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ABSTRACT

Canals are widely used in irrigation schemes as a major
conveyance system. Most of the canals are unlined and the amount
of actual water fina11y available for irrigation is
significantly lYess than the quantity of water released at the
head. One of the major causes of these losses 1is seepage from
canals. Hence, an understanding of the mechanism of the seepage
losses from canals leads to improved management of the water
resources.

Seepage losses from unlined canals depend on the shape and
size of the canal cross section, ‘depth of water in the canal,
location of drainages on either side of the canal and ihe type
of subsoil, Severa]i analytical solutions for prediction of
seepage loss had been pfesented for different <canal cross
sections and, boundary conditions. In the solutions thus far
obtained, it is assumed that symmetric seepage flow takes from
the canal to the drainages which are shallow or deep. However,
in practice cana]s-Sgldom have syﬁmetric drainages on either
side.

Exact solution of the.problem of seepage from a canal in.
homogeneous médium to asymmetric drainage(s) located at finité
distance(s) from the canal is presented in this work. So1utions
are presentéd for the following problems :

(1) seepage from a canal with negligible water depth to
asymmetrically located drainages at either side of the canal;
(1) seepage from trapezoidal canal to asymmetrica11y disposed

drainages at either side of the canal and

iV'.



(117) seepage from trapezoidal canal to a drainage on one side,

The.analytica1 solution for the detérmination of the shape
of the free surface and the calculation of the seepage quantity
througﬁ the system was obtained by finding the ré]ationship
between the physical plane (z-plane) and the complex potential
plane (w-plane). This was done by employing successive
transformations through the use of the Zhukovsky function as
well as Shwarz-Christoffel and bilinear conformal mapping
equations;

The results of seepage discharge for various values of
dimensionless physica1'parameters are prepared as nomographs for
practical uses. The case of the symmetric drainages on either
side of cana] is a partifular case of the present study and the
results obtained in this study for symmetrical drainages agree
with that presented by earlier workers. The computed seepage
loss to asymmetric drainages by decomhosing the asymmetric flow
domain at the centre of the. canal and treating each .part as a
part of the corresponding symmetric cases is found to differ
from the seepage loss computed by this method. The difference
dependé on the degree of variation in the draihage distance and
elevation on effﬁer side. The present direct and exact solution
to asymmetric drainages shows that the drainage which is at the
higher level and farther from the <canal 1is receiving less
seepage from the canal. As the level of the drainage of .the
higher level is raised, the seepage to drainage reduces and at
certain level the drainage does not receive any seepage water
(hz = he). This critical ratio of the levels of the drainages

v



(he/hs) and the critical location of the drainages have been
identified. This critical position of the drainage is found to
depend on the canal cross section, depth of water in the canal
and distance of the drainage on the other side.

Free surfaces on either side of the canal rise with increase
in the bed width and increase in drainage distances. Free
surface also rises if drainage on the other side is located at a
higher level. The effect of change of the side slope of canal on
the free surface is negligible. However, increase in depth of
water in the canal significantly.raises the free surface.

The results pertaining to the case of drainage on one side
of the canal had been compared with that given by
Polubarinov-Kochina, 1962. The seepage quantity computed for the
case in which the depth of the canal is small compares well with
the results given By the above author. In the present work,
shape of the canal is considered and the shape of the phreatic
Tines on both sides of the canal have been plotted to show the

effect of the physical dimensions.
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NOTATIONS

The following symbols are used in this thesis.
[ In Chapter 2, which deals with review of
literature, original notations have been used ]

b’ = bed width of canal in 6-plane;
Bz = bed width of canal"in z-plane;
F(B,m) = Incomplete elliptic integral of the first kind

with amplitude # and modulus m;

hs,h = difference between water levels of canal and
the right drainage;

hz,h = différence between water levels of canal and

the left drainage;

H = water depth of canal;

k = coefficient of permeability;

K = F(n/2,m) = complete e]jiptic integral of the first
kind;

K = F(n/2,m') = associated complete elliptic integral

of the first kind;

La,L = distance from canal to right drainage;

Lz,L : = distance from canal to left drainage;

m = modulus of e]1iptic integral;

m = -m*m ; comodulus

M, M, M2 = constants;

p = atmoépheric pressure;

na = canal side slope angle with horizontal in z-plane;
mai, naz = angles with horizontal 1in 6-plane respectively'

of the right and left canal side slopes.
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r,s,r’',s’

tl

TB,ae® ,m)

= volume rate of seepage per unit length of canal;

canal seepage discharge component directly emerging
the right hand drainage;

= cartesian coordinates;

= r + is = parametric plane in Chapter 3, 4, and 5;
= r'" + is' = parametric plane in Appendix C;

= complex potential = ¢ + iy ;

= complex variable = x + iy ;

= specific weiéht of water;

= transformation parameters;

= 61 + 182, complex variable representing
Zhukovsky's function;

= Incomplete elliptic integral of the third kind

with amplitude 3 and parameter a1 %and modulus m;

TRn/z,a;’,m) ='TRa12,m). complete elliptic integral

1

of the third kind;

=.Tkﬂ/2,d22,m') . -TRdzz,m'), complete elliptic
integral of the third kind with barametér az®  and
modulus m‘ 3 » |

=1Tkn/2,aaz,m) =‘n2aaz,m), complete elliptic integral

of the third kind with parameter as® and modulus m;

1}

velocity poténtia1 function;

stream function.
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CHAPTER 1

INTRODUCTION

Canals continue to be widely used for delivering water for
irrigation in most parts of the world. Estimation of seepage
from canals and assessment of the water 1logging problem
resulting from the introduction of canals is much required for a
}ational water resources management. In India, many of the major
irrigation canals are unlined and are constructed in alluvial
soil. It had been recorded that more than 40 percent of the
water from canals are lost through seepage and the menace of
water logging had left many fertile 1lands wunsuitable for
productive farming [Sharma & Chawla, 1974]. Hence, estimation of
seepage from unlined canals and assessment of its impact on the
groundwater regime are very important.

Seepage loss from an unlined canal depends on the canal
geometry, depth of water in the canal, locations of drainages on
either side of the canal and the hydraulic characteristics of
the subsoil.

Seepage computation demands understanding of the physics of
fluids Cwater) flow through porous media (soil). Properties of
the.soil accounts to one of the major factors on which the fluid
flow depends. Most of the theoretical analyses of groﬁndwater
flow problems assume the porous media to be isotropic and
homogeneous with respect to the coefficient of permeabi]ity.
Most natural and man made soil deposits are anisotropic. Flow_
through anisotropic porous media is generally analyzed by first

transforming the anisotropic actual flow domain to fictitious



isotropic flow region by a suitable co-ordinate transformation
and applying a method of solution to the transformed section.
From the solution of the problem in the transformed region, the
solution Qf fhe actual problem in the anisotropic region can be
obtained [Harr, 1962). In case directions of thé principal
coefficient of permeability coincide with horizontal and
vertical directions, the shape of flow domain is not altered
after transformation. For such type of anisotropic behaviour of
the porods media, the existing solution for flow . in 1isotropic
media can be made use of in arriving at the flow characteristics
concerned with anisotropic porous media [Harr, 1962].

Coupled with the nonuniformity of soil in the horizontal as
well as vertical extent, seepage flow systeﬁs are also
characterized by channels of irregular éross section, changing
elevations of the water surface in the channel and of the water
table in the soil and other coﬁp1ications [Bouwer, 1969]. ‘Thé
process of erosion, sedimentation, biological action, etc. in
the channel as well as the influences of chemical constituents
of the water and also the air content in soil on the hydraulic
properties of the soil are sources of complications of the
seepage flow process. If the water table is sufficiently <close
to the surface of the soil, the influence of evaporation on the
free surface may come into picture. Infiltration from rainfall
or from irrigated land also causes a downward flux across the
water table.

Numerical and other approximate methods using digital
computers and electric analogs can handle many types of soil and

boundary conditions. But, the more difficult process than the



actual calculation of the seepage, once a realistic
representation of the field situation has been developed, is the
uncertainty in the field evaluation of pertinent boundary
conditions and hydrau1ic-properties of the soil [Bouwer, 1969].
Moreover, the results of the digital or analog methods can be
unreliable unless their validity is verified by the exact
solutions arrived at by the use of the analytic methods. In
addition to that, through the underétanding of principles, the
closed-form solutions are useful in gaining ipsight into the
physics of fluid flow in porous media and this may lead to the
identification of specific sources of uncertainty [Schilfgaarde,
1870). Hence, the importance of working out a closed-form
solutions to the problems of seepage cannot be denied.

Several analytical solutions of seepage problems had been
presented for various shape and size of canal cross section and
for different boundary conditions. Vedernikov [1936] obtained
solutions for the seepage from a channel with triangular,
trapezoidal or other shapes to ground water table at infinite
depth. Analytical solution had also been obtained for seepage
from a canal to an underlying hjgh]y pervious layer at finite
depth [Harr, 1962; Bouwer, 1965].

Garg and Chawla [1970] presented sofution of seepage from a
trapezoidal channel to shallow water table with symmetric and
horizontal or vertical drainages at finite distance. The channel
was assumed to be 1aid in homogeneous and 13isotropic medium
extending up to infinite depth. Earlier, Vedernikov [1939]), had
solved the problem of seepage from canal of negligible water

depth to symmetrically disposed horizontal drainages. Sharma and



Chaw1é [1974] obtained analytical solution of seepage from a
canal with negligible water depth to the symmetrical drainages
on either side of the canal with pervious medium extending up to
finite depth. The ébove solutions assume symmetric flow from the
canal to the drainages. However, in practice canals seldom have
symmetric drainaggs”QQveither side.

Exact so1ut¥6;:pff;ﬁe problem of seepage from a canal in
homogeneous and«isotrdpic medium to asymmetric drainages located
at finite distances %rom the canal is presented in this work.
The problems studied in the present work include seepage from
trapezoida] canal to drainages located on either side at
different levels and distances. As special case of the above,
solutions have been obtained for seepage from a channel of
negligible water depth to asymmetric drainages and also for the
case of a trapezoidal canal with drainage on one side only.
The solutions are presented in the fo11owing order $
(i) seepage from canal of negligible  water depth to
asymmetrically located drainages;

(i) seepage from trapezoidal canal to asymmetrically located
drainages; and

(1ii1) seepage from a trapezoidal canal to a drainage located on
one side‘of the canal.

In the first two cases seepage from thevcanal emerges into
two asymmetric drainages on either side of the canal and the
drainages are assumed to be wide. In the third case the seeping

water emerges into a wide drainage located on one side of the

canal.



In view of the multitude of complexities to which seepage
flow systems are subjected in nature, theoretical treatment must
begin with simplification of the soil and boundary conditions.
This is particu1a}1y more so in the case of the mathematical
treatment of the problem of seepage analysis. In this study the

porous media is assumed to be homogenegus, isotropic, and

undeformable. The flow is assumed to be ;:i k» and therefore
Darcy's law is applicable.

Conformal ﬁapping still is a usefu]hk in groundwater
mechanics and serves to obtain solutions to simplified versions
of conmplex problem, which may be used to gain insight into the
problem prior to using a numerical method which uses the digital
computing facilities capable of generally more detailed
solutions {[Strack, 1989].

In the present study, the ana1yti;al solutions are derived
using the special mapping techniques of the Schwarz-Christoffel
conformal mapping equation, the bilinear or Mobius
transformation and the Zhukovsky function. These mapping
techniques are briefly discussed in Appendix A.

The thesis is divided 1into six chapters. Review of
literature is given in Chapter 2. Solutions to predict the
seepage loss and.the shape of the free surface at either side of
the canal of negligible water depth are presented in Chapter 3.
The derivation of the equations and the analyses in chapter 3 is
considered as a logical step towards the solutions arrived at in
the subsequent chapter.

In chapter 4, the solutions for trapezoidal <canal with

drainages at different elevations and distances are given. It



may be noted that rectangular and triangular sections can be
treated as special cases of the trapezoidal cross-segtion.
Hence, in this chapter the geometry and water depth of the canal
are considered in the derivation of the solutions.

In chapter 5, derivation of the solution to the case of
seepage from trapezoidal canal to a drainage located only on one
side of the canal has been given.

General conclusions reached from the present work have been
presented in chapter 6. In this chapter, recommendations for
further work have also been suggested but comparison with
previous works have been made at different stages of the

development of the solutions.



CHAPTER 2

REVIEW OF LITERATURE

Introduction

Many investigators-have contributed to the study of seepage
from canals. The classic seepage analyses concentrated on the
use of analytical methods based on special mapping techniques
such as Zhukovsky's function énd the hodograph method
[Polubarinova-Kochina, 1962 ; Harr, 1962 ; Aravin and Numerov,
1965]. The electric analog method and the graphical epproach as
well as the numerical methods such as the finite differences and
the finite elements had also been adopted in the study of
seepage from canals [Bouwer, 1965 ;3 Jeppson, 1968 ; Bear, 1972 ;
Verrujit, 1982 ; etc.]l. Though wmuch of the works has been done
in the area of steady state conditions, a number of
investigators were also drawn to study the case of unsteady
state condition as well [Mishra , 1992 ; Bhargava, 1988].
According to Muskat [1946] and Bouwer [1969], an unsteady state
can be treated as a succession of steady state conditions. The
validity of this assumpfion has been reasoned out by Muskat in
detail [Muskat 1946, pp.621-6251. The ‘review of )iterature
presented in this chapter focuses on the research works which
deal with steady state seepage problems. The experimental
methods of measurement of seepage (eg. ponding method or inflow
outflow method) have been excluded from review. But, the
Zhukovsky function, the Schwarz-Christoffel conformal mapping

and the bilinear or M5bius transformation which are widely used



‘at different stages of the development of the solutions to the
problems tackled in the thesis, a brief discussion on the above
techniques has been included but is given separately in Appendix

A.

2.1 General Review of Works in Seepage from
Canals, Channels or Ditches.

Among those who dealt with steady seepage from canal to
ground water located at large depth are Kozeny, Muskat,
Vedernikov, Risenkampf, Morél-Seytoux and Jeppson.

As early as 1931, Kozeny [1931] found.that the maximum width
of the sheet of water seeping down into the porous media from a
canal conforming to a special cross sectional shape is equal to
(B+2H). Here, B is the width of the canal at the water surface
and H is the maximum depth of water in the canal. The free
surfaces are bounded by vertical asymptotes. The equation that
has been derived by Kozeny which describes the cross section of

“the canal is,

tx = -4 H = y® + [ (B + 2H )/n 1 cos (y/H)
. . . (201)
The seepage from such a canal is stated as,
q = k (B + 2H) ) (2.2)

where, x and y are cartesian coordinates with origin at the
centre of water surface; H is the maximum‘depth of water in the
canal and k is the coefficient of permeability.

One of the limitations in the use of the above results is

that it is not applicable to a case were the water table is at



shallow depth. It, therefore, follows that that the porous
medium must be of very large thickness so that the seeping water
can maintain its vertical downward movement. The shape of the
canal also should fo116w the equation given above (Eq.2.1).
Although slight deviation in the shape of the ditch from
those given by Eq.2.1 will in themselves cause no serious errors
[Muscat, 1941) in the use of £q.2.2, the assumption of the
ground water table being at a great depth below the base of the
ditch definitely limits its applicability to only few practical
cases where the porous medium is also assumed to extend to
infinite depth. In many practical situations, however, the water
seeping down from the ditch will reach the normal ground water
level at a relatively shallow depth, thus forcing tﬁe
streamlines to assume a horizontal rather than a vertical trend.
Kozeny also found the seepage from a canal for the case in
which fhe equipotential lines could be considered as segments of
circles at large distance from the ditch or canal with radially
spreading free surfaces. The shape of the ditch is defined by

the equation,

* x = H2 - y® o+ [ (B - 2H )/n 1 cos™ ' (y/H)
j e vo. (2.3)
The quantity of seepage is given by,
q = k (B - 2H) - (2.4)

Vedernikov [1936]) studied seepage from canal of trapezoidal

section of which the triangular cross section is a particular



case. He applied the inverse transformation to the region of the
complex velocity, i.e., in the hodograph plane, to obtain an
exact solution for these shapes of canal when ground water is at
infinite depth. Solutions for various other. sinplified flow
geometries were also obtained by Risenkampf [1940). Hammad
[1960] solved the same problem by an approximate method for a
series of channels in which the shape of the channels have not
been conserved. Seepage from a series of triangu]ar channels was
found by E1 Nimr (1963). He used the inverse hodograph method
for solution of the problem. Bruch and Street [1967] made an
improvement in the above solution, Morel-Seytoux [1964]
considered canals of different shapes including cross sections
deviating from the standard rectangular, trépezoida1 and
triangular ones. Morel-Seytoux applied the analytical methods of
hodograph techniques and the .Schwarz-Christoffel
transformations, and the Green-Neumann function to obtain
solutions of the seepage problenm.

A1l the above solutions are obtained by assuming the water
table to be at infinite depth. The above.studiés indicate that
when the ground water table is at large depth the shape of the
canal has small  influence on the seepage discharge. Muskat
[1946] considered three different shapes of canals. He compared
the values of seepage dischérge for the three shapes of canal
and stated that the extreme variation in seepage, due to the
effect of shape of canal or ditch is about 10 percent.

The finite difference method was employed by Jeppson [1968]
to solve the problem of seepage fgom canal to underlying

pervious stratum. A1l of these -derivations have Timited
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utilities because the condition of the water table at infinite
depth, or because existence of an underlying pervious layer is
seldom met in practice.

In the work of Dachler [1933], shallow water table conditien
has been considered. He derived a procedure in which both model
experiment and an approximate analysis were combined for
computing the seepage from a trapezoidal channel set in a porous
medium of finite depth, to a fully penetrating vertical drain at
some distance away from the channel. Dachler determined only one
point on the phreatic 1ine and this paint is arbitrarily
connected to the canal and the drain. He postulated that this
point be joined to the canal water level by an arbitrary curve
and to the drainage water level by a straight line. This point
shifts as the depth of impermeable layer is increased, and in
some cases it may even fall beyond the drainage, which is
unrealistic [G6arg and Chawla, 1970]. Thus, the Dachler approach
does not define the seepage 1line éomp1etely. Garg and Chawla
[1970] have compared the Dachler method with their exact
analytical solution for vertical drainage and have found that
the Dachler approach gives much lower phreatic surfaces.

The problem of seepage from an earth dam with horizontal
drain on a pervious stratum of infinite depth had also- been
solved [Polubarinova-Kochina, 1962, pPp.247-260]. The drain is
located in the body of the dam at some distance away from the
upstream face of the dam. This problem may be considered to be
equivalent to that of seepage from a channel of infinite bed
width into horizontal drainage which is at the same level as the

bottom of the canal. Vedernikov had also solved the problem of
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seepage from a canal having the form of a horizontal segment to
horizontal drains. Todd and Bear [1961] néde use of the
electrical analog method to analyie seepage from leveed rivers
into the low lying adjoining lands.

Bouwer [1965] made a detailed study to determine how seepage
from canals or streams is affected by the cross sectional shape
and the depth of water in the channel, by the position of the
ground water table, and by the sub-soil conditions.

Bouwer [1969] reduced the multitude of soil conditions that
may be encountered in practice to three basic conditions :

(i) the channel is in uniform soil which is under lain by .much
more permeable material, designated as condition A;

(11) the channel is in uniform soil which is under lain by nmuch
less permeable material, designated as condition B, and

(1i1) the channel is surrounded by a thin, slowly permeable
(clogged) 1layer along its wetted perimeter, designated as
condition C.

The condition of seepage to a free draining, permeable layer
is a special case of condition A and it is termed as condition
A'. Drainages are considered to be symmetrically located at
either side of the canal and the drainage distance ‘from thé
canal centre line is fixed to be 10W:, where We is the botton
width of the canal. The electrical resistance nétwork'ana1og is
used for solution of steady state séepage systems for condition
A, A’ and B. For condition C, an equation 1is presented which
gives the seepage as a function.of the geometry of the channel,
the hydraulic impedance of the slowly permeable (clogged) layer,

and the pressure condition in the wunsaturated underlying
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material as determined by the unsaturated hydraulic conductivity
characteristics of that material. He has considered canals with
triangular, trapgzoidal and rectangular sections.

The results for condition A, A’ and B were expressed in.
dimensionless graphs showing seepage in relation to the position
of the ground water table at different depths to the permeable
or impermeable layer, and different water depths in the canals.
The canal was taken as trapezoidal with 1H:1V side slope. Bouwer
obtained results which agreed with the theoretical values of
Vedernikov for underlying pervious stratum, and with ‘the semi-
empirical method of Dachler for wunderliying impervious strata.
The conclusion reached by Bouwer are as follows.

(1) The graphs showed that the effect of a permeable or
impermeab}e layer on seepage becomes rather small when this
layer lies below the channel bed at depth 5 times the bottom
width, Wb, of the channel. This suggests that soil explorations
for new canal do not need to go deeper than 5Wb below the
proposed bottom elevation.

(2) Seepage rates increase with 1increasing depth to the
ground water table, but at a decreasing rate. If the water table
at a distance of 10W: from the channel centre is at a depth more
than 2.5 times the width of the channel at the water surface,
the corresponding seepage is close to that which would occur if
the water table is at infinite depth.

Bouwer also summarized fhe following results of éhalyses
regarding the effect of channel shape on seepage

For a given surface width Wr of the water surface and water

depth Hv in the center of the channel, seepage increases from a
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triangular to a trapezoidal and fronm trapezoidal to a
rectangular cross section. The wagnitude of the increases
depends on the soil and water table conditions. For most
conaitions. this increase is only moderate and 1less than the
corresponding increase in hydraulic discharge capacity of the
channel. Therefore, for a‘certain width and depth of the water,
rectangular channels have lower relative water losses due to
seepage than trapezoidal or triangular channels. An exception to
this rule may be condition A' if the permeable drainage layer is
at very small distance below the channel bottom. .

AAccording to Bouwer, the seepage from open channels
increases with increasing water depth in the <channel. For
uniform flow, the discharge in the channel also increases with
iﬁcreasing water depth in the «channel. For all three soil
conditions, however, the rate of increase in seepage was less
than the rate of increase invdischarge. Therefore, canals with
uniform flow aﬁd uniform so0il conditions along the wetted
perimeter become more efficient conveyor of water with
increasing water depth in the canal.

Bouwer has furnished a detailed study on seepage from canals
but he has furnished seepage discharge for defined channel
geometrieé and for fixed distance from the center l1ine of canal
to the drainage, nhamely 10 Wb, He has used a side slope of 1:1
and the bed width - water depth ratio ( Wo/Hv ) of 1.33, 2.0 and
4.0. The HWv/Hv ratio of 1.33 and 2 are encountered very
infrequently in channels of any consequential size, while the
drainage distances generally greatly exceed 10Wv [Garg and

Chawla, 1970]).
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Garg and Chawla [1970) obtained exact solutions of problen
of seepage from canals in homogeneous media to drains located
symmetrically at finite distance from the canal considering
vertical and horizontal drainages. This solution and resufts are
separately discussed in some detail under section 2.2. Sharma
and Chawla [1974] gbtained analytical solution of seepage from .a
cana] with negligible water depth to the symmetrical drainages
on either side of the canal with pervious medium extending up to
finite.depth.

Mishra and Seth [1988] , wusing Zhukovsky's function and
Schwarz-Christoffel conformal mapping technique, analyzéd
unconfined seepage from a river of Tlarge width for a steady
state condition. Seepage quantities occurring through the bed
and bank of the river have been estimated separately. The reach
transmissivity constant for a river with large width has been
determined. The reach transmissivity has been defined as the
constant of proportionality between the return flow to river and
the difference of potentials at the periphery of the river and
in the aquifer in the vicinity of the river [Morel-Seytoux and
Daly, 1975). Morel-Seytoux and Daly [1975] introduced the use of
reach transmissivit& for solving unsteady state stream-aquifer
interaction problem. Mishra and Seth [1988] found that if the
distance between the river bank and the observation well is more
than half of the saturated thicknes$ of the aquifer below the
river bed the reach transmissivity constant is independent of
draw down at the observation well. The reach transmissivity,
constant depends on the depth of water in the river bed and the

distance of the observation well from the river bank. The
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seepage loss from the river at any tine is product of the reach
transmissivity constant and the difference in water level in the
river and at the observation well at the time of observation.

As mentioned earlier, it had been reasoned that an unsteady
state condition can be treated as a succession of steady state
conditions [Muscat, 1946 and Bouwer, 1969). Based on the above
principle, the reach transmissivity constant, even though it had
been derived on the assumption of steady flow condition, had
been used for analysis of unsteady state prpblems‘[Morel-Seytoux
1975a, 1975b, 1975c, 1975d, 1975el. Bhargava [1988] had reviewed
the works of various investigators who derived the reach
transmissivity constant for different canal and aquifer
geometry. In his work, Bhargava had solved the unsteady seepage
from two parallel canals when the water table is shallow or
deep.

In the literature, analytical solution had been reported‘for
the problem of seepage from unlined trapezoidal canal taking
into account the general anisotropic behaviour of the porous
medium [Reddy and Basu, 1976]1. However, since a caﬁa1 in an
anisotropic medium transforms into one with unequal slopes in an
equivalent isotropic porous medium, the solution has been given
for the problem of seepage flow from an unsymmetrical
trapezoidal canal. In practice, the main difficulty will be to
find out the actual anisotropic behaviour of the porous medium
that occurs in the field.

The 1iterature on steady seepage from canal and 1its impact
on ground water regime has been extensively documented by

Muskat [1946], Harr [1962]), Polubarinova-Kochina [1962], Aravin
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and Numerov [1965], Bouwer [1969]), Bear [1972], HAlek and Svec
[1979]), Kovacs ([1981}, Verrujit [1982), and Huisman and
01sthoorn [1983].

2.2 Seepage from Trapezoidal Channel, with Symmetrically
Located Drainages, [Garg and Chawla, 18701l. '

Vedernikov [1939, vide Polubarinova-kochina, 1962, pp.130
132 ] had solved thg problem of seepage from a canal having
negligible water depth to symmetrically disposed drains. Exact
solutions of the problem of seepage from trapezoidal canals in
homogeneous media to drainages symmetrically located at finite
distances from the canal considering vertical and horizontal
drainages were presented By Garg and Chawla [1970). The method
of Zhukovsky transformation and Schwarz-Christoffel conformal
mapping technique were employed. The resulting integrals were
eva]uatéd numerically.

The analysis assumed the shape of the channel to be
trapezoidal in the @-plane. Then the equation of the side slopes
in the z-plane was deriyed. Here the advantage of symmetry was
exploited and the analysis was carried out by considering. only
half of the flow regime. If the drainages were not symmetrically
located then the above procedure .would have resulted in
different side slopes at the left and right of tﬁe canal in the
z-plane. In the analysis, the influence of the relative
distances and levels of the drainaées on the seepage flow as
well as on the free surface were not considered.

Two basic operations were made in the solution of the:

problem. In the first operation, the Zhukovsky plane was
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transformed onto an intermediate semi-infinite plane. In the
second operation, the rectangular flow field in the complex
potential plane was mapped onto another auxiliary . semi-infinite
plane. Yhese transformations were made by the wuse of the
Schwarz-Christoffel transformation. The relationship befween the
two auxiliary planes was obtained using the bilinear
transformation.

The seepage discharge from the canal is given by the

following equation.
q/(kh) = 2K’ /K (2.4)

in which, q is the volume rate of seepage per unit 1length of
channel, h is the drop between channel and drain water levels, k
is the coefficient of permeability, K and K’ are complete
elliptic integrals of first kind with modulus m and m'. The

values of m and m* are given by the following equations.

m = Y/ (3F+) : (2.5)
m o= §1 - meem : (2.6)

in which 3 and ¥ are transformation parameters which are closely
related with the bed width of the canal and the drainage
distance from water line of the channel respectively.

As direct evaluation of 3 and ¥ for any given channel
dimensions and drainage distance was not possible [ Garg and
Chawla, 1970 1, channel dimensions and drainage distances had
"been evaluated for various values of 3 and ¥ and were plotted.

Then, from the figure plotted, knowing the~ dimensions of the
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system in the physical plane, the two parameters # and ¥ were
determined. After knowing these, from'Eqs.Z.S,.Z.G and then from
Eq.2.4, the seepage discharge could be obtained. " Determination
of # and ¥ was 2 triai and error process [Garg and Chawla,
1970). The results were plotted in the form of curves from which
the seepage discharge and the phreatic surface profile for
various channel geometries could be obtained.

In Chapter 4 , comparison of the results as obtained by Garg
and Chawla [1970] and the new method suggested in_ this thesis

is presented.

2.3 Seepage from canal to a colléctor
[ Polubarinova=Kochina, 1962 1}

In the Jiterature review above, it is found that solutjons
are obtained only for cases where symmetric seepage flow from
the canal to the drainages, whether shallow or deep, takes
place. In practice canals seldom have symmetric drainages on
either side. However, a sclution of seepage from a canal with
drainage only on one side had been reported
(Polubarinova-Kochina, 1962, pp.132-133]1. In this work, the
shape of the canal as well as the depth of water in the canal
were not considered.

The seepage from canal of negligible water depth to a

collector on one side, the following equations were obtained.

2

B/h = w /m'® (L/h) + K(m)/K(m*) (2.7)

q/(kh) = K(m)/K(n)" (2.8)
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in which, B is the bed width of the canal, L 1is the drainage
distance from water line of the canal, K(m) and K(m') are
compiete elliptic integrals of the first kind with modulus m and
m' respectively, and ' = ¥ (1-m*m) .

In Polubarinova-Kochina's reporting [1969, pp.132-133], the
full derivation was not developed and hence the equations giving
the shape qf the free surfaces were not given. In Appendix C ,
the full derivation is given. In Chapter 5 of the present work,
the solution is extended to cover the case of  seepage fronm

trapezoidal canal to drainage on one side.
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CHAPTER 3

SEEPAGE FROM CANAL OF NEGLIGIBLE WATER DEPTH
TO
ASYMMETRIC DRAINAGES

Introduction

As reviewed in Chapter 2, so far the solutions of 'seepage
from canals assume symmetric flow from the canal to the
drainages whether shallow or deep. Howéver, in practice canals
seldom have symmetric drainages on either side. In this chapter,
solution is presented for the case of a  canal of negligible
water depth with drainages asymmetrically located on either side

of the canal.

3.1 Formulation of problem

The water seeping from a canal located on a watershed flows
through porous medium and emerges in drainages located on either
side. The steady flow through the porous media satisfies two
- dimensional Laplace's equation (Eq.A.1).

The equation is based on few a.ssumptions. First, the 'soil
below the canal is assumed to be homogeneous and isotrdpic.
Secondly, capillary and surface tension effects are neglected.
Thirdly, the flow is_ assumed to be laminar and there‘fore follows
Darcy’'s law. In addition, for obtaining solution of this
problem, it is assumed that water depth in the canal is small
and negligible. Seepage from the canal hav_ing a bed width, B=z,

emerges into two asymmetric drainages on either side of the

A TECHNICAL NOTE BASED ON THIS CHAPTER HASE BEEN RECOMMENDED BY
ASCE rom pumLICATION IN Journal of Irrigation and Drainage.
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canal and these drainages are assumed to be wide.

Shape of the free surface of seepage from the canal is
curvilinear and is not known a priori. But the curvilinear
phreatic 1ine 1is transformed 1into a straight 1ine in the
Zhukovsky plane. The Zhukovsky function €& has been defined

L Section A.3 ] as':

e 81 + 182

i

z - iW/k i (3.1)

in which, z = x + iy and w  + iy ;3 x and y are the spatial
coordinates in the z-plane ; ¢ is the velocity potential and

is the stream function ; k is coefficient of permeability. Then,

81

f

x + w/k ' - (3.2)
and,

o} ]

]

y - #/k | (3.3)
62 is a harmonic function of y and @, and its conjugate function
61 is a harmonic function of x and w.

It is known [Aravin and Numerov, 1965) from the relation

between velocity potential ¢ and the pressure p that :
pl¥, =y - ¢/k - (3.4)
in which,

the ordinate assumed positive downwards.

~<
1"

~
[

the specific weight of water;

Along the free surface, the pressure 1is atmospheric, and
from Eqs.3.4 and 3.3, 82 = 0. Therefore, the free surface is
represented by a straight 1line in the 6&-plane. Fig.3.1(a)

‘depicts conditions in the physical z-plane. Fig.3.1(b) shoﬁgvthe
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boundaries as they 1look in the &-plane as a result of
Zhukovsky's transformation [Eq.3.1]. In the z-plane, AB is an
equipotential 1ine and corresponds to ¢ = constant. This
constant is assumed to be zero, and so ¢ = 0 along this 1line.
Along the stream line and free surface 8C, the value of y is
taken to be zero. Then, w = q along the stream 1line and free
surface AE, where q is the seepage discharge per unit length of
the canal. Along the drainage CD, which is an equipotential
line, ¢ is equal to khi, in which he is the difference between
water levels of thé canal and the right-hand drainage. Along
EE'F, the left-hand drainage which is an equipotential line , ¢
= khé, in uhich hz2 is the difference between the water levels of
the canal and the left-hand drainage. Along the Jleft-hand
drainage,buhich is assumed to be at ‘higher Tevel than the
right-hand drainage, seepage from the canal emerges between E
and E', Due to difference in the elevations of the left and the
right drainages, there will be seepage from the 1left-hand
drainage to the right-hand drainage.AAThis seepage will take
place from E'F to portion of the right drainage beyond some
distance from Point C. The location of the point E' will depend
on the relative values of hs, hz, L+ and L2, in which L+ and L2
are the distances of the drainages on the right and the 1left
side of the canal respectively.

The w-plane [ Fig.3.1(c) ] and the @-plane are mapped onto
the lower half of an intermediate t-plane where t = r + is, and

the'f011owin9 relations were obtained :

z = f(&) = fa(t) (3.5)



w = F(t)
Combining Eqs.3.5 and 3.6
relationships.
z = fa(t) = filF " (w)]
w = F(fi'(2))

3.2 Solution of the Problem
3.2.1 First operation.

resul ted the

(3.6)

following

€3.7)

(3.8)

In this operation the physical p1ahe is transformed onto the

8-plane. The transformation of the physical plane t Fig.3.1(a) 1]

onto the 6-plane [Fig.3.1(b)] was obtained through Eq.3.1. The
location of the various points in z-plane and 8-plane are given
in Table 3.1. |
Table 3.1 LOCATION OF POINTS ON THE FOUR PLANES
z = plane w = plane 6 = plane t=plane
POINT x y ¢ ¥ 8 & B8 t =sr

A -Bz 0 0 q -Bz+q/k -o

B 0 0 0 0 0 0

C L h1 khs 0 L 1

D @ ha khs © ®

E -Bz-Lz hz khz q -Bz2-L2+q/k -¥

E’ -Bz-L2-Ls ha2 kh2 qQ° |-Bz-L2-La+q’'/k -p

F - hz khz -t -

In Table 3.1, Ls is the length of EE’ as shown in Fig.3.1(a)
and q' is the canal seepage component directly emerging on the

right-hand drainage.
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3.2.2 Second operation.

In this operation the w-plane [Fig.3.1(c)] 1is transformed
onto the lower half of the t-plane [Fig.3.(1d)]. This is done by
using the Schwarz-Christoffel transformation. Two arbitrary
values t = 0 and t = 1 are assigned respectively to points B and

C, and a third point, D is mapped on the t-plane at t = +o .

]

Point F would be mapped at t - , Mapping of A, E and E’' s

made on the points t = -o, t - and t = -p, respectively, as
iﬁdicated in Fig.3.1(d). The values of o, y aqd P are to be
determined. The location of the points in the two planes, i.e.,
the w-plane and t-plane, are summarized in Table 3.1,

The Schwarz-Christoffel transformation [Eq.A.61 that maps

the w-plane onto the lower half of the t-plane is as given

below.

(t+p)dt
Jd« - W J (3.9)
162 L672)

where M’ is a complex constant.
At Point B, w = 0 and t = 0. Hence, for the region B8C,
jee. [ - < - < 0 < t = 1 1, Eq.3.9 takes the

following form.

" F (t+p)dt
jdw = M I (3.10)
. , YO T (Ta) (E+7) |

where, w = ky is the complex potential function value at any
point on the free surface BC having the ordinate value of y.

Therefore, the integration of the right-hand side [ Byrd and
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Friedman, 1971, section 256.11 and 256.00 ] and the 1left-hand
side of Eq.3.10 yielded the following.

ky = N [ o TI(Be,ae®,m) + (p-0)F(B1,m) ] (3.11)

“in which, M is a complex constant and
F(f3s1,m) = E11iptic integral of the first kind,

Tkﬁn,asz,ﬁ) = E11iptic integral of the third kind,

1/(1+0) (3.12)

ols =

me = (y-0)/(r(1+0)) . : (3.13)

f1 = sin ‘Y{I+o)t/ (t+o) (3.14)
At point ¢, t = 1, w = khse and hence the following

was obtained from Eq.3.11 and Eq.3.14.

kha = M [ o Tl + (p-o)K 1 (3.15)

in which,
TE = Tlin/z ,04? ,m) | “ (3.16)
K = F(n/2,m) ‘ (3.17)

Integrating Eq.3.9 in the region AB , i.e in the region
[1>0=2t > -0> -y 1, [ applying Byrd and Friedman, 1971,
Sect%on 254.10 and 254.00 for the right-hand side integration ]
and knowing that at Point A, w = iq, and t = -o and at Point B,

w=0and t = 0 the following reTationships were found.

0 v [ (t+p)dt |
I dw = —,&'—J - (3-18)
iq o Y(1-t)(0-t) (t+o) (t+r)
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e =ML T+ (e-)K) (3.19)

in which,

T = Tltn/2,02% ,0') , (3.20)

K = F(n/2,n') | (3.21)
=1 - w (3.22)

az® = ofr (3.23)

At any point along the free surface AE, = ky and ¢ = q,

where y is the ordinate of the point considered. Hence, at Point
A, w = iq and from Table 3.1, t = -o, and considering the
region EA, i.e in the region [ 1 > 0 > -0 2 t > -y 1,

Eq.3.9 takes the following forwm.

"I (t*p)dt
Jdu = I (3.24)
- ¢ Y{1-t)(0-t) (-o-t) (t+¥)

where, w = ( ky + iq).
Integrating the right-hand side [ Byrd and Friedman, 1971,
Section 253.11 and 253.00 ] as well as the 1left-hand side  of

£Eq.3.24, the following result was obtained.

ky = M [oF(Bz,n) - o 1[(Bz,a5%,m) 1 (3.25)

where, . '
Bz = sin ‘YTz (t + V1/[t(z - )] (3.26)
as? = (y-0) /7 | (3.27)



At point E, w. = khz + iq and hence from €Eq.3.24 and 3.26

the following result was found.
kha = M [ ek - o Tl 1 (3.28)
in which,

T = Tltnsz,a8®,m) (3.29)

At Point E, w = ( khz2 + g ) and t = - and at Point E’,
w = ( khza + iq9’) and t = - p [ refer Table 3.1 J]. Hence,
considering the region E‘E , i.e [ 1 >0 > - > -y >t ], Eq.3.9
was put in the following form after integrating the 1left-hand
side of the equation.

y v 4
¥ I (t + p) dt
i

~p Y(1-t)(0-t)(-o-t)(-¥-t)

~i(all -

. . (3-30)

Integrating the right-hand side of Eq.3.30 [ Byrd and
Friedman, 1971, Section 251.03 and 251.00 ] and then rearranging

yielded the following equation.

q =q+ K[ (r-0) TIBe,ae®,0°) - (p-0)F(Ba,n’) ]

.(3.31)
in which, 7
Be = sin 'Y [(1+0) (p-7) 1/l L%V (P-0)T
.(3.32)
as® = (1+7)/(140) . | - (3.33)
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3.2.3 Third operation.

In this last operation, the &-plane was transformed onto the
intermediate semi-infinite t-plane. The above mapping was made
by using the bilinear or M3bius transformation [ refer Appendix
Ad.

The boundaries of the lower half regions of the @-plane and
t-plane were considered as 1imiting cases of cirﬁles and hence
to map the region in &-plane to t-plane the bilinear
transformation was adopted [section A.2]}. As any three arbitrary
points on the boundary can define a circle, points B, C and D
were chosen for this purpose. To apply the bilinear
transformation what is commonly called the cross-ratio formula
as given in section A.2 was used. The resulting equation is as

follows.

(6 - 68)(8p - B¢) (t - ta)(tn - tc)

(6 - éc)(6p - 68) (t - te)(to - ta)
. . . (3.34)

After the appropriate values for points B, C and D [ refer
Table 3.1 ] are substituted 3in Eq.3.34, and rearranging the

resulting equation, the following relationship was obtained.
t = 8/Ls - (3.35)

At point A, t = -o and 8 = -(Bz - q/k) [refer Table 3.11.

Substituting these values in Eq.3.35,

o = (Bx - q/k)/Lu (3.36)



Similarly, the corresponding values in t-plane and e-piane for
point E were substituted in Eq.3.35 and the following result was

obtained.

(Bz + Lz -q/k)/Ls

=~
“'

(Bz - q/Kk)/Lse + L2/Ls - (3.37)

But, From Eq.3.36, (Bz - q/k)/Lt = o and hence substituting this
il’\ Eq.3.37,

Also, the appropriate values for Point E' from Table 3.1 were

substituted in Eq.3.35 and yielded the following relationship.
| P S (Bz + L2 + Ls - q'/k)/Ls (3.39)
Moreover, rearranging Eq.3.39 yielded,
La = ple - Lz - Bz + q'/k (3.40)

3.3 Dimensionless form of Equations

3. 3.1 General Case

Dividing Eq.3.19 and 3.28 by Eq.3.15, the following set of
dimensionless quantities were obtained.

(y-o) ‘ﬂ;'+ (p - 7)K'

it

q/khs (3.41)

O’TE + (p - O)K

PK - a'TL

hz/hs
: o'rﬁ + (p - 0)K

(3.42)

31



Dividing Eq.3.31 by khs as given by Eq.3.15, the following

non-dimensional equation was found.

@ q [ (r-0) THRs, 062 0" ) - (P-0)F(Be,n') 1

= +

kh1 kha oTl, + (o - o)K

e o . (3.43)

Rearranging Eq.3.42, resulted in the following equation
as well.

o 1 (h2/hey OT- 1 +TT
[ K (1 - hz/hs) ]

(3.44)

D
1"

Dividing the numerator and denominator of the right-hand
side of EqQq.3.36 by hsi, the following relationship for the

parameter o was obtained.

o = (Bz/ht - q/kh1)/(Ls/hs) (3.45)

'3.3.2 Special Cases
3.3.1.1 Case of symmetrically located drainages

For the case of drainages symmetrically located on either

side of the canal, L2 = L+ =L 3 hz2 = ht = h and q = 9 » where

A is seepage from the canal when the drainages are

symmetrically 1ocate&. So, from Eq.3.38, we have » = (l+0),
Hence, substituting this in Eqs.3.12, 3.13, and 3.27, the

following equations wére obtained.

2
o

1/(1+eo)

(3.46)

2
(2%:]

1/(1+0) (3.47)

32



For the case of the parameters as related by Eqs.3.46 and
3.47 the following relationship was wnade [Byrd and Friednan,
1971, p.227, section 412.01],

T ==t =+ 2(2-wK 1/1 4C1-m) ] ©(3.48)

Substituting Eq.3.48 in Eq.3.44, the right-hand side of the
resulting equation will be free from the elliptic integral of
the third kind. For symmetrical case, hz/hs = 1 and substituting
this in the above result and after some mwmanipulation, it is
found that p. — ®. It is to be noted that for o > 0, [ Fig.3.1
and €Eq.3.36 1, m is different from one [ Eq.3.46 and 3.47 ] and
"thus refering 6yrd and Friedman, 1971, p.11, section 115.05, K
is different from infinity. Simi?arly,'TE,and K* are different
from o and thus knowing that for symmetrical case (» - o) = 1,
Eq.3.41 after simplification resulted in the following

relationship.
Qs ,
~ToH" K /K : ; (3.49)

Similarly, simplifying the second term on the right-hand
side of Eq.3.43 for the case of p — o and substituting the
result obtained for q as given by Eq.3.49, the following result

was also obtained.

q'/kh = K" /K - F(f3¢,n’ ) /K _ (3.50)

6150. £q.3.32 reduced to,

e = sin ‘v (1t0)/(2+0) (3.51)
Hence, from Eq.3.51 and applying basic trigonowmetry,

cot(f3s) = 1/¥ s+o (3.52)

33



Again applying basic trigonometry and using Eq.3.46,

tanBe =1 + o = 1/nm (3.53)

Comparing Eqs.3.46, 3.52 and 3.583, the following

relationship was wmade.
cot(3¢) = m tan(fis) (3.54)

As the.condition as given by Eq.3.54 exists, F(B<4,m") is
equal to 0.5K' [Byrd and Friedman, 1971, p.13, section 117.01].
Substituting this result in Eq.3.50,

q' /kh = 0.5K' /K ‘ (3.55)

Hence, substituting Eq.3.49 in Eq.3.55, the following
relationship for the case of symmetrical drainages was obtained

and which obviously is as must be expected.

Q' /kh = 0.5q /kh | (3.56)

3. 3.#.2 Total seepage from the canal going to one drainage only.

Seepage discharge from the canal emerging in the drainage on
the 1left-hand Side decreases  as its level rises and
correspondingly Ls will reduce. With further rise in the 1level

of the left-hand drainage, entire seepage from canal may appear

on the right-hand drainage (Ls 0). In addition, seepage will
also take place from Tleft-hand drainage to the right-hand
drainage.

Then, for this case in which all the seeping water from the

canal goes to one drainage only, say, to the right drainage

orily, @' = q and Ls = 0. Substituting these in Eq.3.39,



p = (Bz + Lz - q/k)/Ls

(Bz - q/k)/Ls + La/Ls | (3.57)

Substituting Eqs.3.36 and 3.37 in Eq.3.57, the following
relationship for the case where the total seepage from the canal

goes to only one drainage, i.e. the right-hand side drainage was

obtained.

L]

fal o + La/La

1

v (3.58)

Substituting £q.3.58 in Eq.3.32, B« = 0, produced {Byrd and

Friedman, 1971, p.10, section 111.00] the following result.
Tl(Re, 062, ) = F(Ba,w') = 0 | (3.59)

Substituting the above relationships, i.e. Eq.3.58 and
Eq.3.59 in Eq.3.41, q = q,» where q  is the total seepage from
the canal in the case where only the right drainage gets the

seepage water from the canal.

(L2/L4)T';'
q. /kht = (3.60)
° oTT + (L2/L1)K |

Also, Eq.3.42 becanme,

h2 r K - a-rL
hi 011; t (r - o)X

( Lz/LO)K + o (k - TD)
oI, + (L2/Le)K

1"

(3.61)
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The ratio h2/hs as given by Eq.3.61 equals to he/hs, where,
he is the critical level of the left dréinage at which it is not
receiving any water from the canal.

But, from Eq.3.12, 3.13 and Eq.3.27, as? = w*/as® and hence
the following relationship could be obtaiﬁed [Byrd and Friedman,

1971, p.13, section 117.02(a)].

T, +TT = K + (0.5n/0)Y (I+&) (Lz/L: + o)
.+ (3.62)

Substituting Eq.3.62 in Eq.3.61, the following equation
giving the critical ratio of the elevations of the left and
right drainages, i,e (hz/h1), at which the total seepage from
the canal flows only to the drainage which is at lower elevation

was obtained.

(0.57) Y(1+o)(Lz2/Ls + 0O)
he/ht = 1 - :

(3.63)
o TI + (L2/La)K

3.3.3 The shape of the free surfaces.

3. 3. 3. 1 Free surface BC.

Eq.3.11 was divided by Eq.3.15 to obtain the ordinate of any
point on the free surface BC in a non-dimensional form as given

below.

(o THA1,012,m) + (p - 0 ) F(Be,m) ]
y/h = (3.64)
a'T[ + (p - 0)K
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On the free surface BC, ¢ = ky and vy = 0, and hence from
€Eq.3.3, 3.2 and 3.1, the relation & = €4+ = x was obtained.
Substituting this result in Eq.3.35, the following equation was

found.
t = x/Ls (3.65)

From Eq.3.65, for a given value of x, which .is the
horizontal projection of any point on the free surface BC , and
Ls, the corresponding value of t is obtained. This value of t is
then substituted in Eq.3.14, to get the value of ﬁx which in

turn is needed to compute y/h:s from Eq.3.64.

3.3.3.1 Free surface AE.

On the free surface AE, ¢ ky and ¥ = q, and hence fron

(]

Eq,3.3, 3.2 and 3.1 we have 8 = 82 = x + q/k. Substituting this

in Eq.3.35, the following equation results,
t = (x + q/k)/Ls (3.66)

If XL is the horizontal distance of a point on the free
surface AE measured from point A, see Fig.3.1(a), from Eq.3.66

the following relationship could be obtained.

-+
[

(-Bz -Xu ¢+ q/k)/Ls

- [ Xe/Le + (Bz - q/k)/Lt ] (3.67)

But, from Eq.3.36, (Bz - q/k)/L+ = o . Substituting this in

Eq.3.67, the result below was obtained.

t = - ( Xe/Ls ¢+ o) (3.68)
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Also, dividing Eq.3.25 by Eq.3.28, the ordinate of the point
on the free surface AE in a non-dimensional form as given below

was found.

PF(ﬁZ ’m) - Oﬂ(ﬁz ’aszan)
y/h2 = (3.69)
PK ~¢71xl

Knowing X./Ls and ¢, the value of t is computed from Eq.3.68
which in turn is substituted in Eq.3.26 to yield the value of
#2. This value of B2 is used in Eq.3.69, to find the
non-dimensional ordinate (y/hz2) of the point on AE at distance

of XL from Point A.

3.4 Results and Discussions.

From the above equations, it is seen that total seepage from
the canal and the seepage discharge components emerging to
either of the drainages cannot be explicitly expressed in terms
of physical dimensions such as canal bed width, drainage
distances and levels of the drainages. Similarly, coordinates of
the free surface are also not obtained in explicit form., The
physical dimensions and seepage discharge and free surface
coordinates are related to intermediate parameters o, ¥ and p.
Therefore, values of these parameters are determined for given
values of physical parameters such as Bz/hse, La/hs, L2/ht and
ha/hs. Since the expressions relating physical and 1intermediate
parameters also involve values of seepage discharge which in
turn depend on the values of the intermediate parameters (o, »

and @), computation of the seepage discharge and coordinates of
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the free surface is an iterative process [ refer flow chart in
Fig.B.1 ]. In the comnputational steps it was required to
evaluate values of elliptic integrals. Subroutines to compute
the values of the elliptic integra1§ of the first.' second and
third kind were thus developed. In the development of these
subroutines, the results were verified uith‘ the corresponding
values given in the tables of the WNand book of £lliptic
Integrals for Engineers and Scientists [Byrd and Friedman, 1971]
and A Table of the Incowmplete Elliptic Integrals of the Third
Kind [ Selfridge & Haxfield, 1958 ].

The results of calculations for seepage discharge for values
‘of Bz/hs = 10, 20 and 30 ; Li/he = 10, 10%, 10", 10° and 10°;
Lz/hs = 10, 10%, 107, 10*, and 10° ; and hz/hs = 1, 0.9, 0.8 and
0.7 are tabulated in Tables 3.2 to 3.5. and are plotted in
Figs.3.2 to 3.5. Canal seepage discharge components towards the
left and right-hand side drainages for the above given various
physical dimensions of the flow system are presented in Tables
3.6 to 3.9.

Dimensionless coordinates of the free surface curves on

either side of the canal were computed using Eqs.3.64, 3.65,

3.68 and 3.69., The profiles of the free surfaces for wvarious = __

combinations of the physical parameters of the flow system are
plotted in Figs.3.6(a), 3.6(b), 3.7, 3.8(a) and 3.8(b) in order
to highlight the separate influence of each parameter on the
free surface. v

The values of a critical depth ratio, he/hs, for Bz/hs = 10,
20 and 30 and various values of Li/h« and L2/hs are plotted in

Figs.3.9, 3.10 and 3.11 respectively.

39



Table 3.2 Total Seepage Discharge From Canal To Asymmetric

Drainages. [Water depth negligible, has/hs:s = 1,0)
Lishs 10 10* " 10° 10* 10°
L2/hs q7khs
I Bz/h:= 10)
10 1.23186 1.01537 0.98090 0.97721 0.97684
10? 1.01537 0.69823 0.61780 0.60734 0.60626
10° 0.98090 0.61780 0.46631 0.42856 0.42363
10* 0.97721 0.60734 0.42856 0.34817 0.32661
10° 0.97684 0.60626 0.42363 0.32661 0.27758
[ Bz/hi= 20}
10 1.52796 1.22051 1.16197 1.15543 1.15477
10% 1.22051 0.82230 0.71316 0.69869 0.69718
10? 1.16197 0.71316 0.52121 0.47440 0.46834
10* 1.15543 0.69869 0.47440 0.37786 0.35257
10° 1.15477 0.69718 0.46834 0.35257 0.29605
[ Bz/hi= 30]
io 1.72582 1.35799 1.27773 1.26842 1.26747
10* 1.35799 0.91166 0.77998 0.76210 0.76023
10° 1.27773 0.77998 0.55906 0.50555 | 0.49863 -
10* 1.26842 0.76210 0.50555 0.39750 0.36959
10° 1.26747 0.76023 0.49863 0.36959 0.30795
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Table 3.3 Total Seepage Discharge From Canal To Asymmetric

Drainages. [VWater depth negligible, has/hs w (,9]
Lishe = 10 10? 10° 10* 10°
L2/hs q7khs
{ Bz/hi= 10|
10 1.17253 | 0.93847 | 0.89216 | 0.88389 | 0.88199
10* 0.99330 | 0.66384 | 0.56886 | 0.55116 | 0.54751
10° 0.97375 | 0.60567 | 0.44315 | 0.39427 | 0.38418
10* - - 0.42023 | 0.33083 | 0.30041
10° : - . 0.32026 | 0.26374
[ Bz/hic 20|
10 1.45326 | 1.12950 | 1.05683 | 1.04435 | 1.04167
10* 1.19132 | 0.78158 | 0.65668 | 0.63388 | 0.62938
10° 1.15240 | 0.69884 | 0.49525 | 0.43638 | 0.42463
10* = - 0.46515 | 0.35901 | 0.32424
10° = - = 0.34570 | 0.28126
[ Bz/hi= 30J
10 1.64093 | 1.25827 | 1.16258 | 1.14631 | 1.14296
102 1.32344 | 0.86642 | 0.71838 | 0.69140 | 0.68621
10° 1.26627 | 0.76402 | 0.53120 | 0.46501 | 0.45207
10* - - 0.49566 | 0.37766 | 0.33988
10° - - F 0.36239 | 0.29257
NOTE :- In the table above and in all other tables, '-'
indicates that the Jocation of the left

drainage is beyond the critical range.
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Table 3.4 Total Seepage Discharge From Canal To Asymmetric

Drainages. [Water depth negligible, hz/hsi = (,8]
Li/hs + 10 10? 10* 10* 10°
L2/hs q7khs
[ Bz/hi= 10]
10 1.11296 | 0.86127 | 0.80303 | 0.79012 | 0.78668
102 0.97120 | 0.62939 | 0.51982 | 0.49485 | 0.48863
10" - § 0.41998 | 0.35994 | 0.34468
10* = - = 0.31348 | 0.27419
10° - 3 s g 0.24989
[ Bz/hi= 20}
10 1.37838 | 1.03831 | 0.95143 | 0.93298 | 0.92825
10% 1.16210 | 0.74082 | 0.60014 | 0.56899 | 0.56148
107 - 0.68451 | 0.46929 | 0.39833 | 0.38089
10* - - . 0.34015 | 0.29591
10° 2 ; g < 0.26647
[ Bz/hi= 30]
10 1.55588 | 1.15840 | 1.04724 | 1.02399 | 1.01821
102 1.28886 | 0.82115 | 0.65672 [ 0.62063 [ 0.61211
10 = 0.74806 | 0.50333 | 0.42446 | 0.40548
10* = E = 0.35781 | 0.31017
10° X - = - 0.27718
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Table 3.5 Total Seepage Discharge From Canal To Asymmetric

Drainages. [Water depth negligible, h2/hs = 0,7}
Lishs -+ 10 102 10" 104 . 10°
L2/hs q/khi
LBz/hsn 10|
10 1.05315 | 0.78379 | 0.71349 | 0.69591 | 0.69090
10° 0.94906 | 0.59489 | 0.47068 | 0.43841 | 0.42960
10° . - 0.39679 | 0.32558 | 0.30513
10* n - - = 0.24795
10° - = - . -
[Bz/hi= 20]
10 1.30331 | 0.94692 | 0.84579 | 0.82131 | 0.81453
10° 1.13284 | 0.70002 | 0.54352 | 0.50401 | 0.49348
107 - - 0.44332 | 0.36026 | 0.33713
10* - - - 0.32130 | 0.26756
s
10 - - - - -
LBz/hnn 30]
10 1.47068 | 1.05839 | 0.93170 | 0.90144 | 0.89324
102 1.25424 | 0.77584 | 0.59500 | 0.54979 | 0.53793
10° 3 L 0.47544 | 0.38389 | 0.35887
10* - = - 0.33796 | 0.28045
105 - - - - -
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Table 3.6

Seepage Discharge Components to the Left and Right

Drainages.l Water depth negligible,

h2shs = 1.0 1}

Lizhs + 10 10% 10" 10* 10°
L2/hs Values* in non-dimensional form in terms of khi
[Ez/ht = 10}
10 0.61593 0.78885 0.90764 1 0.95400 0.96952
0.61593 0.22652 0.07326 0.02321 0.00732
102 0.22652 0.34912 0.49508 0.56798 0.59381
0.78885 0.34912 0.12272 0.03936 0.01245
10° 0.07326 0.12272 .23316 0.34487 0.39672
0.90764 0.49508 0.23316 0.08369 0.02691
10* 0.02321 0.03936 0.08369 0.17409 0.26295
0.95400 0.56798 0.34487 0.17409 0.06366
10° 0.00732 0.01245 0.02691 0.06366 0.13879
0.96952 0.59381 0.39672 0.26295 0.13879
[Bz/h: = 20|
10 0.76398 0.92405 1.06494 1.12465 1.14505
0.76398 0.29646 0.09703 0.03078 0.00972
102 0.29646 {.0.41115 0.56887 0.65240 0.68255
0.92405 0.41115 0.14429 0.04629 0.01463
10° 0.09703 0.14429 0.26060 0.38156 0.43851
1.06494 0.56887 0.26060 0.09284 0.02983
10* 0.0307/8 0.04629 0.09284 0.18893 0.28383
1.12465 0.65240 0.38156 0.18893 0.06873
10° 0.00972 0.01463 0.02983 0.06873 0.14802
1.14505 0.68255 0.43851 0.28383 0.14802
[B=/h: = 30]
10 0.86291 1.00853 1.16200 1.23165 1.25586
0.86291 0.34946 0.11573 0.03677 0.01161
102 0.34946 0.45583 0.61948 0.71058 0.74394
1.00853 0.45583 0.16050 0.05152 0.01629
10° 0.1157/3 0.16050 0.27953 0.40633 0.46680
1.16200 0.61948 0.27953 0.09922 0.03183
10* 0.03677 0.05152 0.09922 0.19875 0.29752
1.23165 0.71058 0.40633 0.19875 0.07207
10° 0.01161 0.01629 0.03183 0.07207 0.15398
1.25586 0.74394 0.46680 0.29752 0.15398
* NOTE :- Top values in each row in tables 3.6 to 3.9 are
seepage discharge components to the left

drainage whereas the corresponding values below thenm

are those to the right drainage.
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Table 3.7 Seepage Discharge Components to the Left and Right

Drainages.[ Water depth negligible, h2/h: = 0.9 1}

Li/hs - 10 10* 10* 10* 10°
La2/hs Values in non=dimensional form in terms of kh:
|{Bz7/hs = 10}
10 0.45325 0.61567 0.74207 0.80689 0.84017
0.71928 0.32280 0.15009 0.07700 0.04182
102 0.11063 0.21782 0.36024 0.44/80 0.49245
0.88267 0.44602 0.20862 0.10336 0.05506
10% 0.00231 0.03050 0.12043 0.23242 0.30090
0.97144 0.57517 0.32272 0.16185 0.08328
10° . § 0.00709 | 0.07369 | 0.16446
0.41314 0.25714 0.13595
1o - : r 0.00006 | 0.04749
0.32020 0.21625
|Bz#hs = 20)
10 0.58543 0.73383 0.87756 0.95435 0.99328
0.86783 0.39567 0.17927 0.09000 0.04839
102 0.16961 0.27143 0.42360 0.52033 0.56940
1.02171 0.51015 0.23308 0.11355 0.05998
10° 0.01386 0.04577 0.14291 0.26326 0.33644
1.13854 0.65307 0.35234 0.17312 0.08819
1ot L i 0.01185 | 0.08513 | 0.18157
0.45330 0.27388 0.14267
pe i . : 0.00112 | 0.05417
0.34458 0.22709
[Bz7h: = 30]
10 0.67409 0.80821 0.96138 1.04682 1.08986
0.96684 0.45006 0.20120 0.09949 0.05310
102 0.2154¢6 0.31049 | 0.46729-| 0.57045 0.62271.
_ 1.10798 0.55593 0.25109 0.12095 0.06350
10° 0.02550 0.05786 0.15864 0.28426 0.36057
1.24077 0.70616 0.37256 0.18075 0.09150
10% _ ] 0.01544 0.09283 0.19286
‘ 0.48022 0.28483 0.14702
10° B 3 ) 0.00029 | 0.05853
0.36021 0.23404




Table 3.8 Seepage Discharge Components to the Left and Right

Drainages.l Water depth negligible,

hzashs = 0.8 1

Lishs 10 10? 10" 10* 10°
Lz2/hs Values in non=dimensional form in terms of khi
I Bz/hi= 10!
10 0.33802 0.48804 0.61605 0.68996 0.73132
0.77494 0.37323 0.18698 0.10016 0.05536
102 0.04549 0.13444 0.26874 0.36277 0.41628
0.92571 0.49495 0.25108 0.13208 0.07235
108 _ ; 0.05624 | 0.16143 | 0.23717
0.36374 0.19851 0.10751
10°* - g A 0.02274 0.10589
0.29074 0.16830
1o° a - ) J 0.00705
0.24284
| Bz/hs= 20|
10 0.45438 0.59002 0.73173 0.81687/ 0.86441
0.92399 0.44829 0.21970 0.11620 0.06384
102 0.09209 0.17953 0.32245 0.4247¢6 0.4828/
1.07001 0.56129 0.27769 0.14423 0.07861
10° = 0.00349 0.07356 0.18697 0.26731
0.68102 0.39573 0.21136 0.11358
10° . ¥ r 0.03047 | 0.11970
0.30968 0.17621
10° _ . r d 0.01068
0.25579
[ Bz/hi= 30)
10 0.53279 0.65468 0.80342 0.89640 0.94833
1.02309 0.50372 0.24382 0.12759 0.06988
102 0.13020 0.21294 0.35969.| 0.46767 -0152904‘ :
1.15866 0.60821 0.29703 0.15296 0.08307
10° o 0.00959 0.08599 0.20449 0.28785
0.73847 0.41734 0.21997 0.11763
10 § . | 0.03588 0.12886
0.32193 0.18131
10° - _ _ , _ 0.01320
0.26398




Table 3.9 Seepage Discharge Components to the Laft and Right

Drainages.[ Water depth negligible,

hashs o 0.7 1}

Li/hs » 10 10% 10° 10 10°
Lza/hs Values in non~dimensional form in terms of khs
[ Bz/hic 10]
10 0.24332 0.37904 0.50404 0.58194 0.62753
0.80983 0.40475 0.20945 0.11397 0.06337
102 0.00703 0.07250 0.19414 0.28925 0.34707
0.94203 0.52239 0.27654 0.14916 0.08253
10° J of 0,01533 0.10611 0.18347
0.38146 0.21947 0.12166
10* " B N - 0.06219
0.18576
5.
10 - - - - -
l Bz/has= 20'
10 0.34385 0.46560 0.60135 0.68962 0.74158
0.95946 0.48132 0.24444 0.13169 0.07295
10° 0.03799 0.10877 0.23878 0.34147 0.40391
1.09485 0.59125 0.30474 0.16254 0.08957
102 N o 0.02680 0.12673 0.20867
0.41652 0.233%53 0.12846
10* iy ! I 0.0068 0,U7291
0.31962 0.19465
10° C - o : z
[ Bz/h1i= 30]
10' 0.41201 0.52092 0.66170 0.75704 0.81346
1.05867 0.53747 0.27000 0.14440 0.07978
102 0.06734 0.13638 0.26993 0.37767 0.44333
1.18690 0.63946 0.32507 0.17212 0.09460
10° 'y . 1 0.03557 0.14099 0.22589
0.43987 0.24290 0.13298
10* _ 1 - 0.00393 0.08010
0.33403 0.20035
[
10 - - - - -
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A perusal of Figs.,3.2 to 3.5 indicates that the seepage
discharge decreases with increase in the values of Ls/he and
L2/hs, i.e as the drainage distance increases, the seepage
discharge decreases. It is also seen that the seépage discharge
increases with increase in the value of Bz/hs. However, increase
in the seepage discharge due to increase in bed width 1is not
proportional to the increase 1in bed width. Therefore, the
practice of expressing the seepage from canals in terms of their
wetted perimeters irrespective of their size is not correct.

From Tables 3.6 to 3.9, it is observed that the components
of seepage discharge from the canal towards the 1left and
right-hand side d?ainages are equal when the drainages are
symmetrically located, i.e. when their respective distances and
elevations with reference to the canal are equa1.18ut, when the
ratios Lz2/Ls and hz/hs are different from one, there is a
difference between the amount of seepage discharge received by
the left drainage and the right drainage. Moreover, a perusal of
the Tables 3.2 to 3.9 further indicates that keeping hz/hs
constant, with increase in one of the drainage distances, both
the total seepage loss, q/kh:, and seepage towards the drainage,
distance of which 1is 1increased, decrease but the seepage
component to the other drainage increases. For B8z/hs = 10.,
L2/ha = 100 and h2/hs = 1,0, the total dimensionless seepage
discharge, q/khs, decreases from 1;01537 to 0.60626 with
increase in drainage distance on the right-hand side from Li1/hs
= 10 to La/hs = 10° [ refer Table 3.2 1. Referring to Table 3.6,
it is seen that out of the above total seepage discharge, the

dimensionless seepage discharge towards the right side drainage

60



( Leshe = 10 ) is 0.78885 and that on the left side ( La/hi =
100 ) is 0.22652. But, when Li/hs is increased to 10°, the
dimensionless seepage component towards the right drainage
decreased to 0.01251 whereas that towards the 1left drainage
increased to 0.48116.

However, if one of the drainages, say that on thé left, is
at higher level than the other drainage, i.e. hz/h:s < 1., then
as the distance of the drainage which 1is at higher 1level is
increased ( Lz 1is increased ), the component of seepage
discharge received by this drainage decreases and tends to zero.
Beyond certain distance, the drainage which is on higher Jlevel
will be ineffective [ refer Tables 3.3 to 3.5 }.

With respect to the canal, the drainages are located at
different finite horizontal distances and vertical levels. In
addition to seepage from the canal, there will be seepage taking
from the drainage'at higher 1level to the drainage at lower
level. As mentioned ear}ier, the seepage from the canal flows
partly to the drainage on the 1left and partly towards the
drainage on the right. The seepage discharge to the drainage
which is at lower level and is nearer to the canal is more .than
that to the other drainage. As the level of the upper drainage
is raised ( say value of h2 is reduced ), the component of canal
seepage to this drainage is reduced. At a certain value of hz (
say hza = he ), the canal seepage to this drainage approaches
zero and the entire canal seepage water will emerge in the other
drainage. If depth of the higher drainage below canal water
level is further reduced ( hz < he ), this drainage continues to

be ineffective [for case of single drainage refer to Chapter 5].

61



However, if depth of the drainage below the canal water level is
lowered such that ha > he, the drainage becomes effective and
part of the canal seepage water emerges in this drainage and the
remaining canal seepage water emerges in the other drainage. The
value of this critical depth ( he ) is a function of Ba/hs,
L2/hs and Ls/hi. The values of this critical depth ( he ) of the
drainage below canal water level for Bz/hs = 10, 20 and 30 and
different values of Li/ha and L2/hs as plotted in Fig.3.9 to
3.11, indicates that as the value of Li¢/he is increased, the
value of he/hs decreases, i.e. the critical 1level of the
drainage at which it becomes effective is higher. On the other
hand, with increase in the value of Lz/hs, the value of he/hs
increases, i.e. the critical level of the drainage at which it
becomes effective is lowered. With increase in the value of
Bz/hs, the value of hc/hs decreases, i.e. the critical level of
the drainage at which it becomes effective is higher.

So far the seepage discharge for an asymmetric case could be
’approxinately determined by addingr~ the computed seepage
discharges towards drainages on either side assuming these to be
equivalent to two separate symmetric cases. The values‘ of
seepage computed by following the above mentioned procedure are
compared with those directly obtained from the solution
presented hefein ( Tables 3.10 to 3.12 ). It is seen that for
the case of the synﬁetrica] layout of the dra%nages, j.e L1 = La
and hs = hz, the results found by the above mentioned
approximate method and the exact method are identical [ refer to
Table 3.10 for the case of hz2/ht = 1 and Ls = L2 = 50.0 ]. But

in the case of the asymmetric 1layout of the drainages, the
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Table 3.10 Comparison of Seepage Quantitities as Calculated By
Equations Obtained from Symetrical and Asymmetrical

Considerations. [ ha7zhs = 1.0 and L2/hs = 50 1
Note : seepage| FROM SUH OF TWO SEPARATE| OBTAINED DIRECT FROM
quantities are SYMMETRIC CASES ASYMMETRIC CASE
|lgiven in terms
of khs. SEEPAGE TO DRAIN ON SEEPAGE TO DRAIN ON
Li7hs| Bz/hs LEFT RIGHT TOTAL LEFT RIGHT TOTAL
10 0.40695] 0.48223| 0.88918]|.36040].53409 [0.89449
25.0 20 0.48881] 0.58974| 1.07855|.44550|.63795 |1.08345
30 0.54760| 0.66543| 1.21303}.50793|.70937 11.21730
10 0.40695| 0.40695| 0.81390|.40695|.40695 |0.81390
50.0 20 0.48881| 0.48881) 0.97762|.48881|.48881 [0.97762
30 0.54760| 0.54760] 1.09520|.54760]|.54760 |1.09520
10 0.40695| 0.34912] 0.75607].45812{.30292 (0.76104
100.0 20 0.48881] 0.41115| 0.89996|.54004].36516 |0.90520
30 0.54760] 0.45583] 1.00343;.59719(.41133 {1.00852
10 0.40695| 0.25946| 0.66641}.56461}.14304 |0.70765
500.0 20 0.48881| 0.29376| 0.78257].65601{.17315 |0.82916
30 0.54760| 0.31778| 0.865381.71763].19630 10.91393
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Table 3.11 Comparison of Seepage Quantitities as Calculated By
Equations Obtained from Symetrical and Asymmetrical
[ ha2zh:1 = 0.75 and L2/h1 = 50 1

Considerations.

Note : seepage FROM OBTAINED
quantities are SUM OF TWO SEPARATE DIRECTLY FROM
given in terms SYMMETRIC CASES ASYMMETRIC CASE
of khi. :
SEEPAGE TO DRAIN ON SEEPAGE TO DRAIN ON
Lishs |Bz/h1 LEFT RIGHT TOTAL LEFT RIGHT TOTAL
10 0.30679(0.48223|0.78902{0.,10544{0.70086{0.80630
25.0 20 0.36783{0.5897410.95757(0.16338(0.81021]0.97359
30 0.41177}0.66543}1.07720]0.20760|0.8840311.09163
10 0.30679]0.40695|0.71374{0.13946{0.57455{0.71401
50.0 20 0.3678310.4888110.85664]0.19574}10.66111}0.85685
30 0.41177/0.54760]0.95937|0.23746{0.72208|0.95954
10 0.3067910.34912(0.65591]0.17977{0.46853{0.64830
100.0 20 0.36783]0.41115(0.77998{0.23603|0.53552|0.77156
30 0.41177)10.45583|0.86760]0.27632{0.58408|0.86040
10 0.30679(0.25946{0.56625|0.27659{0.29169{0.56828
500. 0 20 0.36783]0.29376]0.66159]0.33829{0.32818]0.66646
30 0.4117710.317780.72955(0.38044{0.35518]0.73562
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Table 3.12 Comparison of Seepage Quantitities as Calculated By
Equations Obtained from Symetrical and Asymmestrical

Considerations. [ ha27zhs v 0.75 and Lizhs = 50 ]
Note : seepage FROM OBTAINED
quantities are SUM OF TYWO SEPARATE DIRECTLY FROM
given in terms SYMMETRIC CASES ASYMMETRIC CASE
of khs.
SEEPAGE TO DRAIN ON SEEPAGE TO DRAIN ON
L2/hs1 |Bz/ht LEFT RIGHT TOTAL LEFT RIGHT TOTAL
10 0.3641710.40695]0.771090.2324710.53126(0.76373
25.0 20 0.4442310.4888110.93304]0.30588]|0.6202210.92610
30 0.5007210.54760]1.04832]0.35746{0.6843211.04178
10 0.30679(0.40695{0.71374 0.13946 0.57455{0.71401
50.0 20 0.3678310.48881(0.85664{0.1957410.6611110.85685
30 0.4117710.54760{0.95937{0.23746]0.72208|0.95954
10 0.26286|0.40695(0.66981]/0.0685110.6180310.68655
100.0 20 0.3091410.48881]0.7979510.1082410.70662{0.81487
30 0.3425510.54760{0.89015|0.13939{0.76714|0.90653
10 0.19502/0.40695{0.60197 - - -
500.0 20 0.22062/0.48881({0.7094310.00182|0.78445(0.78627
30 0.23859(0.54760]0.78619{0.00931/0.85588[0.86520
10 0.17518]0.46950]0.64468 - = !
1000.0 20 0.1956610.48881{0.68447 - - -
30 0.2098210.54760 0.75742 - = -
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results obtained by the exact and the approximate method differ
significantly. The dimensionless total seepage discharge
computed by the present solution is more than the value computed
by the approximate method where ‘the asymmetric condition is
decomposed to two "equivalent™ symmetric cases and then half
from each of the results for the total seepages in the two
symmetric cases are added together to give the amount of the
total seepage for the original asymmetric case. For example,
from Table 3.10, for the case of h2/hs = 1 and Ls+/he = 500 and
La/hs = 50, the total dimensionless seepage (q/kh1) as
calculated épproximate1y from two equivalent symmetric cases is
0.66641, 0.78257, and 0.86538 for Bz/h:s = 10, 20 and 30
respectively, whereas as -caicu1ated by the present direct
method, the <corresponding results are 0.70765, 0.82916 and
0.91393 respectively. It 1is observed that the percentage
difference between the results as obtained by the two methods
decreases with increase in Bz/ht and increases with increase in
the value of La/hs., Moreover, from Tables 3.10 to 3,12, it is
seen that the differences in the results obtained by the two
methods are more marked when the corresponding quantity of
seepage components received by the 1left and the right-hand
drainages are separately compared. From Table 3.10, for the case
of hs = hz, the approximate. method to the solution for
asymmetric cases underestimates the seepage components received
by the nearer drainage whereas it overestimates the seepage
components received by the farther drainage.

Qs the influence of the different elevations of the

drainages ( for hz/h:t different from one ) and the distances of
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the drainages ( for L2/Ls different from one ) is not considered
in the development of the solutions for asypmmetric case, the
results as calculated by this nethod showed big differences in
the calculation of the total seepage discharge or tﬁe quantities
of seepage components received by the left and the right-hand
drainages as compared to those obtained by the solution of
asymmetfic case. The comparison of results as shown in Table
3.10 for hz/h:s = 1 and Tables 3.11 and 3.12 for hz/hde = 0.75
highlights the above mentioned differences. Thus, estimating
seepage losses from canal towards asymmetric drainages by
decomposing into two symmetric cases is not correct.
Dimensionieés coordinates of the free surface on the
right-hand side of the canal for Bz/hs = 10, L2/hs = 50, h1 = h2
and Ls+/hse = 25, 50 and 100 are plotted in Fig.3.6(a). This is to
show the effect of the distance of the right-hand drainage on
the right-hand side free surface. The free surface on the
right-hand side becomes higher as the value of Ls/hes dncreases,
i.e with increase in drainage distance the free surface is
raised. Fixing the value of Ls/ha = 50 3 he = hza ;3 Bz/hs = 10
and varying the left drainage distance, i.e. varying Lz, the
free surface on the side of the drainage, distance of which is
fixed, is raised [ Fig.3.6(b) 1. To see the effect of the canal
dimension, i.e bed width Bz, the free surface shapes are plotted
in Fig.3.7 for hz = het 3 Ls = Lz = 50hs and Bz/hs = 10,_ 20 and
30. Al11 other things kept constant,-the free surface rises with
increase in the bed width. From Fig.3.7, it is observed that the
rise in the free surface as Bz is increased from 10ht to 20hs is

more than the corresponding rise when Bz is increased from 20hs
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to 30he. Free surface variation with respect to hz/hs is plotted
in Fig.3.8(a) and 3.8(b). Keeping all other things constant, if
the 1e§e1 of one of the drainages is varied, it has effect on
the free surfaces on either side of the canal. For example, for
fixed he, and for Bz = 10hs and Ls = Lz = 100hs, if the
left-hand drainage is lowered, i.e. the value of h2z is increased
from 0.5hs to 0.75hs and then to 1.0hs, the free surface on the
right-hand side is lowered as shown in Fig.3.8(a) whereas the.
effect of lowering of left-hand drainage on the 1left-hand side

free surface is shown in Fig.3.8(b).
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CHAPTER 4

SEEPAGE FROM TRAPEZOIDAL CANAL
TO
ASYMMETRIC DRAINAGES

Introduction

Seepage losses from unlined canals depend op the shape and
size of the canal cross section, location of drainages on either
side of the canal and the subsoil properties. In Chapter 3, the
shape of the canal and the depth of the water in the canal were
not considered. In this chapter, exact solution of the problen
of seepage from a trapezoidal canal in homogeneous medium to
asymmetric drainages located at finite distances is presented.
Hence, the shape of the canal and depth of water in the canal

have been considered in this analysis.

4.1 Formulation of Problem

To derive the Laplace equation (Eq.A.1) and to make the
problem amenable to analytical solution, the few assumptions
that had been made in Chapter 3 are applicable in this work too.
The assumptions are : (i) the porous medium is homogeneous and
isotropic extending up to Targe depth; (ii) capiliary and
sﬁrface tension effects are negligible; (iii) the flow is
laminar and therefore follows Darcy's 1law, and (iv) the

drainagesvare wide.

Zhukovsky's function which is defined in Eq.A.15 1is also
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applied in this problem. Hence, after applying Eqs.3.1, 3.2, 3.3
and 3.4, the following statements could be lade.’ﬁldng the free
surface, the pressure is atmospheric and from Eqs.3.4 and 3.3,
®2 = 0. The curved free surface in the z-plane ([Fig.4.1(a)] is
therefore represented by a straight 1ine in the 8-plane.

The 8-plane [Fig.4.1(b)] was mapped onto the lower half of
fhe [-plane [Fig.4.1(c)], where { =¥ + iy, and the w-plane

[Fig.4.1(d)] was mapped onto the 1lower half of the t-plane,

where t = r + is as shown in Fig.4.1(e). Table 4..1 summarizes
the values of the corresponding points in the different planes.
The relationship between the I -plane and the t-plane was

obtained through the bilinear transformation . Hence,

8 = fa (L) (4.1a)
in which,

e =z - iw/k (4.1b)

w = fa(t) (4.2a)

t =

fa(l) (4.2b)

On combining Eqs.4.1(a), 4.1(b), 4.2(b) and 4.2(a), the

following relationships were obtained.

z = iw/k + fa (L) (4.3a)
w = fz [fa(()]

= fa () (4.3b)
z = (i/k)[fe(L)] + Fa(L) (4.3c)

70



(a) z~plane

-® L 6a o L, P
X1 ) ] A B . 1
F G _ , s = e
Xo2 .\ xat | 1“
A e |
Yo,
(b) ©-plane
1 e - =4 -1 DY A o
o ‘l El ' 2 $c L
] 4 1 L L.
F A " a a8 8 e o
i
Y7
(c) C-plane
b's
T
‘N bt
q
[}
(d) w-plane
-p -r —o -ty -1g o 1
} i | d ] bl ] — T
Tg' 'E 'a " e :s 'c D
|
¥s
(e) t-plane

FIG. 4. TRANSFORMATION LAYOUT

71



4.2 Boundary Conditions

In the z-plane [ Fig.4.1(a) ], AA'B'B is an equipotential
1ine and corresponds to ¢ = constant. This con#tant is assumed
to be zero. Therefore, ¢~is zero along this 1line. Along the
phreatic line BC which is a stream line, the value of y is taken
to be zero. For the phreatic Yine AE, w has been assiéned a
value equal to q, where q is the unknown seepage loss per unit
length of the <canal. Along the drainage CD, which 1is an
equipotential line, ¢ is equal to kha1, in ghich ht is the
difference between water levels of the canal and the right-hand
drainage. The left-hand drainage EE'F is an equipotential line ,
¢ = kh2z, in which hz is the difference between the water levels
of the canal and the left-hand drainage. Tﬁe part EE’ of the
left-hand drainage which is at a higher 1level than the
right-hand drainage receives fraction of the seepage from the
canal. Due to the difference in ihe elevations of the 1left and
the right drainages, there will be seepage from the 1left-hand
drainage to the right-hand drainage. This seepage will take
place from E‘F to some portion of the right drainage. The
1oca§ion of the point E' will depend on the relative values of
Bz, H, ma, he, hz, L1+ and L2, fn which Ls and L2 are‘ the
distances of the drainages on the right and the left side of the
canal respectively ; Bz is bed width, ma is the side slope angle

and H is the maximum depth of water in the canal.

4.3 Solution of the Problem
It was found convenient to obtain the solution of the

prcblem through two separate operations by dintroducing two
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auxiliary semi-infinite planes. In the first operation, applying
the Zhukovsky function [ Eq.A.15 ], the physical plane 1is
transforned onto the 8-plane, which in turn is npapped to an
internediate semi-infinite {-plane through the wuse of the
Schwarz-Christoffel conformal mapping [ Eq.A.2 1. In the second
operation, the w-plane [ Fig.4.1(d) ] is transformed' onto the
intermediate semi-infinite t-plane using the Schwarz-Christoffel
transformation. The relationship between the {-plane and the
t-plane was obtained using the bilinear transformation.

The equations so obtained were integrated on different
regions of the boundary to obtain re1ationshibs between physical
parameters and seepage 1losses and the coordinates of the
phreatic 1lines. The improper integrals appearing in the
transformation procedure have been converted into proper
integrals by method of substitution. The proper integrals are
then evaluated using Gaussian quadrature formula [ Abramwitz and
Stegun, 1970; Davis and Rabinowitz, 1975; Stoer and Bulirsch,
1980 1].

4.3.1 Happing of the z = plane onto the & = plane.

In case section of the canal is trapezoidal in z-plane, the
cross section of the canal in 6-plane will not be exactly
trapezoidal. However, for this analysis, the <cross section of
the canal has been assumed to be trapezoidal in 6&-plane with
side slope angles of.nat and nma2 on the right and 1left sides,
respectively. The corresponding section in the 2z-plane is
approximated by a nearly trapezoidal section in z-plane with

side slope angle of na on either side [ Fig.4.1(a) 1. The
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variation in canal ;ection from trapezoidal slope is very snmall.
In practice uniined canals cross section are seldom exactly
trapezoidal [ 6arg and Chaw]a,v1970 and 1971 1.

Using the Zhukovsky transformation ( A.15 ) and the geometry

as given in Fig.4.1(b), at point B , & = 0 = &8 and at Point B',

6’ 2 - iw/k
(x +iy) - (¢ + iw)
(-Hcot(ma) + iH) - i(iym*')/k

(-Hcot(na) + ym'/k) + iH (4.4)

#

"

Hence, from Eq.4.4 and Fig.4.1(b), in the 6&-plane, vertical
distance BB’ is H and the horizontal distance BB’ = [ Hcot(ma)-

ya'/k 1. Hence, from geometry [ Fig.4.1(b)1,

cot(mas) [ Hcot(ma) - yvB*'/k 1/H

cot(ma) - yw='/kH (4.5)

where, va’' is the stream function value at B'.
Similarly, at point A’ (using Eq.3.1),

8a’

[(-Hcot(ma) - B=) + iH] - (0 + iypa')/k

L]

(-Hcot(ma) - B= + wa’/k) + iH (4.6)

where, Bz is the bottom width of the trapezoidal canal in
the z-plane. Also at point A,

8a

(1}

[-2Hcot(ma) -Bz ] - (0 + iq)/k

Hence, the vertical di;tance Y Fig41(b) ] is H and the
horizontal distance AA® = [ Hcot(ma) + (wa’'-q)/k 1. Again, fronm
geometry [ Fig.4.1(b) 1,

cot(maz) = cot(ma) - (q-wa’)/(kH) (4.8)

where, waA’ i1s the stream function value at A’.
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The values at the different points in the z-plane and

@-plane are summarized in Table 4.1(Q).

4.3.2 Mapping of the & = plane onto the [ = plane.
Mapping of the 6-plane onto the Tlower half of [{-plane

through the Schwarz-Christoffel transformation is as follows.

dr
fo e | e
(€+1)32 (@ ane) 3 (rerz) ¥

at. . az '
] {J%QE}J dr (4.9)

1
x
N
—_—
~—
~
+
-~ >
N

Integrating Eq.4.9 in the region BC, i.e.,in the the region

0 { £ L« and 0£ & = L1, where & = x [ refer Eq.A.15 ],

X *

| £+ a2 134 1 o+ A0]2?
Ide”""’f S [
0 0
¢ Lo+ a2z 1% 0 + 2a]??
0
where, 0 = x £ L1,
Substituting,
r = sinh® (u) (4.11)
d, = 2 sinh(u)cosh(u)du (4.12)

from Eq.4.11, the lower Timit and the wupper 1imit of the
integral of the right-hand side of Eq.4.10 were found to be

u =0 and u ='sinh"¥ 4 resbectively. Hence, after making the
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Table 4.1C2D

Values of Corresponding Poifjts in the Three Planes.
: [ 2, 6 and w planes 1

z~plane 6=plane . w=pl ane
POINT x b 4 81 62 @ v
~2Hcot (Mla)-B2+q-k
A -2Hcot(Ma)-R2 o) or 0 o) q
~Heot(Mat)~Heot (Taz)~b’
. ~Hcot (Ma)-Bz+YPA' sk
A’ — Hcot(fla)-Bz 0o or o) O | y,
. A
~-Hcot(flas)-b
~Hcot(Ma)+yB' /k ]
B’ - Hcoti(fa)-Bz o or 0 0 W,
8
-Recot(mmas) .

B 8] o) 0 ] (&} 0 0

Cc Ls ht La O |khs| O

D © hi ® O |kh1}| o

E -2Hcot(Ma)-82-L2| h2| -2HcolL(Ma)>-Bz-L2+g-k O |khz| q
E' |-2Hcot(ntas-p2- hz|-2Hcot(na)-pz-L2-L3+ %— O |kh2| g’

~L2-L3
F - ® h2 - O |kh2a| o

Table 4.1C(b)

Values of Corresponding Points
in the [ and t-Planes.

[ -plane t-plane
[POINT| £ n ¥ =
A -1 &) -0 0
A’ A1 0 -tA, 0
B’ —A2 &} —t., 0
B o) (@ (o] 0
c e 0 1 0
D L3 o] © 0
E |-k o| -0 0
E' |~[x’ 0 - 0
F -0 (o) - 0
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appropriate substitutions [ Eq.4.11 and 4.12 ] and rearranging,

sinh 'Y T

ail az

. . 2 . 2

% = Mz sinh u : A2 swnhzu ¥ M sinh(u) cosh(u) du
sinh"u sinh + 1

0
(4.13)

sinh YT

= Mz [sinh2u+Xz]a‘[sinh(u)]“za‘[sinhz(u)txi]az[cosh(u)]i_zazdu

0
e L3 (4-14)

At Point C, x = L+ and { = {e. Sustituting these results in

Eq.4.14,
Lo =2 (WImRL4Y (4.15a)
where,
sinh *YTés
Is = [5:‘"“2””\2]31[Sinh(u)]‘ﬁza‘[sinhz(u)+x;]az[cosh(u)]‘-za2 du
0 )

.« o (4.15b)

Integrating Eq.4.9 in the region B'B, i.e, in the region
A2 £ (=0 and 68’ < 8 < 8m,

[

iyt
¥

{ os 0 RV LI TR L
v A2 + A1
Jo ow | P e e
-\2
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0
_ _qyat) L + A2 at [ + A\ az
A2

0(4016)

where, 6 and 6n’' are the values in the &-plane at the points B

and B* respectively.

From complex number theory [ Churchill, 1948 1},

(-1)2* = [cos(n) - i sin(n)]}?*

~-ifTa1
e

Also, integrating the left-hand side of Eq.4.16 and
Eq.4.17, "

1253
Jda = 6 - 6B’
s’

1

0 - [-Hcot(mas) + iH]

Hlcos(mas) - 3 sin(mas1)l/sin(mas)

~--imat

He

/sin(mas)

Substituting results of Eq.4.17 and 4.18 in Eq.4.16,

0
H . { + A2 ay [ + X1 a2
sin(mat) Mz J [ = ] [ T+ .1 ] dt
-A2
Substituting,
[ = -A2 cos-u
dl = 2x2 cos(u) sin(u) du

(4.17)

applying

(4.18)

.(4.19)

(4.20a)

(4.20b)

in £Eq.4.19, and putting the appropriate limits of integration,
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‘ . 2 at - 2 a2
2kzsin?na4) = M2 J [Elﬂ“ﬂ] [K‘ A2 cos u] cos{u)sin(u)du

cosZu 1 - A2 cos?u
0
-2 14221 t-zatn o, 2 qaz
= M2 sin(u) cos(u) COSzu du
1 - X2 cos“u
0
. . .(4,.21a)
H = 2x2[sin(mas)][M2][12] (4.21b)

where,

/2

14+2a31 14-2a1 B 2 az
12m= sin(u) cos(u) - 2 coszu du
: ' 1 - X2 cos" u

0
. o +(4,21c)

Similarly, integrating Eq.4.9 in the region AA', i.e., in
the region -1 £ I £ -A: and 68a £ 6 < Ba’', where 8a and 6a’' are
the values in the &-plane corresponding to the Points A and A‘,

respectively, the following relationships were obtained.

H = 2 [sin(rmaz)] [M2] [Is] (4.21d)

where,
cos ‘¥N1
Is = j [cos®u-rz2]®* [cos(u)]* 2% [cos®u-11]%* [sin(u)]* 2% du
0

. . (4.21e) .

Integrating Eq.4.9 in the region A'B’', i.e., in the region

-\t £ [ £-A2 and 6a’ £ 6 £ 68’
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where,

6

where, b’ i

Substitutin

bl
where,

e
Subtracting

(2]}

From Eq.4.2

Bz

R’ © =2 at az
de=MzI [‘;"’] [g:"r‘] o (4.22)
A -\
n'
de = es’' - 6a'
"

[chot(ﬂat) + iH 1 - [~Hcot(mas) - b’ + iH ]

= b’ (4.23)
s-the bottom width of the canal in 8-plane.
g Eq.4.23 in Eq.4.22,
-2 - ad
h £ + A2 L + A\
”J[ z ] [fw] -
-A1
= [M2] [la] (4.243a)
-2 ™ o
. [ + A2 [ + \1
_I [__T___..] [T‘TT] dr (4.24b)
-A1
Eq.4.4 from Eq.4.6,
- Ba' = Bz + (ym' - ywa')/k (4.24c)
3, (88'-6a') = b', hence Eq.4.24(c) becomes,
= b + (wya' - ym')/k (4. 24d)

g0



Substituting Eq.4.24(a) in Eq.4.24(d),

A
\

Bz = [M2] [Ie] ¢+ ( wa’' - ym')/k
Integrating Eq.4.9 in the region EA, i.e,
I £[ £ -1 and 6 £ @ £ Ba,

Ba -1

- [ + A2 . L + A1 by
L,"e'"zf =2 =]«

L

(4. 24d)

in the region

(4.25)

But, from Eq.A.15 it is known that on the free surface AE,

1]
[{]

q/k + x

]

q/k + [-2Hcot(ma) - Bz - X')

(4.26)

where, x is the abscissa of the point on the free surface AE,

and X' is the horizontal distance of the point
Integrating the left hand side of Eq.4.25

the results given by Eq.4.7 and 4.26,

Sa
J de 6a - 68 = X'
BE

Putting ,

2
-cosh™u

Lt
i

dt= -2cosh(u) sinh(4)=du

from Point A.

and substituting

(4.27)

(4.28a)

(4.28b)

Substituting the above, i.e. Eqs.4.27 and 4.28 and putting

the appropriate limits of integration in Eq.4.25,
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cosh™ 'Y =T

%~ =Mz| [cosh®u-r2]®* [cosh(w)]*™*%* [cosh® (u)-xa]** [sinh(u)]* ***du
0
. . .(4.293)
At Point E, X' = L2 and { = -(k and hence, substituting

these in Eq.4.29¢a,

Lz = 2 [M2] [Is] (4.29b)
where,
cosh *¥Y Tx
Is = [coshzu-kz]a‘[cosh(u)]’-za‘[coshz(u)-Kt]az[sinh(u)]1-zazdu
0
.« «(4.29c)

Integrating Eq.4.9 in the region E‘E, 1i.e., 1in the region
-’ £ £ ~-fe and 6r' £ 6 = 6k , where @' and ©6x are the

values in the 6-plane at the points E' and E, respectively,

&x -

. f+7\2'a" C+)\1a2
.[eg?-nzj [ r ] [{+1] dt - (4.30)

But, using Eq.A.15,

6 = [-2Hcot(ma) - Bz - L2 + ihz] - i(khz2 + iq)/k
. . .(4.31a)
6e'= [-2Hcot(ma) - Bz - Lz - La + ih2] - i(khz + iq')/k

. . .(4.31b)



Integrating the left-hand side of Eq.4.30 and substituting
Eqs.4.31a and 4.31b,

(=]
' d8 = 6k - 6x’'
or’ '
= Ls + (q - q°)/k ’ (4.32)

Substituting Eq.4.32 in Eq.4.30 and rearranging,

Ls = [ M2 1 [ Is'] - [ (q-q")/k ] ‘ (4.33a)
where,
-cg P ¥ :
. [ + A2 [ + X\
Is = J [ : ] [ % ] dr (4.33b)
_(:'

4.3.3 Mapping of the w = plane onto t = plane.

The Schwarz-Christoffel transformation that maps the w-plane
onto the lower half of the t-plane is given as below ( this is
similar to that obtained in Chapter 3 except for suitable

modifications wherever necessary ).

J dwi=sH J (tip)dt ' (4.34)
Y (1-t)t(t+o) (t+r)

where, M is a complex constant.

The integration of Eq.4.34 is made between l1imits as set by
the region over which the intégration is made. The definite
integral of the right-hand side of Eq.4.34 results in elliptic

integrals [ Byrd and Friedman, 1971 ] as shown below.
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Integrating £Eq.4.34, in the region BC, i.e., in the range
1 =2t>0>e > -y, [ Byrd and Friedman, 1971, section 256.11
and 256.00 1,

W t
dw = M J (t+p)dt
Ve 0 Y (I-t)t(t+o) (t+y)

Mg [ o Tlac,ae ,n) + (p-0)F(Br,m) ]
.« .(4.35)

where, g is a real constant and

Tkﬁr,atz,m) = elliptic integral of the tﬁird kind with
parameters ft, as and modulus m.
F(Br,m) = elliptic integral of the first kind.
where,
pr = sin 'Y (1+0)t/(t+o) (4.36)
n° = (r-0)/{r(1+0)} (4.37)
me < as® = 1/(1+0) <1 (4.38)

The complex potential values of the Point B and any point on
the free surface are Wn = 0 and W = Kky respectively, where vy
is the ordinate of the poini considered on the free surface BC.
Integrating the left-hand side of Eq.4.35 and substituting the

values of Wm and W,

ky = Mg [ o TI(Br,as®,m) + (p-0)F(Br,m) ] :
.(4.39)
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At Point C, ¥ = het and t = 1. Therefore, from Eq.4.36 and

Eq.4.39, the following relationships were obtained.

fir = mn/2 (4.40)

khe = Mg [ o T+ (o - o)K ] (4.41)

where,

TE ='Tkn/z,asz,m)

K = F(ﬂ/Z,M)

Similarly, integrating Eq.4.34 in the region  AB, 1i.e.,
1>0=21¢t > -0 > - , [ Byrd and Friedman, 1971, section 254.10'
“and 254.00 1,

W
Mg
Jdu = —— [ -0 THaw,02®,0') + (o-¥)F(Bv,n) ]
WA .. .(4.42)
where,

Bu = sin Y ¥ (t+o) 1/ (o(t+¥)] © (4.43a)

w2 = o(1+)/{r(1+0)} = 1 - n° (4.43b)
0 < a2® = ofy < n'? (4.43c¢c)

The value of the éomp]ex potential at Point A is WA = iq and
at any point on the equipotential line AB, the value of the
complex potential is, W = iw*, where w* is the stream function
value at the point. Integrating the left-hand side of Eq.4.42
and substituting the values of Wa and W, the following

equation was obtained.
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Jaw

Na

W - WNa

"

L]

i - q) (4.44)
Substituting Eq.4.44 in Eq.4.42,

q - ¥ = Mg [ (3-0) TIpv,02®,m") + (p-»)F(Bv,n') ]

. .(4.45)
Integrating the left-hand side of £q.4.42 between points A

and B, in which the upper 1imit is the value of the complex
function at Point B, i.e., W = Ws = 0,

W

faw

Wa

0 - iq = -igq (4.46)

u

At Point B, t 0 and from Eq.4.43(a),

N B " (4.47)

Substituting Eqs.4.46 and 4.47 in Eq.4.42 ( or knowing that at

Point B, w* = 0, and hence from Eq. 4.45),

e =M G- T + (e-edk ] (4.48)

where,
T, = Tn/z,02% 0 )

K' = F(f/2,m")

Also, integrating the left side of Eq.4.42 between points A
and A’ , where at Point A', W= iw* = jya’ and t = -ta’ [ refer
Table 4.1 1, from Eq.4.42 <(or Eq.4,.45) and Eq.4.43(a) the

following relationships were found.

ya' = q - Mg [(r-0) TI(Ba" ,02® ') + (p-7)F(Ba’ ,n')]
. . (4.49)
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pa' = sin Yr(o-ta )/ {o(r-ta’ )] (4.50)

Similarly, knowing [ refer Table 4.1 ] that at Point B', W =
ig" = iym' and t = -te', integration of the left hand side of
Eq.4.42 and the appropriate substitutions in Eq.4.42 ( or

Eq.4.45 ) and Eq.4.43(a), gave the following equations.

va' = q - Mg[(r-o) Tl(pa’ ,a2®,0") + (p-r)F(pa’ ,n')]
. . .(4.51)
pr' = sin Yr(o-ta )/ (o(7-ta' )]} ' (4.52)

Integrating Eq.4.34 in the region EA, i.e., in the region
1>0>-0>t =2 -y gave [Byrd and Friedman, 1971, section

253.11 and 253.00],

Wa -z

I dw Ok j (t+p)dt
} , YD 0-0) (o= D) (t37)

Mg [ o Tl as”,m) - oF (5L,m) ]

.(4.53)

where; ‘
AL = sin 'Y 7 (tvo)/t(z-0) .  (4.54)
n° < as® = (y-o)ly < 1 (4.55)

The complex potential value at any point on the free surface
AE is W = ky + iq, where y is the ordinate of the point. At

Point A, the cohp]ex potential value is Wa = iq. Integrating the
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left hand side of Eq.4.53 and making the appropriate

substitution,

| o

Wa - W

iq - (ky + iq)

= -ky (4056)

Substituting £Eq.4.56 in Eq.4.53,

ky = Mg [ -oThpe,as®,m) + oF (Br,m)]

.o . (4.57)

Hence, integrating the left-hand side of Eq.4.53 between

points E and A, in which W = We = (khz + 1diq) and t = -p

-

reduced €Eq.4.54 and Eq.4.57 into the following equations.

s

L = sin Y r(-v+0)/{-v(r-0)}
= n/z (4.58)
khz . = Mg [ -o Tl(n/z,0a%,m) + pF(n/2,m)]

Mg [ oK -oTT3] (4.59)

where,

TE? =.n2n/z,a32 ,m)
Integrating Eq.4.34 in the region E‘E, i.e., in the region

1>0>-0> -y >1t, we have [ Byrd and Friedman, 1971, section

251.03 and 251.00 1,
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WE it d
: I (t+p)dt
" - ¢ Y I 0-8 -t (-7-1)

oy
z
"
—-x

ML a0 The o n') - (p-0)F (A %) )
:

. .(4.60)

where,
p o= sin Y (Aro) (-0 /{(1+7) (o-1)) (4.61)
as® = (1+¥)/(1+0) > 1 - (4.62)

WE and We’ are the complex potential values at the points E
and E', respectively. Hence, integrating both sides of Eq.4.34
between points E’ and E, in which We = (khz + iq) and

W= We' = (kha + ig’') and t = -p,

We
f dw = We - WE' = (khz + iq) - (khz + iq’) = i(q - q')
WE .

£

(4.63)
and, [ Byrd and Friedman, 1971, section 251.03 and 251.00 1,

"9 [ -0) Thipe,ae® 10y - (p-o)F(B4,0)]

i(q - q") =
7
¢ = a+ Mg [ (r-0) TR, as®,n') - (p-0)F(Ba,n") ]
: .(4.64)
for t = -p, from Eq.4.61,
B = sin Y [(1+0) (p-r)1/L(1+7) (p-0)]

fa | (4.65)
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4.3.4 Mapping of the [~=plane onto the lower half of the t=plane.

As discussed above, the solution of the probiem involved the
mapping of the &-plane onto the 1lower half of the {-plane
[Eq.4.1(a)) and for convenience, the mapping of the w-plane onto
another semi-infinite plane, i.e., the t-plane [Eq:.4.2(a)].
These mappings were done by the Schwarz-Christoffel
transformation. The t-plane has been mappgd onto {-plane to find
out relationship between [ and t. It is known [Nehari,
1952,1961] that any three values on the boundary of the half

_plane can be chosen to correspond to three points on the

wboundary of the region to be mapped. The remaining values must
be determined so as to sétisfy conditions of similarity. The
three points selected for bilinear transformation are A, 8 and
D. The values assigned to these po%nts in {-plane are -1, 0 and
w, respectively. The corresponding values of these points in the
t-plane are -o, 0 and o, respectively.

Using the cross ratio formula [section A.2)}, the following
relationship between the {-plane and the t-plane was thus

obtained :

(t - ta) (to - ta) (L = {B) (In - [A)
E (4.66)
(t - ta) (to - tm) (L - La) (Lo - Cn)
Substituting the corresponding values in Eq.4.66,
(t -0) (o +0) (L -0) (@ + 1)
= (4.67)

(t +o0) (@-0) & +1) (o-0)
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Eq.4.67, after rearranging, gave

t = of | (4.68)

If -As+ and -A2 are values at Points A’ and B’, respectively,
in the {-plane [Fig.4.1(c)]l, then the corresponding values in
the t-plane are obtained using Eq.4.68. Similarly, the
corresponding values in the {-plane of the Points A, E and E°*
which are having values of -o, -r, and -p, respectively, in the
t-plane [Fig.4.1(e)) ), were obtained through Eq.4.68.

The values at the different points in the {-plane and the

t-plane are summarized in Table 4.1(b).

4.4 DIMENSIONLESS FORM OF EQUATIONS

From Table 4.1(b), {e¢ = 1/ , L& = y/o and (&' = p/o and
substituting these in Eqs.4,15(b), 4.29(c) and 4.33(b),

sinh ‘Y 1.0

Ie= ESi"hzu*hzlaﬁ[Sinh(u)]i—zaﬁ[Sinhz(u)+xs}az[COSh(u)]i-zazdu.
y | L . . . (4.69a)
cosh™ *v Yoo

Is= [coshzu—kz]a’[cosh(u)]‘nZ&i[coshz(u)—xn]az[sinh(u)]‘-zazdu
0

¢ o 0(4069b)

-yro

- [ + A2 e [ + A4 =
Js = J [—F———} [-C—-T-I—] dl: .+« (4.69¢)
-plo -

Dividing Eqs.4.1493and 4.29(b) by Eq.4.21(b), the following

dimensionless relationships were obtained.

91



cosec(mas) [111/[(A2)12] (4.

Ls /H

Lz/H

cosec(mas) [Is)/[(A2)]12]) - (4.

Similarly, Eq.4.33(a) yielded the equation,

La/H = 0.5 cosec(mas) [Is/(A212)] - [(q - q")/khs] [hse/H]

70)

71)

.(4.72)
Dividing Eq.4.21(b) by Eq.4.21(d),
Az = sin(maz) cosec(mas)[Isl/[1I2] (4.73)
Dividing Eqs.4.24(€) by H or its equivalent as given by
Eq.4.21(b), and rearranging the resulting equation, the
following relationships were found.
Bz/H = 0.5 cosec(mas) [I«/{(A2)I2}] + [(wa'~ yB')/kha] [ha/H]
.(4.74)
Also, dividing Eqs.4.48, 4:49, 4,51, 4.59 and 4.64 by
Eq.4.41, resulted in the following relationships.
(7-0)'TL(+ (p-7) K’
q/khs = (4.75%)
oI + (p-2) K
(r-0) TI(Aa" ya2% ,n') + (p-7) F(BA’ ,n")
va' /khs = q/khs -
oTl, + (p - o) K
(4.76)
(r-0) Tlpn’ ,a2® ,n') + (p-r) F(BB' ,n")
yvo' /khe = q/khs -
o-rﬁ + (p - o) K
| e . (8.77)
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PK - a]Té

haz /hs .« o . (4.78)
a'TE + (p-o) K

(r-0) TlRs,06® ,0') - (p-0) F(Be,m")

qQ' /khe = q/khs +
oTl, + (p-0) X
(4.79)
Rearranging Eq.4.78,
o [(ha/ha) CTL - k) + TT)
L= « s e (4-80)

(1 -hz2/h1) K

Shape of the free surface : Dividing Eq.4.39 by Eq.4.39, the
dimensionless form of the ordinate of a point on the free

surface BC, as given below was obtained.

o [l(pr ,at® ,m) + (p-0) F(Br,m)
y/hs =

oMl + (p-o) K
.(4.81)

The abscissa of the point which has the ordinate as given by
Eq.4.81, was found in a non-dimensional form by dividing Eq.4.14

by Eq.4.15(a). The resulting equation is as follows.

x/Ls = I2/1s (4.82)
where,
sinh ‘YT~
Iz =| [sinh®um2]?* [sinh(u)]* 7*?* [sinh® (u) \1]%* [cosh(uw)]* 2% du
0 . (4.83)
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From Eq.4.68, '
( = t/a 1 = t b4 0. ) [ (4!84)

Free surface AE : Dividing Eq.4.57 by £Eq.4.59, the ordinate
of a point on the free surface AE is expressed as given below.
[ pF(M,m) - o [l(A,as®,m) ]

y/hz = (4.85)
. PK - o-ﬂ}

The horizontal distance from Point A of the point on the
free surface AE which has the ordinate as given by'Eq.4.85, was
obtained by dividing Eq.4.29(a) by Eq.4.29(bi. The resulting

equation is as given below.

X - la/le | (4.86)
o,
where,
cosh ‘¥ =T
Is =| [cosh®u-r2]®* [cosh(w)]* *®* [cosh® (u)-x1]** [sinh(uw)]* % **qu
0 . . . (4.87)

From Eq.4.68, { = t/o in which, -z 2 t 2 -p .

4.5 RESULTS AND DISCUSSIONS

Transformation equations relating z-plane with the -plane
and 6&-plane with [-plane are derived. On combining these
equations, relationship between z, w, and { are obtained. In the
next oﬁeration, w-plane is transformed onto t-plane and t-plane
in turn is transformed onto I-plane. Thus, equations relating w
and t and t and { are obtained. Finally, equations relating =z,

w, L and t are established.



It is difficult to find direct relationship between w and 2
by eliminating { and t from the above equations. Therefore, the
equatiohs derived above give values of 2 and w in terws of the
intermediate parameters such as o, », X+ and A2. The procedure
followed in computations is to assume the values of intermediate
parameters ¢, », X+ and A2 and determine the values of w
corresponding to these parameters and then determine the value
of 2. This procedure may not initially give the exact desired
values of parameters in the physical system such ~as the bed
width, drainage distances, hz/hs, canal side slope, etc. In
order to get the exact desired values of physical dimensions of
canal and drainage distances, assumed values of intermediate
values had to be suitably modified.

As compared to the present case, the relationships between
the physical dimensions of the system and intermediate
parameters for the case of negligible water depth ( Chapter 3 )
were simple and more explicit. For the case of canal of
negligible water depth, the parameter o 1is related to the
physical dimensions Bz and L: as well as the ‘quantity q/k
[Eq.3.36]. The parameter ¥ is in turn related to the drainage
distances Ls and L2 as well as to the parameter o [Eq.3.38].
These relationships were used as an initial approximation of the
parameters o and  in the present case, i.e. trapezoidal canal.
Using the starting vaiue of q/kht = 0. the values of the
parameters o and 7 were determined. These values were refined
ti11 the difference between two consecutive values of q/khs as

calculated by Eq.4.75 is equal to or within an acceptable value.
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Yhen value of the parametér A2 which is closely related to bed
width and side slope of the canal is assumed. An approximate
value of X¢ is taken as equal to 1-xs., At this stage, the
computation of wa‘/khs, ym’/khs, a2, a2z and b’/H is possible
through Eqs.4.76, 4.77, 4.5, 4.8 and 4.24(a) respectively.
Calculated value of Bz/H through Eq.4.74 is found and compared
with the desired value. The parameters A2 and At are adjusted
ti11 the difference between the calculated and desired values of
Bz/H is negligible. Then, using Eqs.4.70 and 4.71 the values of
L1/H and L2/H are calculated and compared with the respective
desired values. If not acceptably comparable, the whole process
starting from the calculation of parameters o and » are
repeated. In this updating process, the values of ©« and » are
modified in proportion to the differences in the desired and
calculated values of Li/H and Lz/H. The whole process is
repeated ti11 the desired accuracies were obtained. A flow chart
[Fig.B.2] in Appendix B shows the computational sequencé.

The values of seepage discharge has been calculated for
various combination of the following values of bed width, water

depth, drainage distances and elevations.

Le/hs &
Bz2/hs H/h4 Lz/ha hz2/h1
10 0.5 102 1.0
10a 0.9
20 0.3 10‘ 0.8
105 0.7
30 0.1 10




The results of the above computations are given in Tables
4,2 to 4.5. These values are also plotted as presented in
Figs.4.2 to 4.5. In order to see the effect of side slope of the
canal on the seepage discharge, values of seepage discharge for
side slopes 2:1 and 0.5:1 and for the various other physical
dimensions are calculated. The results are presented in Tables
4,6 and 4.7. These results are plotted in Figs.4.6 and 4.7.

Dimensionless seepage discharges emerging in the Jleft-hand
side and right-hand side drainages have been calculated and
given in Tables 4.8 to 4.15. The seepage discharge from the side
slopes and bed of the canal have been <calculated for various
combinations of physical parameters and are given in Tables 4,16
to 4.25.

Coordinates of the free surface are calculated from Eqs.4.81
and 4.82 for the right-hand side and from Eqs.4.85 and 4.86 for
the left-hand side. The free surface coordinates are functions
of variables such as bed width, water depth, side slope,
drainage distances and their elevations, It 1is difficult to
present nomographs for determining the coordinates of free
surface for various combinations of the physical dimensions of
the system. However, the free surface profiles have been
determined for some cases in connection with determining the
effect of various physical parameters on the free surfaces. The
curves of the free surfaces, for the various physical parameters

are plotted in Figs.4.8, 4.9(a), 4.9(b), 4.10 and 4.11.
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I Side slope 1:1,

Asymmetric Drainages

Table 4.2(a> Total Seepage Discharge From Trapezoidal Canal To

H/hs 8 0.5 and hz2/h:s = 1,0 1

2

4

Lishis o 10 10 10 10 10
Lz!hn qskhs
| Bz/hs = 10|
10 1.34681 1.09532 1.05495 1.05061 1.05017
10% 1.09532 0.73449 0.64670 0.63519 0.63399
10° 1.05495 0.64670 0.48257 0.44220 0.43695
10* 1.05061 0.63519 0.44220 0.35707 0.33441
10° 1.05017 0.63399 0.43695 0.33441 0.28316
l Bz/hs = 26'
10 1.61989 1.28310 1.21882 1.21160 1.21088
102 1.28310 0.85008 0.73395 0.71857 0.71697
10° 1.21882 0.73395 0.53235 0.48360 0.47729
10* 1.21160 0.71857 0.48360 0.38366 0.35760
10° 1.21088 0.71697 0.47729 0.35760 0.29958
| B2/h1 ® 30}
10 1.80734 1.41315 1.32728 1.31726 1.31626
10°? 1.41315 0.93516 0.79722 0.77849 0.77654
10? 1.32728 0.79722 0.56804 0.51286 0.50574
10* 1.31726 0.77849 0.51286 0.40201 0.37348
10° 1.31626 0.77654 0.50574 0.37348 0.31064
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Asymmetric Drainages

Table 4.2(b) Total Seepage Discharge From Trapezoidal Canal To

[ Side slope 1:1, H/ht & (0,3 and hashs & 1,0 )

2

4

Lizhs » 10 10 10 10 10
L2/hs gskhu
[ Bz/hs = 10|
10 1.30797 | 1.06877 | 1.03053 | 1.02642 | 1.02601
10° 1.06877 | 0.72266 | 0.63678 | 0.62563 | 0.62448
10° 1.03053 | 0.63678 | 0.47698 | 0,43752 | 0.43238
10* 1.02642 0.62563 | 0.43752 | 0.35402 | 0.33174
10° 1.02601 0.62448 0.43238 0.33174 0.28125
I__Bz/hi. = 20'
10 1.58857 | 1.26227 | 1.19999 | 1.19314 1.19243
10° 1.26227 | 0.84022 | 0.72663 | 0,71157 | 0.71001
10° 1.19999 0.72663 0.52841 0.48035 0.47413
10* 1.193114 0.71157 0.48035 0.38161 0.35582
10° 1.19243 | 0.71001 0.47413 | 0.35582 0.29833
[ Bz/h:s = 30}
10 1.77957 | 1.39489 | 1.31111 | 1.30136 1.30037
10° 1.39489 | 0.92679 | 0.79110 { 0.77267 | 0.77075
10° 1.31111 | 0.79110 | 0.56483 | 0.51025 | 0.50320
10* 1.30136 | 0.77267 | 0.51025 | 0.40039 | 0.37209
10° 1.30037 | 0.77075 | 0.50320 | 0.37209 | 0.30968
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[ Side slope 1:1,

Asymmairic Drainages

Table 4.2Cc) Total Seepsage Discharge From Trapezoidal Canal To

H/hs = 0,1 and hashs = 1,0 )

10

10° l 10

‘ -

Lashs o 10 10
L2/hs qs/khs
r_ﬁths ™~ 16'
10 1.26283 | 1.03755 | 1.00167 | 0.99782 | 0.99744
107 1.03755 | 0.70789 | 0.62531 | 0.61458 | 0.61347
10° 1.00167 | 0.62531 | 0.47051 | 0.43208 | 0.42708
10* 0.99782 | 0.61458 | 0.43208 | 0.35047 | 0.32863
10° 0.99744 | 0.61347 | 0.42708 | 0.32863 | 0.27903
r_Bz/hs. = 2@
10 1.55244 | 1.23799 | 1.17817 | 1.17148 | 1.17080
10 11.23799 | 0.82922 | 0.71838 | 0.70368 | 0.70215
10° 1.17817 | 0.71838 | 0.52397 | 0.47669 | 0.47056
10* 1.17148 | 0.70368 | 0.47669 | 0.37930 | 0.35382
10° .1.17080 | 0.70215 | 0.47056 | 0.35382 | 0.29692
LﬁBz/ha = 30]
10 1.74753 | 1.37363 | 1.29216 | 1.28269 | 1.28173
10% 1.37363 | 0.91745 | 0.78425 | 0.76616 | 0.76427
10° 1.29216 | 0.78425 | 0.56125 | 0.50733 | 0.50037
10* 1.28269 | 0.76616 | 0.50733 | 0.39860 | 0.37054
10° 1.28173 |- 0.76427 | 0.50037 | 0.37054 | 0.30860

100




Table 4.3(2) Total Seepage Discharge From Trapezoidal Canal To

[ Side slope 1:1,

Asymmetric Drainages

H/hs © 0.5 2and hzshse o 0.9 1

Lishe » 10 102 10° 10* 10°
L2/hs qg7khi
[ Bz/hs = 10]
10 1.28068 | 1.01149 | 0.95860 | 0.94936 | 0.94729
10° 1.06693 | 0.69914 | 0.59537 | 0.57630 | 0.57242
10° 1.04276 | 0.63382 | 0.45857 | 0.40678 | 0.39621
10* =, - 0.43360 | 0.33926 | 0.30756
10° = = - 0.32791 | 0.26904
L Bz/hi1 = 20]
10 1.53973 | 1.18664 | 1.10780 | 1.09442 | 1.09157
10? 1.24790 | 0.80783 | 0.67577 | 0.65186 | 0.64718
10? 1.20422 | 0.71901 | 0.50583 | 0.44482 | 0.43273
10* - - 0.47415 | 0.36451 | 0.32886
10° ey - < 0.35064 | 0.28462
[ Bz/h1 = 30]
10 1.71757 | 1.30854 | 1.20695 | 1.18979 | 1.18629
102 1.37280 | 0.88869 | 0.73423 | 0.70624 | 0.70088
10° 1.31084 | 0.78072 | 0.53972 | 0.47174 | 0.45851
10* - - 0.50282 | 0.38194 | 0.34346
10% - = 3 0.36620 | 0.29512
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Takle 4.3(b2 Totzl Sewpage Discharge From Trapezoidal Canal To

I Side slope 1:1,

Asymmetric Drainages

H/sht 38 0.3 and hazh: a (0.9 1

Lesht - 10 10% 10% 10* 10"
Lz/ha q/kha
[ Ba/h:1 = 10]
10 1.24402 | 0.98711 | 0.93661 | 0.92771 | 0.92569
10% 1.04187 | 0.68697 | 0.58625 | 0.56766 | 0.56386
107 1.01937 | 0.62413 | 0.45327 | 0.40248 | 0.39208
10* - - 0.42901 | 0.33637 | 0.30511
10° ! = - 0.32529 | 0.26723
[ Bzs/h1 = 20]
10 1.51013 | 1.16748 | 1.09092 | 1.07787 | 1.07508
10% 1.22835 | 0.79856 | 0.66905 | 0.64553 | 0.64091
10° 1.18641 | 0.71189 | 0.50209 | 0.44184 | 0.42987
10* ] - 0.47097 | 0.36257 | 0.32723
10° g : - 0.34890 | 0.28343
[Bz/h1 = 30]
10 1.69134 | 1.29174 | 1.19237 | 1.17555 { 1.17210
102 1.35571 | 0.88075 | 0.72859 | 0.70096 | 0.69567
107 1.29551 | 0.77476 | 0.53667 | 0.46933 | 0.45620
10* . = 0.50026 | 0.38041 | 0.34218
10° - r M- 0.36484 | 0.29421
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Asymmetric Drainages

Table 4.3Cc¢) Total Seepage Discharge From Trapezoidal Canal To

[ Side slope 1:1, H/hs = 0.1 and hzs/hs = (0.9 1}

2

4

Lizhs o 10 10 10 10 10
La/h1 q7khs
[ Bz/h1 © 10]
10 1.20148 | 0.95852 | 0.91064 | 0.90215 | 0.90021
102 1.01277 | 0.67297 | 0.57573 | 0.55768 { 0.55397
10° 0.99208 | 0.61295 | 0.44713 | 0.39750 | 0.38728
10* = - 0.42369 | 0.33301 | 0.30225
10° . 3 - | 0.32224 | 0.26511
[ Bz/h1 = 20]
10 1.47607 | 1.14523 | 1.07118 | 1.05850 | 1.05578
10% 1.20597 | 0.78813 | 0.66146 | 0.63839 | 0.63384
10° 1.16591 | 0.70386 | 0.49788 | 0.43847 | 0.42664
10* - - 0.46738 | 0.36038 | 0.32539
10° L - - 0.34693 | 0.28210
l Bz/h1 = 30'
10 1.66114 | 1.27227 | 1.17530 | 1.15886 | 1.15546
10% 1.33618 | 0.87190 | 0.72229 | 0.69507 | 0.68984
10* 1.27789 | 0.76811 | 0.53328 | 0.46665 | 0.45364
10* = - 0.49741 | 0.37870 | 0.34076
10° - 3 E 0.36332

0.29318
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[ Side slope 1:1,

Asymmetric Drainages

Toetsl Seepage Dischorge From Trapezoidal Canal To

H/hs = 0.5 and h2/hs = (.8 1}

Lisht » 10 102 10° 10* 10°
L2rshs qskhs
[Bz/hs = 10]
10 1.21450 | 0.92755 | 0.86208 0.84785 | 0.84410
102 1.04285 | 0.66272 | 0.54394 | 0.51730 | 0.51073
10° = 0.62106 | 0.43456 | 0.37133 | 0.35543
10* = - - 0.32146 | 0.28070
10° K = ¥ - 0.25491
[ Bz/hs = 20]
10 1.45954 | 1.09012 | 0.99669 | 0.97706 | 0.97209
1o‘_ 1.21714 | 0.76562 | 0.61755 | 0.58507 | 0.57730
10° - 0.70423 | 0.47930 | 0.40602 | 0.38814
10* 3 . - 0.34536 | 0.30012
10° - Z 2 - 0.26965
[ Bz/h1 = 30]
10 1.62782 | 1.20393 | 1.08659 | 1.06224 | 1.05625
102 1.33690 | 0.84219 | 0.67118 | 0.63391 | 0.62516
10° 3 0.76436 | 0.51139 | 0.43059 | 0.41124
10* = - - 0.36186 | 0.31343
10° . L - - 0.27959
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Table 4.4(b) Total Seepage Discharge From Trapezoidal Canal To

[ Side slope 1:1,

Asymmetric Drainages

H7hse ©v (0.3 and h2/hs & (0.8 1

Li/hs » 10 102 10° 10* - 10°%
L2/h1 qskhi
[ Bz/h:1 = 10)
10 1.17996 | 0.90529 | 0.84242 | 0.82867 | 0.82503
102 1.01846 | 0.65122 | 0.53563 |-0.50957 | 0.50312
10% 2 - 0.42954 | 0.36741 | 0.35174
10* E - | 0.31872 | 0.27847
10° = 5. = - 0.25319
[ Bz/h1 = 20}
10 1.43165 | 1.07255 | 0.98161 | 0.96241 | 0.95752
10° 1.19813 | 0.75685 | 0.61140 | 0.57941 | 0.57172
10 2 0.69726 | 0.47576 | 0.40330 | 0.38558
10* 3 3 - 0.34352 | 0.29863
10° " = S - 0.26854
[ Bz/h1 © 30]
10 1.60308 | 1.18857 | 1.07355 | 1.04962 | 1.04370
10° 1.32027 | 0.83468 | 0.66603 | 0.62919 | 0.62052
10° - 0.75854 | 0.50850 | 0.42840 | 0.40918
10* g - 5 0.36041 | 0.31226
10° - z y - 0.27873
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Table 4.4Cc) Total Seepage Discharge From Trapezoidal Canal To

[ Side slope 1:1,

Asymmetric Drailnages

H/h:s = 0,1 and ha2/h:s = (.8 )}

Lishi + 10 102 10° 10* 10°
Lz2/h1 qskh1
[ Bz/h:s = 10]
10 1.13994 | 0.87930 | 0.81931 | 0.80609 | 0.80258
102 0.99013 | 0.63799 | 0.52605 | 0.50065 | 0.49434
10° i s 0.42374 | 0.36288 | 0.34745
10* L . I 0.31554 | 0.27586
10° g - L » 0.25118
[ Bz/h: = 20]
10 1.39962 | 1.05237 | 0.96402 | 0.94529 | 0.94052
102 1.17635 | 0.74698 | 0.60448 | 0.57302 | 0.56544
10° - 0.68942 | 0.47177 | 0.40024 | 0.38269
10* N 2 ' - 0.34145 | 0.29695
;o“ - . 3 - 0.26727
l Bz/hi1 = 3OJ
10 1.57469 | 1.17085 | 1.05835 | 1.03486 | 1.02904
102 1.30127 | 0.82631 | 0.66028 | 0.62391 | 0.61533
10° J 0.75205 | 0.50529 | 0.42595 | 0.40688
10* - 5 = 0.35880 | 0.31096
10° - N = - 0.27778

106




Asymmetric Drainages

Table 4.5(a) Total Seepage Discharge From Trapezoidal Canal To

[ Side slope 1:1, H/h: ® (0.5 and h2/hs o (0.7 1

2

4

Lizhs » 10 10 10 10 10
Lz/h1 qskhi
| Bz/hs = 10}
10 1.14825 | 0.84348 | 0.76530 | 0.74604 | 0.74062
10° 1.01871 | 0.62628 | 0.49244 | 0.45820 | 0.44893
10° o - 0.41053 | 0.33585 | 0.31462
10* = = . 0.30364 | 0.25382
105 - - - - =
[ Bz=/hs = 20]
10 1.37932 | 0.99358 | 0.88549 | 0.85958 | 0.85246
10° 1.18635 .72339 | 0.55926 | 0.51821 | 0.50733
107 - - 0.45275 | 0.36721 | 0.34353
10* L > - 0.32621 | 0.27136
10° - L g s -
| Bz-hs = 30}
10 1.53805 .09932 | 0.96619 | 0.93461 | 0.92609
10° 1.30097 .79566 | 0.60809 | 0.56153 | 0.54936
10 - - 0.48305 | 0.38943 | 0.36396
- 10* J - k. 0.34178 | 0.28339
10° - - ! - -
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[ Side slope 1:1,

Asymmetric Drainages

Table 4.5(b) Total Seepage Discharge From Trapezoidal Canal To

H/hs = 0.3 and hza/h: = (3.7 1

2

4

Lishas 10 10 10 10 10
L2/h1 q/kh1

[ Bz/has = 1(7}
10 1.11578 | 0.82332 | 0.74798 | 0.72932 | 0.72404
10% 0.99503 | 0.61543 | 0.48494 | 0.45138 | 0.44227
10° - - 0.40580 | 0.33232 | 0.3113%
10* . = = 0.30107 | 0.25181
10° - 3 - ! -

LBz/bz = 201
10 1.35311 | 0.9776% | 0.87217 | 0.84679 | 0.83979
102 1.16788 | 0.71511 { 0.55370 | 0.51320 | 0.50244
10° - - 0.44941 | 0.36475 | 0.34126
10* - - - 0.32447 | 0.27002
10° " 3 - - -

[ Bz/h1s = 30|
10 1.51473 | 1.08534 | 0.95466 | 0.92359 | 0.91518
10° 1.28482 | 0.78858 | 0.60342 | 0.55734 | 0.54529
10° - s 0.48032 | 0.38745 | 0.36214
10* = = = 0.34042 | 0.28233.
10° - » = - -
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‘Table 4.5(c) Total Seepage Discharge From Trapezoidal Canal To
Asymmetric Drainages
[ Side slope 1:1, H/h:s v 0,1 and has/hs = (.7 1

Li/hs » 10 10% 10° 10* 10°
Lz/ha q7khi

| Bz2/hs = 10}
10 1.07824 | 0.79983 | 0.72765 | 0.70966 | 0.70456
10% 0.96746 | 0.60297 | 0.47629 | 0.44351 | 0.43459
10° E - 0.40033 | 0.32822 | 0.30757
10* = = - - 0.24946
10° B r e - -

[ Bz/h1 = Eﬂ
10 1.32307 | 0.95939 | 0.85668 | 0.83188 | 0.82503
10° 1.14670 | 0.70582 | 0.54744 | 0.50756 | 0.49694
107 - - 0.44565 | 0.36198 | 0.33871
10* - - - 0.32251 | 0.26850
10° - - - - -

[ Bz/h1 = 30)
10 1.48817 | 1.06938 | 0.94128 | 0.91074 | 0.90246
102 -1.26633 | 0.78069 | 0.59821 | 0.55268 | 0.54075
107 - - 0.47729 | 0.38524 | 0.36011
10* - - L 0.33889 | 0.28116
10° = = L - -

109




q/kh1

1.8

1.5

1.2

0.6

0,3

0.0

1
1
L
!
!
!
!
!
|
i
|
|
i
|
!
1
I
!
t
!
!
!
]
!
|
1

lllllllllllllllllllllllljlllllllLlll

LA T111Tl] 1 LI ] |l‘ll-= | LR BLEBLARL]] LB A RAA
10 10t .10° 10¢ 10°
"L1/h1

Fig.4.2 TOTAL SEEPAGE DISCHARGE TO ASYMMETRIC
DRAINAGES. (slope 1:1, h2/h1 = 1.0)

11N



1.8

1.5

1.2

0.9

0.6

0.3

0.0

TR O T I T B AT WU 0 A NN SO0 N N5 O A W6 UV N U A U O TG T AU S OO T N O N |

T T T T T LB IR B RAL T

10 - 10° L1‘_%1 10¢ 10°*
Fig.4.3 TOTAL SEEPAGE DISCHARGE TO ASYMMETRIC
DRAINAGES. (slope 1:1, hZ2/h1 = 0.9)

111



11114111411!1111lnllilxlln(llnlji

L LA i LLBLLILLL 8 vy LSRR REL

10 10? 10°? 104 10"
' L1/nt
Fig.4.4 TOTAL SEEPAGE DISCHARCE TO ASYMMEIRIC
DRAINAGES. (slope 1:1, h2/hi = €.8)

112



q/kh1

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

[T TR N0 DA O AR T U O N M NI TN M W (NN TN N DU N N U WU BN S W W BN

id
\&‘
| LB LA 1 LR AL LR IR B R ELEL)] AR AR IR R RAL
10 10° 10} 10* 10°
L1/
Fig.4.5 TOTAL SEEPAGE DISCHARGE TO ASYMMETRIC
DRAINAGES. (stope 1:1, h2/ht = 0.7)

113



[ Side slope 2:1,

Asymmetric Drainages

Tabie 4.6(a) Total Seepage Discharge From Trapezoidal Canal To

H/hse = 0.5 and hashs = 1.0 1

2

10*

Lizhi o 10 10 10 10
Lz2/h4 q7kh1
[Bz/h: = 10]
10 1.36527 | 1.10873 | 1.06644 | 1.06188 | 1.06141
10* 1.10873 | 0.74535 | 0.65437 | 0.64254 | 0.64132
10° 1.06644 | 0.65437 | 0.48709 | 0,44600 | 0.44066
10* 1.06188 | 0.64254 | 0.44600 | 0.35955 | 0.33659
107 1.06141 | 0.64132 | 0.44066 | 0.33659 | 0.28471
| B=/hs = 20)
10 1.62871 | 1.28987 | 1.22380 | 1.21636 | 1.21560
102 1.28987 | 0.85672 | 0.73903 | 0.72339 | 0.72176
10° 1.22380 | 0.73903 | 0.53533 | 0.48606 | 0.47969
10* 1.21636 | 0.72339 | 0.48606 | 0.38523 | 0.35896
10° 1.21560 | 0.72176 | 0.47969 | 0.35896 | 0.30053
[*Bz/ha = 3QJ
10 1.81165 | 1.41692 | 1.32941 | 1.31917 | 1.31814
102 1.41692 | 0.94043 | 0.80115 | 0.78217 | 0.78019
’103 1.32941 { 0.80115 | 0.57036 | 06.51476 | 0.50759
10* 1.31917 | 0.78217 | 0.51476 | 0.40319 | 0.37450
10° 0.78019 0.37450 | 0.31135

1.31814

0.50759
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[ Side slope 2:1,

Asymmetric Drainages

Table 4.6Cb) Total Seepage Discharge From Trapezoidal Canal To

H/h: o (0.3 and ha/h:s = 1,0 1

2

a

4

Li/h1 » 10 10 10 10 10
Lz2/h4 qskhs
| Bz/hs = 10|
10 1.31946 1.07723 1.03784 1.03359 1.03317
10* 1.07723 0.72880 0.64158 | 0.63024 0.62907
10° 1.03784 0.64158 0.47983 | 0.43992 | 0.43472
10* 1.03359 0.63024 0.43992 0.35559 0.33312
10° 1.03317 0.62907 0.43472 | 0.33312 0.28225
| Bz/h1 = 20]
10 1.59390 1.26638 1.20314 1.19604 1.19533
10° 1.26638 | 0.84433 | 0.72975 | 0.71454 | 0.71296
10° 1.20314 0.72975 0.53025 0.48187 0.47561
10* 1.19604 0.71454 0.48187 0.38258 0.35667
10° 1.19533 0.71296 0.47561 0.35667 0.29893
| Bzzhs = 30§
10" 1.78210 | 1.39709 | 1.31232 | 1.30243 | 1.30143
102 1.39709 0.92999 0.79349 0.77492 0.77298
10* 1.31232 | 0.79349 0.56625 0.51141 0.50433
10* 1.30243 0.77492 0.51141 0.40112 0.37272
107 1.30143 | 0.77298 0.50433 0.37272 0.31011
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Asymmetric Drainages

Table 4.7Ca) Total Seepage Discharge From Trapezoidal Canal To

[ Side slope 0.5:1, H/hs = (0.5 and ha2shs = 1.0 ]

Lishts o

2

4

10 10 10 10 10
L2/hs q7kh1
{ Bz2/hs = 10}
10 1.34234 1.09131 1.05170 1.04744 1.04701
- 10% 1.09131 0.73174 0.64375 0.63235 0.63117
10° 1.05170 0.64375 0.48078 0.44069 0.43548
10* 1.04744 0.63235 0.44069 0.35607 0.33354
10° 1.04701 0.63117 0.43548 0.33354 _ 0.28253
[ Bz/h1s = 23}
10 1.61969 1.28196 1.21834 1.21123 1.21050
10 1.28196 0.84751 0.73203 0.71676 0.71517
10° 1.21834 0.73203 0.53118 0.48263 0.47635
10* 1.21123 0.71676 0.48263 0.38304 0.35706
10° 1.21050 0.71517 | 0.47635 0.35706 0.29920
| Bz/h1 = 30}
io 1.80914 1.41329 1.32803 1.31812 1.31711
10 1.41329 0.93325 0.79578 0.77714 0.77520
_103 1.32803 0.79578 0.56713 0.51212 0.50503
10* 1.31812 0.77714 0.51212 0.40154 0.37307
10° 1.31711 0.77520 0.50503 0.37307 6.31035
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Asymmetric Drainages
H/h1 & 0.3 and h2/hs 8 1,0 1

[ Side slope 0.5:1,

Table 4.7C(b) Total Seepage Discharge From Trapezoidal Canal To

2

4

Li/h1 » 10 10 10 10 10
L2/h1 q/skh1
I Bz/h1 = 10]
10 1.30530 | 1.06616 | 1.02837 | 1.02432 | 1,02391
10 1.06616 | 0.72037 | 0.63496 | 0.62389 | 0.62274
10? 1.02837 | 0.63496 | 0.47588 | 0.43658 | 0.43147
10* 1.02432 | 0.62389 | 0.43658 | 0.35340 | 0.33119
10° 1.02391 | 0.62274 | 0.43147 | 0.33119 | 0.28086
LBz/hL = aﬂ
10 1.58849 | 1.26143 | 1.19966 | 1.19275 | 1.19206
10° 1.26143 | 0.83872 | 0.72547 | 0.71048 | 0.70892
10° 1.19275 | 0.72547 | 0.52770 | 0.47976 | 0.47356
10* 1.19275 | 0.71048 | 0.47976 | 0.38123 | 0.35549
10° 1.19206 | 0.70892 | 0.47356 | 0.35549 | 0.29810
LBz/ht = 32'
10 1.78058 | 1.39485 | 1.31142 | 1.30174° | 1.30076
10° 1.39485 | 0.92564 | 0.79022 | 0.77185 | 0.76994
107 1.31142 | 0.79022 | 0.56428 | 0.50980 | 0.50277
10* 1.30174 | 0.77185 | 0.50980 | 0.40011 | 0.37184
10° 1.30076 | 0.76994 | 0.50277 | 0.37184 | 0.30950
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[ Side slope 1:1 ; H/ha = (0.5 ;

Table 4.8 Seepage Discharge Components from Canal to the
' Left and Right Drainages

hza2shs = 1,0 1

to the right drainage.

120

Lishs » 10 10? 10" 10* 10°
L2/hs values* in non=-dimensional form in terms of khs
| B2#hs = 10 |
10 0.67340 0.84947 0.97542 1.02538 1.04217
0.67340 0.24585 0.07953 0.02523 0.00800
102 0.24585 0.36725 0.51793 0.59386 0.62088
0.84947 0.36725 0.12878 0.04133 0.01311
10° 0.07953 0.12878 0.24128 0.35575 0.40412
0.97542 0.51793 0.24128 0.08645 0.02783
10* 0.02523 0.04133 0.08645 0.17853 0.26915
1.02538 0.59386 0.35575 0.17853 0.06525
10° 0.00800 0.01311 0.02783 0.06525 0.14158
1.04217 0.62088 0.40412 0.26915 0.14158
| Bz27hs = 20 }
10 0.80994 0.97120 1.11672 1.17917 1.20060
0.80994 0.31190 0.10210 0.03243 0.01028
102 0.31190 0.42504 0.58513 0.67081 0.70182
0.97120 0.42504 0.14881 0.04776 0.01515
10° 0.10210 0.14881 0.206617 | 0.38886 0.44682
1.11672 0.58513 0.26617 0.09474 0.03047
10* 0.03243 0.04776 0.09474 0.19183 0.28781
1.17917 0.67081 0.38886 0.19183 0.06978
10° 0.01028 0.01515 0.03047 0.06979 0.14979
1.20060 | 0.70182 0.44682 0.28781 0.14979
{ Bz/hs = 30 |
10 0.90367 1.05025 1.20710 }-1.27904 1.30415%
0.90367 0.36290 0.12018 0.03822 0.01211
102 0.36290 0.46758 0.63286 0.72570 0.75980
1.05025 0.46758 0.16436 0.05278 0.01674
10° 0.12018 0.16436 0.28402 0.41219 0.47338
- 1.20710 0.63286 0.28402 0.10067 0.03236
10* 0.03822 0.05278 0.10067 0.20100 0.30057
1.27904 | 0.72570 0.41219 0.20100 0.07291
10° 0.01211 0.01674 0.03236 0.07291 0.15532
1.30415 0.75980 0.47338 0.30057 0.15532
* NOTE :- Top values in each row in tables 4.8 to 4.15 are
seepage discharge components to the 1left drainage
whereas the corresponding values below them are those



Table 4.Q Seepage Discharge Components.from Canal to the
Left and Right Drainages
[ Side slope 1:1 ; H/he = 0,3 ; ha/hs = 1,0 )

Lishs o 10 10° 10° 10* 10°
L27h1 values in non=dimensional form in terms of khs
[[Bz/h: = 10 |
10 0.65398 0.82961 0.95316 1.00187 1.01823

0.65398 0.23916 0.07737 0.02455 0.00778

102 0.23916 0.36133 0.51007 0.58496 0.61157
0.82961 0.36133 0.12671 0.04067 0.01290

102 0.07737 0.12671 0.23849 0.35199 0.40484
0.95316 0.51007 0.23849 0.08553 0.02754

10* 0.02455 0.04067 0.08553 0.17701 0.26700
1.00187 0.58496 0.35199 0.17701 0.06473

10° 0.00778 0.01290 0.02754 0.06473 0.14062
1.01823 0.61157 0.40494 0.26700 0.14062

| Bz27hs = 20 |

10 0.79428 0.95581 1.09966 1.16127 1.18233
0.79428 0.30646 0.10033 0.03187 0.01010

e 0.30646 | 0.42011 | 0.57939 | 0.66431 | 0.69502
0.95581 0.42011 0.14723 0.04726 0.01499

102 0.10033 0.14723 0.26420 0.38626 0.44386
1.09966 0.57939 0.26420 0.09409 0.03027

10* 0.03187 0.04726 0.09409 0.19080 0.28638
1.16127 0.66431 0.38626 0.19080 0.06945

10° 0.01010 0.01499 0.03027 0.06945 0.14916
1.18233 0.69502 0.44386 0.28638 0.14916

| Bz7hs = 30 |

10 0.88978 1.03674 1.19250 1.26363 1.28842
0.88978 0.35815 0.11862 0.03773 0.01195

102 0.35815 0.46339 0.62809 0.72032 0.75414
1,03674 0.46339 0.16300 0.05235 0.01660

10° 0.11862 0.16300 0.28241 0.41010 0.47100
1.19250 0.62809 0.28241 0.10015 0.03220

- 10* 0.03773 0.05235 0.10015 0.20019 0.29945
1.26363 0.72032 0.41010 0.20019 0.07263

10° 0.01195 0.01660 0.03220 0.07263 0.15484
1.28842 0.75414 0.47100 0.29945 0.15484
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Taklne 4.10 Scepage Discharge Components from Canal to the
Left and Right Drainages
[ Side slope 1:1 ; H/h:e = 0,1 ;3 h2/hs = 1,01

Li/he = 10 10% 10 10* 10°
L2/h1 values in non=dimensional form in terms of khi
{ Bzzhs = 10 |
10 0.63141 0.80599 0.92674 0.97405 0.98990

0.63141 0.23156 0.07493 0.02377 0.00753

102 0.23156 0.35394 0.50097 0.57466 0.60081
0.80599 | 0.35394 0.12434 0.03992 0.01266

103 0.07493 0.12434 0.23525 0.34/62 0.39988
0.92674 0.50097 0.23525 0.08446 0.02720

10% 0.02377 0.03992 0.08446 0.17523 0.26450
0.97405 0.57466 0.34762 0.17523 0.06413

10° 0.00753 0.01266 0.02720 0.06413 0.13951
0.98990 0.60081 0.39988 0.26450 0.13951

[ Bz/h:s v 20 '

& 0.77622 | 0.93759 | 1.07981 | 1.14021 | 1.16087
0.77622 0.30040 0.09836 0.03127 0.00993

102 0.30040 0.41461 0.57291 0.65698 0.68734
0.93759 0.41461 0.14547 0.04670 0.01481

102 0.09836 0.14547 0.26198 0.38332 0.44052
1.07981 0.57291 0.26198 0.09337 0.03004

10* 0.03127 0.04670 0.09337 0.18965 0.28476
1.14021 0.65698 0.38332 0.18965 0.06905

10° 0.00993 0.01481 0.03004 0.06905 0.14846
' 1.16087 0.68734 0.44052 0.28476 0.14846

| Bz2z#hs = 30 |

10 0.87376 1.02076 1.17527 1.24548 1.26993
0.87376 0.35287 0.11689 0.03720 0.01179

102 0.35287 0.45872 0.62275 0.71428 0.74782
1.02076 0.45872 0.16150 0.05188 0.01645

102 0.11689 0.16150 0.28062 0.40776 0.46835
1.17527 0.62275 0.28062 0.09957 0.03201

10* 0.03720 0.05188 0.09957 0.19930 0.29821
1.24548 0.71428 0.40776 0.19930 0.07233

10° 0.01179 0.01645 0.03201 0.07233 0.15430
1.26993 0.74782 0.46835 0.29821 0.15430
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Left and Right Drainages
[ Side slope 1:1 ;

H/h: = 0.5 ;

Table 4.11 Seepage Discharge Components from Canal to the

hashe & 0.9 1

Li/hs

10 10 10 10* 10
L2/h1 values in non=dimensional form in terms of khs
l Bz/h1 10 ]
10 0.50386 0.66853 0.80077 0.86888 0.9036/
0.77683 0.34296 0.15784 0.08048 0.04361
102 0.12573 0.23380 0.37991 0.47010 0.51598
0.94120 0.46534 0.21546 0.10620 0.05644
103 0.00462 0.03459 0.12704 0.24160 0.31148
1.03814 0.59923 0.33153 0.16518 0.08473
10* r | 0.42518 0.26217 0.13798
0.42518 0.26217 0.13798
10° " o _ 0.32762 0.21956
0.32762 0.21956
| Bz/hs & 20 1
o 0.62601 | 0.77521 | 0.92262 | 1.00186 | 1.04189
0.91372 0.41142 0.18517 0.09256 0.04968
102 0.18186 0.28348 0.43773 0.53630 0.58624
1.06604 0.52435 0.23804 0.11556 0.06094
e 0.01658 | 0.04900 | 0.14753 | 0.26948 | 0.34358
1.18764 0.67001 0.35830 0.17534 0.08915
10* ) - 0.01286 0.08739 0.18491
0.46130 0.27712 0.14395
0" : d - ~0.00142 | 0.05546
0.34922 0.22916
I Bz/h1 = 30 ]
10 1.00751 | 0.46363 | 0.20621 | 0.10162 | 0.05416
102 0.22616 0.32079 0.47899 0.58362 0.63660
: 1.14664 0.56790 0.25524 0.12261 0.06428
10° 0.02816 0.06071 0.16239 0.28924 0.36627
1.28269 0.72001 0.37733 0.18250 0.09224
10* _ : 0.01630 0.09460 0.19546
0.48653 0.28733 0.14800
o8 3 : 3 0.00245 | 0.05953
0.36375 0.23559
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[ Side slope 1:1 ; H/ht = 0.5 ;

Laeft and Right Drainages
hasht = 0.8 )

Table 4.12 Seepage Discharge Components from Canal to the

Lishs o 10 10? 10? 10* 10°
L2/hs values in non=dimensional form in terms of kha
| Bz/hs = 10 |
o 0.38195 | 0.53351 | 0.66638 | 0.74342 | 0.78645

0.83255 0.39404 0.19570 0.10443 0.05765
102 0.05700 0.14774 0.28539 0.38183 0.43663
0.98585 0.51498 0.25855 0.13547 0.07409
102 z 0.00002 0.06127 0.16901 0.24612
0.62104 0.37329 0.20232 0.10931
1o . ) [ 0.29646 | 0.17070
0.29646 0.17070
10% F - L 5 0.24681
0.24681

[ Bz7hs = 20 |
10 0.48974 0.62580 0.77050 0.85786 0.90662
0.96980 0.46432 0.22620 0.11920 0.06547
102 . 0.10212 0.18977 0.33451 0.43847 0.49747
1.11503 0.57585 0.28303 0.14661 0.07982
o X 0.00496 | 0.07718 | 0.19216 | 0.27340
0.69926 0.40212 0.21386 0.11475
o ; . - 0.03205 | 0.12240
0.31331 0.17772
To° 1 - . . 0.01141
0.25824

[ Bazht a 30 |
10 0.56415 0.68650 0.83733 0.93212 0.98505
1.06366 0.51744 0.24926 0.13012 0.07120
102 0.13921 0.22177 0.36972 0.47900 0.54110
1.19769 0.62042 0.30147 0.15491 0.08406
10° _ 0.01120 | 0.08898 0.20866 0.29271
0.75316 0.42241 0.22193 0.11853
To° § . B 0.03714 | 0.13097
0.32472 0.18246
10° _ _ _ _ 0.01380
0.26579




Left and Right Drainages

[ Side slope 1:1 ;

Hshe o 0.5 ;

Table 4.13 Seepage Discharge Components from Canal to the

h2ashs a 0,7 1

4

-]

Lizhi1 10 10 10 10 10
Lz/h1 values in non=dimensional form in terms of khi
I Bz/h1 = 10 J
10 0.28071 0.41750 0.54652 0.62733 0.674606

0.86754 0.42599 0.21878 0.11871 0.06595
102 0.01371 0.08303 0.20796 0.30530 0.36443
1.00499 0.54325 0.28448 0.15290 0.08449
10° ! A 0.01854 0.11220 0.19093
0.39199 0.22365 0.12369
1o¢ ) J B 0.00012 | 0.06535
0.30352 | 0.18847
5
10 - - - - -
L Bz/hs = 20 J
10 0.37412 0.49605 0.63417 0.72447 0.77765
1.00520 0.49753 0.25131 0.13511 0.07481
102 0.04548 0.11716 0.24889 0.353006 0.41639
1.14087 0.60623 0.31037 0.16515 0.09094
10° _ - 0.02931 0.13095 | 0.21375
0.42345 0.23626 0.12978
o . 5 e 0.00228 | 0.07502
0.32393 0.19634
5
10 - - - - -
| Bz/hs = 30 |

10 0.43891 0.54804 0.69048 0./8743 0.84481
1.09915 0.55128 0.27570 0.14719 0.08128
102 0.07450 0.14373 0.27838 0.38727 0.45364
1.22647 0.65193 0.32971 0.17426 0.09571
10° _ . 0.03774 0.14440 0.20996
0.44531 | 0.24503 0.13401
o i ) } 0.00453 | 0.08176
0.33726 0.20162

10° - - - - -
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Table 4.14 Seepage Discharge Components from Canal to the
o Left and Right Drainages
[ Side sleope 2:1 ;

H/hs = 0.5 ; has/hs = 1,0 1

Li/hs » 10 10% 10? 10* 10°
Lz2/h1 values in non=dimensional form in terms of kh:
| Bz/hs = 10 |
10 -0.68263 0.85693 0.98485 1.03599 1.05320
0.68263 0.2518¢0 0.08159 0.02589 0.00821
102 0.25180 0.37267 0.52382 0.60064 0.62802
0.85693 0.37267 0.13055 0.04190 0.01329
102 0.08159 0.1305% 0.24354 0.35879 0.41259
0.98485 0.52382 0.24354 0.08721 0.02807
104 0.02589 0.04190 0.08721 0.17977 0.27091
1.03599 0.60064 0.35879 0.17977 0.06568
105 0.00821 0.01329 0.02807 0.06568 0.14235
1.05320 0.62802 0.41259 0.27091 0.14235
| Bz7hs = 20 |
10 0.81435 0.97360 1.12010 | 1.18341 1.20516
0.81435 0.31626 0.10370 0.03295 0.01045
102 0.31626 0.42836 0.58892 0.67520 0.70048
0.97360 0.42836 0.15011 0.04819 0.01528
103 0.10370 0.15011 0.26766 0.39082 0.44906
1.12010 0.58892 0.26766 0.09524 0.03063
10* 0.03295 0.04819 0.09524 0.19261 0.28890
1.18341 0.67520 0.39082 0.19261 0.07006
107 0.01045 0.01528 0.03063 0.0/006 0.15026
1.20516 0.70648 0.44906 0.28890 0.15026
[ Bz2z/hs = 30 |
10 0.90582 1.05049 1.20788 1.28051 1.30586
0.90582 0.36643 0.12154 0.12154 0.03866
102 0.36643 0.47021 0.63570 0.72903 0.76334
1.05049 0.47021 0.16545 0.05314 0.01685
10? 0.12154 0.16545 0.28518 0.41370 0.47510
1.20788 0.63570 0.28518 0.10107 0.03249
10* 0.12154 0.05314 0.10107 0.20159 0.30140
1.28051 0.72903 0.41370 0.20159 0.07311
10° 0.03866 0.01685 0.03249 0.07311 0.15567
1.30586 0.76334 0.47510 0.30140 0.15567




Table 4.15 Seepage Discharge Components from Cdnal to the
Left and Right Drainages

[ Side slope 0.5:1 ; H/hde = 0,5 ; h2s/hd = 1,0 1

Lizhs » 10 10? 10? 10* 10°
Lz2/h1 values in non=dimensional form in terms of khi
{ Bz7zh1 = 10 |
10 0.67117 0.84793 0.97305 1.02249 1.03910
0.67117 0.24338 0.07865 0.02495 0.00791
102 0.24338 0.36587 0.51568 0.59126 0.61814
0.84793 0.36587 0.12806 0.04110 0.01304
103 0.07865 0.12806 0.24039 0.3545%5 0.40775
v 0.97305 0.51568 0.24039 0.08615 0.02773
10* 0.02495 0.04110 0.08615 0.17803 0.26845
1.02249 0.59126 0.35455 0.17803 0.06508
10° 0.00791 0.01304 0.02773 0.06508 | 0.1412¢6
1.03910 0.61814 0.40775 0.26845 0.14126
| Bzzhs = 20 |
10 0.80984 0.97188 1.11693 1.17902 1.20030
0.80984 0.31008 0.10141 0.03221 0.01021
102 0.31008 0.42375 0.58374 0.66917 0.70008
0.97188 0.42375 0.14829 0.04759 0.01509
10° 0.10141 0.14829 0.26559 0.38809 0.44594
1.11693 0.58374 0.26559 0.09454 0.03041
10* 0.03221 0.047/59 0.09454 0.19152 0.28737
' 1.17902 0.66917 0.38809 0.19152 0.06969
10° 0.01021 0.01509 0.03041 0.069689 0.14960
1.20030 0.70008 0.44594 0.28737 0.14960
l Bz/h:s = 30 '
10 0.90457 1.05184 1.20844 1.28009 1.3050
0.90457 0.36146 0.11959 0.03803 0.01205
102 0.36146 0.46662 0.63186 0.72450 0.75850
1.05184 0.46662 0.16392 0.05264 0.01669
e 0.11959 | 0.16392 | 0.28356 | 0.41161 | 0.47271
1.20844 0.63186 0.28356 0.10052 0.03231
10* 0.03803 0.05264 0.10052 0.20077 0.3002
' 1.28009 0.72450 0.41161 0.20077 0.07283
107 0.01205 0.01669 0.03231 0.07283 0.15517
1.30506 0.75850 0.47271 0.30025 0.15517

127




Table 4.16 Seepage Discharge Components Through Canal Profile .

[ hashs = 1,0, H/h:s = 0.5, side slope 1:1 1]

[Bz/ht = 10]

Lis/hs o 10 102 10° 10* 10°
LLa7/hs valdes in non=dimensional form in terms of khi
0.18896 13070' 0.12298 0.12217 0.12209
10 L{ 0.18896 .18265 0.18040 0.18013 0.18010
B| 0.9688¢ .78197 0.75157 0.74831 0.74798
R| 0.17670 .10350 0.08930 0.08755 0.08737
10? L| 0.12683 .10350 0.09376 0.09239 0.09225
B! 0.7874¢6 .52849 0.46364 0.45525 0.45437
R| 0.17391 .09351 0.06879 0.06302 0.06227
10° Ll 0.11903 .08907 0.06879 0.06335 0.06263
B 0.75762 .46399 0.34499 0.31583 0.31205
"R| 0.17360 0.09213 0.06334 0.05125 0.04805
10* Lt 0.11822 0.08730 0.06301 0.05125 0.04808
B| 0.75440 0.45562 0.31585 0.25457 0.23828
R| 0.17356 0.09198 0.06262 0.04807 0.04081
10° L{ 0,11813 0.08711 0.06226 0.04805 0.04081
B| 0.75409 0.45477 0.31207 0.23830 0.20154
NOTE :-
R -

se2epage component through canal right=hand side slope,
. = seepage component through canal left=hand side slope and

seepage component through canal bed.
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Table 4.17 Seepage Discharge Components Through Canal Profile
{ ha/hs .= 1,0, Hs/hse & 0.5, side slope 1:1 1

[(Bz/hi = 20]

Lishs » 10 10* 10? 10* 10°
L2/hs values in non=dimensional form in terms of khi
| R{ 0.17369 | 0.10615 | 0.09635 | 0.09531 0.09521
10 L}-0.17369 0.17343 0.17177 | 0.17154 0.17152
B| 1.27251 1.00352 0.95070 | 0.94475 0.94415

_ R| 0.16606 0.08817 0.07329 | 0.07146 | 0.07128
10° L  0.10199 0.08817 0.07999 | 0.07875 | 0.07862
B| 1.01053 | 0.67366 | 0.58067 | 0.56836 | 0.56707

R| 0.16361 | 0.07966 | 0.05592 | 0.05067 | 0.05000

10° L} 0.09220 | 0.07299 | 0.05592 | 0.05007 | 0.05054
- B| 0.95847 0.58115 0.42051 0.38286 0.37675

Rl 0.16331 | 0.07840 | 0.05114 | 0.04058 | 0.03785

10* L| 0.09116 | 0.07115 | 0.05066 | 0.04058 | 0.03789
B| 0.95262 | 0.56886 | 0.38180 | 0.30250 | 0.28186

" R| 0.16328 | 0.07826 | 0.05052 0.03789 | 0.03181

10  L| 0.09106 | 0.07096 | 0.04999 | 0.03785 | 0.03181
Bl 0.95202 | 0.56760 | 0.37678 | 0.28186 | 0.23596
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- Table 4.18 Seepage Discharge Components Through Canal Profile

{ has/hs = 1,0, H/he = 0.5, side slope 1:1 1

{ Bz/h: = 30

Li/hs » 10 - 10% 107 10* 10°
Lz2/hs values in non=dimensional form in terms of kh:
R| 0.16708 0.08387 0.08246 0.08122 0.08109
10 L] 0.16708 0.16987 0.16865 0.16845 0.16843
B 1.47318 1.14941 1.07617 1.06759 1.06674
R} 0.16173 0.08066 ‘0.06501 0.06308 0.06289
10° L] 0.08967 0.08066 0.07348 0.07231 0.07219
Bl 1.15727 0.77384 0.65873 0.64310 0.64146
R| 0.15952 0.07309 0.04953 0.04451 0.04388
10° L| 0.07837 0.06467 0.04953 0.04515 0.04457
Bl 1.08484 0.65930 0.46898 0.42320 0.41729
R| 0.15922 0.067190 0.04513 0.03530 0.03281
10* L} 0.07715 0.06273 0.04450 0.03530 0.03285
Bl 1.07638 0.64370 0.42323 0.33141 0.30782
R} 0.15918 0.07177 0.04455 0.03285 0.02738
10° L] 0.07702 0.06253 0.04386 0.03281 0.02738
B| 1.07552 0.64207 | 0.41733 0.30782 0.25588
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[ ha2zhs = 1.0,

Table 4.19 Seepage Discharge Components Through Canal Profile
H/hs 8 0.3, side slope 1:1 1

Li/hs > 10 10% 10° 10* 10°
L.a27h1 values in non=dimensional form in terms of khi
| Bz/hs = 10]

.R} 0.14182 0.10048 0.09494 0.09436 0.09430
10 L| 0.14181 0.13791 0.13636 0.13618 0.13616
B| 1.02434 0.83038 0.79923 0.79588 0.79555
R| 0.13265 0.07978 0.06925 0.06794 0.06781
10% L| 0.09690 0.07978 0.07249 0.07147 0.07136
B| 0.83571 0.56310 0.49504 0.48622 0.48531
Ri 0.13061 0.07226 0.05366 0.04926 0.04869
10? L] 0.09124 0.06903 0.05366 0.04950 0.04896
B! 0.80509 0.49538 0.36966 0.33876 0.33473
"R| 0.13038 0.07121 0.04949 | 0.04022 0.03775
10* L] 0.09065 0.06775 0.04925 0.04022 0.03777
B| 0.80180 0.48656 0.33878 0.27358 0.25622
Rl 0.13036 0.07110 0.04894 0.03777 0.03215
10° L’ 0.09059 0.06756 0.04868 0.04022 0.03775
B| 0.80147 0.48571 0.33476 0.25622 0.21695

131




Table 4.20 Seepage Discharge Components Through Canal Profile

{f h2he = 1,0, H/hde = 0,1 , side slope 1:1 )

4

Li/hs » 10 10 10 10 10°
L2/hs values in non=dimensional form in terms of khi
| Ba/hs = 10}

R| 0.07447 0.05494 0.05225 0.05197 0.05194

10 | L} 0.07447 0.07376 0.07316 0.07308 0.07307
B| 1.11389 0.90885 0.87626 0.87277 0.87243

R|i 0.06985 0.04413 0.03874 0.03806 0.03799

10* L} 0.05212 0.04413 0.04042 0.03989 0.03983
B! 0.91340 0.61963 0.54615 0.53663 0.53565

R| 0.06885 0.04021 0.03043 0.02807 0.02776

10° L{ 0.04928 0.03854 0.03043 0.02819 0.02790
B| 0.88127 0.54649 0.40965 0.37582 0.37142

R| 0.06874 0.03966 0.02818 0.02312 0.02176

10* L} 0.04899 0.03785 0.02805 0.02312 0.02177
- B} 0.87781 0.53700 0.37585 0.30423 | 0.28510

R| 0.06873 0.03961 0.02788 0.02176 0.01863

10° L.] 0.04896 } 0.03778 0.02775 0.02175 0.01863
B| 0.87746 | 0.53601 0.37145 | 0.28512 0.24177
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Table 4.21

Seepage Discharge Components Through Canal Profile

[ ha/hs = 0.9 , H/hs = 0.5 , side slope 1:1 ]

Li/hit - 10 102 10? 10* 10°
Lz/h1 values in non=dimensional form in terms of kht

[7Bz/h1 = 10J

Ri 0.18515 0.12284 0.11269 0.11096 0.11057
10 L] 0.17448 0.16697 0.16390 0.16332 0.16319
B| 0.92105 0.72168 0.68201 0.67508 0.67353
Rl 0.17500 0.09929 0.08266 4 0.07974 0.07915
10% Ll 0.12226 0.09777 0.08629 0.08401 0.08354
Bl 0.76967 0.50208 0.42642f 0.41255 0.40973
R} 0.17335 0.09197 0.06554 0.05811 0.05660
10? L] 0.11758 0.08711 0.06538 0.05836 0.05691
B| 0.75183 0.45474 0.32765 0.29031 0.28270
R - - 0.06216 0.04875 0.04426
10 L 2 - 0.06179 | 0.04874 | 0.04428
B - - 0.30965 0.24177 0.21902
R - - - 0.04716 0.03881
10° L| = - - 0.04713 | 0.03881
B - - - 0.23362 0.19142
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[ hashe = (0.8 ,

Table 4.22 Seepage Discharge Components Through Canal Profile
H/hs = 0.5, side slope 1:1 1)

2

4

Li7hs » 10 10 10 10 10
Lz/h1 values in non-dimenéional form in terms of khi
| Bz/hs = 10|

0.18133 0.11495 0.10232 0.09964 0.09894

10 L 0.15994 0.15116 0.14724 0.14631 0.14606
Bl 0.87323 0.66144 0.61252 0.60190 0.59910

Rl 0.17330 0.09508 0.07598 0.07188 0.07087

10% L{ 0.11768 0.09201 0.07877 0.07556 0.07476
B| 0.75187 0.47563 0.38919 0.36986 0.36510

R - 0.09043 0.06227 0.05318 0.05090

10? L - 0.08515 0.06194 0.05335 0.05116
B - 0.44548 0.31035% 0.26480 0.25337

R - - - 0.04625 0.04046

10° L - - - 0.04622 | 0.04047
B - - - 0.22899 0.19977

R - - - - 0.03680

10° L g . - - 0.03680
B - - - - 0.18131
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Table 4.23 Seepage Discharge Components Through Canal Profile
H/h: 8 0,5, side slope 1:1 1

{ hashs = 0.7 ,

2

4

5

Li/h1 > 10 10 10 10 10
La/h1 values in non=-dimensional form in terms of khi
[ Bz/h:1 = 101

R| 0.17753 | 0.10702 | 0.09187 | 0.08822 | 0.08719
10 L] 0.14535 | 0.13523 | 0.13037 | 0.12907 | 0.12871
B| 0.82537 | 0.60123 | 0.54306 | 0.52875 | 0.52472
R| 0.17160 | 0.09084 | 0.06926 | 0.06395 | 0.06252
10° L| 0.11309 | 0.08622 | 0.07120 | 0.06704 | 0.06590
B| 0.73402 | 0.44922 | 0.35198 | 0.32721 | ©6.32051
R 3 - 0.05900 | 0.04822 | 0.04516
10° L - - 0.05850 | 0.04831 | 0.04537
B B - 0.29303 | 0.23932 | 0.22409
R 3 - < 0.04374 | 0.03664
10° L - - - 0.04369 | 0.03664
B e R L 0.21621 | 0.18054
R - . . - -
10° L - - - - -
B 5 | - R, -
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Table 4.24 Seepage Discharge Components Through Canal Profile

{ hahye = 1.0, H/ht = 0,5, side slope 2:1 )

10

Lishs » 10 10 10* 10
L2/hs values in non-diniensional form in terms of khs
| Bz/hs = 10}

R| 0.24549 0.16898 0.15857 0.15748 0.15737
10 L 0.24548 0.23651 0.23337 0.23299 0.2329¢6
B! 0.87430 0.70324 0.67450 0.67141 0.67108
R| 0.22944 0.13406 0.11531 0.11298 0,11274
10 L| 0.16439 0.13406 0.12128 0.11947 0.11928
B| 0.71033 0.47723 0.41778 0.41009 0.4093¢
R ‘0.22568 0.12098 0.08858 0.08105 0.08007
10 L] 0.15391 0.11503 0.08858 0.08149 0.08055
B| 0.682214 0.41820 0.30993 0.28346 0.28004
R| 0.22525 0.11915 | 0.08147 0.06577 0.06161
10‘_ L| 0.15282 0.11269 0.08103 0.06577 0.061%6%
B! 0.67920 0.41054 0.28350 0.22801 0.2%1333
R| 0.22520 "0.11896 0.08054 0.06165 0.0%225%
10° L] 0.15271 | 0.11245 0.08006 0.06161 0.05225
B| 0.67890 0.40974 0.28005 0.21333 0.18021
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{ havshs = 1.0,

Table 4.25 Seepage Discharge Components Through Canal Profile
H/h: & 0.5, side slope 0.5:1 1

2

4

Li/hs » 10 10 10 10 10
Lz27h1 values.in non=di mensional form in terms of khi
| B2zhs = 10}

RI 0.16220 0.11156 0.10501 0.10433 0.10426
10 L{ 0.16220 0.15605 0.15408 0.15385 0.15383
B| 1.01794 0.82370 0.79261 0.78926 0.78892
R] 0.15151 0.08800 0.07593 0.07444 0.07429
102 L] 0.10862 0.08800 | 0.07967 0.07851 0.07839
Bl 0.82754 0.55574 0.48815 0.47940 0.47849
Rl 0.14913 0.07948 0.05846 0.05355 0.05292
10° Li 0.10200 0.07575 0.05846 0.05383 0.05322
B| 0.79679 0.48841 0.36386 0.33331 0.32934
R| 0.14886 0.07830 0.05382 0.04356 0.04083
10* L 0.10131 0.07425 0.05355 0.04356 0.04086
B! 0.79351 0.47969 0.38714 0.26895 0.25185
R| 0.14883 0.07818 0.05321 0.04086 0.03469
10!5 L} 0.10124 0.07409 0.05291 0.04083 0.03469
B| 0.79317 0.47879 06.32936 0.25185 0.21315
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As discussed earlier, the seepage from the canal flows to
the drainages located at different 1levels and distances on
either side of the canal. The seepage water emerging in the
drainages will depend upon their distances and elevation in
relation to canal water levels. It is seen that if level of a
drainage is raised, seepage to this drainaée is reduced. At
certain critical level ( he ), it will become ineffective, i.e.,
canal seepage enefging in thi§ drainage will be reduced tq Zero.
Depth at which a drainage become ineffective depends on the
values of parameters such as canal bed width and water depth,
and relative levels and distances of the drainéges. The critical
drainage level ratio, he/hs, for various physica{ parameters is
presented in Figs.4.12 to 4.22.

A perusal of Tables 4.2 to 4.7 and Figs.4.2 to 4.7 indicafes
‘that the seepage discharge decreases with increase in the values
of L+/ht and Lz2/hs, i.e., as drainage distances increase, the
seepage discharge decreases. The seepage discharge increases
.uith the increase in bed width and water depth. Also, the
seépage discharge from canal increases with fiatteﬁing of side
slope. Howéver, the effect of change in the slope of . the canal
on the seepage discharge is very small. For examnple,
dimensionless seepage discharges,-q/khs; from canal with Li1/hs =

10*

]

Lz/hs and Bz/h1 = 20, H/hs = 0.5 and hz2/hs = 1.0 for side

slopes 0.5:1, 1:1 and 2:1 are 0.38304, 0.38366 and 0.38523

respectively., Similarly, the effect of water depth on the

seepage discharge is small,
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The dimensionless seepage discharges for side slope 1:1 and
for La/hs = L2/he = 10° , Ba/he = 20 and ha/hs = 1.0 are
0.38366, 0.38161 and 0.37930 for H/he = 0.5, 0.3 and 0.1
respectively . When H/ht is reduced to 0.0, [ refer Table 3.2 1],
the dimensionless seepage discharge for the above physical
parameters worked out to be 0.37786.

It is also seen that if level of one of the drainages is
raised, tdta] seepage from the <canal reduces. The seepage
discharge to the  raised drainége reduces and that to the
drainage, level of which is fixed, increases [ refer to Tables
4.8 and 4.11 to 4.13 }. Seepage discharge to the drainage‘ at
lower level and nearer to the canal is more than that to the
drainage at higher level and further distance [ refér to Tables
4.8 to 4.15 1. |

The case of symmetric drainéges located on either side of
canal is a particular case of the present study. The results
obtained in this study for symmetrical drainages compare well
with that presented by Garg and Chawla [ 1970 ]. The comparison
is shown in Table 4,26.

The free ' surface profile is affected by the various
parameters such as drainage distance and elevation, canal bed
width, water depth and side slope. The effects of drainage
distances and elevations and cana) bed width on the free surface
profile on either side of the canal have been discussed in the
previous chapter in which the water depth inside the canal is
nagligible. Free surface profiies‘have been plotted in Fig.4.8

for H/hs = 2.0, 1,0, 0.5 and 0.25 for fixed values of Bz/hs = 5,

f
(551
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Table 4.26 Comparison with Previous Work

[ h2 = h1 «s h; Li = L2 =L 1
L/Bz = 10 H/h = 0.5 ; Bz/H = 10
Side slope 2:1 and L/H = 50
H/Bz Side slope
0.05 0.10 0.2 2:1 1:1 0.5:1
q/kh q/kh
Present work 0.74536|0.77283{0.817%92|0.91255/0.88946{0.88098
Garg & Chawla [0,745 0.77 0.81 0.906 0.885 0.875
Side slope 2:1 and H/h = 0.5
L/H = 10 Bz/H = 10
Bz /H L/H
5 10 15 10 50 100
q/kh q/kh
Present work 1.24659|1.4271211.56431|1.42712(0.91253|0.77283
Garg & Chawla [1,23 1.39 152 1.39 0.906 0.77
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Free surface profiles have been plottéd in Fig.4.8 for
H/hse = 2,0, 1.0, 0.5 and 0.25 for fixed values of Bz/hs = 5,
Ls/hs = L2a/hs = 100, ha/hse = 1.0 and side slope 2:1. A perusal
of the figure indicates that the free surface rises with
increase in the value of H/ht, i.ef, with increase in the water
depth. The effect of the change in the side slope of the canal
on the free surface profile has also been studied and found that
it is negligible. For h2a/hs = 1.0, H/hs = 0.5, Bz/hs = 20 and—
Le/ht = Lz/hs = 1000, the free surface coordinates for side"
slopes 2:1, 1:1 and 0.5:1 are given in Table 4.27., Plotting of
this resulté indicated that the profiles of the free surfaces
for the above three sidé slopes are not distinctly separate.

The effect of the drainage distance is shown in Fig.4.9.
With H/he = 0.5, Le/hs = 50, ha/he = 1.0, Bz/hse = 10 and side
slope 2:1, the free surface rises with increase in the distance
of the other dfainage. i.e., as Lz/hs iﬁcreases. the free
surface rises as given in Fig.4.9(a). The free surface on the
side of the drainage, distance of which is increased, also rises
with increase in this disténce as shown in Fig.4.9(b).

Free surface on the right side of the canal have been
plotted in Figs.4.10 for Bz/hs = 10, 20 and 30 with fixed values
of ha/hs = 1.0, H/ha = 0.5, Ls/hs = 50, L2/hs = 5 and side slope
of 2:1. As shown in the figure that the free surface rises with
increase in the bed width of the canal.

In order to study the effect of drainage elevation on the
free surface, curves of free surface for hz/hs = 1.0, 0.75 and

0.5 have been plotted in Fig.4.11 in which H/ht = 0.5, B=z/hs =
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Table 4.27 Coordinates »f the right=hand side free surface

( Variation with change in canal side slope )
[ hahs © 1,0 ; H/ht 8 0,5 ; Lt o L2 = 10° hs 1

Side slope 2:1

Side slope 1:1

Side slope 0.5:1

x7L1 y7hs x/L1 y7ha x/L.4 y7h4
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.050605 0.403231 0.050723 0.405662 0.050822 0.406620
0.100597 0.506103 0.100708 | 0.508371 0.100802 0.509262
0.150572 0.570076 0.150677 0.572150 0.150766 0.572964
0.200542 0.616939 0.200641 0.618838 0.200725 0.619583
0.250510 0.654180 0.250603 0.655926 0.250682 0.656611
0.300478 | 0.685296 0.300364 0.686904 0.300638 0.687535
0.350445 0.712212 0.350525 0.713697 0.350593 | 0.714280
0.400411 0.736112 0.400485 | 0.737484 0.400548 0.738022
0.450377 0.757782 0.450445 0.759049 0.450503 0.759546
0.500343 0.777782 0.500405 | 0.778950 0.500458 0.779408
0.550309 0.796535 0.550365 0.797609 0.550412 0.798030
0.600275 0.814383 0.600324 0.815365 0.600367 0.815750
0.650241 0.831621 0.650284 0.832515 0.650320 0.832865
0.700206 0.848535 0.700243 0.849343 0.700275 0.849658
0.750172 0.865431 0.750203 0.866148 0.750229 0.866431
0.800138 0.882682 0.800162 0.883310 0.800183 0.883557
0.850103 0.900839 0.850122 0.901371 0.850138 0.901579
0.900068 0.920886 0.960081 0.921310 0.900092 0.921475
0.950034 0.945277 0.950040 0.945571 0.950045 0.945684
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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10, Le/he = Lz/hs = 100 and side sfope 2:1. In the figure it is
seen that the free surface rises with decrease in the value of
hz2/hs, i.e., free surface rises with rise in the elevation of
drainage on the other side.

Critical depth of drainage at which it becomes ineffective
have been compiled for different values of various parameters.
For H/ht = 0.5, side slope 0.5:1, 1:1 and 2:1, La/hs = 10, 10%,
10%, 10* and 10%, Lz/hs = 10, 10%, 10%, 10° and 10° and Bz/hs =
10, 20 and 30, the values of he/hs have ‘been plotted in
Figs.4.12 to 4.22. From these figures it is seen that the values
of he/hs decreases with decrease in the values of Ls/he and
L2/he. It is also found that the values of he/ht for La/hs =
Lz/hs = 10* and side slope 1:1, H/hs = 0.5 are 0.6969, 0.6780
and 0.6652 for values of Bz/hs = 10, 20 and 30 respectively. It
is therefore seen that the value of he decreases with increase
in the bed width, i.e., the c}itical level at which drainage
become ineffective is higher for larger bed width. For the value
of Bz/hs = 20, La/hs = Lz/hs = 10°, side slope 1:1, the values
of he/hs are 0.6780, 0.6795, 0.6811 and 0.6821 respectively for
H/he = 0.5, 0.3, 0.1 and 0.0. Hence, it 1is seen that the

critical depth of the drainage increases with decrease in the

water depth of the canal although the effect is very small. For

4

Bz/he = 20, La/hs = L2/hs = 10, H/hs'= 0., the values of he/hs
are 0.6769, 0.6780 and 0.6785 for side slope 2:1, 1:1 and 0.5:1
respectively which indicates that the <critical 1level of the

drainage is lowered with canal side slope becoming steeper.
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‘The seepage discharge from canal takes pface from the bed
and sides of the channel. The percentage discharge taking place
from bed and sides depends on the relative distances and 1levels
~of the drainages on either side. With increase in the bed width
of the canal, the percentage seepage discharge fron the bed
increases. For hza/hs = 1.0, Lse/hs = L2/hs = 10 ( synmetrical
case ), Bz/hs = 10, H/h1'= 0.5 and side slope 1:1, the seepage
discha?ge'(q/kht) from both side slopes is 28.06 percent of the
total seepage from the canal. Hith dincrease in 'the drainage
distance on the right-hand side from 10hs to 10° hs, the seepage
from both the side slopes is 28.775 percent of total seepage
fron the canal although seepage from the right side slope
decreases from 14.03 to 11.63 percent due to increase in
drainage distance on this side and seepage discharge conponent
increases to 17.15 percent frown the other side slope. With
increase in bed width fron 10hs to 20hse and 30hs, the
dinensionless seepage discharge from bed of the canal increases
from 71.94 to 78.555 and 81.51 percent of the total seepage,
respectively. It is therefore seen that the percentagé increase.
in seepage discharge from the canal bed 1is only marginal
although bed width is increased to two or three times the
original bed width. Keeping other parameters same, the seepage
discharge from the side slopes decreases with decrease in water
depth. For example, for Le/hs = L2/he = 10, Bz/hs = 10.vhz/hs =
1.0 and side slope 1:1, fhe seepage discharge from the side

slopes decreases from 14.06 to 11.794 percent of the total
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seepage discharge with decrease in water depth from O0.5ht to
0.1hse. Change in elevation of the drainage on one side also
affects the seepage from either side slope. For example with
decrease in hz from 1.0hte to O0.7hs, 1i.e. raising of Jleft
drainage, the seepage from the side slope towards the raised
drainage decreases from 14.03 to 12.66 percent of total seepage
from the canal and increases from 14,03 to 15.46 percent fromn
the other side slope ( Total from both side .slope is 28.11
percent against original value of 28.06 percent ). As expected
the seepage from side slopes increases with flattening of side

slope.



CHAPTER 5

SEEPAGE FROM TRAPEZOIDAL CANAL
TO
DRAINAGE ON ONE SIDE ONLY

Introduction

Effectiveness of drainage depends upon its distance fron
canal and its depth below canal water level. In case the
drainage is located at very large distance it will beconme
ineffective and the other drainage located at hearer distance
will receive entire seepage from canal. Similarly, as discussed
earlier, if level of the drainage is raised above certain level,
it becomes ineffective. Solution 6f the problem of seepage from
a canal of negligible water depth to a collector drainage on one
side of the canal is available [ Polubarinova-Kochina I 1962,
p§.131-132 ] and 1is presented in Appendix C. Among other
factors, the seepage losses from unlined canals depend on the
shape of the canal cross section and the depth of water in the
canal as well. Presently, no solution 1is avai]ab'le for the
seepage froﬁ‘a trapezoidal canal to a collector drainage on one
side of the canal. Solution of this problem is ~given in this
chapter. In the derivation, the above factors are included and
exact solution of the problem of seepage from a trapezoidal
canal in homogeneous medium to a collector drainage 1located at
finite distance is presented. On the side where there is no

collector drainage the free surface spreads out and approaches
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the level of the water in the drainage which is 1located at

finite distance on the other side of the canal.

5.1 Boundary conditions.

In the z-plane [Fig.5.1(a)], AA'B'B is an equipotential line
and corresponds to ¢ = 0. Along the phreatic 1ine BC which is a
stream line, the value of w 1is taken to be zero. For the
phreatic line AF.Aw has been assi§ned a value equal to q, where
q is the unknown seepage loss per unit length of the ;ana].
Along the drainage CD, which is an equipotential 1line, ¢ is
equal to kh, in which h is the difference between water 1levels
of the canal and the draiﬁage. The distance of the drainage is L
from the right side of the canal, i.e from the water 1ine of the

canal as shown in Fig.5.1(a).

5.2 Solution of problem.

Transformations : The physical plane and the &-plane in this
case aEe similar to those obtained in Chapter 4 except that
Points E/E’' merge with Point F, Therefore, transformation of the
z-plane [Fig.5.1(a)] onto the &-plane [Fig.5.1(b)] and 6-plane
onto [ -plane [Fig.5.1(c)] are similar to those obtained in
Chapter 4. In another operation, the w-plane is mapped on the
t-plane [Figs.5.1(d) and 5.1(e)]. This mapping is similar as
given in Appendix C. Table 5.1 summarizes the Jlocation of the
points in the different planes. The bilinear transformation that
maps the [ -plane ontQ the t-plane is identical as that given by

Eq.4.68 and it is reproduced below.

t = of (5.1)
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Table 5.1Ca) Points Location on the z, 8 and [~ Planes

z - plane 68 = plane { - plane
POINT x y 61 62 £ n
A -Bz + 2HcotCnad (o] 8a 0 -1 (o)
A' |-Bz + chtCna) H ea’ H ¥ o)
B’ |-Bz + Hecot(nad H én’ H -A2 0
B o &) 0 o o 0
c L h L o Le o
D @® h © (o) ® o]
F - ot O -0 0

Table 5.1Ch) Points Location on the w and ¢t = planes

w = plane t - plane
POINT ¢ ¥ r s
A o) q -o 0
A’ o] YA’ -ta’ . 0
B’ - 0O e’ i % &)
B (o) 0 o) 0
c kh (o) 1 o)
D kh q @ 0
F kh q ] 0
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Similar to Eqs.4.5 and 4.8 the following were obtained.

~cot(mas) cot(ma) - wm’ /kH (5.2)

1]

cot(maz) cot(ma) - (q-wa’)/kH (5.3)

Also, from Eq.4.70, the following relationship was found.

L/H = cosec(mas)[I1]/[(N2)]z2] (5.4)
in which,
sinh ‘v 1/0
It = J[ sinh ux2]}? [sinh(u)]* 73 [sinh® (u) x1]%% [cosh(u)]* ¥ du
0
. (5-5)
B = 1+231 4-2a1 % _ s 2 az
12 = sin(u) cos{u) : coszu du
. , 1 - A2 cos u
0
(5.6)

From Eq.4.74,

Bz/H = 0.5 cosec(mas) [1+4/{(X2)I2}] + [( wa’ - y8')/kh]l[h/H]
: (5.7)

in which,

“Az

ai az
Ie = an 2] R (5.8)
-A1

The abscissa, x, of the point on the free surface BC, is as

given below [ refer Eq.4.82 ]

x/L = I2/1a (5.9)
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in which,

3 -
P osinh YT

& =J[Sinhzu+>\.2]a£ [Sinh(U)]ﬁnzai[ Sinhz(u)«&)\i]az [cosh(u)]i“zazdu
0
. .« (5.10)

and 0 £ £ 1/o.

The horizontal distance, X, of a point on the free surface
AF, from Point A is as given below [ refer Eqs.4.25, 4.26, 4.27,
and 4.29(a) 1

Mo/ L Ind®/ 1s (5.11)
in which,
cosh™ *¥=7 ~
T =IICOShz(u)-K’]a‘[cosh(u)]‘-zai[coshz-x:]az[sinh(u)]“zazdu
0
. (5.12)

and -1 2 ¢ > -m,

Mapping of the W-plane onto the t-plane : There is no major
change in the shapes of the rectangular flow fields presented in
the w-plane for the cases of the canal with negligible water
depth [Fig.C.1(c)], and the present case in which the shape of
the canal and depth of the water in the «canal are taken into
consideration [Fig.5.1(d)]. However, for convenience the
rectangular flow field, Fig.5.1(d), is mapped onto another
auxiliary half-plane, t-plane, as shown in Fig.5.1(e) whereas

the ©-plane is mapped on the intermediate {-plane. This mapping
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is done using tﬁe Schwarz-Christoffel conformal transformation.
The Point A in.the t-plane is located at -o and its value
should be determined.

The rectangular flow field in Fig.s.l(d) is opened at Point
F/D and mapped from -m\to +o along the real axis of the t-plane.
Points A, B and C are mapped at t = -, 0 and 1 respectively.
Points A’ and B’ are mapped at t = -ta’ and -ts’' respectively.
The Schwarz-Christoffel transformation equation is as giveﬁ

below ¢

J dw = Ma J 84 _ (5.13)
Y () (D (1)

where Mais a complex constant.

It is observed that Eq.5.13 and Eq.C.5 are similar,
Therefore, the same solutions ofvK.C.S in various segments of
the t-plane hold true for Eq.5.13 as well. Hence, the resulting
equations obtained on integrating Eq.5.13 along different
segments of the t-plane are as given below.

The ordinate, y, of a point on the free surface BC is given

by the following equation.

-ky = Ms F(¢5,m) (5.14)

in which,

#5 = sin Y1+ it/ (%) 0< t <1 (5.15)

At Point C, ¥y = h, t = 1. Substituting these in Eqs.5.15 and

£q.5.14, it is found that ¢5 = n/2 and

kh = -Ma K(m) : (5.16)
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in which, K(m) is the complete elliptic integral of the first.
kind with modulus m and |

2

n = 1/(1+0) (5.17)
Dividing Eq.5.14 by Eq.5.16, the following non-dimensional
relationship for the ordinate of a point on the free surface BC

was found.

y/h = F(¢s,m)/K(m) (5.18)
The abscissa, x, of the point on the free surface BC can be
found by making use of Eq.5.9. The relationship between the-
corresponding values of the point in the t-plane and {-plane are
as given by Eq.5.1.
The ordinate, y, of the point on the free surface AF having

a value of t in the t-plane can be expressed as follows [ refer

Eq.C.7 and Eq.5.16 ].

y/h = F(@4,m)/K(m) (5.19)

in which,

Ps = sin_li(a+t57t ;. o < t £ -o (5.20)

The value of the abscissa of the above point can be found
using Eq.5.11. The corresponding values of the pﬁint in the
t-plane and {-plane can be found from Eq.5.1.

At Point F on the free surface AF, t = -@ and Eq.5.20 giyes
¢4 = n/f2, Substituting this in Eq.5.19 and dividing the
resulting equation by Eq.5.16, the equation for the ordinate of
the free surface at the farthest boint, Point F, i.e y = YF, as

given below was obtained.

Yr/h = 1 (5.21)
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As { = -o at this point, and if this is substituted in
€q.5.11, the corresponding abscissa of the point on the free
surface works out to be x = -» . So, Eq.5.21 states that at
infinity, the free surface on the left-hand side approaches the
level of water in the collector drainage.

The stream function value at any point along AA’B‘B s say

¥'s is given by the following equation [ refer Eq.C.21 ].

(q - ¥') = -Ma F(gs,n') (5.22)

in which, |
' ¢s = sin 'Y(t+o) /o (5.23)
n' = os(lo) = - R'm (5.24)

Dividing £Eq.5.22 by Eq.5.16, the following non dimensional

equation was obtained.
q/kh - v /kh = F(¢s,m* )/k(m) (5.25)

At Point B, t = 0 and ' = 0. Hence, substituting these in
Eq.5.23 and Eq.5.25, the following expression for the seepage

quantity, q, from the canal was obtained.

F(m/2,m")/K(m)

i

q/kh

"

K(m*)/K(m) : (5.26)

At Point A", £ = -X4 and from Eq.5.1, t = -o\t. Putting y' =

wA’ and substituting these in Eqs.5.23 and 5.25,

wa’' /kh = q/kh - F(Ba’,m")/K(m) (5.27)
in which,

34’ = sin -1 (5.28)
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At Point B', -A2 and from Eq.5.1, t = -oA2 and putting

v' = ym' and substituting these in Eqs.5.23 and 5.25,

we'/kh = q/kh - F(R',m* )/K(m) - (5.29)
in which,

4

m' = Sin- -A2 (5.30)
5.3 Results and Discussions

As discussed in the previous chapter, it is difficult to
obtain a direct relationship between z and w. Therefore, the
procedure followed in computations was to assu@e the va1ﬁes of
parameters in intermediate plane and then determine the values
of w corresponding to these parameters and determine the various
dimensions in physical plane such as Bz/h, L/h, H/h and side
slopes. In case specific values of these parameters in physical
plane are- desired, few iterations are required by way of
adjustments in the values of intermediate parameters such as o,
As and A2, Coordinates of the free surface on the right-hand
side, i.e. BC, are determined from Eqs.5.9 and 5.18 for various
values of t ( 0=t £ 1 ). Similarly, coordinates of ~the free
sufface onh the 1eft-haﬁd side, 1i.e AF, are' obtained from
Eqs.5.11 and 5.19 for various values of t ( -® < t £ -2 ),

The values of seepage discharge had been calculated for the
various combinations of the following physical parameters;
Bz/h = 10, 20 and 30 5 L/h = 10, 10, 10®, 10* and 10°; H/h =
0.0, 0.1, 0.3 and 0.5 and side slope 1:1. The results are given

in Table 5.2 and are plotted as shown in Fig.5.2.
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Table 5.2 Seepa.ge from Canal with Drainage on One Side

I Side -slope 1:1 1.

2

L’h - 10 10 10 10 10
Bz/h q/kh
[k = 0.0]
10 0.97679 | 0.60614 | 0.42307 | 0.32342 | 0.26160
20 1.15473 | 0.69702 | 0.46764 | 0.34884 | 0.27792
30 1.26736 | 0.76002 | 0.49784 | 0.36549 | 0.28838
[Ah = 0.1]
10 0.99511 | 0.61328 | 0.42650 | 0.32539 | 0.26287
20 1.16816 | 0.70191 | 0.46986 | 0.35006 | 0.27870
30 1.27891 | 0:76398 | 0.49957 | 0.36642 | 0.28895
[k = 0.3]
10 1.02237 | 0.62424 | 0.43179 | 0.32845 | 0.26485
20 1.18856 | 0.70971 | 0.47341 | 0.35203 | 0.27993
30 1.29641 | 0.77040 | 0.50239 | 0.36794 | 0.28988
I H-h = 0.5'
10 1.04572 | 0.63372 | 0.43635 | 0.33106 | 0.26654
20 1.20628 | 0.71664 | 0.47656 | 0.35377 | 0.28104
30 1.31162 | 0.77616 | 0.50492 | 0.36930 | 0.29073
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A comparison of seepage losses from trapezoidal canal with
collector drainage on both sides ( Table 3.2 and 4.2 to 4.5 )
and those from trapezoidal canal with collector drainage only on
one side ( Tables 5.2 ) indicates that seepage 1losses for the
former case approach the values of seepage for the latter case
if the Qa]ue of L2/Ls = 10°. In case the farther side collector
drainage is located at a distanceblo times or more than the
nearer drainage ( say, Lz2/Ls 2 10 ), the error 'in the seepage
losses calculated by ignoring the farther drainage worked out to
be less than 10 percent as compared to that obtained by
considering both drainages. The magnitude of this error depends
upon the bed width and distances of the drainages. A further
perusal of Table 5.2 indicates that the seepage losses 1increase
with increase in the water depth of the canal. For example, the
seepage losses (q/kh) are 0.977, 0.995, 1.022 and 1.046 for H/h
= 0.0, 0.1, 0.3 and 0.5 respectively for Bz/h = 10, L/h = 10 and
side slope 1:1. For L/h = 105, Bz/h = 10, the seepage Jlosses
(q/kh) are 0.2616, 0.26287, 0.26485 and 0.26654 for H/h = 0.0,
0.1, 0.3 and 0.5 respectively. It is therefore seen that efféct
of water depth on the seepage losses reduces as L/h increases.
Table 5.3 gives values of seepage losses from sides and bottom
of the canal for L/h = 10, 10%, 10%, 10*, and 10%; Bz/h = 10, 20
and 30; H/h = 0.5 and side slope 1:1. It is seen from the table
that the seepage from the side slopes on the drainage side
( right side in this case ) are higher than those from the other'

side. However, this differences reduce as L/h 2 107,
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Table 5.3 Seepage Discharge Components through Canal Profile
I Drainage on One Side :=- slope 1:1 and H/h = 0.5 1}

2

4

-3

Lh 10 10 10 10 10
Note that Seepage component values below are in terms of kh
| Bz/h = 10]

R 0.17356 0.09197 0.06218 .04760 .03845

L 0.11813 0.08709 0.06218 .04758 | 0.03845

B 0.75403 .45466 0.31163 .23588 .18964
[(Bz7h = 20)

R 0.16328 0.07825 0.05045 .03749 .02987

L 0.09105 0.07094 0.04991 .03745 .02987

B 0.95195 0.56745 0.37620 .27883 .22130
L Bz/h = 30]

0.15919 0.07176 0.04448 .03249 .02565

0.07701 0.06250 0.04379 .03244 0.02564

1.07542 0.6419 0.41665 .30437 .23944

NOTE :- R = seepage component through right side slope,
L = seepage component through left side slope and
B = seepage component through canal bottom width.
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The effect of drainage distance, bed width and water depth
on the free surfaces on thé drainage side and on the other side
of the canal had also been studied.

Free surface profiles on the right-hand side and left-hand
side have been plotted in Figs.5.3 and 5.4 respectively, for
B/h = 10, H/h = 0.5, side slope 2:1 and L/h = 10, 50 and 100. It
is seen that the free surface is higher for the larger value of
L/h. Comparing the rises in the free surfaces at the right and
left side of the canal, it is observed that as the drainage
distance increases, the rises on the free surface, on the side
on which the drainage is located, is very high. But, the free
surface on the other side, i.e. in this case the left-hand side,
drops steeply at the vicinity of the canal and then drops gently
and does not reach the 1level of the drainage at the
corresponding distance, i.e. L, from the canal as _in the case of
the right-hand side free surface. Moreover, the free surface on
the dra%nage side is s-shaped with steep slope near the canal
and the drainage with a point of contraflexture in between
whereas on the left-hand side the free surface drops steeply
near the canal and the slope becomes flatter as distance ffom
the canal increases.

For the study of the effect of the bed width on the free
surfaces on the left and right side of the canal, three bed
width values of Bz = 10hs, 20hs and 30hs were considered
[Fig.5.5 and 5.6]. The canal side slope at 2:1, the water depth
in the canal at H = 0.5h and the drainage distance at L = 50h.

were fixed.
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It is seen from the above figures [Fi9;5.5 and 5.6] that
the free surfaces rise with increase in the bed width. The free
surface on the right side reduces. to the 1level of the 1left
drainage at S distance of L from the canal whereas the left free
surface's reduction to the 1level of the drain#ge is very
gradual, From Fig.5.6, it is observed that though the left free
surface is approaching the level of the drainage as distance
from the canal is increased, even at é distance ten times L, it
did not reach this level, .

Righ@ qnd Left free surface profiles have also been plotted
in Fig.5.7 and 5.8 respectively, for Bz/h = 5, L/h = 100 and
side slope 2:1 and H/h = 2.0, 1.0, 0.5. 0.25 and 0.0. It is seen
that the free surfaces rise with increase in the water depth

inside the canal.
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CHAPTER ©

CONCLUSIONS

An analytical solution has been obtained with the help of
Zhukovsky's function and conformal transformation for
determining the phreatic surface and seepage losses from a canal
with asymmetrically disposed drainages. The following
conclusions .are drawn from the present study :

(1) The seepage discharge for various values of physical
dimensionless parameters have been prepared in easy to use
curves [ nomographs 1 for practical use. The nomograph has been
presented to predict seepage loss from & canal for practical
ranges of the drainage distances and levels, canal dimensions
and water depths. The range considered for L:«:/hs and L2/hs is 10
to 10°, Bz/hs = 10, 20 and 30 ; H/h: = 0.5, 0.3, 0.1, 0.0 and
hza2/ha = 1.0, 0.9, 0.8 and 0.7. The canal side slopes considered

are 2:1, 1:1 and .0.5:1, For the case of H

0, separate
nomographs for the different dimensions of the flow system are
given [Chapter 3]. Also, for the case of drainage- onh one side
[Chapter 5] a separate nomograph is made to compute seepage
discharge for canal side slope 1:1 and for any value of drainage
distance (L/h) between 10 to 10°, value of bed width (Bz/h)
between 10 to 30 and canal water depth (H/h) between 0 to 0.5.

(2) A perusal of the results indicates that, the seepage
discharge decreases with increase in the values of La/hs and
Lz2/hs, i.e as the drainage distance 1increases, the seepage

discharge decreases. It is also seen that the seepage discharge
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increases with increase in the value of Bz/hs. However, increase
in the seepage discharge due to increase in bed width is not
propoftiona1 to the increase in bed width. Therefore, the
practice of expressing the seepage from canals in ternms of
wetted perimeters irrespective of their size is not correct.

(3) Other things beigg the same, the seepage quantity fncreases
as the canal side slope is made flatter but the variation is
small.

(4) The seepage quahtity is significantly governed by the depth
of water in.the canal.

(5) The seepage loss received by the drainagé which is at the
lower level is more than tﬁat received by the drainage whose
level is higher. Léwering of any one of the drainage channels
results in the increase of seepage losses from canal. A drainage
higher than a certain level will not receive any seeping water
- from the canal. The 1oca£ion of the drainage channel at which it .
does not receive any water from the canal depends on the
dréiﬁage distances, canal diménsions and the depth of water in
the cana1.' v ‘

~ (6) Free surface on either side of  the drainage. rises wWith
‘increase in the,bed width and increase in drainage distances.
Free Surface also rises if drainage on the other side is 1ocafed
at a higher level. The effect of change of the side slope of
canal on the free surface is‘neg)igib]e, Howevér. the increase
in depth of water in the canal significantly vréises the free

surface.
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(7) Comparison of seepage 1losses from canal with collector
drainages on one side with that from canal with drainages on
both sides of the canal indicates that seepage 1losses for the
latter case approach the values of seepage for the former case
if the value of Lz/Ls 2 10°. In case the farther side collector
drainage is located at a distance ten times or more than the
nearer drainage (say, Lz/Ls 2 10), the error -1n the seepage
losses calculated by ignoring the farther drainage is less than
10% as compared to that obtained by considering both drainages.
The magnitude of the error depends on the bed width and drainage
distances.
(8) Free surfaces on both sides of the canal rise with increased
drainage distance.‘Comparison of the changes in the Tlevels of
the free surface at the right and left side of the canal shows
that the corresponding changes on the side where the drainage is
located is very high.

| The free surface on the other side drops steeply in the
vicinity of the canal and then drops gently and does not reach
the level of the drainage at the corresponding distance, i.e L,
from the canal as in the case of the free surface on the side
where the drainage is located. Moreover, the free surface on the
drainage side is s-shaped with steep slope near the <canal and
the drainage with a point of contraflexture in between. But the
free surface on the other side of the canal drops steeply near
the canal aﬁd the slope becomes flatter as distance from the

canal increases.
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Cufves of the free surfaces on both sides of the canal with
collector oh one side have been plotted to.show Vthe effect of
thg bed width and water debth of the canal. For this case also,
it is seen that the free surfaces rise wWith increase in bed
width and water depth in the canal.

Recowmendations : As the personal computer (PC) isbavailable
in many offices, it may be of great 1interest and use if an
interactive and user.friend1y software, which can calculate the
canal seepage loss and the coordinates which define the profile
of the free surfaces at either side of the canal, is . developed.
By giving as input the physical diménsibns, namely, canal cross
section, drainage locations, etc. and the soil permeability, the
computer program may be develqped to 9ive the seepage 1loss and
the free surface profiles and hence be a valuable assistance to
those who are involved in the'desigﬁ or manhagement of unlined
irrigation canals in alluvial soil. If the latest graphic
programs could be coupled with the program thus developed, one
can feed the ground profile and then find the area which is
1ikely to be water'logged due to the introduction of the canai.

The solutﬁons derived in the present thesis may be extended
to deal other boundary conditions such"as (a) présence. of
impermeable layer below the drainages, (b) effect of shape and
sfze of the drainages. anﬁ (c) cases of infiltration/evaporation
on the free surfaces. Consideration of unsteady flow condition
as wé11 as to some extent anisotropic and nonhomogeneous
condition of the soil will be of .some interest to determine

their effect on the seepage losses and on the phreatic surfaces.
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APPENDIX A

SOLUTION TECHNIQUES

The two dimensional steady flow through homogeneous and

jsotropic porous medium is governed by the Laplace's equation,
aprox’+ 82pr0y*= 0 (A.1)

The function, ¢, satisfying Eq.A.1 in a region, say R, is
called harmonic. If f(z) = #(x,y) + iy(x,y) is analytic 1in R,
then ¢ and ¥ are harmonic in'R, i.e,  and ¢ ‘'satisfy Laplace's
equation [Churchill, 1948 ; Nehari, 1952, 1961; Spiege], 19811].
The functions ¢ and ¢, which depend on the spatial <co-ordinates
X and vy, ére called conjugate functions and given one, the other
can be determined within an arbitrary additive constant.

If R is a simply-connected region bounded by a simple closed

curve C [Fig.A.1], two types of boundary-value problems are of

great importance :

+
x

‘Fig.A.1 Simply=connected region R.

(1) Dirichlet's problem seeks the determination of a function ¢
which satisfies Laplace's equation ( i.e., harmonic) in R and

takes prescribed values on the boundary C.
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(2) Neumann's problem seeks the determination of . a function ¢
which satisfies Laplace's equation in R aﬁd whose normal
derivative 8¢/8n takes prescribed values on the boundary C.
The region’R may be unbounded; for example R can be the
upper half plane with the x-axis as the boundary C. Solutions to
both fhe Dirichlet and Neumann problems exist and are wunique
under very mild restrictions dn the boundary conditions
[Spiegel, 1981].
The Dirichlet and Neumann problems can be so1ved for any
simply-connected region R which can be mapped conformally by an
analytic function on to the interior of a unit <circle or half
plane. Theoretically, by Riemann's mapping theoren this can
always be accomplished [Nehari, 1952, 1961]. The basié ideas
‘invo1ved are as follows.. ‘

(i) Use the mapping function to transform the boundary-value
problem for the region R into a corresponding one for‘ the unit
circle or half plane. |

(i1) Solve the problem for the unit circle br half plane.

(iii) Use the solution in (ii) to solve the given problem by
employing the inverse mapping function.

The usefulness of conformal mépping'in‘two—dimensional flow
problems stems from the fact thaE_ soluiions of Laplace's
equation remain solutions when subjected to conformal

transformations [Harr, 1962].

A.1 The Schwarz=Christoffel transformation.
The Riemann mapping theorem guarantees the existence of . an
analytic function which maps a given simply-connected domain

onto the unit circle or half plane but it does not show how to

192 ‘ —



find this function [Nehari, 1952, 1961]. In groundwater
problems, where it is often necessary to determine the seepage
characteristics within complicated boundaries, the
transformation is yet more difficult. But, though this may
appear somewhat disturbing, the wuse of appropriate auxiliary
mapping techniques enables us to transform even complicated flow
regions into regular geometric shapes [Harr, 1962). Generally
these figures will be polygons having a finite number of
vertices (one or more of which may be at infinity). fhus the
method of mapping -a polygon from one or more planes onto the
upper half of another plane is of particular importance [Harr,
19621 |

An explicit equation called the Schwarz-Christoffel
transfdrmation is used as a mapping function in the case in
which the domain in question is a polygon. If the polygon is
located in the z-plane ( z = x + iy), then this transformation
that maps it conformally onto the upper half of the t-plane (t =

r +isom 159

dz = M 1-A~TT 1-2jn 1-cr1
(t-a) (t-b) (t-¢) e
. .(A.23)
or,
} dt
zZ = M J AT 1-B.1 1-C- 1 * N
(t-a) (t-b) (t-¢) .
. . '(Aozb).

where M and N are complex constants; - a4, ®», ¢, ..., are the

interior angles (in radians) of the polygon in the z-plane
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[Fig.A.2(a)]; and a, b, ¢, ...(a < b < c < ...) are points on
the real axis of the t p]ané corresponding to the respective
vertices A, B, C, ... [Fig.A.2(b)). It should be noted, in
particular that the complex constant N corresponds to the point
on the perimeter of the polygon that has its image at t = 0

{Harr, 19621.

v
-

Fig. A.2(b) t=plane

It should also be noted that if a vertéx, for example Az,
- tends to infinity in such a way that the adjacent sides become

parallel [Fig.A.3(a)], then one must take az = 0. For further
. » _ A,

Cad

Fig. A.3 Polygonal region in z=plane.
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turning of the sides As1A2, when they cease to be parallel, but
when the vertex Az remains at infinity [Fig.A.3(b)], the angle
A2 must be considered negative, and namely a2z = - a2', where az'
is the magnitude of the angle formed by the prolongation of the
sides A1Az and AsAz [Polubarinova-Kochina, 1969, pp.70-711]-

The Schwarz-Christoffel transformation can be considered as
the mapping of a po]yéon in the z-plane onto a similar polygon
in the t-plane in such a manner that the sides of the polygon in
the z-plane extend through the real axis of the t-plane. This is
accomplished by opening the polygon at some convenient point,
say between A and E of Fig.A.2(a), and extending one side to t =
-0 and the other to t = +o and are placed along the rea1.axis of
the t-plane. The interior angle at the point of opening may be
regarded as 7 (in the z plane) and, as noted in Eq.A.2, takes no
part in the transformation. The point of opening in the z-plane
is represented in the upper half of the t-plane by a semicircle
with a radius of infinity. Thus the Schwarz-Christoffel
transformation, in effect, maps conformally the region interior
to the polygon ABC... of the z-plane into the interior of the
polygon bounded by the sides ab, bc,... and a semiciréWe with a
radius of infinity in the upper half of the t-plane, or, more
simply, into the entire upper half of thé t plane [Harr, 19621].

Corresponding values of a,b,c, ... and A, B, C, ... can be
chosen so that the polygons in their respective planes are
similar [Harr, 1962]. Any three of the values a, b, ¢, ... can
be chosen arbitrarily to correspond to three of the vertices of

the given polygon A, B, C, ... . For a polygon of n sides, the
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(n-3) remaining values must then be determined so as to satisfy
conditions of similarity. Whereas we shall often choose to map a
vertex of the flow region (z-plane) into one at infinity in the
t-plane, it is important to noté that not only 1is this factor
omitted from the transformétion, but the number of arbitrary
values is reduced by one.

For the more demonstration of the mechanisn of the
Schwarz-Christoffel transformatﬁon and for its derivation one is
referred to Harr. [1962], Nehari [1952, 19611, Cunningham [1965],
Spiegel [19811, Strack [1989]. | |

A.2 Bilinear transformation.

The general form of the bilinear transformation, sometimes
called the Mobius transformation, is as follows [Harr, 1962]. "

. az + b
cz + d

(A.3)

in which, ad - bc # 0 and a, b, ¢, and d are complex constants
énd w = ¢ + iy, The requirement ad - bc # 0 ié neéessary “to
ensure the conformal nature of the transformation. In addition,
.ﬁf a/c ” b/d, w ui]1 be a constant irrespective of‘z and hence
the transformation will map the entire z plane into a point in
the w plane [Harr, 19621,

The bilinear transformation maps circles -in z-plane onto
circles in the w-plane. Straight lines are regarded as special
céses of circles (namely, circles passing through the point at
infinity). The point z = -(d/g) is transformed by Eq.A.3 into
the point w = @ ; accordingly, circles passing through the point‘
z = -(d/c) will transform into stfaight Tines [Nehari, 1961,

p.168].

196



The function given by Eq.A.3 is wunivalent. To demonstrate

this, Eq.A.3 is rewritten as follows.

a bc - ad
C * c(cz + d) (A.4)

If wi and w2z are the images of the points 214 and 22,

respectively, from Eq.A.4 we conclude that

(ad - be)(za - 2z2)
(czs + d)(czz + d)

(A.5)

This shows that wa # w2 if zs+ # zz2, provided neither wa nor w2
are infinite. Since by Eq.A.3, the point w = ® is the 1image of
z = -(d/c) and of no other point, the assertion follows.

If z4, z2, za and zs are four distinct finite points in the
z-plane (and none of these points coincide with z = -d/¢),

Eq.A.5 implies that,

(we - we)(ws - w2) (24 - z4)(28 - 2z2)

(we - w2)(wa - we) (z2 - z2)(z3 - 2z24)
* . .(A.6)

The righf4hand side expression of Eq.A.6 s called the
cross-ratio of the four points zs, z2, 23 and z+. The formula
givén by Eq.A.6 shows that the cross-ratio of four points is
equal to the cross-ratio of the images of these points under a
linear transformation, i.e., the cfoss—ratio of four points 1is
invariant under a bilinear transformation. If one of the points
wh, say for p = 1,_i.e.,.w1, approaches the point at infinity,
the left-hand side of Eq.A.6 reduces to (ws-wz)/(wa-we). This

expression is therefore to be regarded as the cross-ratio of the

points @, w2, wa and we.
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Eq.A.6 makes it possible to write down the bilinear
transformation which carries three given points z¢, 22, 23 into
three preassigned points we, w2, ws, respectively. If z 1is any
other point in the z-plane, and if w is 1its image unde} the
transformation as given by Eq.A.3, it follows from Eq.A.6 that

we must have,

(wa -~ w)(wa - w2) (za - 2)(z3 - z2)

(wa - w2)(wa - w) (z¢ - z2)(z3s - z)
N . . o(Ao?)

If Eq.A.7 is solved for w, the right-hand side is_easily seen to
be of the same form as the right-hand side of Eq.A.3. The
retation given by Eq.A.7 is therefore equivalent to a bilinear
transformation. It ~may also be noted that the tﬁree
correspondences (z1, z2, 23 to Wi, ”2’, wa , respectively)
determine the transformation completely.

Since a bilinear transformation maps'circles onto circles,
and since a circle is determined by three of its points, we can
thus find bi]ihear transformations which carry a given circle in
the z-plane into a given circle in the rg*plane. We <can say,
moreover, that three points on the first circle be éarried into
three given points on the second circle. Once this is done, the
transformation is completely determined. The inside of the
‘circle Cz in the z-plane may be mapped either onto the inside of
the circle Cv in the w-pTané; or onto the exterior of Cv., In any
given mapping, it is easy to'decide which of.  these two cases
occurs. If the point z = -(d/c) lies inside Cz, the image of the
inside must contain the point w = o, i.e:, it is mapped onto the

outside of Cv; otherwise, the intefior of Cz corresponds to the
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interior of Cv. If Cv degenerates into a straight line, both the
interior and the exterior of C=z are mapped onto half-planes
bounded by this line.

To find all linear transformations which carry the real axis
in the z-plane into the real axis in the w-plane, we have to
consider all transformations, Eq.A.7, for which the numbers zi,
zZz, 29, Wi, W2, W8S are reé]. Solving Eq.A.7 for w, we are led to
transformations, Eq.A.3, for which the coefficients a, b, ¢, d
are all real numbers. Conversely, if these numbers are real,
Eq.A.3 will evidently carry real numbers z into'rea1 numbers w.
In view of what was said above, the image of the upper
half-plane Im(z) > 0 may be either the upper half-plane Im(w) >
0 or the lower half-plane Im(w) < 0. In order to decide between
these alternatives in a given case, we test the mapping of a
point in Im(z) > 0, say the point z = i. By Eq.A.3, we have,

ai + b

W=
c1+3

(ai + b)(-ci + d)
(c1 + d)(-ci + d)

(ac + bd) + i (ad -bc)
(c*c + d*d) (A.8)

and thus from Eq.A.8,

ad - bc .
crc v d~d (h.9)

Im(w)

Hence, Im(z) > 0 will be mapped onto Im(w) > 0 if (ad - bc) > 0
and onto Im(w) < 0 if (ad - bec) < 0.
For more detailed discussion on the bilinear tranéformation,-

one is referréed to Nehari [1961, pp.166-173]. -
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A.3 Zhukovsky's function,

In unconfined flow problems, in which loci of the phreatic
1ine is not known a priori, the flow problems can be solved
usiﬁg a special mapping technique which makes wuse of an
auxiliary transformation called Zhukovsky's function [Harr,
1962, Aravin and Numerov, 1965].

The velocity potential ¢ = @(x,y), in two-dimensional flow
in the xy plane, i.e. in the z plane, is defined [ Harr, 1962 ]

as below

R
1

~k(p/¥rv +y) + C

-kh + C (A.10)

where C is an arbitrary constant, p is thg pressure, ¥v 1is the
unit weight of the fluid, k is the coefficient of permeability
of the porous medium and h is the total head. ( The derivative
of the velocity potential, i.e. Eq.A.10, with respect to any
direction gives the velocity of the fluid in that direction,
which is the same as that stated by Darcy's law ). It can also
be observed that ¢ satisfies the Laplace equation, Eq.A.1l.

If the arbitrary constant C is taken to be 0 and after

rearranging Eq.A.10, we have, -kp/yv = @& + ky. If we define :

I's = -kp/yv (A.11)
then Eq.A.10, reduces to the following equation.

s = ¢ + ky (A.12)
I't is seen to be an harmonic function of x and y as it satisfies
Eq.A.1. Hence, its conjugate is the fuhction given below [Harr,
1962]. . ‘

Frz = ¢ - kx | (A.13)
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where w is the stream function. Defining F'+ + 'z = T, then

Eqs.A.12 and A.13 give us the following relationship.

r

B |

Fe + "2

1

(¢ + ky) + i(y - kx)

w - ikz (A.14)

The function defined by Eq.A.14 and any function with its
real or imaginary part differing from it by a constant
multiplier is called a Zhukovsky function [Harr, 1962].

Nelson-Skornyakov [1949] used the modified form of

Zhukovsky's function [Harr, 1962, p.171]. He modified Eq.A.14 as

given below.

8 = 61 + 62
=z - iw/k (A.15)
where,
81 = x + w/k | (A.16)
8z = y - @/k (A.17)

The advantage of the form of the Zhukovsky function as given
by EqQ.A.15 is primarily one of orientation. Hhereas‘p/rv =y -
¢/k = 0 along the free surface taking the vertical axis as
positive down, with the form of Eq.A.15, the image of this freé
surface will be along the real axis of the & plane. The free
surface is therefore represented by a straight T1ine in the @&
plane. Since the boundaries in & plane are straight 1ihes, the
Schwarz-Christoffel conformal mapping and the bilinear
transformation are applicable.

In this thesis, the modified form of the Zhukovsky function

as 9iven by Eq.A.15 is implied wherever Zhukovsky's function is
mentioned.
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APPENDIX C

CANAL OF NEGLIGIBLE WATER DEPTH
WITH ‘
COLLECTOR ON ONE SIDE

€C.1. Formulation and Sclution of Problem

The z-plane is as shown in Fig.C.1(a) where A8, which has a
value of Bz length, is the bed width of the canal and 1is an
equipotential line and corresponds to ¢ = 0. The -equipotential
1line CD is ¢ = kh, where h is the difference between the canal
and drain water levels. The distance of the drainage from the
canal, i.e. horizontal distance BC, is L. Along the stream line
BC, the value of ¥ is taken to be 0. Then, ¥ = q on the streanm
1ine AF where q is the seepage discharge per unit length of the
canal. The rectangular flow region in the w-plane is as shown in
Fig.C.1(c).

A.s the result of Zhukovsky's transformation [Eq.AJ5], the.
boundaries in 6-plane as shown in Fig.C.1(b) consists of
straight l1ines. The corresponding points in the Z-plane and the
&-plane are as given in Table C.1.

Two operations were made in which the B;plane as well as the
w-plane were mapped onto the lower half of an inte_rmediate

t'-plane [Fig.C.1(d)]l, where teos ot o dst,
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Table C.1 Transformation Table

(Canal of negligible water depth )
(Drainage on one side)

POINT é-plane . t-plane
A -Bz + q/k -o'
B 0 0
C L 1
D ® ©
F - ® -

First Qperation.- In this operation the €-plane was
transformed onto the intermediate semi-infinite' t'-plane wusing
the bilinear transformation. The various points in the 6&-plane
were placed in the t’-plane as shown in Fig.C.1(d). Here, o is
a transformation parameter which has to be determined.

The bilinear transformation that maps the lower half of the
6-plane into the lower half of the t’-plane was made wusing the

cross ratio formula as given below.

(6 - 6p)(8c - €nm) (t' - t'p)(t'e - t'm)

(6 - 6B) (8¢ én) (t’ - t'm)(t'c - t'n)
. Y » (C¢1)
Substituting the corresponding values of the points B, C and

D in the &-plane and t’-plane in Eq.C.1,

(¢ ~o)(L -0) (t" + = )(1-0)

(6 -0)(L » o) (t" = 0)(1 + o)
. (C.2)

Eq.C.2, after simplification resulted in the following

equation.

6 = Lt (C.3)

207



Referring to Table C.1, at A, & = -Bz + q/k ahd t' = -o'.

Substituting these in Eq.C.3 and rearranging,

4]

al

(Bz - q/k)/L : - (C.4)

The corresponding points in the €-plane and the t’'-plane are
as given in Table C.1.

Second operation.- The rectangular flow field in Fig.C.1(c)
was opened at Point F/D and mapped from - to +® along thé real
axis of the t’'-plane. Points A, B and C are mappedbat t'= -o', 0
and 1 respectively. The Schwarz-Christoffel A transformation
equation USed to map the w—piane onto the 1ower half of the

1 -plane is as given below.

de = N J . dt’ | (C.5)
' Y (T o ) (Tt -1)

where M' is a complex constant. .

The integration of the right-hand sfde'of Eq.C.1 between the
desired regions on the t'-plane results [Byrd and Friedman,
19711 in elliptic integrals. The integratidn of Eq.C.5 between
the different regions is made as shown below.

Integrating Eq.C.5 between_F and A, i.e. in the region

-0 £ t' < -0,

Wa -’
f dw = EJ dt |
Wt i £ Y (o=t )(-t’)(1-t")
. (C.6a)
Wa - Wt = MF(B,m)/(-3) . . . (C.6b)
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where, Wa = 0 + jq and Wt = ky + iq are the complex potential
values at A and at point on the free surface AF with ordinate vy,

respectively. Hence, Eq.C.6(b) reduces to,

-ky = M F(&,m) . (C.7)

M is a constant and,

&

sin 'Y(o" +1 7t (C.8)

2
m

«

1/(1+e') (C.9)
Using Eq.A.4S, on the free surface AF,

8 = 64.= x + g/k ‘ (C.10)

where x is the abscissa of the point considered.

Substituting Eq.C.3 in Eq.C.10 and rearranging, the value of

t’ corresponding to x is,
t* = x/L + q/kL (€.11)

At Point F on the free surface AF, t* = -® and Eq.C.8 gives
& = n/2, Substituting this in Eq.C.7, the following relationship
was obtained to get the ordinate, y = YFr, of the Point F on the

free surface AF.
“kYF = M K(m) _ - (€.12)

Integrating Eq.C.5 between B and C, i.e. in the region
0 <t =1,

J dw = E’J - dt’
We N A IR 3R ¢ B30

. oo (Cl13)

. . . (C.14)
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where, Ws = 0 and Wt = ky + 0 are the complex potential values
at 8 apd at a point on the free surface BC, with ordinate value

of y, respectively. Hence, from Eq.C.12,

“ky = M F(¢z,m) | (C.15)
¢z = sin Yt YU /(T %07 (C.16)
From Eq.AMS, on the free surface BC, 8 = &1 = X

Substituting this in Eq.C.3, the following relationship between
the abscissa, x, of the point on the free surface BC and its

corresponding t' value was obtained.

t' = x/L ~ (C.17)

At Point C, t* = 1 and from Eq.C.146, ¢2 = =n/2, Therefore,
'substituting these results in Eq.C.18,

kh = -M K(m) (C.18)

Integrating £q.C.5 between A and B, i.e. in the region

o' < t' £ 0,

We' N ¥
j Lo M2 ; dt |
Wa i _O.V (t"+o" ) (-t )(1-t") _ ’
. * O . (C-lg)
We' - Wa = iM F(p3,n") ] . (C.20)
‘where Wa =0 + iq and Wt' = 0 + iy’ are the complex potential

values at A and at any point on the equipotential 1line AB
respectively. Here, y' i1s the stream function value at the point

on the equipotential line AB. Hence, Eq.C.20 becomes

(@ - ¥') = - M F(e3n') (C.21)
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where,

u

sin *Y{t vo' y/o" (€.22)
o' /(140') = YT = mem) (C.23)

?3

At Point B, t' = 0 and ' = 0. Hence, substituting these in
Eq.C.21 and Eq.C.22, the following expression for the seepage

quantity, q, from the canal was obtained.

-M F(n/2,m')

L
[{]

it

-M K(mn') (C.24)

2ividing, Eq.C.24 by Eq.C.18,

q/kh = K(m’)/K(m) (C.25a)
Rearrangin> Eq.C.9,
o = (1-n")/n° (C.25b)

Dividing Eq.C.4 by h and substituting Eq.C.25(b) and then

rearranging the resulting equation,
Bz/h = [(1-w°)/m>1 [L/h] + q/kh ' - (C.25¢)

Substituting Eq.C.25(a) in Eq.C.25(c), the following
expression is resulted. This is the same as that given in the

solution given by Polubarinova-Kochina [1962, P.132].

Bz/h = [(1-m")/m°] [L/h] + K(m")/K(m) (C.25d)
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