstream of the end cut 

off founded on finite depth of permeable soil, the 

uplift pressures below the floor decrease but the 

value of exit gradient increases . The extent of 

increase in the value of GE  can be determined from 

Fig. 2.19. This informaticn can also be used to 

determine the effect of the depth of the downstream 

filter on the exit gradient. 
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3• 
	In case of hydraulic structures founded on 

stratified soils comprising two layers and k2/k1  > 1 

the uplift pressures increas in the portion where 

• pressures are less than 50% and decrease in the 

portion where pressures are more than 50%.When 
ky/g1 	is more than 1, the effect of the thickness 
of lower stratum on the uplift pressures is negli-

gible. Pressures below the floor with k2/k1  > 10 
are not affected by b/d i_r,e. depth of cut off 

The value of exit gradient increases with increase 
in the permeability of lower stratum. Increase 

in the length of the floor or depth of the down-

stream cut off 1  has practically no effect on 

the value of exit gradient for k2/k1  > 10. 

1+. 	Solutions based on conformal mapping has been 
obtained for determination of uplift pressures 
below floor with an assymetric cut off founded on 

anisotropic soil with principal direction of per-

.meability inclined to the coordinate axis of the 
physical plane. The results have been given in the 
form of design curves, to determine pressures at 

the junction of floor and end cut offOand at the 
tip of end cutoffkD) 

It is seen that uplift pressures at E are 
maximum for anisotropic medium with c( = 0 and 
decrease with decrease in the value of X . The 
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pressures at E are minimum for d = 900  . The 

pressures at the point 3 with anisotropic condi- 

tions are more than those for isotropic condit- 

ions for thevalue of a less than 45°  and greater 

than 11+0°. The pressure at the point D with ani- 

sotropic conditions are less than those for isotro- 

pic condition for the value of c(  between 600  and 1600 . 
The pressures at D increase with decrease in the value 

of X for a < 600  and o(>160°   and decrease 
with decrease in the value of for 60°< a 	160° . 

5. 	Finite element method can be applied for obtaining 
the uplift pressure below structures founded on 

anisotropic and non homogeneous foundations. With 

the availabi ity of the fast digital computer 
this method has wide applicability and can be 

used to obtain results to desired accuracy, 



APPENDIX I 

THEORY OF FLOW IN , NISOTROPIC MEDIA 

If the velocities in the direction of three or-

thogonal axes, x,y and z are designated by a vector v or 

f) 
v 

(1) 
vy  

vz 
and if the head gradient is defined similarly by its 

three components, 

aH 
ax 

grad H =J - 8y  

aH 
aZ 

then the most general linear relationship that can exist 
between the two quantities is of the form (by Darcy's law) 

kv } = 	_[K]  kgrad HI ...(3) 

in which [IC] is a 3 x 3 matrix defined by nine numerical 
coefficients. 

It can , however be shown that matrix 	K must be 
symmetrical to satisfy conservation of energy and therefore 
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it appears that only six coefficients are necessary to 
define it. 

If the direction of the axes is changed to x' ,y' , 
z' then the velocity vector in the direction of the new axes 
can be found as 

v x 

	

y r  j - 	yr= [L 	tv 	...(2+) 
y 

y r  
z 

where L is a transformation matrix of direction cosines. 
Similarly the new vector of the head gradient 

aH 
r 	' ax, 

- grad H 	- 	_aH 	..[L] grad H 	... ( 5) 
ay r 

_  aH  
az }  

Combining equations 3,4- and 5 yields 

[K'] grad H'} 	 ....{6) 

in which the new permeability matrix is 

[k']= [LIIK] [L1 I 
With this type of transformation of K is symmetrical it" 
is always possible to find three orthogonal directions 
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for which [K']  reduces to a diagonal matrix giving 

kxf x, 0 	0 

v  -  -  

0 	k~. ► y , 	0 	tgrad H' . 

0 	0 	kZ'ZI 



APPENDIX 	II 

TWO DIMEF SIONAL SEEPAGE IN ANISOTROPIC MEDIUM 

The, continuity equation, when the x and y direc-

tions coincide (locally) with principal axes of material 

is 
dvx 	av 
ax 	+ ay 	= ° 

Substituting Eq. (8) (of appendix 1) in above equation, 

a 	aH a 	ax 
Ox 	( Kxx —)+   ay 

(K 	ay ) = 0 ... (2) 

which is valid for both homogeneous and non homogeneous 
situation. The solution of Eq. 2 is equivalent to finding 
a function H , which minimizes the following integral 
taken over the whole region of solution (subject to speci-

fied boundary conditions) . 

E = 	Kxx (
,6H ) 2 + K ( aH  ) 2  dx dy ...(3)  JJ[2 	ax 	YY ay 

If the Euler conditions of 'minimization are applied to 
Eq. 3, then Eq. 2 will be obtained directly. This is 
valid whether K and K37  are constant or variable with 
the x and y coordinates. 

The solution of this type of problem by finite 
element method is explained as follows. 
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The seepage region is divided into arbitrary 

elementary triangular areas, or finite elements as shows 

in Fig. 1. If the unknown values of the function H 

at the nodes of the triangles, define the function thr-

oughout the entire region completely and uniquely, then 

differentiating the function E with respec t to each of 

these nodal values and equating each of these differentials 

to zero wi = result in a series of simultaneous equations. 

Fig.1 Division of Region into finite elements 

From these the final, approximate solution can be obta-

ined by feeding in the appropriate boundary values. If 

the nodal values define the function that is sought only 
in the element dd jae6nt to a particular node, while ful-

filling continuity requirements along lines separating 

the elements then each equation will contain only the 

contributions of these adjacent elements. 

Considering a typical triangle i, j, m with a 

locally defined set of coordinate axes (coinciding with 
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the principal axes of the material) the simplest defi-

nition of the function H within the element will be obta-
ined by taking a linear function. 

n A+Bx+CY 	 ....(4) 

and evaluating the three constants in terms of coordinates 

of the nodes and the corresponding nodal values of the 

function. Performing the necessary algebra (in matrix 

language) yields 

H = [(aj+bx + PiY ) 	(a+bjx + Cjy ) , 

Hi  
(am+ b nx+ cmY) 1  

H j 	...CS) 
H 

m 

or simply H = {Ni  , N j  , Nm.] fH e 	 • • • (6) 

where He  stands for the values of the function character-
istic of the element considered. The coefficients are 
defined as 

ai  _ xmY  j  xjYm  
26 - 

(Ym  - y j) 
b = - 	 . 11(7) 

i 	2d 
(x j  - xm) 

ci  = 

with others following a cyclic, anticlockwise, order in 
i,j,m. In Eq. 7 , A 	is the area of the triangle i,j,m. 
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The minimum of the functional E is obtained by 

first obtaining the contributions to the appropriate diff-

erentials for each element seperately and then assembling 

the results for the whole region. 

Thus terming EC  as the contribution of the 

element •i, j,m yields 

_arc 	K 	ax a  {  ax  )+ K  ax  a (ax  1 dxdy 
aHi 	 xx ax axi  ax 	yY ay aHi  ay 

.••(8) 
With the integration limited to the area of the triangle 

i, j g ym. 'This on substitution of Eq. 6 becomes 

aEc 	 aNi  a+N 

aHi 	Kxx ax ' ax 
aNm 	 H (__J.) dx dy 
ax 	ax 

+ 	aNi 	a 	He
,  ! ) dxdy 

K  ay ' 8y 	ay , L 	ay 

.••(9). 
Recognising that the element contributes only to the diff- 
erentials with. respect to the -values at its three nodal 

points, assuming the permeability coefficients Kxx  and Kyy  

to be constant within the element, then substitution of 

Eq. 7 yields simply, 
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aye 	 x 
axi 

___= 
 aTe 	= Ljjm1  Hj  _ [Sijm  

~e 

alle aH  

aEe 

a 	 ,..(10) 

in which the [ ] matrix has coefficients of the type 

= Kxx( ym-yi) (yi-ym)+KyyC m-xj) (Xj-xm) / 
...(1i) 

or explicitly 
Kxx{ym y j) (ym-y j) Kxx(ym yj) (yi-n? Kxx(ym y j) (y j-yi) 
+ 	 + 	 + 

[Siam I = 
kyy(xm-xj) ( xm-xJ) kyy(xm-xj) (xi-xm) Kyy( xm-xj) 

kxx(yi-ym) (yi-Ym ) Kxx(yi-ym) 
+ 	 + 
kyy(xi-xm) (xi-xm) Kyy(xi-xm) (x j-xi) 

 

Symmetrical.  Kxx(yj-Y1)(yj-yi) 
+ 

Kyy (x -xi) (x j -xi) 

...(12) 
To assemble a typical equition for a differential of *E with 
respect to any nodal value for the whole region, the contri-
butions of elements adjacent to the node only ore non zero 
and the assembly will clearly according to the pattern 
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aE 	a3  e  
axi 	axi  o 	 ...(13) 

orxn 	Sin = 0  

The procedure is identical with that of structural 

analysis in which S matrix is a stiffness matrix of a 

structural component and Eq 13b represents the equation 

of equlibrium obtained on assembly of such elements 

Standard computer programs have been used for both ass. 

embly and solution of examples. 

0 
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