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ABSTRACT

In sample surveys, one area of interest has been to improve
the ratio and product methods of estimation. A number of
estimators has_ been proposed by various authors (e.g.,
Srivenkataramana, T, & Tracy, D.S. (1979, 1981-Statistica
Neerlandica, Aust. Jr. of Stat.); Sahai, A.(1979-Statistica
Neerlandica); Vos, J.W.E. (1980—statisticé Neerlandica) and
others) which are ratio, product and ratio-cum-product type in
nature. These estimators make the use of auxiliary information to
estimate the population total/mean. In the present thesis, we have
propoged some new estimators as also the efficient mixings of some

existing and proposed estimators.
The problem with the ratio, product and ratio-cum-product
estimators proposed in the thesis as also with the usual ratio
estimator is that their mean-square-errors (MSEs) could not be
found analytically in a closed form, Hence, only the abproximate
MSEs could be the basis of comparison in terms of relative

efficiencies. If we take a first order (O(n_l); n being the sample



size) large sample approximation to ghe MSEs of these estimators,
a comparison is algebraically intricate énd the issue depending on
many population parameters’ values, which are unknown, it is
difficult to conclude as to which one of these estimators is more
efficient and when. Further, in case the sample size -is that large
as to Justify the first order large sample approximation,
regression estimator will be better motivated than the proposed
families of estimators. As such, only when ihe sample is rather
fairly large though not very large, we are motivated enough to use
the proposed families of estimators and in this case we wili have
to go for at least a second order '(O(n—z)) large sample
approximationsAto the MSEs of the estimators. In this case, the
approximations to the MSEs turn out to be still more intractable
algebraically and a comparison is} Just impossible. So, we have
!

compared the various estimatoré through the computer-aided
empirical-simulation study. In this study,‘we.generate the random
samples of desired size from a hypothetical bivariate normal
population.

Sisodia & Dwivedi(1981~Jr. Ind. Soc. Agri Stat.) and Singh &
Upadhyaya (1986-Proc. Nat. Acad. Sci., INDIA) proposed modified
ratio and product estimators, respectively, by making the use of
coefficient of variation for the auxiliary variable. Motivated by
their  works, we have proposed variants of ratio and product

estimators with the use of sample counter part of the coefficient

of variation in Chapter-2. We have also proposed a few other

estimators using one design-parameter in this chapter. A part of

the work in this chapter has been published in Int. Jr. of

ii



fanagement and System-Volume B, No.3 (1880); Allahabad
fathematical Society Bulletin-Second Biennial Conference (April,

d Indian Science Congress.

1990) and The Proc. of 73"

We have also proposed two famiiies of ratio-cum-product
:stimators which make the use of two design-parameters. Thus, we
will be having two degrees of freedom and it enables us to control
the first and second order MSEs of Fhese estimators. This work has
been presented in Chapter-3 of the fhesis. A hart of this work has
been published in Proc. of 47th session of Int. Stat. Inst.
(Aug. -Sep., 1989, PARIS).

Further, we have proposed some efficient mixings of the
already existing estimators and the estimators proposed by us.
These mixings are motivated by the work of Vos{1980-Statistica
Neerlandica). We have improved the varlious estimators by mixing
them with the usual mean-per-unit estimator. The weights for these
mixings have been ascertained using the relative frequencies of
the respective estimators to be winner in the comparison via the
empirical-simulation study. Two more types of mixings of the
estimators have been dealt with. In the first type of mixing, we
have proposed efficient mixings OJ the estimators proposed/studiec
by us taking two of the winning estimators at a time and in the
second type of mixing, we have proposed a few linear combinations
of mean-per-unit estimators, ratio estimator and the two winning
estimators proposed/studied by us. Again, the weights for these
mixings have been ascertained as per the empirical-probabilitie:s

of winning of the mixing-estimators estimable from the relevan

empirical-simulation study. We have alsoc taken up the fine:

iii



comparisons of the estimators. Foivthis, we first have.picked ug
various winners from the earlier study and then havé compared
these with each other to bring forth the various ranges of
G-values and p-values for a particular estimator to be the best.
The concluding chapter enlists a brief review of the
highlights of the work presented in the thesis. As regards to
Futuge possibilities of gainful consequences in this area, it is
hoped that the various estimation strategles proposed in the
thesis can be the basis of defining multivariate
generalised/mixing-type estimatoré besides leading to possible

discoveries of more gainful mixing-estimators.

iv



" CHAPTER - 1
INTRODUCTION

It is a well-established fact that a properly collected
sample can be considered to be a representétive of whole of the
populétién and the.charactebistics of the sample can help us in
making decisions about tﬁe characteristics of the population.
.Statistical Estimation Theory deals with the problems in which we
make the inferences about the population by drawing a random
sample from it.

The errors associated with a sample survey are of two—types{
namely, sampling and non-sampling errors. We have confined only
to the sampling errors in the present thesis. The sampling error
is meaéuréd in terms of the standard error which is the positive
square root of the mean square error (MSE)T It is always possible’
to lower the MSE 'énd consequently to increase the relative.
efficiency ofva statistical estimator by the use of supplementaryi
information which might be available to us in advance in terms of

‘census, past data or in terms of experience and long association.

with the experimental material. Tn some other cases, this-

information could be gathered without any significant increase in

Y



the cost of sample survey. In oth§r words, the additional cost in
'obtaining the supplementary information might be outweighed by the
consequent gain in the precision of the estimator, to .the extent

of being negligible.

The supplementary information might be available with us in
'terms of . supplementary variable(sj, also called the auxiliary
variable(s). Such a variable will be much cheaper, as said above,
time and money-wise, to.be observed on the gample units, e.g., if
we want to measure the total leaf-area on certain plant, the
variable leaf area will be much more expensive to observe on the
sa%pling units, i.e., leaves of the plant than the auxiliary
variable, namely, leaf-weight of the leaves in the random sample.
We will henceforth call the variable under study {(leaf area in the

above example) as the main variable. The supplementary

information may also be available with us in terms of more than

one variable and that will be the case of multi-auxiliary

“fnformation. However, we have not “included

the case of
multi-auxiliary information in the present work as it would Jjust

be possible by suitable generalizations of the gainful/efficient

estimators.

The present thesis consists of the author’s efforts towards a
more efficient wutilization of the auxiliary information. The
various ratio, product, ratio~cum-product and mixing-type

estimators exploit the correlation between the main and auxiliary
variable to‘ estimate the population mean/total for the main
variable more efficiently.

The auxiliary information can be used in two ways, either at

sample selection stage or at the estimation stage. This thesis



concerns with the use of auxiliary information only at the
estimation stage. The ratio, product, regression/difference and
the ratio-cum-product methods make the use of auxiliary
information at the estimation stage. We, in the following

paragraphs describe these methods in brief.

Let Ul’ UZ""" UN be the N units which constitute our
population (say, finite). Let us denote the main variable by Y

"and the auxiliary variable by X. The observations corresponding

to the two variables are Yl'Yz""" Yn and X ’X2’ ,Xn

respectively for Y and X, In the sampling theory, we are

generally interested in the estimation of population mean Y, where

N

S |

Y =N z Y, L. (1.1)
i=1

or

Population Total : TY = N.Y

...(1.2)
For,the estimation of Y, let us draw a simple random sample of

size 'n’ without replacement from the above mentioned population.

Thus, the sampling fraction 'f’' will be equal to n/N.

Let the n
units thus selected for the sample be u1,u2,....,un and the
observations corresponding to variable Y are yl,yz, ces ¥y and

corresponding to variable X are xl,xz,....,xn.

Let us here give some of the terms used in the thesis with

their definitions.

n
Sample Mean for variable Y (y) = n—l.z

Yy ... (1.3)
i=1 '
Sample Total for variable Y (Ty) = n.y N ...(1.4)
Population Mean for variable X (X) = N—l.z Xi ...(1.58)
‘ i=1



Population Total for variable X (Ty) = N. X ' ... (1.8)

n

Sample Mean for variable X (%) = n_l.Z Xy ... (1.7)
i=1

Sample Total for variable X_(Tx) = n.x ...(1.8)

Coefficient of variation for variable Y (CY) = GY/? ... (1.9)

Coefficient of variation for variable X (Cy) = cx/i ...(1.10)

Ty and % being the population standard deviations for the two

variables. Parallely, the sample counter-parts of C_, and C, can

Y X
also be defined.

N
.Population Variance for Y (83) = —%— z (Y.l—?)2 ...(1.11)
i=1
N
2 1 s 2
Population Variance for X iSX) = N z (Xi—X) ...(1.12)
1=1
CY
~The .Population Parameter G = p ol ... (1.13)
T e 'S .

where, p 1s the coefficient of correlation between the - two-
variables Y and X. n
The unbiased sample estimate of 53 (si) = (n—1)-—1 z (yi—;')2

1=1 . (1.14)

n
and the unbiased sémple estimate of Si (si) = (n—l)'-1 Z (xi~§)2
i=t

...(1.18)

In the light of the identity TY= N.Y, i.e., the population
total being a N-multiple of population mean, we can confine our

studies, without any loss of generality, to the estimation of

population mean Y.

Whep”ﬁg Falk of an estimator, S?ynHFHOf_aQWPHKQR“U parameter

4



o characterizing the sampled populgtion, it is a function of the
isample values tn(yl,.yz,....,yn) ?r tn(yl’xl; Yo Xoi +oees yn,xn)
etc. Therefore the value of the estimator is subject to chance.

The Mean Square Error (MSE) i.e. the expected error is defined as

MSE(t ) = E(t_-0)° ..(1.16)
n n .

Thus, we will have

2 2
MSE(tn) E(tn—E(tn)) + (E(tn-e))

Variance(tn) + (Bias(tn))2

Vit ) + B2(t ) o (1.17)
n n
- ,

Here, it is worth to explain that the precision of an estimator
depends upon its MSE, the lower the MSE of the estimator is, it
will be more precise. The positive sqﬁare robt of MSE is defined
‘as the standard error of the estimator and the reciprocal of the
standard error provides us the measure of the -precision of the

estimator.

1.0 CONCEPT OF THE RELATIVE EFFICIENCY OF AN ESTIMATOR :

Let us take two estimators tn and th for the estimation of a
parameter ©. The relative efficiency of the estimator tn with

respect to t% is defined as

REEF(tn,th) = (MSE(th) / MSE(tn))*IOO % ...(1.18)

For the purpose of our studies of this thesis, we have taken the

estimator ta as the usual unbiased estimator(UUE).

1.1 USUAL UNBIASED ESTIMATOR :

The sample mean y is an estimator for the population mean Y.

This estimator is also known as UUE and Simple Expansion Estimator

(SEE). This estimator has been termed as UUE due to the simple

fact that E(y) = Y. It may also be noted that

V(y) = (g/n). ?2. Ci = (g/n). 83

. 5



Also,

V(x) = (g/n). X2, c2 = (g/n). 52

X X
and
Covariance(x, y) = cov. (x,¥)
; = Y. X ...(1.18
& (g/n). (Y.X). p.Cy. Cy ( )

where, g = 1-f.
For large populations g = 1; so that g, called finite population

correction, may be ignored for the above expressions for such

populations.

Now, assumiﬁg the knowledge of X and having parallel
observations on the auxiliary variable X, we have the following
famous estimators for the estimation of population mean.

1.2 RATIO ESTIMATOR :

The ratio estimator (?R) for the estimation of Y is defined

-as

_?B"f,g,irx.__,.", R

"Qhere, R = (y/x) is an estimate for the ratio R= (Y/X).
This estimator should be used when the two variables Y and X are

positively correlated. .= To be more specific and following

Murthy(1964), its use might be done when G > 0.65.

It can be easily seen that the sampling bias and MSE of ratio

estimator can not be found exactly. We can only get their large

sample approximations. This can be done through Binomial series

expansion of the MSE of ?R on the assumption that the sample is at

least so large as to Justify 0 < | x | < 2.] X |. If we assume

.that the observations on the variable X are all positive, we can

take 0 < x < 2.X. Following Murthy(1964), the bias and MSE of ?R

can be found as follows.



Let us fix,
e=(y-Y) /Y

and e, = (x - X) 7/ X ... (1.20)

Here, both e and e1 are of the order of O(n_l/z). Hence, we will

have to retain the terms up to second(fourth) order in e and e1 in

the Binomial series expansion of MSE of Y. in order to obtain

R
first(second) order Bias/MSE of the. estimator. Let us denote
first/second order Bias and MSE of an estimator, tn by
Bl(tn)/Bz(tn) and Ml(tn)/Mz(tn),'respectively.

lLet us also denote,

ViJ = E(A(e)i.(el)j), i and j being positive integers.

We can easily establish that

<1

B, (Yp) = Y . (Voo=Vyq)

BZ(?R) =Y . (Voo V1115 V3 Ve V13) s

Ml(?R) = 2. (V50=2V,1#V,) and

My (Tp) = V2. (Vpgm2V, 1 #Vg2V,  #AV, =2V, +3V, -6V, 43V )

...(1.21)

Thus, ?R is a biased estimator of Y. Many authors have tried to

improve the ratic method of estimation in past. Some of them
worth-noting are Hartley and Ross(1954), Robson(1957),
Quenouille(19586), Tin(1965), Murthy and Nanjamma(1959),

Lahri(1851), Midzuno(1850), Mickey(1858), Nanjamma, Murthy and
Sethi(1859), Nieto de Pascual(1961), Raj(1954), Rao(1964),
Rao(1965) and Sukhatme(1962). All these authors tried to improve

the ratio method of estimation by controlling its bias by some

'technique or the other.



1.3 PRODUCT ESTIMATOR :

The product estimator for the estimation of Y is defined as

-~

Y = X ... (1.22)
YP P/ X ‘

where, P is an estimate for the product P =(Y.X).  Again,
following Murthy(1964), this estimator should be used when p < 0
'and more precisely when G < -0.5. Bias and MSE of this estimator

can be found exactly and these are

B.(Y.)) =Y.V

1P 11°
Sy _ 32
MI(YP) = Y, (V02+ 2V11+ VZO) and
S =2
M2(YP) =Y . (Vo2+2V11+V20+2V21+2V12+V22) ...(1.23)

Almost all the efforts made by various authors to improve
ratio and product estimators were concentrated around controlling
their biases, e.g., Shukla(1976), and others given abové, in case
of ratio estimator. However, in our present studies, we have
confined our efforts in lowering .down only the. MSE ~of the

estimatprs without considering their b{ésés. f?om 1.17 it is also
-1;ery clear that the bia§ of én estimator is included in its MSE,

so, lowering down the MSE of an estimator will autométically

include the lowering down of its bias.

1.4 DIFFERENCE AND LINEAR REGRESSION ESTIMATORS :

In the practical situations, it is somet imes possible that we

may;héve a good guess of population regression coefficient of Y on

X, say, B available with us. In that cases, we can use the
following estimator, called the Difference estimator, for the

estimation of population mean given by Hansen, Harwitz and

Madow(1953).

vD=§+b(>'< - %) ..(1.24)

- Where, b is the guessed value of B.



Also, if we are unable to guess the value of B closely, we can use

* . o
its estimated value b ( = r.sx/sy, r is the sample correlation

coefficient, i.e., an estimate of p.) and in those cases we name
the’estimator as the Linear Regression'estimator.

YYg=¥y+b (X-x) ... (1.25)
In. our present study, we have not included these estimators
because it is well known that these estimators perform very good
only when the sample is very large and there may be certain
populations where it will not be possible to get fairly a large
sample as to Justify the use of these estimators.

1.5 THE RATIO-CUM-PRODUCT ESTIMATORS :

In order to make the more efficient utilization of auxiliary
information, various authors have proposed different
ratio-cum-product type estimators. For the sake of comparisons, we
have included the following ratio-cum-product estimators in our

present studies proposed by Srivastava(1967), Reddy(1974) and

Sahai(1979).
Yo =Y. (X7 x)® : ... (1.26)
Sr. o
YRe.= y. X/ (X + a (x - X) ...(1.27)
?Sa =y. ((1+a).X + (1-a).x) / ((1+a).x + (1-a).X) ...(1.28)
wheré, 'a’ is a design-parameter. The method of minimum MSE

initially given by Searls(1864) has been applied to obtain the
optimal value of the design-parameter for the different
estimators. Thus, minimizing first order MSE of these estimators
will give us the optimal valﬁe of 'a’.

We have proposed and studied a few other similar families of
ratio-cum-product estimators. The families proposed by us contain

one as-well-as two design parameters. The optimal values of the



design parametérs in case of the families containing two
design-parameters are obtained by minimising first and second
order MSEs of the respective estimators.

Vos(1980) proposed some mixing estimators and compared them
through some artificial populations. We note that this comparison
is of iimited value for inferring about the estimators’ potential
efficiency. On the other hand the empirical-simulation study
undertaken by us is much more capable of discovering it via the
comparisons. Nevertheless we do get the motivation from
Vos(1980)’'s work in proposing some gainful mixing estimators.

1.6 CONCEPT OF RELATIVE ERROR IN GUESSING THE VALUE OF A

POPULATION PARAMETER :

The optimal values of the design-parameters for the different
families of estimators include certain population parameters. The
most critical parameter in almost all the expressions is G(=
p.CY/CX). It is qot”alyays possible that we "are able té gueés tﬁe
e&aét baiue of G in the practical situations and this very fact
has lead us to ‘incorporate some measure of
overéuessing/underguessing for the value of the parameter. We have
given the name REG(G) to this relative error in guessing the value
of a parameter .and have considered five levels of REG(G). These

levels are corresponding to the following five situations.

a. When the value of G has been underguessed by 20 %.
b. When the value of G has been underguessed by 10 %.
c. When the value of G has been guessed exactly.

d. When the value of G has been overguessed by 10 %.
e! When the value of G has been overguessed by 20 %.

Corresponding to these five situations, we will be having five

10



values of REG(G), namely, -0.2, -0.1, 0.0, 0.1 and 0.2. So,
whenever we use the estimated value of G, we have also considered
these five levels of REG(G).

1.7 THE EMPIRICAL-SIMULATION STUDY - ITS FRAME WORK :

As stated earlier, we in our present studies have
studied/proposed some ratio, product, ratio-cum-prodﬁct and
mixing-type estimators. These families include one or two
design-parameters. The reasons for the computer-aided
empirical-simulation study are two fold. Firstly, a closed-form
algebraic expression for the MSE of almost all thé estimators is

‘not available. Moreover, if we take a first order (O(n‘-1

) ¢ n
being the sample size) large sample approximation to the MSEs of
these estimators, a comparison is algebraically intricate and the
issue depending on many population parameters’ wvalues, which are
unknown, it is di_fficult to conclude as to which one of these
estimators is more efficient and when. Further, in case sample
size is that large as to justify this first order large sample
approximation, regression estimator will be better motivated than
the proposed'families of estimators. As such, when the sample is
only fairly large and performance of regression estimator being
rather unpredictable, we are motivated enough to use the proposed
.families of estimators. Here, we have to go for at least a second

order (O(n’zl) large sample approximation to the MSE of the

estimators. In this case, the approximation to the MSEs turn out

to be still more intractable algebraically and a comparison is
Just impossible. Hence, the only alternative is to go for a

computer-aided empirical-simulation study for the comparison of

"the estimators.

11



For the empiricai-simulation study, we have assumed some
hypothetical bivariate normal populatiéns. We have considered two
‘example-levels of Y (=2.0,4.0), X(=1.0,2.0), ¢,(=2.0,4.0) and
UX(=1.0,2.0) and ten example-levels of p(= $0.2, 20.4, 0.6, 0.8,
$0.9) ha?e been taken into account. In all, we will have 160
value-combinations for G out of which 80 combinations will be for
positive correlation case and 80 combinations will be for negative
correlation» case. Here, we have implemented the concept of
relative error in guessing the wvalue of G .and thus for a single
value of G, we will be having five values of guessed G according
to the five situations described in the earlier section. In this
way, we will be having 400 different values of G for tﬁe case of
positive correlation and another 400 values for the case of
‘'negative correlation. Now, for each value-combination, we have
generated 100 random sampleé of sizes 10 and 20 eacb using the

following transformation.

X ) X ) UX . Z1
- 2
y Y oy (P2 + (l—p ).22)

... (1.29)

where, Z1 and 22 are the random normal deviates between zero and
unity. These normal deviates have been generated using Box-Muller
(1958)'s approach. Now, over this replication of 100 samples and
for different combinations, we calculate the actual values of the
estimators and thus their MSEs and consequently their relative
'efficiencies, relative to mean-per-unit estimator. Noting the
number of times a particular estimator has the maximum’relative

efficiency, we calculate the relative frequency of its be%%g the

R

winner among the other estimators in the competition.

12



Here, it may be noted that we had to modify the
example-levels of Y and X, stated above, for the
empirical-simulation study in case of one of the estimators
proposed by us in Chapter-2. Also, in Chapter-6 of the thesis,
wherein we have carried out the finer comparisons of the
esf;imators, wWe had to increase the combinations for G-value 1in
order to ascertain the trends of different'estimators. Here, we
have modified the example-levels of ?, R, Oy and ay.

For the sake of finer comparisons, based on G-values of
various estimators, we have divided the whole range of G into six
intervals, namely, I1 : G < -1; I2: -1 = G < -0.5; I3: -0.5 s G <
O; I4: 0 = G = 0.5; I5: 0.5 < G =1 and I6: G > 1. Keeping the
track of different intervals, we note the number of times a
particular estimator has the maximum relative efficiency and thus
arrive at the empirical probabilities of the different éstimators.
being the winner for different intervalé.

In order to facilitate the gain in the relative efficiencies
of the different estimators moré clearly, we have carried out ihe
graphical display of the relative efficiencies of tﬁe estimators,
The graphical display has been performed by drawing bar-graphs for
the vérious estimators in competition. For these bar-graphs, we
have divided the whole range of relative efficiency (taking all
the estimators in competition, into account) into ten intervals.
Now, to ascertain the frequency of a particular estimator for any
interval, we note the number of times the relative efficiency of
the estimator falls into the interval and it is maximum when

compared with the relative efficiencieslof other estimators in the

combetitibh‘ For the sake of clarity, we have accumulated the last
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five intervals into a single interval as the frequencies of all
the estimators were very low for these intervals in almost all the
cases. The upper limits of the intervals have only been displayed
on the graphs. One can easily check the lower limit of an interval
‘as it will be nothing but the wupper 1limit of the previous
interval. The‘relative efficiency of ; being equal to 100%, it
will'élways lie into the interval containing relative efficiency
equal to 100%. So, the frequency of this interval for ; will be
equal to the sum of the frequencies of any other estimator in
competition and for other intervals, it will be zero. So, we have
not drawn the bars corresponding to § in the graphs as there will
be a single bar for only one particular interval.
1.8 AN OVERVIEW OF THE CONTENTS OF VARIOUS CHAPTERS :

The present thesis comprises of seven chaptérs:—The present
chapter, i.e:, Chapter-1 is introd&ctoqy in  which a - brief
“h£Stdr1ca1.réviéw and-tﬁé 6otivat10n for the work has been set out

with the relevant details.

In Chapter-2, various estimators have been proposed which use

only one parameter in their design. The optimal value of this

design-parameter is obtained by minimising the first order MSE of

the concerned estimator. We have also proposed two variants, one

for ratio and another for product estimator wusing sample

counter-part of the coefficient of variation, CX.
Chapter-3 contains the estimators which have been constructed

using two design-parameters. Here, the optimal values of the two

design-parameters are obtained by minimising the first and second
order MSEs of the respective estimators. In quite a few cases,

these estimators turn out to be bétte;mthéﬂ'éfﬁéf ésfiﬁators.
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Chapter-4 and Chapter-5 have. been devoted to propose the
efficient mixings of the existing estimators and the estimators
proposed by us. In Chapter-4, we have successfully tried to
improve the various estimators by mixing them with the usual
mean-per-unit estimator. The weights for mixing of these
estimators have been ascertained using the relative frequencies of
the respective estimators to be winner in the comparison via the

empirical-simulation study. Chapter-5 contains two types of

mixings. In the first type, we have tried to propose efficient

mixings of the estimators proposed/studied by us in Chapter-2 and

Chapter-3 taking two winners at a time and in the second type, we

have proposed some mixings which contain ;, ?R/? and two

parent-estimators which are from amongst the winners from

Chapter-2 and Chapter-3. Again the weights for these mixings have

been ascertained as per the empirical-probabilities of winning of

the mixing estimators estimable from the relevant

émpirical-simulation study.

In Chapter-6, we have taken up the finer comparisons of the

estimators. For this, we first have picked up various winners from

the earlier chapters and then have compared these winning

estimators to bring forth the wvarious ranges of G-values for a

particular eétimator to be the best.

In the last chapter, we have given a brief review of the

highlights of the work presented in the thesis, conclusions

therefrom and some remarks indicating future possibilities of

gainf'ul investigation in this area.
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CHAPTER - 2

THE ONE~PARAMETER FAMILIES OF ESTIMATORS

In this chapter, we have proposed some new families
of ratio-cum-product type estimators which 1involve only one
design-parameter, Beside these families, we have also proposed two
variants, one each of ratio and product estimators.

Sisodia and Dwivedi(1981) proposed a modified ratio
estimator, ?MR’ to make it more efficient by incorporating the

“known value of the coefficient of variation for the auxiliary
variable in a gainful manner. They established the possibility of
gaining efficiency with an algebraic comparison of the modified
ratio estimator with the ratio estimator through their approximate
MSEs. The algebraic comparisons given by them can not be
~considered to be very illustrative due to the fact explained by us
in éection 1.7. Singh and Upadhyaya(1986) -prpposed an analogous’
estimator wusing the knowledge of coefficient of variation of

auxiliary variable. This estimator, ?MP’ was a dual to'?MR. The

two estimators were,

?MR = y. (X + cx)/'(i + Cy) ... (2.1)

"

and YMP y.(x + CX)/(X + CX) | ... (2.2)
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In order to come over the difficulty of algebraic
comparisons of these estimators, we have studied these via the
‘empirical-simulation studies explained in section 1.7. Here, we

have ompared Y, with y & ?R and Y, with y & ?P' Table 2.1

MR MP
gives the results of the empirical-simulation studies carried out
for these estimators.

For all the tables that follow in this ghaptef. as well as in
the next chapters, RF(o) represents the relative frequency of a
particular estimator ’¢’ being the winner per the simulation
studies. These tables detail the results of the
empirical-simulation study in a summarised form. However, remarks

following each table give highlights on finer details of the

comparison, as revealed through this study.

TABLE 2.1
RF(e) FOR vy , YR/YP and YMR/YMP
Estimators - S S S y
- y Y Y Y Y

Sample Sizes, R P MR MP

n=10 |0.275 0.220 - 0.505 -
p>0{

=20 |0.260 0.278 - 0.465 -

n=10 [0.235 - 0.210 Co- 0.585
p<0{

n=20 0.223 - 0.255 - 0.522

This is clear from this table that ?MR is a better choice

than y and ?R when p > 0 and ?MP is better than ; and Y., when p <

P
- 0. We have also noted that ?MR performs very good when G € -[0.5,1]
and YMP is particularly good when G € [~1,-0.5]. Here, G=p.(CY/CX)
as defined in chapter-1. For illustrating the gain in efficiency

more clearly, we have carried out the graphical display of

relative efficiencies of these estimators. Graphs 2.1 to 2.4
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provide é.mdre visual display of the results of this study.

In the proposition of the estimators YMR and YMP’ the
coefficient of variation has been assumed to be known. However, it
is not always possible that CX be known to us before hand. So,

following Sisodia & Dwivedi(1981) and Singh & Upadhyaya(1886), we

have proposed the following wvariants of ratio and product

estimators.

Yyog = y. (X + cxm; +C) ... (2.3)
and ?VP =y.(x + CI/(X +C) ...(2.4)
n
where, Cx[ = Sx/; ; si = (9—1)_1 Z(x.1 - §)2 ] is the sample
i=1 ' ‘
counter-part of the coefficient of wvariation CX' The results of

empirical-simulation study and the graphical display of relative

efficiencies of ?VR and ?VP are given below in. table -2:2 -and

graphs 2.5 to 2.8, respectively.

TABLE 2.2
RF(e) FOR vy , Yp/Yp and Y /Yo
Estimators 5 ; ?R ?p , ?VR ?vp

Sample Sizes

n=10 |0.243 0.232 - 0.525 -+ -
p>0{ .

n=20 |0.220 0. 262 - 0.518 -

n=10 |0..375 - 0.237 - . 0.388
p <O {

=20 {0.285 - . 0.280 - 0.435

Here again, we recommend that ?VR/?VP should be preferred than ;

and ?R/?P for‘the estimation of Y. Also, the finer comparisons of

the relative efficiencies of these estimators show that ?VR comes

out to be winner much more often than y and Y. when G € {0.5, 1]

R
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and ?VP performs very often better ,than y and ?P when G € [-1,

-0.5). R

V ' C_ in
The estimators YMR' YMP’ YVR and YVP use either CX or <

their design in a special way. This way of using CX/Cx has lead us
to propose a new one-parameter family of ratio-cum-product

estimators as below.

?P,a = y.(x + a)/(X + a) ‘ ... (2.5)

>

where, 'a’ is a non-stochastic design-parameter. The optimal value

of 'a' 1s obtained by using the method of minimum MSE given by

Searls(1964). It appears from the structure of ?P a that it is a

-product~-type estimator but through our empirical-simulation study

we have discovered that ?P a performs good even when the

correlation between Y and X 1is positive. In fact, ?P a is

essentially a ratio-cum-product type estimator.

It can easily be checked that the first order MSE of ?P o for

a random sample from a bivariate normal population is given by
v _ 2 oy 2
M, )= 1+Aas+20) /2 1.¥.c2/n ... (2.6)

Y X

minimum value for A = -G. Without any loss of generality, we can

where, A = X/(X + a) and C2 = C,/C Here, Ml(?P a) attains the

take X = 1, as we can divide each observation corresponding tb the
auxiliary variable by i, which is assumed to be known and carry

.out the study with the new set of auxiliary observations. The

minimisation of M (Y )

1Yp o with respect to A is equivalent to
minimising b&(?p a) with respect to 'a’ as da/dA = 0. Hence,
M, (Y, _) attains the minimum value for a = -(1 + 1/G) with the

condition that X = 1.

In view of the above condition of X being unity, we have to

ﬁbdify the parameters of our empirical-simulation study. Here, we
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have considered four example-~levels of §(=1.0, 2.0, 3.0 and 4.0)
and one fixed value of X(=1.0). The Afhér parameters have the same
Qalues as explained in section 1.7. It should be mentioned here
that now on, whensoever we take the estimator ?P.a into the grbup
of competing estimators, we make the above modifications with our
empirical—simulation study. This is without any loss of generality
as we would have had the 'same number of comparisoné of the
estimators in this modified study too. %he results of the
empirical-simulation study are tabulated below in table 2.3 and
are graphically displayed in the graphs 2.8 to 2.12 for ?P.a'
TABLE 2.3

RF(e) FOR y , Yp/¥, and Y

Estimators 5 ; ?R ?p ?p .
Sample Sizes )
n=10 |0.248 0.332 - 0.420
oo
- n=20 j0.188 - 0.377 - 0. 435
n=10 {0.068 - 0.1185 0.817
o<of
n=20 [0.077 - 0.083 0.840

Table 2.3 reveals that ?P a performs consistently better than

the other estimators in the competition. It performs better:
exceptionally, more often when G ¢ [-0.5,0,5]. It has also been

observed that ?p a performs better than ?P when G lies between -1

and -0.85.

In the present study, we have also included the estimators

given by Srivastava(1967), Reddy(1974) and Sahai(1979) defined

Eearlier in the Chapter-1. It can easily be checked that the first

order MSE of th t Y Y :
ese estimators YSP.’ YRe. and YSa. come out to be :
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) = M (Y, )

1" "Sr. 1" Re.
= M1(YSa.)
=[1 + a.(a—ZG)/Cg 1. ?2.c3 /n ... (2.7

In order to obtain the optimal value of 'a’, we minimise the
above mentioned first order MSE and find that it is minimum when

] - P -~
a=G. Thus, we are able to define YSr , Y and Y completely.

Re. Sa.

In what follows, we give the results of empirical-simulation study

of these estimators and the graphical display of their relative

efficiencies.
; TABLE 2.4
RF(-) FOR Y YR/YP and YSr
Estimators 5 b_’ ?R ?P ?Sr
Sample Sizes ) :
n=10 |0.215 0.115 - 0.670
p >0 {
n=20 |0.150 0.092 - 0.758
n=10 ]0.075 - 0. 140 0.785
p <O { ‘
n=20 {0.055 - 0.110 0.835

The finer comparisons of the relative efficiencies of these
estimators show that ?Sr is most probably a better choice than Y
and ?R when G € [-1,-0.5}. Graphical display of the relative

efficiencies of these estimators is being given in the graphs 2.13

to 2.16.
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TABLE 2.5

RF(o) FOR y , Y./Y, and Y

R P Re
Estimators - S by’ by
2y YR Yp YRe.
Sample Sizes
n=10 10.080 0.142 .- 0.778
p>o{
n=20 |0.072 0.123 - 0.805
n=10 |0.080 - 0.180 - 0.730
p <0 {
n=20 (0.072 - 0. 153 0.775

From the above table, we can say that ?Re is most probably a

better choice than y and Yﬁ/YP' The empirical-simulation study

also reveals  that ?Re is better, quite often, when G e_[-l,lL

Graphs 2.17 to 2.20 bear a clearer view of the relative

'efficiencies of these estimators.

TABLE 2.6

RF(e) FOR vy

R P S
Estimators 5 ; v Y ¥
. R P Sa.
Sample Sizes .
n=10 (0. 198 0.115 - 0.687
e >0 {
n=20 |0.085 0.108 - 0.797
- n=10 (0. 145 - 0.132 0.723
p<0{
n=20 |0.0862 - 0.113 0.825

Here, although ?Sa performs better than § and ?R/?P' it comes out
to be winner much more often when G lies between -1 and 1. The

gain In the relative efficiency when we use ?Sa has been

displayed graphically in the graphs 2.21 to 2.24.

Motivated by the structure of the estimator ?Sa , We propose

a new family of ratio-cum-product estimators as
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Y = y.((1+a).Y

VSa.

R Y (l-a).YP) / ((1+a).YP + (1-a). YR)

This can, equivalently, be written as .--(2.8)

?VSa' = §.((1+a).22 ¢ (1-a).%2) 7 ((14a).%2 + (1-a). %)

...(2.9)

Again, ’'a’ is a non-stochastic design-parameter. The first order
MSE of Y can be checked to be :
VSa.
Py 2 g2 A2
MI(YVSa.) ={ 1+ 4a.(a-~G)/C2 ). Y2.CY/n ...(2.10)

Ml(?VSa ) attains its minimum value when a = G/2. Putting this

value of 'a’ in 2.9 we get,

Yy, = ((250). %+ (2-0). X2 / ((246).%° + (2-G). %)

e (2010
We now compare this estimator with y and ?R/?P. The results of the
comparisons are given below in table 2.7. Also, graphs 2.25 to

2.28 glve a clearer view of the relative efficiencies of these

estimators.
TABLE 2.7
RF(¢) FOR vy , YR/YP and YVSa
Estimators 5 ; QR ?p QVSa
Sample Sizes
n=10 |0.107 0.080 = - 0.803
p>0 {
n=20 10.08% 0.102 - 0.813
n=10 }{0.050 - 0.110 0.840
p<0O {
n=20 [0.040 - 0.087 0.873

From the above table, we can strongly recommend the use of ?VSa

when vy, YR{YP and YVSa. are in the competition. We have also noted
through the finer comparisons of the relative efficiencies of
these estimators that ?VSa performs better than ; and ?R/?P for

the entire range of G considered by us. Thus, we can use YVSa

irrespective of the value of G.
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CHAPTER - 3

THE TWO-PARAMETER FAMILIES OF ESTIMATORS

In Chapter—Z) we proposed and studied some ratio, product and
ratio-cum-product type estimators in which only one
design-parameter has been used for the mixing of vy, x and X. This
pargmeter was aséigned an optimal wvalue, its optimality being in
reference to the minimisation of ‘the first order large sample
approxlmatioh to the MSE of the eétimator. In this chapter, we
have tried the.mixings of-&, ?R and ?p using two design-parameters
rather than one. By the use of two parameters, we have fwo degrees
of freedom for manipulation. This additional degree of freedom is
used for controlling the second order large sample approximation.
to the MSEs’ of the proposed estimators. It so happens that in
this process we are not only able to use the guessed value 'g’ of
"G’ but also the guéssed value, say, 'r’ of ’p’ which would have
been'implicitly used in guessing G’ by ’'g’. Thus a fuller use of
the guessed values leads to gainful consequences in terms of more
efficient families of esgimatorsf We propose the following two

families of ratio-cum-product estimators.
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’

Taking 'a and 'b’ as the two non-stochastic design

parameters, we propose,

v L= (1vza). § - A ((1eb). g+ (1-b). ¥p) ... (3.1

For obtaining the optimal values of ’'a’ and 'b’, we minimise th

first and second order MSEs of this estimator. Let Ml(?(l) ) an

RP. ab
(§(1) ) be the first and second order MSEs of ?(1)
M>YRp. ab ' RP. ab

respectively, for a random sample from a bivariate norma

' (1) ‘ S(1)
population. We can check that MI(YRP.ab) and M2(YRP.ab) can b

given by the following equations.

=(1) . ' 2 =2 .2
, MI(YRP.ab) = [ 1 + 4d.(G+d)/C2 1. Y .CY /n ...(3.2
_ e e . =(1) . ,
where, d = a.b . Minimising Ml(YRP.ab)’ the optimal value of ’'d

comes out to be equal to -G/2,

(1), _ (1) 2 _
and MZ(YRP.ab) = Ml(YRP.ab) + P.[2Q. (2d"-(a+d)) + 6G. (a+d). (1-4d)

+ 3. (a+d). (a+5d)] ... (3.3

where, P = C;/nz, Q = (1+2p2). cg and C, = G/p. Now, using the

» » PR _(1)
optimal value for *d’ and minimising MZ(YRP.ab)’ we see that it

will be minimum for a = [2C§ + G.(3-8G)1/6. Thus, we have the

following expressions for the optimal values of ’a’' and ’'b’ .for

(1)
YRP.ab'
a = [2C2 + G.(3-8G)1/6 ... (3.4
and b = - G/(2a) ...(3.8)
Now, in this chapter, we have carried out the

empirical-simulation study to compare ?é;)ab (using the guessec

value 'g’ of ’'G’ and 'r’ of 'p’' ) with y and ?R when p > 0 and

with y and ?P when p < 0. The results of this study are tabulated

below in table 3.1.

?;;)ab has also been displayed graphically through graphs 3.1

to 3.4. ' P

The gain in efficiency which occurs by the use

of
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TABLE 3.1

' - = = S(1
RF(e) FOR y , Y_/Y and ( )

R P RP ab
Estimators = = S —(Ij
R YR Yp YRP. ab
Sample Sizes
n=10 10.170 0.135 - 0.695
e >0 {
n=20 [0.097 0.113 - 0.780
n=10 |0.305 - 0.282 0.413
p <O {
n=20 |0.167 - 0.198 0.635

This table shows that Yé;) ab performs better than y and Y muct

R

more often when p > O. Although, it does not perform that very

good when p < 0 and n=10, it recovers for large sample size (n=20)

and dominates ; and Y

_é;)ab performs very nicely when G € [(0,1] and for this range of

p’ quite often. It has also been seen that

G, the relative efficiency of Yé;) ab comes- out-to "be more than

that of y and YR’ quite often. This estimator also performs

exceptionally better than y and ?P when G € [-0.5,0].

One more family of ratio—cum-product type estimators by

making the use of two non-stochastic design-parameters ’a’ and ’b’

has been proposed by us in what follows. An estimator belonging to
this family is,

5(2) - . .

RP ab ~ (1+a+b). y - a.YR - b.YP ...(3.8)

Tlhe first and second order MSEs of this estimator can be checked

.0 be :

¢ (3(2) _ 2, -2 =2

Ml( RP. ab] = [1 + t.(t+2G)/C 1. Y .CY/n ... (3.7)
vhere, t = a-b. M ( ég) b) takes its minimum value when t = -G,

und MZ(Y(Z] ) =M (Yég) b) + P.[Q. (t ~2a) - B6G.a. (1+2t) +
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+3a. (a-2t)] ...(3.8)

where, P and Q are the same as defined for equation 3.3. We
5(2) e R : .

minimise MZ(YRP.ab) with respect to 'a’' and see that it has its
minimum value when a = (C; - 4G2)/3. So, the optimal values of ’a’

and 'b" for ?éi)ab can be given by the following equations.

a (cg - 46%)/3 ... (3.9)

and b

)

a+ G ...(3.10)

In this way, we have defined ?ég)ab wherein we used guessed values

'g’ of 'G’ and 'r’ of ’'p’ to choose optimal values of ’a’ and 'b’.
o2 - oo

Now, we proceed tq compare YRP.ab with y and YR/YP. The results of

these comparisons are tabulated below in table 3.2. The relative

efficiencies of these estimators have been displayed graphically

through graphs 3.5 to 3.8.

TABLE 3.2
RF(e) FOR y 3.7 ana .2
! R P RP.ab
Estimators - - S S(2)
> Y Y Y Y
Sample Sizes, R P RP. ab
n=10 |0.152 0.103 - 0.745
p >0 {
n=20 {0.032 0.113 - 0.795
n=10 |0. 307 - 0.305 0.388
p <O {
n=20 |0.197 - 0.188 0.8615

From this'table, we can infeer that ?ég)ab is most probably a

Better choice than § and ?R/?P‘ The finer comparisons based on

G-values of these estimators reveal that when p > 0 and G € [0, 1],

?ég)ab performs exceptionally better than ; and ?R' It also comes

out to be winner much more often when G lies between -1 and O.
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CHAPTER - 4

GAINFUL MIXINGS OF ONE OF THE

ESTIMATORS WITH MEAN-PER-UNIT ESTIMATOR

Vos(1980) studied some mixing-type estimators for the
efficlent estimation of population mean using information via
observation on an auxiliary variable. The paper considered some of
the estimators obtained by mixing y with ?R and \"{P. In fact, all
the eétimators proposed and studied by us are nothing but the
mixings of ;, x and X with one or two design-parameters. Motivated
by the work of Vos(1980), we have proposed some gainful mixings
of the various estimators proposed by us in Chapter-2 aﬁd
Chapter-3 with ;. The analytical expressions to obtain the optimal
values of mixing-parameters become very intricate and sometimes it
becomes very difficﬁlt or even impossible to get the optimal
values of the new design-parameters for these mixings. This fact
has lead us to propose a new method of mixing of the estimators
based on their performances via the empirical-simulation studies
carried out in Chapter-2 and Chapter—3.l

We suggest that the weight(s) for mixing estimator(s) tn with
; can be decided by the relative frequencies of the respective

estimator(s) when compared with each other in the presence of
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Y /YP. In the present chapter, we have tried this type of mixing
of one of the different estimators and our empirical-simulation

studies have revealed that the proposed mixipg—estimators perform

better than their parent estimators, quite often.

4.1. MIXINGS OF ONE-PARAMETER FAMILIES OF ESTIMATORS :

The mixing-estimators of ?MR and ?MP’ respectively when mixed

with 9, are proposed to be :

-

MEST(1) bl.y + (1-b1). YMR .. (4.1)

it

and MEST(2)

b,.y + (1—b2). YMP ...(4.2)
where, b1 and b2 are the respective design-parameters for mixing

or the mixing-parameters. The values of b1 and b2 as per the

simulation study carried out in chapter-2 are, respectively,

b, = 0.36; b, = 0.30 o ...(4.3)

Now, we compare MEST(1)/MEST(2) with their parent-estimators
(i:e., YMR/YMP)' Table 4.1 contains the results of these
comparisons and the graphs 4.1 to 4.4 afford us a clearer view of

the relative efficiencies of these estimators.

TABLE 4.1

RF(e) FOR vy , YR/YP' YMR/YMP and MEST(1)/MEST(2)

Estimators - S S = -
Sample Slzesa y YR YP YMR YMP MEST(1) MEST(2)
3
. n=1010.187  0.210° - 0.283 - 0. 300 ~
p>0{ : ,
n=20|0. 165 0.275 - 0.282 ~ 0.278 -
’ n=10(0. 152 - 0.192 - 0.318 - 0.338
p<o{
=20)0. 142 - 0. 240 - 0.298 - 0.320

From this table, we can say that MEST(1)/MEST(2) and ?MR/?MP are -

quite close to each other as per the results of their comparisons.
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The finer comparisons based on G-values reveal, however, that
MEST(1) comes out to be winner oftener (when compared with ;, ?R
and ?;R) when G € [0,0.5]). Also, MEST(2) has greater relative
frequency of winning than ?MP when G € (~0.5,0].

The mixings of y with Y, and Y, are proposed below.

VR VP v
= by - Y Ca .4
MEST(3) b3. y + (1 b3)' YVR (4.4)
and MEST(4) = b4. y + (1-b4). YVP ...(4.5)

where, b3 = 0.31 and b4 = 0.45 as per the results of earlier

empirical-simulation study. In table 4.2 we tabulate the results

of the comparisons of MEST(3)/MEST(4) with y, YR/YP and YVR/YVP’

Graphical display of the relative efficiencies of these estimators

being the winner is being given per graphs 4.5 to 4.8.

TABLE 4.2
RF(s) FOR y, Yo/¥p, Y p/¥,p and MEST(3)/MEST(4)
Estimators - 7 by y 7
Sample Sizes®| Y Yy Ve Yyr Yyp MEST(3) MEST(4)
: ¥
n=10{0.135  0.227 = 0.280 - 0.348 -
e >0 { .
n=20{0.133  0.277 - 0.280 - 0.300 -
. n=10|0.252 - 0.238 -  0.245 - 0.265
| n=20 0. 140 - 0.275 -  0.312 - 0.273
i )

Here, MEST(3) and MEST(4) have thus provided improvement over ?VR

and va except when p < O and n=20. We have also observed that the

relative frequency of MEST(3) being the winner in the comparisons
comes out to be more, quite often when G e [0, 0.5].

We now propose this type of mixing estimator for Y

MEST(5) = b5.§ + (1-bg). ?p.a ... (4.8)

P.a’ as below.

where, bS = 0.09 as per the earlier empirical-simulation study.
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Here, we compare this estimator with 9, YR/YP and YP a Table 4.3

contains the results of the empirical -simulation study carried out

~ A

for this purpose and the graphs 4. 9 to 4.12 provide the graphical

display of the relative efficiencies of these estimators.

TABLE 4.3

RF(e¢) FOR vy, YR/YP, YP.a and MEST(5)
“Estimators = S S - e
Sample Sizes” Y YR : .YP ’ YP.a MEST(S)

' N

n=10 |0.197 0.335 - . 0.183 0. 308
p>0{ v

n=20 |0.177 0.355 - 0.218 0. 250

n=10 [0.065 - 0.062 0. 308 0.565
p<0{ .

n=20 |0.052 - 0.053 0.420 0.47S

It 1is clear from the above table that MEST(5) is an improvement

Y

over YP a’ However, when the correlation between Y and X is

positive, ratio estimator dominates over both ?P a and MEST(5).

Here, we observe that the product-type nature of YP.a surfaces and
its mixing with § comes out to be winner more often when p < O.
The finer comparisons of MEST(5) with the other estimators in
competition reveal that it is most probably the best choice when G
€ [-1,0].

In what follows, we define the same type of mixings for %

and Y

< |

Re. Sa.’
MEST(6) = b6.§z + (1~-b_) ?Sr_ ... (4.7
MEST(?)V = b7.§ + (1-b.,) ?Re‘ ... (4.8)
and MEST(8) = bg.y + (1-b8).?8a_ ...(4.9)
where, b6=0.14. b7=0.10 and b8=0.14 as per our earlier

empirical-simulation studies. The empirical-simulation study of
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these estimators has been carried out for comparing them with

their respective parent-estimators, i.e., YSr.’ YRe. and YSa. and
- the usual estimators § and ?R/?P' The results of these comparisons
have been tabulated in the tables 4.4 to 4.6 and the relative
efficiencies of these estimators being the winners for the
different comparisons are being displayed graphically through
graphs 4.13 to 4.24.

TABLE 4.4

RF(o) FOR vy, Y./Y_., Y . and MEST(6)

Estimators - Y N S
Sample Sizes~ y YR YP YSr. MEST(6)
¥
n=10 [0.190 0.095 - 0.225 0.490
p >0 {
n=20 |0.135 0.065 - © 0.335 0.465
n=10 |0.035 - 0.065 0.192 0.708
p<0{
n=20 (0.040 - 0.060 0.292 0.608

The above table indicates that we will gain considerably by the
use of MEST(6) instead of using vy, ?R/?P and ?Sr .  The estimator
MEST(6) performs better than the other estimators in the

competition much more often for the entire range of G considered

by us.
TABLE 4.5
RF(eo) FCR vy, YR/YP, YRe. and MEST(7)
Estimators = S S S
Sample Sizes” y YR YP YRe. MEST(7)
4

n=10 |0.075 0.127 - 0.363 0.435
p>0{

n=20 |0.057 0.108 - 0.392 0.443

n=10 |0.080 - 0.192 0. 348 0. 380
p<0{

n=20 |0.050 - 0.125 0.417 0.408
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From the above table, we can infer that MEST(7) provides slight
improvement over ?Re and the two estimators are quite close to
each other in their performances as per the empirical-simulation

study when p < 0. The finer comparisons of these estimators reveal

that MEST(7) performs fairly bétter than y, Y, and Y ‘when G €

R Re.
' (0.5,11. 1Its performance is also worth noticing as compared to ;,
Y, and Y when G lies between -1 and -0.5.
P Re.
TABLE 4.6
RF(.) FOR vy, YR/YP, YSa. and MEST(8)
Estimators = S - s
Sample Sizes”| Y YR Yp YSa. MEST(8)
< 4
n=10 0.172 0.080 - 0.280 0. 458
o> o
n=20 |0.097 0.085 - 0.358 0. 460
n=10 (0.085 - 0.070 0.217 0.628
p<0{
n=20 {0.032 - 0.070 0.348 0.550

The table 4.6 shows that we will be most probably a gainer in the

relative efficiency if we use MEST(8) instead of Q’VQR/?P and YSa

The estimator MEST(8) performs better than the other estimators
much more often for the entire range of G under consideration
. except when G lies between 0.5 and 1, when Y is quite a close

Sa.
competitor.

Now, we propose the same type of mixing estimator for Y

VSa.
to be :
MEST(8) = bg.y + (1—b9). YVSa. ...{4.10)
where, b9=0.08. We have compared this estimator with ;, ?R/?P and
YVSa.

The results of these comparisons via the empirical-simulation

study are tabulated below in table 4.7 and the graphical display
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of the relative efficiencies of these estimators is being done

through graphs 4.25 to 4.28.

TABLE 4.7

RF(¢) FOR vy, YR/YP, YVSa.and MEST(3)

Estimators - by oy S
Y MEST(9)
Sample Sizes9 y YR YP VSa.
¥

n=10 [0.092 0.083 - 0. 440 0.375
p>0 {

n=20 }0.072 0.07S - 0.468 0.385

n=10 |{0.032 - 0.083 0.387 0.498
p <0 {

n=20 |0.040 - 0.062 0.425 0.473

From the above table, we can infer that ?VSa. has be;n improved by
mixing it with § when p < 0. This mixing does not perform very
good for positive correlation case and'?vsa. dominates the scene
then. We have also noticed that MEST(9) takes a significant lead

over all the other estimators in competition including.?R when G >

1.0. Also, the relative frequency of MEST(9) turns out to be

higher than §, ?P and YVSa much more often when G < -0.5. Thus,

MEST(Q) performs better than ?R/?P for those ranges of G where

the use of YR or ?P has been recommended in the literature. So,

for those cases, one would recommend the use of MEST(8) instead of

YR/YP'
4.2 MIXINGS OF TWO-PARAMETER FAMILIES OF ESTIMATORS :
"In this section, we propose the mixings of ?(1) and ?(2)

’ RP.ab RP. ab
with y. Here also, the optimal value of mixing-parameter has been
decided by the relative frequency of the respective estimator
being the winner as per the empirical-simulation studies carried

out by us in Chapter-3. The proposed method of mixing the
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estimators 1is very much Jjustifiable for the mixing-estimators of

?;;?ab and qéi?ab' If we do not follow this method of mixing ;

e 7(2) i design-parameters
with YRP.ab and'YRP.ab' we would be having two design-p
and one mixing-parameter. In all, we will have to find the
optimal ~values of three parameters. " This can be done by

minimising the first, second and third order large sample
approximate MSEs of the mixing-estimators but the expressions for
the third order MSEs of these estimators become so complicated
that we are unable to find the optimal values of the three
design-parameters. So, following the method explained earlier, in

(1) 5(2) =
this section we propose the mixings of YRP.ab and YRP.ab with y as

follows.

s s . _ —(1)
Let b10 be the mixing-parameter. Then the mixing of YRP.ab

with ; can be given by

_ P ¢ )
MEST(10) = b .y + (1-b ). ¥po' o .. (4.11)

where, b10=0.23 as per the empirical-simulation study carried out

for ?é;)ab in Chapter-3. Now, we compare this estimator with ;,

5 T 5(1) '
YR/YP and YRP.ab . The results of these comparisons are tabulated

below in table 4.8. The relative efficiencies of these estimators
have also been displayed graphically through graphs 4.28 to 4.32.
TABLE 4.8

- 5 o5 w1
RF(e) FOR vy, YR/YP’ YRP.ab and MEST(10)

Estimators = s < (1)
Sample Sizesa y YR YP YRP.ab MEST(10)
" .
n=10 }0.095 0.085 - 0. 370 0.450
p >0 { .
n=20 [0.085 0.070 - 0. 442 0.403
n=10 [0.122 - 0.240 0. 360 0.278
p <O {
n=20 |0.137 - - 0.190 0.383 0.280
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Table 4.8 indicates that MEST(10) performs better than the other

estimators only when p > 0 and n=10. For other cases, Iits

(1)
YRP.ab

competitor there too. It has also been observed through the finer

performance is not so good as that of but it is a strong

comparisons of the relative efficiencies based on G-values that

- 3 5(1)
MEST(10) is most probably a better choice than Yy, YR and YRP.ab

when G € (0.5, 11].

A similar mixing-type estimator for ?ég)ab is proposed to be:

) ?(2)

MEST(11) = bll.y + (1—b11 -YRP. ab ...(4.12)

where, bil=0'16 as per the empirical-simulation study carried out

for ?ég)ab in Chapter-3. Now, we proceed to compare this

- Ny -(2)
estimator with Yy, YR/YP and YRP.ab' The

compafisons are tabulated below in table 4.8. The

results of these

relative

efficlencies of these estimators have also been displayed
graphically through the graphs 4.33 to 4.36.
TABLE 4.9

= o o 5(2)
RF(0) FOR vy, YR/YP, YRP.ab and MEST(11)

Estimators - S S 5(2)
SampleSizes™ y YR Yp Yep.ap  MEST(11)
N2
n=10 [0.122 0.068 - 0.332 0.478
p >0 {
n=20 (0.080 0.042 - 0.435 0.443
n=10 |0.255 - 0.242 0.250 0.253
oo ]
n=20 {0. 140 - 0.205 0.352 0. 303
From this table, one can reach the openion that véi)ab has been

improved in the form of MEST(11) only when p > 0. The estimators

MEST(10) and MEST(11) behave likewise here in the sense that

MEST(10) was also an improved version of qé;)ab for the positive

correlation case. It has also been observed that ?ég)ab comes out

to be winner more often as compared to other estimators when G

lies between -0.5 and 1.
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CHAPTER - 5

OTHER GAIN?UL_MIXINGS OF THE ESTIMATORS

In Chapter-4, we proposed some gainful mixings of ; with
various estimators which turn out to be. better than their parent-
Igstimators. quite often. There may be many other types of mixings
of these estimators. We, in the present chapter propose two more
types of mixings of the parent-estimators (i.e., the estimators
proposed by us in Chapter-2 and Chapter-3) and observe through the
empirical-simulation study that the proposed mixings perform
better than their parent-estimators, quite often. In the
first-type of mixing, we propose some new mixing estimators by
combining the two parent estimators through a suitable
:mixing—parameter and in the second-type of mixing, we propose some
‘linear combinations of Y, ?R/?P and the two parent-estimators.

It may be mentioned here that ~the performance of the
‘estimators propose@ by us in Chapter-2 and Chapter-3 is not
uniform for the two cases of positive and negative correlations.
So, invthis Chapter, we have studied these two cases separately.
For the first-type of mixing, we have not included all the parent-

estimators in our present study but have considered the best five
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estimators when p > 0 and the best five estimators when p < 0.
Subsequently, we have considered all the possible mixings of these
five estimators taking two out of them at a time. This'process
gives rise to 10 mixing-estimators for positive correlation case
énd to other 10 estimators for the negative correlation case. For
the second-type of mixings, we have considered the best three
parent-estimators when p > O and the best three pafent-estimators
for p < 0. Thus, we will have 3 mixing-estihators for positive
correlgtion case and other 3 for negative correlation case. To
decide the best five estimators for the two cases of positive and
negative correlations, we have carriéA‘ out the
empirical-simulation study taking all the parent—estimatofsb

sSimultaneously.

The best five estimators in the order of their performance

turn out to be:

- (1) o2 g S |
Yp.a’ YRP.ab’ YRP.ab’ YRe.' Yyg “hen P > O . -+ (58.1)
and Y Y Y ?(1) Y when p < O (5.2)
Re.” "VSa.’' 'MP' "RP.ab’' P.a T -

S.1 MIXINGS OF THE TWO PARENT-ESTIMATORS :

In this section, we propose the above mentioned first-type

mixing of the estimators. We divide this section into two

sub-sections in which we study the cases of positive and negative .

correlations separately.

S.1.%1 MIXINGS WHEN p > O :

The parent-estimators for this case are given in 5.1. In

what follows, we propose the mixings for these parent-estimators.
In order to propose a mixing-estimator for ?P.a and ?é;?ab’ we
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first carry out the empirical-simulation study to compare 9, Y

R,
?P.a and ?é;?ab' The results of this study are given 1n table 5.1.

TABLE 5.1

' - g S(1)

RF(e) FOR y, Yp, ¥, and Ypp'
Estimators | - 3 7 q(ITﬁ
Sample Sizes y R ' P.a RP. ab

N

n=10 _ |0.062 0. 168 0.465 0.305

n=20 0.027 0.135 0.463 0.375

Based on the results of the above table, we propose a
~ T (1)
mixing-estimator of YP.a and YRP.ab to be
- oy _ Ss(1)
MEST(12) = pl'YP.a + (1 pl)'YRP.ab ...(5.3)

where, p1=0.58 as per the results of the table 5.1. Now, we
proceed to compare MEST(12) with y, YR and YP.a (since YP.a is the
most probable winner according to table 5.1). Thé results of these
comparisons are tabulated below in table 5.2. Graphs 5.1 and 5.2
provide the graphical display of the relative efficiencies of

these estimators.

TABLE 5.2
o) F y Y Y
RF(e) FOR 'y, YR’ YP.a and MEST(12)
Estimators - = <
Sample Sizes” y YR YP.a MEST(12)
NE
n=10 0.057 0.158 0.437 0.348
n=20 0.045 0.115 0.395 0.44S5

Table 5.2 reveals that we will gain in the efficiency by the use
of MEST(12) for relatively larger sample sizes (i.e., n=20). It

has also been noticed that this mixing-estimator performs

consistently better than y, ?R and ?P a when G € [0.5, 1].

Now, we carry out the empirical-simulation study for the
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Y 5(2)
comparison of YP.a and YRP.ab
Y.

The results of this study are tabulated below

in the presence of the usual

estimators § and R

“"i{n the table 5.3.

TABLE 5.3
T U RF(e) FOR , Vo, V.  and 72
~ ' 'R* "P.a RP.ab
Estimators - - " —(2)
Sample  Sizes Y YR Yp.a YRP.ab

¥
n=10 0.035 0.132 0.525  0.308

n=20 0.037  0.113 0. 445 0. 405

Based on the results of the above table, we propose the

mixing-estimator for Y and ?(2)

P.a RP.ab t° b€ °
- T _ S(2)
MEST(13) = Py Y, v (1 p2)'YRP.ab . ...{5.4)
where, p2=0.58. From table 5.3, we can infer that ?P a comes out
- g S(2)
to be winner more often as compared to vy, YR and YRP{ab' So, in
what follows, we compare MEST(13) with &, ?R and ?P a The

results of these comparisons are given in table 5.4. A more

comprehensive view of the relative efficiencies of these
estimators is provided through graphs 5.3 and 5.4.
TABLE 5.4

RF(e) FOR Yy, ?R, Y and MEST(13)

P.a

Estimators - = -
Sample Sizes”| Y YR Y, . MEST(13)
<

n=10 0.037 0. 180 0.428 0.355

n=20 0.032 0.128 0.380 0.460

From the above table, we can infer that MEST(13) performs better
than ;, ?R and ?P a for rather a large sample size. The behaviour

of MEST(13) is very similar to MEST(12) and itvis also the winner

on the comparisons much more often when G e [0.5, 1].
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ran efficient mixing of Y

Next, we consider the estimators Y

Y Y

Re. " For the

P.a and

proposition df a mixing-estimator of these two, we first compare

YP.a

and ?Re in the presence of § and‘?R. The results of these

comparisons are tabulated below in table 5.5.

"TABLE 5.5 = -
RF(o) FOR vy, YR’ YP.a and YRe.
Estimators - = S S
Sample Sizes”| Y YR Yp.a  Ype.
N2
n=10 0.085 0.092 0.445 0.378
n=20 0.062 0.120 0.478 0.340
The mixing-estimator for ?P a and ?Re , based on the results of

‘table 5.5 can be proposed as

MEST(14) "

P3-Yp o * (1-pg).Yp

...(5.85)

where, p3=0.56. Thus ?P a again dominates the scene when compared

with y, YR and.YRe'.

Y. YR and Yp_a

comparing these estimators:

So,

we now compare our proposed mixing with

The results of the empirical-simulation study for

YR’

Y

Y, P a and MEST(14) are given

below in table 5.6. Graphs 5.5 and 5.6 provide a clearer view of

fthe relative efficiencies of these estimators.

TABLE 5.6
RF(e) FOR vy, Yo YP.a and MEST(14)
. Estimators - = =
Sample Sizes y YR YP.a MEST(14)
¢
n=10 0.070 0.165 0.372 0.393
n=20 0.040 0.035 0.442 0.483

From the above table, one can conclude that MEST(14) comes out to

be winner more often when compared with §. Y

R and YP.a'

We have also observed

So, it is

Y

and Re. "

P.a
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finer comparisons

through the based on

of these estimators
G-values that the performance of MEST(14) is quite encouraging

when G € [0.5, 1].

Now, we go forward to propose a mixing of ?P.a and ?VR' For
“this, we first compare Y, YR’ Yp'a and YVR via the
empirical-simulation study. The results of the study are
tabulated below in table 5.7.
TABLE 5.7
RF(¢)' FOR vy, YR’ YP.a and YVR
Estimators - = = =
Sample Sizes Y YR YP.a YVR
n=10 0.032 0.168 0.497 0.303
n=20 0.060 0.185 0. 550 0.205
Baéed on the figures given in the above table, we propose the
following mixing estimator for YP.a and YVR‘

MEST(15) = p,. Y, _ + (1-p4).QVR ...{(5.86)

where, p4=0.87. Thus, ?P a is the most probable winner when
éompared with 9, '?R and ?VR' So, we compare the estimator
MEST(15) with y, ?R and ?P o, Table 5.8 contains the results of

the empirical-simulation study carried out for these comparisons

and graphs 5.7 and 5.8 afford us a clearer view of the relative

" efficiencies of these estimators.

TABLE 5.8
RF(.) FOR vy, YR’ YP.a and MEST(15)
Estimators ~ - -
Sample Sizes” Y YR YP.a MEST(15)
n=10 [0.052  0.165  0.300 0.483
n=20 [0.057  0.130 - 0.355 O.458
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Table 5.8 indicates that MEST(15) is an improvement over YP o It

comes out to be winner more often as compared to &, YR and YP.a'

So, one can recommend the use of MEST(15) instead of &. ?R and

YP when p > 0. It has also been observed through the finer
.a

- comparisons of " Yy, ?R, ?P'a and MEST(15) that MEST(15) performs
qulte'well in comparison with the other estimators here when G €
(0.5, 1]. Also, it is a close competitor of ?R when G > 1.0.

For the proposition of a mixing-type estimator of ?;;)ab and
!?(2)

RP ab’ W€ DOV carry out the empirical-simulation study for

- 3 (1) s(2)
comparing vy, YR' YRP.ab and YRP.ab The results of this study are

tabulated below in table 5.9.

TABLE 5.9
- 5 oll) =(2)

RF(-) FOR vy, YR’ YRP.ab and YRP.ab
Estimators - = -(1) =(2)
Sample Sizesé Y YR YRP.ab YRP.ab

J

n=10 0.130 0.112 0.360 0.398

=20 0.080 ©.085 10.330 0.485

- Based on the above results, we propose the following mixing

estimator,

_ (1) L s(2)
MEST(16) = pg. Yoo o+ (1-pg).Ype' ... (5.7)

where, pg=0.45. The value of pg hints that ?éi)ab is the most

. - 5 1) 5(2)
babl
. probable winner when we compare y, YR' YRP.ab and YRP.ab' So, we

now take up the empirical-simulation study for comparing MEST(16)

- = (2
with vy, YR and YéP?ab’ The results of this study are tabulated

below in table 5.10 and the relative efficiencies of these

estimators are being displayed through graphs 5.9 and 5. 10,
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TABLE 5. 10

RF(+) FOR v, V., ¥} and MEST(16)

R’ "RP.ab
Estimators - = =(2)
Y MEST(16)
Sample Sizes 4 YR RP.ab
N2
n=10 0.120 0. 100 0.402 0.378
n=20 0.067 0.085 0.470 0.378

Although, from table 5.10, one can infer that MEST(16) does not

perform so good as ?éi)ab yet it is quite a close competitor of

=(2) S(2)
YRP.ab when G € [0, O0.5]. It even takes a lead over YRP.ab for

this range of G for n=10.

(1)
Next, we propose the same type of mixing for YRP.ab and YRe.‘

The results of the empirical-simulation study when we compare §,
s (1) 3
YR’ YRP.ab and YRe. are tabulated below in table 5.11.

TABLE 5. 11
RF(o) FOR y, ¥, ¥}  and ¥
' "R" "RP.ab Re.
Estimators - P S(1) S
Sample Sizes™ y YR YRP.ab YRe.
N

n=10 0.057 0.083 0.370 0.4S0

n=20 0.035 0.097 0.385 0.473

Exploiting the knowledge of the performances of the two estimators
?(1)

RP. ab and YRe. as indicated in table 5.11, we propose the mixing
$(1) G
estimator for YRP.ab and YRe. to be:
_ c(1) _ v
MEST(17) = pg-Ypp ap * (17Pg) - Y. ...(5.8)

where, p8=0.44 as per the results of table 5.11. Since p8=0.44.

we now carry out the empirical-simulation study for the comparison

of y, ?R, ?Re and MEST(17). Table 5.12 contains the results of

this study and the graphs 5.11 and 5.12 afford us a clearer view

of the relative efficiencies of these estimators.
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TABLE 5.12

RF(+) FOR Yy, ?R, Y. and MEST(17)

Re
Estimators - . S Y
Y MEST(17)
Sample Sizes” y YR Re.,
<4
n=10 0. 0867 0.098 0.375 0. 460
n=20 0.042 0.098 0. 367 0.493

It is clear from table 5.12 that MEST(17) performs better than y,
?R, énd ?Re.’ quite often. So, one can ré&ommend the use of
MEST(17) instead of y, ?R and ?Re.' It has also been seen through
the finer comparisons of these estimators that MEST(17) is the
most probable winner when G € [0.5, 1] and it takes a slight lead

over YR when G > 1.0.

In the table 5.13 given below, we tabulate the results of the

empirical-simulation study for the comparison of ;. Y ?(1) and

R’ "RP.ab
YVR'
TABLE 5. 13 -
RF(<) FOR y, Y., ¥¢!)  ana ¥
* "R* "RP.ab VR
Estimators - = (1) S
Sample Sizes” Y YR YRP.ab YVR
N

n=10 0.085 0. 107 0.508 0.280

n=20 G.065 0.080 0.622 0.223

Based on the results of the above table, we propose the mixing

5(1) S
estimator for YRP.ab and YVR as
_ 5(1) S
MEST(18) = p7'YRP.ab + (1 p7).YvR ...(5.9)
where, p.=0.68 as per the results of table 5.13. Thus, ?(1)
7 RP. ab
performs better than y, ?R and ?VR' most often. So, we now
proceed to compare MEST(18) with y, ?R and ?é;)ab’ The results of

these comparisons are detailed below per table 5.14. Graphs 5.13

86



Series 1 for YR , Series 2 for _Y—Re. and
Series 3 for MEST(17)

Frequency (Number of Cases)

26558

250 \

200

300

150
11

100

50

176 261 348 41 | 858
Relative Efficiency (Upper Limit) |

- Series 1 N Series 2 Series 3

Graph - 5.11 (Sample Size = 10, € > 0)

Series 1 for Yy , Series 2 for Ype, and
Series 3 for MEST(17)

250 Frequency (Number of Cases)

21518

200 '_
150 '
100
é8 70
46 46
50 28 -
0 N

78 152 226 300 374 744
Relative Efficiency (Upper Limit)

- Series 1 N series 2 Series 3

Graph — 5.12 (Sample Size = 20, € > 0)

87



and S.14 afford us a clearer view of the relative efficiencies of

these estimators.

TABLE 5. 14
- - ol
RF(°) FOR vy, YR’ YRP.ab and MEST(18)
Estimators R - 7 .?(1) MEST(18)
Sample Sizes Y R RP.ab
3
n=10 0.115 0.062 0. 350 0.473
n=20 |0.075  0.070  0.412 0.443
Table 5.14 indicates that MEST(18) performs better than y, ?R and
?;;)ab' quite often. We are thus able to improve ?(1) in the

RP. ab
form of mixing-type estimator MEST(18). This estimator performs

exceptionally better than the other estimators when G € [0.5, 1].

It is also unbeaten more often when G > 1.0.

In order to propose a mixing-type estimator of ?;i)ab and
?ﬁe , we compare the two in the presence of § and ?R via the

empirical-simulation study. The results of these comparisons are

tabulated below in table 5. 15.

TABLE 5. 1§
RF(e) FOR y, Y., ¥v3)  ana ¥
' "R’ 'RP.ab Re.
Estimators - S S(2) S
Sample Sizes” y YR YRP.ab YRe.
v
n=10 0.047 0.088 0.462 0.403
n=20 0.027 0.075 0.513 0.385
Thus, the proposed mixing is:
_ =(2) _ S
MEST(19) = p8'YRP.ab + (1 p8)'YRe. ...(5.10)

where, p8=0.55 as per the results of table 5.15. Since, ?ég)ab is

the most probable winner in the above comparisons, we now compare

MEST(19) with y, Y_ and y(2)

R RP. ab’ The results of these comparisons
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are tabulated below in table 5.16 and the gain in the relative

efficiency by using MEST(18) is also being displayed graphically

per graphs 5.15 and 5. 186.

TABLE 5. 16
RF(e) FOR y, Y., ¥'3)  and MEST(19)
" 'R” 'RP.ab
Estimators - S =(2)
Sample Sizes” y YR YRP.ab MEST(19) .
¢
n=10 0.110 0.092 0.358 0. 440
n=20 0.062 0.058 0. 460 0.420

One can infer from the above table that MEST(19) performs better

than the other estimators for relatively smaller sample sizes (n =

10). It has also been noticed that it is unbeaten most often when

G € [0, 0.5].

_ (2) S
Now, we propose a mixing-type estimator for YRP.ab and YVR“

First, we carry out the empirical-simulation study to compare the

?(2)

estimators y, YR’ RP. ab and YVR' Table 5.17 contains the results

of this study.

TABLE 5.17
RF(o) FOR y, Y., ¥2) and ¥
* "R* "RP.ab VR
Estimators - S <(2) S
Sample Sizes”| Y YR YRP.ab  YVR
) 2
n=10 0.115 0.080 0. 560 0.245
n=20 0.057 0.068 0.685 0.1380
Thus, we propose the mixing-type estimator for ?(2) and Y to
: RP. ab VR
be :
MEST(20)= p_.¥'3) 4 (1-p).¥ (5.11)
9" 'RP.ab 97" "VR T

where, p9=0.74 as per the results of table 5.17. Now, we perform

the empirical-simulation study for comparing>MEST(20) with ;, ?R
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and ?ég]ab' The results of this study are tabulated below in

table 5.18 and the relative efficiencies of the estimators being

displayed through graphs 5.17 and 5.18.

TABLE 5. 18
RF(o) FOR vy, Y ?(2) and MEST(20)
" "R’ "RP.ab
Estimators - = (2)
MEST (20
Sample Sizes Y YR YRp. ab (20)
n=10 0.115 0.045 0.325 0.515
n=20 0.042 0.063 0.385 0.510

Above table is the indicative of the fact that MEST(20) is an

-(2) =
efficlent mixing of YRP.ab gnd YVR' It turns out to be winner,

quite often when compared with ;, ?R and ?ég)ab' It has also been
' - 3 S(2)
revealed through the finer comparisons of vy, YR' YRP.ab and

MEST(20) that MEST(20) performs better more often than the other

estimators for the whole range of G considered by us.

The last mixing-type estimator fof the positive correlation

case has been proposed by using ?Re and ?VR' We first compare

YRe_and'YVR in the presence of the usual estimators y and YR'
Table 5.19 contains these results.

TABLE 5. 19
RF(e)} FOR vy, YR' YRe. and YVR
Estimators = S = S :
Sample Sizes” y YR YRe. YVR

¥
n=10 0.037 0.088 0.632 0.243

n=20 0.060 0.085 0.660 0.185

»

Thus, we propose the following mixing-type estimator.
MEST(21) = plO'YRe. + (l—plo).YVR ... (5.12)

where, p, =0.75 as per. the results of table 5.19. Thus, ¥

Re. is
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the most probable winner when compared with ;, ?R and ?VR' So, we
now compare MEST(21) with y, ?R and ?Re . The results of the
empirical-simulation study for these comparisons are tabulated

below in table 5.20 and displayed per the graphs 5.19 and 5.20.

TABLE 5. 20
RF(e) FOR y, Yp, Y  and MEST(21)
Estimators = < - j
Sample Sizes Y YR YRe. MEST(21)
N2
n=10 0. 100 0.085 0.307 0.508
n=20 0.050 0.075 0.380 0.49S8

Above table indicates that MEST(ZI)'is the winner more often when

compared with §, ?R and YRe . So, it is also an efficient mixing

of YRe. and YVR‘ This mixing performs better than y, YR and YRe.
much more often for those cases when G > 0.5.

5.1.2 MIXINGS WHEN p < O :

The parent-estimators for this case have been given in 5.2.
The different mixing-type estimators for these parent estimators

are being proposed in this sub-section. -

We ©propose the first mixing-type estimator in this

sub-section as a mixing of YRe. and YVSa.' For deciding the

weights of ?Re. and ?VSa. in the proposed mixing, we first compare

Y, YP, YRe. and YVSa.‘ The results of these comparisons are given

below in table 5.21.

TABLE 5.21
RF(-) FOR vy, YP’ YRe. and YVSa.
Estimators - = = S
Sample Sizes” y YP YRe. YVSa..
N2
n=10 0.042 0.100 0.343 0.515
n=20 0.032 0.073 0. 420 - 0.475
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Based on the above results, we propose the following mixing-type

estimator.
= Y - Y ...(5.13)
MEST(22) nl'YRe. + (1 nl)'YVSa. (
where: n1=0.44. This value of ’nl’ suggests that ?VSa. is a more
probable winner when compared with ;, ?P and ?Re . So, wWe now

carry out the empirical-simulation study for comparing §, ?P'
Y,g, and MEST(22). Table 5.22 contains the results of this study

and graphs 5.21 and 5.22 afford us a clearer view of the

relative efficiencies of these estimatoré.

TABLE 5.22
RF(<) FOR Yy, YP' YVSa. and MEST(22)
Estimators - - o
Sample Sizes'9 y YP YVSa. MEST(22)
3
n=10 0.030 0.088 0.392 Q. 480
n=20 0.035 0.077  0.343 0.545

We note from the above table that MEST(22) turns out to be more

efficient than ;, ?p and ?VSa , more often. So, we can recommend

the use of MEST(22) instead of Y and Y . It has also been
Re. VSa.

observed through the flner comparisons of the estlmators that
MEST(22) performs exceptionally good when G € [-1, 0.5] and takes

a slight lead over ?P for those cases when G < -1.0.

Now, we take up the simulation study for the comparison of

the estimators vy, YP' YRe. and YMP' Table 5.23 contains the

results of this study.
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TABLE 5.23

RF(.) FOR vy, YP' YRe. MP

Estimators 5 = 9 Y, v
Sample Sizes | Re. MP
+

n=10 0.060 0. 107 0.570 0.263

n=20 |0.052  0.100 0.660  0.188

The above table indicates that ?Re performs better than ?MP’

quite often. A mixing-type estimator for ?Re and ?MP can be

proposed to be:

MEST(23) = n2'YRe. + (l-nz).YMP ...(5.14)
where, n2=0.73 as per the results of the table 5.23. We compare
this estimator MEST(23) with ?Re and the usual estimators §‘and
?P' The results of this study are being tabulated in table 5.24.

Graphs 5.23 and 5.24 contain a clearer view of the relative

efficiencies of these estimators.

TABLE 5.24
RF(e) FOR vy, YP’ YRe. and MEST(23)
Estimators = S S
Sample Sizes” y YP YRe. MEST(23)
v
n=10 0.085 0.122 0.433 0.360
n=20 0.052 0. 100 0.413 0.435

One can observe from the above table that MEST(23) will be a

better choice than Q, ‘?P and YRe for relatively larger

sample-sizes(n=20, here) and for this case it beats the other

estimators, quite often when G € [-1, -0.5) or G < -1.0. It does

also perform better than vy, ?P and ?Re when G € (-1, -0.5] and

n=10.

Now, we propose a mixing-t t Y yl)
prop ng-type estimator of YRe. and YRP.ab'
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For this, we first carry out the simulation study to compare ;,
(1)

Y : : t lts of this
YP, YRe. and YRP.ab' Table 5.25 contains the resulis o
... study.

TABLE 5.25

RF(o) FOR y, Y,, Y, and g1
* P’ "Re. RP. ab

Estimators - < = (1)
Sample Sizesa y YP YRe. YRP.ab
¢ .
n=10 0. 065 0.145 0.595 0.195
n=20 0.037 0.113 0.562 0.288

Based on the above results, we propose the following mixing-type

estimator,
MEST(24) = n..Y + (1-n,) ?(1) ...(5.15)
3’ Re. 3°° 'RP.ab
where, n3=0.71 as per the results of table 5.25. Since ?Re is the
- G 5(1)
most probable winner when compared with y, YP and YRP.ab' we now

p and YRe.'

comparisons are contained in table 5.26 and the graphs 5.25 and

compare - MEST(24) with v, Y The results of these

5.26 give us a

more comprehensive view of the relative
efficiencies of these estimators.
TABLE 5.26
RF(o) FOR vy, YP' YRe. and MEST(24)
Estimators - - -
Sample Sizes% y YP YRe. MEST(24)
N
n=10  |0.070 _ 0.197  0.453  0.280
n=20 0.057 0.138 | 0.407 0.398

Above table is

indicative of the fact that the mixing-type

estimator MEST(24) is very often not more efficient than the other

estimators in competition.

It has also been observed that

MEST(24) performs good only for those cases when G € [-0.5, 0].
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Now, we proceed to propose a mixing-type estimator for ?Re.

and Y The results of the empirical-simulation study for

P.a’

. ~eomparing”§, Y., Y and ?P é are being tabulated below in table

P’ "Re.
5.27.

TABLE 5.27

RFF(e) FOR vy, YP’ YRe. and YP.a

Estimators

Sample Sizes y YP, YRef YP.a

n=10  [6.080  ©0.107 ©0.350  0.463

n=20 0.067 0.10S 0.388 0. 440

Relying on the results of table 5.27, we propose the following

-

mixing of YRe. and YP.a'

MEST(25) = n4.YRe_ + (1'“4)'Yp.a - ...(5.18)

where, n4=0.45. The value of Ny suggests that ?P a is the most

-

probable winner amongst vy, YP, YRe. and.YP.a. So, we now proceed
to compare MEST(25) with y, ?P and ?P-a. The results of the
empirical-simulation study for these comparisons are tabulated

below in table 5.28 and the relative efficiencies of these

estimators are being displayed graphically per the graphs 5.27 and

5.28.
TABLE 5.28
RF(c) FOR y, Yp, Y, . and MEST(25)
Estimators - - =
Sample Sizes”| Y Yp Yp ,  MEST(25)
v

n=10 0.000 0.067 0.008 0.925

n=20 0.000 G.042 0.003 0.955

From the above table, we observe that MEST(25) is simply an

excellent mixing-estimator almost always.
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Next, we propose a mixing-type estimator for ?VSa. gnd YMP'

The results of the empirical-simulation study for the comparisons

v, Yo, Y Y in table 5.29.
of vy, YP' YVSa. and YMP are tabulated below in
TABLE 5.28
RF(¢) FOR vy, YP’ YVSa. and YMP
Estimators - = "o : s
y Yp Yvsa. Yvp

Sample Sizes~
0

n=10 0.032 0.090 0.650 0.228

n=20 0.035 0.067 0.873 0.225

Based on the results of the above table, we propose the

mixing-type estimator for YVSa. and YMP to be:

MEST(26) = nS'YVSa. + (1-n5).YMP ...(5.17)

where, n5=0.75. This table also indicates that ?VSa‘ is the

winner more often when compared with ;, ?P and Y So, we now

MP*

combare MEST(26) with y, Y., and ?V The results of the

P Sa. ’

empirical—slmulation'study carried out for these comparisons are
contained in table .5.30. The graphs 5.29 and 5.30 afford us a

clearer view of the relative.efficiencies of these estimators.

TABLE 5.30
RF(e) FOR vy, ?P. Yyg, @and MEST(26)
sgigigaé?;:sj y Y% Yysa,  MEST(26)
n=10 |{0.032  0.060  0.388 0.520
n=20 [0.040  ©0.055  0.395 0.510

Table 5.30 indicates that MEST(26) is a more probable winner when

compared with y, ?P and Yo . As such one could recommend the

p' Yysa. 2nd Yyp

It has also been observed through the finer comparisons of these

use of this mixing-type estimator. instead of ?, Y
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’eétimators that MEST(26) comes out to be winner more often when

Y. and %

compared with ;. P VSa.

when G < -0.5.

- In order to propose a mixing-type estimator of ?VS

-(1)
YRP.ab’

and
a.

we now carry out

the empirical-simulation study for

- S (1)
Ypr Yysa, 209 Yppiop.

results of this study.

comparing Y, Table 5.31 contains the

TABLE S.31
RF(o) FOR y, Y., ¥ ana 71
' P’ "VSa. } RP.ab
Estimators - = = =(1)
Sample Sizes~ 4 Yp Yysa. YRP. ab
4
n=10 0.027  0.085 0.690 0. 198
n=20 0.035 0.075 0. 560 0.330

Following the results of table 5.31, we propose the following

mixing-type estimator.

MEST(27) = + (1-n6).?(1’

Ng- Yysa.

RP. ab . ...(5.18)
where, n6=0.70. In crder to show the betterment of MEST(27) over
?VSa , which is the most probable winner of the comparisons of 9.
= = =(1)

YP’ YVSa. and YRP.ab' we compare the two in the presence of usual

estimators ; and ?P' Table 5.32 contains the results of these

comparisons. We have also displayed the relative efficiencies of

these estimators through graphs 5.31 and 5.32.

TABLE 5.32
RF(e) FOR ¥, ¥,, ¥, and MEST(27)
Estimalors = = -
Sample Sizes’| Y Yp Yysa.  MEST(27)
. N2
n=10 |0.045  0.130  0.280 0.545
n=20 |0.052  0.103  0.297 0.548

From the above table,

one may conclude that MEST(27)
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' y, Y Y . So, it is an efficient
better than y, YP and YVSa.' quite often 0

(1)

mixing of YVSa. and YRP.ab'

It has also been observed through the

finer comparisons of Yy, YP’ YVSa

performs exceptionally good when G € [-1, O].

and MEST(27) that MEST(27)

Now, we carry out the empirical-simulation study for
comparing the estimators y, YP' YVSa.and YP.a' Table 5.33 contains
the results of this study.

TABLE 5.33
RF(0) FOR y, YP’ YVSa. and YP.a
Estimators = e v S
Sample Sizes”| Y Yp Yysa Yp.a
N
n=10 0.035 0.115 0.570 0.280
n=20 0.042 0.093 0.567 0.298

Based on the results of the above table, we propose the mixing of

YVSa. and YP.a to be:

MEST(28) = n7'YVSa. + (l-n,,).Yp'a ...(5.19)
where, n7=0.68. This mixing-type estimator MEST(28) is now
compared with vy, YP and YVsa.' The results of the

empirical-simulation study carried out for these comparisons are
tabulated below in table 5.34 and the relative efficiencies of the

estimators in the competition has also been displayed graphically

through graphs 5.33 and 5. 34.

TABLE 5.34
RF(e) FOR vy, YP' YVSa'and MEST(28)
Estimators - S S
Sample Sizes” Y YP YVSa. MEST(28)
N .
n=10 0.057 0. 158 0.395 0.390
n=20 0.057 0.115 0.378 0.450
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From table 5.34, one can observe that MEST(28) 1is rather an

efficient mixing of ?VSa and YP a’ One might recommend the use

~of "MEST(28) for relatively larger sample sizes. It has also been

observed through the finer comparisons of &, YP' YVSa and

MEST(28) that MEST(28) comes out to be winner much more often for

those cases when G € (-1, -0.5].

S (1)
To propose a mixing-type estimator of ~.Ym, and YRP.ab’

ey | - o g o(1) :
first compare vy, YP’ YMP and YRP.ab taking together. Table 5.35

we

contains the results of the empirical-simulation study carried out

for these comparisons.

TABLE 5.35
RF(s) FOR y, Y., Y. and 7.1
P MP RP.ab
Estimators - - = (1)
Sample Sizes” y YP 'YMP YRP.ab
¥

n=10 0.155 0.162 0.395 0.288

n=20 0.110 0.120 0.282 0.488

Based on the results of the above table, we propose the mixing of

?MP and vé;?ab to be:

| MEST(29) = ng-Yyp * (1-n8).?é;?ab ...(5.20)
where, n8=0.47. The value of n8(=0.47) suggests that ?é;?ab is a
mnore probable winner in the comparisons of ;, ?P’ ?MP and ?;;?ab'
So, we now take up the empirical-simulation study to compare

MEST(28) with y, ?P and ?;;)ab. Table 5.36 contain the results of

this study. We have also presented the relative efficiencies of

these estimators through graphs 5.35 and §.36.
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TABLE 5.36
(1)

RF(e) FOR vy, YP’ YRP.ab and MEST(29)
Estimators - = =(1)
MEST(29)
Sample Sizes” Y YP YRP.ab (
— n=10  |0.220 0.227  0.245 0.308
n=20 0.115 0.137 0.380 0.368

We can conclude from the above table that MEST(28) comes out

(1)

YRP.ab’ quite often, for

to be winner when compared with y, ?P and

relatively smaller sample-sizes. It has also been seen that

(1)

MEST(29) performs exceptionally better than &, Y_ and YRP ab when

|3
G e [-1,-0.5].

In the table 5.37 below, we tabulate the results of the

émpirical¥simu1ation study carried out for comparing &, ?P’ ?MP
gnd YP.a'
TABLE 5.37
RF(o) FOR vy, Yo Y\p and Yo o
Estimators - = - =
Sample Sizes®| Y p v ¥p.a
n=10 0.040 0.132 0.355 0.473
n=20 0.045 0.170 0.230 0.5585

Relying on the results tabulated above, we propose the following

MP and YP.a'
MEST(30) =

mixing of Y

n.. ... (5.21)

where, n9=0.36. Table 5.37 also indicates that ?P a is the winner

here, quite often. So, Wwe now proceed to compare MEST(30) with y,

-

Y

p and YP.a‘

The results of these comparisons are tabulated below
in table 5.38 and the graphs 5.37 and 5.38 afford us a clearer

view of the relative efficiencies of these estimators.
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TABLE 5.38

RF(o) FOR y, Y, Y and MEST(30)

P’ "'P.a
Estimators - S =
MEST (30)
Sample Sizes y YP YP.a (
3
] 'n=10___ [0.060. __0.127 0335 - - 0.478 " |
'n=20 0.0%52 - 0.098 0.327 0.423

One can observe from the above table that we will gain in the

relative efficiency by the use of MEST(30) instead of y, ?P and

YP a We have also observed through the finer comparisons of
these estimators based on G-values that MEST(30) performs
exceptionally better than the other estimators for those cases

when -1 s G s -0.5.

The last mixing of this type has been proposed by us by

(1) 5
mixing the estimators YRP. ab and YP-a' We first tabulate below

the results of the empirical-simulation study carried out for

-(1)

fcomparing ;, ?P’ RP. ab and ?p a
| TABLE 5. 39
RF(s) FOR 5, Y., ¥¢1) 414 ¥
» Ypr YRp.ab P.a
Estimators - = . -(1) S
Sample Sizes” Y YP RP ab YP.a
. .
j n=10  |0.062 0. 180 0.118 0.640
n=20 0.045 0. 150 0.202 0.603

Exploiting the knowledge of the performances of the estimators

—(1) S . -
RP ab and YP,a' we propose the following mixing estimator.

] S(1) ) S
MEST(31) = nlO'YRP.ab + (1 nlO)'YP.a ... (5.22)

where, 10-0 20 as per the results of table 5. 39 Since Y is

P.a
and Y(l)

the most probable winner when compared to y, YP RP. ab’ we now

carry out the cwmpirical-simulatlon study for comparing MEST(31)
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with vy, ?P and ?P .- Table 5.40 contains the results of this

study and graphs 5.39 and 5.40 afford us a clearer view of the

relative efficiencies of these estimators.

TABLE S. 40
RF(e) FOR y, Y., ¥, _ and MEST(31)

Estimators - = S .

ST(31
Sample Sizes®| Y ’p Yp.a MEST(31)

NP
n=10  [0.072  0.138 . 0.480 0.310
n=20 |0.045  0.112 . 0.393 0.450

Table 5.40 indicates that MEST(31) is a more probable winner of

the comparisons for relatively larger sample sizes when compared

with §’ ?P and YP a - It has also been observed that thé
performance of MEST(31) is exceptionally better than the other

estimators in competition here for those cases when -1 = G = -0.5.

5.2 MIXINGS OF y, ?R/YP AND THE TWO PARENT-ESTIMATORS :

As mentioned earlier, in this section we propose six linear
combinations of vy, ?R/?P and the two parent-estimators. The cases

of positive and negative correlations have been dealt with

separately.

5.2.1 MIXINGS WHEN p > 0 :

, For this case, as per 5.1, the three estimators will be Y ,

P.a
?(1) ‘and 7(2) In what follows, we propose their mixings
RP. ab RP. ab’ ’

(taking two of them together) with y and Y

S ~(1)
R Yp.a 2" Yppoap

Yoo T 5 . 5(1)
MEST(32) = ey * fl'YR + gl'YP.a + hl'YRP.ab ...(5.23)

Qhere, eléO;OSi flap.ls.‘g1=0146 as per the results of table 5.1

R’ First, we propose the

mixing of y, Y to be:

and h1=1~(e1ff1+g1). Now, we carry out the empirical-simulation

study for comparing MEST(32) with v, ?R and ?P a The results of
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this study are tabulated below in table 5.41. We have also

displayed the relative efficiencies of the estimators ;, ?R' ?P a
and MEST(32) graphically through graphs 5.41 and S.42.

TABLE 5. 41

- RF(e) FOR vy, YR’ YP.a and MEST(32)
Estimators - -~ -
Sample Size59 y YR Yp,a MEST (32)
N7
n=10 0.072 0.110 0.530‘ 0.288
n=20 0.058 0.075 0.550 0.320

According to table 5.41, one can say that the proposed mixing does
not perform better than ?P a but through the finer comparisons of

these estimators, we have observed that MEST(32) comes out to be

winner more often when G e [0.5, 1)]. It also beats the ratio

estimator much more often for those cases when G > 1.0.

- 5 S 5(2)
Now, we propose a mixing of vy, YR’ YP,a and YRP.ab'

?ccording to the results of table 5.3, comes out to be

This mixing,

.. = - -(2)

MEST(33) = ey ¥ + fz.YR + gZ'YP.a + hZ'YRP.ab ...(5.24)
where, e2=0.04, f2=0.12, g2=0.48 and h2=1—(e2+f2+gz); These
weights suggest that ?P a is the most probable winner here. So,

we compare MEST(33) with ? in the presence of the usual

P.a

estimators ? and ?R' Table 5.42 contains the results of these

éomparisons and graphs 5.43 and 5.44 afford us a clearer view of
the relative efficiencies of these estimators.
TABLE 5. 42

RF(o) FOR vy, YR’ YP.a and MEST(33)

Estimators - -

Sample Sizes”| Y YR Yp.a MEST(33)
: N7
n=10 |0.042  0.135  0.543 0.280
n=20 |0.058  0.092  0.497 0.353
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Table 5.42 indicates that we are again unable to improve YP.a' But
if we consider the finer comparisons of these estimators based on
G-values, we can infer that MEST(33) performs exceptionally better

than the other estimators when G € [0.5,1] and it strongly beats

Y. when G > 1.0 and n=20.

R
Based on the results of table 5.9, the mixing of ;, ?R'
=(1) =(2) -
YRP.ab and YRP.ab can be proposed to bg :
_ = v (1) 5(2)
MEST(34) = eq-y + f3.YR +-gS'YRP.ab + hB'YRP.ab ...(5.28)

where, e3=0.10, f3=0.10, g3=0.38 and h3=1-(e3+f3+g3). We have
compared MEST(34) with ?;i)abin the presence of usual estimators ;
and ?R via the empirical-simulation study. Table 5.43 contains
the results of this study and graphs 5.45 and 5.46 afford us a

clearer view of the relative efficiencies of these estimators.

TABLE 5.43
RF(o) FOR y, Y., ¥'3)  and MEST(34)
* 'R’ 'RP.ab
Estimators - - =(2) '
Sample Sizes~9 y YR YRP.ab MEST(34)
N2
n=10 0.102 0.083 0.447 0. 368
n=20 0.052  0.053  0.517 0.378

Table 5.43 reveals that MEST(34) can not be taken to be an

improvement over ?éi)ab if we consider all the G-values

simultaneously. But if we consider its finer comparisons with ;,

- =(2
Y, and vép?ab, the behaviour of MEST(34) is similar to that of

MEST(32) and MEST(33). It also comes out to be winner more often
for those cases when G € {0.5, 1].

5.2.2 MIXINGS WHEN p < O :

For this case, according to 5.2, the three estimators will be

YRe.’ YVSa. and ?MP' We propose the following mixing estimators
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Y Y | Y i imator of y, Y,
p’ YRe.' YVSa. and YMP' The mixing estimator of y P

Y and Y 5, C2Nn be proposed to be :
MEST(35) = €,y * fd'YP + g4'YRe. + hd'YVSa. ...(5.26)

where, e,=0.04, f4=0.09, g4=0.38 and h ). These

A =1-(e4+f

4 4784

e4', 'f4’ and 'g4‘ are based on the results of table

R ]

values of

5.21. Now, we compare this mixing MEST(35) with ?VSa

the more probable winner according to the results of table 5.21).

(which is

Table 5.44 contains the results of the simulation study for
comparing ;, QP"?VSa and MEST(35). We can also have a better

view of the relative efficiencies of these estimators through

graphs 5.47 and 5. 48.

\

TABLE 5. 44

RF(e) FOR vy, YP’ YVSa. and MEST(35)

Estimators - = -
Sample Sizese y Yp YVSa. MEST(35)
3

n=10 0.037 0.083 0.405 0. 465

=20 0.037 0.0860 0.380 0.523

One can infer from table 5.44 that MEST(35) is more efficient than

the other estimators in competition. So, we can recommend the use

of MEST(35) instead of ?VSa and also instead of Y The finer

Re.’
comparisons of these estimators based on G-values reveal that

MEST(35) performs ekceptionally better than the other estimators

for the cases when G < -0.5.

Exploiting the knowledge of the results tabulated in 5.23, we

propose the feollowing mixing estimator,

MEST(36) = eg. Y + fS.YP + gS'YRe. + hS.Y ...(8.27)

.yhere, e5=0.06, f5=0.10, g5=0.81 and hs=1—(e5+f5+g5). We have

compared MEST(36) with y, ?P and ?Re via the empirical-simulation
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study. Table 5.45 below contains the results of tbis study.
Graphs 5.49 and 5.50, which present a clearer view of relative
efficiencies -of these estimators, show the gain in the relative

efficiency by the use of MEST(36).

TABLE 5.45
RF(e) FOR vy, YP' YRe. and MEST(36)
Estimators = S S
MEST(36)
Sample Sizes” Y YP YRe. - (
4

n=10 0.075 0.1158 0.418 0.395

n=20 0.047 0.093 0.472 0.388

We observe from table 5.45 that MEST(36) is not more efficient
than ¥, but it 1is still a better choice than y and Yo
Nevertheless finer comparisons reveal that MEST(36) performs
better, quite often than Y, ?P and ?Re. when G € [-1, -0.5].

Now, based on the results of table 5.29, we propose the

mixing of ;, ?P’ YVSa. and ?MP to be :

MEST(37) = e6.§ + fs,?P + gB.?VSa_ + hs.?MP ...(5.28)
where, €4=0.03, £ =0.08, g8=0.68 and hg=1-(eg+fg+g ). It is clear
from these values that ?VSa. is the most probable winner here.
So, we now proceed to compare MEST(37) with ?VSa. in the presence
of the usual estimators ; and ?P' Table 5.46 contains the results

~of these comparisons and the graphical display of the rélative
effléiencies of these estimators has been afforded through graphs

5.51 and 5.52 which show a slight gain in the relative efficiency

by the use of MEST(37).
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TABLE 5. 46.

RF(e) FOR y, Y,, Yyq, and MEST(37)
Esiimators - S S
ST(37
Sample Sizes’| Y Yp Yysa. MEST(37)
N
n=10 _ |0.035  0.060  0.450 0.455
n=20 [0.047 0.050  O.468 0.435

One can make the inference from table 5.46 that MEST(37) performs
better, quite ofténer, than § and ?P and it is a close competitor
of ?VSa.' When we take up the finer comparisons of these
estimators, we observe that the behaviour of MEST(37) is almost

similar to that of MEST(35) and MEST(36). It comes out to be

winner more often for those cases when G < -0.5.

126



Series 1 for Yp , Series 2 for ?VSCI. and
Series 3 for MEST(37)

5o Frequency (Number of Cases)
2 ‘

200 1= . - - I B

150

100

61 58 59

50

55 105 155 205 255 505
Relative Efficiency (Upper Limit)

B series 1 Series 2 Series 3
Graph - 5.51 (Sample Size = 10, €< 0)
Series 1 for Yp , Series 2 for Yygg and
Series 3 for MEST(37)

o Frequency (Number of Cases)
160

141
140 134 1337

120

100

80

80 |-

40

20

‘Relative Efficiency (Upper Limit)

- Series 1 AW Series 2 Series 3

Graph - 5.52 (Sample Size = 20, € < 0)

127



CHAPTER - 6

FINER COMPARISONS OF THE ESTIMATORS

F

In this chapter, we have attempted a more detailed and finer
comparison of the. estimators which are the winners as per the
empirical-simulation study detailed earlier. To get a more
comprehensive idea of the asymptotic behaviour of the efficiencies
of the estimators, we have here included the case of n=50 into our
empirical-simulation study. To facilitate the finer comparisons,
we have considered a larger number of values of ?, namely, 0.1,
0.3, 0.5, 0.7, 1.0, 2.0,.3.0, 4.0, 6.0, 8.0, 10.0 and 12.0. Thus,
we have considered here twelve values of Y rather than two as
earlier. Analogously, we have considered four values each of ox
and Oy nhamely, oY= 0.5, 1.0, 2.0, 3.0 and ay=1.0, 2.0, 4.0, 6.0
rather than two values each in the earlier empirical-simulation
study. Consequently; the total number of parametric
Value-combinations blows up to 57,600 rather than 2,400 as in

earlier empirical-simulation studies.

Next, to make the finer details more comprehensive, we have
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‘comparisons but we have considered five best parent-estimators ;

6.1 COMPARISONS WHEN p > O :

tabulated the results for various ranges of the values of the
parameter 'G’ vis-a-vis particular values of p and n. For this
purpose, we here have considered five subintervals, namely, GI1l: O

s G = 0.5; GI2: 0.5 < G = 1.0; GI3: 1.0 < G =2.0; GI4: 2.0 < G =

3.0réné 6f5: G > 3.0 when p > O and five subintervals, namely,
GIé: G < -3.0; GI7: -3.0 = G < -2.0; GI8: -2.0 = G < -1.0; GIS:
-1.0 = G < -0.5 and GI10: -0.5 = G s O when p < 0. In this

chapter also, we have dealt with the two cases of positive and

bnegative correlations separately. Moreover, we have not included

.all the estimators proposed till this chapter in the final

1]
five mixings when the parent-estimators are mixed with 9 ; five

mixings when the two parent-estimators are mixed with one another
i two mixings when the two parent-estimators are mixed with § and

YR/\—IP and the usual estimators 9 and ?R/?P' Thus, we have 18
estimators for the positive correlation case and other 19
estimators for the negative correlation case in the competition.

We first carry out the empirical-simulation studies for

deciding the estimators which are to be included in the final

comparisons when p > Q. We have observed through different
empirical-simulation studies that for this case, we will have to

consider the following 19 estimatérs into our study.

(a) Usual estimators : y and ?R

?(1) ?(2) v

(b) Parent-estimators : YP.a + Yep ab' YRP. ab' YRe. and YVR

(¢) Mixings, whenupargntjestimators are mixed with ;
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MEST(S5), MEST(11), MEST(10), MEST(7) and
MEST(3) -
(d) Mixings, when two parent-estimators are mixed with one

another

~

MEST(15), MEST(21), MEST(14), MEST(20)
and MEST(18)

(e) Mixings, when two parent-estimators are mixed with y and ?R
MEST(34) and MEST(33)

Now, we compare the above mentioned nineteen estimators
through the empirical-simulation studies. Tables 6.1 to 6.15
contain the results of these studies. As mentioned earlier, we
have tabulated these results for various ranges of G-values
vis-a-vis a particular value of p and sample size ’'n’. In the
following tables, we have highlighted the winning estimator by

bold-facing the entity corresponding to that estimator.

130



TABLE 8.1

RF(°) FOR THE ESTIMATORS WHEN p = 0.2 AND n = 10.

131

Subintervals
— GI1 GI2 GI3 GI4 GI5
Estimators | . ___ — e - —
y 0.085 0.009 - - -
Yo - - - - -
?P.a 0.098 - - - -
g1 0.073 0.047 - - -
RP. ab
?éﬁ?ab 0.055 0.019 0.013 - -
?Re. 0.0670 - - - -
?VR 0.059 0.009 - - -
MEST(5) 0.125 - - - -
MEST(11) 0.043 0.038 0.013 - -
MEST(10) 0.064 0.142 0.037 - -
MEST(7) 0.047 0.557 0.800 0.8970 0.962
MEST(3) 0.050 - - - -
MEST(15) 0.035 - - - -
MEST(21) 0.047 - - - 0.025
MEST(14) 0.003 - - - 0.013
MEST(20) 0.032 0.028 0.025 - -
" MEST(18) 0.036 0.066 0.050 0.030 -
MEST(34) 0.052 0.047 - - -
MEST(33) 0.019 0.038 0.062 - -



TABLE 6.2

RF(-) FOR THE ESTIHATORS WHEN p = 0.2 AND n = 20.

Subintervals
— GI1 GI2 GI3 GI4 GIS
Zstimators

y 0.086 0.009 - - -
Yy 0.001 0.009 - - -
?P.a 0.088 0.009 - - -
?é;?ab 0.070 0.057 - ~ -
?éi?ab 0.065 0.028 0.025 - -
?Re. 0.103 - - - -
Yor 0.042 0.008 0.012 - -
MEST(5) 0.127 0.009 - - -
MEST(11) 0.050 0.047 0.025 - -
MEST(10) 0.098 0. 151 0.113 . - -
MEST(7) 0.024 0.462 0.688 0.970 0.963
MEST(3) 0.059 0.008 - - -
MEST(15) 0.020 - - - -
MEST(21) 0.045 - - - 0.012
MEST(14) 0.001 - - - 0.012
MEST(20) 0.029 0.038 0.037 - -
MEST(18) 0.029 0.066 0.037 - 0.013
MEST(34) 0.039 0.028 - - -
MEST(33) 0.024 0. 069 0.063 0.030 -
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i} TABLE s.é* ‘
' RF(°) FOR THE_ESTIMA%ORS WHEN p = 0.2 AND n = sg.
Subintervals o . ,. ’f 5 - . .
— GIt " GI2 7 GI3 GI4 GIS
_Estimators o V.
y 0.100 0.019 - - -
¥y — 0.008 - - -
Yo o ~ 0.057 - - - -
?é;?ab 0.103 0.123 o.050 - -
?E(uz)‘)ab | 0. 076 0 075 _ HTO;IO_‘S'OL R R
?Re. 0.120 '0.0089 - - i -
?VR |. 0.038 .0.009 - - -
MEST(5) | . 0.100 10.009 - - -
MEST(11)| ©  0.045 0.057  0.050 0.029 -
MEST(10) 0.129 0.160 0.087 0.147  0.012
: MEST(7)l» ~ 0.003 0.198  0.438  0.588  0.925
- MEST(3) 1 0.044 0.038 - -~ -
MEST(15) 0.003 - - - 0.012
MEST(21) 0.029 - - - -
MEST(14)| ~ 0.003 0.008 - - -
MEST(20) 0.044 0.038  0.062 0.029 -
MEST(18) 0.036 0.085 0.100  0.118 0.012
MEST(34) 0.038 0.047 0.062 0.029 -
MEST(33) 0.033 0.115 0.101 0.060 0.039
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TABLE 6.4°

RF(o) FOR THE ESTIMATORS WHEN p = 0.4 AND n = 10.

Subintervals : )
— GI1 GI2 GI3 GI4 GIS
Estimators 3

y 0.004 0.008 - - 0.007
?R - 0.017 - 0.020 -
?P.a 0.083 0.017 - - -
?;;?ab 0.072 0.042 0.019 - -
?;ﬁ?ab 0.079 0.051 0.008 - -
Yoo 0.108 - - 0.039 0.014
?VR 0.079 0.119 0.057 - 0.007
MEST(S) 0. 105 0.008 - - -
MEST(11) 0.079 0.119 0.085 - -
MEST(10) 0.125 0.144 0.170 0.059 -
MEST(7) | 0.007 0.212 0.547 0.706 0.951
MEST(3) 0.035 0.025 - - -
MEST(15) 0.059 0.008 0.028 0.020 -
MEST(21) 0.059 - - - 0.007
MEST(14) 0.011 - - 0.020 0.007
MEST(20) 0.026 0.068 0.028 0.059 0.007
MEST(18) 0.028 0.08S 0.019 0.058 -
MEST(34) 0.026  0.042 0.038 0.018 = -
MEST(33)]  0.014 0.035 - - -
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RF(<) FOR THE ESTIMATORS WHEN p

Subintervals

—

Estimators

MEST(5)
MEST(11)
MEST(10)
MEST(7)
MEST(3)
MEST(15)
MEST(21)
MEST(14)
MEST(20)
MEST(18)
MEST(34)

MEST(33)

GI1

0. 002

0.002

0.082

0.081

0.074

0.138

0.042

0.081

0.0863

0.172

0.037

0.038

0.050

0.006

0.029

0.033

0.031

0.028

TABLE 6.5

0.068
0.034
0.025
0.119
0.008
0.169
0.127
0.110
0.059

0.025

0.008
0.093
0.076
0.017

0.012
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= 0.4 ANDn =
GI3 GI4
- 0.020
0.019 -
0.028 -
0.019 -
0.009 0.020
0.057 -
0.113 -
0.142 0.137
0. 408 0.627
0.009 -
0.028 0.20
0.028 -
0.009 0.020
0.047 0.098
0.057 0.058
0.019 -
6.010 -

20.

0.007

0. 007

0.007

0.909

0.028

0.007

0. 007

0.014

0.007



TABLE 6.6

RF(o) FOR THE ESTIMATORS WHEN p = 0.4 AND n = 50.

Subintervals

. — GI1 Gi2 GI3 Gl4 GIS

Estimators
v 0.004 - 0.009 - -
?R - 0.042 0.009 0.039 0.007
?P.a 0.088 0.008 - - o.018 -
?;;?ab 0.077 0.169 0.066 0.039 -
?éi?ab 0.072 0.042 0.075 - 0.007
?Re. 0.148 0.017 0.028 0.019 | 0.007
?VR 0.037 0.085 0.047 - -
MEST(5) 0.087 0.025 0.018 - -
MEST(11) 0.061 0.161 0.075 0.059 -
MEST(10) 0.173 0.127 0.141 0.137 0.021
MEST(7) 0.004 - 0.179 0.353 0.727
MEST(3) 0.033 0.025 - - -
MEST(15) 0.046 0.034 0.057 0.078 0.056
MEST(21) 0.042 0.025 0.008 - -
MEST(14) . 0.004 0.025 0.019 - -
MEST(20) 0.033 0.119 0.113 0.176 0.105
MEST(18)|  0.026 0.076 0.113 0.078 0.063
MEST(34) | 0.046 0.010 0.018 - 0.007
MEST(33) 0.019 0.010 0.023 - -
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TABLE 6.7

RF(°) FOR THE ESTIMATORS WHEN p = 0.6 AND n = 10.

Subintervals
- CI1 GI2 GI3 GI4 GIS
Estimators ¢

) ; B - _ - - - -
?R - 10.015 0.043 0.065 0.005
?P‘a 0.086 0.023 0.008 - Co-
?é;?ab 0.057 . 0.053 0.009 - | -
?éi?ab 0.063 - 0.017 0.016 -
?Re‘ 0.211 0.023 0.043 0.048 0.031
?VR 0.033 0.382 0.113 0.048 0.005
MEST(5) 0.174 0.061 0.026 - -
MEST(11) 0.052 0.046 0.017 - -
MEST(10) 0.057 0.084 0.052 . - -
MEST(7) - 0.031 0.330 0.508 0.876
MEST(3) 0.022 0.038 - - -
MEST(15) 0.054 0.122 0.217  0.180 0.026
MEST(21) 0.070 0.015 - - 0.010
MEST(14) 0.054 0.015 0.026 0.048 -
MEST(20) 0.011 0.015 0.043 0.033 0.026
MEST(18) 0.013 0.023 0.035 0.033 0.021
MEST(34) 0.019 0.015 0.010 0.016 -
MEST(33) 0.014 0.039 0.010 - -
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TABLE 6.8

RF(o) FOR THE ESTIMATORS WHEN p = 0.6 AND n = 201

Subintervals
— GI1 GI2 GI3 GI4 GIS
Estimators
7 - - - - -
?R - 0.031 0.026 1 0.065 0.015
Yo o 0.096 0.084 6.043_ - -
?é;?ab 0.067 0.031 0.026 - -
?;ﬁ?ab 0.076 - 0.008 - 0.010
?Re‘ 0.178 0.046 0.078 0.016 0.046
?VR 0.018 0.244 0.069 0.033 0.005
MEST(S) 0.1686 0.038 0.043 0.049 -
MEST(11) 0.061 0.046 0.017 - 0.005
MEST(10) 0.094 0.076 0.087 0.033 -
MEST(7) - 0.008 0.183 0.426 0.763
MEST(3) 0.024 0.008 - - -
MEST(15) 0.059 S 0.214 0.296 0.213 0.108
MEST(21) 0.052 0.031  0.035 - 0.005
MEST(14) 0.035 0.008 0.017 0.016 0.005
MEST(20) 0.004 0.023 0.008 0.082 0.005
MEST(18) 0.015 0.053 0.026 0.016 | 0.015
MEST(34) 0.037 10.023 0.026 0.016 0.005
MEST(33) 0.015 0.038 0.008 0.033 0.010

138



TABLE 6.9

RF(c) FOR THE ESTIMATORS WHEN p = 0.6 AND n = 50.

Subintervals
A — GI1 GI2 GI3 GI4 GIS

Estimators | A e
v - - - - -
?R - 0.030 0.035 0.033 0.010
?P.a ' 0.104 0.084 0.052  0.033 -
?é;?ab 0.076 0.030 0.061 0.033 -
?éﬁ?ab 0.074 - 0.008 - 0.005
?Re_ 0.168 0.046 0.113 0.1684 0.051
?VR 0.022 0.244 0.061 0.016 -
MEST(5) 0.157 0.038 0.043 0.016 0.005
MEST(11) 0.076 0.048 0.035 0.033 -
MEST(10) 0.089 0.076 0.069 0.016 -
MEST(7) - 0.008 0.008 0.115  0.774
MES}(S) 0.009 0.008 - - S
MEST(15) 0.030 0.214 0.270 0.279 0. 108
MEST(21) 0.081 0.030 0.026 ~ 0.005
MEST(14) 0.022 0.008 0.043 0.049 -
MEST (20) 0.015 0.023 0.061 0.049 0.005
MEST(18) 0.018 0.053 0.061 0.082 0.021
MEST(34) 0.039 0.023 0.043 0.049 0.005
MEST(33) 0.017 0.038 0.008 0.033 0.010
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TABLE 6.10

RF(o) FOR THE ESTIMATORS WHEN p = 0.8 AND n = 10.

Subintervals

: — GI1 GI2 GI3 Gla GIS

Estimators ¢
Yr - - - - =
?P a - " 0.049 0.093 0.046 0.008
=(1) - - - -
RP. ab 0.087 _
=(2) s _
YRp. ab 0.032 0.021 0.042 0.062
Y , 0.037 0.021 0.042 0.046 -

Re.
?VR 0.277 0.085 0.144 0.138 0.127
MEST(5) 0.0086 0.170 0.034 - -
MEST(11) 0.182 0.035 - - -
MEST(10) 0.045 0.071 0.042 - -
MEST(7) 0.022 0.057 0.017 0.031 -
MEST(3) - - 0.085 0.323 0.694
MEST(15) 0.007 0.014 - - -
MEST(21) 6.017  0.07t 0.085 0.015 0.013
MEST(14) 0.130 0.2086 0.068 0.015 0.034
MEST (20) 0.115 0.028 0.025 - -
MEST(18) 0.007 0.071 0.127 0.015 -
MEST(34) 0.002 0.035 0.076 0.092 -
MEST (33) 0.010 0.028 0.060 0.062 -
0.023 0.035 0.060 0.154 0.123
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TABLE 6.11

RF(-) FOR THE ESTIMATORS WHEN p = 0.8 AND n = 20.

Subintervals
, N GI1 Gl2 GI3 Gla GIS
Estimators | _ o _ _ _
v - - - _ -
?R - 0.092 0.085 0.062 0.008
Y 0. 105 0.007 - - -
P.a .
(1) 0.042 0.028 0.042 0.0862 0.004
RP. ab
v(2) 0.070 0.035 0.068 0.077 0.013
RP.ab
?Re' 0.212 0.043 0.195 0.248 - 0.183
Yor 0.005 0.043 0.034 - -
MEST(5S) 0. 180 0.043 - 0.015 -~
MEST(11) 0.077 0.085 0.034 - -
MEST(10) 0. 030 0.043 0.025 0.015 -
MEST(7) ~ - - 0.108 0.528
MEST(3) 0.007 0.007 -~ - -
MEST(15) 0.022 0.163 0.102 0.092 0.004
MEST(21) 0.095 0.142 0.059 0.077 0.034
MEST(14) 0.077 0.071 0.034 0.0486 0.004
MEST(20) 0.012 0.064 0.144 0.015 0.008
MEST(18) 0.005 0.035 0.051 0.062 0.025
MEST(34) 0.022 0.035 0.076 0.046 -
MEST(33) . 0.038 0.0864 0.051 0.077 0. 187
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TABLE 6.12

RF(-) FOR THE ESTIMATORS WHEN p = 0.8 AND n = 50.

Subintervals
- GI1 GI2 GI3 GIl4 GIS
Estimators i
v _ - _ _ _
?R - 0.121 0.085 0.046 0.008
Y 0.120 0.021 0.008 - -
P.a
(1)
i ) .0 0.082 -
Yep ab 0.052 0.050 0.059
y{2) 0.102 0.057 0.051 0.046 0.008
RP. ab
?Re 0.147 0.099 0.144 0.261 0.155
Yur 0.005 0.021 - 0.015 -
MEST(5) 0.177 0.035 0.008 - . -
MEST(11) 0.112 0.071 0.025 0.015S -
MEST(10) 0.037 0.057 0.034 0.031 -
MEST(7) - - - - 0.611
MEST(3) 0.007 - - - -
MEST(15) 0.027 0.135 0.136 0.015 0.008
MEST(21) 0.060 0.085 0.085 0.061 ' 0.034
MEST(14) 0.040 0.064 0. 059 0.077 - -
MEST(20) 0.020 0.038 0. 068 0.046 0.013
MEST(18) 0.007 0.035 0.083 = 0.092 0.013
MEST(34) 0.032 0.064 0.068 0.046 -
MEST(33) 0.052 0.050 0.076 0. 154 0.150
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Subintervals

Estimators

.MEST(II)

RF(¢) FOR THE ESTIMATORS WHEN p = 0.9 AND n = 10.

—

MEST(5)

MEST(10)
MEST(7)

MEST(3)
MEST(15)
MEST(21)
MEST(14)
MEST(20)
MEST(18)'
MEST(34)

MEST(33)

GI1

0.029

0.028

0.037

0.451

0.003

0.115

0.043

0.008

0.005

0.133

0.099

0.018

0.013

g.018

TABLE 6.13

GI2

0.071

0.035
0.085
0.113
0.035
0.028
0.057

0.028

0.007
0.298
0.021

. 0.0892
0.043
0.064

0.022
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GI3

0.156

0.049
0.098
0.230

0.008

0.025

0.008

0.008

0.025

0.074

0.118

0.057

-0.082

0.066

GI4

0.088

0.060

0.030

0.463

0.015

0.045

0.075

0.045

0. 060

0.015

0.104

0.012

0.341

0.008

0.420

0.031

0.004

0.023

0.153



TABLE 6.14

RF(-) FOR THE ESTIMATORS WHEN p = 0.8 AND n = 20.

Subintervals
SN GI1 GI2 GI3 GI4 GIS
Estimators

v - - - - -

?R - 0.085 0. 156 0.090 -

Yo o 0.059 - - - -
?;;?ab 0.035 0.042 0.082 0.060 0.012
?;ﬁ?ab 0.045 0.042 0.098 0.060 0.016
?Re' 0.408 0.092 0.238 0.358 0.384
YR - 0.028 - - | -
MEST(5) 0.144 - - - -
MEST(11) 0.053 0.128 0.057 - 0.004
MEST(10) 0.016 . 0.028 0.008 - 0.012
MEST(7) - - - 0.015 0.310
MEST(3) - 0.008 - - -
MEST(1S)| = 0.003 0.028 0.008 - -
MEST(21) 0.077 0.227 0.041 0.060 0.027
MEST(14) 0.088 0.050 0.016 0.030 0.004
MEST{(20) 0.021 0.078 0.164 0.075 0.004
MEST (18) 0.003 0.057 0.033 0.045 0.008
MEST(34) 0.021 0.035 0.049 0.030 -
MEST (33) 0.027 0.071 0.048 0.179 0.219
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TABLE 6.15

RF(-) FOR THE ESTIMATORS WHEN p = 0.9 AND n = 50.
Subintervals
— Gl1 GI2 G13 Gla GIS
Estimators. ¢ - —  — - — - - - .. . -
v _ - - - -
?R - ' 0.099 0.107 0. 060 0.004
Y 0.056 0.007 - - -
P.a .
e 0.053 0.028 0.082 0.080 0.012
RP. ab
7(2) 0.093 0.092 0.090 0.134 0.008
RP. ab
?Re 0.237 0.1358 0.248 0.343 0.361
Yor 0.003 0.035 - - -
MEST(5) 0.136 0.035 -~ - -
MEST(11) 0.115 0.078 0.057 0.030 0.004
MEST(10) 0.023 0.022 0.016 0.015 0.008
MEST(7) - - - - 0.365
MEST(3) 0.005 - - - -
MEST(15) 0.012 0.014 0.025 - -
MEST(21) 0.085 0.158 0.048 0.080 0.027
MEST(14) 0.051 0.035 0.049 0.045 0.004
MEST(20) 0.024 0.071 0.123 0.060 0.004
MEST(18) 0.018 0.042 0.025 0.015 0.0186
MEST(34) 0.037 0.084 0.066 - -
MEST (33) 0.045 0.086 0.066 0.119 0.188
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6.2 COMPARISONS WHEN p < O :

_Here also, we first give the nineteen estimators which are to
be included in the final comparisons.
P

(a) Usual estimators : § and Y
Y

(b) Parent-estimators : Y ?(1) Y

Re.’ Yvsa.’ "Mp* RP.ab 2™ Yp.a

(c) Mixings, when parent-estimators are mixed with §
MEST(7), MEST(8), MEST(6), MEST(5) and
MEST(10)

(d) Mixings, when two parent-estimators are mixed ‘with one

another

MEST(26), MEST(23), MEST(28), MEST(27)
and MEST(22)

(e) Mixings, when two parent-estimators are mixed with § and ?P
MEST(35) and MEST(37)

We have compared the above mentioned nineteen estimators
through the empirical-simulation studies. Tables 6.16 to 6.30
contain the results of these studies. The results have again been
tabulated for various ranges of G-values vis-a-vis a particular
value of p and sample size 'n’, Here also, we have highlighted
the winning estimator by bold-facing the entity corresponding to

that estimator.
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TABLE 6. 16

RF(-) FOR THE ESTIMATORS WHEN p = -0.2 AND n = 10.

Subintervals
— GIB GI7 GI8 GIS GI10
Estimators | . . .
y - - - 0.019 0.095
?P - - 0.013 0.009 0.001
?Re‘ 0.063 - - - 0.052
?VSa. - - - 0.009 0.0865
?MP - - - 0.019 0.006
?;;?ab - - 0.038 0.048 0.073
?P_a - - - - 0.068
MEST(7) 0.012 - - - 0.042
MEST (9) - - - - 0.059
MEST(6) - - - - 0.209
MEST(S) 0.800 1.000 0.821 0.562 0.061
MEST(10) | - - 0.077 0.180 0.092
MEST(26) - - - - 0.039
MEST (23) 0.113 - - - 0.039
MEST(28) - - - ~ 0.012
MEST(27) - - 0.051 0. 143 0.047
MEST(22) - - ~ - 0.009
MEST(35) 0.012 - - - 0.026
MEST (37) - - - - 0.023



TABLE 6.17

RF(°) FOR THE ESTIMATORS WHEN p = -0.2 AND n

= 20.
Subintervals
— GI6 GI7 GIS GIS GI10

Estimators |
" - - - 0.048 0.097
v, - - - 0.009 0.003
?Re. 0.012 - - - 0.074
QVSa. - - - - 0.073
?MP - - - 0.048 0.008
?é;?ab - - 0.038 0.086 0.098
Yo . - ~ 0.013 - 0.053
MEST(7) - - - - 0.047
MEST(9) - - - 0.009 0.094
MEST(6) - - - 0.019  0.152
MEST(5) 0.976 1.000 0.679 0.457 0.026
MEST(10) - - 0.192 0.229 0.108
MEST(26) - - - - 0.042
MEST(23) 0.012 - - - 0.012
MEST(28) - - - - 0.004
MEST(27) - - 0.077 0.095 0.042
MEST(22) - - - - 0.011
MEST (35) - - - - 0.033
MEST (37) - - - - 0.026



RF(-) FOR THE ESTIMATORS WHEN p

Subintervals

-

Estimators v

<

<

P

ol

Re.

<t

VSa.
YMP
(1)
YRP.ab

YP.a
MEST(7)

MEST(9)

MEST(8)

MEST(5)

MEST(IO)
MEST(26)
MEST(23)
MEST(28)}
MEST(27)
MEST(22)
MEST(35)

MEST(37)

GI6

0.938

TABLE 6.18

GI17

0.054

0. 027

0.541

0.216
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= -0.2 AND n =
GI8 GIS
0.013 0.048
0.038 0.028
- 0.038
- 0.019
0.077 0.108
0.026 -
- 0.038
0.397 0.228
0.269 0.343
0. 167 0. 143

50.

GI10

0.098

0.006

0.073

0.082

0.005

0.161

0.008

0.058

0.085

0.089

0.001

0.147

0.020

0.017

0.003

0.061

0.004

0.045

0.027



TABLE 6.18

RF(-) FOR THE ESTIMATORS WHEN p = -0.4 AND n = 10.

Subintervals
— GIl6 GI7 GIs GI9 GI10
Estimators 3

v - - - 0.026 0.007
?P 0.014 0.077 0.095 0.017 -

Y 0.119 - 0.010  0.017 0.081
Re.

Yysa. - - 0.010 0.093 0.070
?MP - 0.019 0.133 0. 169 0.035
=(1) _ _ |

Yep ab 0.010 0.017 | 0.063
Y - 0.019 0.019 0.008 0.111

P.a

MEST(7) 0.042 - - 0.017 0.072
MEST(9) - - 0.010 0.085  0.087
MEST(8) - - - | 0.085 0.079
MEST(S) 0.650 0.750 0.524 0.263 0.004
MEST(10) - 0.038 0.124 0.093 0. 100
MEST(26) - 0.038 - 0.026 0.090
MEST(23) ©0.147 - - 0.008 0.020
MEST(28) - - - 0.017 0.041
MEST(27) - - 0.028 0.034 0.030
MEST(22) - - - 0.008 0.033
MEST (35) 0.014 - 0.010 - ~0.038
MEST(37) 0.014 0.058 0.028 0.017 0.039
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RF(°) FOR THE ESTIMATORS WHEN p = ~-0.4 AND n = 20.

Subintervals
-
Estimators ,

«i

P

< |

Re.

!

VSa.
YMP
(1)
YRP.ab

YP.a
MEST(7)
MEST(9)
MEST(6)
MEST(5)
MEST(10)
MEST(26)
MEST(23)
MEST(28)
MEST(27)
MEST(22)

MEST(35)

MEST(37)

GI6

0. 007
0.014
0.077

0.007

0.741

0.014

0. 0586

0. 007

0. 007

0.021

TABLE 6.20

0.615

0.134

0.019

151

0.010
0.010
0.086

G.010

0.019

0.448

0. 200

G.019

0.010

0.028

GI9

0. 008
0.051
0.034
0.051
0.051

0. 186

0.008
0.110
0.059
0.110
0.136
0.076
0.017
0.034

0.042

0.017

0.008

GI1o

+0.007

0.129
0.079
0.079
0.020
0.0863
0.072
0.107

0.082

0.103
0.048
0.022
0.031
0.031
0.033
0.054

0.044



RF(-) FOR THE ESTIMATORS WHEN p = -0.4 AND n = S0.

Subintervals
— GI6 GI7 GI8 GIS GI10
Estimators

y 0.007 - - - 0.013
?P 0.077 0.096 0.190 0.051 -

?Re. 0.021 £ 0.018 0.028 0.034 0.137
?VSa. - - - 0.059 °  0.088
?MP - - 0.086 0.144 0.029
?;;?ab - - 0.076 0.110 0.059
?P_a 0.014 0.058 0.038 - 0.024
MEST(7) 0.007 - - 0.017 0.100
MEST(9) - 0.019 0.028 0.042 0.085
MEST(6) - - - 0.085 0.089
MEST(5) 0.720 0.404 0.162 0.008 -

MEST(10) 0.112 0.346 0.200 0.220 0.155
MEST(26) - - 0.028 0.076 0.039
MEST(23) 0.014 0.018 0.010 0.025 0.035
MEST(28) - - - 0.017 0.006
MEST(27) - 0.018 0.048 0.068 0.026
MEST(22) 0.014 - 0.010 - 0.018
MEST(35) 0.007 0.018 0.028 0.008 0.0863
MEST(37) 0.007 - 0.0867 0.034 0.035
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TABLE 6.22
RF{o) FOR THE ESTIMATORS WHEN p = -0.8 AND n = 10.

Subintervals

N GIB G17 GIS GIS GI10

Estimators , | — - =
v _ - _ - -
?P 0.036 0.238 0. 168 0.015 -
?Re 0.277 0.111 0.044 0.061 0.148
Y 0.005 - 0.018 0.054 0.028

VSa.
?MP - 0.016 0.088 0.254 0.044
(1) _ B .
Yep. ab 0.009 0.023 0.061
Y - - 0.009 0.008 0.126
P.a

MEST(7) 0.031 - - 0.0862 0.109
MEST(9) - 0.032 0.035 0. 100 0.035
MEST(8) 0.077 0.048 0.008 0.023 0.033
MEST(S) 0.318 0.254 0.186 0.0185 0.072
MEST(10) 0.010 0.063 0.062 0.054 0.044
MEST(286) 0.015 0.032 0.018 0.023 0.046
MEST(23) 0.087 0.032 0.026 0.0862 0.046
MEST(28) - - 0.018 0.069 0.035
MEST(27) - - 0.018 0.031 0.0863
MEST(22) 0.015 - 0.083 0.023 0.054
MEST(35) 0.056 0.048 0.035 0.023 0.057
MEST(37) 0.072 0.127 0.204 0.100
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RF(0)

Subintervals

-

Estimators

<

<

P

<1

Re.

<t

VSa.
YMP
(1)
YRP.ab

YP.a
MEST(7)

MEST(9)

MEST(6)

MEST(S5)

MEST(10)
MEST(26)
MEST(23)
MEST(28)
MEST(27)
MEST(22)
MEST(35)

MEST(37)

FOR THE ESTIMATORS WHEN p = -0.6 AND n = 50.

GIie

0.046
0. 168

« 0.005

0.00S
0.041
0.0}8
0.077
0.364
0.028
0.005

0.056

0.005
0.087

0.097

TABLE 8.23

GI7

0.222
0.048

0.016

0.032
0.016

0.032

0.048'
0.238
0.032
0.032

0.016

0.016
0.048
0.048

0.158
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GI8

0.142
0.035
0.008
0.035
0.035
0.053
0.009
0.027
0.027
0.062
0.044
0.097
0.018
0.009
0.026
0.053
0.071

0.248

GIS

0.046

0.115

0.069

0.085

0.054

0.023

0.046

0.063
0.054
0.008
0.008
0.085
0.054
0.061
0.038
0.031
0.023

0.131

GI10

0.146

0.037

0.024

0.041

0.083

0.155

0.054

0.039

0.054

0.039

0.063

0.033

. 035

.078

o O o

. 087

(@)

. 050



TABLE 6. 24

RF(-) FOR THE ESTIMATORS WHEN p = -0.6 AND n = 50.

‘Subintervals
— GI6 G17 3¢ GIS GI10

Estimators | _ _ Lo o

;, - - ._ - -

?P 0.087 0.348 0.2389 0.069 -
Vae! 0.123 0.032 0.053 . 0.146 0.135
?VSa' 0.005 0.016 0.018 0.077 0.063
?MP - - 0.018 0.085 0.033
?;;?ab 0.005 0.032 0.035 0.023 0.063
T[P.é 0.005 0.079 - 0.071 0.023 0.044
MEST(7) 0.026 - 0.018 0.054 0.144
MEST(9) 0.010 0.018 0.035 0.062 0. 065
MEST(6) 0.082 0.032 0.018 0.068 0.038
MEST(5) 0.359 0.079 0.009 - -
MEST(10) 0.081 0.079 0.080 0.0869 0.088
" MEST(26) 0.031 0.083 0.026 0.108 0.039
MEST(23) 0.020 - 0.009 0.0046 0.076
MEST(28) - 0.016 0.018 0.008 0.022
MEST(27) - 10.032 0.035 0.046 0.044
MEST(22) 0.031 - 0.062 0.046 0.052
MEST(35) 0.061 0.048 0.018 0.038 0.065
MEST(37) 0.133 0.127 0.239 0.031 0.026
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TABLE 6.25

RF(o) FOR THE ESTIMATORS WHEN p = -0.8 AND n = 10.

Subintervals
— GI6 GI7 GI8 GI9 GI10
Estimators

v - - - - -
?P 0.026 0.092 0.068 - -
?Re_ 0.489 0.262 0.186 0.163 0.252
?VSa. - - 0.008 - 0.002
?MP - - 0.042 0.135 0.032
A - - - - . 0.025
?P.a - - - - 0.080
MEST(7) 0.034 0.046 0.017 0.064 0.224
MEST(9) - 0.031 - 0.014 0.013
MEST(8) 0.221 0.077 0.008 0.021 0.010

s MEST(5) 0.013 0.015 - - -
MEST(10) 0.021 - - - 0.007 0.020
MEST(286) 0.004 '0.062 0.034 0.050 0.010
MEST(23) 0.021 0.031 0.068 0.135 0.152
MEST(28) - - 0.008 0.142 0.030
MEST(27) - 0.015 0. 051 0.057 0.013
MEST(22) 0.004 0.031 0.085 0.021 0.052
MEST(35) 0.077 0.108 0.076 0.085 0.077
MEST(37) 0.089 0.231 0.347 0. 106 0.008
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TABLE 6.26

RF(o) FOR THE ESTIMATORS WHEN p = -0.8 AND n = 20.

Subintervals
— G186 G17 GI8 GI9 GI10
Estimators

© S ] ) B B B
?P 0.017 0.077 _ 0.017  0.028 -
?Re. 0.383 0.108 0.144 0.191 0.297
QVSa_ - ’ - 0.008 - 0.007 0.010
?MP - - 0.008 0.043 0.022
?é;?ab - - - 0.021 0.047
?P.a - - - 0.014 0.062
MEST(7) 0.030 0.062 0.042 0.099 0.232
MEST(9) " 0.004 0.015 0.025 0.007 0.015
MEST(6) 0.213 0.046 0.025 0.014 0.015
MEST(5) 0.017 - - - -
MEST(10) | - 0.026 0.015 0.008 0.021 0.020
MEST(26) 0.034 0.015 0.068 0.099 0.015
MEST(23) 0.009 - 0.102 0.392 0.112
MEST(28) - - - 0.035 0.013
MEST(27) 0.017 0.046 0.102 0.035 0.013
MEST(22) 0.017 0.108 °  0.093 0.098 0.065
MEST(35) 0.077 0.185 0.102 0.071 0.062
MEST(37) 0.157 0.323 0.254 0.121 -
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TABLE 6.27

- RF(°) FOR THE ESTIMATORS WHEN p = -0.8 AND n = 50.

"Subintervals
— GIe GI7 GI8 GI9 GI10
Estimators

" - - - - -

?P 0.051 0.123 0.034 0.050 -

?Re' 0.217 0.138 0.178. 0.248 0.264
?VSa. 0.004 0.015 0.008 0.014 0.008
?MP - - - 0.043 0.027
?;;?ab - - 0.051 0.043 0.035
?P.a 0.004 0.015 0.025 0.043 0.082
MEST(7) 0.021 0.046 0.051 0.014 0.227
MEST(9) 0.013 0.015 0.025 0.078 0.027
MEST(6) 0.200 0.031 0.034 0.043  0.013
MEST(5) 0.038 ~ - - -

MEST(10) 0.026 0.015 - 0.035 0.040
MEST(26) 0.038 0.077 0.068 0.057 0.010

L ]

MEST (23) 0.013 0.015 0.059 0.135 0.112
'MEST(28) - 0.015 0.008 0.007 0.010
MEST(27) 0.038 0.031 0.025 0.064 0.015
MEST(22) 0.021  0.092 0.093 0.071 0.030
MEST(35) 0.085 0.061 - 0.102 0.057 0.087
MEST(37) 0.230 0.308 0.237 0.021 0.013
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TABLE 6.28

RF(-) FOR THE ESTIMATORS WHEN p = -0.9 AND n = 10.

Subintervals
— GI6 G17 GIs GIS GI10

Estimators _ _ . . S _
v - - - - -
?P 0.008 0.030 - - -
?Re' 0.492 0.288 0.213 0.227 0.320
?VSa. - - - - -
?MP - - - 0.014 0.008
?é;?ab - 0.030 - 0.007 0.027
Yo . - - - - 0.061
MEST(7) 0.051 0.015 0.057 0.121 0.275
MEST(9) - - - - -
MEST(6) 0.316 0.091 0.008 - 0.003
MEST(5) 0.004 - - - -
'MEST(10) - - - 0.007 -
MEST(26) - 0.015 0.008 0.028 0. 005
MEST(23) 0.012 0.076 0.180 0.248 0.203
MEST(28) - - - 0. 106 0. 003
MEST(27) 0.004 0.030 0.041 0.021 0.003
MEST(22) -  0.078 0.082 0.092 0.043
MEST(35) 0.012 0.045 0.115 0.071 0.045
MEST(37) 0.102 0.303 0.295 0.057 0. 005
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TABLE 6.29

RF(o) FOR THE ESTIMATORS WHEN p = -0.9 AND n = 20.

Subintervals
— GI6 G17 GI8 GIg GI10
Estimators

7 - - - - -

?P 0.020 0.061 - 0.014 -

?Re' 0.438 0.136 0.180. 0.291 0.336
?VSa. - - - - 0.008
Yoo - - 0.008 0.021 0.013
?;;?ab 0.008 - 0.008 0.014 0.067
‘?P.a - - - - ~ 0.267
MEST(7) 0.035 0.061 0.041 0.092 0.003
MEST(9) - - - 0.007 0.008
MEST(6) 0.289 0.076 0.008 0.014 -

MEST(5) - - - - 0.019
MEST(10) - - 0.008 0.021 0.003
MEST (26) 0.008 0.015 0.082 0.043 0.003
MEST(23) - 0.045 0. 164 0.170 0. 184
MEST(28) - - - - 0.003
MEST(27) 0.035 0.108 0.008 0.035 0.003
MEST(22) 0.008 0.091 0.107 0.092 0.048
MEST(35) 0.023 0.121 0.123 0.121 0.037
MEST (37) 0.137 0.288 0.262 0.064 -
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TABLE 6.30

RF(°) FOR THE ESTIMATORS WHEN p = -0.9 AND n = 50.

Subintervals
— GI6 G17 GIS CI9 GI10
Estimators | . _

v - - - _ -
’?P 0.020 0.045 - 0.071 -
?Re. 0.281 0.212 0.254 0.319 0.304
?VSa - - - - 0.011
?MP - - - 0.014 0.013
?;;?ab - ‘ - 0.033 0.028 0.048
?P_a - - - - 0.061
MEST(7) 0.051 0.045 0.049 0. 163 0.264
MEST (9) - - 0.008 - 0.011
MEST(6) 0.288 0. 1086 0.016 0.035 0.0085
MEST(5) - - - - -
MEST(10) - - _ - 0.014 . 0.035
MEST(26) 0.008 0.015 0.082 0.021 0.005
MEST(23) 0.004 0.091 0.139 0.177 0.139
MEST (28) - - - - 0. 005
MEST (27) 0.074 0.078 0.048 - 0.011
MEST(22) 0.031 0.076 0.107 0. 108 0.028
MEST(35) 0.043 0.076 0.107 0.050 0.053

- MEST(37) 0.199 0.258 0.156 - 0.005
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CHAPTER - 7
CONCLUSIONS

In this chapter, we highlight the . performances of various
estimators proposed and studied by us in the preceding chapters.
We note that ?P.a (table 2.3) performs very nicely with empirical
probability 0.817 (n=10)  and 0.840 (n=20) for p < 0O among the
various estimators studied in Chapter-2. While ?SP.(table 2.4),
?Re; (table 2.5) and ?Sa.(table 2.8) are the best estimators
gvailable in literature, we have been able to affect a betterment
-over them through ?VSa. (table 2.7) which happens to be the winner
with a probability of at least 80% and is a still more potential
winner with probability more than 87% when p < 0 and n=20. Thus,

YVSa[ turns out to be the best amongst all the estimators proposed
in Chapter-2.

In Chapter-3, we have proposed a couple of two-parameter
family of the variants of ratio-cum-product estimators. Both of
the proposed families (tables 3.1 and 3.2) are found to be more
potential a winner when p > 0. Nevertheless when p < O and sample
size is not very small, i.e., n=20 (or, possibly, a bigger sample

size) the two estimators are expected to perform reasonably well
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with their empirical probability of winning being 63.5% and 61.5%,
respectively.

In Chapter-4, we have been able to evolve some gainful

mixings of the estimators proposed in Chapter-2 and Chapter-3 with

the mean-per-unit estimator. The work inr thié chapter hasirbeen
motivated by that of Vos(1980). However, the type of comparison we
have taken up to .ascertain the potential winner is apparently
rather more reasonable than that of Vos(1980). Amongst the
broposed mixings of one  parameter families of estimators, the
mixing estimator MEST(6) (table 4.4) turns out to be the most
potential gainer. It is worth noting that this estimator is much
more superior to fts parent estimator, namely, Y

Sr.

when sample size is rather small, say n=10 (or even smaller sample

particularly

size)-AnotHer point worth noting is that the estimator ?VSa. is
not bettered by this mixing when p > 0 but is bettered when p < O
particularly when n=10 (table 4.7). As far as the mixing of
£w0*parameter family of estimator is concerned, we note that the
significant betterment over parent-estimators is achieved only
when p > 0 and sample size is rather sméll, i.e., n=10 (tables 4.8
and 4.9).

In Chapter-5, we have proposed some gainful mixings of two
potential winners from amongst the estimators of Chapter-2 and
Chapter-3. We have also proposed a similar mixing considering
three mixing-estimators at a time mixed with §. In this Chapter,
for apparent reasons, we have considered the mixings separately
for the two possibilities, namely, p > O and p < 0, respectively.

We observe that the proposed mixings of two parent-estimators have

been gainful except in the case of MEST(16) (table 5.10) and
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MEST(24) (table 5.28). Another worth noting feature of this type
of mixing of two parent-estimators as per table 5.28 is that the
estimator MEST(25) excels over the ©better of the two
parent-;stimators, namely, ?P.a with an empirical probability of
92.5% or even more. Amongst the other mixings of this type, we
have the following observations. It turns out that while the
mixing estimators MEST(19) (table 5.16) and MEST(29) (table 5.36)
are more potential winners than their parent estimators for rather
smaller sample size, l.e., n=10, the mixing estimators MEST(23)
(table 5.24), MEST(28) (table 5.34) and MEST(31) (table 5.40)
happened to be more potential winners than their parent-estimators
for rather a larger sample size, i.e., n=20. Further, it has been
noted that the mixing estimators MEST(20) (table 5.18), MEST(21)
(table 5.20), MEST(26) (table 5.30), MEST(27) (table 5.32) and
MEST(30) (table 5.38) provide a more probable betterment over
their parent-estimators fof raiher smaller sample size, i.e., n=10
the mixing estimator MEST(22) (tdble 5.22) turns out to be more
potential a winner when the sample size.is rather large, 1i.e.,
=20. Next, amongst the other type of mixing, 1.e., those of three

" parent-estimators (including ?R/?P according as p >/< 0) with §.
it is worth noting that the mixing qstimators MEST(32) (table

5.41), MEST(33) (table 5.42), MEST(34) (table 5.43) and MEST(36)

(table 65.45) fail to beat the parent-estimators universally,

however, a finer comparison reveals the range of betterment,

respectively. While the mixing estimator MEST(37) (table 5.46)
provide a betterment only when n=10 (i.e., the sample élze is
rather small), the mixing-estimator MEST(35) (table 5.44) is

capable of providing a significant betterment over the
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parent-estimators only when n=20.
In Chapter-6, we have first taken up the case of positive
correlation. For the first example-value : p=0.2, the comparisons

reveal that MEST(7) i{s rather the universally most probable winner—

except for the G-interval : GI1, when MEST(5) supersedes it and
when the sample size is rather large : n=50, the most probable
winner happens to be MEST(10). Another worth noting observation is
that for the example G-interval P GI5, MEST(7) is the most
probable winner for all the example-values of p with two

exceptions : p=0.8; n=10, MEST(3) is the most probable winner and

0=0.9; n=20, ?Re is the most probable winner. Next, for second

example-value : p=0.4, MEST(7) again is the most'probable winner

except G € GI1 when MEST(10) is the most probable winner and G €

GIZ2 ; n=20/n=50, when Mﬁéf(ll)/?;;)ab is the most probable winner.

For the third example-value : p=0.6, ?Ré /?VR/ MEST(7) is the most

probable winner when G € GI1/G € GI2/G € GIS. Also, when G € GI1
or GI2, MEST(7)/MEST(15) 1is the most probable winner for
n=10/n=50. For the fourth example-value : p=0.8, when G € GI3 or
GI4, ?Re. is the most probable winner for n=20 and n=50. However,
when the sample size is small ?VR/MEST(S) is the ﬁost probable
winner for G € GI3/C e.GI4. MEST(15)/MEST(7) is the most probable

winner when G € GI2/G € GIS for n=20 and n=50; when sample size is

small : n=10, MEST(14)/MEST(3} takes over, respectively; In this

case when G € GI1, ?VR/YRe / MEST(5) is the most probable winner

for n=10/n=20/n=50. Lastly, for the fifth example-value,

?Re /MEsr(zl)/?Re /MEST(7) 1is the most . probable winner for G e
GI1/G € GI2/G € GI3 or GI4/G € GIS except one case, i.e., n=20 and

G € GIS when ?Re Is the most probable winner.
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In the second case taken up in Chapter-6 that |is that of
negative correlation, the important observations are as below. In
the first exampie-value : p=-0.2, MEST(S) is the most probable
winner except when G € GI10; in ‘that case MEST(6)/ ?;;?ab is the
most probable winner when n=10 or n=20/n=50. For the second
example-value : p=-0.4, MEST(5) is the most probable winner when G
€ GI6 or GI7 or GI8 except the case of n=50 and G € GI8 when
MEST(10) is the most probable winner. wgen G e GIg,
MEST(5)/MEST(10) is the most probable winner for n=10/n=20 or S50.
Also, when G € GI10, ?P.a, /?Re_/MEST(IO) is the most probable
winner for n=10/n=20/n=50. For the third example-value : p=-0.6,
MEST(5) 1s the most probable winner when G € GI6 or GI7 with the
exception of the case n=50, G € GI7 when Y. is the most probable

P
winner. When G € GIS8, MEST(B?)/?Re is the most probable winner

Re

probable winner for n=10/n=20 or 50. For the fourth example-value

for n=10 or 20/n=50. For G € GI10, Y. /MEST(7) is the most

p=-0.8, ?Re is the most probable winner for n=10 except for the

case : G € GI8 when MEST(37) is the most probable winner. For

n=20, again ?Re is the most probable winner except for two cases

G € GI7, G € GI8 when MEST(37) is the most probable winner. For

n=50, MEST(37) is the most probable winner except for the two

cases : G € GI9, G € GI10 when ?Re is the most probable winner.

For the last example-~value : p = -0.9, ?Re is the most probable

winner except the following cases. MEST(37) is the most probable
winner when G € GI7 or GI8; MEST(6) is the most probable winner

when G € GI6 and n=10; MEST(23) is the most probable winner when G

€ GI9 and n=10.

In the last, we may conclude that even though we wanted to
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have a systematic comparison leading to the discovery of gainful

directions in designing the generalised/mixing-type

ratio-cum-product estimators for the optimal use of auxiliary

information, er

forma the comparisons were—stilitoo intricate and rather

partly unconclusive as apparent in the above paras. It is simply

hoped that future researches in this area will unveal more

powerful systematic schemes of comparisons to make them conclusive

for the optimal design of the general ised/mixing-type

ratio-cum-product estimation strategies. Also, we may observe that

any of the estlimators proposed in the thesis can be the basis of

deflning_ a corresponding multivariate generalised/mixing-type

estifnator (e.g., on the pattern of 01k1n(1958)), to facilitate the

use of multi-auxiliary informaiion.
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