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RESUME

In this thesis, an attempt has been made to study the
electronic properties of noble metals and some fcc transition
metals. During the past two decades the techniques for solving
the band structure problems have reached a point where, with the
aid of large computers, an accurate solution may be obtained. In
this work we use the linear-muffin-tin-orbital (:MTD) method in
the atomic sphere approximation (ASA) to soive the band structure
problem. The variational principle for a one-electron Hamiltonian
is used and the trial function is a linear combination of energy
independent muffin-tin orbitais {(MTO). The secular equatign
reduces to an eigen value equation . The trial function is
defined with respect to a muffin-tin (MT) potential and the
energy bands depend on the potential inside the spheres through
potential parameters which describe the energy dependence of the
logarithmic derivatives. The energy independent MTO is the linear
combination which matches on the soiution of the Laplace equation
in the interstitial region and is regular at infinity. The LHTDI
method is particular!y suited for closely packed structure and it
combines the desirable features of the Korringa Kohn Rostoker
(KKR), linear combination of atomic orbitals (LCAO) and Cellular
methods. The secular matrix is linear in energy, the overliap
integrals factorise as potential parameters and structure
constants, the later are canonical in the sense that they neither
depend on energy nor on the cell volume and they specify the
boundary conditions on a single MT or atomic sphere in the most

convenient way. This method is very well suited for

Cid



seif-consistent caiculations., In this thesis we are interested in
the Fermi surface (FS - a ground state property) of metals which
can be calcuiated within the density functional formalism. This
requires that we perform self-consistent electronic sgstruture
caliculations. The electron density can be utilised as a central
guantity and the formulation of a many-particle pFoblem into a
single-particle like frame work, is the essence of the density
functional theory (DFT}. Starting'from the Thomas-Fermi method
and several modifications, the DFT has been rejuvenated by the
pioneering works of Hohenberg, Kohn and Sham who have laid its
strict mathematical foundation and thus provided a formal
justification for the use of density as a basic quantity. In the
DFT, the problem faced is that exchange and correlation energy
function can only be approximated. Hence to overcome this
problem, we have used the local density approximation (LDA)}) for
exchange-correlation (¥C) which is valid when the density varies
slowly in space. To check the effect of exchange and correlation
potential on our problem, we have used different X¥C potentials
such as wvon Barth-Hedin (BH), Barth-Hedin modified by Janak
(BHJ}, Vosko-Wilk and Nussair (VWN) and Siater ¥a. approximated
by different worke;s. We have also included a nonlocai-iC

potential in LDA given by Langreth and Mehl.

There are a number of powerful experimental methods for
measuring the FS5., These methods include de Haas-van Alphen
{dHvA), cyclotron resonance, magneto-resistance etc. The dHvA
effect has proved to be most accurate and reliiable tool for
probing the eleétronic struture near the fermi energy. There

exists voluminous data on FS5 and cyclotron masses. We have
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compared our results with these data. Hence in the first chapter
we review briefly the LMTO theory, DFT as well as some of the

experimental methods for measuring FS.

Chapter 2 is devoted to the FS of noble metals. The main
reason for choosing the noble metals is that their FS is easy to
study as it ¢0nsist§ of single sheet and has already been studied
experimentally and theoretically in great detail so that a study
of these metals can be used to debug the programs. Another reason
for choosing these metals is that spin-orbit effects vary from
negligible to predominent as we move from copper (Cu) to gold
(Au). We have calculated extremal areas for four orbits in the
noble metals and studied the effect of (i) various XC potentiais
(ii) increasing the number of i points in the Briliouin-zone (B2Z)
summations {(iil} including angular momentum expansion up to £=3
and (iv) inclusion of relativistic effects. We observe tﬁ%%,ﬁﬂ?
the case of noble metals the choice of ¥C potential plays an
important role while the other effects are not significant. Here
we have adopted a different criterion to determine the agreement
between the computed FS extremal areas and the experimental!y
measured areas. This is done by calculating the shift in the

Fermi energy AE required to bring the calculated FS area in

F
agreement with the experiment. Our results show that in case of
copper and silver the extreme AEF is 4.1 and 0.8 mRyd,
respectively, with the Slater Xa («=0.77) XC potential while for
gold &EF is around 3.5 mRyd with Slater Xa (a=0.693) XC
potential. Here a has been treated as an adjustable parameter

and the values reported are for the best agreement with the

experimental data.
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The success with which the LMTO method gives the FS
topology of  noble ‘metals prompted wus to perform similar
calculations for the transition metals palladium and platinum.
These metals possess a complicated FS and we believe that the
accuracy with which the LMTO method can give FS topologies will
be born out by our results. Interest in palladium and platinum
has kept alive because of their fascinating electronic properties
such as high density of states, large paramagnetic
susceptibilities with unigue temperature dependence, alloying,
catalysis etc., The FS of palladium consists of four sheets i.e. a
closed eiectronic surface c¢entred at ', a sheet of hole centred
at X, an open hoie surface and a sheet of L pocket hole. However
platinum has bnly the first three sheets and has no L pocket
hole. The study of palladium and platinum also involves the sﬁudy
of same effects as we have studied for noble metals. We observe
that in case of palladium and platinum the relativistic effgcts
play important role while these effects are fouﬁd toe be
negligible in noble metals. Similar to the case of the noble
- metals, the increase of number of % points and including angular
momentum expansion up to £=3 does not affect FS areas for
palladium but in case of platinum these effects are significant.
The results of this phase of investigation are compiled in
chapter 3. We found that the inclusion of relativistic effects,
in case of palladium and platinum, brings forth a dramatic
improvement in results. The AEF reduces to 4.0 mRyd with Slater
{at {a=0.75) for palladium and 2.7 mRyd for platinum with Slater
faa (a=0.815) (C potential from AE of 16.0 and 40.0 mRyd,

F

respectively.
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The many-body interactions {(such as electron-electron,
etectron-phonon and electron-paramagnon ) renormatise the dynamic
properties‘of bare electrons. We have calculated the enhancement
factor A (A=0 in absence of many-body interactions) and Fermi
velocities for +these metals. These are compared with other

theoretical results,.

All the metals discussed so far are paramagnetic. As an
example of a ferromagnetic metai, we have chosen nickel because
here the effect of gxchange interaction and spin-orbit
interaction has to be included. In chapter 4 , we have discussed
FS of nickel. We have calculated various FS orbit areas for
magnetic field along (001), (1103 anmd [(111] directions. We have
calculated AEF with different XC potentials,. QOur results for

nickel are in agreement with the experiment and other theoreticai

results.

The interpretation of pressure effects on bath, electran
transport and crystallographic properties of metals, wusually
requires some knowledge of the way in which the FS is affected by
pressure. Ve have studied the effect of hydrostatic pressure on
the FS of noble metals, palladium, piatinum and nickel, The
effect of pressure on the FS5 provides a valuable check on the
reiiability of band-structure calculations. We have calculated
pressure derivatives of extremal areas [d(inA)/dP] by performing
seif- consistent band-structure calculations at two different
radii. Our results are compared with the experimental results.
Thus chapter 5 is devoted to the effect of hydrostatic pressure

on the FS.
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The effect of uniaxial strain on the FS is discussed in
chapter 6. When a metal is strained, the electrén energy—-bands
shift by amount AE which depsnds on the tensor component of
strain € as well as the electron wave vector K. As a result the
fermi surface of a strained metal will differ slightly from that
of the wunstrained. Accufate prediction of the difference is a
severe test of an energy band calculation. We have applied the
uniaxial tension along [001]1 and [{11i1] directions in case of
noble metals and dependence of FS extremal cross-section areas
[d(lnA}/d{lnAS)] is calculated., Our results are consistent with

the results obtained by other workers.

The seventh chapter provides the summary and concluding

remarks about the present work reported in earlier chapters.
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THE LINEAR MUFFIN~TIN ORBITAL METHOD. DENSITY FUNCTIONAL THEORY.
EXCHANGE-CORRELATION POTENTIALS. FERMI SURFACE EXPERIMENTS AND
CALCULATION OF FERMI SURFACE

1.1 INTRODUCTION

It is impossible to wunderstand the behaviour of metal
semiconductor, or insulator without a good knowiedge of its
electronic band structure. The properties of matter under normal
conditions are governed by the behaviour of electrons that are
moving arcund the heavier nuclei. The stationary states of a
system of electrons moving in the mean electrostatic field of the
electrons themseives and nuclei can be revealed by electronic

structure calculations.

A field such as this has its own history and its own
philosophies. To many of its practitioners, the calculation of
band structure is a problem of computational technique, It is
simply a matter of finding a workable procedure that will
generate solutions of the equa‘t-ions to any desired degree of
numerical accuracy. The determination of electronic band
structure came to be regarded as an art, where one tried to build
up a model of the energy surface represented by some paramaters'
but consistent both with experiment and with some rough algebraic
approximation to the solution of the Schrodinger equation. The
success oOf this procedure has revolutionized the whole theory of
metals in recént years., To make further progress, however, it was
essential to combine technique and art into a science. So, we

have learned to treat this problem as one where algebric



analysis, numerical computation, and physical intuition all have

their part.

Energy levels in atoms are diserete and they are
designated by orbital and spin quantum numbers. A particular
energy level of an atom becomes N-foid degenerate for a system of
N atoms, each atom being isolated from the others. When these
atoms are brought closer together to form a solid, the degeneracy
is split and N levels spread into a band. One electron states in
a solid are called Bloch states. The direect computation of these,
or their investigation by inference from experiment, is therefore
one of major industries of soilid state physics. Each Bloch state
is identified by two gquantum numbers, a band index indicating the
band the state belongs g to and a wave vector representing its
¢rystal momentum. There are many methods to calculate the energy
bands of solids. Among the different methods, the linear methods
which have been used for over ten years, are often mofe trickey
to setup and to use but they treat uranium as well as sodium.
They can be more accurate and need smaller basis sets. These
methods are computationally very fast and hence are widely

preferred,

1.1.1 Band Structure Methods :

The electronic structure problem is solved within two
approximations

1. The Born-Oppenheimer approximation.

2. The one electron approximation.

The band structure problem is many body problem. In order
to solve this we have to resort %to numerous approximations of

vhich the first is the Bern-Oppenheimer approximation (38) in



which the motion of electrons is assumed to be independent of the
motion of nuclei. This reduces the problem to that of an
interacting electron system in the potential field of nuclei for
a particular configuration of them. Next comes the one-electron
approximation €173]1 which allows us to reduce the problem to that
of an independent electron moving in an effective crystal
potential- an average perodic potential due to all other
electrons and nuclei. The continual development and advent of
fast electronic computers have provided us with the capability of
solving the one-electron Schrodinger equation to any accuracy we
desire. Thus the problem ultimately boils down to the
construction of an effective one-electron crystal potential. So
in this picture one has to soive the one electron Schrodingr
equation.

2
- + {r) 13 . = . . .
(-v vV {r ka(r) EJk ka(r) (1.1)
where V(r} is total msan fisld, in order to find the one electron

energies Ej and wave function wjk(r). For a supposed total field

k
Vir) one solves the Schrodinger equation and the electroniec

charge density is constructed as

occ 2 .
n {r) = ¢ lek{rll (1.2)
ik

and then a new field is constructed by solving Poisson's equation

vulr) = -8m nir) (1.3)
for the electronic contribution ui(r), to which is added the field
from the nﬁclear point charges and exchange-correlation
corrections. With a weighted average of new and old fields, the

calculation is repsated and cycle iterated until the two fields



are consistent. When self consistently has been reached the
potential and total electironiec energy of the electrons and nuclei

are gbtained in the Born-Oppenheimer approximation.

Before presenting the LMTO method, let us briefly revisw
how the energy band-problem ha$§ been tackled in the past. In this
context we note that traditional methods may be divided into two
catggories depending whether they use wave function expansions in
some set of fixed basie function like atomic orbitals, Gaussians
and plane waves or they expand the wave functions in a set of
energy and potential dependent partiél waves as done in the
Korringa-Kohn-Rostoker (KKR}! and the Augmented plane wave (AFPY}
methods. The KKR and APW methods réquire a computational effort
which, despite recent attempts to improve the efficiency, Iis
barely feasible in truely self-consistent calculations. This 1is
particularly so in the calcula£ion of ground state proporties of
compounds and magnetic crystals, where self-consistency |is
imperative and in the calculation of excitation spectra, where
matrix oalements are needed. The linear combination of atomic
orbitals method, when used as a first principle method, is
cumbersome and when parametrised, it has either too many
parameters or the wave functions are ill defined. Thse iinsar
combination of Gaussian orbitals (LCGO) has some computational
advantage but it needs at least twice as many basic functions as,
say, the KKR method. The modern first-principles peeudopotential
method meets the requirements but it is limited to treating the
sp-like valence and conduction electrons. Computationally this
can be remedied by the addition of localized orbitals to the

plane wave basis set. But such a hybrid scheme is neither elegant



nor in accordance with the chemical and physical intuition based
upon the smooth trends observed through the perodic table. It is
necessary to wuse the self-consistent methods for computiﬁg
one-electron eigen values and eigen states with speed and
accuracy. The so called linear methods of band theory satisfy the
requirements rather well. This is true for the Linear Muffin Tin
Orbital (LMTO) method [11, 12, 13, 1968). This method is linearized
version of the Korringa-Kohn-Rostoker (KKR) method. Almost
identical. with the solid state LMTO method is the
augment-spheriﬁal wave (ASWIimethod of Williams, Kubler and Gelatt
(2413. In later years the LMTO method has been extended to treat
impurities in the crystal with the Green's function technigue by
Koeing et al [1301 and by Gunnarsson et al [93] and it has been
used for both metal and semiconductor hosts. Recently Harris
(1001, Casula and Herman [483 and Springborg et al [208, 209]
have developed the "LMTO for clusters and molecules. For
piane, crystal line surfaces thin-film LMTO technigues have been
devised by Fujiwara [85] and by Fernondo et al [80]. It was
recently dicovered that the conventiona! solid state LMTO basis
set can be transformed exactly into orthogonal [i4, 18]
tight-binding (TB) ([16] and minimal ([(135)] basis-sets and ‘this
simplifies and generalizes the solid-state LMTO me thod
considerably. This chapter describes the formalism of the LMTO
method. Density functional theory as well as some of the

experimental methods of measuring Fermi surface.

1.1.2 The LMTO Method :
The basic problem of "the band theory 1is to obtain

one-electron energies and wave functions by solving the



Schrodinger equation. So in this picture the energy bénd problem
may be separated into two parts ¢t one which depends on the one
electron potential and.atomic volume, and the other which depends
on the crystal symmetry. [t is therefore natural first to study
the one-electron states in a single sphere, then to place such
spheres on a regular lattice and establish the boundry conditions
which follow from the c¢rystal symmetry, and finally to introduce
the approximations leading to the LMTO method. To solve the
ong-electron probtem, one has to construect a crystal potential.
Let us consider a crystal with one atom per primitive ceill. Let
us approximate the crystal potential Vir) by a wmuffin-tin
potential which is spherically symmetrie within the sphere of
radius say SMTcentred at the atom and to have a constant value
v“Tz outside the sphere, i.e. jn the interstitial region between
the spheres. UHTZis known as muffin tin zero. This kind of
potential is designed to facilitate matching of wave functions
from the cell to ceill through the assumption that the elec¢tron
propagates freely between spheres with a constant wave number x =
YE - V- The justification behind this is that the wave length
2n/x is large when compared with the thickness of interstitial
region. Since 1in most applications we are interested only in
those electrons which barely move from cell to cell, the kinetic
energy Kz that is at the level of the potential in the
interstitial region between the atoms, * 1/2 Rydberg, and, hence,
1 to 2 Ryd below the vaccun level,

Let us, for simplicity, consider one atom per primitive

call and within a single muffin-tin well (Fig.1.1) we define the

potential as



- . <<
Vir) VMTZ r =< SMT
VMT(r) = (1.4 )
-
0 T > SMT
50 the hamiitonian for the muffin tin wells
H = -72 + ¥V _(r) (1.5)
MT
and the energy of this system
E = 2 + V___(r) (1.6)
MT2Z . *
50 we can write
H-E = -9° 4+ - R - %%
- = - E Vot (|r 1> - x (1.7)

where sum extends over the crystal. We now seek the solution of

the Schrodinger equation
9% + V. () -k | w (E,r) = 0O (1.8)
MT L )

for all wvalues of xz, for an electron moving in the potential
from an isolated muffin tin well embedded in the flat potential

v In this case, the spherical symmetry spreads throughout and

MT2”°

the wave functions are

Y (E,r) = icYgt?) W, E, T) {1.9)

. Y .
where L denotes the guantum numnber & and m, i, is a phase

factor and YE () is a spherical harmonic. Inside the MT sphere
-

and radial part w{{E,rl has to be regular at the origin in order
to be normalisable. It is obtained by numerical integration of
radial Schrodinger equation i.e.,

. 2
=g AL D Ly -Efrp (E.7) = 0 . (1.10)
z 2
dr r

for muffin tin potentiail it should be



z
d L€ + 1) 2
— " x + VMT(r) X rWJ(E,r} = 0 {1.11)

In the region of constant potential the solutions of (1.8) are

spherical waves with wave number x, and they satisfy (1.11) with

4 L) 2l ke =0 (1,12)
2 2 V4
dr r

This is well-known Heimholtz wave eguationm. We may take the two

linearly independent solutions to be the sperical Bessel function

i.e. j{(xr) and Neumann nt(xr) function. i.e. ji{xr) is regular
at origin as well as infinity while ne(xr) is regular at
infinity. In the small xr limits

. s

JJCKr) — {xr) /(2L + 1)1

xr — 0 {1.13)

np(kr) —— =(2¢ = 1)1t/ (kT) '

where the double factorial is defined by !! = 1-3-5- and -1!! =

1. The asymptotic forms are

C (ser) . sinikr - Lrn/2)
Iz i KD

XKl — & -(1.14)
cos{kr - £n/2)
n,(xkr) »
< KT

1.1.3 Muffin Tin Orbitals :

The muffin tin orbitals (MTO) constitute a popular and
efficient Dbasis set first ©principles electronic structure
calculations in solids. [ts advantages are the following : 1. 1t
is applicable to atoms from any part of the periodic table. 2. It
is minimal in the sense that per site only one s-orbital, three
p-orbitals, five d-orbitals and seven f-orbitals are needed.3.

The linear MTDs which constitute an energy independent set are



correct to first order in energy. 4. The set is complete for the
MT potential used for its generation but is not restricted to
treating MT potentials alone. 5. The MTOs may be expand about
other sites in terms of numerically evaluated radial functions,
spherical Tharmonics and cononical structure constants. This
together with the atomic sphere approximation (ASA), according to
which the MT spheres are replaced by overlapping (space'fillingi
Wigner Seitz (WS) gpheres, leads to a factorization of matrix
glements of nearly an operator into a product of structure
constants and radial integrals. 6. The MTOs are automatically

orthogonal to the core states.

To obtain the MTO we start from the wave function

wttE,r) + K cotin (kr} r 5

. JARY.
W (E.k,r) = 1Y () (1.15)

K ncter r 3
where wL(E,x,r) is the solution of (1.85 at energy E in the
entire space and the constant of integration cot(nJ) is obtained
by applying the bYboundary condition that the function should be
continuous and differentiable at the sphere boundary r=SMT' This

requires that

nzlxr) DJ(E) - xrn&(xr)/nt(xr)
cot (n (E,x!} = - . — : (1.16)
s j,ixr? D,(E) - krjt(Kr)/j (k) _
p4 Fs . 4 < r=5
MT
where the logorithmic derivative DJ(E) is defined as
D,(E} = S an(E’r, {1.17)
Z - WJ(E,S} ar r=§ :

This is monotonically decreasing function of energy except at its



singularities. The other function of energy known as potential
function depends only on the potential inside the atomic sphere,

c¢an be defined as

PctE} = 2128 + 1) 5 TET =% (1.18)

and it is an inecreasing function of energy and the two functions
have the forms shown schematically in Fig 1.2. For each ¢ they
consist of periods in energy l!abelled by the principal quantum

number n, and separated by the energies vn( defind by (1.19)

below. The advatage of working with P ,(E) rather then D,{E) is

¢ 4
that the poles of the former function are outside the range of

the ¢ band.

The energies vn separating the periods are defined by

£

DJ(VnJ)'= o (1.19)

and, within each perind, we further define the tree paramsters

B;’ Ct’ and Az through

DJSBJ) = 0
_DJ(CJ) = =£-1
DJ(AJ) = x . (1.20)

So one may call the energies BC and Ac the bottom and the top,
respectively, of the £ band. Similarlarly the potential function
gvaluated at D¢(CJ) = -f-1 is zero lead us to cail C{ the centre
of ¢ band. It may be shown that the energy derivatives D and P

are related to the amplitudes of the MTOs at the sphere boundary.

The important feature of the orbital (1,15) is that the
functions inside the well are reguiar at the origin, while the

tail xnc(xr) is regular at infinity. 1f we approximate the

10



crystal potential by an array of non-overlapping ﬁuffin-tin wells
as in (1.7) may be used in conjunction with the tail-cancellation
theorem to obtain so called KKR egquations. These have the form
which is given below and provide exact solutions for muffin-tin

geometry,
M(E)-b = O (1.21)

Computationally, however, they are rather inefficient and it is
therefore desirable to develop a method based upon the variationi
principle and a fixed basis set, which leads to the

computatinally efficient eigen value problem

(H - EQ)l-a = O {(1.22)

1.1.4 Expansion Theorem for MTO Tails
One reason for choosing the tails of the MTO as solutions
of the translationally invariant Helmholtz wave equation is the

extremely simple expansion theorem

- 2 - . * - r
nL(x,r - R) = 47 E' E" CLL'L“ JL,(x,r R )nL“(K,R R} (1.22
where
_ m - m" -~ * m'! -~ ~
CLL'L" = j Y; (x) Y{, () Yantx) dx (1.24)
[ 1) 1/2 rr
= (_gﬁ__:_l_J cz (L m* ; 4m) (1.25)
41

" are the Gaunt <coefficients. This expansion is wvalid inside

the sphere centred at R’ and passing through R, i.e. for

fr - ®%| < |R - R|. The coefficients c€”(&'m" ;{m) are tabulated

by Condon and Shortly [631].
The expansien theorm means that the tail of the

muffin-tin orbital i.e a spherical Neumann function including the

11



angular part ing(;l as in (1.9), positioned at R may be expanded
in terms of spherical Bessel functions centred at R°. The reason
for the expansion is that the Neumann functions centred at R* are
regular at the origin and therefore is expanded in the regular
solutions of the wave equation only. Conseguently, inside any
muffin-tin sphere the tails from the others spheres will have the

same functional form as the term proportionai to cot(nc).

1.1.5 Basic Formalism :

In the LMTO method, attention is focussed upon an energy
range centred around some energy E which we are free to choose
to suit the preblem at hand. For each value of ¢ we parametrize.
the energy dependence of the radial wave functions, its

logarithrnic derivatives and potential functions.
So as radial basis functions, for each value of ¢,
¢u£(r) = ¢£(Ev,r) {(1.28)

and its energy derivative

as,(E ,r)
. _ £ T
¢p£{r3 = 3E {1.272
E
v
where ¢£(E,r) = is the radial funetion normalised to unity in the
sphere.
. - 2 -1-2
¢J(E,r) = <wJ(E,r)> w((E.r) (1,28}
where the normalisation integral is
p - *
(wz(E,r)> = JwtmlE,r) wtm(E,r) dr {(1.29)

using the well known normalisation of spherical harmonic

<w3(E,r)> = Jﬁ wi (E,r) ridr (1.30)
0

12



Consequently, ¢v£(r) and épzir) are orthogonal and it may be

shown that they are both orthogonal to the core states. It can be

shown that an accurate description of the logarithmic derivatives

function D(E) and its inverse E(D) around a region (th 'Evt) can
' y o2

be obtained trough four parameters th T AL A and <¢v£ p

The corresponding radial logarithmic derivatives at the

sphere boundry are

D, = 5¢.,S) /¢, ,15) (1.31)

D, = S¢.,(S)/¢,,(S) (1,32)

. - 9
- ér

where

1.1.6 Potential parameters

For each value of { gquantum number, we use the four

parameters w(-2 - 1), S¢2(-2 - 1), ¢l-Z - 1)/¢(L) and <@°> 7%,
where
o {~) = w (-&£ - 1)
SpZ(-) = S~ (-Z - 1)
@l=1/Ppl+) = ¢l-& - 1)/} (1.33)
]
here + and - refer to boundry conditions D = £ and D = -¢-1,

which are the logarithmic derivatives of the spherical Bessel and
Neumann functions in atomic-sphere approximation (ASA). ASA is
common label given by 0.K. Andersen to the combination of
essentially two approximations, one being that the kinetic energy
x> of the tail of the partial wave may be fixed independently of

E, the other that the atomi¢ polyhedron of Wigner and Seitz may

be aproximated by an atomic sphere. In such a procedure the basic

13



unit in spéce is the .atomic sphere which by construction has the
same volume as the atomic polyhedron. The interstitial region
vanishes and kinetic energy x> consistent with (1,16} may be
chosen. In the ASA we choose k°=0,

Since the logarithmic derivatives form the link between
the atomic sphere potentiai and the crystal structure, so it is
convenient to consider the radial functions which satisfy the
boundray condition specified by the logrithmic derivatives.

A trial function of arbitrary logarithmic derivative D is
therfore the linear combination

o

2 (D, r) = ¢ {r) + (D) évtry : (1.34)

The influence of each sphere on the energy spectrum will then be
given as a set of potential parameters (1.33) which are the
parameters <é§c>, pius the parameters of the energy function

mtlb) and the ampiitude functions ¢£(D,S)E¢z(0). From equation

{1.34)

¢ (r]) D - Dv
w (D) = — L : (1.35)

¢v(r3 D - D

Witin the basis (1.32) we obtain the expectational value

of the Hamiltonjan, i.e. the energy as

23

E,(D) = E } (1.386)

-2 2
, . + w{(D)/ [ 1+ < ¢v£ > mJ(D) ] + 0 te
The variational estimate is correct to the third order in

z(E - Ev). [f the small parameter < éi( > is neglected and we get

E(D) = E_ + w,{D) + 0 (%) (1.37)

Z
These expressons are muqh.more genéral and these are around the
energy Ev which may be chosen to suit the the particular problem

at hand.
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The first parameter w,(-), according to equation (1,35)

<

represents the second order estimate of the position of the band

centre relative to E i.e.
ve

CJ = Ev( + MJ(—) (1,38)

Similarly, for the square-well pseudopotential

V, = E_ .+ 0 (+) (1.39)

The function w(D) and #{(D}) are thus related by

s ¢%(D) = - dw /dD (1.40)

The parameter S¢2(—) is proporticonal to the bandwidth of the ¢

band.
-~ q2¢ + 17
V, =.Sg¢f(-) =2 o =0 {1.41)
I y,
> - §
s~z (1)) o () )
W =S¢ () [¢ ‘_}] [¢ — 1} £=0 (1.42)

If we evaluate the estimates (1.40), P{(-)/gp(+)}) =~ 0.8 for free s
electrons, we find that G£ = (6, 9, 13, 16) x Sp®i{-) for s, p, d,
and f elecrons respectively. Hence the width of the ¢ band is of
the order of 10 Sg¢2(-).

1“2 determines the width of the energy window,

The <¢.>~
i.e. the energy range over which the variational_estimate (1.36)
is valid. The variation expressons depends on the Ev, which may
be chosen to suit the particuiar problem. The enegy Ev( around
which the expansion is performed is taken to be the centre of
gravity of the occupied part of ¢ band. Of other possible choices

of E the choice Epc = CJ results in best overall energy bands,

v d!

while Evt = EF gives the correct Fermi surface and correct Fermi

velocities.
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To see the signifiance of @(+)/¢(-), without going into

mathematice involved we find that
wli-) = wl+) = (2L + 1) S@l(~)/gi+) (1.43)

this shows that ¢(—)/¢(+) governs the distortion contained in the

scaling from canonical bands to energy bands.

The structure constant matrix Sﬁm J% is hermition and can
be transformed for the Im representation where the each subblock
is diagonalised. The (2{+1) digonal elements Sti if each subblock

are the unhybridised or pure, canonical ¢ bands. The pure n

energy band Enti‘k) obtain by n’th solution of PJ(E) = Sﬁi '

r's

which is merely a monoatomic mapping of the cancnical bands on to
an energy scale specified by n’th branch of the potential
function. The canonical bands have a number of properties such as
{i) A pure canonical s band diverges at the centre of the
Brillouin zone. (ii). The longitudinal branch of the canonical p
band is discontinuous at the c¢entre of the =2zone. (iii}. The
centre of gravity of a canonical band with £ > 0 is zero at each
value of the Bloch vector k. (iv}). The width of a canonical band
may be estimated from the second moment which depends only upon
the radiail destribution of the atoms in the crystal. (v). The

second moment of the canonical s band diverges etc.

1.1.7 Energy Independent MTO
In this section we will discusse the energy independencse

of the MTO, The amplituds xncfol' and logarithmic derivative

xSn}(xS)/n{(KS) at the sphere, as well as 1its tail, depend on

energy only through x. If we fix x at some sujtablie value, the
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energy dependence of the tail would be suppressed and this make
the amplitude and slope of the MTDO at the sphere energy
independent. So now we shall keep the energy E of the orbital and
wave number k of the tail as completly separate entities, fix x

and using linear combinations of MTOs in a variational procedure.

We shall now augment the MTO and show that the augmented

MTO

A
7]

WJ(Er r) + Kcot(nz)chxr) T MT
L,m

xL(E. X, r)] = i YJ {r} {(1,44)

, >

xNétxr) r 2 SMT
for a particular choice of the augmented spherical Bessel and
Neumann function J{ {kr) and Nz (kr) may be made energy

independent around a fixed energy Ev to first order in (E - Ev)'
At the same time, the muffin-tin orbital becomes orthogonal to
core states, ensuring that the LMTO method does not converge to
core eigenvalues. }n connection with the augmentation one should
realise that once x has been fixed, the spherical Bessel and
Neumann funtions lose their special significance as exact
solutions of the Schrodinger equation in the region of constant
potential. Hence, if desired, they may be replaced, i.e.
augmented, by more appropriate functions which are attached to
them at the sphere in a continuous and differentiable fashion.

To arrive at suitable definitions of J, and NJ we simply

{

disregard K’z E yfix x, and demand that the energy

Yurz
derivatives of the muffin-tin orbital (i.44)
xL (E, ¥, ) = wt (E, v} + xcot(nzﬁEIIJJ(xr) (1.45)

be zero at E = Eﬁ Thus the augmented spherical Bessel function
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A
N

- v, (Ev,r) / xcot(nf(Ev)) r MT

J, (rr) {1.46)

,JJ(K?J r SHT

This will make the muffin-tin orbital (1.44) energy independent,
i.e. x (E, %, r) = 0, to first order in (E - E_). The MTO (1.15)

is continuous and differentiable, we get

n, {xr) = wJ(E,r) + xcot(nttE}}Jt(xr} (1.47)

near the sphere boundary. Therefore

0 = wJ(Ev,r) + xcot(nJ(Ev))Jztxr) (1.48)
hoids to first order in (r - SMT)’ showing that (1.46) is
continous and differentiable at r = SMT' This result is a direct

consequence of normalisation which is implied in definition
(1.44) and which 1is <characterised by an energy-independent
amplitude n(KSMT) and an energy-independent logarithmic

derivative DIin,} at the sphere.

s

Froﬁ the defination of normalised partial wave $ (1.28)
and the trial function # (1.34), the energy derivative @ztEu,r)

is given by

: IR 1./2 2 1,2
W lE L r) = YR E 17 Tg i)+ Gl (E 0> (1) (1.49)

= <¢3{Ev)>‘lz§{D{¢£},r) (1.50)

From eq. (1.48) we can see that QJCEU) and jz(xr) will have the

same logarithmic derivative at SMT and consequently
- .oz 1/2 .
leEv,r} = <wJ(Eu)> E(D{JJ},ri (1.51)

In the same manner as in {(1.23), we define that tail Nttxr) as

ig



NL(k,r-R)

. *
an E,E,,CLL‘L" JL' (k, & - R"} np
L‘L
nL(K, r — R}
NL(x.r-RJ is everywhere

furthermore orthogonal to the core

except that centred at R.
Sp the simplified MTO is

[ xkn (kS)

continuous

<

|r - R| £S5

M
w %, R =R | ypop

{

otherwise

{1.52)

and differentiable,

states of all muffin-tin wells

<
T.iDin.1.57 2. Pin,h 1) T = Syp
£ ¥4
(k, ) = i5%%™ ;) (1.53)
xl_n Ki - £ I‘ " -
>
L ka(xr) r = SHT
and the augmented spherical bessel function by
[ jc(xS)
1 <
F (03,75 & (DLj, ), ™ P = Syp
JJ (xr} = 4 (1.54)
3 >
i J{{xrl r = SMT

So we see that yx is linear combination of ¢ and é which has the

logarithmic derivative Dinl
is also continous and differentiabl

states of atll muffin tins.

for use in connecton with variational

Hence these orbitals are well

and the augmented muffin-tin orbital

e, and orthogonal to the core
suited

principle.
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1.1.8 One-centre Expansion and Struéture Constants

A wave function for a MT potential of non-overlapping
array of MT wells, UHT{lr—Rll, centred at sites R of a
three-dimensional perodic lattice and embedded in a flat

potential may be written as the linear combination of MTO's

w(E, r) = YT at xt(E, K, r) {(1.558)
L
where we introduced the Bloch sum of MTO's
k ik-R
xL(E, K, r) =L e xL(E, Kk, r=r) {1.58)

It can be shown, using the expansion theorem (1.23) or
(1.52} that the wave function may be written in terms of a one

centre expansion of the form

xtus, K, P) = x (E, k, r) + LI, x, r):Bt,L(xJ (1.57)
where Bt,Lis the KKR structure constant defind by
X ik-R
£L'L = 47 T CLL‘L" e an"(x,RJ (1.58]

R=0

Equation (1.57) will converge inside the MT sphere at the
origin and in the interstitial region, outside the neighbouring
MT spheres but inside the sphere centred at the origin and
passing through the nearest-neighbour sites. The region of
convergence stated above follows from the fact that the expansion
thecrem {(1.22) is wvalid iside the sphere passing through the
nearest-neighbour sites while the tails are defind only oustide
their own MT spheres. The structure constants are independent of

- . k . c s
the potential, and the matrix 35,m;zm is Hermitian.

1.1.9 Secular Matrix
Use of the linear combination of muffin-tin orbitals in a

variational method has the advantage that it leads directly to an
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eigenvalue problem and it is possible to include non-muffin-tin
perturbations to the potential. According to the Rayleigh-Ritz
variational principle, one varies y to make the energy functional

stationery i.e.
&< w|H - E|w > = 0 ' (1.59)

Here E is the Lagrange multiplier. Egation (1.58%) hags solutions
when
det {<xt,|H - E| x:,n =0 {1.60)
using the Bloch condition (1.56) and rearrangement of the lattice
sums we obtain
-1 k

N <xt,|H—E|xt>= <xl£,|H—E|xL >0 (1.61)

The LCMTO secular matrix is obtained by inserting the one centre

expansion in equation (1.61). We obtain

k
<;:ct,|H - E| x| >y T Sxp. M - E} x>

k
fE R K - B0 Bt T L - Elx O oBr.
L" -
k k
FEL ELeLe pwlt - Ef I 20 BLomy

.o (1,62)
The subscript O means that the integral! is only over the sphere
at the origin. The ogne-centre term is the one that is zeroth
order in B, the two-centre terms are the ones that are first
order in B, and the three-centre or crystal-field term is the one
that is second order in 2.
Te turn the LCMTO method into an efficient calculational
technique, we introduce the atomic-sphere approximation and
paramerise the energy dependence of the one, twe and three centre

or overlap integrals. The resulting procedure constitutes the so
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called linear muffin-tin orbital {(LMTQ0) method. Now the LMTC

secular matrix may be written in the form H -EQ, which

corresponds to the generalised eigenvalue problem.

r (u¥, - glkgk ),k

L’ L Lo L' oL = 0 (1.63)

and this may be solved by efficient numerical techniques to give

ik jk .
E L .Here HL'L is the

is the overlap matrix.

the eigenvalues and eigenvectors o

hamiltonian matrix and BL'L

1.1.10 The Combined Correction Term

The atomic sphere approximation introduces errors which
are wunimportant for many applications, e.g. self-consistency
procedures, there are cases where energy bands of high accuracy
are needed and where one should include the combined corrections
terms. These terms arises due to the differences between the
atomic sphere and the atomic polyhedron, the k’= o used in the
ASA and the correct kinetic energy, and because of the neglect of
higher partial waves. The extra terms added to the LMTO matrices
that accomplish <corrections to +these errors are called the
combined correction terms. The correction terms are obtained by

inctuding the perturbation
— - z -
Vv {r) = thTZ E + ¥ ) [ eus {ir) eNT {r) ] (1.64)

us(r) and BMT(r) are step functions

which select out the region between the muffin-tin sphere and the

to the potential, where &

atomic polyhedron. With the combined correction terms included in

an LMTO calculation, one corrects the errors of the ASA to first

. z
order in [ vHTZ 4 }.
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1.2 SIMULATION OF RELATIVISTIC EFFECTS '

The reltativistic effects in 5d transition series and even
the 4d series, are quite large. It is therefore desirable to make
some provision for their inclusion in our metheod. The
relativistic Hamiltonian in the absence of any axternal field

takes the form (711

H o= - P o+ vir) - — D gt o+ B 3.9 v x p
Zm 2 2 =z
8m _c 4m._ ©
4]
2
+ D 9% vir) (1.85)
2 2
8m ¢
O
where Vi{r) is the crystal potential, & is the Pauli spin

operator, and p is the linear momentum operator. The first two
terms in (1.65) correspond to the non-relativistic Hamiltonian.
The third term is a correction to the kinetic energy operator
arising from the change of electron mass with wvelocity
(mass-velocity term). The fourth term & -(V V¥ x p) is the
so-called spin-orbit interaction operator. The last term,
referred to as the Darwin term,has no simple classical analogue,
The principal qualtitative effect of spin-orbit
interaction is to produce additional splittings in the d bands.
The remaining effect of this +term and the effect of other
relativistic terms {mass velocity and Darwin terms) are
guantitative in nature as they produce shifts and distortion of
the bands. It is reasonable to include the Spin-orbit interaction
term only between d functions, where degeneracy effects are
important. The inclusion of the spin-orbit interaction doubles
the dimension of the total Hamiltonian, since the Hamiltonian now

refers to both spin-up and spin down electrons.
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1.3 DENSITY FUNCTIONAL FORMALISM

A great deal of attention has been devoted to using
electron density as basic variable in applied quantum mechanics.
The basic variable is better alternative to gquantum mechanical
wave functioﬁ mainly in three ways :

Firstly, the electron density describes the three
dimensional distribution of electron in a system, and hence is a
function of only the three corrdinates and independent of the
number of coordinates of the electirons present. The density-based
formalisms offer great simplification over the usual wave
function approach becauss, difficulty in spolving the Schrodinger
equation increaées very rapidly as the number of electrons
incregses. Secondly, the electron density being a physically
observable quantity, the accuracy of the quantum mechanicatl
calculations”and approximations c¢an be tested directly. Thirdly,
it provides a classical picture of quantum phenomena, since the
electron density is a function of three spatial coordinates and

enables one to build up various interpretive models.

The electron density c¢can be utilized as a central
quantity and the formulation of many particle problem with in a
single particle like framework, is the essence of the Density
Functional Theory. Starting from the Thorms Fermi method an(
sevearal modifications, Density functional theory (DFT) has been
rejuvenated by the pioneering work of Hohenberg, Kohn and Sham
{105, 13231 who have laid its strict mathematical foundation and
thus provided a formal justification for the use of density as
basic quantity. Since then, a significant body of work has been

done to carry out various modifcations and extensive applications



tc a wide variety of problems in atomic, molecular and solid

state physics with remarkable partical success.

1.3.1 Hohenberg~Kohn Theorem :
Hohenberg and Kohn ([105] have proved two theorems. The
first one ‘establiishes that the nondegenerate ground state of an

interacting N-particle system under a static external single

particle potential V(r), which is completely characterised by the
single particle density, ni{r). The second theorem states that,
for a given external potential, Vi(r), the energy is a unigue

funetional of the particle density, nir), and the ground state
energy corresponds to a minimum of the energy functional with
respect to the variation of density function. The variation of
the particte density is performed wunder a constraint of

conservation of particles as given below :

f ni{r)dr = N (1.66)
where N is the total number of particles in the system. The

stationary condition

a{E tnl -z { nir) dr} =0 (1.67)

where u is the lagrangian multiplier, has been used to obtain

dE [(nl _
nes ~ KO (1.88)
dE [(nl . . \ . ,
where 35 (r7 is a functional derivative of energy functioal E,

with respect to the charge density n(r). The equation (1.68}
forms a key equation of density functional theory and provides a
deterministic equation for ni(r). If one considers a collection of
an arbitrary number of electrons mbving in a system under the

influence at am extermal potential Vi(r) and the mutual coulomb
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repulsion, then the Hamiltonian can be constructed as a sum of
kinetiec energy, T, potential energy, V, and coulomb repulsion

energy, U, as
H=T24+V + U {1.89)

where one writes T, V¥, and U as

|1 :

T =3 j e (r} Yy (r) dr (1.70)

v o= vir) ' (r) wir) dr (1.71)

U= 2 = ey oy i) (r* ) (r‘) dr dr’ (1.72)
= = I T ¥ (r} ¥ (r) w (r v (r r dr .

where w and w are the field operator and its conjugate

respectively.

1t has been assumed, for simplicity, that ths ground
state is non degenerate. Thus, the alectron density, ni{r) for the

ground state ¢, can be written as

n (r} = [ . w*(r) y (r) ¢J . (1.73)
which is clearly a fungtional of external potential V(r}, through
@

In order to write an expression for energy, in the terms
of density, one requires a knowledge about its functional form.
The energy functional E [nl, has been written by Hohenberg and

Sham [1051]1 as

E [n] = j Yir) nir) de + F Inl (1.74)

where F [nl] is a universal functiona! valid for any number of

particles and any external potential, viz.,
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F Inl = {p| T+ U lyp>> {(1.75)

assumes its minimum value for the correct ni(r), if the admissibie
functions are restricted by the condition of eq (1.66). If F [n]
is a known functional of n, the problem of determining the ground
state energy and density for a given extermal potential would be
just a problem of the minimization of a functional of the three
dimensional density function. However, the determination of F
(n]l], poses a major complexity in the many electron electron
system, because of the long range of cculumb repulsion. It is

convenient to write F [n] as

_ 1 nir! nir’) '
F I{nl = 5 I I r—i 7] dr dr * G Inl t1.76)

where G {(n] is a universal functional like F [nil and it includes
kinetic Tinl, exchange and correlation Exc[n]’ energy functionzals

and can be written as

G [nl =T fn]l] + E_ [n] (1.77)
Kxc

The final expression for E [nl is

E [n]=J v (r) ntr) dr + iJJ nir) nlr’} 4 Gr‘+ T [nl + E__[n]
2 |r - r ] XC

oo 11.78)

1.4 LOCAL DENSITY APPROXIMATION

Here, the basic idea is to assume the local density to be
uniform in an infinitesima] volume element of the space
coordinates. The kinetic, exchange and correlation energies for
uniform electron gas have been taken within that volume element

and added to the gradient expansion of the energy functional.
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Such an approximation might work well only when one assumes the

density slowly varying in space.

1.5 EXCHANGE AND CORRELATION POTENTIALS

To check the effect of exchange and correlation (XC)
potential on our problem, we have used different XC potentials
approximated by different workers such as von Barth-Hedin (BH)
[28]1, Barth-Hedin modified by Janak (BHJ) (112]), Vosko-Wilk and
Nussair (VWN) [231] Slater ¥a (1881 and Langreth and Mehl (LM)

£1371.

1.5.1 BH-XC Potential [28]
In our calculations we have used the BH-XC potential

given by Barth and Hedin. We have disscussed it very briefly.

The exchange and correlation energy can be defind as
£ = £ + £ (1.79)
XxC x <

where x as subscript means exchange, ¢ as subsceript means

correliation., Here &£ 1is the ordinary Hartree-Fock contribution
A

1
- - -5 [ 2n ] 3 1 ( p<+>4/3 R p(—>4/3 } (1.80)

)

The H and H,  are the contributions to the chemical potential
from the exchange and correlation energy. H and M arg given by
the formulae (1871

r de r ds

a X

My =€, " "3 37 % H. TS, 7 3 ar (1.81)
=]

From eq.{(1.80) and eq. (1.81)

P F P
= - (1.82)
le r (sx Fx )
-1/9 R
where ¥ = 4/3 a/ (1-a) and a = 2 ~~“and the p superscript means
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the paramagnetic state x=1/2, and F superscript means the
ferromagnetic state x=0. Now a new function f{x) can defind as

£{x) = (1-a) * § x*73

v (1-x0)*77 - Ay (1.83)
The exchange energy £, from (1.80) can be written as
_ P -1 P
s =&tV M fix) (1.84)
Similarly the the correlation energy can be shown as
e =& + 3¢ Yo fix) {1.85)
< X [ =]
and the » can be written as
c
voo= oy tef - £5) (1.886)
<& [ =] <
The r dependence of of the £ and pp is given by
b 4 b4
P €
g (r ) = - (1.87)
x = r
a
paolr ) = 473 £ (r ) (1.88)
b 4 a b4 a
where
e = — — 3~ 0.9163 (Ryd) (1.89)
x 2na° - v y '

The r dependence of the quantitiés e’ and & can be represented
s L= <
as [101]

r F
sP = -cp F[ 2 ] sF = -cF F[ > ] (1.980)
= I‘P < F

r
where
Flz) = (1 + 2%) ln[l + : ] + - - 2% —%— (1.91)
and -
e’ = 0.0504 ¢’ = 0.0254
rF = 30 f = 75

(1.92)
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They have cho .se these numerical values in order to
reproduce the correlation energy £_ as function of T whieh are
calculated using a ‘two-bubble' approximation for the exchange
and correlation energy as discussed in detail by Barth and Hedin

£2el.

1.5.2 BHJ-XC Potential [112]

Janak (1121 has made some modification toc iC potential
given by Barth and Hedin. There is small change in the numerical
value of the four parameters as disscussed in BH-{C potential.
This due to fact that they have chosen these four parmeters to
reproducer the correlation energies calculated by Singwi et al

[185). Now the new values of these four parameters are

0.045 c 0.0225

0
]

i

rF = 21.0 ’ r 53.0 (1.93)

LS

1.5.3 SLATER Xa XC Potential [1981]

Starting from the Fock term of Hartree sequation Slater
has given a exchange potential which include the adjustable
parameter o« as compare to earlier approximation given by him. So
making this Fock term into a form containing the electron gas

density as

X 4kF ki
peEX = F (1.94)

where kiis the coordinate axes in k-space which will point in the
z-direction and kF is the Fermi wave vector and function Fi{x}) is

given by

F(x) = —— + In {1.95)
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The first that comes to mind is simply to avsarags y&*
over all occupied states (i.e., over the Fermi sphere) .As a

result, we come to Slater approximation for the exchange

potential

ax _ _ F
VS] = 3 = (1.86)

If the potential is only averaged over the Fermi surface (i.e.,
the exchange interaction over the whole zone is assumed to be
equal te that of the FS electrons) we obtain the Gaspar-Kohn~Sham
exchénge potential

ex _ 2 .,ex _ _ F )
VGKS = ﬂg—V51 = 2 p (1.971}

Since the other averaging procedures are also possible, it
seems reasonable to take this 1i1nto account by introducing an

adjustable parameter «

ke
X s 3 0 —— (1.98)

a T3
For a=1 we retrieve the Slater exchange potential an at a = 2/3
we obtain the Gaspar-Kohn-Sham potential. The “correct"' value of

o lies somewhere in-between.

1.5. 4 ¥YWN-XC Potential [231]

Vosko et al (2311 have assessed various approximate forms
for the correlation enefgy per particle of the spin-polarized
homogenous alectron gas using the Pade approximant technigue. -

According to this approximation the correlation energy can be

written as
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b’ x (x = x 2% 2(b"+ 2x ). aQf
- — 911n = + - tan t— {1.00)
X7 lx ) £ (x) Q 2% +bT
and
2 | 2d F
eFir ) = AFd1nX + 2: tan ! Q =
¢ 8 %) Q 2x + b
brxa (x - x0>2 2(b° + 2x ) QF
- = In = + 9 tanw1
5 (x ) 27 (x) Q¥ 2x + b
{1.100)
Vhere
xFiex) = x2 + b¥x + ¥, af = cact - BT
iPix ) = x% + %« + cF (1.101)
o} s ] O
and
1F(x) = x2 + b'x + c, o = cact - (p" 73
$F(x ) = x2 + b¥x + 5 {1.102)
Q (8 ] Q

The values of A, xo, b and ¢ for the bes£ fit are 0.03109807,
-0.,409286, 13.0720 and 42.7198 for the paramagnetie case and
0.0621814, =-0.7432%94, 20.1231 and 101.578 for the ferromagnetic
case. These values reproduced the spin-depende- Random Phase
Approximation correlation energy. Thus the correlation energy is

given by

1}
b
3
+
h

g (r )
[ = 8 (=] a L]

- s:) F (1 + (D) (1.103)

where
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F = ( (gF)473 , (gFy472% _ 23/¢ o473 _ 23
= 1/(2.74208 + 3.182x + 0.09873x°% + 0.18268x7) (1.104)
Now the exchange energy can be defind as

sx(ra) = -0.91633059/r {1 + 4/3 F/5.1287628) (1.105)
s

& {r } = g {r } + & (r ) (i.108)
x o 8 o 8 c s
by adding eq.(1.200}) and (1.202) we get the exchange correlation

energy
1.5.5 Langreth and Mehl (LM) XC potential (1371

So far we have discussed different local ¥C potentials
approximated by different work;rs. In order to check the effect
of a non-lgogcal XC potential in our calculations, we have included
the gradient corrections to the local density potential proposed
by Langreth and Mehl. For a numbers of years Langreth and Mehl
[137] have proposed a workable calculation scheme for inéluding
the effects of exchange and correlation beyond the local-density
approximation [132) in nonuniform systems such as atoms, solids,
molecules, surfaces, ete, This was based on a mode of
approximation introduced to such systems by Langreth and Perdew
{139 - 142] and by others (1668, 176 - 1781]1. The work of Langreth
and Mehl [137) was based to large extent on the work of Langreth
and Perdew [142] and the type of approximation scheme introduced
there. This earlier scheme and its relation to the work of other

authors such as Gunnarssson, Jonson and Lundgvist (94 - 961,
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Alonso and Girifalco (101, Gunnarsson and Jones [97), and Kohn
and Hanke [(131] have been aptly reviewed by Williams and wvon
Barth [243]., Perdew and collaborators (162, 165, 2481  have
revived and elaborated on methods for correcting for
self-interactions. Later Langreth and Mehl [1381 and Hu and
Langreth [1071, as well as Perdew [163] and Perdew and Wang
{1641, have proposed modified gradient expansions for the

exchange-correlation energy.

Langreth and Mehl [(137] analyzed the dynamic density
fluctuation wave-vector decomposition of the exact
exchange-correlation energy. From thefr analysis, they derived a
gradient correction to LDA for the exchange-correlation
functional which satisfied the correct limits at large and small
wavelength. In so doing, they were able to aviod the pathologies
that plagued the previous gradient expansions based on
straightforward expansion technigques. Langreth and Mehl (LM)

developed the following functional form for this correction :

i >
2
357 v- -F -F/2)9-
V. (r1=8.56 x 10 ®a "t L K _ 2K - os (1-F/2)9-K
LM 9 Y
n 3n n
-5
_ 2 11F  7F° K? F (F-3) XV K
3 6 1z 2 2nK
n
"4 (ll 107)
_’ -
where K = V nir)
and
> TS0
F = 0.262 | ¥ ntr)| / Ini(r)] in terms of the total

electron density n or n(r).
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As LM correction involves gradients of the density, it is

extermely convenient to make the sperical approximation such that

one avoids gradients of the spherical harmonics. It does, of
course, limit the precision and may obscure important physical
consequences. So we feel, however, that the muffin-tin

approximation gives a wuseful first view. For consistency, the
correlation function decribed earlier by von Barth and Hedin (BH)
is used in this study as the basic exchange-correlation (XC}

functional to which we have added the LM corrections.

1.6 FERMI SURFACE EXPERIMENTS

The commonly used gxperimental methods to obtain
information on electronic structure of metals can be classified
intc two categories
(i) The Fermi surface gxperiments which determine the
Fermi-surface dimensions and the dynamical properties of quasi
particles.
(ii) Spectroscopic experiments which monitor the band structure

far off from the Fermi level.

Here we shall consider some experiments which give
information on fermi surface topology. In Table 1.1 we give a
list of experiments or methods and respective Fermi surface
related quantities that each of them yields information on. The
summary of methods for the Fermi surface determination as applied
to copper are also given in Fig. 2.1. Most of these experiments
are haged on.the behaviour of a metal in presence of magnetic“
field H and are performed at low temperature. The necessary

condition to observe these experiments Iis w T » 1 where w, -

eH

is the cgyclotron frequency, m_ the cyclotron mass and T is
(o]
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some appropriate average of scattering time. The higher 'is the
value of w.T the more accurately can the experimental
parameters be measured. As the magnetic field strength can not be
increased beyond a certain limit, T should be quite large s0 as
to satisfy above condition. Therefore, the sample should be very
pure and very low temperature should be maintained during the
experiment so that phonon scattering becomes unimportant and
electron is not appreciably scattered during one orbit of its
motion. In the de Haas-van Alphen effect experiment there Iis
additional requirement that KBT (KB = Boltzmann constant) should
be small as compared to fhe energy separation hmc of the quantum
levels., This is more stringent condition requiring temperatures
as low as 1| and 2 K during the experiment. Here we shall describe

only a couple of the Fermi surface experiments which are relevant

to the present study.

1.6.1 de Haas~-Yan Alphen effect [89, 150, 1921 :

The de Hass-van Alphen (dHvA) effect has proved to be the
most accurate and reliable tool for investigating the electronic
structure of metals in the vicinity of the Fermi 'surface,
Experimentally‘the mégnetization M {or susceptibility x ' of a
single crystal is measured at very low temperature ( 7 4°K) in
presence of magnetic field B as a function of field strength H
=|ﬁl and its orientation with respect to crystal axes. For a
tixed direction of erystal and ﬁ, M exhibits oscillations which
are periodic in H™!, These oscillations arise essentially from
gquantization of electron orbits in presence of magnetic field..

The frequency f of these oscillations is related with the

extremal Fermi surface cross section AFS {i.e. section with plane
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perpendicular to # which has extremal value) by

B 2ne
Acg = —o— f (1.108)
or
A {atomic units) = 2.673 x 10 °f (Gauss).... (1.109)

FS

from a knowledge of A for every extremal cross section as a

FS
function of orientations, one can determine the Fermi surface
topoiogy. In some special cases when a sheet of surface is known
to be closed, radius vectors can be obtaied from the areas by -
using some inversion theorems (127, 1541. This makes considerable
simplification in building up the picture of the Fermi surface,
since the building a surface from a knowledge of 1its <¢ross
sectional areas is a difficult Jjob even for simple c¢ases.
Alternatively, if the band structure of metals is known extremal
cross sectional areas can be calculated from the knowledge of
radius vectors of the Fermi surface orbits and direct comparison
with experiment can be made.

The amplitude of the dHvA oscillations has an essentially
negative exponential dependence on H_i, the exponent ©being

proportional to m_ (T + T, )/H. Here T is the temperature and T

D D

is the Dingle temperature which is related to an orbital average
of scattering probability. I[f the magnetic breakdown can take
place, there is a further reduction in amplitude which depends on

HO/H where H0 is the breakdown field. Thus mc, T. and Ho can be

D

obtaied from the studies of the temperature and field dependencse

of the amplitude.
1.6.2 Azbel - Kaner Cyclotron Rescnance [23]

The cyclotron resonance is the simplest Fermi-surface
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dependent phenomencon in metals and corresponds to microwave
transitions between the qguantized k-space orbits, called Landau
levels., In order to describe this phenomenon we recall that the
effect of a magnetic field on an electron in state ¥ with the

velocity V(ﬁ} is given by the Lorentz force equation [2481

MR = t(e/c) ¥ x H, (1,110Q)

where e is the electronic charge and ¢ is the velocity of light.

This Lorentz forece causes the wave vector to describe an
orbit on a surface of constant energy. If % happens to be the
Fermi wave vector, the orbit is given by the intersection of the
Fermi surface with a plane normal to H. 1f the electron is not

scattered, it makes a circuit with cyclotron freguency

w = el B (1.111)

where m is the cyclotron effective mass and is given by

m o= D §ﬂ__ (1.112)
c 2n v, (2
L
Qr
2
I -7
mc = 277.' T {1. 113)

Here V {%) is the velocity component normal to, and in
the plane of, the orbit; A is the extremal cross sectional area
of the fermi surface in the plane of the Fermi surface in the

plane of the orbit and E is the energy of the orbiting electron.

To measure mc a radio frequency (r.f.} field oscillating
with frequency o is applied. As w is varied, there will be large

energy absorption when © coincides with the cyclotron frequency,
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since then the acceleration produced by the electric field along
orbit is always in phase with the velocity of the electron at
that point. Therefore it adds coherently to produce a large

effect.

In case of metals, if the magnetic field is applied in a
direction normal to the surface, this scheme is not effective as
the skin-depth phenomenon prevents the penetration of the r.f,.
field. éut if the magnetic field be applied. parallel to the
sgrface of the sample, an electron in general follows the helical
path in real space with axis parallel to H. In each cycle it

comes within the skin-depth and sees the r.f. field. If the

frequency of the r.f. field coincides with the cyclotron
frequency, we again obsere the resonance known as the
Azbel’~Kaner cyclotron resonance (AKCR}. Thus knowing wc ' mc can
be catculated frﬁm eqg. (1.111). |

In addition t¢ above methods size effect, Kohn anomalies
in the phenon spectrum and positron annihidation etc. are used to
gain informations about the Fermi surface of.metals. Since we
have not used information from these experiments in this thesis,

we shall not discuss them further,

1.7 CALCULATION OF FERMI SURFACES

The LMTO method offers a convénient method for Fermi
surface studies because of the rapidity with which it calculates
the energy eigenvalues., As mentioned in earlier, the egtremal
crons-sections of the Fermi surface c¢an be measured through dHvA
exXxperiments. The extremal cross-sectional area perpendicular to a

particular direction {8, ¢) of the magnetie field can be
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calculated in three steps :-{1l) For the case of ferromagnetic
metals, the LMTD is set up with spin gantization along the
direction (&,¢) of the applied external #field. This is necessary,
since the energy bands and the size and shape of of the Fermi
surface will depend on ({8,¢) because of the presence of the
spin-orbit and the exchange interaction. In ihe absence of either
effect, there would be no (6,¢) dependence of the energy bands
and in that case (8,¢¢) can be neglected in the energy band
calculation. (2) Constant energy surface for ensrgy equal to AEF
is generated. For this one has to calculate energy eigenvalues at
large number of peints throughout the Brillouin zone. (3) Several
cross-sectional areas are measured and compared to obtain
extremal cross-sectional areas. The areas are found by numerical
integration of the radii calculated at a fixed interval of

rotation in the plane normél to the direction (8,¢). The

following integration formula has been used by Lee [144]

SA = —_ [ r + r ] —%— ( &y ) (1.114)

where &A is the area of a sector bounded by radii r1 and r2 and

Sy is the vertex angle of the sector,

1.8 PLAN OF THE THESIS

The material embodied in this thesis 1is organized in
following manner. Chapter 11 is devoted to the study of Fermi
surface of the noble metals using LMTO method. In chapter I11l, we
present the results of Fermi surface and related properties of .
paltadium and platinum. The Fermi surface of the ferromagnetic

nickel is discussed in chapter [V. Chapter V is devoted to study



of the effect of hydrostatic pressure on the Fermi surface of the
noble metals and transition metals Pd, Pt and Ni. The effect of
uniaxial tension on the Fermi surface of the noble metals is
discussed in chapter V1. Finally, in chapter VIl we summarize the

results cbtained in this thesis.
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A

TABLE - 1 1

list of various Fermi surface related experiments and

quantities about which they provide information.

the

Experimental method or effect

Yields information on

effects

1. i i ffect

1. Radio frequency size effec kextremal
2. Magnetoacoustic effect k

- extremal
3. Magnetic induced size effect 33

5>
4, Kohn an%maly kF
5. Compton effect ﬁp
6. Positron Annihilation ﬁF
7. Galvanomagnetic effect FS topology
B. dHvA effect A s mMasses
ext

9. Azbhel'-Kaner cyclotron resonance masses
10. Anomalous skin effect surface aresa
11. Tomasch Oscillation and related G

F
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CHAPTER I



: FERMI SURFACE OF THE NOBLE METALS

The understanding of the electéonic structure of noble
metals is a classic problem in solid state physics. The physical
properties of transition metal and noble metals are determined
iargely by the outermost d electrons in the atoms. As this
d-shell is progressively filled through a group of transition
metals, the physical properties vary drastically [(82]. The noble
metals follow right after the transition metals and have filled
d~-shells. Although the energies for the d band lie below the
Fermi level, these d-bands in noble metals strongly influence the
band-structure and related physical properties. For the last many
years noble metals have provided a test;ng ground for our
theoretical understanding of " the electronic structure of
transition metals. The main reasons for this are éi) Their f.c.c
structure is tightly packed. Therefore the muffin-tin
approximation made in most ©band structure calculations Iis
justifiable and (ii) They have been studied experimentally and
theoretically in great detail! so that these metals can be used to
debug our programs. Another reason for choosing noble metals is
that spin-orbit effects vary from negligible to predominant as we

move from copper to goid.
2.1 BAND STRUCTURE AND FERMI SURFACE

We briefly review the various investigations
{experimental and theoretical) of the electronic properties of
noble metals. The noble metals crystallise in the fcc structure.
The first Brillouin zone for this lattice structure 1is the

truncated octahedran as shown in Fig.2.1. The Fermi surfacs (FS)



of noble metals would be spherical and would ilie entirely within
the first Brillouin zone (BZ), if the periodic lattice potential
felt by an electron were negligible. The bulging of FS aiong
<100> and <111> direction as shown schematically in Fig.2.2 is
due to the lattice potential. With the magnetic field along the
<111> direction in the de Haas-van Alphen (dHvA) experiment, a
*"Belly®” (B1lll) and a "Neck" (Nii1i!) orbits are observed. With the
field in the <110> direction, a hole orbit resembling a *Dogbone"
(D11C) is seen and in the <100> direction another Belly orbit

{B100O) about- the spherical body of the surface is observed {(192].

k|

The study of the ancmalous skin effect by Pippard [1681]
was the first indication of the presence of necks in copper and
was latter confirmed in all the ncble metals from dHvA studies by
Shoenberg [(1911. With the subsequent improvement of experimenal
techniques it was possible to determine (40, 98, 11i, 119 - 12},
210, 216 - 2181 the Fermi surface to substantialily higher
accuracy than the earlier measurements of Shoenberg {1911, Jan
and Templeton [1t1]), O0'Sullivan and Schirber [217, 218] and
Coleridge ot al [62] have made high precision (~ 1 in 10°)dHvA

‘measurements for various symmetry direction orbits in all the

noble metals.

On the other hand calculations of band structure of nobie
metals can be divided into two categories H one is - the
parametrization schemes and the other is first principles
calculations. We briefly discués‘ them. Roaf [180) proposed an
analytic expression to represent the Fermi surfaces of the noble
metals in the form of a 3-dimensional fourier sum on the basis of

Shoenberg's [191] results in which the coefficients were adjusted



to bring the computed cross-sectional areas into agreement with
measured values. Zornberg and Mueller [(247] have proposed another
approach which was applied to the experimental results of Joseph
et al [119 - 121] using Mueller's inversion scheme [1541. They
obtained radius vectors for the copper Fermi surface to an
accuracy of = 1 percent using an eleven-term cubic inversion
scheme. A considerable advance was made by Halse [98), who used
the best available experimental results and the method of Roaf to
specify the Fermi surfaces of Cu, Ag and Au to an estimated
accuracy of O.1 percent in the Fermi radii. Coleridge and
Templeton [62]1 have been able to reproduce the cross-sectional
areas to within experimental error in all the noble metals uUsing

Halse's scheme.

In recent years much effort has been devoted to a deeper
understanding of the electronic .structure by first-principles
energy band calculations in Cu [25, 43, 78, 110, 150, 185, 207,
2351 Ag [32, 51, 56, 58, 110, 186, 2061 and Au [26, 57, 60, 61,
110, 134, 174, 1993, Ve will not discuss the merits and demerits
of individual caiculations as most of them have been reviewed by
Dimmock ([723. These studies include both the relativistic and
non-relativistic calculations wusing the augmented plane wave
(APW} and the Korringa-Kohn-Rostoker (KKR! methods. Although
these calculations are in qualitative agreement with +the
experimental results, the band gaps in general wvary appreciably
from one band calculation to another. These variations in band
gaps may be attributed to approximations made in the construction
of the one electron crystal potential. It has been shown by

Williams et al [240] that the band calculations in Cu derived



from Chodorw potential yield energies (for above the Fermi
level) which are in error by as much as 10 percent. Janak et al
(1151 have reported the band structure ecalculations of copper
using KKR method with the exchange coefficient a appearing in
Statef's Xa theory as a adjustable parameter so that the ground
state energy bands generate the measured Fermi surface. The
theory treats all electrons identically and provides a more
accurage unified interpretation of Fermi surface than previously
obtained. On the basis of detailed comparison of the wvarious
calculations, particularly the non-relativistic ones, Dimmock
[72] concluded that "it appears that the accuracy of the order
{C.1 to 0.2} Ryd is the best one can hope to expect from the
first principle -calculations in silver®. Christensen has
constructed several potentials in Ag [(56] and it was shown that
the band structure in particuiar the d band width and position
responded sensitively to changes in the crystal potential.
However it waé possible to select rather unambiguously the
appropriate potential by comparing with experiments. Using.the
relativistic augmented plane wave (RAPW! calculation [61] he
found that the relativistic shifts and the spin-orbit splittings,
are essential even in Ag. Similar calculation have also been done
for Au [55, 61]. The comparison of these c¢alculations wi£h the
non relattivistic one has demonstrated [613 that the shifts and

splittings due to relativisitic effects are quite large for gold.

We had previocusiy used Mueller's [155] (and modifications
of it {2001 ) interpolation scheme for calculating Fermi surface
and optical properties of the noble and some transition metals

[i, 343. Qur reasons for choosing the interpolation scheme were



(i) it is very fast (ii}) it gives the band structure and (iii) it
can be used to calculate Fermi surface geometry. The
Korringa-Kohn-Rostoker (KKR)method of . parametrizing, which has
now been made very fast has been used either for Fermi surface
geometry [189) or for band structure [52] but not for both. Since
calculations of extremal areas take a lot of computer time, it
would be nice to have an ab—initio.band structure method which
satisfies our three reguirements. The LMTO method seems to fit

this bill.

Recently Jepsen et al [117] calculated the band structure
and F5 of the noble metals using the Linear augmented plane wave
(LAPW) method with potentials constructed wusing the local
approximation to the density fumnctional. fermalism and calculated
self-consistently by the atomic sphere approximation (ASA) to the
linear Muffin tin Orbital (LMTO) method. Relativistic bands
shifts (i.e. all relativistic corrections}! were included but
spin-orbit coupling was neglected. Jepsen et al {117] have shown
that their potentials give the Fermi surface comparatively
satisfactorily although it is not possible to cbtain a
satisfactory account of optical execitation energies if these are
interpreted as single particle energy differences. In order to
place the d-bands correctly, many—-body corrections would be

needed [117]1].

We would like to take the cue from the work of Jepsen et
al and address ourselves to the question: can a first principle
band calculation give an accuraté representation of the Fermi -
surface (FS5) geometry 7?7 This 1is a valid question because the
density functional formalism should give the correct Fernmi

-
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surface which is a ground state property. In fact the de Haas-Van
Alphen experiments measure extremal area. It would therefore be
meaningful to calculate the extremal areas. Jepesn et al have
suggested that the Fermi surface of noble metals can be weil
represented by (i) the neck radius and (ii) the ratio A =
kFEIOOJ/kFEIIOJ, We argue that FS5 geometry means extremal areas
which inclues many E-vectors and not just two or three radii. One
of pur aims is to ascertain if Jespen et al criterion is indeed
correct 1i.e. that the two quantities above mentioned are

sufficient to characterize the Fermi surface geometry of the

noble metals.

The calculations discussed so far are in the loeal
density functional approach. Iin order te check wheather the
nonlocal density functional approach could improve the results or
not, peopie have gone beyond the local density approximation.
Langreth and his group have done a lot in this direction. The
nonlocal corrections given by Langreth and Mehl (137] are also
diséussed in detail in chapter | and has been successfully tested
in non-uniform systems as surfaces and atoms where it has been
found to be a significant improvement over the LDA. Langreth and
Meh]l (138] have applied it for metallic surface energies, as well
as to self-consistent atomic calculations which include the
ground-state energies of a number of atoms, plus the removal
energies, In all cases tried a substantial improvement was found.
Mali et al [149] have reported the calculation of electronic
properties of some solids using non local density approximation
as suggested by Langreth and Mehl in conjunction with

atom-in-jellium model and compared their results with LDA. They



find an improvement in the orbital eigenvalues and total
energies. Bagno et al {243 have calculated the ground state
properties {(such as cohesive energy, lattice parameters and bulk
modulus ) of the third row elements using the Langreth-Mehl-Hu
(LMH) (1071, the Perdew-Wang (PW) [164] and.gradient expansion
functionals. Both the PV and LMH functional are found to removs

half the errors in the local spin density approximation.

All the nonlocal calculations discussed above do not talk
about the Fermi surface calculations which are of course, of our
interest. In later years Norman and Koelling [(160) have tested
the LM gradient correction to LDA for exchange and correlation
functional with the use of band structure of copper and vanadium.
They have performed band calculations using LAPW method and a
warped-muffin-tin (WMT) potential. For copper they have reported
the selected eigen vaiue and the Fermi-surface calipers : two on
the belly structure ( the <100> and <110> direction ) to give its
anisotropy and a neck radius to characterize the size of qecks.
These calculations are compared with the previous local work and
the characterization of the experimental measurements. They hava
shown that LM corrections have degraded the agreement with
experiment. The anisotropy of the belly is increased when it is
already too large. This is in contradiction to the prediction
that nonlocality in the mass operator should yield reduced
anistropy. As that prediction was made for simple metals where
one does not have a relative s-d shift entering and so highlights
the significance of the s-d shift., The neck radius is increased
where it is already too large, as well. They have concluded that

the upward shift of the d-bands is not beneficial in case of the
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copper but in case of vanadium it results in an improvement in

the calculated Fermi surface.

Recently Barbiellini et al [(27] have studied the gradient
corrections to the LD potential proposed by Perdew and Wang and
to some extent by Langreth, Mehl and Hu in a self-consistent LMTO
band calculation in order to determine groundstate and band
properties in some 3d, 4d and 5d transition metals, and in the
alkali metal Li and Ce. In tha case of copper they have shown
that the small changes in the Fermi surface from PW caiculations

go in the correct direction, but are not sufficiently strong and

the PW and local density bands are almost identical. The results
using LM potentials are still smail but opposite. They have
concluded that the overall results obtained via

gradient-corrected potentials are not yet suffciently good to

replace the LD potential.

2.2 CALCULATIONS AND RESVULTS

In this part we report caiculations of extremal areas for
the noble metals using the LMTO method in ASA. We have studied
the effects of (i} wvarying the number of [4 points in the
irreducible-Brillouin Zone (BZ) summations ({(ii} including the
f-band parameters and (iii) varying the exchange-correlation (%C)
potentials with the view of ascertaining which one is most
appropriate for Fermi surface work. The effects of relativistic

shifts have also been studied.

We have used the LMTO method in ASA, to calculate the
energy eigenvalues and eigenvectors. Our primary reason for

choosing this method is that it is very fast; as fast as the

245668
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empirical methods with the advantage of being an ab-initio
method. The calculations are done to self-¢onsistency which we
take to be that the change in the potential parameters is in the
fifth decimal place. We belisve that this will converge the

T Ryd. Starting from the

energy eigen values to within 10
parameters given in Skriver's book [1561, tﬁis takes about half a
dozen more iterations. Using these seif-consistent parameters, we
have calculated Fermi surface orbital areas and masses using
Stark's (2121 area mass routine. The area/masses of the computed
surfaces in a plane normal to direction (i.e. the magnetic field)
were found by numerical integration of radii calculated at a
fixed interval of rotation in that plane. In calculation reported

here the stepping angle &8 1is taken to be 5°. Making this 2%°

chénged the calculated areas by less than %%.

Iin the past, authers have taken percentage error (114,
1153 in the Fermi surface area as a meaningful index of the
success of the fit to the Fermi surface. We take the view that in
a band calculation, since we are calculating energy eigen values,
we would like to know the error in the eigenvalues. |t would be,
therefore meaningful teo talk of error in terms of the shift in

the Fermi energy AE required to bring the calculated Fermi

F

surface area in agreement with experiment, AEF can be calculated

using following formula [1457.

A - A
AE_ = 1 expt. calce. (2. 1)
F n my
where A and A are experimental and calculated areas and
expt. calc,

mb is the band mass of the orbit. For a band structure the value

of the maximum spread in AEF will be called the 'extreme error’'.
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We would also like to stress that the area-mass codes calculats
eigenvalues at each K point on the Fermi surfaces and use no
fitting procedures (as used in APW and KKR methods). There is no
need to do the fitting as LMTO is very fast. Our calculations are
compared with the very accurate data of Coleridge and Tempieton

[62].
2.2.1 General Considerations @

Jepsen et al {117] have calculated the band structure and
Fermi surface of the noble metals using the LAPV method with the
potentials constiructed using the local approximation to density
functional formalism and calculated self-consistently by the ASA
to the LMTO method. Relativistic band shifts were incliuded but
spin orbit coupling was neglected. They include the s,p,d and f
potential parameters with the BZ summations being performed over
715 points. Me would first like to address ourselives to (i) the
effect of neglecting the f-potential parameters and the effect of
varying the number of B points in the BZ summations. These are

done for copper.

Consider first the effect of truncating the {-expansion
in the potential parameters. We have performed calculations with
240 % points in the BZ summation in twe ways by including (i} ¢ =
0,1,2 terms and tii) £ = 0,1,2,3 potential parameters for copper.
Our results for the four Fermi surface orbits are.given in Table
2.1. For these calculations, we have used the Barth-Hedin (BH)
exchange correlation (XC) potential (28}. A look at Table 2.1
shows that the results do not change significantly by including

the £ = 3 terms. The extreme AE which is determined by the Nill

F’
and Bl1il orbits reduces from 12.5 mRyd to 11.5 mRyd, which is
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within the accurscy of the LMTO eigenvalues. Hence ail furthers
calculations are performed by angular momentum expansion up to
£=2. Calculations were next performed using 240 4 points, 505 4
points and S16 [ points in the BZ summations. These results are
also given in Table 2.1. Once again we have used the BH-XC énd
included the s, p and d potential parameters. We obtain an
extreme AE_ of 12.5 mRyd (240 ¥ points), 11.8 mRyd (505 ¥ points
) and 12.3 mRyd (816 ¥ paints). There is no significant change.
Hence all further calculations are performed with 240 ﬂ points
and inciuding ¢=0,1,2 term only. We have calculated energy band
structure of the noble metals by determining the eigenvalues at
each ¥ points but confined to the irreducible 1/48 th portion of

the BZ2. The band structure obtained using Slater ¥a-X¥C potentials

along symmetry directions are displayed in Figs. 2.3-2.5.
2.2.2 Copper

A lock at Table 2.1 indicates that the BH-{C potential
does not give a good representation for the FS of copper. An
extreme AEF is around 10 mRyd, larger than an extreme AEF of
about 0.1 mRyd obtained with the interpclation scheme [194] or by
the KKR parametrization {189]. We have alsc calculated AEF for
parameters of Jepsen et al [117]) and obtain 14.5 mRyd. Morever we
have to lower EF by about 15 mRyd from the value given by Jepsen
et at [117]1. This may be attributed to the fact that they used
the LAPW method for calculating eigenvalues. With the view to
ascertaining how the various treatments of XC influence the
eigenvaiues and the Fermi surface, we have repeated the

calculations with the Barth-Hedin XC potential using Janak's

{BHJ) parameters [112] (which make it same as the Hedin Lundquist
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{HL)} XC potential {101}, Slater ¥« potential [158) and the recent
most accurate Vosko-Wilk-Nussair (VWN} XC potential (231]1. Janak
et al [114, 11i5] have shown that the ¥« method with a = 0.77
gives a good fit to the Fermi surface of copper. We have

therefore taken o= 0.77 in the Ia method.

The calculated Fermi surface areas for various XC
potentials for copper are given in Table 2.1. The values of
extreme AEF for the various %C are 4.1 mRyd (%a method with a=
0.77), 13.7 mRyd (BHJ), 5.7 mRyd (VWN) and 12.5 mRyd (BH). The iax
method with a= 0,77 gives the best fit to the Fermi surface data.
The price we pay 1is that a is an adjustable parameter sco
sbhvicusiy the fit is better. Note the recent IC of VWN is alsoe as

good as the Xa results. The BH and BHJ do not give a good

representation for the Fermi surface of copper.

At this juncture we would like to compare our results
with those of Janak et al (114, 1151 who have performed
self-consistent calculations for copper and silver using the KKR
metheod. They have taken the N1ill and Blll orbits to decide thg
fit- to the Fermi surface. (Qur calculations support this. A look
at Table 2.1 indicates that the extreme AEF is indeed @governed
by the N1l11 énd Bill orbits for all the XC used except for the ia
and for the VWN-%C where it is governed by N1i11 and D110 orbits.
Janék et al found that a= 0.77 in the ¥a method provides the best
fit to fhe Fermi surface. Using their results we obtain the
extreme AE to be 6.7 mRyd (for -the four orbits) which is

F

slightly larger than the AE_ obtained by us. We have not explored

E
the possibility of varying a any more because we feel that

variation with a gf the Fermi surface orbits will not be much
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different from that obtained by Janak et al. All the extreme AEF
are much larger than the AEF of about 0.1 mRyd obtained by the

interpotation scheme [194] or by the KKR parameterization [189].

Jepsen et al have determined the goodness of the Fermi
surface geometry by calculating only two parameters (i) neck
radius kN/ks where ksis the radius of the free-electron sphere
and (ii) an anisotropylparameter A = kFtloolko[1103. Ve have
also calculated these and are given in Table 2.1 for the various
¥C potentials. Although the chamnge in these parameters is small
for the various XC potentials nevertheless the ¥a (a = 0.77)
gives the values that are closest to the experimental values. Ve
are surprised that Jepsen et al contention that two parameters
characterize the copper Fermi surface has been well borne out by
our calculatiens. It is surprising to note the difference in the
values of kN/ks and A obtained by Jepsen et al and by us using

their potential parameters. This could be due to the fact that

they used the LAPW method

Ve have calculated Fermi surface <calipers and Fernmi
surface areas using the nonlocal Langreth and Mehl correction
terms. These correction are added to the local
exchange-correlation functions describea by von Barth-Hedin. All
the calculations are done with 240 % points and taking the
angular momentum expansion up to ¢ = 2. The calculations are
compared with the results of the 1local exchange-correlation
potential of BH to ascertain the effect of the nonlocal
corrections. We also compare our results with those of other
workers. Norman and Koelling [1601 and Barbiellini et.al (271

have characterized their results for the Fermi surface of copper
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in terms of a few critical calipérs i two belly‘radii and one
neck radii. We have also reported the Fermi surface caliper for
copper in Table 2.2 and compared it with experimental results
[62]1 and our local potential results. These results show that the
nonlocal corrections have degraded the agreement with the
experiment in accordance with the results of Norman and Koelling
and Barbiellini et al. As these changes are very small, it is not
possible to make any comment on the predication that nonlocality
should reduce the anisotropy (which is for the simple metals

where one does not have relative s-d shifty).

In order to get better understanding of the effect of the
nonlocal corrections it would be better to calculate the Fermi
surface areas (as areas require many more 'l: vectors). We have
calculated the Fermi surface areas using local (BH) and Langreth
and Mehl's nonigcal potential. These are given in Tabie 2.3. In
the case of BH-XC poential AEF for the Blii orbit was 1.1 mRy but
for the nonloccal potential, the AEF is 2.0 mRyd. Similarly fﬁr
the neck area AEF goes from 9.6 to 11.5 mRyd but in case of B100O
it is reduced by 0.6 mRy. The pvearall extreme AEF is increased by
3.0 mRyd in comparison with the local BH-XC. Hence we can say
that the Nonlocal potential degraded the agreement of Fermi
surface area with experimentaly measured one. This is in

agreement with the calculations of Norman and Koelling and

Barbiellini et al thus lending credence to our calculations.

2.2.3 Silver

Ve have performed similar <calculations for silver.

Results are given in Table 2.4. The extreme AE_ using the various

F
XC are 16.4 mRyd{BH), 16.3 mRyd (BH with f band parameter) 25.5
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mRyd (Jepsen's parameters), 15.&% mRyd(BHJ), 15.3 mRyd (BH with
8505 X points), 0.9 mRyd {%a with a= 0.77) and 3.8 mRyd (VWN). As
in case of copper, the extreme AEF is again governed by the Nlil
and Bill orbits except for the {a case where it is Bllii and B10O
orbits. Al!l resuits are for 240 ¥ points and incliuding £ = 0,1,2
terms only, unless stated otherwise. Once again, we find that ia
~method (wth a= 0.77) gives the best fit to the data. In fact this
is the kind of agreement one gets with the KKR parameirization
{1891 or interpolation scheme [1941]. Amongst the other XC
potentials, the VWHN is the best.‘ We have also calculated the
neck radius kN and anisotropy parameter A. Again we find that the
Xa method ( a= 0.77) gives values for these iIn good agreement
with the experiment. It is pleasing to note that our kN/ks and A
agree with the values obtained by Jepsen et al. For copper this
was not the case. Calculations by Janak et al [114, 1181 give an
extreme AEF of 8.5 mRyd. Thus we are led to the conciusion that
the LMTO method in ASA gives a better representation to the Fermi
surface of copper and silver using the same « in the ¥a method.
The VWN fares best considering that it has no adjustabile
parame£er. We have also studied the effect of non-local LM-XC

potential on the FS of silver and find that it does not lead to

any change when compared with 1ocal potential (BH-%C}.

2.2.4 Gold :

Table 2.5 summarizes, our resuits for gold. The extreme
AEF for the various XC potentials are 3.2 mRyd (BH), 3.6 mRyd (BH
with f-band parameters), 2.8 mRyd {Jepsen's potential
parameters), 3.5 mRyd (BH with 505 I points), 3.4 mRyd (BHJ),

19.5 mRyd (VUN) and 15.8 mRyd (¥a-¥XC with a = 0.77). Unlike the
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cases of copper and silver the extreme AEF is now not governed by
the same two orbits. In fact for various XC potentials used, the
orbits always vary. The féct that the ia-XC doe§ not give a good
fit to the Fermi surface of goid suggests the need to vary a. Ue
have performed calculations for wvarious o«'s and plotted the
results in Fig, 2.6. The figure illustrates that even in fa-%C,
different wvalues of a give different orbits which control the
extreme AE_. From the figure we find that a«= 0.683 would yield an

F
extreme AE_ of 3.5 mRyd, which is the same as with BH and BHJ iC

F
potentials. 0On calculating kN and A, we find that those IC
potentials which give the best fit to the Fermi surface geometry
also give values of these parameters in agreement with the
experiments.AAgain the kN/kS and A calculated by us do not agree

with the values of Jepsen et al . In case of gold alsoc the non

local LM-XC does not affect Fermi surface area.

c.2.5 Relativistic Corrections

With the view to determine how relativitic corrections
would influence the shape of the Fermi surface, we have decided
to study gold because here the relativistic corrections are the
largest. We have calculated the relativistic bands along symmetry
directions. These results are plotted in Figures 2.7-2,10. Our
calculations demonstrate that the neck radius is almost unchanged
by relatiuistic band shifts. However k_[100]1 increases by 0.3%

F

amd kF[110] decreases by 1.4%. This changes A to 1.226, This will

tend to reduce the B10G area slightly but will leave the extreme
ﬁEF almost unchanged. Hence relativistic corrections are not

sufficient to reduce AEF significantly.
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2.3 CONCLUSIONS

In this chapter we have reported results of accurate
caleulations of four FS orbits for the noble metals using the.
LMTQO-ASA method. These caiculations have been performed by (i).
inciuding or neglecting f-band parameters, (ii) wvarying the
number of % points in the B2 summations and (iii) using different
XC potentials. Our results indicate that the f-band potential
parameters have only a marginal influence on the F5. This is not
surprising because f-bands are at least & 5SeVY above EF' Ve also
find that by changing the number of 4 points in the BZ summation
from 240 to 916 does not change the F5 signiffcantly. Table 2.6
summarises all our results for the noble metals with various XC
potentials. 1t is obvious that no single ¥XC potential gives a
good representation for the FS of the noble metals. The X« method
with a variable a« gives the best agreement with the experimental
data. The value of « for Au comes to be 0.693 while for Cu and Ag
it is 0.77. The BH and BHJ XC potentials work weill for Au but not
for Cu and Ag. The VWN-XC potential gives the Ag FS
satisfactorily but not for Cu and Au. Thus no single X¥C gives the
FS of all the noble metais satisfactorily. We are a bit surprised
that the VUN-XC potential which 1is mest reliable (with an
estimated maximum error of 1 mRyd) gives such a large extreme
ﬁEF. The best agreement works out to be an exireme AEF of 3-4

mRyd (0.9 mRyd for Ag is surprising and stands out from others).

It is worth noting that these AE are smaller by 50% than those

F
from accurate and detailed calculations of Janak et al and hence
are the smallest ever opbtained by an ab inttto band calculation.

They are still an order of magnitude larger than the AE_=0.1 mRyd

F
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obtained by empirical methods. Clearly the empirical methods with
many adjustable parameters cén give a better representation for
the FS geometry in noble metéls and no ab-initio method can hope
to compete with them. The nonlocal XC by LM does not improve the
results. In case of copper it degraded with experiment while in

case of silver ahd gold it does not leave any effect.

We have also studied the suggestion of Jepsen et al that
the FS of noble metals could be characterized by kn/ks and A=
kF[100]/kF[110] . Here again we find that there is no consistent
picture. For <Cu and Ag, the XC potentials which give good
agreement with experimental areas aiso give values of kN/kS and A
in agreement with the experiment. For Au, this was not found to
be the case. We find that the values of A and kN/kS using Jepsen
et al potential parameters do not always agree with the values

obtained by Jepsen et al. We feel this may be due to the fact

that they used a more accurate LAPW method.
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TABLE 2. 3

AEF using non local XC-potential
Field Experi- Calculated Area
mental

Direction Area
iC aEF LM AEF

(a)
Bi1:1l 1.55823 1.5472 1.1} 1.5431 2.0
B100O 1.60286 1.6128 -2.2] 1.6088 -1.4
N11l1 0.0581 0.0709 -9.6§ 0.0737 -11.5
D110 0.68707 0.6432 -7.3] 0.6434 -7.2
Extreme AEF(mRyd} 10.7 13.5

aReference 52
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TABLE 26

Extreme AEF (in mRyd ) for the noble metals—A summary
Name of the metal sa+333933a9 Copper Silver Gold
pts. 1in BZ Up to iC

240 £ =3 BH 11.5 16.3 3.6
240 £ =2 BH 12.5 16. 4 3.2
505 &= 2 BH 11.8 15.3 3.5
216 £ =2 BH 12.3 - -
715 £ =3 HE 14.5 25.5 2.8
240 £ = 2 [Xata=,77) 4,1 0.9 15.8
240 & =2 VWN 5.7 3.8 18.5
240 £ =2 BHTY 13.7 15.6 3.4
240 £ =2 Xot - - 3.5
a=0.693
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CHAPTER il



FERMI SURFACE AND MASS ENHANCEMENT FACTOR FOR
PALLADIUM AND PLATINUM -

The existence in the periodic table of three long periods
corresponding to the filling of the 3d ,4d and 5d electronic
shells and ending with Ni, Pd and Pt respectively suggests that
the properties of these wmetals correspond to a sizeable
d~character in their valence states [B2]. The properties of these
states result from two factors. In the first place, these states
are fairly localized, compared with other {sp) valence states
with comparable energy. Cosequently, they are not perturbed very
much by the lattice potential and do not overlap strongly with
the atomic states of the other atoms. Secondly the d-wave
function increases parabolically near the nucleus, which leads to
a deficient screening of the nuclear charge with an atom . As a
result, the d-states of an atom are filled successively in
preference to the sp valence states across the transition sariaé.
Thus the +transition metals possess a number of interesting
properties. These are summarized below :

{1) Large electronic specific heat i.e. high density of states.
This suggests a sizeable d-contribution to the density of states
at the Fermi level,.

{2) Complex Fermi surfaces

{3) Strong evidence of d-band contribution and for s-d scattering
at Fermi level, through phonons and impurities.

(4) Regular' variation of the cohesive energy through the
transition periods with a large maximum for half filled d-states.

{5} Absence of permanent magnetic moment except for metals at the
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end of first transition series.

For our study we have Pd and Pt because their FS is more
complicated than that of the noble metals and will therefore
provide more stringent test of the LMTO method. In early of 80's
Dye and his group [74, 751 have given an accurate and complete
dHvA meﬁsurement for Pd and Pt which leads - to meaningful
compafison with experiment. Pd and Pt possess outstanding in
transition metals because of their wunusual properties. 'They are
of interest because of their large paramagnetic susceptibilities
and associated magnetic properties, their interesting alloying
properties and their importance in catalysis. In wview of the
wealth of the experimental data on well characterized samples of
exceptional quailty, they have received muech attention. There
have been many theoretical calculations on these two metals and
numerous hypotheses praposed ﬁoncerning them. We have examined
only a subset of these properties, namely those directly related
to the band structure, Few other propertie of the metals are also

discussed in section | for Pd and section 11l for Pt.

I. PALLADIUM

3.1 INTRODUCTION

In view of the success with which the LMTO method gives
the Fermi surface topology of noble metals, it would be
worthwhile to perform similar calculations for the transition
metal palladium. As palladium possesses a complicated Fermi
surface, we believe that the accuracy with which the LMTD can
give Fermi surface topologies will be borne out by oﬁr results.

Pd fascinates both theorists and experimentalists by its unique
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electronic behaviour, It has one of the highest densities of
states among transition metals, yet is neither magnetic nor
superconducting [2381., The absence of ordinary s-wave
superconductivity ié especially striking since the trends across
the transition series {44, 1611 suggests that Pd should be
superconducting, with a A value between 0.2 and 0.4 and Tc
perhaps as high as ¢€.3 °K. Direct calculation [1671] using the
rigid muffin tin approximation gives A at the top of this range,
while proximity effect tunneling measurements [50] suggest A is
near the lower end. In sharp contrast to the bulk, thin films of
Pd which have been irradiated with He 1ions are found to be
superconducting at 3°K [215], much higher than expected for bulk
single crystals in the absence of pParamagnons. Other
possibiﬁities for superconductiwity and magnetism in thin fiim
and powder geometries have been investigated theoreticalily by
Beal-Monod [291]. The large paramagnetic susceptibility and
associated magnetic ©properties, its affinity to elemental

hydrogen and its importance in catalysis are but a few of its

many interesting properties.

Alloys of Pd show equally interesting and unusual
behaviour. Magnetic impurities raise the susceptibility and
induce ferromagnetism at very low concentrations (about 0.1
percent for Fe) with a magnetization per impurity as much as 5
times that for the free impurity atom [(66]. Alloying with Hydride
and or Deuteride has the opposite effect, lowering the magnetic
susceptibility and including superconductivity at concentrations
above about 80 percent impurity. Tc in the alloys rises to rather

high value of 9°K for the Hydride and 11°K for the Deuteride,
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thus showing a strong reverse isotrops effect [151].

Apart from these many interesting properties of Pd,
interest has been kept alive due to its complicated Fermi surface
as well as the avaitability of éccurate and comprehensive dHvA
data on the Fermi surface geometries.The Fermi surface of Pd is
one of the most extensively studied Fermi surface among the
transition metals. Pd c¢rystallizes in face-centred cubic (FCC)
lattice., Its Brillouin zone (B2) in the reciprocal space 1is of

the form of a truncated octahedron (Fig. 3.1).

The first de Haas-van Alphen {(dHvA) oscillations in Pd
were observed in 1964 by Vuillemin and Priestly using pulsed
field techniques. More detailed studies by field modulation (232,
233 showed a closed electron surface centred at I (Fig.3.2) and
a set of hole ellipsoids at ¥ {(Fig.3.3). Galvanomagnetic studies
and a simple rigid band argument [233] suggested a second open
hole surface with wvery high effective mass, topologically
equivalent to a set of cylinders along the <100> directions
intersecting at the X-peoint of the BZ (Fig.3.4). The éarly band
structure €17, 18, 157] predicted a Fermi surface consisting of
the four sheets : the I' -centred electron sheet, X-centred and
open hole sheets and a very small hole pocket at L. Subsequent
dHvA work at fields to 72 KG and temperature to 0.4°K [243]
revealed orbits on the first three sheets but failed to show any
hint of the small L pockets. The first experimental observation
of these - pockets (Fig.3.3 ) came through the ultrasonic
attenuation experiments [42]. Dye et al {741 through dHvA
experiments using a much higher field and lower temperature than

garlier work were able to obtain accurate information on all the
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four Fermi sheets of Pd.
3.2 BRIEF SURVEY OF EARLIER WORK

Quantitative studies on palladium, either theoretical or
experimental, had a slow start in comparison to studies on other
transition metals. Comparatively little was known about either
the band structure or the Fermi surface of palladium until the
mid sixties, when the first galvanomagnetic and de Haas-van
Alphen results [232, 2331 giving precise information about a
number of features of the Fermi surface began to appear. One of
the early band structure calculations on Pd was the APY
calculations of Freeman, Dimmock and Furdyna [(81]. It was a non
relativistic application dealing with the gross features of the
energy bands, density of states and Fermi surface topoloty.
Muelter et al [(157] reported a detailed investigation of the
alectronic structure of Pd using the APW method. They have also
rerformed calculation 1including relativistic effects 1in the
context of the interpolation scheme [155]1 and find that these
incluence the eigenvalues at ¥ and L. Their APW calculations gave
the main features of the Fermi surface in agreement with the
experimental data available at that time. The relativistic
calculation predicted sheets centred at L. This was not taken
seriously as there was no dHvA evidence for the L-centred pocket.
Anderson [18] around the same time performed relativistic APV
calculations of the band structure of Pd. He obtained a Fermi
surface in agreement with the experimental data. The calculations
also predicted hole ellipsods at L for which no dHvA data were
available and a small L hole pocket of "dubious" existence. None

of these calculations were self-consistent and none of these gave
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any reasonable idea of the accuracy of calculated Fermi surface.

This was perhaps due to the lack of experimental data.

Skriver et al [197) reported the first seijf conéistent
calculation of the band structure using the LMTO method.
Calculations were done without and with correction terms. They
calculated some extremal orbits on the Pd Fermi surface and
obtained good agreement with the experimental data. Dye et al
£74]1 have completed a detailed study of the Fermi surface using
the dHvA effect and reported accurate extremal areas on all the
four gheets of the Fermi surface including data for the
L-centered holes. Using a KKR parametrization Dye et al (741 haué
been able to deduce extremal areas which they do not measure.
They have also measured the effective mass of wvarious Fermi
surface orbits and from their KKR fit obtained the electron
velocity on the varicous Fermi surface sheetg. Moruzzi et al (1531
have also performed self consistent band structure calcuation

using KKR method.

Anderson and Mackintosh ([17] used the RAPW method to
calculate the Fermi surface (effective masses) in fce transition
metals, while Christensen [B58] has also used the RAPW method with
a muffin-tin potential to calculate the density of states, joint
density of states, the imaginary part of the dielectric function
and photoemission spectra. However this work did not include the

calculation of matrix elements.

MacDonald et al 111471 have studied the influence of
relativistic contributions te the effective potential on the
electronic structure of Pd ,and Pt. They have compared three

separate self consistent density functional calculations with (i}
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exchange only (ii) exchange and correlation and (iii) exchange
and correlation plus relativistic interaction corrections using a
relativistic generalisation of the linear APW method. The
calculated Fermi surface is compared with the experiment. [t was
found that correlations had a dramatic effect on the Fermi
surface but the relativistic 1interactions did not have any
significant influence on the Fermi surface. MacDonald et al did
not obtain good agreement with the open hole surface. It would
therefore be interesting to perform self-consistent calculatjons
of the Fermi surface under various approximations of exchange

correlation potentials to see if this is indeed the case.

At the same time Smith [200, 202 - 204, 222] reported
photoemission spectra and band structure of d-band metals. They
have constructed model band structures using a combined
interpoiation scheme including the spin orbit coupiing and other
relativistic corrections. Schmidt and Mrosan (1831 have
calculated the band structure by means of the 1linear H-NFE-TB
method on a grid of 240 K points in the irreducible part of the
Brillouin zone and treated exchange and correlation in terms of

Hedin and Lundquist approach.

Bordoloil and Auluck (351 have used the combined
interpolation scheme to parametrize the Fermi surface and optical
gaps. This parametrization is valid ove; a large energy regime
and  has been used to ecalculate the dielectric function. Al though
easy to use and fast on the computer, there are too many
parameters needed to obtain a good fit to the Fermi surface. In
view of this we have decided to see if the LMTO method could be

used to prediect the Pd Fermi surface and hence discard any
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parametrization scheme.

Recently Chen et al (531 have reported self-consistent,

all electron, local density-functional study of tha electronic
structure of paramagnetic fee palladium using a linear
combination of Gaussian oprbitatls. Associated _with the band

structure, they alsc presented the results obtained for thse
density of states, Fermi surface, X-ray form factors, compten

profiles and optical conductivity.

The harvest on the experimental side in the meanwhile has
not altogether ©been poor. There have been a number of
experimental work (42, 222, 232, 233} on the Fermi surface of Pd
which have been discussed earlier. Traum and Smith [222] used an
‘angle-integrated photoemission technique to study the electronic
structure of polycrystalline Pd films. Dahlbach et al (671 have
used angle~resolved photoemission measurements on single crystals
of Pd +to obtain more detailed information about 1its band
structure. X-ray photoemission spectra (XPS) of Pd have been the
subject of study of a number of workers [30, 102, 108, 109, 113,
170, 203, 2251. High resclution photoelectron studies have also
been made by Poole et al [171] and quite recently by Anosen and
co-workers [2117. X¥PS studies on Pd have also been done by
Podloucky et al [168] who in addition have studied the soft {-ray
emission spectra and compton scattering characteristies of th§

metal.
3.3 CALCULATICONS AND RESULTS

In this section we report calculations of the Fermi

surtace of Pd using various XC potentials. We have used same
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method of calculation as discussed in chapter I. Figure 3.5 shows
the intersection of the symmetery planes of the BZ with the Fermi
surface of Pd and the band structure obtained by us using Xa-iC
potential along symmetry directions.is shown in Fig. 3.6. We have
calculated AEF for the four FE5 sheets of Pd i.e. a closed
electron surface centred at ', a sheet of hole ellipsoidals
centred at ¥ and at L and an open hole surface. The open hole
surface is of prime importance because it is formed by very flat
d-hands and hence supports orbits with high band masses. The hole
ellipsoids c¢entred at L are very small and a shift in Fermi
energy of arcund a few mRyd is sufficient to bring them into
gxistence. We have also ;tudied the effect of increasing number
of ¥ points, including angular momentum expansion up to £=3 and
inclusion of relativistie effects. As in the case of the noble
metals we find that increase in number of % points and use of
angular momentum expansion up to {=3 have no significant effect
en the results. Here relativistic effects play very important

role.
3.3.1 Non=-relativistic calculations

We have ecalculated the FS of Pd using the seglf-consistent
parameters with three XC potentiais (i) BH, (ii) BHJ anc (iii)
VWN. We found that none of these were able to give the existence
of the L-centred hole surface. This is in accordanqe with the
resuits of Mueller [1571 and Anderson [18]. The calcufated
extremal orbits on the other three sheets are in agreement with
the experiment. Again we characterize the goodness of the
agreement by calculating the shift in the Fermi energy AE. needed

F

to bring the calculated extremal area in agreement with the
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experimental area. We obtain the extreme AEF tc be 15.3 mRyd
{BH), 15.2 mRyd (BHJ) and 17.9 mRyd (VWN} for the three XC
potentials. These values of extreme AEF are of the same order of

magnitude as obtained for the noble metals [2). Considering that

the Pd FS is rather complex these extreme AE_ are to be regarded

F

as indicating fairly good agreement with the experiment.
3.3.2 Relativistic calculations

The major drawback of the nonrelativistic results is non
existence of the L-¢entred hole surfaces. We therefore decided to
include relativistic effects as described in chapter [ in the
LMTO calculations. These relativistic corrections are added in
last self-consistent loop in LMTO method. As expected from
previous calculations of Mueller et al [(157] and Anderson (18],
now the L-centred hole surface comes into existence. Table 3.1
gives the extremal areas calculated with four different iC
potentials (i) BH, (ii) BHJ, (iii) VWN and {iv}) Slater Xa. The
extreme AEF for these are 5.7 mRyd (VWN), 9.1 mRyd (BH) and 9.5
mRyd (BHJ) indicating a definite improvement in the agreement
with data. The extreme AEF for KKR parametrization (741 is 0.5
mRyd and for interpolation scheme parameterization of Bordoloi
(353 is 1.5 mRyd. Hence the extreme AEF of 6 mRyd is to be

regarded as good considering that there are no adjustable

parameters.

MacDonald et al [1471 have calculated FS areas using the
RAPW method with exchanée and correlation potential. We have
calculated AEF for MacDonald et al using their areas. The wvalue

of extreme bEF is around 5.4 mRyd which is consistent with our

results. Skriver et al [197] have aiso calculated the FS area of

76



some orbits and the extreme AEF for these orbits is around 6.8
mRyd. Our results are consistent with Skriver's et al resuits
because of the fact that we are using the same method and the
same XC potential. It is indeed very pieasing to note that ab
initte calulations give accurately the complicated FS such as in
Pd. With a view to see if we can do any better, we have varied a
in ths fa-iC potential from 0,65 to 0.80. We have plotted AEF
versus a in Fig. 3.7. The graph illustrates that as0.75 gives the
best agreement with experimental data. In fact this AEF {4.0

mRyd} is smail and comparable to the AEF obtained by Bordoloi and

Auluck [35]1 with the interpclation scheme,

We have also performed calculations to check the effect
of increasing K points from 240 to 505 in the BZ summation. Ve

have calculated AE_ using the VYWN-XC potential. The value of the

F

extreme AE_. with 505 points is around 6.1 mRyd which is more or

F
less the same as with 240 points. These results are given in
Table 3.1. W& have also calculated AEF using the'angular momentum
expansion up t9 {=z3. These calculations are done using the Slater
Xe-XC potential with &=0.75. The extreme AE_ .is around 4.9 mRyd
as compared to 4.0 mRyd with £=2 expansion. These results are
shown in Tabie 3.1. We think that this change in AEF is due to
the vatue of a. The value of a may be different for £=3 as
compared to {¢=2, So increasing the Y points and expansion in

anguiar momentum upto ¢=3 do not give any significant changes in

the extreme AEF.

Thus the RLMTG (with relativistic effects) can give the
Pd FS as accurately as the combined interpolation scheme. The KKR

parametrization is still far superior. The extreme AEF of 4 mRyd
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is about the lowest AEF we obtained for the noble metals [2] ( 1
mRyd for Ag, 4 mRyd for Cu and 3 mRyd for Au ). Considering that
the Pd FS is much more complicated, we can say that the agreement

for Pd s as good as for the noblie metals.
3.4 DYNAMICAL PROPERTIES OF QUASIPARTICLES
3.4.1 Renormalization factor and Fermi velocity

The quasiparticle excitation spectrunm E(%) for an
interacting system may be expressed as [145]

E(R) = EXE) + T (F,E) (3.1)

where Eb(ﬁ) is the bare electron energy as computed from a one
electron potential and Y, (ﬁ,E) is the proper seif-energy which
has contributions arising dwue to electron-electron interaction
and electron-phonon interaction. The electron- phonon interaction
contributes signifiantly to the self energies of only those
quasiparticles whose energies lie within about zhwo of the

max
Fermi energy, where w is the maximum phonon requency [145]. QOn
the other hand, the electron-electron interaction contributes to
a comparable extent to the self energies of all electronic
states., Within the energy range 1hmmax of the Fermi energy, the

quasiparticle excitation spectrum as medified by electron-phonon

interaction is given by [145]
— b —
E(R) - Ep = (E (%) Ep 3/ C 1+ 2Ag) (3.2)

where Kﬁ is the renormalization constant. It is evident from
(3.2) that the electron-phonon interaction does not affect the
shape of the Fermi surface but the quantities, such as Fermi

velocity and cyclotron mass which involve derivatives of E(ﬁ) at

Fermi surface, will be strongly influenced by the electron~phaonon
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interaction.

The Fermi velocity is given by
¥y = L Vs E(R) (3.3)

where ¥ lies on the Fermi surface. Using eq. (3.2) and neglecting

the ﬁ-dependence of A» we get

k
¥ (%) = ¥ %rsar 4 Ap ) (3.4}
Experimentally one measures the properties ' of
gquasiparticles and thus measures e(i). Theoreticaily one
calculates Votﬁ)
o0, 1 b, =
VIR = ¢g EV(X) (3.5)

Thus egq. (3.4} gives a method of calculation of hﬁ.

We have calculated Fermi velocities using ia-XC potential
with o= 0.75 {(which gives best fit to the experimental data)
vo(¥)={v%(K)| for R lying on the FS for all the four Fermi sheets
of Pd. The results are shown in Figures 3.8 - 3.1ii1. The band
Fermi velocity obtained by MacDonald et al [147]1 obtained using
LAPW method and enhanced Fermi velocity by Dye et al [74)]
ocbtained by inverting the mass data using the KKR parametrization
are also pliotted inm Figures 3.8 to 3.11 for comparison. The
figures reveal a striking similarity of the general trends. For
the ' - centred sheet (Fig.3.8), our v?(k)'s reveal a trend nore
in conformity to the results of MacDonald et ai than those of Dyve
et al. Our calculated v°(ﬁ)'s are in general smaller than those
agbtained by ﬁacDonald et al but are largr than the ones obtained
by Dye et al. Thus we expect our ( 1 +kﬁ ) to have value
intermediate between the values obtained by these workers. The

values of U(ﬁ) and (1 + ki ) obtained by us and other workers are
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given in Table 3.2. We find that hﬁ is highly anisotropic and
varies from sheet to sheet. QOur values of (1 + Kﬁ }) are greater
than that obtained by Bordoloi and Auluck [(37] and smaller than

that obtained by the MacDonald et al.
3.4.2 Cyclotron masses

In the cyclotron resonance experiment one measures the
frequency of resonance for the quasiparticles orbiting the FS.
From this one can obtain the cyclotron mass m of the FS orbits.

Using the value of m, given by

n dk
" $ o (3.6
orb, V_L(k)
and eq. (3.4) one can write
1+ A
m_ = ———-—ﬁ—d'ﬁ (3.7)
¢ v (R
orb, AL

where vitﬁ) is the component of v? (%) normal to the orbit
and in a piane of the orbit. Since one does not know Aﬁ one

calculates band mass mb

m =J- 1 4 (3.8)

b o,
vk

orb.

Because of the renormaiization due to electron-phonon interaction

mc will be larger than rnb . A comparison of the two yields

orbital mass enhancement factdr 1 + kc

mc
(3.9)

We have calculated the band masses of different FS extremal
orbits listed in Table 3.3. The band masses are calculated using
io - IC potential with a= 0.75. The values of experimental masses

calculated by Dye et al along with ( 1 + hcl for different orbits
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are also given. UWe have compared our results with those of
Bordoloi and Auluck 1{37] and Schmidt and Mrosan (1831 where
former has calculated the masses using the interpolation scheme
while later have calculated cyclotron masses using the band
structure obtained from the H-NFE-TB method. Our values of (1 +
Ac) motre closer to the values of Schmidt angd Mrosan than in

comparison to Berdoloi and Auluck,
3.4.3 Thermal Mass and Mass Renermalization

Since lﬁ as well as Rcare anisotropic over the entire

Fermi surface, it is therefore useful teo have a value hy which is

a value of kﬁ averaged over the entire Fermi surface. Information
on k}, can be obtained from the low temperature specific heat
data. Thermal effective mass is a measure of low temperature

specific heat of the conduction electrons in a metal and can be
calculated from a knowledge of the density of states at the Fermi

energy. The thermal mass is defined as [65]

' N (E_)
th . _ F (3.10)
m N
o o
where N(EF } is the density of states at the Fermi energy given’
by
N (B = — SJ ;S
{2m) | Vﬁ E( )'E(i)=EF
= 1 5 ; J ds (3.11)
(2r) a | ViR |

-

where we have used Egq. (3.3). Here 'a' signifies that the surface
integration extends over the available Fermi surface areas.

N(EF) can further be written as
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N(E,) = F - . ; ¢ ——1 S (3.12)
(2n) | vk |

where

ja dS-----

SEERES > =
J. ds
a2

and SF = fadS is the available Fermi surface area. N0 in Egq.

(3.10) is the density of states at the Fermi energy corresponding

to free electron model.

m ko
N -—E;E;—— (3.13)
2T
where
kS = ( an® o *7?
F v

Here n, is the number of conducticn electrons per unit veolume.

Now if we write

a _ o
vp = h kF / m
and
o 0,2
SF = 4 =0 (kF)
we get
S
NO = 3 p= {3.14)
{(27) " h V
F
Using eqgs. (3.4), (3,10), (3.12) and (3.14), we can now write
™t h SgVr 1roag
_E-__—'_ = 5 '4 5 > (3.15)
o S ALY 3

Theoretically one ignores hﬂ in the calculation of thermal mass
and thus gets a lower value than obtained from experiment. On

comparison, one then obtains
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1+ A = (mth)eth‘ (3.16)
r th'calc.
from squations (3.7), (3.9), (3.15) and (3.16) we see that Aa,

kcand x?are related to each other provided we assume that the

same interactions manifest in all these experiments.

One need not calculate the thermal mass from a band mode]
as such, but can foilow an alternative way to calculate (1 + xr I,
Ve see from Eqs. (3.10) and (3.16) that (1 + Ayl can be expressad

as

[ N (E_.) ]
N o (EF, ]e”pt‘ (3.17)
v F calc.
- (mth)expt.

(mth)calc.

Here N (E_} is the density of states (D0OS) at the Fermi energy

F
calculated from the low temperature specific heat constant . If
one also determines the DOS at EF from a band model, then Egq.

{3.17) provides a way of calcuilating 1 + Kr.

The electronic heat capacity (at constant volume), Cef is
given by
CeJ = » T
n? 2
= 3 ka N(EF) T {(3.18)

whare kB is the Boltzmann's constant and T is the Kelvin
temperature. The experimental value of N(EF) then easily follows

frgm this relation.
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The linear specifiec heat coefficient » has been measured
by numerous workers. Tablie 3.4 summarizes the data of ¥y and also

gives the value of NI(E which have been calculated using

F)expt.
Eq. (3.18}). We have also caiculated the density of states N (EF}
from our RLMTO calculation with fa=-XC (a= 0.75) potential and
find N{EF)calc.= 1.20 states/eV-atom-spin. The variation in the
reported values of‘y appears to be largeiy due to the purity of
the sample of Pd under study. We have therefore used a
representative value 9.42 mJ :t:t:le"’Lt:Ieg—2 for y» to caiculate the
experimental value of N(EF). If we take an average rd
corresponding to the more recent specific heat data, we get 1 +
Ky = 1,68, which agree well with the values of (1 + kc) and (1 +
K

also given in Table 3.5. Our values are nearly the same as most

A2 }. The wvalue of (1 + ly Jabtained by different workers are

of other workers because all have used ab-initio methods. Except
for the work of Anderson [18]1 and Knapp et al [1231, no
calculation of (1 + hy)has been explicitly reported by others

workers.

3.5 CONCLUSIONS

In conclusion, the FS5 obtained using LMTO/RLMTO is in
agreement with the available experimental data. The FS velocity
for all the four sheets are in agreement with the band velocities
of MacDonald et al [147) and the enhanced velocities of Dye et
al. [74). The enhancement factors calcuiated by three different
ways are consistent with gach other. It is also in agreement with
results‘ of most of the other workers. Bordeloi and Auluck
obtained [37] a lower enhancement factor because in trying teo fit

the FS data they have absorbed a part of the enhancement factor.
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II. PLATINUM
3.6 INTRODUCTION

A glance at periodiec table of elements shows that
Platinum {(Pt) which has atomic number 78, is a metal of the fcc
group belonging to the heavier 5d transition metal series. The
interest in the Fermi Surface (FS) of Platinum has been kept
alive because of its increasing tendency towards ferromagnetism
and simultaneous disapperance of superconductivity through the
sequence of the 4d and 5d transition metals Ir, Rh, Pt and Pd
(1163. Several! years ago it was suggested that a new type of
excitation was important in nearly ferromagnetic systems: these
are the so called paramagnon or short-lived spin fluctuations
arising ocut of strong exchange interaction; amcng the d-electrons
and thought to be playing a significant role in producing mass
enhancement [31, 73, 1841. In Pt the paramagnon enhancement may
be the dominant contribution. The success with which the Linear
Muffin Tin Orbital (LMTO) method gives the Fermi surface (FS)
topology of noble metals [2] prompted us to perform calculations
for transition metals Pd [3] and Pt. These metals possess a
complicated FS and we believe that the accuracy with which the
LMTO method can give FS topologies will be borne out by our
results. For the above reasons Ptr is worthy of an especially
intense effort to understand 1its electronic properties. The
intersections of the symmetry planes of the B2 with the FS5 of Pt
are shown in Fig. 3.12. Pt is characterized by three Fermi sheets

the F-centred electron surface, the ¥-centred hoie ellipsoids
and the cpen hole surface. The small! L-centred hole pocket§ are

not observed in Pt. One of the earliest de Haas-van Alphen (dHvA)
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measurement in Pt was by Stafleu and de VYroomen £211] who in 1965
recorded the existence of the small ellipscids indentified with
regions of holes at ¥. Ketterson et al (1251 subssquently found
two further sets of dHvA oscillations corresponding to the
M~centred and open hole sheets, respectively. dHvA measurements
on the extremal areas of the FS of Pt were carried further by
Ketterson and Windmiiler [126). Dye et al {75) in 1978 reported
more extremal orbits on the open hole surface with heavier mass,
centred at [ and % for the magnetic field along the [100) and

{1101 directions.

Theoretical studies, ab initio or otherwise, on the band
structure and FS properties of P£ have not in the meanwhile been
lagging behind., The relativistic augmented piane wave {RAPVW)
calcuiations of Mackintosh, and Anderson (17, 1813, the
relativistic Korringa-Kohn-Rostoker {(RKKR} approaches of John et
al (1181 and Ketterson et al [124] and phase-shift
parametrization work of Shaw et al {188] are a few examples of
such studies. The work of Friedel et al (831, Mueller et al [15S5,
158] and of Smith and his coworkers (200, 202 - 204, 2221 have
also contributed greatly towards this theoretical understanding.
Smith and his coworkers have been following the techinique of
using the interpclation scheme to obtain the band structure
adjusted to their own photoemission data. Bordoioi and Auluck
(361 have used the - combined interpolation scheme toc parametrize
the Fermi surface and optical gaps. Although this scheme is easy
to use and fast on the computer, it needs many parameters and
hence one can not extract any useful information {from such

calculations.

86



Using a relativistic non-muffin-tin, Korringa-Kohn-
Rostoker formalism, Dye et al {75] have been able to calculated
the extremal areas for the various orbits by the parmetrization
techingue. They have wused nine extermal areas and masses with
different field directions. While fitting the measured masses,
Dye et al have absorbed the many-body enhancement into the phase
shift derivatives. By combining the parameiers obtained from the
extremal area fits and the phase shift derivatives, the Fermi
velocity is computsed and compared with the experimental velocity,.
They have also calculated the enhancement facter cobtained from
these wvelocities. MacDonald et al [147] have studied the
influence of relativistic contributions to the effective
potential on the electronic structure of Pd and Pt, They have
compared three separate self-consistent density functional
calculations with (i) exchange only {(ii) exchange and correlatjon
and (iii) exchange and correlations plus relativistic interaction
correction using RAPY method. The comparison of these three show
that relativistic corrections are sgignificant in the case of Pt
but the non-muffin terms included with much effort are less

impartant.
3.7 CALCULATIONS AND RESUILTS

As we discussed above, the FS of Pt consists of three
sheegets (Fig.3.12) i.e. a closed electronic surface centred at [,
a sheet of hole centred at & and an open hole surface. The band
struture obtained by us along symmetry directions of the BZ using
Slater Xa-¥C potential is shown in Fig. 3.13, We have calculated

extremal areags for the three FS sheets and studied the effect of

(i) various exchange correlation (XC) potentials such as wvon
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Barth-Hedin (BH}), Siater Xa, Barth-Hedin modified by Janak {(BHJ)}
and Vosko bilk and Nussair {(VWN) approximated by different
workers {(ii) including angular momentum expansion up to <=3 (iii)
increasing the number of K points in the irreducible Brillouin
zone (B2) summations-and (iv} inclusion of relativistic effects.

%

From our calculations we observe that increasing the number of
points and inclusion of angular momentum expansion up to £=3 does
not affect FS areas for Pt. Keeping this in mind, we have done

all calculations with 240 K points and anguiar momentum expansion

up to £=2.
3.7.1 Non-relativistic calculations

We have calgulated FS areas wusing B8H, BHJ, VWN XC
potentials. We find that non-relativistic calculations with none
of the above said exchanges give the existance of open hole orbit
3¢110>. We have adopted a different criteria to determine how
good the agreement with experiment is by calculating AEF. We
obtained am extreme QEF of 40.7 mRyd (BH!, 42.0 mRyd (BHJ) and
39.6 mRyd (VWN) XC potentials. Thus the extreme AEF is very large
compared to the noble metals. As is clear from the work on Pd, it

is necessary to include relativistic corrections.
3.7.2 Relativistic calculations

Since the non-relativistic calculations give large AEF
.hon existance of the orbit #<110> and also because the
relativistic effects play important role in elements with large
Z, we included retativistic corrections in our calculations. We

observe that this results in favourable c¢changes and in drastic

improvement when comparison is made with the experimental data.
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Now we obtained an extreme AEF of 9.0 mRyd (BH), 9.0 mRyd (BHJ)
and 8.0 mRyd (VWN} XC potentials. These results are shown in
Table 3.6. For Slater Xa XC we have varied the values of o from
0.65 to 0.85., The variation of AEF with aa is shown in Fig. 3.14,.
From the figure we find that o=0.815 gives the best agreement
with the experimental data. We find that AEF in this case is
around 2.7 mRyd which is comparable to AEF of Dye et al (731 (
0.6 mRyd ), Bordoloi and Auluck {361 ( 1.8 ) and MacDonald et al

(1471 ( 4.1 mRyd ).

To see the effect Ef increasing the number of |4 points
from 240 to 505 in the BZ summation, we find that the extreme AEF
using Xa XC potential is now around the same as with 240 K
points. Hence an increase in number of [ points i.e. use of a
finer mesh in the BZ does not affect the FS areas. We studied the
effect of using angular momentum expansion up to ¢=3, the AE_ now
comes around 3 mRyd [(¥«a-XC) as compared to 2.7 mRyd {¥a-XC) with
£=2, So we find that increasing the- number of K points and
angular momentum expansion up to =3 do not have an} significant
effect on the extreme ﬁEF . Hence the relativistic LMTO method
can give as accurate a prediction of the FS as obtained by the
combined interpolation scheme. The KKR parametrization is still
in better agreement with experiment, however we must bear in mind

that ours is a first principles wmethod which 1is certainly

superior to parametrization techniques.
3.8 DYNAMICAL PROPERTIES OF QUASIPARTICLESB

The linear specific heat coefficient » has been measured
by number of workers (for a survey see Bordoloi) {34). Some of

the values are listed in Table 3.7. We have used the Slater Xa-XC
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with the value of o=0.815, as discussed in preceding section to
calculate N{EF). By calculating Ny{ EF) from specific heat data,
we have compared this N(EF) from our calculations. The value of
(1+ky) obtained by different workers are given in Table 3.7 along
yith our values, We find that our value of (1+ky) is 1.18 which

is lowsst among the given results (1.22 to 1.63).

We have calecutated the enhancement factor(1+Kc)using
cylotron data for different FS orbits, We have calculated the
band masses for these orbits using Slater {¥a-XC and experimential
cyclotron mass from Dyve et al [75]1 are used.We have listed {1+KC)
in the Table 3.8 and find that our results are consistent with

the results of Bordoloi and Auluck (371 and Smith [(202}.

Mass enhancement factor from electron velocites are
reported in Table 3.9. The Fermi velocities obtained for the
three Fermi sheets are plotted in Figs. 3.15-3.17. The Fermi
velgcites obtained by Watson-Yang et al [238] and Dye et al (751
are also shown for comparison. The calulations of the former have
been on the basis of first principle RAPV warped muffin-tin
method, while those of latter are results of RKKR fitting scheme.
The Figures 3.13, 3.1l4and 3.15 reveal a general trend in our
calculated Fermi velocities similar to either of above mentioned
calculations. The values of (1+R¥) obtained by us and other
workers listed in Table 3.9. Our results are consistent with
those from Bordoloi and Auluck [37], Watson-Yang et al {238} and

of Dye et al [751.
3.9 CONCLUSIONS

The results of the caiculated FS of Pt using LMTO method are

90



given in the section Il of this chapter, We studied the effect of
(i) various iC potentials (ii) inclusion of relativistic effecis
{iii) increasing the number.of i points in BZ summations and (iv)
including angular momentum expansion up to £=3 on our results. Ue
observe that-first two effects play an important role in topology
of the FS of Pt. Inclusion of relativisitic effects reduces the
extreme AE by a factor of five. The choice of RC—potentiél_is

F

aiso important.The extreme AE_ with 240 % points and angular

F
momentum expansion up to {=2 is around 9.0 mRyd using BH,BHJ and
YWN~-XC potentiajl but the Slater {a« with «=0.815 gives extreme dEF
of 2.7 mRyd which is one third 1in comparison toe other
exchanges.This is because we are using an adjustable parameter a.
We also find that the effect of increasing no.of % pocints from
240 to 505 and including angular momentum expansion up to £=3 do
not affect the extreme AEF. Hence we conclude that all these
effects are not important for studying the F5 topology of Pt. Qe
have calculated the Fermi velocites and enhancement factor A
using the Slater ¥a {(a=0.815) potential. The enhancement factor
calculated using band masses,specific heat data and electron

velocities are consistent with other results as well as with each

other,
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TABLE 3. 3

Mass enhancement factor (1‘+hc) for Pd

Field Expt. m Enhancement (1+A )
. . cC c
Direction {a)
Present Bordoloi & Schmidt %
Calculation Auluck (¢} Mrosan (d)
r-Center
<100> 2.02 1.44 1.28 1.58
£110> 2.30 1.59 1.45 1.62
<l1i1> 1,96 1.36 1.26 1.63
I-Center
<100>KWU -0.863 1.57 1.41 1.58
<110>¥ur -1.03 1.63 1.25 1.38
<1105 -0.78 1.83 1.38
<l11> -0.87 1.983 1.42 1.23
L-Center 7
<110>LKD -1.21 ' 1.92 1.41
Open hole b
<100>&£ 10.96b 1.65 1.36 1.63
<110>13 -12.77 1.22 1.14 1.32
<111>13 -5.7 1.26 1.09
<110>a -2.4 1.66 1.49 1.42

aReferencg T4

bReference 74 [KKR fit1l
GRaference 37

dReference 183
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TABLE 3. 4

The electronic specific heat constant p» and density of states
{calculated from'p ) for Pd
Temperature Purity ¥ _ N (Eo}
Reference range (K) (% Pd) |(mJ mole 'K )| States/atom
eV-spin
899.999 9.87 * 0,11 2.117 £ 0.02
Rayne [179] 1.5 - 4.1 99.88 9.64 % . 08 2.068 * 0.02
Hpare et al 1.8 - 4.2 99.99 9.31 = 0.05 1.997 + 0.01
[1061" .
Mackliet et alf 1.5 - 4.2 99.95 9.385 % 0.035 2.012
(1481
Veal et al 1.4 - 100 899.99 9.42 * 0.02 2.021
(2261
Chouteau et al)] 0.3 - 3 T 9.40 * 0.05 2.018 £ 0.01
{541 .
Smith et al 1 - 4.2 7 8.43 = 0.02 2,023
{20851
Boerstoel et 1.2 - 30 99, 999 9.45 * (.03 2.027
al [331]
Knapp et al - - 9, 1.974
[129]
Mizutani et al} Liguid He 99. 891 9.48 * (.01 2.034
[152] '
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TABLE 3. 6

AEP for Pt using different XC potentials ( in mRyd }
Fieid Expt? using using using using
Direction Area BH-XC BHJ-XC fa-XC VWN-XC
(a.u.) a=0.818
F-Centered
<100> 0.770 -2.0 -2.0 1.7 2.0
<110> 0.857 -3.0 ~3.0 1.3 0.0
<1115 0.687 -2.0 -2.0 2.4 3.0
I-Centered
<100>XWU . 00298 6.0 5.0 0.8 8.0
<110> . 00467 4.0 4.0 -0.3 4.0
Open Hole
<100>& 1.880 1.0 1.0 2.3 6.0
£110°12 0.341 2.0 2.0 0.6 3.0
{100>a 0.074 2.0 2.0 0.9 4.0
Extreme AEP 9.0 9.0 2.7 8.0

aReference 75

7




Many " body

temperature specific heat data. py is in mJ/mole/ k

enhancement

factor

TABLE 3. 7

(1+x )
'd

for

states/eV¥-atom-spin

Pt c¢aculated

from

and DQGS is

}ow

in

References Theertical| Expt. Calc. DOS DOsS
Metheod value |value Expt. Calc, 1+x
used v

Anderson (a)| RAPW 6.56 4.02 1.63
Knapp & Sp.Heat 6.70 4,10 1.60
Jones (h)

MacDonald LAPY 6.54 1.403 0.92 1.53
et al {(c)

Bordolol & Interpolat| 6.54 1.403 1.15 1.22
Auluck {(d) —ion

Present RLMTO .54 1.403 1.18 1.19
Calculation

Reference 18

Reference

Reference

a o o D

Reference

129
147
37
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TABLE 3. 8

Mass Enhancement Factor 1+k(§or Pt

Field Expt. Enhancement Factor 1+x
Direction m =
© Qur Calc- Bordoloi Smith
(al ulation LAuluck (b} (c)
'- Centered
Electron
<100> 2. 44 1.37 1.30 1.50
<110> 3.16 1.36 1.32 1.52
<1liti> 2.06 1.30 1.26 1.42
¥-Centered Hole
<100>34WU -0.272 1.01 1.18 Q.85
<110 -0. 426 . 1.33 1.47 1.09
Open Hole
<100>x -1.53 1.42 1.30 1,28

aReference 75
bReference 37

cReference 202
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TABLE 3. 9

Mass Enhancement Factor (1+Kﬁ) for Pt
( Fermi velocities are in Ryd )
Surface|Direction Expt.|Vk| Enhancement factor 1+A 2
{a)
Our Cailcu- Uatson-b Bordoloi Dyed
lation Yang et al|Auluck et al
r =X 0.266 1.38 1.50 1.35 1.50
Electr-| " -L 0.217 1.22 1.43 1.08 1.43
on r -K 0. 485 1.46 1.53 1,31 1.53
2 -r 0.1350 1.20 1.38 1.12 1.38
X I -K 0.219 1.14 1.36 1.26 1. 386
Pocket i -W 0.218 1.15 1.38 1.26 1.38
Open r - 0.555 1.72 1.54 1.98 1.54
Hole r -K 0.178 1.53 1.69 1.38 1.689
a
Reference 75
bReference 238

CReference 37

d
Reference

75

100
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FIG. 31

The Brillouin zone of the fcc lattice,
showing the symmetry point designations
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CHAPTER IV



FERMI SURFACE OF FERROMAGNETIC NICKEL

4.1 INTRODUCTION

In our earlier chapters we have discussed the FS5 of the
noble metals and the transition metals Pd and Pt. As far as the
F5 of noble metals is concerned, it is very simple consisting of
a single I'—centred sheet. The agreement with the experiment and
with some other thearetical calculations seems to suggest the
correctness of our methodology and of the LMTO method. Then we
took up a study of the transition metais Pd and Pt as they have
partly filled d-bands and the Fermi level crosses the d-bands
resutting in a complicated FS. The LMTO0 method gave a FS in
agreement with the experimental data. All metals discussed so far
are paramagnetic. In order to check the capability of our method
we have decided to look at nickel- a fecc ferromagnetic metal. The
FS5 of the nickel is simple in comparision to other ferromagnetic
metals and has been the subject of intensive experimental and
theoretical investigations for many years. Using the LMTO method,
many workers have calcutated the total energy, electronic
structure, bulk modulus, magneton numbers for Nickel but none has
caleuiated the FS of ~the nickel whiech is of c¢ourse of our
interest. The exchange spilitting and spin-orbit coupling play a

very important role in the ferromagnetic metals.
4.1.1 Role of Exchange Splitting

The ferromagnetism of nickel, cobalt and iron has been
attributed to the exchange iteraction between the d-electrons.
That the d electrons are mobile and contribute to the conduction

was not established until the advent of detailed experimental
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studies of their Fermi surface. The exchange interaction is
responsible for the . lower ©potential energy of <conduction
electrons with spin-up compared to the potential energy of the
spin down states by an amount AK the exchange splitting. When
Fermi surfaces are created by filling the electron states in a
band, the up and down spin sub-bands fill to the levels for which
electrons at the Fermi level have the same total energy. As a
consequence of the exchange sp]itting the spin-up bands will fil]
to a higher kinetic energy than the spin-down bands and will
therefore contain more carriers, hence the terms majority and
minority <c¢arriers for the spin-up and spin-down eiectrons,
respectively. To a first approximation the exchange splitting
does not ailter the shape of either the spin-up or the spin-down
bands. Since the separation Ax of the bands is quite large, the
topological features of the Fermi surface for spin-up electrons

are completely different from those of spin-down electrons.
4.1.2 Role of Spin Orbit Coupling :

In a ferromagnetic metal there is a basic incompatibility
between the axes of quantization of ¢the spins (parallel to
direction of Magnetization #) and of orbital momentum and this
leads to the complicated dependence of spin-orbit energy gaps on
4 énd M7 The spin orbit coupling is weak, of the order of a few
percent of exchange splitting, but has considerable influence
through the resolution of degeneracies on the +topological
features of Fermi surface orbits, In transition metals the
situation is particularly complicated. There are often instances
where majority and minority-Fermi surface intersect. The presence

of spin orbit coupling hybridizes the spin-up and spin-down
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surfaces so that an actual electron orbit changes character at
the point of intersection. Also the size of spin-orbit energy
gaps in ferromagnetic metals depends on the relation of B to M
and may be guenched in some parts of the BZ. Gold [90]1 gave a
simple rule that the spin-orbit energy gap at a point R in the
2one is largest if 'R is parallel (or antiparallel) to M, and

smallest, or even zero, if rR is perpendicular to .
4.2, Band structure and Fermi surface @

The band structure of ferromagnetic metals has been
calculated by a number of workers. Hanus (99] performed the first
APW calculation for the paramagnetic nickel. Connolly [641
obtained energy ©bands in ferromagnetic nickel within the
framework of the unrestricted Hartree-Fock scheme, in which the
exchange terms were approximated by a local potential. He used a
self-consistent APW method and comparison with the experimental

data showed that the unrestricted Hartree-Fock scheme may be an

acceptable model for the ground state of ferromagnetiec golids.
Yamashita et al [244], Wakoh and Yamashita [234] and Wakoh [235]
have obtained the electronie structure of nickel wusing the
Green's function method. Callaway and Zhang [45] and Langlinais
and Callaway {136] have used the tight binding method tc
calculate energy bands in feromagnetic nickel. They have
constructed a basis set using a linear combination of Gaussian
orbitals and used the Slater {a method to costruct an exchange
potential. Wang and Callaway [23?1 461 have reported a
self-consistent calculation of the energy bands in ferromagnetic
nickel using the tight binding method including the effects of

inclusion of spin-orbit coupling. Comparison of their results
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with the experiments indicates that a simple energy-band theory
employing a local exchange potential can sucessfully predict the
essential features of the Fermi surface and of the optical
properties of nickel. Hodges et al (1031 has studied the field
induced changes in the band structure and Fermi surface of
nickel. They have used the interpoifation scheme and made use of
several parameters obtained from a first prineciple APW band
caléulations; use was also made of the experimental magneton
number as well as other experimental information such as size of
$111> ‘neck' in the copper like sheet of the Fermi surface. Using
Mueller's interpolation scheme Zornberg (2461 calculated the band’
structure which is good agreement with the available experimental
data. Stark [213] has measured the large - centred sT and s
sheets of the Fermi surface with which band structures obtained
by Hodges et al [103] and Zornberg [246] did not give good
agreement. Prasad et al [172] wused a modified form of the
Hodges-Ehrenreich-Lang interpolation scheme (104, 200] and they
got good agreement with the experimental results on the large I'-
centered sheets as well as on smaller Fermi-surface sheets; They
have also reported calculations for extremal areas and band
masses of vaéious orbits, magneton number and density of states.
Smith and Chiang [201]1 has calculated the photoelectron spin
polarizaticon for ferromagnetic Ni using a combined interpoclation
scheme of Smith and Mattheiss [2001. Intially they used the APW
method to cglculate the band structure which was adjusted to
reproduce the experimental magneton number. The most detailed
Fermi surface and band structure calculation of spin polarized

nicked was presented by Anderscn et al [19}1. They have reported
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the band structure and Fermi surface using the APUYU method. They
have also studied the electronic structure of nickel as a
function of the lattice constant. These results confirm previous
findings by Wang and Callawy‘regarding the diffrent forms of the

local exchange approximation.

Recently Eckardt and Fritsche (771 has obtained
self-consttent band structure of nickeli with an exchange
splitting gap of 0.39 eV which is considerably closer to the
experiment value than those which have so far been obtained by
using the familiar potential of Von Barth and Hedin. They have
also done calcutations at finite temperatures which leads to a
lowering of the magnetic moment. Fritsche et al [B4] have used
relativistically exteded version of the one-particle formalisim.
They have calculated self-consitently the electronic structure of
nickel, iron and palladium metal. In addition, their caiculation
provides magnetic anisotropy energies. Recenty Ebert et al [761]
have presented fully relativistic calculations of the magnetic
moments and hyperfine fields of the ferromagnetic metals Fe, Co
and Ni. Their approach is based on the multiple scattering
version of the Green function method and they also coded that for
the first time, orbital contributions to the hyperfine fields of
these metals were accessible to a calculation. Spin polarised
relativistic augmented spherical wave (SPRASW) method has been
us ed by Krutzen and Springelkanp [1331 to report the
self—consistent calculations for the ferromagnetic Ni and Gd.
Their results for the Occuption numbers and magnetic moments of
nickel compare favourably with the experiment as well as other

calculations.
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Barbiellini et al £27] have studied the effsct of
gradient corrections to the XC potentials on the electronic
structure in metals. Gradient correction proposed‘by Perdew and
Wang and to some extent by Langreth, Mehl and Hu (LMH) have been
used in self-consistent LMTO band calculations in order to
determine groundstate and band properties in some transition and
alkali metais. They have made a comparison of the equilibrium
properties (such as lattice constant and buik moduili ) calcujated
using the LD and PW approximations experimental data. The result
show that the PW potential increases the calculated values of the
lattice constants and compressibilities which often improves the
agreement with experiment. As far as magnetic properties are
concerned they found that PW does not give better resuit than the
locai density potential. In case of the FS propertiés, they have
calculiated some FS dimensions in different directions. For
nickel, they have calculated the Fermi surface radii for the
majority sixth band and find that both LD and PW radii are
similar and close to the dHvA data. Barbiellini et al conclude
that the gradient-corrected potentials are not yet sufficiently

good to replace the LD potential.

The band structure of nickel is similar to that of the
copper except that the Fermi level now lies within the d-bands.
The Fermi surface of ferromagnetic nickel is shown in Fig. 4.1.
¥e consider first the Fermi surface sheets related to the part of
band structure which is derived essentiaily from the atomic 4s
level. Because the ferromagnetic splitting in nickel is quite.

small, one can easily identify the two large exchange-split ‘s’

sheets which are similar in shape and size to the Fermi surface

106



of copper. The majérity sT sheét has copper like necks which
contact the ({111} =zone faces near the points L, while the
minority s, sheet has pronounced buiges in the <111> directions
but does not make contact with 2zone boundry. According to our
current understanding, the five dT bands are completly_filled s0
that there are no d7 sheets of the Fermi surface. On the other
hand, the higest two d; Dbands are not fully occupied and give
rise to one large central d; sheet which intersects both s
sheets, together with a set of much smaller d; hole pockets
centered on the point X. Thus the FS of ferromagnetic nickel
consists of a spin-up copper like [F-centered surface with neck at
L, two sets of spin down hole pockets centered at ¥, and two

large spin down pieces centered at I,

Despite of recent advances, certain aspects of itinerant
ferromagnetism are still relatively poorly understood and require
further study. The Fermi surface of feromagnetic nickel and iron
are reviewed to some extent by Gold [901 and Lonzarich [143)}.
Here we begin with a brief discussion of the information which
may be obtained by what 1is thought to be perhaps the most
powerful technique for investigating magnetic phenomena. The
Fermi surface of nickel has been measured using de Haas-Van
Alphen (dHvA) effect by Tusi [223] and Stark and Tusi [214]; Tusi
[223]1 observed two distinct sets of dHVA-frequency branches. The
lower set extends the spin * s-band neck data previously measured
by Joseph and Thorsen [122). No experimental evidence had been
found till then for any second and smaller (111) neck which couid
be associated-with the s, sheet. The higher frequency set of

dHYA branches show details of the d+ hole pockets which |is
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measured by Tusi and Stark (214, 223, 2241 and Hodges et al
{1031, These hole pockets have been associated with the level Xs.
They did . not observe any dHvA cscillations which could be

assigned to either the ¥, pockets of the Fermi surface from which

2

it is concluded that the ¥_ eigenvalue must lie below the Ferni

2
energy. Stark ({213] has succeeded in detecting dHvA oscillations
arising from large - centred sT and s, sheets of the Fermi
surface, Using a cubic harmonic expansion method of Mueller and

Priestly [154, 1561 Stark was able to invert this extremal area

data to yield radius vectors.

The band structure along the symmtery directicn in B2 for
BH-XC obtained by us shown in Fig. 4.2, The figure shows the
energy bands in the vicinity of the Fermi level. These are the
bands which give rise to the Fermi surface and hence can be
compared with experiment. From our band structure, the spin down

bands based on i state produce the hole pockets which give dHvA

5+

oscillations that are easily observable and another set of hoie

pocket resulting from X level is predicated by our calculation.

24
Although these aditional pockets have been found in all
first~principles band calculations as far we know, they have not
been directly observed by experimenta! techniques ( measurements
of dHvA effect ) because fhese orbits have a small area and a
large vaiue of the cycliotron mass ratio. Gersdrof [88] has
suggested that measurements of magneto crystaline anisotropy

provide evidence for the existence of these X hole pockets and

24

estimate a much large mass ratioc of about 197. The ordering of

levels at L near the Fermi level for the spin-up bands from

’

highest to lowest is L.-L

2 3—]..:3 which is in agreement with the
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calculations by Connolly [64) and Wang and Calliaway (237] { necks

are formed from Lz' branch ).
4.3 RESULTS AND DISCUSSIONS

We have calculated the AE_ for the spin up and spin down

F
sheets for different ¥C-potentials i.e. BH, VWN and Ya. All the
calculations are done with 240 [ points and angular nmomentum
expansion up to £=2 because we have not found any effect of

. . >
increasing the number of k ponts as well as angular momentum

expansion on the Fermi surface of the nobie metals and Pd and Pt.

We have calculated the extremal areas of the FS orbits
for the magnetic field along (001), (110} and (111) directions.
These results are presented in Table 4.1 together with the
experimental results of Tusi (223) and Stark (2131, Also given
are the results of Anderson et al [19]), Prasad et al [172]1 and
Wang and Callaway (237]. The first principles calculation of Wang
and Callaveey does give qualitative agreement with the Fermi
surface data with an éxtreme error of 17 mRyd. Moreover it
predicts two sets of ¥X-centred hoie pockets, one arising from
level ¥_and other from level ¥. ., whereas experimentally only one

5 2
set of hole pockets associated with level )(5 has been observed.
The HSG model {103] algo gives qualitative agreement with the
data of Stark and Tusi. Since Hodges et al have not reported the
band wmases of the FS orbit, we have calculated AEF using
experimental masses. As the band masses have lower value than the
eperimental ﬁasses, the HSG model should give a higher value of

the extreme error than the value of 16 mRyd calculated by us.

Similarly we have caiclculated AEF for the resuits of Zornberg
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[246]. In this case we get the smaller AEF in comparsion to that
of Wang and Callaways [2371. Prasad et al [172] have reported the
energy band structure calculated using a modified interpolation
scheme and get good agreement with the experimental results on
the large - centered sheets as well as on the smaller F5 sheets.
They have reported an extreme AEF of around 0.5 mRyd which is
very low in comparision of the other's. Prasad et al have missed
a factor of 2 while calculating the extreme AEF so it should be
1.0 mRyd instead of +the 0.5 mRyd. All earlier calculaiions
discussed above does not give a complete calculaticon for aii the
FS areas. The first such detailed calculation was presented by
Anderson et‘ al {193 who has used the self-consistent
spin-polarized augmented- plane-wave method to calculate the FS

areas wusing the BH-XC potentials. We have calculated AEF for

these FS areas using their band masses. We found the large AE

F
for the necks of the majority band and an overall extreme ﬁEF
around 42 mRyd.

Keeping the overall view of the all the aﬁove

calculations discussed so far, our attempts in this direction
using the salf-consisteﬁt ab-initio LMTO method give a successful
attempt to calculate FS areas. Looking at the results of our
calculation, we note that we have obtained good agreement with
the experimental data with an esxtreme AEF of 9.0 mRyd (BH), 9.9
mRyd (VWN-XC) and 24.3 mRyd ( ¥a ) with @ = 0.715 . Here we have
varied the value of a in Xa XC-potential from 0.65 to 0.80. The
a=0.715 gave the best agreement with experimental data i.e. a
minimum extreme AE. . So our calculations give a smaller AE_ in

F F

comparsion with the calcuiation of Wang and Cailaway [237] and
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the seif-consistent calculation of Anderson et al [19]. The
extireme AEF is large in comparision to the calculation of the
Prasad et al [172] who have used the interpolation scheme. Here
we are not using any adjustable parameter and we are not fitting
the FS, resulting in a larger AEF.

We have calculated the FS radii and FS area for the
nickel using the nontlocal Lagrenth and Mehi correction which was
added to the local ¥C fuctien of Barth-Hedin. The caliculations
are done with 240 K points and taking angular momentum expansion
up to <¢=2. The calculations are compared with our local XC
resuits of BH-XC in order to compare the nonlocal correction
effect and with the work of Barbiellini et al (27]. The Fermi
Surface radii calculated using the LM XC given in Table-4.2 are

almost same as calculated with the BH-XC. The difference is very

small cosistent with the conclusions of Barbiellini et al [27].

To see the better picture of effect of nolocal
corrections we have calculated the FS areas of majority and
miniorty spin orbits (given Table 4.3). The extreme ﬁEF in case
of BH exchange is 9.0 mRyd which comes from the majority 6th band

centred at [C. The AEF for the same orbit using LM-XC is aropund

11.6 mRyd and extreme AE_ is 12.0 mRyd. A look at Table-4.3 shows

F
that the ﬁEF for the majority spin FS neck orbits doubled using

the LM corrections but for the miniority spin down X-~centred and

' ¢entred orbits the AE_ is almost unchanged. Thus the inclusion

F

of the nonldcal corrections increased the extreme AEF from 9.0
mRyd ( incase of local potential ) to 12.0 mRyd {incase of LM-XC

). Hence inclusion of nonlocal correction degraded the agreement

with the experimental data
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4.3.1. Magneton number

The magneton number, nT- ny i.e. the difference between
the number of occupied states of the majority and miniority
spins, was calculated by neglecting spin-orbit coupling and then
solving the secular determinant for each spin seperatly,.
According to Zornborg [246] this approximationcan introduce an
error of 1less than 0.01 electrons/atom in the calculation of
magneton number. We have calculated the magneton number using
different exchange ecorrelation potentials. The values of magneton
number with different XC-potential along with experimental value
and from other ca1culations are given in the Table 4.4. The valiue
of magneton number are 0.566 electros/atom for BH-XC, 0.574
elect;onsfatom for VWNN-XC and 0.619 for the Xa-¥C potential. The
caleulated wvalue wusing BH-XC and VUN~XC are very close to
experimental value {681 of 0.56 electrons/atom in comparision
with the value of 0.63 electrons/atoms calcuiated by Anderson et
al using APY method with the BH-XC ©potential and 0.62
electrons/atoms calculated by Barbiellini et al using

self-consistent LMTO methed with the iocal density potential and

the nonlocal exchange of Perdew and Wang.

4. 4. CONCLUSIONS

Ve have compared several different treatments of the
exchange and correlation potentials in our spin-polarized LMTO
calculations for nickel. We find that the BH-iC gives somewhat
better results for the Fermi surface in comparison to the other
¥C-potentials. This is in contrast to our work on the noble
metals and transition metals Pd and Pt which shows that the Ia-XC

gives the best agreement with the experimental data. Xa- ¥C ( a=
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0.715) gives an extreme AEF which is about two and half times the
other XC-potentials, & fact alsc noted by Wang and Callaway

[237). The nonlocal ¥C potential does not improve the results but

it goes in negative side.



- TABLE 41

Cross-sectional areas ¢f the Fermi-surface | ﬁ%: in mRyd. 1}
ORBIT Orien-|Cent-|{Band Expt. calc. |Calc. Calc. |Our  calculation
tation|er value| (¢} {d} (=)
BH-XC [VUN-XCiXa=-XC
al.0071|0.0236 U. 0095 [0.008910.0119
T
Neck e 8T 1-90717| 5 0 |-30.9 (=4.7)({(-5.3)]¢(~-9.1)
+ a 0.0402 C.01180.0124|0.01586
Neck (1101 L ] .0102 -32.9 -2, 8 3.5 |-7.3
Neck {112] L 6T 0.0313 0.0104|0.0109710.0124
Large [(001L] r st 1.15b 1.154f 1.23 1.24}11.2079]1.2115f1.2818
Square -0.1 -13.1| -6.4| -8.0 -9.6 -23.2
.0258] 0.023}10.018{0.02456{0.0250|0.0262
Pockets (0011 % 3, |0.0267 0. 4 1.3 |-2.1 |-1.4 T3 0.4
L0B71{0.048 [0O.038|0.0536(0.0559(0.0810
Pockets {1001 X 3, |0.0885 0.1 1-3.a -6.9 1.5 -4 -0.8
0.034 0.024510.046310.0506
Pockets (1101 X 3, [©.08585 —al b NP 1.9 -i.5
Pockets {1011 ¥ 3, 0.028 0.0274)0.02B1]0.0299
. .03467|0.035310. 8
Pockets {1111 3 3 C.0442 0.028 0.03 o DS?
3 -1.8 -1.86 -1.5
Pockets (0011 X 4, 0.050 0.0408|0.030910.03&5
Pockets [iC01] i 4, - 0.086 0.104410,107410.1185
Paockets [1101] X 4, 0.070 0.052910.054210.05882
(0012 r 5, 2.04 2.112412,.103712.082n
(110} r S, 1.59 1.5963)1.586511.5621
1111} r S, 2.08 2.1371)12.122412.089¢S
L 10.9203| 0.380 |0.84 |0.8997]|0.83968|0.8871
Smail tootl) T 5, | 0.8 0.1 | 9.2 2.2 | 0.0 0.3 1.1
Square i
{1101 r 6, 0.98 0.8977]0.89848]0.8653
{1111} r 8, 0.71 0.772510.7688(0.7671
Extreme AEF {mRyd) 0.5 42. . 9.1 9.0 9.9 24.3
*Ref 223 b
eterence Refarence 213

(o4
Refarence 172 d
RefarencaI19 EReference n37
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Fermi surface parameters in unit of 2Znr/a

TABLE 42

Barbiellini et al®

Expt. Our calculation
Lal
iC PW ic LM
er 0.77 0.77 0.77 0.775 0.778
KFK 0.58 0.59 0.860 0.589 0.594
KLU 0.05 0.05 0.04 0.055 0.047

aRaferenca 103, 224

Refsrence 27
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TABLE 43

Cross-sectional areas of the Fermi-surface | AEF in mRyd., }
ORBIT Orien-|Cent-|Band Expt. [cale, [Cale. |Calc.|Our caiculatian
tation}er val ue (e) (d} te)
BH-XC LM-xC
. + {.0 a{.0071i0,0236 0.0095 ¢.0118
Neck (1113 L (] 071 0.0 |-30.9 (—4.71 -8.0
+ a 0.0402 0.0118 0.0148
Neck L1101 L 6 .0102 Z32.9 “o.B 6.5
Neck [11213 L 6T 0.0313 0.0104 0.0131
—x —
Large {001 r gT 1.15 1.154 1.23 1.2411.2078 1.2245
Square -0.1 -13.1 -6.4| ~-9.0 -11.6
) . D258 0.023|0.018|0.0248 0.0244
Pockets (0012 b 3y |9.0267 ) 47, “1.3 |-2.1 {-1.4 ‘i 8
LO067110.048 10.,.03810.0536 0.0571
t X B
Pockets [100] 3, |0.0665 0.1 |-3.9 -6.9 -1.6 1.3
0.03a 0.0445% 0.0470
t .
Pockets | [1101| X 3, lo.os8s el oy oy
Pockets t1011 i 3, 0.028 0.0274 0.0279
0.028 0.0347 J.0363
t L X 3 .04
Pockets 1111 L |0 42 .8 S5 1
Pockets Qo1 X &L 0.080 Q.0408 Q.0322
Pockets L1001 bt 4, 0.088 0. 1044 . 1082
FPockets (1101 b4 4& 0.070 0.0529 0.0546
Lo01L1] r SL 2.04 2.1124 2.0988
[1101 r 5# 1.59 1.5969 1.5785
(1111 T 5, 2.08 2.1371 [2.1154
b {0.903] 0.680 |0.66 [0.8997 |0.6958"
Small (o011 r 6¢ 0.9 0.1 9.2 2.2 0.0 0.4
Square
(1101 r 6+ 0. 96 g.8977 0.8942
£ti111 r 6+ 0.71 0.7725 0.76886
Extreme AEF {mRyd) 0.5 42.1 9.1 8.0 12.0
%Refe 223 b
erersnce Reforence 213

dReference 19

aReference 237
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TABLE 44

Magneton number for Nickel

n,

Experi- Calculation Ours Caicuiation
ment
{b) BH-XC VUN-XC {a-XC
nt - 0.5862 0.63 0.566 0.574 0.619

aReference 68

bReference 19
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CHAPTER V



EFFECT OF PRESSURE ON THE FERMI SURFACE OF THE NOBLE METALS.
TRANSITION METALS PALLADIUM. PLATINUM AND FERROMAGNETIC NICKEL

The interpretation of pressure effects on both, electron
transport and crystalliographic properties of metals, usually
requires some knowledge of the way in which the FS is affected by
pressure and also provide a valuable check on the reliability of
band structure calculations. Although studies of the pressure
dependence of the FS of few metals have appeared in the
Iiterature, only recently have any comprehensive studies become
available. Such measurements have been shown to provide rather
critical tests of the phyéical significance of the theoretical
models proposed to describe the FS5 of these metals. Therefore
interest from both Experimental and computational standpoints has
incfeased in the past several vyears. This growth can be
attributed to at least three factor : (i) Development of
experimental tools of sufficient resolution to measure accurately
the changes in the dimensions of the FS with pressure. These
changes are often of the magnitude of the compressibility so that
highly accurate measurements are required. (ii) Improvement in
techniques for the generation of hydrostatic pressures at tooilow
temperatures which are suitable for use on fragile single crystal
specimens. (iii) Concurrent development of sufficiently detailed
theoretical models for the FS5 which permit direct comparison of

the experimental results with model predictions.

Simul taneous operaticn of these factors was probably
necessary in order to overcome the rather negative impressions

created by some early work. This work suffered from lack of
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reproducibility of experimental results and disagreement with
even qualitative predictions of the theory. It has been now
fairly Qell established that most of these difficuities stem from
the nonhydrostatic pressure techniques employed on the highly

anisotropic materials which were the subject of early study.

There exist abundant experimental data on the effect of
pressureé on the FS of the noble metals, palladium, platinum and
nickel. As we have calculated the FS of metals at ambient
pressure, it will be a useful extension to study the effect of
pressure onh the FS of these metals. Since relative accuracy is
always better than absolute accuracy we expect to obtain reliable
values for the pressure derivatives of the various extremal areas
in these metals. At present we are not aware of any
self-consistent calcutations . of pressure effects. Qur
calculations will hopefully fill this gap. We have calculated the
pressure derivatives self-consistently i.e.self-consistent band
structure ﬁalculations are performed at two different radii. This
wii! give a value for the pressure derivatives of the various FS
orbits. Further, there also exist some band structure
calculations (although not self-consistent) for comparison with
the present calculations. We hope our calculations will generate
more interest in this area. In section | of this chapter we
discussed the effect of pressure on FS5 of the noble metals while
section 1l and Il are devoted to palliadium, platinum and nickel
respectively.

I. NOBLE METALS

S.1 INTRODUCTION

The utility of pressure studies of the FS of metals as an
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important complement to normal volume measurements has been
demaonstrated recently. The purpose of this section is to
represent results of studies utilizing pressure derivatives of FS
in conjunction with precise normal volume.crosslsectional areas
to c¢ritically assess the physical significance of band
theoretical description of the noble mﬁtals. We chose to
investigate noble metals for a number of reasons. Both ‘first
principle’ and parametrized band calculations have been published
for noble metals and also sxcellent data with which comparison
can be made exists. The FS5 of noble metals are well known and are
topologically simple. Moreover, since we have already caiculated
the zero pressure FS, it is natural to calculate their pressure
derivatives. As there exist only few ab-initic calculatipns,
uniike to that ours is self-consistent, i.e., pressure
derivatives of extremal areas (l1/A dA/dP) are obtained performing
self-consistent band-structure calculations at two different
radii. We see that in such type of calculations self-consistency
plays vital roie. From our conclusion, wse borrow that the choice
of the XC potential is also crucial whieh is not studied to this
extent earlier. Here we present detailed calculations of the

effect of pressure on the FS of the noble metals.

Attempts to study the pressure dependence of the noble
metals experimentally have been made by various workers. There
are a good many experimental tools for investigation of the FS of
the metals, but only a few have been employed effectively as far
as pressure studies are concerened. This stems from the fact that
for most metals the magnitude of the effects of F5 dimensions is

of order of compressibility which means fractional changes of a
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few parts 1in 1030r 10—4kbar-lare typical. Measurements nmust
either be made +to this sort of precision or differential
techniques employed whieh give the change directly. The work-on
the hydrostatic pressure dependence of the Fermi surfaces of
metais has been reviewed By Brandt, Itskevich and Minina [41], by
Svechkarev and Pénfilou (2193, and most recently and
comprehensively by Schirber and his group [47, 181, 182, 218) and
later Templeton [220, 2211 have measured the pressure derivatives
of cross-sectional areas of the FS of noble metals using the
fluid-He de Hass-van Alphen phase-shift method. So we have

accurate data as needed for comparison with our calculation.

The existing calculations of the effect of pressure on
the FS of nobie metals fall into two brogad categories. (i}l a&
tnttie calculations such as those of Davis et al [70] for copper
and Ramchandani's for geold [1753. (ii) Empirical methods such as
those of Shaw et al (1891, Bosacchi et al [38] and Gavenda et al
(871 for copper. Consider first the &b initic calculation of the
Davis et él [70] who have reported the change in the electronic
band-structure of copper with change in lattice spacing. The
caleculations were performed using constant energy search
techniques based on the KKR methed with 26086 points for
different lattice constants and wusing the measured value of
volume compressibility they were able to calculate the change in
FS with pressure. The calculations were consistent with the dHvA
data available at that time. while Ramchandani [175) has reported
RAPW calculations for the gold for different fattice spacing. He
has calculated the pressure coefficient of the neck area which

was within a factor of 3 of the measured value. As far as the
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empirical methods are concerned Bosacchi et al [38]1 have used the
Fourier series expansion technique for inverting the pressure
dependence of the dHvA areas into corresponding change in the
Fermi radii. They adjusted the Fourier coefficients to fit the FS
data while Shaw et al [189] have utilized the KKR method for
parametrizing the experimental FS data using the techniques which
are based on the standard least-squares methods. They fitted the
pressure derivatives using as lattice constant derivatives of
phase shifts as adjustable parameter. In early of 80's Gavenda et
af [87) and his group have used a straightforward method for
finding expansion functions with the -symmetry of strained
lattice. They hawe applied this method to copper under
hydrostatic and uniaxial strains. Changes in FS cross-sectional
areas are computed, based on a fit to energy shifts calculated by
Gray and Gray [91, 921] who have used this techniqgue in
conjunction with modified plane-wave method. Their results

compare favorably with experimental values.

Since we have already caiculated FS orbital areas and
masses for four orbits, belly Bi1i, belly B100, dog bone D110 and
neck N111 where the numbers denote the direction of magnetic
field at equilibrium lattice constant {2]. We have performed
similar calculations with the lattice expanded by about 0O.1%,
This is small enough to exclude nonlinear effects and
sufficiently large to accurately calculate FS changes. Again, the
self-consistent parameters are determined and the FS area is
calculated. From these two calculations, we obtain dA/A
corresponding to a 0.1% change in the lattice constant. Using the

~4 -1
vaiues of compressibility (1281 7.39 x 10 kbar for copper,
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10.06 x loiakbar-lfor silver and 5.84 x 10h4kbar-1for gold, we
obt;in 1/A dA/dP. These calculations are done with Xo, BH, BHJ
and VWN-XC potentialé. In Xa-¥XC, a was taken to be 6.?7 for
copper and silver and 0.693 for gold because these gave a good

fit to the zero-pressure FS.
5.2 RESULTS AND DISCUSSIONS

The 1/A dA/dP obtained for the four FS orbits wusing
various ¥C potentials are given in Tables 5.1-5.3 along with
experimental wvalues and other theoretical calculations. Consider
first the case of copper given in Table 5.1. The pressure
derivatives for the Blil, B100 and D110 orbits are almost
identical for all the XC's used. The N111 is the most sensitive
to the choice of the XC potential used. On compérisan with the
experimental data of Templeton [221]1 and of Schirber and Sullivan
(1811 we observe that the VWN and Xa—-¥C potentials give good
agreement with the data. Also given are the pressure derivaéives
obtained by Shaw et al [(188] and Bossachi et al [39] using phase
shifts and Fourier coefficients. These are definitely in better
agreement with the data compared to ours because the parameteré
were adjusted to fit the data. It is indeed heartening to note
that the results of Davis et al [70] using KKR aiso agree with
the data except that the N111 derivative is slightly lower than
the experimental value. Gavenda et al, wusing the method of
interpolation functions, have obtained the pressure derivatives
which are consistent with the experimental data and with our
calculations. Thus our values for the pressure derivatives for
the four FS orbits (using Xa and VUN) are in good agreement with

the experimental data.
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Table 5.2 gives our results for silver along with the
experimental values of Schirber and Sullivan [181]1 and Templeton
[221] along with the empirically adjusted values. Unfortunately,
we are not aware of any ab initie caleculations. 0O%ce again we
observe that the B1l1li, B100 and D110 are not sensitive to the
choice of the XC potentials, whereas N1ll is. For silver only the
ia (a=0.77) gives agreement with the experimental data. Qur
previous work [Z2] on silver indicates that fa (ax=0.77) gives the

best fit to the zero pressure FS data.

Values of /A dA/dP for goid are given in Table 5.3. Ve
are aware of only one ab initio calculation by Ramchandani [1751]
who used the RAPW method to obtain 17/A dA/dP for N1l1ll1 which was
1/3 of the experimental value. As in the case copper and sijlver
we find that the Bl1ll, B100 and D110 are not influenced much by
the XC potentiais; only the Niil is. Our calculations indicate
that the Xa {(&=0.683) and BH-XC's give good agreement with the
experimental data. Our previous work [2] for gold indicates that

these X¥C'S give the best fit to the zero-pressure FS5 data.

As mentioned above, the pressure derivatives were
obtained by performing self-consistent band calculations at the
equilbrium lattice constant and at a lattice constant increased
by 0.1%. This is smali enough to excliude non-iinear effects and
sufficiently large to accurately calculate the F5 changes. Ue
have also caiculated the band structure at lattice constant 0.4%
larger than the equilibrium value. This yields 1/A dA/dP within
10% of the values given in the Tables 5.1 - 5.3. This could be

well due to the non-linear variation of FS area with pressure.
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5.3 CONCLUSIONS

In conclusions we can say that our calculations of 1/A
dA/dP for the noble metals suggest that the LMTO method gives
values that are in good agreement with experiment. Our resuilts
show that Blil, Bi100 and D1i0 orbits are 1insensitive to the
chaice of X¥C used, while the N111 orbit is greatly influenced by
the ¥C. Hence the pressure data can be used to determine the most
appropriate %C potential. Our calculations indicate that the Xa
(ot variablel! gives correct values of 1/A dA/dP for all the noble
metals as does VWN for copper and BH for goid. l£ would seem
interesting to compare this with our zero-pressure results [2],
which show that no single XC potentiai Eives a good
representation for the FS of noble metals. The Xa~-¥C with a
variable a gives the bhest agreement with the expermential data
and with previous abd initie methods for all the noble metals.
Perhaps this reflects the need and importance of self-consistency
in band structure calculations. Alsg, our values aof 1/A dA/dP are
in no way inferior to the values obtained by the empirical
methods. In fact, these are equally good and obtéined with no

adjustable parameter.

II. PALLADIUM AND PLATINUM

5.4 INTRODUCTION

In this seection , the calculation of the effect of
pressure on the FS of ths transition metals palladium and
platinum has been reported. The FS5 of these metals at
zero-pressure is discussed in detail in our chapter 1I[11. Our

calculations indicate that the LMTO does give a good description
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of the FS Vfor both Pd and Pt. As these metals possess the
fascinating electronic properties, it will be very interesting to
study the effect of pressure on the F5 of these metals. This will
obviously be a natural extension to the work reported in chapter
I1l. There exists very few papers concerning the effect of
pressure on the FS of Pd and Pt both theoretical as well as
experiment. The first experimental study of the effect of
pressure on the FS of these metals was reported by Vuillemin and
Bryant [2341. They have measured the pressure derivative of the
Fermi surface cross-section at <100> and <111> for the electrons
in Pd and Pt in the range (0-25 atm. The dHvA measurements of the
change 1in c¢ross sectional area of the electron sheets of these
two similar FS as a function of hydrostatic pressure has bheen
presented and the change was measured by the fluid-helium
phase-shift method at temperatures as low as 0.95°K. Their
results suggest that the electron pressure derivatives in Pd and
Pt are nearly isotropic. After a gap of a decade Skriver et al
{1971 and Venema et al [227] reported the pressure derivatives of
extremal cross sections of the FS of Pd by means of dHvA
measurements under pressures up to 3.7 kbar. In this paper
Skriver has reported the pressure dervatives for hole pockets
centred at ¥ and L in addition to the electron orbits. They have
also calculated the theeorstical values of pressure derivatives
obtained from their self-consistent band-structure calculation
based on the. LMTO method using the local density approximation
with BH-XC potential and are found to be in good agreement with
the experimental pressure derivatives. Cavalioni et al [48] have

reported hydrostatic-pressure dependence of FS of Pt using LMTO
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method. They have compared their resuits with experimental values
obtained by converting their uniaxial results. Their results for
I' centred electron are consistent with the measurement of the

Vuillemin and Bryant {2341 the only avilable data.

Since we have already calculated the Fermi surface areas
and masses for Pd (3] and Pt [6] at equlibrium lattice constant,
now we perform the similar calculations at the expanded lattice
constant. From these two self-consistent caleculations of Fermi
surface areas, 1/A dA/dP can be obtained using the
compressibilities [128] of 5.5x10 ¢ kbar © for Pd and 3.59x10 %
kbar ' for Pt, These calculations are done with 240 B points and
using angular momentum expansion up to £=2 with different XC
potentials. In Xa-XC potential a=0.75 for Pd [3]1 and «=0.817 for

Pt (61 because these gave a good fit to the zero-pressure Fermi

surface,
5.5 RESULTS AND DISCUSSIONS

The pressure derivatives for the FS orbits in Pd and Pt
using wvarious potentials are given in Tables 5.4 and 5.5.
Consider first the case of Pd. There exist three sets of data
obtained by Vuillemin and Bryant [234], Skriver et al £197] and
Joss and van der Mark [1231}. While the first two measured 1/A
dA/7dP under hydrostatic pressure, the last group deduced 1/A
dA/dP from their wuniaxial data. Hence the wuncertainties are
larger. Al]l the data are consistent with each other. Skriver et
al have calcﬁlated 1/A dA/dP using the LMTOD-ASA with the BH-X%C
potential ({(including combined correction terms). The differences
{large in some corbits) could be due to the tetrahedron technique

used by them for calculating pressure derivatives. However our Xa

127



and VWN XC potentials results are in better agreement with
theirs. We find that pressure derivatives of the large Fermi
surface orbits are insensitive to the XC potential used, while
the smal!l Fermi surface orbits are very sensitive. It would be
tempting to decide on the appropriateness of any XC potential
based on the experimental 1/A dA/dP. However no éingle ) 4o
potential yields a good agreement with ail the Fermi surface
orbits. We hope that with data available on more orbits the

situation could be more encouraging.

Our results for Pt are given in Table 5.5. Unfortunatety,
Vuillemin and Bryant [234] have measured the pressure derivative
only for the T centered Fermi sgsurface. Recenty Cavalloni et al
{48] has reported experimental and theoretical volume derivatives
of the area of some extremal! orbits on the Fermi surface of Pt.
They have obtained these experimental volume derivatives by
converting the experimenta] stress derivatives. They have fgund
the biggest discrepancy between theory and experiment occurs for
the W-centred a orbit, for which no accurate measurement exists.
The large volume dependence of the ¥i-centered hole pocket is an
indication of the strong .sp-d hybridization. Our pressure
derivatives using different XC potentials for I-centered orbits
are consistent with experimental results of Vuillemin and Bryant
[(234] and the calculations of Cavalloni et al ({(48]. For the
X-centered orbits, Ka-¥C gives ©better agreement with the
experiment as well as the calulations of the Cavalloni et al in
comparison to other XC potentials. The pressure derivative for
the cpen hole W-centred o orbit with Za~XC is more close ta the

experimental value in comparison to Cavalloni et al's

128



calculations. So the scarcity of data precludes us from making

any more definitive coneclusions.
5.6 CONCLUSIONS

Our calculations of 1/A dA/dP for Pd and Pt suggest that
the LMTO-ASA method yields values that are in agreement with the
minuscule experimental data. We find that the agreement is better
for the [ -centered sheet while it 1is not so good for the
I-centered and L-centered pockets in Pd. Our calculations show
that the choice of iC potential does not influence the pressure
derivatives of the larger Fermi surface orbits. The pressure
derivatives of the smaller Fermi surface orbits are depsndent on
the ¥C potential used. Hence one could use the experimental data
to determine the best XC potential. However, the lack of
suffjcient data precludes wus from drawing any definitjve
conclusions. We hope our work will lead to more experiments on

the measurement of 1/A dA/dP in Pd and Pt.

ITI. NICKEL
5.7 INTRODUCTION

Nickel has been a prototype metal for innumerable studies
of wvarious physical properties involving itinerant-electron
ferromagnetism, d-band elecironic structure and transition-metal
surfaces. We have seen that the pressure derivative 1/A dA/dP
caleculated using LMTO method agree with the experimental data for
the noble metais and for the transition metals Pd and Pt. In this
section we would like to address ourselves to the effect of
pressure on the F5 of ferromagnetic nickel. The first

experimental study of effect of pressure on the F5 of nickel was
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reported by Anderson et al (201 whol measured the pressure
derivatives for the "neck” and *eLipspid“ orbits using the =zo0lid
helium high-pressure techniqgue. Aroﬁnd the éame time Vinokurova
et al g;oup {228 - 2301 presented experimental results of
measurement of de ‘-Haas-van Alphen (dHvA) effect under pressures
up to 1 Kbar. Andersan et al [201 found that the experimental
derivative of the [Q01] hole-pocket cross-sectional a}ea cof FS is
positive in contradiction to the negative value reported by
Vinokurova et al [228 - 2301. This was later expiained by
Gapotchenko et al [B6) as due to the pressure derivative for the
[001]) hole pocket being small and less than the Jimiting accuracy

of the measurements made by Vinokurova et al [228 - 2301].

On the theoretical side Anderson et al (18] have studied
the effect of a change in lattice spacing on the band structure
of nickel wusing the augmented plane-wave (AFW} method. Their
calculations for the c¢hange in FS and magneton number with
pressure shows reasonable agreement with the available
experimental measurements. Two authors of Vinokurova et al group
(2301 have calculated the band structure using a model
Hamiltonian technique and have shown that pressure dependence on
the FS of ferromagnet comes from two contributions i.e.
‘magnetic’' contribution and ‘potential' contribution where former
can be deduced from Stoner the&ﬁi and later can be obtained by
comparing the properties of ferromagnet and paramagnet.

We have used the LMTO-ASA method including the combined
correction terms to calculate the®™FS area of various orbits for
magnetic field along {0011, (111) and [110) directions. Now the

lattice is expanded by 0.1% and the self-consistent parameters
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are recalculated. From these two self-consistent caiculations at
two different lattice spacing and using the value of
compressibility 5.38 x 10°% for nickel ©1281, we obtain 1/A
dA/dP. The calculations are done with the von Barth-Hedin (BH),
Vosko-Wilk~Nussair (VWN) and Slater Xa iC potentials. In the

fx-¥C, o was taken to be 0.715 because this gave a good fit to

the zero-pressure FS [7].
5.8 RESULTS AND DISCUSSIONS

The calicuiated pressure derivatives aiong with the
experimental one are given in Table 5.6. Consider f{first the
majority spin up orbits. For the Neck [111} and Neck (1121 our
pressure derivatives for VWN-XC and {a-¥c are in good agreement
with the experimental results {20, 228 - 23011 in comparison to
Anderson et al (193} calculations and quite fair for BH-XC. For
the rest two i.e ﬁeck {110] and large square [001]} for which no
experimental as well as theoretical value 1is avialable, our

calculations for different X¥C's are consistent with each other.

Now fto the minority spin down case, for the small
¥-pockets (0011 the pressure derivative is positive which is in
agreement with experimental results of Anderson et al [201 as
well as their calculations (191 but in contradiction to the
negative value of Vinokurova et al [228 - 230}-wh0 showed that
the solid-helium phase-shift measurement for this particular
orbit is more reliable. For the pressure derivative of the necks
(111) and (1121, our calculation for VUN-XC and Xoa-XC shows
better agreement with the measured values c¢ampared to the
caleculation of Anderson et al [19] while no other ealculation is

available for the neck [11i2]. For the rest of the orbits as there
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exist no experimental measurement, our results particularly for
ellipsoids and small squares centered at ' are consistent with
the calculation [19]1 for all three XC and for remaining pockets
and ellipsoids centered at X, our calculations for different ¥C
are not in agreement with the calculations of Anderson et ail
[19}. An overall look at Table 6.6 shows that YWN-XC and Xa-XC
with o=0.715 give better agreement with measurements (20, 228 -
2303} in comparison to BH-XC.
5.9 CONCLUSIONS

Our caleulations of 1/A dA/dP for the nickel suggest that
the values given by LMTO method are in good agreement with
experiment. It shows that the LMTO methed is capable to explain
the FS topology of the ferromagnetic transition metals as good as
for paramagnetic metals, For nickel, there exist a minuscule
data, so our calculations in this direction present a way for
experimentalist to itook further to give more data for the orbits
which are untouched till now. QOur calculations show that Xa-XC
gives the better agreement with the measured orbits. For the
small X-pocket <001>, our calculated pressure derivative Iis
positive whigh 1is in agreement with Anderson et al (201
measurement which shows that Solid-helium phase shift measurement
for this piece 1is more reliable. For the larger orbits, the
pressure derivative with different iC potentials are almost same.
This is consistent to our work of the noble metals and transition
metals Pd and Pt that the Larger orbits are insensitive to cﬁoice
of the XC-potential used. We have also learned that particular
attention must be paid to convergence, in spin polarized
calculations to obtain the accuracy required for the computation

of FS changes.
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Experimental and calculated values for A_ldA/dP (lOnakbar_ )

TABLE 5. 1

1

for Capper
Bilt B100 N111 D110
Xo~%C (a=0.77) 4,4 4.5 22.8 3.9
VUN-XC 4.4 4.5 23.6 3.9
BHJ -XC 4.2 4.8 9.4 4.0
BH-XC 2.3 2.8 4.7 4.8
Gavenda et al® 4.11 4,66 16.0 3.79
Davis et al 4.4 4.7 - 15.5 4.1
Shaw et al* 4.26 4,57 15.5 4.1
Bosacchi et ald 4,25 4,60 18,87 4,01
Expt. vatue® 4.21%+0.03 | 4.42+0.03 | 18.8%0.5 .04+0,02
Expt. value & 4,25 4.6 18.0 4.0

aReference 87

b

Reference 70

o]

Reference 1889

dReference 39

eReference 221

fReference 181
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TABLE 5. 2

Experimental and calculated values for A YdA/dP (10 “kbar 1)
for Silver
Bi1i B10O N1i1 DL10O
Ra-¥C (a=0.77) 5.6 6.3 62.2 4.8
VUN-XC 5.6 5.8 90.4 4.6
BHJ-XC 5.7 6.3 41.4 5.7
BH-XC 5.7 6.3 41.4 4.7
Shaw et al® 5.18 5.59 61.2 4.78
Bosacchi et alb 5,34 5.61 59.81 4.40
Expt. value® 5.29*0.03 5.68+0.04 | 65.020.7 4.49*0.03
Expt. value 5.1 5.6 50.0 4.4
®Reference 189
bRefarenca 39
°Refersnce 221
dReference 181
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TABLE 5. 3

Experimental and calculated values for A—ldAfdP 'llo_qkbaril)

for Gold
B111 B10OC Nill D110
Xa-XC (a=0.693) 3.1 3.8 19.7 2.8
VUN-XC 3.1 3.6 26.2 2.8
BHJ-XC 3.1 3.5 13.1 2.8
BH-XC 2.8 3.8 19.7 2.8
Ramchandani® 7.1
Bosacchi et aib 2.80 3.70 22.06 2.75
Expt. value® 3.0640.04 | 3.5840.03 | 20.6+0.5 { 2.70+0.02
Expt. vaiue d 2.8x0.2 3.7*x0.3 20.011.0. 2.7*0.3

aReferance i7%
b

Refereance 39
c

Reference 221

dReference 181
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TABLE 5. 5

A-ldA/dP (10‘4kbar_1i with different X¥C potential for Pt.

A—idA/dP +i using using using using Calcu- Expt.
BH BHJ VYN ¥t latio=| WValue
Field %G 5C XC XC n
directiong a=0,818 {a)
X eenter
<O10>XUl 11.9 10. 9 32.3 52.0 45.5 68,02
<110>XUr 11.8 11.1 32.0 |~ 51.8
<100>% WY 10.1 9.3 27.8 47.8 41.2 38.n%
<110> 10.5 9.8 28.8 49.0
C111> 10.1 9.4 28.0 48.0

[ genter

C1iis 3.0 3.0 3.1 3.1 3.0 |2.8%0.3
£100> 3.2 3.2 3.3 3.3 3.3 {3.220.3
<110> 3.3 3.5 3.6 3.6 3.8

Open hole _
<100>x 3.3 3.2 3.4 3.7 2.8 5.2%
<001>s 2.6 2.6 2.7 2.7 2.6

<110>p8 4.6 4.3 4.8 5.2

aRefarence 48

Reference 234
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TABLE 5. &

Experimental .and Calculated valuas of L/A dA/dP { 107" Kbar™h
CRBIT Orien~|Cent-|Band Experiment [Calec. Our caleculation
tationjer value {c)
BH-XC VUN-XC Xax-XC
Neck f111) L 6T 8.0 (8.0} 2.6 i1.0 8.1 7.9
Neck (1101} L 6T 1.5 9.7 6.8 5.1
Neck £112] L 8T G.Bb 2.3 10.7 7.8 7.2
Large toG11] r 6t 1.9 1.8 1.0
Square
Pockets | [0011| X 3, |[1.0% 0.8 2.6 7.3 2.6 2.8
Pockets (1001 ¢ 3, 3.1 17.5 7.3 7.3
Pockets £110] X 3, 2.6 16.8 7.1 6.5
Paockets | (10131 X 3, 2.5 10.5 4.1 4.0
Pockets | [1121] " X 3, 1.5° 12.5 5.3 5.0
Pockets fL113 ¢ 3, E.Sb 2.7 14.%5 5.8 5.0
Eilipse-| (0011 4 a, -0.4 -47.5 12.7 14.1
ids
£100] X 4, 1.4 12.3 5.2 6.4
£110] b 4, 1.9 10.1 3.9 6.0
o011l r 5, 4.4 5.6 4.7 4.9
[110)] r Sy 4.5 6.7 5.3 5.7
(1111} r S5, 4.5 6.7 5.1 5.7
Small (001] r 6, 4,3 5.3 4.5 4.7
Square .
{1101 r 6, 4.0 5.3 4.6 4.8
[r1i3 r 6, 4.3 5.3 4.5 4.7

aReference 20
bReferenca 228
cReference 19
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CHAPTER VI



FFECT GF UNIAXIAL TENSION CN THE FERMI SURFACE OF
THE NOBLE METALS

6.1 INTRODUCTION

The Fermi surface(FS} of the noble metals at ambient
pressure has been studied in great detail both theoretically as
well as experimentally. Accurate de Haas-van Alphen(dHvaA)
measurments have confirmed the topology predicted by the first
principle band structure calculations, and agreement between
measured and self-consistently calculated extremal areas is fair
(2]. Experimental measurements of pressure dependence of the FS
of most of elemental metals have been made in the last decade or
so, in order to obtain information about the dependence of energy
band-structure on the lattice parameter. The response of tﬁe FS
to uniaxial strain, which can be determined either directly by
applying an external siress to the sample, or indirectly from the
oscillatory magnetostriction or éound velocity, has been~measured
in many metals. The effect of hydrostatic pressure on the FS of
noble metalis has also been studied both theoreticaily and
experimentally. Once again the thecoretical results are 1in
agreement with the experimental data [4]. Sinqe the effect of
hydrostafic pressure on the FS provides a more stiringent test of
band-structure (compared to the FS at ambient pressure), thisr
reflects the accuracy of the band-structure calculations. A more
strigent test would be the study of the effect of non-homogeneous
strain on the FS. In this chapter we have studied the effsct of
uniaxial tension on the FS of the neoble metals. Our reasons for

choosing the noble metals are (i} they have a simple FS topology
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consisting of a single sheet (ii) availability of experimental
data with which our calculations can be compared and (iii}

self-consistent ab f{nitio calculations are almost non existent.

Shoenberg and Watts [183] reported the first experimental
study of the effect of uniaxial tension on the Fermi surface{FS)
of the poble metals npormai to <100> and <1i1> directions by
observing the change in the phase of the dHvA oscillations in the
persistent mode of a superconducting solenoid. Later Lukhvich
[146) measured dHvA oscillations and reported the values of the
relative change in the *neck” and other extremal cross-sectional
areas of the FS per wunit stress by stretching the FS both
uniaxially and hydrostatically while Aron (22) obtained the
stress derivatives of FS cross-sectional areas for the "neck" of
the noble metals by measuring the absolute ampiitudes of the

oscillatory component of the magnetostriction.

The first deta}led theoreticai investigation of uniaxial
tenson on the electronic structure of the noble. metals was made
by Davis (69] who has performed the calculations using the
Korringa-Kohn -Rostoker(KKR) method. For each combinétion i.e. in
<001> and <111> directions of lattice deformation, over 25,000
points have been caléulated on several individual constant energy
surfaces in the vicinity of the combination's Fermi energy. The
calculations for change in FS5 with deformations compare very
favorably with the results of Shoenberg and Watts [193). Gray and
Gray (891, 921 have used the perturbation technigue in connection
with modified plane wave method to calculate first order changes
in the electronic "energy levels under tetragonal and trigonal

strain. They have applied this approch to the changes at the
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Fermi level of copper and compared with the calculation of Davis
by taking the approximate linear combination of hydrostatic and
tetragonal {(trigonal) results. Gavenda, Theis and Mulvaney [87]
have used a straight forward method for finding expansion
functions with the symmetry of strained lattice. They have
applied this method to copper under hydrostatic and wuniaxial
strains. Changes in FS cross-sectional areas are computed, based
on a fit to energy shifts calculated by Gray and Gray. The
dependence of FS extremal cross-sectional areas in copper on
vniaxial tension along <001> and <111> direction by caiculating
d(lnA)/d(lnAg) where As is the diametral area of a free electron
sphere whose volume remains exactly half that of the Brillouin
zone, These calculations are compared with experimental results
of Shoenberg and Watts [193] gnd give good agreement. Based on
the strong interaction between the condution electrons and
lattice in the nobie metals and transition metals, Fawcett et al
(7291 have given the most successful approach of the phase-shift
pseudopotential, in uhiéh the lattice potential is approkximated
by an array of non-overlapping spherically symmetric potentials,
gach centered on a lattice site. This phase-shif£ pseudopotential
calculations are based on the multiple scattering formalism of
KKR. They have c¢alculated the shear dependence of copper for the
areas of the principal orbits and deduced their response to
uniaxial tension. The results of their calculations are generally
in very sat;sfactory agreement with the experimental data of

Shoenberg and Watts [1931.

As we have already computed the FS of the noble metals

{2) and the effect of hydrostatic pressure on the FS of thess
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metals [41, it is worth while to calculate the FS5 for the
deformated lattice. Measurements of the way in which the Fermi
surface 1s distorted by the application of hydrostatic or
uniaxial tension yield information about the response of the
electronic structure to homogeneous lattice strain. The jattice
strain is related to the appiied stress through the elastic
stiffness constants cij of the metal. Taking the simple case of
cubic crystals, the strain may involve the elongation of the
basis vector so that the basis vector x = a¥ takes the form
x’=aQ{1+sxx). here sxx represent the fractional elongation of the
x-axis. The tetragonal shears yx,ry and yzare volume-conserving
combinations of the elongations, £ , 's y and &£ . For the

KX vy zz

strains associated with pure tetragonal shear v, along x-axis are

1
_ . = =~ - % (6.1
sxx yx ! Eyy szz 2 yx )

The angular shears p» g’ ¥ and yzx are combination of the axis
X

vz

rotations ¢ , & , £ , & , € _, & . For y , the angular
Xy ¥ X XZ Zx VS zZy. Xy

shear in the x-y plane is given by

= = + ) (6.2}
yxy ny exy gyx 6

lf stress is applied along <001> so that v, ¢, then

n
‘(
H

tetragonal shear is given by

2 0001
Y, = 3 [ S — ] (6.3)
14 12

where 011 and c12 are stiffness constants and ¢ is uniaxial
stress. [f the strgess lies along <11i1>, all tetragonal shears
must vanish by symmetry. Angular shear is intrinsically a

volume-conversing shear. If the tension is applied élong the

<111> direction, the angular shears are
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_ _ _ 001 ,
J"xy T J/'yz 2c4‘ (6.4)

To summarize, a tension applied along a general direction
produces hoth tetragonal shears and also angular shears about all

three axes.

In the case of hydrostatic pressure, unit cell will be
same as at ambient pressure. Hence there is no problem with
self~-consistency. Now in case of uniaxial strain the unit cell is
tetragonal. So the number of I3 points will be different with
those at ambient pfessure. This will include an wunknown input
resulting for different levels of self-consistency condition. As
a simple approach, the £ is small and we assume that the unit
cell will be same as at ambient pressure. The distorted potential
parameters which are expected to differ only insignificantly from
those the ones at equilibrium, as expected from the theorem of
Gray and Gray (82}, according to which there are no first order
corrections in strain for a potential of the muffin-tin or
equivalently of atomic sphere form. The calculation of the
extremal areas 1is done wusing GStark's area-mass routine in
conjunction with Skriver's codes. The extremal FS areas of the
undistorted lattice are calculated using the sgelf-consistent
potential parameters obtained éarlier. Using the same potential,
the extremal FS areas are then calculated for distorted
structures when the strain is along <001> and <1i1> directions.
From these two calculation i.e. on equlibrium lattice and on
distorted lattice and using the values of stiffness constants of
these metals [128] ,we obtain the dependence of FS extremal areas

d(lnA)/d(lnAB) along <001> and <111> directions. The calculations
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are done with the von Barth-Hedin (BH), wvon Barth-Hedin-Janak
(BHJ), Vosko-Wilk-Nussair (VWN) and Slater ¥a XC potentials. For
Xa~C the values of a for copper and silver are 0.77 and 0.6983

for gold are used,.
6.2 RESULTS AND DISCUSSIONS

The d(lnA!/d{lnAs) calculated for the different FS orbits
using various XC potentials are given in Table 6.1 - 6.6 along
with the experimental results of Shoenberg and Watts [193). we

now discuss each metal separately.

Table 6.1 shows the values of d(lnA)/d(lnAs) for copper.
When wuniaxial tension is along <001i> direction, the value of
d{lnAJ/d(lnAsJ for the BOO1 orbit is almost inm the range of
experimental value for all ¥XC's as well as other theoretical
calculations. For all other orbits as there exists no other
experimental data, so we have compared our results with other
existing theoretical caiculations. For D110 and B100 orbits our
values are close to those obtained by Davis [69] and Gavenda,
Theis and Mulvaney [87} but for B100O it is different from that of
Gray and Gray [92]. The "neck"™ which is very sensitive to the
choice of the XC potentials, our values for this orbit are cliose
to that of Gray and Gray [82] and Gavenda, Theis and Mulvaney
(87] while for the Bl1l orbit the values for BH and BHJ-XC are

close to the values of the latter compared to VWN and {a-XC.

Table 6.2 shows our results for uniaxial tension along
the <111> direction for copper. The results show a very large
uniaxial dependence of the neck. The physical interpretation of

this result is that wunder an applied tension, the lattice is
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elongated in the <111> direction which decreases the separation
between the <111> and <111> B2 planes, thereby increasing the
area of contact with the FS and enlarging the neck orbit. In case
of Nitll1 the VWUN-XC and Yfa-XC give .better agreement to
experimental results compared to BH and BHJ-XC. For the B11i1
orbit, our values for all XC's are in agreement with the
experimental results. Thus an overall look on Tabies 6.1 and 6.2
shows that for the copper, the stress derivatives using Xa-¥C and
VUN~-YC are in good agreement with the experimentai data. This is
consistent with our conclusions in case of hydrostatic pressure

derivatives [4].

Tabies 6.3 and 6.4 give our results for silver along with
the experimental resulits for uniaxial tension appltied in <001>
and <111> directions. Here we do not have any other theoretical
calculation, so our results are compared with the data of
Shoenberg and Watts [(193). The stress derivative of the BOO1
orbit for wuniaxial tension along <0015 direction is consistent
with experimental resuits for all four ¥C's. But when the tension
is along <1115, BH and BHJ-XC give better agreement with
experiment then VWUN and Xo-X¥C. The stress derivative of Blll is
almost the same for all XC's. Thus the results for silver are in

satisfactory agreement with the experimental data.

The d(lnA)/d(lnAs) for gold is given in Tables 6.5 and
6.6. The results for tension along <001)> direction is given in
Table 6.5. For BOOl the stress derivative with VUN-XC is in fair
agreement with the experimental result compared to other XC's but
our stress derivatives are three times then those of Davis [69].

For N111 our stress derivative is very much smaller than that of
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Davigs [69]. We think that this is due to their fitting of the
Fermi enérgy. For tension along <11l>, the stress derivative for
N111 using all XC's except VUN-XC 1is in range of exefimental
value and in better agreement then those of Davis [681. The Bii1i
is also ¢conistent with experimental result as well as theoretical
results of Davis [68]). Thus for the gold the BH-XC and ¥a-iC give
good agreement with experimental results which is also shown by
our previous calculations of the hydrostatic pressure derivatives

(41.
6.3 CONCLUSIONS

The stiress deriva£ives d(lnA)/d(lnAS} for the noble
metals under uniaxial tension along <001> and <111> directions
has demconstrated that the current band structure ground-state
formalism is capable of handling such type of caliculations.
These results also show the versatility of the LMTO method. The
difference between our values and the expermental values may be
due to the sizeable experimental wuncertainties. All the orbits
except the N111 (for tension along <111> directions) are not
affected by the choice of XC potentiais. A look at the noble
metals shows that ¥Ya-XC potential gives a good representation to
the experimental results which is obvious because we are using an
adjustable parameter a. Our results give good agreement with the
data. Our calculations are ab—initio and self-consistent. In
contrast Gray and Gray {92)] and Gavenda, Theis and Mulvaney [87]
have . used perturbation technique and interpolation functions
respectiuety while the calculations of the Davis and Fawcett et
al are not self-consistent. I'n .the case of silver, our

calculations are the first ab tnitiio self-consistent
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calculations. 1t would be beneficial to have more data to check
ec

the reliablity of the calculations.
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CHAPTER VI



SUMMARY AND CONCLUSIONS

In this thesis we have used the LMT0~-ASA method to
calecyliate the Fermi ;urface and the effect of pressure on the
Fermi surface of the noble metals, transition metals palladium,
platinum and ferromagnetic nickel. A Knowledge of the eleétronic
band structure is essential for the calcutltation of these physical
properties. Its implications have been brought out in chapter-|
where we have shown that the Linear Muffin Tin Orbital (LHTO)
ﬁethod satisfies the requirements of a fast, accurate, physically
transparent and flexible method of band structure caiculation,
The method is discussed in some detail,and its advantages and
limitations wvis-~a-vis other first principles methods have been
elaborated. This chapter also gives some discussion on the
density functional theory (DFT}), different exchange-correlation
potentials and a description of some experimental methods that

measure the Fermi surface.

In chapter~I{, we have discussed the Fermi surface of the
noble metals [(21. The band structure and Fermi surface of noble
metals is 50 well established that the experimantalists use it to
standardize their apparatus and theoreticians use it to debug
their programs. We have calculated the extremal areas for four
orbits in the noble metals. Our study shows that the choice of
IC-potential plays an important role while other effects such as
increase of number of K points, inclusion of relativistic effects
and angular momentum expansion up to £=3 are not significant. The
agreement between the calculated Fermi surface extremal areas and

experimentally measured areas is determined by calculating the
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shift in the Fermi energy AEF. required to bring the calculated
area in agreement with the experiment. The extreme AEF is 4.1
mRyd and 0.9 mRyd for copper and silver respectivly, | with the
Slater Xa ( a =0.77) iC potential )} while for gold the extreme
AEF i around 3.5 mRyd { with Slater Ya (a = 0.693 1 IiC
potential). We have also studied the suggestion of Jepsen et al
t1171] that the Fermi surface of noble metals could be
characterized by kN/kS and A = kFIIOOJ/kF[llol where RN is neck
radius and ks is radius of free electron sphere. Qur calculations
suggest that these two parameters are not sufficient to
charactrize the Fermi surface. The inclusion of the nonlocal
exchange-correlation proposed by Langreth and Meh! shows that for
the copper results are degraded with experiment in accordance
with the calculations of Norman and Koelling f1601 and

Barbiellini et al [27] but in silver and gold the effect |is

negligble.

In chapter 111, we present our the Fermi surface of the
transition metals palladium [3] and platinum (6] calculated using
the LMTO method. We have chosen these metais because they have a
fairly complicated Fermi surface and will provide a check of the
accuracy of the LMTO method. Also their Fermi surface has been
accurately measured by a number of workers. The Fermi surface
areas for Pd are caiculated for four sheet i.e. a [-centred
electron sheet, two hole sheet centred at ¥ and L and one open
hole surface :{ in Pt there is no L pocket hoie ). The study of
various effect shows that relativistic effects which are
negligible in the noble metals, are important here. The extreme

AE_ for Pd is 4.0 mRyd ( with Slater ¥a ( a = 0.75 )-¥C) and 2.7

F
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mRyd for Pt( with Slater ¥a ( a =0.8B15)-XC). Using the Slatsr
Ya-XC potential we have calculated the Fermi velocities. There
are found to closely resemble the experimental and calculated
velocties of other authors. The enhancement indicated by our
results is also in agreement with eariier calculations. We have
also caiculated the mass enhancement in Pd and Pt from two other
considerations, viz., from cyclotron masses and from specific
heat data. These calculations yield a mass enhancement 1+A? for

Fd near 1.68 and 1.19 for Pt.

The development and refinement of certain experimental
and theoretical methods in solid state physics in recent year has
led to major advances in our understanding of itinerent-electron
magnetism in the 3d transition metals. Despite eonsiderable
progress, however, a number of formidabie long-standing as well
as novel problems remain unsolved. Spurred on by the sucess with
which the LMTO method gives the Fermi Surface of the paramagnetic
metals, we have performed calculations for ferromagnetic nickel
{71. To calculate the FS of ferromagnetic nickel! we to have
perform selfjconsistent,;pin-pokarised LMTO calculations. The FS
of nickel is complicated by the existence ofIExchange interagtion
and spin orbit coupling. The Fermi surface of nickel consists of

spin-up copperlike M-centered surface with necks at L, two sets
of spin down hole pockets centered at X and two large spin down
pieces centered at I'. We have calculated AEF for various orbits
using different ¥C potentials. Our results give an extreme AEF =
9.0 mRyd ( Slater Xa-XC ). This is small compared to all previous

calculations except the calculation of Prasad et al (Ref),who

have used the fitting procedurs. So our results show that the
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LMTO method gives the «correct Fermi surface geometry of

ferromagnetic nickei.

Pressure studies of Fermi Surface are of increasing
interest in the study of metals, since they provide a valuable
check on the reliability of band structure calculations. In fact
a band structure method which gives good representation to Fermi
surface can fail to account for its pressure variation.
Therefore, it turns out to be useful to see whether the LMTO
method can give meaningful values of the pressure derivatives of
the FS orbits. In chapter V, we have studied the effect of
pressure on the FS5 of noble metals [4] and transition metals
palladium, platinum (5] and nickel (8. The pressure derivatives
are obtained from the zero pressure calculation and one at an
expanded lattice. Using the areas from these two calculations and
the value of compressibility, we have obtained the pressure
derivative 1/A dA/dP of the externai areas. Our results for the
noble metais suggest that the LMTQO method gives values that are
in good agreement with experiment. We find that the Bili, BiOOand
D110 orbits are insensitive to the choice of the XiC-potential
used while the Mlil orbit is greatly affected by the
XC-potential. Thus the presscure data can be used to determine the
most appropriate {C-potential. For paliladium, platinum and nickel
LMTO pressure derivatives are in agreement with scanty
experimental data. Here again we find that the pressure
derivatives of the larger FS orbits are not influenced by the
choice of the XC potentiai. However the lack of sufficient data
precludes us from drawing any definitive conelusions. We hope our

work will generate more interest and more experiments on the
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measurements of 1/A dA/dP.

In chapter VI, we have studied the effect of uniaxial
tension on the FS of the noble metals {9]. We think that this is
a more stringent test of +the accuracy of Dband structure
calculation compared to the case of hydrostatic pressure. Ve have
calculated the dependence of the area d(lnA)/d(lnAs) using
different ¥C-potentials for the uniaxial tension along <001> and
<1i1> directions. The calculations reported by us are
self-consistent and we think this 1is first such type of
caleculation. Our results for the noble metals are in good
agreement with experiment. Lack of the sufficient data does not

allow us to make any definitive conclusions.
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APPENDIX

PRACTICAL ASPECTS OF THE LMTO METHOD

The LMTO method outlined so far may be applied at many
leveis of approximation in problems of condensed matter physics.
For most applications one must resort to calculations on a
large~gscale electronic computer, and to that end we now present
Skriver's ({1961 package of computer programs LMTOPACK., This
LMTOPACK is a collection of Fortran routines which may be used to
calculate the =electronic structure of a given crystalline
material from the knowledge of the c¢rystal symmetry and the
atomic numbers of the constituents involved. As explained in the
LMTD formalism, the energy bénd calculation is separated into two
parts, one that depends on the structure and the other that
depends on the potential. The structure dependent part calculates
the structure constant matrix and this part of the computer
program is named STR. The potential dependent section calculates
the eigen wvalues and eigen vectors by soiving the LMTD secular
egquation with proper potential parameters and this program is
called LMTO. These two programs are considered to be the heart of
the calculational procedure. Apart from this other programs
namely COR, DDNS and SCFC are needed for the combined correction,
density of states calculation and self-consistent energy band
calculation, The self-consistent procedure is described in the
flow chart giveﬁ in Figure Ap.1. The function of each program is

described below.

"The STR program calculates the volume and energy

independent structure constants. The inputs required for this
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calculation are crystal structure, number of atoms per primitive
cell and the positions of the basis. The structure constant
caleulation is restricted to a certain distance in real and

reciprocal space by a proper cheoice of maximum distances.

The COR preogram is constructed to calculate those extra
structure constants which may be wused to ‘correct the ASA for
approximate treatment of the region between the sphere and atomic
polyhedron, and for the neglect of higher ¢ components. The basis
input for COR is the basis vectors giving the positions of the
atom in the cell, and the reciprocal-space vectors generated by

STR.

The secular eqguation of the LMTO theory is sclved in the
LMTO program. The basic input to LMTO is the structure-constant
matrices generated by STR, the correction-term structure-constant
matrices generated by COR, if the correction to the atomic-sphere
approximation igs to be included, and the potential parameters.
The basic output is the eigen-values and eigen-vectors evaluated

for the specified number of [ points in the irreducible BZ.

The obtained energy values are used in the DDNS program
for the calculaéioﬁ of &-prﬁjected density of states and the
number of electrons. The density of states and the corresponding
number of state functions are calculated .by means of the

tetrahedron technigue.

The ground state properties are calculated in the SCFC
program which is designed to solve the energy-band problem self
~consistently. The program treats only the conduction states,

i.e. the outermost s, p, d and f electrons, while the charge
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density of the remaining electrons is kept fixed. In this
frozen-core approximation the core charge density is obtained
from atomic calculations renormalised -to the reievant atomic
volume. The basic input inciudes the projected state densities
and number-of- states functions generated by DDNS and the atomic
charge densities calcuiated by RHFS (relativstic Hartree-Fock
self-consistent procedure) program. The main output is the
self-consistent potential parameters. If the potential parameters
in original run of LMTO have been suitably chosen, one will have
a reasonably converged result after just one execution of G5CFC.
If this is not the case, one must use the output potential
parameters to : perform new band-structure and state-density
calculations and then repeat SCFC with the new state densities to

get new ocutputs until seltf- consistency is reached.
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