
COMPUTER-AIDED SIMULATION 
STUDIES EXPLORING EFFICIENT 

MIXING-TYPE ESTIMATORS 

A THESIS 

submitted in fulfilment of the 
requirements for the award of the degree 

of 
DOCTOR OF PHILOSOPHY 

in 
APPLIED MATHEMATICS 

By 

RAJENDRA KUMAR SHARMA 

DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF ROORKEE, 

ROORKEE-247 667 (INDIA) 

APRIL, 1992 



TO 
MY PARENTS 



CANDIDATE'S DECLARATION 

I hereby certify that the work which is being presented in 

• the thesis entitled, "COMPUTER-AIDED SIMULATION STUDIES EXPLORING 

EFFICIENT MIXING-TYPE ESTIMATORS" in fulfilment of the requirement 

for the award of the degree of Doctor of Philosophy, submitted in 

the Department of Mathematics of the University is an authentic 

record of my own work carried out during the period from twIpst17 

1988 to April 1992 under the supervision of Dr. Ashok Sahai. 

The matter embodied in this thesis has not been submitted by 

me for the award of any other degree. 

fIALA • 

(RAJENDRA KUMAR SHARMA) 

This is to certify that the above statement made by the 

candidate is correct to the best of my kn wled 

Date : Aprilla,1992 

-0;14 

Pro 	'a -- Maths Depttig 
'10011(4 

APOKKLE-247667 

The, Ph.D. Viva Voce examination 

research scholar has been held on 

(Dr. SH K SAHAI) 
Reader 
Department of Mathematics 

University of Roorkee 

Roorkee - 247 667, U.P. 
INDIA. 

of Sri Rajendra Kumar Sharma, 

AL 30i  

Signature of Guide Signature of External Examiner 



ACKNOWLEDGEMENTS 

It is with great reverence that I wish to express my heartful 

indebtedness to my guide Dr. Ashok Sahai for his erudite guidance 

and ineffable encouragement throughout the tenure of my research 

work. I am also grateful for his care, moral support and help 

during my stay in the campus of this University. 

I should like to take this opportunity to thank Prof. 

R.S.Gupta, Head of Mathematics Department, U.O.R., Roorkee for 

providing me the necessary research facilities. I would also like 

to express my gratefulness to Prof. S.N.Pandey, Prof. Bani Singh 

and Dr, Govind Prasad for their help at one time or the other. 

I wish to express heartfelt veneration for my respected 

parents for their support, immutable encouragement and inspiration 

throughout my studies. I have no words to put forth my sentiments 

to my family members for their constant inspiration to achieve 

this mark. 

I am very much delighted to express my thanks to all my dear 

friends who helped me directly or indirectly to accomplish this 

work. In particular, I am indebted to Rajesh, Snehashish, Saral, 

Balaji, Vivek, Ratish and Pramod for their cooperation. 

The financial assistance of Council of Scientific and 

Industrial (CSIR) - New Delhi is gratefully acknowledged. 

Thanks are also due to the staff of Roorkee University 

Regional Computer Centre and Computation Lab, Deptt. of 

Mathematics for providing the computer facilities to me. 

• 

Rr-Awl-44' • 
(Rajendra Kumar Sharma) 



ERRATA 

Page  No.  Line  No. Text  typed as Should be  read as 

Abstract(i) 6 statistica... 
.  . 

Statistica... 

4 7 Parallely... Sin  larly... 

4 7 counter-parts... counterparts... 

7 -5 Lahri(1951)... Lahir1(1951)... 

8 -6 cases... case... 

24 4 whensoever... wherever... 

94 10 5.2... (5.2)... 

120 -2 5.2... (5.2)... 

164 1 worth  noting 
feature... 

feature  worth 

168 12 Method... Methods... 

169 9 "An  outline  of  "An Outline  of 

statistical  theory"  Statistical  Theory" 

169 16 "Sampling  survey  "Sampling  Survey 

methods  and  theory" Methods  and Theory" 

169 19 "Sampling  survey 

methods  and  theory 

"Sampling  Survey 

Me\thods  and Theory" 

170 8 Nanzamma... Nanjamma... 

171 2 "Sampling  theory 

and methods" 

"Sampling  Theory 

and Methods" 

171 4 Nanzamma... Nanjamma... 

171 4 Sethi,  .K. Sethi,  V.K. 

173 11 Polykays... polykays... 

175 9 "Sampling  theory  of  "Sampling Theory of 

surveys  with  Surveys  with 

applications"  Applications" 

175 12 monte  carlo... Monte  Carlo... 



CONTENTS 

CHAPTER 

Abstract 

PAGE NO. 

1.  Introduction 1 

2.  The One-Parameter Families of Estimators 16 

3.  The Two-Parameter Families of Estimators 38 

4.  Gainful Mixings of One of the Estimators with 

Mean-Per-Unit Estimator 46 

5.  Other Gainful  Mixings of the Estimators 73 

6.  Finer Comparisons of the Estimators 128 

7.  Conclusions 162 

References and Biblidgraphy. 



In sample surveys, one area of interest has been to improve 

the ratio and product methods of estimation. A number of 

estimators has been proposed by various authors (e.g., 

Srivenkataramana, T. & Tracy, D.S.(1979,1981-Statistica 

Neerlandica, Aust. Jr. of Stat.); Sahai, A.(1979-Statistica 

Neerlandica); Vos, J.W.E. (1980-statistica Neerlandica) and 

others) which are ratio, product and ratio-cum-product type in 

nature. These estimators make the use of auxiliary information to 

estimate the population total/mean. In the present thesis, we have 

proposed some new estimators as also the efficient mixings of some 

existing and proposed estimators. 

The problem with the ratio, product and ratio-cum-product 

estimators proposed in the thesis as also with the usual ratio 

estimator is that their mean-square-errors (MSEs) could not be 

found analytically in a closed form. Hence, only the approximate 

MSEs could be the basis of comparison in terms of relative 

efficiencies. If we take a first order (0(n-1); n being the sample 



size) large sample approximation to the MSEs of these estimators, 

a comparison is algebraically intricate and the issue depending on 

many population parameters' values, which are unknown, it is 

difficult to conclude as to which one of these estimators is more 

efficient and when. Further, in case the sample size is that large 

as to justify the first order large sample approximation, 

regression estimator will be better motivated than the proposed 

families of estimators. As such, only when the sample is rather 

fairly large though not very large, we are motivated enough to use 

the proposed families of estimators and in this case we will have 

to go for at least a second order (0(n
-2)) large sample 

approximations to the MSEs of the estimators. In this case, the 

approximations to the MSEs turn out to be still more intractable 

algebraically and a comparison isl just impossible. So, we have 
1 

compared the various estimators through the computer-aided 

empirical-simulation study. In this study, we. generate the random 

samples of desired size from a hypothetical bivariate normal 

population. 

Sisodia & Dwivedi(1981-Jr. Ind. Soc. Agri Stat.) and Singh & 

Upadhyaya (1986-Proc. Nat. Acad. Sci., INDIA) proposed modified 

ratio and product estimators, respectively, by making the use of 

coefficient of variation for the auxiliary variable. Motivated by 

their, works, we have proposed variants of ratio and product 

estimators with the use of sample counter part of the coefficient 

of variation in Chapter-2. We have also proposed a few other 

estimators using one design-parameter in this chapter. A part of 

the work in this chapter has been published in Int. Jr. of 
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Management and System-Volume 6, No.3 (1990); Allahabad 

Mathematical Society Bulletin-Second Biennial Conference (April, 

[990) and The Proc. of 73
rd Indian Science Congress. 

We have also proposed two families of ratio-cum-product 

estimators which make the use of two design-parameters. Thus, we 

will be having two degrees of freedom and it enables us to control 

the first and second order MSEs of ,Ilese estimators. This work has 

been presented in Chapter-3 of the thesis. A part of this work has 

been published in Proc. of 47
th 

session of Int. Stat. Inst. 

(Aug.-Sep., 1989, PARIS). 

Further, we have proposed some efficient mixings of the 

already existing estimators and the estimators proposed by us. 

These mixings are motivated by the work of Vos(1980-Statistica 

Neerlandica). We have improved the various estimators by mixing 

them with the usual mean-per-unit estimator. The weights for these 

Mixings have been ascertained using the relative frequencies of 

the respective estimators to be winner in the comparison via the 

empirical-simulation study. Two more types of mixings of the 

estimators have been dealt with. In the first type of mixing, WE 

have proposed efficient mixings of the estimators proposed/studiec 

by us taking two of the winning estimators at a time and in the 

second type of mixing, we have proposed a few linear combination: 

of mean-per-unit estimators, ratio estimator and the two winning 

estimators proposed/studied by us. Again, the weights for these 

mixings have been ascertained as per the empirical-probabilities 

of winning of the mixing-estimators estimable from the relevant 

empirical-simulation study. We have also taken up the fine] 

iii 



comparisons of the estimators. For this, we first have picked up 

various winners from the earlier study and then have compared 

these with each other to bring forth the various ranges of 

:;-values and p-values for a particular estimator to be the best. 

The concluding chapter enlists a brief review of the 

highlights of the work presented in the thesis. As regards to 

future possibilities of gainful consequences in this area, it is 

hoped that the various estimation strategies proposed in the 

thesis can be the basis of defining multivariate 

generalised/mixing-type estimator's besides leading to possible 

discoveries of more gainful mixing-estimators. 



CHAPTER - 1 
INTRODUCTION 

It is a well-established fact that a properly collected 

sample can be considered to be a representative of whole of the 

population and the characteristics of the sample can help us in 

making decisions about the characteristics of the population. 

Statistical Estimation Theory deals with the problems in which we 

make the inferences about the population by drawing a random 

sample from it. 

The errors associated with a sample survey are of two-types, 

namely, sampling and non-sampling errors. We have confined only 

to the sampling errors in the present thesis. The sampling error 

is measured in terms of the standard error which is the positive 

square root of the mean square error (MSE). It is always possible'  

to lower the MSE and consequently to increase the relative, 

efficiency of a statistical estimator by the use of supplementary 

information which might be available to us in advance in terms of 

'census, past data or in terms of experience and long association. 

with the experimental material. 	In some other cases, this 

information could be gathered without any significant increase in 



the cost of sample survey. In other words, the additional cost in 

obtaining the supplementary information might be outweighed by the 

consequent gain in the precision of the estimator, to the extent 

of being negligible. 

The supplementary information might be available with us in 

terms of supplementary variable(s), also called the auxiliary 

variable(s). Such a variable will be much cheaper, as said above, 

time and money-wise, to be observed on the sample units, e.g., if 

we want to measure the total leaf-area on certain plant, the 

variable leaf area will be much more expensive to observe on the 

sampling units, i.e., leaves of the plant than the auxiliary 

variable, namely, leaf-weight of the leaves in the random sample. 

We will henceforth call the variable under study (leaf area in the 

above example) as the main variable. 	The supplementary 

information may also be available with us in terms of more than 

one variable and that will be the case of multi-auxiliary 

'inforffiatioh7 However, we have not included the case of 

multi-auxiliary information in the present work as it would just 

be possible by suitable generalizations of the gainful/efficient 

estimators. 

The present thesis consists of the author's efforts towards a 

more efficient utilization of the auxiliary information. The 

various ratio, product, ratio-cum-product and mixing-type 

estimators exploit the correlation between the main and auxiliary 

variable to estimate the population mean/total for the main 

variable more efficiently. 

The auxiliary information can be used in two ways, either at 

sample selection stage or at the estimation stage. This thesis 



concerns with the use of auxiliary information only at the 

estimation stage. 	The ratio, product, regression/difference and 

the ratio-cum-product methods make the use of auxiliary 

information at the estimation stage. 	We, in the following 

paragraphs describe these methods in brief. 

Let U1, U2,...., UN  be the N units which constitute our 

population (say, finite). 	Let us denote the main variable by Y 

and the auxiliary variable by X. The observations corresponding 

to the two variables are Y1,Y2,...., Yn  and X1,X2,....,Xn  

respectively for Y and }{ 	In the sampling theory, we are 

generally interested in the estimation of population mean Y, where 
N 

= N-1  .E Y. 	 ...(1.1) 
1=1 or 

Population Total : Ty  = N.Y 	 ...(1.2) 

For the estimation of Y, let us draw a simple random sample of 

size 'n' without replacement from the above mentioned population. 

Thus, the sampling fraction 'f' will be equal to n/N. Let the n 

units thus selected for the sample be ui,u2,....,un  and the 

observations corresponding to variable Y are y1,y2,....,yn  and 

corresponding to variable X are xi,x2,....,xn. 

Let us here give some of the terms used in the thesis with 

their definitions. 
n 

Sample Mean for variable Y (y) = n-1  .E y. 

1=1 

Sample Total for variable Y (T ) = n.y 

Population Mean for variable X (X) = N-1.X Xi  

i=1 

...(1.3) 

...(1.4) 

...(1.5) 
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Population Total for variable X (Tx) = NJ( 	...(1.6) 

Sample Mean for variable X (x) = n-1.E xi 	...(1.7) 

i=1 

Sample Total for variable X (Tx) = n.x 	
...(1.8) 

Coefficient of variation for variable Y (C Y) = a 	...(1.9) 

Coefficient of variation for variable X (CX)  = m
X
/R 	...(1.10) 

my  and m
X 

being the population standard deviations for the two 

variables. Parallely, the sample counter-parts of Cy  and Cx  can 

also be defined. 

.Population Variance for Y (S2) = E (y.-Y)2 

i=1 

Population Variance for X (S
x
) = 1  

i
J02 

1=1 

... (1.11) 

...(1.12) 

CY  
The Population Parameter G = p C 	...(1.13) 

X- _ 
where, p is the coefficient of correlation between the two 

variables Y and X. 
n 

The unbiased sample estimate of S2 (s2) = (n-1)
-1 
 E (y -y) - 2 

Y y 	i 
1=1 

and the unbiased sample estimate of S s) = (n-1)-1 E (x-x)2 

i=1 
...(1.15) 

In the light of the identity Ty= N.Y, i.e., the population 

total being a N-multiple of population mean, we can confine our 

studies, without any loss of generality, to the estimation of 

population mean Y. 

When we talk of an estimator, say, t of an unknown parameter 

...(1.14) 
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o characterizing the sampled population, it is a function of the 

sample values tn(yi, y2,....,yn) or tn(y1
,x1; y2,x2; 	'; Yn'xn)  

etc. Therefore the value of the estimator is subject to chance. 

The Mean Square Error (MSE) i.e. the expected error is defined as 

MSE(t
n
) = n-0,)

2 	 ...(1.16 ) 

Thus, we will have 

MSE(t n ) = E(tn-E(tn))
2 

+ (E(tn-e))
2 

= Variance(tn
) + (Bias(t

n
)) 
2 

= V(tn) + B
2
(tn) 	

(1 17) 

Here, it is worth to explain that the precision of an estimator 

depends upon its MSE, the lower the MSE of the estimator is, it 

will be more precise. The positive square root of MSE is defined 

'as the standard error of the estimator and the reciprocal of the 

standard error provides us the measure of the -precision of the 

estimator. 

1.0 CONCEPT OF THE RELATIVE EFFICIENCY OF AN ESTIMATOR : 

Let us take two estimators t
n and t' for the estimation of a n 

parameter s. The relative efficiency of the estimator to  with 

respect to to is defined as 

REEF(tn,t') = (MSE(rn) / MSE(tn))*100 % 	...(1.18) 

For the purpose of our studies of this thesis, we have taken the 

estimator t' as the usual unbiased estimator(UUE). 

1.1 USUAL UNAIASED ESTIMATOR : 

The sample mean y is an estimator for the population mean Y. 

This estimator is also known as WE and Simple Expansion Estimator 

(SEE). This estimator has been termed as UUE due to the simple 

fact that E(Y) = V. It may also be noted that 

V(y) = (g/n). -1-'2. C2 	= (g/n). S2  

5 



Also, 

and 

V(x) = (g/n). 
R2. C

2
X 
 = (g/n). 

Covariance(X, y) = cov.(x,y) 

ri 	= (g/n). (V.R). p.Cy. CX 
...(1.19) 

where, g = 1-f. 

For large populations g = 1; so that g, called finite population 

correction, may be ignored for the above expressions for such 

populations. 

Now, assuming the knowledge of X and having parallel 

observations on the auxiliary variable X, we have the following 

famous estimators for the estimation of population mean. 

1.2 RATIO ESTIMATOR 

The ratio estimator (%) for the estimation of Y is defined 

. as 

R 
 

where, 	R = (y/x) is an estimate for the ratio R= (Y/X). 

This estimator should be used when the two variables Y and X are 

positively correlated. 	To be more specific and following 

Murthy(1964), its use might be done when G > 0.5. 

It can be easily seen that the sampling bias and MSE of ratio 

estimator can not be found exactly. We can only get their large 

sample approximations. This can be done through Binomial series 

expansion of the MSE of VR  on the assumption that the sample is at 

least so large as to justify 0 < 1 x 1 < 2. X r If we assume 

that the observations on the variable X are all positive, we can 

take 0 < x < 2.X. Following Murthy(1964), the bias and MSE of IR  

can be found as follows. 

6 



Let us fix, 

e = (Y - Cr) / 

and e = (X - R) / 	 ...(1.20 ) 

Here, both e and e1 
 are of the order of 0(n

-1/2
). Hence, we will 

have to retain the terms up to second(fourth) order in e and e
1 
 in 

the Binomial series expansion of MSE of 1iR  in order to obtain 

first(second) order Bias/MSE of the estimator. 	Let us denote 

first/second order Bias and MSE of an estimator, t
o 

by 

B1(tn)/B2(tn) and M1(tn)/M2(tn), respectively. 

Let us also denote, 

vij = E( (e) .(e1  )' ) i and j being positive integers. 

We can easily establish that 

Bi (c'R) = 	( v20-v11 ),  

B2 (YR) = Y . ( v20-v11+v12-  VOP104-1113),  

M
1  (

17
R  ) = T(2. (V20

-2V
11
+V
02) and 

M2(YR) = 
12.  (V20- 2 V11+1/02-2V21+4V12-2V0 +3V22-6V13+3VO4)  

...(1.21) 

Thus, `711  is a biased estimator of Y. Many authors have tried to 

improve the ratio method of estimation in past. 	Some of them 

worth-noting are Hartley and Ross(1954), Robson(1957), 

Quenouille(1956), 	Tin(1965), 	Murthy 	and 	Nanjamma(1959), 

Lahri(1951), Midzuno(1950), Mickey(1959), Nanjamma, Murthy and 

Sethi(1959), Nieto de Pascual(1961), Raj(1954), Rao(1964), 

Rao(1965) and Sukhatme(1962). All these authors tried to improve 

the ratio method of estimation by controlling its bias by some 

technique or the other. 

7 



1.3 PRODUCT ESTIMATOR : 

The product estimator for the estimation of `11  is defined as 

Y = P / X 	 ...(1.22) 

where, P is an estimate for the product P =("2..R). 	Again, 

folloWing Murthy(1964), this estimator should be used when p < 0 

and more precisely when G < -0.5. Bias and MSE of this estimator 

can be found exactly and these are 

B
1
(Y
P
) = Y . V

11' 

M1(YP
) = C'

2
. (V02+ 2V11

+  V
20

) and 

M
2(1 P

) = Y2. (V
02

+2V
11
+V
20

+2V
21

+2V
12
+V
22
) 	...(1.23) 

Almost all the efforts made by various authors to improve 

ratio and product estimators were concentrated around controlling 

their biases, e.g., Shukla(1976), and others given above, in case 

of ratio estimator. 	However, in our present studies, we have 

confined our efforts in lowering down only the MSE of the 

estimators without considering their biases. From 1.17 it is also 

very clear that the bias of an estimator is included in its MSE, 

so, lowering down the MSE of an estimator will automatically 

include the lowering down of its bias. 

1.4 DIFFERENCE AND LINEAR REGRESSION ESTIMATORS : 

In the practical situations, it is sometimes possible that we 

may have a good guess of population regression coefficient of Y on 

X, say, B available with us. 	In that cases, we can use the 

following estimator, called the Difference estimator, for the 

estimation of population mean given by Hansen, Harwitz and 

Madow(1953). 

D 
 = y + b 	- X) 	 ...(1.24) 

- Where, b is the guessed value of B. 



Also, if we are unable to guess the value of B closely, we can use 

its estimated value b ( = r.s
x
/s

y' 
r is the sample correlation 

coefficient, i.e., an estimate of p. ) and in those cases we name 

the estimator as the Linear Regression estimator. 

LR 
= 	+ b*  (R - x) 	 ...(1.25) 

In. our present study, we have not included these estimators 

because it is well known that these estimators perform very good 

only when the sample is very large and there may be certain 

populations where it will not be possible to get fairly a large 

sample as to justify the use of these estimators. 

1.5 THE RATIO-CUM-PRODUCT ESTIMATORS : 

In order to make the more efficient utilization of auxiliary 

information, various authors have proposed different 

ratio-cum-product type estimators. For the sake of comparisons, we 

have included the following ratio-cum-product estimators in our 

present studies proposed by Srivastava(1967), Reddy(1974) and 

Sahai(1979). 

Sr = Cr. (R / X)a 	 ...(1.26) 

/  + a (X - 	 ...(1.27) 

Sa = Y. ((l+a).R + (1-a).X) / ((1+a).X + (1-a).R) 	...(1.28) 

where, 'a' is a design-parameter. 	The method of minimum MSE 

initially given by Searls(1964) has been applied to obtain the 

optimal value of the design-parameter for the different 

estimators. Thus, minimizing first order MSE of these estimators 

will give us the optimal value of 'a'. 

We have proposed and studied a few other similar families of 

ratio-cum-product estimators. The families proposed by us contain 

one as-well-as two design parameters. The optimal values of the 
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design parameters in case of the families containing two 

design-parameters are obtained by minimising first and second 

order MSEs of the respective estimators. 

Vos(1980) proposed some mixing estimators and compared them 

through some artificial populations. We note that this comparison 

is of limited value for inferring about the estimators' potential 

efficiency. On the other hand the empirical-simulation study 

undertaken by us is much more capable of discovering it via the 

comparisons. Nevertheless we do get the motivation from 

Vos(1980)'s work in proposing some gainful mixing estimators. 

1.6 CONCEPT OF RELATIVE ERROR IN GUESSING THE VALUE OF A 

POPULATION PARAMETER : 

The optimal values of the design-parameters for the different 

families of estimators include certain population parameters. The 

most critical parameter in almost all the expressions is G(= 

p.0
Y 
 /C
X 
 ). It is not always possible that we are able to guess the 

exact value of G in the practical situations and this very fact 

has 	lead 	us 	to 	incorporate 	some 	measure 	of 

overguessing/underguessing for the value of the parameter. We have 

given the name REG(G) to this relative error in guessing the value 

of a parameter and have considered five levels of REG(G). These 

levels are corresponding to the following five situations. 

a. When the value of G has been underguessed by 20 %. 

b. When the value of G has been underguessed by 10 %. 

c  When the value of G has been guessed exactly. 

d. When the value of G has been overguessed by 10 %. 

e. When the value of G has been overguessed by 20 %. 

Corresponding to these five situations, we will be having five 

10 



values of REG(G), namely, -0.2, -0.1, 0.0, 0.1 and 0.2. So, 

whenever we use the estimated value of G, we have also considered 

these five levels of REG(G). 

1.7 THE EMPIRICAL-SIMULATION STUDY - ITS FRAME WORK : 

As stated earlier, we in our present studies have 

studied/proposed some ratio, product, ratio-cum-product and 

mixing-type estimators. These families include one or two 

design-parameters. The reasons for the computer-aided 

empirical-simulation study are two fold. Firstly, a closed-form 

algebraic expression for the MSE of almost all the estimators is 

not available. Moreover, if we take a first order (0(n
1
) 

being the sample size) large sample approximation to the MSEs of 

these estimators, a comparison is algebraically intricate and the 

issue depending on many population parameters' values, which are 

unknown, it is difficult to conclude as to which one of these 

estimators is more efficient and when. Further, in case sample 

size is that large as to justify this first order large sample 

approximation, regression estimator will be better motivated than 

the proposed families of estimators. As such, when the sample is 

only fairly large and performance of regression estimator being 

rather unpredictable, we are motivated enough to use the proposed 

families of estimators. Here, we have to go for at least a second 

order (0(n
-2
)) large sample approximation to the MSE of the 

estimators. In this case, the approximation to the MSEs turn out 

to be still more intractable algebraically and a comparison is 

just impossible. Hence, the only alternative is to go for a 

computer-aided empirical-simulation study for the comparison of 

the estimators. 

11 



For the empirical-simulation study, we have assumed some 

hypothetical bivariate normal populations. We have considered two 

example-levels of `I (=2.0,4.0), X(=1.0,2.0), T (=2.0,4.0) and 

T
X
(=1.0,2.0) and ten example-levels of p(= ±0.2, ±0.4, ±0.6, t0.8, 

±0.9) have been taken into account. In all, we will have 160 

value-combinations for G out of which 80 combinations will be for 

positive correlation case and 80 combinations will be for negative 

correlation case. Here, we have implemented the concept of 

relative error in guessing the value of G and thus for a single 

value of G, we will be having five values of guessed G according 

to the five situations described in the earlier section. In this 

way, we will be having 400 different values of G for the case of 

positive correlation and another 400 values for the case of 

negative correlation. Now, for each value-combination, we have 

generated 100 random samples of sizes 10 and 20 each using the 

following transformation. 

T . (pZ
1 
 + (1-p

2
).Z

2
) 

...(1.29) 

where, Z
1 
and Z

2 
are the random normal deviates between zero and 

unity. These normal deviates have been generated using Box-Muller 

(1958)'s approach. Now, over this replication of 100 samples and 

for different combinations, we calculate the actual values of the 

estimators and thus their MSEs and consequently their relative 

efficiencies, relative to mean-per-unit estimator. Noting the 

number of times a particular estimator has the maximum relative 

1 
efficiency, we calculate the relative frequency of its being the 

winner among the other estimators in the competition. 
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Here, it may be noted that we had to modify the 

example-levels of Y and X, stated above, for the 

empirical-simulation study in case of one of the estimators 

proposed by us in Chapter-2. Also, in Chapter-6 of the thesis, 

wherein we have carried out the finer comparisons of the 

estimators, .we had to increase the combinations for G-value in 

order to ascertain the trends of different estimators. Here, we 

have modified the example-levels of cf, X, o•X  and a.y. 

For the sake of finer comparisons, based on G-values of 

various estimators, we have divided the whole range of G into six 

intervals, namely, Il : G < -1; 12: -1 	G < -0.5; 13: -0.5 S G < 

0; 14: 0 	G 	0.5; 15: 0.5 < G 	1 and 16: G > 1. Keeping the 

track of different intervals, we note the number of times a 

particular estimator has the maximum relative efficiency and thus 

arrive at the empirical probabilities of the different estimators. 

being the winner for different intervals. 

In order to facilitate the gain in the relative efficiencies 

of the different estimators more clearly, we have carried out the 

graphical display of the relative efficiencies of the estimators. 

The graphical display has been performed by drawing bar-graphs for 

the various estimators in competition. For these bar-graphs, we 

have divided the whole range of relative efficiency (taking all 

the estimators in competition, into account) into ten intervals. 

Now, to ascertain the frequency of a particular estimator for any 

interval, we note the number of times the relative efficiency of 

the estimator falls into the interval and it is maximum when 

compared with the relative efficiencies of other estimators in the 

competition. For the sake of clarity, we have accumulated the last 
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five intervals into a single interval as the frequencies of all 

the estimators were very low for these intervals in almost all the 

cases. The upper limits of the intervals have only been displayed 

on the graphs. One can easily check the lower limit of an interval 

as it will be nothing but the upper limit of the previous 

interval. The relative efficiency of y being equal to 100%, it 

will always lie into the interval containing relative efficiency 

equal to 100%. So, the frequency of this interval for y will be 

equal to the sum of the frequencies of any other estimator in 

competition and for other intervals, it will be zero. So, we have 

not drawn the bars corresponding to y in the graphs as there will 

be a single bar for only one particular interval. 

1.8 AN OVERVIEW OF THE CONTENTS OF VARIOUS CHAPTERS : 

The present thesis comprises of seven chapters. The present 

chapter, i.e:, Chapter-1 is introductory in which a brief 

historical review and the motivation for the work has been set out 

with the relevant details. 

In Chapter-2, various estimators have been proposed which use 

only one parameter in their design. The optimal value of this 

design-parameter is obtained by minimising the first order MSE of 

the concerned estimator. We have also proposed two variants, one 

for ratio and another for product estimator using sample 

counter-part of the coefficient of variation, C. 

Chapter-3 contains the estimators which have been constructed 

using two design-parameters. Here, the optimal values of the two 

design-parameters are obtained by minimising the first and second 

order MSEs of the respective estimators. In quite a few cases, 

these estimators turn out to be better than other estimators. 

14 



Chapter-4 and Chapter-5 have been devoted to propose the 

efficient mixings of the existing estimators and the estimators 

proposed by us. In Chapter-4, we have successfully tried to 

improve the various estimators by mixing them with the usual 

mean-per-unit estimator. The weights for mixing of these 

estimators have been ascertained using the relative frequencies of 

the respective estimators to be winner in the comparison via the 

empirical-simulation study. Chapter-5 contains two types of 

mixings. In the first type, we have tried to propose efficient 

mixings of the estimators proposed/studied by us in Chapter-2 and 

Chapter-3 taking two winners at a time and in the second type, we 

have proposed some mixings which contain y, "211/3?1, and two 

parent-estimators which are from amongst the winners from 

Chapter-2 and Chapter-3. Again the weights for these mixings have 

been ascertained as per the empirical-probabilities of winning of 

the mixing estimators estimable from the relevant 

empirical-simulation study. 

In Chapter-6, we have taken up the finer comparisons of the 

estimators. For this, we first have picked up various winners from 

the earlier chapters and then have compared these winning 

estimators to bring forth the various ranges of G-values for a 

particular estimator to be the best. 

In the last chapter, we have given a brief review of the 

highlights of the work presented in the thesis, conclusions 

therefrom and some remarks indicating future possibilities of 

gainful investigation in this area. 
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CHAPTER - 2 

THE ONE-PARAMETER FAMILIES OF ESTIMATORS 

In this chapter, we have proposed some new families 

of ratio-cum-product type estimators which involve only one 

design-parameter. Beside these families, we have also proposed two 

variants, one each of ratio and product estimators. 

Sisodia and Dwivedi(1981) 	proposed a modified ratio 

estimator, Yom, to make it more efficient by incorporating the 

known value of the coefficient of variation for the auxiliary 

variable in a gainful manner. They established the possibility of 

gaining efficiency with an algebraic comparison of the modified 

ratio estimator with the ratio estimator through their approximate 

MSEs. The algebraic comparisons given by them can not be 

considered to be very illustrative due to the fact explained by us 

in section 1.7. Singh and Upadhyaya(1986) proposed an analogous 

estimator using the knowledge of coefficient of variation of 

auxiliary variable. This estimator, 11MP' " 	was a dual to 3,MR. ( 	The 

two estimators were, 

	

MR = Y.(R + C
x
)/(X + C

x
) 	 ... (2.1) 

	

and Yom, = y. (x + C
X
)/(R + C

x
) 	 ...(2.2) 
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In order to come over the difficulty of algebraic 

comparisons of these estimators, we have studied these via the 

empirical-simulation studies explained in section 1.7. Here, we 

have ompared MR 
 with y &

R 
and "i

MP 
 with y & YP. Table 2.1 

gives the results of the empirical-simulation studies carried out 

for these estimators. 

For all the tables that follow in this chapter, as well as in 

the next chapters, RF(0) represents the relative frequency of a 

particular estimator 'o' being the winner per the simulation 

studies. These tables detail the results of the 

empirical-simulation study in a summarised form. However, remarks 

following each table give highlights on finer details of the 

comparison, as revealed through this study. 

TABLE 2.1 

RF(o) FOR y ,
R
/NI
P 
and/17 

MR MP 

Estimators 
-- 

Sample Sizesy  

- 
y "17  

R ci-F, `I.; MR Y 
MP 

p > 0 
n=10 0.275 0.220 - 0.505 - 

n=20 0.260 0.275 - 0.465 - 

p < 0 
t  n=10 0.235 - 0.210 0.555 

n=20 0.223 - 0.255 - 0.522 

This is clear from this table that "i
MR 
 is a better choice 

than y and "ill  when p > 0 and imp  is better than y and YP  when p < 

O. We have also noted that
MR  performs very good when G e [0.5,11 

and i'1.1p  is particularly good when G E (-1,-0.5]. Here, G=p.(Cy/Cx) 

as defined in chapter-1. For illustrating the gain in efficiency 

more clearly, we have carried out the graphical display of 

relative efficiencies of these estimators. Graphs 2.1 to 2.4 
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provide a more visual display of the results of this study. 

In the proposition of the estimators 	and Vmp, the 

coefficient of variation has been assumed to be known. However, it 

is not always possible that CX 
be known to us before hand. So, 

following Sisodia & Dwivedi(1981) and Singh & Upadhyaya(1986), we 

have proposed the following variants of ratio and product 

estimators. 

VVR = Y.(5‹ + C )/(X + C ) 

and VVP  = Y.(X + Cx)/(R + Cx) 

r
n 

where, 	C
x 

= sx/X ; s: = (n--1)-1  E(x. - X)
2 

1=1 

...(2.3) 

...(2.4) 

Is the sample 

counter-part of the coefficient of variation C. The results of 

empirical-simulation study and the graphical display of relative 

efficiencies of VVR and VVP  are given below_ in_ table 2-.2 -and  - 	- 	- _ - 
graphs 2.5 to 2.8, respectively. 

TABLE 2.2 

RF(o) FOR y , V /V and V /V 
R P • 	VR VP 

Estimators 
4 

Sample Sizesy 

- 
y i/--

R 
VI, VVR V VP 

P 

p 

> 

< 

0 

0 

n=10 

n=20 n=20 

I n=20 

0.243 

0.2200.220 

0_375 

0.285 

0.232 

0.262 

- 

- 

- 

- 

0.237 

0.280 

0.525 

0.518 

- 	, 

- 

- 

0.388  

0.435 

Here again, we recommend that VVR /VVP should be preferred than 

and 	for the estimation of V. Also, the finer comparisons of 

the relative efficiencies of these estimators show that VVR comes 

out to be winner much more often than y and 	when G E [0.5, 1] 
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and 	performs very often better,than y and Y when G -E [-1, 

-0.5). 

	

The estimatorsMR' MP' 	
and Y VP 

 use either C
x 
or Cx 

in 

their design in a special way. This way of using Cx/Cx  has lead us 

to propose a new one-parameter family of ratio-cum-product 

estimators as below. 

	

P.a = y.(x + a)/(X + a) 	 ...(2.5) 

where, 'a' is a non-stochastic design-parameter. The optimal value 

of 'a' is obtained by using the method of minimum MSE given by 

Searls(1964). It appears from the structure of 17p.a  that it is a 

.product-type estimator but through our empirical-simulation study 

we have discovered that crpa  performs good even when the 

correlation between Y and X is positive. In fact, Cip.n  is 

essentially a ratio-cum-product type estimator. 

It can easily be checked that the first order MSE of 11P a 1 	for 

a random sample from a bivariate normal population is given by 

M
1
(CI

P.a) = [ 1 + A.(A + 2G) / C2 Lc
/2.g / n 	

...(2.6) Y 

where, A = R/(R + a) and CZ  = Cy/Cx. Here, Mi(Ypn) attains the 

minimum value for A = -G. Without any loss of generality, we can 

take X = 1, as we can divide each observation corresponding to the 

auxiliary variable by X, which is assumed to be known and carry 

out the study with the new set of auxiliary observations. The 

minimisation of M
1Pa) with respect to A is equivalent to 

minimising M
1("iPa) with respect to 'a' as da/dA * 0. Hence, 

M
1Pa) attains the minimum value for a = -(1 + 1/G) with the 

condition that X = 1. 

In view of the above condition of X being unity, we have to 

modify the parameters of our empirical-simulation study. Here, we 
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have considered four example-levels of Y(=1.0, 2.0, 3.0 and 4.0) 

and one fixed value of 54=1.0). The other parameters have the same 

values as explained in section 1.7. It should be mentioned here 

that now on, whensoever we take the estimator 	into the group 

of competing estimators, we make the above modifications with our 

empirical-simulation study. This is without any loss of generality 

as we would have had the same number of comparisons of the 

estimators in this modified study too. The results of the 

empirical-simulation study are tabulated below in table 2.3 and 

are graphically displayed in the graphs 2.9 to 2.12 for 

TABLE 2.3 

RF(o) FOR y ,YR/YP and '7 
P.a 

Estimators 
-)1  

1 

Sample Sizesy  

- 
Y c'

R 
`ip  -1-' 

P.a 

n=10 0.248 0.332 - 0.420 
P > 0 

n=20 0.188 0.377 - 0.435 

P < 0 
f  n=10 0.068 - 0.115 0.817 

n=20 0.077 - 0.083 0.840 

Table 2.3 reveals that "I
P a 

 performs consistently better than 

the other estimators in the competition. It performs better 

exceptionally, more often when G e (-0.5,0.5]. It has also been 

observed that 
`iP.a  performs better than YP  when G lies between -1 

and -0.5. 

In the present study, we have also included the estimators 

given by Srivastava(1967), Reddy(1974) and Sahai(1979) defined 

earlier in the Chapter-1. It can easily be checked that the first 

order MSE of these estimators Y 
Sr.' 

i
Re. and  YSa.  come out to be : 



157 
149 

103 

81 

35 

56 	111 	166 	221 

Relative Efficiency (Upper 

27 
20 23  

276 	551 

Limit) 

Series I for VR and Series 2 for 'Yr, a  

Frequency (Number of Cases) 

  

143 

           

 

132 

           

            

 

115 

          

            

      

109 

    

    

79 

     

          

   

64 

   

       

    

39 

24 22 22 	i  28  23 

      

       

       

              

53 	103 	153 	203 	253 
	

503 

Relative Efficiency (Upper Limit) 

ION Series 1 	k N Series 2 

Graph — 2.9 (Sample Size = 10, e> 0) 

Series I for 7R  and Series 2 for 

Frequency (Number of Cases) 

Series 1 	Series 2 

160 

140 

120 

100 

80 

60 

40 

20 

0 

180 

160 

140 

120 

100 

80 

60 

40 

20 

0 

Graph — 2.10 (Sample Size = 20, e 0) 

25 



113 	167 	221 	275 	545 

Relative Efficiency (Upper Limit) 

160 

140 

120 

100 

80 

60 

40 

20 

0 

160 

140 

120 

100 

80 

60 

40 

20 

0 

Series 1 for Yp and Series 2 for i"Ra  

Frequency (Number of Cases) 

  

136 

     

144 

  

    

130 

   

    

123 

   

      

       

       

       

     

68 

 

      

   

0 

  

          

           

59 	113 	167 	221 	275 
	

545 

Relative Efficiency (Upper Limit) 

	

Ell Series 	Series 2 

Graph — 2.11 (Sample Size = 10, e < 0) 

Series 1 for Yp and Series 2 for Vpa  

Frequency (Number of Cases) 

1111 Series 	Series 2 

Graph — 2.12 (Sample Size = 20, e < 

26 



M
1
(V

Sr.
) = M1(VRe.) 

= M (V 
1 Sa.) 

	

= [1 + a.(a-2G)/C2 1. Y2.C2  In 	...(2.7) 

In order to obtain the optimal value of 'a', we minimise the 

above mentioned first order MSE and find that it is minimum when 

a=G. Thus, we are able to define V
Sr.' 1  

and V 	completely. 

 

;"-f Re. 	Sa. 

In what follows, we give the results of empirical-simulation study 

of these estimators and the graphical display of their relative 

efficiencies. 

TABLE 2.4 

RF(.) FOR y , VR/Vp  and Vsr.  

Estimators 
4 

Sample Sizesy  

- 
y VR V P V . Sr.  

n=10 0.215 0.115 -  0.670  
P > 0 t 

n=20 0.150 0.092 - 0.758 

P < 0 f 
n=10 0.075 - 0.140 0.785 

n=20 0.055 - 0.110 0.835 

The finer comparisons of the relative efficiencies of these 

estimators show that V
Sr  is most probably a better choice than V 

and 	when G E [-1,-0.51. Graphical display of the relative 

efficiencies of these estimators is being given in the graphs 2.13 

to 2.16. 
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TABLE 2.5 

RF(o) FOR y , Vip  and IT'Re. 

Estimators 

Sample Sizesy 

- y -i
R 

cfp -';Re. 

P 

P 

> 

< 0 

t  n=10 

n=20 

f  n=10 

n=20 

0.080 

0.072 

0.090 

0.072 

0 
0.142 

0.123 

- 

- 

- 

- 

0.180 

0.153 

0.778 

0.805 

0.730  

0.775 

From the above table, we can say that iRe.  Is most probably a 

better choice than y and "IRfip. The empirical-simulation study 

also reveals that Si
Re. 

is better, quite often, when G E [-1,1]. 

Graphs 2.17 to 2.20 bear a clearer view of the relative 

'efficiencies of these estimators. 

TABLE 2.6 

RF(o) FOR y , Vip  and "17' Sa. 

Estimators 

Sample Sizesy  
E; 

R 
t i, lr  

Sa. • 

P 

P 

> 

< 

0 

0 

{ 	n=10 

n=20 

- n=10 

t n=20 

0.198 

0.095 

0.145 

0.062 

0.115 

0.108 

- 

- 

- 

- 

0.132 

0.113 

0.687 

0.797 

0.723 

0.825 

Here, although "iSa. performs better than y and R /`IP' it comes out 

to be winner much more often when G lies between -1 and 1. The 

gain in the relative efficiency when we use IT
Sa  has been 

displayed graphically in the graphs 2.21 to 2.24. 

Motivated by the structure of the estimator cr Sa. we propose 

a new family of ratio-cum-product estimators as 

30 
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,71
VSa. 

= y.((1+a).YR + (1-
a)."? ) / ((l+a).Y + (1-a). 	 R) 

...(2.8) 
This can, equivalently, be written as 

VSa. = Y.((1+a).X
2 
 + (1-a).x

2 
 ) / ((l+a).x

2 
 + (1-a).X

2 
 ) 

...(2.9) 
Again, 'a' is a non-stochastic design-parameter. The first order 

MSE of "fVSa. 
 can be checked to be : 

M1VSa. ) = ( 1 + 4a.(a-G)/C2  1. '71'2.C2/n 	...(2.10) 

M1VSa.) attains its minimum value when a = G/2. Putting this 

value of 'a' in 2.9 we get, 

71 	
-2 	2 	2 

= y.((2+G). 5(2  + (2-0). x ) 	((2+G).x + (2-G).X ) 
VSa. 

...(2.11) 

We now compare this estimator with y and `17.
R
/cr
P
. The results of the 

comparisons are given below in table 2.7. Also, graphs 2.25 to 

2.28 give a clearer view of the relative efficiencies of these 

estimators. 

TABLE 2.7 

RF(o) FOR 51 , `ilifip  and ivsa.  

Estimators 
4 

Sample Sizesy  

-  
y c'

R 
c' 
P VSa. 

p > 

P < 

0 
f 

0 

n=10 

n=20 

I n=10 

n=20 

0.107 

0.085 

0.050 

0.040 

0.090 

0.102 

- 

- 

 - 

- 

0.110 

0.087 

0.803 

0.813 

0.840 

0.873 

From the above table, we can strongly recommend the use of c'vsa.  

when y, "2" andVSa.  are in the competition. We have also noted 

through the finer comparisons of the relative efficiencies of 

these estimators that `IVSa.  performs better than y and RP 
for 

the entire range of G considered by us. Thus, we can use 
VSa. 

irrespective of the value of G. 
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CHAPTER - 3 
THE TWO-PARAMETER FAMILIES OF ESTIMATORS 

In Chapter-2, we proposed and studied some ratio, product and 

ratio-cum-product type estimators in which only one 

design-parameter has been used for the mixing of y, x and R. This 

parameter was assigned an optimal value, its optimality being in 

reference to the minimisation of the first order large sample 

approximation to the MSE of the estimator. In this chapter, we 

have tried the mixings of y, Y
R and Y using two design-parameters 

rather than one. By the use of two parameters, we have two degrees 

of freedom for manipulation. This additional degree of freedom is 

used for controlling the second order large sample approximation 

to the MSEs' of the proposed estimators. It so happens that in 

this process we are not only able to use the guessed value 'g' of 

'C' but also the guessed value, say, 'r' of 'p' which would have 

been implicitly used in guessing 'G' by 'g'. Thus a fuller use of 

the guessed values leads to gainful consequences in terms of more 

efficient families of estimators. We propose the following two 

families of ratio-cum-product estimators. 
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Taking 'a' and 'b' as the two non-stochastic design 

parameters, we propose, 

YRP
-(1)  ab = (1+2a). 	- a. (.(1+b).% + (1-b). CIF)) 	...(3.1 

.  

For obtaining the optimal values of 'a' and 'b', we minimise th,  

a,
RP.ab
(1)  m 	) 

1  

M2(Y(  RP) ab) be the first and second order MSEs of Y)Rp.ab 

respectively, for a random sample from a bivariate norma 

population. We can check that M (Y
(1) 

 ) and M2(Y
(1)  
Rp.ab) can b4 

1 RP. 

given by the following equations. 

(1) 	2 	2 2 M1(YRp ab) = ( 1 + 4d.(G+d)/C 1. Y .0 in 
	...(3.2 

-(1 where, d = a.b . Minimising M
1
(YRp.)  

ab
), the optimal value of 'd 

comes out to be equal to -G/2, 

1 	- 1) 
and M2(11RP()ah)  = M1 (Y(  

RP.ab) + P.(2Q.(2d2-(a+d)) + 6G.(a+d).(1-4d) 

+ 3.(a+d).(a+Sd)) 	 ...(3.3 

 
where, P = Cx/n

2 
 , Q = (1+2p

2
). Cz  and CZ  = G/p. Now, using the 

optimal value for 'd' and minimising M2(Y 
-(1)
Rp.ab

), we see that ii 

will be minimum for a = [2C
2 
 + G.(3-8G)]/6. Thus, 	we have the 

following expressions for the optimal values of 'a' and 'b' for 

-(1) 
RP.ab.  

a = (2C
z 

+ G.(3-8G))/6 

and 	b = - G/(2a) 	 ...(3.5) 

Now, in this chapter, we have carried out the 

empirical-simulation study to compare -1-RP
1(1) ab (using the guessed .  

value 'g' of 'G' and 'r' of 'p' ) with y and cr
R when p > 0 and 

The results of this study are tabulated 

below in table 3.1. The gain in efficiency which occurs by the use 

(1) of 
YRp.ab has also been displayed graphically through graphs 3.1 

to 3.4. 

first and second order MSEs of this estimator. Let an 

with y and Yp  when p < 0. 
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TABLE 3.1 

RF(o) FOR y , VR/VP and V
(1) 
RP.ab 

Estimators 

Sample Sizes, 

-
y  VR Vp - ( 1) 

YRP.ab 

p > 
n=10 

0 I 
0.170 0.135 - 0.695 

n=20 0.097 0.113 - 0.790 

p < 0 
f  n=10 0.305 - 0.282 0.413 

n=20 0.167 - 0.198 0.635 

(1 This table shows that YRp)ab performs better than y and 	mudt 

more Often when p > O. Although, it does not perform that very 

good when p < 0 and n=10, it recovers for large sample size (n=20) 

and dominates y and S?p, quite often. It has also been seen that 

YRP.
-(1) 

ab performs very nicely when G E [0,1] and for this range of 

G, the relative efficiency of Y(1) 	comes- out- to be more than RP.ab 

that of y and V
R' quite often. This estimator also performs 

exceptionally better than y and V when G e (-0.5,01. 

One more family of ratio-cum-product type estimators by 

making the use of two non-stochastic design-parameters 'a' and 'b' 

has been proposed by us in what follows. An estimator belonging to 

this family is, 

Y 
-(2) 

ab = (1+a+b). 	- a.V
R - b.V 	...(3.6) RP  

['he first and second order MSEs of this estimator can be checked 

:o be : 

- (2) ab 
	

2 	 2 2 M (Y--RP 	) = [1 + t.(t+2G)/C
z1. Y .0 /n 	...(3.7) 1 	.  

?here, t = a-b. M
1
(Y(2) 

RP.ab) takes its minimum value when t = -G, 

- 2 end M_(Y )
(

ab  ) = M1(Y
-(2)
Rp.ab) + P.N.(t

2
-2a) - 6G.a.(1+2t)+ RP.  
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+3a.(a-2t)] 	 ...(3.8) 

where, P and Q are the same as defined for equation 3.3. We 

2  
minimise M2"1RP()ab) with respect to 'a' and see that it has its 

minimum value when a = (C
2 

- 4G
2)/3. So, the optimal values of 'a' 

-(2) 
and 'b' for YRp.ab 

can be given by the following equations. 

a = (C
2 - 4G2)/3 	 ...(3.9) 

and b = a + G 	 ...(3.10) 

-(2 
In this way, we have defined YRp

)
ab 

wherein we used guessed values 

'g' of 'G' and 'r' of 'p' to choose optimal values of 'a' and 'b'. 

-(2 
Now, we proceed to compare YRp

)
ab 

with y and "rifR Ai
P
. The results of 

these comparisons are tabulated below in table 3.2. The relative 

efficiencies of these estimators have been displayed graphically 

through graphs 3.5 to 3.8. 

TABLE 3.2 

RF(o) FOR 3, ,
RP 

and cf(2 
RP.

) 
ab 

Estimators 

Sample Sizess, 

- y SlR 
- i 
P 

-(2) 
YRP.ab 

p > 

p < 0 

1  n=10 

n=20 

f  n=10 

n=20 

0.152 

0.092 

0.307 

0.197 

0 
0.103 

0.113 

- 

- 

- 

- 

0.305 

0.188 

0.745 

0.795 

0.388  

0.615 

- From this table, we can infer that YRp(2)
ab 

is most probably a 

better choice than y and 17R  /1P  ' ' The finer comparisons based on 

G-values of these estimators reveal that when p > 0 and G E [0,11, 

YRP.
)  -(2ab performs exceptionally better than y and %. It also comes 

out to be winner much more often when G lies between -1 and O. 
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CHAPTER - 4 

GAINFUL MIXINGS OF ONE OF THE 

ESTIMATORS WITH MEAN-PER-UNIT ESTIMATOR 

Vos(1980) studied some mixing-type estimators for the 

efficient estimation of population mean using information via 

observation on an auxiliary variable. The paper considered some of 

- 	- 
the estimators obtained by mixing y with Y

R 
and Y

P
. In fact, all 

the estimators proposed and studied by us are nothing but the 

mixings of y, x and X with one or two design-parameters. Motivated 

by the work of Vos(1980), we have proposed some gainful mixings 

of the various estimators proposed by us in Chapter-2 and 

Chapter-3 with y. The analytical expressions to obtain the optimal 

values of mixing-parameters become very intricate and sometimes it 

becomes very difficult or even impossible to get the optimal 

values of the new design-parameters for these mixings. This fact 

has lead us to propose a new method of mixing of the estimators 

based on their performances via the empirical-simulation studies 

carried out in Chapter-2 and Chapter-3. 

We suggest that the weight(s) for mixing estimator(s) tn  with 

y can be decided by the relative frequencies of the respective 

estimator(s) when compared with each other in the presence of 
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iR/ip. In the present chapter, we have tried this type of mixing 

of one of the different estimators and our empirical-simulation 

studies have revealed that the proposed mixing-estimators perform 

better than their parent estimators, quite often. 

4.1 MIXINGS OF ONE-PARAMETER FAMILIES OF ESTIMATORS : 

The mixing-estimators of `fMR  and 1MP' 
f 	respectively when mixed 

with y, are proposed to be : 

MEST(1) = b
1 
.y  (1-b

1
). YMR  ...(4.1) 

and MEST(2) 
= b2.y + (1-b2

). imp 	...(4.2) 

where, b
1 
 and b

2 
are the respective design-parameters for mixing 

or the mixing-parameters. The values of b
1 
 and b

2 
as per the 

simulation study carried out in chapter-2 are, respectively, 

bl  = 0.36; b2  = 0.30 	 ...(4.3) 

Now, 	we compare MEST(1)/MEST(2) with their parent-estimators 

(i.e., imptfimp). Table 4.1 contains the results of these 

comparisons and the graphs 4.1 to 4.4 afford us a clearer view of 

the relative efficiencies of these estimators. 

TABLE 4.1 

RF(0) FOR y , 	%Rfimp  and MEST(1)/MEST(2) 

Estimators 
Sample Sizes 

4, 

- 
Y ‘-1

R 
Y 
P 

-̀l.  
MR ..i 

MP 
MEST(1) MEST(2) 

n=10 0.197 0.210 - 0.293 - 0.300 - 
p > 0 

n=20 0.165 0.275 - 0.282 - 0.278 - 

n=10 0.152 - 0.192 - 0.318 - 0.338 
p < 0 

n=20 0.142 - 0.240 - 0.298 - 0.320 

From this table, we can say that MEST(1)/MEST(2) and CimOmp  are 

quite close to each other as per the results of their comparisons. 
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50 

The finer comparisons based on G-values reveal, however, that 

MEST(1) comes out to be winner oftener (when compared with y, YR  

and `iMR 
 ) when G E [0,0.5]. Also, MEST(2) has greater relative 

frequency of winning than '714p  when G E [-0.5,0]. 

The mixings of y with VR 
and 1VP 1  are proposed below. 

MEST(3) = b3.Y 
	(1-b3). C(VR 	

...(4.4) 

	

and MEST(4) = b4
. y + (1-b

4 
 ). YVP 
	

...(4.5) 

where, b
3 

= 0.31 and b4 
= 0.45 as per the results of earlier 

empirical-simulation study. In table 4.2 we tabulate the results 

of the comparisons of MEST(3)/MEST(4) with R
/TIP 

and 
VR VP.  

Graphical display of the relative efficiencies of these estimators 

being the winner is being given per graphs 4.5 to 4.8. 

TABLE 4.2 

RF(e) FOR N/,S13/ 	 ME P' 	and MEST(3)/MEST(4) (  

Estimators 
Sample Sizes 

4' 

- 
Y -1-/R .C/ P -i-'VR ir VP MEST(3) MEST(4) 

p > 

p < 

0 

0 

1  n=10 

n=20 

t  n=10 

n=20 

0.135 

0.133 

0.252 

0.140 

0.227 

0.277 

- 

- 

- 

- 

0.238 

0.275 

0.290 

0.290 

- 

- 

- 

- 

0.245 

0.312 

0.348 

0.300 

- 

- 

- 

-  

0.265  

0.273 

Here, MEST(3) and MEST(4) have thus provided improvement over
VR 

C'VP and 	except when p < 0 and n=20. We have also observed that the 

relative frequency of MEST(3) being the winner in the comparisons 

comes out to be more, quite often when G e [0, 0.5]. 

We now propose this type of mixing estimator for YP a, as below. 

...(4.6) 

where, b = 0.09 as per the earlier empirical-simulation study. 

MEST(5) = b5.y + (1-b
5
).

P.a 
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Here, we compare this estimator with y, 
YR/YP 

and `11P 
a 
 . Table 4.3 
 

contains the results of the empirical-simulation study carried out 

for this purpose and the graphs 4.9 to 4.12 provide the graphical 

display of the relative efficiencies of these estimators. 

TABLE 4.3 

RF(o) FOR Y, "i0p, Vp.a  and MEST(5) 

Estimators 
Sample Sizes  

4,  

- 
y "IR "I P •7 P.a MEST(5) 

p > 

p < 

0 

0 

n=10 

f n=20 

h=10 

f n=20 

0.197 

0.177 

0.065 

0.052 

0.335 

0.355 

- 

- 

- 

- 

0.062 

0.053 

0.163 

0.218 

0.308 

0.420 

0.305 

0.250 

0.565  

0.475 

It is clear from the above table that MEST(5) is an improvement 

overP.a. However, when the correlation between Y and X is 

positive, ratio estimator dominates over both "I
Pa  and MEST(5). 

Here, 'we observe that the product-type nature of 
c'P.a  surfaces and 

its mixing with y comes out to be winner more often when p < O. 

The finer comparisons of MEST(5) with the other estimators in 

competition reveal that it is most probably the best choice when G 

E 

In what follows, we define the same type of mixings for "! 
Sr.' 

Re. 
and. 

Sa. 

	

NEST(6) = b6.Y + (1-b6)./Sr. 	 ...(4.7) 

	

MEST(7) = b7.y + (1-b7)."?Re. 	 ...(4.8) 

	

and MEST(8) = b8.Y + (1-b).■7Sa. 	 ... (4.9) 

where, b
6=0.14, b7=0.10 and b8=0.14 as per our earlier 

empirical-simulation studies. The empirical-simulation study of 
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Estimators _) 
Sample Sizes 

f  n=10 

1  n=20 

n=10 

n=20 

7
R 

cric, Sr. 
ME 

 
MEST(6) 

0.190 0.095 - 0.225 0.490 

0.135 0.065 - 0.335 0.465 

0.035 - 0.065 0.192 0.708 

0.040 - 0.060 0.292 0.608 

p > 0 

p < 0 

these estimators has been carried out for comparing them with 

their respective parent-estimators, i.e., and cr 	and 
Sr.' Re. 	Sa. 

the usual estimators y and cfR A,P. The results of these comparisons 

have been tabulated in the tables 4.4 to 4.6 and the relative 

efficiencies of these estimators being the winners for the 

different comparisons are being displayed graphically through 

graphs 4.13 to 4.24. 

TABLE 4.4 

RF(o) FOR Y, `7R/ F,„ `isr.  and MEST(6) 

The above table indicates that we will gain considerably by the 

use of MEST(6) instead of using y, %fip andSr . The estimator 

MEST(6) performs better than the other estimators in the 

competition much more often for the entire range of G considered 

by us. 

TABLE 4.5 

RF(o) FOR Y, 	crile.  and MEST(7) 

Estimators -4 
Sample Sizes 

si, 

- y rt.
R 

-11-r 
P Re. 

MEST(7) 

p 

p 

> 

< 

0 

0 

n=10 

f n=20 

f  n=10 

n=20 

0.075 

0.057 

0.080 

0.050 

0.127 

0.108 

- 

- 

- 

- 

0.192 

0.125 

0.363 

0.392 

0.348 

0.417 

0.435  

0.443 

0.380  

0.408 
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From the above table, we can infer that MEST(7) provides slight 

improvement over YReand the two estimators are quite close to 

each other in their performances as per the empirical-simulation 

study when p < O. The finer comparisons of these estimators reveal 

that MESTM —performs Tairly better than y, YR and Re. 
when G E 

[0.5,1]. Its performance is also worth noticing as compared to y, 

11/ and c'Re. 
when G lies between -1 and -0.5. 

TABLE 4.6 

RF(.) FOR y, 	"fsa.  and MEST(8) 

Estimators 
Sample Sizes 

4, 

- 
Y 'IC

R 
- 
Y P 

c Sa. MEST(8) 

p > 0 

p < 0 

n=10 

f n=20 

n=10 

f n=20 

0.172 

0.097 

0.085 

0.032 

0.080 

0.085 

- 

- 

- 

- 

0.070 

0.070 

0.290 

0.358 

0.217 

0.348 

0.458  

0.460 

0.628  

0.550 

The table 4.6 shows that we will be most probably a gainer in the 

relative efficiency ff we use MEST(8) instead of y, ,711fi and P  Sa. 

The estimator MEST(8) performs better than the other estimators 

much more often for the entire range of G under consideration 

except when G lies between 0.5 and 1, when Vsa.  is quite a close 

competitor. 

Now, we propose the same type of mixing estimator for Yvsa.  

to be : 

MEST(9) = b9
.Y + (1-b9  ). 	VSa. 	

...(4.10) 

where, b9=0.08. We have compared this estimator with Y, RP 
and 

VSa. 

The results of these comparisons via the empirical-simulation 

study are tabulated below in table 4.7 and the graphical display 
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of the relative efficiencies of these estimators is being done 

through graphs 4.25 to 4.28. 

TABLE 4.7 

RF(0) FOR Y, VR /VP' VVSa. and MEST(9) 

Estimators 
Sample Sizes 

 

4, 

- y V
R 

- P V VSa. 
MEST(9) 

p > 

p < 

n=10 
0 f 

n=20 

n=10 
0 f 

n=20 

0.092 

0.072 

0.032 

0.040 

0.093 

0.075 

- 

- 

- 

- 

0.083 

0.062 

0.440 

0.468 

0.387 

0.425 

0.375  

0.385 

0.498  

0.473 

From the above table, we can infer that 
VVSa. 

 has been improved by 

mixing it with y when p < O. This mixing does not perform very 

good for positive correlation case and 
VVSa. 

 dominates the scene 

then. We have also noticed that MEST(9) takes a significant lead 

over all the other estimators in competition including VR  when G > 

1.0. Also, the relative frequency of MEST(9) turns out to be 

higher than y, clp  and VVSa.  much more often when G < -0.5. Thus, 

MEST(9) performs better than 
VR/VP for those ranges of G where 

the use of V
R or V has been recommended in the literature. So, 

for those cases, one would recommend the use of MEST(9) instead of 

4.2 MIXINGS OF TWO-PARAMETER FAMILIES OF ESTIMATORS : 

(2 In this section, we propose the mixings of V ) 
ab and  YRp).ab RP.  

with y. Here also, the optimal value of mixing-parameter has been 

decided by the relative frequency of the respective estimator 

being the winner as per the empirical-simulation studies carried 

out by us in Chapter-3. 	The proposed method of mixing the 
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estimators is very much justifiable for the mixing-estimators of 

(1) 	-(2) 
and Y(2) 	If  If we do not follow this method of mixing y Y(1) 	and 

 

with V(1) ab 
and vRP.

(2) ab' we would be having two design-parameters 
RP.  

and one mixing-parameter. 	In all, we will have to find the 

optimal values of three parameters. 	This can be done by 

minimising the first, second and third order large sample 

approximate MSEs of the mixing-estimators but the expressions for 

the third order MSEs of these estimators become so complicated 

that we are unable to find the optimal values of the three 

design-parameters. So, following the method explained earlier, in 

this section we propose the mixings of Y(1) Rp
.ab 

and Y-(2) Rp.ab 
with y as 

follows. 

Let 'b10 
be the mixing-parameter. 

with y can be given by 

- 1 
MEST(10) = b10

.y 	(1-b
10 

 ).YC  
RP.
)  
ab 

-(1) 
Then the mixing of YRp.ab 

...(4.11) 

where, b10
=0.23 as per the empirical-simulation study carried out 

for V(RP.
1) ab in Chapter-3. Now, we compare this estimator with y, 

VR
/VP and VRP.

(1)ab The results of these comparisons are tabulated 

below in table 4.8. The relative efficiencies of these estimators 

have also been displayed graphically through graphs 4.29 to 4.32. 

TABLE 4.8 

RF(o) FOR Y, V /tr,?-(1) 
R P' RP.ab 

and MEST(10) 

Estimators 
Sample Sizes

-* 

4. 

- 
y V

R 
V P 

-(1) 
YRP ab 

MEST(10) 

- n=10 0.095 0.085 - 0.370 0.450 
P > 0 

n=20 0.085 0.070 - 0.442 0.403 

n=10 0.122 - 0.240 0.360 0.278  
P < 0 

t 

n=20 0.137 - 0.190 0.393 0.280 
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Table 4.8 indicates that MEST(10) performs better than the other 

estimators only when p > 0 and n=10. 	For other cases, its 

performance is not so good as that of 
	ab but it is a strong 

RP.  

competitor there too. It has also been observed through the finer 

comparisons of the relative efficiencies based on G-values that 

(1) 
MEST(10) is most probably a better choice than R 

and YRp ab 

when G e (0.5, 1]. 

-(2) 
A similar mixing-type estimator for YRp ab 

is proposed to be: 

MEST(11) = b11.y + (1-b
(2) 

11 RP.ab 
...(4.12) 

where
, 

b
11
=0.16 as per the empirical-simulation study carried out 

- for YRp(2)ab in Chapter-3. 	Now, we proceed to compare this 

estimator with y, %/C/1, and Y(2)ab. 
	

The results of these 
RP.  

comparisons are tabulated below in table 4.9. The relative 

efficiencies of these estimators have also been displayed 

graphically through the graphs 4.33 to 4.36. 

TABLE 4.9 

RF(o) FOR Y, crR /17P' iRP.)ab and MEST(11) 

Estimators 
SampleSizes 

4,  
Y if- R "i P 

- 2) ( Y RP.ab MEST(11) 

p 

p 

> 

< 

0 

0 

f  n=10 

n=20 

f  n=10 

n=20 

0.122 

0.080 

0.255 

0.140 

0.068 

0.042 

- 

- 

- 

- 

0.242 

0.205 

0.332 

0.435 

0.250 

0.352 

0.478 

0.443 

0.253 

0.303 

From this table, one can reach the openion that YRp(2)
ab 

has been 

improved in the form of MEST(11) only when p > O. The estimators 

MEST(10) and MEST(11) behave likewise here in the sense that 

MEST(10) was also an improved version of cr ) 
ab for the positive RP.  

correlation case. It has also been observed that Y (2)Rp
.ab comes out 

to be winner more often as compared to other estimators when G 

lies between -0.5 and 1. 
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CHAPTER - 5 
OTHER GAINFUL MIXINGS OF THE ESTIMATORS 

In Chapter-4, we proposed some gainful mixings of y with 

various estimators which turn out to be.better than their parent-

estimators, quite often. There may be many other types of mixings 

of these estimators. We, in the present chapter propose two more 

types of mixings of the parent-estimators (i.e., the estimators 

proposed by us in Chapter-2 and Chapter-3) and observe through the 

empirical-simulation study that the proposed mixings perform 

better than their parent-estimators, quite often. 	In the 

first-type of mixing, we propose some new mixing estimators by 

combining the two parent estimators through a suitable 

mixing-parameter and in the second-type of mixing, we propose some 

linear combinations of y, 7/11/11p  and the two parent-estimators. 

It may be mentioned here that the performance of the 

'estimators proposed by us in Chapter-2 and Chapter-3 is not 

uniform for the two cases of positive and negative correlations. 

So, in this Chapter, we have studied these two cases separately. 

For the first-type of mixing, we have not included all the parent-

estimators in our present study but have considered the best five 
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estimators when p > 0 and the best five estimators when p < 0. 

Subsequently, we have considered all the possible mixings of these 

five estimators taking two out of them at a time. This process 

gives rise to 10 mixing-estimators for positive correlation case 

and to other 10 estimators for the negative correlation case. For 

the second-type of mixings, we have considered the best three 

parent-estimators when p > 0 and the best three parent-estimators 

for p < 0. Thus, we will have 3 mixing-estimators for positive 

correlation case and other 3 for negative correlation case. To 

decide the best five estimators for the two cases of positive and 

negative 	correlations, 	we 	have 	carried 	out 	the 

empirical-simulation study taking all the parent-estimators 

simultaneously. 

The best five estimators in the order of their performance 

turn out to be: 

CP.a' YRP.ab' YRP.ab' `1, 	`7 Re.' VR when p > 0 

-(1 and )711,1e., 
C;VSa.' 	MP' 

i; 
 RP.) ab' cirp.a  when p < 0 

...(5.1) 

...(5.2) 

5.1 MIXINGS OF THE TWO PARENT-ESTIMATORS : 

In this section, we propose the above mentioned first-type 

mixing of the estimators. 	We divide this section into two 

sub-sections in which we study the cases of positive and negative 

correlations separately. 

5.1.1 MIXINGS WHEN p > 0 : 

The parent-estimators for this case are given in 5.1. 	In 

what follows, we propose the mixings for these parent-estimators. 

In order to propose a mixing-estimator for Y 	and Y(1) 	we P.a 	RP.ab' 
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first carry out the empirical-simulation study to compare y, crR, 

YP   and Y (1) 
a6. The results of this study are given in table 5.1. 

TABLE 5.1 

RF(o) FOR Y 	and c( )  
R' P.a 	RP.ab 

Estimators 
Sample Sizes 

- 
Y 7 1 

R 
- P. 

-(1) 
YRP.ab 

4. 
n=10 0.062 0.168 0.465 0.305 

n=20 0.027 0.135 0.463 0.375 

Based on the results of the above table, we propose a 

mixing-estimator of 7/P 
a  and "1111a: ! ab  to be .  

MEST(12) =(1-P L 1(1)  1 	RPab 	...(5.3) 

where, p
1=0.58 as per the results of the table 5.1. Now, we 

proceed to compare MEST(12) with y, cfil  and `1P.a ' 	(since YP 
a 
 is the 

6 
most probable winner according to table 5.1). The results of these 

comparisons are tabulated below in table 5.2. Graphs 5.1 and 5.2 

provide the graphical display of the relative efficiencies of 

these estimators. 

TABLE 5.2 

RF(o) FOR Y, 	''P.a and MEST(12) 

Estimators 
Sample Sizes4 

- y ii
R 17 

P.a MEST(12) 
4,  

n=10 0.057 0.158 0.437 0.348 

n=20 0.045 0.115 0.395 0.445 

Table 5.2 reveals that we will gain in the efficiency by the use 

of MEST(12) for relatively larger sample sizes (i.e., n=20). 	It 

has also been noticed that this mixing-estimator performs 

consistently better than y, Y
R and \7P a when G E [0.5, 1].  

Now, we carry out the empirical-simulation study for the 
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comparison of `i
P.a  and YRp

(2)
ab in the presence of the usual 

estimators y and YR. The results of this study are tabulated below 

in the table 5.3. 

TABLE 5.3 

RF(o) FOR Y,c, 	and 1712)  
R' P.a 	RP.ab 

Estimators 
Sample Sizes4 

- y `fR i P.a 
-(2) 
YRP.ab 

4,  
n=10 0.035 0.132 0.525 0.308 

n=20 0.037 0.113 0.445 0.405 

Based on the results of the above table, we propose the 

-(2) mixing-estimator for P a and YRp
.ab to be : .  

MEST(13) = p 	+ (1-p ).cf )  2' P.a 	2 	RP.ab 

where, p
2=0.58. From table 5.3, we can infer that, a  comes out  

- to be winner more often as compared to y, YR  and Y(2)ab. So, So in RP.  

what follows, we compare MEST(13) with y, YR  and `ipa. 	The 

results of these comparisons are given in table 5.4. A more 

comprehensive view of the relative efficiencies of these 

estimators is provided through graphs 5.3 and 5.4. 

TABLE 5.4 

RF(o) FOR Y,  Yp.a  and MEST(13) 

Estimators 
Sample Sizes ---> Sr 71R ■

J?P a .  MEST(13) 
4, 

n=10 0.037 0.180 0.428 0.355 

n=20 0.032 0.128 0.380 0.460 

From the above table, we can infer that MEST(13) performs better 

than y, •11R and SIP .a for rather a large sample size. The behaviour 

of MEST(13) is very similar to MEST(12) and it is also the winner 

on the comparisons much more often when G E [0.5, 1]. 

...(5.4) 
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Next, we consider the estimators V a 
 and VRe.

. For the 
P.  

proposition of a mixing-estimator of these two, we first compare 

VP a  and VRe. 
in the presence of y and V The results of these 

comparisons are tabulated below in table 5.5. 

TABLE 5.5 

RF(0) FOR Y, VR, Vp.a  and VRe.  

Estimators 
s-) Sample Size V 

i 
V
R P.a 

V 
Re. 

4,  
n=10 0.085 0.092 0.445 0.378 

n=20 0.062 0.120 0.478 0.340 

The mixing-estimator for VP 
.a  and VRe.' 

based on the results of 

table 5.5 can be proposed as 

MEST(14).= 	
+ (1-P3).VRe. 	 ...(5.5) 

where, p3=0.56. Thus VP 
a  again dominates the scene when compared 

with y, VR  and VRe . So, we now compare our proposed mixing with 

y, y
R and VPa . The results of the empirical-simulation study for 

comparing these estimators: Y, V
R
, V

P a and MEST(14) are given 

below in table 5.6. Graphs 5.5 and 5.6 provide a clearer view of 

the relative efficiencies of these estimators. 

TABLE 5.6 

RF(°) FOR Y, VR, Vp.a  and MEST(14) 

Estimators 
Sample Size s-' 

,- 3 
V
R V P.a ME  MEST(14) 

1 
n=10 0.070 0.165 0.372 0.393 

n=20 0.040 0.035 0.442 0.483 

From the above table, one can conclude that MEST(14) comes out to 

be winner more often when compared with y, 1ffl  and Vp.a. So, it is 

an efficient mixing of VP 
a 
 and 7

Re. .  We have also observed 
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through the finer comparisons of these estimators based on 

G-values that the performance of MEST(14) is quite encouraging 

when G E [0.5, 1]. 

Now, we go forward to propose a mixing of \T'p.a  and \1vR. For 

this, we first compare , R' 
Y
Pa 

and T1VR 
via the 

empirical-simulation study. 	The results of the study are 

tabulated below in table 5.7. 

TABLE 5.7 

RF(0)'FOR Y, Cra, TArp.a  and 71%/R  

Estimators 
4  Sample Sizes - Y R 71r P.a 

7 VR  
1, 

n=10 0.032 0.168 0.497 0.303 

n=20 0.060 0.185 0.550 0.205 

Based on the figures given in the above table, we propose the 

following mixing estimator for 1(p .a  and 1711R. 

MEST(15) = p4.\/p.a +(1-1)4)-C'VR 	
...(5.6) 

where, p4=0.67. 	Thus, Sip a  is the most probable winner when 

Compared with y, `1Ft  and YvR. 	So, we compare the estimator 

MEST(15) with Y, cffl.  and "7/p a. Table 5.8 contains the results of 

the empirical-simulation study carried out for these comparisons 

and graphs 5.7 and 5.8 afford us a clearer view of the relative 

efficiencies of these estimators. 

TABLE 5.8 

RF(o) FOR Y, YR, "ip.a  and MEST(15) 

Estimators 
s-4  Sample Size - y `1-

R 
\1 
P.a MEST(15) 

4, 
n=10 0.052 0.165 0.300 0.483 

n=20 0.057 0.130 • 0.355 0.458 
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Table 5.8 indicates that MEST(15) is an improvement over '1 a. It 

comes out to be winner more often as compared to y, Y11  and 7ip.a. 

So, one can recommend the use of MEST(15) instead of y, 17R  and 

Y 

	

	when p > O. It has also been observed through the finer 
P.a 

comparisons of 	and HEST(151-that MEST(15) performsa 

quite well in comparison with the other estimators here when G E 

(0.5, 1). Also, it is a close competitor of "IR  when G > 1.0. 

For the proposition of a mixing-type estimator of c/11) 	and 
Ke ab 

RP
)  -(2ab' we now carry out the empirical-simulation study for 
.  

comparing y, R' "IRP.ab and Y.(2
RP.)ab 

 The results of this study are 

tabulated below in table 5.9. 

TABLE 5.9 

RF(0) FOR Y,, 	(1) 	and c'(2)  
R RP.ab RP.ab 

Estimators 
4 

Sample Sizes 
y-  32R 

- 
Y( 

 1) 
RP.ab 

-(2)  
RP.ab 

.1, 

n=10 0.130 0.112 0.360 0.398 

n=20 0.080 0.085 0.350 0.485 

Based on the above results, we propose the following mixing 

estimator, 

	

(1) 
	
+ (1 	1 v-(2)  MEST(16) = o 	 ...(5.7) 

'5.YRP.ab • 1/4*-135—RP.ab 
-(2) 

where, p5=0.45. The value of p5  hints that YRp.ab  is the most 

- - -(1) 	- probable winner when we compare y, 
YR' YRP.ab and Y

Rp(2)ab. So, we 

now take up the empirical-simulation study for comparing MEST(16)  

with. i,  and 1')ab. 	
The results of this study are tabulated 

RP.  

below in table 5.10 and the relative efficiencies of these 

estimators are being displayed- through graphs 5.9 and 5.10. 
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Estimators  
Sample Sizes_

)  

4, 

- ) 11rR 	
y(2 RP.ab MEST(16) 

	

0.120 	0.100 	0.402 	0.378 

	

0.067 	0.085 	0.470 	0.378 

n=10 

n=20 

TABLE 5.10 

n 	-(2 
RF(°) FOR Y, YR, YRp.

)  
ab 

and MEST(16) 

Although, from table 5.10, one can infer that MEST(16) does not 

perform so good as T1(2RP
) ab yet it is quite a close competitor of  

-(2) 
YRP.ab 

when G e [0, 0.51. It even takes a lead over 17(2) 	for 
RP.ab 

this range of G for n=10. 

1 
Next, we propose the same type of mixing for YRP( 1ab 

and  "IRe.' .  

The results of the empirical-simulation study when we compare 

cfR' `IRP.)ab  
and  7

Re 
 are tabulated below in table 5.11. 

TABLE 5.11 

7 	-(1) RF(o) FOR Y, , 
YRP.ab and  Re.  

Estimators 
4 Sample Sizes 

- 
 i R 

-(1) 
YRP.ab -1;r-Re. 

4,  

n=10 0.057 0.083 0.370 0.490 

n=20 0.035 0.097 0.395 0.473 

Exploiting the knowledge of the performances of the two estimators 

(1 
YRF)ab 

and 
 S?Re. as indicated in table 5.11, we propose the mixing 

-(1 estimator for YRp)ab and -1iRe. to be: 

MEST(17) = p (1 
6 RP

) 
ab + (1-p6).7Re. 	...(5.8) .  

where, p6=0.44 as per the results of table 5.11. Since p6=0.44, 

we now carry out the empirical-simulation study for the comparison 

of y, VW Vlie. and MEST(17). Table 5.12 contains the results of 

this study and the graphs 5.11 and 5.12 afford us a clearer view 

of the relative efficiencies of these estimators. 
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TABLE 5.12 

RF(o) FOR Y, VR, VRe.and MEST(17) 

Estimators 
Sample Sizes-)  Y VR VRe. MEST(17) 

4, 

n=10 0.067 0.098 0.375 0.460 

n=20 0.042 0.098 0.367 0.493 

It is clear from table 5.12 that MEST(17) performs better than y, 

VR and VRe.' quite often. 	So, one can recommend the use of 

MEST(17) instead of y, V
R and VRe.' It has also been seen through 

the finer comparisons of these estimators that MEST(17) is the 

most probable winner when G e [0.5, 1] and it takes a slight lead 

over VR when G > 1.0. 

In the table 5.13 given below, we tabulate the results of the 

empirical-simulation study for the comparison of y, Y
R, Rp.ab and 

Y(1)  

VR 

TABLE 5.13 

RF(o) FOR y, ''R' V)ab and  VVR RP.  

Estimators 
Sample Sizes-) 

4,  
- Y VR 

-(1) 
YRP.ab VVR 

n=10 0.095 0.107 0.508 0.290 

n=20 0.065 0.090 0.622 0.223 

Based on the results of the above table, we propose the mixing 

estimator for Y (1)Rp
.ab and VVR as 

	

MEST(18) = p7.YRp
(1
.ab + (1-p7).VVR 	...(5.9) 

where, p7=0.69 as per the results of table 5.13. Thus, V
(I) 
RP.ab 

performs better than y, Y
R and VVR' most often. 	So, we now 

proceed to compare MEST(18) with Y, V and VRp
(1) 	The results of 

	

R 	
ab' 

these comparisons are detailed below per table 5.14. Graphs 5.13 
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and 5.14 afford us a clearer view of the relative efficiencies of 

these estimators. 

TABLE 5.14 . 

RF(o) FOR Y,, R 
C
RP.
(1)ab and MEST(18) 

Estimators  
Sample Sizes

4  

4, 
R 

-1) 
yRP( .ab 

MEST(18) 

n=10 

n=20 

0.115 

0.075 

0.062 

0.070 

0.350 

0.412 

0.473 

0.443 

Table 5.14 indicates that MEST(18) performs better than y, 1111  and 

YRP.
)  

-(1ab. 	
(1 quite often 	We are thus able to improve YRpab in the 

form of mixing-type estimator MEST(18). This estimator performs 

exceptionally better than the other estimators when G e [0.5, 1]. 

It is also unbeaten more often when G > 1.0. 

In order to propose a mixing-type estimator of YRp(2)ab and 

"1  Re.' we compare the two in the presence of y and R via the 

empirical-simulation study. The results of these comparisons are 

tabulated below in table 5.15. 

TABLE 5.15 

RF(o) FOR Y,, C'
RP(2) 	and 7/Re. R 	.ab 

Estimators 
Sample SiSizes 

- y ciR 
(2) 
7/RP.ab 11 --'Re. 

4,  
n=10 0.047 0.088 0.462 0.403 

n=20 0.027 0.075 0.513 0.385 

Thus, the proposed mixing is: 

MEST(19) = p8' 	
) ab + (1-p

8
).C

Re. RP.  

where, p8=0.55 as per the results of table 5.15. 

...(5.10) 

-) Since, YRp(2.ab is 

the most probable winner in the above comparisons, we now compare 

MEST(19) with y, `1-
R and Y-(2)ab' The results of these comparisons RP.  
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are tabulated below in table 5.16 and the gain in the relative 

efficiency by using MEST(19) is also being displayed graphically 

per graphs 5.15 and 5.16. 

TABLE 5.16 

RF(o) FOR Y, ''R' VRP.
(2)ab and MEST(19) 

Estimators 
Sample Sizes 

 
- 
y V

R 
V(2) 
RP.ab MEST(19) 

4, 
n=10 0.110 0.092 0.358 0.440 

n=20 0.062 0.058 0.460 0.420 

One can infer from the above table that MEST(19) performs better 

than the other estimators for relatively smaller sample sizes (n = 

10). It has also been noticed that it is unbeaten most often when 

G E [0, 0.5]. 

(2) Now, we propose a mixing-type estimator for 
YRpab and V . VR 

First, we carry out the empirical-simulation study to compare the 

- - -(2 estimators y, Y
R' YRp.

)  
ab and YVR. Table 5.17 contains the results 

of this study. 

TABLE 5.17 

n  RF(o) FOR Y, YR, Y -(2)Rp.ab and  VVR 

Estimators 
Sample Size s4  

.1,  
Y V VR 

(2) V 
RP.ab • 

VR 

n=10 

n=20 

0.115 

0.057 

0.080 

0.068 

0.560 

0.685 

0.245 

0.190 

Thus, we propose the mixing-type estimator for YRp(2)
ab and VVR to 

be 

MEST(20)= p . V(2) 
9 RP.ab (1-P9)SIVR 

where, p9=0.74 as per the results of table 5.17. Now, we perform 

the empirical-simulation study for comparing MEST(20) with y, Y
R 

...(5.11 ) 
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and Y(
RP .ab.  

The results of this study are tabulated below in 

table 5.18 and the relative efficiencies of the estimators being 

displayed through graphs 5.17 and 5.18. 

TABLE 5.18 

RF(o) FOR y, V
R' 
0
RP .
) ab and MEST(20) 

Estimators 4  
Sample Sizes4, 

- 
y 

V
R 

(2) 

YRP.ab 
MEST(20) 

n=10 

n=20 

0.115 

0.042 

0.045 

0.063 

0.325 

0.385 

0.515 

0.510 

Above table is the indicative of the fact that MEST(20) is an 

- efficient mixing of YRp(2)
ab 

and V 	It turns out to be winner, 

quite often when compared with y, 	and 
V)ab. 

 it has also been 
RP.  

revealed through the finer comparisons of -(2) 
and 

7111' YRP.ab 

MEST(20) that MEST(20) performs better more often than the other 

estimators for the whole range of G considered by us. 

The last mixing-type estimator for the positive correlation 

Case has been proposed by using Vile.  and Y. We first compare 

VRe.and VvR  in the presence of the usual estimators y and YR. 

Table 5.19 contains these results. 

TABLE 5.19 

RF(o) FOR Y, VR, VRe.  and VvR  

Estimators 
Sample SSizes 

1 
Y V

R V 
Re. 

V
VR 

n=10 

n=20 

0.037 

0.060 

0.088 

0.095 

0.632 

0.660 

0.243 

0.185 

Thus, we propose the following mixing-type estimator. 

MEST(21) = PlO' VRe. 	(1-1310).VVR 
	...(5.12) 

where, 1)10=0.75 as per the results of table 5.19. Thus, Y
Re. is 

a 
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the most probable winner when compared with Y, 7IR  and ivR. So, we 

now compare MEST(21) with y, YR  and cfRe.. 	The results of the 

empirical-simulation study for these comparisons are tabulated 

below in table 5.20 and displayed per the graphs 5.19 and 5.20. 

TABLE 5.20 

RF(0) FOR 
	

'1R' 
	and MEST(21) 

.4  
Sample Sizes R Re. 

- MEST(21) 

n=10 

n=20 

0.100 

0.050 

0.085 

0.075 

0.307 

0.380 

0.508 

0.495 

Estimators 

Above table indicates that MEST(21) is the winner more often when 

compared with y, YR  and C'Re.. So, it is also an efficient mixing 

of `iRe. 
and 1/vR. This mixing performs better than y, "1iR  and '711e.  

much more often for those cases when G > 0.5. 

5.1.2 MIXINGS WHEN p < 0 : 

The parent-estimators for this case have been given in 5.2. 

The different mixing-type estimators for these parent estimators 

are being proposed in this sub-section. 

We propose the first mixing-type estimator in this 

sub-section as a mixing of 17Re. and  "7'VSa.  . 	
For deciding the 

weights of "file. andVSa in the proposed mixing, we first compare 

y' 
YP' YRe. and '7VSa. 

 . The results of these comparisons are given 

below in table 5.21. TABLE 5.21 

RF(.) FOR y, Crp, YRe.  and VSa. 

Estimators 
Sample Sizes4 -- , VI, Trs, e. 

Ni  VSa. 
4, 

n=10 0.042 0.100 0.343 0.515 

n=20 0.032 0.073 0.420 0.475 
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Based on the above results, we propose the following mixing-type 

estimator. 

MEST(22) = n1."1Re. 
+ (1-n1  ).crVSa. 	

...(5.13) 

where, 
n1
=0.44. This value of 'n1

' suggests that SiVSa is a more . 

probable winner when compared with 	and 17Re.
. So, we now 

carry out the empirical-simulation study for comparing y, P' 

Y
VSa. and MEST(22). Table 5.22 contains the results of this study 

and graphs 5.21 and 5.22 afford us a clearer view of the 

relative efficiencies of these estimators. 

TABLE 5.22 

RF(o) FOR T,1 17 - 	V  I/ P' Se- and MEST(22) 

Estimators 4 Sample Sizes 
.i. 

y-  "ip i VSa. MEST(22) 

n=10 

n=20 

0.030 

0.035 

0.098 

0.077 

0.392 

0.343 

0.480 

0.545 

We note from the above table that MEST(22) turns out to be more 

efficient than y, YP  and iVSa.'  more often. So, we can recommend 

the use of MEST(22) instead of Vile.  and Vvsa.. It has also been 

observed through the finer Comparisons of the estimators that 

MEST(22) performs exceptionally good when G e [-1, 0.51 and takes 

a slight lead over 17 for those cases when G < -1.0. 

Now, we take up the simulation study for the comparison of 

the estimators y, crp, Re. and YME. Table 5.23 contains the 

results of this study. 
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TABLE 5.23 

RF(0) FOR y, YP, VRe.  and `imp  

Estimators 4  
Sample Sizes 

cri, V 
Re. 

V 
MP 

4. 

n=10 0.060 0.107 0.570 0.263 

n=20 0.052 0.100 0.660 0.188 

The above table indicates that 	performs better than V 
MP' 

A mixing-type estimator for V
Re. 

and V 	can be 
MP 

...(5.14) 

where, n2=0.73 as per the results of the table 5.23. We compare 

this estimator MEST(23) with Vile.  and the usual estimators y and 

V . The results of this study are being tabulated in table 5.24. 

Graphs 5.23 and 5.24 contain a clearer view of the relative 

efficiencies of these estimators. 

TABLE 5.24 

RF(o) FOR y, Vp, Vile.  and MEST(23) 

Estimators 
Sample Sizes4 Tip C'Re MEST(23)  

4,  
n=10 0.085 0.122 0.433 0.360 

n=20 0.052 0.100 0.413 0.435 

One can observe from the above table that MEST(23) will be a 

better choice than y, V and V
Re. 

for relatively larger 

sample-sizes(n=20, here) and for this case it beats the other 

estimators, quite often when G e (-1, -0.5] or G < -1.0. It does 

also perform better than y, clp  and VRe.  when G E [-1, -0.5] and 

n=10. 

Now, we propose a mixing-type estimator of V
Re. and Y(1) RP.ab.  

quite often. 

proposed to be: 

MEST(23) = n
2.VRe. + (1-n2).Ymp  
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For this, we first carry out the simulation study to compare y, 

P' 
`iRe. and q;.).ab

. Table 5.25 contains the results of this 

study. 

TABLE 5.25 

RF(o) FOR Y, 71 	"I 	and r1
RP
(1)  

P' Re. 	.ab 

Estimators 4 
Sample Sizes 

- - ri p -i Re. RP.ab  
-(1) 

4, 

n=10 0.065 0.145 0.595 0.195 

n=20 0.037 0.113 0.562 0.288 

Based on the above results, we propose the following mixing-type 

estimator. 

MEST(24) = n3Re. 
+ (1-n ) "17)  

3 • RP.b 

where, n3=0.71 as per the results of table 5.25. Since YRe  is the 

most probable winner when compared with y, 7ip  and `i
) 

RP.ab' we now 

compare MEST(24) with y, YP  and Ti
Re

. 	The results of these 

comparisons are contained in table 5.26 and the graphs 5.25 and 

5.26 give us a more comprehensive view of the relative 

efficiencies of these estimators. 

TABLE 5.26 

RF(°) FOR y, YP, 'Tirte  and MEST(24) 

Estimators 
9 

Sample Sizes 
4, 

y-  "1 ' 
P 7Re. MEST(24) 

n=10 

n=20 

0.070 

0.057 

0.197 

0.138 

0.453 

0.407 

0.280 

0.398 

Above table is indicative of the fact that the mixing-type 

estimator MEST(24) is very often not more efficient than the other 

estimators in competition. 	It has also been observed that 

MEST(24) performs good only for those cases when G e [-0.5, 0]. 

...(5.15) 
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Now, we proceed to propose a mixing-type estimator for Vile.  

and VP a  . 	
The results of the empirical-simulation study for 

.  

comparing- y, Yp, VRe.  and VP a 
 are being tabulated below in table 

5.27. 

TABLE 5.27 

Rr(0) FOR  
Y,Y

P
,CfRe. and 7IP.a 

Estimators 
Sample Sizes-) 

1 
Y 
- 

Vp . V
Re: V P.a 

n=10 

n=20 

0.080 

0.067 

0.107 

0.105 

0.350 

0.388 

0.463 

0.440 

Relying on the results of table 5.27, we propose the following 

mixing of VRe.  and Vp.a. 

MEST(25) = n
4.VRe. + (1-n4).VP.a 	...(5.16) 

where, n4=0.45. The value of n4  suggests that VP 
a  is the most .  

probable winner amongst y, Yp  YRe,  andiVpa4 So, we now proceed 

to compare MEST(25) with Y, Sifp, and Vp.a. 	The results of the 

empirical-simulation study for these comparisons are tabulated 

below in table 5.28 and the relative efficiencies of these 

estimators are being displayed graphically per the graphs 5.27 and 

5.28. 

TABLE 5.28 

RF(0) FOR Y, Vp, Vp.a  and MEST(25) 

Estimators 
Sample Sizes--) - y Vp V 

P.a 1`iEST(25)  
4, 

n=10 0.000 0.067 0.008 0.925 

n=20 0.000 0.042 0.003 0.955 

From the above table, we observe that MEST(25) is simply an 

excellent mixing-estimator almost always. 
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Next, we propose a mixing-type estimator for 7Nsa.  and Y. 

The results of the empirical-simulation study for the comparisons 

of 	Cr 	
and `711p  are tabulated below in table 5.29. 

13'  

TABLE 5.29 

RF(*) FOR and riMP 

Estimators 
Sample Sizes 

4,  
-; '7,,, '- Y VSa. '7 MP 

n=10 

n=20 

0.032 

0.035 

0.090 

0.067 

0.650 

0.673 

0.228 

0.225 

Based on the results of the above table, we propose the 

mixing-type estimator for. 7VSa.  and  7MP 
 to be: 

MEST(26) = n5* C1VSa. + (1-n5).%)P 
	...(5.17) 

where, n5=0.75. 	This table also indicates that 17VSa.  is the 

winner more often when compared with y, V, and 17mp. So, we now 

compare MEST(26) with y, "1' andVSa.' 
	

The results of the 

empirical-simulation study carried out for these comparisons are 

contained in table 5.30. The graphs 5.29 and 5.30 afford us a 

clearer view of the relative efficiencies of these estimators. 

TABLE 5.30 

RF(0) FOR \■ 	'71/Sa. and MEST(26)  

Estimators 
Sample Sizes 4 

4,  

- y "li, 71 VSa. MEST(26) 

n=10 0.032 0.060 0.388 0.520 

n=20 0.040 0.055 0.395 0.510 

Table 5.30 indicates that MEST(26) is a more probable winner when 

compared with y, 1P  ' and 
"LVSa 

 . ' 	As such one could recommend the 

use of this mixing-type estimator instead of "i, "ii- 	"Tr 	and "7 P' VSa. 	MP' 

It has also been observed through the finer comparisons of these 
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estimators that MEST(26) comes out to be winner more often when 

compared with y, 7i p  and S'vsa.  when G < -0.5. 

In order to propose a mixing-type estimator of and 
VSa. 

- 11 Y
RP.ab
( 	' we now carry out the empirical-simulation study for 

and Y(1) 	Table 5.31 contains the comparing y, 
VP' VVSa. 

results of this study. 

TABLE 5.31 

RF(o) FOR y, 
VP' VVSa. and Y( RP.ab 

Estimators --) 
Sample Sizes 

4, 

- Y -./p, '711  
VSa. 

-(1) 
Y  RP.ab 

n=10 

n=20 

0.027 

0.035 

0.085 

0.075 

0.690 

0.560 

0.198 

0.330 

Following the results of table 5.31, we propose the following 

mixing-type estimator. 

(1 MEST(27) = n
6VSa. 

+ (1-n
6
).Y

Rpab 
...(5.16) 

where, n
6
=0.70. In order to show the betterment of MEST(27) over 

VSa.' which is the most probable winner of the comparisons of y, 

P' VVSa. 
and "1(R1)ab'  we compare the two in the presence of usual 

estimators y and '7
P* Table 5.32 contains the results of these 

comparisons. We have also displayed the relative efficiencies of 

these estimators through graphs 5.31 and 5.32. 

TABLE .5.32 

RF(0) FOR 
	

ivsa.and MEST(27) 

Estimatov!; 
4 Sample Sizes 
4, 

- 
y '- `l.  P "17  VSa. MEST(27) 

n=10 0.045 0.130 0.280 0.545 

n=20 0.052 0.103 0.297 0.548 

From the above table, one may conclude that MEST(27) performs 
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better. than y, V, and YVSa.,  quite often. So, it is an efficient 

mixing of Vvsa.  and V
) ab. It has also been observed through the 

RP.  

finer comparisons of P' VVSa. and MEST(27) that MEST(27) 

performs exceptionally good when G E [-1, 01. 

Now, we carry out the empirical-simulation study for 

comparing the estimators Y,
VP' VVSa. and 

 VP.a. Table 5.33 contains 

the results of this study. 

TABLE 5.33 

RF(o) FOR y,  \TIP' VVSa. and Vp.a  

Estimators 4 Sample Sizes 
4, 

i Cif  
P 

if'  VSa. Y 
P.a 

n=10 

n=20 	. 

0.035 

0.042 

0.115 

0.093 

0.570 

0.567 

0.280 

0.298 

Based on the results of the above table, we propose the mixing of 

VVSa. and VP a  to be: .  

MEST(28) 	 .(5.19) = n'T VVSa. 	(1-n7).VP.a 

where, n7=0.66. 	This mixing-type estimator MEST(28) is now 

compared with y, Cfp  and VVsa. 	The results of the 

empirical-simulation study carried out for these comparisons are 

tabulated below in table 5.34 and the relative efficiencies of the 

estimators in the competition has also been displayed graphically 

through graphs 5.33 and 5.34. 

TABLE 5.34 

RF(o) FOR y, 71p, Vvsa.and MEST(28) 

Sample Sizes-) i 
Estimators  

Vp  
V VSa. MEST(28) 

4. 

n=10 0.057 0.158 0.395 0.390 

n=20 0.057 0.115 0.378 0.450 
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From table 5.34, one can Observe that MEST(28) is rather an 

	

efficient mixing of "1 	71. 	and 
VSa. 	P.a' 

One might recommend the use 

of MEST(28) for relatively larger sample sizes. It has also been 

observed through the finer comparisons of y,  ITip,and VSa. 

MEST(28) that MEST(28) comes out to be winner much more often for 

those cases when G E (-1, -0.51. 

To propose a mixing-type estimator of %p  and "i
).ab, 

 we 

first compare y,
P' MP 

and  71)ab  taking together. Table 5.35 
RP.  

contains the results of the empirical-simulation study carried out 

for these comparisons. 

TABLE 5.35 

-(1) 
RF(°) FOR Y,if YP

, MP 
 and  YRp

.ab 

Estimators 
Sample Sizes

4 
- 
y `Tr 

P 
- `I-' 
MP 

-(1) 
YRP.ab 

4, 

n=10 0.155 0.162 0.395 0.288 

n=20 0.110 0.120 0.282 0.488 

Based on the results of the above table, we propose the mixing of 

MP 
and c,(1

RP
) ab to be: 
.  

MEST(29) = n
8
. )711p  + (1-n

8 
 ).'7/(1

RP
)
ab 	

...(5.20) 

where, n8=0.47. The value of n
8
(=0.47) suggests that YRp

(1)
ab is a 

more probable winner in the comparisons of y, Y , '714p  and 'Cr")   . 
RP.ab 

So, we now take up the empirical-simulation study to compare 

MEST(29) with y, cl and 1
1) 

ab' Table 5.36 contain the results of 
RP.  

this study. We have also presented the relative efficiencies of 

these estimators through graphs 5.35 and 5.36. 
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TABLE 5.36 

RF(o) FOR Y, c/ 
P, 
	 )

ab 
 and. MEST(29) 

RP.  

Estimators
Sample Sizes

4 
-  
y -17p 

-(1) 
YRP.ab 

MEST(29) 

.1 

n=-10 -  0.220 0.227 0.245 0.308 

n=20 0.115 0.137 0.380 0.368 

We can conclude from the above table that MEST(29) comes out 

- - 	-(ly

ab' to be winner when compared with y, Y and YRP 	
quite often, for 

.  

relatively smaller sample-sizes. 	It has also been seen that 

MEST(29) performs exceptionally better than y, `i and `141)ab 
 when 

RP.  

G E (-1,-0.5]. 

In the table 5.37 below, we tabulate the results of the 

empirical-simulation study carried out for comparing y, cfp, Ymp  

and `7 
P.a.  

TABLE 5.37 

RF(o) FOR y, YP, imp  and Y.  
P.a 

Estimators 
Sample Sized

4 
- 
y Sip  "- i 

MP 
"I 
P. a 

4,  

n=10 0.040 0.132 0.355 0.473 

n=20 0.045 0.170 0.230 0.555 

Relying on the results tabulated above, we propose the following 

mixing of "imp  and "ip.a. 

MEST(30) = n
9
Jimp  + (1-n

9
).17

P.a 
	...(5.21) 

where, n9=0.36. Table 5.37 also indicates that 1/p .a  is the winner 

here, quite often. So, we now proceed to compare MEST(30) with 

cr 
andP.a.  The results of these comparisons are tabulated below 

in table 5.38 and the graphs 5.37 and 5.38 afford us a clearer 

view of the relative efficiencies of these estimators. 
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TABLE 5.38 

RF(o) FOR y, YP, ‘712,. a  and MEST(30) 

Estimators 
4 Sample Sizes 
4, 

- i' l, cf.  P.a MEST(30) 

' n=10 

'n=20 

_ 0.060 	 

0.052' 

0.127-, 

0.098 

0,335 

0.327 

0.478--  

0.423 

One can observe from the above table that we will gain in the 

relative efficiency by the use of MEST(30) instead of y, cfp  and 

Pa. 	We have also observed through the finer comparisons of 

these estimators based on G-values that MEST(30) performs 

exceptionally better than the other estimators for those cases 

when -1 s G s -0.5. 

The last mixing of this type has been proposed by us by 

mixing the estimators RP.) 
ab and YP.a' 	We first tabulate below 

the results of the empirical-simulation study carried out for 

RF(o) FOR 

- 	• comparing y, Y  
c,(1)  

P RP.ab and 17p. a. 

TABLE 5.39 

Y' 'P' ' 
Zi(1
RP.
) 
 ab ans'

A  
 'P .a 

Estimators
Sample Sizes4 ' ,' cr  

P 
-(1) 
YRP.ab cr  

P.a 
4, 

n=10 0.062 0.180 0.118 0.640 

n=20 0.045 0.150 0.202 0.603 

Exploiting the knowledge of the performances of the estimators 

(1) 
YRP.ab and '7 	we propose the following mixing estimator. 

MEST(31) = n(1 	(1-n Lc,  1O
—„7,
RP.
)  
ab 	10 P.a ...(5.22) 

where, n
10=0.20 as per the results of table 5.39. Since c; 	is P.a 

- n  the most probable winner when compared to y, Y and Y-(1) u,
.ab, we now 

Carry out the empirical-simulation study for comparing MEST(31) 
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with y, cl", and `fpa. 	Table 5.40 contains the results of this 

study and graphs 5.39 and 5.40 afford us a clearer view of the 

relative efficiencies of these estimators. 

TABLE 5.40 

RF(0) FOR Y, Yp, c,p.a  and MEST(31) 

Estimators 
Sample Sizes

4 
- 
y 711, cr 

P.a 
MEST(31) 

4. 
n=10 0.072 0.138 	. 0.480 0.310 

n=20 0.045 0.112 0.393 0.450 

Table 5.40 indicates that MEST(31) is a more probable winner of 

the comparisons for relatively larger sample sizes when compared 

with jr, c,p  and c/P.a  . 
	It has also been observed that the 

performance of MEST(31) is exceptionally better than the other 

estimators in competition here for those cases when -1 	G ;5. -0.5. 

5.2 MIXINGS OF y, iril/ip  AND THE TWO PARENT-ESTIMATORS : 

As mentioned earlier, in this section we propose six linear 

combinations of Y, 
RP and the two parent-estimators. The cases 

of positive and negative correlations have been dealt with 

separately. 

5.2.1 MIXINGS WHEN p > 0 : 

For this case, as per 5.1, the three estimators will be 1lp.a, 

-(1) 
YRP.ab and 

-,(2) 
ab. 	In what follows, we propose their mixings RP.  

(taking two of them together) with y and YR. First, we propose the 

mixing of Y, YR, "T,p.a  and 711 1F. nab  to be: 

MEST(32) = e1.Y + f1R + g1. cfP.a  + h1 
51)ab 	... (5.23) RP.  

where, e1=0.05, 11=0.15, g1=0,46 as per the results of table 5.1 

and h
1
=1-(e

1:*
f
1
+g

1). 	Now, we carry out the empirical-simulation 

study for comparing MEST(32) with
R and 17P.a  . The results of 
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this study are tabulated below in table 5.41. 	We have also 

displayed the relative efficiencies of the estimators 

and MEST(32) graphically through graphs 5.41 and 5.42. 

TABLE 5.41 

Y, V V R' 	P. a 

RF(0) FOR Y, 	Vp.a  and MEST(32) 

Estimators 4  
Sample Sizes 

4, 

V
R VP.a 

MEST(32) 

n=10 

n=20 

0.072 

0.055 

0.110 

0.075 

0.530 

0.550 

0.288 

0.320 

According to table 5.41, one can say that the proposed mixing does 

not perform better than VP a 
 but through the finer comparisons of 

these estimators, we have observed that MEST(32) comes out to be 

winner more often when G E. [0.5, 1]. It also beats the ratio 

estimator much more often for those cases when G > 1.0. 

Now, we propose a mixing of Y, VR'  VP a 
 and Y 	This mixing, 

. 	RP. 
-(2)

ab.   

according to the results of table 5.3, comes out to be 

MEST(33) = e2'Y 	f2.17R 	“2RP.ab 
	...(5.24) 

where, e2
=0.04' f2

=0.12, g2=0.48 and h2
=1-(e2+f2+g2

). 	These 

weights suggest that VP a 
 is the most probable winner here. So, 

we compare MEST(33) with VP a 
 in the presence of the usual 

estimators y and YR. 	
Table 5.42 contains the results of these 

comparisons and graphs 5.43 and 5.44 afford us a clearer view of 

the relative efficiencies of these estimators. 

TABLE 5.42 

RF(o) FOR y, VR, Vp.a  and MEST(33) 

Estimators 
-) 

Sample Sizes 
4,  

- 
y VR 

V 
P.a 

MEST(33) 

n=10 0.042 0.135 0.543 0.280 

n=20 0.058 0.092 0.497 0.353 

117 



Series 1 for YR , Series 2 for i7p.a  and 
Series 3 for MEST(32) 

Frequency (Number of Cases) 

Relative Efficiency (Upper Limit) 

Mil Series 1 

    

 

Series 2 	>  Series 3 

  

Graph - 5.41 (Sample Size = 10, e > 0) 

Series 1 for VR , Series 2 for Vp.a  and 
Series 3 for MEST(32) 

300 
Frequency (Number of Cases 

250 

200 

150 

100 

50 

250 

200 

150 

100 

50 

78 153 	228 
4 12 12 	1 18 17 0.=777, 

378 	753 
Relative Efficiency (Upper Limit) 

11111 Series 1 

    

 

Series 2 

 

Series 3 

   

Graph - 5.42 (Sample Size = 20, e > 0) 

118 



14 27  18 	23 
2.1171:-.13 	4 10 11.  

264 

21 
206 

12 

73 73 86 

Frequency (Number of Cases 
250 

200 

150 

100 

50 

Series 1 for YR , Series 2 for YRa  and 
Series 3 for MEST(33) 

Frequency (Number of Cases 

75 	144 	213 	282 	351 	696 
Relative Efficiency (Upper Limit) 

MI Series 1 	Series 2 

  

 

Series 3 

 

Graph - 5.43 (Sample Size = 10, e > 0) 

Series 1 for 17R , Series 2 for Ypa  and 
Series 3 for MEST(33) 

68 	132 	196 	260 	324 	644 
Relative Efficiency (Upper Limit) 

11111 Series 1 	Series 2 

  

 

Series 3 

 

300 

250 

200 

150 

100 

50 

Graph - 5.44 (Sample Size = 20, e > 
119 



Table 5.42 indicates that we are again unable to improve YP a. But 

if we consider the finer comparisons of these estimators based on 

G-values, we can infer that MEST(33) performs exceptionally better 

than the other estimators when G E [0.5,1] and it strongly beats 

R 
when G > 1.0 and n=20. 

Based on the results of table 5.9, the mixing of y, 

YRP.
)  -(1ab 
	

-(2 
and Yisp.

)  
ab 

can be proposed to be : 

MEST(34) = e 	+ f 	+ a '7(1) 	+ h cr(2) 	...(5.25) 
3' 	3' R -3' RPab 	3' RPab 

where, e3=0.10, f3=0.10, g3=0.36 and h3=1-(e3+f3+g3). We have 

compared MEST(34) with YRP(2nthe  presence of usual estimators 
)
abi  

and 	via the empirical-simulation study. Table 5.43 contains 

the results of this study and graphs 5.45 and 5.46 afford us a 

clearer view of the relative efficiencies of these estimators. 

TABLE 5.43 

;/- 	v(2) and MEST(34) RF(o) FOR y, 
R' RP.ab 

Estimators
4 Sample Sizes - y -11

R 
-(2) 
YRP.ab MEST(34) 

4, 
n=10 0.102 0.083 0.447 0.368 

n=20 0.052 0.053 0.517 0.378 

Table 5.43 reveals that MEST(34) can not be taken to be an 

-(2 improvement over Ylip)
ab if we consider all the G-values 

simultaneously. But if we consider its finer comparisons with 

YR 	 - and Y(2)ab'  the behaviour of MEST(34) is similar to that of RP.  

MEST(32) and MEST(33). It also comes out to be winner more often 

for those cases when G e [0.5, 1]. 

5.2.2 MIXINGS WHEN p < 0 : 

For this case, according to 5.2, the three estimators will be 

11/Sa. and Y. We propose the following mixing estimators 
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Frequency (Number of Cases 

2) 
Series 1 for YR , Series 2 for YRRaband 

Series 3 for MEST(34) 

86 	167 	248 	329 	410 	815 
Relative Efficiency (Upper Limit) 

11111 Series 1 	Series 2 

 

Series 3 

 

Graph - 5.45 (Sample Size = 10, e > 0) 
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using Y, YVSa. 
and Y. The mixing estimator of 

iRe. 
and 

 iVSa, 
 can be proposed to be 

MEST(35) = e
4 	

+ f
4P 

 + 
g4Re.  + h4VSa. 	

...(5.26) 

where, e
4
=0.04, f

4
=0.09, g

4
=0.

3
8 and h

4
=1-(e

4
+f
4
+g
4
). 	These 

values of 'e4', 'f4' and 'g
4
' are based on the results of table 

5.21.  Now, we compare this mixing MEST(35) with iv5a.  (which is 

the more probable winner according to the results of table 5.21). 

Table 5.44 contains the results of the simulation study for 

comparing Y,
t."7VSa. 	

MEST(35). ST(35). We can also have a better 

view of the relative efficiencies of these estimators through 

graphs 5.47 and 5.48. 

TABLE 5.44 

RF(o) FOR y, 'p' VSa. 
 and MEST(35) 

Estimators 4 
Sample Sizes 

4. 

i c( 
P 

17  
VSa. 

MEST(35) 

n=10 

n=20 

0.037 

0.037 

0.093 

0.060 

0.405 

0.380 

0.465 

0.523 

One can infer from table 5.44 that MEST(35) is more efficient than 

the other estimators in competition. So, we can recommend the use 

of MEST(35) instead of "IVSa, and also instead of 
iRe.. 

 The finer 

comparisons of these estimators based on G-values reveal that 

MEST(35) performs exceptionally better than the other estimators 

for the cases when G < -0.5. 

Exploiting the knowledge of the results tabulated in 5.23, we 

propose the following mixing estimator, 

MEST(36) 
e5';' fOP g0Re. h5.%P 	...(5.27) 

where, e5=0.06, f5=0.10, g5=0.61 and h5=1-(e5+f5+g5). We have 

compared MEST(36) with y, 1?1:. and crile.  via the empirical-simulation 
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study. 	Table 5.45 below contains the results of this study. 

Graphs 5.49 and 5.50, which present a clearer view of relative 

efficiencies of these estimators, show the gain in the relative 

efficiency by the use of MEST(36). 

TABLE 5.45 

RF(o) FOR Y,  VRe.  and MEST(36) 

Estimators 

s-)  Sample Size 

- 

 

- 

V 
P 

VRe. MEST(36) 

4.  

n=10 0.075 0.115 0.415 0.395 

n=20 0.047 0.093 0.472 0.388 

We observe from table 5.45 that MEST(36) is not more efficient 

than YRe but it is still a better choice than 	and VI,. 

Nevertheless finer comparisons reveal that MEST(36) performs 

better, quite often than y, V and VRe. when G E [-1, -0.5]. 

Now, based on the results of table 5.29, we propose the 

mixing of 	

VP'  VVSa. and 

VMP to be : 

ME

ST(37) = e

6

. 	

f6.VP gOVSa. 	hOMP 	

...(5.28) 

where, e

6

=0.03, f

6

=0.08, g

6

=0.66 and h

6

=1-(e

6

+f

6

+g

6

). It is clear 

from these values that VVSa, is the most probable winner here. 

So, we now proceed to compare MEST(37)' with VVSa. in the presence 

of the usual estimators and and Y,. Table 5.46 contains the results 

of these comparisons and the graphical display of the relative 

efficiencies of these estimators has been afforded through graphs 

5.51 and 5.52 which show a slight gain in the relative efficiency 

by the use of MEST(37). 
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TABLE 5.46 

RF(0) FOR v
CI 	

MEST(37) F" CVSa. and  

Estimators 
Sample Sizes-) 

4. 
y - 71/, 

"! VSa. MEST(37)  

n=10 

n=20 

0.035 

0.047 

0.060 

0.050 

0.450 

0.468 

0.455 

0.435 

One can make the inference from table 5.46 that MEST(37) performs 

better, quite oftener, than y and ip and it is a close competitor 

of `1VSa.  . 	When we take up the finer comparisons of these 

estimators, we observe that the behaviour of MEST(37) is almost 

similar to that of MEST(35) and MEST(36). 	It comes out to be 

winner more often for those cases when G < -0.5. 
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CHAPTER - 6 

FINER COMPARISONS OF THE ESTIMATORS 

In this chapter, we have attempted a more detailed and finer 

comparison of the estimators which are the winners as per the 

empirical-simulation study detailed earlier. 	To get a more 

comprehensive idea of the asymptotic behaviour of the efficiencies 

of the estimators, we have here included the case of n=50 into our 

empirical-simulation study. To facilitate the finer comparisons, 

we have considered a larger number of values of Y, namely, 0.1, 

0.3, 0.5, 0.7, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0 and 12.0. 	Thus, 

we have considered here twelve values of `i rather than two as 

earlier. Analogously, we have considered four values each of Tx  
and (Ty, namely, ax= 0.5, 1.0, 2.0, 3.0 and ay=1.0, 2.0, 4.0, 6.0 

rather than two values each in the earlier empirical-simulation 
study. 	Consequently;  the total number of parametric 
value-combinations blows up to 57,600 rather than 2,400 as in 

earlier empirical-simulation studies. 

Next, to make the finer details more comprehensive, we have 

128 



tabulated the results for various ranges of the values of the 

parameter 'G' vis-a-vis particular values of p and n. For this 

purpose, we here have considered five subintervals, namely, Gil: 0 

s G s 0.5; GI2: 0.5 < G s 1.0; GI3: 1.0 <G 	2.0; GI4: 2.0 < G s 

3.0 and GIS: G > 3.0 when p > 0 and five subintervals, namely, 

GI6: G < -3.0; GI7: -3.0 s G < -2.0; GI8: -2.0 s G < -1.0; GI9: 

-1.0 s G < -0.5 and GI10: -0.5 s G s 0 when p < 0. 	In this 

chapter also, we have dealt with the two cases of positive and 

negative correlations separately. Moreover, we have not included 

all the estimators proposed till this chapter in the final 

'comparisons but we have considered five best parent-estimators ; 

five mixings when the parent-estimators are mixed with y ; five 

mixings when the two parent-estimators are mixed with one another 

; two mixings when the two parent-estimators are mixed with y and 

S17
RP 

and the usual estimators y and `I1R
/11/
P 	

Thus, we have 19 

'estimators for the positive correlation case and other 19 

estimators for the negative correlation case in the competition. 

6.1 COMPARISONS WHEN p > 0 : 

We first carry out the empirical-simulation studies for 

deciding the estimators which are to be included in the final 

comparisons when p > 0. 	We have observed through different 

empirical-simulation studies that for this case, we will have to 

consider the following 19 estimators into our study. 

(a) Usual estimators : y and 
 

(b) Parent-estimators: 	;1?( 1) 	-(2) IT' 	"1-/VR P.a ' RP.ab' YRP.ab' Re. and  

(c) Mixings, when parent-estimators are mixed with y 
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: MEST(5), MEST(11), MEST(10), MEST(7) and 

MEST(3) 

(d) Mixings, when two parent-estimators are mixed with one 

another 

: MEST(15), MEST(21), MEST(14), MEST(20) 

and MEST(18) 

(e) Mixings, when two parent-estimators are mixed with y and "IR  

: MEST(34) and MEST(33) 

Now, we compare the above mentioned nineteen estimators 

through the empirical-simulation studies. 	Tables 6.1 to 6.15 

contain the results of these studies. As mentioned earlier, we 

have tabulated these results for various ranges of G-values 

vis-a-vis a particular value of p and sample size 'n'. 	In the 

following tables, we have highlighted the winning estimator by 

bold-facing the entity corresponding to that estimator. 



TABLE 6.1 

RF(o) FOR THE ESTIMATORS WHEN p = 0.2 AND n = 10. 

Subintervals 

Estimators y 
Gll G12 G13 G14 G15 

0.095 0.009 

R 

P. a 0.098 

-(1)  
RP.ab 0.073 0.047 
-(2)  
RP. ab 0.055 0.019 0.013 

`i
Re. 

0.0670 

311
VR 

0.059 0.009 

MEST(5) 0.125 

MEST(11) 0.043 0.038 0.013 

MEST(10) 0.064 0.142 0.037 

MEST(7) 0.047 0.557 0.800 0.970 0.962 

MEST(3) 0.050 

MEST(15) 0.035 

MEST (21) 0.047 0.025 

MEST(14) 0.003 0.013 

MEST(20) 0.032 0.028 0.025 

MEST(18) 0.036 0.066 0.050 0.030 

MEST(34) 0.052 0.047 

MEST(33) 0.019 0.038 0.062 
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TABLE 6.2 

RF(o) 

Subintervals 
-) 

Estimators y  

R 

P. a 
-(1) YRp.ab 
Y(2) 

 RP.ab 
11
Re. 

VR 

MEST(5) 

MEST(11) 

MEST(10) 

MEST(7) 

MEST(3) 

MEST(15) 

MEST(21) 

MEST(14) 

MEST(20) 

MEST(18) 

MEST(34) 

MEST(33) 

FOR THE ESTIMATORS WHEN p = 0.2 AND n = 20. 

Gil 	GI2 	GI3 	G14 

0.086 	0.009 	- 

0.001. 	0.009 	- 

0.088 	0.009 	- 

0.070 	0.057 	- 

0.065 	0.028 	0.025 

0.103 	- 	- 

0.042 	0.009 	0.012 	- 

0.127 	0.009 	- 

0.050 	0.047 	0.025 

0.098 	0.151 	0.113 

0.024 	0.462 	0.688 	0.970 

0.059 	0.009 	- 	- 

0.020 	- 	- 	- 

0.045 	- 	- 	- 

0.001 	- 	- 	- 

0.029 	0.038 	0.037 	- 

0.029 	0.066 	0.037 	- 

0.039 	0.028 	- 

0.024 	0.069 	0.063 	0.030 

GI5 

0.963 

- 

- 

0.012 

0.012 

- 

0.013 
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GI4 
	

GI5 

-  - 

-  - 

0.029  - 

0.147  0.012 

0.588 	0.925 

- 	- 

- 0.012 

- - 

-  - 

0.029  - 

0.118  0.012 

0.029  - 

0.060  0.03A 

TABLE 6.3 

RF(0) 4-OR THE .  ESTIMATORS WHEN p = 0:2 AND n = 50. 

Subintervals 

Estimators 4, 

R 

P. a 
(1)  
YRP.ab 
(2)  
YRP.ab 

"i
Re. 

VR 

MEST(5) 

MEST(11) 

MEST(10) 

MEST(7) 

MEST(3) 

MEST(15) 

MEST(21) 

MEST(14) 

MEST(20) 

MEST(18) 

MEST(34) 

MEST(33) 

Gil 

0.100 

0.057 

0.103 

0.076 

0.120 

0.039 

0.100 

0.045 

0.129 

0.003 

0.044 

0.003 

0.029 

0.003 

0.044 

0.036 

0.036 

0.033 

GI2 

0.019 

0.009 

- 

0.123 

'0.075 

0.009 

0.009 

0.009 

0.057 

0.160 

0.198 

0.038 

- 

- 

0.009 

0.038 

0.085 

0.047 

0.115 

GI3 

- 

- 

0.050 

0.050' 

- 

- 

0.050 

0.087 

0.438 

- 

- 

- 

- 

0.062 

0.100 

0.062 

0.101 
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TABLE 6.4 

RF(o) FOR THE ESTIMATORS WHEN p = 0.4 AND n = 10. 

Subintervals 

Estimators 4, 

VR 

V P.a 
(1) 
YRP.ab 

V(2) RP.ab 

V' Re. 

V VR 

MEST(5) 

MEST(11) 

MEST(10) 

MEST(7) 

MEST(3) 

MEST(15) 

MEST(21) 

MEST(14) 

MEST(20) 

MEST(16) 

MEST(34) 

MEST(33) 

Cu 

0.004 

- 

0.083 

0.072 

0.079 

0.109 

0.079 

0.105 

0.079 

0.125 

0.007 

0.035 

0.059 

0.059 

0.011 

0.026 

0.028 

0.026 

0.014 

GI2 

0.008 

0.017 

0.017 

0.042 

0.051 

- 

0.119 

0.008 

0.119 

0.144 

0.212 

0.025 

0.008 

- 

- 

0.068 

0.085 

 0.042 

0.035 

GI3 

- 

- 

- 

0.019 

0.009 

- 

0.057 

- 

0.085 

0.170 

0.547 

- 

0.028 

- 

- 

0.028 

0.019 

0.038 

GI4 

- 

0.020 

- 

- 

0.039 

- 

- 

- 

0.059 

0.706 

- 

0.020 

- 

0.020 

0.059 

0.059 

0.018 

GIS 

0.007 

- 

- 

- 

- 

0.014 

0.007 

0.951 

- 

- 

0.007 

0.007 

0.007 
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TABLE 6.5 

RF(0) 

Subintervals 

Estimators y  

FOR THE ESTIMATORS WHEN p = 0.4 AND n = 20. 

Gil  GI2  GI3  GI4 GI5 

0.002 0.008 0.020 

Si
R 0.002 0.042 - - 0.007 

32P a  
0.092 - 0.019 - - 

(1) 
YRP ab 0.081 0.068 0.028 - - 

"i
RP.
(2) 

ab 

i
Re. 

0.074 

0.138 

0.034 

0.025 

0.019 

0.009 0.020 0.007 

i;
VR 0.042 0.119 0.057 - - 

MEST(5) 0.081 0.008 - - 0.007 

MEST(11) 0.063 0.169 0.113 - 0.007 

MEST(10) 0.172 0.127 0.142 0.137 

MEST(7) - 0.110 0.406 0.627 0.909 

MEST(3) 0.037 0.059 0.009 - - 

MEST(15) 0.039 0.025 0.028 0.20 0.028 

MEST(21) 0.050 - 0.028 - 0.007 

MEST(14) 0.006 0.008 0.009 0.020 0.007 

MEST(20) 0.029 0.093 0.047 0.098 0.014 

MEST(18) 0.033 0.076 	• 0.057 0.058 0.007 

MEST(34) 0.031 0.017 0.019 

MEST(33) 0.028 0.012 0.010 
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TABLE 6.6 

RF(o) 

Subintervals 

Estimators 4, 

FOR THE ESTIMATORS WHEN p = 0.4 AND n = 50. 

Gil  G12  G13  GI4 015 

0.004 0.009 

c/
R 

- 0.042 0.009 0.039 0.007 

1  1
P.a 

0.088 0.008 - 0.019 - 

-  1 
(ab 
Y
RP.
)  

0.077 0.169 0.066 0.039 - 

-(2) 0.007 
YRP .  ab 

0.072 0.042 0.075 - 

-17
Re. 

0.148 0.017 0.028 0.019 0.007 

`i
VR 

0.037 0.085 0.047 - - 

MEST(5) 0.087 0.025 0.019 - - 

MEST(11) 0.061 0.161 0.075 0.059 - 

MEST(10) 0.173 0.127 0.141 0.137 0.021 

MEST(7) 0.004 - 0.179 0.353 0.727 

MEST(3) 0.033 0.025 - 

MEST(15) 0.046 0.034 0.057 0.078 0.056 

MEST(21) 0.042 0.025 0.009 - - 

MEST(14) 0.004 0.025 0.019 - - 

MEST(20) 0.033 0.119 0.113 0.176 0.105 

MEST(18) 0.026 0.076 0.113 0.078 0.063 

MEST(34) 0.046 0.010 0.018 - 0.007 

MEST(33) 0.019 0.010 0.023 
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TABLE 6.7 

RF(o) FOR THE ESTIMATORS WHEN p = 0.6 AND n = 10. 

Subintervals 

Estimators 4, 
Gil GI2 GI3 GI4 GI5 

- - - - - 

R - 0.015 0.043 0.065 0.005 

P. a 0.096 0.023 0.009 - - 
-(1)  
RP. ab 0.057 ,  0.053 0.009 - - 
-(2)  
RP. ab 0.063 - 0.017 0.016 - 

Re. 0.211 0.023 0.043 0.049 0.031 

VR 0.033 0.382 0.113 0.049 0.005 

MEST(5) 0.174 0.061 0.026 - - 

MEST(11) 0.052 0.046 0.017 - - 

MEST(10) 0.057 0.084 0.052 - - 

MEST(7) - 0.031 0.330 0.508 0.876 

MEST(3) 0.022 0.038 - - - 

MEST(15) 0.054 0.122 0.217 0.180 0.026 

MEST(21) 0.070 0.015 - - 0.010 
MEST(14) 0.054 0.015 0.026 0.049 - 

MEST(20) 0.011 0.015 0.043 0.033 0.026 
MEST(18) 0.013 0.023 0.035 0.033 0.021 
MEST(34) 0.019 0.015 0.010 0.016 - 
MEST(33) 0.014 0.039 0.010 - - 
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TABLE 6.8 

RF(o) FOR THE ESTIMATORS WHEN p = 0.6 AND n = 20. 

Subintervals 
--) 

Estimators 4, 

Y 

Gil 

- 

G12 

- 

GI3 

- 

G14 G15 

R 
- 0.031 0.026 0.065 0.015 

15.P a  0.096 0.084 0.043 - - 

-(1) 
YRP.ab 

0.067 0.031 0.026 - - 

-(2 
YRP.

) 
 ab 

0.076 - 0.008 - 0.010 

V(
Re. 0.178 0.046 0.078 0.016 0.046 

•T"
VR 0.019 0.244 0.069 0.033 0.005 

MEST(5) 0.166 0.038 0.043 0.049 - 

MEST(11) 0.061 0.046 0.017 - 0.005 

MEST(10) 0.094 0.076 0.087 0.033 - 

MEST(7) - 0.008 0.183 0.426 0.763 

MEST(3) 0.024 0.008 - - - 

MEST(15) 0.059 0.214 0.296 0.213 0.108 

MEST(21) 0.052 0.031 0.035 - 0.005 

MEST(14) 0.035 0.008 0.017 0.016 0.005 

MEST(20) 0.004 0.023 0.008 0.082 0.005 

MEST(18) 0.015 0.053 0.026 0.016 0.015 

MEST(34) 0.037 0.023 0.026 0.016 0.005 

MEST(33) 0.015 0.038 0.008 0.033 0.010 
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TABLE 6.9 

RF(0) FOR THE ESTIMATORS WHEN p = 0.6 AND n = 50. 

Subintervals 

Estimators 4, 
Gil 

- 

GI2 

- 

0.030 

G13 GI4 GI5 

`1?
R 

- 

0.035 

- 

0.033 0.010 

P. a 0.104 0.084 0.052 0.033 - 
(1)  
YRP.ab 0.076 0.030 0.061 0.033 - 
(2)  
YRP.ab 0.074 - 0.008 - 0.005 

YRe. 0.168 0.046 0.113 0.164 0.051 

VR 0.022 0.244 0.061 0.016 - 

MEST(5) 0.157 0.038 0.043 0.016 0.005 

MEST(11) 0.076 0.046 0.035 0.033 - 

MEST(10) 0.089 0.076 0.069 0.016 - 

MEST(7) - 0.008 0.008 0.115 0.774 

MEST(3) 0.009 0.008 - - - 

MEST(15) 0.030 0.214 0.270 0.279 0.108 

MEST(21) 0.081 0.030 0.026 - 0.005 

MEST(14) 0.022 0.008 0.043 0.049 - 

MEST(20) 0.015 0.023 0.061 0.049 0.005 

MEST(18) 0.019 0.053 0.061 0.082 0.021 

MEST(34) 0.039 0.023 0.043 0.049 0.005 

MEST(33) 0.017 0.038 0.008 0.033 0.010 
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TABLE 6.10 

RF(o) FOR THE ESTIMATORS WHEN p = 0.8 AND n = 10. 

Subintervals 
-3 

Estimators y  

R 

"17  P.a 
(1) 
YRP.ab 
Y( 
- 
RP. ab 

YRe. 

VR 

MEST(5) 

MEST(11) 

MEST(10) 

MEST(7) 

MEST(3) 

MEST(15) 

MEST(21) 

MEST(14) 

MEST(20) 

MEST(18) 

MEST(34) 

MEST(33) 

Gil 

- 

0.087 

0.032 

0.037 

0.277 

0.006 

0.182 

0.045 

0.022 

- 

0.007 

0.017 

0.130 

0.115 

0.007 

0.002 

0.010 

0.023 

GI2 

' 	0.049 

- 

0.021 

0.021 

0.085 

0.170 

0.035 

0.071 

0.057 

- 

0.014 

0.071 

0.206 

0.028 

0.071 

0.035 

0.028 

0.035 

GI3 

0.093 

- 

0.042 

0.042 

0.144 

0.034 

- 

0.042 

0.017 

0.085 

- 

0.085 

0.068 

0.025 

0.127 

0.076 

0.060 

0.060 

GI4 

0.046 

- 

0.062 

0.046 

0.138 

- 

- 

- 

0.031 

0.323 

- 

0.015 

0.015 

- 

0.015 

0.092 

0.062 

0.154 

GI5 

0.008 

- 

- 

- 

0.127 

- 

- 

- 

- 

9.694 

- 

0.013 

0.034 

- 

- 

- 

- 

0.123 
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TABLE 6.11 

RF(o) FOR THE ESTIMATORS WHEN p = 0.8 AND n.= 20. 

Subintervals 

Estimators ,, 

R 

`7" P.a 
Y(1 
RP

)
. 

-(2) 
RP. ab 

Si
Re. 

VR 

MEST(5) 

MEST(11) 

MEST(10) 

MEST(7) 

MEST(3) 

MEST(15) 

MEST(21) 

MEST(14) 

MEST(20) 

MEST(18) 

MEST(34) 

MEST(33) 

Gil 

- 

0.105 

0.042 

0.070 

0.212 

0.005 

0.180 

0.077 

0.030 

- 

0.007 

0.022 

0.095 

0.077 

0.012 

0.005 

0.022 

0.038 

GI2 

0.092 

0.007 

0.028 

0.035 

0.043 

0.043 

0.043 

0.085 

0.043 

- 

0.007 

0.163 

0.142 

0.071 

0.064 

0.035 

0.035 

0.064 

GI3 

0.085 

- 

0.042 

0.068 

0.195 

0.034 

- 

0.034 

0.025 

- 

- 

0.102 

0.059 

0.034 

0.144 

0.051 

0.076 

0.051 

G14 

0.062 

- 

0.062 

0.077 

0.246 

0.015 

- 

0.015 

0.108 

- 

0.092 

0.077 

0.046 

0.015 

0.062 

0.046 

0.077 

G15 

0.008 

- 

0.004 

0.013 

0.183 

- 

- 

0.528 

- 

0.004 

0.034 

0.004 

0.008 

0.025 

- 

0.187 
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TABLE 6.12 

RF(o) FOR THE ESTIMATORS WHEN p = 0.8 AND n = 50. 

Subintervals 

Estimators 4, 

R 

V P.a 
-(1) 
RP. ab 

-V(2) RP. ab 

V Re. 

VVR 

MEST(5) 

MEST(11) 

MEST(10) 

MEST(7) 

MEST(3) 

MEST(15) 

MEST (21) 

MEST(14) 

MEST(20) 

MEST(18) 

MEST(34) 

MEST(33) 

Gil 

0.120 

0.052 

0.102 

0.147 

0.005 

0.177 

0.112 

0.037 

0.007 

0.027 

0.060 

0.040 

0.020 

0.007 

0.032 

0.052 

G12 

0.121 

0.021 

0.050 

0.057 

0.099 

0.021 

0.035 

0.071 

0.057 

0.135 

0.085 

0.064 

0.035 

0.035 

0.064 

0.050 

G13 

0.085 

0.008 

0.059 

0.051 

0.144 

0.008 

0.025 

0.034 

0.136 

0.085 

0.059 

0.068 

0.093 

0.068 

0.076 

G14 

0.046 

0.092 

0.046 

0.261 

0.015 

0.015 

0.031 

0.015 

0.061 

0.077 

0.046 

0.092 

0.046 

0.154 

G15 

0.008 

0.008 

0.155 

0.611 

0.008 

0.034 

0.013 

0.013 

0.150 
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TABLE 6.13 

RF(o) FOR THE ESTIMATORS WHEN p = 0.9 AND n = 10. 

Subintervals 
--) 

Estimators y  
Gil GI2 GI3 

0.156 

- 

0.049 

0.098 

0.230 

0.008 

- 

0.025 

0.008 

0.008 

- 

0.025 

0.074 

- 

0.115 

0.057 

0.082 

0.066 

GI4 

0.089 

- 

0.060 

0.030 

0.463 

- 

- 

0.015 

- 

0.045 

- 

- 

0.075 

- 

0.045 

0.060 

0.015 

0.104 

GI5 

0.008 

0.012 

0.341 

- 

- 

- 

0.008 

0.420 

0.031 

- 

0.004 

0.023 

0.153 

V
R 

V 
P.a 

Y(- 	1) 
RP.ab 

Y(- 2) 
RP. ab 

Re. 

YVR 

MEST(5) 

MEST(11) 

MEST(10) 

MEST(7) 

MEST(3) 

MEST(15) 

MEST(21) 

MEST(14) 

MEST(20) 

MEST(18).  

MEST(34) 

MEST(33) 

- 

0.029 

0.029 

0.037 

0.451 

0.003 

0.115 

0.043 

0.008 

- 

0.005 

- 

0.133 

0.099 

0.019 

0.013 

0.016 

0.071 

- 

0.035 

0.085 

0.113 

0.035 

0.028 

0.057 

0.028 

- 

- 

0.007 

0.298 

0.021 

0.092 

0.043 

0.064 

0.022 
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TABLE 6.14 

RF(o) FOR THE ESTIMATORS WHEN p = 0.9 AND n = 20. 

Subintervals 

Estimators 4, 

Ci
R 

`1f P.a 
-(1) 
YRP.ab 
Y(2 
RP
)
. 

`7Re. 

VR 

MEST(5) 

MEST(11) 

MEST(10) 

MEST(7) 

MEST(3) 

MEST(15) 

MEST(21) 

MEST(14) 

MEST(20) 

MEST(18) 

MEST(34) 

MEST(33) 

GI1 

- 

0.059 

0.035 

0.045 

0.408 

- 

0.144 

0.053 

0.016 

- 

- 

0.003 

0.077 

0.088 

0.021 

0.003 

0.021 

0.027 

GI2 

0.085 

- 

0.042 

0.042 

0.092 

0.028 

- 

0.128 

0.028 

- 

0.008 

0.028 

0.227 

0.050 

0.078 

0.057 

0.035 

0.071 

GI3 

0.156 

- 

0.082 

0.098 

0.238 

- 

- 

0.057 

0.008 

- 

- 

0.008 

0.041 

0.016 

0.164 

0.033 

0.049 

0.049 

GI4 

0.090 

- 

0.060 

0.060 

0.358 

- 

- 

- 

- 

0.015 

- 

- 

0.060 

0.030 

0.075 

0.045 

0.030 

0.179 

GI5 

- 

- 

0.012 

0.016 

0.384 

- 

- 

0.004 

0.012 

0.310 

- 

- 

0.027 

0.004 

0.004 

0.008 

- 

0.219 .  
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TABLE 6.15 

RF(o) FOR THE ESTIMATORS WHEN p = 0.9 AND n = 50. 

Subintervals 

Estimators 4, 
G11 G12 GI3 GI4 GI5 

0.099 0.107 0.060 0.004 
R 

0.056 0.007 
P. a 
-(1)  
RP. ab 

0.053 0.028 0.082 0.090 0.012 

-(2)  
RP.ab 

0.093 0.092 0.090 0.134 0.008 

"?Re. 0.237 0.135 0.246 0.343 0.361 

VR 
0.003 0.035 

MEST(5) 0.136 0.035 

MEST(11) 0.115 0.078 0.057 0.030 0.004 

MEST(10) 0.029 0.022 0.016 0.015 0.008 

MEST(7) 0.365 

MEST(3) 0.005 

MEST(15) 0.012 0.014 0.025 

MEST(21) 0.085 0.156 0.049 0.090 0.027 

MEST(14) 0.051 0.035 0.049 0.045 0.004 

MEST(20) 0.024 0.071 0.123 0.060 0.004 

MEST(18) 0.016 0.042 0.025 0.015 0.016 

MEST(34) 0.037 0.064 0.066 

MEST(33) 0.045 0.086 0.066 0.119 0.188 
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6.2 COMPARISONS WHEN p < 0 : 

,Here also, we first give the nineteen estimators which are to 

be included in the final comparisons. 

(a) Usual estimators : y and ip 

 
(b) Parent-estimators : 	 and .71 

71 

	

	
(1) 

1/Sa.' YMP' (1) Re. 	P.a 

(c) Mixings, when parent-estimators are mixed with 

MEST(7), MEST(9), MEST(6), MEST(5) and 

MEST(10) 

(d) Mixings, when two parent-estimators are mixed with one 

another 

: MEST(26), MEST(23), MEST(28), MEST(27) 

and MEST(22) 

(e) Mixings, when two parent-estimators are mixed with y and YP  

: MEST(35) and MEST(37) 

We have compared the above mentioned nineteen estimators 

through the empirical-simulation studies. Tables 6.16 to 6.30 

contain the results of these studies. The results have again been 

tabulated for various ranges of G-values vis-a-vis a particular 

value of p and sample size 'n'. Here also, we have highlighted 

the winning estimator by bold-facing the entity corresponding to 

that estimator. 
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TABLE 6.16 

RF(0) FOR THE ESTIMATORS WHEN p = -0.2 AND n = 10. 

Subintervals 
-4 

Estimators __,I, 
G16 G17 G18 GI9 GI10 

0.019 0.095 

YP  0.013 0.009 0.001 

■1
Re. 

0.063 - - - 0.052 

VSa. 
- - - 0.009 0.065 

MP - - - 0.019 0.006 

(1) 
11RP.ab 0,038 0.048 0.073 

P. a - - 0.068 

MEST(7) 0.012 - - - 0.042 

MEST(9) - - - - 0.059 

MEST(6) - - - - 0.209 

MEST(5) 0.800 1.000 0.821 0.562 0.061 

MEST(10) - - 0.077 0.190 0.092 

MEST(26) - - - - 0.039 

MEST(23) 0.113 - - - 0.039 

MEST(28) - - - - 0.012 

MEST(27) - - 0.051 0.143 0.047 

MEST(22) - - 0.009 

MEST(35) 0.012 - - - 0.026 

MEST(37) - 0.023 



TABLE 6.17 

RF(o) FOR THE ESTIMATORS WHEN p = -0.2 AND n = 20. 

Subintervals 
---> 

Estimators y  

cip  

GI6 G17 GI8 

- 

- 

GI9 

0.048 

0.009 

GI10 

0.097 

0.003 

'T/
Re. 0.012 - - 0.074 

VSa. - - • 0.073 

MP - 0.048 0.008 

(1) 
YRP.ab 0.038 0.086 0.098 

P. a 0.013 - 0.053 

MEST(7) - - 0.047 

MEST(9) - 0.009 0.094 

MEST(5) - 0.019 0.152 

MEST(5) 0.976 1.000 0.679 0.457 0.026 

MEST(10) 0.192 0.229 0.105 

MEST(26) - - 0.042 

MEST(23) 0.012 - - 0.012 

MEST(28) - 0.004 

MEST(27) 0.077 0.095 0.042 

MEST(22) - - 0.011 

MEST(35) - - 0.033 

MEST(37) - - 0.026 



TABLE 6.18 

RF(o) 

Subintervals 

Estimators 4  

FOR THE ESTIMATORS WHEN p 

G16 	G17 

= -0.2 AND 

018 

n = 50. 

GI9 GI10 

- - 0.013 0.048 0.098 

Yp 0.012 0.027 0.038 0.028 0.006 

`2Re. - - - - 0.073 

VSa. - - - 0.038 0.092 

MP - - - 0.019 0.005 

Y(1)  
RP. ab - 0.054 0.077 0.105 0.161 

P. a - 0.027 0.026 - 0.008 

MEST(7) - - - - 0.058 

MEST(9) - - - - 0.085 

MEST(6) - - - 0.038 0.089 

MEST(5) 0.938 0.541 0.397 0.229 0.001 

MEST(10) 0.50 0.216 0.269 0.343 0.147 

MEST(26) - - - - 0.020 

MEST(23) - - - - 0.017 

MEST(28) - - - - 0.003 

MEST(27) - 0.135 0.167 0.143 0.061 

MEST(22) - - - - 0.004 

MEST(35) - - - - 0.045 

MEST(37) - - - - 0.027 
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TABLE 6.19 

RF(o) 

Subintervals 

FOR THE ESTIMATORS WHEN p = -0.4 AND n = 10. 

-4 GI6 017 G18 GI9 GI10 
Estimators y 

- - - 0.026 0.007 

YP  0.014 0.077 0.095 0.017 - 

7Re. 0.119 - 0.010 0.017 0.081 

- - 0.010 0.093 0.070 
VSa. 

MP 
- 0.019 0.133 0.169 0.035 

Y(
-  1) 
RP. ab 

- - 0.010 0.017 0.063 

7 
P.a 

- 0.019 0.019 0.008 0.111 

MEST(7) 0.042 - - 0.017 0.072 

MEST(9) - - 0.010 0.085 0.087 

MEST(6) - - - 0.085 0.079 

MEST(5) 0.650 0.750 0.524 0.263 0.004 

MEST(10) - 0.038 0.124 0.093 0.100 

MEST(26) 0.038 - 0.026 0.090 

MEST(23) 0.147 - - 0.008 0.020 	. 

MEST(28) - - 0.017 0.041 

MEST(27) - - 0.028 0.034 0.030 

MEST(22) - - - 0.008 0.033 

MEST(35) 0.014 - 0.010 - 0.039 

MEST(37) 0.014 0.058 0.028 0.017 0.039 
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TABLE 6.20 

RF(o) 

Subintervals 
-4 

Estimators 4, 

FOR THE ESTIMATORS 

G16 

WHEN p = -0.4 

017 	018 

AND n = 20. 

G19 0110 

; 0.007 0.008 0.007 
Vp 0.014 0.174 0.133 0.051 

71Re. 0.077 0.034 0.129 

VSa 0.007 0.010 0.051 0.079 

MP 0.010 0.051 0.079 
-(1) 
YRP .ab 0.086 0.186 0.020 

P. a 0.038 0.010 0.063 
MEST(7) 0.049 0.008 0.072 

MEST(9) 0.019 0.110 0.107 
MEST(6) 

0.059 0.082 
MEST(5) 0.741 0.615 0.448 0.110 
MEST(10) 0.014 0.134 0.200 0.136 0.103 
MEST(26) 0.019 0.076 0.048 
MEST(23) 0.056 0.010 0.017 0.022 
MEST(28) 0.019 0.034 0.031 
MEST(27) 0.028 0.042 0.031 
MEST(22) 0.007 - - - 0.033 
MEST(35) 0.007 0.017 0.054 
MEST(37) 0.021 0.019 0.008 0.044 
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RF(o) 

Subintervals 

Estimators y  

FOR THE ESTIMATORS WHEN p = -0.4 AND n = 50. 

G16  GI7  GI8  GI9 

0.007  -  -  - 

GI10 

0.013 

7/1:, 0.077 0.096 0.190 0.051 - 

cr
Re. 

0.021 0.019 0.028 0.034 0.137 

VSa. - - - 0.059 ' 0.088 

cf.  
MP - - 0.086 0.144 0.029 

(1) 
YRP.ab - - 0.076 0.110 0.059 

P.a 0.014 0.058 0.038 - 0.024 

MEST(7) 0.007 - - 0.017 0.100 

MEST(9) - 0.019 0.028 0.042 0.085 

MEST(6) - - - 0.085 0.089 

MEST(5) 0.720 0.404 0.162 0.008 - 

MEST(10) 0.112 0.346 0.200 0.220 0.155 

MEST(26) - - 0.028 0.076 0.039 

MEST(23) 0.014 0.019 0.010 0.025 0.035 

MEST(28) - - - 0.017 0.006 

MEST(27) - 0.019 0.048 0.068 0.026 

MEST(22) 0.014 - 0.010 - 0.018 

MEST(35) 0.007 0.019 0.028 0.008 0.063 

MEST(37) 0.007 - 0.067 0.034 0.035 
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TABLE 6.22 

RF(o) FOR THE ESTIMATORS WHEN p = -0.6 AND n = 10. 

Subintervals 

Estimators 4, 
GI6 

- 

GI7 

- 

GI8 

- 

GI9 

- 

GI10 

- 

1?p, 0.036 0.238 0.168 0.015 - 

Re. 0.277 0.111 0.044 0.061 0.148 

YVSa. 
0.005 - 0.018 0.054 0.028 

MP 
- 0.016 0.088 0.254 0.044 

(1) 
YRP.ab - - 0.009 0.023 0.061 

P. a 
- - 0.009 0.008 0.126 

MEST(7) 0.031 - - 0.062 0.109 

MEST(9) - 0.032 0.035 0.100 0.035 

MEST(6) 0.077 0.048 0.009 0.023 0.033 

MEST(5) 0.318 0.254 0.186 0.015 0.072 

MEST(10) 0.010 0.063 0.062 0.054 0.044 

MEST(26) 0.015 0.032 0.018 0.023 0.046 

MEST(23) 0.087 0.032 0.026 0.062 0.046 

MEST(28) - - 0.018 0.069 0.035 

MEST(27) - - 0.018 0.031 0.063 

MEST(22) 0.015 - 0,053 0.023 0.054 

MEST(35) 0.056 0.048 0.035 0.023 0.057 

MEST(37) 0.072 0.127 0.204 0.100 
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TABLE 6.23 

RF(o) FOR THE ESTIMATORS WHEN p = -0.6 AND n = 50. 

Subintervals 

Estimators y 
G16 G17 G18 

- 

G19 

- 

GI10 

- 

YP  0.046 0.222 0.142 0.046 - 

'7Re. 0.169 0.048 0.035 0.115 0.146 

VSa. 0.005 0.016 0.009 0.069 0.037 

YME 
 0.035 0.085 0.024 

Y(- 	1) 
RP. ab 0.032 0.035 0.054 0.041 

P. a 0.005 0.016 0.053 0.023 0.083 

MEST(7) 0.041 0.032 0.009 0.046 0.155 

MEST(9) 0.016 0.027 0.069 0.054 

MEST(6) 0.077 0.048 0.027 0.054 0.039 

MEST(5) 0.364 0.238 0.062 0.008 - 

MEST(10) 0.026 0.032 0.044 0.008 0.054 

MEST(26) 0.005 0.032 0.097 0.085 0.039 

MEST(23) 0.056 0.016 0.018 0.054 0.063 

MEST(28) 0.009 0.061 0.033 

MEST(27) 0.016 0.026 0.038 0.035 

MEST(22) 0.005 0.048 0.053 0.031 0.078 

MEST(35) 0.087 0.048 0.071 0.023 0.067 

MEST(37) 0.097 0.158 0.248 0.131 0.050 
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TABLE 6.24 

RF(o) 

Subintervals 
-4 

Estimators 4  

FOR THE ESTIMATORS WHEN p = -0.6 AND n = 50. 

 

CI6  G17  018  G19 

 

-  -  -  - 

GI10 

- 

YP  0.067 0.349 0.239 0.069 - 

V 
Re. 

0.123 0.032 0.053 0.146 0.135 

VSa. 
0.005 0.016 0.018 0.077 0.063 

- - 0.018 0.085 0.033 
MP 

Y(
- 1) 
RP.ab 

0.005 0.032 0.035 0.023 0.063 

P. a 
0.005 0.079 0.071 0.023 0.044 

MEST(7) 0.026 - 0.018 0.054 0.144 

MEST(9) 0.010 0.016 0.035 0.062 0.065 

MEST(6) 0.062 0.032 0.018 0.069 0.039 

MEST(5) 0.359 0.079 0.009 - - 

MEST(10) 0.061 0.079 0.080 0.069 0.089 

MEST(26) 0.031 0.063 0.026 0.108 0.039 

MEST(23) 0.020 - 0.009 0.0046 0.076 

MEST(28) - 0.016 0.018 0.008 0.022 

MEST(27) - 0.032 0.035 0.046 0.044 

MEST(22) 0.031 - 0.062 0.046 0.052 

MEST(35) 0.061 0.048 0.018 0.038 0.065 

MEST(37) 0.133 0.127 0.239 0.031 0.026 
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TABLE 6.25 

RF(o) FOR THE ESTIMATORS WHEN p = -0.8 AND n = 10. 

Subintervals 
--) 

Estimators 4, 
GI6 GI7 GIB GI9 GI10 

ip  0.026 0.092 0.068 - - 

`i
Re. 

0.489 0.262 0.186 0.163 0.252 

iiVSa. - - 0.008 - 0.002 

iiMP - - 0.042 0.135 0.032 

(1) 
YRP.ab 

- - - - 0.025 

crP.a 
- - - - 0.080 

MEST(7) 0.034 0.046 0.017 0.064 0.224 

MEST(9) - 0.031 - 0.014 0.013 

MEST(6) 0.221 0.077 0.008 0.021 0.010 

MEST(5) 0.013 0.015 - - 

MEST(10) 0.021 - - 0.007 0.020 

MEST(26) 0.004 0.062 0.034 0.050 0.010 

MEST(23) 0.021 0.031 0.068 0.135 0.152 

MEST(28) - - 0.008 0.142 0.030 

MEST(27) - 0.015 0.051 0.057 0.013 

MEST(22) 0.004 0.031 0.085 0.021 0.052 

MEST(35) 0.077 0.108 0.076 0.085 0.077 

MEST(37) 0.089 0.231 0.347 0.106 0.008 
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TABLE 6.26 

RF(()) FOR THE ESTIMATORS WHEN p = -0.8 AND n = 20. 

Subintervals 

Estimators 
GI6 

- 

GI7 

- 

GI8 

- 

GI9 

- 

GI10 

_ 

YP  0.017 0.077 ,  0.017 0.028 - 

Re. 
0.383 0.108 0.144 0.191 0.297 

VSa. 
- - 0.008 0.007 0.010 

MP 
- - 0.008 0.043 0.022 

(1) 
YRP.ab - - - 0.021 0.047 

P.a - - - 0.014 0.062 

MEST(7) 0.030 0.062 0.042 0.099 0.232 

MEST(9) 0.004 0.015 0.025 0.007 0.015 

MEST(6) 0.213 0.046 0.025 0.014 0.015 

MEST(5) 0.017 - - - - 

MEST(10) 0.026 0.015 0.008 0.021 0.020 

MEST(26) 0.034 0.015 0.068 0.099 0.015 
• 

MEST(23) 0.009 - 0.102 0.092 0.112 

MEST(28) - - 0.035 0.013 

MEST(27) 0.017 0.046 0.102 0.035 0.013 

MEST(22) 0.017 0.108 0.093 0.099 0.065 

MEST(35) 0.077 0.185 0.102 0.071 0.062 

MEST(37) 0.157 0.323 0.254 0.121 
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TABLE 6.27 

RF(o) FOR THE ESTIMATORS WHEN p = -0.8 AND n = 50. 

Subintervals 
---> 

Estimators 4, 
GI6 

- 

GI7 

- 

GI8 

- 

GI9 

- 

GI10 

- 

Yp  0.051 0.123 0.034 0.050 - 

YRe 0.217 0.138 0.178, 0.248' 0.264 

VSa. 0.004 0.015 0.008 0.014 0.008 

MP - - 0.043 0.027 

Y( - 
RP. ab - - 0.051 0.043 0.035 

`Lf.  P.a 0.004 0.015 0.025 0.043 0.082 

MEST(7) 0.021 0.046 0.051 0.014 0.227 

MEST(9) 0.013 0.015 0.025 0.078 0.027 

MEST(6) 0.200 0.031 0.034 0.043 0.013 

MEST(5) 0.038 - - - - 

MEST(10) 0.026 0.015 - 0.035 0.040 

MEST(26) 0.038 0.077 0.068 0.057 0.010 
• 

MEST(23) 0.013 0.015 0.059 0.135 0.112 

MEST(28) - 0.015 0.008 0.007 0.010 

MEST(27) 0.038 0.031 0.025 0.064 0.015 

MEST(22) 0.021 0.092 0.093 0.071 0.030 

MEST(35) 0.085 0.061 0.102 0.057 0.087 

MEST(37) 0.230 0.308 0.237 0.021 0.013 
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TABLE 6.28 

RF(o) 

Subintervals 

Estimators y  

FOR THE ESTIMATORS WHEN p = -0.9 AND n = 10. 

	

G16 	GI7 	G18 	GI9 

	

- 	- 	- 	- 

GI10 

YP  0.008 0.030 - - - 

Re. 
0.492 0.288 0.213 0.227 0.320 

- - - - - VSa. 

MP - - - 0.014 0.008 

(1) 
YRP.ab - 0.030 - 0.007 • 0.027 

;17  P.a - - - - 0.061 

MEST(7) 0.051 0.015 0.057 0.121 0.275 

MEST(9) - - 

MEST(6) 0.316 0.091 0.008 - 0.003 

MEST(5) 0.004 - - - - 

MEST(10) - - - 0.007 - 

MEST(26) - 0.015 0.008 0.028 0.005 

MEST(23) 0.012 0.076 0.180 0.248 0.203 

MEST(28) - - - 0.106 0.003 

MEST(27) 0.004 0.030 0.041 0.021 0.003 

MEST(22) - 0.076 0.082 0.092 0.043 

MEST(35) 0.012 0.045 0.115 0.071 0.045 

MEST(37) 0.102 0.303 0.295 0.057 0.005 
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TABLE 6.29 

RF(o) FOR THE ESTIMATORS WHEN p = -0.9 AND n = 20. 

Subintervals 
--> 

Estimators y 
G16 G17 G18 G19 GI10 

cip  0.020 0.061 - 0.014 - 

Y 
Re 

ciVSa. 

0.438 

- 

0.136 

- 

0.180, 

- 

0.291 

- 

0.336 

0.008 

i/MP - - 0.008 0.021 0.013 

- 1 Y
RP.
)  

(ab 
0.008 0.008 0.014 0.067 

"iiP.a - - - - 0.267 

MEST(7) 0.035 0.061 0.041 0.092 0.003 

MEST(9) - - - 0.007 0.008 

MEST(6) 0.289 0.076 0.008 0.014 - 

MEST(5) - - - - 0.019 

MEST(10) - - 0.008 0.021 0.003 

MEST(26) 0.008 0.015 0.082 0.043 0.003 

MEST(23) - 0.045 0.164 0.170 0.184 

MEST(28) - - - - 0.003 

MEST(27) 0.035 0.106 0.008 0.035 0.003 

MEST(22) 0.008 0.091 0.107 0.092 0.048 

MEST(35) 0.023 0.121 0.123 0.121 0.037 

MEST(37) 0.137 0.288 0.262 0.064 
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TABLE 6.30 

RF(o) FOR THE ESTIMATORS WHEN p = -0.9 AND n = 50. 

Subintervals 
-4 

Estimators 4, 
GI6 GI7 

- 

GI8 

- 

GI9 

- 

GI10 

YP  0.020 0.045 - 0.071 - 

Ci
Re. 

0.281 0.212 0.254 0.319 0.304 

;71 
VSa. 

- - - 0.011 

`17.  
MP - - 0.014 0.013 

(1) 
YRP.ab 

- - 0.033 0.028 0.048 

P. a 
- - - - 0.061 

MEST(7) 0.051 0.045 0.049 0.163 0.264 

MEST(8) - - 0.008 - 0.011 

MEST(6) 0.289 0.106 0.016 0.035 0.005 

MEST(5) - - - - - 

MEST(10) - - - 0.014, 0.035 

MEST(26) 0.008 0.015 0.082 0.021 0.005 

MEST(23) 0.004 0.091 0.139 0.177 0.139 

MEST(28) - - - - 0.005 

MEST(27) 0.074 0.076 0.049 - 0.011 

MEST(22) 0.031 0.076 0.107 0.106 0.029 

MEST(35) 0.043 0.076 0.107 0.050 0.053 

MEST(37) 0.199 0.258 0.156 - 0.005 
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CHAPTER - 7 

CONCLUSIONS 

In this chapter, we highlight the performances of various 

estimators proposed and studied by us in the preceding chapters. 

We note that `IP 
a  (table 2.3) performs very nicely with empirical .  

probability 0.817 (n=10) and 0.840 (n=20) for p < 0 among the 

various estimators studied in Chapter-2. While "isr.(table 2.4), 

"I 
 Re. (table 2.5) and "2Sa. (table 2.6) are the best estimators 

available in literature, we have been able to affect a betterment 

over them through "ivsa.  (table 2.7) which happens to be the winner 

with a probability of at least 80% and is a still more potential 

winner with probability more than 87% when p < 0 and n=20. Thus, 

VSa, turns out to be the best amongst all the estimators proposed 

in Chapter-2. 

In Chapter-3, we have proposed a couple of two-parameter 

family of the variants of ratio-cum-product estimators. Both of 

the proposed"families (tables 3.1 and 3.2) are found to be more 

potential a winner when p > 0. Nevertheless when p < 0 and sample 

size is not very small, i.e., n=20 (or, possibly, a bigger sample 

size) the two estimators are expected to perform reasonably well 
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with their empirical probability of winning being 63.5% and 61.5%, 

respectively. 

In Chapter-4, we have been able to evolve some gainful 

mixings of the estimators proposed in Chapter-2 and Chapter-3 with 

the mean-per-unit estimator. The work in this chapter has been 

motivated by that of Vos(1980). However, the type of comparison we 

have taken up to ascertain the potential winner is apparently 

rather more reasonable than that of Vos(1980). Amongst the 

proposed mixings of one, parameter families of estimators, the 

mixing estimator MEST(6) (table 4.4) turns out to be the most 

potential gainer. It is worth noting that this estimator is much 

more superior to its parent estimator, namely, Y
Sr.  particularly 

when sample size is rather small, say n=10 (or even smaller sample 

size). Anotherpoint worth noting is that the estimator ivsa.  is 

not bettered by this mixing when p > 0 but is bettered when p < 0 

particularly when n=10 (table 4.7). As far as the mixing of 

two-parameter family of estimator is concerned, we note that the 

significant betterment over parent-estimators is achieved only 

when p > 0 and sample size is rather small, i.e. , n=10 (tables 4.8 

and 4.9). 

In Chapter-5, we have proposed some gainful mixings of two 

potential winners from amongst the estimators of Chapter-2 and 

Chapter-3. We have also proposed a similar mixing considering 

three mixing-estimators at a time mixed with y. In this Chapter, 

for apparent reasons, we have considered the mixings separately 

for the two possibilities, namely, p > 0 and p < 0, respectively. 

We observe that the proposed mixings of two parent-estimators have 

been gainful except in the case of MEST(16) (table 5.10) and 
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MEST(24) (table 5.26). Another worth noting feature of this type 

of mixing of two parent-estimators as per table 5.28 is that the 

estimator MEST(25) excels over the better of the two 

parent-estimators, namely, ip.a  with an empirical probability of 

92.5% or even more. Amongst the other mixings of this type, we 

have the following observations. It turns out that while the 

mixing estimators MEST(19) (table 5.16) and MEST(29) (table 5.36) 

are more potential winners than their parent estimators for rather 

smaller sample size, i.e., n=10, the mixing estimators MEST(23) 

(table 5.24), MEST(28) (table 5.34) and MEST(31) (table 5.40) 

happened to be more potential winners than their parent-estimators 

for rather a larger sample size, i.e., n=20. Further, it has been 

noted that the mixing estimators MEST(20) (table 5.18), MEST(21) 

(table 5.20), MEST(26) (table 5.30), MEST(27) (table 5.32) and 

MEST(30) (table 5.38) provide a more probable betterment over 

their parent-estimators for rather smaller sample size, i.e., n=10 

: the mixing estimator MEST(22) (table 5.22) turns out to be more 

potential a winner when the sample size is rather large, i.e., 

n=20. Next, amongst the other type of mixing, i.e., those of three 

parent-estimators (including Vip  according as p >/< 0) with 

it is worth noting that the mixing estimators MEST(32) (table 

5.41), MEST(33) (table 5.42), MEST(34) (table 5.43) and MEST(36) 

(table 5.45) fail to beat the parent-estimators universally, 

however, a finer comparison reveals the range of betterment, 

respectively. While the mixing estimator MEST(37) (table 5.46) 

provide a betterment only when n=10 (i.e., the sample size is 

rather small), the mixing-estimator MEST(35) (table 5.44) is 

capable of providing a significant betterment over the 
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parent-estimators only when n=20. 

In Chapter-6, we have first taken up the case of positive . 	, 

correlation. For the first example-value : p=0.2, the comparisons 

reveal that MEST(7) is rather the universally most probablewinner.— 

except for the G-interval : GI1, when MEST(5) supersedes it and 

when the sample size is rather large : n=50, the most probable 

winner happens to be MEST(10). Another worth noting observation is 

that for the example G-interval : GI5, MEST(7) is the most 

probable winner for all the example-values of p with two 

exceptions : p=0.8; n=10, MEST(3) is the most probable winner and 

p=0.9; n=20, Re. is the most probable winner. Next, for second 

example-value : p=0.4, MEST(7) again is the most probable winner 

except G e Gil when MEST(10) is the most probable winner and C e 

GI2 ; n=20/n=50, when MEST(11)/Y
Rp.ab is the most probable winner. 

For the third example-value : p=0.6, YRe.fivR/ MEST(7) is the most 

probable winner when G E GI1/G e GI2/G e GI5. Also, when G e Gil 

or GI2, MEST(7)/MEST(15) is the most probable winner for 

n=10/n=50. For the fourth example-value : p=0.8, when G E GI3 or 

GI4, YRe  is the most probable winner for n=20 and n=50. However, 

when the sample size is small YvR/MEST(3) is the most probable 

winner for G e GI3/G E G14. MEST(15)/MEST(7) is the most probable 

winner when G E GI2/G E GI5 for n=20 and n=50; when sample size is 

small : n=10, MEST(14)/MEST(3) takes over, respectively. In this 

case when G E GI1, '7 11/YRe./ MEST(5) is the most probable winner 

for n=10/n=20/n=50. Lastly, for the fifth example-value, 

7
Re./MEST(21)/i?Re./MEST(7) is the most. probable winner for G e 

GI1/G E GI2/G E GI3 or GI4/G E GI5 except one case, i.e., n=20 and 

G E GI5 when 
"!Re. is the most probable winner. 
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In the second case taken up in Chapter-6 that is that of 

negative correlation, the important observations are as below. In 

the first example-value : p=-0.2, MEST(5) is the most probable 

(1 
winner except when G e GI10; in that case MEST(6)/ YRPab is the 

most probable winner when n=10 or n=20/n=50. For the second 

example-value : p=-0.4, MEST(5) is the most probable winner when G 

e GI6 or GI7 or GI8 except the case of n=50 and G E GI8 when 

MEST(10) is the most probable winner. When G e GI9, 

MEST(5)/MEST(10) is the most probable winner for n=10/n=20 or 50. 

Also when G E GI10, ?p.a  firte./MEST(10) is the most probable 

winner for n=10/n=20/n=50. For the third example-value : p=-0.6, 

MEST(5) is the most probable winner when G e GI6 or GI7 with the 

exception of the case n=50, G e GI7 when ? is the most probable 

winner. When G E GI8, MEST(37)/?Re 
is the most probable winner 

for n=10 or 20/n=50. For G e GI10, ?Re./MEST(7) is the most 

probable winner for n=10/n=20 or 50. For the fourth example-value 

: p=-0.8, ?Re. 
is the most probable winner for n=10 except for the 

case : G E GI8 when MEST(37) is the most probable winner. For 

n=20, again ?Re 
 is the most probable winner except for two cases 

: G E GI7, G E G18 when MEST(37) is the most probable winner. For 

n=50, MEST(37) is the most probable winner except for the two 

cases : G e GI9, G E GI10 when ?Re. is the most probable winner. 

For the last example-value : p = -0.9, ?Re_ 
 is the most probable 

winner except the following cases. MEST(37) is the most probable 

winner when G E GI7 or G18; MEST(6) is the most probable winner 

when G E GI6 and n=10; MEST(23) is the most probable winner when G 

e GI9 and n=10. 

In the last, we may conclude that even though we wanted to 
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have a systematic comparison leading to the discovery of gainful 

directions 	In 	designing 	the 	generalised/mixing-type 

ratio-cum-product estimators for the optimal use of auxiliary 

information, the comparisons- -were-at:I 1-1-too rritr icate and rather 

partly unconclusive as apparent in the above paras. It is simply 

hoped that future researches in this area will unveal more 

powerful systematic schemes of comparisons to make them conclusive 

for the optimal design of the generalised/mixing-type 

ratio-cum-product estimation strategies. Also, we may observe that 

any of the estimators proposed in the thesis can be the basis of 

defining a corresponding multivariate generalised/mixing-type 

estimator (e.g., on the pattern of Olkin(1958)), to facilitate the 

use of multi-auxiliary information. 
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