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ABSTRACT 

Canals are widely used in  irrigation schemes as a major 

conveyance system. Most of the canals are unlined and the amount 

of actual water finally available for irrigation is 

significantly less than the quantity of water released at the 

head. One of the major causes of these losses is seepage from 

canals. Hence, an understanding of the mechanism of the seepage 

losses from canals leads to improved management of the water 

resources. 

Seepage losses from unlined canals depend on the shape and 

size of the canal cross section, depth of water in the canal, 

location of drainages on either side of the canal and the type 

of subsoil. Several analytical  solutions for prediction of 

seepage loss had been presented for different canal cross 

sections and, boundary conditions. In the solutions thus far 

obtained, it is assumed that symmetric seepage flow takes from 

the canal to the drainages which are shallow or deep. However, 

in practice canals -seldom have  symmetric drainages on either 

side. 

Exact solution of the problem of seepage from a canal  in 

homogeneous medium to asymmetric drainage(s) located at finite 

distance(s) from the canal is presented in this work. Solutions 

are presented for the following problems : 

(i) seepage from a canal with negligible water depth  to 

asymmetrically located drainages at either side of the canal; 

(ii) seepage from trapezoidal canal to asymmetrically disposed 

drainages at either side of the canal and 

iv. 



(iii) seepage from trapezoidal canal to a drainage on one side. 

The analytical solution for the determination of the shape 

of the free surface and the calculation of the seepage quantity 

through the system was obtained by finding the relationship 

between the physical plane (z-plane) and the complex potential 

plane (w-plane). This was done by employing successive 

transformations through the use of the Zhukovsky function as 

well as Shwarz-Christoffel and bilinear conformal mapping 

equations. 

The results of seepage discharge for various values of 

dimensionless physical parameters are prepared as nomographs for 

practical uses. The case of the symmetric drainages on either 

side of canal is a particular case of the present study and the 

results obtained in this study for symmetrical drainages agree 

with that presented by earlier workers. The computed seepage 

loss to asymmetric drainages by decomposing the asymmetric flow 

domain at the centre of the. canal and treating each part as a 

part of the corresponding symmetric cases is found to differ 

from the seepage loss computed by this method. The difference 

depends on the degree of variation in the drainage distance and 

elevation on either side. The present direct and exact solution 

to asymmetric drainages shows that the drainage which is at the 

higher level and farther from the canal is receiving less 

seepage from the canal. As the level of the drainage of the 

higher level is raised, the seepage to drainage reduces and at 

certain level the drainage does not receive any seepage water 

(hz = he). This critical ratio of the levels of the drainages 



(hc/hi) and the critical location of the drainages have been 

identified. This critical position of the drainage is found to 

depend on the canal cross section, depth of water in the canal 

and distance of the drainage on the other side. 

Free surfaces on either side of the canal rise with increase 

in the bed width and increase in drainage distances. Free 

surface also rises if drainage on the other side is located at a 

higher level. The effect of change of the side slope of canal on 

the free surface is negligible. However, increase in depth of 

water in the canal significantly raises the free surface. 

The results pertaining to the case of drainage on one side 

of the canal had been compared with that given by 

Polubarinov-Kochina, 1962. The seepage quantity computed for the 

case in which the depth of the canal is small compares well with 

the results given by the above author.  In the present work, 

shape of the canal is considered and the shape of the phreatic 

lines on both sides of the canal have been plotted to show the 

effect of the physical dimensions. 

vi 
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NOTATI ONS 

b' 

B2 

The  following  symbols  are  used  in  this  thesis. 

[  In  Chapter  2-,  which  deals  with  review  of 

literature,  original  notations  have  been  used  ] 

=  bed  width  of  canal  in  e-plane; 

=  bed  width of  canal  in  z-plane; 

F(0,m) = Incomplete  elliptic  integral  of 

with amplitude 0  and  modulus m; 

the first kind 

ha,h = difference  between  water  levels 

the  right  drainage; 

of canal and 

h2,h = difference  between  water  levels of canal and 

the left drainage; 

H 	 = water depth of canal; 

k 	 = coefficient of permeability; 

K 	 = F(n/2,m) = complete elliptic integral of the first 

kind; 

K'  = F(n/20e) = associated complete elliptic integral 

of the first kind; 

Li,L  = distance from canal to right drainage; 

L2,L  = distance from canal to left drainage; 

m  = modulus of elliptic integral; 

m'  = 1(1-m "m)  ; comodulus 

M,MI,M2  = constants; 

p 	 = atmospheric pressure; 

na  = canal side slope angle with horizontal in z-plane; 

nal, nag  = angles with horizontal  in e-plane respectively 

of the right and left canal side slopes. 



Tia  

(i) 

q, q
s  

q
c  

= volume rate of seepage per unit length of canal; 

q' • canal seepage discharge component directly emerging on 

the right hand drainage; 

r,s,r',s'  7- cartesian coordinates; 

t  = r + is . parametric plane in Chapter 3, 4, and 5; 

t'  = r' + is' = parametric plane in Appendix C; 

w 	 = complex potential = 0 + iw ; 

z  • complex variable = x + Ly ; 

Y,  = specific weight of water; 

Y07,P  = transformation parameters; 

e.  = et + Le2,  complex  variable  representing  

Zhukovsky's function; 

= Incomplete elliptic integral of the third kind 

with amplitude 0 and parameter al2and modulus m; 

/2,..12,0 =7nRa12,m), complete elliptic integral 

of the third kind; 
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integral of the third kind with parameter a22 and 

modulus m' 

=TIRn/2,as2,m) =1T(as2,m), complete elliptic integral 

of the third kind with parameter as2 and modulus m; 

• velocity potential function; 

= stream function. 
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CHAPTER 1 

INTRODUCTION 

Canals continue to be widely used for delivering water for 

irrigation in most parts of the world. Estimation of seepage 

from canals and assessment of the water logging problem 

resulting from the introduction of canals is much required for a 

rational water resources management. In India, many of the major 

irrigation canals are unlined and are constructed in alluvial 

soil. It had been recorded that more than 40 percent of the 

water from canals are lost through seepage and the menace of 

water logging had left many fertile lands unsuitable for 

productive farming [Sharma & Chawla, 19743. Hence, estimation of 

seepage from unlined canals and assessment of its impact on the 

groundwater regime are very important. 

Seepage loss from an unlined canal depends on the canal 

geometry, depth of water in the canal, locations of drainages on 

either side of the canal and the hydraulic characteristics of 

the subsoil. 

Seepage computation demands understanding of the physics of 

fluids (water) flow through porous media (soil). Properties of 

the soil accounts to one of the major factors on which the fluid 

flow depends. Most of the theoretical analyses of groundwater 

flow problems assume the porous media to be isotropic and 

homogeneous with respect to the coefficient of permeability. 

Most natural and man made soil deposits are anisotropic. Flow 

through anisotropic porous media is generally analyzed by first 

transforming the anisotropic actual flow domain to fictitious 
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isotropic flow region by a suitable co-ordinate transformation 

and applying a method of solution to the transformed section. 

From the solution of the problem in the transformed region, the 

solution of the actual problem in the anisotropic region can be 

obtained [Harr, 1962]. In case directions of the principal 

coefficient of permeability coincide with horizontal and 

vertical directions, the shape of flow domain is not altered 

after transformation. For such type of anisotropic behaviour of 

the porous media, the existing solution for flow in isotropic 

media can be made use of in arriving at the flow characteristics 

concerned with anisotropic porous media [Harr, 1962]. 

Coupled with the nonuniformity of soil in the horizontal as 

well as vertical extent, seepage flow systems are also 

characterized by channels of irregular cross section, changing 

elevations of the water surface in the channel and of the water 

table in the soil and other complications [Bouwer, 1969]. The 

process of erosion, sedimentation, biological action, etc. in 

the channel as well as the influences of chemical constituents 

of the water and also the air content in soil on the hydraulic 

properties of the soil  are sources of complications of the 

seepage flow process. If the water table is sufficiently close 

to the surface of the soil, the influence of evaporation on the 

free surface may come into picture. Infiltration from rainfall 

or from irrigated land also causes a downward flux across the 

water table. 

Numerical and other approximate methods using digital 

computers and electric analogs can handle many types of soil and 

boundary conditions. But, the more difficult process than the 
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actual calculation of the seepage, once a realistic 

representation of the field situation has been developed, is the 

uncertainty in the field evaluation of pertinent boundary 

conditions and hydraulic properties of the soil [Bouwer, 1969]. 

Moreover, the results of the digital or analog methods can be 

unreliable unless their validity is verified by the exact 

solutions arrived at by the use of the analytic methods. In 

addition to that, through the understanding of principles, the 

closed-form solutions are useful in gaining insight into the 

physics of fluid flow in porous media and this may lead to the 

identification of specific sources of uncertainty [Schilfgaarde, 

1970]. Hence, the importance of working out a closed-form 

solutions to the problems of seepage cannot be denied. 

Several analytical solutions of seepage problems had been 

presented for various shape and size of canal cross section and 

for different boundary conditions. Vedernikov [1936] obtained 

solutions for the seepage from a channel with triangular, 

trapezoidal or other shapes to ground water table at infinite 

depth. Analytical solution had also been obtained for seepage 

from a canal to an underlying highly pervious layer at finite 

depth [Harr, 1962; Bouwer, 1965]. 

Garg and Chawla [1970] presented solution of seepage from a 

trapezoidal channel to shallow water table with symmetric and 

horizontal or vertical drainages at finite distance. The channel 

was assumed to be laid in homogeneous and isotropic medium 

extending up to infinite depth. Earlier, Vedernikov [1939], had 

solved the problem of seepage from canal of negligible water 

depth to symmetrically disposed horizontal drainages. Sharma and 
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Chawla [1974] obtained analytical solution of seepage from a 

canal with negligible water depth to the symmetrical drainages 

on either side of the canal with pervious medium extending up to 

finite depth. The above solutions assume symmetric flow from the 

canal to the drainages. However, in practice canals seldom have 

symmetric drainages on either side. 

Exact solution of the problem of seepage from a canal in 

homogeneous and isotropic medium to asymmetric drainages located 

at finite distances from the canal is presented in this work. 

The problems studied in the present work include seepage from 

trapezoidal canal to drainages located on either side at 

different levels and distances. As special case of the above, 

solutions have been obtained for seepage from a channel of 

negligible water depth to asymmetric drainages and also for the 

case of a trapezoidal canal with drainage on one side only. 

The solutions are presented in the following order : 

(i) seepage from canal of negligible water depth to 

asymmetrically located drainages; 

(ii) seepage from trapezoidal canal to asymmetrically located 

drainages; and 

(iii) seepage from a trapezoidal canal to a drainage located on 

one side of the canal. 

In the first two cases seepage from the canal emerges into 

two asymmetric drainages on either side of the canal  and the 

drainages are assumed to be wide. In the third case the seeping 

water emerges into a wide drainage located on one side of the 

canal. 
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In view of the multitude of complexities to which seepage 

flow systems are subjected in nature, theoretical treatment must 

begin with simplification of the soil and boundary conditions. 

This is particularly more so in the case of the mathematical 

treatment of the problem of seepage analysis. In this study the 

porous media is assumed to be homogeneous, isotropic, and 

undeformable. The flow is assumed to be  and therefore 

Darcy's law is applicable. 

Conformal mapping still is a useful  in groundwater 

mechanics and serves to obtain solutions to simplified versions 

of complex problem, which may be used to gain insight into the 

problem prior to using a numerical method which uses the digital 

computing facilities capable of generally more detailed 

solutions [Strack, 1989]. 

In the present study, the analytical solutions are derived 

using the special mapping techniques of the Schwarz-Christoffel 

conformal mapping equation, the bilinear or Wibius 

transformation and the Zhukovsky function. These mapping 

techniques are briefly discussed in Appendix A. 

The thesis is divided into six chapters. Review of 

literature is given in Chapter 2.  Solutions to predict the 

seepage loss and the shape of the free surface at either side of 

the canal of negligible water depth are presented in Chapter 3. 

The derivation of the equations and the analyses in chapter 3 is 

considered as a logical step towards the solutions arrived at in 

the subsequent chapter. 

In chapter 4, the solutions for trapezoidal canal with 

drainages at different elevations and distances are given. It 
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may be noted that rectangular and triangular sections can be 

treated as special cases of the trapezoidal cross-section. 

Hence, in this chapter the geometry and water depth of the canal 

are considered in the derivation of the solutions. 

In chapter 5, derivation of the solution to the case of 

seepage from trapezoidal canal to a drainage located only on one 

side of the canal has been given. 

General conclusions reached from the present work have been 

presented in chapter 6. In this chapter, recommendations for 

further work have also been suggested but comparison with 

previous works have been made at different stages of the 

development of the solutions. 
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CHAPTER 2 

REVIEW OF LITERATURE 

Introduction 

Many investigators have contributed to the study of seepage 

from canals. The classic seepage analyses concentrated on the 

use of analytical methods based on  special mapping techniques 

such as Zhukovsky's function and the hodograph method 

[Polubarinova-Kochina, 1962 ; Harr, 1962 ; Aravin and Numerov, 

1955]. The electric analog method and the graphical approach as 

well as the numerical methods such as the finite differences and 

the finite elements had also  been  adopted in the study of 

seepage from canals [Bouwer, 1965 ; Jeppson, 1968 ; Bear, 1972 ; 

Verrujit, 1982 ; etc.]. Though much of the works has been done 

in the area of steady state conditions, a number of 

investigators were also drawn to  study the case of unsteady 

state condition as well  [Mishra  ,  1992 ; Bhargava, 1988]. 

According to Muskat [1946] and Bouwer [1969], an unsteady state 

can be treated as a succession of steady state conditions. The 

validity of this assumption has been reasoned out by Muskat in 

detail [Muskat 1946, pp.621-625]. The review of literature 

presented in this chapter focuses on the  research works which 

deal with steady state seepage problems. The experimental 

methods of measurement of seepage (eg. ponding method or inflow 

outflow method) have been excluded from review. But, the 

Zhukovsky function, the Schwarz-Christoffel conformal mapping 

and the bilinear or M6bius transformation which are widely used 
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at different stages of the development of the solutions to the 

problems tackled in the thesis, a brief discussion on the above 

techniques has been included but is given separately in Appendix 

A. 

2.1 General Review of Works in Seepage from 
Canals, Channels or Ditches. 

Among those who dealt with steady seepage from canal to 

ground water located at large depth are Kozeny, Muskat, 

Vedernikov, Risenkampf, Morel-Seytoux and Jeppson. 

As early as 1931, Kozeny 11931] found that the maximum width 

of the sheet of water seeping down into the porous media from a 

canal conforming to a special cross sectional shape is equal to 

(B+2H). Here, B is the width of the canal at the water surface 

and H is the maximum depth of water in the canal. The free 

surfaces are bounded by vertical asymptotes. The equation that 

has been derived by Kozeny which describes the cross section of 

the canal is, 

x = - I H
2 

- y
2 
 + [ (8 + 2H )/n 3 cos  (y/H) 

. . . (2.1) 

The seepage from such a canal is stated as, 

q = k (B + 2H)  (2.2) 

where, x and y are cartesian coordinates with origin at the 

centre of water surface; H is the maximum depth of water in the 

canal and k is the coefficient of permeability. 

One of the limitations in the use of the above results is 

that it is not applicable to a case were the water table is at 
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shallow depth. It, therefore, follows that that the porous 

medium must be of very large thickness so that the seeping water 

can maintain its vertical downward movement. The shape of the 

canal also should follow the equation given above (Eq.2.1). 

Although slight deviation in the shape of the ditch from 

those given by Eq.2.1 will in themselves cause no serious errors 

[Muscat, 1941] in the use of Eq.2.2, the assumption of the 

ground water table being at a great depth below the base of the 

ditch definitely limits its applicability to only few practical 

cases where the porous medium is also assumed to extend to 

infinite depth. In many practical situations, however, the water 

seeping down from the ditch will reach the normal ground water 

level at a relatively shallow depth, thus forcing the 

streamlines to assume a horizontal rather than a vertical trend. 

Kozeny also found the seepage from a canal for the case in 

which the equipotential lines could be considered as segments of 

circles at large distance from the ditch or canal with radially 

spreading free surfaces. The shape of the ditch is defined by 

the equation, 

x =  H
2 

- y
2 
 + [ (B - 2H )/n ] cos-1 (y/H) 

• . (2.3) 

The quantity of seepage is given by, 

q = k (B - 2H)  (2.4) 

Vedernikov [1936] studied seepage from canal of trapezoidal' 

section of which the triangular cross section is a particular 

9 



case. He applied the inverse transformation to the region of the 

complex velocity, i.e., in the hodograph plane, to obtain an 

exact solution for these shapes of canal when ground water is at 

infinite depth. Solutions for various other simplified flow 

geometries were also obtained by Risenkampf [1940]. Hammad 

[1960] solved the same problem by an approximate method for a 

series of channels in which the shape of the channels have not 

been conserved. Seepage from a series of triangular channels was 

found by El Nimr (1963). He used the inverse hodograph method 

for solution of the problem. Bruch and Street [1967] made an 

improvement in the above solution. Morel-Seytoux [1964] 

considered canals of different shapes including cross sections 

deviating from the standard rectangular, trapezoidal and 

triangular ones. Morel-Seytoux applied the analytical methods of 

hodograph 
 

techniques 
 

and  the  Schwarz-Christoffel 

transformations, and the Green-Neumann function to obtain 

solutions of the seepage problem. 

All the above solutions are obtained by assuming the water 

table to be at infinite depth. The above,studies indicate that 

when the ground water table is at large depth the shape of the 

canal has small influence on the seepage discharge. Muskat 

[1946] considered three different shapes of canals. He compared 

the values of seepage discharge for the three shapes of canal 

and stated that the extreme variation in seepage, due to the 

effect of shape of canal or ditch is about 10 percent. 

The finite difference method was employed by Jeppson [1968] 

to solve the problem of seepage from canal to underlying 

pervious stratum. All of these derivations have limited 
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utilities because the condition of the water table at infinite 

depth, or because existence of an underlying pervious layer is 

seldom met in practice. 

In the work of Dachler [1933], shallow water table condition 

has been considered. He derived a procedure in which both model 

experiment and an approximate analysis were combined for 

computing the seepage from a trapezoidal channel set in a porous 

medium of finite depth, to a fully penetrating vertical drain at 

some distance away from the channel. Dachler determined only one 

point on the phreatic line and this point is arbitrarily 

connected to the canal and the drain. He postulated that this 

point be joined to the canal water level by an arbitrary curve 

and to the drainage water level by a straight line. This point 

shifts as the depth of impermeable layer is increased, and in 

some cases it may even fall beyond the drainage, which is 

unrealistic [Garg and Chawla, 1970]. Thus, the Dachler approach 

does not define the seepage line completely. Garg and Chawla 

[1970] have compared the Dachler method with their exact 

analytical solution for vertical drainage and have found that 

the Dachler approach gives much lower phreatic surfaces. 

The problem of seepage from an earth dam with horizontal 

drain on a pervious stratum of  infinite depth had also been 

solved [Polubarinova-Kochina, 1962, pp.247-260]. The drain is 

located in the body of the dam at some distance away from the 

upstream face of the dam. This problem may be considered to be 

equivalent to that of seepage from a channel of infinite bed 

width into horizontal drainage which is at the same level as the 

bottom of the canal. Vedernikov had also solved the problem of 
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seepage from a canal having the form of a horizontal segment to 

horizontal drains. Todd and Bear [1961] made use of the 

electrical analog method to analyze seepage from leveed rivers 

into the low lying adjoining lands. 

Bouwer [1965] made a detailed study to determine how seepage 

from canals or streams is affected by the cross sectional shape 

and the depth of water in the channel, by the position of the 

ground water table, and by the sub-soil conditions. 

Bouwer [1969] reduced the multitude of soil conditions that 

may be encountered in practice to three basic conditions : 

(i) the channel is in uniform soil which is under lain by much 

more permeable material, designated as condition A; 

(ii) the channel is in uniform soil which is under lain by much 

less permeable material, designated as condition B, and 

(iii) the channel is surrounded by a thin, slowly permeable 

(clogged) layer along its wetted perimeter, designated as 

condition C. 

The condition of seepage to a free draining, permeable layer 

is a special case of condition A and it is termed as condition 

A'. Drainages are considered to be symmetrically located at 

either side of the canal and the drainage distance from the 

canal centre line is fixed to be 10Wb, where ilk,  is the bottom 

width of the canal. The electrical resistance network analog is 

used for solution of steady state seepage systems for condition 

A, A' and B. For condition C, an equation is presented which 

gives the seepage as a function of the geometry of the channel, 

the hydraulic impedance of the slowly permeable (clogged) layer, 

and the pressure condition in the unsaturated underlying 
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material as determined by the unsaturated hydraulic conductivity 

characteristics of that material. He has considered canals with 

triangular, trapezoidal and rectangular sections. 

The results for condition A, A'  and B were expressed in 

dimensionless graphs showing seepage in relation to the position 

of the ground water table at different depths to the permeable 

or impermeable layer, and different water depths in the canals. 

The canal was taken as trapezoidal with 1H:1V side slope. Bouwer 

obtained results which agreed with the theoretical values of 

Vedernikov for underlying pervious stratum, and with the semi-

empirical method of Dachler for underlying impervious strata. 

The conclusion reached by Bouwer are as follows. 

(1) The graphs showed that the effect of a permeable or 

impermeable layer on seepage becomes rather small when this 

layer lies below the channel bed at depth 5 times the bottom 

width, Wb, of the channel. This suggests that soil  explorations 

for new canal do not need to go deeper than 5Wb below the 

proposed bottom elevation. 

(2) Seepage rates increase with increasing depth to the 

ground water table, but at a decreasing rate. If the water table 

at a distance of 10Wb from the channel centre is at a depth more 

than 2.5 times the width of the channel at the water surface, 

the corresponding seepage is close to that which would occur if 

the water table is at infinite depth. 

Bouwer also summarized the following results of analyses 

regarding the effect of channel shape on seepage 

For a given surface width WT of the water surface and water 

depth Hu,  in the center of the channel, seepage increases from a 
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triangular to a trapezoidal and from trapezoidal to a 

rectangular cross section. The pagnitude of the increases 

depends on the soil and water table conditions. For most 

conditions, this increase is only moderate and less than the 

corresponding increase in hydraulic discharge capacity of the 

channel. Therefore, for a certain width and depth of the water, 

rectangular channels have lower relative water losses due to 

seepage than trapezoidal or triangular channels. An exception to 

this rule may be condition A' if the permeable drainage layer is 

at very small distance below the channel bottom. 

According to Bouwer, the seepage from open channels 

increases with increasing water depth in the channel. For 

uniform flow, the discharge in the channel also increases with 

increasing water depth in the channel. For all  three soil 

conditions, however, the rate of increase in seepage was less 

than the rate of increase in discharge. Therefore, canals with 

uniform flow and uniform soil conditions along the wetted 

perimeter become more efficient conveyor of water with 

increasing water depth in the canal. 

Bouwer has furnished a detailed study on seepage from canals 

but he has furnished seepage discharge for defined channel 

geometries and for fixed distance from the center line of canal 

to the drainage, namely 10 Wb. He has used a side slope of 1:1 

and the bed width - water depth ratio ( 0b/H.' ) of 1.33, 2.0 and 

4.0. The Wb/Hv ratio of 1.33 and 2 are encountered very 

infrequently in channels of any consequential size, while the 

drainage distances generally greatly exceed 100b (Garg and 

Chawla, 1970). 
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Garg and Chawla [1970] obtained exact solutions of problem 

of seepage from canals in homogeneous media to drains located 

symmetrically at finite distance from the canal considering 

vertical and horizontal drainages. This solution and results are 

separately discussed in some detail under section 2.2. Sharma 

and Chawla [1974] obtained analytical solution of seepage from a 

canal with negligible water depth to the symmetrical drainages 

on either side of the canal with pervious medium extending up to 

finite depth. 

Mishra and Seth [1988] , using Zhukovsky's function and 

Schwarz-Christoffel conformal mapping technique, analyzed 

unconfined seepage from a river of large width for a steady 

state condition. Seepage quantities occurring through the bed 

and bank of the river have been estimated separately. The reach 

transmissivity constant for a river with large width has been 

determined. The reach transmissivity has been defined as the 

constant of proportionality between the return flow to river and 

the difference of potentials at the periphery of the river and 

in the aquifer in the vicinity of the river [Morel-Seytoux and 

Daly, 1975]. Morel-Seytoux and Daly [1975] introduced the use of 

reach transmissivity for solving unsteady state stream-aquifer 

interaction problem. Mishra and Seth [1988] found that if the 

distance between the river bank and the observation well is more 

than half of the saturated thickness of the aquifer below the 

river bed the reach transmissivity constant is independent of 

draw down at the observation well. The reach transmissivity, 

constant depends on the depth of water in the river bed and the 

distance of the observation well from the river bank. The 
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seepage loss from the river at any time is product of the reach 

transmissivity constant and the difference in water level in the 

river and at the observation well at the time of observation. 

As mentioned earlier, it had been reasoned that an unsteady 

state condition can be treated as a succession of steady state 

conditions [Muscat, 1946 and Bouwer, 1969]. Based on the above 

principle, the reach transmissivity constant, even though it had 

been derived on the assumption of steady flow condition, had 

been used for analysis of unsteady state problems [Morel-Seytoux 

1975a, 1975b, 1975c, 1975d, 1975e]. Bhargava [1988] had reviewed 

the works of various investigators who derived the reach 

transmissivity constant for different canal and aquifer 

geometry. In his work, Bhargava had solved the unsteady seepage 

from two parallel canals when the water table is shallow or 

deep. 

In the literature, analytical solution had been reported for 

the problem of seepage from unlined trapezoidal canal  taking 

into account the general anisotropic behaviour of the porous 

medium [Reddy and Basu, 1976]. However, since a canal  in an 

anisotropic medium transforms into one with unequal slopes in an 

equivalent isotropic porous medium, the solution has been given 

for the problem of seepage flow from an unsymmetrical 

trapezoidal canal. In practice, the main difficulty will be to 

find out the actual anisotropic behaviour of the porous medium 

that occurs in the field. 

The literature on steady seepage from canal and its impact 

on ground water regime has been  extensively documented by 

Muskat [1946], Harr [1962], Polubarinova-Kochina [1962], Aravin 
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and Numerov [1965], Bouwer [1969], Bear [1972], Wel( and Svec 

[1979], Kovacs [1981], Verrujit [1982], and Huisman and 

Olsthoorn [1983]. 

2.2 Seepage from Trapezoidal Channel. with Symmetrically 
Located Drainages, [Garg and Chawla, 1970]. 

Vedernikov [1939, vide Polubarinova-kochina, 1962, pp.130 

132 ] had solved the problem of seepage from a canal having 

negligible water depth to symmetrically disposed drains. Exact 

solutions of the problem of seepage from trapezoidal canals in 

homogeneous media to drainages symmetrically located at finite 

distances from the canal considering vertical and horizontal 

drainages were presented by Garg and Chawla [1970]. The method 

of Zhukovsky transformation and Schwarz-Christoffel conformal 

mapping technique were employed. The resulting integrals were 

evaluated numerically. 

The analysis assumed the shape of the channel to be 

trapezoidal in the e-plane. Then the equation of the side slopes 

in the z-plane was derived. Here the advantage of symmetry was 

exploited and the analysis was carried out by considering only 

half of the flow regime. If the drainages were not symmetrically 

located then the above procedure would have resulted in 

different side slopes at the left and right of the canal in the 

z-plane. In the analysis, the influence of the relative 

distances and levels of the drainages on the seepage flow as 

well as on the free surface were not considered. 

Two basic operations were made in the solution of the• 

problem. In the first operation, the Zhukovsky plane was 
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transformed onto ap intermediate semi-infinite plane.  In the 

second operation, the rectangular flow field in the complex 

potential plane was mapped onto another auxiliary semi-infinite 

plane. These transformations were made by the use of the 

Schwarz-Christoffel transformation. The relationship between the 

two auxiliary planes was obtained using the bilinear 

transformation. 

The seepage discharge from the canal  is given by the 

following equation. 

q/(kh) = 2K'/K  (2.4) 

in which, q is the volume rate of seepage per unit length of 

channel, h is the drop between channel and drain water levels, k 

is the coefficient of permeability, K and K'  are complete 

elliptic integrals of first kind with modulus m and m'. The 

values of m and m' are given by the following equations. 

m = 1/r/(P4T)  (2.5) 

m = 41  m*m 
	

(2.6) 

in which  and y are transformation parameters which are closely 

related with the bed width of the canal and the drainage 

distance from water line of the channel respectively. 

As direct evaluation of 0 and r for any given channel 

dimensions and drainage distance was not possible [ Garg and 

Chawla, 1970 3, channel dimensions and drainage distances had 

 

been evaluated for various values of 0 and y and were plotted.  . 

Then, from the figure plotted, knowing the dimensions of the 
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system in the physical plane, the two parameters ft and y were 

determined. After knowing these, from Eqs.2.5,2.6 and then from 

Eq.2,4, the seepage discharge could be obtained. Determination 

of ft and r was a trial and error process [Garg and Chawla, 

1970]. The results were plotted in the form of curves from which 

the seepage discharge and the phreatic surface profile for 

various channel geometries could be obtained. 

In Chapter 4 , comparison of the results as obtained by Garg 

and Chawla [1970] and the new method suggested in this thesis 

is presented. 

2.3 Seepage from canal to a collector 
I Polubarinova-Kochina, 1962 1 

In the literature review above, it is found that solutions 

are obtained only for cases where symmetric seepage flow from 

the canal to the drainages, whether shallow or deep, takes 

place. In practice canals seldom have symmetric drainages on 

either side. However, a solution of seepage from a canal with 

drainage  only  on  one  side  had  been  reported 

(Polubarinova-Kochina, 1962, pp.132-133]. In this work, the 

shape of the canal as well as the depth of water in the canal 

were not considered. 

The seepage from canal of negligible water depth to a 

collector on one side, the following equations were obtained. 

B/h = m2/m'2  (L/h)  K(m)/K(W)  (2.7) 

q/(kh) = K(m)/K(m)'  (2.8) 
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in which, B is the bed width of the canal, L is the drainage 

distance from water line of the canal, K(m) and K(m') are 

complete elliptic integrals of the first kind with modulus m and 

m' respectively, and m'  (1-m*m) . 

In Polubarinova-Kochina's reporting [1969, pp.132-133), the 

full derivation was not developed and hence the equations giving 

the shape of the free surfaces were not given. In Appendix C , 

the full derivation is given. In Chapter 5 of the present work, 

the solution is extended to cover the case of ,seepage from 

trapezoidal canal to drainage on one side. 
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CHAPTER 3 

SEEPAGE FROM CANAL OF NEGLIGIBLE WATER DEPTH 

TO 

ASYMMETRIC DRAINAGES 

Introduction 

As reviewed in Chapter 2, so far the solutions of seepage 

from canals assume symmetric flow from the canal to the 

drainages whether shallow or deep. However, in practice canals 

seldom have symmetric drainages on either side. In this chapter, 

solution is presented for the case of a canal of negligible 

water depth with drainages asymmetrically located on either side 

of the canal. 

3.1 Formulation of problem 

The water seeping from a canal located on a watershed flows 

through porous medium and emerges in drainages located on either 

side. The steady flow through the  porous media satisfies two 

dimensional Laplace's equation (Eq.A.1). 

The equation is based on few assumptions.  First,  the soil 

below the canal is assumed  to  be  homogeneous and  isotropic. 

Secondly, capillary and surface tension effects are neglected. 

Thirdly, the flow is assumed to be laminar and therefore follows 

Darcy's law. In addition, for obtaining solution of this 

problem, it is assumed that water depth in the canal is small 

and negligible. Seepage from the canal having a bed width, 62, 

emerges into two asymmetric drainages on either side of the 

A TECHNICAL NOTE BASED ON THIS CHAPTER HAS BEEN RECOMMENDED BY 
ASCE FOR PUBLICATION IN Journal of Irrigation and Drainage. 
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canal and these drainages are assumed to be wide. 

Shape of the free surface of seepage from the canal  is 

curvilinear and is not known a priori. But the curvilinear 

phreatic line is transformed into a straight line in the 

Zhukovsky plane. The ZhUkovsky function e has been defined 

[ Section A.3 J as : 

e = el + ie2 

 

= z - iw/k  (3.1) 

in which, z = x + ly and w = 0 + L  ; x and y are the spatial 

coordinates in the z-plane ; 0 is the velocity potential and w 

is the stream function ; k is coefficient of permeability. Then, 

el = x + w/k  (3.2) 

and, 

62 = y  0/k  (3.3) 

e2 is a harmonic function of y and 0, and its conjugate function 

el is a harmonic function of x and p. 

It is known [Aravin and Numerov, 1965) from the relation 

between velocity potential 0 and the pressure p that : 

p/rw  = y - 0/k 	 (3.4) 

in which, 

y = the ordinate assumed positive downwards. 

yv  = the specific weight of water; 

Along the free surface, the pressure is atmospheric, and 

from Eqs.3.4 and 3.3, e2 . 0. Therefore, the free surface is 

represented by a straight line in the e-plane. Fig.3.1(a) 

depicts conditions in the physical z:plane. Fig.3.1(b) shows the 
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boundaries as they look in the 49-plane as a result of 

Zhukovsky's transformation [Eq.3.1]. In the z-plane, AB is an 

equipotential line and corresponds to 0 = constant. This 

constant is assumed to be zero, and so 0 = 0 along this line. 

Along the stream line and free surface BC, the value of w is 

taken to be zero. Then, w = q along the stream line and free 

surface AE, where q is the seepage discharge per unit length of 

the canal. Along the drainage CD, which is an equipotential 

line, 0 is equal to khi, in which hi is the difference  between 

water levels of the canal and the right-hand drainage. Along 

EE'F, the left-hand drainage which is an equipotential line , 0 

= kh2, in which h2 is the difference between the water levels of 

the canal and the left-hand drainage. Along the left-hand 

drainage, which is assumed to be at higher level than the 

right-hand drainage, seepage from the canal emerges between E 

and E'. Due to difference in the elevations of the left and the 

right drainages, there will be seepage from the left-hand 

drainage to the right-hand drainage. This seepage will take 

place from E'F to portion of the right drainage beyond some 

distance from Point C. The location of the point E' will  depend 

on the relative values of hi, h2, Li and La, in which Li and  La 

are the distances of the drainages on the right and the left 

side of the canal respectively. 

The w-plane  Fig.3.1(c) ] and the e-plane are mapped onto 

the lower half of an intermediate t-plane where t = r + is,  and 

the following relations were obtained : 

z = f(6) = ft(t) 	 (3.5) 



w = F(t)  (3.6) 

Combining Eqs.3.5 and 3.6 resulted in the following 

relationships. 

z = fi(t) = fi[F-1 (w)]  (3.7) 

w = F(fil(z))  (3.8) 

3.2 Solution of the Problem 
3.2.1 First operation. 

In this operation the physical plane is transformed onto the 

e-plane. The transformation of the physical plane  Fig.3.1(a) ] 

onto the e-plane (Fig.3.1(b)] was obtained through Eq.3.1. The 

location of the various points in z-plane and e-plane are given 

in Table 3.1. 

Table 3.1 LOCATION OF POINTS ON THE FOUR PLANES 

POINT 

z - plane w - plane e - plane t-plana 

x y 0 w e 13 91 t w r 

A 

B 

C 

D 

E 

E' 

F 

-Bz 

0 

Li 

m 

-Bm-L2 

-Bz -L2-La 

--Im 

0 

0 

hi 

hi 

ha 

ha 

ha 

0 

0 

khi 

khi 

kha 

kha 

kha 

q 

0 

0 

q 

q' 

-Bm+q/k 

0 

Li 

m 

-Bm-La+q/k 

-Bm-La-La+W/k 

-03 

-a 

0 

1 

m 

-r 

-p 

-m 

In Table 3.1, La is the length of EE' as shown in Fig.3.1(a) 

and q' is the canal seepage component directly emerging on the 

right-hand drainage. 
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. 3.2.2 Second operation. 

In this operation the w-plane (Fig.3.1(c)] is transformed 

onto the lower half of the t-plane [Fig.3.(1d)]. This is done by 

using the Schwarz-Christoffel transformation. Two arbitrary 

values t = 0 and t = 1 are assigned respectively to points B and 

C, and a third point, D is mapped on the t-plane at t = 410 

Point F would be mapped at t = -00 . Mapping'of A, E and E'  is 

made on the points t = -a, t = -r and t = -p, respectively, as 

indicated in Fig.3.1(d). The values of a, r and p are to be 

determined. The location of the points in the two planes,  i.e., 

the w-plane and t-plane, are summarized in Table 3.1. 

The Schwarz-Christoffel transformation [Eq.A.6] that maps 

the w-plane onto the lower half of the t-plane is as given 

below. 

(t+p)dt 
jdw = M' j 

 

 ( 3.9) 
1(1-0t(t+a)(t+r) 

where M' is a complex constant. 

At Point 8, w = 0 and t = 0. Hence, for the region BC, 

-a < 0 < t 4 1 ), Eq.3.9 takes the 

following form. 

(t+p)dt 
jdw = M' J 

0  1(1-t)(t-0)(t+a)(t+r) 0 

(3.10) 

where, w = ky is the complex potential function value at any 

point on the free surface BC having the ordinate value of y. 

Thf?refore, the integration of the right-hand side ( Byrd and 
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Friedman, 1971, section 256.11 and 256.00 ] and the left-hand 

side of Eq.3.10 yielded the following. 

ky =  a-M(11,0'0.2,m) + (P-a)F((;1,10) ] 
 

(3.11) 

in which, M is a complex constant and 

F(01 00  = Elliptic integral of the first kind, 

= Elliptic integral of the third kind, 

al
2 

= 1/(1+a)  (3.12) 

m2  = (r-a)/(r(l+a))  (3.13) 

Oi = sin ii(1+a)t/(t+a)  (3.14) 

At point C, t = 1, w = khi and hence the following 

was obtained from Eq.3.11 and Eq.3.14. 

khi = N  (p-0)1(  (3.15) 

in which, 

=1T(n/2,01i2,m)  (3.16) 

K = F(n/2,0  (3.17) 

Integrating Eq.3.9 in the region AB , i.e in the region 

[ 1 > 0  t > -a > -' ], [ applying Byrd and Friedman, 1971, 

Section 254.10 and 254.00 for the right-hand side integration ] 

and knowing that at Point A, w = iq, and t = -a and at Point B, 

w = 0 and t = 0 the following relationships were found. 

0  0 

dw = 

iq  -a 

 

(t+p)dt 
(3.18) 

  

1(1-0(0-0(t+a)(t+r) 
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M t(r-a)  + (p-r)K' ) 
 

(3.19) 

in which, 

.r.r ,  TT . 	., 
) H = u(n/2,02

2 
 ,m  (3.20) 2 	 . 

K' = F(n/2,ms )  (3.21) 

m' 2 = 1 —  M2  (3.22) 

02
2 
 = Ceir 	 (3.23) 

At any point along the free surface AE, 0 = ky and w = q, 

where y is the ordinate of the point considered. Hence, at Point 

A, w = iq and from Table 3.1, t = -a, and considering the 

region EA, i.e in the region ( 1 > 0 > -a  t > -y 3, 

Eq.3.9 takes the following form. 

iq  -cy 
(t+p)dt 

fdw - 
1(1-0(0-0(-a-t)(t+r) 

(3.24) 

where, w = ( ky + iq). 

Integrating the right-hand side ( Byrd and Friedman, 1971, 

Section 253.11 and 253.00 ] as well as the left-hand side of 

Eq.3.24, the following result was obtained. 

ky = M (pF(02,m) - all(02,a22,m)  (3.25) 

where, 

(32  = sin  Ii(t  0))/Et(r - a)]  (3.26) 

2 = (r-0)/r  (3.27) 
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At point E, w. = kh2 + iq and hence from Eq.3.24 and 3.26 

the following result was found. 

kh2 = M [ pK - a -nr, 	(3.28) 

in which, 

-n- 	="nR./2,as2  011)  (3.29) 

At Point E, w = ( kh2 + iq ) and t = -y and at Point E', 

w = ( kh2 + ice) and t = - p [ refer Table 3:1 ]. Hence, 

considering the region E'E , i.e  1 > 0 > -a > -y > t 1, Eq.3.9 

was put in the following form after integrating the left-hand 

side of the equation. 

W1
-Y + p) dt  

i(1-0(0-0(-a-t)(-Y-t) 

• 
. (3.30) 

Integrating the right-hand side of Eq.3.30 [ Byrd and 

Friedman, 1971, Section 251.03 and 251.00 ] and then rearranging 

yielded the following equation. 

q' = q  m [ (y-a) Ti((34,0t42,m') - (P-0)F((34,11 1 ) ] 

. .(3.31) 

in which, 

04  = sin  [(1+a)(P-r)1/[(1+r)(P-a)1 

. . .(3.32) 

*
42 

= (14T)/(1+a) 
 

(3.33) 
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3.2.3 Third operation. 

In this last operation, the e-plane was transformed onto the 

intermediate semi-infinite t-plane. The above mapping was made 

by using the bilinear or Mabius transformation [ refer Appendix 

A ]. 

The boundaries of the lower half regions of the e-plane and 

t-plane were considered as limiting cases of circles and hence 

to map the region in e-plane to t-plane the bilinear 

transformation was adopted [section A.2]. As any three arbitrary 

points on the boundary can define a circle, points B, C and D 

were chosen for this purpose. To apply the bilinear 

transformation what is commonly called the cross-ratio formula 

as given in section A.2 was used. The resulting equation is as 

follows. 

(e - Bs) (BD - Bc) 	(t - ta)(tp - tc) 

(e - ec)(es - es)  (t - tc)(ts - ts) 

. . . (3.34) 

After the appropriate values for points B, C and D [ refer 

Table 3.1 ] are substituted in Eq.3.34, and rearranging the 

resulting equation, the following relationship was obtained. 

t = B/Ls 
 

(3.35) 

At point A, t = -a and B = -(B2 - q/k)  [refer Table 3.1]. 

Substituting these values in Eq.3.35, 

a = (Bm - q/k)/Lt  (3.36) 
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Similarly, the corresponding values in t-plane and e-plane for 

point E were substituted in Eq.3.35 and the following result was 

obtained. 

Y = (82 + L2 -q/k)/Li 

= (82 - q/k)/Li + L2/LL  (3.37) 

But, From Eq.3.36, (B2 - q/k)/LA = a and hence substituting this 

in Eq.3.37, 

Y = a 	L2/Li 
 

(3.38) 

Also, the appropriate values for Point E' from Table 3.1 were 

substituted in Eq.3.35 and yielded the following relationship. 

p = (Bz + L2  L2 - q'/k)/Li  (3.39) 

Moreover, rearranging Eq.3.39 yielded, 

L2 = pLi - L2 - B2 + q' /k  (3.40) 

3.3 Dimensionless form of Equations 

3.3.1 General Case 

Dividing Eq.3.19 and 3.28 by Eq.3.15, the following set of 

dimensionless quantities were obtained. 

q/khl = 
(r-a)1121 	(p - r)K' 

(3.41) 
aTri 	(10  - a)K 

ey - pK 	-rc 
h2pit =  

 

 (3.42) 
an: + (P a)K 
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Dividing Eq.3.31 by khi as given by Eq.3.15, the following 

non-dimensional equation was found. 

q, 	q 	(Y-a)1104,042 0e) - (p-a)F(( 4,1e) ] 
- 

khi  khi 

 

a Tri  + ( P .  - a)  K 
. . (3.43) 

Rearranging Eq.3.42, resulted in the following equation 

as well. 

a t (ha/hi) (l:- K) +Tra  I 
p -  

 

 (3.44) 
[ K (1 - h2/hi) ] 

Dividing the numerator and denominator of the right-hand 

side of Eq.3.36 by hi, the following relationship for the 

parameter a was obtained. 

a = (112/h1 	q/k111)/(Li/h1) 	 (3.45) 

3.3.1 Special Cases 

3.3.1.1 Case of symmetrically located drainages 

For the case of drainages symmetrically located on either 

side of the canal, L2 = Li = L ; ha = hi = h and q = qs  , where 

q
s 

is seepage from the canal when the drainages are 

symmetrically located. So, from Eq.3.38, we have y = (1+a). 

Hence, substituting this in Eqs.3.12, 3.13, and 3.27, the 

following equations were obtained. 

(11 2  = 1/(1+a) = m  (3.46) 

aa
2 
 = 1/(1+a) = m 
 

(3.47) 
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For the case of'the parameters as related by Eqs.3.46 and 

3.47 the following relationship was made [Byrd and Friedman, 

1971, p.227, section 412.01], 

[ n  2(1 -m)K ]/[ 4(1-m) ]  (3.48) 

Substituting Eq.3.48 in Eq.3.44, the right-hand side of the 

resulting equation will be free from the elliptic integral of 

the third kind. For symmetrical case, h2/ha = 1 and substituting 

this in the above result and after some manipulation, it is 

found that p —4 W. It is to be noted that for a > 0,  Fig.3.1 

and Eq.3.36 ], m is different from one [ Eq.3.46 and 3.47 ] and 

thus refering Byrd and Friedman, 1971, p.11, section 115.05, K 

,,/ 
is different from infinity. Similarly, 1112  and K'  are different 

from co and thus knowing that for symmetrical case (r - a) = 1, 

Eq.3.41 after simplification resulted in the following 

relationship. 

qs 
- K'/K 
 

(3_.49) 

Similarly, simplifying the second term on the right-hand 

side of Eq.3.43 for the case of p —4  co and substituting the 

result obtained for q as given by Eq.3.49, the following result 

was also obtained. 

q'/kh = K'  /K - F(04 01'  )/K  (3.50) 

Also, Eq.3.32 reduced to, 

04 = sin  (14-a)/(2+a) 
 

(3.51) 

Hence, from Eq.3.51 and applying basic trigonometry, 

cot(P4) = 1/1riT:o. 
 

(3.52) 
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Again applying basic trigonometry and using Eq.3.46, 

tan
2
(14 = 1  a = 1/11 
	

(3.53) 

Comparing Eqs.3.46, 3.52 and 3.53, the following 

relationship was made. 

cot(04) = m tan(04)  (3.54) 

As the condition as given by Eq.3.54 exists, F(04,m')  is 

equal to 0.5K' [Byrd and Friedman, 1971, p.13, section 117.01]. 

Substituting this result in Eq.3.50, 

q'/kh = 0.5K' /K  (3.55) 

Hence, substituting Eq.3.49 in Eq.3.55, the following 

relationship for the case of symmetrical drainages was obtained 

and which obviously is as must be expected. 

q'/kh = 0.5q5/kh  (3.56) 

3.3.a.2 Total seepage from the canal going to one drainage only. 

Seepage discharge from the canal emerging in the drainage on 

the left-hand side decreases as its level rises and 

correspondingly La will reduce. With further rise in the level 

of the left-hand drainage, entire seepage from canal may appear 

on the right-hand drainage (Ls = 0). In addition, seepage will 

also take place from left-hand drainage to the right-hand 

drainage. 

Then, for this case in which all the seeping water from the 

canal goes to one drainage only, say,  to the right drainage 

only, q' = q and La = 0. Substituting these in Eq.3.39, 
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p = (Bm + L2 - q/k)/Li 

= (Ba - q/k)/Li + L2/1.1  (3.57) 

Substituting Eqs.3.36 and 3.37 in Eq.3.57, the following 

relationship for the case where the total seepage from the canal 

goes to only one drainage, i.e. the right-hand side drainage was 

obtained. 

p = a + L2/1.1 

Y 
	

(3.58) 

Substituting Eq.3.58 in Eq.3.32, 04 = 0, produced (Byrd and 

Friedman, 1971, p.10, section 111.00] the following result. 

11-1(04,a42,m1 ) = F(040e) = 0  (3.59) 

Substituting the above relationships, i.e. Eq.3.58 and 

Eq.3.59 in Eq.3.41, q = $:1, where  is the total  seepage from 

the canal in the case where only the right drainage gets the 

seepage water from the canal. 

q
c
/khl 

(L2A..1)72' 
(3.60) 

+ (L2/Li)K 

Also, Eq.3.42 became, 

  

 

h2 y K- UTTa  

  

 

hi  + (y - a)K 

  

   

( Lz/Li)K + a (K - IL) 
(3.61) 

   

aTTI  + (L2/1.1)K 
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The ratio h2/hi as given by Eq.3.61 equals to he/hi, where, 

he is the critical level of the left drainage at which it is not 

receiving any water from the canal. 

But, from Eq.3.12, 3.13 and Eq.3.27, *12  = 10
2
/*2

2 
and hence 

the following relationship could be obtained [Byrd and Friedman, 

1971, p.13, section 117.02(a)]. 

Tra  +1T, = K + (0.5n/0)1 (1+a)(L2/lt + a) 

. . (3.62) 

Substituting Eq.3.62 in Eq.3.61, the following equation 

giving the critical ratio of the elevations of the left and 

right drainages, i,e (h.=/hi), at which the total seepage from 

the canal flows only to the drainage which is at lower elevation 

was obtained. 

[0.5n) 1(1+a)(L2/Li + a) 
he/hi = 1 -   (3.63) 

a 	+ (1.2/LOK 

3.3.3 The shape of the free surfaces. 

3.3.3.1 Free surface BC. 

Eq.3.11 was divided by Eq.3.15 to obtain the ordinate of any 

point on the free surface BC in a non-dimensional form as given 

below. 

[aln(01,a12,m)  (p - a ) F(01,m) ] 
y/hi -   (3.64) 

aTrt  (P - 0.)K 
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On the free surface BC, 0 = ky and w = 0, and hence from 

Eq.3.3, 3.2 and 3.1, the relation e = et = x was obtained. 

Substituting this result in Eq.3.35, the following equation was 

found. 

t = x/Lt  (3.65) 

From Eq.3.65, for a given value of x, which is the 

horizontal projection of any point on the free surface BC , and 

Lt, the corresponding value of t is obtained. This value of t is 

then substituted in Eq.3.14, to get the value of 01 which in 

turn is needed to compute y/ht from Eq.3.64. 

3.3.3.L Free surface AE. 

On the free surface AE, 0 = ky and w = q, and hence from 

Eq.3.3, 3.2 and 3.1 we have e = et = x  q/k. Substituting this 

in Eq.3.35, the following equation results. 

t = (x + q/k)/Lt  (3.66) 

If XL is the horizontal distance of a point on the free 

surface AE measured from point A, see Fig.3.1(a), from Eq.3.66 

the following relationship could be obtained. 

t = (-82 -XL 4 q/k)/Lt 

= - ( XL/Lt + (B2 - q/k)/Lt 3  (3.67) 

But, from Eq.3.36, (B2 - q/k)/Lt = a . Substituting this in 

Eq.3.67, the result below was obtained. 

t = - ( Xi./La + a )  (3.68) 
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Also, dividing Eq.3.25 by Eq.3.28, the ordinate of the point 

on the free surface AE in a non-dimensional form as given below 

was found. 

Y/h2 - 
pF(R2,m) - 01102,0112,m) 

(3.69) 
pK - a TT, 

Knowing XL/Lt and a, the value of t is computed from Eq.3.68 

which in turn is substituted in Eq.3.26 to yield the value of 

02. This value of 02 is used in Eq.3.69, to find the 

non-dimensional ordinate (y/h2) of the point on AE at distance 

of XL from Point A. 

3.4 Results and Discussions. 

From the above equations, it is seen that total seepage from 

the canal and the seepage discharge components emerging to 

either of the drainages cannot be explicitly expressed in terms 

of physical dimensions such as canal bed width, drainage 

distances and levels of the drainages. Similarly, coordinates of 

the free surface are also not obtained in explicit form. The 

physical dimensions and seepage discharge and free surface 

coordinates are related to intermediate parameters a, y and p. 

Therefore, values of these parameters are determined for given 

values of physical parameters such as Bm/ht, Li/hi, La/hi and 

h2/hi. Since the expressions relating physical and intermediate 

parameters also involve values of seepage discharge which in 

turn depend on the values of the intermediate parameters (a, ?' 
and p), computation of the seepage discharge and coordinates of 
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the free surface is an iterative process I refer flow chart in 

Fig.B.1 1. In the computational steps it was required to 

evaluate values of elliptic integrals. Subroutines to compute 

the values of the elliptic integrals of the first, second and 

third kind were thus developed. In the development of these 

subroutines, the results were verified with the corresponding 

values given in the tables of the Hand book of Elliptic 

Integrals for Engineers and Scientists [Byrd and Friedman, 1971] 

and A Table of the Incomplete Elliptic Integrals of the Third 

Kind [ Selfridge & Maxfield, 1958 ]. 

The results of calculations for seepage discharge for values 

of Bz/hi = 10, 20 and 30 ; Li/h1 = 10, 102, 102, 104  and  105; 

L2/hi = 10, 102, 102, 104, and 105  ; and h2/hi = 1, 0.9, 0.8 and 

0.7 are tabulated in Tables 3.2 to 3.5. and are plotted in 

Figs.3.2 to 3.5. Canal seepage discharge components towards the 

left and right-hand side drainages for the above given various 

physical dimensions of the flow system are presented in Tables 

3.6 to 3.9. 

Dimensionless coordinates of the free surface curves on 

either side of the canal were computed using Eqs.3.64, 3.65, 

3.68 and 3.69. The profiles of the free surfaces for various 

combinations of the physical parameters of the flow system are 

plotted in Figs.3.6(a), 3.6(b), 3.7, 3.8(a) and 3.8(b) in order 

to highlight the separate influence of each parameter on the 

free surface. 

The values of a critical depth ratio, he/hi, for Bz/ht = 10, 

20 and 30 and various values of Li/ht and 12/hi are plotted in 

Figs.3.9, 3.10 and 3.11 respectively. 
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Table 3.2 Total Seepage Discharge From Canal To Asymmetric 
Drainages. [Water depth negligible, h2/ht w 1.01 

Lt/ht 4 10  1 10
2 

108 
	

i 10
4 	

I 10
5 

L2/ht qlkht 

B2/htw 10  

10 1.23186 1.01537 0.98090 0.97721 0.97684 

102 1.01537 0.69823 0.61780 0.60734 0.60626 

10  
0.98090 0.61780 0.46631 0.42856 0.42363 

104  0.97721 0.60734 0.42856 0.34817 0.32661 

105 0.97684 0.60626 0.42363 0.32661 0.27758 

13z/ht= 20 

10 1.52796 1.22051 1.16197 1.15543 1.15477 

10
2 

1.22051 0.82230 0.71316 0.69869 0.69718 

103 1.16197 0.71316 0.52121 0.47440 0.46834 

10' 1.15543 0.69869 0.47440 0.37786 0.35257 

10
5 

1.15477 0.69718 0.46834 0.35257 0.29605 

132/htm 30 

10 1.72582 1.35799 1.27773 1.26842 1.26747 

102 1.35799 0.91166 0.77998 0.76210 0.76023 

103 1.27773 0.77998 0.55906 0.50555 0.49863 

104 1.26842 0.76210 0.50555 0.39750 0.36959 

10  
1.26747 0.76023 0.49863 0.36959 0.30795 
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Table 3.3 Total Seepage Discharge From Canal To Asymmetric 

Drainages. [{`later depth negligible, ha/ht = 0.9] 

1.1"1 4 10 	I 10
2 	

1 102  I 104  I 10
5 

I.a/ht q/kht 

Bz/hta 10 

10 1.17253 0.93847 0.89216 0.88389 0.88199 

10
2 

0.99330 0.66384 0.56886 0.55116 0.54751 

108 0.97375 0.60567 0.44315 0.39427 0.38418 

104  0.42023 0.33083 0.30041 

10
5 

- - 0.32026 0.26374 

1 Bz/ht= 201 

10 1.45326 1.12950 1.05683 1.04435 1.04167 

10
2 

1.19132 0.78158 0.65668 0.63388 0.62938 

10
s  

1.15240 0.69884 0.49525 0.43638 0.42463 

104  0.46515 0.35901 0.32424 

105 - - 0.34570 0.28126 

Bz/ht= 30 

10 1.64093 1.25827 1.16258 1.14631 1.14296 

102  1.32344 0.86642 0.71838 0.69140 0.68621 

10
8  

1.26627 0.76402 0.53120 0.46501 0.45207 

104  0.49566 0.37766 0.33988 

10
5 

- - 0.36239 0.29257 

NOTE :- In the table above and in all other tables, '-' 
indicates  that  the  location  of  the  left 

drainage is beyond the critical range. 
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Table 3.4 Total Seepage Discharge From Canal To Asymmetric 
Drainages. [Water depth negligible, h2/h1 e 0.8] 

Li/hi 4 10 	102  Ir  102 

 

I 104  1 105 	
• 

L2/ht cillcht 

I  Bm/hlis 101 

10 1.11296 0.86127 0.80303 0.79012 0.78668 

102 0.97120 0.62939 0.51982 0.49485 0.48863 

10
a  

- - 0.41998 0.35994 0.34468 

104  - - - 0.31348 0.27419 

105 - - - - 0.24989 

Bz/hing 20 

10 1.37838 I  1.03831 0.95143 0.93298 0.92825 

102 1.16210 0.74082 0.60014 0.56899 0.56148 

103 - 0.68451 0.46929 0.39833 0.38089 

104 - - - 0.34015 0.29591 

105 - - - - 0.26647 

8z/tit= 30 

10 1.55588 1.15840 1.04724 1.02399 1.01821 

102 1.28886 0.82115 0.65672 0.62063 0.61211 

10s  
- 0.74806 0.50333 0.42446 0.40548 

104 - - - 0.35781 0.31017 

10  
- - - - 0.27718 

4.---- 
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Table 3.5 Total Seepage Discharge From Canal To Asymmetric 
Drainages. IVater depth negligible, h2/ht 0 0.71 

Lt/ht 4 10 	I 102 	I 	102 	I 104  105  

L2/hi q/kht 

22/hip 101 

10 1.05315 0.78379 0.71349 0.69591 0.69090 

102 
0.94906 0.59489 0.47068 0.43841 0.42960 

10a  
- - 0.39679 0.32558 0.30513 

104 - - - - 0.24795 

105 - - - - - 

I 	132/h1= 201 

10 1.30331 0.94692 0.84579 0.82131 0.81453 

102  1.13284 0.70002 0.54352 0.50401 0.49348 

102  - - 0.44332 0.36026 0.33713 

104 - - - 0.32130 0.26756 

10  
- - - - - 

22/ht= 30 

10 1.47068 1.05839 0.93170 0.90144 0.89324 

102 1.25424 0.77584 0.59500 0.54979 0.53793 

108 - - 0.47544 0.38389 0.35887 

104  - - - 0.33796 0.28045 

10  
- - - - - 
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Table. 3.8.  Seepage Discharge Components to the Left and Right 
Drainages.[ Water depth negligible, h2/ht - 1.0 1 

Lt/ht 4 101 102 	I 101 	I 104 	I 105  

L2/ht Values 	in non-dimensional form in terms of kht 

0.9500 
0.02321 

-  0.56798 
0.03936 

0.96952 
0.00732 
0.59381 
0.01245 

18z/ht m 10/ 

0.9076-4 
0.07326 
0.49508 
0.12272 

10 0.61593 
0.61593 

0.78885 
0.22652 

10
2  0.22652 

0.78885 
0.34912 
0.34912 

10
2 1).07326 

0.90764 
0.12272 
0.49508 

0.23316 
0.23316 

0.34487 
0.08369 

0.39672 
0.02691 

10
4 0.02321 

0.95400 
0.03936 
0.56798 

0.08369 
0.34487 

0.17409 
0.17409 

0.26295 
0.06366 

to
5 0.00732 

0.96952 
0.01245 
0.59381 

0.02691 
0.39672 

0.06366 
0.26295 

0.13879 
0.13879 

1.145o5 
0.00972 

IBz/ht m 201 

10 0.76398 
0.76398 

0.92405 
0.29646 

1.06494 
0.09703 

1.12465 
0.03078 

10
2 0.29646 

0.92405 
0.41115 
0.41115 

0.56887 
0.14429 

0.65240 
0.04629 

0.68255 
0.01463 

109 0.09703 
1.06494 

0.14429 
0.56887 

0.26060 
0.26060 

0.38156 
0.09284 

0.43851 
0.02983 

10
4 0.03078 

1.12465 
0.04629 
0.65240 

0.09284 
0.38156 

0.18893 
0.18893 

0.28383 
0.06873 

10
5 0.00972 

1.14505 
0.01463 
0.68255 

0.02983 
0.43851 

0.06873 
0.28383 

0.14802 
0.14802 

1B2/ht = 301 

10 0.86291 
0.86291 

1.00853 
0.34946 

1.16200 
0.11573 

1.23165 
0.03677 

1.25586 
0.01161 

10
2 0.34946 

1.00853 
0.45583 
0.45583 

0.61948 
0.16050 

0.71058 
0.05152 

0.74394 
0.01629 

109 0.11573 
1.16200 

0.16050 
0.61948 

0.27953 
0.27953 

0.40633 
0.09922 

0.46680 
0.03183 

10
4 0.03677 

1.23165 
0.05152 
0.71058 

0.09922 
0.40633 

0.19875 
0.19875 

0.29752 
0.07207 

1o5 0.01161 
1.25586 

0.01629 
0.74394 

0.03183 
0.46680 

0.07207 
0.29752 

0.15398 
0.15398 

* NOTE :- Top values in each row in tables 3.6 to 3.9 are 
seepage discharge components to the left 
drainage whereas the corresponding values below them 

are those to the right drainage. 
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Table 3.7 Seepage Discharge Components to the Left and Right 
Drainages.1 Water depth negligible, hz/ht m 0.0 

Lt/ht 4 10 	I 10
2 	

I 109 	I 10
4 	

I 10
5 

1.20111 Values in non-dimensional form in terms of kht 

Bm/ht n 10 

10 0.45325 
0.71928 

0.61567 
0.32280 

0.74207 
0.15009 

0.80689 
0.07700 

0.84017 
0.04182 

10
2 0.11063 

0.88267 
0.21782 
0.44602 

0.36024 
0.20862 

0.44780 
0.10336 

0.49245 
0.05506 

109 0.00231 
0.97144 

0.03050 
0.57517 

0.12043 
0.32272 

0.2324,2 
0.16185 

0.30090 
0.08328 

10
4 0.00709 

0.41314 
0.07369 
0.25714 

0.16446 
0.13595 

105 _ _ 0.00006 
0.32020 

0.04749 
0.21625 

sz/ht • 20 

lo 0.58543 
0.86783 

0.73383 
0.39567 

0.87756 
0.17927 

0.95435 
0.09000 

0.99328 
0.04839 

10
2 0.16961 

1.02171 
0.27143 
0.51015 

0.42360 
0.23308 

0.52033 
0.11355 

0.56940 
0.05998 

109 0.01386 
1.13854 

0.04577 
0.65307 

0.14291 
0.35234 

0.26326 
0.17312 

0.33644 
0.08819 

10
4 0.01185 

0.45330 
0.08513 
0.27388 

0.18157 
0.14267 

10
5 _ _ 0.00112 

0.34458 
0.05417 
0.22709 

B2/hi m 30 

lo 0.67409 
0.96684 

0.80821 
0.45006 

0.96138 
0.20120 

1.04682 
0.09949 

1.08986 
0.05310 

10
2 0.21546 

1.10798 
0.31049 
0.55593 

0.46729 
0.25109 

0.57045 
0.12095 

0.62271 
0.06350 

109 0.02550 
1.24077 

0.05786 
0.70616 

0.15864 
0.37256 

0.28426 
0.18075 

0.36057 
0.09150 

104 0.01544 
0.48022 

0.09283 
0.28483 

0.19286 
0.14702 
0.05853 
0.23404 

10
5 

 - _ 

, -.'- 
0.00029 
0.36021 



Table 3.8 Seepage Discharge Components to the Left and Right 
Drainages.t Water depth negligible, h2/h1 m 0.8 1 

Li/h1 4 10  I 102  1  102  I  104 	I 105 

L2/ht Values in non-dimensional form in terms of kht 

Bm/htm 10 

10 0.33802 
0.77494 

0.48804 
0.37323 

0.61605 
0.18698 

0.68996 
0.10016 

0.73132 
0.05536 

10
2 0.04549 

0.92571 
0.13444 
0.49495 

0.26874 
0.25108 

6.36277 
0.13208 

0.41628 
0.07235 

109 0.05624 
0.36374 

0.16143 
0.19851 

0.23717 
0.10751 

104 _ _ 0.02274 
0.29074 

0.10589 
0.16830 

10
s 

 - _ _ 0.00705  
0.24284 

B2/his 20 

10 0.45439  1 
0.92399 

0.59002 
0.44829 

0.73173 
0.21970 

0.81687 
0.11620 

0.86441 
0.06384 

10
2 0.09209 

1.07001 
0.17953 
0.56129 

0.32245 
0.27769 

0.42476 
0.14423 

0.48287 
0.07861 

109 
- 

0.00349 
0.68102 

0.07356 
0.39573 

0.18697 
0.21136 

0.26731 
0.11358 

10
4 _ 0.03047 

0.30968 
0.11970 
0.17621 

10s _ _ _ 0.01068  
0.25579 

B2/111= 30 

10 0.53279 
1.02309 

0.65468 
0.50372 

0.80342 
0.24382 

0.89640 
0.12759 

0.94833 
0.06988 

10
2 0.13020 

1.15866 
0.21294 
0.60821 

0.35969- 
0.29703 

0.46767 
0.15296 

0.52904 
0.08307 

109 0.00959 
0.73847 

0.08599 
0.41734 

0.20449 
0.21997 

0.28785 
0.11763 

4 
10 _ 0.03588 

0.32193 
0.12886 
0.18131 

_ 

----- L 

	
i05 _ _  0.01320 

0.26398 
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Table 3.12 Seepage Discharge Components to the Left and Right 
Drainages.I Mater depth negligible, hz/ht a 0.7 

Lt/ht 4 
10  I 

102 	I 1011  I 104 	I 105 

L2/ht Values in non-dimensional form in terms of kht 

I 	132/ht0 101 

io b.24332 
0.80983 

0.37904 
0.40475 

0.50404 
0.20945 

0.58194 
0.11397 

0.62753 
0.06337 

10
2 11.00703 

0.94203 
0.07250 
0.52239 

0.19414 
0.27654 

0.28925 
0.14916 

0.34707 
0.08253 

10
9 0.01533 

0.38146 
0.10611 
0.21947 

0.18347 
0.12166 

10
4 

 - - 0.06219 
0.18576 

105  - - - - 

132/hts: 20 

10 0.34385 
0.95946 

0.46560 
0.48132 

0.60135 
0.24444 

0.68962 
0.13169 

0.74158 
0.07295 

102 0.03799 
1.09485 

0.10877 
0.59125 

0.23878 
0.30474 

0.34147 
0.16254 

0.40391 
0.08957 

10B 0.02680 
0.41652 

0.12673 
0.23353 

0.20867 
0.12846 

104 _ _ 0.0068 
0.31962 

0.07291 
0.19465 

105  - - - 

Etz/hi= 30 

10 0.41201 
1.05867 

0.52092 
0.53747 

0.66170 
0.27000 

0.75704 
0.14440 

0.81346 
0.07978 

102 0.06734 
1.18690 

0.13638 
0.63946 

0.26993 
0.32507 

0.37767 
0.17212 

0.44333 
0.09460 

10e 0.03557 
0.43987 

0.14099 
0.24290 

0.22589 
0.13298 

104 _ _ 0.00393 
0.33403 

0.08010 
0.20035 

10
5 

 - - - 
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A perusal of Figs.3.2 to 3.5 indicates that the seepage 

discharge decreases with increase in the values of Li/hi and 

L2/ht, i.e as the drainage distance increases, the seepage 

discharge decreases. It is also seen that the seepage discharge 

increases with increase in the value of Bz/ht. However, increase 

in the seepage discharge due to increase in bed width is not 

proportional to the increase in bed width. Therefore, the 

practice of expressing the seepage from canals in terms of their 

wetted perimeters irrespective of their size is not correct. 

From Tables 3.6 to 3.9, it is observed that the components 

of seepage discharge from the canal towards the left and 

right-hand side drainages are equal when the drainages are 

symmetrically located, i.e. when their respective distances and 

elevations with reference to the canal are equal. But, when the 

ratios L2/Li and h2/ht are different from one, there is a 

difference between the amount of seepage discharge received by 

the left drainage and the right drainage. Moreover, a perusal of 

the Tables 3.2 to 3.9 further indicates that keeping h2/ht 

constant, with increase in one of the drainage distances, both 

the total seepage loss, q/khi, and seepage towards the drainage, 

distance of which is increased, decrease but the seepage 

component to the other drainage increases. For B2/ht = 10., 

L2/ht = 100 and h2/hi = 1.0, the total dimensionless seepage 

discharge, q/khi, decreases from 1.01537 to 0.60626 with 

increase in drainage distance on the right-hand side from Li/hi 

= 10 to Li/hi = 105  ( refer Table 3.2 1. Referring to Table 3.6,. 

it is seen that out of the above total seepage discharge, the 

dimensionless seepage discharge towards the right side drainage 
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( Lt/ht = 10 ) is 0.78885 and that on the left side ( La/hi 

100 ) is 0.22652. But, when Li/ht  is increased to 105, the 

dimensionless seepage component towards the right drainage 

decreased to 0.01251 whereas that towards the left drainage 

increased to 0.48116. 

However, if one of the drainages, say that on the left,  is 

at higher level than the other drainage, i.e. h2/h! < 1., then 

as the distance of the drainage which is at higher level  is 

increased ( L2 is increased ), the component of seepage 

discharge received by this drainage decreases and tends to zero. 

Beyond certain distance, the drainage which is on higher level 

will be ineffective [ refer Tables 3.3 to 3.5 ]. 

With respect to the canal, the drainages are located at 

different finite horizontal distances and vertical levels. In 

addition to seepage from the canal, there will be seepage taking 

from the drainage at higher level to the drainage at lower 

level. As mentioned earlier, the seepage from the canal  flows 

partly to the drainage on the left and partly towards the 

drainage on the right. The seepage discharge to the drainage 

which is at lower level and is nearer to the canal is more than 

that to the other drainage. As the level of the upper drainage 

is raised ( say value of h2 is reduced ), the component of canal 

seepage to this drainage is reduced. At a certain value of h2  ( 

say h2 = hc ), the canal seepage to this drainage approaches 

zero and the entire canal seepage water will emerge in the other 

drainage. If depth of the higher drainage below canal water 

level is further reduced ( h2 < hc ), this drainage continues to 

be ineffective (for case of single drainage refer to Chapter 5]. 
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However, if depth of the drainage below the canal water level is 

lowered such that h2 > he, the drainage becomes effective and 

part of the canal seepage water emerges in this drainage and the 

remaining canal seepage water emerges in the other drainage. The 

value of this critical depth ( he ) is a function of  112/hi, 

Ls/ha and La/ha. The values of this critical depth ( he ) of  the 

drainage below canal water level for 62/hi = 10, 20 and 30  and 

different values of Li/hi and L2/hi as plotted in Fig.3.9 to 

3.11, indicates that as the value of La/ha is increased,  the 

value of he/hi decreases, i.e. the critical level of  the 

drainage at which it becomes effective is higher. On the other 

hand, with increase in the value of L2/hi, the value of he/hi 

increases, i.e. the critical level of the drainage at which it 

becomes effective is lowered. With increase in the value of 

62/hi, the value of he/ha decreases, i.e. the critical level  of 

the drainage at which it becomes effective is higher. 

So far the seepage discharge for an asymmetric case could be 

approximately determined by adding the computed seepage 

discharges towards drainages on either side assuming these to be 

equivalent to two separate symmetric cases. The values of 

seepage computed by following the above mentioned procedure are 

compared with those directly obtained from the solution 

presented herein ( Tables 3.10 to 3.12 ). It is seen that for 

the case of the symmetrical layout of the drainages, i.e La = La 

and ha  h2, the results found by the above mentioned 

approximate method and the exact method are identical [ refer to 

Table 3.10 for the case of h2/hi = 1 and La = L2 = 50.0 ]. But 

in the case of the asymmetric layout of the drainages, the 
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Table 3.10 Comparison of Seepage Quantitities as Calculated By 
Equations Obtained from Symetrical and Asymmetrical 
Considerations. 	I h2/ht c 1.0 and L2/ht m 50 1 

Note : seepage 
quantities are 
given in terms 
of kht. 

FROM SUM OF TWO SEPARATE 
SYMMETRIC CASES 

OBTAINED DIRECT FROM 
ASYMMETRIC CASE 

SEEPAGE TO DRAIN ON SEEPAGE TO DRAIN ON 

Lt/ht Bm/ht LEFT RIGHT TOTAL LEFT RIGHT TOTAL 

10 0.40695 0.48223 0.88918 .36040 .53409 0.89449.  
25.0 20 0.48881 0.58974 1.07855 .44550 .63795 1.08345 

30 0.54760 0.66543 1.21303 .50793 .70937 1.21730 

10 0.40695 0.40695 0.81390 .40695 .40695 0.81390 
50.0 20 0.48881 0.48881 0.97762 .48881 .48881 0.97762 

30 0.54760 0.54760 1.09520 .54760 .54760 1.09520 

10 0.40695 0.34912 0.75607 .45812 .30292 0.76104 
100.0 20 0.48881 0.41115 0.89996 .54004 .36516 0.90520 

30 0.54760 0.45583 1.00343 .59719 .41133 1.00852 

10 0.40695 0.25946 0.66641 .56461 .14304 0.70765 
500.0 20 0.48881 0.29376 0.78257 .65601 .17315 0.82916 

30 0.54760 0.31778 0.86538 .71763 .19630 0.91393 
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Table 3.11 Comparison of Seepage Quantitities as Calculated By 
Equations Obtained from Symetrical and Asymmetrical 
Considerations. 	I h2/ht m 0.75 and L2/ht 0 50 1 

Note : seepage 
quantities are 
given in terms 
of kht. 

FROM 
SUM OF TWO SEPARATE 
SYMMETRIC CASES 

OBTAINED 
DIRECTLY FROM 
ASYMMETRIC CASE 

SEEPAGE TO DRAIN ON SEEPAGE TO DRAIN ON 

Lt/ht Bz/hi LEFT RIGHT TOTAL LEFT RIGHT TOTAL 

10 0.30679 0.48223 0.78902 0.10544 0.70086 0.80630 
25.0 20 0.36783 0.58974 0.95757 0.16338 0.81021 0.97359 

30 0.41177 0.66543 1.07720 0.20760 0.88403 1.09163 

10 0.30679 0.40695 0.71374 0.13946 0.57455 0.71401 
50.0 20 0.36783 0.48881 0.85664 0.19574 0.66111 0.85685 

30 0.41177 0.54760 0.95937 0.23746 0.72208 0.95954 

lo 0.30679 0.34912 0.65591 0.17977 0.46853 0.64830 
100.0 20 0.36783 0.41115 0.77998 0.23603 0.53552 0.77156 

30 0.41177 0.45583 0.86760 0.27632 0.58408 0.86040 

lo 0.30679 0.25946 0.56625 0.27659 0.29169 0.56828 
500.0 20 0.36783 0.29376 0.66159 0.33829 0.32818 0.66646 

30 0.41177 0.31778 0.72955 0.38044 0.35518 0.73562 
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Table 3.12 Comparison of Seepage Quantitities as Calculated By 
Equations Obtained from Symetrical and Asymmetrical 
Considerations. 	I h2/ht a 0.75 and Li/ha = 50 1 

Note : seepage 
quantities are 
given in terms 
of kht.  

FROM 
SUM OF TWO SEPARATE 

SYMMETRIC CASES 

OBTAINED 
DIRECTLY FROM 

ASYMMETRIC CASE 

SEEPAGE TO DRAIN ON SEEPAGE To DRAIN ON 

L2/ht Bz/ht LEFT RIGHT TOTAL LEFT RIGHT TOTAL 

10 0.36417 0.40695 0.77109 0.23247 0.53126 0.76373 
25.0 20 0.44423 0.48881 0.93304 0.30588 0.62022 0.92610 

30 0.50072 0.54760 1.04832 0.35746 0.68432 1.04178 

10 0.30679 0.40695 0.71374 0.13946 0.57455 0.71401 
50.0 20 0.36783 0.48881 0.85664 0.19574 0.66111 0.85685 

30 0.41177 0.54760 0.95937 0.23746 0.72208 0.95954 

10 0.26286 0.40695 0.66981 0.06851 0.61803 0.68655 
100.0 20 0.30914 0.48881 0.79795 0.10824 0.70662 0.81487 

30 0.34255 0.54760 0.89015 0.13939 0.76714 0.90653 

10 0.19502 0.40695 0.60197 - - - 
500.0 20 0.22062 0.48881 0.70943 0.00182 0.78445 0.78627 

30 0.23859 0.54760 0.78619 0.00931 0.85588 0.86520 

10 0.17518 0.46950 0.64468 - - - 
1000.0 20 0.19566 0.48881 0.68447 - - - 

30 0.20982 0.54760 0.75742 - - - 
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results obtained by the exact and the approximate method differ 

significantly. The dimensionless total seepage discharge 

computed by the present solution is more than the value computed 

by the approximate method where the asymmetric condition is 

decomposed to two "equivalent" symmetric cases and then half 

from each of the results for the total seepages in the two 

symmetric cases are added together to give the amount of the 

total seepage for the original asymmetric case. For example, 

from Table 3.10, for the case of h2/h1 = 1 and Li/hi = 500 and 

La/hi = 50, the total dimensionless seepage (q/khi) as 

calculated approximately from two equivalent symmetric cases is 

0.66641, 0.78257, and 0.86538 for B2/hi = 10, 20 and 30 

respectively, whereas as calculated by the present direct 

method, the corresponding results are 0.70765, 0.82916 and 

0.91393 respectively. It is observed that the percentage 

difference between the results as obtained by the two methods 

decreases with increase in B2/hi and increases with increase in 

the value of Li/hi. Moreover, from Tables 3.10 to 3.12,  it is 

seen that the differences in the results obtained by the two 

methods are more marked when the corresponding quantity of 

seepage components received by the left and the right-hand 

drainages are separately compared. From Table 3.10, for the case 

of hi = ha, the approximate method to the solution for 

asymmetric cases underestimates the seepage components received 

by the nearer drainage whereas it overestimates the seepage 

components received by the farther drainage. 

As the influence of the different elevations of the 

drainages ( for h2/ht different from one ) and the distances of 

66 



the drainages ( for La/Lt different from one ) is not considered 

in the development of the solutions for asymmetric case, the 

results as calculated by this method showed big differences in 

the calculation of the total seepage discharge or the quantities 

of seepage components received by the left and the right-hand 

drainages as compared to those obtained by the solution of 

asymmetric case. The comparison of results as shown in Table 

3.10 for ha/ht = 1 and Tables 3.11 and 3.12 for h2/hi = 0.75 

highlights the above mentioned differences. Thus, estimating 

seepage losses from canal towards asymmetric drainages by 

decomposing into two symmetric cases is not correct. 

Dimensionless coordinates of the free surface on the 

right-hand side of the canal for Bz/hi = 10, La/ht = 50, ht = ha 

and Lt/ht = 25, 50 and 100 are plotted in Fig.3.6(a). This is to 

show the effect of the distance of the right-hand drainage on 

the right-hand side free surface. The free surface on the 

right-hand side becomes higher as the value of La/hi increases, 

i.e with increase in drainage distance the free surface is 

raised. Fixing the value of Li/ha = 50 ; ha = ha ; Bz/ht = 10 

and varying the left drainage distance, 
 

i.e. varying La,  the 

free surface on the side of the drainage, distance of which is 

fixed, is raised ( Fig.3.6(b)  To see the effect of the canal 

dimension, i.e bed width Bz, the free surface shapes are plotted 

in Fig.3.7 for ha = hi ; Li = La = 50ht and Bz/ht = 10, 20 and 

30. All other things kept constant, the free surface rises with 

increase in the bed width. From Fig.3.7, it is observed that the 

rise in the free surface as B2 is increased from 10ht to 20ht is 

more than the corresponding rise when B2 is increased from 20ht 
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to Mt. Free surface variation with respect to h2/ht is plotted 

in Fig.3.8(a) and 3.8(b). Keeping all other things constant, if 

the level of one of the drainages is varied, it has effect on 

the free surfaces on either side of the canal. For example, for 

fixed hi, and for B2 = 10hi and Li = L2 = 100ht,  if the 

left-hand drainage is lowered, i.e. the value of h2 is increased 

from 0.5ht to 0.75hi and then to 1.0ht, the free surface on the 

right-hand side is lowered as shown in Fig.3.8(a) whereas the 

effect of lowering of left-hand drainage on the left-hand side 

free surface is shown in Fig.3.8(b). 
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CHAPTER 4 

SEEPAGE FROM TRAPEZOIDAL CANAL 

TO 

ASYMMETRIC DRAINAGES 

Introduction 

Seepage losses from unlined canals depend on the shape and 

size of the canal cross section, location of drainages on either 

side of the canal and the subsoil properties. In Chapter 3, the 

shape of the canal and the depth of the water in the canal were 

not considered. In this chapter, exact solution of the problem 

of seepage from a trapezoidal canal in homogeneous medium to 

asymmetric drainages located at finite distances is presented. 

Hence, the shape of the canal and depth of water in the canal 

have been considered in this analysis. 

4.1 Formulation of Problem 

To derive the Laplace equation (Eq.A.1) and to make the 

problem amenable to analytical solution, the few assumptions 

that had been made in Chapter 3 are applicable in this work too. 

The assumptions are : (i) the porous medium is homogeneous and 

isotropic extending up to large depth; (ii) capillary and 

surface tension effects are negligible; (iii) the flow is 

laminar and therefore follows Darcy's law, and (iv) the 

drainages are wide. 

Zhukovsky's function which is defined in Eq.A.15 is also 
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applied in this problem. Hence, after applying Eqs.3.1, 3.2, 3.3 

and 3.4, the following statements could be made. Along the free 

surface, the pressure is atmospheric and from Eqs.3.4 and 3.3, 

ea = O. The curved free surface in the z-plane [Fig.4.1(a)] is 

therefore represented by a straight line in the e-plane. 

The e-plane (Fig.4.1(b)] was mapped onto the lower half of 

the (-plane [Fig.4.1(c)], where C = t + in, and the w-plane 

[Fig.4.1(d)] was mapped onto the lower half of the t-plane, 

where t = r + is as shown in Fig.4.1(e). Table 4.e1 summarizes 

the values of the corresponding points in the different planes. 

The relationship  between the C-plane and the t-plane was 

obtained through the bilinear transformation . Hence, 

e = ft (1)  (4.1a) 

in which, 

e = z - iw/k  (4.1b) 

w = f2(t)  (4.2a) 

t = fa (C)  (4.2b) 

On combining Eqs.4.1(a), 4.1(b), 4.2(b) and 4.2(a), the 

following relationships were obtained. 

z = iw/k + fi(C) 
 

(4.3a) 

w = f2 [fa (C)] 

= f4(C) 
 

(4.3b) 

z = (i/k)(fa(C)] + Fi(C) 
 

(4.3c) 
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4.2 Boundary Conditions 

In the 2-plane I Fig.4.1(a) 3, AA'B'B is an equipotential 

line and corresponds to 0 = constant. This constant is assumed 

to be zero. Therefore, 0 is zero along this line. Along the 

phreatic line BC which is a stream line, the value of w is taken 

to be zero. For the phreatic line AE, w has been assigned a 

value equal to q, where q is the unknown seepage loss per unit 

length of the canal. Along the drainage CD, which is an 

equipotential line, 0 is equal  to khi,  in which hi  is the 

difference between water levels of the canal and the right-hand 

drainage. The left-hand drainage EE'F is an equipotential line , 

4' = kh2, in which h2 is the difference between the water levels 

of the canal and the left-hand drainage. The part EE' of the 

left-hand drainage which is at a higher level than the 

right-hand drainage receives fraction of the seepage from the 

canal. Due to the difference in the elevations of the left and 

the right drainages, there will be seepage from the left-hand 

drainage to the right-hand drainage. This seepage will take 

place from E'F to some portion of the right drainage. The 

location of the point E' will depend on the relative values of 

82, H, ma, hi, h2, Li and 12,  in which Ls and L2 are the 

distances of the drainages on the right and the left side of the 

canal respectively ; Bm is bed width, ma is the side slope angle 

and H is the maximum depth of water in the canal. 

4.3 Solution of the Problem 

It was found convenient to obtain the solution of the 

prcblem through two separate operations by introducing two 
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auxiliary semi-infinite .planes. In the first operation, applying 

the Zhukovsky function [ Eq.A.15 ], the physical plane is 

transformed onto the e-plane, which in turn is mapped to an 

intermediate 'semi-infinite (-plane through the use of the 

Schwarz-Christoffel conformal mapping [ Eq.A.2 ]. In the second 

operation, the w-plane [ Fig.4.1(d)  is transformed• onto the 

intermediate semi-infinite t-plane using the Schwarz-Christoffel 

transformation. The relationship between the (-plane and the 

t-plane was obtained using the bilinear transformation. 

The equations so obtained were integrated on different 

regions of the boundary to obtain relationships between physical 

parameters and seepage losses and the coordinates of the 

phreatic lines. The improper integrals appearing in the 

transformation procedure have been converted into proper 

integrals by method of substitution. The proper integrals are 

then evaluated using Gaussian quadrature formula [ Abramwitz and 

Stegun, 1970; Davis and Rabinowitz, 1975; Stoer and Bulirsch, 

1980 ]. 

4.3.1 Mapping of the z - plane onto the 8 - plane. 

In case section of the canal is trapezoidal in z-plane, the 

cross section of the canal  in e-plane will not be exactly 

trapezoidal. However, for this analysis, the cross section of 

the canal has been assumed to be trapezoidal  in e-plane with 

side slope angles of nai and nag on the right and left sides, 

respectively. The corresponding section in the z-plane is 

approximated by a nearly trapezoidal section in z-plane with 

side slope angle of na on either side [ Fig.4.1(a) ]. The 
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variation in canal, section from trapezoidal slope is very small. 

In practice unlined canals cross section are seldom exactly 

trapezoidal  Garg and Chawla, 1970 and 1971 J. 

Using the Zhukovsky transformation ( A.15 ) and the geometry 

as given in Fig.4.1(b), at point B , e = 0 = en and at Point EY, 

en' = z  iw/k 

= (x  iy) - i(0 + iw) 

= (-Hcot(na) + iH) - i(i102')/k 

(-Hcot(na) + 'n' /k) + iH 
 

(4.4) 

Hence, from Eq.4.4 and Fig.4.1(b), in the 9-plane, vertical 

distance BB' is H and the horizontal distance BB' =  Hcot(na)- 

w10 /k 3. Hence, from geometry  Fig.4.1(b)1, 

cot(nai) = C Hcot(na) -  3/H 

cot(na) - wie/kH 
 

(4.5) 

where, we is the stream function value at B'. 

Similarly, at point A' (using Eq.3.1), 

eA' = ((-Hcot(na) - Bm) +  - i(0 + iwA')/k 

= (-Hcot(na) - Bz  wA1 /k) + iH  (4.6) 

where, Bz is the bottom width of the trapezoidal canal  in 

the z-plane. Also at point A, 

eA = f-2Hcot(na) -Bz  - i(0 + iq)/k 

= -2Hcot(na) - Bz + q/k  (4.7) . 

Hence, the vertical distance AA'  Fig4.1(b) J is H and the 

horizontal distance AA' =  Hcot(na) + (wA'-q)/k ]. Again, from 

geometry  Fig.4.1(b) 

cot(na2) = cot(na) - (q-wee)/(kH) 
 

(4.8) 

where, WA' is the stream function value at A'. 
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The values at the different points in the z-plane and 

e-plane are summarized in Table 4.1(a). 

4.3.2 Mapping of the e plane onto the ( - plane. 

Mapping of the e-plane onto the lower half of (-plane 

through the Schwarz-Christoffel transformation is as follows. 

01";  (0 

J de  

Integrating -Eq.4.9 

=M2 J 
 

.  m2  

and CK e 

dr. 
((41)a2((+x1)-a2 

c+x2 jai 

r 

c+xl 

((0,2)-at  c at 

a2 
di;  (4.9) 

i.e.,in  the  the  region 

refer  Eq.A.15  3, 

 

in  the  region 

 

Li,  where e 

c+1  

BC, 

= 	x  [ 

x 

 . m2  (  14: 
x.2 Jail cc 

 + 
 

0  0 

X = M2f  C  X2 jaf [  c  xlia2 
dC 

C  C + 1  
0 

(4.10) 

where, 0 r  x  Lt. 

Substituting, 

sinh2(u)  (4.11) 

dC  = 2 sinh(u)cosh(u)du  (4.12) 

from Eq.4.11, the lower limit and the upper limit of the 

integral of the right-hand side of Eq.4.10 were found to be 

u = 0 and u = sinh
-1  

respectively. Hence, after making the 
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Table 4.1Ca3 

Values of Corresponding Poi tits in the Three Planes. 
I z, e and w planes 

. 
2-plane e-plane 	'w -plane 

POINT x y et 612 0 w 

A -2111cot(1ia>-22 0 
-2Hootcna)-3124A/k 

or 
-Sicottnat)-Hcottna2)-b* 

0 0 q 

A'  - ucotcna)-sz 0 
-Heottna)-1/24.WAi/k 

Or 
-Hcot(nal)-15' 

0 0 Ili N 

B'  - 	ucot(na)-sz 0 
-Heat C7ta)+ps',k 

Or 
-xcoccnat) 

0 0  NJ' 8 

B 0 0 0 0 0 0 

C Li hi Lt 0 khi 0 

D m hi m 0 khi co 

E -2Hcot(na)-laz-L2 112 -2Hcotcna)-22-1.2+q,k 0 kh2 q 

E' -2xcotcna)-s2- 
-1.2-L2 

h2 cl i  -2Hcottna)-92-L2-L9.4. 7- it 
0 kh2 q' 

F - m h2 - m 0 kh2 co 

Table 4.1(b) 

Values of Corresponding Points 
in the 1 and t-Planes. 

C-plane t-plane 
POINT Z ri r s 

A -1 0 - a 0 

A'  -Xi 0 -t A' 
0 

B'  -X2 0 -t s' 
0 

B 0 0 0 0 

C Cc 0 1 0 

D co 0 m 0 

E -Cs 0 -ZS 0 
E' -C, s' 0 -to 0 

F -m 0 -al 0 
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4.12 1 and rearranging, appropriate  substitutions  [  Eq.4.11  and 

sinh-irr- 
al 

x sinh2
2 
 u + XI 

=  142 
Sinhi

2
u:X2 h u  

+  1 

0 

az 

sinh(u) cosh(u) du 

. . . (4.13) 

sinh-1117 

= N2 

 

 [Sinh2U+X21"[Sinh(U)]i2.31 [sinh2(u)+Xt]a2[cosh(u)]1-2a2 du 

0 

. . (4.14) 

At Point C, x = Li and ( = (Q. Sustituting these results in 

Eq.4.14, 

LI = 2(M2)(Ii)  (4.15a) 

where, 

Ii = 1 [sinh2u+X2]al[sinh(u)11-2air • oinh2  (u)+Xt] a2r LCOSh(U)
ii-2a2 

du 

0 . . . (4.15b) 

Integrating Eq.4.9 in the region B'B, i.e, in the region 

-X2 5 X 5- 0 and en' 5 e  en, 

en  0 

le
d = m2 j 

ea' 

x2  ) al

+  

r  la2 
d( 

C + Xt  

[( 1 .1 
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0  
at 

= 112 j(-1)" [  C  + X2  I [ C  

->2 

a2 
d( 

 

 

 

. . .(4.16) 

where, ea and en' are the values in the 9-plane at the points B 

and B' respectively. 

From complex number theory [ Churchill, 1948 ], 

(-1)at  = [cos(n) - i sin(n)]at  

e
-Lnat  

(4.17) 

Also, integrating the left-hand side of Eq.4.16 and applying 

Eq.4.17, 

ea 

f
de = es - 610 

ea' 

= 0 - [-Hcot(nal)  iH] 

= H[cos(nat) - i sin(nat))/sin(nat) 

= He
--Inat

/sin(nai) 
 

(4.18) 

Substituting results of Eq.4.17 and 4.18 in Eq.4.16, 

o 

 -  
c_-c4- x2 I al  );  

dC
ti

a2 

sin(Trai) M2 
-x2 

• . .(4.19) 

Substituting, 

( = -X2 cos2u  (4.20a) 

a = 2X2 cos(u) sin(u) du  (4.20b) 

in Eq.4.19, and putting the appropriate limits of integration, 
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n.2 
2 at  2 a2 

Mz 
 sin u  Xi  - X2 cos u  

cos(u)sin(u)du 2X2Sin(nai)  2 
COS U  1 - X2 COS2U 

0 

17/2 
j  jt+2at[  ,1-2at  

- X2 COS2U 
 a2 2 

= N2 j  [sin(u)  cos(u)  du 
1 - X-2 COS 

0 
.  .(4.21a) 

H = 2X2(sin(nat)][M2][I2]  (4.21b) 

where, 

Tr/2 

12 =  [sin(u) cos(u)
r2airt - X2 cos2u1 a2du 

1 - X2 COS 2U 
0 

.(4.21c) 

Similarly, integrating Eq.4.9 in the region AA', i.e., in 

the region -1 5 C 5 -Xi and eA 5 e 5 eA', where eA and eA' are 

the values in the e-plane corresponding to the Points A and A', 

respectively, the following relationships were obtained. 

H = 2 (sin(17a2)] [M2] [Is]  (4.21d) 

where, 

cos TAt 

IS = 
J 

[COS2U-X2jal[COS(U)ii
-2at 

 [cos2u-xi]a2[sin(u)]
1-2a2 

 du 

0 
. . .(4.21e) 

Integrating Eq.4.9 in the region A'B', i.e., in the region 

-Xi 5 C 5-X2 and eA' 5 e 5 es', 
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J

en'  -X2 

de = m2I 
e A,  

-xi 

C + X2 jai   Ali a2 
d( 

C + 

 

(4.22) 

   

where, 

en,  

de = en' " - eA,  
eA' 

= [-Hcot(nal) + iH ]  [-Hcot(nai)  b' + iH ] 

b'  (4.23) 

where, b' is-the bottom width of the canal in 0-plane. 

Substituting Eq.4.23 in Eq.4.22, 

-x2 

b' = M2/ [  c
+  )1/4.2 jai [  + xijaZ

dC  
C + 1 

-xi 

= (M2] [14]  (4.24a) 

where, 

-X2 jat r  c  

	

= 	( ; x2 	x, ja2
a 

+ 1 
-Xi 

Subtracting Eq.4.4 from Eq.4.6, 

en.- eA,  = gm + (wn' - WA' )/k 

 

From Eq.4.23,  = b', hence Eq.4.24(c) becomes, 

 

Bz =  b' + ( wA'  wa')/k 

(4.24b) 

(4.24c) 

(4. 24d) 
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Substituting Eq.4.24(a) in Eq.4.24(d), 

Bz = (1423 (I4] + ( WA' - vs')/k  (4,244) 

Integrating Eq.4.9 in the region EA, i.e, in the region 

-Z 5 C 5 -1 and er 5 e 5 eA, 

ew  -1

Cfede  = 1421 	L  

al 

[ 	4.  Xi] a •

2 

SIC  C  + 1 
(4.25) 

But, from Eq.A.15 it is known that on the free,surface AE, 

q/k + x 

= q/k + (-2Hcot(na) - Bz - X')  (4.26) 

where, x is the abscissa of the point on the free surface AE, 

and X' is the horizontal distance of the point from Point A. 

Integrating the left hand side of Eq.4.25 and substituting 

the results given by Eq.4.7 and 4.26, 

f de = eA - e . X'  (4.27) 

Putting , 

= -cosh2u  (4.28a) 

dC= -2cosh(u) sinh(u) du  (4.28b) 

Substituting the above, i.e. Eqs.4.27 and 4.28 and putting 

the appropriate limits of integration in Eq.4.25, 
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cosh-11-7r- 
i-2a2 ,r 

-M2 [cosh2u-X.2]" [ cosh(u)1 I-2ai  LCOSh2(u)-Xl]a2[sinh(u)]  du 

0 
. . .(4.29a) 

At Point E, X' = L2 and ( = -C  and hence, substituting 

these in Eq.4.29w, 

L2 = 2 (M2] [Is]  (4.29b) 

where, 

cosh-liTE- 

15 =1 [cosh2u-X2ri[cosh(u)1 1-2"[ cosh
2
(U)-XliaTinh(U)]

1-2a2
du 

. . .(4.29c) 

Integrating Eq.4.9 in the region E'E, i.e.,  in the region 

-CE' 1  C  -CE and eE' 	e 	eE , where eE' and eE are the 

values in the e-plane at the points E' and E,  respectively, 

de = 
m2-1: E  

[c + X2 at [ 	+ xi

ia

2 
dC 

eE,  C + 1 
(4.30) 

But, using Eq.A.15, 

eE  [-2Hcot(na)  Bm - L2 + ih2] - i(kh2 + iq)/k 

. . .(4.31a) 

eE'= (-2Hcot(na) - B2 - L2 - La + ih21 - i(kh2 + iq')/k 

.(4.31b) 

0 
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Integrating the left-hand side of Eq.4.30 and substituting 

Eqs.4.31a 

Substituting 

where, 

eE 

de = 

= 

Ls  = 

Is = 

and  4.31b, 

Eq.4.32 

eE 

La 

1  M2 

-1 E 

- eE' 

+  (q  q')/k 

in  Eq.4.30 

1  Id 

+ X2 lai r 

-  (  (q-q')/k 

xi 

and  rearranging, 

] 

a2 
 
dr  

• 

(4.32) 

(4.33a) 

(4.33b) [C C 
I_ C  +  1 

4.3.3 Mapping of the w - plane onto t - plane. 

The Schwarz-Christoffel transformation that maps the w-plane 

onto the lower half of the t-plane is given as below ( this is 

similar to that obtained in Chapter 3 except for suitable 

modifications wherever necessary ). 

J dw = M j  
(t+P)dt  

(4.34) 
(1-t)t(t+a)(t+r) 

where, M is a complex constant. 

The integration of Eq.4.34 is made between limits as set by 

the region over which the integration is made. The definite 

integral of the right-hand side of Eq.4.34 results in elliptic 

integrals  Byrd and Friedman, 1971 ] as shown below. 

-C., 
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Integrating  Eq.4.34, 

1  t > 0  > 

and  256.00  1, 

/14  

f
dw  = M 

We 

= Mg 

in  the  region  BC,  i.e., 

,  (  Byrd  and  Friedman,  1971, 

f  (t+P)dt 

in  the 

section 

range 

256.11 

0 
 I (1-t)t(t+0)(t+r) 

[alnk(3c,011 2,m)  (p-OF((3c,m) 

. . .(4.35) 

where, g is a real constant and 

Tft(3r,a12,m) = elliptic integral of the third kind with 

parameters Or, at and modulus m. 

F((3r,m)  = elliptic integral of the first kind. 

where, 

Or = sin-ii (1+a)t/(t+a)  (4:36) 

M
2 

(7-a)/CY(1.4a)1  (4.37) 

m2  
ail = 

1/(14a)  1  
(4.38) 

The complex potential values of the Point B and any point on 

the free surface are WH = 0 and W = ky respectively, where y 

is the ordinate of the point considered on the free surface BC. 

Integrating the left-hand side of Eq.4.35 and substituting the 

values of Wa and W, 

ky = Mg Ean(3r,a12,m)  (p-c)rc(3r,m) 

. . .(4.39) 
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At Point C, y = hi and t = 1. Therefore, from Eq.4.36 and 

Eq.4.39, the following relationships were obtained. 

Or = n/2 

khi = Mg I a Tit  (p - a)K 

where, 

, 
IT = n 	2 

n/2 oat .M 1 

K = F(n/2,m) 

Similarly, integrating Eq.4.34 in the region AB, i.e., 

1 > 0  t > -a >  , ( Byrd and Friedman, 1971, section 254.10 

and 254.00 I, 

Idw 

WA 

Mg 
--T— [ (r-a) 711-(pw,a2

2
011')  (p-r)F((V,MI ) 1 

. . .(4.42) 

where, 

= sin  (1,(t+a))/ta(t+7)3  (4.43a) 

 

Ma2  = a(1 417)/(r(1+a)) = 1 - m2  (4.43b) 

0 < 022  = a/r < 111 -,
2 
 (4.43c) 

The value of the complex potential at Point A is WA = iq and 

at any point on the equipotential line AB, the value of the 

complex potential is, W = iw*, where w*  is the stream function 

value at the point. Integrating the left-hand side of Eq.4.42 

and substituting the values of WA and W, the following 

equation was obtained. 
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IdW = W 	WA 

WA 

= i(w • - q) 

Substituting Eq.4.44 in Eq.4.42, 

(4.44) 

q - W 

• 

= Mg [ (r-n')17(Pv,a22,ms)  (p-r)F(Ow0e) 

. . .(4.45) 

Integrating the left-hand side of Eq.4.42 between points A 

and B, in which the upper limit is the value of the complex 

function at Point B, i.e., W = Ws = 0, 

I
dw = 0 - iq = -iq  (4..46) 

WA 

At Point B, t = 0 and from Eq.4.43(a), 

f 3v 
	= 17/2 
	

(4.47) 

Substituting Eqs.4.46 and 4.47 in Eq.4.42 ( or knowing that at 

Point B, w = 0, and hence from Eq. 4.45), 

q 	= Mg[ (r-a)-11;'+ (10-Y)C] 
 

(4.48) 

where, 

Tr = 1T(n/2 ,0t2 2  ,m. ) 

K' = F(7/201') 

Also, integrating the left side of Eq.4.42 between points A 

and A', where at Point A', W = iw*  = iwA' and t = -tA'  ( refer 

Table 4.1 3, from Eq.4.42 (or Eq.4.45) and Eq.4.43(a) the 

following relationships were found. 

WA'  q  - Mg [(.-a)ln(pA1 ,0(22 0e) 
 

(p-r)F WA°  ,m'  )] 

. . .(4.49) 
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=  ')/{a(r-tA')]  (4.50) 

Similarly, knowing [ refer Table 4.1 ] that at Point B', W = 

. 
lw = iwils and t = -tic, integration of the left hand side of 

Eq.4.42 and the appropriate substitutions in Eq.4.42 ( or 

Eq.4.45 ) and Eq.4.43(a), gave the following equations. 

wu  = q  - mg[(y-a)11-08',az2,41')  (P-r)F((3B'oe)] 

. . .(4.51) 

= sin-iir(a-tas)/(a(r-ts'))  (4.52) 

. Integrating Eq.4.34 in the region EA, i.e., in the region 

1 > 0 > -a > t  -r gave [Byrd and Friedman, 1971, section 

253.11 and 253.00], 

WA  -a 

dw = -M r  (t+p)dt  

(1-t)(0-t)(-a- r: 	 t)(t+r) 

pF((1-,m) 

. . .(4.53) 

where, 

01-  = sin-ii  a)/t(7-a) 
 

(4.54) 

M
2 

< as
2 

= (r-a)/r < 1 
 

(4.55) 

The complex potential value at any point on the free surface 

AE is W = ky  iq, where y is the ordinate of the point. At 

Point A, the complex potential value is WA = iq. Integrating the 
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left hand side of Eq.4.53 and making the appropriate 

substitution, 

WA 

Jdw = WA - W 

= iq - (ky + iq) 

= -ky 
 

(4.56) 

Substituting Eq.4.56 in Eq.4.53, 

ky 
 = Mg [ -011(0L,a32,m) + pF((L,m)] 

. .(4.57) 

Hence, integrating the left-hand side of Eq.4.53 between 

points E and A, in which W = WE = (kh2  iq) and t = -r 
reduced Eq.4.54 and Eq.4.57 into the following equations. 

(3L. 	= sin-11 ?•(--i-l-a)/1-r(r-a)) 

= 77/2 
	

(4.58) 

kh2 	= Mg [ -a-rr(n/2,0t22,m) + pF(n/2011)] 

= Mg 	pK - a  Tr3 
 

(4.59) 

where, 

Tr3  .-nRn/2,a32,m) 

Integrating Eq.4.34 in the region E'E, i.e., in the region 

1 > 0 > -a > -r > t, we have [ Byrd and Friedman, 1971, section 

251.03 and 251.00 1, 
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WE 

j dw 

  

 

(t+p)dt 

 

(1 -t)(0-0( -a-t)( -r-t) 

 

Mg [ (r-a)R0'014
2
,M1 )  (p-a)F(('lle) 

1 	
. . .(4.60) 

where, 

0' = sin
-s1  

(1+a)(-r-tY/t(1+r)(-a-t)) 
 

(4.61) 

a
42 

":" (1+r)/(1+0) > 1 
 

(4.62) 

WE and WE' are the complex potential values at the points E 

and E', respectively. Hence, integrating both sides of Eq.4.34 

between points E'  and E,  in which WE = (kh2  iq) and 

W = WE' = (kh2 + iq') and t = -p, 

WE 

dw = WE - WE' = (kh2 + iq) - (khz + iq') = i(q — q') 
WE' 

. . . (4.63) 

and, [ Byrd and Friedman, 1971,  section 251.03 and 251.00 

i(q — cif) = Mg E (,_a)  n1-014,0142 0e) - p-07)F(04,1e)] 

q = q 	Mg [ (r-a)1n-(04, 0(42,m') - (p- )F(04011') J 

. . .(4.64) 

for t = -p, from Eq.4.61, 

0' = sin-ii 1(1+0)(P-r))/[(1+r)(P-a)] 

= 04  (4.65) 
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4.3.4 Mapping of the C-plane onto the lower half of the t•plane. 

As discussed above, the solution of the problem involved the 

mapping of the 9-plane onto the lower half of the (-plane 

[Eq.4.1(a)] and for convenience, the mapping of the w-plane onto 

another semi-infinite plane, i.e., the t-plane [El: 4.2(e)]. 

These mappings were done by the Schwarz-Christoffel 

transformation. The t-plane has been mapped onto C.-plane to find 

out relationship between C and t. It is known [Nehari, 

1952,1961] that any three values on the boundary of the half 

plane can be chosen to correspond to three points on the 

boundary of the region to be mapped. The remaining values must 

be determined so as to satisfy conditions of similarity. The 

three points selected for bilinear transformation are A, 13 and 

D. The values assigned to these points in C-plane are -1, 0 and 

m, respectively. The corresponding values of these points in the 

t-plane are -a, 0 and m, respectively. 

Using the cross ratio formula [section A.2],  the following 

relationship between the C-plane and the t-plane was thus 

obtained : 

(t - tB) (tD - tA)  (( - CB) (CD - CA) 
(4.66) 

- tA) (tD - ts) 
	

(C 	CA) (CD - CB) 

Substituting the corresponding values in Eq.4.66, 

( t 	0) ( m  + a ) 	(C - 0) ( m  + 1 ) 
(4.67) 

(t + a) ( cc - 0 ) 	(r. + 1) ( cc - 0 ) 
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Eq.4.67, after rearranging, gave 

t = aC  (4.68) 

If -Xi and -X2 are values at Points A' and B', respectively, 

in the (-plane [Fig.4.1(c)), then the corresponding values in 

the t-plane are obtained using Eq.4.68. Similarly, the 

corresponding values in the C-plane of the Points A, E and E' 

which are having values of -a, -r, and -p, respectively, in the 
t-plane [Fig.4.1(e)) ), were obtained through Eq.4.68. 

The values at the different points in the C-plane and the 

t-plane are summarized in Table 4.1(b). 

4.4 DIMENSIONLESS FORM OF EQUATIONS 

From Table 4.1(b), C = 1/a 	CE = r/0 and Cam'  = P/a and 

substituting these in Eqs.4.15(b), 4.29(c) and 4.33(b), 

sinh-111-77‘7,.—  

1  

1-2al[sinh2  (u)+Xi] 	[cosh(u)]
1-2a2

du II= [Sinh2U0-2]al[Sinh(U)]  
32 

cosh-1Y773—  

1  

15= [COSh2U-X2ri[COSh(U)]1-2"[COSh
2
(U)-XL .32 sinh(u)

ji-2a2
du 

. . .(4.69b) 

_r/o. 

Id 
.  r  (  x.2

air  (  Xla2d(  . (4.69c) 
LC  J  L C + 1  -P/a  

Dividing Eqs.4.1ffaand 4.29(b) by Eq.4.21(b),  the following 

dimensionless relationships were obtained. 

0  . . . (4.69a) 

0 
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6 

Li/H = cosec(nai) [II]/((x2)I2 ]  (4.70) 

Lz/H = cosec(nai) (I5]/[(X2)I2]  (4.71) 

Similarly, Eq.4.33(a) yielded the equation, 

L2/H = 0.5 cosec(nai) (I6/(X212)] - [(q - q')/khi] [hi/H] 
. . .(4.72) 

Dividing Eq.4.21(b) by Eq.4.21(d), 

x2  = sin(na2) cosec(nat)(I2)/[12]  (4.73) 

Dividing Eqs.4.24(e) by H or its equivalent as given by 

Eq.4.21(b), and rearranging the resulting equation, the 

following relationships were found. 

Bz/H = 0.5 cosec(nai) (I4/{(x2)I2}]  [(1PA'- vu')/kht] Chi/H] 

. .(4.74) 

Also, dividing Eqs.4.48, 4/49, 4.51, 4.59 and 4.64 by 

Eq.4.41, resulted in the following relationships. 

q/kht 
(r-a) TT:4- (P-7 K' 

(4.75) 

ant  + 	) K 

(r-a) Tr(PA' ,a22  , 	) 4  (10-r) F (PA' ,m' ) 
WA'/kht = q/kht - 

 

a 	+ (p - a) K 

. . . (4.76) 

(r-a) Mom ,a22  on' ) 	(p-r) F (OD' , m' ) 

WB./kht = q/khl  

 

all + ( 10 	a) K 

. 	. (4.77) 
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pK - 0113  

h2/h1  . . . (4.78) 
aTri  (P -a) K 

(r-a)M04,a42 01') - (p-a) F(04 01.) 
cr/kht = q/khl 	

aTri  (P -a) K 

. . . (4.79) 

Rearranging Eq.4.78, 

P 
a [0-12/h1)( 	K)  T1-3] 

. . . (4.80) 

   

(1 -h2/h1) K 

Shape of the free surface : Dividing Eq.4.39 by Eq.4.39, the 

dimensionless form of the ordinate of a point on the free 

surface BC, as given below was obtained. 

alliOr,012,0  (p-a) F(OrsM) 
Y/ht 

(P -a) K 

. . .(4.81) 

The abscissa of the point which has the ordinate as given by 

Eq.4.81, was found in a non-dimensional form by dividing Eq.4.14 

by Eq.4.15(a). The resulting equation is as follows. 

x/Li = 17/11  (4.82) 

where, 

sinh-1.V7—  

f 

17 = [Sinh2U+X2]"[Sinh(U)] 1-2" [Sinh
2a2  
(U)+Xi] [COSh(U)]

I-2a2
du 

. . . (4.83) 
0 
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From Eq.4.68, 

C = 
 1 k t k 0.  . . . (4.84) 

Free surface At  Dividing Eq.4.57 by Eq.4.59, the ordinate 

of a point on the free surface AE is expressed as given below. 

[ PF((L,m) - aln(OL,0192,m) ] 
y/hz - 

 

(4.85) 
pK - 

a 1T3 

The horizontal distance from Point A of the point on the 

free surface AE which has the ordinate as given by Eq.4.85, was 

obtained by dividing Eq.4.29(a) by Eq.4.29(b). The resulting 

equation is as given below. 

X' = 12/15  (4.86) 

where, 

cosh-ill-7—  

1 

Im = [COSh2U-X2]"[COSh(U)]1-2"[Cosh
2
(u)-Xl]

a2 r 
L 
s.
inh(u)]

i-2a2
du 

. . .(4.87) 

Transformation equations relating z-plane with the e-plane 

and e-plane with t;-plane , are derived. On combining these 

equations, relationship between z, w, and C are obtained. In the 

next operation, w-plane is transformed onto t-plane and t-plane 

in turn is transformed onto (-plane. Thus, equations relating w 

0 

From Eq.4.68, C = t/a in which , -a =7= t  -y . 

4.5 RESULTS AND DISCUSSIONS 

and t and t and C are obtained. Finally, equations relating z 

w, C and t are established. 



It is difficult to find direct relationship between w and z 

by eliminating C and t from the above equations. Therefore, the 

equations derived above give values of z and w in terms of the 

intermediate parameters such as a, y, Xi and X2. The procedure 

followed in computations is to assume the values of intermediate 

parameters a, y, Xi and X2 and determine the values of w 

corresponding to these parameters and then determine the value 

of z. This procedure may not initially give the exact desired 

values of parameters in the physical system such as the bed 

width, drainage distances, h2/hi, canal side slope, etc. In 

order to get the exact desired values of physical dimensions of 

canal and drainage distances, assumed values of intermediate 

values had to be suitably modified. 

As compared to the present case, the relationships between 

the physical dimensions of the system and intermediate 

parameters for the case of negligible water depth ( Chapter 3 ) 

were simple and more explicit. For the case of canal of 

negligible water depth, the parameter a is related to the 

physical dimensions BM and Li as well as the quantity q/k 

[Eq.3.36]. The parameter y is in turn related to the drainage 

distances Li and La as well as to the parameter a (Eq.3.38]. 

These relationships were used as an initial approximation of the 

parameters a and 2,  in the present case, i.e. trapezoidal  canal. 

Using the starting value of q/kho. = 0. the values of the 

parameters a and y were determined. These values were refined 

till the difference between two consecutive values of q/khi as 

calculated by Eq.4.75 is equal to or within an acceptable value. 
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Then value of the parameter X2 which is closely related to bed 

width and side slope of the canal  is assumed. An approximate 

value of Xi is taken as equal to 1-Xt. At this stage,  the 

computation of Ipts/kht, wil'ikht, at, a2 and b' /H is possible 

through Eqs.4.76, 4.77, 4.5, 4.8 and 4.24(a)  respectively. 

Calculated value of Ba/H through Eq.4.74 is found and compared 

with the desired value. The parameters X2 and Xi are adjusted 

till the difference between the calculated and desired valuers of 

Ba/H is negligible. Then, using Eqs.4.70 and 4.71 the values of 

Li/H and L2/H are calculated and compared with the respective 

desired values. If not acceptably comparable, the whole process 

starting from the calculation of parameters a and r are 

repeated. In this updating process, the values of a and r are 

modified in proportion to the differences in the desired and 

calculated values of Li/H and L2/H. The whole process is 

repeated till the desired accuracies were obtained. A flow chart 

(Fig.B.2] in Appendix B shows the computational sequence. 

The values of seepage discharge has been calculated for 

various combination of the following values of bed width,  water 

depth, drainage distances and elevations. 

B2/hi H/hi 
Li /hi  & 
Lz/hi h2/h1 

10 0.5 10 1.0 102 
0.9 

20 0.3 103  0.8 
104  0.7•  

30 0.1 105 



The results of the above computations are given in Tables 

4.2 to 4.5. These values are also plotted as presented in 

Figs.4.2 to 4.5. In order to see the effect of side slope of the 

canal on the seepage discharge, values of seepage discharge for 

side slopes 2:1 and 0.5:1 and for the various other physical 

dimensions are calculated. The results are presented in Tables 

4.6 and 4.7. These results are plotted in Figs.4.6 and 4.7. 

Dimensionless seepage discharges emerging in the left-hand 

side and right-hand side drainages have been calculated and 

given in Tables 4.8 to 4.15. The seepage discharge from the side 

slopes and bed of the canal have been calculated for various 

combinations of physical parameters and are given in Tables 4.16 

to 4.25. 

Coordinates of the free surface are calculated from Eqs.4.81 

and 4.82 for the right-hand side and from Eqs.4.85 and 4.86 for 

the left-hand side. The free surface coordinates are functions 

of variables such as bed width, water depth, side slope, 

drainage distances and their elevations. It is difficult to 

present nomographs for determining the coordinates of free 

surface for various combinations of the physical dimensions of 

the system. However, the free surface pro'files have been 

determined for some cases in connection with determining the 

effect of various physical parameters on the free surfaces. The 

curves of the free surfaces, for the various physical parameters 

are plotted in Figs.4.8, 4.9(a), 4.9(b), 4.10 and 4.11. 
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Table 4.2(a) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

I Side slope 1:1, H/ht m 0.5 and h2/111 se 1.0 ] 

Lt/ht 4 10 10
2 

103  10
4 

 10'  

4 	T 	.. L2ini q/khl 

Bz/ht = 101 

10 1.34681 1.09532 1.05495 1.05061 1.05017 

102 1.09532 0.73449 0.64670 0.63519 0.63399 

10
3  

1.05495 0.64670 0.48257 0.44220 0.43695 

10
4 

1.05061 0.63519 0.44220 0.35707 0.33441 

10
5  

1.05017 0.63399 0.43695 0.33441 0.28316 

Bz/ht = 20 

10 1.61989 1.28310 1.21882 1.21160 1.21088 

102 1.28310 0.85008 0.73395 0.71857 0.71697 

10
3  

1.21882 0.73395 0.53235 0.48360 0.47729 

10
4  

1.21160 0.71857 0.48360 0.38366 0.35760 

10
5  

1.21088 0.71697 0.47729 0.35760 0.29958 

Bz/ht = 301 

10 1.80734 1.41315 1.32728 1.31726 1.31626 

10
2 

1.41315 0.93516 0.79722 0.77849 0.77654 

10 
 

1.32728 0.79722 0.56804 0.51286 0.50574 

104  1.31726 0.77849 0.51286 0.40201 0.37348 

10' 1.31626 0.77654 0.50574 0.37348 0.31064 
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Table 4.2Cb) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

I Side slope 1:1, H/hi a 0.3 and ha/ht 0 1.0 1 

Lt/ht 4 

, 

10 102 10
9  4, 

 10 
 

. 

10
5 

L2/ht q/kht 

Bz/ht = 10 

10 1.30797 1.06877 1.03053 1.02642 1.02601 

10
2 

1.06877 0.72266 0.63678 0.62563 0.62448 

10
9  

1.03053 0.63678 0.47698 0,43752 0.43238 

10' 
 

1.02642 0.62563 0.43752 0.35402 0.33174 

105  1.02601 0.62448 0.43238 0.33174 0.28125 

132/hi m 20 

lo 1.58857 1.26227 1.19999 1.19314 1.19243 

102  1.26227 0.84022 0.72663 0.71157 0.71001 

10
3  

1.19999 0.72663 0.52841 0.48035 0.47413 

10
4  

1.19314 0.71157 0.48035 0.38161 0.35582 

10
5  

1.19243 0.71001 0.47413 0.35582 0.29833 

I 22/ht = 301 

lo 1.77957 1.39489 1.31111 1.30136 1.30037 

102 1.39489 0.92679 0.79110 0.77267 0.77075 

10
2  

1.31111 0.79110 0.56483 0.51025 0.50320 

10
4  

1.30136 0.77267 0.51025 0.40039 0.37209 

10
5  

1.30037 0.77075 0.50320 0.37209 0.30968 
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Table 4.2Cc) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

I Side slope 1:1, H/ht ■ 0.1 and hz/ht m 1.0 I 

Laths 4 10  I 10
2 	

I 10
3 
	
[ 

10
4 

10
5  

Lz/ht q/kht 

B2/hi n 101 

to 1.26283 1.03755 1.00167 0.99782 0.99744 

10
2 

1.03755 0.70789 0.62531 0.61458 0.61347 

10
a  

1.00167 0.62531 0.47051 0.43208 0.42708 

to4  0.99782 0.61458 0.43208 0.35047 0.32863 

10
5  

0.99744 0.61347 0.42708 0.32863 0.27903 

I Bz/ht - 201 

10  1.55244 1.23799 1.17817 1.17148 1.17080 

1
02 

1.23799 0.82922 0.71838 0.70368 0.70215 

14
a  

1.17817 0.71838 0.52397 0.47669 0.47056 

10
4 

1.17148 0.70368 0.47669 0.37930 0.35382 

10 
 

1.17080 0.70215 0.47056 0.35382 0.29692 

I  BzIlli 	es 301 

10 1.74753 1.37363 1.29216 1.28269 1.28173 

102  1.37363 0.91745 0.78425 0.76616 0.76427 

10
9  

1.29216 0.78425 0.56125 0.50733 0.50037 

10' 
 

1.28269 0.76616 0.50733 0.39860 0.37054 

105  1.28173 0.76427 0.50037 0.37054 0.30860 
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Table 4.3(a) Total Seepage Discharge From Trapezoidal Canal To 
Asymmetric Drainages 

Side slope 1:1, H/hi 0 0.5 and h2/ht 0 0.9 I 

Li/ht 4 10 I 	102 	I 109 	I 104   105  

L2/111 q/kht 

I 	E12/ht 	= 10) 

10 1.28068 1.01149 0.95860 0.94936 0.94729 
10

2 
1.06693 0.69914 0.59537 0.57630 0.57242 

10  
1.04276 0.63382 0.45857 0.40678 0.39621 

104  0.43360 0.33926 0.30756 
le - - 0.32791 0.26904 

Bz/hi = 20 

10 1.53973 1.18664 1.10780 . 	1.09442 1.09157 
102  1.24790 0.80783 0.67577 0.65186 0.64718 
10

3  
1.20422 0.71901 0.50583 0.44482 0.43273 

104  0.47415 0.36451 0.32886 
105  - - 0.35064 0.28462 

I B2/hl = 301 

lo 1.71757 1.30854 1.20695 1.18979 1.18629 
10

2 
1.37280 0.88869 0.73423 0.70624 0.70088 

10a  1.31084 0.78072 0.53972 0.47174 0.45851 
10

4  
0.50282 0.38194 0.34346 

105  - - 0.36620 0.29512 

101' 



4.3(b) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

E Side slope 1:1, H/ht sa 0.3 and h2/111 a 0.9 I 

Lt/ht 10 10
2 	102  104  105  

1-2/ht q/kht 

Bz/ht = 10 

10 1.24402 0.98711 0.93661 0.92771 0.92569 
10

2 
1.04187 0.68697 0.58625 0.56766 0.56386 

102  1.01937 0.62413 0.45327 0.40248 0.39208 
10' 0.42901 0.33637 0.30511 
10  

- - 0.32529 0.26723 

132/h1 = 20 

io 1.51013 1.16748 1.09092 1.07787 1 	1.07508 
10

2 
1.22835 0.79856 0.66905 0.64553 0.64091 

103  1.18641 0.71189 0.50209 0.44184 0.42987 
104  0.47097 0.36257 0.32723 
le - - 0.34890 0.28343 

Etz/hi = 30 

10 1.69134 1.29174 1.19237 1.17555 1.17210 
10

2 
1.35571 0.88075 0.72859 0.70096 0.69567 

103  1.29551 0.77476 0.5366.7 0.46933 0.45620 
104  0.50026 0.38041 0.34218 
105  - - 0.36484 0.29421 
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Table 4.3(c) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

I Side slope 1:1, H/hi 0 0.1 and h2/ht re 0.9 I 

10 I 102 10 10 	I 105 Lt/ht 4 

L2/ht q/kht 

Bz/ht = 101 

10 1.20148 0.95852 0.91064 0.90215 0.90021 

102 
1.01277 0.67297 0.57573 0.55768 0.55397 

10s 
0.99208 0.61295 0.44713 0.39750 0.38728 

104 
0.42369 0.33301 0.30225 

105 
0.32224 0.26511 

Bz/ht = 201 

10 1.47607 1.14523 1.07118 1.05850 1.05578 

102 
1.20597 0.78813 0.66146 0.63839 0.63384 

109 
1.16591 0.70386 0.49788 0.43847 0.42664 

104 
0.46738 0.36038 0.32539 

10 0.34693 0.28210 

Bz/ht = 30 

10 1.66114 1.27227 1.17530 1.15886 1.15546 

102 
1.33618 0.87190 0.72229 0.69507 0.68984 

109  
1.27789 0.76811 0.53328 0.46665 0.45364 

104  
0.49741 0.37870 0.34076 

10
5 

0.36332 0.29318 

103 



4.4Ca) Total Seepage Discharge From Trapezoidal. Canal To 

Asymmetric Drainages 

f Side slope 1:1, H/ht • 0.5 and hz/ht • 0.8 

Lt/ht 4 10 10
2 

10
9  

10
4  

10
5  

L2/ht q/kht 	. 

132/ht m 10 

10 1.21450 0.92755 0.86208 0.84785 0.84410 

10
2 

1.04285 0.66272 0.54394 0.51730 0.51073 

10
a  

0.62106 0.43456 0.37133 0.35543 

10
4  

- 0.32146 0.28070 

10
5  

- - - 0.25491 

B2/111 • 201 

10 1.45954 I 	1.09012 0.99669 0.97706 I 	0.97209 

102  1.21714 0.76562 0.61755 0.58507 0.57730 

10
9  

0.70423 0.47930 0.40602 0.38814 

10
4  

- 0.34536 0.30012 

105  - - - 0.26965 

I Bm/ht • 30J 

10 1.62782 1.20393 1.08659 1.06224 1.05625 

102 1.33690 0.84219 0.67118 0.63391 0.62516 

103  0.76436 0.51139 0.43059 0.41124 

10'  
- 0.36186 0.31343 

10
5 

- - 
_ 
- 0.27959 
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Table 4.4Cb) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

1 Side slope 1:1, H/ht o 0.3 and hz/ht a 0.8 

Lt/ht 4 10 	I 102 108  104  I 	105 

L2/ht q/kht 

Bm/hl 0 10 

10 1.17996 0.90529 0.84242 0.82867 0.82503 

102 
1.01846 0.65122 0.53563 -0.50957 0.50312 

io8, - -  
0.42954 0.36741 0.35174 

10
4 

- - 0.31872 0.27847 

10
5 

- - - 0.25319 

B2/hi = 20 

10 1.43165 1.07255 0.98161 0.96241 0.95752 

10
2 

1.19813 0.75685 0.61140 0.57941 0.57172 

10
2  

0.69726 0.47576 0.40330 0.38558 

10
4 

- 0.34352 0.29863 

10
5 - - - 0,26854 

Bz/ht 0 30 

10 1.60308 1.18857 1.07355 1.04962 1.04370 

10
2 

1.32027 0.83468 0.66603 0.62919 0.62052 

10
s 

0.75854 0.50850 0.42840 0.40918 

10
4 

- 0.36041 0.31226 

10
5 

- - - 0.27873 
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Table 4.4(c) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

1 Side slope 1:1, H/ht • 0.1 and h2/ht • 0.8 ) 

Lt/ht 4 10 	I 102 	I 109 	i 104 	I 

. 

105 

L2/ht q/kht 

B2/111 	m 10] 

10 1.13994 0.87930 0.81931 0.80609 0.80258 

to
2 

0.99013 0.63799 0.52605 0.50065 0.49434 

10
3  

0.42374 0.36288 0.34745 

10
4  

- - 0.31554 0.27586 

10
5  

- - - 0.25118 

Bm/h1 • 201 

10 1.39962 1.05237 0.96402 0.94529 0.94052 

10
2 

1.17635 0.74698 0.60448 0.57302 0.56544 

10
9  

0.68942 0.47177 0.40024 0.38269 

104  - 0.34145 0.29695 

105  - -  0 - 0.26727 

B2/ht = 30 

10 1.57469 1.17085 1.05835 1.03486 1.02904 

io
2 

1.30127 0.82631 0.66028 0.62391 0.61533 

103  0.75205 0.50529 0.42595 0.40688 

10
4  

- 0.35880 0.31096 

10
5  

- - - 0.27778 



Table 4.5Ca3 Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

Side slope 1:1, H/ht 0 0.5 and h2/ht 0 0.7 I 

Lt/ht 4 10 10
2 

109 	I 104 	i 105  

L2/ht q/kht 

B2/ht = 101 

to 

102 

10
s  

1.14825 

1.01871 

0.84348 

0.62628 

0.76530 

0.49244 

0.41053 

0.74604 

0.45820 

0.33585 

0.74062 

0.44893 

0.31462 

10
4  

- - 0.30364 0.25382 

10
5 

- - - 

1112/ht 	= 20 

to 1.37932 0.99358 0.88549 0.85958 0.85246 

102  1.18635 0.72339 0.55926 0.51821 0.50733 

10
3  

0.45275 0.36721 0.34353 

10
4  

- - 0.32621 0.27136 

105  - - - 

Bz/hi  =  301 

10 1.53805 1.09932 0.96619 0.93461 0.92609 

102 1.30097 0.79566 0.60809 0.56153 0.54936 

10
a  

0.48305 0.38943 0.36396 

10
4 
 - - 0.34178 0.28339 

105  - - - 
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Table 4.5Cb) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

I Side slope 1:1, H/ht = 0.3 and hz/ht 0 0.7 ] 

Lt/ht 4 10 10
2 

10
9  

10
4  

10
5  

L2/111 q/kht 

Bz/ht = 10 

10 1.11578 0.82332 0.74798 0.72932 0.72404 
10

2 
0.99503 0.61543 0.48494 0.45138 0.44227 

10
s - - 0.40580 0.33232 0.31135 

10
4  

- - 0.30107 0.25181 
10

5 
 - - - 

B2/h1 = 20 

10 1.35311 0.97769 0.87217 0.84679 0.83979 
log 1.16788 0.71511 0.55370 0.51320 0.50244 
10

9  0.44941 0.36475 0.34126 
10

4  
- - 0.32447 0.27002 

105  - - - 

Bz/ht = 30 

10 1.51473 1.08534 0.95466 0.92359 0.91518 
102 1.28482 0.78858 0.60342 0.55734 0.54529 
10

2  
0.48032 0.38745 0.36214 

10' - - 0.34042 0.28233.  
10

5 
 - - - 
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Table 4.5(c) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

[ Side slope 1:1, H/ht a 0.1 and hz/ht a 0.7 ] 

Li/hi 4 10 
102 1

0
9 	I 

104   10
5 

L2/hi q/kht 

B2/ht = 10 

10 1.07824 0.79983 0.72765 0.70966 0.70456 

102 0.96746 0.60297 0.47629 0.44351 0.43459 

10s - - 0.40033 0.32822 0.30757 

10' - - - - 0.24946 

105 - - - - - 

B2/h1 a 20 

10 1.32307 0.95939 0.85668 0.83188 0.82503 

102  1.14670 0.70582 0.54744 0.50756 0.49694 

10s - - 0.44565 0.36198 0.33871 

104 - - - 0.32251 0.26850 

105  - - - - - 

B2/ht m 301 

10 1.48817 1.06938 0.94128 0.91074 0.90246 

10
2 

- 1.26633 0.78069 0.59821 0.55268 0.54075 

103  - - 0.47729 0.38524 0.36011 

104 - - - 0.33889 0.28116 

10
5 

- - - - - 
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Fig.4.2 TOTAL SEEPAGE DISCHARGE TO ASYMMETRIC 

DRAINAGES. 	(slope 1:1, h2/h1 = 1.0) 
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10 

111 



I I 111111 	I 	I I I 11111 	I 	I I I 

10 2 	 10 2 	 10 4  

Li/hi 
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10 10' 	10 1  
Li/hi 

Fig.4.5 TOTAL SEEPAGE DISCHARGE 
DRANAGES. 	(slope 1:1 

TO ASYMMETRIC 
, h2/hl 	0.7) 
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Table 4.6(a) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

Side slope 2:1,  = 0.5 and h2/ht = 1.0 I 

Lt/ht 4 10 	102  
2 

10 104 	
1 	

105 

L2/111 q/kht 

B2/ht = 101 

10 1.36527 1.10873 1.06644 1.06188 1.06141 

10
2 

1.10873 0.74535 0.65437 0.64Z54 0.64132 

10
s  

1.06644 0.65437 0.48709 0.44600 0.44066 

10
4  

1.06188 0.64254 0.44600 0.35955 0.33659 

105  1.06141 0.64132 0.44066 0.33659 0.28471  

8z/ha m 201 

10 1.62871 1.28987 1.22380 1.21636 1.21560 

10
2 

1.28987 0.85672 0.73903 0.72339 0.72176 

10
9  

1.22380 0.73903 0.53533 0.48606 0.47969 

10
4  

1.21636 0.72339 0.48606 0.38523 0.35896 

105  1.21560 0.72176 0.47969 0.35896 0.30053  

Bz/hs m 301 

10 1.81165 1.41692 1.32941 1.31917 1.31814 

10
2 

1.41692 0.94043 0.80115 0.78217 0.78019 

10
3  

1.32941 0.80115 0.57036 0.51476 0.50759 

10
4  

1.31917 0.78217 0.51476 0.40319 0.37450 

10
5  

1.31814 0.78019 0.50759 0.37450 0.31135 
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Table 4.6(b) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

Side slope 2:1, H/ht 0 0.3 and h2/ht 0 1.0 ] 

Lt/ht 4 10 1  102  I  109  10
4 	

I 10
5 

L2/ht q/kht 

1 	132/ht 	= 101 

10 1.31946 1.07723 1.03784 1.03359 1.03317 

10
2 

1.07723 0.72880 0.64158 0.6.3024 0.62907 

10
9  

1.03784 0.64158 0.47983 0.43992 0.43472 

10
4  

1.03359 0.63024 0.43992 0.35559 0.33312 

10
5  

1.03317 0.62907 0.43472 0.33312 0.28225 

132/ht = 20 

10 1.59390 1.26638 1.20314 1.19604 1.19533 

10
2 

1.26638 0.84433 0.72975 0.71454 0.71296 

108 
 

1.20314 0.72975 0.53025 0.48187 0.47561 

10
4 

1.19604 0.71454 0.48187 0.38258 0.35667 

10
5  

1.19533 0.71296 0.47561 0.35667 0.29893 

I Bz/hi = 301 

r 

10' 1.78210 1.39709 1.31232 1.30243 1.30143 

10
2  

1.39709 0.92999 0.79349 0.77492 0.77298 

10 
 

1.31232 0.79349 0.56625 0.51141 0.50433 

10
4 

1.30243 0.77492 0.51141 0.40112 0.37272 

10
5  

1.30143 0.77298 0.50433 0.37272 0.31011 

- . 
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Table 4.7(2) Total Seepage Discharge From Trapezoidal Canal To 
Asymmetric Drainages 

I Side slope 0.5:1, H/ht • 0.5 and h2/ht • 1.0 I 

Lt/ht 4 10 102 109  104  105  

L2/111 q/kht 

[ Bz/ha = 10 

10 1.34234 1.09131 1.05170 1.04744 1.04701 

102  1.09131 0.73174 0.64375 0.63235 0.63117 

10
9  

1.05170 0.64375 0.48078 0.44069 0.43548 

104  1.04744 0.63235 0.44069 0.35607 0.33354 

10
5  

1.04701 0.63117 0.43548 0.33354 0.28253 

Bz/hi = 20 

10 1.61969 1.28196 1.21834 1.21123 1.21050 

102 1.28196 0.84751 0.73203 0.71676 0.71517 

103  1.21834 0.73203 0.53118 0.48263 0.47635 

104  1.21123 0.71676 0.48263 0.38304 0.35706 

105 1.21050 0.71517 0.47635 0.35706 0.29920 

Bz/hi = 30) 

10 1.80914 1.41329 1.32803 1.31812 1.31711 

10
2 

1.41329 0.93325 0.79578 0.77714 0.77520 

10
3  

1.32803 0.79578 0.56713 0.51212 0.50503 

10
4 

1.31812 0.77714 0.51212 0.40154 0.37307 

105  1.31711 0.77520 0.50503 0.37307 0.31035 
, 
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Table 4.7(b) Total Seepage Discharge From Trapezoidal Canal To 

Asymmetric Drainages 

I Side slope 0.5:1, H/ht 0 0.3 and h2/ht = 1.0 ] 

L1/ht 4 10 102 	1 102 	I 104 	1 105  

L2/ht q/kht 

Bm/ht = 10 

10 1.30530 1.06616 1.02837 1.02432 1.02391 

10
2 

1.06616 0.72037 0.63496 0.62389 0.62274 

10
s  

1.02837 0.63496 0.47588 0.43658 0.43147 

10
4  

1.02432 0.62389 0.43658 0.35340 0.33119 

10
s  

1.02391 0.62274 0.43147 0.33119 0.28086 

Bm/ht = 20 

10 1.58849 1.26143 1.19966 1.19275 1.19206 

10
2 

1.26143 0.83872 0.72547 0.71048 0.70892 

10
9  

1.19275 0.72547 0.52770 0.47976 0.47356 

104  1.19275 0.71048 0.47976 0.38123 0.35549 

10
5  

1.19206 0.70892 0.47356 0.35549 0.29810 

Bz.eht 	= 301 

10 1.78058 1.39485 1.31142 1.30174 1.30076 

10
2 

1.39485 0.92564 0.79022 0.77185 0.76994 

10
3  

1.31142 0.79022 0.56428 0.50980 0.50277 

10' 
 

1.30174 0.77185 0.50980 0.40011 0.37184 

10
5  

1.30076 0.76994 0.50277 0.37184 0.30950 
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Table 4.8 Seepage Discharge Components from Canal to the 

Left and Right Drainages 

Side slope 1:1 ; H/ha n 0.5  h2.411 ■ 1.0 

Lt/ht 4 10  I 102  102 
I 

10
4 	I 105 

L2/ha values*  in non-dimensional form in terms of 	kht 

Ba/ht n 10 

10 0.67340 
0.67340 

0.84947 
0.24585 

0.97542 
0.07953 

1.02538 
0.02523 

1.04217 
0.00800 

10
2 0.24585 

0.84947 
0.36725 
0.36725 

0.51793 
0.12878 

0.59386 
0.04133 

0.62088 
0.01311 

105 0.07953 
0.97542 

0.12878 
0.51793 

0.24128 
0.24128 

0.35575 
0.08645 

0.40412 
0.02783 

104 0.02523 
1.02538 

0.04133 
0.59386 

0.08645 
0.35575 

0.17853 
0.17853 

0.26915 
0.06525 

10' 0.00800 
1.04217 

0.01311 
0.62088 

0.02783 
0.40412 

0.06525 
0.26915 

0.14158 
0.14158 

1.200-60 
0.01028 

B2m1 = 20 

10 0.80994 
0.80994 

0.97120 
0.31-190 

1.11672 
0.10210 

1.17917 
0.03243 

10
2 0.31190 

0.97120 
0.42504 
0.42504 

0.58513 
0.14881 

0.67081 
0.04776 

0.70182 
0.01515 

103 0.10210 
1.11672 

0.14881 
0.58513 

0.26617 
0.26617 

0.38886 
0.09474 

0.44682 
0.03047 

10
4 0.03243 

1.17917 
0.04776 
0.67081 

0.09474 
0.38886 

0.19183 
0.19183 

0.28781 
0.06979 

10
5 0.01028 

1.20060 
0.01515 
0.70182 

0.03047 
0.44682 

0.06979 
0.28781 

0.14979 
0.14979 

82/ht = 30 

10 0.90367 
0.90367 

1.05025 
0.3.6290 

1.20710 
0.12018 

-1.27904 
0.03822 

1.30415 
0.01211 

10
2 0.36290 

1.05025 
0.46758 
0.46758 

0.63286 
0.16436 

0.72570 
0.05278 

0.75980 
0.01674 

103 0.12018 
1.20710 

0.16436 
0.63286 

0.28402 
0.28402 

0.41219 
0.10067 

0.47338 
0.03236 

104 0.03822 
1.27904 

0.05278 
0.72570 

0.10067 
0.41219 

0.20100 
0.20100 

0.30057 
0.07291 

10
5 0.01211 

1.30415 
0.01674 
0.75980 

0.03236 
0.47338 

0.07291 
0.30057 

0.15532 
0.15532 

fit 
NOTE  Top values in each row in tables 4.8 to 4.15 are 

seepage discharge components to the left drainage 
whereas the corresponding values below them are those 
to the right drainage. 
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Table 4.0 Seepage Discharge Components from Canal to the 
Left and Right Drainages 

[ Side slope 1:1 ; H/ht m 0.3 ; ha/ht 	1.0 ] 

Lt/ht 4 10 I 	102  I 	102 	I 104 	1 105 

L2/hi values in non-dimensional form in terms of 	khi 

Bz/ht 	in 10 	1 

10 0.65398 0.82961 0.95316 1.00187 1.01823 
0.65398 0.23916 0.07737 0.02455 0.00778 

102 0.23916 
0.82961 

0.36133 
0.36133 

0.51007 
0.12671 

0.58496 
0.04067 

0.61157 
0.01290 

109 0.07737 
0.95316 

0.12671 
0.51007 

0.23849 
0.23849 

0.35199 
0.08553 

0.40484 
0.02754 

104 0.02455 
1.00187 

0.04067 
0.58496 

0.08553 
0.35199 

0.17701 
0.17701 

0.26700 
0.06473 

le 0.00778 
1.01823 

0.01290 
0.61157 

0.02754 
0.40494 

0.06473 
0.26700 

0.14062 
0.14062 

B2/ht • 20 I 

10 0.79428 
0.79428 

0.95581 
0.30646 

1.09966 
0.10033 

1.16127 
0.03187 

1.18233 
0.01010 

102 0.30646 
0.95581 

0.42011 
0.42011 

0.57939 
0.14723 

0.66431 
0.04726 

0.69502 
0.01499 

10a 0.10033 
1.09966 

0.14723 
0.57939 

0.26420 
0.26420 

0.38626 
0.09409 

0.44386 
0.03027 

104 0.03187 0.04726 0.09409 0.19080 0.28638 
1.16127 0.66431 0.38626 0.19080 0.06945 

io
5 0.01010 

1.18233 
0.01499 
0.69502 

0.03027 
0.44386 

0.06945 
0.28638 

0.14916 
0.14916 

132/ht = 30 

10 0.88978 
0.88978 

1.03674 
0.35815 

1.19250 
0.11862 

1.26363 
0.03773 

1.28842 
0.01195 

102 0.35815 0.46339 0.62809 0.72032 0.75414 
1.03674 0.46339 0.16300 0.05235 0.01660 

108 0.11862 
1.19250 

0.16300 
0.62809 

0.28241 
0.28241 

0.41010 
0.10015 

0.47100 
0.03220 

104 0.03773 
1.26363 

0.05235 
0.72032 

0.10015 
0.41010 

0.20019 
0.20019 

0.29945 
0.07263 

10  0.01195 
1.28842 

0.01660 
0.75414 

0.03220 
0.47100 

0.07263 
0.29945 

0.15484 
0.15484 
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Tablr_,  4.10 Seepage Discharge Components from Canal to the 
Left and Right Drainages 

Side slope 1:1 ; H/ht 	0.1 ; h2/ht a 1.0 ] 

Lt/ht 4 10 102 10a  104  105  

1,2,0111 values in non-dimensional form in terms of 	kht 

B2/ht = 10 

10 0.63141 
0.63141 

0.80599 
0.23156 

0.92674 
0.07493 

0.97405 
0.02377 

0.98990 
0.00753 

102 0.23156 
0.80599 

0.35394 
0.35394 

0.50097 
0.12434 

0.57466 
0.03992 

0.60081 
0.01266 

102 0.07493 
0.92674 

0.12434 
0.50097 

0.23525 
0.23525 

0.34762 
0.08446 

0.39988 
0.02720 

10
4 0.02377 

0.97405 
0.03992 
0.57466 

0.08446 
0.34762 

0.17523 
0.17523 

0.26450 
0.06413 

10
5 0.00753 

0.98990 
0.01266 
0.60081 

0.02720 
0.39988 

0.06413 
0.26450 

0.13951 
0.13951 

B2/111 	al 20 

10 0.77622 
0.77622 

0.93759 
0.30040 

1.07981 
0.09836 

1.14021 
0.03127 

1.16087 
0.00993 

102 0.30040 
0.93759 

0.41461 
0.41461 

0.57291 
0.14547 

0.65698 
0.04670 

0.68734 
0.01481 

I 	
103 0.09836 

1.07981 
_ 0.14547 

0.57291 
0.26198 
0.26198 

0.38332 
0.09337 

0.44052 
0.03004 

10
4 0.03127 

1.14021 
0.04670 
0.65698 

0.09337 
0.38332 

0.18965 
0.18965 

0.28476 
0.06905 

105 0.00993 
1.16087 

0.01481 
0.68734 

0.03004 
0.44052 

0.06905 
0.28476 

0.14846 
0.14846 

B2/ht = 30 

10 0.87376 
0.87376 

1.02076 
0.35287 

1.17527 
0.11689 

1.24548 
0.03720 

1.26993 
0.01179 

102 0.35287 
1.02076 

0.45872 
0.45872 

0.62275 
0.16150 

0.71428 
0.05188 

0.74782 
0.01645 

103 0.11689 
1.17527 

0.16150 
0.62275 

0.28062 
0.28062 

0.40776 
0.09957 

0.46835 
0.03201 

104 0.03720 
1.24548 

0.05188 
0.71428 

0.09957 
0.40776 

0.19930 
0.19930 

0.29821 
0.07233 

105 0.01179 
1.26993 

0.01645 
0.74782 

0.03201 
0.46835 

0.07233 
0.29821 

0.15430 
0.15430 
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Table 4.11 Seepage Discharge Components from Canal to the 
Left and Right Drainages 

I Side slope 1:1 ; H/ht 0 0.5 ; h2/ht a 0.9 

Lt/ht 4 10 	I 102 	I 102 	I 104 	I 105  

L2/hi values in non-dimensional form in terms of 	khi 

I EN/ht a 10 	I 

0.50386 0.66853 0.800/7 0.86888 0.90367 10 0.77683 0.34296 0.15784 0.08048 0.04361 
102 0.12573 

0.94120 
0.23380 
0.46534 

0.37991 
0.21546 

0.47010 
0.10620 

0.51598 
0.05644 

103 0.00462 
1.03814 

0.03459 
0.59923 

0.12704 
0.33153 

0.24160 
0.16518 

0.31148 
0.08473 

10
4 _ _ 0.42518 

0.42518 
0.26217 
0.26217 

0.13798 
0.13798 

105 _ _ _ 0.32762 
0.32762 

0.21956 
0.21956 

Eiz/hg. a 20 

10 0.62601 
0.91372 

0.77521 
0.41142 

0.92262 
0.18517 

1.00186 
0.09256 

1.04189 
0.04968 

10
2 0.18186 

1.06604 
0.28348 
0.52435 

0.43773 
0.23804 

0.53630 
0.11556 

0.58624 
0.06094 

103 0.01658 
1.18764 

0.04900 
0.67001 

0.14753 
0.35830 

0.26948 
0.17534 

0.34358 
0.08915 

104 _ _ 0.01286 
0.46130 

0.08739 
0.27712 

0.18491 
0.14395 

10
5 _ _ _ 0.00142 

0.34922 
0.05546 
0.22916 

Etz/hi = 30 	I 

10 
1.00751 0.46363 0.20621 0.10162 0.05416 

102 0.22616 
1.14664 

0.32079 
0.56790 

0.47 	99 
0.25524 

0.58362 
0.12261 

0.63660 
0.06428 

103 0.02816 
1.28269 

0.06071 
0.72001 

0.16239 
0.37733 

0.28924 
0.18250 

0.36627 
0.09224 

104 _ _ 0.01630 
0.48653 

0.09460 
0.28733 

0.19546 
0.14800 

105 _ _ _ 0.00245 
0.36375 

0.05953 
0.23559 
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Table 4.12 Seepage Discharge Components from Canal to the 

Left and Right Drainages 

[ Side slope 1:1 ; H/hi a 0.5 ; h2/ht 32.0.8 

Li/ht 4 10 102 103  104 105  

L2/ht values in non-dimensional form in terms of 	[chi 

0.78645 
0.05765 

Bz/ht = 10 1 

10 0.38195 
0.83255 

0.53351 
0.39404 

0.66638 
0.19570 

0.74342 
0.10443 

102 0.05710 
0.98585 

0.14774 
0.51498 

.2853 
0.25855 

0.38183 
0.13547 

0.4366 
0.07409 

103 0.00002 
0.62104 

0.06127 
0.37329 

0.16901 
0.20232 

0.24612 
0.10931 

104  - 0.29646 
0.29646 

0.17070 
0.17070 

105 _ _ _ 0.24681 
0.24681 

132/hi a 20 

l0 0.48974 
0.96980 

0.62580 
0.46432 
0.18977 
0.57585 

0.77050 
0.22620 
0.33461 
0.28303 

0.85786 
0.11920 
0.43847 
0.14661 

0.90662 
0.06547 
3).49747 
0.07982 

102 0.10212 
1.11503 

102 0.00496 
0.69926 

0.07718 
0.40212 

0.19216 
0.21386 

0.27340 
0.11475 

10'  - 1.1 3 	I 
0.31331 

1.1 	2, 1 
0.17772 

105 _ - _ 0.01141 
0.25824 

I 	B2/hi 	a 30 	1 

10 0.56415 
1.06366 

0.68650 
0.51744 

0.83733 
0.24926 

0.93212 
0.13012 
0.47900 
0.15491 

0.98505 
0.07120 
0.54110 
0.08406 

102 0.13921 
1.19769 

0.22177 
0.62042 

0.36972 
0.30147 

103 0.01120 
0.75316 

0.08898 
0.42241 

0.20866 
0.22193 

0.29271 
0.11853 

104  - 0.03714 
0.32472 

0.13097 
0.18246 

105 _ - - 0.01380 
0.26579 
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Table 4.13 Seepage Discharge Components from Canal to the 
Left and Right Drainages 

I Side slope 1:1 ; H/ht 0 0.5 ; h2/ht 0 0.7 

Li/ht 4 10 102 103 	I 104 	I 105 

L2/ht values in non-dimensional form in terms of 	khi 

B2/hi = 10 	I 

10 0.28071 
0.86754 

0.41750 
0.42599 

0.54652 
0.21878 

0.62733 
0.11871 

0.67466 
0.06595 

102 0.01371 
1.00499 

0.0E1303 
0.54325 

0.20796 
0.28448 

0.30530 
0.15290 

0.36443 
0.08449 

toa _ - 0.01854 
0.39199 

0.11220 
0.22365 

0.19093 
0.12369 

104 _ _ - 0.00012 
0.30352 

0.06535 
0.18847 

105 - - - - - 

22/hi = 20 

10 0.37412 
1.00520 

0.49605 
0.49753 

0.63417 
0.25131 

0.72447 
0.13511 

0.77765 
0.07481 

102 0.04548 
1.14087 

0.11716 
0.60623 

0.24889 
0.31037 

0.35306 
0.16515 

0.41639 
0.09094 

103 _ _ 0.02931 
0.42345 

0.13095 
0.23626 

0.21375 
0.12978 

104  - _ _ 0.00228 
0.32393 

0.07502 
0.19634 

tos - - - - - 

132/ht = 30 	I 

10 0.43891 
1.09915 

0.54804 
0.55128 

0.69048 
0.27570 

0.78743 
0.14719 

0.84481 
0.08128 

102 0.07450 
1.22647 

0.14373 
0.65193 

0.27838 
0.32971 

0.38727 
0.17426 

0.45364 
0.09571 

102 _ -  0.03774 
0.44531 

0.14440 
0.24503 

0.20996 
0.13401 

104 - - - 0.00453 
0.33726 

0.08176 
0.20162 

105  - - - - - 
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Table 4.14 Seepage Discharge Components from Canal to the 

Left and Right Drainages 

Side slope 2:1 ; H/ht ■ 0.5 ; h2/ht 	1.0 I 

Lt/ht 4 10 	I 102 	I 103 	I 104 	1 105  

L2/ht values in non-dimensional form in terms of kht 

Bz/ht = 10 

- 1.0S320 
0.00821 

10 0.68263 
0.68263 

0.85693 
0.25180 

0.98485 
0.08159 

1.03599 
0.02589 

102 0.25180 
0.85693 

0.37267 
0.37267 

0.52382 
0.13055 

0.60064 
0.04190 

0.62802 
0.01329 

10
3 0.08159 

0.98485 
0.13055 
0.52382 

0.24354 
0.24354 

0.35879 
0.08721 

0.41259 
0.02807 

104 0.02589 
1.03599 

0.04190 
0.60064 

0.08721 
0.35879 

0.17977 
0.17977 

0.27091 
0.06568 

105 0.00821 
1.05320 

0.01329 
0.62802 

0.02807 
0.41259 

0.06568 
0.27091 

0.14235 
0.14235 

Bz/ht 

10 0.81435 
0.81435 

0.97360 
0.31626 

1.12010 
0.10370 

1.18341 
0.03295 

1.20516 
0.01045 

10
2 0.31626 

0.97360 
0.42836 
0.42836 

0.58892 
0.15011 

0.67520 
0.04819 

0.70648 
0.01528 

a 0.10370 0.15011 0.26766 0.39082 0.44906 10 
1.12010 0.58892 0.26766 0.09524 0.03063 

10' 0.03295 
1.18341 

0.04819 
0.67520 

0.09524 
0.39082 

0.19261 
0.19261 

0.28890 
0.07006 

105 0.01045 
1.20516 

0.01528 
0.70648 

0.03063 
0.44906 

0.07006 
0.28890 

0.15026 
0.15026 

132/ht g 30 	I 

10 0.90582 
0.90582 

1.05049 
0.36643 

1.20788 
0.12154 

1.28051 
0.12154 

1.30586 
0.03866 

102 0.36643 
1.05049 

0.47021 
0.47021 

0.63570 
0.16545 

0.72903 
0.05314 

0.76334 
0.01685 

10
3 0.12154 

1.20788 
0.16545 
0.63570 

0.28518 
0.28518 

0.41370 
0.10107 

0.47510 
0.03249 

104 0.12154 
1.28051 

0.05314 
0.72903 

0.10107 
0.41370 

0.20159 
0.20159 

0.30140 
0.07311 

105 0.03866 
1.30586 

0.01685 
0.76334 

,  0.03249 
'  0.47510 

0.07311 
0.30140 

0.15567 
0.15567 
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Table 4.15 Seepage Discharge Components from Canal to the 

Left and Right Drainages 

I Side slope 0.5:1 ; H/ht 	0.5 ; h2/ht • 1.0 

Lt/ht 4 10 I  10
2 	

I 103 	I 104 	I 10s 

L2/ht values in non-dimensional form in terms of khi 

1 	Bz/ht a 10 

lo 0.67117 
0.67117 

0.84793 
0.24338 

0.97305 
0.07865 

1.02249 
0.02495 

1.03910 
0.00791 

102 0.24338 
0.84793 

0.36587 
0.36587 

0.51568 
0.12806 

0.59126 
0.04110 

0.61814 
0.01304 

10s 0.07865 
0.97305 

0.12806 
0.51568 

0.24039 
0.24039 

0.35455 
0.08615 

0.40775 
0.02773 

10
4 0.02495 

1.02249 
0.04110 
0.59126 

0.08615 
0.35455 

0.17803 
0.17803 

0.26845 
0.06508 

10s 0.00791 
1.03910 

0.01304 
0.61814 

0.02773 
0.40775 

0.06508 
0.26845 

0.14126 
0.14126 

Bz/hi is 20 

10 0.80984 
0.80984 

0.97188 
0.31008 

1.11693 
0.10141 

1.17902 
0.03221 

1.20030 
0.01021 

10
2 0.31008 

0.97188 
0.42375 
0.42375 

0.58374 
0.14829 

0.66917 
0.04759 

0.70008 
0.01509 

10s 0.10141 
1.11693 

0.14829 
0.58374 

0.26559 
0.26559 

0.38809 
0.09454 

0.44594 
0.03041 
0.28737 
0.06969 

10
4 0.03221 

1.17902 
0.04759 
0.66917 

0.09454 
0.38809 

0.19152 
0.19152 

105 0.01021 
1.20030 

0.01509 
0.70008 

0.03041 
0.44594 

0.06969 
0.28737 

0.14960 
0.14960 

Bz/ht = 30 

10 0.90457 
0.90457 

1.05184 
0.36146 

1.20844 
0.11959 

1.28009 
0.03803 

1.30506 
0.01205 

10
2 0.36146 

1.05184 
0.46662 
0.46662 

0.63186 
0.16392 

0.72450 
0.05264 

0.75850 
0.01669 

109 0.11959 
1.20844 

0.16392 
0.63186 

0.28356 
0.28356 

0.41161 
0.10052 

0.47271 
0.03231 

10
4 0.038b3 

1.28009 
0.05264 
0.72450 

0.10052 
0.41161 

0.20077 
0.20077 

0.30025 
0.07283 

iOs 0.01205 
1.30506 

0.01669 
0.75850 

0.03231 
0.47271 

0.07283 
0.30025 

0.15517 
0.15517 
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Table 4.16 Seepage Discharge Components Through Canal Profile . 

ha/ht a 1.0 , H/ht 	0.5 , side slope 1:1 

B2/ht a 10 

Ls/h1 4  10 102 	j 	102 	I 104  10
s 

L2/h4 values in non-dimensional form in terms of kht 

R 0.18896 0.13070 0.12298 0.12217 0.12209 

10 	L 0.18896 0.18265 0.18040 0.18013 0.18010 

B 0.96889 0.78197 0.75157 0.74831 0.74798 

R 0.17670 0.10350 0.08930 0.08755 0.08737 

10
2 	

L 0.12683 0.10350 0.09376 0.09239 0.09225 

B 0.78746 0.52849 0.46364 0.45525 0.45437 

R 0.17391 0.09351 0.06879 0.06302 0.06227 

102 
	

L 0.11903 0.08907 0.06879 0.06335 0.06263 

B 0.75762 0.46399 0.34499 0.31583 0.31205 

R 0.17360 0.09213 0.06334 0.05125 0.04805 

104 	L 0.11822 0.08730 0.06301 0.05125 0.04808 

B 0.75440 0.45562 0.31585 0.25457 0.23828 

R 0.17356 0.09198 0.06262 0.04807 0.04081 

ie 	L 0.11813 0.08711 0.06226 0.04805 0.04081 

B 0.75409 0.45477 0.31207 0.23830 0.20154 

NOTE :-
R ▪ seepage component through canal right-hand side slope, 
L - seepage component through canal left-hand side slope and 

B - seepage component through canal bed. 
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Table 4.17 Seepage Discharge Components Through Canal Profile 
I h2/ht 0 1.0 , H/ht M 0.5 , side slope 1:1 I 

az/ht  = 20J 

Li/ht 4 10 	I 102 	
I 10a 

I  104  105 

L2/ht values in non-dimensional form in terms of khi 

R 0.17369 0.10615 0.09635 0.09531 0.09521 

10 	L 0.17369 0.17343 0.17177 0.17154 0.17152 

B 1.27251 1.00352 0.95070 0.94475 0.94415 

R 0.16606 0.08817 0.07329 0.07146 0.07128 

102 	L 0.10199 0.08817 0.07999 0.07875 0.07862 

B 1.01059 0.67366 0.58067 0.56836 0.56707 

R 0.16361 0.07966 0.05592 0.05067 0.05000 

103 	L 0.09220 0.07299 0.05592 0.05007 0.05054 

B 0.95847 0.58115 0.42051 0.38286 0.37675 

R 0.16331 0.07840 0.05114 0.04058 0.03785 

104 	L 0.09116 0.07115 0.05066 0.04058 0.03789 

B 0.95262 0.56886 0.38180 0.30250 0.28186 

R 0.16328 0.07826 0.05052 0.03789 0.03181 

105 	L 0.09106 0.07096 0.04999 0.03785 0.03181 

B 0.95202 0.56760 0.37678 0.28186 0.23596 
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Table 4.18 Seepage Discharge Components Through Canal Profile 

I h2/ht s 1.0 , H/ht s 0.5 , side slope 1:1 

Bz/ht Is 30 

Li/hl 4 i 	10 I 	102  1 	102 
	

I 104 	i 10
5 

L2/ht values in non-dimensional form in terms of khi 

R 0.16708 0.09387 0.08246 0.08122 0.08109 

10  L 0.16708 0.16987 0.16865 0.16845 0.16843 

B 1.47318 1.14941 1.07617 1.06759 1.06674 

R 0.16173 0.08066 0.06501 0.06308 0.06289 

102  L 0.08967 0.08066 0.07348 0.07231 0.07219 

B 1.15727 0.77384 0.65873 0.64310 0.64146 

R 0.15952 0.07309 0.04953 0.04451 0.04388 

10
2 	

L 0.07837 0.06467 0.04953 0.04515 0.04457 

8 1.08484 0.65930 0.46898 0.42320 0.41729 

R 0.15922 0.07190 0.04513 0.03530 0.03281 

10
4 	

L 0.07715 0.06273 0.04450 0.03530 0.03285 

B 1.07638 0.64370 0.42323 0.33141 0.30782 

R 0.15919 0.07177 0.04455 0.03285 0.02738 

105  L 0.07702 0.06253 0.04386 0.03281 0.02738 

B 1.07552 0.64207 0.41733 0.30782 0.25588 

. 	130 



Table 4.19 Seepage Discharge Components Through Canal Profile 

I ha/ht a 1.0 	H/ht a 0.3 , side slope 1:1 I 

Lt/ht 4 10  I 102  103  10
4 I 
	1°

s 

L2/ht values in non-dimensional form in terms of kht 

Bz/h1 = 101 

R 0.14182 0.10048 0.09494 0.09436 0.09430 

10  L 0.14181 0.13791 0.13636 0.13618 0.13616 

B 1.02434 0.83038 0.79923 0.79588 0.79555 

R 0.13265 0.07978 0.06925 0.06794 0.06781 

10
2 	

L 0.09690 0.07978 0.07249 0.07147 0.07136 

B 0.83571 0.56310 0.49504 0.48622 0.48531 

R 0.13061 0.07226 0.05366 0.04926 0.04869 

103 	L 0.09124 0.06903 0.05366 0.04950 0.04896 

B 0.80509 0.49538 0.36966 0.33876 0.33473 

R 0.13038 0.07121 0.04949 0.04022 0.03775 

10
4 	

L 0.09065 0.06775 0.04925 0.04022 0.03777 

B 0.80180 0.48656 0.33878 0.27358 0.25622 

R 0.13036 0.07110 0.04894 0.03777 0.03215 

105 
	

L 0.09059 0.06756 0.04868 0.04022 0.03775 

B 0.80147 0.48571 0.33476 0.25622 0.21695 
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Table 4.20 Seepage Discharge Components Through Canal Profile 
I h2/ht In 1.0 I. H/ht • 0.1 , side slope 1:1 1 

Li/hi 4 
■ 

10 102   10 9  10 	1 	104 	I 10 5 

1.2/ht values in non-dimensional form in terms of kht 

Bm/ht = 101 

R 0.07447 0.05494 0.05225 0.05197 0.05194 

10 	L 0.07447 0.07376 0.07316 0.07308 0.07307 

B 1.11389 0.90885 0.87626 0.87277 0.87243 

R 0.06985 0.04413 0.03874 0.03806 0.03799 

10
2 	L 0.05212 0.04413 0.04042 0.03989 0.03983 

B 0.91340 0.61963 0.54615 0.53663 0.53565 

R 0.06885 0.04021 0.03043 0.02807 0.02776 

105 	L 0.04928 0.03854 0.03043 0.02819 0.02790 

B 0.88127 0.54649 0.40965 0.37582 0.37142 

R 0.06874 0.03966 0.02818 0.02312 0.02176 

104  L 0.04899 0.03785 0.02805 0.02312 0.02177 

B 0.87781 0.53700 0.37585 0.30423 0.28510 

R 0.06873 0.03961 0.02788 0.02176 0.01863 

105  I 0.04896 0.03778 0.02775 0.02175 0.01863 

B 0.87746 0.53601 0.37145 0.28512 0.24177 
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Table 4.21 Seepage Discharge Components Through Canal Profile 

h2/ht = 0.9 , H/ht = 0.5 , side slope 1:1 

Lt/ht 4 10 	1 102  I 103 	I 104 105 

1.2/hi values in non-dimensional form in terms of kht 

Bz/ht = 10 

R 0.18515 0.12284 0.11269 0.11096 0.11057 

10 	L 0.17448 0.16697 0.16390 0.16332 0.16319 

B 0.92105 0.72168 0.68201 0.67508 0.67353 

R 0.17500 0.09929 0.08266 0.07974 0.07915 

102 	L 0.12226 0.09777 0.08629 0.08401 0.08354 

B 0.76967 0.50208 0.42642• 0.41255 0.40973 

2 0.17335 0.09197 0.06554 0.05811 0.05660 

103 	L 0.11758 0.08711 0.06538 0.05836 0.05691 

B 0.75183 0.45474 0.32765 0.29031 0.28270 

2 - - 0.06216 0.04875 0.04426 

104 	L - - 0.06179 0.04874 0.04428 

B - - 0.30965 0.24177 0.21902 

2 - - - 0.04716 0.03881 

105 	L - - - 0.04713 0.03881 

B - - - 0.23362 0.19142 



Table 4.22 Seepage Discharge Components Through Canal Profile 

[ h2/ht 	0.8 , H/ht s 0.5 , side slope 1:1 

Lt/ht 4 10 102 	i 102 	I 104 	I 10s 

L2/ht values in non-dimensional form in terms of kht 

Hz/hi = 10 

R 0.18133 0.11495 0.10232 0.09964 0.09894 

10  L 0.15994 0.15116 0.14724 0.14631 0.14606 

H 0.87323 0.66144 0.61252 0.60190 0.59910 

R 0.17330 0.09508 0.07598 0.07188 0.07087 

102 	L 0.11768 0.09201 0.07877 0.07556 0.07476 

B 0.75187 0.47563 0.38919 0.36986 0.36510 

R - 0.09043 0.06227 0.05318 0.05090 

103 	L - 0.08515 0.06194 0.05335 0.05116 

B - 0.44548 0.31035 0.26480 0.25337 

R - - - 0.04625 0.04046 

10
4 	L - - - 0.04622 0.04047 

B - - - 0.22899 0.19977 

R - - - - 0.03680 

105 	L - - - - 0.03680 

B - - - - 0.18131 
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Table 4.23 Seepage Discharge Components Through Canal Profile 

hz/ht = 0.7 , H/ht a 0.5 , side slope 1:1 1 

Lt/ht 4 10 	1 102   103  10
4 

 
105  

L2/ht values in non-dimensional form in terms of kht 

Bz/ht 	la 10 

R 0.17753 0.10702 0.09187 0.08822 0.08719 

to 	L 0.14535 0.13523 0.13037 0.12907 0.12871 

B 0.82537 0.60123 0.54306 0.52875 0.52472 

R 0.17160 0.09084 0.06926 0.06395 0.06252 

10
2 	

L 0.11309 0.08622 0.07120 0.06704 0.06590 

B 0.73402 0.44922 0.35198 0.32721 0.32051 

R - - 0.05900 0.04822 0.04516 

109 	L - - 0.05850 0.04831 0.04537 

B - - 0.29303 0.23932 0.22409 

R - - - 0.04374 0.03664 

10
4 	

L - - - 0.04369 0.03664 

B - - - 0.21621 0.18054 

R - - - - - 

105 
	

L - - - - - 

B - - - - - 



Table 4.24 Seepage Discharge Components Through Canal Profile 

I h2/ht ■ 1.0 , HAIL ■ 0.5 , side slope 2:1 I 

Lt/ht ♦ 10 	1 102  10
2 

104 	I 10 

L2/h1 values in non-dimensional form in terms of kht 

B2/hi m 10 

R 0.24549 0.16898 0.15857. 0.15748 0.15737 

10  L 0.24548 0.23651 0.23337 0:23299 0.23296 

B 0.87430 0.70324 0.67450 0.67141 0.67108 

R 0.22944 0.13406 0.11531 0.11298 0.11274 

10
2 	

L 0.16439 0.13406 0.12128 0.11947 0.11'928 

B 0.71033 0.47723 0.41778 0.41009 0.40930 

R 0.22568 0.12098 0.08858 0.08105 0.08007 

10
2 	

L 0.15391 0.11503 0.08858 0.08149 0.06055 

B 0.68224 0.41820 0.30993 0.28346 0.28a04 

R 0.22525 0.11915 0.08147 0.06577 0.06161 

104  L 0.15282 0.11269 0.08103 0.06577 0.061f5 

B 0.67920 0.41054 0.28350 0.22801 0.21333 

R 0.22520 0.11896 0.08054 0.06165 0.05225 

10
5 	

L 0.15271 0.11245 0.08006 0.06161 0.05225 

B 0.67890 0.40974 0.28005 0.21333 0.18021 
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Table 4.25 Seepage Discharge Components Through Canal Profile 

I h2/ht 0 1.0 , H/ht 0 0.5 , side slope 0.5:1 

Lt/ht 4. 10  I 102 	1 109 	I 104 	I 10s 

L2/ht values in non-dimensional form in terms of kht 

B2/ht = 10 

R 0.16220 0.11156 0.10501 0.10433 0.10426 

10  L 0.16220 0.15605 0.15408 0.15385 0.15383 

B 1.01794 0.82370 0.79261 0.78926 0.78892 

R 0.15151 0.08800 0.07593 0.07444 0.07429 

10
2 	

L 0.10862 0.08800 0.07967 0.07851 0.07839 

B 0.82754 0.55574 0.48815 0.47940 0.47849 

R 0.14913 0.07948 0.05846 0.05355 0.05292 

105  L 0.10200 0.07575 0.05846 0.05383 0.05322 

B 0.79679 0.48841 0.36386 0.33331 0.32934 

R 0.14886 0.07830 0.05382 0.04356 0.04083 

104  L 0.10131 0.07425 0.05355 0.04356 0.04086 

B 0.79351 0.47969 0.38714 0.26895 0.25185 

R 0.14883 0.07818 0.05321 0.04086 0.03469 

10'  L 0.10124 0.07409 0.05291 0.04083 0.03469 

B 0.79317 0.47879 0.32936 0.25185 0.21315 
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As discussed earlier, the seepage from the canal flows to 

the drainages located at different levels and distances on 

either side of the canal. The seepage water emerging in the 

drainages will depend upon their distances and elevation in 

relation to canal water levels. It is seen that if level of a 

drainage is raised, seepage to this drainage is reduced. At 

certain critical level ( he ), it will become ineffective, i.e., 

canal seepage emerging in this drainage will be reduced to zero. 

Depth at which a drainage become ineffective depends on the 

values of parameters such as canal bed width and water depth, 

and relative levels and distances of the drainages. The critical 

drainage level ratio, hg/ha, for various physical parameters is 

presented in Figs.4.12 to 4.22. 

A perusal of Tables 4.2 to 4.7 and Figs.4.2 to 4.7 indicates 

that the seepage discharge decreases with increase in the values 

of Li/hi and L2/hi, i.e., as drainage distances increase, the 

seepage discharge decreases. The seepage discharge increases 

with the increase in bed width and water depth. Also, the 

seepage discharge from canal increases with flattening of side 

slope. However, the effect of change in the slope of the canal 

on the seepage discharge is very small. For example, 

dimensionless seepage discharges, q/khi, from canal with Lt/h1 = 

L2/hi = 104  and Whi = 20, H/hi = 0.5 and h2/hi. = 1.0 for side 

slopes 0.5:1, 1:1 and 2:1 are 0.38304, 0.38366 and 0.38523 

respectively. Similarly, the effect of water depth on the 

seepage discharge is small. 
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The dimensionless seepage discharges for side slope 1:1 and 

for Li/hi = L2/ht = 104  , 82/ht  20 and h2/ht . 1.0  are 

0.38366, 0.38161 and 0.37930 for H/hi = 0.5, 0.3 and 0.1 

respectively . When HAI is reduced to 0.0, C refer Table 3.2 I, 

the dimensionless seepage discharge for the above physical 

parameters worked out to be 0.37786. 

It is also seen that if level of one of the drainages is 

raised, total seepage from the canal reduces. The seepage 

discharge to the raised drainage reduces and that to the 

drainage, level of which is fixed, increases C refer to Tables 

4.8 and 4.11 to 4.13 ). Seepage discharge to the drainage at 

lower level and nearer to the canal is more than that to the 

drainage at higher level and further distance C refer to Tables 

4.8 to 4.15 1. 

The case of symmetric drainages located on either side of 

canal is a particular case of the present study. The results 

obtained in this study for symmetrical drainages compare well 

with that presented by Garg and Chawla C 1970  The comparison 

is shown in Table 4.26. 

The free , surface profile is affected by the  various 

parameters such as drainage distance and elevation, canal bed 

width, water depth and side slope. The effects of drainage 

distances and elevations and canal bed width on the free surface 

profile on either side of the canal have been discussed in the 

previous chapter in which the water depth inside the canal is 

n'.3gligible. Free surface profiles have been plotted in Fig.4.8 

H/hi = 2.0, 1.0, 0.5 and 0.25 for fixed values of 132/hi = 5, 
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Table 4.26 Comparison with Previous Work 

I h2 	h 	Lt Ng 1.2 ■ L 

L/Bz  =  10 
Side  slope  2:1 

H/h  =  0.5  ;  82/H  =  10 
and L/H  . 50 

H/B2 Side  slope 

0.05  1 0.10 0.2 2:1 1:1  I 0.5:1 
q/kh q/kh 

Present work 0.74536 0.77283 0.81792 0.91255 0.88946 0.88098 

Garg & Chawla 0.745 0.77 0.81 0.906 0.885 0.875 

Side  slope  2:1  and H/h  =  0.5 

L/H = 10 Bz/H =  10 

Bz/H L/H 

5 10 15 10 50  1 100 
q/kh q/kh 

Present work 1.24659 1.42712 1.56431 1.42712 0.91253 0.77283 

Garg & Chawla 1.23 1.39 1.52 1.39 0.906 0.77 
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Free surface profiles have been plotted in Fig.4.8 for 

H/ha = 2.0, 1.0, 0.5 and 0.25 for fixed values of 82/ht = 5, 

• Lt/ht = La/ha = 100, ha/ha = 1.0 and side slope 2:1. A perusal 

of the figure indicates that the free surface rises with 

increase in the value of H/ha, i.e., with increase in the water 

depth. The effect of the change in the side slope of the canal 

on the free surface profile has also been studied and found that 

it is negligible. For ha/ha = 1.0, H/ha = 0.5, 112/ht = 20 and 

La/ha = La/ha = 1000, the free surface coordinates for side 

slopes 2:1, 1:1 and 0.5:1 are given in Table 4.27. Plotting of 

this results indicated that the profiles of the free surfaces 

for the above three side slopes are not distinctly separate. 

The effect of the drainage distance is shown in Fig.4.9. 

With H/ha = 0.5, La/ha = 50, ha/ha = 1.0, B2/ha = 10 and side 

slope 2:1, the free surface rises with increase in the distance 

of the other drainage, i.e., as La/ha increases, the free 

surface rises as given in Fig.4.9(a). The free surface on the 

side of the drainage, distance of which is increased, also rises 

with increase in this distance as shown in Fig.4.9(b). 

Free surface on the right side of the canal have been 

plotted in Figs.4.10 for B2/hi = 10, 20 and 30 with fixed values 

of ha/ha = 1.0, H/ha = 0.5, La/ha = 50, La/ha = 5 and side slope 

of 2:1. As shown in the figure that the free surface rises with 

increase in the bed width of the canal. 

In order to study the effect of drainage elevation on the 

free surface, curves of free surface for ha/ht = 1.0, 0.75 and 

0.5 have been plotted in Fig.4.11 in which H/ha = 0.5, &R/ha 
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Table 4.27 Coordinates of the right-hand side free surface 

C Variation with change in canal side slope 3 

I h2/ha 0 1.0 ; H/ht 0 0.5 ; Lt 0 L2 0 10g  ht 

Side slope 2:1 Side slope 1:1 Side slope 0.5:1 

x/La y/ht x/Lt y/ht x/Lt y/ht 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.050605 0.403231 0.050723 0.405662 0.050822 0.406620 
0.100597 0.506103 0.100708 0.508371 0.100802 0.509262 
0.150572 0.570076 0.150677 0.572150 0.150766 0.572964 
0.200542 0.616939 0.20.0641 0.618838 0.200725 0.619583 
0.250510 0.654180 0.250603 0.655926 0.250682 0.656611 
0.300478 0.685296 0.300564 0.686904 0.300638 0.687535 
0.350445 0.712212 0.35025 0.713697 0.350593 0.714280 
0.400411 0.736112 0.400485 0.737484 0.400548 0.738022 
0.450377 0.757782 0.460445 0.759049 0.450503 0.759546 
0.500343 0.777782 0.560405 0.778950 0.500458 0.779408 
0.550309 0.796535 0.550365 0.797609 0.550412 0.798030 
0.600275 0.814383 0.600324 0.815365 0.600367 0.815750 
0.650241 0.831621 0.650284 0.832515 0.650320 0.832865 
0.700206 0.848535 0.700243 0.849343 0.700275 0.849658 
0.750172 0.865431 0.750203 0.866148 0.750229 0.866431 
0.800138 0.882682 0.,800162 0.883310 0.800183 0.883557 
0.850103 0.900839 0.850122 0.901371 0.850138 0.901579 
0.900068 0.920886 0.9008.1 0.921310 0.900092 0.921475 
0.950034 0.945277 0.550040 0.945571 0.950045 0.945684 
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
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10, Lt/hi = L2/h: = 100 and side slope 2:1. In the figure it is 

seen that the free surface rises with decrease in the value of 

h2/hi, i.e., free surface rises with rise in the elevation of 

drainage on the other side. 

Critical depth of drainage at which it becomes ineffective 

have been compiled for different values of various parameters. 

For H/hi = 0.5, side slope 0.5:1, 1:1 and 2:1, Li/hi = 10, 102, 

102, 104  and 105, L2/hi = 10, 102, 102, 104  and 105  and 132/h1 = 

10, 20 and 30, the values of he/hi have 'been plotted in 

Figs.4.12 to 4.22. From these figures it is seen that the values 

of he/hi decreases with decrease in the values of Li/hi and 

L2/hi. It is also found that the values of he/ht for Lt/h1 

L2/h1 = 104  and side slope 1:1, H/hi = 0.5 are 0.6969, 0.6780 

and 0.6652 for values of 82/111 = 10, 20 and 30 respectively.  It 

is therefore seen that the value of he decreases with increase 

in the bed width, i.e., the critical  level  at which drainage 

become ineffective is higher for larger bed width. For the value 

of Bz/h1 = 20, Li/hi =  = 104, side slope 1:1, the values 

of he/hi are 0.6780, 0.6795, 0.6811 and 0.6821 respectively for 

H/hi = 0.5, 0.3, 0.1 and 0.0. Hence, it is seen that the 

critical depth of the drainage increases with decrease in the 

water depth of the canal although the effect is very small. For 

B2/hi = 20, Li/hi = L2/hi = 104, H/hi = 0., the values of he/hi 

are 0.6769, 0.6780 and 0.6785 for side slope 2:1, 1:1 and 0.5:1 

respectively which indicates that the critical level of the 

drainage is lowered with canal side slope becoming steeper. 
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The seepage discharge from canal takes place from the bed 

and sides of the channel. The percentage discharge taking place 

from bed and sides depends on the relative distances and levels 

of the drainages on either side. With increase in the bed width 

of the canal, the percentage seepage discharge from the bed 

increases. For ha/hi = 1.0, Li/hi = L2/hi = 10 ( symmetrical 

case ), Bm/hi = 10, ti/hi = 0.5 and side slope 1:1, the seepage 

discharge (q/khi) from both side slopes is 28.06 percent of the 

total seepage from the canal. With increase in the drainage 

distance on the right-hand side from 10hi to 105  hi, the seepage 

from both the side slopes is 28.775 percent of total seepage 

from the canal although seepage from the right side slope 

decreases from 14.03 to 11.63 percent due to increase in 

drainage distance on this side and seepage discharge component 

increases to 17.15 percent from the other side slope. With 

increase in bed width from 10hi to 20hi and 30hi, the 

dimensionless seepage discharge from bed of the canal increases 

from 71.94 to 78.555 and 81.51 percent of the total seepage, 

respectively. It is therefore seen that the percentage increase 

in seepage discharge from the canal bed is only marginal 

although bed width is increased to two or three times the 

original bed width. Keeping other parameters same, the seepage 

discharge from the side slopes decreases with decrease in water 

depth. For example, for Li/hi = L2/hi = 10, B2/hi = 10, ha/hi 

1.0 and side slope 1:1, the seepage discharge from the side 

slopes decreases from 14.06 to 11.794 percent of the total 
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seepage discharge with decrease in water depth from 0.5ht to 

0.1ht. Change in elevation of the drainage on one side also 

affects the seepage from either side slope. For example with 

decrease in h2 from 1.0ht  to 0.7hi,  i.e.  raising of left 

drainage, the seepage from the side slope towards the raised 

drainage decreases from 14.03 to 12.66 percent of total seepage 

from the canal and increases from 14.03 to 15.46 percent from 

the other side slope ( Total from both side slope is 28.11 

percent against original value of 28.06 percent ). As expected 

the seepage from side slopes increases with flattening of side 

slope. 
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CHAPTER 5 

SEEPAGE FROM TRAPEZOIDAL CANAL 

TO 

DRAINAGE ON ONE SIDE ONLY 

Introduction 

Effectiveness of drainage depends upon its distance from 

canal and its depth below  canal  water  level. In case the 

drainage is located  at very  large distance it will become 

ineffective and the other drainage located  at nearer distance 

will receive entire seepage from canal. Similarly, as discussed 

earlier, if level of the drainage is raised above certain level, 

it becomes ineffective. Solution of the problem of seepage from 

a canal of negligible water depth to a collector drainage on one 

side of the canal is available (  Polubarinova-Kochina ( 1962, 

pp.131-132 ] and is presented  in Appendix C. Among other 

factors, the seepage losses from unlined canals depend on the 

shape of the canal cross section and the depth of water in the 

canal as well. Presently,  no  solution  is  available for the 

seepage from a trapezoidal canal to a collector drainage on one 

side of the canal. Solution of this problem  is given in this 

chapter. In the derivation, the above factors are included and 

exact solution of the problem  of seepage  from a trapezoidal 

canal in homogeneous medium to a collector drainage located at 

finite distance is presented. On the side  where there is no 

collector drainage the free surface spreads out and approaches 
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the level of the water in the drainage which is located at 

finite distance on the other side of the canal. 

5.1 Boundary conditions. 

In the z-plane (Fig.5.1(a)], AA'B'B is an equipotential line 

and corresponds to 0 = 0. Along the phreatic line BC which is a 

stream line, the value of w is taken to be zero. For the 

phreatic line AF, w has been assigned a value equal to q, where 

q is the unknown seepage loss per unit length of the canal. 

Along the drainage CD, which is an equipotential line, 0 is 

equal to kh, in which h is the difference between water levels 

of the canal and the drainage. The distance of the drainage is L 

from the right side of the canal, i.e from the water line of the 

canal as shown in Fig.5.1(a). 

5.2 Solution of problem. 

Transformations  The physical plane and the e-plane in this 

case are similar to those obtained in Chapter 4 except that 

Points E/E' merge with Point F. Therefore, transformation of the 

z-plane (Fig.5.1(a)] onto the e-plane (Fig.5.1(b)] and e-plane 

onto (-plane [Fig.5.1(c)]  are similar to those obtained  in 

Chapter 4. In another operation, the w-plane is mapped on the 

t-plane [Figs.5.1(d) and 5.1(e)]. This mapping is similar as 

given in Appendix C. Table 5.1 summarizes the location of the 

points in the different planes. The bilinear transformation that 

maps the C,-plane onto the t-plane is identical as that given by 

Eq.4.68 and it is reproduced below. 

t = CY( 	 (5.1) 
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Table 5.lCa) Points Location on the z, e and 	Planes 

POINT 

z - plane e - plane C - plane 

x y et e2 z 77 

A -Bz + 2HcotCna) 0 eA 0 -I o 

A'  -Bz + HcotCnaD H BA' H -Xi 0 

B'  -Bz + HcotCnaD H es' H -X2 0 

B 0 0 0 0 0 0 

C L h L 0 	' tc 0 

D m h m 0 m 0 

F -m -co 0 -co 0 

Table 5.1Ch) Points Location on the w and t planes 

POINT 

w - plane t - plane 

0 W r s 

A 0 q -a 0 

A'  0 WA' -tA' 0 

B'  0 We -to' 0 

B 0 0 0 0 

C kh 0 J. 0 

D kh q m 0 

F kh q -m 0 



Similar to Eqs.4.5 and 4.8 the following were obtained. 

cot(iiai) = cot(na)  (5.2) 

cot(na2) = cot(na) - (q-tp.e)/kH  (5.3) 

Also, from Eq.4.70, the following relationship was found. 

L/H = cosec(nal)(II]/[(X2)I2]  (5.4) 

in which, 

sinh-ii 1/a 

II = 1 [ sinh2u+X2jal[sinh(u)ji-al[sinh2(u)+XI
ni-2a2 

cosh(u)]  du 

0 

. . . (5.5) 

7T 2 
is+2a11  

- X2 OOS

2

2U]a2  cos(u) 12 = j  [sin(u)  du 
1 - X2 COSU 

From Eq.4.74, 

Bz/H = 0.5 cosec(nai) [I4/1(X2)I2)]  [( wA' - wn')/kh][h/H] 

. . . (5.7) 

in which, 

-X2 

14 = m2j 	[  c 	
A.2 l ai r  c 	

j 

xila2 
r  

-Xi 

dC  (5.8) 

The abscissa, x, of the point on the free surface BC, is as 

given below [ refer Eq.4.82 ] 

x/L = I7/Ii  (5.9) 
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in which, 

11 

17 = 
1 

a2  M [COSU)]1-2a2du 

sinh-ii-r- 

Esinh2u+X2jal[sinh(u)]1-2a1[ sinh2(u)+Xl]

0 

. 	. 	. 	(5.10) 
and 0 5 i 5 1/a. 

The  horizontal  distance,  XL, 	of a  point on  the  free  surface 

AF, from  Point  A  is  as  given  below  [ refer Eqs.4.25,  4.26,  4.27, 

and 4.29(a)  ] 

XL/L  =  18/11 (5.11) 

in which, 

cosh-117—  
In =J[cosh2(u)-X2]"[cosh(u)]

1-2al 
 [cosh2-Xl]a2(sinh(u)]1-2a2du 

. . . (5.12) 

and -1  ( > 

Mapping of the hf-plane onto the t-plane : There is no major 

change in the shapes of the rectangular flow fields presented in 

the w-plane for the cases of the canal with negligible water 

depth [Fig.C.1(c)], and the present case in which the shape of 

the canal and depth of the water in the canal  are taken into 

consideration [Fig.5.1(d)]. However, for convenience the 

rectangular flow field, Fig.5.1(d), is mapped onto another 

auxiliary half-plane, t-plane, as shown in Fig.5.1(e) whereas 

the e-plane is mapped on the intermediate (-plane. This mapping 

0 
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is done using the Schwarz-Christoffel conformal transformation. 

The Point A in the t-plane is located at -a and its value 

should be determined. 

The rectangular flow field in Fig.5.1(d) is opened at Point 

F/D and mapped from -cm to +m along the real axis of the t-plane. 

Points A, 8 and C are mapped at t =  0 and 1 respectively. 

Points A' and B' are mapped at t = -b.' and -tm'  respectively. 

The Schwarz-Christoffel transformation equation is as given 

below t 

J 
dw = Ma  

dt  
(5.13) 

(t+a)(t)(t-1) 

where Mais a complex constant. 

It is observed that Eq.5.13 and Eq.C.5 are similar. 

Therefore, the same solutions of Eq.C.5 in various segments of 

the t-plane hold true for Eq.5.13 as well. Hence, the resulting 

equations obtained on integrating Eq.5.13 along different 

segments of the t-plane are as given below. 

The ordinate, y, of a point on the free surface BC is given 

by the following equation. 

-ky = Me F(05,m)  (5.14) 

in which, 

05  = sin 11(1+a)t/(t+a)  05 t <1  (5.15) 

At Point C, y = h, t = 1. Substituting these in Eqs.5.15 and 

Eq.5.14, it is found that 05 = n/2 and 

kh = -Ma K(m)  (5.16) 
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in which, K(m) is the complete elliptic integral  of the first. 

kind with modulus m and 

m2  = 1/(1+a)  (5.17) 

Dividing Eq.5.14 by Eq.5.16, the following non-dimensional 

relationship for the ordinate of a point on the free surface BC 

was found. 

Y/h = F(05,m)/K(m)  (5.18) 

The abscissa, x, of the point on the free surface BC can be 

found by making use of Eq.5.9. The, relationship between the 

corresponding values of the point in the t-plane and (-plane are 

as given by Eq.5.1. 

The ordinate, y, of the point on the free surface AF having 

a value of t in the t-plane can be expressed as follows [ refer 

Eq.C.7 and Eq.5.16 J. 

y/h = F(04,m)/K(m)  (5.19) 

in which, 

04 = sin ii(a+t)/t  -03 < t 5 -a  (5.20) 

The value of the abscissa of the above point can be found 

using Eq.5.11. The corresponding values of the point in the 

t-plane and (-pl-ane can be found from Eq.5.1. 

At Point F on the free surface AF, t = -m and Eq.5.20 gives 

04 = n/2. Substituting this in Eq.5.19 and dividing the 

resulting equation by Eq.5.16, the equation for the ordinate of 

the free surface at the farthest point, Point F, i.e y = Yr, as 

given below was obtained. 

YF/h = 1  (5.21) 
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As ( = -m at this point, and if this is substituted in 

Eq.5.11, the corresponding abscissa of the point on the free 

 

surface works out to be x =  . So, Eq.5.21 states that at 

infinity, the free surface on the left-hand side approaches the 

level of water in the collector drainage. 

The stream function value at any point along AA'B'e. , say 

wl , is given by the following equation [ refer Eq.C.21 ]. 

(q 
 w') . -Ma F(Odoe)  (5.22) 

in which, 

06 = sin ii(t+a)/a  (5.23) 

m' = a/(1 4-0) = 1/(1 - em)  (5.24) 

Dividing Eq.5.22 by Eq.5.16, the following non dimensional 

equation was obtained. 

q/kh  ws /kh = F(06,m')/k(m)  (5.25) 

At Point B, t = 0 and w' = 0. Hence, substituting these in 

Eq.5.23 and Eq.5.25, the following expression for the seepage 

quantity, q, from the canal was obtained. 

q/kh = F(n/2,m')/k(m) 

= K(W)/K(m) 
 

(5.26) 

At Point A', C = -XI and from 'Eq.5.1, t = -4c/X.i. Rutting w' 

WA' and substituting these in Eqs.5.23 and 5.25, 

wA'ikh = q/kh - F(PA',16')/K(m) 
 

(5.27) 

in which, 

OA' = sin  (1-Xi) 
 

(5.28) 
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At Point B', C = -X2 and from Eq.5.1, t = -0X2 and putting 

w'  102' and substituting these in Eqs.5.23 and 5.25, 

01./10 = q/kh - F((121 01')/K(m)  (5.29) 

in which, 

= sin  (1-x2)  (5.30) 

5.3 Results and Discussions 

As discussed in the previous chapter,  it is difficult to 

obtain a direct relationship between z and w. Therefore, the 

procedure followed in computations was to assume the values of 

parameters in intermediate plane and then determine the values 

of w corresponding to these parameters and determine the various 

dimensions in physical plane such as Bz/h, L/h, H/h and side 

slopes. In case specific values of these parameters in physical 

plane are desired, few iterations are required by way of 

adjustments in the values of intermediate parameters such as a, 

Xi and X2. Coordinates of the free surface on the right-hand 

side, i.e. BC, are determined from Eqs.5.9 and 5.18 for various 

values of t ( 0 5 t 5 1 ). Similarly, coordinates of the free 

surface on the left-hand side, i.e AF, are obtained from 

Eqs.5.11 and 5.19 for various values of t ( -m < t  -a ). 

The values of seepage discharge had been calculated for the 

various combinations of the following physical parameters; 

Bz/h = 10, 20 and 30 ; L/h = 10, 102, 109, 104  and 105; H/h = 

0.0, 0.1, 0.3 and 0.5 and side slope 1:1. The results are given 

in Table 5.2 and are plotted as shown in Fig.5.2. 
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Table 5.2 Seepage from Canal with Drainage on One Side 

I Side- Elope 1:1 3. 

L/h 	4 10 I  10
2  

1 103  1 104  105  

Bz/h q/kh 

1 Hrh w 0.01 

10 

20 

30 

0.97679 

1.15473 

1.26736 

0.60614 

0.69702 

0.76002 

0.42307 

0.46764 

0.49784 

0.32342 

0.34884 

0.36549 

0.26160 

0.27792 

0.28838 

Hrh m 0.1 

10 

20 

30 

0.99511 

1.16816 

1.27891 

0.61328 

0.70191 

0.76398 

0.42650 

0.46986 

0.49957 

0.32539 

0.35006 

0.36642 

0.26287 

0.27870 

0.28895 

, 

Hill = 0.31 

10 

20 

30 

1.02237 

1.18856 

1.29641 

0.62424 

0.70971 

0.77040 

0.43179 

0.47341 

0.50239 

0.32845 

0.35203 

0.36794 

0.26485 

0.27993 

0.28988 

Hrh = 0.5 

10 

20 

30 

1.04572 

1.20628 

1.31162 

0.63372 

0.71664 

0.77616 

0.43635 

0.47656 

0.50492 

0.33106 

0.35377 

0.36930 

0.26654 

0.28104 

0.29073 
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A comparison of seepage losses from trapezoidal canal with 

collector drainage on both sides ( Table 3.2 and 4.2 to 4.5 ) 

and those from trapezoidal canal with collector drainage only on 

one side ( Tables 5.2 ) indicates that seepage losses for the 

former case approach the values of seepage for the latter case 

if the value of L2/Lt  105. In case the farther side collector 

drainage is located at a distance 10 times or more than the 

nearer drainage ( say, L2/Lt k 10 ), the error in the seepage 

losses calculated by ignoring the farther drainage worked out to 

be less than 10 percent as compared to that obtained by 

considering both drainages. The magnitude of this error depends 

upon the bed width and distances of the drainages. A further 

perusal of Table 5.2 indicates that the seepage losses increase 

with increase in the water depth of the canal. For example, the 

seepage losses (q/kh) are 0.977, 0.995, 1.022 and 1.046 for H/h 

= 0.0, 0.1, 0.3 and 0.5 respectively for Bz/h = 10, L/h = 10 and 

side slope 1:1. For L/h = 105, Bz/h = 10, the seepage losses 

(q/kh) are 0.2616, 0.26287, 0.26485 and 0.26654 for H/h = 0.0, 

0.1, 0.3 and 0.5 respectively. It is therefore seen that effect 

of water depth on the seepage losses reduces as L/h increases. 

Table 5.3 gives values of seepage losses from sides and bottom 

of the canal for L/h = 10, 102, 102, 104, and 105; Bz/h = 10, 20 

and 30; H/h = 0.5 and side slope 1:1. It is seen from the table 

that the seepage from the side slopes on the drainage side 

( right side in this case ) are higher than those from the other .  

side. However, this differences reduce as L/h > 102. 
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Table 5.3 Seepage Discharge Components through Canal Profile 

1 Drainage on One Side :- slope 1:1 and H/h ■ 0.5 1 

L/h 	4 

. 

 10  102   10
a 

104   10
5 

Note that Seepage component values below are in terms of kh 

Bz/h • 10 

R 0.17356 0.09197 0.06218 0.04760 0.03845 

L 0.11813 0.08709 0.06218 0.04758 0.03845 

B 0.75403 0.45466 0.31163 0.23588 0.18964 

Bz/h = 20 

R 0.16328 0.07825 0.05045 0.03749 0.02987 

L 0.09105 0.07094 0.04991 0.03745 0.02987 

B 0.95195 0.56745 0.37620 0.27883 0.22130 

Bz/h = 30 

R 0.15919 0.07176 0.04448 0.03249 0.02565 

L 0.07701 0.06250 0.04379 0.03244 0.02564 

B 1.07542 0.6419 0.41665 0.30437 0.23944 

NOTE :- 
 

R = seepage component through right side slope, 

L = seepage component through left side slope and 

B = seepage component through canal bottom width. 



The effect of drainage distance, bed width and water depth 

on the free surfaces on the drainage side and on the other side 

of the canal had also been studied. 

Free surface profiles on the right-hand side and left-hand 

side have been plotted in Figs.5.3 and 5.4 respectively, for 

B/h . 10, H/h = 0.5, side slope 2:1 and L/h = 10, 50 and 100. It 

is seen that the free surface is higher for the larger value of 

L/h. Comparing the rises in the free surfaces at the right and 

left side of the canal, it is observed that as the drainage 

distance increases, the rises on the free surface, on the side 

on which the drainage is located, is very high. But, the free 

surface on the other side, i.e. in this case the left-hand side, 

drops steeply at the vicinity of the canal and then drops gently 

and does not reach the level of the drainage at the 

corresponding distance, i.e. L, from the canal as .in the case of 

the right-hand side free surface. Moreover, the free surface on 

the drainage side is s-shaped with steep slope near the canal 

and the drainage with a point of contraflexture in between 

whereas on the left-hand side the free surface drops steeply 

near the canal and the slope becomes flatter as distance from 

the canal increases. 

For the study of the effect of the bed width on the free 

surfaces on the left and right side of the canal., three bed 

width values of B2 = 10h1, 20h1 and 30hi were considered 

[Fig.5.5 and 5.6]. The canal side slope at 2:1, the water depth 

in the canal at H = 0.5h and the drainage distance at L = 50h 

were fixed. 
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It is seen from the above figures Hig.5.5 and 5.63 that 

the free surfaces rise with increase in the bed width. The free 

surface on the right side reduces. to the level of the left 

drainage at a distance of L from the canal whereas the left free 

surface's reduction to the level of the drainage is very 

gradual. From Fig.5.6, it is observed that though the left free 

surface is approaching the level of the drainage as distance 

from the canal is increased, even at a distance ten times L, it 

did not reach this level. 

Right and Left free surface profiles have also been plotted 

in Fig.5.7 and 5.8 respectively, for Bz/h = 5, L/h = 100 and 

side slope 2:1 and H/h = 2.0, 1.0, 0.5. 0.25 and 0.0. It is seen 

that the free surfaces rise with increase in the water depth 

inside the canal. 

181 



1  

cc). 
d 

0 

4/1( 
to 0 

0 

0 

0 00 

H 
.c 
-J 

0 id

• 

' 

*.• 
L- ii‘■ N 

X I CO 
1.1.1 

C *1 
X 0 

0 
LLJS 

Fi
g

.5
.7

 R
IG

H
T
 

182 



0 
0 

:46 

LL1 

C•4  

.. 06 _ I 

-o 
-o  

1- '111111111 I 1111 	 C; 
O 0 0 

O 

183 



CHAPTER 6 

CONCLUSI ONS 

An analytical solution has been obtained with the help of 

Mukovsky's  function  and  conformal  transformation  for 

determining the phreatic surface and seepage losses from a canal 

with  asymmetrically  disposed  drainages.  The  following 

conclusions are drawn from the present study : 

(1) The seepage discharge for various values of physical 

dimensionless parameters have been  prepared in  easy to use 

curves [ nomographs ) for practical use. The nomograph has been 

presented to predict seepage loss from a canal  for practical 

ranges of the drainage distances and  levels,  canal  dimensions 

and water depths. The range considered for Li/hi and L2/hi is 10 

to 105, 82/hi = 10, 20 and 30 ;  = 0.5, 0.3, 0.1, 0.0 and 

h2/111 = 1.0, 0.9, 0.8 and 0.7. The canal side slopes considered 

are 2:1, 1:1 and 0.5:1. For  the  case of H = 0, separate 

nomographs for the different dimensions of the flow system are 

given [Chapter 3). Also, for the case of drainage on one side 

[Chapter 5] a separate nomograph  is  made to compute seepage 

discharge for canal side slope 1:1 and for any value of drainage 

distance (L/h) between 10 to 105,  value of bed width (Bm/h) 

between 10 to 30 and canal water depth (H/h) between 0 to 0.5. 

(2) A perusal of the results  indicates that, the seepage 

discharge decreases with increase in the values of Li/hi and 

12/hi, i.e as the drainage  distance increases, the seepage 

discharge decreases. It is also seen that the seepage discharge 
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increases with increase in the value of Bz/ht. However, increase 

in the seepage discharge due to increase in bed width is not 

proportional to the, increase in bed width. Therefore, the 

practice of expressing the seepage from canals in terms of 

wetted perimeters irrespective of their size is not correct. 

(3) Other things being the same, the seepage quantity increases 

as the canal side slope is made flatter but the variation is 

small. 

(4) The seepage quantity is significantly governed by the depth 

of water in the canal. 

(5) The seepage loss received by the drainage which is at the 

lower level is more than that received by the drainage whose 

level is higher. Lowering of any one of the drainage channels 

results in the increase of seepage losses from canal. A drainage 

higher than a certain level will not receive any seeping water 

from the canal. The location of the drainage channel at which it 

does not receive any water from the canal depends on the 

drainage distances, canal dimensions and the depth of water in 

the canal. 

(6) Free surface on either side of the drainage rises with 

increase in the bed width and increase in drainage distances. 

Free surface also rises if drainage on the other side is located 

at a higher level. The effect of change of the side slope of 

canal on the free surface is negligible. However, the increase 

in depth of water in the canal significantly raises the free 

surface. 
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(7) Comparison of seepage losses from canal with collector 

drainages on one side with that from canal with drainages on 

both sides of the canal indicates that seepage losses for the 

latter case approach the values of seepage for the former case 

if the value of L2/Li Z 105. In case the farther side collector 

drainage is located at a distance ten times or more than the 

nearer drainage (say, L2/Li ? 10), the error in the seepage 

losses calculated by ignoring the farther drainage is less than 

10% as compared to that obtained by considering both drainages. 

The magnitude of the error depends on the bed width and drainage 

distances. 

(8) Free surfaces on both sides of the canal rise with increased 

drainage distance. Comparison of the changes in the levels of 

the free surface at the right and left side of the canal shows 

that the corresponding changes on the side where the drainage is 

located is very high. 

The free surface on the other side drops steeply in the 

vicinity of the canal and then drops gently and does not reach 

the level of the drainage at the corresponding distance, i.e L, 

from the canal as in the case of the free surface on the side 

where the drainage is located. Moreover, the free surface on the 

drainage side is s-shaped with steep slope near the canal and 

the drainage with a point of contraflexture in between. But the 

free surface on the other side of the canal drops steeply near 

the canal and the slope becomes flatter as distance from the 

canal increases. 
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Curves of the free surfaces on both sides of the canal with 

collector on one side have been plotted to show the effect of 

the bed width and water depth of the canal. For this case also, 

it is seen that the free surfaces rise with increase in bed 

width and water depth in the canal. 

Recommendations : As the personal computer (PC) is available 

in many offices, it may be of great interest and use if an 

interactive and user friendly software, which can calculate the 

canal seepage loss and the coordinates which define the profile 

of the free surfaces at either side of the canal, is developed. 

By giving as input the physical dimensions, namely, canal cross 

section, drainage locations, etc. and the soil permeability, the 

computer program may be developed to give the seepage loss and 

the free surface profiles and hence be a valuable assistance to 

those who are involved in the design or management of unlined 

irrigation canals in alluvial soil. If the latest graphic 

programs could be coupled with the program thus developed, one 

can feed the ground profile and then find the area which is 

likely to be water logged due to the introduction of the canal. 

The solutions derived in the present thesis may be extended 

to deal other boundary conditions such as (a) presence of 

impermeable layer below the drainages, (b) effect of shape and 

size of the drainages. and (c) cases of infiltration/evaporation 

on the free surfaces. Consideration of unsteady flow condition 

as well as to some extent anisotropic and nonhomogeneous 

condition of the soil will be of some interest to determine 

their effect on the seep'age losses and on the phreatic surfaces. 
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APPENDIX A 

SOLUTION TECHNIQUES 

The two dimensional  steady flow through homogeneous and 

isotropic porous medium is governed by the Laplace's equation, 

1102018x24. 62018y2. 0  
(A.1) 

The function, 0, satisfying Eq.A.1 in a region, say R,  is 

called harmonic. If f(z)  0(x,y) + iw(x,y) is analytic in R, 

then 0 and w are harmonic in R, i.e, 0 and w 'satisfy Laplace's 

equation (Churchill, 1948 ; Nehari, 1952, 1961; Spiegel, 1981]. 

The functions 0 and w, which depend on the spatial co-ordinates 

x and y, are called conjugate functions and given one, the other 

can be determined within an arbitrary additive constant. 

If R is a simply-connected region bounded by a simple closed 

curve C (Fig.A.1], two types of boundary-value problems are of 

great importance : 

y 

x 

Fig.A.1 Simply-connected region R. 

(1) Dirichlet's problem seeks the determination of a function 0 

which satisfies Laplace's equation ( i.e., harmonic)  in R and 

takes prescribed values on the boundary C. 
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(2) Neumann's problem seeks the determination of a function 0 

which satisfies Laplace's equation in R and whose normal 

derivative 80/On takes prescribed values on the boundary C. 

The region R may be unbounded; for example R can be the 

upper half plane with the x-axis as the boundary C. Solutions to 

both the Dirichlet and Neumann problems exist and are unique 

under very mild restrictions on the boundary conditions 

[Spiegel, 1981]. 

The Dirichlet and Neumann problems can be solved for any 

simply-connected region R which can be mapped conformally by an 

analytic function on to the interior of a unit circle or half 

plane. Theoretically, by Riemann's mapping theorem this can 

always be accomplished [Nehari, 1952, 1961]. The basic ideas 

involved are as follows. 

(i) Use the mapping function to transform the boundary-value 

problem for the region R into a corresponding one for the unit 

circle or half plane. 

(ii) Solve the problem for the unit circle or half plane. 

(iii) Use the solution in (ii) to solve the given problem by 

employing the inverse mapping function. 

The usefulness of conformal mapping in two-dimensional flow 

problems stems from the fact that solutions of Laplace's 

equation remain solutions when subjected to conformal 

transformations [Harr, 1962]. 

A.1 The Schwarz..Christoffel transformation. 

The Riemann mapping theorem guarantees the existence of an 

analytic function which maps a given simply-connected domain 

onto the unit circle or half plane but it does not show how to 
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find this function [Nehari, 1952, 1961]. In groundwater 

problems, where it is often necessary to determine the seepage 

characteristics  within  complicated  boundaries,  the 

transformation is yet more difficult. But, though this may 

appear somewhat disturbing, the use of appropriate auxiliary 

mapping techniques enables us to transform even complicated flow 

regions into regular geometric shapes [Harr, 1962]. Generally 

these figures will be polygons having a finite number of 

vertices (one or more of which may be at infinity). Thus the 

method of mapping a polygon from one or more planes onto the 

upper half of another plane is of particular importance [Harr, 

1962]. 

An explicit equation called the Schwarz-Christoffel 

transformation is used as a mapping function in the case in 

which the domain in question is a polygon. If the polygon is 

located in the z-plane ( z = x + iy), then this transformation 

that maps it conformally onto the upper half of the t-plane (t = 

r + is) is, 

dz = M 
dt 

  

(t-a) 
t-A/n 

(t-b) 
t-azn t-c/n . 	. 	. 

. .(A.2a) 

or, 

z 	M dt 

 

+ N t-Arn 01.-B/n 
(t-a)  

(t_ a_c)t-c/n  
• • 	• 

• 
.(A.2b). 

where M and N are complex constants;  A, a, C,  • • ••  are  the 

interior angles (in radians) of the polygon in the z-plane 

193 



Az  

rT 

At rAz 

A 

Ca) 

[Fig.A.2(a)];  and  a,  b,  c,  ...(a  <  b  <  c  <  ...) 

the  real  axis  of  the  t  plane  corresponding  to 

are 

the 

points  on 

respective 

vertices  A,  B,  C,  ... [Fig.A.2(b)].  It  should be noted,  in 

particular that the complex constant N corresponds to the point 

on the perimeter of the polygon that has its image at t = 0 

[Harr, 1962]. 

Ay 

Fig.A.2Ca) Polygonal region in z-plane. 

t = -CO 

Jf  

 

) r 

   

Fig. A. 2(1)3 t -plane 

It should also be noted that if a vertex, for example A2, 

tends to infinity in such a way that the adjacent sides become 

parallel [Fig.A.3(a)], then one must take A2 = 0.  For further 

A2 

Az 
b) 

Fig.A.3 Polygonal region in z-plane. 
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turning of the sides AtA2, when they cease to be parallel, but 

when the vertex A2 remains at infinity [Fig.A.3(b)], the angle 

*2 must be considered negative, and namely A2 = - a2', where *2' 

is the magnitude of the angle formed by the prolongation of the 

sides AtA2 and A2A2 [Polubarinova-Kochina, 1969, pp.70-71]: 

The Schwarz-Christoffel transformation can be considered as 

the mapping of a polygon in the z-plane onto a similar polygon 

in the t-plane in such a manner that the sides of the polygon in 

the z-plane extend through the real axis of the't-plane. This is 

accomplished by opening the polygon at some convenient point, 

say between A and E of Fig.A.2(a), and extending one side to t 

-co and the other to t = +m and are placed along the real axis of 

the t-plane. The interior angle at the point of opening may be 

regarded as n (in the z plane) and, as noted in Eq.A.2, takes no 

part in the transformation. The point of opening in the z-plane 

is represented in the upper half of the t-plane by a semicircle 

with a radius of infinity. Thus the Schwarz-Christoffel 

transformation, in effect, maps conformally the region interior 

to the polygon ABC... of the z-plane into the interior of the 

polygon bounded by the sides ab, bc,... and a semicircle with a 

radius of infinity in the upper half of the t-plane, or, more 

simply, into the entire upper half of the t plane [Harr, 1962]. 

Corresponding values of a,b,c, ... and A,. B, C, ...  can  be 

chosen so that the polygons in their respective planes are 

similar [Harr, 1962]. Any three of the values a, b, c,  can 

be chosen arbitrarily to correspond to three of the vertices of 

the given polygon A, B, C,  . For a polygon of n sides,  the 
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(n-3) remaining values must then be determined so as to satisfy 

conditions of similarity. Whereas we shall often choose to map a 

vertex of the flow region (z-plane) into one at infinity in the 

t-plane, it is important to note that not only is this factor 

omitted from the transformation, but the number of arbitrary 

values is reduced by one. 

For the more demonstration of the mechanism of the 

Schwarz-Christoffel transformation and for its derivation one is 

referred to Harr [1962], Nehari [1952, 1961], Cunningham [1965], 

Spiegel [1981], Strack [1989]. 

A.2 Bilinear transformation. 

The general form of the bilinear transformation, sometimes 

called the Mobius transformation, is as follows [Harr, 1962]. 

az + b 
w - cz + d 

(A.3) 

in which, ad - bc x  0 and a, b, c, and d are complex constants 

and w = 0 + iw. The requirement ad - bc  0 is necessary to 

ensure the conformal nature of the transformation. In addition, 

if a/c = b/d, w will be a constant irrespective of z and hence 

the transformation will map the entire z plane into a point in 

the w plane [Harr, 19621. 

The bilinear transformation maps circles in z-plane onto 

circles in the w-plane. Straight lines are regarded as special 

cases of circles (namely, circles passing through the point at 

infinity). The point z = -(d/c) is transformed by Eq.A.3 into 

the point w =  ; accordingly, circles passing through the point 

z = -(d/c) will transform into straight lines [Nehari, 1961, 

p.168]. 
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The function given by Eq.A.3 is univalent. To demonstrate 

this, Eq.A.3 is rewritten as follows. 

 

a  be - ad 
w -  +

c 	 c(cz + d) 
(A.4)  

If wl and w2 are the images of the points z& and z2, 

respectively, from Eq.A.4 we conclude that 

- (ad - bc)(z1 - z2) , 
tczi + d)(cz2 + d) 

This shows that wi * w2 if zi * z2, provided neither wi 

(A.5)  

nor W2 

are infinite. Since by Eq.A.3, the point w = m is the image of 

z = -(d/c) and of no other point, the assertion follows. 

If zi, z2, zg and z4 are four distinct finite points in the 

z-plane (and none of these points coincide with z  -d/c), 

Eq.A.5 implies that, 

(wi - W4)(W9 - W2) 	(Z1 - Z4)(Z9 - Z2 ) 

(WI - W2)(W9 - W4) 	(Z1 - Z2 )(Z9 - 74) 

The right-hand side expression of Eq.A.6 is called the 

cross-ratio of the four points zl, z2, za and z4. The formula 

given by Eq.A.6 shows that the cross-ratio of four points is 

equal to the cross-ratio of the images of these points under a 

linear transformation, i.e., the cross-ratio of four points is 

invariant under a bilinear transformation. If one of the points 

wp, say for pi = 1, i.e., wi, approaches the point  at  infinity, 

the left-hand side of Eq.A.6 reduces to (w3-w2)/(w3-w4). This 

expression is therefore to be regarded as the cross-ratio of the 

points m, w2, 442 and w4. 
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Eq.A.6 makes it possible to write down the bilinear 

transformation which carries three given points zi, z2, zs into 

three preassigned points wt, w2, wa, respectively. If z is any 

other point in the z-plane, and if w is its image under the 

transformation as given by Eq.A.3, it follows from Eq.A.6 that 

we must have, 

(WI - w) (w9 - w2) 	(ZI - z) (z9  z2) 

(wt - w2)(ws - w)  (zi - z2)(zs - z) 

If Eq.A.7 is solved for w, the right-hand side is easily seen to 

be of the same form as the right-hand side of Eq.A.3. The 

relation given by Eq.A.7 is therefore equivalent to a bilinear 

transformation. It may also be noted that the three 

correspondences (zt, z2, 29 to WI, W2, ws  respectively) 

determine the transformation completely. 

Since a bilinear transformation maps circles onto circles, 

and since a circle is determined by three of its points, we can 

thus find bilinear transformations which carry a given circle in 

the z-plane into a given circle in the w-plane. We can say, 

moreover, that three points on the first circle be carried into 

three given points on the second circle. Once this is done, the 

transformation is completely determined. The inside of the 

circle C2 in the z-plane may be mapped either onto the inside of 

the circle Cv in the w-plane, or onto the exterior of Cv. In any 

given mapping, it is easy to decide which of these two cases 

occurs. If the point z = -(d/c) lies inside C2, the image of the 

inside must contain the point w = m, i.e., it is mapped onto the 

outside of Cv; otherwise, the interior of Cm corresponds to the 
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c*c + d*d 
a 

Im(w) -  
ad - bc 

 (A.9) 

interior of Cv. If Cw degenerates into a straight line, both the 

interior and the exterior of C2 are mapped onto half-planes 

bounded by this line. 

To find all linear transformations which carry the real axis 

in the z-plane into the real axis in the w-plane, we have to 

consider all transformations, Eq.A.7, for which the numbers zt, 

z2, zs, wi, w2, wa are real. Solving Eq.A.7 for w, we are led to 

transformations, Eq.A.3, for which the coefficients a, b, c, d 

are all real numbers. Conversely, if these numbers are real, 

Eq.A.3 will evidently carry real numbers z into real numbers w. 

In view of what was said above, the image of the upper 

half-plane Im(z) > 0 may be either the upper half-plane Im(w) > 

0 or the lower half-plane Im(w) < 0. In order to decide between 

these alternatives in a given case, we test the mapping of a 

point in Im(z) > 0, say the point z = i. By Eq.A.3, we have, 

w ai + b 
ci + d 

(ai + b)(-ci + d)  
(ci + d)(-ci + d) 

 

 

(ac + bd) + i (ad -bc)  
(c*c + d*d) 

(A.8) 

and thus from Eq.A.8, 

Hence, Im(z) > 0 will be mapped onto Im(w) > 0 if (ad - bc) > 0 

and onto Im(w) < 0 if (ad - bc) < 0. 

For more detailed discussion on the bilinear transformation,• 

one is referred to Nehari [1961, pp.166-173]. 
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A.3 Zhukovsky's function, 

In unconfined flow problems, in which loci of the phreatic 

line is not known a priori, the flow problems can be solved 

using a special mapping technique which makes use of an 

auxiliary transformation called Zhukovsky's function [Harr, 

1962, Aravin and Numerov, 1965). 

The velocity potential 0 = 4,(x,y), in two-dimensional  flow 

in the xy plane, i.e. in the z plane, is defined [ Harr, 1962  ) 

as below : 

0 = -k(p/rw +y) + C 

= -kh + C  (A.10) 

where C is an arbitrary constant, p is the pressure, yv is the 

unit weight of the fluid, k is the coefficient of permeability 

of the porous medium and h is the total head. ( The derivative 

of the velocity potential, i.e. Eq.A.10, with respect to any 

direction gives the velocity of the fluid in that direction, 

which is the same as that stated by Darcy's law ). It can also 

be observed that 0 satisfies the Laplace equation, Eq.A.1. 

If the arbitrary constant C is taken to be 0 and after 

rearranging Eq.A.10, we have, -kp/yw = 0 + ky. If we define : 

= -kp/yw 

then Eq.A.10, reduces to the following equation. 

ri . 0 + ky 

(A.11)  

(A.12)  

ri is seen to be an harmonic function of x and y as it satisfies 

Eq.A.1. Hence, its conjugate is the function given below [Harr, 

1962). 

r2 = w - kx 
 

(A.13) 
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where w is the stream function. Defining rt  +  ir2 
 

r, then 

Eqs.A.12 and A.13 give us the following relationship. 

r = rt + ir2 

- (0 + ky) + i(w - kx) 

= w - ikz  (A.14) 

The function defined by Eq.A.14 and any function with its 

real or imaginary part differing from it by a  constant 

multiplier is called a Zhukovsky function [Harr, 1962]. 

Nelson-Skornyakov [1949] used the modified form of 

Zhukovsky's function [Harr, 1962, p.171]. He modified Eq.A.14 as 

given below. 

e = et + 

= z - iw/k  (A.15) 

where, 

el = x + w/k 

82 = y - 0/k 

The advantage of the form of the Zhukovsky function as given 

by Eq.A.15 is primarily one of orientation. Whereas p/rw = y 

0/k = 0 along the free surface taking the vertical axis as 

positive down, with the form of Eq.A.15, the image of this free 

surface will be along the real axis of the 8 plane. The free 

surface is therefore represented by a straight line in the e 

plane. Since the boundaries in e plane are straight lines,  the 

Schwarz-Christoffel  conformal  mapping  and  the  bilinear 

transformation are applicable. 

In this thesis, the modified form of the Zhukovsky function 

as given by Eq.A.15 is implied wherever Zhukovsky's function is 

mentioned. 
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APPENDIX C 

CANAL OF NEGLIGIBLE WATER DEPTH 

WITH 

COLLECTOR ON ONE SIDE 

C.1. Formulation and Solution of Problem 

The z-plane is as shown in Fig.C.1(a) 'There AB, which has a 

value of 82 length, is the bed width  of the canal and is an 

equipotential line and corresponds to 0 = 0.  The equipotential 

line CD is 0 = kh, where h is the difference between the canal 

and drain water levels. The distance of the  drainage from the 

canal, i.e. horizontal distance BC, is L. Along the stream line 

BC, the value of w is taken to be 0. Then, u = q on the stream 

line AF where q is the seepage discharge per unit length of the 

canal. The rectangular flow region in the w-plane is as shown in 

Fig.C.1(c). 

As the result of Zhukovsky's  transformation (Eq.A.15], the 

boundaries in e-plane as shown in Fig.C.1(b) consists of 

straight lines. The corresponding points in the Z-plane and the 

e-plane are as given in Table C.1. 

Two operations were made in which the e-plane as well as the 

w-plane were mapped onto the  lower  half  of  an intermediate 

t'-plane (Fig.C.1(d)), where ' r'  is. 
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Table C.1 Transformation Table 
(Canal of negligible water depth ) 

(Drainage on one side) 

POINT e-plane - e-plane 

A 
B 
C 
D 
F 

-Bz 

- 

+ 
0 
L 
m 
m 

q/k -a' 
0 
1 
m 

- m 

First Operation.- In this operation the a-plane was 

transformed onto the intermediate semi-infinite t'-plane using 

the bilinear transformation. The various points in the a-plane 

were placed in the t'-plane as shown in Fig.C.1(d). Here, a' 	is 

a transformation parameter which has to be determined. 

The bilinear transformation that maps the lower half of the 

e-plane into the lower half of the t'-plane was made using the 

cross ratio formula as given below. 

(64 - er) (ec -  (t' - t'D)(t'c  t'D) 

(8 - eB) (ec - 80  (t' - t'D)(t'c - t'D) 

(C.1) 

Substituting the corresponding values of the points B, C and 

D in the a-plane and t'-plane in Eq.C.1, 

(61  -  co  )(  L -  0  ) (t' = 	oo 	)( 1 - 	0 	) 

(8  -  0  )(  L + th  ) (t' -  0  )( 1 + m ) 
. . (C.2) 

Eq.C.2, after simplification resulted in the following 

equation. 

0 =  (C.3) 
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Referring to Table C.1, at A, 6 = -Bz + q/k and t' 
 -a' . 

Substituting these in Eq.C.3 and rearranging, 

a' = (Bz - q/k)/L  - (C.4) 

The corresponding points in the a-plane and the t'-plane are 

as given in Table C.1. 

Second operation.- The rectangular flow field in Fig.C.1(c) 

was opened at Point F/D and mapped from -m to +m along the real 

axis of the t'-plane. Points A, B and C are mapped at e= -a', 0 

and 1 respectively. The Schwarz-Christoffel , transformation 

equation used to map the w-plane onto the lower half of the 

i'-plane is as given below. 

j dw = M' J 
 

dt'  
(C.5) 

(t'+0.1 )(t')(t'-1) 

where M' is a complex constant. 

The integration of the right-hand side of Eq.C.1 between the 

desired regions on the t'-plane results [Byrd and Friedman, 

19717 in elliptic integrals. The integration of Eq.C.5 between 

the different regions is made as shown below. 

Integrating Eq.C.5 between F and A, i.e. in the region 

-co r  t' <  , 

WA  -a' 

J dw - Mg  
3  

dt  

Wt 13 t  (-a-r)(-t')(1-t') 
. (C.6a) 

WA - Wt. = MI FRO11)/(-i) 
 . . . (C.6b) 
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where, WA = 0  iq and Wt = ky + iq are the complex potential 

values at A and at point on the free surface AF with ordinate y, 

respectively. Hence, Eq.C.6(b) reduces to, 

-ky = M F(I,m)  (C.7) 

M is a constant and, 

. sin ii(0.'+t9/t. 
 

(C.8) 

m
2 

= 1/(1 40g ) 
 

(C.9) 

Using Eq.A.)S, on the free surface AF, 

= ei = x + q/k  (C.10) 

where x is the abscissa of the point considered. 

Substituting Eq.C.3 in Eq.C.10 and rearranging, the value of 

t' corresponding to x is, 

t' = x/L + q/kL  (C.11) 

At Point F on the free surface AF, t' = -co and Eq.C.8 gives 

n/2. Substituting this in Eq.C.7, the following relationship 

was obtained to get the ordinate, y = YF, of the Point F on the 

free surface AF. 

-kYF = M K(m)  (C.12) 

Integrating Eq.C.5 between B and C,  i.e.  in the region 

0 < t' r 1, 

dw - —TLI .  
dt' 

WE •  (  t' ) (1 -  
. . (C.13) 

. . . (C.14) Wt - Wm = M F(020) 



where, Wu . 0 and Wt = ky + 0 are the complex potential values 

at B and at a point on the free surface BC, with ordinate value 

of y, respectively. Hence, from Eq.C.12, 

-ky = M F(02,m)  (C.15) 

02  = sin ii(1+c,')t'/(t'+c,')  (C.16) 

From Eq.A.15, on the free surface BC, e = at = x. 

Substituting this in Eq.C.3, the following relationship between 

the abscissa, x, of the point on the free surface BC and its 

corresponding t' value was obtained. 

t' = x/L  (C.17) 

At Point C, t' = 1 and from Eq.-C.16,  = n/i. Therefore, 

substituting these results in Eq.C.15, 

kh = -M K(m)  (C.18) 

Integrating Eq.C.5 between A and B 
 

i.e. 
 

in the region 

< t' < 0, 

Wt 

dw 
WA  

- 
,2 
M' 

_ .T 

dt' 

 

  

)(-t' )(1-t' ) 

 

. (C.19) 

Wt.  - WA  = iM F (453,111 1 
 

(C.20). 

where WA = 0 
 

and ifit' = 0 + iw' are the complex potential • 

values at A and at any point on the equipotential  line AB 

respectively. Here, w' is the stream function value at the point 

on the equipotential line AB. Hence, Eq.C.20 becomes : 

(q - w' ) = - M F(453,m1 ) 
	

(C.21) 

• 
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where, 

463 = sin ii(t1 +0')/ai  (C.22) 

01 /(1+0') = 1(1 - m*m)  (C.23) 

At Point B, t' = 0 and w' = 0. Hence, substituting these in 

Eq.C.21 and Eq.C.22, the following expression for the seepage 

quantity, q, from the canal was obtained. 

q = -M F(rrJ2,m") 

= -M K(m') 
 

(C.24) 

Eq.C.24 by Eq.C.18, 

q/kh = K(m')/K(m)  (C.25a) 

Rearranging Eq.C.9, 

a' 
	

(1-1112 )/m2 
	

(C.25b) 

Dividing Eq.C.4 by h and substituting Eq.C.25(b) and then 

rearranging the resulting equation, 

Bz/h = [(1-m2)/m2] (L/h] + q/kh 
 

(C.25c) 

Substituting Eq.C.25(a) in Eq.C.25(c), the following 

expression is resulted. This is the same as that given in the 

solution given by Polubarinova-Kochina (1962, P.132]. 

82/h = ((l-m2)/m2 ) [L/h]  K(m')/K(m)  (C.25d) 
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