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RESUME 

In this thesis, an attempt has been made to study the 

electronic properties of noble metals and some fcc transition 

metals. During the past two decades the techniques for solving 

the band structure problems have reached a point where, with the 

aid of large computers, an accurate solution may be obtained. In 

this work we use the linear-muffin-tin-orbital (LMTO) method in 

the atomic sphere approximation (ASA) to solve the band structure 

problem. The variational principle for a one-electron Hamiltonian 

is used and the trial function is a linear combination of energy 

independent muffin-tin orbitals (MTO). The secular equation 

reduces to an eigen value equation . The triah function is 

defined with respect to a muffin-tin (MT) potential and the 

energy bands depend on the potential inside the spheres through 

potential parameters which describe the energy dependence of the 

logarithmic derivatives. The energy independent MTO is the linear 

combination which matches on the solution of the Laplace equation 

in the interstitial region and is regular at infinity. The LMTO 

method is particularly suited for closely packed structure and it 

combines the desirable features of the Korringa Kohn Rostoker 

(KKR), linear combination of atomic orbitals (LCAO) and Cellular 

methods. The secular matrix is linear in energy, the overlap 

integrals factorise as potential parameters and structure 

constants, the later are canonical in the sense that they neither 

depend on energy nor on the cell volume and they specify the 

boundary conditions on a single MT or atomic sphere in the most 

convenient way. This method is very well suited for 



self-consistent calculations. In this thesis we are interested in 

the Fermi surface (FS - a ground state property) of metals which 

can be calculated within the density functional formalism. This 

requires that we perform self-consistent electronic struture 

calculations. The electron density can be utilised as a central 

quantity and the formulation of a many-particle pr'oblem into a 

single-particle like frame work, is the essence of the density 

functional theory (DFT). Starting from the Thomas-Fermi method 

and several modifications, the DFT has been rejuvenated by the 

pioneering works of Hohenberg, Kohn and Sham who have laid its 

strict mathematical foundation and thus provided a formal 

justification for the use of density as a basic quantity. In the 

DFT, the problem faced is that exchange and correlation energy 

function can only be approximated. Hence to overcome this 

problem, we have used the local density approximation (LDA) for 

exchange-correlation (XC) which is valid when the density varies 

slowly in space. To check the effect of exchange and correlation 

potential on our problem, we have used different XC potentials 

such as von Barth-Hedin (BH), Barth-Hedin modified by Janak 

(BHJ), Vosko-Wilk and Nussair (VWN) and Slater Xa. approximated 

by different workers. We have also included a nonlocal-XC 

potential in LDA given by Langreth and Mehl. 

There are a number of powerful experimental methods for 

measuring the FS. These methods include de Haas-van Alphen 

(dHvA), cyclotron resonance, magneto-resistance etc. The dHvA 

effect has proved to be most accurate and reliable tool for 

probing the electronic struture near the fermi energy. There 

exists voluminous data on FS and cyclotron masses. We have 



compared our results with these data. Hence in the first chapter 

we review briefly the LMTO theory, OFT as well as some of the 

experimental methods for measuring FS. 

Chapter 2 is devoted to the FS of noble metals. The main 

reason for choosing the noble metals is that their FS is easy to 

study as it consists of single sheet and has already been studied 

experimentally and theoretically in great detail so that a study 

of these metals can be used to debug the programs. Another reason 

for choosing these metals is that spin-orbit effects vary from 

negligible to predominent as we move from copper (Cu) to gold 

(Au). We have calculated extremal areas for four orbits in the 

noble metals and studied the effect of (i) various XC potentials 

(ii) increasing the number of k points in the Brillouin-zone (BZ) 

summations (iii) including angular momentum expansion up to i=3 

and (iv) inclusion of relativistic effects. We observe t.I.,:.7,17' 

the case of noble metals the choice of XC potential plays an 

important role while the other effects are not significant. Here 

we have adopted a different criterion to determine the agreement 

between the computed FS extremal areas and the experimentally 

measured areas. This is done by calculating the shift in the 

Fermi energy AEF  required to bring the calculated FS area in 

agreement with the experiment. Our results show that in case of 

copper and silver the extreme AEF  is 4.1 and 0.9 mRyd, 

respectively, with the Slater Xa (a=0.77) XC potential while for 

gold AE
F is around 3.5 mRyd with Slater Xa (a=0.693) XC 

potential. Here a has been treated as 	an adjustable parameter 

and the values reported are for the best agreement with the 

experimental data. 



The success with which the LMTO method gives the FS 

topology of noble metals prompted us to perform similar 

calculations for the transition metals palladium and platinum. 

These metals possess a complicated FS and we believe that the 

accuracy with which the LMTO method can give FS topologies will 

be born out by our results. Interest in palladium and platinum 

has kept alive because of their fascinating electronic properties 

such as high density of states, large paramagnetic 

susceptibilities with unique temperature dependence, alloying, 

catalysis etc. The FS of palladium consists of four sheets i.e. a 

closed electronic surface centred at r, a sheet of hole centred 

at X, an open hole surface and a sheet of L pocket hole. However 

platinum has only the first three sheets and has no L pocket 

hole. The study of palladium and platinum also involves the study 

of same effects as we have studied for noble metals. We observe 

that in case of palladium and platinum the relativistic effects 

play important role while these effects are found to be 

negligible in noble metals. Similar to the case of the noble 

metals, the increase of number of k points and including angular 

momentum expansion up to 1=3 does not affect FS areas for 

palladium but in case of platinum these effects are significant. 

The results of this phase of investigation are compiled in 

chapter 3. We found that the inclusion of relativistic effects, 

in case of palladium and platinum, brings forth a dramatic 

improvement in results. The AEF  reduces to 4.0 mRyd with Slater 

Xa (a=0.75) for palladium and 2.7 mRyd for platinum with Slater 

Xa la=0.815/ XC potential from AEF  of 16.0 and 40.0 mRyd, 

respectively. 
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The many-body interactions (such as electron-electron, 

electron-phonon and electron-paramagnon ) renormalise the dynamic 

properties of bare electrons. We have calculated the enhancement 

factor X (X=0 in absence of many-body interactions) and Fermi 

velocities for these metals. These are compared with other 

theoretical results. 

All the metals discussed so far are paramagnetic. As an 

example of a ferromagnetic metal, we have chosen nickel because 

here the effect of exchange interaction and spin-orbit 

interaction has to be included. In chapter 4 , we have discussed 

FS of nickel. We have calculated various FS orbit areas for 

magnetic field along C001], [1107 and (111l directions. We have 

calculated .E
F 

with different XC potentials,. Our results for 

nickel are in agreement with the experiment and other theoretical 

results. 

The interpretation of pressure effects on both, electron 

transport and crystallographic properties of metals, usually 

requires some knowledge of the way in which the FS is affected by 

pressure. We have studied the effect of hydrostatic pressure on 

the FS of noble metals, palladium, platinum and nickel. The 

effect of pressure on the FS provides a valuable check on the 

reliability of band-structure calculations. We have calculated 

pressure derivatives of extremal areas (d(lnAl/dF] by performing 

self- consistent band-structure calculations at two different 

radii. Our results are compared with the experimental results. 

Thus chapter 5 is devoted to the effect of hydrostatic pressure 

on the FS. 
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The effect of uniaxial strain on the FS is discussed in 

chapter 6. When a metal is strained, the electron energy-bands 

shift by amount AE which depends on the tensor component of 

strain e as well as the electron wave vector k. As a result the 

fermi surface of a strained metal will differ slightly from that 

of the unstrained. Accurate prediction of the difference is a 

severe test of an energy band calculation. We have applied the 

uniaxial tension along [001] and [111] directions in case of 

noble metals and dependence of FS extremal cross-section areas 

[d(lnA)/d(lnA
s
)3 is calculated. Our results are consistent with 

the results obtained by other workers. 

The seventh chapter provides the summary and concluding 

remarks about the present work reported in earlier chapters. 
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CHAPTER I 



THE LINEAR MUFFIN-TIN ORBITAL METHOD, DENSITY FUNCTIONAL THEORY, 

EXCHANGE-CORRELATION POTENTIALS, FERMI SURFACE EXPERIMENTS AND 

CALCULATION OF FERMI SURFACE 

1.1 INTRODUCTION 

It is impossible to understand the behaviour of metal 

semiconductor, or insulator without a good knowledge of its 

electronic band structure. The properties of matter under normal 

conditions are governed by the behaviour of electrons that are 

moving around the heavier nuclei. The stationary states of a 

system of electrons moving in the mean electrostatic field of the 

electrons themselves and nuclei can be revealed by electronic 

structure calculations. 

A field such as this has its own history and its own 

philosophies. To many of its practitioners, the calculation of 

band structure is a problem of computational technique. It is 

simply a matter of finding a workable procedure that will 

generate solutions of the equations to any desired degree of 

numerical accuracy. The determination of electronic band 

structure came to be regarded as an art, where one tried to build 

up a model of the energy surface represented by some parameters 

but consistent both with experiment and with some rough algebraic 

approximation to the solution of the Schrodinger equation. The 

success of this procedure has revolutionized the whole theory of 

metals in recent years. To make further progress, however, it was 

essential to combine technique and art into a science. So, we 

have learned to treat this problem as one where algebric 



analysis, numerical computation, and physical intuition all have 

their part. 

Energy levels in atoms are discrete and they are 

designated by orbital and spin quantum numbers. A particular 

energy level of an atom becomes N-fold degenerate for a system of 

N atoms, each atom being isolated from the others. When these 

atoms are brought closer together to form a solid, the degeneracy 

is split and N levels spread into a band. One electron states in 

a solid are called Bloch states. The direct computation of these, 

or their investigation by inference from experiment, is therefore 

one of major industries of solid state physics. Each Bloch state 

is identified by two quantum numbers, a band index indicating the 

band the state belongs4 to and a wave vector representing its 

crystal momentum. There are many methods to calculate the energy 

bands of solids. Among the different methods, the linear methods 

which have been used for over ten years, are often more trickey 

to setup and to use but they treat uranium as well as sodium. 

They can be more accurate and need smaller basis sets. These 

methods are computationally very fast and hence are widely 

preferred. 

1.1.1 Band Structure Methods : 

The electronic structure problem is solved within two 

approximations : 

1. The Born-Oppenheimer approximation. 

2. The one electron approximation. 

The band structure problem is many body problem. In order 

to solve this we have to resort to numerous approximations of 

which the first is the Born-Oppenheimer approximation (38] in 



which the motion of electrons is assumed to be independent of the 

motion of nuclei. This reduces the problem to that of an 

interacting electron system in the potential field of nuclei for 

a particular configuration of them. Next comes the one-electron 

approximation C1731 which allows us to reduce the problem to that 

of an independent electron moving in an effective crystal 

potential- an average perodic potential due to all other 

electrons and nuclei. The continual development and advent of 

fast electronic computers have provided us with the capability of 

solving the one-electron Schrodinger equation to any accuracy we 

desire. Thus the problem ultimately boils down to the 

construction of an effective one-electron crystal potential. So 

in this picture one has to solve the one electron Schrodingr 

equation. 

C-72 + V (r) I w
jk(r) = Ejk Wjk("  

where V(r) is total mean field, in order to find the one electron 

energies Ejk  and wave function wik(r). For a supposed total field 

V(r) one solves the Schrodinger equation and the electronic 

charge density is constructed as 

occ 
n (r) = E 	I

Wjk 
(r)I

2 

j,k 
(1.2) 

and then a new field is constructed by solving Poisson's equation 

7 u(r) 	= -8n n(r) 
	

(1.3) 

for the electronic contribution u(r), to which is added the field 

from the nuclear point charges and exchange-correlation 

corrections. With a weighted average of new and old fields, the 

calculation is repeated and cycle iterated until the two fields 



are consistent. When self consistently has been reached the 

potential and total electronic energy of the electrons and nuclei 

are obtained in the Born-Oppenheimer approximation. 

Before presenting the LMTO method, let us briefly review 

how the energy band-problem haS been tackled in the past. In this 

context we note that traditional methods may be divided into two 

categories depending whether they use wave function expansions in 

some set of fixed basic function like atomic orbitals, Gaussians 

and plane waves or they expand the wave functions in a set of 

energy and potential dependent partial waves as done in the 

Korringa-Kohn-Rostoker (KKR) and the Augmented plane wave (APWJ 

methods. The KKR and APW methods require a computational effort 

which, despite recent attempts to improve the efficiency, is 

barely feasible in truely self-consistent calculations. This is 

particularly so in the calculation of ground state proporties of 

compounds and magnetic crystals, where self-consistency is 

imperative and in the calculation of excitation spectra, where 

matrix elements are needed. The linear combination of atomic 

orbitals method, when used as a first principle method, is 

cumbersome and when parametrised, it has either too many 

parameters or the wave functions are ill defined. The linear 

combination of Gaussian orbitals ILCGOI has some computational 

advantage but it needs at least twice as many basic functions as, 

say, the KKR method. The modern first-principles peeudopotential 

method meets the requirements but it is limited to treating the 

sp-like valence and conduction electrons. Computationally this 

can be remedied by the addition of localized orbitals to the 

plane wave basis set. But such a hybrid scheme is neither elegant 



nor in accordance with the chemical and physical intuition based 

upon the smooth trends observed through the perodic table. It is 

necessary to use the self-consistent methods for computing 

one-electron eigen values and eigen states with speed and 

accuracy. The so called linear methods of band theory satisfy the 

requirements rather well. This is true for the Linear Muffin Tin 

Orbital(LMTO) method Ill, 12, 13, 196). This method is linearized 

version of the Korringa-Kohn-Rostoker(KKR) method. Almost 

identical. with the solid state LMTO method is the 

augment-spherical wave (ASW)method of Williams, Kubler and Gelatt 

C2413. In later years the LMTO method has been extended to treat 

impurities in the crystal with the Green's function technique by 

Koeing et al [130] and by Gunnarsson et al C931 and it has been 

used for both metal and semiconductor hosts. Recently Harris 

C1001, Casula and Herman [491 and Springborg et al 0208, 209] 

have 	developed the LMTO for clusters and molecules. For 

plane, crystal line surfaces thin-film LMTO techniques have been 

devised by Fujiwara C85] and by Fernando et al [80]. It was 

recently dicovered that the conventional solid state LMTO basis 

set can be transformed exactly into orthogonal C14, 15] 

tight-binding (TB) [16] and minimal C1351 basis-sets and this 

simplifies and generalizes the solid-state LMTO method 

considerably. This chapter describes the formalism of the LMTO 

method. Density functional theory as well as some of the 

experimental methods of measuring Fermi surface. 

1.1.2 The LMTO Method : 

The basic problem of the band theory is to obtain 

one-electron energies and wave functions by solving the 



Schrodinger equation. So in this picture the energy band problem 

may be separated into two parts : one which depends on the one 

electron potential and atomic volume, and the other which depends 

on the crystal symmetry. It is therefore natural first to study 

the one-electron states in a single sphere, then to place such 

spheres on a regular lattice and establish the boundry conditions 

which follow from the crystal symmetry, and finally to introduce 

the approximations leading to the LMTO method. To solve the 

one-electron problem, one has to construct a crystal potential. 

Let us consider a crystal with one atom per primitive cell. Let 

us approximate the crystal potential Viz-) by a muffin-tin 

potential which is spherically symmetric within the sphere of 

radius say S
MT 
 centred at the atom and to have a constant value 

VMTZ outside the sphere, i.e. in the interstitial region between 

the spheres. V
MTZ 

 is known as muffin tin zero. This kind of 

potential is designed to facilitate matching of wave functions 

from the cell to cell through the assumption that the electron 

propagates freely between spheres with a constant wave number K = 

I E - VnT2. The justification behind this is that the wave length 

2n/x is large when compared with the thickness of interstitial 

region. Since in most applications we are interested only in 

those electrons which barely move from cell to cell, the kinetic 

energy K
2 

that is at the level of the potential in the 

interstitial region between the atoms, ± 1/2 Rydberg, and, hence, 

1 to 2 Ryd below the vaccum level. 

Let us, for simplicity, consider one atom per primitive 

call and within a single muffin-tin well (Fig.1.1) we define the 

potential as 



V(r) - V
MT2 

0  

r < S
MT 

r SmT  

so the hamiltonian for the muffin tin wells 

V
MT

(r) (1.4 ) 

= 	 Cr)  (1.5) 

and the energy of this system 

E = K
2 

+ V  (r) 
MTZ 

so we can write 

H - E = -7
2 

+ E yMT Clr - RI) - K
2 

(1.6) 

(1.7) 

where sum extends over the crystal. We now seek the solution of 

the Schrodinger equation 

[
-7
2 

+ V
MT

(r) - K
z  

w (E,r) = 0 
 

(1. 8 ) 

for all values of K
2
, for an electron moving in the potential 

from an isolated muffin tin well embedded in the flat potential 

V
MT2

. In this case, the spherical symmetry spreads throughout and 

the wave functions are 

1 . 
w(Er) = 1 Y

m 
 (r) w(E,r) ( 1. 9 ) 

where L denotes the quantum numnber L and m, it, is a phase 

factor and Ym  (c') is a spherical harmonic. Inside the MT sphere 

and radial part wt(E,r) has to be regular at the origin in order 

to be normalisable. It is obtained by numerical integration of 

radial Schrodinger equation i.e., 

dz  1(1 + 1) 
+ V(r) -E rw (E,r) = 0 

drz  rz 
 

for muffin tin potential it should be 

(1.10 ) 



	

d2 	r

z 

dr 

1(1 
2
+ 1)  +

MT
(r) - x2 rwe(E,r) = 0 	(1.11) 

In the region of constant potential the solutions of (1.8) are 

spherical waves with wave number x, and they satisfy (1.11) with 

d
z 

dr
2 

1(1 + 1)  
x2 ry (xr) 	0 

r
2 (1.12) 

This is well-known Helmholtz wave equationm. We may take the two 

linearly independent solutions to be the sperical Bessel function 

i.e. jt(xr) and Neumann ni(xr) function. i.e. ji(xr) is regular 

at origin as well as infinity while ryxr) is regular at 

infinity. In the small scr limits 

j (Kr) ---4 (Kr)i/(2l + 1)!! 
Kt --4 0 
	

(1.13) 

n(xr) 	(21 - 1)!!/(xr) 

where the double factorial is defined by !! = 1.3-5- 	and -1!! = 

1. The asymptotic forms are 

jt(gr) 
sin(xr 

Kr  
- in/2) 

---* 
1 	xr —4 a 

(xr 	
cos(xr 

 Kr  
- ter/2) 

n 	---, 
t 	

)  

(1.14) 

1.1.3 Muffin Tin Orbitals : 

The muffin tin orbitals (MTO) constitute a popular and 

efficient basis set first principles electronic structure 

calculations in solids. Its advantages are the following : 1. It 

is applicable to atoms from any part of the periodic table. 2. It 

is minimal in the sense that per site only one s-orbital, three 

p-orbitals, five d-orbitals and seven f-orbitals are needed.3. 

The linear MTOs which constitute an energy independent set are 



correct to first order in energy. 4. The set is complete for the 

MT potential used for its generation but is not restricted to 

treating MT potentials alone. 5. The MTOs may be expand about 

other sites in terms of numerically evaluated radial functions, 

spherical harmonics and cononical structure constants. This 

together with the atomic sphere approximation (ASA), according to 

which the MT spheres are replaced by overlapping (space filling) 

Wigner Seitz (WS) spheres, leads to a factorization of matrix 

elements of nearly an operator into a product of structure 

constants and radial integrals. 6. The MTOs are automatically 

orthogonal to the core states. 

To obtain the MTO we start from the wave function 

w (E,r) 	+ 	x 	cot(n 	)j 	(xr) 	r 	S
MT 

W 	(E,x,r) 	= 	i tYm  (r) 

K 	n
z
(xr) r 

(1.15) 

SMT 

where 	wL(E,x,r) is 	the 	solution of 	(1.8) at 	energy E 	in 	the 

entire space and the constant of integration cot(nt) 	is 	obtained 

by 	applying 	the boundary 	condition 	that 	the 	function should 	be 

continuous 

requires 	that 

cot 	(n 	(E,x)) 

where the 

and 	differentiable 	at 

n(Kr) 	Dt(E) 
= 

the sphere boundary 

- 	xrn't(xr)/nt(xr) 

r=SMT. 	This 

(1.16) r=s  
MT 

(1.17) 

except at its 

j(Kr) 	Dt(E) 

logorithmic derivative 

- 	xrjet(xr)/jt(icr) 

Dt(E) 	is 	defined 

Owt(E,r) 

as 

r=S 

energy This 	is monotonically 

Dt(E) 	- 
w(E,S) 

decreasing 

Or 

function of 



singularities. The other function of energy known as potential 

function depends only on the potential inside the atomic sphere, 

can be defined as 

D (E) + S + 
P (E) = 2(21 + 1) 	 

D (E) - S (1.18) 

and it is an increasing function of energy and the two functions 

have the forms shown schematically in Fig 1.2. For each t they 

consist of periods in energy labelled by the principal quantum 

number n, and separated by the energies V nz  defind by (1.19) 

below. The advatage of working with P1(E) rather then D1(E) is 

that the poles of the former function are outside the range of 

the Z band. 

	

The energies V 	separating the periods are defined by 

D1(Vnl)-  = 0 
	

(1.19) 

and, within each period, we further define the tree parameters 

B 	C
1
, and A

l 
through 

D (B

• I 

 ) = 0 

D (C

• I 

 ) = -I-1 

D1(A1) = m . 	(1.20) 

So one may call the energies Bt  and Al  the bottom and the top, 

respectively, of the Z band. Similarlarly the potential function 

evaluated at D
Z 
 (C

Z 
 ) = -1-1 is zero lead us to call C the centre 

of 1 band. It may be shown that the energy derivatives D and P 

are related to the amplitudes of the MTOs at the sphere boundary. 

The important feature of the orbital (1,15) is that the 

functions inside the well are regular at the origin, while the 

tail xn (xr) is regular at infinity. If we approximate the 
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crystal potential by an array of non-overlapping muffin-tin wells 

as in (1.7) may be used in conjunction with the tail-cancellation 

theorem to obtain so called KKR equations. These have the form 

which is given below and provide exact solutions for muffin-tin 

geometry. 

M(E)•b = 0 	 (1.21) 

Computationally, however, they are rather inefficient and it is 

therefore desirable to develop a method based upon the variation! 

principle and a fixed basis set, which leads to the 

computatinally efficient eigen value problem 

(H - E0).a = 0 	 (1.22) 

1.1.4 Expansion Theorem for MTO Tails 

One reason for choosing the tails of the MTO as solutions 

of 	the 	translationally 	invariant 	Helmholtz 	wave 	equation 	is 	the 

extremely simple expansion theorem 

- R) 	= 	4n E  E  CLL,L, 	j14,(x,r 	- 	- R') 	(1.23) 

	

L' 	L" 

where 

CLL'1,” 	= Y7 	(;) 	Y7: 	(;)* Ym"(;) 	dx (1.24) 

1/2 
_ ( 2G" + 	1 (e 	tm) (1.25) c 	m' ; 

417 	

I 

are the 	Gaunt 	coefficients. 	This 	expansion 	is valid 	inside 

the sphere 	centred 	at 	R' 	and 	passing 	through R, i.e. 	for 

1r 	- 	RI 	< 	IR 	- 	R' I. 	The 	coefficients 	cent' mr;im) are tabulated 

by Condon and Shortly 	[63). 

The 	expansion 	theorm 	means 	that 	the tail of 	the 

muffin-tin orbital 	i.e a spherical 	Neumann 	function including 	the 

11 



t m 
angular part 

. 
111(r) as in (1.9), positioned at R may be expanded 

in terms of spherical Besse' functions centred at R'. The reason 

for the expansion is that the Neumann functions centred at R' are 

regular at the origin and therefore is expanded in the regular 

solutions of the wave equation only. Consequently, inside any 

muffin-tin sphere the tails from the others spheres will have the 

same functional form as the term proportional to cot(nt). 

1.1.5 Basic Formalism : 

In the LMTO method, attention is focussed upon an energy 

range centred around some energy E which we are free to choose 

to suit the problem at hand. For each value of t we parametrize 

the energy dependence of the radial wave functions, its 

logarithrnic derivatives and potential functions. 

So as radial basis functions, for each value of 

Ovi(r) = 01(Ev,r) 	 (1.26) 

and its energy derivative 

01.,,e (r) - 
dept [ E v,r ) 

dE E 
(1.27) 

where 0 	
' 

(E r) = is the radial function normalised to unity in the 

sphere. 

Ot(E,r) = <w2e(E,r)>-"2w (E,r) 
	

(1.28) 

where the normalisation integral is 

<w2i(E,r)> = jw:115(E,r) wim(E,r) dr 	(1.29) 

using the well known normalisation of spherical harmonic 

‹p
2
t
(E,r)> = 	

(
E,r) r

z
dr 

0 
(1.30) 

12 



Consequently, 0 (r) and 0
vt 
 (r) are orthogonal and it may be 

shown that they are both orthogonal to the core states. It can be 

shown that an accurate description of the logarithmic derivatives 

function D(E) and its inverse E(D) around a region (Dvl ,E) can 

be obtained trough four parameters D
vl 
	0 	<0

1.
2 , 	,0

pl 
and 	

4 
>. 

The corresponding radial logarithmic derivatives at the 

sphere boundry are 

D7.4  = SO;i(S)/01.4(S) 	 (1.31) 

where ' = a dr 

D-pt = S4' 
(5)/0

pl 
 (S) 

v1  
(1.32) 

1.1.6 Potential parameters 

For each value of L quantum number, we use the four 

parameters co(-1 - 1), S02(-t - 1), 0(-1 - 1)/0(1) and <462 >-"2, 

where 

(-) m 63 (-1 - 1) 

S02(-) s S021-/ - 1) 

0(-)/0(+) m 0(-I - 1)/0(t) 
	

(1.33) 

here + and - refer to boundry conditions D = L and D = -1-1, 

which are the logarithmic derivatives of the spherical Bessel and 

Neumann functions in atomic-sphere approximation (ASA). ASA is 

common label given by G.K. Andersen to the combination of 

essentially two approximations, one being that the kinetic energy 

K
2 

of the tail of the partial wave may be fixed independently of 

E, the other that the atomic polyhedron of Wigner and Seitz may 

be aproximated by an atomic sphere. In such a procedure the basic 
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unit in space is the atomic sphere which by construction has the 

same volume as the atomic polyhedron. The interstitial region 

vanishes and kinetic energy icz  consistent with (1.16) may be 

chosen. In the ASA we choose ic z=0. 

Since the logarithmic derivatives form the link between 

the atomic sphere potential and the crystal structure, so it is 

convenient to consider the radial functions which satisfy the 

boundray condition specified by the logrithmic derivatives. 

A trial function of arbitrary logarithmic derivative D is 

therfore the linear combination 

(0, r) = Op(r) + w(D) 1.1)(r) 
	

(1.34) 

The influence of each sphere on the energy spectrum will then be 

given as a set of potential parameters (1.33) which are the 

z 
t 

parameters <0 p >, plus the parameters of the energy function 

wt(D) and the amplitude functions 0,t(D,S)E.0,1,(D). From equation 

(1.34) 

Ou(r) 	D - D
p  

(D) - 	 (1.35) 
0u(r) 	D - DU  

Witin the basis (1.32) we obtain the expectational value 

of the Hamiltonian, i.e. the energy as 

E1(D) = Eve  + wi(D)/ [ 1 + < 017,t  > wl,(D) ] + 0 (2) 	(1.36) 

The variational estimate is correct to the third order in 

c(E - E
v
). If the small parameter < 0z  > is neglected and we get 

E(D) = E
p 
+(D) + 0 (2) 
	

(1.37) 

These expressons are much more general and these are around the 

energy Eu  which may be chosen to suit the the particular problem 

at hand. 
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(+)] 	(+)  

It (-) 	0 (-) - 1)  

2 

(1.42) 

The first parameter w(-), according to equation (1.35) 

represents the second order estimate of the position of the band 

centre relative to E
vt 

i.e. 

C 	= Evt  + wt(-) 

Similarly, for the square-well pseudopotential 

V t  = Evt + w (+) 

The function w(D) and 0(D) are thus related by 

S 02(D) 	- dw Ydr) 

(1.38) 

(1.39) 

(1.40) 

The parameter S02(-) is proportional to the bandwidth of the 

band. 

W (  =-S02 (-) (21 + 1)2  

1 
I 	0 	(1.41) 

If we evaluate the estimates (1.40), 0(-)./0(+) 	0.8 for free s 

electrons, we find that Wt  = (6, 9, 13, 16) x Se02(-) for s, p, d, 

and f elecrons respectively. Hence the width of the t band is of 

the order of 10 902(-). 

2 -1./2 
The <0 > 	determines the width of the energy window, 

i.e. the energy range over which the variational estimate (1.36) 

is valid. The variation expressons depends on the Ev, which may 

be chosen to suit the particular problem. The enegy Evz  around 

which the expansion is performed is taken to be the centre of 

gravity of the occupied part of I band. Of other possible choices 

of E
we 

the choice Evt 
= Cz  results in best overall energy bands, 

while E
pt 

= E
F 

gives the correct Fermi surface and correct Fermi 

velocities. 

is 



To see the signifiance of 0(+)/0(-), without going into 

mathematice involved we find that 

w(-) - w(+) = (at + 1) SO(-)/0(+) 	(1.43) 

this shows that 0(-)/0(+) governs the distortion contained in the 

scaling from canonical bands to energy bands. 

The structure constant matrix Sim Im 
' is hermition and can 

C  

be transformed for the lm representation where the each subblock 

is diagonalised. The (21+1) digonal elements S. i i  if each subblock 

are the unhybridised or pure, canonical .t bands. The pure ne  

energyband2. 
nil

0c) obtain by n'th solution of P1(E) = S. , 

which is merely a monoatomic mapping of the canonical bands on to 

an energy scale specified by n'th branch of the potential 

function. The canonical bands have a number of properties such as 

(i) A pure canonical s band diverges at the centre of the 

Brillouin zone. (ii). The longitudinal branch of the canonical p 

band is discontinuous at the centre of the zone. (iii). The 

centre of gravity of a canonical band with t > 0 is zero at each 

value of the Bloch vector k. (iv). The width of a canonical band 

may be estimated from the second moment which depends only upon 

the radial destribution of the atoms in the crystal. (v). The 

second moment of the canonical s band diverges etc. 

1.1.7 Energy Independent MTO 

In this section we will discusse the energy independence 

of the MTO. The amplitude scryKS) and logarithmic derivative 

xSn'(xS)/n (xS) at the sphere, as well as its tail, depend on 

energy only through x. If we fix x at some suitable value, the 
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energy dependence of the tail would be suppressed and this make 

the amplitude and slope of the MTO at the sphere energy 

independent. So now we shall keep the energy E of the orbital and 

wave number K of the tail as completly sepa,rate entities, fix x 

and using linear combinations of MTOs in a variational procedure. 

We shall now augment the MTO and show that the augmented 

MTO 

wi(E, 	r) + lecot(yygr) 	r gc SMT 

x 	(E, x, 	r) 	= 	i 	Y
m 
	(r) 

{ xN (xr) 

(1.44) 

r 	S
MT 

for 	a particular choice 	of the augmented 	spherical 	Bessel 	and 

Neumann function J 	(Kr) and N1 	(xr) 	may 	be 	made 	energy 

independent around a 	fixed energy Ev 	to 	first 	order 	in 	(E 	- 	Ev). 

At the same time, the muffin-tin orbital becomes orthogonal to 

core states, ensuring that the LMTO method does not converge to 

core eigenvalues. In connection with the augmentation one should 

realise that once K has been fixed, the spherical Bessel and 

Neumann funtions lose their special significance as exact 

solutions of the Schrodinger equation in the region of constant 

potential. Hence, if desired, they may be replaced, i.e. 

augmented, by more appropriate functions which are attached to 

them at the sphere in a continuous and differentiable fashion. 

To arrive at suitable definitions of J and Nt  we simply 

disregard 	lc
z
m E - V

MTZ 
 ,fix m, and demand that the energy 

derivatives of the muffin-tin orbital (1.44) 

x 	(E, x, r) = w (E,r) + xcot(n
z
(Kr) 
	(1.451 

be zero at E = E. Thus the augmented spherical Bessel function 

17 



- vet  (Ev,r) / sccot(yEv)) 	✓  < S
MT 

J (icr) = 
	

(1.46) 

jt(scr) 	 ✓  >
MT 

This will make the muffin-tin orbital (1.44) energy independent, 

i.e. x  (Ev, x, r) = 0, to first order in IE 	Ev). The MTO (1.15) 

is continuous and differentiable, we get 

ti t  (Kr) = w1(E,r) + xcotint(E)/ji(Kr) 
	

(1.47) 

near the sphere boundary. Therefore 

0 = w• (E
v'

r) + mcot(n
t 
 (E )1j

st 
 (mr) 
	

(1.48) 

holds to first order in (r - SmT), showing that (1.46) is 

continous and differentiable at r = SMT. This result is a direct 

consequence of normalisation which is implied in definition 

(1.44) and which is characterised by an energy-independent 

amplitude n(kS
MT
) and an energy-independent logarithmic 

derivative DCn 1 at the sphere. 

From the defination of normalised partial wave 0 (1.28) 

and the trial function 1 (1.341, the energy derivative Ws(Ev,r) 

is given by 

2  ' 
w (E7, r) = <w

2
(E

v)>
1/2

0
ve
(r) + <w

t (E)>
1/2 

 0
l
(r) (1.49) 

= <Wzi (E v )71'2,Z(DCW.p,r) 	 (1.50) 

From eq. (1.48) we can see that wt(Ev ) and ji(mr) will have the 

same logarithmic derivative at S
MT 

and consequently 

w (E
v' 
 r) = <w

z
(E

v
)>
itZI(Dij /,r) 
	

(1.51) 

In the same manner as in (1.23), we define that tail N4
(Kr) as 
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j z (KS) 
(Dtj ), rl 

(Dij.1 1,S) 
r -LS S

MT 

NL(Kr-R) 

Ir - RI 5 S 
4n E E 	JL,(K, r - R') 	R - R') l 	 R, R  

L' L" 
(1.52) 

nL  (lc'  r - R) otherwise 

NL(x,r-R) 	is 	everywhere 	continuous 	and 	differentiable, 

furthermore orthogonal to the core states of all muffin-tin wells 

except that centred at R. 

So the simplified MTO is 

icn (K9) 

yOin 1 S) 
	 .1 (D{ri}'r) r < S 

- MT 

1 
L 
(K, r) = 

. Ym (r) (1.53) 

04 (mr) 	 r > SMT 

and the augmented spherical bessel function by 

J (Kr) = (1.54) 

j(Kr) r 	S
MT 

So we see that x  is linear combination of 0 and 0 which has the 

logarithmic derivative Din/ and the augmented muffin-tin orbital 

is also continous and differentiable, and orthogonal to the core 

states of all muffin tins. Hence these orbitals are well suited 

for use in connecton with variational principle. 
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1.1.8 One-centre Expansion and Structure Constants 

A wave function for a MT potential of non-overlapping 

array of MT wells, VmT(Ir-RI), centred at sites R of a 

three-dimensional perodic lattice and embedded in a flat 

potential may be written as the linear combination of MTO's 

vi(E,r) = E aLk  xLk  (E, x, r) 	(1.55) 

L 
where we introduced the Bloch sum of MTO's 

x
k
(E, x, r) = E eik-12x

L
(E, x, r-R) 
	

(1.56) 

It can be shown, using the expansion theorem (1.23) or 

(1.52) that the wave function may be written in terms of a one 

centre expansion of the form 

	

xk(E, x, r) = x
L(E, x, r) + E JL'(x, r)2

k 	Ix) 
L'L 

where 2L ,Lis the KKR structure constant defind by 

BL 
 
,L 

	
xn

"(x,R) L'L = 4ff  r CLL'L" E e 	L 
R00 

(1.57) 

(1.58) 

Equation (1.57) will converge inside the MT sphere at the 

origin and in the interstitial region, outside the neighbouring 

MT spheres but inside the sphere centred at the origin and 

passing through the nearest-neighbour sites. The region of 

convergence stated above follows from the fact that the expansion 

theorem (1.22) is valid iside the sphere passing through the 

nearest-neighbour sites while the tails are defind only oustide 

their own MT spheres. The structure constants are independent of 

the potential, and the matrix 2vm;im  is Hermitian. 

1.1.9 Secular Matrix 

Use of the linear combination of muffin-tin orbitals in a 

variational method has the advantage that it leads directly to an 
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eigenvalue problem and it is possible to include non-muffin-tin 

perturbations to the potential. According to the Rayleigh-Ritz 

variational principle, one varies w to make the energy functional 

stationery i.e. 

6< wIH - Elw > 	= 0 	 (1.59) 

Here E is the Lagrange multiplier. Eqation (1.59) has solutions 

when 

det .1<x IH - El x 
L' 	

k L' >) = 0 
 

(1. 60) 

using the Bloch condition (1.56) and rearrangement of the lattice 

sums we obtain 

-1 N 	< xL' IH - EI xL > 	< x
k
,IH - EI xL,  >0  (1.61) 

The LCMTO secular matrix is obtained by inserting the one centre 

expansion in equation (1.61). We obtain 

<XLI I R  - E l XL >0 = <XL'IH  - E l XL >0 

+ E 	- k 
"+ <J „IH - Elx > 2k 

L u LL 	LOL L" 

+ E L"
E

Lf” 

s
L'L" <jLn1H 	EI J L, so>

° a 14 "L 

...(1.62) 

The subscript 0 means that the integral is only over the sphere 

at the origin. The one-centre term is the one that is zeroth 

order in 2, the two-centre terms are the ones that are first 

order in 2, and the three-centre or crystal-field term is the one 

that is second order in S. 

To turn the LCMTO method into an efficient calculational 

technique, we introduce the atomic-sphere approximation and 

paramerise the energy dependence of the one, two and three centre 

or overlap integrals. The resulting procedure constitutes the so 
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E jk0k 	jk 
E (HLM 	L'L

)a 
 L 	

= 0 
L 

(1.63) 

called linear muffin-tin orbital (LMTO) method. Now the LMTO 

secular matrix may be written in the form H -EQ, which = 

corresponds to the generalised eigenvalue problem. 

and this may be solved by efficient numerical techniques to give 

j the eigenvalues Elk and eigenvectors a
L
k  .Here H

L'L 
is the 

hamiltonian matrix and 0
L'L is the overlap matrix. 

1.1.10 The Combined Correction Term 

The atomic sphere approximation introduces errors which 

are unimportant for many applications, e.g. self-consistency 

procedures, there are cases where energy bands of high accuracy 

are needed and where one should include the combined corrections 

terms. These terms arises due to the differences between the 

atomic sphere and the atomic polyhedron, the x2= o used in the 

ASA and the correct kinetic energy, and because of the neglect of 

higher partial waves. The extra terms added to the LMTO matrices 

that accomplish corrections to these errors are called the 

combined correction terms. The correction terms are obtained by 

including the perturbation 

V (r) = IVMTZ - E z 
) 

L
BWS  (r) -

MT 
(r) 1 	(1.64) 

to the potential, where Ows(r) and OmT(r) are step functions 

which select out the region between the muffin-tin sphere and the 

atomic polyhedron. With the combined correction terms included in 

an LMTO calculation, one corrects the errors of the ASA to first 

order in [E - V
MTZ 

 - x1. 
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1.2 SIMULATION OF RELATIVISTIC EFFECTS 

The relativistic effects in 5d transition series and even 

the 4d series, are quite large. it is therefore desirable to make 

some provision for their inclusion in our method. The 

relativistic Hamiltonian in the absence of any external field 

takes the form (71) 

	

hz 	 4 	 4 H  
- 	72  + V ( r 	

74 4.  
	 0 -(V V(r) x p) 

	

2mo 	8m
3
C
2 

4m
2 
c
z 

0 	0  

h2 
7
2 V(r) 	(1.65) 

2 
8m c

2  
0 

 

where V(r) is the crystal potential, 	is is the Pauli spin 

operator, and p is the linear momentum operator. The first two 

terms in (1.65) correspond to the non-relativistic Hamiltonian. 

The third term is a correction to the kinetic energy operator 

arising from the change of electron mass with velocity 

(mass-velocity term). The fourth term go -(9 V x p) is the 

so-called spin-orbit interaction operator. The last term, 

referred to as the Darwin term,has no simple classical analogue. 

The 	principal 	qualitative 	effect 	of 	spin-orbit 

interaction is to produce additional splittings in the d bands. 

The remaining effect of this term and the effect of other 

relativistic terms (mass velocity and Darwin terms) are 

quantitative in nature as they produce shifts and distortion of 

the bands. It is reasonable to include the Spin-orbit interaction 

term only between d functions, where degeneracy effects are 

important. The inclusion of the spin-orbit interaction doubles 

the dimension of the total Hamiltonian, since the Hamiltonian now 

refers to both spin-up and spin down electrons. 
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1.3 DENSITY FUNCTIONAL FORMALISM 

A great deal of attention has been devoted to using 

electron density as basic variable in applied quantum mechanics. 

The basic variable is better alternative to quantum mechanical 

wave function mainly in three ways : 

Firstly, the electron density describes the three 

dimensional distribution of electron in a system, and hence is a 

function of only the three corrdinates and independent of the 

number of coordinates of the electrons present. The density-based 

formalisms offer great simplification over the usual wave 

function approach because, difficulty in solving the Schrodinger 

equation increases very rapidly as the number of electrons 

increases. Secondly, the electron density being a physically 

observable quantity, the accuracy of the quantum mechanical 

calculations and approximations can be tested directly. Thirdly, 

it provides a classical picture of quantum phenomena, since the 

electron density is a function of three spatial coordinates and 

enables one to build up various interpretive models. 

The electron density can be utilized as a central 

quantity and the formulation of many particle problem with in a 

single particle like framework, is the essence of the Density 

Functional Theory. Starting from the Thorms Fermi method ah& 

several modifications, Density functional theory (DFT) has been 

rejuvenated by the pioneering work of Hohenberg, Kohn and Sham 

[105, 1323 who have laid its strict mathematical foundation and 

thus provided a formal justification for the use of density as 

basic quantity. Since then, a significant body of work has been 

done to carry out various modifcations and extensive applications 
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OE [n) 
On(r) . 	

= 0 (1.68) 

to a wide variety of problems in atomic, molecular and solid 

state physics with remarkable partical success. 

1.3.1 Hohenberg—Kohn Theorem : 

Hohenberg and Kohn (105] have proved two theorems. The 

first one 'establishes that the nondegenerate ground state of an 

interacting N-particle system under a static external single 

particle potential V(r), which is completely characterised by the 

single particle density, n(r). The second theorem states that, 

for a given external potential, V(r), the energy is a unique 

functional of the particle density, n(r), and the ground state 

energy corresponds to a minimum of the energy functional with 

respect to the variation of density function. The variation of 

the particle density is performed under a constraint of 

conservation of particles as given below : 

n(r)dr = N 	(1.66) 

where N is the total number of particles in the system. The 

stationary condition 

afE En) - p 5 n(r) dr. = 0 	(1.67) 

where ,u is the lagrangian multiplier, has been used to obtain 

where ( 
BE E 	Cn3 is a functional derivative of energy functioal E, 
On (r) 

with respect to the charge density n(r). The equation (1.68) 

forms a key equation of density functional theory and provides a 

deterministic equation for n(r). If one considers a collection of 

an arbitrary number of electrons moving in a system under the 

influence at am external potential V(r) and the mutual coulomb 

25 



repulsion, then the Hamiltonian can be constructed as a sum of 

kinetic energy, T, potential energy, V, and coulomb repulsion 

energy, U, as 

H = T + V + U 	 (1.69) 

where one writes T, V, and U as 

T = I f Vw
*
(r) Vw (r) dr 

2 
(1.70) 

V = f V(r) w
*
(r) w(r) dr 	(1.71) 

U - 	
r 	1  

2 	Ir - r 	w 

• 

(r) w 

• 

(r) w (r') w (r') dr dr' 	(1.72) 

where w and w
* 

are the field operator and its conjugate 

respectively. 

It has been assumed, for simplicity, that the ground 

state is non degenerate. Thus, the electron density, n(r) for the 

ground state 0, can be written as 

n (r) = (0, w
*(r) w (r) 0) 	(1.73) 

which is clearly a functional of external potential V(r), through 

In order to write an expression for energy, in the terms 

of density, one requires a knowledge about its functional form. 

The energy functional E En], has been written by Hohenberg and 

Sham (1051 as 

E [n] = f V(r) n(r) dr + F En] 	(1.74) 

where F En] is a universal functional valid for any number of 

particles and any external potential, viz., 
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F En] = < WI T 	U N' 	(1.75) 

assumes its minimum value for the correct n(r), if the admissible 

functions are restricted by the condition of eq (1.66). If F In] 

is a known functional of n, the problem of determining the ground 

state energy and density for a given external potential would be 

just a problem of the minimization of a functional of the three 

dimensional density function. However, the determination of F 

Cn3, poses a major complexity in the many electron electron 

system, because of the long range of coulumb repulsion. It is 

convenient to write F Cn3 as 

F In3  .1(1  n(r) n(r')  
f 	I r - r'l 	dr dr' 	+ G tn3 	(1.76) 

where G En] is a universal functional like F Cn3 and it includes 

kinetic T(nl, exchange and correlation Exc mnl, energy functionals 

and can be written as 

G (n3 = T 	+ E En] 
xc 

The final expression for E (nl is 

(1.77) 

1 	n( 
1r
r) n 

r'  1s) 
	

g- 
(r E [nlrf V (r) n(r) dr + 2 —   dr dre 	T En] + E xcCn3 

-  

(1.78) 

1.4 LOCAL DENSITY APPROXIMATION 

Here, the basic idea is to assume the local density to be 

uniform in an infinitesimal volume element of the space 

coordinates. The kinetic, exchange and correlation energies for 

uniform electron gas have been taken within that volume element 

and added to the gradient expansion of the energy functional. 
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1 

[ 4n 
3 	3 	1 ( 1.80 ) 

Such an approximation might work well only when one assumes the 

density slowly varying in space. 

1.5 EXCHANGE AND CORRELATION POTENTIALS 

To check the effect of exchange and correlation (XC) 

potential on our problem, we have used different XC potentials 

approximated by different workers such as von Barth-Hedin (BH) 

[28], Barth-Hedin modified by Janak (BHJ) [112], Vosko-Wilk and 

Nussair (VWN) (231] Slater Xa [198] and Langreth and Mehl (LM) 

11373. 

1.5.1 BH—XC Potential 128] 

In our calculations we have used the BH-XC potential 

given by Barth and Hedin. We have disscussed it very briefly. 

The exchange and correlation energy can be defind as 

E 	a c + c 	(1.79) 
xc 	x 	C 

where x as subscript means exchange, c as subscript means 

correlation. Here c is the ordinary Hartree-Fock contribution 
X 

The px  and pc  are the contributions to the chemical potential 

from the exchange and correlation energy. px  and pc  are given by 

the formulae (187) 

r de 	r 8e 
a 	x 	a 	c 	 & p - e - 	 (1.81) 

M = C  x 	x - 	3 Or 	C 	C 	3 Or 
9 	 s 

From eq.(1.80) and eq.(1.81) 

pp  = y (cF  - s ) 	(1.82)  
X 	x 	X 

where y = 4/3 at (1-a) and a = 2
-1XS

and the P superscript means 
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the paramagnetic state x=1/2, and F superscript means the 

ferromagnetic state x=0. Now a new function f(x) can defind as 

fix) = (1-a)-1 	x
4/3 

+ (1-x)
4/3 

 - a 

The exchange energy ex  from (1.80) can be written as 

ex  = C 

• 

+ r
-1 	

f(x)  NX 

Similarly the the correlation energy can be shown as 

C = 

• 

+ r-1  v f(x) 

and the v can be written as 
C 

V = y (eF - c ) 

The r
s 

dependence of of the ce and p 

• 

is given by 

0 

.e (r ) - - 	 
X 

a 

p(r ) = 4/3 c 

• 

(r ) 
x 9 	 X El 

where 

co - 	3 

 

2n 
	 ti 0.9163 (Ryd) 

(1.83) 

(1.84) 

(1.85) 

(1.86) 

(1.87) 

(1.88) 

(1.89) 

The r dependence of the quantities c and eF can be represented 

as [1011 

F [ 	 s 
c
c 

• 

= -cP  r ----] 	 C
c 

= -C
F 
 F ----]

rp  
(1.90) 

where 

F(z) = (1 + z3 ) 1n(1 + 

 

2 	1 
(1.91) 

 

2 	 a 

and 

ce = 0.0504 	ce = 0.0254 

re = 30 	re = 75 
	

(1.92) 
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They have cho se these numerical values in order to 

reproduce the correlation energy se  as function of re  which are 

calculated using a 'two-bubble' approximation for the exchange 

and correlation energy as discussed in detail by Barth and Hedin 

£28]. 

1.5.2 BHJ-XC Potential (1121 

Janak (112] has made some modification to XC potential 

given by Barth and Hedin. There is small change in the numerical 

value of the four parameters as disscussed in BH-XC potential. 

This due to fact that they have chosen these four parmeters to 

reproduce the correlation energies calculated by Singwi et al 

I195l. Now the new values of these four parameters are 

CP  = 0.045 	cr  = 0.0225 

rP  = 21.0 	rF  = 53.0 
	

(1.93) 

1.5.3 SLATER Xa XC Potential 11981 

Starting from the Fock term of Hartree equation Slater 

has given a exchange potential which include the adjustable 

parameter a as compare to earlier approximation given by him. So 

making this Fock term into a form containing the electron gas 

density as 

k . 
ex 	

4k
F 	( 

V = - 	r k
F  

(1.94) 

where k
i
is the coordinate axes in k-space which will point in the 

z-direction and k
F 

is the Fermi wave vector and function F(x) is 

given by 

1 	1 - x
z 

In I  1 + xl 
2 	4x 	1 - x 

( 1.95 ) 
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The first that comes to mind is simply to average Vex  

over all occupied states (i.e., over the Fermi sphere) .As a 

result, we come to Slater approximation for the exchange 

potential 

kr  
Vex  = - 3 
SI 	it 

(1.96) 

If the potential is only averaged over the Fermi surface (i.e., 

the exchange interaction over the whole zone is assumed to be 

equal to that of the FS electrons) we obtain the Gaspar-Kohn-Sham 

exchange potential 

•  
ex 	2 ex 	

k
F 

=  
VGKS 	3 

V  
SI 	

-2 
 

(1.97) 

Since the other averaging procedures are also possible, it 

seems reasonable to take this into account by introducing an 

adjustable parameter a 

k
F 8

x V
a 

= -3 a (1.98) 

For a=1 we retrieve the Slater exchange potential an at a = 2/3 

we obtain the Gaspar-Kohn-Sham potential. The 'correct' value of 

a lies somewhere in-between. 

1.5.4 VWN-XC Potential [2311 

Vosko et al (231] have assessed various approximate forms 

for the correlation energy per particle of the spin-polarized 

homogenous electron gas using the Fade approximant technique. • 

According to this approximation the correlation energy can be 

written as 
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X
2 

2b 	tan
• -1Q

P  
6?  (r ) = A 

• 

In 
2 X (x) 	QP 	2x + bP  

b x 	(x - xo
)
z 

2(b + 2xo 
 tan

) 
o  In 	 

X

- P

(x
o
) 	XP(x) 	QP  2x +bP11.  

QP 
(1.99) 

and 

2 	 F 2b 
 tan tan

-1 Q 
eF(r ) = AF  In  x 
c 

	

X (x) 	QF 2x + bF  

b
F
x (x - x ) 

2 

	

O 
	2(b + 2x) -1 Qr 

	 In 	 o 	tan 	 
X
r
(x ) X (x) 	Q 	2x + bF  ]). 

1.100) 

Where 

QP  = (ACP 	(e))1/2  X (x) = x2 + b x + 	, 

and 

X 

• 

(x) = x2 + b x 	+ c 
0  0 	0 

 

X (x) = x
z + b x + c

F
,

F 
= (4OF 	Lb

r1/2 

X F(x) = xz + bFx + C
F 

O 	0 	o 

 

(1.101) 

(1.102) 

The values of A, xo
, b and c for the best fit are 0.0310907, 

-0.409286, 13.0720 and 42.7198 for the paramagnetic case and 

0.0621814, -0.743294, 20.1231 and 101.578 for the ferromagnetic 

case. These values reproduced the spin-depende- Random Phase 

Approximation correlation energy. Thus the correlation energy is 

given by 

where 

e (r ) = eP(r ) + (cF  - els ) F (1 + (3D) 
e 	c 9 

(1.103) 
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1/2  
X = (r

e
) 	S = (p't  

4-) 
- p

f-) 
 I/p 

S = 	+ S, 
	

SF  = 1 - S, 	D = S4  - 1 

4/3  4/3 F = C (SP  ) 	+ (S
F 
 ) 	- 2)/( 24/3-  2) 

1/(2.74208 + 3.182x + 0.09873x2  + 0.18268x3) 	(1.104) 

Now the exchange energy can be defind as 

c (r ) = -0.91633059/r 	+ 4/3 F/5.1297628) 	(1.105) 
X 

So 

s (r ) = s (r ) + s 	) x C a 	X 9 	C 9 
(1.106) 

by adding eq.(1.200) and (1.202) we get the exchange correlation 

energy 

1.5.5 Langreth and Mehl CLMD XC potential [1371 

So far we have discussed different local XC potentials 

approximated by different workers. In order to check the effect 

of a non-local XC potential in our calculations. we have included 

the gradient corrections to the local density potential proposed 

by Langreth and Mehl. For a numbers of years Langreth and Mehl 

[137] have proposed a workable calculation scheme for including 

the effects of exchange and correlation beyond the local-density 

approximation [132] in nonuniform systems such as atoms, solids, 

molecules, surfaces, etc. This was based on a mode of 

approximation introduced to such systems by Langreth and Perdew 

[139 - 142] and by others [166, 176 - 1787]. The work of Langreth 

and Mehl [137] was based to large extent on the work of Langreth 

and Perdew [1427 and the type of approximation scheme introduced 

there. This earlier scheme and its relation to the work of other 

authors such as Gunnarssson, Jonson and Lundqvist [94 - 96], 
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and 
-) 

F = 0.262 I 	/ Crl(r)]
7/d in terms of the total 

Alonso and Girifalco [10], Gunnarsson and Jones C97], and Kohn 

and Hanke [131] have been aptly reviewed by Williams and von 

Barth [243]. Perdew and collaborators [162, 165, 249] have 

revived and elaborated on methods for correcting for 

self-interactions. Later Langreth and Mehl [138] and Hu and 

Langreth [107), as well as Perdew [163] and Perdew and Wang 

[164], have proposed modified gradient expansions for the 

exchange-correlation energy. 

Langreth and Mehl [137] analyzed the dynamic density 

fluctuation 	wave-vector 	decomposition 	of 	the 	exact 

exchange-correlation energy. From their analysis, they derived a 

gradient correction to LDA for the exchange-correlation 

functional which satisfied the correct limits at large and small 

wavelength. In so doing, they were able to aviod the pathologies 

that plagued the previous gradient expansions based on 

straightforward expansion techniques. Langreth and Mehl (LM) 

developed the following functionar form for this correction 

4  4 

/1 7 [ 7-K 	2K2  - 2e (1-F/2)V-K 
V 	(r)=8.56 x 10

-3
n 

1.111 	 9 3n
2 

2 	11F 	7F2 	K2  
3 	6 	12 nz 

4 

F (F-3) 	K I 
2nK 

 

   

(1.107) 

4 

where K = 7 n(r) 

electron density n or n(rl. 
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As LM correction involves gradients of the density, it is 

extermely convenient to make the sperical approximation such that 

one avoids gradients of the spherical harmonics. It does, of 

course, limit the precision and may obscure important physical 

consequences. So we feel, however, that the muffin-tin 

approximation gives a useful first view. For consistency, the 

correlation function decribed earlier by von Barth and Hedin (BH) 

is used in this study as the basic exchange-correlation (KG) 

functional to which we have added the LM corrections. 

1.6 FERMI SURFACE EXPERIMENTS 

The commonly used experimental methods to obtain 

information on electronic structure of metals can be classified 

into two categories : 

( i ) 
	

The 	Fermi 	surface 	experiments 	which 
	

determine 	the 

Fermi-surface dimensions and the dynamical properties of quasi 

particles. 

(ii) Spectroscopic experiments which monitor the band structure 

far off from the Fermi level. 

Here we shall consider some experiments which give 

information on fermi surface topology. In Table 1.1 we give a 

list of experiments or methods and respective Fermi surface 

related quantities that each of them yields information on. The 

summary of methods for the Fermi surface determination as applied 

to copper are also given in Fig. 2.1. Most of these experiments 

are based on the behaviour of a metal in presence of magnetic 

field 4 and are performed at low temperature. The necessary 

condition to observe these experiments is 4..)
c 	

1 where W = 

	

eH c is the cyclotron frequency, me 
the cyclotron mass and 	is 

c 
m  
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some appropriate average of scattering time. The higher is the 

value of (,)
c
r , the more accurately can the experimental 

parameters be measured. As the magnetic field strength can not be 

increased beyond a certain limit, r should be quite large so as 

to satisfy above condition. Therefore, the sample should be very 

pure and very low temperature should be maintained during the 

experiment so that phonon scattering becomes unimportant and 

electron is not appreciably scattered during one orbit of its 

motion. In the de Haas-van Alphen effect experiment there is 

additional requirement that KBT (KB  = Boltzmann constant) should 

be small as compared to the energy separation Noe  of the quantum 

levels. This is more stringent condition requiring temperatures 

as low as 1 and 2°K during the experiment. Here we shall describe 

only a couple of the Fermi surface experiments which are relevant 

to the present study. 

1.6.1 de Haas—Van Alphen effect (89, 190, 1921 : 

The de Hass-van Alphen (dHvA) effect has proved to be the 

most accurate and reliable tool for investigating the electronic 

structure of metals in the vicinity of the Fermi surface. 

Experimentally the magnetization M (or susceptibility x ) of a 

single crystal 
	

is measured at very low temperature ( - 4°K) in 

presence of magnetic field g as a function of field strength H 

.1 a l  and its orientation with respect to crystal axes. For a 
fixed direction of crystal and P. M exhibits oscillations which 

are periodic, in H-1. These oscillations arise essentially from 

quantization of electron orbits in presence of magnetic field. 

The frequency f of these oscillations is 	related with the 

extremal Fermi surface cross section AFS 
(i.e. section with plane 
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perpendicular to it which has extremal value) by 

2rre 
A
FS 

- 
tic (1.108) 

Or 

A
FS 

(atomic units) = 2.673 x 10-9f (Gauss).... (1.109) 

from a knowledge of Aps  for every extremal cross section as a 

function of orientations, one can determine the Fermi surface 

topology. In some special cases when a sheet of surface is known 

to be closed, radius vectors can be obtaied from the areas by 

using some inversion theorems [127, 154]. This makes considerable 

simplification in building up the picture of the Fermi surface, 

since the building a surface from a knowledge of its cross 

sectional areas is a difficult job even for simple cases. 

Alternatively, if the band structure of metals is known extremal 

cross sectional areas can be 'calculated from the knowledge of 

radius vectors of the Fermi surface orbits and direct comparison 

with experiment can be made. 

The amplitude of the dHvA oscillations has an essentially 

negative exponential dependence on H
-1
, the exponent being 

proportional to me  (T + TD  )/H. Here T is the temperature and TD  

is the Dingle temperature which is related to an orbital average 

of scattering probability. If the magnetic breakdown can take 

place, there is a further reduction in amplitude which depends on 

Ho
/H where Ho is the breakdown field. Thus me, TD  and Ho can be 

obtaied from the studies of the temperature and field dependence 

of the amplitude. 

1.6.2 Azbel - Kaner Cyclotron Resonance [231 

The cyclotron resonance is the simplest Fermi-surface 
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dependent phenomenon in metals and  corresponds to microwave 

transitions between the quantized k-space orbits, called Landau 

levels. In order to describe this phenomenon we recall that the 

effect of a magnetic field on an electron in state r with the 
velocity /On is given by the Lorentz force equation [246] 

tzk = (e/c) / x 4,  (1.110) 

where a is the electronic charge and c is the velocity of light. 

This Lorentz force causes the wave vector to describe an 

orbit on a surface of constant energy. If I.< happens to be the 

Fermi wave vector, the orbit is given by the intersection of the 

Fermi surface with a plane normal to A. If the electron is not 

scattered, it makes a circuit with cyclotron frequency 

C4 le I H 
M C 

where m
e 

is the cyclotron effective mass and is given by 

dk  

me 2n f 
V (k) 

or 

hz  8A 
m - -- 
c 2n OE 

Here Vi  (k) is the velocity component normal to, and in 

the plane of, the orbit; A is the extremal cross sectional area 

of the fermi surface in the plane of the Fermi surface in the 

plane of the orbit and E is the energy of the orbiting electron. 

To measure w
c 
a radio frequency (r.f.) field oscillating 

with frequency w is applied. As w is varied, there will be large 

energy absorption when w coincides with the cyclotron frequency, 



since then the acceleration produced by the electric field along 

orbit is always in phase with the velocity of the electron at 

that point. Therefore it adds coherently to produce a large 

effect. 

In case of metals, if the magnetic field is applied in a 

direction normal to the surface, this scheme is not effective as 

the skin-depth phenomenon prevents the penetration of the r.f. 

field. But if the magnetic field be applied parallel to the 

surface of the sample, an electron in general follows the helical 

path in real space with axis parallel to H. In each cycle it 

comes within the skin-depth and sees the r.f. field. If the 

frequency of the r.f. field coincides with the cyclotron 

frequency, we again obsere the resonance known as the 

Azbel'-Kaner cyclotron resonance (AKCII). Thus knowing we  , mc  can 

be calculated from eq. (1.111). 

In addition to above methods size effect, Kohn anomalies 

in the phenon spectrum and positron annihidation etc. are used to 

gain informations about the Fermi surface of metals. Since we 

have not used information from these experiments in this thesis, 

we shall not discuss them further. 

1.7 CALCULATION OF FERMI SURFACES 

The LMTD method offers a convenient method for Fermi 

surface studies because of the rapidity with which it calculates 

the energy eigenvalues. As mentioned in earlier,, the extremal 

croos-sections of the Fermi surface can be measured through dHvA 

experiments. The extremal cross-sectional area perpendicular to a 

particular direction (8,0) of the magnetic field can be 
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calculated in three steps :-(1) For the case of ferromagnetic 

metals, the LMTO is set up with spin qantization along the 

direction (9,0) of the applied external field. This is necessary, 

since the energy bands and the size and shape of of the Fermi 

surface will depend on (0,0) because of the presence of the 

spin-orbit and the exchange interaction. In the absence of either 

effect, there would be no (0,0) dependence of the energy bands 

and in that case (9,0) can be neglected in the energy band 

calculation. (2) Constant energy surface for energy equal to AEF  

is generated. For this one has to calculate energy eigenvalues at 

large number of points throughout the Brillouin zone. (3) Several 

cross-sectional areas are measured and compared to obtain 

extremal  cross-sectional 

integration  of  the 

rotation  in  the 

following  integration 

OA = 

where 6A 	is 	the area 

6w is 	the vertex 	angle 

radii 

plane 

formula 

1 

areas. The 

calculated 

normal 

has been 

r
2 	

+ 	r2
2 

 

sector bounded 

the sector.  

to 

areas 

at 

the 

used 

1 

are  found  by  numerical 

a  fixed  interval  of 

direction  (8,0). 	The 

 

by Lee  [144] 

( 	6w 	) 	(1.114) 

by 	radii 	r 	and 	r 2 	and 

( 

[ 

of 	a 

of 

2 

1.8 PLAN OF THE THESIS 

The material embodied in this thesis is organized in 

following manner. Chapter II is devoted to the study of Fermi 

surface of the noble metals using LMTO method. In chapter III, we 

present the results of Fermi surface and related properties of 

palladium and platinum. The Fermi surface of the ferromagnetic 

nickel is discussed in chapter IV. Chapter V is devoted to study 



of the effect of hydrostatic pressure on the Fermi surface of the 

noble metals and transition metals Pd, Pt and Ni. The effect of 

uniaxial tension on the Fermi surface of the noble metals is 

discussed in chapter VI. Finally, in chapter VII we summarize the 

results obtained in this thesis. 
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TABLE - 1. 1 

A list of various Fermi surface related experiments and the 

quantities about which they provide information. 

Experimental 	method or effect Yields 	information on 

' 1. 	Radio 	frequency 	size effect k
extremal 

2. Magnetoacoustic effect k
extremal 

3. Magnetic 	induced size effect 04 k 

4. Kohn anomaly 
4 
k
F 

5. Compton effect 
4 
k
F 

6. Positron Annihilation 
4 
k
F 

7. Galvanomagnetic effect FS 	topology 

8. dHvA effect A
°kr 	masses 

9. Azbel'-Kaner cyclotron resonance masses 

10. Anomalous skin effect surface area 

11. Tomasch Oscillation and 	related 
effects 

/
F 
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Fig. 1.1 The muffin-tin approximation. a) : the unit cell, the 

muffin-tin sphere of radius SmT, and the escribed 

sphere of radius SE. b) : the radial wave function. 

c) : the muffin-tin part of the crystal potential V 

Cr). d) : the muffin-tin potential VmT  Cr). 
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CHAPTER II 



FERMI SURFACE OF THE NOBLE METALS 

The understanding of the electronic structure of noble 

metals is a classic problem in solid state physics. The physical 

properties of transition metal and noble metals are determined 

largely by the outermost d electrons in the atoms. As this 

d-shell is progressively filled through a group of transition 

metals, the physical properties vary drastically C82l. The noble 

metals follow right after the transition metals and have filled 

d-shells. Although the energies for the d band lie below the 

Fermi level, these dabands in noble metals strongly influence the 

band-structure and related physical properties. For the last many 

years noble metals have provided a testing ground for our 

theoretical understanding of the electronic structure of 

transition metals. The main reasons for this are li) Their f.c.c 

structure is tightly packed. Therefore the muffin-tin 

approximation made in most band structure calculations is 

justifiable and (ii) They have been studied experimentally and 

theoretically in great detail so that these metals can be used to 

debug our programs. Another reason for choosing noble metals is 

that spin-orbit effects vary from negligible to predominant as we 

move from copper to gold. 

2.1 BAND STRUCTURE AND FERMI SURFACE 

We 	briefly 	review 	the 	various 	investigations 

(experimental and theoretical) of the electronic properties of 

noble metals. The noble metals crystallise in the fcc structure. 

The first Brillouin zone for this lattice structure is the 

truncated octahedran as shown in Fig.2.1. The Fermi surface (FS) 



of noble metals would be spherical and would lie entirely within 

the first Brillouin zone (132), if the periodic lattice potential 

felt by an electron were negligible. The bulging of FS along 

<100> and <111> direction as shown schematically in Fig.2.2 is 

due to the lattice potential. With the magnetic field along the 

<111> direction in the de Haas-van Alphen (dHvA) experiment, a 

'Belly° (B111) and a "Neck" (N111) orbits are observed. With the 

field in the <110> direction, a hole orbit resembling a 'Dogbone' 

(D110) is seen and in the <100> direction another Belly orbit 

(B100) about- the spherical body of the surface is observed [192]. 

The study of the anomalous skin effect by Pippard [166] 

was the first indication of the presence of necks in copper and 

was latter confirmed in all the noble metals from dHvA studies by 

Shoenberg [191]. With the subsequent improvement of experimenal 

techniques it was possible to determine r40, 98, 111, 119 - 121, 

210, 216 - 2181 the Fermi surface to substantially higher 

accuracy than the earlier measurements of Shoenberg [191], Jan 

and Templeton [111], O'Sullivan and Schirber [217, 216] and 

4  
Coleridge et al [62] have made high precision (- 1 in 10

5 
 )dHvA 

measurements for various symmetry direction orbits in all the 

noble metals. 

On the other hand calculations of band structure of noble 

metals can be divided into two categories ; one is the 

parametrization schemes and the other is first principles 

calculations. We briefly discuss them. Roaf [180] proposed an 

analytic expression to represent the Fermi surfaces of the noble 

metals in the form of a 3-dimensional fourier sum on the basis of 

Shoenberg's [191] results in which the coefficients were adjusted 



to bring the computed cross-sectional areas into agreement with 

measured values. Zornberg and Mueller [247] have proposed another 

approach which was applied to the experimental results of Joseph 

et al [119 - 121] using Mueller's inversion scheme [154]. They 

obtained radius vectors for the copper Fermi surface to an 

accuracy of - 1 percent using an eleven-term cubic inversion 

scheme. A considerable advance was made by Halse [98], who used 

the best available experimental results and the method of Roaf to 

specify the Fermi surfaces of Cu, Ag and Au to an estimated 

accuracy of 0.1 percent in the Fermi radii. Coleridge and 

Templeton [62] have been able to reproduce the cross-sectional 

areas to within experimental error in all the noble metals using 

Halse's scheme. 

In recent years much effort has been devoted to a deeper 

understanding of the electronic structure by first-principles 

energy band calculations in Cu [25, 43, 78, 110, 150, 185, 207, 

235] Ag [32, 51, 56, 58, 110, 186, 206] and Au [26, 57, 60, 61, 

110, 134, 174, 199]. We will not discuss the merits and demerits 

of individual calculations as mast of them have been reviewed by 

Dimmock [72]. These studies include bn-4-1.1 the relativistic and 

non-relativistic calculations using the augmented plane wave 

CAPWl and the Korringa-Kohn-Rostoker (KKR/ methods. Although 

these calculations are in qualitative agreement with the 

experimental results, the band gaps in general vary appreciably 

from one band calculation to another. These variations in band 

gaps may be attributed to approximations made in the construction 

of the one electron crystal potential. It has been shown by 

Williams et al [240] that the band calculations in Cu derived 



from Chodorw potential yield energies (for above the Fermi 

level) which are in error by as much as 	10 percent. Janak et al 

[115] have reported the band structure calculations of copper 

using KKR method with the exchange coefficient a appearing in 

Stater's Xa theory as a adjustable parameter so that the ground 

state energy bands generate the measured Fermi surface. The 

theory treats all electrons identically and provides a more 

accurage unified interpretation of Fermi surface than previously 

obtained. On the basis of detailed comparison of the various 

calculations, particularly the non-relativistic ones, Dimmock 

[72] concluded that 'it appears that the accuracy of the order 

(0.1 to 0.2) Ryd is the best one can hope to expect from the 

first principle calculations in silver'. Christensen has 

constructed several potentials in Ag [56] and it was shown that 

the band structure in particular the d band width and position 

responded sensitively to changes in the crystal potential. 

However it was possible to select rather unambiguously the 

appropriate potential by comparing with experiments. Using the 

relativistic augmented plane wave (RAPW1 calculation [61] he 

found that the relativistic shifts and the spin-orbit splittings, 

are essential even in Ag. Similar calculation have also been done 

for Au [55, 61]. The comparison of these calculations with the 

non relattivistic one has demonstrated [613 that the shifts and 

splittings due to relativisitic effects are quite large for gold. 

We had previously used Mueller's [155] (and modifications 

of it [200] ) interpolation scheme for calculating Fermi surface 

and optical properties of the noble and some transition metals 

[1, 34]. Our reasons for choosing the interpolation scheme were 



very fast (ii) it gives the band structure and (iii) it 

can be used to calculate Fermi surface geometry. The 

Korringa-Kohn-Rostoker (KKR)method of parametrizing, which has 

now been made very fast has been used either for Fermi surface 

geometry [189] or for band structure (52] but not for both. Since 

calculations of extremal areas take a lot of computer time, it 

would be nice to have an ab-initio band structure method which 

satisfies our three requirements. The LMTO method seems to fit 

this bill. 

Recently Jepsen et al C117] calculated the band structure 

and FS of the noble metals using the Linear augmented plane wave 

(LAPW) method with potentials constructed using the local 

approximation to the density functional. formalism and calculated 

self-consistently by the atomic sphere approximation (ASA) to the 

linear Muffin tin Orbital (LMTO) method. Relativistic bands 

shifts (i.e. all relativistic corrections) were included but 

spin-orbit coupling was neglected. Jepsen et at (117] have shown 

that their potentials give the Fermi surface comparatively 

satisfactorily although it is not possible to obtain a 

satisfactory account of optical excitation energies if these are 

interpreted as single particle energy differences. In order to 

place the d-bands correctly, many-body corrections would be 

needed [117]. 

We would like to take the cue from the work of Jepsen et 

al and address ourselves to the question: can a first principle 

band calculation give an accurate representation of the Fermi -

surface (FS) geometry ? This is a valid question because the 

density functional formalism should give the correct Fermi 
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surface which is a ground state property. In fact the de Haas-Van 

Alphen experiments measure extremal area. It would therefore be 

meaningful to calculate the extremal areas. Jepesn et al have 

suggested that the Fermi surface of noble metals can be well 

represented by (i) the neck radius and (ii) the ratio A = 

k
F
[100]/k

F
[1103. We argue that FS geometry means extremal areas 

which inclues many r-vectors and not just two or three radii. One 

of our aims is to ascertain if Jespen et al criterion is indeed 

correct i.e. that the two quantities above mentioned are 

sufficient to characterize the Fermi surface geometry of the 

noble metals. 

The calculations discussed so far are in the local 

density functional approach. In order to check wheather the 

nonlocal density functional approach could improve the results or 

not, people have gone beyond the local density approximation. 

Langreth and his group have done a lot in this direction. The 

nonlocal corrections given by Langreth and Mehl (1373 are also 

discussed in detail in chapter I and has been successfully tested 

in non-uniform systems as surfaces and atoms where it has been 

found to be a significant improvement over the LDA. Langreth and 

Mehl (138) have applied it for metallic surface energies, as well 

as to self-consistent atomic calculations which include the 

ground-state energies of a number of atoms, plus the removal 

energies. In all cases tried a substantial improvement was found. 

Mali et at [149] have reported the calculation of electronic 

properties of some solids using non local density approximation 

as suggested by Langreth and Mehl in conjunction with 

atom-in-jellium model and compared their results with LDA. They 



find an improvement in the orbital eigenvalues and total 

energies. Bagno et al (24) have calculated the ground state 

properties (such as cohesive energy, lattice parameters and bulk 

modulus ) of the third row elements using the Langreth-Mehl-Hu 

(LMH) [1077, the Perdew-Wang (PW) [164] and gradient expansion 

functionals. Both the PW and LMH functional are found to remove 

half the errors in the local spin density approximation. 

All the nonlocal calculations discussed above do not talk 

about the Fermi surface calculations which are of course, of our 

interest. In later years Norman and Koelling (160) have tested 

the LM gradient correction to LDA for exchange and correlation 

functional with the use of band structure of copper and vanadium. 

They have performed band calculations using LAPW method and a 

warped-muffin-tin (WMT) potential. For copper they have reported 

the selected eigen value and the Fermi-surface calipers : two on 

the belly structure ( the <100> and <110> direction ) to give its 

anisotropy and a neck radius to characterize the size of necks. 

These calculations are compared with the previous local work and 

the characterization of the experimental measurements. They have 

shown that LM corrections have degraded the agreement with 

experiment. The anisotropy of the belly is increased when it is 

already too large. This is in contradiction to the prediction 

that nonlocality in the mass operator should yield reduced 

anistropy. As that prediction was made for simple metals where 

one does not have a relative s-d shift entering and so highlights 

the significance of the s-d shift. The neck radius is increased 

where it is already too large, as well. They have concluded that 

the upward shift of the d-bands is not beneficial in case of the 
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copper but in case of vanadium it results in an improvement in 

the calculated Fermi surface. 

Recently Barbiellini et al [27] have studied the gradient 

corrections to the LD potential proposed by Perdew and Wang and 

to some extent by Langreth, Mehl and Hu in a self-consistent LMTO 

band calculation in order to determine groundstate and band 

properties in some 3d, 4d and 5d transition metals, and in the 

alkali metal Li and Ce. In the case of copper they have shown 

that the small changes in the Fermi surface from PW calculations 

go in the correct direction, but are not sufficiently strong and 

the PW and local density bands are almost identical. The results 

using LM potentials are still small but opposite. They have 

concluded 	that 	the 	overall 	results 	obtained 	via 

gradient-corrected potentials are not yet suffciently good to 

replace the LD potential. 

2.2 CALCULATIONS AND RESULTS 

In this part we report calculations of extremal areas for 

the noble metals using the LMTO method in ASA. We have studied 

the effects of (i) varying the number of ft' points in the 

irreducible-Brillouin Zone (BZ) summations (ii) including the 

f-band parameters and (iii) varying the exchange-correlation ()(C) 

potentials with the view of ascertaining which one is most 

appropriate for Fermi surface work. The effects of relativistic 

shifts have also been studied. 

We have used the LMTO method in ASA, to calculate the 

energy eigenvalues and eigenvectors. Our primary reason for 

choosing this method is that it is very fast; as fast as the 

i6 G 
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empirical methods with the advantage of being an ab-initio 

method. The calculations are done to self-consistency which we 

take to be that the change in the potential parameters is in the 

fifth decimal place. We believe that this will converge the 

energy eigen values to within 10
-4 

Ryd. Starting from the 

parameters given in Skriver's book [1963, this takes about half a 

dozen more iterations. Using these self-consistent parameters, we 

have calculated Fermi surface orbital areas and masses using 

Stark's [2123 area mass routine. The area/masses of the computed 

surfaces in a plane normal to direction (i.e. the magnetic field) 

were found by numerical integration of radii calculated at a 

fixed interval of rotation in that plane. In calculation reported 

here the stepping angle 60 is taken to be 5°. Making this 2 °  

changed the calculated areas by less than %. 
2 

In the past, authors have taken percentage error [114, 

1153 in the Fermi surface area as a meaningful index of the 

success of the fit to the Fermi surface. We take the view that in 

a band calculation, since we are calculating energy eigen values, 

we would like to know the error in the eigenvalues. It would be, 

therefore meaningful to talk of error in terms of the shift in 

the Fermi energy AEF  required to bring the calculated Fermi 

surface area in agreement with experiment. AEF  can be calculated 

using following formula [1451. 

AE
F 

- 
1  

A
expt. 

- A
calc. ( 2. 1) 

 

b 

where 
Aexpt. 

and 
 Acalc.

are experimental and calculated areas and 

m
b 

is the band mass of the orbit. For a band structure the value 

of the maximum spread in AEF  will be called the 'extreme error'. 
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We would also like to stress that the area-mass codes calculate 

eigenvalues at each it point on the Fermi surfaces and use no 

fitting procedures (as used in APW and KKR methods). There is no 

need to do the fitting as LMTO is very fast. Our calculations are 

compared with the very accurate data of Coleridge and Templeton 

£62l. 

2.2.1 General Considerations : 

Jepsen et al C117] have calculated the band structure and 

Fermi surface of the noble metals using the LAPW method with the 

potentials constructed using the local approximation to density 

functional formalism and calculated self-consistently by the ASA 

to the LMTO method. Relativistic band shifts were included but 

spin orbit coupling was neglected. They include the s,p,d and f 

potential parameters with the 132 summations being performed over 

715 points. We would first like to address ourselves to (i) the 

effect of neglecting the f-potential parameters and the effect of 

varying the number of it points in the B2 summations. These are 

done for copper. 

Consider first the effect of truncating the S-expansion 

in the potential parameters. We have performed calculations with 

240 t points in the BZ summation in two ways by including (i) S = 

0,1,2 terms and (ii) I = 0,1,2,3 potential parameters for copper. 

Our results for the four Fermi surface orbits are•given in Table 

2.1. For these calculations, we have used the Barth-Hedin (BH) 

exchange correlation (XC) potential (283. A look at Table 2.1 

shows that the results do not change significantly by including 

the S = 3 terms. The extreme AEF' 
which is determined by the N111 

and 8111 orbits reduces from 12.5 mRyd to 11.5 mRyd, which is 
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within the accuracy of the LMTO eigenvalues. Hence all furthers 

calculations are performed by angular momentum expansion up to 

1=2. Calculations were next performed using 240 k points, 505 it 

points and 916 it points in the 52 summations. These results are 

also given in Table 2.1. Once again we have used the BH-XC and 

included the s, p and d potential parameters. We obtain an 

4  4 
extreme AEF 

of 12.5 mRyd (240 k points), 11.8 mRyd (505 k points 

) and 12.3 mRyd (916 it points). There is no significant change. 

Hence all further calculations are performed with 240 t points 

and including 1=0,1,2 term only. We have calculated energy band 

structure of the noble metals by determining the eigenvalues at 

4 each k points but confined to the irreducible 1/48 th portion of 

the B2. The band structure obtained using Slater Xa-XC potentials 

along symmetry directions are displayed in Figs. 2.3-2.5. 

2.2.2 Copper 

A look at Table 2.1 indicates that the BH-XC potential 

does not give a good representation for the FS of copper. An 

extreme AE
F 

is around 10 mRyd, larger than an extreme AEF 
of 

about 0.1 mRyd obtained with the interpolation scheme (1943 or by 

the KKR parametrization (159). We have also calculated AEF for 

parameters of Jepsen et al [1173 and obtain 14.5 mRyd. Morever we 

have to lower EF 
by about 15 mRyd from the value given by Jepsen 

et al (117]. This may be attributed to the fact that they used 

the LAFW method for calculating eigenvalues. With the view to 

ascertaining how the various treatments of XC influence the 

eigenvalues and the Fermi surface, we have repeated the 

calculations with the Barth-Hedin XC potential using Janak's 

(BHJ) parameters [112] (which make it same as the Hedin Lundquist 
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(HL) XC potential [101), Slater Xa potential [198] and the recent 

most accurate Vosko-Wilk-Nussair (VWN) XC potential [2313. Janak 

et at [114, 115] have shown that the Xa method with a = 0.77 

gives a good fit to the Fermi surface of copper. We have 

therefore taken a= 0.77 in the Xa method. 

The calculated Fermi surface areas for various XC 

potentials for copper are given in Table 2.1. The values of 

extreme AE
F 

for the various XC are 4.1 mRyd (Xa method with a= 

0.77), 13.7 mRyd (BHJ), 5.7 mRyd (VWN) and 12.5 mRyd (BH). The Xa 

method with a= 0.77 gives the best fit to the Fermi surface data. 

The price we pay is that a is an adjustable parameter so 

obviously the fit is better. Note the recent XC of VWN is also as 

good as the Xa results. The BH and BHJ do not give a good 

representation for the Fermi surface of copper. 

At this juncture we would like to compare our results 

with those of Janak et al [114, 115] who have performed 

self-consistent calculations for copper and silver using the KKR 

method. They have taken the N111 and 8111 orbits to decide the 

fit to the Fermi surface. Our calculations support this. A look 

at Table 2.1 indicates that the extreme AE
F 

is indeed governed 

by the N111 and 8111 orbits for all the XC used except for the Xa 

and for the VWN-XC where it is governed by N111 and D110 orbits. 

Janak et al found that a= 0.77 in the Xa method provides the best 

fit to the Fermi surface. Using their results we obtain the 

extreme LE
F 

to be 6.7 mRyd (for the four orbits) which is 

slightly larger than the AEF  obtained by us. We have not explored 

the possibility of varying a any more because we feel that 

variation with a of the Fermi surface orbits will not be much 
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different from that obtained by Janak et al. All the extreme AE
F 

are much larger than the AB
F of about 0.1 mRyd obtained by the 

interpotation scheme [194] or by the KKR parameterization [189]. 

Jepsen et al have determined the goodness of the Fermi 

surface geometry by calculating only two parameters (i) neck 

radius k
N/ks 

where k
sis the radius of the free-electron sphere 

and (ii) an anisotropy parameter A = k [100]/k
F
[110]. We have 

also calculated these and are given in Table 2.1 for the various 

XC potentials. Although the change in these parameters is small 

for the various XC potentials nevertheless the Xa (a = 0.77) 

gives the values that are closest to the experimental values. We 

are surprised that Jepsen et al contention that two parameters 

characterize the copper Fermi surface has been well borne out by 

our calculations. It is surprising to note the difference in the 

values of k /k and A obtained by Jepsen et al and by us using 
N s 

their potential parameters. This could be due to the fact that 

they used the LAPW method 

We have calculated Fermi surface calipers and Fermi 

surface areas using the nonlocal Langreth and Mehl correction 

terms. 	These 	correction 	are 	added 	to 	the 	local 

exchange-correlation functions described by von Barth-Hedin. All 

the calculations are done with 240 	points and taking the 

angular momentum expansion up to t = 2. The calculations are 

compared with the results of the local exchange-correlation 

potential of BH to- ascertain the effect of the nonlocal 

corrections. We also compare our results with those of other 

workers. Norman and Koelling [160] and Barbiellini et al [27] 

have characterized their results for the Fermi surface of copper 
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in terms of a few critical calipers ; two belly radii and one 

neck radii. We have also reported the Fermi surface caliper for 

copper in Table 2.2 and compared it with experimental results 

[62] and our local potential results. These results show that the 

nonlocal corrections have degraded the agreement with the 

experiment in accordance with the results of Norman and Koelling 

and Barbiellini et al. As these changes are very small, it is not 

possible to make any comment on the predication that nonlocality 

should reduce the anisotropy (which is for the simple metals 

where one does not have relative s-d shift). 

In order to get better understanding of the effect of the 

nonlocal corrections it would be better to calculate the Fermi 

surface areas (as areas require many more t vectors). We have 

calculated the Fermi surface areas using local (BH) and Langreth 

and Mehl's nonlocal potential. These are given in Table 2.3. In 

the case of BH-XC poential LEF  for the B111 orbit was 1.1 mRy but 

for the nonlocal potential, the AEF  is 2.0 mRyd. Similarly for 

the neck area AE
F 

goes from 9.6 to 11.5 mRyd but in case of B100 

it is reduced by 0.6 mRy. The overall extreme AEF 
is increased by 

3.0 mRyd in comparison with the local BH-XC. Hence we can say 

that the Nonlocal potential degraded the agreement of Fermi 

surface area with experimentaly measured one. This is in 

agreement with the calculations of Norman and Koelling and 

Barbiellini et al thus lending credence to our calculations. 

2.2.3 Silver 

We have performed similar calculations for silver. 

Results are given in Table 2.4. The extreme AEF 
using the various 

XC are 16.4 mRyd(BH), 16.3 mRyd (BH with f band parameter) 25.5 
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mRyd (Jepsen's parameters), 15.6 mRyd(BHJ), 15.3 mRyd (BH with 

505 1 points), 0.9 mRyd (Xa with a= 0.77) and 3.8 mRyd (VWN). As 

in case of copper, the extreme AEF  is again governed by the N111 

and 8111 orbits except for the Xa case where it is 8111 and 8100 

4 
orbits. All results are for 240 it points and including I = 0,1,2 

terms only, unless stated otherwise. Once again, we find that Xa 

method (wth a= 0.77) gives the best fit to the data. In fact this 

is the kind of agreement one gets with the KKR parametrization 

(189] or interpolation scheme [194]. Amongst the other XC 

potentials, 	the VWN is the best. We have also calculated the 

neck radius k and anisotropy parameter A. Again we find that the 

Xa method ( a= 0.77) gives values for these in good agreement 

with the experiment. It is pleasing to note that our kN/ks  and A 

agree with the values obtained by Jepsen et al. For copper this 

was not the case. Calculations by Janak et al 1114, 1151 give an 

extreme AE
F 

of 8.5 mRyd. Thus we are led to the conclusion that 

the LMTO method in ASA gives a better representation to the Fermi 

surface of copper and silver using the same a in the Xa method. 

The VWN fares best considering that it has no adjustable 

parameter. We have also studied the effect of non-local LM-XC 

potential on the FS of silver and find that it does not lead to 

any change when compared with local potential (BH-XC). 

2.2.4 Gold : 

Table 2.5 summarizes, our results for gold. The extreme 

AE
F 

for the various XC potentials are 3.2 mRyd (BH), 3.6 mRyd (BH 

with f-band parameters), 2.8 mRyd (Jepsen's potential 

parameters), 3.5 mRyd (BH with 505 	points), 3.4 mRyd (BHJ), 

19.5 mRyd (VWN) and 15.8 mRyd (Xa-XC with a = 0.77). Unlike the 
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cases of copper and silver the extreme AEF  is now not governed by 

the same two orbits. In fact for various XC potentials used, the 

orbits always vary. The fact that the Xa-XC does not give a good 

fit to the Fermi surface of gold suggests the need to vary a. We 

have performed calculations for various a's and plotted the 

results in Fig. 2.6. The figure illustrates that even in Xa-XC, 

different values of a give different orbits which control the 

extreme AEF. From the figure we find that a= 0.693 would yield an 

extreme AE
F 
of 3.5 mRyd, which is the same as with BH and BHJ XC 

potentials. On calculating k and A, we find that those XC 

potentials which give the best fit to the Fermi surface geometry 

also give values of these parameters in agreement with the 

experiments. Again the ktyks  and A calculated by us do not agree 

with the values of Jepsen et at 	In case of gold also the non 

local LM-XC does not affect Fermi surface area. 

2.2.5 Relativistic Corrections 

With the view to determine how relativitic corrections 

would influence the shape of the Fermi surface, we have decided 

to study gold because here the relativistic corrections are the 

largest. We have calculated the relativistic bands along symmetry 

directions. These results are plotted in Figures 2.7-2.10. Our 

calculations demonstrate that the neck radius is almost unchanged 

by relativistic band shifts. However kF
[100] increases by 0.3% 

amd k 11101 decreases by 1.4%. This changes A to 1.226. This will 

tend to reduce the B100 area slightly but will leave the extreme 

AEF 
almost unchanged. Hence relativistic corrections are not 

sufficient to reduce AE
F 

significantly. 
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2.3 CONCLUSIONS 

In this chapter we have reported results of accurate 

calculations of four FS orbits for the noble metals using the 

LMTO-ASA method. These calculations have been performed by (i). 

including or neglecting f-band parameters, (ii) varying the 

number of it points in the 82 summations and (iii) using different 

XC potentials. Our results indicate that the f-band potential 

parameters have only a marginal influence on the FS. This is not 

surprising because f-bands are at least - 5eV above E
F. 

We also 

find that by changing the number of t points in the BZ summation 

from 240 to 916 does not change the FS significantly. Table 2.6 

summarises all our results for the noble metals with various XC 

potentials. It is obvious that no single XC potential gives a 

good representation for the FS of the noble metals. The Xa method 

with a variable a gives the best agreement with the experimental 

data. The value of a for Au comes to be 0.693 while for Cu and Ag 

it is 0.77. The BH and BHJ XC potentials work well for Au but not 

for Cu and Ag. The VWN-XC potential gives the Ag FS 

satisfactorily but not for Cu and Au. Thus no single KC gives the 

FS of all the noble metals satisfactorily. We are a bit surprised 

that the VWN-XC potential which is most reliable (with an 

estimated maximum error of 1 mRyd) gives such a large extreme 

AEF. The best agreement works out to be an extreme AEF  of 3-4 

mRyd (0.9 mRyd for Ag is surprising and stands out from others). 

It is worth noting that these AEF  are smaller by 50% than those 

from accurate and detailed calculations of Janak et al and hence 

are the smallest ever obtained by an ab tnitio band calculation. 

They are still an order of magnitude larger than the AEF=0.1 mRyd 
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obtained by empirical methods. Clearly the empirical methods with 

many adjustable parameters can give a better representation for 

the FS geometry in noble metals and no ab-i.ratio method can hope 

to compete with them. The nonlocal XC by LM does not improve the 

results. In case of copper it degraded with experiment while in 

case of silver and gold it does not leave any effect. 

We have also studied the suggestion of Jepsen et al that 

the FS of noble metals could be characterized by k /k and A= 
N S 

k
F
[1001/k 1110] . Here again we find that there is no consistent 

picture. For Cu and Ag, the XC potentials which give good 

agreement with experimental areas also give values of ktyks  and A 

in agreement with the experiment. For Au, this was not found to 

be the case. We find that the values of A and k N  /kS  using Jepsen 

et at potential parameters do not always agree with the values 

obtained by Jepsen et al. We feel this may be due to the fact 

that they used a more accurate LAPW method. 
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TABLE 2. 3 
AE
F using non local XC-potential 

Field 

Direction 

Experi- 
mental 
Area 

(a) 

Calculated Area 

XC AE
F LM AE

F 

8111 1.5523 1.5472 1.1 1.5431 2.0 

B100 1.6026 1.6128 -2.2 1.6088 -1.4 

N111 0.0581 0.0709 -9.6 0.0737 -11.5 

D110 0.6707 0.6432 -7.3 0.6434 -7.2 

Extreme AE
F
(mRyd) 10.7 13.5 

a
Reference 62 
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TABLE 2.6 

Extreme AE (in mRyd ) for the noble metals--A summary 

Name of the metal 44444444444 Copper Silver Gold 

pts. 	in BZ Up to XC 

240 5 = 3 BH 11.5 16.3 3.6 

240 5 = 2 BH 12.5 16.4 3.2 

505 5 = 2 BH 11.8 15.3 3.5 

916 5 = 2 BH 12.3 - - 

715 1 = 3 HL 14.5 25.5 2.8 

240 5 = 2 Xa(a=.77) 4.1 0.9 15.8 

240 5 = 2 VWN 5.7 3.8 19.5 

240 1 = 2 BHJ 13.7 15.6 3.4 

240 1 = 2 Xa 
a=0.693 

- - 3.5 
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TOPOLOGY 
( GALVANOMAGNETIC EFFECTS 

EXTREMAL AREA 
( DE HAAS-VAN ALPHEN 

EFFECT I 

ELECTRON VELOCITY 
( CYCLOTRON RESONANCE ) LINEAR DIMENSION 

(MAGNETOACOUST1C 
EFFECT, R.F. SIZE 
FFFECT KOHN 

EFFECT CURVATURE 
( ANOMALOUS 
SKIN EFFECT) 

WEIGHTED AREA 
( POSITRON ANNIHILATION 

FIG.2,1 - SUMMARY OF METHODS FOR FERMI SURFACE DETERMINATION 
AS APPLIED TO THE FERMI SURFACE OF COPPER . 



Fig. 2.2 -EXTREMAL CROSS- SECTIONS I SCHEMATIC) OF THE 
FERMI SURFACE OF THE NOBLE METALS NORMAL 
TO <100> AND <110> SYMMETRY DIRECTIONS. 
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CHAPTER HI 



FERMI SURFACE AND MASS ENHANCEMENT FACTOR FOR 

PALLADIUM AND PLATINUM 

The existence in the periodic table of three long periods 

corresponding to the filling of the 3d ,4d and 5d electronic 

shells and ending with Ni, Pd and Pt respectively suggests that 

the properties of these metals correspond to a sizeable 

d-character in their valence states (82]. The properties of these 

states result from two factors. In the first place, these states 

are fairly localized, compared with other (sp) valence states 

with comparable energy. Cosequently, they are not perturbed very 

much by the lattice potential and do not overlap strongly with 

the atomic states of the other atoms. Secondly the d-wave 

function increases parabolically near the nucleus, which leads to 

a deficient screening of the nuclear charge with an atom  As a 

result, the d-states of an atom are filled successively in 

preference to the sp valence states across the transition series. 

Thus the transition metals possess a number of interesting 

properties. These are summarized below : 

(1) Large electronic specific heat i.e. high density of states. 

This suggests a sizeable d-contribution to the density of states 

at the Fermi level. 

(2) Complex Fermi surfaces 

(3) Strong evidence of d-band contribution and for s-d scattering 

at Fermi level, through phonons and impurities. 

(4) Regular variation of the cohesive energy through the 

transition periods with a large maximum for half filled d-states. 

(5) Absence of permanent magnetic moment except for metals at the 
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end of first transition series. 

For our study we have Pd and Pt because their FS is more 

complicated than that of the noble metals and will therefore 

provide more stringent test of the LMTO method. In early of 80's 

Dye and his group 174, 75] have given an accurate and complete 

dHvA measurement for Pd and Pt which leads to meaningful 

comparison with experiment. Pd and Pt possess outstanding in 

transition metals because of their unusual properties. They are 

of interest because of their large paramagnetic susceptibilities 

and associated magnetic properties, their interesting alloying 

properties and their importance in catalysis. In view of the 

wealth of the experimental data on well characterized samples of 

exceptional quailty, they have received much attention. There 

have been many theoretical calculations on these two metals and 

numerous hypotheses proposed concerning them. We have examined 

only a subset of these properties, namely those directly related 

to the band structure. Few other propertie of the metals are also 

discussed in section I for Pd and section II for Pt. 

I. PALLADIUM 

3.1 INTRODUCTION 

In view of the success with which the LMTO method gives 

the Fermi surface topology of noble metals, it would be 

worthwhile to perform similar calculations for the transition 

metal palladium. As palladium possesses a complicated Fermi 

surface, we believe that the accuracy with which the LMTO can 

give Fermi surface topologies will be borne out by our results. 

Pd fascinates both theorists and experimentalists by its unique 
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electronic behaviour. It has one of the highest densities of 

states among transition metals, yet is neither magnetic nor 

superconducting [239]. The absence of ordinary s-wave 

superconductivity is especially striking since the trends across 

the transition series [44, 161] suggests that Pd should be 

superconducting, with a k value between 0.2 and 0.4 and Tc  

perhaps as high as 0.3 °K. Direct calculation [167] using the 

rigid muffin tin approximation gives X at the top of this range, 

while proximity effect tunneling measurements. [50] suggest X is 

near the lower end. In sharp contrast to the bulk, thin films of 

Pd which have been irradiated with He ions are found to be 

superconducting at 3°K C2153, much higher than expected for bulk 

single crystals in the absence of paramagnons. Other  

possibilities for superconductivity and magnetism in thin film 

and powder geometries have been investigated theoretically by 

Beal-Monod [29]. The large paramagnetic susceptibility and 

associated magnetic properties, its affinity to elemental 

hydrogen and its importance in catalysis are but a few of its 

many interesting properties. 

Alloys of Pd show equally interesting and unusual 

behaviour. Magnetic impurities raise the susceptibility and 

induce ferromagnetism at very low concentrations (about 0.1 

percent for Fe) with a magnetization per impurity as much as 5 

times that for the free impurity atom [663. Alloying with Hydride 

and or Deuteride has the opposite effect, lowering the magnetic 

susceptibility and including superconductivity at concentrations 

above about 80 percent impurity. Tc  in the alloys rises to rather 

high value of 9°K for the Hydride and 11°K for the Deuteride, 
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thus showing a strong reverse isotrope effect [151). 

Apart from these many interesting properties of Pd, 

interest has been kept alive due to its complicated Fermi surface 

as well as the availability of accurate and comprehensive dHvA 

data on the Fermi surface geometries.The Fermi surface of Pd is 

one of the most extensively studied Fermi surface among the 

transition metals. Pd crystallizes in face-centred cubic (FCC) 

lattice. Its Brillouin zone (B2) in the reciprocal space is of 

the form of a truncated octahedron (Fig. 3.1). 

The first de Haas-van Alphen (dHvA) oscillations in Pd 

were observed in 1964 by Vuillemin and Priestly using pulsed 

field techniques. More detailed studies by field modulation C232, 

233] showed a closed electron surface centred at r (Fig.3.2) and 

a set of hole ellipsoids at X (Fig.3.3). Galvanomagnetic studies 

and a simple rigid band argument [233] suggested a second open 

hole surface with very high effective mass, topologically 

equivalent to a set of cylinders along the <100> directions 

intersecting at the X-point of the BZ (Fig.3.4). The early band 

structure C17, 18, 157] predicted a Fermi surface consisting of 

the four sheets : the F -centred electron sheet, X-centred and 

open hole sheets and a very small hole pocket at L. Subsequent 

dHvA work at fields to 72 KG and temperature to 0.4°K C243] 

revealed orbits on the first three sheets but failed to show any 

hint of the small L pockets. The first experimental observation 

of these - pockets 	(Fig.3.3 	) 	came through the ultrasonic 

attenuation experiments [42]. Dye et al. C74] through dHvA 

experiments using a much higher field and lower temperature than 

earlier work were able to obtain accurate information on all the 
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four Fermi sheets of Pd. 

3.2 BRIEF SURVEY OF EARLIER WORK 

Quantitative studies on palladium, either theoretical or 

experimental, had a slow start in comparison to studies on other 

transition metals. Comparatively little was known about either 

the band structure or the Fermi surface of palladium until the 

mid sixties, when the first galvanomagnetic and de Haas-van 

Alphen results [232, 233] giving precise information about a 

number of features of the Fermi surface began to appear. One of 

the early band structure calculations on Pd was the APW 

calculations of Freeman, Dimmock and Furdyna E817. It was a non 

relativistic application dealing with the gross features of the 

energy bands, density of states and Fermi surface topoloty. 

Mueller et at 1157] reported a detailed investigation of the 

electronic structure of Pd using the AFW method. They have also 

performed calculation including relativistic effects in the 

context of the interpolation scheme [155) and find that these 

incluence the eigenvalues at X and L. Their APW calculations gave 

the main features of the Fermi surface in agreement with the 

experimental data available at that time. The relativistic 

calculation predicted sheets centred at L. This was not taken 

seriously as there was no dHvA evidence for the L-centred pocket. 

Anderson [157  around the same time performed relativistic APW 

calculations of the band structure of Pd. He obtained a Fermi 

surface in agreement with the experimental data. The calculations 

also predicted hole ellipsods at L for which no dHvA data were 

available and a small L hole pocket of 'dubious' existence. None 

of these calculations were self-consistent and none of these gave 
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any reasonable idea of the accuracy of calculated Fermi surface. 

This was perhaps due to the lack of experimental data. 

Skriver at al (1973 reported the first self consistent 

calculation of the band structure using the LMTD method. 

Calculations were done without and with correction terms. They 

calculated some extremal orbits on the Pd Fermi surface and 

obtained good agreement with the experimental data. Dye et al 

[74] have completed a detailed study of the Fermi surface using 

the dHvA effect and reported accurate extremal areas on all the 

four sheets of the Fermi surface including data for the 

L-centered holes. Using a KKR parametrization Dye at al (74] have 

been able to deduce extremal areas which they do not measure. 

They have also measured the effective mass of various Fermi 

surface orbits and from their KKR fit obtained the electron 

velocity on the various Fermi surface sheets. Moruzzi et al (1533 

have also performed self consistent band structure calcuation 

using KKR method. 

Anderson and Mackintosh C17] used the RAPW method to 

calculate the Fermi surface (effective masses) in fcc transition 

metals, while Christensen [59] has also used the RAPW method with 

a muffin-tin potential to calculate the density of states, joint 

density of states, the imaginary part of the dielectric function 

and photoemission spectra. However this work did not include the 

calculation of matrix elements. 

MacDonald et al t147] have studied the influence of 

relativistic contributions to the effective potential on the 

electronic structure of Pd ,and Pt. They have compared three 

separate self consistent density functional calculations with CH 
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exchange only (iil exchange and correlation and (iii) exchange 

and correlation plus relativistic interaction corrections using a 

relativistic generalisation of the linear APW method. The 

calculated Fermi surface is compared with the experiment. It was 

found that correlations had a dramatic effect on the Fermi 

surface but the relativistic interactions did not have any 

significant influence on the Fermi surface. MacDonald et al did 

not obtain good agreement with the open hole surface. It would 

therefore be interesting to perform self-consistent calculations 

of the Fermi surface under various approximations of exchange 

correlation potentials to see if this is indeed the case. 

At the same time Smith [200, 202 - 204, 222] reported 

photoemission spectra and band structure of d-band metals. They 

have constructed model band structures using a combined 

interpolation scheme including the spin orbit coupling and other 

relativistic corrections. Schmidt and Mrosan [183] have 

calculated the band structure by means of the linear H-NFE-TB 

method on a grid of 240 11 points in the irreducible part of the 

Brillouin zone and treated exchange and correlation in terms of 

Hedin and Lundquist approach. 

Bordoloi and Auluck [35] have used the combined 

interpolation scheme to parametrize the Fermi surface and optical 

gaps. This parametrization is valid over a large energy regime 

and'has been used to calculate the dielectric function. Although 

easy to use and fast on the computer, there are too many 

parameters needed to obtain a good fit to the Fermi surface. In 

view of this we have decided to see if the LMTO method could be 

used to predict the Pd Fermi surface and hence discard any 
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parametrization scheme. 

Recently Chen et al [533 have reported self-consistent, 

all electron, local density-functional study of the electronic 

structure of paramagnetic fcc palladium using a linear 

combination of Gaussian orbitals. Associated with the band 

structure, they also presented the results obtained for the 

density of states, Fermi surface, X-ray form factors, compton 

profiles and optical conductivity. 

The harvest on the experimental side in the meanwhile has 

not altogether been poor. There have been a number of 

experimental work [42, 222, 232, 233] on the Fermi surface of Pd 

which have been discussed earlier. Traum and Smith [222] used an 

'angle-integrated photoemission technique to study the electronic 

structure of polycrystalline Pd films. Dahlbach et at [67] have 

used angle-resolved photoemission measurements on single crystals 

of Pd to obtain more detailed information about its band 

structure. X-ray photoemission spectra (XPS) of Pd have been the 

subject of study of a number of workers [30, 102, 108, 109, 113, 

170, 203, 225]. High resolution photoelectron studies have also 

been made by Poole et at [171] and quite recently by Anosen and 

co-workers [213. XPS studies on Pd have also been done by 

Podloucky et al [169] who in addition have studied the soft X—ray 

emission spectra and compton scattering characteristics of the 

metal. 

3.3 CALCULATIONS AND RESULTS 

In this section we report calculations of the Fermi 

surface of Pd using various XC potentials. We have used same 
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method of calculation as discussed in chapter 1. Figure 3.5 shows 

the intersection of the symmetery planes of the 82 with the Fermi 

surface of Pd and the band structure obtained by us using Xa-XC 

potential along symmetry directions is shown in Fig. 3.6. We have 

calculated AEF for the four FS sheets of Pd i.e. a closed 

electron surface centred at r, a sheet of hole ellipsoidals 

centred at X and at L and an open hole surface. The open hole 

surface is of prime importance because it is formed by very flat 

d-bands and hence supports orbits with high band masses. The hole 

ellipsoids centred at L are very small and a shift in Fermi 

energy of around a few mRyd is sufficient to bring them into 

existence. We have also studied the effect of increasing number 

of k points, including angular momentum expansion up to 1=3 and 

inclusion of relativistic effects. As in the case of the noble 

metals we find that increase in number of k points and use of 

angular momentum expansion up to 6.3 have no significant effect 

on the results. Here relativistic effects play very important 

role. 

3.3.1 Non—relativistic calculations 

We have calculated the FS of Pd using the self-consistent 

parameters with three XC potentials (i) BH, (ii) BHJ and (iii) 

VWN. We found that none of these were able to give the existence 

of the L-centred hole surface. This is in accordance with the 

results of Mueller [157] and Anderson [187. The calculated 

extremal orbits on the other three sheets are in agreement with 

the experiment. Again we characterize the goodness of the 

agreement by calculating the shift in the Fermi energy AEF 
needed 

to bring the calculated extremal area in agreement with the 
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experimental area. We obtain the extreme AEF to be 15.3 mRyd 

(BH), 15.2 mRyd (BHJ) and 17.9 mRyd (VWN) for the three XC 

potentials. These values of extreme AEF are of the same order of 

magnitude as obtained for the noble metals [2]. Considering that 

the Pd FS is rather complex these extreme AEF 
are to be regarded 

as indicating fairly good agreement with the experiment. 

3.3.2 Relativistic calculations 

The major drawback of the nonrelativistic results is non 

existence of the L-centred hole surfaces. We therefore decided to 

include relativistic effects as described in chapter I in the 

LMTO calculations. These relativistic corrections are added in 

last self-consistent loop in LMTO method. As expected from 

previous calculations of Mueller et al [157] and Anderson [18], 

now the L-centred hole surface comes into existence. Table 3.1 

gives the extrema] areas calculated with four different XC 

potentials (1) BH, (ii) BHJ, (iii) VWN and (iv) Slater Xa. The 

extreme AE
F 

for these are 5.7 mRyd (VWN), 9.1 mRyd (BH) and 9.5 

mRyd (BHJ) indicating a definite improvement in the agreement 

with data. The extreme AE
F 

for KKR parametrization [74] is 0.5 

mRyd and for interpolation scheme parameterization of Bordoloi 

[35] is 1.5 mRyd. Hence the extreme AEF 
of 6 mRyd is to be 

regarded as good considering that there are no adjustable 

parameters. 

MacDonald et al [147] have calculated FS areas using the 

RAPW method with exchange and correlation potential. We have 

calculated AEF 
for MacDonald et al using their areas. The value 

of extreme AE
F 

is around 5.4 mRyd which is consistent with our 

results. Skriver et al [197] have also calculated the FS area of 
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some orbits and the extreme AE
F 

for these orbits is around 6.8 

mRyd. Our results are consistent with Skriver's et al results 

because of the fact that we are using the same method and the 

same XC potential. It is indeed very pleasing to note that ab 

initio calulations give accurately the complicated FS such as in 

Pd. With a view tosee if we can do any better, we have varied a 

in the Xa-XC potential from 0.65 to 0.80. We have plotted AEF  

versus a in Fig. 3.7. The graph illustrates that a=0.75 gives the 

best agreement with experimental data. In fact this AEF  (4.0 

mRyd) is small and comparable to the AEF 
obtained by Bordoloi and 

Auluck 1357 with the interpolation scheme. 

We have also performed calculations to check the effect 

of increasing 7: points from 240 to 505 in the B2 summation. We 

have calculated AE
F 

using the VWN-XC potential. The value of the 

extreme LEF with 505 points is around 6.1 mRyd which is more or 

less the same as with 240 points. These results are given in 

Table 3.1. We have also calculated AEF 
using the angular momentum 

expansion up to 1=3. These calculations are done using the Slater 

Xa-XC potential with a=0.75. The extreme AEF  is around 4.9 mRyd 

as compared to 4.0 mRyd with l=2 expansion. These results are 

shown in Table 3.1. We think that this change in AEF  is due to 

the value of a. The value of a may be different for 1=3 as 

compared to t=2. So increasing the it points and expansion in 

angular momentum upto C=3 do not give any significant changes in 

the extreme AEF. 

Thus the RLMTO (with relativistic effects) can give the 

Pd FS as accurately as the combined interpolation scheme. The KKR 

parametrization is still far superior. The extreme AE
F 

of 4 mRyd 
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is about the lowest AE
F we obtained for the noble metals [2] ( 1 

mRyd for Ag, 4 mRyd for Cu and 3 mRyd for Au ). Considering that 

the Pd FS is much more complicated, we can say that the agreement 

for Pd s as good as for the noble metals. 

3.4 DYNAMICAL PROPERTIES OF QUASIPARTICLES 

3.4.1 Renormalization factor and Fermi velocity 

The quasiparticle excitation spectrum Eft) for an 

interacting system may be expressed as (145] 

E(k) = 	E (it,E) 	 (3.1) 

i where E
b 
 (k) is the bare electron energy as computed from a one 

electron potential and E (k,E) is the proper self-energy which 

has contributions arising due to electron-electron interaction 

and electron-phonon interaction. The electron- phonon interaction 

contributes signifiantly to the self energies of only those 

quasiparticles whose energies lie within about ±tu 	of the 
Max 

Fermi energy, where to 	is the maximum phonon requency (145). On 
max 

the other hand, the electron-electron interaction contributes to 

a comparable extent to the self energies of all electronic 

states. Within the energy range MG) 	of the Fermi energy, the 
max 

quasiparticle excitation spectrum as modified by electron-phonon 

interaction is given by [145] 

E() - EF = C E
b(t) - EF  )/ C 1 + X1 ) 

	
(3.2) 

where X4 is the renormalization constant. It is evident from 

(3.2) that the electron-phonon interaction does not affect the 

shape of the Fermi surface but the quantities, such as Fermi 

velocity and cyclotron mass which involve derivatives of Ell) at 

Fermi surface, will be strongly influenced by the electron-phonon 
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interaction. 

The Fermi velocity is given by 

/ (I) - 
1

0k (I) 
k ( 3 . 3) 

where k 
4  lies on the Fermi surface. Using eq. (3.2) and neglecting 

the I-dependence of X+ we get 

/ (I) = r(I)/(1 + 	) 	(3.4) 

Experimentally 	one 	measures 	the 	properties 	of 

quasiparticles and thus measures /(I). Theoretically one 

4 
calculates V

0 
 (k) 

V°(k) -  1  
k 

04 Eb(I) 
	

(3.5) 

Thus eq. (3.4) gives a method of calculation of 4. 

We have calculated Fermi velocities using Xa-1(C potential 

with a= 0.75 (which gives best fit to the experimental data) 

e(I)=IV°(11)1 for It lying on the FS for all the four Fermi sheets 

of Pd. The results are shown in Figures 3.8 - 3.11. The band 

Fermi velocity obtained by MacDonald et al [147] obtained using 

LAPW method and enhanced Fermi velocity by Dye et al [74] 

obtained by inverting the mass data using the KKR parametrization 

are also plotted in Figures 3.8 to 3.11 for comparison. The 

figures reveal a striking similarity of the general trends. For 

the r - centred sheet (Fig.3.8), our Vc)(I)'s reveal a trend more 

in conformity to the results of MacDonald et al than those of Dye 

et al. Our calculated "in's are in general smaller than those 

obtained by MacDonald et al but are largr than the ones obtained 

by Dye et al. Thus we expect our ( 1 	) to have value 

intermediate between the values obtained by these workers. The 

values of V(k) and (1 + X4 ) obtained by us and other workers are 
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given in Table 3.2. We find that X4 is highly anisotropic and 

varies from sheet to sheet. Our values of (1 + X.4 ) are greater 

than that obtained by Bordoloi and Auluck [37] and smaller than 

that obtained by the MacDonald et al. 

3.4.2 Cyclotron masses 

In the cyclotron resonance experiment one measures the 

frequency of resonance for the quasiparticles orbiting the FS. 

From this one can obtain the cyclotron mass m
e 

of the FS orbits. 

Using the value of me  given by 

- 
me 

 
2if Orb. V (In 

and eq.(3.4) one can write 

(3.6) 

1 	1 + Xi 

m = 	
lc  dr 	

(3.7) 
c 	o 

V
-I- 
(k) 

orb. 

where V1(11) is the component of V0(t) normal to the orbit 

and in a plane of the orbit. Since one does not know 	one 

calculates band mass m
b 

4 

mb
dk  

Va lk) V  
orb. 

(3.8) 

Because of the renormalization due to electron-phonon interaction 

m
e 

will be larger than mb  . A comparison of the two yields 

orbital mass enhancement factor 1 +
c 

m
c 	

(3.9) 
m
b 

We have calculated the band masses of different FS extremal 

orbits listed in Table 3.3. The band masses are calculated using 

)(a - XC potential with a= 0.75. The values of experimental masses 

calculated by Dye et al along with ( 1 + Xc) for different orbits 
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are also given. We have compared our results with those of 

Bordoloi and Auluck [37] and Schmidt and Mrosan (183] where 

former has calculated the masses using the interpolation scheme 

while later have calculated cyclotron masses using the band 

structure obtained from the H-NFE-TB method. Our values of (1 + 

X
c
) more closer to the values of Schmidt and Mrosan than in 

comparison to Bordoloi and Auluck. 

3.4.3 Thermal Mass and Mass Renormalization 

Since X4 as well as X
c
are anisotropic over the entire 

Fermi surface, it is therefore useful to have a value X
r 
 which is 

a value of X4 averaged over the entire Fermi surface. Information 

on X can be obtained from the low temperature specific heat 

data. Thermal effective mass is a measure of low temperature 

specific heat of the conduction electrons in a metal and can be 

calculated from a knowledge of the density of states at the Fermi 

energy. The thermal mass is defined as (65] 

m
th 	

N (E
F
) 

m 	N 
0  0 

(3.10) 

where N(EF 
) is the density of states at the Fermi energy given 

by 

N (E
F
) 

1 dS 
(2n) 7 EftlIE(t )=EF  

1  

(2n)3  

 

dS  

I V(t)  I 

 

(3.11) 

  

where we have used Eq. (3.3). Here V a ' signifies that the surface 

integration extends over the available Fermi surface areas. 

N(EF) can further be written as 
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N(E
F
) - 
	SF 	1 	1

9 
(2n) 
	

I 
	(3.12) 

where 

fa  dS 

fa  as 

and S
F 

= f
a
dS is the available Fermi surface area. N

o 
in Eq. 

(3.10) is the density of states at the Fermi energy corresponding 

to free electron model. 

N
o 

0 
mokF  

2n2  h2 
(3.13) 

where 

k
F
0 
 = ( 3-17 	nv

) 
1/3 

Here n
v 

is the number of conduction electrons per unit volume. 

Now if we write 

and 

we get 

VF = h kF 
/ m

o 

SF°  = 4 n (k;)2  

N
o 

S
F 

(3.14) 
(2n)3h V°  

Using eqs. (3.4), (3,10), (3.12) and (3.14), we can now write 

mth 	S
FVF 	

1 + 
C 	 m

o S
F 	

V E)(t) 
(3.15) 

Theoretically one ignores Xit in the calculation of thermal mass 

and thus gets a lower value than obtained from experiment. On 

comparison, one then obtains 
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(m
th
)
expt.  

1 + X
y -  	(3.16) (

th
)
calc. 

from equations (3.7), (3.9), (3.15) and (3.16) we see that XI, 

X
cand X are related to each other provided we assume that the 

same interactions manifest in all these experiments. 

One need not calculate the thermal mass from a band model 

as such, but can follow an alternative way to calculate (1 + 	). 

We see from Eqs. (3.10) and (3.16) that (1 + X ) can be expressed 

as 

1 + 	
N (EF

) ] 
expt. 

 X - 
[ N (EF) ]calc. 

(3.17) 

(m
th

)
expt. 

(m
th

)
calc. 

Here N (EF )  is the density of states (DOS) at the Fermi energy 

calculated from the low temperature specific heat constant y. If 

one also determines the DOS at E
F 

from a band model, then Eq. 

(3.17) provides a way of calculating 1 + X . 

The electronic heat capacity (at constant volume), C . is 
et  

given by 

C
81 

= y T 

2 

3  
a 2 

k N(E
F
) T 	(3.18) 

where k is the Boltzmann's constant and T is the Kelvin 

temperature. The experimental value of N(EF) then easily follows 

from this relation. 
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The linear specific heat coefficient y has been measured 

by numerous workers. Table 3.4 summarizes the data of y and also 

gives the value of N(E
F
)
expt 

which have been calculated using 

Eq. (3.18). We have also calculated the density of states N (E
F
) 

from our RLMTO calculation with )(a-XC (a= 0.75) potential and 

find HIE
F
)
calc.= 

 1.20 states/eV-atom-spin. The variation in the 

reported values of y appears to be largely due to the purity of 

the sample of Pd under study. We have therefore used a 

representative value 9.42 mJ mole-ideg-2  for y to calculate the 

experimental value of N(EF
). If we take an average 

corresponding to the more recent specific heat data, we get 1 + 

X = 1.68, which agree well with the values of (1 + Xc
) and (1 + 

V 

X4 ). The value of (1 + X )obtained by different workers are 

also given in Table 3.5. Our values are nearly the same as most 

of other workers because all have used ab-initio methods. Except 

for the work of Anderson [16] and Knapp et al 11291,no 

calculation of (1 + X )has been explicitly reported by others 

workers. 

3.5 CONCLUSIONS 

In conclusion, the FS obtained using LMTO/RLMTO is in 

agreement with the available experimental data. The FS velocity 

for all the four sheets are in agreement with the band velocities 

of MacDonald et al (1471 and the enhanced velocities of Dye et 

al, 174]. The enhancement factors calculated by three different 

ways are consistent with each other. It is also in agreement with 

results of most of the other workers. Bordoloi and Auluck 

obtained [37] a lower enhancement factor because in trying to fit 

the FS data they have absorbed a part of the enhancement factor. 
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IL PLATINUM 

3.6 INTRODUCTION 

A glance at periodic table of elements shows that 

Platinum (Pt) which has atomic number 78, is a metal of the fcc 

group belonging to the heavier 5d transition metal series. The 

interest in the Fermi Surface (FS) of Platinum has been kept 

alive because of its increasing tendency towards ferromagnetism 

and simultaneous disapperance of superconductivity through the 

sequence of the 4d and 5d transition metals 1r, Rh, Pt and Pd 

(1161. Several years ago it was suggested that a new type of 

excitation was important in nearly ferromagnetic systems; these 

are the so called paramagnon or short-lived spin fluctuations 

arising out of strong exchange interactions among the d-electrons 

and thought to be playing a significant role in producing mass 

enhancement (31, 73, 184). In Pt the paramagnon enhancement may 

be the dominant contribution. The success with which the Linear 

Muffin Tin Orbital (LMTO) method gives the Fermi surface IFS) 

topology of noble metals [2] prompted us to perform calculations 

for transition metals Pd [37 and Pt. These metals possess a 

complicated FS and we believe that the accuracy with which the 

LMTO method can give FS topologies will be borne out by our 

results. For the above reasons Pt is worthy of an especially 

intense effort to understand its electronic properties. The 

intersections of the symmetry planes of the B2 with the FS of Pt 

are shown in Fig. 3.12. Pt is characterized by three Fermi sheets 

the r-centred electron surface, the X-centred hole ellipsoids 

and the open hole surface. The small L-centred hole pockets are 

not observed in Pt. One of the earliest de Haas-van Alphen (dHvA) 
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measurement in Pt was by Stafleu and de Vroomen [211] who in 1965 

recorded the existence of the small ellipsoids indentified with 

regions of holes at X. Ketterson et al [125] subsequently found 

two further sets of dHvA oscillations corresponding to the 

r-centred and open hole sheets, respectively. dHvA measurements 

on the extremal areas of the FS of Pt were carried further by 

Ketterson and Windmiller [126]. Dye et at [75] in 1978 reported 

more extremal orbits on the open hole surface with heavier mass, 

centred at r and X for the magnetic field along the [100) and 

[110] directions. 

Theoretical studies, ab initio or otherwise, on the band 

structure and FS properties of Pt have not in the meanwhile been 

lagging behind. The relativistic augmented plane wave (RAPW) 

calculations of Mackintosh, and Anderson [17, 18], the 

relativistic Korringa-Kohn-Rostoker (RKKR) approaches of John et 

at [118] and Ketterson et al [124] and phase-shift 

parametrization work of Shaw et at [188] are a few examples of 

such studies. The work of Friedel et al [83], Mueller et at [155, 

158] and of Smith and his coworkers [200, 202 - 204, 222] have 

also contributed greatly towards this theoretical understanding. 

Smith and his coworkers have been following the techinique of 

using the interpolation scheme to obtain the band structure 

adjusted to their own photoemission data. Bordotoi and Auluck 

[36] have used the combined interpolation scheme to parametrize 

the Fermi surface and optical gaps. Although this scheme is easy 

to use and fast on the computer, it needs many parameters and 

hence one can not extract any useful information from such 

calculations. 
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Using a relativistic non-muffin-tin, Korringa-Kohn-

Rostoker formalism, Dye et al (75] have been able to calculated 

the extremal areas for the various orbits by the parmetrization 

techinque. They have used nine extermal areas and masses with 

different field directions. While fitting the measured masses, 

Dye et at have absorbed the many-body enhancement into the phase 

shift derivatives. By combining the parameters obtained from the 

extremal area fits and the phase shift derivatives, the Fermi 

velocity is computed and compared with the experimental velocity. 

They have also calculated the enhancement factor obtained from 

these velocities. MacDonald et at (147] have studied the 

influence of relativistic contributions td the effective 

potential on the electronic structure of Pd and Pt. They have 

compared three separate self-consistent density functional 

calculations with (i) exchange only (1i) exchange and  correlation 

and liii) exchange and correlations plus relativistic interaction 

correction using RAPW method. The comparison of these three show 

that relativistic corrections are significant in the case of Pt 

but the non-muffin terms included with much effort are less 

important. 

3.7 CALCULATIONS AND RESULTS 

As we discussed above, the FS of Pt consists of three 

sheets (Fig.3.12) i.e. a closed electronic surface centred at r, 

a sheet of hole centred at X and an open hole surface. The band 

struture obtained by us along symmetry directions of the BZ using 

Slater Xa-XC potential is shown in Fig. 3.13. We have calculated 

extremal areas for the three FS sheets and studied the effect of 

(i) various exchange correlation (XC) potentials such as von 
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Barth-Hedin (BH), Slater Xa, Barth-Hedin modified by Janak (BHJ) 

and Vosko Wilk and Nussair (VWN) approximated by different 

workers (ii) including angular momentum expansion up to 1=3 (iii) 

increasing the number of it points in the irreducible Brillouin 

zone (B2) summations and (iv) inclusion of relativistic effects. 

From our calculations we observe that increasing the number of 

points and inclusion of angular momentum expansion up to i=3 does 

not affect FS areas for Pt. Keeping this in mind, we have done 

all calculations with 240 11 points and angular momentum expansion 

up to 1=2. 

3.7.1 Non-relativistic calculations 

We have calculated FS areas using BH, BHJ, VWN XC 

potentials. We find that non-relativistic calculations with none 

of the above said exchanges give the existence of open hole orbit 

p<lio>. We have adopted a different criteria to determine how 

good the agreement with experiment is by calculating AEF. We 

obtained an extreme AE
F 

of 40.7 mRyd (BH), 42.0 mRyd (BHJ) and 

39.6 mRyd (VWN) XC potentials. Thus the extreme AEF  is very large 

compared to the noble metals. As is clear from the work on Pd, it 

is necessary to include relativistic corrections. 

3.7.2 Relativistic calculations 

Since the non-relativistic calculations give large AE 

,non existance of the orbit p<110> and also because the 

relativistic effects play important role in elements with large 

2, we included relativistic corrections in our calculations. We 

observe that this results in favourable changes and in drastic 

improvement when comparison is made with the experimental data. 
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Now we obtained an extreme AE
F 

of 9.0 mRyd (BH), 9.0 mRyd (BHJ) 

and 8.0 mRyd (YWN) XC potentials. These results are shown in 

Table 3.6. For Slater Xa XC we have varied the values of a from 

0.65 to 0.85. The variation of AE with a is shown in Fig. 3.14. 

From the figure we find that a=0.815 gives the best agreement 

with the experimental data. We find that AEF  in this case is 

around 2.7 mRyd which is comparable to AEF  of Dye et al [75] 

0.6 mRyd ), Bordoloi and Auluck [36] ( 1.6 ) and MacDonald et al 

[147] ( 4.1 mRyd ). 

To see the effect of increasing the number of k points 

from 240 to 505 in the 132 summation, we find that the extreme LE F 

using X« XC potential is now around the same as with 240 it 

points. Hence an increase in number of I points i.e. use of a 

finer mesh in the B2 does not affect the FS areas. We studied the 

effect of using angular momentum expansion up to e=3, the AEF  now 

comes around 3 mRyd (Xa-XC) as compared to 2.7 mRyd (Xa-XC) with 

t=2, So we find that increasing the- number of k points and 

angular momentum expansion up to t=3 do not have any significant 

effect on the extreme LE . Hence the relativistic LMTO method 
F 

can give as accurate a prediction of the FS as obtained by the 

combined interpolation scheme. The KKR parametrization is still 

in better agreement with experiment, however we must bear in mind 

that ours is a first principles method which is certainly 

superior to parametrization techniques. 

3.8 DYNAMICAL PROPERTIES OF QUASIPARTICLESB 

The linear specific heat coefficient r has been measured 

by number of workers (for a survey see Bordoloi) [34]. Some of 

the values are listed in Table 3.7. We have used the Slater Xa-XC 
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with the value of a=0.815, as discussed in preceding section to 

calculate N(E ). By calculating N ( E ) from specific heat data, 

we have compared this N(EF ) from our calculations. The value of 

(1+X Y) obtained by different workers are given in Table 3.7 along 

with our values. We find that our value of (1+),. ) is 1.19 which 

is lowest among the given results (1.22 to 1.63). 

We have calculated the enhancement factorll+X
c
/using 

cylotron data for different FS orbits. We have calculated the 

band masses for these orbits using Slater Xa-XC and experimential 

cyclotron mass from Dye et al (75] are used. We have listed (1+X 
c

) 

in the Table 3.8 and find that our results are consistent with 

the results of Bordoloi and Auluck (37] and Smith (202). 

Mass enhancement factor from electron velocites are 

reported in Table 3.9. The Fermi velocities obtained for the 

three Fermi sheets are plotted in Figs. 3.15-3.17. The Fermi 

velocites obtained by Watson-Yang et at [236] and Dye et al (75) 

are also shown for comparison. The calulations of the former have 

been on the basis of first principle RAPW warped muffin-tin 

method, while those of latter are results of RKKR fitting scheme. 

The Figures 3.13, 3.14and 3.15 reveal a general trend in our 

calculated Fermi velocities similar to either of above mentioned 

calculations. The values of (1+X4) obtained by us and other 

workers listed in Table 3.9. Our results are consistent with 

those from Bordoloi and Auluck [37], Watson-Yang et al (238) and 

of Dye et al (75]. 

3.9 CONCLUSIONS 

The results of the calculated FS of Pt using LMTO method are 
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given in the section II of this chapter. We studied the effect of 

(i) various XC potentials (ii) inclusion of relativistic effects 

(iii) increasing the number of it points in BZ summations and (iv) 

including angular momentum expansion up to Z=3 on our results. We 

observe that first two effects play an important role in topology 

of the FS of Pt. Inclusion of relativisitic effects reduces the 

extreme AE
F 

by a factor of five. The choice of XC-potential is 

also important.The extreme AEF  with 240 t points and angular 

momentum expansion up to t=2 is around 9.0 mRyd using BH,BHJ and 

VWN-XC potential but the Slater Xa with a=0.815 gives extreme AEF  

of 2.7 mRyd which is one third in comparison to other 

exchanges.This is because we are using an adjustable parameter a. 

We also find that the effect of increasing no.of 1 points from 

240 to 505 and including angular momentum expansion up to l=3 do 

not affect the extreme AEF. Hence we conclude that all these 

effects are not important for studying the FS topology of Pt. We 

have calculated the Fermi velocites and enhancement factor X 

using the Slater Xa (a=0.815) potential. The enhancement factor 

calculated using band masses,specific heat data and electron 

velocities are consistent with other results as well as with each 

other. 
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TABLE a 3 

Mass enhancement factor (1 +X) for Pd 

Field 
Direction 

Expt. 	me  
(a/ 

Enhancement 	(1-0,.
c

1 

Present 
Calculation 

Bordoloi & 
Auluck 	(o) 

Schmidt & 
Mrosan 	(d) 

F-Center 
<100> 2.02 1.44 1.28 1.58 
<110> 2.30 1.59 1.45 1.62 
<111> 1.96 1.36 1.26 1.63 

X-Center 
<100>KWU -0.63 1.57 1.41 1.56 
<lio>xur -1.03 1.63 1.25 1.38 
<110> -0.78 1.63 1.38 
<111> -0.87 1.93 1.42 1.23 

L-Center 
<110m.xr -1.21 1.92 1.41 

Open hole 
<100>c 

b 10.96 1.65 1.36 1.63 
<1i0>11 

b -12.77  1.22 1.14 1.32 
<111>(3 -5.7 1.26 1.09 
<110>a -2.4 1.66 1.49 1.42 

&Reference 74 

bReference 74 [KKR fit] 
cReference 37 
dReference 183 
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TABLE 3. 4 

The electronic specific heat constant r and density of states 

(calculated from r ) for Pd 

Reference 
Temperature 
range 	(K) 

Purity 
(% 	Pd) 

r 
(mJ 	mole-

•
-K 	2) 

N 	(Er) 
Statestatom 

eV-spin 

Rayne 	(179] 1.5 	- 	4.1 
99.999 
99.98 

9.87 	± 0.11 
9.64 t 0.08 

2.117 	± 0.02 
2.068 -± 0.02 

Hoare 	et al 
(106] 

1.8 	- 	4.2 99.99 9.31 ± 0.05 1.997 	± 0.01 

Mackliet 	et 	al 
[148] 

1.5 	- 	4.2 99.95 9.385 ± 0.035 2.012 

Veal 	et 	al 
[226] 

1.4 	- 	100 99.99 9.42 ± 0.02 2.021 

Chouteau et al 
[54] 

0.3 	- 	3 ? 9.40 t. 0.05 2.016 	± 0.01 

Smith 	et al 
[2057 

1 	- 	4.2 ? 9.43 ± 0.02 2.023 

Hoerstoel 	et 
at 	(33] 

1.2 	- 	30 99.999 9.45 ± 0.03 2.027 

Knapp et al 
[129] 

- - 9.2 1.974 

Mizutani 	et al 
[152] 

Liquid He 99.991 9.48 ± 0.01 2.034 
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TABLE a 6 

LIEF for Pt using different XC potentials ( in mRyd ) 

Field 
Direction 

Expt.
a  

Area 
 using 

BH-XC 
using 
BHJ-XC 

using 
Xa-XC 

using 
VWN-XC 

(a.u.) a=0.815 

r-Centered 
<100> 0.770 -2.0 -2.0 1.7 2.0 
<110> 0.857 -3.0 -3.0 1.3 0.0 
<111> 0.687 -2.0 -2.0 2.4 3.0 

X-Centered 
<100>XWU .00298 6.0 6.0 0.8 8.0 
<110> .00467 4.0 4.0 -0.3 4.0 

Open Hole 
<100>c 1.890 1.0 1.0 2.3 6.0 
<110>(? 0.341 2.0 2.0 0.6 3.0 
<100>a 0.074 2.0 2.0 0.9 4.0 

Extreme AEr  9.0 9.0 2.7 8.0 

aReference 75 
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TABLE 3. 7 

Many body enhancement factor (1+X ) for Pt caculated from low 

temperature specific heat data. y is in mJ/mole/ k and DOS is in 

states/eV-atom-spin 

References Theortical 
Method 

Expt. 
value 
used 

Calc. 
value 

DOS 
Expt. 

DOS 
Calc. 14-X.

r 

Anderson 	(a) RAPW 6.56 4.02 1.63 

Knapp & 
Jones 	(b) 

Sp.Heat 6.70 4.10 1.60 

MacDonald 
et 	al 	(c) 

LAPW 6.54 1.403 0.92 1.53 

Bordolci & 
Auluck 	(d) 

lnterpolat 
-ion 

6.54 1.403 1.15 1.22 

Present 
Calculation 

RLMTO 6.54 1.403 1.18 1.19 

aReference 18 
b
Reference 129 

c
Reference 147 

d
Reference 37 
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TABLE 3. 8 

Mass Enhancement Factor 1+X For Pt c 

Field 
Direction 

Expt. 
m 

(a) 

Enhancement Factor 	1+X c  
Our Calc- 
ulation 

Bordoloi 
&Auluck 	(b) 

Smith 
(c) 

r- Centered 
Electron 
<100> 2.44 1.37 1.30 1.50 
<110> 3.16 1.36 1.32 1.52 
<111> 2.06 1.30 1.26 1.42 

X-Centered Hole 
<100>XWU -0.272 1.01 1.18 0.85 
<110> -0.426 • 1.33 1.47 1.09 

Open Hole 
<100>a -1.53 1.42 1.30 1.29 

a
Reference 75 

b
Reference 37 

c
Reference 202 
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TABLE 3. 9 

Mass Enhancement Factor (1+X4) for Pt 

( Fermi velocities are in Ryd ) 

Surface Direction Expt.1Vk l 
(a) 

Enhancement 	factor 	11-k 4 
k 

Our Caicu- 
lation 

Watson-b 

Yang 	et al 
Bordoloi 
Auluck 

c  Dyed 

et 	al 

r -X 0.266 1.39 1.50 1.35 1.50 
Electr- r -L 0.217 1.22 1.43 1.09 1.43 
on 7 -K 0.485 1.46 1.53 1.31 1.53 

X 	-F 0.150 1.20 1.38 1.12 1.38 
X X 	-K 0.219 1.14 1.36 1.26 1.36 

Pocket X 	-W 0.218 1.15 1.38 1.26 1.38 

Open r -x 0.555 1.72 1.54 1.99 1.54 
Hole F -K 0.178 1.53 1.69 1.38 1.69 

a
Reference 75 

b
Reference 238 

c
Reference 37 

d
Reference 75 
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FIG. 3.1 

The Brillouin zone of the fcc lattice, 

showing the symmetry point designations 
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CHAPTER IV 



FERMI SURFACE OF FERROMAGNETIC NICKEL 

4.1 INTRODUCTION 

In our earlier chapters we have discussed the FS of the 

noble metals and the transition metals Pd and Pt. As far as the 

FS of noble metals is concerned, it is very simple consisting of 

a single r-centred sheet. The agreement with the experiment and 

with some other theoretical calculations seems to suggest the 

correctness of our methodology and of the LMTO method. Then we 

took up a study of the transition metals Pd and Pt as they have 

partly filled d-bands and the Fermi level crosses the d-bands 

resulting in a complicated FS. The LMTO method gave a FS in 

agreement with the experimental data. All metals discussed so far 

are paramagnetic. In order to check the capability of our method 

we have decided to look at nickel- a fcc ferromagnetic metal. The 

FS of the nickel is simple in comparision to other ferromagnetic 

metals and has been the subject of intensive experimental and 

theoretical investigations for many years. Using the LMTO method, 

many workers have calculated the total energy, electronic 

structure, bulk modulus, magneton numbers for Nickel but none has 

calculated the FS of the nickel which is of course of our 

interest. The exchange spilitting and spin-orbit coupling play a 

very important role in the ferromagnetic metals. 

4.1.1 Role of Exchange Splitting : 

The ferromagnetism of nickel, cobalt and iron has been 

attributed to the exchange iteraction between the d-electrons. 

That the d electrons are mobile and contribute to the conduction 

was not established until the advent of detailed experimental 
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studies of their Fermi surface. The exchange interaction is 

responsible for the lower potential energy of conduction 

electrons with spin-up compared to the potential energy of the 

spin down states by an amount AK  the exchange splitting. When 

Fermi surfaces are created by filling the electron states in a 

band, the up and down spin sub-bands fill to the levels for which 

electrons at the Fermi level have the same total energy. As a 

consequence of the exchange splitting the spin-up bands will fill 

to a higher kinetic energy than the spin-down bands and will 

therefore contain more carriers, hence the terms majority and 

minority carriers for the spin-up and spin-down electrons, 

respectively. To a first approximation the exchange splitting 

does not alter the shape of either the spin-up or the spin-down 

bands. Since the separation Ax  of the bands is quite large, the 

topological features of the Fermi surface for spin-up electrons 

are completely different from those of spin-down electrons. 

4.1.2 Role of Spin Orbit Coupling : 

In a ferromagnetic metal there is a basic incompatibility 

between the axes of quantization of the spins (parallel to 

direction of Magnetization A) and of orbital momentum and this 

leads to the complicated dependence of spin-orbit energy gaps on 

it k and M. The spin orbit coupling is weak, of the order of a few 

percent of exchange splitting, but has considerable influence 

through the resolution of degeneracies on the topological 

features of Fermi surface orbits. In transition metals the 

situation is particularly complicated. There are often instances 

where majority and minority-Fermi surface intersect. The presence 

of spin orbit coupling hybridizes the spin-up and spin-down 
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surfaces so that an actual electron orbit changes character at 

the point of intersection. Also the size of spin-orbit energy 

gaps in ferromagnetic metals depends on the relation of k to Al 

and may be quenched in some parts of the B2. Gold [90] gave a 

simple rule that the spin-orbit energy gap at a point A in the 

zone is largest if 11 is parallel (or antiparallel/ to A, and 

smallest, or even zero, if r4 is perpendicular to A. 

4.2. Band structure and Fermi surface : 

The band structure of ferromagnetic metals has been 

calculated by a number of workers. Hanus C99] performed the first 

APW calculation for the paramagnetic nickel. Connolly [64] 

obtained energy bands in ferromagnetic nickel within the 

framework of the unrestricted Hartree-Fock scheme, in which the 

exchange terms were approximated by a local potential. He used a 

self-consistent APW method and comparison with the experimental 

data showed that the unrestricted Hartree-Fock scheme may be an 

acceptable model for the ground state of ferromagnetic solids. 

Yamashita et al [244], Wakoh and Yamashita [234] and Wakoh [235] 

have obtained the electronic structure of nickel using the 

Green's function method. Callaway and Zhang [45] and Langlinais 

and Callaway C136] have used the tight binding method tc 

calculate energy bands in feromagnetic nickel. They have 

constructed a basis set using a linear combination of Gaussian 

orbitals and used the Slater Xa method to costruct an exchange 

potential. Wang and Callaway 1237t 461 have reported a 

self-consistent calculation of the energy bands in ferromagnetic 

nickel using the tight binding method including the effects of 

inclusion of spin-orbit coupling. Comparison of their results 
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with the experiments indicates that a simple energy-band theory 

employing a local exchange potential can sucessfully predict the 

essential features of the Fermi surface and of the optical 

properties of nickel. Hodges et al [103] has studied the field 

induced changes in the band structure and Fermi surface of 

nickel. They have used the interpolation scheme and made use of 

several parameters obtained from a first principle APW band 

calculations; use was also made of the experimental magneton 

number as well as other experimental information such as size of 

<111> 'neck' in the copper like sheet of the Fermi surface. Using 

Mueller's interpolation scheme 2ornberg [246] calculated the band 

structure which is good agreement with the available experimental 

data. Stark [213] has measured the large r- centred st and sy  

sheets of the Fermi surface with which band structures obtained 

by Hodges et al [103] and 2ornberg [246] did not give good 

agreement. Prasad et al [172] used a modified form of the 

Hodges-Ehrenreich-Lang interpolation scheme [104, 200] and they 

got good agreement with the experimental results on the large r-

centered sheets as well as on smaller Fermi-surface sheets. They 

have also reported calculations for extrema] areas and band 

masses of various orbits, magneton number and density of states. 

Smith and Chiang [201] has calculated the photoelectron spin 

polarization for ferromagnetic Ni using a combined interpolation 

scheme of Smith and Mattheiss [200]. Intially they used the APW 

method to calculate the band structure which was adjusted to 

reproduce the experimental magneton number. The most detailed 

Fermi surface and band structure calculation of spin polarized 

nicked was presented by Anderson et al [19]. They have reported 
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the band structure and Fermi surface using the APW method. They 

have also studied the electronic structure of nickel as a 

function of the lattice constant. These results confirm previous 

findings by Wang and Callawy regarding the diffrent forms of the 

local exchange approximation. 

Recently Eckardt and Fritsche [77] has obtained 

self-consttent band structure of nickel with an exchange 

splitting gap of 0.39 eV which is considerably closer to the 

experiment value than those which have so far been obtained by 

using the familiar potential of Von Barth and Hedin. They have 

also done calculations at finite temperatures which leads to a 

lowering of the magnetic moment. Fritsche et al [84] have used 

relativistically exteded version of the one-particle formalisim. 

They have calculated self-consitently the electronic structure of 

nickel, iron and palladium metal. In addition, their calculation 

provides magnetic anisotropy energies. Recenty Ebert et at C761 

have presented fully relativistic calculations of the magnetic 

moments and hyperfine fields of the ferromagnetic metals Fe, Co 

and Ni. Their approach is based on the multiple scattering 

version of the Green function method and they also coded that for 

the first time, orbital contributions to the hyperfine fields of 

these metals were accessible to a calculation. Spin polarised 

relativistic augmented spherical wave (SPRASW) method has been 

used by Krutzen and Springelkamp [133] to report the 

self-consistent calculations for the ferromagnetic Ni and Gd. 

Their results for the Occuption numbers and magnetic moments of 

nickel compare favourably with the experiment as well as other 

calculations. 
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Barbiellini et al [271 have studied the effect of 

gradient corrections to the KC potentials on the electronic 

structure in metals. Gradient correction proposed by Perdew and 

Wang and to some extent by Langreth, Mehl and Hu (LMH) have been 

used in self-consistent LMTO band calculations in order to 

determine groundstate and band properties in some transition and 

alkali metals. They have made a comparison of the equilibrium 

properties (such as lattice constant and bulk moduli ) calculated 

using the LD and PW approximations experimental data. The result 

show that the PW potential increases the calculated values of the 

lattice constants and compressibilities which often improves the 

agreement with experiment. As far as magnetic properties are 

concerned they found that PW does not give better result than the 

local density potential. In case of the FS properties, they have 

calculated some FS dimensions in different directions. For 

nickel, they have calculated the Fermi surface radii for the 

majority sixth band and find that both LD and PW radii are 

similar and close to the dHvA data. Barbiellini et al conclude 

that the gradient-corrected potentials are not yet sufficiently 

good to replace the LD potential. 

The band structure of nickel is similar to that of the 

copper except that the Fermi level now lies within the d-bands. 

The Fermi surface of ferromagnetic nickel is shown in Fig. 4.1. 

We consider first the Fermi surface sheets related to the part of 

band structure which is derived essentially from the atomic 4s 

level. Because the ferromagnetic splitting in nickel is quite 

small, one can easily identify the two large exchange-split 's' 

sheets which are similar in shape and size to the Fermi surface 
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of copper. The majority st sheet has copper like necks which 

contact the {111} zone faces near the points L, while the 

minority sy  sheet has pronounced bulges in the <111> directions 

but does not make contact with zone boundry. According to our 

current understanding, the five dt bands are compietly filled so 

that there are no dt sheets of the Fermi surface. On the other 

hand, the higest two dy  bands are not fully occupied and give 

rise to one large central dy  sheet which intersects both s 

sheets, together with a set of much smaller dy  hole pockets 

centered on the point X. Thus the FS of ferromagnetic nickel 

consists of a spin-up copper like r-centered surface with neck at 

L, two sets of spin down hole pockets centered at X, and two 

large spin down pieces centered at r. 

Despite of recent advances, certain aspects of itinerant 

ferromagnetism are still relatively poorly understood and require 

further study. The Fermi surface of feromagnetic nickel and iron 

are reviewed to some extent by Gold [901 and Lonzarich [1433. 

Here we begin with a brief discussion of the information which 

may be obtained by what is thought to be perhaps the most 

powerful technique for investigating magnetic phenomena. The 

Fermi surface of nickel has been measured using de Haas-Van 

Alphen (dHvA) effect by Tusi [223] and Stark and Tusi [214]. Tusi 

[223] observed two distinct sets of dHVA-frequency branches. The 

lower set extends the spin t s-band neck data previously measured 

by Joseph and Thorsen [1223. No experimental evidence had been 

found till then for any second and smaller (111) neck which could 

be associated with the sy  sheet. The higher frequency set of 

dHVA branches show details of the dy  hole pockets which is 
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measured by Tusi and Stark [214, 223, 224] and Hodges et at 

[103]. These hole pockets have been associated with the level X5. 

They did not observe any dHvA oscillations which could be 

assigned to either the X2  pockets of the Fermi surface from which 

it is concluded that the X2 
eigenvalue must lie below the Fermi 

energy. Stark [213] has succeeded in detecting dHvA oscillations 

arising from large r- centred st and sy  sheets of the Fermi 

surface. Using a cubic harmonic expansion method of Mueller and 

Priestly [154, 156] Stark was able to invert this extremal area 

data to yield radius vectors. 

The band structure along the symmtery direction in BZ for 

BH-XC obtained by us shown in Fig. 4.2, The figure shows the 

energy bands in the vicinity of the Fermi level. These are the 

bands which give rise to the Fermi surface and hence can be 

compared with experiment. From our band structure, the spin down 

bands based on X
84 
 state produce the hole pockets which give dHvA 

oscillations that are easily observable and another set of hole 

pocket resulting from X
24 

level is predicated by our calculation. 

Although these aditional pockets have been found in all 

first-principles band calculations as far we know, they have not 

been directly observed by experimental techniques f measurements 

of dHvA effect ) because these orbits have a small area and a 

large value of the cyclotron mass ratio. Gersdrof [88] has 

suggested that measurements of magneto crystaline anisotropy 

provide evidence for the existence of these X
24 

hole pockets and 

estimate a much large mass ratio of about 197. The ordering of 

levels at L near the Fermi level for the spin-up bands from 

highest to lowest is 1,
2
-L
3
-L
3 

which is in agreement with the 
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calculations by Connolly (64) and Wang and Callaway 1237] ( necks 

are formed from L
2
' branch ). 

4.3 RESULTS AND DISCUSSIONS 

We have calculated the AE
F 

for the spin up and spin down 

sheets for different XC-potentials i.e. BH, VWN and Xa.  All the 

calculations are done with 240 it points and angular momentum 

expansion up to t=2 because we have not found any effect of 

increasing the number of it pants as well as angular momentum 

expansion on the Fermi surface of the noble metals and Pd and Pt. 

We have calculated the extremal areas of the FS orbits 

for the magnetic field along (001), (110) and (111) directions. 

These results are presented in Table 4.1 together with the 

experimental results of Tusi (223) and Stark (213]. Also given 

are the results of Anderson et al C193, Prasad et al 1172] and 

• Wang and Callaway (237]. The first principles calculation of Wang 

and Callaveey does give qualitative agreement with the Fermi 

surface data with an extreme error of 17 mRyd. Moreover it 

predicts two sets of X-centred hole pockets, one arising from 

level X5and other from level X2  , whereas experimentally only one 

set of hole pockets associated with level X
5 

has been observed. 

The HSG model [103] also gives qualitative agreement with the 

data of Stark and Tusi. Since Hodges at at have not reported the 

band mases of the FS orbit, we have calculated AE
F 

using 

experimental masses. As the band masses have lower value than the 

eperimental masses, the HSG model should give a higher value of 

the extreme error than the value of 16 mRyd calculated by us. 

Similarly we have calciculated AEF  for the results of Zornberg 
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[246]. In this case we get the smaller AEF  in comparsion to that 

of Wang and Callaways [237]. Prasad et al [172] have reported the 

energy band structure calculated using a modified interpolation 

scheme and get good agreement with the experimental results on 

the large r- centered sheets as well as on the smaller FS sheets. 

They have reported an extreme AE of around 0.5 mRyd which is 

very low in comparision of the other's. Prasad et al have missed 

a factor of 2 while calculating the extreme AE
F 

so it should be 

1.0 mRyd instead of the 0.5 mRyd. All earlier calculations 

discussed above does not give a complete calculation for all the 

FS areas. The first such detailed calculation was presented by 

Anderson et al [19] who has used the self-consistent 

spin-polarized augmented- plane-wave method to calculate the FS 

areas using the BH-XC potentials. We have calculated AE
F 

for 

these FS areas using their band masses. We found the large AE
F 

for the necks of the majority band and an overall extreme AE
F 

around 42 mRyd. 

Keeping the overall view of the all the above 

calculations discussed so far, our attempts in this direction 

using the self-consistent ab-initio LMTO method give a successful 

attempt to calculate FS areas. Looking at the results of our 

calculation, we note that we have obtained good agreement with 

the experimental data with an esxtreme AE
F 

of 9.0 mRyd (BH), 9.9 

mRyd (VWN-XC) and 24.3 mRyd  Xa ) with a = 0.715 . Here we have 

varied the value of a in Xa XC-potential from 0.65 to 0.80. The 

a=0.715 gave the best agreement with experimental data i.e. a 

minimum extreme AEF  . So our calculations give a smaller AEF  in 

comparsion with the calculation of Wang and Callaway [237] and 
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the self-consistent calculation of Anderson et al [19). The 

extreme AE
F 

is large in comparision to the calculation of the 

Prasad et al (172) who have used the interpolation scheme. Here 

we are not using any adjustable parameter and we are not fitting 

the FS, resulting in a larger AEF. 

We have calculated the FS radii and FS area for the 

nickel using the non-local Lagrenth and Mehl correction which was 

added to the local XC fuction of Barth-Hedin. The calculations 

are done with 240 k points and taking angular momentum expansion 

up to t=2. The calculations are compared with our local XC 

results of BH-XC in order to compare the nonlocal correction 

effect and with the work of Barbiellini et al [277. The Fermi 

Surface radii calculated using the LM XC given in Table-4.2 are 

almost same as calculated with the BH-XC. The difference is very 

small cosistent with the conclusions of Barbiellini et al [277. 

To see the better picture of effect of nolocal 

corrections we have calculated the FS areas of majority and 

miniorty spin orbits (given Table 4.3). The extreme AE
F 

in case 

of BH exchange is 9.0 mRyd which comes from the majority 6th band 

centred at F. The AE
F 

for the same orbit using LM-XC is around 

11.6 mRyd and extreme AE
F 

is 12.0 mRyd. A look at Table-4.3 shows 

that the AE
F 

for the majority spin FS neck orbits doubled using 

the LM corrections but for the miniority spin down X-centred and 

1-  centred orbits the AE
F 

is almost unchanged. Thus the inclusion 

of the nonlocal corrections increased the extreme AE
F 

from 9.0 

mRyd ( incase of local potential ) to 12.0 mRyd (incase of LM-XC 

). Hence inclusion of nonlocal correction degraded the agreement 

with the experimental data . 
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4.3.1. Magneton number 

The magneton number, nt- ny  i.e. the difference between 

the number of occupied states of the majority and miniority 

spins, was calculated by neglecting spin-orbit coupling and then 

solving the secular determinant for each spin seperatly. 

According to 2ornborg [246] this approximationcan introduce an 

error of less than 0.01 electrons/atom in the calculation of 

magneton number. We have calculated the magneton number using 

different exchange correlation potentials. The values of magneton 

number with different XC-potential along with experimental value 

and from other calculations are given in the Table 4.4. The value 

of magneton number are 0.566 electros/atom for BH-XC, 0.574 

electrons/atom for VWN-XC and 0.619 for the Xa-XC potential. The 

calculated value using BH-XC and VWN-XC are very close to 

experimental value [681 of 0.56 electrons/atom in comparision 

with the value of 0.63 electrons/atoms calculated by Anderson et 

at using APW method with the BH-XC potential and 0.62 

electrons/atoms 	calculated 	by 	Barbiellini 	et 	al 	using 

self-consistent LMTO method with the local density potential and 

the nonlocal exchange of Perdew and Wang. 

4.4. CONCLUSIONS 

We have compared several different treatments of the 

exchange and correlation potentials in our spin-polarized LMTO 

calculations for nickel. We find that the BH-XC gives somewhat 

better results for the Fermi surface in comparison to the other 

XC-potentials. This is in contrast to our work on the noble 

metals and transition metals Pd and Pt which shows that the Xa-XC 

gives the best agreement with the experimental data. Xa- XC C a= 
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0.715) gives an extreme AE
F 

which is about two and half times the 

other XC-potentials, a fact also noted by Wang and Callaway 

[237]. The nonlocal XC potential does not improve the results but 

it goes in negative side. 



TABLE 4.1 

Cross-sectional areas of the Fermi-surface ( AE 
 

in mRyd. 

ORBIT Orien- 
tation 

Cent- 
er 

Band Expt. 
value 

ca/c. 
(c) 

Calc. 
(d) 

Calc. 
(e) 

Our  calculation 

8N-XC VUN-XC Xe-XC 

Neck [111] L 51' .0071a 
.0071 
0.0 

0.0236 
-30.9 

U.0095 
(-4.71 

0.0099 
(-5.3) 

0.0119 
1-9.11 

Neck [110] L 6t .01023 
0.0402 
-32.9 

0.0118 
-2.6 

0.0124 
-3.5 

0.0156 
-7.3 

Neck (1121 L at 0.0313 0.0104 0.0109 0.0134 

Large 
Square 

(001] r GT 1.15
b 

1.154 
-0.1 

1.23 
-13.1 

1.24 
-6.4 

1.2079 
-9.0 

1.2115 
-9.6 

1.2818 
-23.2 

Pockets (001] X 3 4 0.0267  '0267 • .0258 
-0.4 

0.023 
-1.3 

0.018 
-2.1 

0.0246 
-1.4 

0.0250 
-1.3 

0.0262 
-0.4 

Pockets (100] X 3 4 0 0665 ' 
.0671 
0.1 

0.049 
-3.9 

0.038 
-6.9 

0.0536 
-1.5 

0.0559 
-1.4 

0.0610 
-0.8 

Pockets [110] X 3 4 0 0585 ' 
0.034 
-4.8 

0.0445 
-2.1 

0.0463 
-1.9 

0.0506 
-1.5 

Pockets (101] X 34 0.028 0.0274 0.0281 0.0299 

Pockets (111] X 3, 0.0442 
0.028 0.0347 

-1.8 
0.0359 
-1.6 

0.0388 
-1.5 

Pockets (001] X 4 0.050 0.0408 0.0309 0.0356 

Pockets [100] X 41  0.086 0.1044 0.1074 0.1165 

Pockets [110] X 41  0.070 0.0529 0.0542 0.0582 

(0011 r 51  2.04 2.1124 

1.5969 

2.1037 2.0824 

[110] r Sy  1.59 1.5865 1.5621 

(111] r 5, 2.08 2.1371 2.1224 2.0895 

Small 
Square 

(001) r 6
1  

b 
0.9 

0.903 
0.1 

0.30 
9.2 

0.84 

2.2 

0.8997 
0.0 

0.8966 
0.3 

0.8871• 
1.1 

1110] r 61  0.96 0.0977 0.8948 0.8853 

(111) r 6s  0.71 0.7725 0.7698 0.7671 

Extreme  AE
F  

(mRyd) 0.5 42.1 9.1 9.0 9.9 24.3 

aReference 223  b
Reference 213 

c
Reference 172  d

Reference 19  eReference 237 
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TABLE 4.2 

Fermi surface parameters in unit of 2n/a 

Expt. 
Cal 

Barbiellini 	et 	al
b Our calculation 

XC PW XC LM 

Krx 0.77 0.77 0.77 0.775 0.778 

K
FK 

0.58 0.59 0.60 0.589 0.594 

KLW 
0.05 0.05 0.04 0.055 0.047 

a
Reference 105, 224 
b
Reference 27 
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TABLE 4.3 	 \ 

Cross-sectional areas of the Fermi-surface ( AE
F in mRyd. 

ORBIT Orien- 
tation 

Cent- 
er 

Band Expt. 
value 

calc. 
(c) 

Calc. 
(d) 

Calc. 
le) 

Our 	calculation 

BN-XC LM-XC 

Neck 1111] L et .0071a .0071 
0.0 

0.0236 
-30.9 

0.0095 
(-4.71 

0.0118 
-8.9 

Neck (1101 L fit .01023 0.0402 
-32.9 

0.0148  0.0118 
-2.6 -6.5 

Neck [1121 L 61' 0.0313 
e 

0.0104 0.0131 

Large 
Square 

cool) r 6t 1.156 
 
1.154 
-0.1 

1.23 
-13.1 

1.24 
-6.4 

1.2079 
-9.0 

1.2245 
-11.6 

Pockets [0011 X 3 4. 0.0267 .0258 -0.4 
0.023 
-1.3 

0.018 
-2.1 

0.0246 
-1.4 

0.0244 
-1.0 

Pockets 11001 X 3 I 0.0665 .0671 0.1 
0.049 
-3.9 

0.038 
-6.9 

0.0536 
-1.6 

0.0571 
-1.3 

Pockets (110) X 3 1 0.0585 0.034 
-4.6 

0.0445 
-2.1 

0.0470 
-2.1 

Pockets (1011 X 31  0.028 0.0274 0.0279 

Pockets [111] X 3 0.0442 0.028 0.0363  0.0347 
-1.8 -2.1 

Pockets C0011 X 41  0.050 0.0408 0.0322 

Pockets U001 X 41  0.086 0.1044 0.1082 

Pockets [HO] X 44. 0.070 0.0529 0.0546 

[001] r 51  2.04 2.1124 2.0988 

11101 r 51  1.59 1.5969 1.5795 

[1111 r 54. 2.08 2.1371 2.1154 

Small 
Square 

[001] r 6t  0.9b 0.903 

0.1 
0.60 
9.2 

0.64 
2.2 

0.6997 
0.0 

0.6956 
0.4 

11101 r 6+  0.96 0.8977 0.8942 

f111] r 64  0.71 0.7725 0.7686 

Extreme 	AE
F  
(mRyd) 0.5 42.1 9.1 9.0 12.0 

a
Reference 223 	b

Reference 213 	
°Reference 179 

d
Reference 19 	eReference 237 
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TABLE 4.4 
Magneton number for Nickel 

Experi- 
ment 

Calculation 

lb) 

Ours Calculation 

16N-XC VWN-XC Xa-XC 

-  nt  n.1. 0.56a  0.63 0.566 0.574 0.619 

a
Reference 68 

b
Reference 19 
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CHAPTER V 



EFFECT OF PRESSURE ON THE FERMI SURFACE OF THE NOBLE METALS, 

TRANSITION METALS PALLADIUM, PLATINUM AND FERROMAGNETIC NICKEL 

The interpretation of pressure effects on both, electron 

transport and crystallographic properties of metals, usually 

requires some knowledge of the way in which the FS is affected by 

pressure and also provide a valuable check on the reliability of 

band structure calculations. Although studies of the pressure 

dependence of the FS of few metals have appeared in the 

literature, only recently have any comprehensive studies become 

available. Such measurements have been shown to provide rather 

critical tests of the physical significance of the theoretical 

models proposed to describe the FS of these metals. Therefore 

interest from both experimental and computational standpoints has 

increased in the past several years. This growth can be 

attributed to at least three factor : U.) Development of 

experimental tools of sufficient resolution to measure accurately 

the changes in the dimensions of the FS with pressure. These 

changes are often of the magnitude of the compressibility so that 

highly accurate measurements are required. (ii) Improvement in 

techniques for the generation of hydrostatic pressures at too low 

temperatures which are suitable for use on fragile single crystal 

specimens. (iii) Concurrent development of sufficiently detailed 

theoretical models for the FS which permit direct comparison of 

the experimental results with model predictions. 

Simultaneous operation of these factors was probably 

necessary in order to overcome the rather negative impressions 

created by some early work. This work suffered from lack of 

118 



reproducibility of experimental results and disagreement with 

even qualitative predictions of the theory. It has been now 

fairly well established that most of these difficulties stem from 

the nonhydrostatic pressure techniques employed on the highly 

anisotropic materials which were the subject of early study. 

There exist abundant experimental data on the effect of 

pressure on the FS of the noble metals, palladium, platinum and 

nickel. As we have calculated the FS of metals at ambient 

pressure, it will be a useful extension to study the effect of 

pressure on the FS of these metals. Since relative accuracy is 

always better than absolute accuracy we expect to obtain reliable 

values for the pressure derivatives of the various extremal areas 

in these metals. At present we are not aware of any 

self-consistent calculations of pressure effects. Our 

calculations will hopefully fill this gap. We have calculated the 

pressure derivatives self-consistently i.e.self-consistent band 

structure calculations are performed at two different radii. This 

will give a value for the pressure derivatives of the various FS 

orbits. Further, there also exist some band structure 

calculations (although not self-consistent) for comparison with 

the present calculations. We hope our calculations will generate 

more interest in this area. In section 1 of this chapter we 

discussed the effect of pressure on FS of the noble metals while 

section II and III are devoted to palladium, platinum and nickel 

respectively. 

I. NOBLE METALS 

5.1 INTRODUCTION 

The utility of pressure studies of the FS of metals as an 
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important complement to normal volume measurements has been 

demonstrated recently. The purpose of this section is to 

represent results of studies utilizing pressure derivatives of FS 

in conjunction with precise normal volume cross sectional areas 

to critically assess the physical significance of band 

theoretical description of the noble metals. We chose to 

investigate noble metals for a number of reasons. Both 'first 

principle' and parametrized band calculations have been published 

for noble metals and also excellent data with which comparison 

can be made exists. The FS of noble metals are well known and are 

topologically simple. Moreover, since we have already calculated 

the zero pressure FS, it is natural to calculate their pressure 

derivatives. As there exist only few ab-initio calculations, 

unlike to that ours is self-consistent, i.e., pressure 

derivatives of extremal areas (1/A dA/dP) are obtained performing 

self-consistent band-structure calculations at two different 

radii. We see that in such type of calculations self-consistency 

plays vital role. From our conclusion, we borrow that the choice 

of the XC potential is also crucial which is not studied to this 

extent earlier. Here we present detailed calculations of the 

effect of pressure on the FS of the noble metals. 

Attempts to study the pressure dependence of the noble 

metals experimentally have been made by various workers. There 

are a good many experimental tools for investigation of the FS of 

the metals, but only a few have been employed effectively as far 

as pressure studies are concerened. This stems from the fact that 

for most metals the magnitude of the effects of FS dimensions is 

of order of compressibility which means fractional changes of a 
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few parts in 10
3
or 10

-4
kbar-fare typical. Measurements must 

either be made to this sort of precision or differential 

techniques employed which give the change directly. The work on 

the hydrostatic pressure dependence of the Fermi surfaces of 

metals has been reviewed by Brandt, ltskevich and Minina [41], by 

Svechkarev and Panfilov [219], and most recently and 

comprehensively by Schirber and his group [47, 181, 182, 216] and 

later Templeton [220, 221] have measured the pressure derivatives 

of cross-sectional areas of the FS of noble metals using the 

fluid-He de Hass-van Alphen phase-shift method. So we have 

accurate data as needed for comparison with our calculation. 

The existing calculations of the effect of pressure on 

the FS of noble metals fall into two broad categories. (i/ ab 

initio calculations such as those of Davis et al [70] for copper 

and Ramchandani's for gold [175]. (ii) Empirical methods such as 

those of Shaw et al [189], Bosacchi et al [39] and Gavenda et al 

[87] for copper. Consider first the ab initio calculation of the 

Davis et al [70] who have reported the change in the electronic 

band-structure of copper with change in lattice spacing. The 

calculations were performed using constant energy search 

techniques based on the KKR method with 26066 points for 

different lattice constants and using the measured value of 

volume compressibility they were able to calculate the change in 

FS with pressure. The calculations were consistent with the dHvA 

data available at that time. while Ramchandani [175] has reported 

RAP{J calculations for the gold for different lattice spacing. He 

has calculated the pressure coefficient of the neck area which 

was within a factor of 3 of the measured value. As far as the 
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empirical methods are concerned Bosacchi at al [39] have used the 

Fourier series expansion technique for inverting the pressure 

dependence of the dHvA areas into corresponding change in the 

Fermi radii. They adjusted the Fourier coefficients to fit the FS 

data while Shaw et al (189] have utilized the KKR method for 

parametrizing the experimental FS data using the techniques which 

are based on the standard least-squares methods. They fitted the 

pressure derivatives using as lattice constant derivatives of 

phase shifts as adjustable parameter. In early of 80's Gavenda et 

at [87] and his group have used a straightforward  method for 

finding expansion functions with the symmetry of strained 

lattice. They haue applied this method to copper under 

hydrostatic and uniaxial strains. Changes in FS cross-sectional 

areas are computed, based on a fit to energy shifts calculated by 

Gray and Gray [91, 92] who have used this technique in 

conjunction with modified plane-wave method. Their results 

compare favorably with experimental values. 

Since we have already calculated FS orbital areas and 

masses for four orbits, belly B111, belly B100, dog bone D110 and 

neck N111 where the numbers denote the direction of magnetic 

field at equilibrium lattice constant (2). We have performed 

similar calculations with the lattice expanded by about 0.1%. 

This is small enough to exclude nonlinear effects and 

sufficiently large to accurately calculate FS changes. Again, the 

self-consistent parameters are determined and the FS area is 

calculated. From these two calculations, we obtain dA/A 

corresponding to a 0.1% change in the lattice constant. Using the 

values of compressibility [128] 7.39 x 10
-4

kbar
-1
for copper, 
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10.06 x 10
-4

kbar
-1
for silver and 5.84 x 10

-4
kbar

-1
for gold, we 

obtain 1/A dA/dP. These calculations are done with Xa, BH, BHJ 

and VWN-XC potentials. In Xa-XC, a was taken to be 0.77 for 

copper and silver and 0.693 for gold because these gave a good 

fit to the zero-pressure FS. 

5.2 RESULTS AND DISCUSSIONS 

The 1/A dA/dP obtained for the four FS orbits using 

various XC potentials are given in Tables 5.1-5.3 along with 

experimental values and other theoretical calculations. Consider 

first the case of copper given in Table 5.1. The pressure 

derivatives for the B111, B100 and D110 orbits are almost 

identical for all the XC's used. The N111 is the most sensitive 

to the choice of the XC potential used. On comparison with the 

experimental data of Templeton (221] and of Schirber and Sullivan 

[181) we observe that the VWN and Xa-XC potentials give good 

agreement with the data. Also given are the pressure derivatives 

obtained by Shaw et al (189) and Bossachi et al [39] using phase 

shifts and Fourier coefficients. These are definitely in better 

agreement with the data compared to ours because the parameters 

were adjusted to fit the data. It is indeed heartening to note 

that the results of Davis et al [707 using KKR also agree with 

the data except that the N111 derivative is slightly lower than 

the experimental value. Gavenda et al, using the method of 

interpolation functions, have obtained the pressure derivatives 

which are consistent with the experimental data and with our 

calculations. Thus our values for the pressure derivatives for 

the four FS orbits (using Xa and VWN) are in good agreement with 

the experimental data. 
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Table 5.2 gives our results for silver along with the 

experimental values of Schirber and Sullivan [151] and Templeton 

[221] along with the empirically adjusted values. Unfortunately, 

we are not aware of any ab initio calculations. Mice again we 

observe that the B111, B100 and D110 are not sensitive to the 

choice of the XC pdtentials, whereas N111 is. For silver only the 

Xa (a=0.77) gives agreement with the experimental data. Our 

previous work [2] on silver indicates that Xa (a=0.77) gives the 

best fit to the zero pressure FS data. 

Values of 1/A dA/dP for gold are given in Table 5.3. We 

are aware of only one ab initio calculation by Ramchandani (175] 

who used the RAPW method to obtain 1/A dA/dP for N111 which was 

1/3 of the experimental value. As in the case copper and silver 

we find that the B111, B100 and D110 are not influenced much by 

the XC potentials; only the N111 is. Our calculations indicate 

that the Xa (a=0.693) and BH-XC's give good agreement with the 

experimental data. Our previous work [2] for gold indicates that 

these XC'S give the best fit to the zero-pressure FS data. 

As mentioned above, the pressure derivatives were 

obtained by performing self-consistent band calculations at the 

equilbrium lattice constant and at a lattice constant increased 

by 0.1%. This is small enough to exclude non-linear effects and 

sufficiently large to accurately calculate the FS changes. We 

have also calculated the band structure at lattice constant 0.4% 

larger than the equilibrium value. This yields 1/A dA/dP within 

10% of the values given in the Tables 5.1 - 5.3. This could be 

well due to the non-linear variation of FS area with pressure. 
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5.3 CONCLUSIONS 

In conclusions we can say that our calculations of 1/A 

dA/dP for the noble metals suggest that the LMTO method gives 

values that are in good agreement with experiment. Our results 

show that B111, B100 and D110 orbits are insensitive to the 

choice of XC used, while the N111 orbit is greatly influenced by 

the XC. Hence the pressure data can be used to determine the most 

appropriate XC potential. Our calculations indicate that the Xa 

(a variable) gives correct values of 1/A dA/dP for all the noble 

metals as does VWN for copper and BH for gold. It would seem 

interesting to compare this with our zero-pressure results 121, 

which show that no single XG potential gives a good 

representation for the FS of noble metals. The Xa-XC with a 

variable a gives the best agreement with the expermential data 

and with previous ab initio methods for all the noble metals. 

Perhaps this reflects the need and importance of self-consistency 

in band structure calculations. Also, our values of 1/A dA/dP are 

in no way inferior to the values obtained by the empirical 

methods. In fact, these are equally good and obtained with no 

adjustable parameter. 

II. PALLADIUM AND PLATINUM 

5.4 INTRODUCTION 

In this section , the calculation of the effect of 

pressure on the FS of the transition metals palladium and 

platinum has been reported. The FS of these metals at 

zero-pressure is discussed in detail in our chapter III. Our 

calculations indicate that the LMTO does give a good description 
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of the FS for both Pd and Pt. As these metals possess the 

fascinating electronic properties, it will be very interesting to 

study the effect of pressure on the FS of these metals. This will 

obviously be a natural extension to the work reported in chapter 

III. There exists very few papers concerning the effect of 

pressure on the FS of Pd and Pt both theoretical as well as 

experiment. The first experimental study of the effect of 

pressure on the FS of these metals was reported by Vuillemin and 

Bryant [2341. They have measured the pressure derivative of the 

Fermi surface cross-section at <100> and <111> for the electrons 

in Pd and Pt in the range 0-25 atm. The dHvA measurements of the 

change in cross sectional area of the electron sheets of these 

two similar FS as a function of hydrostatic pressure has been 

presented and the change was measured by the fluid-helium 

phase-shift method at temperatures as low as 0.95°K. Their 

results suggest that the electron pressure derivatives in Pd and 

Pt are nearly isotropic. After a gap of a decade Skriver et al 

[197] and Venema et al [227] reported the pressure derivatives of 

extremal cross sections of the FS of Pd by means of dHvA 

measurements under pressures up to 3.7 kbar. In this paper 

Skriver has reported the pressure dervatives for hole pockets 

centred at X and L in addition to the electron orbits. They have 

also calculated the theoretical values of pressure derivatives 

obtained from their self-consistent band-structure calculation 

based on the. LMTO method using the local density approximation 

with BH-XC potential and are found to be in good agreement with 

the experimental pressure derivatives. Cavalloni et al [48] have 

reported hydrostatic-pressure dependence of FS of Pt using LMTO 
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method. They have compared their results with experimental values 

obtained by converting their uniaxial results. Their results for 

F centred electron are consistent with the measurement of the 

Vuillemin and Bryant [234] the only avilable data. 

Since we have already calculated the Fermi surface areas 

and masses for Pd (31 and Pt [6] at equlibrium lattice constant, 

now we perform the similar calculations at the expanded lattice 

constant. From these two self-consistent calculations of Fermi 

surface areas, 1/A dA/dP can be obtained using the 

compressibilities [128] of 5.5x10
4 

kbar
-1 

for Pd and 3.59x10
-4 

kbar
-1 

for Pt. These calculations are done with 240 k points and 

using angular momentum expansion up to t=2 with different XC 

potentials. In Xa-XC potential a=0.75 for Pd [3] and a=0.817 for 

Pt (6] because these gave a good fit to the zero-pressure Fermi 

surface. 

5.5 RESULTS AND DISCUSSIONS 

The pressure derivatives for the FS orbits in Pd and Pt 

using various potentials are given in Tables 5.4 and 5.5. 

Consider first the case of Pd. There exist three sets of data 

obtained by Vuillemin and Bryant [234], Skriver et al £197] and 

Joss and van der Mark [123]. While the first two measured 1/A 

dA/dP under hydrostatic pressure, the last group deduced 1/A 

dA/dP from their uniaxial data. Hence the uncertainties are 

larger. All the data are consistent with each other. Skriver et 

al have calculated 1/A dA/dP using the LMTO-ASA with the BH-XC 

potential (including combined correction terms). The differences 

(large in some orbits) could be due to the tetrahedron technique 

used by them for calculating pressure derivatives. However our Xa 
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and VWN XC potentials results are in better agreement with 

theirs. We find that pressure derivatives of the large Fermi 

surface orbits are insensitive to the XC potential used, while 

the small Fermi surface orbits are very sensitive. It would be 

tempting to decide on the appropriateness of any XC potential 

based on the experimental 1/A dA/dP. However no single XC 

potential yields a good agreement with all the Fermi surface 

orbits. We hope that with data available on more orbits the 

situation could be more encouraging. 

Our results for Pt are given in Table 5.5. Unfortunately, 

Vuillemin and Bryant [234] have measured the pressure derivative 

only for the r centered Fermi surface. Recenty Cavalloni et al 

[48] has reported experimental and theoretical volume derivatives 

of the area of some extremal orbits on the Fermi surface of Pt. 

They have obtained these experimental volume derivatives by 

converting the experimental stress derivatives. 	They have found 

the biggest discrepancy between theory and experiment occurs for 

the W-centred a orbit, for which no accurate measurement exists. 

The large volume dependence of the X -centered hole pocket is an 

indication of the strong sp-d hybridization. Our pressure 

derivatives using different XC potentials for F-centered orbits 

are consistent with experimental results of Vuillemin and Bryant 

[234] and the calculations of Cavalloni et al [481. For the 

X-centered orbits, Ka-KC gives better agreement with the 

experiment as well as the calulations of the Cavalloni et al in 

comparison to other XC potentials. The pressure derivative for 

the open hole W-centred a orbit with Xa-MC is more close to the 

experimental value in comparison to Cavalloni et al's 
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calculations. So the scarcity of data precludes us from making 

any more definitive conclusions. 

5.6 CONCLUSIONS 

Our calculations of 1/A dA/dP for Pd and Pt suggest that 

the LMTO-ASA method yields values that are in agreement with the 

minuscule experimental data. We find that the agreement is better 

for the r-centered sheet while it is not so good for the 

X-centered and L-centered pockets in Pd. Our calculations show 

that the choice of XC potential does not influence the pressure 

derivatives of the larger Fermi surface orbits. The pressure 

derivatives of the smaller Fermi surface orbits are dependent on 

the XC potential used. Hence one could use the experimental data 

to determine the best XC potential. However, the lack of 

sufficient data precludes us from drawing any definitive 

conclusions. We hope our work will lead to more experiments on 

the measurement of 1/A dA/dP in Pd and Pt. 

NICXEL 

5.7 INTRODUCTION 

Nickel has been a prototype metal for innumerable studies 

of various physical properties involving itinerant-electron 

ferromagnetism, d-band electronic structure and transition-metal 

surfaces. We have seen that the pressure derivative 1/A dA/dP 

calculated using LMTO method agree with the experimental data for 

the noble metals and for the transition metals Pd and Pt. In this 

section we would like to address ourselves to the effect of 

pressure on the FS of ferromagnetic nickel. The first• 

experimental study of effect of pressure on the FS of nickel was 
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reported by Anderson et al C207 who measured the pressure 

derivatives for the "neck" and ReLipsoid" orbits using the solid 

helium high-pressure technique. Around the same time Vinokurova 

et at group [228 - 230] presented experimental results of 

measurement of. de Haas-van Alphen (dHvA) effect under pressures 

up to 1 Kbar. Anderson et al [20] found that the experimental 

derivative of the [001] hole-pocket cross-sectional area of FS is 

positive in contradiction to the negative value reported by 

Vinokurova et at (228 - 230]. This was later explained by 

Gapotchenko et at [86] as due to the pressure derivative for the 

(001] hole pocket being small and less than the limiting accuracy 

of the measurements made by Vinokurova et al C228 - 230]. 

On the theoretical side Anderson et al [19) have studied 

the effect of a change in lattice spacing on the band structure 

of nickel using the augmented plane-wave (APW) method. Their 

calculations for the change in FS and magneton number with 

pressure shows reasonable agreement with the available 

experimental measurements. Two authors of Vinokurova et at group 

[230] have calculated the band structure using a model 

Hamiltonian technique and have shown that pressure dependence on 

the FS of ferromagnet comes from two contributions i.e. 

'magnetic' contribution and 'potential' contribution where former 

can be deduced from Stoner theory and later can be obtained by 

comparing the properties of ferromagnet and paramagnet. 

We have used the LMTO-ASA method including the combined 

correction terms to calculate the' FS area of various orbits for 

magnetic field along [001], [111] and [110] directions. Now the 

lattice is expanded by 0.1% and the self-consistent parameters 
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are recalculated. From these two self-consistent calculations at 

two different lattice spacing and using the value of 

compressibility 5.38 x 10
-4 

for nickel [128], we obtain 1/A 

dA/dP. The calculations are done with the von Barth-Hedin l8H), 

Vosko-Wilk-Nussair IVWNI and Slater Xa XC potentials. In the 

Xa-XC, a was taken to be 0.715 because this gave a good fit to 

the zero-pressure FS [77. 

5.8 RESULTS AND DISCUSSIONS 

The calculated pressure derivatives along with the 

experimental one are given in Table 5.6. Consider first the 

majority spin up orbits. For the Neck [1117 and Neck [112] our 

pressure derivatives for VUN-XC and Xa-Xc are in good agreement 

with the experimental results (20, 228 - 230)] in comparison to 

Anderson et al [19) calculations and quite fair for 8H-XC. For 

• 
the rest two i.e Neck [110] and large square [001] for which no 

experimental as well as theoretical value is avialable, our 

calculations for different XC's are consistent with each other. 

Now to the minority spin down case, for the small 

X-pockets [001] the pressure derivative is positive which is in 

agreement with experimental results of Anderson et al (20] as 

well as their calculations [197 but in contradiction to the 

negative value of Vinokurova et al 1228 - 230] who showed that 

the solid-helium phase-shift measurement for this particular 

orbit is more reliable. For the pressure derivative of the necks 

1111) and 1112], our calculation for VWN-XC and Xa-XC shows 

better agreement with the measured values campared to the 

calculation of Anderson et al [19] while no other calculation is 

available for the neck 1112). For the rest of the orbits as there 
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exist no experimental measurement, our results particularly for 

ellipsoids and small squares centered at r are consistent with 

the calculation [19] for all three XC and for remaining pockets 

and ellipsoids centered at X, our calculations for different XC 

are not in agreement with the calculations of Anderson et al 

[191. An overall look at Table 6.6 shows that VWN-XC and Xa-XC 

with a=0.715 give better agreement with measurements C20, 228 - 

230) in comparison to 131-1-XC. 

5.9 CONCLUSIONS 

Our calculations of 1/A dA/dP for the nickel suggest that 

the values given by LMTO method are in good agreement with 

experiment. It shows that the LMTO method is capable to explain 

the FS topology of the ferromagnetic transition metals as good as 

for paramagnetic metals. For nickel, there exist a minuscule 

data, so our calculations in this direction present a way for 

experimentalist to look further to give more data for the orbits 

which are untouched till now. Our calculations show that Xc-XC 

gives the better agreement with the measured orbits. For the 

small X-pocket <001>, our calculated pressure derivative is 

positive which is in agreement with Anderson et al 120) 

measurement which shows that Solid-helium phase shift measurement 

for this piece is more reliable. For the larger orbits, the 

pressure derivative with different XC potentials are almost same. 

This is consistent to our work of the noble metals and transition 

metals Pd and Pt that the larger orbits are insensitive to choice 

of the XC-potential used. We have also learned that particular 

attention must be paid to convergence, in spin polarized 

calculations to obtain the accuracy required for the computation 

of FS changes. 
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TABLE 5. 1 

Experimental and calculated values for A 1  dA/dP (10-4kbar-1  

for Copper 

B111 8100 N111 D110 

Xa-XC 	(a=0.77) 4.4 4.5 22.8 3.9 

VWN-XC 4.4 4.5 23.6 3.9 

BHJ-XC 4.2 4.6 9.4 4.0 

BH-XC 2.3 2.8 4.7 4.8 

Gavenda et ala 4.11 4.66 16.0 3.79 

Davis 	et al
b  4.4 4.7 15.5 4.1 

Shaw et al
c 4.26 4.57 15.5 4.1 

Bosacchi et aid 4.25 4.60 18.97 4.01 

Expt. 	value 4.21±0.03 4.421-0.03 19.8t0.5 4.04±0.02 

Expt. 	value f  4.25 4.6 18.0 4.0 

a
Reference 87 

b
Reference 70 

c
Reference 189 

d
Reference 39 

e
Reference 221 

(Reference 181 
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TABLE 5. 2 

Experimental and calculated values for A
-1

dA/dP (10
-4

kbar 1 )  

for Silver 

Bill 8100 N111 D110 

Xci-XC  (a=0.77) 5.6 6.3 62.2 4.6 

VWN-XC 5.6 5.9 90.4 4.6 

81-1J-XC 5.7 6.3 41.4 5.7 

BH-XC 5.7 6.3 41.4 4.7 

Shaw et al
a 

5.18 5.59 61.2 4.76 

Bosacchi  et al
b 

5.34 5.61 59.81 4.40 

Expt.  valuec  5.29±0.03 5.68-1-0.04 .  65.0±0.7 4.49±0.03 

Expt.  value  
d 

5.1 5.6 50.0 4.4 

a
Reference 189 

b
Reference 39 

c
Reference 221 

d
Reference 181 
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TABLE 5. 3 

Experimental and calculated values for A 1  dA/dF (10
-4

kbar-1 ) 

for Gold 

B111 8100 N111 D110 

Xa-XC 	(a=0.693) 3.1 3.8 19.7 2.8 

VWN-XC 3.1 3.6 26.2 2.8 

BHJ-XC 3.1 3.5 13.1 2.8 

BH-XC 2.8 3.6 19.7 2.8 

Ramchandanl
a 

 7.1 

Bosacchi 	et al
b 2.90 3.70 22.06 2.75 

Expt. 	value°  3.06±0.04 3.58±0.03 20.6±0.5 2.70±0.02 

Expt. 	value 	
d 2.8±0.2 3.7±0.3 20.0±1.0 2.7±0.3 

a
Reference 175 

b
Reference 39 

c
Reference 221 

d
Reference 181 
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TABLE 5. 5 

-1 	1 
A dA/dP (10

-4
kbar 	with different XC potential for Pt. 

A 
1 
 dA/dP 4 using 

811 
XC 

using 
BHJ 
XG 

using 
VWN 
XC 

using 
Xa 
XC 

a=0.815 

Calcu- 
latio- 
n 
(a) 

Expt. 
Value 

Field 
directiony  

X 	center 
<olo>xwr 11.9 10.9 32.3 52.0 45.5 68.0a  

<11o>xur 11.8 11.1 32.0 - 	51.8 
<100>XWU 10.1 9.3 27.8 47.8 41.2 38.0a  
<110> 10.5 9.8 28.8 49.0 
<111> 10.1 9.4 28.0 48.0 

1 
F center 
<111> 3.0 3.0 3.1 3.1 3.0 2.8±0.3

b 

<100> 3.2 3.2 3.3 3.3 3.3 3.2±0.3
b 

<110> 3.3 3.5 3.6 3.6 3.6 

Open hole 
<100>a 3.3 3.2 3.4 3.7 2.8 5.2a  
<001>c 2.6 2.6 2.7 2.7 2.6 
<110>0 4.6 4.3 4.8 5.2 

a
Reference 48 

b
Reference 234 
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TABLE 5. 6 

Experimental and Calculated values of 1/A dA/dP f /0 4  Kbar-1, 

ORBIT Orien- 
tation 

Cent- 
er 

Band Experiment 
value 

Cale. 
(cl 

Our 	calculation  

BH-XC VWN-XC Xa-XC 

Neck [111] L 6t 6.0a 	(8.0)b  2.6 11.0 8.1 7.9 

Neck (110) L 6t 1.5 9.7 5.6 5.1 

Neck (112] L 6T 
b 

6.6 2.3 10.7 7.8 7.2 

Large 
Square 

C001) r 6t 1.9 1.8 1.0 

Pockets (001) X 3 4. 0a 	(-0.81b 1. 2.6 7.3 2.6 2.8 

Pockets (100]  X 31  3.1 17.5 7.3 7.3 

Pockets (110] X 34 2.6 16.8 7.1 6.5 

Pockets (101]  X 31  2.5 10.5 4.1 4.0 

Pockets (112] X 34 1.5
b 

 12.5 5.3 5.0 

Pockets (111) X 3y 
b 

6.6 2.7 14.6 5.6 5.0 

Ellipse- 
ids 

(001] X 44 -0.4 -47.5 12.7 14.1 

(100) X 44  1.4 12.3 5.2 6.4 

(110] X 44 1.9 10.1 3.9 6.0 

(001] r 51  4.4 5.6 4.7 4.9 

MO] r 54 4.5 6.7 5.3 5.7 

titli r 54  4.5 6.7 5.1 5.7 

Small 
Square 

(0011 r 64. 4.3 5.3 4.5 4.7 

[110]  r 64 4.0 5.3 4.6 4.8 

[111]  r 64. 4.3 5.3 4.5 4.7 

a
Reference 20 

bReference 228 

cReference 19 
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CHAPTER VI 



EFFECT OF UNIAXIAL TENSION ON THE FERMI SURFACE OF 

THE NOBLE METALS 

6.1 INTRODUCTION 

The Fermi surface(FS) of the noble metals at ambient 

pressure has been studied in great detail both theoretically as 

well as experimentally. Accurate de Haas-van Alphen(dHvA) 

measurments have confirmed the topology predicted by the first 

principle band structure calculations, and agreement between 

measured and self-consistently calculated extremal areas is fair 

(23. Experimental measurements of pressure dependence of the FS 

of most of elemental metals have been made in the last decade or 

so, in order to obtain information about the dependence of energy 

band-structure on the lattice parameter. The response of the FS 

to uniaxial strain, which can be determined either directly by 

applying an external stress to the sample, or indirectly from the 

oscillatory magnetostriction or sound velocity, has been measured 

in many metals. The effect of hydrostatic pressure on the FS of 

noble metals has also been studied both theoretically and 

experimentally. Once again the theoretical results are in 

agreement with the experimental data £43. Since the effect of 

hydrostatic pressure on the FS provides a more stringent test of 

band-structure (compared to the FS at ambient pressure), this 

reflects the accuracy of the band-structure calculations. A more 

strigent test would be the study of the effect of non-homogeneous 

strain on the FS. In this chapter we have studied the effect of 

uniaxial tension on the FS of the noble metals. Our reasons for 

choosing the noble metals are (i) they have a simple FS topology 
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consisting of a single sheet (ii) availability of experimental 

data with which our calculations can be compared and (iii) 

self-consistent ab tnitio calculations are almost non existent. 

Shoenberg and Watts (193) reported the first experimental 

study of the effect of uniaxial tension on the Fermi surface(FS) 

of the noble metals normal to <100> and <111> directions by 

observing the change in the phase of the dHvA oscillations in the 

persistent mode of a superconducting solenoid. Later Lukhvich 

(146) measured dHvA oscillations and reported the values of the 

relative change in the 'neck° and other extremal cross-sectional 

areas of the FS per unit stress by stretching the FS both 

uniaxially and hydrostatically while Aron (22) obtained the 

stress derivatives of FS cross-sectional areas for the 'neck' of 

the noble metals by measuring the absolute amplitudes of the 

oscillatory component of the magnetostriction. 

The first detailed theoretical investigation of uniaxial 

tenson on the electronic structure of the noble metals was made 

by Davis (69) who has performed the calculations using the 

Korringa-Kohn -Rostoker(KKR) method. For each combination i.e. in 

<001> and <111> directions of lattice deformation, over 25,000 

points have been calculated on several individual constant energy 

surfaces in the vicinity of the combination's Fermi energy. The 

calculations for change in FS with deformations compare very 

favorably with the results of Shoenberg and Watts [1931. Gray and 

Gray [91, 92] have used the perturbation technique in' connection 

with modified plane wave method to calculate first order changes 

in the electronic'energy levels under tetragonal and trigonal 

strain. They have applied this approch to the changes at the 
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Fermi level of copper and compared with the calculation of Davis 

by taking the approximate linear combination of hydrostatic and 

tetragonal (trigonal) results. Gavenda, Theis and Mulvaney [87] 

have used a straight forward method for finding expansion 

functions with the symmetry of strained lattice. They have 

applied this method to copper under hydrostatic and uniaxial 

strains. Changes in FS cross-sectional areas are computed, based 

on a fit to energy shifts calculated by Gray and Gray. The 

dependence of FS extremal cross-sectional areas in copper on 

uniaxial tension along <001> and <111> direction by calculating 

d(lnA)/d(lnA ) where A is the diametral area of a free electron 

sphere whose volume remains exactly half that of the Brillouin 

zone. These calculations are compared with experimental results 

of Shoenberg and Watts [193] and give good agreement. Based on 

the strong interaction between the condution electrons and 

lattice in the noble metals and transition metals, Fawcett et al 

[79] have given the most successful approach of the phase-shift 

pseudopotential, in which the lattice potential is approXimated 

by an array of non-overlapping spherically symmetric potentials, 

each centered on a lattice site. This phase-shift pseudopotential 

calculations are based on the multiple scattering formalism of 

KKR. They have calculated the shear dependence of copper for the 

areas of the principal orbits and deduced their response to 

uniaxial tension. The results of their calculations are generally 

in very satisfactory agreement with the experimental data of 

Shoenberg and Watts [193]. 

As we have already computed the FS of the noble metals 

[2] and the effect of hydrostatic pressure on the FS of these 
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metals [4], it is worth while to calculate the F5 for the 

deformated lattice. Measurements of the way in which the Fermi 

surface is distorted by the application of hydrostatic or 

uniaxial tension yield information about the response of the 

electronic structure to homogeneous lattice strain. The lattice 

strain is related to the applied stress through the elastic 

stiffness constants c. , of the metal. Taking the simple case of 
tj 

cubic crystals, the strain may involve the elongation of the 

basis vector so that the basis vector x = ax takes the form 

x 1 =ai-2(1+e ), here c 	represent the fractional elongation of the 
XX 	 XX 

x-axis. The tetragonal shears yx,yy  and yzare volume-conserving 

combinations of the elongations, e , c , and c . For the xx 	yy 	zz 

strains associated with pure tetragonal shear yx  along x-axis are 

= r ; c 	e 	= 	
1 
r  

XX X 	 YY zz 	2 x 
(6.1) 

The angular shears y xy , y
Yz 
 and r zx  are combination of the axis 

rotationse,c,c,e,c,e. For y
' 
 the angular 

xy 	yx 	Xz 	zx 	yz 	zy 	xy 

shear in the x-y plane is given by 

m r m (e + 
xy 	yx 	xy 	Yx 

(6.2) 

If stress is applied along <001> so that yx  = yy  = 0, then 

tetragonal shear is given by 

21  °001  
yz  3 ( c  Li C ) 12 

(6.3) 

where c 	and c 	are stiffness constants and a is uniaxial 
11 	/2 • 

stress. If the stress lies along <111>, all tetragonal shears 

must vanish by symmetry. Angular shear is intrinsically a 

volume-conversing shear. If the tension is applied along the 

<111> direction, the angular shears are 
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a 
r 	= r 	001 

xy xz Tyz 2c
44 

(6.4) 

To summarize, a tension applied along a general direction 

produces both tetragonal shears and also angular shears about all 

three axes. 

In the case of hydrostatic pressure, unit cell will be 

same as at ambient pressure. Hence there is no problem with 

self-consistency. Now in case of uniaxial strain the unit cell is 

tetragonal. So the number of t points will be different with 

those at ambient pressure. This will include an unknown input 

resulting for different levels of self-consistency condition. As 

a simple approach, the c is small and we assume that the unit 

cell will be same as at ambient pressure. The distorted potential 

parameters which are expected to differ only insignificantly from 

those the ones at equilibrium, as expected from the theorem of 

Gray and Gray [923, according to which there are no first order 

corrections in strain for a potential of the muffin-tin or 

equivalently of atomic sphere form. The calculation of the 

extremal areas is done using Stark's area-mass routine in 

conjunction with Skriver's codes. The extremal FS areas of the 

undistorted lattice are calculated using the self-consistent 

potential parameters obtained earlier. Using the same potential, 

the extremal FS areas are then calculated for distorted 

structures when the strain is along <001> and <111> directions. 

From these two calculation i.e. on equlibrium lattice and on 

distorted lattice and using the values of stiffness constants of 

these metals [128] ,we obtain the dependence of FS extremal areas 

d(InA)/d(InA
s
) along <001> and <111> directions. The calculations 
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are done with the von Barth-Hedin (BH), von Barth-Hedin-Janak 

(BHJ), Vosko-Wilk-Nussair (VWN) and Slater Ka XC potentials. For 

got-MC the values of a for copper and silver are 0.77 and 0.693 

for gold are used. 

6.2 RESULTS AND DISCUSSIONS 

The d(InA)/d(InA ) calculated for the different FS orbits 

using various XC potentials are given in Table 6.1 - 6.6 along 

with the experimental results of Shoenberg and Watts [193]. We 

now discuss each metal separately. 

Table 6.1 shows the values of d(InA)/d(InA ) for copper. 

When uniaxial tension is along <001> direction, the value of 

d(InA)/d(InA ) for the 6001 orbit is almost in the range of 
8 

experimental value for alt XC's as well as other theoretical 

calculations. For all other orbits as there exists no other 

experimental data, so we have compared our results with other 

existing theoretical calculations. For D110 and B100 orbits our 

values are close to those obtained by Davis [69] and Gavenda, 

Theis and Mulvaney [87] but for B100 it is different from that of 

Gray and Gray [92]. The "neck" which is very sensitive to the 

choice of the XC potentials, our values for this orbit are close 

to that of Gray and Gray [92] and Gavenda, Theis and Mulvaney 

[877 while for the Bill orbit the values for BH and BHJ-XC are 

close to the values of the latter compared to VWN and Xa-XC. 

Table 6.2 shows our results for uniaxial tension along 

the <111> direction for coppef. The results show a very large 

uniaxial dependence of the neck. The physical interpretation of 

this result is that under an applied tension, the lattice is 
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elongated in the <111> direction which decreases the separation 

between the <111> and <iii> BZ planes, thereby increasing the 

area of contact with the FS and enlarging the neck orbit. In case 

of N111 the VWN-XC and Xa-XC give better agreement to 

experimental results compared to BH and BHJ-XC. For the 8111 

orbit, our values for all XC's are in agreement with the 

experimental results. Thus an overall look on Tables 6.1 and 6.2 

shows that for the copper, the stress derivatives using Xa-XC and 

VWN-XC are in good agreement with the experimental data. This is 

consistent with our conclusions in case of hydrostatic pressure 

derivatives C4l. 

Tables 6.3 and 6.4 give our results for silver along with 

the experimental results for uniaxial tension applied in <001> 

and <111> directions. Here we do not have any other theoretical 

calculation, so our results are compared with the data of 

Shoenberg and Watts (193]. The stress derivative of the B001 

orbit for uniaxial tension along <001> direction is consistent 

with experimental results for all four XC's. But when the tension 

is along <111>, BH and BHJ-XC give better agreement with 

experiment then VWN and Xa-XC. The stress derivative of B111 is 

almost the same for all XC's. Thus the results for silver are in 

satisfactory agreement with the experimental data. 

The d(InA)/d(InA ) for gold is given in Tables 6.5 and 

6.6. The results for tension along <001> direction is given in 

Table 6.5. For B001 the stress derivative with VWN-XC is in fair 

agreement with the experimental result compared to other XC's but 

our stress derivatives are three times then those of Davis (69]. 

For N111 our stress derivative is very much smaller than that of 
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Davis 169]. We think that this is due to their fitting of the 

Fermi energy. For tension along <ill>, the stress derivative for 

N111 using all XC's except VWN-XC is in range of exerimental 

value and in better agreement then those of Davis [69i. The Bill 

is also conistent with experimental result as well as theoretical 

results of Davis [693. Thus for the gold the 1314-XC and Xa-XC give 

good agreement with experimental results which is also shown by 

our previous calculations of the hydrostatic pressure derivatives 

[4]. 

6.3 CONCLUSIONS 

The stress derivatives d(InA)/d(InA ) 	for the noble 

metals under uniaxial tension along <001> and <111> directions 

has demonstrated that the current band structure ground-state 

formalism is capable of handling 	such type of calculations. 

These results also show the versatility of the LMTO method. The 

difference between our values and the expermental values may be 

due to the sizeable experimental uncertainties. All the orbits 

except the N111 (for tension along <111> directions) are not 

affected by the choice of XC potentials. A look at the noble 

metals shows that Xa-XC potential gives a good representation to 

the experimental results which is obvious because we are using an 

adjustable parameter a. Our results give good agreement with the 

data. Our calculations are ab—initto and self-consistent. In 

contrast Gray and Gray (92] and Gavenda, Theis and Mulvaney [87] 

have used perturbation technique and interpolation functions 

respectively while the calculations of the Davis and Fawcett et 

al are not self-consistent. In the case of silver, our 

calculations are the first ab initio self-consistent 
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calculations. It would be beneficial to have more data to check 

the reliablity of the calculations. 
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CHAPTER VII 



SUMMARY AND CONCLUSIONS 

In this thesis we have used the LMTO-ASA method to 

calculate the Fermi surface and the effect of pressure on the 

Fermi surface of the noble metals, transition metals palladium, 

platinum and ferromagnetic nickel. A knowledge of the electronic 

band structure is essential for the calculation of these physical 

properties. Its implications have been brought out in chapter-I 

where we have shown that the Linear Muffin Tin Orbital (LMTO) 

method satisfies the requirements of a fast, accurate, physically 

transparent and flexible method of band structure calculation. 

The method is discussed in some detail,and its advantages and 

limitations vis-a-vis other first principles methods have been 

elaborated. This chapter also gives some discussion on the 

density functional theory (DFT), different exchange-correlation 

potentials and a description of some experimental methods that 

measure the Fermi surface. 

In chapter-II, we have discussed the Fermi surface of the 

noble metals [2]. The band structure and Fermi surface of noble 

metals is so well established that the experimentalists use it to 

standardize their apparatus and theoreticians use it to debug 

their programs. We have calculated the extremal areas for four 

orbits in the noble metals. Our study shows that the choice of 

XC-potential plays an important role while other effects such as 

increase of number of it points, inclusion of relativistic effects 

and angular momentum expansion up to 1=3 are not significant. The 

agreement between the calculated Fermi surface extremal areas and 

experimentally measured areas is determined by calculating the 
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shift in the Fermi energy AEF, required to bring the calculated 

area in agreement with the experiment. The extreme AEF  is 4.1 

mRyd and 0.9 mRyd for copper and silver respectivly, ( with the 

Slater Xa ( a =0.77) XC potential ) while for gold the extreme 

AEF 
is around 3.5 mRyd ( with Slater Xa (a = 0.693 ) XC 

potential). We have also studied the suggestion of Jepsen et al 

(117) that the Fermi surface of noble metals could be 

characterized by k /kS  and A = kF(1001/kFC1107 where kN  is neck 

radius and k
s 

is radius of free electron sphere. Our calculations 

suggest that these two parameters are not sufficient to 

charactrize the Fermi surface. The inclusion of the nonlocal 

exchange-correlation proposed by Langreth and Mehl shows that for 

the copper results are degraded with experiment in accordance 

with the calculations of Norman and Koelling (160] and 

Earbiellini et al [27] but in silver and gold the effect is 

negligble. 

In chapter III, we present our the Fermi surface of the 

transition metals palladium [3] and platinum (6] calculated using 

the LMTO method. We have chosen these metals because they have a 

fairly complicated Fermi surface and will provide a check of the 

accuracy of the LMTO method. Also their Fermi surface has been 

accurately measured by a number of workers. The Fermi surface 

areas for Pd are calculated for four sheet i.e. a r-centred 

electron sheet, two hole sheet centred at X and L and one open 

hole surface( in Pt there is no L pocket hole ). The study of 

various effect shows that relativistic effects which are 

negligible in the noble metals, are important here. The extreme 

AEF 
for Pd is 4.0 mRyd ( with Slater Xa ( a = 0.75 )-XC) and 2.7 
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mRyd for Pt( with Slater Xa ( a =0.815)-XC). Using the Slater 

Xa-XC potential we have calculated the Fermi velocities. There 

are found to closely resemble the experimental and calculated 

velocties of other authors. The enhancement indicated by our 

results is also in agreement with earlier calculations. We have 

also calculated the mass enhancement in Pd and Pt from two other 

considerations, viz., from cyclotron masses and from specific 

heat data. These calculations yield a mass enhancement 1+X for 

Pd near 1.68 and 1.19 for Pt. 

The development and refinement of certain experimental 

and theoretical methods in solid state physics in recent year has 

led to major advances in our understanding of itinerent-electron 

magnetism in the 3d transition metals. Despite considerable 

progress, however, a number of formidable long-standing as well 

as novel problems remain unsolved. Spurred on by the sucess with 

which the LMTO method gives the Fermi Surface of the paramagnetic 

metals, we have performed calculations for ferromagnetic nickel 

UN. To calculate the FS of ferromagnetic nickel we to have 

perform self-consistent spin-polarised LMTO calculations. The FS 

of nickel is complicated by the existence of exchange interaction 

and spin orbit coupling. The Fermi surface of nickel consists of 

: spin-up copperlike r-centered surface with necks at L, two sets 

of spin down hole pockets centered at X and two large spin down 

pieces centered at r. We have calculated AE
F for various orbits 

using different XC potentials. Our results give an extreme AEF  = 

9.0 mRyd ( Slater Xa-XC ). This is small compared to all previous 

calculations except the calculation of Prasad et al (Ref),who 

have used the fitting procedure. So our results show that the 
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LMTO method gives the correct Fermi surface geometry of 

ferromagnetic nickel. 

Pressure studies of Fermi Surface are of increasing 

interest in the study of metals, since they provide a valuable 

check on the reliability of band structure calculations. In fact 

a band structure method which gives good representation to Fermi 

surface can fail to account for its pressure variation. 

Therefore, it turns out to be useful to see whether the LMTO 

method can give meaningful values of the pressure derivatives of 

the FS orbits. In chapter V, we have studied the effect of 

pressure on the FS of noble metals NO and transition metals 

palladium, platinum C53 and nickel C81. The pressure derivatives 

are obtained from the zero pressure calculation and one at an 

expanded lattice. Using the areas from these two calculations and 

the value of compressibility, we have obtained the pressure 

derivative 1/A dA/dP of the external areas. Our results for the 

noble metals suggest that the LMTO method gives values that are 

in good agreement with experiment. We find that the 8111, B100and 

D110 orbits are insensitive to the choice of the XC-potential 

used while the N111 orbit is greatly affected by the 

XC-potential. Thus the pressure data can be used to determine the 

most appropriate XC-potential. For palladium, platinum and nickel 

LMTO pressure derivatives are in agreement with scanty 

experimental data. Here again we find that the pressure 

derivatives of the larger FS orbits are not influenced by the 

choice of the XC potential. However the lack of sufficient data 

precludes'us from drawing any definitive conclusions. We hope our 

work will generate more interest and more experiments on the 
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measurements of 1/A dA/dP. 

In chapter VI, we have studied the effect of uniaxial 

tension on the FS of the noble metals [91. We think that this is 

a more stringent test of the accuracy of band structure 

calculation compared to the case of hydrostatic pressure. We have 

calculated the dependence of the area d(InA)/d(InAs) using 

different KC-potentials for the uniaxial tension along <001> and 

<111> directions. The calculations reported by us are 

self-consistent and we think this is first such type of 

calculation. Our results for the noble metals are in good 

agreement with experiment. Lack of the sufficient data does not 

allow us to make any definitive conclusions. 
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APPENDIX 

PRACTICAL ASPECTS OF THE LMTO METHOD 

The LMTO method outlined so far may be applied at many 

levels of approximation in problems of condensed matter physics. 

For most applications one must resort to calculations on a 

large-scale electronic computer, and to that end we now present 

Skriver's (1963 package of computer programs LMTOPACK. This 

LMTOPACK is a collection of Fortran routines which may be used to 

calculate the electronic structure of a given crystalline 

material from the knowledge of the crystal symmetry and the 

atomic numbers of the constituents involved. As explained in the 

LMTO formalism, the energy band calculation is separated into two 

parts, one that depends on the structure and the other that 

depends on the potential. The structure dependent part calculates 

the structure constant matrix and this part of the computer 

program is named STR. The potential dependent section calculates 

the eigen values and eigen vectors by solving the LMTO secular 

equation with proper potential parameters and this program is 

called LMTO. These two programs are considered to be the heart of 

the calculational procedure. Apart from this other programs 

namely COR, DDNS and SCFC are needed for the combined correction, 

density of states calculation and self-consistent energy band 

calculation. The self-consistent procedure is described in the 

flow chart given in Figure Ap.1. The function of each program is 

described below. 

The STR program calculates the volume and energy 

independent structure constants. The inputs required for this 
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calculation are crystal structure, number of atoms per primitive 

cell and the positions of the basis. The structure constant 

calculation is restricted to a certain distance in real and 

reciprocal space by a proper choice of maximum distances. 

The COR program is constructed to calculate those extra 

structure constants which may be used to correct the ASA for 

approximate treatment of the region between the sphere and atomic 

polyhedron, and for the neglect of higher S components. The basis 

input for COR is the basis vectors giving the positions of the 

atom in the cell, and the reciprocal-space vectors generated by 

STR. 

The secular equation of the LMTO theory is solved in the 

LMTO program. The basic input to LMTO is the structure-constant 

matrices generated by STR, the correction-term structure-constant 

matrices generated by COR, if the correction to the atomic-sphere 

approximation is to be included, and the potential parameters. 

The basic output is the eigen-values and eigen-vectors evaluated 

for the specified number of t points in the irreducible BZ. 

The obtained energy values are used in the DONS program 

for the calculation of 1-projected density of states and the 

number of electrons. The density of states and the corresponding 

number of state functions are calculated by means of the 

tetrahedron technique. 

The ground state properties are calculated in the SCFC 

program which is designed to solve the energy-band problem self 

-consistently. The program treats only the conduction states, 

i.e. the outermost s, p, d and f electrons, while the charge 
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density of the remaining electrons is kept fixed. In this 

frozen-core approximation the core charge density is obtained 

from atomic calculations renormalised to the relevant atomic 

volume. The basic input includes the projected state densities 

and number-of- states functions generated by DDNS and the atomic 

charge densities calculated by RHFS (relativstic Hartree-Fock 

self-consistent procedure) program. The main output is the 

self-consistent potential parameters. If the potential parameters 

in original run of LMTO have been suitably chosen, one will have 

a reasonably converged result after just one execution of SCFC. 

If this is not the case, one must use the output potential 

parameters to perform new band-structure and state-density 

calculations and then repeat SCFC with the new state densities to 

get new outputs until self- consistency is reached. 
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