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NOTATIONS

a = tanhz-;g%‘ = A constant in § plane

b = Width (or half width) of floor

b1 and b2 = Widths of floor at upstream and downétream of
cut off.

b; and bé = Widths of floor at upstream and downstream of
cutoff in transformed plane,

b' = Distance between two cut offs.

C = Correction factor for mutual interference of
piles

d = Depth of cut off

d, = Depth of cut off measured along its upstream face

d2 = Downstream scour depth

a' = Depth of cut off in transformed plane

Cg = Bxit gradient |

g = Gravitational constant

H = Difference in (Head) upstream and downstream watef
levels.

h = The head at any point

Rorlsbyy - Heads at nodes 0,1,2,3,4

B3s0y

{grad H\ = Head gradient (vector) in original and changed

{grad H'} (new) principal axes of anisotropy respecstively

f
K and K = Complete elliptic integrals



Permeabllity matrices in original and new

[K] andL_K'_]

principal axes of anisotropy respec-tively

Lxx¥yy | |
A = '"Seepage coefficients in the directions of
k_.iK
x17 31 principal axes of anisotropy
Ky ’ky 4
- . 7. . y > o a 2 sy xa - -

Ker xo ,Ky'y' Seepage cosfrievients in new principal axes of
anisotropy

k = Seepage coefficient

k1, k2 = Coefficients of permeability in top and botton

layers respectively.

L, and L, = Lengths of floor in semi-infinite plane

M = T/m = Transformation parameter

M’ k H

: = 1 = Transformation parameter
2T

m = d/b = Ratio of depth of central cut off to half
width of floor.

m' and m = Modulii

N = Constant of Integration.:

n = T/b = Ratio of depth of pervious medium to half wid:
of floor.

P = Argument of Sn'1(?,m)

D = Pressure at any point on seepage fluid

o} = Discharge (seepage) per unit length,

Sn°1(P.m) = Elliptic integral of I kind

Sn(U,m) = P = Elliptic function



s - = Length of seepage segment

T “ = Depth of pervious medium

T1 ,T2 = Depths of wupper and lower stratum (pervious)
respectively.

t = Auxiliary semi-infinite plane.

U (:s‘n"1 (P.m)) = Inverse of Elliptic function 8n( U,m)=P

u and v = Components of fictitious dimensionless veloclity
v}»{,vy,vZ = Seepage velocities in principal directions of
anisotropy.

v}, i

H

Velocity vectors in original and new principal
directions (axes) of anisotropy.

w o= (g + 1iF)
(g1 +1§")

= Rectangular flow fields.

£~
1

wy = (dy+ify) '
Complex potentials in upper and lower stratum

W, = (g, +1¥,) respectively
X,Y = Horizontal and vertical coordinate axes
KV 2 = Spatial coordinates
XV 92 = Transformed coordinate axes in anisotropic medium.
X1,51,2! = New axes of principal directions of anisotropy
X49¥4 o1
“1’ 1 J = Axes along principal directions of anisotropy
v ,
’
Z = Complex potential plane
« = Angle between 4 axis (principal axis of
anisotropy) and horizontal,
«1, o<2 = Transformation parameters.



igle between transformed cut off with # axis.

<
H

Mngle between downstream floor and cut off in

fictitious 4 = ¥ v plane

S = Angle between transformed straight line (floor 1line)
to 4 axis.

03 and 0y = Transforﬁation parameters

¢ =  Velocity potential ( = kh)

d1,d2 = Velocity potentialg in ‘upper and lower stratum

respec~tively,

dx » dD ’ ¢E = Potentials under the floor and thp of cut off.

¥4y, ¥, = Stream functions
1 - _
€= - tan” 1 kz/k1 = Parameter depending on permeability
coefficients of upper and lower stratum.
p = k1/k2 = Square root of ratio of permeability
coefficients of upper and lower stratums
K = = log m! = Negative logarithm of complementary modulus.

A o= v2c kyy /kyy = Ratlo of pemeability coeffictents af

in principal directions of anisotropy
< = Auxiliary semi infinite plane,

3
T

Constant,

o .-



SYNOPSIS

Approximate or closed - form solutions are available
'ﬂor the problem of seepage below the hydraulic structures
founded on homogeneous and isotropic medium with various
boundary conditions. But mbstly the foundation met with

below hydraulic structure is rarely homogeneous and isotropic.
Anisotropy , stratification and non homogeneity to some degree
or the other are common characters of foundation Dbelow
hydraulic structures . The occurrence of pervious founda-

tions of finite depth is also a common feature,

In this dissertation an attempt has been made to
review critically the effect of (1) finite depth of pervious
medium (2) stratification (3) Anisotropy and (4) Non-homogeneity

on the uplift pressures below the structure, exit ' gradient

and seepage discharges.,

The effect of finite depth of pervious medium oy~
uplift pressumes (1) below the floor (2) at junction of

d
floora cut off and (3) at tip of cut off has been reviewed.
Also the effect of downstream scour depth on uplift press-
ures and exit gradient in the case of an apron (floor) with

downstream end cut off has been studied .



Tn the case of structure on two strata of equal

thickness and of different permeabilities, general formulae
are given based on solution obtained by Polubarinova-Kochina,
to calculate uplift pressures below the floor and also to

find seepage discharge.

An attempt haé also been made to study the effect

of anisotropy of fsundation soil (with principal directions of
permeability not coinciding with coordiate axis of physical

plane) om the pressures (1) at junction of cut off and .
floor and (2) at tip of cutoff, in the case of a floor with

a downstream end cut offy, A vertical cutoff in an anisodropic
medium, will , after suitable transformation become an inclined
one in the transformed plane. The effect of both finite .depth
of pervious medium and the depth of inclined cut off on pressures
at tip of cut off and exit gradient, in the case of a stepped
floor, has been briefly reviewed.

Finally,the versatility and wide range of applicability
of finite element method for solution of seepage in Non-homogeneous

foundations has been reviewed.



CHAPTER I
INTRODUCTTION

1.1 HISTORICAL BACKGROUND

N

Design of Hydraulic structure requires testing their

stability against forces due to surface flow and against forces
caused by seepage water. The water seeps under the foundations
of such structures and exerts pressures on the bottom and tends
to wash away the soil under it. The structure has to be made
heavy enough to withstand .the uplift pressures and the value
of the exit gradient of the first streamline has to be kept
within safe value by providing end cutoff.

fhe application of conformal mapping to the solution of
confined flow below the foundations of hydraulic structures was
for the first time indicated by Pavlovsky (14) and Khosla(?7).
Rased on cbnfbrmal transformation, generzl solutions for the
"~ various boundaries have been given by Muskat (12), Harr (6)
and Pollubarinova-Kbchina (15) and Arvin and Numerov (3). These
solutions are applicable for the seepage below hydraulic struc-
tures Sounded on homogeneous amd isotropic permeable soil with
various boundary conditions. In practice, the homogeneous and
isotropic soil extending upto iﬁfinite depth i§ seldom encountered,
The homogeneous permeable soil may be underlain by a homogeneous
stratum of hydraulic conductivity higher or smaller than that
of upper stratum. On the other hand, the hydraulic structure
may be underlain by homogeneous but anisotropic stratum extend-

ing upto finite or infinite depth,
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The solutions of seepage below hydraulic struc-

tures founded on homogeneous isotropic soil extending
upto finite depth and underlain by impermeable or highly
permeable layer were obtained by Pavlovskii (1W) .
Kulandaiswamy (8) and Muthukumaran (13) have prepared
design charts for determining exit gradient and uplift
pressures below the foundation of the structure founded

on soil underlain by an impervious layer.

. The solution of the seepage below structures with |
a flat bottom founded on two layers of egual thickness
is given by polubarinova - Kochina (15) and that for two
layers of unequal thickness has been obtained by Lenau C.W.
(9).lThe uplift pressures below flat floor}with end cut off
fouﬁded on two layers, upper layer being of higher permeability
has been studied by Alamsingh and Punmia (1). The effect |
of higher permeability of lower layer has been determined
bysharma et, al. (22). They have combined analytical and
experimental results to provide design curves for determin-
ing exit gradient and uplift pressures, covering the
complete range of the values of k2/k1 from 0 to infinity.

The effect of anisotropic media on the uplift pre-
ssures has been studied experimentally by P.V.Rao (19),
Alamsingh and Punmia (2) and by Punmia and Patwa (18).



-3 -

In the present dissertation an attempt has been
made to study the effect of non homogeneity of the founda-
tion on the stabllity of the structures. The cases with

the following boundary conditions have been reviewed
critically.

(1) Hydraulic structures founded on permeable
soil of finite depth underlain by imper-
meable or very pervious layer (Chapter II)

(2) Structures founded on stratified foundations
(Chapter III)

(3) Structures founded on homogeneous but ani-
isotropic soil (Chapter IV)

() Application of Numerical methods for the
solution of problem of seepage below

hydraulic structures founded :on nonhomogeneous

soil (Chapter V).



CHAPTER 1II

PERVIOUS FOUNDATION OF FINITE DEPTH

2.1 GENERAL

The solution of seepage below hydraulic structure
founded on finite depth of permeable soil could be obtained
by conformal mapping, approximate methods such as method
of fragment, or by experimental methods. Pavlovskii (1)
was the first to treat the problem of seepage as a pioblqn
of mathematical physics and used the method of conformal
transformation fér its solution. He obtained-the solution
of seepage below a flat apron with a central cut off on
limited depth of pervious founddation., Muskat (12) analysed
the case of flat floor with sheet piling anywhere on finite
depth of permeable soil. Pollubarinova. Kochina(15) gave
analytical solutions by the method of conformal mapping
for seepage below flat bottomed structures with single and
two cut offs founded on permeable foundation of finite
depth, Chugaev (4) while finding a method of determining
the underground profile of a structure which is safe in
regard to percolation introduced a method called the 'method
of resistive coefficients® (method of fragments) where in
the underground profile was divided into seperate elements

resistive coefficient for each separate element determined,

and hydraulic head distributed in proportion to these
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coefficients, The Bplift diagram could thus be drawn,
The method 1is suitable for any complicated weir profile

with number of cuteoffs on pervious foundations of finite
depth,

2+2. BTEPPED APRON WITH A CUT OFF

The geﬁeral cagse of a stepped apron with a cut

off founded on pervious foundation of finite depth has
been dealt by Sri MuthuKumaran (13). He has given the
design procedure and provided charts for determining
the exit gradients and uplift pressures at salient

points'of weir profile.

The weir profile is shown in Fig. 2.1. 4n imper-

vious floor AECB of length b1+b located on a permeable

2
soil of stratum depth T has been considered. The floor

has a step of depth, d, at E and a sheet pile of depth
(d1- d2) at the step. The downstream pervious bed is at
the same level as the down stream impervious bed. The
. T '
differential equation goveg\ing seepage phenomenon is
0% 0%y
5 +
ox : 6y2

= 0 eee(2.1)

where ¢ = velocity potential equivalent to tkhr,

h = the head, ks=the coefficient of percolation, and
& and y are spatial coordinates.

The foundation profile AEDCB forms the inner boundary

of flow and represents streamline § = 0 , in which § =stream
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function. The lower impervipus boundary FHG represents
the streamline J = q , where q = the total discharge
per unit width percolating through the foundation. Along
the boundary AF at the upstream bed level potential g=kH
i.e., the total head, and at the downstream bed, BG poten-

tial function, ¢ = 0 .

Both the profiles of the structure in the z plane
and the rectangular flow field of the w plane can be trans-
formed on to the lower half of the same semi-infinite p-
plane, Thus

z = f(p) : eee(2.2)
and w o= F(p) eee{2.3)
are obtained in which z = x+iy , repreSenﬁing physical
plane, p = s+it, representing an auxiliary semi<infinite
plane, and w = ¢ + 1§ , representing the rectanghilar flow
field. For convenience, a new variable w = g' + 1y’

has been introduced which is defined as

! = ﬁ 0'0(20}';')
WV kH K :
IF' = LK' . 00.(205)
a

where K and X' are complete elliptic integrals of the

first kind with modulus 'm' and m  respectively and m'

]

i=m o+ Combining equations 2.2 and 2.3 and replacing
w by w s, we obtain

z = f(p) = IF~1(W') oo»o(206)

and W F(p) = Ff‘1(z) ' «ee(2.7)
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The relationship between z and p fields is given

‘by ' T
1 (9-2 +1) (p=-1)

N
il
Ao

(T-—dz) tanh”
(0my=1) (p+1)

_ 27T -1 (0-1-1) (p“1)
tanh J(%H)(pﬂ) +id, eea(2.8)

The transformation constants are given by

O-i = secC o(i y (1=1,2) cee(2.9)
sing a
1 -9 .22 e (2.10)
sing T
2
dq
42 = — — . 000(2011)
(1 - 32, |
7 T
‘ (o, +1) (3 =1)
b, = 2}: tanh™? 1 A

(0-1-1) (/3)1 +1)

[, =1 (3,-1)
- .2_.. (T..d ) tanh‘1 2 1 000(2012)
™ 2 -
(0-2+1) (B+1)

-1 (o-2+1}(B‘2 -1)

b, = '2'(T d.) tanh
2 -
" 2 (9-2-1) ([324»1)

1 [0 (A, -
(0 1) (B #1)

2T

- s h" LI ]
— tan (2413)

where 61 ’ /_32, oy and o-2 are transformation pargmeters,

The relation between w' and p fields after transfomatin is



W' = &1-1 (P,m) ’50(20114')
where sn~1(Pym) 1is elliptic integral of first kind with

P as argument and m as modulus.

m = (/3‘ +/32) (0'1 +°'2) cee(2.15)

(/31+o-é) (A St °‘l)

(0-4+/34) (/3 _=P)
P = 2 ! 2 000(20167)
' (Ge‘p) (/3 1"'6 2)

Potentials underside of floor and sides of sheet pile as
a ratio of total differential head are given by

1
# = s Y(p,m) o (2.17)

2.2.1 Calculation of uplift pressures

not
It is,convenient to use equation (2.17) when the

width of weir is comparable to depth of pervious foundation.
Under such circumstances m and P are close to unity, the
elliptic integrals in equation (2.17) vary rapidiy and

the values of m and P have to be computed to many signi-
ficant places to get accurate results, It is therefore,
necessary to rewrite the solution in some other form and

express the elliptic integrals in termms of some other para-
meters,
From equations (2.15) and (2.16)
(0y = ) (o =A3))
!
n' = tm o= 1A 2 "2 vee(2.18)
(- 5+ ) (= g+ f3)
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'(oé - [32) (04 + p)

1 = U1P2 = ooo(’2019)

(0:‘ + /.’»2) }(0-2 -p)

Equation (2.17) is modified as
g = Kl dn~1 [l(‘l-mﬂ‘?') ’ m] ’ ...(2.20)

or dn2(gK,m) = 1-mpP2

where dn(gK, m) is an elliptic function given by
dn®(U,m) = 1 - m&n® (U,m)., &n{ U,m)=P , is an elliptic
function whose inverse is the elliptic integral of the

first kind U = sn” (P,m)

The elliptic function dn, can be evaluated by

expanding it in an infinite series of functions of its
argument and m+ , The complete integral K can also be
computed for given mt , Thus ¢ | can bhe cémputed for given
values of (1;mP2) and m' . The latter guattities can be
computed from known values of d1,d2, T, b1 and b2, by using
equations (2.18) , (2.19) and (2.8) to (2.13).

2.2.2 Exit Gradient

In addition to uplift pressures it is also important

to find the hydraulic gradiemt at the downstream end of
the percolation trajectory. |
Gradient G at any point is given by
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dh

G = e | oo (2.21)

ds
head at any point along the floor or cut off

H g’
K

where h

s = distance along the streamline passing through$ the

point,

Equation (2.21) can be rewritten as
H

K ds

G = 000(2022)

At the exit point B whgre wo= ¢', exit gradient Gy is

given by
H aw'
Gg = — | — ees(2,23)
- K o laz 1, o p 414

22

= infinity, if b21> 0.

The quantity of seepage is given by
q = KHK'/K (2029

where K' 1is the co@i;te elliptic integral with modulus m'L

2o 2.3 'Charts

The potentials at salient points in the underprofile
of the weir can be determined by the following steps |

(1) oy and o, are computed using equations (2.9) to

(2.11) by trial and error.

(2) [’;1and /32 are obtained from equations (2.12) and
(2+413) by trial and error,
(3) (1-mP?) 1is calculated from equation (2.19)



(Notei- p takes valves -1,0,1 at E,D,C respec-tively)

(¥) mr' is determined from equation (2.18)

(5) Using equétion (2.20) and steps (3) and (k) ¢ is

computed.,

The values of oy and /33(i=1,2) in the equations
for potentials are close to unity and hence oy - [31_18
very small. But it cannot be neglected, since small vari-
ation in this leads to large variations in potential dis-
tribution under the floor. Therefore charts have been provi-
ded for facilitating the computations of O~y and (01 -[31)
for 1 = 1,2, For finding oy two charts (Fig.2.2 and 2.3)
are provided where O can be read for given values of

d1/T and d2/T « Once the vathue of o4 1s known o-, can

be worked out using equations (2.10) and (2.11) . For
finding (Gi - ASi) for 1 = 1,2, Using Figs. (2.%) and
(2.5) the following trial and error procedure is adopted.
First a suitable value for (oﬁ - £31) is assumed, based
on experience, Using this wvalue and known values of oﬁ ’
RI and RII are read from Figs. (2.&)_and (2.5) respect-

ively. Then from equation

T
b, x - - (1= a

b1/T 1s computed and compared with known value of by/T.
If b;/T 1is greater than the computed value, then (03 -/31)

fmust be reduced and vice versa.
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A Similar procedure and the use of equation,

b, T d | '
2 = - 2 -
. (1 - ) Ry = Byg ..f(2.2§)

will enable, determination of the value of (ié - /32)
and.

Since (oa- B1) is small in practical cases,since
R;; does not contain (03' 31), RII,can“benread from
Fig. (2.5) , assuming o4 = 3,  and R is then worked
out by equation (2.25) . Therefore in one single trial
(Oﬁ - 34) can be read from figure (2.4%) as RI and o are
known.

Figure (2.6) shows the chart for reading m'
and (1-mp2) + The following substitution is used since

the values of m!' and (1-mP2) are generally small.

H = « log m' ess(2.27)
l = - lOg [1-121P2] OC.('2.28) .

All the charts prepared, cover the following ranges.
(1) T/b varying from negligible values &6 about 2.5
(2) T7d, wvarying from negligible values to- about 5.
(3) b/d1 varying from about 0.5 to about 30.

The author observed by trial computations that
when T/b = 2.5 and T/4, = 5 , the potentials at salient
points were approximately equal to the corresponding

values for infinite depth of pervious foundations.
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2.2.3 Mutual Interference of Piles

By dimproving the formula given by Khosla, the

author gave after experimental verification, formula for
mutual interference of piles for finite depth of pervious

foundation, as follows:

T4 T4 T
sin —1 sin — 4 sin __§2
2T T o7
cC =: 19 | . — eee(2.29)
™' tanh
Ajstnh — "
2T

Where C

Correction at the cormer where sheet pile
of depth d2 meets the floor, due to the
presence of sheet pile of depth d1.

b' = distance between piles

ko) = Width of floor.

It may be seen that eguation (2.29) reduces to equation
given by Khosla when T is large. The correction in equation
(2.29) is additive if pile of depth d; 1is on the down-
stream side of pile of depth 4, and subtractive if other-

Pl
wise., The equation is valid for the following conditions-

(1 The intermediate pile is longer or equal to
outer pile.

(2) The distance between the piles is more than twice
the length of the outer pile.

(3) The depth of the pervious stratum below the tip
of the pile (t) is greater than 0.2b for b/T
varying from negligible values to 2. When b/T
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equals 12, the minimum regquired value of t/b is

negligible, For values of b/T bhetween 2 and 12
minimum required value of t/b wvaries linearly

from 0.2 to O.

This equation was verified using both experimen-

tal and theoretical resulté and found to be wvalid.

2.2.4 8afety Against Piping Faidures

Piping failures are caused by seepage erosion or
hegving., The seepage erosion, in potential theory is
analysed on the basis of the exit gradient at the point
on the pérvious region nearest to the downstream end of‘
the strufture. Khosla, who has derived exit gradient for
the general case and other simple weirs on infinite depth
foundation (pervious) has bhown that the result of the case
of a floor with'a sheet pile at end is adequate for prac-
tical purposes.

2.3 FLAT APRON (WITHOUT A STEP) WITH AN INTERMEDIATE
CUT OFF

This cas 1is a particular form of general case
discussed in previous section where a floor with a step
and an intermedigte cut off was considered. By putting
d2 = 0 and d1 = d, we get the present case. The solu-
tion for this case was obtained by applying Schwarz-Christoffel

transformations successively twice, on the same prinéiples
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adopted in the previous case. Charts for finding potent=-

ials at salient points and for finding exit gradients
were provided by V.C. Kulandaiswamy and Muthu Kumaran(8).

The uplift pressures and exit gradient are

given by A
1 1= 1=p
g = % dan~" J P2 y m ves(2.30)
: _1+62 1+p ‘
H
GE = N 000(2.31)
Iilm sinlr—d-
2T
where, :
2(/3 ,+/3
m = 1 2) . 0.0(2032)
(1+3 ) (1+/3 2)

The equation (2.31) for exit gradient agpplies only when

the cut off is at the end of floor, while the exit gra-
dient for an intermediate cut off is infinity. As the
quantities to be used as variables in the chart namely

!

m  and (1-mp2) are generally small, their negative

logarithms have been used i.e.,

#= -logm eee(2.33)
-3, 1-p
A = - 10g ooo(203’+)
1+/3,2 1+p
vhere, o' = fm  and

Td



p =0 for point D and p = « = sin Td for point C.
2T

The charts for potentials (Fig. 2.7) are prepared
using # and A as variables. The chart for the exit gra-
dient (Fig. 2.8) is computed using ¥ and &/T as variables.
The values of # and A can be computed using the available

data namely b1’b2 y d and T.

The use of charts to find(1) potentials at points

E,D and C (Fig. 2.1a) and{(?) exit gradient is explained
in the following steps.

1' 01 1 - 6
(1) The values of ——— and ———= are computed
43, 1+/3
2
from the equation,
A cos E sech Ei
1 -
. 2T 2T
. 1 = ees(235)
1+/31 5> T4 b
1+ |1 - cos — gech® 2
2T 27
(11) m'(= 1=m) 1is computed from
' 1 - /3 1=-/3
m = ; 1 X 2 00-(2036)
(1ii) # is computed from equation (2.33).
T .
, 1« sin ‘2"%
(1v) ~ is computed and using equation (2.34%)A
1+sin Td ‘
27

is detemmined.



,u.’ SRedli
is £ !J..

FIG. 27 CHART FOR POTENTIALS.

ic0
o
% re:
- X4
70 8.6
60 oo '
5o 0.60
20 50
040
30
| [0"0, 050
i0 0.0
o-2
L, Ee3 1o
.J'/T &5
E ‘ 3./2 F
io 2.3 *
g0 E S"3 P
iho a.e
fye + 7.0 Teo C'f/ﬂ Eo 109 /é;o
6o 0.0 5'
5o 1)" £o .
e 7 se
+ 4-0

o-01 .0
o-01
80D

; Z-0
008
e

&

oo
-0
oz 1-0 0.04 ro
G
) Z < Gy
M

FIG.2:8 CHART FOR EXIT GRADIENT.




(v) With the values of # and A , the value of ¢
is read from Fig. (2.7)

(vi) From Fig. (2.8) with the known value of ¥ on line
M proceed through the d/T wvalue in line

D1 or D -straight to the corresponding line G

2
i.e., from D, to G, or D2 ?o G2 and read the
value of Gy / H 1.e., _ .

K Imsiﬂzﬂ
2T

(vii) The exit gradient is bomputed using equation(2.31)

The formula for correction for mutual interference
"of piles (in case of weirs with more than one pile) and its
limitations, is the same as given in previous section.

The validity of this formula was checked by the authors
by conducting experimental studies and found-that the
variation was within 5%,

The authors observed substantial variation in
both potential at salient points and exit gradients (GE'
increased) when the depth of pervious stratum below tip of
sheet pile was increased from 0.20 to infinity, while

studying a typical weir profile with two piles.

2.4 EFFECT OF IMPIRMEABLE LAYBR ON UPLIFT PRESSURES

Based on the results of conformal mapping
Pavlousky (14) studied the effect of lower impermeable
layer on the uplift pressures. He carried out calcula-

tions for various combinations of the different parameters
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to determine wuplift pressures in the downstream portion
of floor with centrai cut off. The parameters affecting
the pressures aren = T#Bb and m = d/b where b = half
width of floor, T = depth of impermeable boundary and
d = depth of central cutoff. Following values of these

parameters were considered .

n = 10.0 and 1.0
&/ = 0.3, 0.5 and 0,7
m = 3,5and 7 forn= 10,0

= 0.3 , 0.5 and0.?7 for n=1.0

In addition the extreme case of n= o i.e., the depth of
permeable stratum extending upto infinite depth was also

considered.

The effect of m and n on the uplift pressures
was studied at two selected points i.e., the point 4, imme-
diately downstream of the piling and a point B, at the
middistance between the piling and the downstream edge of
the floor., The uplift pressures are given in Table 2.1
and plotted in Fig. 2.9. It is seen that-

(a) The effect of impermeable layer is negligible
forn >5 and m £ 0.1 . The difference in th-e

uplift pressure calculated for n = @ and for n® 5 is

less than 1% when the value of ;w;é 01
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() The difference in uplift pressures calculated

forn =00 and n»3 is less 104 when the value of m 40.k4.

Pavlovs ky dinvestigated another problem of what
depth should be given to the piling to make it reasonably
effective, He gavé two graphs drawn from theoretical
calculations (Fig. 2.10) to show efficiency of piling
of various depths. The efficiency (heff) was presented
as the ratio of head lost in between points namely upstream
junction point of pile and floor and downstream junction
point, expressed as a percentage of total head. The intere-
sting point in the graph is that line for T/b = 2 for case
of central pile is g straight 1line. The curves on one side
of it are concave while those on otherside are convex., So
if T/b = 2 1is taken as critical value it follows,
from diagram that for T/b « 2 specific efficiency rises
with increase in depth of pile while for T/b > 2 it drops
with increase in depth éf pile.

Thus whilst for infra critical values of T/b‘
the piling should be as deep as technically possible,

no materialvadvantuge is gained in the case of hyper cri-
tical values of T/b , by increasing the piling beyond a

certain limit.
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TABLE 2.1

(a) for T/b = 10.0

m= 3 m=5 m= 7

Roint IB

n=10 n=w Bligh |n=10 |n=w ligh | n=10 | n= Bligh
A 0.099 ‘0.101 0.125 0.060 {0.063|0.083 0.039| 0.045{ 0.062]|
3 0.085 | 0.088 |0.061 |0.048 | 0.054|0.042 0.031] 0.039]| 0.031

TABLE 2.3
(b) for T/b = 1.0
m-043 m=0.5 m=0.7

oint .

n=1.0 | n=w Bligh | n=1.0 |n= | Bligh n=1.0 =00 Bligh
A 0,394 | 0.406| 08385 | 0.328 |0.353 0.333 | 0.256 | 0.306 |0.295
3 0.288 [ 0.310| 0.192 | 0.249 | 0.284 0.167 | 0.198 | 0.251 {0147

2+5 FLAT APRON WITH DOWNSTREAM CUTOFF UNDER SCOURED
CONDITIONS

2.5.1

Uplift Pressures

In the previous sections, determination of uplift

pressures and exit gradients below apron with an intermedi-

ate

cut off, either with or without a step, was discussed.

Also the formula and chart for finding the exit gradient
for the

But when the apron is under scoured conditions, i.e., when

case of a floor with an end cut off were given.
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there is difference in levels between wpstream and downstream
of an gpron (with a downstream end cut off), the pressure
below it and the exit gradkents differ from the case of
apron having egual upstream and downstream elevat;ons. One
such case was investigated experimentally by B.C. Punmia

et. al. (16) by electrical analogy method.

In the experimental study the authors studied the
influence of parameters like b/T , d1/T sy and d2/T on
pressures at (1) below theapron (2) at junction of
floor and downstream end cutoff (3) at tip of cut off,
where d2 is the downstream scour depth and other symbols
have the usual notation. The sequence of their study was
Vas follows « (a) the values of b/T were kept equal to 1/2, 1,
2 and 4 (b) For each b/T the value of d1/T was taken as
0.2, 0.4 0.6 and 0.8 , (c) For each b/T and d,/T

AY

the value of d2/T ‘was taken as 1/8 4 2/8 , 3/8 and 4/8.

The influence of the ratios of various parameters
namely the width of apron, the dépth of porous media, depth
of cut off downstream séour depth on the pressurés (i) below
the apron (g)) (ii) at junction of apron and cut of £'(# @
(iii) at tip of cut off (g)) are shown in Figures (2.11) to
(2.18)

From the results of the experiments the following
conclusions have been drawn. (1) for a particular width of

apron and depth of media, the pressures below aprom increase
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as depth.of cut off increases. (2) The width of floor, the
depth of cut offvand the scour depth all being fixed, the
pressures at any point below floor increase as the imper-
vious layer comes nearer the floor (3) The pressure at junce

tion point (4.) and that at tip of cut off (pD) increase

E)
when width of floor decreases (for constant depths of -
porous media scour and cut off). But all the other para-
meters being fixed the pressures ¢E and ¢D slightly incre-
ase with decrea;e in scour depth (4) Pressures 6¢EQ and
'(¢E) increas rapidly with decrease in ratio of width of

floor to depth of cut off. (5) g, and g increase rapidly

with increase in penetration ratio .

It can therefore be concluded that (i) the depth

of the downstream cut off should be kept minimum required
for safe value of exit gradient and also from scour

considerations.

(ii) The width of floor downstream of the gate line should
be kept minimum subject to the requirement from surface
flow considerations, (iii) the depth of scour on the down-

stream, effec ts slightdy reduction in uplift pressures,

but at the same time would increase the value of exit
gradient,

2.5.2 Exit Gradient

The effect of scour downstream of a structure can
be studied from the expression for exit gradient at the

end of floor with a step and downstream cut off. The
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expression obtained by Muthukumaran is

6 ; 5 11'0-2 (1404) J2/C/3| +0-2)
d .
2k (1 -‘;r"g)(o-1 *0-2) _I (1+/3 4) (’14-0-2)

eee(2.37)

where the symbols have the notations as explained in

T
earlier sectimn . The values of GE I have been evaluated

for b/T = 1.0 and for following values of d4/T and d,/T.

d1 d

1) - z 002 —?' = O [} 0005 9 001, 0015

T

d d;

2) =~ = 0.4 2 =0, 0.1, 0.2, 0.30
T T

3) - s Oo 6 -—2- = O ’ 0.3’ O.ll,, ] 0050
T T ,
d a

¥ -'=0.8 5% = 0y 0.5 , 0.6 5 0.70
T

The values of o3 2 9%y

given by Muthukumaran (13) the use of which was explained

and [% were found using the charts

earlier.

d

The wvalues of GErg‘ are plotted against -2 as

‘ T
abclissa for all the four values of d1/T in Fig. 2.19.

A perusal of the figure indicates that the value

T da
of GE ﬁ .1Bcreases with increase in the value of El
d .
and _2 . However this rate of increase gradually incre-

T
asesas the value of d2/ T i1ncreases for a particular value
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of d4/T . The rate of increase in the value of GE}[';
increases with decrease in the value of d1/T. For example
for d1/T = 0.8 the value of GE % increases from 0.32 to 0.48
with increase in the value of d,/T from 0.2 to Ok But'for
d4/T = Q.6 the value of Gy g increases from 0.55 to 1.00
with increase in the value of d,/T from 0.2 to 0.k,

Since the value of GE espécially for deeper cut off
i.e0 d1/T > 0.4 , increases only gradually , limited scour
downstream of the end cutoff without step may not result in
significant increase in the value of exit gradient. However,
excessive scour reduces the effectiveness of cut off in
controlling tﬁe value of exit gradient, It is therefore seen
that with downstream scour extending over large area, uplift
pressure below the floor decreases whereas the value of GE
increases, This information would alsohelp in determining the

effect of the depth of filter on the downstream side of a

structure,



CHAPTER IIT

STRATIFIED FOUNDATIONS

3.0 An exact solution has been obtained by Polubarinova-
Kochina (15) for seepage below flat bottom welir or a cut off
founded on soil consisting of two layers of equal thickness.
Lenau (9) has obtained solution of flow below a flat bottomed
structure founded on two strata of unequal thickness using
perturbation technigue, The effect of stratification on the
seepage and uplift pressure below hydraulic structures with
a flat floor only was ahso studied by Luthra (11) Gurudasrém
and Awade (5) on electrical analogy model.

Alamsingh and Punmia (1) conducted electrical analogy
experiments to determine uplift pressures at key points of a
floor with cut off at its downstream end founded on soil
consisting of two layers of equal thickness. In these exﬁer-

iments the permeability of upper layer was taken to be higher

than that of lower layer, Sharma et al (22) combined theore-
tical and model studies to determine the exit gradient and
uplift pressures below a floor with an end cut off founded
on two layered soil with permeability of upperlayer being

- smaller than that of underlying layer., The ratio of the perm-
eabilities of lower and upper layers have been varied between
zero and infinity. The solutionslobtained for various

boundary conditions are given below.
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3.1 FLOOR ON TWO STRATA OF EQUAL THICKNESS

‘Consider a flat floor AB(Fig.3.1) of length 2b
resting on a stratum of depth T with coefficient of per-
meability/k1. This stratum is resting on another stratum

of thickness T with coefficient of permeability k%, under-

2
lain by an impervious layer. Since the structure is symme-

trical about 4its centre line, only the right half is
“considered. Along the upstream bed AG1 o B = .k1H and along
downstream bed BF1 s # = 0. Due to the symmeéry CDE is an
k H
--1—H- or -2, Along

2 2

the lower impermeable boundary EF 5 § = O. The base of

equipotential surface where ¢ =

the structure CB is an impermeable boundary and may be

taken as the stream line § = q ,
wy = #1 +im1 and w, = ¢2 + iWa represent the complex

potentials in the upper and lower stratum. The boundary con-
dition along the various surfaces are expressed in terms of

w1 and w as follows.

2
CB '} = q or Im(w1) = q
k.H k,H
C = 1 = A
D ¢1 > or Im(iw1) >
k g H
DE ¢2 = .2 . or Im(iWé) = ¥

2 2
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EF2 7{72 = 0 of Im (w2) =0
’61 p iw iw
DF = % or Im(-—--k 1. —_2k )y =0

The region F,BCDF and FDEF, are mapped into the ‘
upper half and lower half of the complex T | piane. In mapping
the region of upper stratum to the upper portion of the S-plane,
the points B,D and F are placed at 0.1 and @ along the real
axis and point C lies at ta', The point E of the lower stratum
is placed at I = a,

The Schwartz - Christoffel, transformation equation
that maps Z= plane into '3 plane is

dz - M (3 - a)'1/2(g..1)'1/2 eee(3e1)
al
ag
or 2z = M + N
| (z-a> (T-1
1 ' l
1 g - 5(1+a)
= M CQSh : +N ooo(302)
1
3 (1-3a) ]

At point D, $=1, andz = O . Therefore N = 0 . At point C,
{=a and z = 1T , Therefore

1

iT = M cosh”™ -1

ML

1]
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or M= T/
Eg. 3.2 reduées to _ -
1
8 e = (143) |
1
= (1=a)
| 2 N
1 1 Ty
or $= - (1+a) + = (1-a) cosh —— eosf3.4)
2 2 T

At point By 2z = b+iT and § = 0 , therefore from Eq. 3.4

a = tanh2 --@- 000(305)

2T

The potential functions L and v, for the upper

and lower layers are given by the following integrals

2¢ : 2¢
wy ¢ (s [ N I e

1
e 5 =T : ; as
2 ._IS (1-9) (S~a) - ...(3.6);
ma (=g 4[-2)2% 0 (J1mg <[a5)2" ,
W = e o~ tan er a<s +N
2 2 13 1-9 (3-a)
...(3.7)
. k
where € = 1 tan-1 "-%" . -(308)
ki3 k1

Uplift Pressures

Substituting ¢ = sj_n"2 o< sy Bqe. 3.6 reduces to
> | T odxX + N ,,.(3.9)
2
fa - sin?«
cos (2 &
! J )
.Ja - sins

W1"~‘=

< + N e e(3.10)
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At point B, €= 0 and w= 0 , therefore N' = 0

At point ¢ , §= a and w= ~18 , therefore
2

sin'?jg
KE N f cos(2 &)
2 ' de( eee(3.11)
0 a-sinzd
=M 7
Bg. 3.9 therefore ﬁeduces to
sin” IE_
k. H cos €
2J 0 J a - sined '

Direct integration of Eq. 3.12 izs 1is not possible
It can however be integrated after expanding into an infinite

series.

Seepage Discharge

| The seepage discharge can be determined by integra-
ting Eq. 3.6 between limits $ = « o and €= 0 , The seepage
flow can also be determincd by adding the seepage discharge
passing through upper layer at section CD and the seepage
discharge passing through the lower layer at section DE. The
flow rate through the upper layer can be obtained by integra-
ting Bg. 3.6 between the limits T = a and § = 1 and the
flow rate through the lower layer can be obtained by intea-
grating BEq. 3.7 between the limits C= a and T = 1 . The
total flow rate is given by
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L)

. sin 'k
1 J cos (2 &)

2J cos W

I|Q

d eee(3.13)

)
=

12

k'® - sin?x

-
where q = seepage discharge per unit length of the structure.
The values of q/ k1H have been plotted against values of ¢
and k2/ k, for.iarious values of b/T ranging between 0.5 and
8.0 (Fig.3.2). A perusal of the figure indicates that the
seepage discharge increases with inerease in the value of k2/k1.
Also the seepage discharge reduces with the increase in the
length of floor. This is also evident from Fig.3.2 « It is
seen that the discharge reduces rapidly for initial increase
in the value ofAb/T and the rate of reduction reduces with

increase in the wvalue of b/T.

3.2 CUT OFF IN TWO STRATA OF EQUAL DEPTH

Pollubarinova - Kochina(15) has als obtained expre-
ssion for seepage discharge below a cutoff penetrating to a
depth 'dt in two layers of equal thickness T with coeffi=
cient of permeability being ky and k.

2
For d<T Tq 28
q 1 (cos —=3° T1775
" - 2T J3+ tané T 000(3‘“"')
K, I#T, | cos e
For dp»T
J, + J
q = 1 g tan T e 000(3'15)
k,B 23, |
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where _ o8
T/2 ( J 1-0? sin°gd + o-cos o ) |
Iy = j - : > aof eee(3.16)
- 0 :I_1-o- sinyg
T/ I ’
? (J1-o-281n2d - o= cosd)?2’ ,
Jd. = I : def 000(3‘17)
2 ' 2 2
0 J‘l - = sing
"/2  cos 28 d Ao
J3 = I ! 000(3018)
0 .J1 - 012 sin2 &
y 28
2 o~
Jo - J1 - JZ + J3 ..0(3019)
sin €W
- <
# = sin 1 — ' . ee(3.20)
_ | a ,
T
o= = sin .«1_1..._(}- and O-'_:: COS —— 000(3.21)
2T 2T
re Tr d L2 N J L ]
a = - tan® | | (3.22)
2T
for 4 =T .
k
kB 2 2 |k
T
The values of Gp — have been plotted, in Fig.3.3
H .
against the values of d/T and k, / ky + A perusal of the

figure indicates that the value of GE I decreases rapidly

with increase in value of 4/T = 3/M% . The reduction in the

value of G with increase in the value of 4/T Dbeyond 3/4

B

T
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is very small. The ratio of the permeability of lower layer

to that of upper layer has very little effect on the value

T
of Ggy for &T less than 37k,

3.2 FLOOR ON TWO STRATA ON UNEQUAL THICKNESS

Lenau (9) has obtained the solution of seepage

below a flat floor founded on two strata of unequal thick-
riess using "perturbation techniquen Fig. (3.4, He has
obtained expressions for the seepage discharge only and has
not derived any relation for uplift pressures. Expression

for discharge is

q (1-p) 2" J¥ s 1
= p) J-— d ...-—:;-——log ("% + O(p) ..-(302’4-)

k1H 2p f7-

where b
p = tanh ( “—-) 000(3025)
8T,
Yy =
T2

Bq. 3.24 can give relatively accurate valwe s for smaller

values of P and § J_~. The values of q/k1H have been
plotted against ‘o/‘,I"1 for different values ofﬁJk1T1/k2Ta

in Fig., 3 .5« A perusal of the figure indicates that the

length of the floor becomes unimportant ag the value of

_Ik11'1/k2T2 approaches zero and the value of /%, H
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1 kT
approaches the wvalue of = 22 e A similar tendency

2
1k T4
1s seen fromthe results of the solution given by Polubarinova-

Kochina for floor founded on two layers of equal thickness.

A comparison between the results obtained from Eq.3.24
and exact solution given by Polubarinava-Kochina (15) is
illustrated in Fig. 3.6 (for €= 0.325) . The Eq. 3.2k is
seen to under-estimate seepage discharge q/k1H, the accuracy
decreasing with increase in b/T, . For example when b/Ty =3

the absolute and relative errors are 0.15 and 15% respectively,

and when b/T4 = 16 the absoluté and relative errors are 0.34
and several hundred percent., The Eq. 3.24 can be expected
(From Fig.3.6) to underestimate the total seepage to a max-
imu of 1.0 § if b/Ty K16 and ¥ 1. For Y>1 (T,/1,>1)
the error will be somewhat larger but probably no more than
g Jr.

Lenaur (10) has also obtained an approximate soluti-
ion of seepage below the foundation of a structure without
cutoff resting on four 1layers of equal thicknesses. The
approximate solution is accurate for very small values of
b/T . However as b/T approaches zero the error approaches

infinity. Hence the solution is recommended to be used only
when b/T > 0.2 .
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3.4+ FLOOR WITH END CUT OFF ON TWO STRATA

Alamsingh et. al (1) has studied on electrical
analogy model the effect of stratified foundation on the

uplift pressures below hydraulic structures with downstream
end cut off . The permeability of upper layer was taken
to be more than the lower layer. Shamma et. al (22) combined
the theoretical and model studies to determine the exit gra-
dient énd uplift_ pressures below foundations of structures
founded on two layers, with the permeability of upper layer
being smaller than that of the underlying layer.

Alamsingh et al conducted experiments to determine
uplift pressures only for k1/k2 ratio as 1,4, 20 and 50,
b/T ratio equal to 1;2,4 and 8 and d4/T ratio as 0.25, 0.5
0.75 and practically 1.0 . The results indicate that
uplift pressures increase with the increase in the per-
meability ratio k,‘/k2 and penetration ratio d/T (Fig. 3.7
to 3.10). As expected the pressures at the gorresponding
points decrease with increase in the length of floor. The
authors also found that for a given b/T ratio the uplift

pressures at D and - E decrease with increase inthe

value of [k, /k, for 4/ X 0.5 and increase with

increase in the value of |k1/k2 for 4/T»0.75(Fig.3.11 and
3.12)
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Sharma et al have calculated exit gradient and

uplift pressures below floor with end cut off from closed

form solutions for k2/k1 = 0, 1 and o and employed
electrical analogy model for k,/k; = 0,1,10 and 100. The
theoretical and model test results for k2/k1 = 0 and 1 were
compared and found almost didentical, The uplift pressures

at the key points i.e., at the junction of the floor and
cutoff, E and at the tip of the cut off, D for d/T, = 0.25,0.5
are shown in Figs. 3.13 to 3.16 « The values of GE %

for wvarious wvalues of b/T1 and d/'I‘1 are also shown

in Fig. 3.17 . Results of the studies indicate that

(1) With the increase in the value of k,/kqy y the uplift
pressures increase in the portion of the floor where pres-
sures areriess thafi: :50>percent &anhd Jéerease in the por-
tion where pressures are more than 50 per cent (Fig. 3.18).

(i1) As indicated by the studies conducted by Alamsingh

the uplift pressures increase with increase in the pénetra-
tion ratio énd decrease at the corresponding point with
increase in 1length of the floor (Fig.3.20). However the
pressure s below floor are not affected by increase in

length of the floor for large value of k,/k, i.e., 2100 .

(114) Thickness of lower stratum has insignificant effect
on the uplift pressures (Fig.3.19).

(iv) The value of exit gradient. increases with increase
in the permeability of lower layer (Fig.3.17)-1ncrease in
the length of the floor has practically insignificant
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effect on the value of exit gradient for k2/k1 > 10.

(v) Increase in the depth of cut off has little effect
in reducing the value of exit gradient when the permeabi-

lity of the lower stratum is higher than the .upper stratum,

The study conducted by Alamsingh et. al gives galues
of uplift pressures at D and E for k,/k, =1.0, 0.25,

085 and 0.02 « The experimental values for k2/k1 =1.0,0e25,
0,05 and 0.02 should fall along those for k2/k1 = 1.,C

and bétweqn those for k2/k1 = 1,0 and k2/k1 = 0 obtained
theoretically by Shamma et. al. 1In order to compare

these experimental results with those obtained by Shamma

at al theoretically for k2/k1 = 0 and 1.0 these were |
plotted on Fig. 3.21. However a perusal of this figure
indicates that the pressures obtained experimentally by
Alamsingh et al are higher than those calculated theoretically.

3.5 TFLOOR WITH INTERMEDIATE CUT OFF ON TWO STRATA
(OF EQUAL THICKNESS) ,

Punmia et al(17) conducted electrical analogy model
studies to determine the uplift pressures below hydraulic
structures with intermediate cut off founded on two léyered
media of equal thickness., The permeability of the upper
layer was more than that of lower layer, Model tests &ere
conducted with various combinations of b/T, d/T , by/b and
k1/k2 where b1 is the distange of cut off from upstream

end of floor. The results of the studlies indicate that =
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(1) With Increase in value of k1/k2 the pressures on
the floor on upstream side of cut off increase while the
pressures decrease on down stream side.

(ii) While the 6t6er parameters are not altered, the presaire
at points on the upstream side of cut off increases
with increase in depth of cut off or penetration ratio

and the revepse is true for points on downstream of cutoff.

(iii) with the other paraméters being kept constant, the pressure
at points on upstream side of cut off increases as the width

of apron decreases and it decreases with decrease in width

of apron on downstream side.

(iv) The pressure on the floor on upstream side of cut-off
decreases as the distance of cut off from upstream floor

eénd increases.

(v) Pressure at key points namely junction of floors

cutoff (pﬁ) and tip of cut off decreases as width of apron '.

(floor) increases (keeping other parameters unchanged)‘

(vi) Both bE and ¢D increase with increase in depth of cut off.

(vii) pp and $, increase with increase in k1/k2 while the

other ratios are kept constant,

3.6 TWO LAYERED MEDIA (FOUNDATION ) WITH A CUT OFF AT
UPSTREAM END

A study of two dimensional seepage under a flat

bottomed structure with a cut off at upstream and resting
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on two horizontal layers of different permeabilit;ies
and equal thicknesses (Fig.3.22) using a simple electrical

analog was made by Stefan (23) .

By current measurements and by using the well

known analog
q/ k1H =1/ oy v
where

q = total seepage discharge per unit length.

k1 = permeability coefficient of upper layer.
H = Difference in pressure head

i. = current

o = conductivity of upper layer

v = voltage applied between electrodes.
the dimensionless flow rate ise g/ k,H was obtained and
the results were plotted by the author (Fig.3.23) as a

function of permeability ratio k2/k1 s glven by a parameter

€ defined by
tan T¢ = .[k2/k1

The lengths of the flat bottomed structure and sheet pile
cut off (each relative to thickness of layers) and also

the permeability ratio were varied.

The analytical solutions of pollubarinova=-Kochina,
which are special cases of boundary geometries, investiga-

ted using electrical analogy were also reproduced for come

pleteness and reference.
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The author condluded praising the technique of
investigation as very simple and easy. 1t may be helpful
for those not experienced in seepage flow studies., The
results of the study presented provide a basis for evalua=-
ting seepage flow through two layers of different permea-
bilities with upstream cut off,

3.7, TWO LAYERED MEDIA (FOUNDATION) WITH TWO CUT OFF$S

The effect of foundation stratification on seepage
under a hydraulic structure, on the underground contours
and foundations of the spilleways dams of the volga hydro
electric stations named after V,I. Lenin was studied by
Ronzhin (20). The foundation of the first dam was composed
of three distinct layers and the second dam foundation of
two layers., The underground contours comprised an upstream

apron, two sheet piling walls and the spillway foundation
slab .

The two layered foundation was tested by the elec-
_trical analogy method at different ratios of permeability

coefficients of individual layers and at various permeabili-
ties of sheet pile walls, but without considering the per-
meability of the upstream apron and that of concrete of

body of dam. In the 1laboratory models, the upstream apron
sheet piling and sheet piling under the dam were cut to the
full depth of the first 1§yer of the foundation like in the
prototype. The test results showed that the diagram of



It is noteworthy that experimental curves fall well

below theoretical- ones in the rahge of high permeability
ratios, the reason being limited length of model. The author
indicated that errors in flow rate measurements were caused

by limited length of anologypaper.

A second point of investigation as observed by the
author reléted‘to the pressure diétribution along cutoff
wail and base of structure. Local differential pressure
heads with reference to downstream water level for‘various
lengths of cut off énd for various permeability ratios were
shown .vThe author pointed out the permeability bhad no .
dramatic effect on pressures. However the pressure under
the horizontal base of the structufe increased with increase

in permeability of lower layer,

Terming the ratio of difference in pressure head (at
a point below the floor) to the distance of the point frbm
downstream edge of the floor as raverage exit gradientt,
thevauthor studied . its variation for different ratios of
width of floor to depth of media, and obtained finite values
of exit gradient . But the author's conception of a
finite wvalue of'gxit' gradient (at the downstream edge of
floor ) is wrong, when there is no cut off at downstream

edge of floor. In such a case the exit gradient will be

infinite under any conditions.
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The author condluded praising the technique of
investigation as very simple and easy. 1t may be helpful
for those not experienced in seepage flow studies. The

results of the study presented provide a basis for evalua=-
ting seepage flow through two layers of different permea=~
bilities with upstream cut off,

3.7. TWO LAYERED MEDIA (FOUNDATION) WITH TWO CUT OFFS

The effect of foundation stratification on seepage
under a hydraulic structure, on the underground contours
and foundations of the spillways dams of the volga hydro
electric stations named after V.I. Lenin was studied by
Ronzhin (20). The foundation of the first dam was composed
of three distinct 1layers and the second dam foundation of
two layers, The underground contours comprised an upstream

apron, two sheet piling walls and the spillway foundation
slab, |

The two layered foundation was tested by the elec-

trical analogy method at different ratios 6f permeability
coefficients of individual layers and at various permeébili-
ties of sheet pile walls, but without considering the per-
meability of the upstream apron and that of concrete of

body of dam. In the 1laboratory models, the upstream apron
sheet plling and sheet piling under the dam were cut to the
full depth of the first lgyer of the foundation like in the
prototype. The test results showed that the diagram of



seepage uplift pressure acting on the underground contour

changed #ith the inerease in relative permeabi;ity of the
lower layer in comparison with the permeability of the upper
layer. Head losses on the sheet pilings decreased while
those on the upstream apron increased. The same phenome-
non took place by increasing the permeability of sheet
pile, but the character of seepage pattern change wa s
different. There was prac-tically no change in the seepage
pattern in the dam foundation even after increasing the pers
meabilities of sheet pile and lower soil layer from

0 to 0.002 . But only after further increasing the perme-
abilities of sheet pile under the dam or that of lower

soil layer, a considerable change of seepage under

dam occurred.

Ranzhin also studied the effect of the founda=-
tion consisting of three layers of different permeabilities.
In the tests #he pemmeabilities of upper and lower layers
were assumed to be equal, with the middle layer having

different pemmeabilities,

The elements of the dam underground were supposed
to be impermeable in the tests. The first and the second
layers were modelled to be traversed by the upstream apron

cut off and cutoff under the dam. Under such conditions the
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seepage uplift pressures on the upstream apron increased
and that on the bas of the damspillway decreased

with the increase of the middle layer permeability.

However, the seepage uplift pressure on the upstream apron
was found to be increasing with the increase in the relaw

tive permeability of the (soil foundation) middle layer
from 0.05 to 1.



CHAPTER - IV

ANTISOTROPIC FOUNDATION

4.0 GEVERAL

Pervious soils may be subdivided into isotropic
and anisotropic. In isotropic soils, the coefficient of

permeability at any point is independent of direction of

seepage velocity. Isotrop ic soils are further gubdivided
into homogeneous and non homogeneous soils. The permeability
coeffickent of homogeneous soils is independent of the coor-
dinates of the seepage region and is cons$tant  throughout.
In inhomogeneous soils the permeability coefficient depends
on the coordinates of the seepage region. In anisotropic
soils, the permeability coefficient is dependent on the
direction of seepage velocity. The soil is said to be homo=-
geneous and anisotropic if the permeability coefficient is
dependent on the direction of velocity and if this direct-
ional dependence is the same at all points of flow region,
In such a case the permeability coefficient is independent

of coordinates of seepage region.

In nature, it is very difficult to get isdtropic
Soils. Most soils are anisotropic to some degree and hence

the isotropy of a soil is an ideadl case and true for theore-

tical considerations only. One of the marked properties
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found from the soil samples obtained from river bed is
ntransverse anisotropy" wherein the permeability coeffi-
cient parallel to‘beading planes is different from that
normal to it. The average permeability of a natural depo=-
sit of silt in the horizontal direction has been shown to
be equal to 2 to 10 times that in the vertical direction
(24) . The ratio becomes larger than 10 for distinctly stra=-
tified soils., The ratio (kgfky) according to Justin may

be 4 to 20 and in eceptional cases of horizontal seems,

may even go upto 20 to 50, Generally, in natural deposits
of homogeneous nature the permeability coefficient in hori-
zontal direction is greater than that in vertical direction

with one exception of Loess, where the opposite true.

If the direction of maximum permeability in_ the
case of rinclined anisotropy! caused'by geological forma=-
tions of bed, is inclined towards the river bed then it is

of serious_consequence to the stability of structure and

cannot be overlooked.

The manner in which the pemmeability coefficient.

may vary at some point (say tAt) in an anisotropic soil

1s shown schematically in Fig. bo1e

Fig. 4.1
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The magnitude k of the radius vector is proportional to

the value of the permeability coefficient and its direction
coincides with that of the seepage velocity. There are
two specific directions in which the permeability coeffi-
cient attains a least value of kmin and greatest vahe
of kmax‘. as showh in Fig.%.1 These two directions to-
gether with a third one perpendicularto them are referred
to as wprincipal directions of anisotropy of soilm. A soil
often proves to be anisotropic because it is made up of
alternating 1layers having different permeabilities. If,
in an anisotropic soil, the principal directions of ani-
sotropy and the values of Kmax and kmin’ are independent
of the coordinates of the seepage region, then the soll si
called thomogeneous anisotropic® ., On the other hand, if
either the principal directions of anisotropy, or the
values of kax @nd k., or both characterisitics, are
functions of the coordinates, then the soil is said to be

tinhomogeneous | anisotropicn,

'In case the principal direc tions of anisotropic
soil coincide with the coordinate axes of the physical
plane ie "the principal directionsof 'permeability are
horizontal or vertical, then seepage below a hydraulic
structure can be analysed easily.vThe shape of the actual
flow domain is similar to the shape of the transformed,
fictitious, isotropic system. Let kx,k

Yy
principal values of coefficient of permeability in the

ERTRAL LIBRARY UHIVERSITY OF ROORKEE

and k, be the
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direction of coordinate axes. . According to Darcy's

law
dh
v = - k ——
X X %
vy - ky ah . ooo()""o’])
| ay .
: oh
¥ = =Xk
2 - 2 3z

From Vcontinuity equation,

av av av
l + y + 2 =0 000(302)‘
‘ax oy - 0Z

From equations (4,1) and (4.2) we get,

. 3°h a°h . a2h |

This equation (4.3) can be transformed by subse-
tituting

-x -
X = — y = —

The transformed differential equation is

a2 n a°h 32n

+‘ 4‘ = 0 * e o0 2+.
ax? dy2 dz2 , (45

which is the Laplace's equation.
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Thus the effect of anisotropy of the medium is obtained

by; transforming the coordinates system and solving Laplace®s

equation in the transformed plane,

The equivalent disotropic permeability of the

transformed system is given by %U'kx ky k, for three

dimensional flor of-ikx ky for two dimensional flowe.

‘h.1_ BQUATIONS OF MOTION IN HOMOGENEQUS ANISOTROPIC MEDIUM

When the principal directions of coefficient of
permeabilities do not coincide with Horizonfal or vertical
direc tion§ the simple transformation described above is
not applicable. In such a case the shape of the boundaries

is also defommed,
For isotropic soil

V = <K grad h

where K = seepage coefficient
p

h=—_—~

pg * Yy + constant

coo(l,6)

For homogeneous anisotropic soil, a symmetric seepage

tensor may be written in the form
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Taking principal axes of this tensor along X4y, axes

of coordinate system, the tens r 1is

A

0
kx1

0 ky1

where kx1 and k are seepage coefficients in the direction

v
of principal axes,

The equation of motion in x1,y1 coordinate. can

be wbitten as

0 = - 1 _a_?‘ -.g._...
0 ax1 - kx1 u1 - g sing
1 .oo(h‘o?)
O = -~ - _a_p_. - g
P 3 &% V., - g cos«
T ky1 1 g

X/YYXXXXXYW

Figure 4,2,
Putting -p
# (X,9Y4) = —— = x, 8ind -« y. cos « ee o (UB)
17797 og 1 1



h :
where U o= ok op o (400)
1 C |
1
v.‘ = - ky1 ..i’i_\ oc.("’"o10)
37, |

$ may be called as the 'reduced head '

A function ¥ (x,l.y,]) s by means of equalities

- oY oY
Uy = kg Ky o T IkX1 Ky q
1

bX1
oo o (1)
is herein introduced. Continuity equation gives
du av .
1 1 ) = O e e ()""01 2)

+
0x, 9y q
from which it follows that p satisfies Laplacets equation
2 2
o p 8P
+ k Srm— = Q : 4..(“’013)

ax$ ¥ ay2

k

x1

. = 2. .
with further transformation, i.e. x = X%y,‘ = Vy 4V -18,1 ’kx1’

¢ satisfies Laplace's equation in the new x,y coordinates

ax2 | dy2

1
o

000(24"1)4‘)

The combination # + 1§ 1s a function of complex variable

Z:X+iyo

The rate of flow through the contour bounded by the

arc AB 1is expressed by means of stream function as
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@ = [l Ky (T, ¥p) v (4.15)

The three coordinate systems that were previously introduce

ed are linked by the equations

X=x 08« =y, sin« =X cos«K = Vy sin«
| | | eeo(%.16)
Y = %, sin« +'y10034 = x sin « # Vy cos<

Xy = X=X cos &+ Y sin « -

-00(4017)
Y1 = Vy = «X sind 4+ Y cos

(here the notation v =.J§;1 : [k, has been introduced

In particular, the equations of the horizontal
lines pQ, RS and of the vertical line MN in the x,y

coordinate system are

= -1
y , X te«

X sin« + Vy cos 4+ h =0 oo o (4.18)
y = 1 X ctg
I,

In Fig. %.2 p'Qr 1is the position of PQ in the x,y system.

In the x,y coordinate system, some fictitious
flow in the region from that in X,Y plane through the trans-
formation (Eq. %.16) may be considered. The following
conditions on the boundaries of flow region in X,y plane

must be satisfied.



(1) On the boundary of water reservoir
$ (x,y) = constant

On Xy V4 plane, p (X1y1) = constant

(2) On impervious boundary

¥ (x5y) = constant
(3) On the free surface (when the pressure is constant)

p + x sin £ + vy cos &« = constant eee(4e19)
¥(x,y) = constant
Differentiating equation(&.19) along S on the free sur-

face (in x,y plane) and multiplying by &g / 4S

| d : ¥ @& .
( 92-)24' sin « —?—-— ..dx 4+ V cos « _ﬁ. j._—_ 0 000(11'020)
ds

ds ds 8s ds
3 dx 3 a
Ir u= 22 e 2%
ds ds ds ds
u2 + -v2 4+ 1 sinq  V U CcOS K = 0 ooo(l"'021)

which is the equation of a circle, in the plane of u,v
(u, and v are the components of fictitious dimensionless

velocity).

This circle passes through the origin of coordinates and

has its center in the point (=1/2 sin &« , =V/2 cosX).

(W) The equation %.19 holds good along seepage surface.
Assuming that seepage segment to be a straight lineymaking

an angle ﬁ with the x axis and differentiating equation
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(4.,19) with respect to 'S¢

ap ax dy
— — 4 V cos — =0
3s + sin « dis ds
%@ _ o dx ¥ g
as dx ds dy ds
ap

i

op
cos — 8in
X B+ oy B

]

ucos B + v sinf

Hence u cos [ + v sin B + sin « cos B + v oos « sin B =0

Cvea{le22)
which is the equation of a straight line .

This straight line passes through the point (-sin« , v cos «)

and is perpendicular to the seépage Surface.

Particular Case of Anisotropy: (« = 0)

In this case for Vv <1 there will be horizontal

‘stratification and for v > 1 vertical stratification.

i

Bg. 416 Dbecomes X = X, X

Y = Vo=
The directions of the coordinate system coincide, but in
the region of fictitious flow (x,y), this change in
scale along the y axis holds good ie the dam foundation

preserves its length;but the vertical cut off is shortened
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for horizontal stratification and stretchea for vertical.
The relationship between the reduced flow rate and the

pressure according to BEq. 4.8 is

p (X1’ }’1) || o—_— = y1 -.o(""023)
| P g

4,2 FLOOR WITH A CUT OFF

Consider an impervious floor AB of length b1+b2=b
founded on homdgeneous anisotropic permeable solil extending
upto infinite depth (Fig.%. . The floor has a cut off CD
of depth 4 at a distance b1 from the upstream end. On the
upstream and downstream of the floor is perviéus bed extend-
ing upto .infinity. Along the upstream bed AF, p = -kH
and along'downstream bed BG 4 p = O « The foundation pro~
file AEDCB forms the inner boundary and can therefore be

taken as a stregm line W =0 ,

Let A(= (kz/k1) ) be the coefficient of anisotropy
and « be the angle Dbetween x-axis and the principal seepage
axis # , The relation between the physical z- plane and the

¢# , Vv plane (where K and vV are the direc tions of principal

permeabilities) is given by

K =xcosX + ¥y sin «

1 | cea(liol)
v = jif(-x sind + ¥y eos « )
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The straight line y = 0 (floor profile) becomes the

straight line -

tan «
v - - A —————— ‘ 000(1"025’)

H J}T
Let & be the angle between the new straight line with
the t. axis

tan 6 - - —— L (’+026)

T

In the same way the equation of cut off (x=0 ) 1s transformed

on to the straight line

v cot « -

D eee(k,27)

7 I'x

If the angle of the transformed cut-off with # axis is B,

it is given by
cot «

Ix

From the Eqs 4,24 we can find the lengths of upstream:

- tan ﬁ = ooo()'*'028)

and downstregm gprons in ¥ - V plane

in°x 3
b‘;a = b? ( 0082“ + it ) 0o0()"’"29)
2 | sinx
b = b2 ( cosZ + g ) Ceeo(1430)
2 2 A

The depth of cut off is given by ,
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2

2
cOosS
' = a° (sin™ + %

—) ool 31)
A

The relation between the ratio of bs/d and b'/d' have

been plotted against various values of A and < in Fig, L.k,

The angle , ™Y between the downstream floor er
bed and the cut off in fictitious #~v plane is given

by
-1 2 A
™Y = tan : eoe(%e32)
( A=1) sina<

The value of ™Y have been plotted against the various values

of A and « in Fig. 4.5 . Transformation of § plane into
- t-plane is given by

(7':.- 'Aj(u 877 (tea) (1-t) ~' dt  e..(33)

Integration of this equation yields

T o= as ™" (1-p oo (k34
a.nd a = 1 - 2 Y oo.()""035)
From the boundary conditions, we find

' e- T Yi
A = d ooc(""oaé)
(1+a) V=Y (1-a) "

The transformation Eq. (4.3%) reduces to



(o] : L 1 I L I n 4 n L ; 1 i i
{5 30 45 60 75 90
165 150 135 120 i0S
X —

FIG 4 4_VALUES OF £/d/t/d_ FOR DIFFERENT A ANDX__




i t50°
. 120° 135°
1) ] L3 i
)
!
|
Az
0-50 |
~— « 0.46
3
049 —_— i
0.30 .
2 0.20
!
o ‘0 0.30
~J
Y 0. fs
@& \
C_}
iz .
> 0"0

Y902 L '8C)

4020

-~ — b em— — -

9:90++ 0-02 — ] 010
e = —_— ) — —— - PR A —_
9¢ 15° 30° £5°
75°¢
o

~1G.4-5-VALUES OF r FOR VARIOUS VALUES OFe<.




081 Ol -0 WOHd % "¥0Od £ 40 S3INAVA (DY S Old

60} $O-0=Y _




-85 -

, 1Y a1 Y '
- d %) 6) e (37

This equation can be used to determine the values of L1

and L2 for the known wvalues of b; and b; .

The transformation of w- plane onto the lower

half of the t plane is given by

kH 2t +L,-L kH
W = c———— Sin-1 _‘__.1__2 - — o..()"‘038)
LA L,+L ‘ 2

172

The uplift pressures at D and E below a horizontal
structure with an end cut off have been determined and
plotted in Fig. 4.6 4 %.7 . These uplift pressures have

been plotted against b'/dl values for various values of Y .

In ordef to determine the effect of the principal
directions of anisotrbpy on uplift pressures at points D
and E below floor with an end cut off,curves for b/d =5,

10 and 15 and A =0.5 have been plotted in Fig.4.8 for
various wvalues of« . Uplift pressures at thes points
for isotropic medium have also been plotted in this figure.
A perusal of this figure indicates that value of pD is

minimum for wvalue of « around 1200 and maximum at «

less than about 30° . The value of « ~ for maximum values

of py varies with the value of b/d.. A perusal of Fig.%.9
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in which values of g, have been plotted against « for

values of A= 0.5, 0.2 and 0.1 and byd = 5 indicates

that the valuesof ﬂD are maximum at « = 0 y for X = 0.1,
at « equal to about 15° for A = 0.2 and « equal to about

20°

for A = 0.5 . A perusal of these figures also indicates
that for value of « ranging between 60° and about 160°
the values of ¢D are less than those for isotropic con-

ditions. For values of &« < 60° and greater than 160° the

values of p;, are larger than those for isotropic conditions.

The values of ¢E have also been plotted in these figures
for various values of  , A and bf/d. It is seen that the
values of g are minimm for « = 90° and maximum for

« = 0° ., The values of ¢ for anisotropic soil are less
than those for isotropic soil for the valués of £ ranging
between about 45°  and 14%0° . The minimum value of QE
and 'pD decrease with decrease in the value of A and

their maxdimum values increase with increase in the value

of A .

The values of pD and ¢E have also been plotted
in Fig. 4.10 against wvalues of A , for « = 45° and values
of b/d =5, 10, 15 and 20, A perusal of this figure indi=
cates that values of ¢D increase with decrease in the

value of A from 1.0 to about 0.1 and then decrease with
further decrease in the value ofA . The value of A for
maximum value of ¢D is not equal to 0.1, for all values

of b/d . It increases with increase “in the wvalue of b/d.

Mihh eemTaeme o~ . -
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_in the values ofA and the decrease is rapid after A =0.2
The effect of A on the values of g, and g, for b/d =5
and values of « = 0%, 30° , 45°, 90° and 135° can be
studied by the curves plotted in Fig. 4.11. A perusal of
this figure indica tes that values of ¢D increase with
decrease in the value of A for the values of« less than
600 and greater than 160° and decrese with the decrease

in the value of A for the runge 60° < « < 160° . Similarly
the wvalues of pE increase with decrease in the value of A

for « less than u45° and greater than 140° s and decrease

with decrease in the value of A for 45° <« <1%0° . The

Pressures at B for anisoiropic conditions would therefore
be more than those for isotropic condition when « is less
than 45° and greater than 140°, and the pressures at D
for anisotrogic conditions would be more than those for

isotropic conditions when « is less than 60° and greater
than 160°.

4.3 FLOOR WITH A CUT OFF FOUNDED ON ANISOTROPIC SOIL

OF FINITE DEPTH

As indicated in para 4.1 and 4.2 the physical
plane with inclined anisotropic soil can be transformed into
a fictitious plane in which, the vertical cut off is
transformed into an inclined cut off. Solution for inclined
cut off with a step and apron on both sides founded on

finite depth of permeable medium has been obtained by
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Sivareddy et.al.(21). The transformation layout is shown in

Fig. 4.12.

The relation between phe physical plane and the fice
titious =z plane is given by Eqs %.16 and 4.17 . Transformation

of the z plane into the intermediate t-plane is given by

Z

. .
- f (t-/3 )dt

+ Zg ' f..(¥.39)
0 t(t=) =Y (t-1)7

where values of M, « and /3 can be evaluated from the follow-

ing equations for known values of T, ZD and ZE'
' Tl
M = - . oon(l"","'O)
/3T
7 a7 1 1-Y
___])___E. : —Y B - B /(* ooo(h‘o"“")
T T (1) T 72
Zg (/3 = 1= ) B (Y, 1=-7)
R - - eos(LolD)
Y
T -y B
where B1 = B (9,1-Y) is incomplete beta function
(/3 =) / (1=ck)

o Y -
2 = Blaawy/[/3 (1ay]  ?17) 18 ncomplete beta function

B(Y,1-Y) is complete beta function

< and /3 are transformation parameters.
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Eq 4%.39 can then be used to evaluate the values of transforma-

tion parameters L1 and L, for known values of b, and b

2 1 2°
Transformation of w-plane into t-plane is given

by

t

' dt '
w = M J + N ...(1{-.}-}-3)
Jt(L1~b)(L -t)

L
where ' —g- l - (e

- (kH + iq) es o {t.145)

=
1

where K = complete elliptic function with modulus

-J L

2
q = Seepage discharge per unit length of the structure

_ kHE X'
- K
' L
K = complete elliptic function with modulus = |
L2
Potential at any point along the floor is givén by
0 F(e , m)
- = '-—_’_"""— ) ooo(l"'ol"6)
kH K

where F(8 , m) = incomplete elliptic function

| te
e = sin'1-} L2( L1) ooo (4 47)
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eo o (4.48)

Bxit gradient at any point along the down-stream bed is given

by

R - : oo o (B 29)
K (8=3) |t (Ly=t) (L=t)

Y1 " P Y
¢. I _ BT Lt 7 (tmet) T (£-1)
H

Seepage discharge and pressure at the tip of the cut off
have been obtained for a cut offwithout a step and apron., The
uplift pressures at D are shown in Fig. 4 13, and the seepage
discha ge in Fig. 4.14, Exit gradient at the end of the cut
off are also plotted in Fig. %.15, for various values of ¥. A
‘perusal of the‘ figure indicates that the value of exit gra-
dient just downstream of the cut off is zero for ¥ <0.5 angd
is infinite for Y >0.5. For values of Y <0.5 the‘ value
of exit gradient first increases, reaches a maximum value
and decreases as distance from the cut off increases. For

Y > 0.5 the value of éxit gradient decreases with increase

in 'distance from the cut off,

A perusal of Fig. 4.13 indicates that the value of
pD/kH 1s a linear function of d'/T in the range, these values

have been plotted.

4.4 EXPERIMENTAL STUDIES

In the previous sections eases of anisotropy where

its principal directions do not coincide with coordinate axes
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of physical plane were considered. The case of anisotropy
with its principal directions parallel to the coordinate
axes 1is simple to deal with . However earlier some experi-.
mental studies were conducted for this case based on elect-

rical analogy method.,

In the case of a depressed floor on infinite depth,

P.V. Rao (19) opined that the uplift pressures increased

in upstream half of floor length and decreased in down-
stream half with increase in anisotropic ratio. The maximum
deviation in pressure was 8.5% from that of isotropic case,

for a value of n ( = K/ Ky) equal to 15.

The exit gradient was found to increase with 'n!
value and this increas was found to be 50% of the pressures
for isotropic case for n = 15. 1In the case of a flat floor
with a cut off at either end, the author observed that

maximum deviation of pressures from that of isotropic case

to be + -84 forn = 15,

The uplift preséure distribution below a floor on
finite depth of anisotropic foundation for two cases viz.
1) downstream end cut off (2) intermediate cut off, were
studied experimentally by Alamsingh et al (2) and Punmia .

et,al (18) respec tively. The conclusions of the study were=

(1) Pressure at any point under floor increased with

increase in &/T ratio for a fixed /T ratio (Fig.#;16)



(2)

(3

(W)

(5)
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For a given d/T ratio pressure at any point was

larger for lesser values of b/T and decreased

with increas in b/T ratio (Fig. 4.17).

The pressure at any point increased sharply with
increas in anisotropic ratio (Fig. 4.18) . The
variation of pressure under floor was smaller for

greater anisotropic ratios.

For given T/b and d&/T ratios, pE and pD

increased with increase in anisotropy (Fig.%.19).
Effect of anisotropy was more pronounced for lower

value of T/b.

Both pE and ﬁD decreased with 1increase in b/d
ratio (Fig. 4.20 and B.21).
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CHAPTER )i

- NUMERICAL METHODS FOR SOLUTION OF NON
HOMOGENEQOUS FOUNDATIONS

5¢1 GENERAL

The solution of seepage below hydraulic structures
foﬁnded en homogeneous anisotropic medium can be obtained
by the application of transformation that reduces the prob-
lem to that of a homogeneous isotropic medium (See Chapter
IV). This method is however is not applicable when the

" subsoll comprises of several zones of different permeabili-
ties or wvalues of the permeability or its principal direc-
tions vary from point to point. Numerical methods could
be applied to obtain an approximate solution for

such problems,

5.2 SOLUTION OF ANISOTROPIC SEEPAGE BY FINITE
DIFFERENCE METHOD

5.2.1 The partial differential equation governing the

steady state, two-dimensional flow in a homogeneous and

isotropic medium is given by Eq.2-1

The medium is subdivided into squares of equal
area, O0Xdy. The sides of the squares, dx, and 3y, are

equal and are of finite length Ax , Ay respectively. The
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square grid dis shown in Fig. 5.1 . The intersections of
grid lines are called nodes. The infinitesmal AxAy is

approximated by aé in which ag is the width of grid

interval. The area aé s 1s small compared with the area

of the medtum,

The second differentials of head at node t0!' can

be approximated by

2
ax2 a2 * 00 Y
g .
2
o<h h,+h., -2h
—_ - 103 =24, eee(5.2)
6y2 a2
g

Substitution of Egs 5.1 and 5.2 in Eq.2'1 results in

h.+h + h3+ hl+ - hho

1
2 =0 ee(5.3)
a2
g
or -
h1+h2"’h3"'hl‘+ - )+h0 - 0 seoe (5."‘1‘)

where h hyy h,, h3, and h) ~ are the heads at nodes

0414243,4% respectively.

The heads at every node except those at the up-
stream and downstream boundaries are guessed initially,
and then by the repeated use of equation (5.4 are adjusted

towards their correct values.
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Difficulties often arise from the presence of frac-
tional spaces at boundaries of the mesh. These difficulties
can be over come by the use of triangular meshes. Suitable
arrangement of the triangular meshes ensures that there are

no fractional spaces at the boundaries.

G.R. Tomlin (25) has analysed seepage through
soils that are zoned into areas of different permeability

using the concept of triangular mesh and with the aid of

a computer,

5.2.2 Outline of the Method

The soil in each zone is assumed to be homogeneous.
In general each zone can be anisotropic with the principal
axes of permeability inclined at any angle. In applying
the method, straight lines are substituted for curved zone
boundaries and 1infinitet boundaries are reduced to some
arbitrary finite length, so that the shape of each zone

becomes a polygon.

The area within each zone is then divided into

triangles by connecting selected pairs of vertices, Within
each triangle, a fine.size triangﬁlar mesh is constructed
with its axes parallel to the side of the triangle. The
head at any node in this system of meshes is expressed

in termms of heads at surrounding ﬁodes. By the theory of

finite differences, equations for the heads at various
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types of nodes have been derived, and thes equations are
solved by iteration to obtain the values of head at
every node. A standard computer programme has been

used for the purpose.

5.2.3 Application

The method was tested using éeveral problems which,
by virtue of their regular boundary geometry, could be
solved accurately by other methods. A close agreement
was observed by the author between the solutions by the

two methods.

The numerical method of analysis using a triangular
mesh system, though mathematically approximate 1s extremely
versatile, Anisotropic 2zoned soil sections with irregular
boundary conditions can be as easily analysed by this method
as a simple homogeneous section. Solutions of any desired
accuracy can be obtained by increasing thé number of
iterations and by decreasing the mesh size, An obvious
advgntage tn programming the method for a computer is

that solutions can be obtained very quickly.

But the main disadvantage of the method is that
it cannot be applied for the solution of seepage through
non homogeneous and anisotropic soils. The method has

thus limited applicability in the solution of field problems.
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In contrast to this, finite element method is now-a-days

very widely used in the solution of seepage through

soils which are both anisotropic and nonhomogeneous. This
method isg very versatile in the sense it can be applied
to all types of foundations (soils) irrespective of their
charac ter, and soiutions can easily be got with the

aid of g standard computer programme.

5.3 SOLUTION OF ANTSOTROPIC SEEPAGE BY FINITE ELEMENT

METHOD

A general numerical method of solution of two
dimensional seepage problems in anisotropic media, parti-
cularly well suited for digital computation has been
given by 0.C. Zienkiewicz (26) This method is based on

well known finite element method.

Ferrandon introduced the concept of a 3x3 permeabi-
1ity matrix and showed that it 1s always symmetrical. Hence
it is evidenf that in any anisotropic material three
principal axes exist, in the direction of which the
seepage velocity is always colinear with pressure gradient,
These directiéns are known for the material at a particular
point and the permeability can be described fully by three

values of the permeability coefficients only,

5.3¢1 Theory of Flow in Anisotropic Media

The well known Darcy's law of seepage can be

generalived +~ -~ 1. Admonad annd  ad daendd an To
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the velocities along three orthogonal axes x,y and z can

be designated by a column vector [v} St e e

and head gradients along these axes by another vector

- {grad H} then by Darcy's 1law

{v} = -[K:] {grad H} Ceea(50)

where k is a 3x3 matri® of nine coefficients and since,
it is symmetrical only six coefficients are needed to

define it,

If the direction of the axes is changed to x!,y!
and z!' then 1t can be shown (Appendix I) that the velocity

vector in the new system is given by

v = <[x'] {g‘rad"H'} ...<‘5.2)

where [.K'] =[L][K] [_L-1] ee.(5.3)

where[L]is a transformation matrix of direction cosines.

[k'] can be reduced to a diagonal matrix , by suitably

choosing the orthogonal directions, procided [K] is symme-
trical. These directions are knwn as principal axes

of the porous material and the particﬁlarly simple relation-
ship (Eq. 6 Appendix 1) in the direction of these axes are
obviously worth noting. The above trans formation is

identical to that used in
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computing stress components where the existence of prine

cipal axes is well known.

5.3.2 Two Dimensional ..Seepage in Anisotropic medium

The continuity equation when the x and y directions

coincide (locally) with principal axes of material is

av o
X + Vy =0 -oo(SQLl‘)

ax - oy
Substituting Eq. 8 (of appendix 1) in above equation,

3 PH 0 3 y .
S ( Koy = )¢+ 37 ( Koo =50 0 eee(5.5)

which is valid for both homogeneous and nonhomogeneous

situations. The solution of Eq. 5.5 is equivalent to find-
ing a function H, which minimizes the following integral
taken over the whole region of solution (subject to

specified boundary confit.tions) .

- 3H , 2 8H 2 |
B = Jj [Kxx‘- = * Ky 3y ] dx 4y ...(5.6)
If the Buler conditions of minimization are applied to

Eqs 5.6 then Eq. 5.5 will be obtained directly. This is
valid whether K.x and Kyy‘ are constant or variable with

the x and y coordinates,

The solution of this type of problem by finite

element method is explained in Appendix II.
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The procedure is identical with that of a struc-
tural analysis and standard computer programs have been
used for both assembly and solution of examples. The pro-
gram first converts the coordinates of the nodal points
of each element to its appropriate principal direction
and then computes tstiffness matricest' (8). The assembly
and solution follows a standard routine common to many
‘'stiffness analysis problems. The data necessary for

computation programmed for a digital computer are -

(1) Coordinates of nodal points chosen in seme

common coordinate systems,
(11} Nodal numbers specifying the elementary triangles
along with Kxx and Kyy y and

(ii1) A direction angle specifying the direction of

the principal axes with reference to common coordinates.

5.3.,3 Application

Two examples were chosen by Zienklewicz(26) to
i1lustrate the accuracy and wide range of applicability
of the method, respectively., The first was the study
of head distribution under an inclined layer of sheet
piling on a stratified anisotropic fbundation, for which

analytical s lution was known,

The equipotentials computed on the haésis of
exact solution and the number of values of heads com-

puted at the nodes of triangles of finite element trian-

gulation, on comparison were found to be in close agreement.
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The second example is illustrated in Fig. 5.2
and 5.3 respectively, which is designed exclusively to
illustrate the versatility of the computer programme
and deals with the flow through a foundation of perhaps
unusual complexity. But it should be noted that once
the data pgrtaining to the characteristics of each
element were specified no additional difficulty is

presented by the computation.
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CHAPTER VI

C 0ON CLUSI ON g

6.1 Closed-form or approximate solutions are available
from the problem of seepage below the hydraulic structures
founded on homogeneous and isotropic medium with various
poundary conditions. But in practice the foundation mate-
rial below the hydraulic structure is mostly non-homogeneous
and anisotropic. The effect of finite depth, stratification,
and anisotropic 6n the uplift press ures and finite element
method for the solution of seepage below hydraulic structure
founded on anisotropic and non-homogeneous mediums have been

discussed. Following conclusions are drawn from these studies:

1. Design curves are given for detérmination of exit gradi-
ent and uplift pressures at key points below a flat
floor with an end cut offfounded on finite depth

of permeable medium. The effect of impermeable layer is

negligible for I/b 2 5 and d/b ¥ 0.1 .

2. With the increasing scour downstream of the end cut
off founded on finite depth of permeable soil, the
uplift pressures below the floor decrease but the
value of exit gradient increases . The extent of
increase in the value of GE can be determined from
Fig. 2.19. This infommatim can also be used to
determine the effeét of the depth of the downstream

filter on the exit gradient,
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In case of hydraulic structures founded on

stratified soils comprisihg two layers and kz/k1‘> 1,

the uplift pressures increas in the portion where

. pressures are less than 50% and decrease in the

portion where pressures are more than 50%.when
k2/k1 is more than 1, the effect of the thickness
of lJower stratum on the uplift pressures is negli=-

gible., Pressures below the floor with k/k, > 10
are not affected by b/d i.e. depth of cut off

The value of ekit gradient increases with increase
in the permeability of lower stratum. Increase

in the length of the floor br depth of the down-
stream cut off , has practically no effect on

the value of exit gradient for k&, > 10.

‘8olutions based on conformal mapping has been

obtained for determination of uplift pressures
below floor with an assymetric cut off founded on

anisotropic soil with principal direction of per-

meability inclined to the coordinate axis of the

pPhysical plane. The results have been given in the
form of design curves, to determine pressures at
the junction of floor and end cut off(Eand at the
tip of end cutoffd{D)

It is seen that uplift pressures at E are
maximum for anisotropic medium with « = 0 and

decrease with decrease in the value of A , The
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pressures at E are minimum for « = 90o . The
pressures at the point B with anisotropic condi-
tions are more than those for isotropic condit-
ions for thevalue of « less than 45° and greater
than 140°, The pressure at the point D with ani-
sotropic conditions are less tﬁan those for isotro-

pic condition for the value of « between 60° and 160°.

The pressures at D increase with decrease in the value
of A for « & 60° and « > 160° and decrease

with decrease in the value of N for 6dq< < < 166'.

Finite element method can be applied for obtaining

the uplift pressure below structures founded on
anisotropié and non homogeneous foundations. With
the availabikity of the fast digital computer
this method has wide applicability and can be

used to obtain results to desired accuracy.



APPENDIX I

THEORY OF FLOW IN ANISOTROPIC MEDIA

If i:he velocities in the direction of three or-

thogonal axes, X,y and z are designated by a vector v or

Vs

and if the head gradient is defined similarly by its
three components R

,
o )
’ T 8x

- {grad H} = ¢ ‘%% r | 00;(2)

aH
8z

\ /
then the most general linear relationship that can exist

between the two quantities is of the fom (by Darcy's law)

{v} = -[K] {grad'H} | ees(3)

in which [K] is @ 3 x 3 matrix defined by nine numerical

coefficients.

It can , however be shown that matrix K must be

symmetrical to satisfy conservation of energy and therefore
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it appears that only six coefficients are necessary to

define it.

If the direction of the axes is changed to x',y',
z' then the velocity vector in the direction of the new axes

can be found as

(+} -

{vr
V' = [L] {v\ | eee(lD)

y

A\

vv
L 2

where 1, is a transformation matrix of direction cosines,

Similarly the new vector of the head gradient

1 }
| !
axl .
-{gradH '} = T’ J-): O -[L_] {grad H} s (D)
3y’
- 88
L BZ')

Combining equations 3,4 and 5 yields

v' = = [K'] {grad H'} | cree(6)
in which the new permeability matrix is

l_—K'_]-.-. [L”:K] [L"1 ] e o)

with this type of transformation of K is symmetrical it

is always possible to find three orthogonal directions
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for which [K'] reduces to a diagonal matrix giving

20 | Ex'xr O 0
!
A ..
{ 0 ky'y' 0 {8I‘ad H}
N 0 0 kz'zlﬂ

ooo.(g)



APPENDIX II

TWO DIMENSIONAL SEEPAGE 1IN ANISOTROPIC MEDIUM

The continuity equation, when the X and y direc-

tions coincide (locally ) with principal axes of material

is

v pv
x IJ
dx * Ay =0 eoe (1)

Substituting Eq. (8) (of appendix 1) in above equation,

3 ( x oH y 3 (x oH y 0 (2
—)4% — —— = s e e
ax X 9x oy ¥y o 9dy 2

which is valid for both homogeneous and non homogeneous
situation, The sdlution of Eg. 2 is equivalent to finding
a function H , which minimizes the following integral
taken over the whole region of solution (subject to speci-

fied boundary conditionsg).

B =§ JI[KXX(§)2+KW(§§)2}dxdy e e (3)
If the Euler conditions of minimization are applied to
Eq. 3, then Eq. 2 will be obtained directly. This is
valid whether Kxx and Kyy are constant or variable with
the x and y coordinates.
The solution of this type of problem by finite

element method is explained as follows.



- 122 -

The seepage region is dividéd into arbitrary
elementary triangular areas, or finite elements as shows
in Fig. 1. If the unknown values of the function H
ai the nodes of the triangles, define the function thr-
oughout the entire region completely and uniguely, then
differentiating the function E with respec t to each of
these nodal values and equating each of these differentials

to zero wiik result in a series of simultaneous -equations.

| Fige1l Division of Region into finite elements '

From these the final, approximate solution can be obta-
‘ined by feeding 1in the appropmiiate boundary values. If
the nodal values define the function that is sought only
in the element ddjme¢ént to a particular node, while ful-
filling continuity requirements along lines separating
the elements then each egquation will contain only the

contributions of these adjacen¢ elements.

Considering a typical triangle 1, j, m with a
locally defined set of coordinate axes (coinciding with
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the principal axes of the material) the simplest defi-

nition of the function H within the element will be obta-
ined by taking a linear function.

L = A+ Bx+ Cy el

and evaluating the three constants in terms of coordinates
of the nodes and the. corresponding nodal values of the
function. Performing the necessary algebra (in matrix
language ) yields

H= l:(ai-:-bix + &y ), (aj+bjx + Cjv ),

Il

(a + b x+c y) Low e
| L m ).

or simply H =[Ni’ Ny oy Nm:l {He} | " eee(6)

where He stands for the values of the function character-

istic of the element considered. The coefficients are

. defined as

X V. - XV
a; = 0 I
_ . 204 . )
b = —m ¥ )
i 2
(x; = x)
c, = - .-
1 oA

with others following a cyclic, anticlockwisé, order in

i,j,me In Eqs 7 4, A 1is the area of the triangle i,j,m.
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The minimum of the functional E is obtained by
first obtaining the contributions to the appropriate diff-
erentials for each element seperately and then assembling

the results for the whole region.

Thus terming jod as 'the contribution of the

element i, j,m yields

aE® oH 3 oH | 3H &
—_— = Kew —— o ( =)
OH; ﬂ[ *X 9x  aH; (5% * Ky 3y aHi(ay) dxdy

000(8)
wWith the integration limited to the area of the triangle

i,j,m. This on substitution of Eq. 6 becomes

| c oN; a+N oN
8E | SYK I:__.fl-, —J ] { ‘\](—1'-) dx dy

aHi ox ax
' aN. -
fofin s, 3] (o e
“yyl 3y 3y 3y 9y
eea(9)

Recognising that the element contributes only to the diff-
erentials with respect to the values at its three nodal
points, assuming the permeability coefficients Kxx and Ko |
to be constant within the element, then substitutién of

Eq., 7 yields simply,



e 1&; [' 'r
JE
o, k!

i

_T H | e
o -] % - [%Jm] {H }
dH '
3E® | Hy
3H, | | S v« (10)

in which the [B] matrix has coefficients of the type

sij = {Kxx( ym"yi) (yi'ym)"'Kyy(xmf'xj) (xi"xm)} / kb

e (1)

or explicitly

[sijm ] =

+ + +

kw(xm-xj)( xm-xj) kyy(xm-xj) (xi-xm) Kyy(xm-xj)(xj-xi)

koo (Vg =) Ty =¥p) Ky (75-) (74-74)

+ +
ky,y(xi-xm) (xy=x) Kyy(xi-xm? (xj-xi)
Symmetrical. Kxx(yj'yi) (yj ¥y)
+
Kyy(xj"xi) (Xj-xi)_-
-
ees(12)

To assemble a typical equétion for a differential of B with

respect to any nodal value for the whole region, the contri-

butions of elements adjacent to the node only ere non zero

and the assembly will clearly according to the pattern
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. e
ok oB
— = — = 0 000(13)
aﬂi aHi ‘
or ZHn ZSin - O 000(13b)

The procedure is identical with that of structural
analysis in which 8 matrix is a stiffness matrix of a
structural component and Bg 13b represents the equation
of equlibrium obtained on assembly of such elements .
Standard combuter programs have béen used for both ass-

embly and solution of examples.
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