


# TRANSFORMATIONS IN SOME AIR COOLED Fe-Mn-Cr-Cu CORROSION RESISTANT WHITE IRONS

# A THESIS

submitted in fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY in METALLURGICAL ENGINEERING

By

# VINOD KUMAR





DEPARTMENT OF METALLURGICAL ENGINEERING UNIVERSITY OF ROORKEE ROORKEE-247 667 (INDIA)

November, 1990

# то

## THE REVERED MEMORY

# OF

.

## MY FATHER

### CANDIDATE'S DECLARATION.

I hereby certify that the work which is being presented in the thesis entitled TRANSFORMATIONS IN SOME AIR COOLED Fe-Mn-Cr-Cu CORROSION RESISTANT WHITE IRONS in fulfilment of the requirement for the award of the Degree of Doctor of Philosophy, submitted in the Department of Metallurgical Engineering of the University is an authentic record of my own work carried out during a period from August 1985 to November 1990 under the supervision of Prof. A. K. Patwardhan.

The matter embodied in this thesis has not been submitted by me for the award of any other degree.

Vined Kumar ( VINOD KUMAR )

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Signature of Supervisor

A.K. Patwardhan) (Dr. A.K. PATWARDHAN) 28/11/90

(Dr. A.K.PATWARDHAN) 28/11/90 Professor Metallurgical Engineering Department University of Roorkee Roorkee-247 667 (INDIA)

The Ph.D. viva-voce examination of Sri VINOD KUMAR, Research Scholar has been held on .....

Signature of Guide

Signature of External Examiners

(Prof. A.K. PATWARDHAN)

Date: 28<sup>th</sup> Nov., 1990

### ACKNOWLEDGEMENT

The author wishes to record his indebtedness with sincere and heartfelt gratitude to Prof. A.K.Patwardhan, Metallurgical Engineering Department, University of Roorkee, Roorkee for suggesting the problem, inspiration and active supervision, thought provoking discussions, criticism and suggestions given by him during the entire period of this investigation. Without his timely and untiring help it would not have been possible to present the thesis in its present form.

I am highly thankful to Dr. V.K. Tewari, Dept. of Metallurgical Engg. for extending financial support in the form of Research Associate fellowship under his Oil Industry Development Board, New Delhi Research project which greatly helped me in pursuing my research work uninterrupted.

The author is also thankful to Prof. M.L. Kapoor, Head and Prof. D.B.Goel, Ex-Head and all O.C.'s of the concerned laboratories Metallurgical Engineering Department, University of Roorkee for extending the laboratories and other facilities which enabled me to present the thesis in time.

I am sincerely thankful to Dr. N.C. Jain, presently Technical Officer, Indian Lead Zinc Information Centre, New Delhi for providing initial data for modelling and other studies and for the encouragement, support extended to me during the entire period of my work.

I am grateful to Dr. R.P. Ram for the continuous help, support and for his useful discussion and suggestions extended to me. The author is greatly thankful to Prof. B.S. Varshney, Head, Chemical Engineering Department for kind help and constant encouragement and for providing departmental facilities during the entire period of my research work. The constant and continuous help, encouragement, support and critical criticism, discussions and suggestions rendered by Dr. B. Mohanty is greatly acknowledged. I am also thankful to Dr. Surendra Kumar of the same department for useful discussion, criticism and suggestions on the modelling part of the thesis.

I am extremely thankful to Dr. S.R. Mediratta, Dr. R.Mukharjee and Dr. D.Mukharjee, Research Managers, Product Development Group, R & D Centre for Iron and Steel, SAIL, Ranchi for providing the laboratories facilities to do EPMA, quantitative metallography, microhardness measurement, and DTA. I am very grateful to Mr.B.Singh, Research Engineer, R & D Centre, SAIL, Ranchi for extending continuous help and encouragement during the entire period of work. I am also thankful to Dr. Ashok Kumar, Mr. B.K.Jha, Research Engineers and Sri U.N.Jha and Sri Mahapatro, Laboratory Technicians of TAS and EPMA labs. for their cooperation and help.

I am greatly thankful to Dr. K.C.Mittal, Prof. and Director, USIC, University of Roorkee for providing facilities for X-ray diffractometry, scanning electron microscopy. I am also thankful to Mr. Chandrashekhar, Mr. Brahm Pal, Mr. Anil Kumar, Mrs. Rekha Sharma and Mr. K.N.R.Jual for the help rendered.

I am also thankful to Dr. P.C.Gupta, Prof. & Co-ordinator, Welding Research Laboratory, University of Roorkee for providing

iii

testing.

I am also grateful to Dr. A.K. Ray, Reader for the constant encouragement and to Dr.A.K.Singh, Reader and Mr. B.Gaur, Institute of Paper Technology, Saharanpur for providing corrosion testing facilities. The help rendered by Dr. S.K. Bhatanagar, Fire Research Division, CBRI is also greatfully acknowledged.

I would like to express my thanks to many friends and colleagues, too numerous to mention individually, who have helped me during the preparation of this thesis. I am very thankful to Miss Shalini Joshi, Research Assistant for extending her help in proof reading and corrections done at the final stage of the work. In addition, I am also thankful to all those who have helped me directly or indirectly during the course of my research work. Help extended by Mr. A.K. Kakkar is also acknowledged.

The help rendered by Shri S.P.Kush, Madhu Singh, R.M. Mangal, S.C.Kaushik, S.N. Kaushik, J.P.Sharma, S.P.Anand, Karan Singh, Vidya Prakash, Kailash and Hari Chand(Retd.) is greatly acknowledged. I am also thankful to Sri S.K. Seth for the quality printing of micrographs and Sri Rakesh for the high quality xeroxing of my thesis.

I will like to remember my mother who inspired and encouraged me all along my life to achieve this goal. Finally, I wish to thank my wife Asha and son Rajul who exhibited great understanding and supported me all along in many ways. I am thankful to Mrs. Patwardhan, Mammi and daughters for their kind support and help.

> Vinod Kumar (VINOD KUMAR)

Date: 28 Nov, 1990

ABBREVIATIONS

.

| A               | Austenite                                |
|-----------------|------------------------------------------|
| AC              | Air cooled                               |
| AVE             | Average                                  |
| В               | Bainite                                  |
| BHN             | Brinell hardness number                  |
| B1, B2, B3, B4  | Alloy designation                        |
| c               | Carbon                                   |
| Cb              | Carbide                                  |
| CE              | Carbon equivalent                        |
| CI              | Coarsening Index                         |
| COND            | Condition                                |
| СОР             | Cross over point                         |
| CR              | Corrosion rate                           |
| cs              | Compressive strength, MN/m <sup>2</sup>  |
| DC              | Dispersed carbide(s)                     |
| DF              | Distribution factor                      |
| DTA .           | Differential Thermal Analysis            |
| EPMA ·          | Electron probe micro analysis            |
| GB              | Grain boundary                           |
| Gms             | Grams                                    |
| Ħ               | Hardness                                 |
| HRS, h, hr, hrs | Hours; austenizing period; test duration |
| HT, H/T, h/t    | Heat-treatment                           |
| HV30            | Vickers hardness at 30 kg load           |
| IPY, ipy        | Inch penetration per year                |
| Μ               | Martensite                               |

....

| mA                                    | Milliampere                         |
|---------------------------------------|-------------------------------------|
| mV                                    | Millivolt                           |
| Max                                   | Maximum                             |
| MC                                    | Massive carbide                     |
| М3                                    | M3C (orthorhombic)                  |
| M5                                    | M5C2 (monoclinic)                   |
| м7                                    | M7C3 (hexagonal)                    |
| M23                                   | M23C6 (cubic)                       |
| MDD, mdd                              | Milligram per decimeter²/ day       |
| MN/M <sup>2</sup> , MN/m <sup>2</sup> | Mega newton per square meter        |
| МРа .                                 | Mega Pascal                         |
| mpy                                   | mils per year                       |
| Man                                   | Minimum                             |
| NOP                                   | Number of particles                 |
| NP                                    | New phase                           |
| OQ                                    | Oil quenched                        |
| P                                     | Pearlite                            |
| PC                                    | Platy carbide                       |
| RA                                    | Retained austenite                  |
| SP                                    | Soaking period/austenitizing period |
| ST                                    | Soaking temperature                 |
| SA, S. AREA                           | Surface area                        |
| Sq.cm                                 | Square centimeter                   |
| SD                                    | Standard deviation                  |
| SG                                    | Spheroidal graphite                 |
| scc                                   | Stress corrosion cracking           |
| S.S.                                  | Stainless steel                     |

vi

| SFE            | Stacking fault energy                    |
|----------------|------------------------------------------|
| TD             | Test duration                            |
| T, Temp        | Temperature                              |
| TSI, tsi       | Tonnes per square inch                   |
| Sq.            | Square                                   |
| t              | Time                                     |
| μ              | Micron                                   |
| μA             | Micron-ampere                            |
| VF, vf         | Volume fraction                          |
| VPN            | Vickers pyramid number                   |
| Wt.%           | Weight percent .                         |
| α              | Ferrite                                  |
| α <sup>1</sup> | Martensite/ shear transformation product |
| r              | Austenite                                |
| r*             | Austenite (low stability)                |
|                |                                          |

Note: (i) All spellings conformed to (a) Chamber's dictionary and (b) a word-processing software SOFTWORD's dictionary (commonly employed in U.S.).

(ii) Tables, figures, sections and equations start withcapital letters wherever table, figure, section andequation numbers are mentioned.

vii

#### ABSTRACT

Of the three varieties of corrosion resistant alloy cast irons in use, the high Si irons have useful applications only in strongly oxidizing conditions. They however, suffer from poor mechanical strength and shock resistance. The high nickel irons, although extensively used in a number of aqueous environments, have a low strength, suffer from graphitic corrosion and are unsuitable at operating temperatures ≥800°C. The high chromium irons exhibit relatively higher strength and can be employed upto higher service temperatures. Their shock resistance is improved by lowering carbon content.

A critical analysis revealed that little information is available on the structure-property interrelations in alloy cast irons in general. Furthermore, there is a lack of systematic information on the electro-chemical and on the deformation behaviour of microstructures commonly encountered in alloy white irons namely, 'martensite + carbide'(M + C), 'austenite + carbide'(A + C), and their allied counterparts.

Detailed information on these aspects is likely to prove useful in ascertaining whether microstructures exhibiting good resistance to aqueous corrosion and useful mechanical properties could be attained through the 'white iron' route. A major advantage foreseen is that the limitations encountered in alloyed gray irons would stand eliminated. It would be equally pertinent to investigate whether these microstructures could be generated by utilizing low cost alloying elements (Mn', Cu etc.) in preference to the conventionally employed costlier alloying elements Ni and Mo. The present investigation, therefore, essentially comprised investigating in detail, certain newly designed Fe-Mn-Cr-Cu white iron compositions, in the air cooled condition. Investigations were mainly devoted to assessing their heat-treatment response aimed at establishing interrelations between structure and properties. A study of this kind would require a detailed insight into the transformation characteristics of the alloys. This aspect has received maximum attention in the present study.

The alloys which were air induction melted and sand cast (25mm round and 120x20x8mm rectangular strips), were investigated for the transformation behaviour by employing hardness measurements, optical and scanning metallography, quantitative metallography, X-ray diffractometry, electron probe micro analysis and differential thermal analysis. The electro-chemical characterization of the alloys was carried out by employing the potentiostatic method. Compression testing was also carried out to a limited extent to assess the deformation behaviour of the experimental alloys. Computational techniques were extensively employed for data analysis using DEC-2050 and IBM compatible PC-XT and PC-AT systems. Necessary software packages were also developed in FORTRAN IV as and when required.

The experimental work involved subjecting disc specimens of the four alloys, containing  $\approx 6\%$  and  $\approx 8\%$  Mn,  $\approx 4\%$  Cr and  $\approx 1.5$  and  $\approx 3\%$  Cu, to heat-treatments comprising holding for 2, 4, 6, 8, and 10 hours at 800, 850, 900, 950, 1000 and 1050°C followed by air cooling. This treatment was preferred over oil quenching because

B1:4Cr-6Mn-1.5Cu; B2:4Cr-8Mn-1.5Cu; B3:4Cr-6Mn-3Cu; B4:4Cr-8Mn-3Cu

ix

it can be directly utilized for industrial applications. Optical metallography was extensively used to assess how the alloy content and heat-treating schedule influenced the microstructure which comprised :

- (i) P/B + M + MC with and without RA in the as-cast state,
- (ii) M + MC + DC with and without retained austenite(RA) on heat-treating from upto 900°C,
- (iii) A + MC + DC or A + MC with and without M (in traces) on heat-treating from upto 1000°C, and
- (iv) A + MC + New phase (eutectic of austenite + carbide called 'anomalous eutectic') on heat-treating from upto 1050°C; volume fraction of the eutectic reaching very low levels at higher soaking periods.

The volume fraction of massive carbides(MC) decreased with temperature or with soaking period at a given heat-treating temperature, the effect being marked at temperatures ≥950°C. Simultaneously, massive carbides were rendered discontinuous from the 'early' stages of heat-treatment. The 'rounding-off' tendency set in at 1000°C.

Dispersed carbides(DC) formed at 800°C, 10 hrs. heat-treatment directly from austenite. They underwent coarsening with an increase in temperature and or soaking period. The extent of coarsening which was marked at 900°C and 950°C, has been represented by the 'coarsening index'(CI). The dispersed carbides dissolved on heat-treating from 1000°C.

Hardness measurements provided a quick yet reliable indication of the mechanical properties. A mathematical model was developed based on the effect of heat-treating temperature and

х

time on hardness. This can be represented as:

 $H = C1 e^{C2/T} + (C3 + C4.T).t$ 

where, H = hardness, VHN<sub>30</sub>

T = temperature, °K

t = time in seconds

Cl, C2, C3 and C4 are constants and are different for different alloys.

Through intensive calculations it has been possible to demonstrate that the first term of this model represents the matrix related transformations and the second term represents the 'carbide' transformations. The model is thus physically consistent. The predicted hardness values are within ±5% of the experimentally determined values.

3D plots amongst the hardness-heat treating temperature & time were also constructed to study the overall transformation behaviour at a glance. The plots revealed that the abovesaid relationship can be represented by a surface with opposite slopes on the two sides of the temperature axis.

X-ray diffractometry proved extremely helpful in identifying the different microconstituents observed in the experimental alloys (both in the as-cast and in the heat-treated conditions). It proved helpful in identifying the matrix microstructure in 'marginal' cases e.g. in confirming the presence of P/B & M in the as-cast condition. and of martensite even upto  $\approx 950$ °C heattreated condition. It also established that M<sub>3</sub>C, M<sub>23</sub>C<sub>6</sub>, M<sub>5</sub>C<sub>2</sub> and M<sub>7</sub>C<sub>3</sub> carbides formed in differently identified temperature form regimes. Additionally, presence of Cu in the elemental and of

хi

Fe-Si-carbide(Fe<sub>8</sub>Si<sub>2</sub>C) was also established. Even after such a detailed analysis, carried out with the help of developed software packages, certain reflections remained unidentified based whose indexing was possible on the likely formation of CrMn<sub>3</sub> and Cu<sub>2</sub>S. This aspect needs further investigation.

EPMA studies (point, line and area analysis) carried out on specimens heat-treated at 950°C,(10 hrs.,AC) and 1050°C, (4hrs., AC), besides confirming the deductions arrived at on the basis of X-ray diffractometry and optical metallography, helped in establishing the partitioning behaviour of the different alloying elements e.g. Mn, Cr and Cu into the matrix and carbide phases. Chemical compositions of the carbides were also determined.

Differential thermal analysis (DTA) of the experimental alloys in the as-cast condition revealed that all the alloys underwent transformations at ≈720-735°C (matrix transformation) 890-955 and ≈925-960°C (carbide transformation). Additionally, the alloys B2 and B4 underwent a third transformation at ≈1050-1075°C representing another carbide transformation.

The same study also proved useful in predicting the suitability of the experimental alloys for high temperature applications through an analysis of thermogravimetric (weight gain) data. The as-cast microstructures were found to be suitable upto a service temperature of 600°C only. However, on giving the 950°C, 10 hrs., AC heat-treatment, the usefulness of the alloys was extended upto <800°C. Similarly, on imparting the 1050°C, 10 hrs., AC heat-treatment, the temperature upto which the alloys are useful was further extended at least upto 800°C. This beneficially reflects upon attaining a microstructure, normally

xii

observed at high temperatures, down to room temperature for improving the high temperature performance of the alloys. A further analysis also explains the relative merits of different microstructures which are a function of the composition and heattreatment employed for high temperature applications.

A mathematical model, developed to interrelate the weight gain with temperature, is of the form

 $TG = A1.e^{(-A2/T)}$ 

where, TG = weight gain

T = temperature

A1 and A2 are constants.

Potentiostatic studies, carried out in the Tafel region in 5% NaCl solution, were helpful in characterizing the alloys/ selected microstructures to assess their suitability in resisting corrosion. Two Ni-resist compositions were also studied under similar conditions for the purpose of a comparison. The study showed that in most instances single step polarization curves were obtained signifying corrosion to be a unitary process. In some instances two-step polarization curves, revealing corrosion to occur in two stages, have been obtained. Factors leading to these differences have been identified and the reasons for the occurrence explained.

The effect of heat-treatment on the  $E_{corr}$  &  $I_{corr}$  values, via the medium of the microstructure, revealed that the larger the stability and volume fraction of the austenite matrix the more noble (less -ve) the  $E_{corr}$  and smaller the  $I_{corr}$ . The effect of the second phase(MC + DC) was a function of the morphology and

xiii

volume fraction of the MC and the size, shape and distribution of the DC. Microstructure, formed on heat-treating at 1050°C (4 hrs., AC), illustrates the adverse effect of plate like morphology and a large volume fraction of the MC in spite of the austenite matrix being favourably disposed (in improving corrosion resistance). Similarly the microstructure at 950°C (10 hrs., AC) clearly brings out that the corrosion resistance is adversely affected by the coarsened DC. An analysis of the data has proved extremely useful in interrelating the test obtained parameters Icorr with the microstructure and the Ecorr & electro-chemical events constituting corrosion. This has enabled laying down of guide lines for developing corrosion resistant microstructures in terms of Ecorr, Icorr and Ic.

In the study involving modelling of the corrosion behaviour (interrelating corrosion rate with the microstructure), the models developed in a recent study were critically examined. The first model interrelating corrosion rate with the total volume fraction of MC+DC and the number of particles (NOP) was of the form :

 $CR = [C1 + C2 (VCb) + C3 (VCb)^2] (NOP)^{-4}$ 

where, VCb = volume of carbides (MC+DC)

CR = corrosion rate in mdd  $\rightarrow NOP =$ C1, C2, C3 and C4 are constants which were different for different alloys.

The above model did not predict the corrosion rates very satisfactorily as the contribution of the DC was included in the VCb as well as NOP. Therefore, the volume fraction of DC was excluded from the VCb (only the volume fraction of MC was

xiv

included) and DC represented by the NOP. The resulting expression is represented as :

 $CR = [C1' + C2' (VMC) + C3' (VMC)^2] (NOP)^{-4}$ 

This was justified on the basis that the mean diameter (or the surface area) of a DC particle is much smaller as compared to the surface area of massive carbide and since DC were expected to enhance corrosion through the formation of a number of electro-chemical cells, NOP was a more representative measure of this tendency rather than the surface area.

This model although superior and more representative none the less did not make a true representation of the actual state of the DC. This difficulty was overcome in the earlier study by defining DC on the basis of a newly evolved parameter termed as distribution factor(DF). The modified model was of the form

 $CR = [C1" + C2" (VMC) + C3" (VMC)^2] (DF)^{C4"}$ 

The actual models although mathematically valid, were not physically consistent. This was because the absolute values of corrosion rate, VMC and DF differed greatly and they had not been normalized before computing the constants. After the necessary modifications had been carried out in the present study, the final models arrived at were not only physically consistent but predicted corrosion rates within ±10% of the experimentally determined values.

On comparing the predictions based on the various models, it appeared that inconsistencies still persisted. 3D-plots between CR, VMC & NOP and CR, VMC & DF showed that the inconsistencies perhaps arose because it was difficult to keep VMC a constant and

хv

vary NOP/DF or vice-a-versa. None the less, the 3D-plots proved extremely useful in arriving at the minimal optimals of VMC/DF or VMC/NOP to obtain the best in terms of corrosion resistance in each of the experimental alloys. The data thus generated proved extremely helpful in developing a unified model (a single model) describing the corrosion behaviour of all the experimental alloys. Barring few instances, the deviation between the predicted and the experimentally determined corrosion behaviour does not exceed ±10-12%.

From the point of view of mechanical properties the martensite bearing microstructures were brittle and were characterized by low compressive strength(CS) and %strain. The austenite based microstructures gave high values of compressive strength and %strain. The key parameter in influencing the deformation behaviour was the amount and stability of austenite. The effect of massive carbides on the deformation behaviour was a function of the compatibility, volume fraction and morphology while the effect of DC was governed by their size, shape and distribution. The new phase (anomalous eutectic) formed at 1050°C, 4 hrs., AC heat-treatment adversely affected the deformation behaviour.

Mathematical models were developed interrelating (i) CS with hardness and (ii) %strain with hardness. Mechanical properties (CS, %strain) reported in an earlier study on similar alloys but in the oil quenched condition were used for these computations.

The relation which comprised a second order polynomial is :

 $R = A1 + A2 (H) + A3 (H)^{2}$ 

xvi

where R = CS/H or %strain/H

H = hardness

A1, A2 and A3 are constants.

This correlation proved useful in characterizing some of the microstructures in the present study whose mechanical properties were not assessed.

Based on a detailed analysis of the results it is recommended that the future alloy design should incorporate useful features of the alloy B2 and strive to attain the beneficial microstructure with a minimum of heat-treatment / processing.

#### PREFACE

The thesis comprises a total of seven chapters. The first chapter has been divided into two sections. The first section deals with a discussion on the composition, properties and applications of the three types of corrosion resistant alloy cast irons currently in use. The second section, devoted to fundamental considerations in the design of corrosion resistant microstructures, critically examines the factors affecting corrosion and the effect of metallurgical parameters (crystal microstructure and the defect structure, structure) in influencing corrosion. Major deductions arising from an appraisal aforesaid information lead to the design of the of the experimental alloys. This aspect along with a phase-wise planning of experiments have been included in the chapter II.

Chapter III deals with the experimental techniques and procedures employed with major emphasis on the X-ray diffractometry, EPMA, DTA, corrosion testing and compression testing.

Results and discussion have been divided into three chapters. Chapter IV includes the effect of heat-treatment schedule(s) on the hardness, and microstructure characterized qualitatively and quantitatively.

Chapter V deals with the (i) structural investigations by X-ray diffractometry and EPM analysis to carry out a detailed phase (anomalous eutectic) analysis and for assessing the partitioning behaviour of Mn, Cr, Si, and Cu into the matrix, massive carbide and the new phase formed on heat- treating from 1050°C and (ii) study of the transformation behaviour of the four alloys by DTA primarily to assess the suitability of selected microstructures for high temperature applications.

is devoted VI to the Chapter electro-chemical characterization of selected microstructures by potentiostatic method, a study of the corroded specimens by scanning electron microscopy and to the assessment of the deformation behaviour of selected microstructures in the as-cast and in the heat-treated conditions by compression testing. A salient feature of the present study has been the development of а number of mathematical models interrelating the

- (i) heat-treating parameters with the hardness,
- (ii) microstructure (especially the effect of second phase corresponding MC & DC) with the the corrosion rate,
- (iii) temperature with the oxidation behaviour (characterized by weight gain) in air,
  - (iv) hardness with the compression strength,
  - (v) hardness with the %strain,
- (vi) compressive strength with the corrosion behaviour, and
- (vii) %strain with the corrosion behaviour.

Based on the above findings, conclusions have been drawn with regard to the transformation behaviour of the alloys under various heat treating conditions and the suitability of different microstructures from the point of view of corrosion resistance, mechanical properties and high temperature oxidation behaviour. Such a study is expected to prove very useful in optimizing the microstructure with regard to the above mentioned properties.

xix

They (conclusions) are enumerated in the chapter VII.

A key feature of the present investigation has been the extensive use of computational techniques and the development of application software, of immense use for materials development/ characterization, for the DEC-2050 and IBM compatible PC-XT and AT systems. CONTENTS

page

|             | CERTIFICATE                                  | i     |
|-------------|----------------------------------------------|-------|
|             | ACKNOWLEDGEMENT                              | ii    |
|             | ABBREVIATIONS                                | v     |
|             | ABSTRACT                                     | viii  |
|             | PREFACE                                      | xviii |
| CHAPTER I   | LITERATURE REVIEW                            | 1     |
| 1.1         | Corrosion resistant alloy cast irons         | 1     |
| 1.1.1       | High silicon irons                           | 1     |
| 1.1.2       | High chromium irons                          | 2     |
| 1.1.3       | High nickel or Ni-resist irons               | -3    |
| 1.1.3.1     | Spheroidal graphite Ni-resist irons          | 4     |
| 1.2         | Fundamental considerations in the design and |       |
|             | development of corrosion resistant alloys    | 4     |
| 1.2.1       | Metallurgical factors                        | 5     |
| 1.2.1.1     | Microstructure                               | 6     |
| 1.2.1.1.1   | Single phase microstructures                 | 6     |
| 1.2.1.1.2   | Two phase microstructures                    | 7     |
| 1.2.1.1.2.1 | Soft matrix containing a soft phase          | 7     |
| 1.2.1.1.2.2 | Soft phase containing a phase mixture        | 8     |
| 1.2.1.1.2.3 | Second phase as dispersoid in a soft matrix  | . 8   |
| 1.2.1.1.2.4 | Single phase with high hardness              | 10    |
| 1.2.1.1.2.5 | Second phase with a high hardness in a       |       |
|             | hard matrix                                  | 11    |
| 1.2.1.1.3   | Multi-phase microstructures                  | 11    |
| 1.2.1.2     | Unintended microconstituents                 | 11    |
| 1.2.1.2.1   | Grain boundary precipitation/segregation     | 12    |

| 1.2.1.2.2   | Formation of sigma and chi phases     | 12 |
|-------------|---------------------------------------|----|
| 1.2.1.3     | Minor factors                         | 13 |
| 1.2.1.3.1   | Effect of grain structure             | 13 |
| 1.2.1.3.2   | Effect of grain orientation           | 13 |
| 1.2.1.3.3   | Inhomogeneity                         | 13 |
| 1.2.1.4     | Impurities                            | 14 |
| 1.2.2       | Defect structures                     | 14 |
| 1.2.2.1     | Effect of cold work                   | 15 |
| 1.2.3       | Heat treatment                        | 16 |
| 1.2.4       | Alloying                              | 17 |
| 1.3         | Conclusion                            | 18 |
| CHAPTER II  | FORMULATION OF THE PROBLEM            | 19 |
| 2.1         | Introduction                          | 19 |
| 2.2         | The approach and alloy design         | 21 |
| 2.3         | Planning of experiments               | 24 |
| CHAPTER III | EXPERIMENTAL TECHNIQUES AND PROCEDURE | 25 |
| 3.1         | Alloy preparation                     | 25 |
| 3.2         | Specimen preparation                  | 26 |
| 3.3         | Heat treatment                        | 26 |
| 3.4         | Hardness measurement                  | 27 |
| 3.5         | Metallography                         | 27 |
| 3.5.1       | Optical metallography                 | 27 |
| 3.5.2       | Quantitative metallography            | 28 |
| 3.6         | X-ray diffractometry                  | 28 |
| 3.7         | Electron probe micro analysis         | 30 |
| 3.8         | DTA studies                           | 31 |
| 3.9         | Potentiostatic studies                | 31 |

. •

| 3.10       | Compression testing                               | 32   |
|------------|---------------------------------------------------|------|
| 3.11       | Data analysis                                     | 33   |
| CHAPTER IV | EFFECT OF HEAT-TREATMENT ON HARDNESS AND          |      |
|            | MICROSTRUCTURE                                    | 34   |
| 4.1        | Results                                           | 34   |
| 4.1.1      | Effect of heat treatment on hardness              | 34   |
| 4.1.2      | Microstructure                                    | 39   |
| 4.1.3      | Quantitative metallography                        | 42   |
| 4.1.3.1    | Massive carbide                                   | 42   |
| 4.1.3.2    | Dispersed carbide                                 | 43   |
| 4.2        | Discussion                                        | 45   |
| 4.2.1      | Structural changes during heating                 | 46   |
| 4.2.2      | Changes during cooling to room temperature        | 47   |
| 4.2.3      | Strengthening response of different               |      |
|            | transformations                                   | 49   |
| 4.2.4      | Interrelation between microstructure and hardness | 50   |
| 4.2.4.1    | As-cast state                                     | 50   |
| 4.2.4.2    | Heat-treated condition                            | . 51 |
| 4.2.4.3    | Alloy B1                                          | 51   |
| 4.2.4.4    | Alloys B2, B3, and B4                             | 54   |
| 4.2.4.5    | Relative hardness vs time plots                   | 56   |
| 4.2.5      | Hardness-time interrelation                       | 58   |
| 4.2.6      | Hardness-temperature interrelation                | 59   |
| 4.2.6.1    | Nature of variation                               | 59   |
| 4.2.6.2    | Effect of temperature on hardness and             |      |
|            | microstructure                                    | 60   |
| 4.2.6.3    | Comparative hardness vs temperature data          | 62   |

|   | 4.2.7     | Effect of temperature and time on the morphology   |            |
|---|-----------|----------------------------------------------------|------------|
|   |           | and volume fraction of massive carbides            | 62         |
|   | 4.2.8     | Effect of time and temperature on the distribution |            |
|   |           | of dispersed carbides                              | 64         |
|   | 4.2.9     | Mathematical modelling of the transformation       |            |
|   |           | behaviour                                          | 68         |
|   | 4.2.9.1   | Physical interpretation of the proposed model      | <b>7</b> 3 |
|   | 4.2.10    | Mathematical modelling of the distribution         |            |
|   |           | factor                                             | 78         |
|   | 4.2.11.1  | 3D plots representing interrelation amongst        |            |
|   |           | temperature, time and hardness                     | 79         |
|   | 4.2.11.2  | Iso-hardness plots                                 | 80         |
|   | 4.3       | Conclusion                                         | 81         |
|   | CHAPTER V | TRANSFORMATION BEHAVIOUR OF THE ALLOYS             | 82         |
|   | 5.1       | Structural analysis by X-ray diffractometry        | 82         |
|   | 5.1.1     | Results                                            | 82         |
|   | 5.1.1.1   | As-cast condition                                  | 82         |
|   | 5.1.1.2   | Heat-treated condition                             | 82         |
|   | 5.1.1.2.1 | Effect of heat-treatment on the matrix             |            |
|   |           | microstructure                                     | 83         |
| • | 5.1.1.2.2 | Effect of heat-treatment on the nature of carbides | 83         |
|   | 5.1.1.2.3 | Other features                                     | 85         |
|   | 5.1.2     | Discussion                                         | 85         |
|   | 5.1.2.1   | Matrix microstructure                              | 85         |
|   | 5.1.2.2   | Carbide transformation                             | 89         |
|   | 5.1.2.2.1 | The M <sub>23</sub> C <sub>6</sub>                 | 90         |
|   | 5.1.2.2.2 | The M <sub>3</sub> C                               | 91         |
|   | 5.1.2.2.3 | The M <sub>7</sub> C <sub>3</sub>                  | 92         |

.

.

. •

vvi.

| 5.1.2.2.4  | The M <sub>5</sub> C <sub>2</sub>              | 93  |
|------------|------------------------------------------------|-----|
| 5.1.2.2.5  | Fe <sub>8</sub> Si <sub>2</sub> C              | 94  |
| 5.1.2.2.6  | Presence of elemental Cu & other phases        | 95  |
| 5.2        | Electron probe micro analysis results          | 96  |
| 5.2.1.1    | Partitioning of the alloying elements into the |     |
|            | matrix and the carbide phases                  | 98  |
| 5.2.1.2    | Effect of Mn on Cr distribution                | 100 |
| 5.2.1.3    | Effect of Cu on Cr and Mn distribution         | 102 |
| 5.2.1.4    | Effect of heat-treatment on the partitioning   |     |
|            | of alloying elements into the matrix and the   |     |
|            | carbide phases                                 | 102 |
| 5.2.2      | Discussion                                     | 103 |
| 5.3        | Thermal Analysis                               | 108 |
| 5.3.1      | Results                                        | 108 |
| 5.3.1.1    | Critical/ transformation temperatures          | 108 |
| 5.3.1.2    | DTA                                            | 108 |
| 5.3.1.3    | Thermogravimetric studies                      | 109 |
| 5.3.2      | Discussion                                     | 109 |
| 5.3.2.1    | Critical/ transformation temperature(s)        | 110 |
| 5.3.2.2    | Thermogravimetric studies                      | 112 |
| 5.3.3      | Modelling of the TG data                       | 115 |
| CHAPTER VI | ELECTRO-CHEMICAL CHARACTERIZATION AND          |     |
|            | DEFORMATION BEHAVIOUR OF THE ALLOYS            | 119 |
| 6.1.1      | Electro-chemical characterization              | 119 |
| 6.1.2      | Discussion                                     | 122 |
| 6.2        | Modelling of the corrosion behaviour           | 128 |
| 6.3.1      | Modelling of the deformation behaviour         | 147 |

• ..

| 6.3.1.1     | Interrelation between compressive strength |     |
|-------------|--------------------------------------------|-----|
|             | hardness                                   | 147 |
| 6.3.1.2     | Interrelation between %strain and hardness | 148 |
| 6.3.2       | Discussion                                 | 149 |
| CHAPTER VII | GENERAL DISCUSSION, CONCLUSIONS AND        |     |
|             | SUGGESTIONS FOR FUTURE WORK                | 152 |
| 7.1         | General discussion                         | 152 |
| 7.2         | Conclusions                                | 156 |
| 7.3         | Suggestions for future work                | 165 |
|             | REFERENCES                                 | 166 |

.

.

.

## LIST OF TABLES

| 1.1           | Ranges of alloy content for various                 |            |
|---------------|-----------------------------------------------------|------------|
|               | types of alloy cast irons                           | T-1        |
| 1.2           | Typical mechanical properties of corrosion-         |            |
|               | resistant cast irons                                | <b>T-1</b> |
| 1.3a          | Chemical composition of Ni-resist irons, percent    | T-2        |
| 1.3b          | Chemical composition of SG Ni-resist irons, percent | nt T-2     |
| 1.4a          | Mechanical properties of Ni-resist irons            | т-3        |
| 1.4b          | Mechanical properties of SG Ni-resist irons         | T-4        |
| 1.5           | Corrosion resistance of Ni-resist irons expressed   |            |
|               | in inches penetration per year(mm per year)         | T-5        |
| 1.6           | Effect of alloying elements                         | т-б        |
| 3.1           | Chemical analysis of raw materials                  | т-7        |
| 3.2           | Chemical analysis of the alloys                     | T-7        |
| 4.1-<br>4.24  | Effect of soaking period on hardness                | T-8<br>to  |
| 4.44          | in A.C. condition                                   | т-19       |
| 4.25-<br>4.44 | Effect of soaking temperature on hardness           | T-20<br>to |
| 1.11          | in A.C. condition                                   | T-31       |
| 4.45          | Summary table of effect of heat treatment           |            |
|               | on hardness                                         | T-32       |
| 4.46          | Effect of heat-treatment on volume percent          |            |
|               | of massive carbide                                  | T-33       |
| 4.47-<br>4.50 | Effect of heat-treatment on size and                | т-34<br>to |
|               | dispersion of 2 <sup>nd</sup> phase particles T     | -35        |
| 4.51          | Effect of heat-treatment on mean diameter           |            |
|               | of dispersed carbides                               | т-36       |
| 4.52          | Effect of heat-treatment on the average number      |            |
|               | of dispersed carbides                               | T-37       |
|               |                                                     |            |

| 4.53         | Effect of heat-treatment on volume percent of      |              |
|--------------|----------------------------------------------------|--------------|
|              | dispersed carbides                                 | T-38         |
| 4.54         | Effect of heat-treatment on the percent number     |              |
|              | of dispersed carbides in different classes         | T-39         |
| 4.55         | Effect of heat-treatment on percent area of        |              |
|              | dispersed carbides in different classes            | T-40         |
| 5.1          | Phases under consideration                         | T-41         |
| 5.2-         | Summary table of diffractogram indexing            | T-42         |
| 5.41<br>5.42 | Summary of X- ray diiffractogram analysis          | to<br>T-82   |
| 5.43         | Element distribution in matrix                     | T-83         |
| 5.44         | Element distribution in carbide                    | T-84         |
| 5.45         | Transformation temperatures                        | <b>T-85</b>  |
| 5.46         | DTA                                                | <b>T-8</b> 5 |
| 5.47         | Effect of heating temperature on %TG               | т-86         |
| 5.48         | Percent increase in %TG on heating in the          |              |
|              | different temperature ranges                       | T-86         |
| 6.1          | Polarization curve data                            | <b>T-87</b>  |
| 6.2          | Summary table of Icorr                             | T-88         |
| 6.3          | Summary table of Ecorr                             | T-88         |
| 6.4-         | Summary table of compressive strength and          | т-89<br>to   |
| 6.7          | hardness                                           | T-90         |
| 6.8-<br>6.11 | Summary table of %strain and hardness              | T-91<br>T-92 |
| 6.12         | Summary table of the predicted and experimentally  | <u> </u>     |
|              | determined compressive strength and %strain values |              |
|              | (based on Eqs. 6.45 to 6.48)                       | <b>T-9</b> 3 |

:

.

.

## LIST OF FIGURES

|   | 4.1a-d        | Effect of h/t time on hardness (base curves)        | F-1          |
|---|---------------|-----------------------------------------------------|--------------|
|   | 4.2a-f        | Effect of h/t time on hardness as influenced        | & F-2<br>F-3 |
|   |               | by h/t temperature (comparative plots)              | to<br>F-5    |
|   | 4.3a-d        | Effect of h/t temperature on hardness as            | F-6          |
|   |               | influenced by h/t time                              | &<br>F-7     |
|   | 4.4a-e        | Effect of h/t temperature on hardness as            | F-8          |
|   |               | influenced by h/t time                              | to<br>F-10   |
|   | 4.5a-e        | Summary bar diagrams depicting the effect of        |              |
|   |               | alloy composition on hardness (variable h/t time)   | F-11 ·       |
|   | 4.6a-f        | Summary bar diagram depicting the effect of alloy   |              |
|   |               | composition on hardness (variable h/t temperature)  | F-12         |
|   | 4.7-<br>4.32  | Optical micrographs                                 | F-13<br>F-38 |
|   | 4.32          | Effect of heat-treatment on volume fraction         | E-38         |
|   |               | of massive carbide                                  | F-39         |
|   | 4.34-<br>4.37 | Composite histograms depicting class-wise particle  | F-40<br>to   |
|   | 1107          | distribution at five different locations            | F-55         |
|   | 4.38          | A plot of experimental vs predicted hardness values |              |
|   |               | in the experimental alloys                          | F-56         |
|   | 4.39-<br>4.42 | 3D plot depicting the effect of h/t parameters      | F-57<br>to   |
|   |               | on hardness                                         | F-60         |
| , | 4.43-<br>4.46 | Iso-hardness plots                                  | F-61<br>F-64 |
|   | 5.1           | Comparative X-ray diffractograms of alloy B1        | F-65         |
|   | 5.2           | Comparative X-ray diffractograms of alloy B2        | F-66         |
|   | 5.3-<br>5.5   | Line analysis to                                    | F-67<br>F-69 |
|   | 5.6-<br>5.11  | Area analysis                                       | F-70<br>F-75 |
|   | 5,12          | Differential thermal analysis plot of alloy B1      | F-76         |
|   | 5.13          | Differential thermal analysis plot of alloy B2      | F-77         |

•

| 5.14    | Differential thermal analysis plot of alloy B3    | F-78 |
|---------|---------------------------------------------------|------|
| 5.15    | Differential thermal analysis plot of alloy B4    | F-79 |
| 5.16a-b | A summary plot of differential thermal analysis   |      |
|         | of experimental alloys                            | F-80 |
| 5.17    | Differential thermal analysis plot at 950°C       | F-81 |
| 5.18    | Differential thermal analysis plot at 1050°C      | F-81 |
| 5.19    | A plot of experimental vs predicted %TG in        |      |
|         | the experimental alloys                           | F-82 |
| 6.1     | Tafel plot of Alloy B1 in 5% NaCl solution        | F-83 |
| 6.2     | Tafel plot of Alloy B2 in 5% NaCl solution        | F-84 |
| 6.3     | Tafel plot of Alloy B3 in 5% NaCl solution        | F-87 |
| 6.4     | Tafel plot of Alloy B4 in 5% NaCl solution        | F-89 |
| 6.5     | Tafel plot of Ni-resist irons in 5% NaCl solution | F-92 |
| 6.6     | 3D plot depicting the effect of VCb & NOP on      |      |
|         | corrosion rate (168 hours)                        | F-93 |
| 6.7     | 3D plot depicting the effect of VCb & NOP on      |      |
|         | corrosion rate (720 hours)                        | F-94 |
| 6.8     | 3D plot depicting the effect of VMC & NOP on      |      |
|         | corrosion rate (168 hours)                        | F-95 |
| 6.9     | 3D plot depicting the effect of VMC & NOP on      |      |
|         | corrosion rate (720 hours)                        | F-96 |
| 6.10    | 3D plot depicting the effect of VMC & DF on       |      |
|         | corrosion rate (168 hours)                        | F-97 |
| 6.11    | 3D plot depicting the effect of VMC & DF on       |      |
|         | corrosion rate (720 hours)                        | F-98 |
| 6.12    | 3D plot depicting the effect of VMC & NOP on      |      |
|         | minimal corrosion rates                           | F-99 |

xxx

|   | 6.13          | 3D plot depicting the effect of VMC & DF on     |             |
|---|---------------|-------------------------------------------------|-------------|
|   |               | minimal corrosion rates                         | F-100       |
|   | 6.14          | Contour plot depicting the combined effect of   |             |
|   |               | VMC & NOP on corrosion rate (168 hours) based   |             |
|   |               | on unified model (Eq.6.45)                      | F-101       |
|   | 6.15          | Contour plot depicting the combined effect of   |             |
|   |               | VMC & NOP on corrosion rate (720 hours) based   |             |
|   |               | on unified model (Eq.6.46)                      | F-102       |
|   | 6.16          | Contour plot depicting the combined effect of   |             |
|   | ,             | VMC & DF on corrosion rate (168 hours) based    |             |
|   |               | on unified model (Eq.6.47)                      | F-103       |
|   | 6.17          | Contour plot depicting the combined effect of   |             |
|   |               | VMC & DF on corrosion rate (720 hours) based    |             |
|   |               | on unified model (Eq.6.48)                      | F-104       |
|   | 6.18          | A plot of experimental vs predicted CR based on |             |
|   |               | unified model                                   | F-105       |
|   | 6.19          | Compressive strength-hardness interrelation     | F-106       |
|   | 6.20          | R (CS/H) - hardness interrelation               | F-107       |
|   | 6.21          | A plot of experimental vs predicted CS          | F-108       |
|   | 6.22          | %strain-hardness interrelation                  | F-109       |
|   | 6.23          | R' (%strain/H) - hardness interrelation         | F-110       |
|   | 6.24          | A plot of experimental vs predicted %strain     | F-111       |
| • | 6.25-<br>6.28 | Effect of heat-treatment on deformation         | F-112<br>to |
|   |               | behaviour under compression                     | F-115       |

xxxi

### CHAPTER 1

### LITERATURE REVIEW

### 1.1 Corrosion Resistant Alloy Cast Irons

Cast irons are extensively employed for diverse applications, including those where resistance to corrosion is an essential requirement. Both gray and white irons are in use. Additions of alloying elements in smaller proportions have a limited effect on the corrosion resistance of cast irons. Therefore, larger additions have been made to develop cast irons with improved corrosion resistance and mechanical properties. They include (i) the high Si irons containing upto 18% Si, (ii) the high chromium irons with 12 to 35% Cr and (iii) the austenitic irons of the Niresist type essentially containing 14 to 36% Ni (1)..

### 1.1.1 High Silicon Irons

The matrix microstructure of the high silicon irons containing less than 15.2% Si consists of  $\alpha$ -silico-ferrite along with distribution of fine graphite flakes (2) and some n-phase is also present when silicon is more than 15.2% (3). Since the low strength is due to the brittle matrix rather than the graphite form, the nodular graphite silicon irons have not proved very popular. The high silicon irons show high hardness and low impact strength. Their excellent corrosion resistance is due to an inert SiO<sub>2</sub> surface film which forms during exposure to the environment. The maximum advantage of the protective film is achieved at Si contents  $\geq$  14.25% (3,4). Additions of Mo in small amounts prevents the formation of graphite by forming stable complex carbides, thus resulting in improved corrosion resistance (2). Chromium also gives a similar beneficial effect.

These alloys are commonly employed as castings for pumps, valves and other process equipments. They have also found extensive use as anode for impressed current protection. They are used for making mixing nozzles, tanks, outlets and steam jets and for handling severe corrodents like chromic acid, sulphuric acid, slurries etc. Compositions and mechanical properties of the high silicon irons are given in Tables 1.1 and 1.2 respectively (4).

# 1.1.2 High Chromium Irons

The microstructure consists of a uniform dispersion of chromiumiron complex carbides in a matrix of chromium containing ferrite. true nature of the matrix microstructure would depend upon The Cr/C ratio and may vary from  $\alpha$ -ferrite to martensite and the austenite. The carbides are probably mixtures of the types  $Cr_7C_3$  $Cr_{23}C_6$  in which some of the Cr has been replaced by Fe (5). and high chromium irons are hard but not unmachinable like the The high silicon irons (Table 1.2). Lowering the carbon content to ≈1.2%C improves their shock resistance. The excellent corrosion resistance is achieved by the formation of an impervious and highly tenacious surface film probably consisting of a complex chromium iron oxide. An improvement in the corrosion resistance attained by Si and Mo additions through refining of carbides is-(3,6). Molybdenum may alternatively enhance corrosion resistance displacing some of the Cr by combining with the carbon and by thereby increasing the Cr content of ferrite (3). Kuttner has reported that an increase in the Cr content according to the formula %Cr = (%C X 5) + 36 may prove effective in inducing

2

resistance to aqua-regia (6). These irons are completely resistant to other acids at room temperature, although corrosion rate can at times increase at elevated temperatures. Like the high silicon irons, the high chromium irons are no better than the unalloyed gray irons in resisting alkalies (3). However, they prove good against oxidizing acids.

High chromium irons are most usefully employed in environment containing a plentiful supply of oxygen or oxidizing agents. `Low carbon' versions are useful for annealing pots, Pb, Zn, or Al melting pots, conveyer links and other parts exposed to corrosion at high temperature (i.e. ≥1000°C) (4).

### 1.1.3 High Nickel or Ni-Resist Irons

These irons contain 1.6 to 6% Cr and 1% Mo along with high Ni. Occasionally Cu may also be present (Table 1.3a) (4,7). The microstructure consists of graphite flakes in a matrix of austenite and some carbide if Cr and/or Mo are present. These irons do not exhibit high strength and machinability is satisfactory due to the presence of graphite. Toughness/shock resistance is the best amongst all the alloyed cast irons due to austenitic matrix (Table 1.4a) (7). Ni-resist irons can withstand a wide range of corrosive media and give highly economical service in marine environment (Table 1.5) (7). They can resist sulphuric acid at room temperature, and HCl & H<sub>3</sub>PO<sub>4</sub> even at elevated temperatures. Resistance to organic acids such as acetic, oleic, and stearic and to HNO3 is similar to that of unalloyed irons. Ni-resist irons are also immune to strong and weak alkalies, although they are subjected to stress corrosion

3

cracking (SCC) at stress over 70 MPa in boiling alkali solutions (4). The overall excellent corrosion resistance is mainly due to the austenitic matrix (4,7).

The difference in the electrochemical-potential between the graphite and the matrix in Ni-resist irons is less than in the ordinary grey irons. Therefore, in environment in which graphitic corrosion is a problem, Ni-resist irons will perform much better than the ordinary or low alloyed cast irons (7).

1.1.3.1 Spheroidal Graphite Ni-Resist Irons

These are commonly produced by adding Mg (Table 1.3b) to liquid iron in sufficient quantity to enable graphite to separate as spheroids rather than as flakes. Mechanical properties of these irons are given in Table 1.4b (7). To distinguish them from the flake ones, the prefix 'D' has been added. The composition ranges are listed in Table 1.3b (7). It is well established that the corrosion resistance of any S.G. grade is similar to that of the corresponding flake graphite irons. They have been successfully used in all environments and also at elevated temperatures (700-800°C). They are mostly used in marine conditions, and also where cyclically varying loads are experienced (4,7).

1.2 Fundamental Considerations In The Design And Development Of Corrosion Resistant Alloys

Section 1.1 dealt with corrosion resistant alloy cast irons presently in use. In order to arrive at a rationalized understanding of the physical metallurgical considerations involved in designing, a critical review of the literature was made. The information thus collated has been condensed into section 1.2.

The term `metallic corrosion' includes all interactions of a metal or an alloy (solid/liquid), with its environment (liquid/gas), at any temperature, irrespective of whether this is deliberate and beneficial or advantageous and deleterious(8-10). In a way corrosion is a spontaneous process, electro-chemical in where electricity is generated. Although, nature the term corrosion has been defined in different ways by different workers(11-16), this in its simplest form occurs by the formation of anode(s) and cathode(s). The manner in which these are formed give rise to different forms/types of corrosion. The extent to which it may occur is governed by, (i) the process related parameters, (ii) the materials(metallurgical) related parameters and, (iii) the design related parameters.

The important forms of corrosion, their appearance, causes and possible methods of prevention and the different process related parameters along with their effects on corrosion have been summarized in detail by Jain(17). This aspect is being excluded from the present report. Accordingly the following sections are devoted to a critical analysis of the metallurgical parameters only. The discussion has been essentially confined to aqueous corrosion. Wherever, the data on the corrosion behaviour of cast irons is not available, data on corrosion aspects of plain carbon and alloy steels have been appropriately included to make the discussion more meaningful.

1.2.1 Metallurgical factors

This section deals with the effect of microstructure, crystal structure and the defect structure in controlling corrosion.

Whereas, the crystal structure is a fundamental entity, microstructure depends upon the (i) composition (presence/absence of alloying elements, inhomogeneity), (ii) the heat treatment employed, and (iii) whether or not a deformation (cold/hot) component is employed while treating.

The following sections contain an account of how a combination of the above mentioned parameters may give rise to conditions responsible for inducing one or more of the different forms of corrosion. It has also been mentioned how the problems thus created could be overcome by a skillful manipulation of alloying and heat treatment.

### 1.2.1.1 Microstructure

Microstructure has a marked effect on the corrosion rate. It has been established by Uhlig that the corrosion rate of any microstructure may not depend on the total amount of second phase. However, its distribution may have an important bearing on the corrosion behaviour(18). Thus, a microstructure exposes a very complex front to a corroding environment and an analysis of the possible interactions that may occur is of utmost importance in predicting the final outcome. Different parameters related with microstructure have been discussed below :

# 1.2.1.1.1 Single Phase Microstructures

A single phase, preferably either fcc or hcp (c/a ratio closest to ideal value) with a high packing factor is most useful in resisting corrosion. However, in the presence of a passive film, crystal structures with lower packing factors (bcc) would prove equally effective (austenitic and ferritic stainless steels). Since single phase microstructures exhibit limited strength,

therefore, either a two-phase or multi-phase microstructures are preferred in actual practice. This has been discussed in the following sections.

1.2.1.1.2 Two phase microstructures

A large number of options arise and only the more relevant ones have been discussed.

1.2.1.1.2.1 Soft matrix containing a soft phase

Such instances are not common and are likely to be adopted under special circumstances for a specific beneficial effect of the second phase e.g. utilization of controlled quantities of  $\delta$ -ferrite in an austenitic matrix which is produced in 18-8 steel by cold rolling (deformation induced transformation to the more stable phase) or by prolonged soaking at high temperatures, for improving susceptibility of the matrix to SCC (19). However, if the amount of  $\delta$ -ferrite exceeds a critical value, the notch toughness and formability are adversely affected.

A more common example is the presence of graphite in a ferrite matrix. This combination is most unfavourable from the corrosion resistance point of view as the two constituents are farthest apart in the electro-chemical series (starting from the most noble graphite and followed by  $Fe_3C$ ,  $Fe_3P$ , MnS, FeS to ferrite) (20). For optimum conditions graphite should be in the flake form(20). Corrosion resistance can be further improved by replacing ferrite matrix by pearlite or austenite, the latter being a costlier option (Ni-resist irons) to make the matrix more noble.

### 1.2.1.1.2.2 Soft phase containing a phase mixture

The most common example is the presence of pearlite in a ferrite matrix. This combination is favourable from the point of view of corrosion particularly when the matrix phase is predominant e.g. the usefulness of mild steel in different environments. The relative proportion of ferrite and pearlite, the fineness of the and morphology of cementite and the microstructure, the difference in electro-chemical potentials between ferrite and cementite have an equally important bearing on the corrosion resistance. Ferrite and carbide are less farther apart compared with ferrite and graphite and therefore, more useful (1) 1.2.1.1.2.3 Second phase as dispersoid in a soft matrix Two possibilities arise: the second phase being (i) a soft constituent or (ii) a hard constituent. Presence of graphite nodules the spheroidal dispersed carbides or in а

ferritic/austenitic matrix are examples representing the two instances.

For a microstructure of this type, the parameters controlling the corrosion behaviour are (i) the difference in electro-chemical potential between the second phase and the matrix, (ii) size, shape, and distribution of the second phase, and (iii) the nature of the matrix-particle interface.

The first parameter has already been discussed in section 1.2.1.1.2.1. As regards the second parameter, an optimum corrosion resistance would correspond to (i) a critical size and shape (spherical being most preferred) and (ii) a uniform dispersion. It would not be desirable to have a very fine/coarse particles present as their effect, based on interfacial surface

area considerations alone, may be similar (18,21). However, the attack may tend to get localized in the presence of a fine dispersion e.g. as in pitting(22) but not so with the coarse (oversized) particles. It is in fact suggested that the second phase particles may be graded based on their effect on corrosion behaviour, on similar lines as the flake/spheroidal graphite classification in cast irons as proposed by AFS-ASTM (4).

The of the matrix-particle interface would depend nature whether the upon second phase particles are coherent, semi-coherent or incoherent. Coherent shearable particles have a soft interface and should, therefore, be regarded as useful(23). To what extent they may improve corrosion resistance would, be governed by the size, shape, distribution and the however, heat-treatment (effect of stress relieving on the interface). If the difference in hardness between the localized regions and the matrix is large, locally formed cells may accelerate corrosion. Under these conditions, the extent of acceleration/stifling would be decided by the crystal structure of the matrix.

Incoherent/semi-coherent particles are by themselves hard and are not sheared(23). However, partial coherency is associated with strains and this in turn may set up local cells of the type mentioned above. This state may be altered by the heat-treatment (stress-relieving) employed.

The discussion so far has been confined to the spherical shapes of the second phase. However, other morphologies such as platelets/plates or a massive form (with/without sharp edges) are also possible. Their presence would give rise to a higher rate of

corrosion in comparison to a spherical or polygonal morphology because of a larger interfacial contact/surface area (21) and an unfavourable morphology from the point of view of crack propagation behaviour.

### 1.2.1.1.2.4 Single phase with high hardness

This includes martensite and bainite formed wholly or partly by shear transformation. Their effect on the corrosion behaviour would depend upon (i) the nature of the environment and its ability or otherwise in inducing SCC, (ii) possibility of gas assisted cracking e.g. susceptibility of twinned martensites to hydrogen embrittlement (24-26), (iii) the possible effect of surface stresses induced during transformation, (iv) the possible role of defect structure, (v) other features (if any) and (vi) a high hardness.

Based on the literature (19-27), it was suggested that martensite may not prove useful in imparting good corrosion However, far from being so, the formation of resistance. martensite with a distorted tetragonal lattice results in 1/5 the corrosion rate of the same steel subsequently tempered at 300-400°C (producing a second phase of finely dispersed iron carbides)(22). This observation clearly implies that the higher corrosion resistance of homogeneous single phase alloys holds even if the alloys are thermodynamically unstable and which can subsequently transform into an equilibrium multiphase microstructure(22). In fact, inspite of its brittleness the high hardness associated with martensite may lead to lesser rates of dissolution and in corrosion hence to an improvement resistance(27). Based on the above considerations, bainites

(particularly lower bainite) may also prove useful due to (i) their high hardness and (ii) a crack resistant microstructure. 1.2.1.1.2.5 Second phase with a high hardness in a hard matrix phases with a high hardness are usually compounds Second (carbides, nitrides, borides etc.) which are inert and stable at high temperatures. Their stability both in the as-cast and in the heat-treated conditions may be further improved by adding elements which primarily partition to them (e.g. partitioning of Cr. Mo, V, Ti etc. to the carbides) thereby making them more The overall corrosion behaviour of the combination inert. M + a compound would depend upon the potential difference between two, the state of stress and the crack propagation the behaviour. Data on the behaviour of `martensite + a hard phase' couple, vis-a-vis their corrosion behaviour, is not readily available. However, based on fundamental considerations, the `couple' is likely to perform satisfactorily, the high hardness/britlleness of the matrix not withstanding.

1.2.1.1.3 Multi-phase microstructures

They include the presence of a third phase which may improve the corrosion resistance indirectly by resisting crack propagation if it is ductile and tough e.g. the presence of austenite around carbides along with martensite, wherein a favourable carbide morphology would be an added advantage (28).

1.2.1.2 Unintended microconstituents

They are formed while heat treating. Their location, electro-chemical behaviour and structural changes accompanying their formation will greatly influence the final microstructure.

# 1.2.1.2.1 Grain boundary precipitation/segregation

may occur either during soaking or during cooling while This heat treating. Grain boundary precipitation of Cr23C6 type carbide in austenitic stainless steels while cooling in the temperature range of 550-950°C is one of the examples. The possible mechanism of the precipitation of  $Cr_{23}C_6$  and the adverse changes microstructural it produces are now well understood(15,22). This problem may be overcome by heattreatments involving elevated temperature soaking which disperses carbon uniformly throughout the alloy, followed by fast cooling. Grain boundary corrosion can also be avoided by stabilization (adding Ti or Nb to the alloy). Their carbides have a lower free energy of formation i.e. are more stable than chromium carbides (3,22). Another useful option is to keep the carbon content low i.e. < 0.03% (3).

### 1.2.1.2.2 Formation of sigma and chi phases

These are topologically closed packed phases and are usually formed in alloys with high alloy content e.g. stainless steels (22,29), and 28Cr-4Mo (30), 28Cr-4Mo-4Ni and 48%Cr (atomic) iron based alloys (31) during heat-treatment.

There are conflicting opinions on the effect of sigma and chi phases on corrosion resistance and mechanical properties. An important observation is that the phases themselves exert no detrimental effect but the concentration gradient set up in the proximity of the adjoining phases may cause a reduction in the corrosion resistance (29).

### 1.2.1.3 Minor factors

### 1.2.1.3.1 Effect of grain structure

One such example is the severe localized attack on the faces perpendicular to the working direction and proceeding into the metal in the working direction, while the surfaces parallel to the working direction remain relatively unattacked. Such end-grain attack, which is basically the result of the grain structure being elongated in the working direction, has been observed in austenitic stainless steels, Ti alloys and mild steels (3).

# 1.2.1.3.2 Effect of grain orientation

Grain orientation is of minor importance when aqueous corrosion is under consideration. This is because polycrystalline metals corrode more or less uniformly. However, there is a fundamental difference in the tendency for one crystal face to corrode more readily compared to another leaving behind a residual face. For example the residual faces for iron in nitric acid and copper in copper sulphate are (100) and (111) respectively. This variable attack leads to the roughening of the surface, depending upon the grain orientation, as has been shown by Gwathmey (22) in the measurements of friction and wear.

1.2.1.3.3 Inhomogeneity

This refers to a variation in chemical composition within a grain e.g. as encountered during coring. This type of microstructure can be considered as comprising an in-built electrochemical cell. Hence, corrosion resistance will be adversely affected. Homogenization annealing is recommended to overcome this problem 31).

#### 1.2.1.4 Impurities

Impurities are detrimental to corrosion resistance of metals/alloys. For example the presence of S and P increases the corrosion rate by forming a compound of low  $H_2$  over-voltage (22). Therefore, they have to be maintained at a low level. The level of impurities that can be tolerated in a material is a function of the strength level (3).

Inclusions are also detrimental. It has been observed that a relatively pure iron but containing sulphide inclusions has a marked tendency to react even in mildly corrosive environment (31). Their size, shape, distribution and volume fraction will have an important bearing on the corrosion behaviour (32). Inclusions enhance corrosion by initiating pitting and in some instances crevice corrosion too (33). Corrosion attack is further enhanced if the material is in the deformed state due to directionality imparted to inclusions (31).

The adverse effect of impurities can be minimized by restricting them to a desired low level. Use of suitable melting and refining techniques e.g. vacuum melting and casting ---1d\_greatly help in achieving this objective. The

> b resort to alloying. It has been shown mium is useful in altering the electrohe sulphide inclusions by combining to the resistance to pitting and crevice

ine and surface defects are faulted bciated with a high energy and, therefore,

will have a definite bearing on the corrosion behaviour. These areas act as anodic sites in comparison with the surrounding matrix (3) resulting in the pit formation at the intersection of dislocations with a surface. Triangular etch pits around a dislocation are caused by selective chemical attack due to stress field around it (dislocation). The shape of the etch pit is related with the orientation of the grain to the etched surface (31).

1.2.2.1 Effect of cold work

Cold working and heat treatment involving high rate of cooling produce higher density of dislocations and therefore, their effect needs to be discussed in more detail. Cold working increases the corrosion rate probably because of an increase in the dislocation density per sq.cm. possibly as a result of an increase in the number of kink sites on the surface thereby increasing the anodic exchange current density. On the other hand Foroulis and Uhlig (34) suggested that the increased corrosion rate is due to the segregation of carbon and nitrogen atoms to dislocations, and that the cathodic (hydrogen evolution) reaction is kinetically easier at these sites. This was supported by their observation that cold work does not increase the corrosion rate of high purity iron.

In addition to an increase in the dislocation density, grains get aligned in the direction of working and the boundaries may be fragmented as a consequence of cold working. Such areas are subjected to pitting (31). Impurities or alloying element atoms migrate to these imperfections thereby causing an even

greater change in the electro-chemical character of these defects(31).

Another aspect of cold working is that it may create anodic and cathodic sites due to differential stress distribution from the periphery to the centre of a bar e.g. as in `tor' steel (reinforcing material made by controlled cold torsion twisting mild steel bars). The increase in the corrosion rate is not so much a consequence of an increase in the dislocation density as much to a difference in stress distribution leading to galvanic action.

To overcome the problem associated with cold working, stored energy of cold work has to be effectively released. Heattreatment helps in doing so (31).

1.2.3 Heat-treatment

Functionally, heat-treatments are employed to bring about one or more of the following effects (i) strengthening, (ii) homogenizing, (iii) softening, (iv) stress relieving, (v) removal of extraneous phases, and (vi) other than those listed before.

Strengthening through heat-treatment may involve either producing meta-stable microstructures by inducing shear transformation or by affecting precipitation. Both the transformations are affected in the solid state. The effect of the resultant transformation products in influencing corrosion behaviour has already been discussed (Section 1.2.1.1).

Homogenizing is employed to bring about uniformity in composition and will therefore improve corrosion resistance.

Softening, which is brought about by annealing, leads to the attainment of microstructures with low energy. Hence, an

improvement in corrosion resistance is expected provided no adverse microstructural changes are taking place either during soaking or while cooling.

Stress relieving is useful in relieving residual stresses and is expected to bring about an improvement in corrosion and stress corrosion resistance provided no structural changes occur during this treatment.

An important function of a heat-treating schedule is to help eliminate/counteract the formation of extraneous phases/microconstituents. Their effect on the corrosion behaviour has already been discussed in detail. Through carefully designed heattreating cycles, it would be possible to overcome conditions leading to the formation of extraneous micro-constituents, e.g. cooling rapidly to suppress grain boundary precipitation or avoiding excessive soaking at high temperatures to prevent  $\delta$ - ferrite or sigma phase formation in stainless steels.

Lastly, heat-treatment may prove useful in improving corrosion resistance by altering the surface characteristics e.g. heat-treatment of a surface to increase its hardness is useful in improving fretting and erosion-corrosion resistance (3,11-13).

### 1.2.4 Alloying

Alloying elements form the basis of microstructure control through heat-treatment. Accordingly, it is useful in controlling the corrosion behaviour. Alloy additions may also influence corrosion behaviour by forming solid solutions, by forming passive films (applicable when Cr, Si and Al are added in requisite amounts) and by altering the electro-chemical behaviour

of the phases and the impurities present.

The effect of alloying elements, generally added to cast irons, has been summarized in the Table 1.6 (3,34-36). 1.3 Conclusion

A critical survey of the different alloy cast irons currently in use has been presented. The physical metallurgical considerations summarized in section 1.2 not only give us a basis for understanding the development of alloy cast irons already in use but also provide a broad frame work for designing new/alternative compositions effective in resisting corrosion.

# CHAPTER II

#### FORMULATION OF THE PROBLEM

### 2.1 Introduction

Certain factors of design interest emerge from a critical appraisal of the previous chapter :

- (i) Corrosion control essentially centres around three parameters, the material of construction, process/design parameters, and forms of corrosion. Not much flexibility exists with regard to latter two since they are primarily dictated by service conditions which can not be altered. The design would incorporate features so as to minimize corrosion damage. Thus the primary factor is the optimal selection of the material of construction.
- (ii) A single phase microstructure although exhibiting low strength is most useful in resisting corrosion. A more close packed structure(e.g. fcc) is preferred. Its effectiveness is enhanced in the presence of a passive film.
- (iii) The effectiveness of a two phase/microconstituent microstructure in resisting corrosion depends upon (a) morphology, size, location and distribution of the second phase, (b) its volume fraction and (c) difference in the electro-chemical potentials of the two constituents(e.g. between the matrix and the second phase).
- (iv) Presence of a hard meta-stable constituent(martensite) may prove helpful in reducing dissolution/corrosion rate.

- Alloying elements prove helpful in resisting corrosion firstly by being in the dissolved state, secondly by bringing about a change in the matrix microstructure(e.g. by converting pearlite into bainite, martensite or austenite) and thirdly by forming a passive film.
- (vi) Impurities(inclusions) enhance corrosion rates by providing small anodic areas surrounded by large cathodic areas. Alloying is also effective in altering the behaviour of inclusions by altering their electro-chemical character.
- (vii) Compositional/concentration gradients are more effective than microstructural variations in enhancing the attack.
- (viii)Topologically close packed phases(e.g. sigma and chiphases), formed during prolonged soaking(while heat treating), may either favourably or adversely affect corrosion behaviour. Another opinion is that the 'sigma phase' effect is more related with the concentration gradient it sets up.
- (ix) Thermal(heat treating) and processing(e.g. cold working vs hot working) histories and defect structure influence the corrosion rate.
- (x) Corrosion resistant alloy cast irons have been based on austenitic(high Ni), ferritic(high Si) and martensitic/austenitic (high Cr + Mo) matrices. Second phase is graphite(both flake and nodular morphology) in the first two types and carbide in the third. Presence of a passive film resists corrosion in the ferritic and also in the martensitic/austenitic grades but not in the austenitic irons. Bulk of the literature on corrosion resistant cast

irons is confined to austenitic Ni-resist cast irons.

(xi) Most graphite bearing corrosion resistant cast irons suffer from graphitic corrosion- a phenomenon considered as undesirable.

### 2.2 The approach and alloy design

Of the two possible approaches for developing corrosion resistant cast irons, the microstructures developed through the gray iron route suffer from certain intrinsic disadvantages, namely (i) limited mechanical strength due to the presence of graphite, (ii) flake graphite morphology, although useful from the corrosion resistance point of view, creating further impediments in the attainment of requisite mechanical strength, and (iii) graphitic corrosion giving rise to a deterioration in corrosion resistance over prolonged use.

problems, it То overcome these was suggested by Patwardhan(37) that there are definite merits in pursuing the white iron route for developing corrosion resistant microstructures. For it to be effective, information was required the electro-chemical and on the deformation on behaviour of different microstructures encountered in the white There is a paucity of such an information. It was also irons. suggested that proposed study would be additionally the meaningful if it were possible to attain the said microstructures at a minimum of cost i.e. by employing low cost indigenously available alloying elements.

A study(38) was accordingly initiated in which certain low cost compositions were designed incorporating Mn, Cr, and Cu as

the principal alloying elements. The compositions were so designed that the microstructure(s) of interest were attained with a minimum of alloying either in the as-cast state or through simple heat treatments. Mn, Cr, and Cu were selected on the basis of the following :

- (i) Mn improves hardenability significantly at a low cost, helps in retaining austenite, stabilizes carbides, and does not adversely affect fluidity.
- (ii) Cu is a useful graphitizer(helpful in rendering carbides discontinuous and in altering carbide morphology during heat treatment), solution hardens and improves resistance to corrosion in the presence of dilute acids(acetic, hydrochloric, sulphuric) and acid mine water(39,40).
- (iii)Cr stabilizes carbides (not as strongly as Mo, V, W or Nb), is helpful in attaining a uniform microstructure(i.e. with a minimum of segregation) and may prove useful in attaining martensite/austenite even if present singly in large proportions.

A detailed analysis involving the design of alloys is discussed elsewhere(41). Its essential features are summarized below :

- (i) C content was kept around 3.0% and Si around 1.5-2.0%(normally acceptable limits in cast irons).
- (ii) Cr content was adjusted around 4-5% to ensure that a desired composition is cast white over a range of section sizes even on sand casting.
  - (iii)Two Mn levels namely, around 6 and around 8% were selected. The former ensured that austenite could be

attained at room temperature on heat treating from  $\geq 900^{\circ}C(42)$ . The latter would ensure that austenite based microstructures are attained with a greater ease on heat - treating.

(iv) Cu was added in two distinct amounts namely, 1.5 and 3.0%
for aiding the formation of austenite and for imparting
higher resistance to corrosion. Evidently, it would prove
useful in attaining discontinuous carbides on heat treating.

The alloys were initially investigated in the oil quenched condition and emphasis was laid on studying the behaviour of M + C, M + A + C, and A + C microstructures with or without dispersed carbides.

Although certain major findings of design interest emerged(41), an important drawback of the aforesaid study is that the heat treatments employed involved oil quenching. Although there is no restriction to using oil quenching while heat treating cast irons, it is always appropriate to use a simple heat treatment to attain the desired microstructure(s) and therefore the properties. It was therefore felt that the findings of the aforesaid study would have greater relevance if it were desired microstructures through air possible to get the cooling(37).

Accordingly, the present investigation is predominantly confined to a study of the different microstructures attained on air cooling the 6% Mn and the 8% Mn alloys, whose detailed compositions have already been indicated above. The main emphasis has been on the study of the phase transformation behaviour

involving phase identification and quantitative estimations. In the final analysis qualitative and quantitative interrelations have been developed between composition, heat treatment, microstructure and properties.

2.3 Planning of experiments

The experiments have been phased out as follows:

Phase I

A study of the structure-property relation by subjecting the alloys to different heat treatments, assessing their hardness and conducting structural investigations by optical metallography.

Phase II

A further detailed structural examination by x-ray diffractometry, differential thermal analysis, quantitative metallography and electron probe micro analysis techniques.

Phase III

Electro-chemical characterization of the alloys by the potentiostatic method and deformation behaviour of the selected microstructures by compression testing.

#### CHAPTER III

# EXPERIMENTAL TECHNIQUES AND PROCEDURE

### 3.1 Alloy preparation

Raw materials used for preparing different alloys were pig iron, low carbon ferro-alloys (ferro-chromium, ferro-manganese and ferro-silicon), graphite powder, electrolytic copper and mild steel scrap. Compositions of the pig iron and the ferro-alloys are reported in the Table 3.1.

The charge consisted of the aforesaid raw materials in the requisite proportions so as to ensure that the desired compositions are attained. Due consideration was given to the metal content of the ferro-alloys and to the melt losses while making charge calculations. Alloys were air melted in clay bonded graphite crucibles in a medium frequency induction furnace.

Initially two base alloys, each weighing 65 kgs. and containing ≈4-5% Cr and 1.5% & 3.0% Cu respectively, were prepared by first melting requisite proportions of pig iron, mild steel scrap and graphite to a super-heat followed by deslagging and subsequent addition of ferro-chromium, ferro-silicon and After ensuring complete dissolution of the alloy copper. additions, small samples were taken out of the melt for estimation of carbon by the LECO analyser. In the intervening period the melt temperature was lowered to reduce losses. After ensuring that the carbon content had reached the desired level, the liquid metal temperature was raised to about 1400°C and slag Each of the molten alloy was then cast into two removed. cylindrical blocks of approximately equal weight at the two copper levels. Thus in all four castings were poured.

Finally, the Mn content was adjusted to the desired level (i.e.  $\approx 6\%$  and 8%) by adding requisite amount of ferro-manganese to each of the four base alloy castings in the molten condition. Carbon content was rechecked even at this stage to ensure that it was maintained at the desired level. After deslagging, temperature of the molten metal was measured with an optical pyrometer. The alloys were poured at about 1425°C into  $\approx 25$  mm diameter X 250 mm long cylindrical ingots and 8 x 22x 120 mm rectangular strips in sand moulds.

Alloys were analysed for C, S, P and Si on a vacuum quantometer and for Mn, Cr, Cu, P and Si on x-ray fluorescence spectrometer. Detailed chemical analysis is reported in Table 3.2(43).

## 3.2 Specimen preparation

Alloys were very hard and could not be cut either with a power saw or with high speed steel tools. Disc samples(height 14 to 18 mm) were sliced off from the cylindrical ingots by making a 2 to 3 mm deep cut all along the circumference on a silicon carbide cut-off wheel followed by hammering. Heating of the specimens during slitting was kept to a minimum through water cooling. Specimens thus obtained were ground to have parallel faces and paper polished in the usual manner.

3.3 Heat-treatment

Heat-treatments primarily comprised soaking at 800, 850, 900, 950, 1000 and 1050°C for 2, 4, 6, 8 and 10 hours followed by air cooling. They were carried out in muffle furnaces whose

temperature was measured with a Pt-Pt/13% Rh thermocouples and controlled to an accuracy of  $\pm 5^{\circ}$ .

3.4 Hardness measurement

Hardness testing was extensively employed because it provides a quick yet reliable indication of the effect of heat-treatment on properties.

Heat treated specimens were initially ground to a uniform depth of about 1 mm to remove any decarburized layer. Thereafter, they were paper polished upto 3/0 stage in the usual manner. Hardness measurements were carried out on both the faces of a specimen on a Vickers hardness testing machine employing a 30 kg load. A minimum of 20 impressions were taken on each specimen. The permissible scatter in the hardness values was ±17 VPN(44). In the event of the variation exceeding this limit, the hardness has been represented as a band denoting both the maximum and the minimum values.

As the alloy system under investigation is heterogeneous in character, both the representative hardness readings as well as the average values have been reported.

3.5 Metallography

3.5.1 Optical metallography

This has been extensively employed to study how heat-treatment influenced microstructure. Specimens were paper polished in the usual manner (section 3.2). The final (wheel) polishing was carried out using 1.0 and 0.1 micron alumina as the abrasive. After proper cleaning, specimen surfaces were etched in freshly prepared 2% nital. Metallographic examination was carried out on a REICHERT METAVERT-368 microscope.

# 3.5.2 Quantitative metallography

It was carried out on LEITZ image analyser (auto-scan) at a magnification of 2500X. Specimen size was the same as that employed during optical metallography. Ten different fields of view were examined on each specimen. Quantitative estimations including plotting of histograms were carried out with the help of computational techniques.

3.6 X-ray diffractometry

As-cast and the heat-treated bulk specimens of the different alloys were subjected to structural investigations on a PHILLIPS X-ray diffractometer PW 1140/90, employing an iron target and a manganese filter, at an accelerating voltage of 35 kV and a current of 12mA.

Specimens, which were polished and lightly etched, were scanned from 35 to 130°. In most instances time constant and scanning speed were kept at 2 seconds and 1° per minute respectively. Diffractograms were analysed/indexed by adopting the following procedures.

Indexing of x-ray diffractogram

Indexing of the diffractograms and the detailed analysis of the probable microconstituents present was done with the help of a computer software package 'XRAY'(45) as follows:

 Based on the chemical composition of the alloy and the heat-treatment employed, a list of probable micro-constituents was made. It comprised 16 microconstituents which was enlarged to 30 microconstituents (Table 4.61) when some of the reflections could not be

indexed. However, some peak-angles still were unidentified. Therefore, all the possible combinations of elements to form any type of microconstituents like carbides, sulphides, phosphides, oxides, silicides, and their combinations along with the possible presence of metals in an elemental form also considered. This enlarged the number of were micro-constituents considered to 196. Carrying out a detailed analysis of this type would not have been possible without employing computational techniques.

- 2. 'd'-values and corresponding relative intensities and their miller indices of planes of diffraction of the above microconstituents were collected from different sources(46-49). The lattice parameters were also noted down to use them as a reference to study the variation in the lattice parameter through alloying and/or by heat-treatment.
- 3. The data sets at 1 & 2 above were fed into a computer as input data to carry out a detailed analysis of diffractograms.
- 4. The experimental error limit for 20- matching was taken as ± 0.2° (the minimum value of 20- which can be measured accurately at a chart speed of 1° per cm). The experimental error limit for d-matching was calculated from the above values.
- 5. The identification was done by a computer software which performs the following functions :

a. The experimental error determination for d-

matching.

- b. Calculation of d-values from 20- values and viceversa whenever required.
- c. Matching of the d-values or the  $2\theta$ -values which ever is required.
- d. Prediction of the confidence limit of peak angle-matching considering all the possible(i.e. 196) microconstituents as well as the confidence limit of the possible presence of a microconstituent. It also calculates standard deviation of matching of d or 20 values.
- Reporting of the result of matching in the form of a 2-D matrix.
- f. Reporting of the miller indicies of the diffraction planes of micro-constituents that might be present.
- g. Indicating the possible peak-angles corresponding to the  $K\beta$  radiation.

The software output is shown in Tables 4.62-4.101.

3.7 Electron probe micro-analysis

This study was extensively carried out for assessing the partitioning behaviour of different alloying elements as influenced by heat-treatment, particularly Mn, Cr, Cu, C, Si, and Fe in the experimental alloys in the as-cast as well as in the heat-treated conditions. This was carried out on a JEOL Electron probe micro-analyser (EPMA) at an accelerating voltage of 15 kV and beam current of 60 µA.

The three different modes of analysis usually available are the fixed-probe technique, the line-scan technique and the areascan technique. All the three methods were employed in the present investigation. Details concerning them have been discussed elsewhere(50).

The specimens used for the microprobe analysis were similar to those used for optical metallography except that they were etched just enough to reveal the microstructure. This way it was ensured that the composition of different phase(s)/ microconstituent(s) was practically unaltered.

# 3.8 DTA Studies

This was carried out on NETZSCH Simultaneous Thermal Analyzer STA 409 using KEOLINE as reference material. The powder sample of the alloy weighing nearly 45 mg. was taken in a alumina crucible and heated at a rate of 10°C per minute in air. The emerg. reset temperature and the end temperature were 1250°C and 1175°C respectively. The sampling time, the acquisition rate, and the total time taken for the experiment were 3.0 seconds, 2.0 points/K, and 1.56 hh.mm respectively. The start temperatures for the four alloys were 23.8, 19.9, 20.7, and 19.4°C respectively, and the TG offset were 18.5, 28.1, 28.1 28.5, and mg. respectively. Ranges for DTA, TG, and DDTA were fixed at 200.00 125.00mg, and 200uV respectively. The experimental data were uV, analysed and plotted by NETZSCH DATA ACQUISITION SYSTEM.

3. 9 Potentiostatic studies

This technique is useful in determining whether the alloy under investigation exhibits the active-passive transition.

The experimental set-up consisted of a corrosion cell which

was connected to a microprocessor based potentiostat(PRINCTON). An auto voltage scan generator was in-built in the potentiostat.

The corrosion cell consisted of a flask which was modified by the addition of various necks to introduce the test and the counter electrodes, and a reference electrode. This cell and its components have been described in detail by Greene(51).

The test electrode, also known as the working electrode, was made of the test material of approximately  $2.0 \text{ cm}^2$ cross-sectional area. It was hot mounted in a manner that it was leak proof. The surface of the test electrode was prepared just before the experimental measurements in accordance with the recommended practice(52-53).

The reference electrode was a saturated calomel electrode(SCE) and was throughout dipped in solution. The potential of the reference electrode was checked frequently to ensure the stability.

The tests were carried out in a potential range of -1200 to -300 mV(-100 mV in few cases) to obtain tafel plots. The scan rate was kept constant at 5 mV/sec. The polarization curves were automatically plotted by a chart recorder.

3.10 Compression testing

Deformation behaviour of the different microstructures was assessed by carrying out compression tests on selected specimens. They were carried out on cylindrical specimens (size approx. 10 mm dia X 10 mm height) on a 60 ton capacity microprocessor based MFL universal testing machine, at a cross-head speed of 1.0 mm/min. Compressive strength and the percent deformation (height

strain) were calculated from the stress-strain curves in the usual manner.

3.11 Data analysis

Analysis of the data obtained was carried out with the help of computational techniques(54-55) using DEC-2050 main frame computer and PC-XT & PC-AT systems. Programmes were developed for analysing hardness, quantitative metallography data, and for indexing of the x-ray diffractograms. Programmes were also developed for establishing structure-properties correlations.

#### CHAPTER IV

#### EFFECT OF HEAT-TREATMENT ON HARDNESS AND MICROSTRUCTURE

The present investigation was primarily carried out to assess the heat-treatment response of the four alloys namely B1, B2, B3, and B4 with the help of hardness measurements, optical metallography, and quantitative metallography.

The results thus obtained have been summarized in the following sections.

4.1 Results

4.1.1 Effect of heat-treatment on hardness

Transformation behaviour of the alloys was investigated in the first instance (i) to ascertain the different microstructures that can be generated, (ii) to determine how the heat-treating schedule influenced the as-cast hardness, (iii) to assess the effect of composition and heat-treatment on hardness and (iv) to characterise the microstructures initially on the basis of hardness. This was achieved by heat treating disc specimens (25mm dia X 18mm height) of the four alloys by air cooling from 800, 850, 900, 950, 1000, and 1050°C after holding for periods ranging from 2 to 10 hours.

Effect of time and temperature on the hardness is summarized in the Tables 4.1 to 4.45 (Table 4.45 summarizes data contained in the Tables 4.1 to 4.44) and in the Figures 4.1a to 4.1d (the base curves). The data contained in the figures represents the experimentally determined values whereas the actual plots conform to the best fit data. A perusal of the tables and the figures revealed that :

- The overall transformation behaviour of the alloys could be classified as follows :
  - (a) A general increase in the hardness with soaking period on air cooling from 800°C (valid for all the alloys)
  - (b) A general increase in the hardness with soaking period on air cooling from 850°C (valid for B1 and B3).
  - (c) Hardness remaining independent of the soaking period on air cooling from 850°C (valid for B2 & B4).
  - (d) Hardness remaining independent of the soaking period on heat treating from 900°C (valid for all alloys).
  - (e) A general slight decrease in hardness with soaking period on heat treating from 950°C (valid for B1 and B3).
    - (f) Hardness remaining independent of the soaking period on heat treating from 950°C (valid for B2 and B4).
    - (g) Hardness decreasing with soaking period on heat treating from 1000 and 1050°C (valid for all the alloys).
    - (h) The hardness, in general, decreasing with the soaking temperature in the order

 $H_{1050} < H_{1000} < H_{950} < H_{900} < H_{850} < H_{800}$ 

2. On heat treating from 800°C, the hardness of the four

alloys was higher than their corresponding as-cast hardness(Figs. 4.1a to 4.1d).

3. However, on heat treating from temperatures between 850 to 1050°C hardness in general was lower than that in as-cast state except when B1 was air cooled from 850°C (Figs. 4.1a to 4.1d).

The aforesaid data (Figs. 4.1a to 4.1d) although providing very useful information did not provide a comprehensive understanding of the transformation behaviour. The additional information required was obtained by replotting the data contained in the Tables 4.1 to 4.44 in the following manner:

- (i) Effect of time on the hardness as influenced by the heat treating temperatures (Figs. 4.2a to 4.2f).
- (ii) Effect of temperature on the hardness as influenced by the holding period for each alloy (Figs. 4.3a to 4.3d)
- (iii) Effect of temperature on the hardness at each of the five soaking periods for all the alloys (Figs. 4.4a to 4.4e).
  - (iv) Effect of alloy composition on the hardness as influenced by the heat treating parameters [for each alloy] (Figs. 4.5a to 4.5e and 4.6a to 4.6f which are in the form of bar diagrams)

The following deductions would reveal the usefulness of the Figures 4.2 to 4.6 along with the Figures 4.1a to 4.1d, in providing further useful information on the (a) individual and (b) comparative behaviour of the alloy(s).

4. The comparative hardness vs time plots, as influenced by temperature, further confirmed the similarity between B1

and B3 and that between B2 and B4 upon heat treating from upto 850°C (Figs. 4.2a & 4.2b).

- 5. On air cooling from 900 and 950°C, hardness was independent of time for all the alloys. B1, by attaining a higher level of hardness, revealed an ability to 'sustain it to higher levels compared with the rest (Fig. 4.2c & 4.2d).
- 6. On air cooling from 1000°C, once again the alloy B1 had the maximum overall hardness followed by B3, B2 and B4 except that the overall hardness of B4 was now lower than that of B1, B2 and B3 (Fig. 4.2e).
- 7. On air cooling from 1050°C, the differences in the hardness levels of the four alloys evened out and for all practical purposes their overall behaviour might be regarded as similar. However, the alloy B4 showed the lowest overall hardness level (Fig. 4.2f). In fact, the maximum decrease in hardness with time occurred at this temperature (Fig. 4.2f).
- 8.(a) The hardness vs temperature plots as influenced by time (Figs. 4.3a to 4.3d) represented how effectively each alloy sustained its hardness on heat treating.
  - (b) These curves had a horizontal S-shape.
  - (c) The slope of the curve altered around a threshold temperature or over a narrow range of temperature. This was termed as the 'cross over point'(COP).
  - (d) To its left, the higher the time the higher was the level of hardness. To its right the situation was

just the reverse. This is valid for all the alloys. 9. The profile of the hardness vs temperature plots was steeper for the alloys B1 & B3 and flatter for the alloys B2 & B4 (Figs. 4.3a to 4.3d). Further, the hardness band (variation in the hardness as influenced by time) at 1050°C was the maximum for the alloy B1 followed by B4, B2 and B3 in that order.

Based on these observations the similarity in the behaviour of the alloys B1 & B3 and that between B2 & B4 was reaffirmed. Thus B1 & B3 and B2 & B4 could thus be grouped together.

- 10. The COP of the alloys B1 and B3 was around 915°C (Figs. 4.3a and 4.3c) whereas, that of B2 and B4 was approximately in the range of 875-885°C (Figs. 4.3b and 4.3d).
- 11. A comparison of the hardness vs temperature plots as influenced by time (Figs. 4.4a to 4.4e), further reveals broad similarities in behaviour between B1 and B3 and that between B2 and B4.
- 12. At the lowest soaking period (2 hours) the plots tended to be flat (Fig. 4.4a) and their slope became steeper with an increase in the soaking period (Figs. 4.4b to 4.4e).
- 13. The aforesaid plots (Figs. 4.4a to 4.4e) may also be interpreted as indicating the relative hardness sustaining ability of the different alloys on heat treating.

14. An important inference from the data summarized in the

Figures 4.1 to 4.4 is that it is possible to deduce (a) the temperature(s) at which the hardness is independent of the soaking period or (b) the different temperature and time combinations to arrive at any desired value of hardness for the alloys (also refer Figures 4.42-4.45).

15. The deductions (a) to (h) and (1) to (14) are further reaffirmed through the bar diagrams shown in Figures 4.5 & 4.6.

### 4.1.2 Microstructure

Effect of heat-treatment on the hardness was substantiated by carrying out micro-structural studies. Initially the experiments were confined to assessing qualitative changes in the microstructure and these are summarized in the Figures 4.7 to 4.32. Subsequently, quantitative estimations involving massive and dispersed carbides were also carried out. These data have been dealt with separately.

Considering the former to start with, the microstructure of the four alloys in the as-cast condition consisted of :

| 1. | (a) | P/B | ŧ | M + carbide |   |       | (B1) | Fig. | 4.7 | a&b |  |
|----|-----|-----|---|-------------|---|-------|------|------|-----|-----|--|
|    | (b) | B/M | + | carbide     | + | RA    | (B2) | Fig. | 4.7 | c&d |  |
|    | (c) | B/M | + | carbide     | + | RA(?) | (B3) | Fig. | 4.8 | a&b |  |
|    | (d) | B/M | ÷ | carbide     | + | RA    | (B4) | Fig. | 4.8 | c&d |  |

2. On heat-treating from 800°C, the as-cast microstructure transformed to one comprising massive carbides in a matrix of martensite (Figs. 4.9, 4.15, 4.21 & 4.27). Dispersed carbides were clearly observed corresponding to the 10 hrs. heat-treatment. Massive carbides have been rendered discontinuous (Figs. 4.9, 4.15, 4.21 & 4.27).

- 3. On heat-treating from 850°C, austenite was retained in the micro-structure at 2 hrs. soaking period although amount varied from alloy to alloy (Figs. 4.10a, its 4.22a, and 4.28a). On raising the soaking 4.16a. period to 10 hrs., the amount of retained austenite decreased and the volume fraction of martensite and DC increased (Figs. 4.10e, 4.16c, 4.22c, 4.28c). Massive carbides were mostly discontinuous and their volume fraction was comparable with that observed on heat-treating from 800°C (Figs. 4.9 & 4.10, 4.15 & 4.16, 4.21 & 4.22, and 4.27 & 4.28). Needle-like structure, associated with dispersed carbides was observed in B2 and B4 (Figs. 4.16c and 4.28c).
- 4. On heat-treating from 900°, the matrix microstructure comprised martensite and austenite in B1 & B3 (Figs. 4.11 & 4.23) and predominantly austenite in B2 & B4 (Figs. 4.17 & 4.29). On increasing the soaking period from 2 to 10 hours, the matrix microstructure was not much altered. The second phase as before comprised massive as well as dispersed carbides (Figs. 4.11, 4.17, 4.23 and 4.29). The size and the volume fraction of the dispersed carbides, which is a maximum in B4, increased with soaking period (Figs. 4.11a-e, 4.17a-e, 4.23a-e and 4.29a-e). Further, the volume fraction of the massive carbides also decreased

somewhat with the soaking period (Figs. 4.11, 4.17, 4.23 and 4.29). Needle type structure was observed in all the four alloys (Figs. 4.11c, 4.17a&c, 4.23a&c and 4.29a,c&e), it being the maximum in alloy B4 (Fig. 4.29). It was further observed that the needle type structure was surrounded by dispersed carbides; the regions containing needle type structure were free from dispersed carbides (Figs. 4.11, 4.17, 4.23 and 4.29).

- 5. On heat-treating from 950°C, a similar situation as above existed (Figs. 4.12, 4.18, 4.24 and 4.30). The needle type structure, sometimes in the form of obtuse plates, was still observed (Figs. 4.12c, 4.18c&e, 4.24c and 4.30a&c), it being the maximum in B4. Its presence is not fully understood but it might either indicate the possible presence of an intermetallic compound/ some other form of carbide.
- 6. On heat-treating from 1000°C, the matrix was plain and completely austenitic (Figs. 4.13, 4.19, 4.25 and 4.31). Volume fraction of the dispersed carbides has considerably reduced. It was only observed for the 2 hrs. treatments and in some of the 4 hrs. treatments. Stray carbide particles occasionally observed were very coarse in nature. Similarly, the amount of massive carbides decreased markedly with time(Figs. 4.13, 4.19, 4.25 and 4.31). Inter-linking or bridging together amongst different massive carbide regions was observed

at 4 hours soaking period indicating the possible onset of another transformation (Figs. 4.13c, 4.19a, 4.25c and 4.31c). Hardly any dispersed carbides were observed corresponding to the 10 hours heat-treatment. Simultaneously, the massive carbides tended to 'round off'.

On heat-treating from 1050°C, the matrix is austenitic 7. 4.14, 4.20, 4.26 and 4.32). A new phase formed (Figs. which resembles the 'sigma phase' when observed at low magnification (Figs. 4.14d, 4.20d, 4,26d and 4.42b&d). magnification observations revealed that Higher it plate like carbides (4.14c, 4.20c, 4.26c and resembled 4.32c). close examination revealed that Α the microstructure may be described as comprising austenite an eutectic of austenite + carbide (anomalous eutectic). The volume fraction of the eutectic initially increased upto 4-6 hrs. soaking period and decreased thereafter (Figs. 4.14, 4.20, 4.26 and 4.32). At 10 hrs. soaking period perforations were observed in the carbides present (Figs. 4.14e, 4.20e, 4.26e and 4.32e).

## 4.1.3 Quantitative Metallography

## 4.1.3.1 Massive Carbides

Effect of heat-treatment on the volume fraction of massive carbides was investigated with the help of a LEITZ image analyser. The data thus obtained have been summarized in Table 4.46 and in Figure 4.33.

A perusal of this table and figure revealed that : 1. Volume fraction of the massive carbides in the as-cast

condition ranged from 22-27%, it being higher in B1 & B3 in comparison to that in B2 & B4.

- An increase in the temperature/time, in general, led to a decrease in the amount of massive carbides (Figs. 4.33a-d).
- 3. Upto 950°C, the aforesaid decrease was gradual.
- 4. Raising the temperature to 1000°C led to a steep fall in the volume fraction with time except in B4. A similar response was qualitatively observed on heat-treating from 1050°C (Figs. 4.14, 4.20, 4.26 and 4.32). The 1050°C,10hrs. heat-treatment resulted in the formation of lowest volume fractions of massive carbides (Figs. 4.14e, 4.20e, 4.26e, and 4.32e).
- 5. The decrease in massive carbides on heat treating was found to be lower in B2 and B4 in comparison to that observed in B1 and B3. Further, amongst B1 and B3, the volume fraction of MC was higher in the former and so also the decrease in it on heat treating.

#### 4.1.3.2Dispersed carbides

Dispersed carbides(particles) were characterized on the basis of the following parameters :

- (i) Average particle size,
- (ii) Total number of particles,
- (iii) Their volume fraction,
  - (iv) Their percent number in different classes, and
    - (v) Percent area occupied by them in different classes.

In the present study the particles were characterized on the

basis of six classes separated from one another by ≈0.58 micron.

The data thus generated are summarized in the Tables 4.47-4.55 and in the Figures 4.34-4.37 (histograms). Each histogram is a composite of five histograms representing five different fields of observation for a given heat treatment. The aforesaid data were analysed in two ways, (a) by assessing whether any general trend existed and (b) by laying down a detailed account of how the heat treating variables affected the parameters employed to characterize dispersed carbides.

Considering to start with the former, the following general trends were observed for all the alloys:

- (i) Dispersed carbides predominantly belonged to class I and II i.e. size upto ≈1.16 microns (Tables 4.47-4.55 and Figs. 4.34-4.37).
- (ii) The number of particles was a maximum for heat treatments carried out at 800°C & 850°C (Table 4.52).
- (iii) On increasing the heat-treating temperature upto 950°C, the average particle diameter increased (Table 4.51) whereas the carbide volume fraction decreased or remained unaltered (Table 4.53).
- (iv) For a given time, increasing the temperature upto 900°C resulted in a decrease in the volume fraction followed by an increase on raising the temperature further to 950°C.
- (v) For a given heat treating temperature, the volume fraction increased with an increase in the heat treating time in a majority of instances (Table 4.53). A similar trend was observed for the average particle size (Table 4.51).
- (vi) By and large the number of particles decreased on

increasing the temperature at a given heat-treating time or by increasing the heat treating time at a given heat treating temperature (Table 4.52).

- (vii) In a general way, it can be stated that for a given time, the number of particles and the percent area occupied by the particles in classes I & II decreased with an increase in temperature. A similar trend was observed on increasing the heat treating time at a given heat treating temperature (Tables 4.47-4.50 and Figs. 4.34-4.37).
- (viii) The changes described in (vii) above were simultaneously supplemented by changes in the number of particles in classes III to VI, the nature of changes being just the opposite of those described in (vi) above (Tables 4.47-4.50).
- (ix) The histograms summarized in Figs.4.34-4.37 proved extremely helpful in understanding how the distribution of the particles varied with temperature and time.

## 4.2 Discussion

The main aim of the present investigation was to establish the transformation behaviour of the alloys. This was achieved by heat-treating the alloys from different temperatures and by assessing the microstructural changes by hardness measurements. Subsequently, the microstructures were quantitatively characterized by studying the variation in (i) the volume fraction of massive carbide and (ii) the size and distribution of dispersed carbides as influenced by heat-treating parameters. The data thus generated proved helpful in establishing mathematical

models of (i) the transformation behaviour and (ii) the coarsening behaviour of dispersed carbides.

#### 4.2.1 Structural changes during heating

Based on earlier studies (42) it has been established that (a)nearly 45% of the Mn added partitions to austenite and the balance to the carbide phase, (b) bulk of the chromium partitions to the carbide phase, and (c) bulk of the Cu partitions to austenite. This enables an understanding of the structural changes that will occur which comprise (i) a reduction in the volume fraction of the massive carbides due to the presence of Si and Cu (attributed to their graphitizing tendency), (ii) an increase in the stability of austenite due to the dissolution of additional alloying elements made available as a consequence of (i), and (iii) a possible 'rounding off' of the massive carbides and their being rendered discontinuous due to (i), (iv) occurrence of a carbide transformation which would be governed by the nature of the phase diagrams, and (v) possible precipitation of carbides from austenite on prolonged soaking as represented by the reaction

austenite --> austenite + DC ...(4.1) The likely structural changes therefore, can be summarized with the help of the following equations :

austenite --> austenite (lesser alloy content) + DC ...(4.2) MC --> MC (discontinuous with reduced VF)

+ interstitial and substitutional solutes ...(4.3)
MC --> other types of carbides ...(4.4)
Interstitial + substitutional solutes + austenite ->

austenite (with increased stability) ...(4.5)

austenite (with higher stability) <u>increase</u> <u>in SP/ST</u>---> austenite (lower stability) + DC ...(4.6) ST at given SP

DC increase in \_\_\_\_\_ -> DC (coarse) ...(4.7) SP at given ST or possible dissolution at higher temperature(s)

4.2.2 Changes during cooling to room temperature They will be governed by the cooling rate and the alloy content and would primarily be confined to austenite. Some changes may also occur in the massive carbides and the DC that have formed. possible changes in austenite would depend upon The the temperature and time as they govern the relative stability of austenite in accordance with the Equations (4.2), (4.5) and (4.6). If air cooling is done, austenite may reject excess solute form of dispersed carbides and would subsequently in the transform to either B/M and or remain untransformed. Since the minimum Mn content in the alloys(6%) ensures that martensite can air cooling from 800 and 850°C and austenite is partly form on on air cooling from 900°C(56), it is evident that the retained transformation product of austenite would essentially be martensite on air cooling from upto 850°C, a combination of 950°C and martensite + austenite on air cooling from upto predominantly austenitic on raising the temperature further. The relative proportions of austenite/martensite will be governed by the extent to which the reactions(4.2) and (4.6) proceed.

Carbide precipitation during cooling mainly occurs because of a decrease in the solid solubility of carbon with temperature in the austenite. If austenite is supersaturated after heat treatment, it would reject out excess solute as carbides and

these would be inherited by the transformation product of austenite on cooling. However, if the austenite is not supersaturated and is in a state wherein the solutes are fully dissolved (requiring a higher heat-treating temperature), it will be retained as such on cooling.

Taking an overall view, the possible structural changes on cooling can be summarized with the help of the following equations :

Slow cooling (as during casting)

austenite --> P/B + M ...(4.8)
(relative proportion of the P/B & M depending on alloy content)
Carbide --> unchanged or otherwise depending upon ...(4.9)
carbide transformation
Retention of austenite --> [depends upon austenite stabilising
tendency of Mn & Cu)] ...(4.10)

Final likely structure : P/B + M + MC + RA (?)

Heat treated condition

(a) Lower temperatures 800 and 850°C

<u>austenite</u> --> austenite" + DC ...(4.11) <u>austenite</u>" --> M ...(4.12)

(extent of M depends upon soaking period i.e. less at lower soaking period and more at higher soaking period) <u>austenite</u> --> austenite (depending upon alloy content) ...(4.13)

<u>Massive</u> <u>carbide</u>  $\rightarrow$  M<sub>3</sub>C + other variants ...(4.14)

...(4.7)

 $\underline{DC} \rightarrow DC$  (coarse)

Final likely structure : M + austenite + MC + DC

(b) Temperatures 900 & 950°C

<u>austenite</u> --> austenite (most probable at higher temperature and soaking periods) ...(4.15)

austenite<sup>\*</sup> --> austenite + M (VF small which will further decrease with temperature and time) ...(4.16) DC --> DC (coarse) ...(4.7)  $MC \rightarrow M_{3}C + other variants (VF reduced)$ ...(4.14) Likely final structure : austenite + DC + MC + some M(?) (c) 1000 and 1050°C austenite --> austenite (matrix completely austenitic) ...(4.17)  $\underline{DC} \longrightarrow DC$  (coarse) and possible dissolution at higher soaking period(s) and temperature(s) ...(4.7)  $MC \rightarrow M_{3}C$  + other variants (VF low, possible rounding off may be observed) ...(4.14) Final likely structure : austenite + MC + some DC or austenite + MC

4.2.3 Strengthening response of different transformations Before analysing the structure-property relations it would be appropriate to consider the strengthening associated with different transformations.

The austenite to martensite transformation leads to hardening and to simultaneous embrittlement. The attainment of austenitic matrices would lead to an improvement in the ease of deformation. In such instances, the stacking fault energy (SFE)

determine strength-ductility the would of the matrix interrelation as it (SFE) controls the extent of work hardening. relevant to record here that Mn-austenites have a low SFE It is and hence exhibit a high rate of work hardening (57). hardness Massive carbides higher and the have a strengthening response would be directly related to their volume Its morphology and compatibility with the matrix are fraction.

also equally important. The latter is governed by the crystal structure. The effect of dispersed carbides would be governed by the volume fraction, compatibility with the matrix, size, shape and distribution (58,59).

4.2.4 Interrelation between microstructure and hardness

The general microstructural changes that may occur in the experimental alloys, highlighted in the earlier sections, facilitate interpretation of the structural changes that would occur in B1, B2, B3, and B4. As hardness is governed by the microstructure, the two have been discussed together.

0 6 1. 7

ROORKEE

#### 4.2.4.1 As-cast state

The microstructure of the alloys in the as cast condition namely, P/B + M + MC, B/M + RA + MC, B/M + RA (?) + MC and B/M + RA + MCrespectively (Figs. 4.7 and 4.8), is consistent with the analysis outlined in the Section 4.2.1 to 4.2.3 (Equations 4.8-4.10). Mn is controlling the matrix microstructure because Cu alone on slow cooling due to its limited solubility in separates out austenite and ferrite and to a further decrease in it (solubility) with temperature in ferrite (60-63). Accordingly, the matrices of the alloys B2 and B4 are not likely to be fully martensitic (Figs. 4.7c and 4.8c). Although this is clearly reflected in the microstructure of B1 (Figs. 4.8a&b), the same evident from the microstructure of B3 (Figs. is not clearly 4.8a&b).

The higher Mn alloys B2 and B4 would attain a higher proportion of martensite (Figs. 4.7 and 4.8) with some austenite retention being a distinct possibility at least in B4 (Fig.



4.8c&d). Accordingly, the hardness values of B1 and B3 and that of B2 and B4 are expected to be nearly similar. Furthermore, B4 is likely to be less harder than B2 due to possible retention of austenite. However, B3 is harder than B1 and B4 is harder than B2. This may be attributed to a higher P content in B3 and B4 (Table 3.2).

4.2.4.2 Heat-treated condition

The alloys are so designed that they readily transform to martensite at the lower of the two Mn contents and that the retention of austenite is not ruled out on air cooling from 900°C. This tendency would be further enhanced in the higher Mn/Cu alloys. When this is considered along with the general structural changes that have been outlined in the Sections 4.2.1 to 4.2.3, it becomes easy to rationalize how microstructure would vary on heat-treating.

4.2.4.3 Alloy B1

The changes can be easily explained based on Equations 4.1 to 4.17.

(a) 800°C :

High hardness (Fig. 4.1a) at 2 hours soaking period is due to the formation of a martensitic matrix (Fig. 4.9a&b). Hardness increased marginally with time(Fig. 4.1a) due to the formation of some dispersed carbides (DC) at higher soaking periods (Fig. 4.9c).

(b) 850°C :

The lower hardness at 2 hrs. soaking period (Fig. 4.1a) is due to the retention of austenite (equations 4.5 & 4.12) (Fig. 4.10a&b). Increase in the hardness with soaking period

(Fig. 4.1a) is due to the formation of martensite and to the formation of a larger volume fraction of dispersed carbides (Fig. 4.10) as per equations 4.6 and 4.12. The lower overall hardness values attained on heat treating at 850°C, in comparison to that 'observed on heat treating from 800°C, are due to an increase in the austenite stabilizing tendency and hence to the formation of a relatively smaller volume fraction of martensite.

(c) 900°C :

The lower hardness (Fig. 4.1a) at 2/4 hrs. soaking period is due to a further increase in the austenite stabilizing tendency (Fig. 4.11 a&b). Increasing the soaking period has practically no effect on the hardness because the microstructure is practically unaltered except for a limited coarsening of the dispersed carbides and some reduction in the volume fraction of the massive carbides (Fig. 4.11 and Table 4.46). The lower overall hardness at 900°C in comparison to that observed on heat treating from 850°C is largely due to an increase in the proportion of retained austenite. This effect is marked at the highest soaking period(Fig. 4.11e).

(d) 950°C :

The basic structural changes on heat treating at 950°C are similar to those occurring on heat treating at 900°C except that the coarsening of dispersed carbides is enhanced and reduction in the volume fraction of massive carbides is larger(Fig. 4.12 a-f; Table 4.46). These changes, which promote the retention of relatively larger volume fraction of stable austenite, not only

result in a lower overall hardness compared with that observed on heat treating from 900°C but are also responsible for a slight decrease in hardness with soaking period (Fig. 4.1a). Volume fraction of massive carbides has decreased to a level so as to contribute to the decreasing hardness trend.

(e) 1000°C :

The lower hardness at 2 hrs. soaking is due to (i) a predominantly austenitic matrix rendered even more stable and further decrease in the amount of massive and dispersed (ii) a carbides (Fig. 4.13a&b; Table 4.46). The decrease in hardness with soaking period (Fig. 4.1a) is due to a marked decrease in volume fraction of massive carbides and to a near complete dissolution of the dispersed carbides(Fig. 4.13c&d). Presence of dark jagged regions at 2 hours soaking period in an otherwise plain austenitic matrix reveals the formation of a new phase (Fig. 4.13a). Its presence is more clearly visible at higher soaking periods where it is seen to 'bridge' massive carbide regions (Figs. 4.13c&d).

(f) 1050°C :

Structural changes are similar to those observed at 1000°C but are still further accelerated as the temperature is higher. This leads to a decrease in hardness with the soaking period. This decrease would have been steeper but for the formation of austenite + carbide eutectic (perhaps with a high hardness) whose formation was initiated at 1000°C and which has now resolved itself into an eutectic like morphology. Its volume fraction initially increased with soaking period (4-6 hours) and decreased thereafter on increasing the soaking period to 10 hrs. (Fig. 4.14

a-f). At the end of 10 hrs. soaking period this phase is still present as a thin network along with massive carbides whose volume fraction is very small and which have by now attained a globular morphology having perforations (Figs. 4.14e&f). The lowest overall hardness at 1050°C is due to the presence of a predominantly high stability austenitic matrix containing very small amounts of massive carbide and the eutectic.

4.2.4.4 Alloys B2, B3, B4

The analysis put forth in the previous Section (4.2.4.3) satisfactorily explains the interrelation between hardness and microstructure. Transformations in B2, B3 and B4 would proceed on similar lines. It would be reasonable to suggest that the changes taking place in these alloys may be classified as common with and different from those occurring in B1. The former shall comprise transformations in which the final microstructure is predominantly austenitic i.e. the structural changes occurring on heat treating from temperatures 2950°C. Under these conditions, B2, B3 and B4 may differ from B1 in terms of the (a) the relative stability of austenite which is governed by the alloy content, (b) volume fractions of massive carbides (Table 4.46), dispersed carbides (Tables 4.47-4.55), and the eutectic (Figs. 4.14, 4.20, 4.26 and 4.32), and (c)coarsening behaviour of dispersed carbides (Tables 4.47-4.55). All these parameters are a function of the alloy content and the heat treating schedule.

The aforesaid differences in the microstructure would not only lead to differences in the overall hardness between B1 and B2, B3, B4 but also amongst B2, B3 and B4. The micro-structure

and hardness on heat treating B2 (Figs. 4.1b and 4.15-4.20), B3(Figs. 4.1c and 4.21-4.26) and B4 (Figs. 4.1d and 4.27-4.32) at temperatures ranging from 950-1050°C are consistent with the above reasoning.

в2. B3 and B4 would differ from B1 based on the transformations occurring on air cooling from 800-950°C. At 800°C, the transformation behaviour of B3 would be similar to B1 in view of their similar Mn contents. The effect of a higher Cu content in B3 is not experienced at 800°C due to the temperature being lower. However, it is manifested at 850°C leading to increased austenite stabilization. This does not permit reactions represented by 4.12 & 4.13 to go completion i.e., these occur only partly. In view of this, the overall level of hardness and the rate of increase in hardness in B3 is lower than that in B1 on heat treating from 850°C. The microstructural and hardness changes in B3 on air cooling from 800°C (Figs. 4.1c and 4.21 a-d) and 850°C (Figs. 4.1c and 4.22 a-d) are consistent with this reasoning.

In view of a higher Mn content (a higher austenite stabilizing tendency), the nature of the microstructural and hardness changes in B2 on heat treating from 800°C (Figs. 4.1b and 4.15 a-d) would be broadly similar to those observed in B1 on heat treating from 850°C. A similar situation would exist in B4 on heat treating from 800°C (Figs. 4.1d and 4.27 a-d). On heat treating from 850°C, however, the aforesaid changes in B2 (Figs. 4.1b and 4.16 a-d) and B4 (Figs. 4.1d and 4.28 a-d) would be similar to those generally observed on heat treating B1 from a temperature higher than 850°C. In fact the situation is

comparable with that observed on heat treating B1 from 950°c. This is attributed to an increased austenite stabilizing tendency due to higher Mn and Cu contents. The overall hardness level in в4 is expected to be slightly lower than that in B2 due to a higher Cu content. However, this has not been observed due to a 'P' higher content in B4 and the fact that air cooling has been employed. However, as already discussed, the effect of a higher Cu content in B4 is clearly manifested on heat treating from higher temperatures. On heat-treating at 900°C, the difference in the austenite stabilizing tendency between the B1 and the rest of The overall transformation the alloys is further reduced. behaviour could justifiably be represented on the basis of the hardness values as  $H_{B1} > H_{B3} > H_{B2} > H_{B4}$ ; the hardness of the alloys being B3, B2 and B4 is not much different from one another. On raising the temperature further, the difference in hardness between B1 and the rest is further reduced and would be marginal at the 1050°C, 10 hrs. heat-treatment. A similar only deduction is not being made for the lower soaking periods at the highest heat-treating temperature (at 1050°C) because of the formation of an eutectic whose magnitude varies from alloy to alloy.

## 4.2.4.5 Relative hardness vs time plots

It would now be pertinent to compare the hardness levels in different alloys as influenced by time at different heat treating temperatures. The derived plots (Figs. 4.2 a-f) were obtained from the base curves (Figs. 4.1 a-d) to elicit this information unambiguously. The data contained in the Figures 4.2a-f can be

interpreted on a similar basis as the base curves and reveal that:

- (i) At 800°C the behaviour of B1 and B3 and that of the higher Mn alloys B2 and B4 are similar. As already discussed, the transformation behaviour is controlled by the Mn content alone. The former combination attains a higher overall level of hardness (Fig. 4.2a) due to a lower austenite stabilizing tendency attributable to a lower Mn content (≈6%). Thus, the reaction corresponding to equation 4.12 goes to completion.
- On heat treating from 850°C, the Cu effect comes into play. (ii)Its magnitude in terms of austenite stabilizing tendency would depend upon the Mn content of the alloys. B1 and B3 show an increase in hardness with soaking period (equations 4.5, 4.6 and 4.12), the overall level in B1 being higher than that in B3 due to a lower austenite stabilizing tendency. The hardness in B2 and B4 is unaltered/shows a marginally decreasing trend with soaking period, because the reaction corresponding to equation 4.12 does not go to completion leading to some austenite retention. The overall level of hardness is higher in the former group of alloys (B1 and B3) for reasons already stated. Thus, from the overall hardness point of view B1>B3>B2,B4 (Fig. 4.2b). (iii) At 900°C, the bunching together of the H vs t curves is due to a similarity in the microstructure (Fig. 4.2c). All the same, observation at (ii) regarding the relative hardness levels, is still valid as it is intrinsically related with the alloy content.

- (iv) The situation at 950°C is nearly identical with that observed on heat treating from 900°C due to a similarity in the microstructure. However, the slight decrease in hardness with soaking period is because the transformations inducing a reduction in the volume fraction of massive carbides and a coarsening of dispersed carbides are accelerated. This can be attributed to a higher heat treating temperature further aided by the presence of a higher Mn and Cu contents (Fig. 4.2d).
- (v) 1000°C : Reasons for a decrease in the hardness with soaking period have already been explained. The hardness levels associated with the alloys are (a) directly related to the Vf of MC and (b) inversely proportional to the overall alloy content (Fig. 4.2e). Hence the hardness sequence is B1>B3>B2>B4.
- (vi) 1050°C : A situation similar to that observed on air cooling from 1000°C exists, and the comparative hardness data can be explained essentially on a similar basis as in (v) (Fig. 4.2f).

## 4.2.5 Hardness - time interrelation

In order to arrive at such a correlation, the data contained in the Tables 4.1-4.24 were analysed with the help of a computer programme. Constants for the first, second and third order variations were calculated using the least square techniques (54,55) and are also reported at the bottom of each of the Tables 4.1-4.24. Although the variance decreased as the order of equations increased, plotting of the data revealed that the

variation in hardness with time and its subsequent interpretation based on microstructural changes can be best explained on the basis of a first order equation. The theoretical values of hardness calculated on this basis (also indicated in the Tables) are in excellent agreement with the experimental values. Thus, hardness H can be expressed by an equation :

 $H = C_1 + C_2 t$  (at a constant temperature) ...(4.18) The values of  $C_1$  and  $C_2$  for each of the alloys at different heat-treating temperatures are indicated in the Tables 4.1-4.24. 4.2.6 Hardness-temperature interrelation

## 4.2.6.1 Nature of variation

In order to arrive at the aforesaid correlation, the hardness vs temperature data for each of the alloys (summarized in the Tables 4.25-4.44) were analysed and the constants for the first to order variations were calculated (Tables 4.25 to 4.44). fourth It is not reasonable to assume that hardness varies linearly with temperature especially when changes in so the microstructure are being brought about by three different transformations. A fourth degree variation is also ruled out. Of available options a third order variation represents the the microstructural changes most appropriately (Figs. 4.1 a-d) which comprise (i) a hardness plateau around 900 to 950°C, (ii) a hardness beyond 950°C and (iii) an increase in decrease in on heat-treating at <900°C. Hence the variation in hardness hardness with temperature at each of the soaking periods can most appropriately be represented by a third order polynomial :

 $H = C_1 + C_2T + C_3T^2 + C_4T^3 \qquad \dots (4.19)$ The values of the constants  $C_1$ ,  $C_2$ ,  $C_3$ , and  $C_4$  have been

indicated in the Tables 4.25-4.44. This analysis forms the basis of arriving at the hardness vs temperature plots (Figs. 4.3 & 4.4) which are in the form of a horizontal 'S'- shape.

4.2.6.2 Effect of temperature on hardness and microstructure The data summarised in the Figs. 4.3 and 4.4 can essentially be a basis similar to the one employed for interpreted on interpreting the data contained in the Figs. 4.1a-d. However, in the present context, it is the shape of the hardness vstemperature plots that needs analysing. As already stated (Section 4.2.6.1), the hardness vs temperature plots should have 'S' shaped configuration. The plateau region indicates an constancy of hardness over а range of temperature. At temperatures lower than this range, the hardness increases because of an increase in the tendency to form martensite which directly proportional to the soaking period and inversely is related to the Mn and Cu contents (Sections 4.2.1-4.2.3, 4.2.4.1 and 4.2.4.2). At temperatures higher than the aforesaid constant temperature range, the hardness decreases because of (i) an increase in the volume fraction and stability of austenite, (ii) being predominantly austenitic and (iii) a the microstructures steep decrease in the Vf of both MC and DC. These changes are directly related with the Mn and Cu contents (Sections 4.2.1-4.2.3). This analysis satisfactorily explains the general features of the hardness vs temperature plots (Figs. 4.3a-d).

The higher Mn alloys B2 and B4 exhibit a flatter profile in comparison to the lower Mn alloys B1 and B3 due to a higher austenite stabilising tendency leading to an early (at relatively

formation the lower temperatures) of austenite based microstructures (Figs. 4.3b,d). The steeper profiles associated and B3, signifying a marked decrease in hardness with with B1 temperature in a unit of time, can be similarly explained based on a reduced austenite stabilizing tendency (on heat-treating from 'lower' temperatures) thereby implying an enhanced tendency to form martensite/ partly martensitic structures (Figs. 4.3a,c). On the basis of a similar reasoning it is easy to deduce that the COP signifying the plateau region of the hardness vs temperature plots would set in early (i.e. at lower temperatures) in B2 and B4 (Fig. 4.3b,d). The maximum decrease in the hardness (hardness in the four alloys has occurred at 1050°C firstly because band) the highest heat treating temperature employed and this is secondly because at this temperature the different structural changes leading to a decrease in hardness occur the fastest and the maximum extent. At 1050°C, the higher the soaking period, to the smaller would be the volume fraction of massive carbide and larger the volume fraction of austenite and therefore, the lower would be the hardness (Figs. 4.3a-d). This explains the existence of a 'hardness band' (signifying hardness variation at 1050°C with soaking period) for each of the alloys. All other factors being identical, the width of the band would be mainly related to austenite stabilizing tendency (i.e. the soaking period and Mn+Cu content) and to the volume fraction of the massive carbides. Ideally the width would be a maximum for B1, i.e. for the composition with the least alloy content to be followed by B2, B3, and B4. However, experimentally, the order is found be B1>B4>B2>B3. The deviation from the to expected

behaviour may be attributed to the differing volume fractions of the eutectic.

## 4.2.6.3 Comparative hardness vs temperature data

The comparative plots indicating the effect of temperature on hardness (Figs. 4.4a-e), essentially derived from the data summarized in the Figures 4.3a-d, indicate the effect of soaking period and can essentially be interpreted on a basis similar to the one employed for interpreting the Figures 4.3a-d. The usefulness of the Figures 4.4a-e is that they give the comparative data for the experimental alloys at a glance. The same is further evident from the bar diagrams depicted in Figures 4.5 and 4.6.

4.2.7 Effect of temperature and time on the morphology and volume fraction of massive carbides

Although the effect of massive carbides in controlling the overall hardness has been discussed at length in Section 4.2.6.2, appropriate to comment upon the effect of it would be heat-treating parameters on their morphology and volume fraction. Massive carbides present in the as-cast structure (Figs. 4.7 and 4.8) are partly discontinuous and have been so rendered due to the graphitizing action of Cu and Si (Sections 4.2.1-4.2.3). It will increase with Cu content and heat treating temperature and time and also brings about a reduction in the volume fraction of massive carbides on heat-treating.

Based on physical metallurgical considerations associated with malleabilizing in so far as carbide decomposition/ disintegration is concerned(64), it is expected that the tendency towards attaining (a) a discontinuous morphology and (b) a

reduced volume fraction would become marked only at temperature ≥ 950°C. Another reason why volume fraction of massive carbides may not significantly decrease until 950°C is that other transformations (highlighted earlier) take precedence over the carbide transformation presently under consideration. This is because they require lesser activation in terms of temperature.

However, unlike in malleable irons, the carbide phase in the experimental alloys has been rendered stable by Cr additions (Section 2.2). Additionally a fair proportion of Mn also partitions to it, thereby enhancing its stability(42). Therefore, the heat-treating temperature and time are as increased the massive carbides instead of decomposing into graphite, will acquire a low energy configuration/morphology namely either near spherical or hexagonal. The precise nature would\_be\_governed-by the crystal structure of the massive carbides as influenced by heat-treating temperature and time. This analysis explains the 'rounding off' observed in massive carbides on heat-treating from higher temperatures (Figs. 4.12 & 4.13, 4.18 & 4.19, 4.24 & 4.25 and 4.30 & 4.31).

Considering the decrease in the Vf of massive carbides, the Cr containing carbides, as already stated, are further rendered stable because Mn partitions to them (45). Therefore, taking an overall view, the decrease in the volume fraction of massive carbides will be faster only at temperatures around 950°C or higher (i.e. ≈1000°C) as has been observed in the present investigation (Fig.4.33). This process (involving a reduction in the volume fraction of massive carbides) will be further aided by the presence of a fully austenitic matrix and this occurs

only at temperatures around 950°C. The data summarized in Table 4.46 and in Figure 4.33 thus stand appropriately explained. The least volume fraction of massive carbides will accordingly be observed at the highest soaking temperature and time (Table 4.46).

# 4.2.8 Effect of time and temperature on the distribution of dispersed carbides

Sections 4.2.1 & 4.2.2 highlight the mechanism of formation of dispersed carbides from austenite. The results summarized in the Tables 4.47 to 4.55 and in the Figures 4.34-4.37 prove helpful in characterizing them fully. As can be seen, particles constituting the dispersed carbides have a size upto  $\approx 1.16 \mu$  because they exclusively fall into classes I and II at the formation stage. This is valid for all the alloys. On heat-treating, their distribution is altered in a manner consistent with the attributes of nucleation and growth type of transformations. Simultaneously, coarsening would also set in. This would involve reduction in the number of particles in the first two classes а and a simultaneous increase in their number in the classes III-Additionally, the mean diameter would also increase. VI. This is what has been observed in a majority of the instances(Tables 4.47-4.55). The comparative data given in the Tables 4.47 to 4.55 reveal that it would be difficult to arrive at a general interrelation correlating the effect of alloy content and heattreating schedule on the extent of coarsening. This would be of interest as it (the coarsening behaviour) would govern the overall properties of the alloys.

Mathematically, the coarsening behaviour of second phase

particles is studied with the help of the Ostwald's equation(65) which can be represented as :

 $r_1^3 - r_0^3 = k(t_1 - t_0)$  ...(4.20) where  $r_1$  = particle radius at time  $t_1$ , and

 $r_o$  = particle radius at time  $t_o$ 

A major limitation of this equation is that a large number data are required to ascertain its validity/ to ensure its of under a given set of experimental conditions. application Moreover the equation merely correlates the arithmetical mean of particle radius with time but in no way reflects upon how the particle distribution is influenced by temperature/time. Further, finding out the arithmetical average of particle radius does not represent the true picture since the particle size distribution is statistical in nature. In the present investigation for a given heat treating temperature, the data related with the second phase are available only at 3 or more soaking periods. Generally, this should have sufficed for any further analysis of the data but not so with the Ostwald's equation. Difficulties arising out of the incapabilities/ inadequacies were resolved by evolving a new parameter called the 'coarsening index'(CI)(43).

In order to calculate coarsening index, it is necessary to first evolve a parameter which can represent particle size distribution for a given heat-treating schedule. Development of such a parameter was greatly facilitated by the data generated while conducting quantitative metallographic work namely (a) categorization of particles into different classes, (b) assessment of the number of particles in different classes, (c) calculation of percent area occupied by particles in different

classes, and (d) measurement of the average particle diameter. The new parameter termed 'distribution factor'(DF) which incorporated the variables (a) to (d) is defined as

$$DF = \frac{\sum_{i=1}^{n} X_i N_i}{\sum_{i=1}^{n} N_i} \dots (4.21)$$

where, n = the number of classes,

 $N_{\pm}$  = the number of particles in i<sup>th</sup> class,

 $X_i$  = volume fraction in the i<sup>th</sup> class /VDC,

and, VDC = total volume fraction of dispersed carbides.

Effect of heat-treatment on the distribution factor

| h/t schedule   | B1    | В2    | В3    | в4    |
|----------------|-------|-------|-------|-------|
| 800°C, 2 hrs.  | 0.378 | 0.395 | 0.410 | 0.393 |
| 800°C, 10 hrs. | 0.370 | 0.380 | 0.322 | 0.384 |
| 850°C, 2 hrs.  | 0.368 | 0.374 | 0.362 | 0.303 |
| 850 °C, 4 hrs. | 0.344 | 0.310 | 0.329 | 0.399 |
| 850°C, 6 hrs.  | 0.364 | 0.380 | 0.352 | 0.331 |
| 850°C, 10 hrs. | 0.353 | 0.399 | 0.388 | 0.316 |
| 900°C, 2 hrs.  | 0.344 | 0.369 | 0.344 | 0.335 |
| 900°C, 4 hrs.  | 0.335 | 0.360 | 0.337 | 0.344 |
| 900°C, 6 hrs.  | 0.297 | 0.382 | 0.344 | 0.367 |
| 900°C, 10 hrs. | 0.259 | 0.301 | 0.339 | 0.337 |
| 950°C, 2 hrs.  | 0.233 | 0.339 | 0.355 | 0.329 |
| 950°C, 4 hrs.  | 0.249 | 0.211 | 0.261 | 0.249 |
| 950°C, 6 hrs.  | 0.267 | 0.213 | 0.257 | 0.275 |
| 950°C, 10 hrs. | 0.199 | 0.143 | 0.163 | 0.181 |

Distribution factors, calculated on the basis of the aforesaid formula, are summarized in the above table.

Having defined this parameter(DF), coarsening index can now be calculated with respect to a specified reference base - a concept also implicitly in-built into the Ostwald's formula. In the present instance, this reference base was taken to be the heat-treating schedule at which the dispersed carbide particles just about formed namely the heat-treating schedule corresponding to which dispersed carbides were present in classes I and II only.

The coarsening index(CI) is thus defined as

DF for a given heat treatment

CI =

DF for the h/t with particles in classes I & II (4.22)

Based on the above formulation, the coarsening index for the different alloys was calculated and is summarized in the following table.

As already discussed above, the aforesaid table proves extremely useful in assessing the relative coarsening tendency of different alloys, and this is duly reflected in the 'remarks' column of the aforesaid table. No comment is being made on the possible effect of Mn and Cu on the extent of coarsening because both the higher Cu alloys B3 and B4 have a higher P content compared with that in B1 and B2 (Table 3.2); furthermore added complications arise because DC are forming directly from austenite and also during air cooling. thereby making any comparison untenable.

| h/t schedule   | В1    | Coarsening<br>B2 | index<br>B3 | В4    | Remarks     |
|----------------|-------|------------------|-------------|-------|-------------|
| 800°C, 2 hrs.  | 1.000 | 1.000            | 1.000       | 1.000 |             |
| 800°C, 10 hrs. | 0.979 | 0.962            | 0.785       | 0.977 | B1>B4>B2>B3 |
| 850°C, 2 hrs.  | 0.973 | 0.947            | 0.883       | 0.771 | B1>B2>B3>B4 |
| 850°C, 4 hrs.  | 0.910 | 0.785            | 0.802       | 1.015 | B4>B1>B3>B2 |
| 850°C, 6 hrs.  | 0.963 | 0.962            | 0.858       | 0.842 | B1>B2>b3>B4 |
| 850°C, 10 hrs. | 0.934 | 1.010            | 0.946       | 0.804 | B4=B1>B3>B2 |
| 900°C, 2 hrs.  | 0.910 | 0.934            | 0.839       | 0.852 | B2>B1>B4>B3 |
| 900°C, 4 hrs.  | 0.886 | 0.911            | 0.822       | 0.875 | B2>B1>B4>B3 |
| 900°C, 6 hrs.  | 0.785 | 0.992            | 0.839       | 0.934 | B2>B4>B3>B1 |
| 900°C, 10 hrs. | 0.685 | 0.762            | 0.827       | 0.857 | B4>B3>B2>B1 |
| 950°C, 2 hrs.  | 0.616 | 0.858            | 0.866       | 0.837 | B3>B2>B4>B1 |
| 950°C, 4 hrs.  | 0.659 | 0.534            | 0.637       | 0.634 | B1>B3>B4>B2 |
| 950°C, 6 hrs.  | 0.706 | 0.539            | 0.627       | 0.700 | B1>B4>B3>B2 |
| 950°C, 10 hrs. | 0.526 | 0.362            | 0.398       | 0.461 | B1>B4>B3>B2 |

Relative coarsening behaviour of the alloys

The data on the relative coarsening behaviour of the alloys is relevant to an understanding of the deformation and the corrosion behaviour of the alloys as would be evident from an analysis put forth in Chapter VI.

4.2.9 Mathematical modelling of the transformation behaviour Figures 4.1a-4.1d reveal how time and temperature control the transformation behaviour and therefore, the hardness of the experimental alloys. It was concluded that hardness, H varies linearly with time, t and can be represented by Eq.4.18

## $H = C_1 + C_2 t$

The values of  $C_1$  and  $C_2$  were found to be different for

different temperatures, T and therefore, can be expressed as a function of temperature in the form of equations

$$C_1 = f(T)$$
 ... (4.23)

$$C_2 = f(T) \qquad \dots (4.24)$$

The plots of  $C_1$  vs T and  $C_2$  vs T revealed that the  $C_2$  vs T is linear and gives a relationship  $C_2 = A_3 + A_4T$ . However, the  $lnC_1$  vs 1/T plots indicated a linear behaviour and hence, the relation between  $C_1$  and T can be expressed as :

$$\ln C_1 = \ln A_1 + A_2 \cdot 1/T \qquad \dots (4.25)$$

$$C_1 = A_1 e^{A_2/T}$$
 ...(4.26)

Substituting for  $C_1$  and  $C_2$  in the equation 4.25, the final relationship is

$$H = A_1 \cdot e^{A_2 / T} + (A_3 + A_4 T) t \qquad \dots (4.27)$$

The constants  $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_4$  were calculated for different alloys using the multivariable nonlinear constraint optimization technique (54,55). The final equations along with the overall standard deviations are reported below :

 $B_1$ : H = 168.213 e<sup>1471-47/T</sup> + (0.043-0.374x10<sup>-4</sup>T)t

Overall SD = 27.05 ...(4.28)

 $B_2$ : H = 100.779 e<sup>1089.66/T</sup> + (0.026-0.223x10<sup>-4</sup>T)t

Overall SD = 
$$18.45$$
 ... (4.29)

 $B_3$ : H = 98.285 e<sup>2021.33/T</sup> + (0.037-0.316x10<sup>-4</sup>T)t

Overall SD = 
$$29.87$$
 ... (4.30)

 $B_4$ : H = 78.357 e<sup>2205.77/T</sup> + (0.027-0.244x10<sup>-4</sup>T)t

Overall SD = 25.45 ....(4.31)

Where T = temperature in <sup>°</sup>K

t = time in seconds

H = hardness, HV<sub>30</sub>

The theoretical hardness values calculated from the above equations were plotted against the corresponding experimental values and are shown in Figure 4.38. It reveals that barring a few instances, the calculated values are well within ±5%.

| Heat-treatment |             | Cont | ribution of | the second | factor |                  |   |
|----------------|-------------|------|-------------|------------|--------|------------------|---|
|                |             |      | B1          | В2         | В3     | B4               |   |
| 800            | 2 AC        |      | 23          | 12         | 21     | 9                |   |
| 800            | <b>4</b> AC |      | 47          | 24         | 42     | 18               |   |
| 800            | 6 AC        |      | 70          | 36         | 63     | 28               |   |
| 800            | 8 AC        |      | 96          | 49         | 84     | 37               |   |
| 800            | 10 AC       |      | 117         | 61         | 101    | 47               |   |
| 850            | 2 AC        |      | 10          | 4          | 10     | 0                |   |
| 850            | 4 AC        |      | 20          | 8          | 21     | 1                |   |
| 850            | 6 AC        |      | 30          | 12         | 32     | 1<br>2<br>2<br>3 | • |
| 850            | 8 AC        |      | 40          | 16         | 42     | 2                |   |
| 850            | 10 AC       |      | 50          | 21         | 53     | 3                |   |
| <b>90</b> 0    | 2 AC        |      | - 3         | -3         | 0      | -8               |   |
| 900            | 4 AC        |      | · -6        | -7         | 0      | -16              |   |
| 900            | 6 AC        |      | -10         | -11        | 0      | -24              |   |
| <b>9</b> 00    | 8 AC        |      | -13         | -15        | 0      | -32              |   |
| 900            | 10 AC       |      | -16         | -19        | 1      | -40              | · |
| <b>9</b> 50    | 2 AC        |      | -16         | -11        | -10    | -16              |   |
| 950            | 4 AC        |      | -33         | -23        | -20    | -33              |   |
| 950            | 6 AC        |      | -50         | -35        | -30    | -50              |   |
| 950            | 8 AC        |      | -67         | -47        | -40    | -67              |   |
| 950            | 10 AC       |      | -84         | -59        | -50    | -83              |   |
| 1000           | 2 AC        |      | -30         | -20        | -20    | -25              |   |
| 1000           | 4 AC        |      | -60         | -40        | -41    | -51              |   |
| 1000           | 6 AC        |      | -90         | -60        | -61    | -76              |   |
| 1000           | 8 AC        |      | -121        | -80        | -82    | -102             |   |
| 1000           | 10 AC       |      | -151        | -100       | -103   | -127             |   |
| 1050           | 2 AC        |      | -43         | -28        | -31    | -34              |   |
| 1050           | 4 AC        |      | -87         | -56        | -62    | -68              |   |
| 1050           | 6 AC        |      | -131        | -84        | -93    | -102             |   |
| 1050           | 8 AC        |      | -175        | -112       | -124   | -136             |   |
| 1050           | 10 AC       |      | -218        | -140       | -155   | -171             |   |

. Contribution of the second factor

It is observed that the constants  $A_1$ ,  $A_2$ , and  $A_3$  are positive for all the alloys. Hence their effect would be similar and additive. The constant  $A_4$  is negative and therefore, its

effect needs to be analysed. This calls for assessing the contribution of second factor of the equation 4.27. Its values, as influenced by the heat-treating temperature and time are given below. As will be evident, the contribution of the factor becomes negative at temperatures higher than  $\geq 900^{\circ}$ C.

It will be seen that the contribution of this factor to the overall hardness varies linearly with time for a given h/t temperature.

The above discussion reveals that the term (A3 + A4.T)t has a significant impact on the overall hardness especially so when the alloys are heat-treated from 'higher' temperatures.

Because of a difference in the nature of the contribution of the second factor, as influenced by temperature, further calculations were made to find out the temperature at which the contribution of the aforesaid factor became negative. The change over occurred at 888, 877, 901 and 858°C in B1, B2, B3 and B4 respectively, which is in fact, the temperature representing the cross-over point (Section 4.2.6.2). This deduction is valid for all the alloys, duly remembering that the value of the COP would differ from alloy to alloy.

A further calculation revealed that the temperature corresponding to COP is a function of time as is evident from the following table.

In fact, in a strict sense, varying the soaking period will alter the profile of the hardness vs temperature plot as is evident from Figs. 4.1a to 4.1d. However, in spite of this happening, the COP (representing the point of inflexion) should

| Alloy | H/T time, hrs. | COP      |
|-------|----------------|----------|
| B1    | 2              | 912      |
|       | . 4            | 924      |
|       | . 4<br>6       | 922      |
|       | 8              | 908      |
|       | 10             | <b>~</b> |
| в2    | 2              |          |
|       | 2<br>4         | 962      |
|       | 6              | 955      |
|       | 8              | 937      |
|       | 10             | 930      |
| в3    | 2<br>4         | 948      |
|       | 4              | 950      |
|       | 6              | 988      |
|       | 8              | 948      |
|       | 10             | 952      |
| B4    | 2              | 958      |
|       | - 4            | 962      |
|       | 6              | 960      |
|       | 8              | 950      |
|       | 10             | 914      |

Effect of time on COP

have occurred at or over a narrow range of temperature, preferably the latter, because in heterogeneous alloys such as the present ones it is extremely difficult to visualize structural changes to occur at sharply delineated temperatures. The data summarized in the above table is thus consistent with this reasoning. It may be further observed that barring one or two instances the overall variation in COP with time for each of the alloy can be considered to be within ±2%.

When the values of COP summarized in the above table are compared with those observed on the basis of the model (their magnitude being 888, 877, 901, and 858°C respectively for B1, B2, B3, and B4), the apparent difference can be explained by stating that the discrepanceis may have arisen due to the assumptions/

simplifications made while developing the model. A more likely possibility is that whereas the equations represent transformations without reflecting upon their complexities, the situation is to the contrary due to heterogeneity of the actual because a large number of phases are system and also participating in the transformations. The lag between the 'ideal' and 'actual' situations can not be represented mathematically.

4.2.9.1 Physical interpretation of the proposed model

The data summarized in the four tables over-leaf, when viewed in the context of the structural changes already discussed, leads important inferences. Firstly, the hardness to certain is essentially controlled by the parameter  $A_1 e^{A_2/T}$ . This is independent of the matrix microstructure, i.e, independent of whether the matrix is martensitic, martensitic/austenitic, or simply austenite. As the amount of MC does not exceed 25%, the aforesaid factor can be considered as controlling the matrix microstructure. Recalling the basis on which the alloys are designed, it is easy to visualise why the matrix microstructure should be controlled by the temperature alone.

The contribution from the second factor, although less significant to start with, assumes prominence at higher temperatures and soaking periods. The parameter  $(A_3 + A_4T)t$  can therefore, be said to represent the carbide transformation. At lower temperatures ( $\approx 800$  °C), its contribution is positive and increases with time (Vf of DC) because the particle size and distribution is appropriate in contributing to the strength. The correctness of this analysis is proved by the data obtained on heat-treating from 850°C, wherein the contribution has decreased

Relative contribution of the factors constituting the model

|            |    |    | HV30 | Value | factor<br>% | Value      | factor<br>% |
|------------|----|----|------|-------|-------------|------------|-------------|
| 800        | c  | AC | 685  | 662   | 96.6        | 23         | 3.4         |
|            |    |    | 709  | 662   | 93.4        |            |             |
| 800        |    | AC |      |       |             | 47         | 6.6         |
| 800        |    | AC | 732  | 662   | 90.4        | 70         | 9.6         |
| 800        |    | AC | 756  | 662   | 87.6        | 94         | 12.4        |
| 800        | 10 | AC | 779  | 662   | 85.0        | 117        | 15.0        |
| 850        | 2  | AC | 633  | 623   | 98.4        | 10         | İ.6         |
| 850        | 4  | AC | 643  | 623   | 96.9        | 20         | 3.1         |
| 850        |    | AC | 653  | 623   | 95.4        | 30         | 4.6         |
| 850        |    | AC | 663  | 623   | 94.0        | 40         | 6.0         |
| 850        |    | AC | 673  | 623   | 92.6        | 50         | 7.4         |
| 900        | 2  | AC | 586  | 589   | 99.5        | -3         | 0.5         |
| 900        |    | AC | 583  | 589   | 99.0        | -6         | 1.0         |
| 900        |    | AC | 579  | 589   | 98.3        | -10        | 1.7         |
| 900        |    | AC | 576  | 589   | 97.7        | -13        | 2.3         |
| 900        |    | AC | 573  | 589   | 97.2        | -16        | 2.8         |
| 950·       | n  | AC | 544  | 560   | 97.1        | -16        | 2.9         |
| 950<br>950 |    | AC | 527  | 560   | 93.7        | -33        | 2.9<br>6.3  |
| 950        |    | AC | 510  | 560   | 90.2        | -50        | 9.8         |
| 950        |    | AC | 493  | 560   | 86.4        | -50<br>-67 |             |
| 950<br>950 |    |    | 495  |       |             |            | 13.6        |
| 950        | ΤU | AC | 470  | 560   | 82.4        | -84        | 17.6        |
| 1000       | 2  | AC | 504  | 534   | 94.0        | -30        | 6.0         |
| 1000       | 4  | AC | 474  | 534   | 87.3        | -60        | 12.7        |
| 1000       | б  | AC | 444  | 534   | 79.7        | -90        | 20.3        |
| 1000       | 8  | AC | 413  | 534   | 70.7        | -121       | 29.3        |
| 1000       | 10 | AC | 383  | 534   | 60.6        | -151       | 39.4        |
| 1050       | 2  | AC | 468  | 511   | 90.8        | -43        | 9.2         |
| 1050       |    | AC | 424  | 511   | 79.5        | -87        | 20.5        |
| 1050       |    | AC | 380  | 511   | 65.5        | -131       | 34.5        |
| 1050       |    | AC | 336  | 511   | 47.9        | -175       | 52.1        |
| 1050       |    | AC | 293  | 511   | 25.6        | -218       | 74.4        |

Alloy : B1

.

.

| Heat | -trea | atment | Overall hardness<br>HV30 | First<br>Value | factor<br>%       | Second<br>Value | factor<br>% |
|------|-------|--------|--------------------------|----------------|-------------------|-----------------|-------------|
| 800  | 2     | AC     | 598                      | 586            | 98.0              | 12              | 2.0         |
| 800  | 4     | AC     | 610                      | 586            | 96.1              | 24              | 3.9         |
| 800  | 6     | AC     | 622                      | 586            | 94.2              | 36              | 5.8         |
| 800  | 8     | AC     | 635                      | 586            | 92.3              | 49              | 7.7         |
| 800  |       | AC     | 647                      | 586            | 90.6              | 61              | 9.4         |
| 850  | 2     | AC     | 546                      | 542            | 99.3              | 4               | 0.7         |
| 850  | 4     | AC     | 550                      | 542            | 98.5              | 8               | 1.5         |
| 850  | 6     | AC     | 554                      | 542            | 97.8              | 12              | 2.2         |
| 850  | 8     | AC     | 558                      | 542            | <sup>•</sup> 97.1 | 16              | 2.9         |
| 850  | 10    | AC     | 563                      | 542            | 96.3              | 21              | 3.7         |
| 900  | 2     | AC     | 502                      | 505            | 99.4              | -3              | 0.6         |
| 900  | 4     | AC     | 498                      | 505            | 98.6              | -7              | 1.4         |
| 900  | 6     | AC     | 494                      | 505            | 97.8              | -11             | 2.2         |
| 900  | 8     | AC     | 490                      | 505            | 96.9              | -15             | 3.1         |
| 900  | 10    | AC     | 486                      | 505            | 96.1              | -19             | 3.9         |
| 950  | 2     | AC     | 462                      | 473            | 97.6              | -11             | 2.4         |
| 950  |       | AC     | 450                      | 473            | 94.9              | -23             | 5.1         |
| 950  |       | AC     | 438                      | 473            | 92.0              | -35             | 8.0         |
| 950  | 8     | AC     | 426                      | 473            | 89.0              | -47             | 11.0        |
| 950  | 10    | AC     | 414                      | 473            | 85.7              | -59             | 14.3        |
| 1000 | 2     | AC     | 425                      | 445            | 95.3              | -20             | 4.7         |
| 1000 | 4     | AC     | 405                      | 445            | 90.1              | -40             | 9.9         |
| 1000 | 6     | AC     | 385                      | 445            | 84.4              | -60             | 15.6        |
| 1000 | 8     | AC     | 365                      | 445            | 78.1              | -80             | 21.9        |
| 1000 | 10    | AC     | 345                      | 445            | 71.0              | -100            | 29.0        |
| 1050 | 2     | AC     | 393                      | 421            | 92.9              | -28             | 7.1         |
| 1050 | 4     | AC     | 365                      | 421            | 84.7              | -56             | 15.3        |
|      |       | _      |                          |                |                   |                 |             |

Alloy : B2

|     | 1050 | б АС  | 337 | 421 | 75.1 | -84  | 24.9 |
|-----|------|-------|-----|-----|------|------|------|
|     | 1050 | 8 AC  | 309 | 421 | 63.8 | -112 | 36.2 |
| - • | 1050 | 10 AC | 281 | 421 | 50.2 | -140 | 49.8 |
|     |      |       |     |     |      |      |      |

:

Relative contribution of the factors constituting the model

| Heat- | trea | atment | Overall hardness<br>HV30 | First<br>Value | factor<br>% | Second<br>Value | factor<br>% |
|-------|------|--------|--------------------------|----------------|-------------|-----------------|-------------|
| 800   | n    | AC     | 664                      | 643            | 96.8        | 21              | 3.2         |
| 800   |      | AC     | 685                      | 643            | 93.9        | 42              | 5.2<br>6.1  |
| 800   |      | AC     | 706                      | 643            | 91.1        | 63              | 8.9         |
| 800   |      | AC     | 700                      | 643            | 88.4        | 84              | 11.6        |
| 800   |      | AC     | 748                      | 643            | 86.0        | 105             | 14.0        |
|       | ~    |        | 505                      | 5.05           | 00.0        | 10              | 1 7         |
| 850   |      | AC     | 595                      | 585            | 98.3        | 10              | 1.7         |
| 850   |      | AC     | 606                      | 585            | 96.5        | 21              | 3.5         |
| 850   |      | AC     | 617                      | 585            | 94.8        | 32              | 5.2         |
| 850   |      | AC     | 627                      | 585            | 93.3        | 42              | 6.7         |
| 850   | 10   | AC     | 638                      | 585            | 91.7        | 53              | 8.3         |
| 900   | 2    | AC     | 537                      | 537            | 100.0       | 0               | 0.0         |
| 900   | 4    | AC     | 53 <b>7</b>              | 537            | 100.0       | 0               | 0.0         |
| 900   | б    | AC     | 537                      | 537            | 100.0       | 0               | 0.0         |
| 900   | 8    | AC     | 537                      | 537            | 100.0       | 0               | 0.0         |
| 900   | 10   | AC     | 538                      | 537            | 99.8        | 1               | 0.2         |
| 950   | 2    | AC     | 486                      | 496            | 97.9        | -10             | 2.1         |
| 950   |      | AC     | 476                      | 496            | 95.8        | -20             | 4.2         |
| 950   |      | AC     | 466                      | 496            | 93.6        | -30             | 6.4         |
| 950   |      | AC     | 456                      | 496            | 91.2        | -40             | 8.8         |
| 950   |      | AC     | 446                      | 496            | 88.8        | -50             | 11.2        |
| 1000  | 2    | AC     | 441                      | 461            | 95.5        | -20             | 4.5         |
| 1000  |      | AC     | 420                      | 461            | 90.2        | -41             | 9.8         |
| 1000  |      | AC     | 400                      | 461            | 84.8        | -61             | 15.3        |
| 1000  |      | AC     | 379                      | 461            | 78.4        | -82             | 21.6        |
| 1000  |      | AC     | 358                      | 461            | 71.2        | -103            | 28.8        |
| 1050  | 2    | AC     | 400                      | 431            | 92.3        | -31             | 7.8         |
| 1050  |      | AC     | 369                      | 431            | 83.2        | -62             | 16.8        |
| 1050  |      | AC     | 338                      | 431            | 72.5        | -93             | 27.5        |
| 1050  |      | AC     | 307                      | 431            | 59.6        | -124            | 40.4        |
| 1050  |      | AC     | 276                      | 431            | 43.8        | -155            | 56.2        |

Alloy : B3

Relative contribution of the factors constituting the model

| Heat-             | trea | atment | Overall hardness<br>HV30 | First<br>Value | factor<br>%  | Second<br>Value | factor<br>% |
|-------------------|------|--------|--------------------------|----------------|--------------|-----------------|-------------|
| 800               | 2    | AC     | 619                      | 610            | 98.5         | 9               | 1 F         |
| 800               |      | AC     | 628                      | 610            | 98.5<br>97.1 |                 | 1.5         |
| 800               |      |        | 638                      |                |              | 18              | 2.9         |
|                   |      | AC     |                          | 610            | 95.6         | 28              | 4.4         |
| 800               |      | AC     | 647                      | 610            | 94.3         | 37              | 5.7         |
| 800               | τŲ   | AC     | 657                      | 610            | 92.8         | 47              | 7.2         |
| 850               | 2    | AC     | 557                      | 557            | 100.0        | 0               | 0.0         |
| 850               | 4    | AC     | 558                      | 557            | 99.8         | 1               | 0.2         |
| 850               | 6    | AC     | 559                      | 557            | 99.6         | 2               | 0.4         |
| 850               | 8    | AC     | 559                      | 557            | 99.6         | 2               | 0.4         |
| 850               | 10   | AC     | 560                      | 557            | 99.5         | 3               | 0.5         |
| 900               | 2    | AC     | 505                      | 513            | 98.4         | -8              | 1.6         |
| 900               |      | AC     | 497                      | 513            | 96.8         | -16             | 3.2         |
| 900               |      | AC     | 489                      | 513            | 95.1         | -24             | 4.9         |
| 900               |      | AC     | 481                      | 513            | 93.3         | -32             | 6.7         |
| 900               |      | AC     | 473                      | 513            | 91.5         | -40             | 8.5         |
| 950               | 2    | AC     | 459                      | 475            | 96.5         | -16             | 3.5         |
| 950               | 4    | AC     | 442                      | 475            | 92.5         | -33             | 7.5         |
| 950               |      | AC     | 425                      | 475            | 88.2         | -50             | 11.8        |
| 950               | 8    | AC     | 408                      | 475            | 83.6         | -67             | 16.4        |
| 950               |      | AC     | 392                      | 475            | 78.8         | -83             | 21.2        |
| 1000              | 2    | AC     | 417                      | 442            | 94.0         | -25             | 6.0         |
| 1000              | 4    | AC     | 391                      | 442            | 87.0         | -51             | 13.0        |
| 1000              | 6    | AC     | 366                      | 442            | 79.2         | -76             | 20.8        |
| 1000              |      | AC     | 340                      | 442            | 70.0         | -102            | 30.0        |
| 1000              |      | AC     | 315                      | 442            | 59.7         | -127            | 40.3        |
| 1050              | 2    | AC     | 380                      | 414            | 91.1         | -34             | 8.9         |
| 1050              | 4    | AC     | 346                      | 414            | 80.3         | -68             | 19.7        |
| 1050              | 6    | AC     | 312                      | 414            | 67.3         | -102            | 32.7        |
| 1050 <sup>.</sup> |      | AC     | 278                      | 414            | 51.1         | -136            | 48.9        |
| 1050              |      | AC     | 243                      | 414            | 29.6         | -171            | 70.4        |

Alloy : B4

with respect to what it was on heat-treating from 800°C due to coarsening. Its contribution, on heat-treating from 900°C is either negligible or marginally negative thereby signifying that the DC are virtually ineffective in influencing the hardness.

The negative contribution is seen to have a sizable effect only on heat-treating from upwards of 950°C, a temperature at which hardness begins to decrease with time. Tt is thus noteworthy that the negative contribution is assuming reasonable proportions just when the Vf of MC is beginning to decrease and the dispersed carbides are present in a state such that they cease to have an effect on the overall hardness. Therefore its magnitude will increase steeply (i) as the temperature is raised beyond 950°C (ii) at higher soaking periods at a given and temperature. The reasons for the negative contribution from this parameter, with an increase in temperature, have already been analysed in the Section 4.2.7. Therefore, the two parameters constituting the model are physically consistent with the attendant microstructural changes; the first term representing the matrix transformation and the second term the carbide transformation.

#### 4.2.10 Mathematical modelling of the distribution factor

A critical analysis reveals that the DF can be mathematically represented with the help of the following equations :

| B1: | 0.071 e <sup>1377.542/T</sup> | + $(0.047 - 0.591 \times 10^{-4} T)t$  | (4.32) |
|-----|-------------------------------|----------------------------------------|--------|
| B2: | 0.266 e <sup>290.260/T</sup>  | + (0.136 - 0.163 x10 <sup>-3</sup> T)t | (4.33) |
| в3: | 0.224 e <sup>444.033/T</sup>  | + (0.073 - 0.917 x10-4T)t              | (4.34) |
| B4: | 0.208 e474.813/T              | + (0.079 - 0.957 x10-4T)t              | (4.35) |
|     |                               |                                        |        |

The basis of arriving at these equations is the same as the

one on which the mathematical modelling of the transformation behaviour of the alloys was carried out (Section 4.2.9). The theoretically calculated values of the DF agree well with the experimentally determined values, the maximum difference in a majority of the values being within ±5%.

# 4.2.11.1 3D plots representing interrelation amongst temperature, time and hardness

Till now the effect of heat-treatment on the hardness has been analysed on the basis of varying one of the parameters while keeping the other a constant. This has been represented in Figs. 4.1 to 4.6. Although, these plots provided useful and necessary explanations of the transformation behaviour, they failed to provide the overall effect of heat-treatment at a glance.

This difficulty was resolved by constructing 3-dimensional plots (Figs. 4.39-4.42) using the equations 4.28 to 4.31, at rotation angles 45° and 225° around the Z-axis and at a tilt angle of 30°. For each of the alloy Fig (a) represents the gradual change in the slope of the hardness vs time plots as influenced by temperature which are represented over a surface.

The Fig (b) clearly reveals that the so called COP is not a sharply delineated temperature but that the change over is occurring over a narrow dark region represented by a surface.

A comparison of the Figs (a) for the experimental alloys further brings out that the change in slope between hardness vs temperature/time is generating a common surface which has been depicted in Figs (b). The 3-D plots reaffirm the similarity between B1 & B3 (having marked darkened surface region due to a steep profile of the hardness vs temperature plots) and that

between B2 & B4 (not exhibiting a marked surface region due to the flatter profile of the hardness vs temperature plots).

#### 4.2.11.2 Iso-hardness plots

Iso-hardness plots were made by plotting out hardness (asinfluenced by temperature and time) as contours (Figs.4.43-4.46). Evdently, the hardness is a constant along a contour and as such it would be possible to determine the different temperature and time combinations (from the plot) to get a desired hardness. The variation in hardness is marked in the alloy B1 and gradual in the alloy B2. This behaviour is in accordance with the expected the alloy B2 which can sustain hardness over a behaviour of range of h/t time and temperature. The existence of more longer widely spaced contours in alloy B2 indicates that there is a greater flexibility, in terms of temperature & time, in attaining a desired level of hardness i.e. to say that a given hardness will be attained comfortably even if an inadvertent error were to be committed in controlling temperature & time.

#### 4.3 Conclusion

This chapter has dealt at length with the transformation behaviour of the experimental alloys characterized on the basis hardness measurements and the attendant microstructural of changes. A detailed analysis of the latter proved extremely helpful in arriving at a qualitative understanding of the interrelation microstructure between and properties. The behaviour of the second phase particles as influenced by heat treating schedule has been mathematically represented by evolving 'distribution factor'. parameter called the This enables

calculation of the coarsening behaviour of the second phase particles on the basis of a parameter called as the 'coarsening index'. The evolution of these parameters has proved extremely helpful in overcoming the limitations of the Ostwald's ripening formula which is regarded as the sole basis for characterizing the coarsening behaviour of the second phase particles. The development of these models has proved useful in establishing models interrelating properties with the microstructure. This has been discussed in Chapter VI.

Finally mathematical models have been developed interrelating hardness with the heat-treating temperature and time (microstructures). It has been established that the parameters constituting the model are physically consistent with the structural changes occurring on heat treating.

Although much has been said about the characterization of different phases, the presence of martensite could not be unequivocally established in marginal cases. Similarly, the nature and types of carbides remained unidentified. Therefore, a detailed study comprising X-ray diffractometry and EPMA was carried out. The data thus obtained have been discussed in the next chapter.

#### CHAPTER V

## TRANSFORMATION BEHAVIOUR OF THE ALLOYS

#### 5.1 Structural analysis by X-ray diffractometry

The as-cast, as well as the heat-treated (900°C upwards) specimens of the four alloys were extensively examined by X-ray diffractometry to identify/confirm (i) the nature of matrix microstructure, and (ii) the nature of different carbides that formed during heat treatment. The analysis of the X-ray diffractograms has been summarized in the Tables 5.1 to 5.41 and Figures 5.1 & 5.2. A summary table (Table 5.42) has also been prepared to make the discussion more concise. With the help of diffraction data, it was possible to interpret the structures more or less fully as would be evident from the ensuing data and its analysis.

5.1.1 Results

#### 5.1.1.1 As-cast condition

The microconstituents commonly observed in the four alloys consisted of  $P/B + M_3C$  (isomorphous with  $Fe_3C$ ) +  $M_7C_3$ (isomorphous with  $Cr_7C_3$ ). Some  $M_5C_2$  was also present. Additionally,  $Fe_8Si_2C$  was also indexed in alloys B2, B3, and B4. Lower angle peaks corresponding to  $\alpha/M$  were observed in all the alloys. However, the higher angle peaks characterizing martensite were present only in B3.

#### 5.1.1.2 Heat-treated condition

On heat-treating, there was a general shift in the diffraction angles of different micro-constituents present, compared with their standard  $2\theta$ -values, obtained from the diffraction data

cards (Tables 5.2- 5.41). The effect of heat-treating temperature and time on the possible transformations occurring within the matrix and the carbides, along with any additional features that were observed, have been discussed below.

5.1.1.2.1 Effect of heat-treatment on the matrix microstructure On heat-treating (temperatures ≥900°C), the following changes were observed in the matrix microstructures :

- (i) The matrix essentially comprised austenite. Lower angle peaks corresponding to ferrite/martensite were also present (Since there is no possibility of free ferrite being present, they can be considered as representing the possible presence of martensite).
- (ii) Possible presence of martensite was indicated in B1, B3 &
   B4 corresponding to the 900°C heat-treatment. However, its
   presence was not clearly established in B2.
- (iii) On heat-treating from 950°C, some martensite still persisted in B1, but not in B2, B3, & B4.
- (iv) On heat-treating from higher temperatures the matrix in all the alloys was austenitic.
- (v) An important observation is that the 2θ-values for austenite were shifted with respect to the standard 2θ-values. This shift was minimum in B1, slightly higher in B2 and marked in B3 and B4.

5.1.1.2.2 Effect of heat-treatment on the nature of carbides On heat-treating, a clear cut carbide transformation sequence was observed. However, the main difference was with regard to their stability as influenced by heat-treating temperature and the alloy content.

- (i) On heat-treating from 900°C, in addition to  $M_3C$ , the formation of  $M_{23}C_6$  type of carbide was indicated in all the alloys at both the soaking periods.
- (ii) Simultaneously, formation of  $M_5C_2$  was also indicated, whose indexing in B3 and B4 was more distinct in comparison to that observed in B1 and B2. A similar situation persisted even on altering the soaking period.
- (iii) On heat-treating from 950°C, the indexing of  $M_{23}C_6$  became less marked but that of  $M_3C$  more distinct. On raising the soaking period to 10 hours,  $M_{23}C_6$  was present in only small yet comparable proportions in B1 and B3, in still lesser proportions in B4 and in traces in B2. As in (ii) above,  $M_5C_2$  was also present on heat-treating from 950°C.
- (iv) On raising the heat-treating temperature to 1000°C, the presence of  $M_{23}C_6$  was not detected in B2 and B3, whereas it was present in traces in B1 and B4 only at the lower soaking periods. Indexing of  $M_3C$  revealed its presence only in small amounts which was reduced to traces at higher soaking periods. The  $M_5C_2$  carbide was present only in traces but persisted even at the higher soaking periods.

The additional carbide to form at  $1000^{\circ}$ C is  $M_7C_3$  whose indexing was confirmed at 10 hours soaking period. It was more distinctly indexed in B3 and B4 in comparison to that in B1 and B2. Thus the overall position of carbides at  $1000^{\circ}$ C is

- B1 : M₃C
- B2 :  $M_{3}C + M_{5}C_{2}$
- $B3 : M_3C + M_7C_3 + M_5C_2(traces)$
- B4 :  $M_7C_3$  +  $M_3C(some)$  +  $M_5C_2(traces)$

(v) On heat-treating from  $1050^{\circ}$ C,  $M_7C_3$  was the dominant carbide present, with  $M_5C_2$  present only in traces. The latter carbide was not observed at higher soaking periods. Thus the carbide transformation sequence observed is

M<sub>3</sub>C present upto 1000°C, 4 hours

- M<sub>23</sub>C<sub>6</sub> present upto 950°C, 4 hours & at best in traces upto 950°C, 10 hours
- M<sub>5</sub>C<sub>2</sub> present upto 1000°C,10 hours/ 1050°C, 4 hours
- M<sub>7</sub>C<sub>3</sub> present from 1000°C, 10 hours to 1050°C, 10 hours

#### 5.1.1.2.3 Other features

(a) Elemental copper :

Copper was indexed in the as-cast condition and corresponding to the high temperature treatments(1000 & 1050°C) at both the soaking periods especially in B3 and B4.

(b) FeaSi<sub>2</sub>C:

It was invariably indexed at all the heat-treatments.

(c) CrMn<sub>3</sub>:

It was present on heat-treating from lower temperatures (900 and 950°C) [The needle like feature observed through optical metallography may be due to the presence of this constituent since inter-metallics are known to have a needle like appearance. 5.1.2 Discussion

5.1.2.1 Matrix microstructure

A summary of the findings concerning the matrix microstructure

been presented in the Section 5.1. In the present study, the has primarily designed to allovs were attain martensitic microstructure on air cooling from low temperatures (upto 850°C) and austenitic microstructure on heat-treating from higher temperatures. This has been explained in detail on the basis of the equations 4.8 to 4.16 which duly support this contention. is further borne out by the optical metallographic studies This on the as-cast as well as on the heat treated specimens (Section 4.1.2). The x-ray observations duly confirm these majority of instances. There are certain findings in a however, deviations, which need a closer examination. For example, on heat-treating from 900°C, there was a suspicion that some martensite may be present at least in alloys B1 & B3 at all soaking periods on the basis of optical metallography. The x-ray observations duly confirm this to be so. Additionally, they also indicate the possible presence of martensite in B4 but not in B2. This is not clearly understood. Since, the Mn content of both B2 ۰. Β4 is the same and B4 in addition contains a higher proportion of Cu, this alloy(B4) was not expected to attain martensitic structures especially so since its counterpart with reduced Cu content does not attain martensite.

On heat-treating from 950°C, 4 hours soaking period, the possibility of some martensite forming is once again indicated in alloys B1 & B3 based on optical metallographic observation. The X-ray results, while confirming this to be so in B1 clearly indicate its absence in the other three alloys. Thus the x-ray findings while satisfactorily reaffirming some of the findings

based on optical metallography have also resolved some of the ambiguities. No comment is being made regarding the possible deductions on heat-treating from 1000 & 1050°C because there was no ambiguity based on optical metallographic observations. In fact the observations based on X-ray diffraction and optical metallographic studies are in complete agreement.

X-ray studies have not proved conclusive in establishing the possible presence of martensite in alloys B1 & B2 and in confirming austenite retention at least in B2 & B4 in the as-cast condition. Whereas hardness values and optical metallography do indicate the possible presence of martensite in all the alloys, the reason why x-ray analysis is not helpful on this score is that the ferrite peaks, constituting P/B, may have coincided with the intensity peaks resulting from the presence of martensite. A somewhat similar analysis may point to the inadequacy of the technique in clearly detecting retained austenite as the carbide peaks may have merged with the austenite peaks.

When the above analysis is considered along with the various inferences arrived at based on optical metallographic studies, it can now be stated that the present set of alloys have fully responded to the generation of different microstructures on heat treating based on the possible utilization of a minimum yet optimum amount of alloying elements - a key feature of alloy design as formulated in Chapter II in Section 2.1. This would be evident from the summary tables given on the next page.

| h/t schedule    | ······  | Alloy    |           |          |
|-----------------|---------|----------|-----------|----------|
|                 | Bl      | B2       | B3        | в4       |
| As-cast         | ₽/B + M | B/M + RA | B/M + RA? | B/M + RA |
| 900°C, 4 hrs.   | A + M?  | А        | A + M?    | А        |
| 900°C, 10 hrs.  | A + M?  | A        | A + M?    | А        |
| 950°C, 4 hrs.   | A + M?  | A        | A + M?    | Α        |
| 950°C, 10 hrs.  | A + M?  | А        | A + M?    | A        |
| 1000°C, 4 hrs.  | A       | A        | A         | A        |
| 1000°C, 10 hrs. | A       | А        | A         | A        |
| 1050°C, 4 hrs.  | A       | А        | Α         | А        |
| 1050°C, 6 hrs.  | A       | A        | A         | A        |
| 1050°C, 10 hrs. | A       | А        | A         | А        |

Summary table of the matrix microstructure as influenced by the heat treatments analysed through optical metallography

Summary table of the matrix microstructure as influenced by the heat treatments analysed through x-ray

| h/t sche | edu. | le   | <u></u> | Allo | у<br>У  |        |
|----------|------|------|---------|------|---------|--------|
|          |      |      | B1      | B2   | B3      | В4     |
| As-c     | cast | t    | P/B     | P/B  | P/B + M | B/M    |
| 900°C,   | 4    | hrs. | A + M?  | A .  | A + M?  | A + M? |
| 900°C,   | 10   | hrs. | A + M?  | A    | A + M?  | A + M? |
| 950°C,   | 4    | hrs. | A + M?  | А    | A       | A      |
| 950°C,   | 10   | hrs. | A       | А    | A       | А      |
| 1000°C,  | 4    | hrs. | A       | А    | A       | A      |
| 1000°C,  | 10   | hrs. | A       | А    | А       | А      |
| 1050°C,  | 4    | hrs. | А       | А    | A       | A      |
| 1050°C,  | 6    | hrs. | А       | A    | A       | A      |
| 1050°C,  | 10   | hrs. | А       | A    | A       | А      |

#### 5.1.2.2 Carbide transformation

Based on an analysis of the observations contained in Section 5.1.1.2 (Table 5.2-5.41 and summary Table 5.42), it is evident that the general carbide transformation sequence in the present study is as follows:

Carbide transformation

Stability range

MaC + some M23C6 (As-cast state) +  $(M_5C_2? + M_7C_3?)$ MaC + larger amount of  $M_{23}C_6$ (upto 950°C) + (some  $M_5C_2$  +  $M_7C_3$ ?) M-3C (reduced content)  $+ M_5C_2$ + M<sub>23</sub>C<sub>6</sub> (reduced content) (upto 1000°C; lower SP)  $+ (M_7C_3?)$  $\mathbf{V}$ M5C2 + M<sub>7</sub>C<sub>3</sub> + M₃C (at best in traces) (upto 1000°C; higher SP) M<sub>5</sub>C<sub>2</sub> + M<sub>7</sub>C<sub>3</sub> (some amount) (upto 1050°C; lower SP) M<sub>7</sub>C<sub>3</sub> (upto 1050°C ; higher SP)

A study of the Fe-Mn-C and Fe-Cr-C ternary diagrams reveals that  $M_7C_3$ ,  $M_5C_2$  and  $M_{23}C_6$  are essentially high temperature carbides with the last mentioned having a relatively lower dissolution temperature/thermal stability as compared with the first two(66). Further, the predominant carbide would be  $M_3C$ . Accordingly, the carbide expected to be present in the as-cast

state should be  $M_3C$  as this is the stable form at room temperature. The possible presence of higher temperature forms of carbides can be explained by stating that because of the complexity of the alloy system under study, the different high temperature carbides have not fully transformed successively to their lower temperature forms due to the reactions being sluggish resulting in the former being retained in smaller amounts even in the as-cast condition.

This contention is borne out by the fact that on heattreating from 900°C, the predominant carbides are only  $M_3C$  &  $M_{23}C_6$ , whereas the detection level of the other two carbides is either negligible (as for example  $M_7C_3$ ) or in traces (as for example  $M_5C_2$ ). Thus, whatever  $M_7C_3$  carbide was present in the ascast state has participated in the carbide transformation. Only traces of  $M_5C_2$  remain primarily because  $M_5C_2$  is a more stable carbide (i.e. sluggish in transforming, perhaps, because of its monoclinic crystal structure). Therefore, the effective transformation sequence under review is  $M_3C + M_{23}C_6$  + higher forms of carbides -->  $M_3C$  + increased amount of  $M_{23}C_6$ .

### 5.1.2.2.1 The M<sub>23</sub>C<sub>6</sub>

This carbide was positively indexed upto 900°C, 10 hours heattreatment in all the alloys and upto 950°C, 10 hours heattreatment in traces in B1 and B4(Table 5.42). Its possible formation and location has been a subject matter of some discussion(67-76). Through successive etching with special etching reagents and techniques, its formation along prior austenite boundaries grain has unequivocally been

demonstrated(77). This observation is consistent with an earlier finding wherein it was suggested that M23C6 may be present at the grain boundaries(67-73,78) or within grains in the form of fine precipitates(74,79). In the present alloys, both Cr and Mn can form this carbide  $(Cr_{23}C_6, Mn_{23}C_6)$ , but the formation of Mn<sub>23</sub>C<sub>6</sub> is preferred as Mn is placed ahead of Cr in the periodic table(80). Hence the tendency to form cubic carbide  $Mn_{23}C_6(81-83)$ . In the present study,  $M_{23}C_6$  has been found to be isomorphous with Mn<sub>23</sub>C<sub>6</sub>. The possible presence of this carbide at grain boundaries and adjoining areas can be explained by the stating that alloying element atoms in general and Mn atoms in particular have a tendency to segregate at grain boundaries giving rise to the formation of this carbide(82).

#### 5.1.2.2.2 The $M_3C$

This carbide (in massive/platy form) was present upto 950°C definitely and even upto 1000°C in traces. It was found to be isomorphous with Fe<sub>3</sub>C, although small amounts of Mn and Cr were also present in it as confirmed through EPMA (Table 5.43-5.44). This in fact made the Fe<sub>3</sub>C little more stable(84) otherwise it might have dissolved/transformed at relatively lower temperature(s) and soaking period(s). On the other hand the presence of Cu in the alloys (although not partitioning to  $Fe_3C$ ) opposite effect and therefore, the dissolution of this has an carbide was enhanced. Further, it appears that the phasing out of MaC is in some way linked with the formation of  $M_7C_3$  (Table 5.42). Whether this occurs singly or associated with the formation/ disappearance of  $M_{2,3}C_6$  carbide needs to be looked at carefully. The suggestion is worthy of consideration since

formation and subsequent phasing out of  $M_{23}C_6$  will generate a large amount of metal atoms. This aspect has received little attention and can form the basis of a useful future study in the experimental alloys.

# 5.1.2.2.3 The M<sub>7</sub>C<sub>3</sub>

This carbide was present in the as-cast condition and on heattreating from higher temperatures. It may be Cr based  $[(Cr_7C_3),$ Fe (Fe<sub>7</sub>C<sub>3</sub>)], or Mn based (Mn<sub>7</sub>C<sub>3</sub>), but Cr<sub>7</sub>C<sub>3</sub> is the only carbide to form singly. Others namely Fe<sub>7</sub>C<sub>3</sub> or Mn<sub>7</sub>C<sub>3</sub> are always present in combination as (Cr,Fe)<sub>7</sub>C<sub>3</sub>, (Fe,Cr)<sub>7</sub>C<sub>3</sub>, or (Cr<sub>7</sub>C<sub>3</sub>+Mn<sub>7</sub>C<sub>3</sub>) etc(85). In the present study the carbide formed was a mixed carbide of Fe, Cr & Mn (Table 5.44) with a preponderance of Fe & Cr atoms (Table 5.44).

formation of  $M_7C_3$  has been the subject of a number of The studies and its mechanism of formation from  $M_{3}C$  has been described as (i) in-situ(86-92), (ii) combination of in-situ and separate nucleation(93,94) and (iii) also as separate nucleation(95). In the present alloys, it appeared to form insitu (Figs. 4.14, 4.20, 4.26 & 4.32) preferentially at grain boundaries and regions adjoining it (described eutectic as carbide in Section 4.1.2.) corresponding to 1050°C heat Since the formation of  $M_7C_3$  carbide has treatments. been unequivocally established corresponding to 1000°C, 10 hours heat treatments coinciding with phasing out of  $M_3C$ , it is likely that the nucleation of  $M_7C_3$  may be favoured at  $M_3C$ -matrix interface. However, since the location of  $M_7C_3$  is in the close vicinity of the grain boundaries, it appears more logical to conclude that it

with the data observed from the Fe-Cr-C and Fe-Mn-C ternary systems(66). This being so it appears that a part of the dispersed carbide formed especially beyond 6 hours of holding period should correspond to the presence of  $M_sC_2(96)$ . A further perusal of this table revealed that either the decrease in the volume fraction of dispersed carbide with time at 950°C is too small/ negligible or the volume fraction of the dispersed carbide decreases with soaking period upto 6 hours and initially thereafter increases on further raising the soaking period to 10 hours (Table 4.53). Both these observations in a nut shell reveal that some new carbide is definitely forming and it would not be incorrect to deduce that this is in fact M<sub>5</sub>C<sub>2</sub>. Further, a carbide such as the one presently under consideration i.e. forming through a precipitation process by ageing of austenite at 950°C is more likely to be of a dispersed type (excluding the possible formation of a specific type of grain boundary carbide such as the  $M_{23}C_6$  whose formation has already been discussed and explained). Hence at least a part of the dispersed carbide is of the type  $M_5C_2$ . This can be established unequivocally only through selective etching technique.

5.1.2.2.5 Fe<sub>8</sub>Si<sub>2</sub>C

After exhausting most of the possibilities of indexing diffractograms, some peaks remained unindexed. One of the possible options considered was the presence of the aforesaid phase. From the Tables 5.2-5.41, it can be observed that this phase is indexed in all the alloys corresponding to 1000°C, 4 hrs. to 1050°C, 4 hrs. heat-treatments. Other than this no

further comment is being made as to its mechanism of formation and the morphology it assumes.

5.1.2.2.6 Presence of elemental Cu and other phases

Cu in the as-cast alloys The possible presence of is understandable because although the solubility of Cu in austenite is large, its solubility in ferrite is a maximum ( $\approx 1.5$ %) close to the eutectoid temperature and diminishes steeply with temperature(97). Of the two sets of alloys, presence of free Cu is more likely to be detected in the higher Cu containing alloys namely, B3 and B4 as compared with B1 and B2. The x-rav observations (Table 5.2-5.41) confirmed this to be so.

Another possibility of Cu being present is when the heat treating temperature is 1050°C - a temperature close enough to the melting point of Cu(98). Information summarized in the Table 5.42 confirms this finding.

After considering all possibilities, some reflections still remained unindexed. It was observed that this problem could be partly resolved by considering the formation of  $CrMn_3$  and  $Cu_2S$ phases. The possibility of the formation of inter-metallics such as  $CrMn_3$  is more on heat-treating from higher temperatures. The formation of  $Cu_2S$  is feasible in all the alloys perhaps more in the higher Cu containing alloys wherein the possibility of having free Cu to enable the formation of  $Cu_2S$  is larger. It is suggested that a more detailed investigation is required to confirm the presence of phases such as  $CrMn_3$  and  $Cu_2S$  etc. in future studies.

#### 5.2 Electron probe micro analysis results

This was carried out on the experimental alloys to ascertain (i) distribution of the major alloying elements into the matrix and the carbide phase and (ii) the manner in which the distribution was affected by heat treating/alloying. The EPMA data are reported in the Tables 5.43-5.44. Additionally, concentration profiles for Fe, Cr, Mn, Si, Cu and C (Fig. 5.3-5.5) and X-ray images for the above elements (Fig. 5.6-5.11) have also been provided.

A perusal of the above tables and figures revealed that the distribution of Cr, Mn and Cu into the matrix and the carbide phase was influenced by an increase in the alloy content and heat treating parameters. This is more effectively demonstrated with the help of the data summarized in the Tables A & B.

The abovesaid data (Tables A & B) were further rationalized by taking into account the volume fraction of different constituents and the results thus obtained are summarized in the Tables C & D. This provided additional information on the overall distribution of the alloying elements into the matrix and the carbide phases.

| Table- A | Element | distribution | in | matrix | and | carbide |
|----------|---------|--------------|----|--------|-----|---------|
|          | (950°C, | 10 Hrs., AC) |    |        |     |         |

| Alloy |      | Motwin       | Con  | centration,% | Osubid       | _       |
|-------|------|--------------|------|--------------|--------------|---------|
|       | Cr   | Matrix<br>Mn | Cu   | Cr           | Carbid<br>Mn | e<br>Cu |
| B1.   | 1.20 | 4.61         | 2.11 | 10.11        | 8.51         | 0.04    |
| в2    | 1.55 | 5.94         | 2.02 | 12.06        | 10.17        | 0.09    |
| В3    |      |              |      | 11.56        | 8.06         | 0.15    |
| В4    |      |              |      | 11.02        | 9.53         | 0,10    |

| Alloy |      |              | Conc  | entration,% |               |         |
|-------|------|--------------|-------|-------------|---------------|---------|
|       | Cr   | Matrix<br>Mn | Cu    | Cr          | Carbido<br>Mn | e<br>Cu |
| B1.   | 3.20 | 5.91         | 1.37  | 22.95       | 9.65          | 0.04    |
| в2    | 2.98 | 7.00         | 1.69  | 23.30       | 10.47         | 0.00    |
| в3    | 2.60 | 5.79         | 3.19  | 27.02       | 9.70          | 0.00    |
| в4    | 2.09 | 8.54         | 5.19* | 23.83       | 10.66         | 0.03    |

Table- B Element distribution in matrix and carbide (1050°C, 10 Hrs., AC)

\* Apparently anomalous

The data contained in the Tables A & B and the rationalized Tables C & D, is discussed as follows.

Table- C Element distribution in matrix and carbide based on their volume fractions (950°C, 10 Hrs., AC)

| Alloy . | • Mat | trix | Concent:<br>Platy c | -    | Dispersed carbide" |      |  |
|---------|-------|------|---------------------|------|--------------------|------|--|
|         | Cr    | Mn   | Cr                  | Mn   | Ĉr                 | Mn   |  |
| B1      | 0.78  | 2.91 | 2.93                | 2.47 | 0.57               | 0.48 |  |
| В2      | 1.03  | 3.83 | 2.94                | 2.48 | 1.11               | 0.94 |  |
| в3      |       |      | 3.92                | 2.73 | 0.87               | 0.60 |  |
| В4      |       |      | 2.72                | 2.35 | 1.02               | 0.89 |  |

Table- D Element distribution in matrix and carbide based on their volume fractions (1050°C, 10 Hrs., AC)

| Alloy | i    | Concent | tration,% |      |  |
|-------|------|---------|-----------|------|--|
|       | Mat  | crix    | Cark      | oide |  |
|       | Cr   | Mn      | Cr        | Mn   |  |
| B1    | 2.99 | 5.53    | 1.47      | 0.62 |  |
| в2    | 2.70 | 6.52    | 1.58      | 0.71 |  |
| в3    | 2.39 | 5.37    | 1.95      | 0.70 |  |
| в4    | 1.92 | 6.93    | 1.92      | 0.86 |  |

\* Assuming the overall partition ratio to be the same in the two carbides i.e. platy (massive) and the dispersed carbides.

# 5.2.1.1 Partitioning of the alloying elements into the matrix and the carbide phases

The abovesaid partitioning will depend upon their nature i.e. whether an element is an austenite stabilizer or a carbide former. An effective way to represent this would, therefore, be by estimating the partition ratio of elements into the carbide and the matrix phases. The data thus estimated, as influenced by heat treating is shown in the Tables E & F.

Table- E Element concentration ratio at 950°C, 10 hrs.

| Alloy  | $C_{cr}$ in carbide"      | C <sub>Mn</sub> in carbide* |  |
|--------|---------------------------|-----------------------------|--|
|        | C <sub>cr</sub> in matrix | C <sub>Mn</sub> in matrix   |  |
| <br>B1 | 8.43                      | 1.85                        |  |
| в2     | 7.78                      | 1.71                        |  |

\* Denotes platy/massive carbide

| Alloy | C <sub>er</sub> in carbide | C <sub>Mn</sub> in carbide |  |
|-------|----------------------------|----------------------------|--|
|       | C <sub>cr</sub> in matrix  | C <sub>Mm</sub> in matrix  |  |
| B1    | 7.17                       | 1.63                       |  |
| В2    | 7.82                       | 1.50                       |  |
| B3    | 10.39                      | 1.68                       |  |
| в4    | 11.40                      | 1.25                       |  |

Table- F Element concentration ratio at 1050°C, 10 hrs.

A perusal of all the above tables revealed that :

#### Mn

- (i) At 950°C, 10 hours heat treatment the percentage of Mn distributing into the matrix phase is approximately half of that present in the carbide phase (Table A).
- (ii) However, after taking into consideration the relative volume fraction of the different constituents, it is seen

that the percentage of Mn distributing into the matrix and the carbide phases is approximately the same (Table C).

- (iii) On raising the temperature to 1050°C, the percentage of Mn distributing into the matrix and the carbide phases is approximately in the ratio of 1:1.5 (Table B).
  - (iv) However, after correcting for the volume fraction, this ratio worked out to be approximately 8-9:1 (Table D).
    - (v) Since the volume fraction of the carbide phase at 1050°C is very small, the overall Mn in the carbide is small(Table D).
  - (vi) There is only a slight increase in the Mn content in the carbide on raising the temperature(Table A & B).
- (vii) The amount of Mn distributing into the carbide phase in both the lower and the higher Cu alloys appeared to be a little higher than can be expected from an austenite stabilizing element (Table E & F). Cr
  - (i) At 950°C, 10 hours heat treatment the percentage of Cr in the carbide to that in the matrix is approximately in the ratio of 8.5:1 (Alloys B3 and B4 are not considered) (Table F).

(ii) However, after correcting for the volume fraction, the ratio of Cr in the carbide to that in the matrix is 3.5-4:1 (Table C).

(iii) On heat treating from 1050°C, the percentage of Cr distributing into the carbide and the matrix phase is in the ratio of 7-7.5:1 in B1 & B2 and 11-12:1 in B3 & B4 (Table G).

- (iv) However, taking into consideration the volume fraction of different constituents, these ratios work out to be 1:2 in B1 & B2 and 1:1-1.25 in B3 & B4 (Table D).
- (v) Although, the overall amount of Cr distributing into the carbide is apparently small due to a reduced carbide volume fraction, it is none the less approximately 2.5 times higher than corresponding Mn distribution(Table B & D).

<u>Cu</u>

- (i) Bulk of the Cu is partitioning to the matrix phase (Table A & B).
- (ii) At lower heat treating temperature, the amount of Cu in the matrix is about 2.0% in the lower Cu alloys (Table A).
- (iii) On raising the heat treating temperature, the amount of Cu in the matrix has reduced to ~1.4-1.7% in the lower Cu alloys whereas, in the higher Cu alloys its level is approximately approaching the amount in which it is present.
  - (iv) Barring one instance and after rationalizing for volume fraction, the overall Cu distribution appears reasonable (Table A & B).

5.2.1.2 Effect of Mn on Cr distribution

This is effectively demonstrated with the help of the Tables G & H which represent the partitioning of elements into the matrix and the carbide phases as influenced by Mn content. Its perusal revealed that

 (i) Increasing the Mn content is promoting a larger partitioning of Cr both into the carbide and the matrix at lower temperature (B1 and B2).

| Alloy                | Concentration ratio of element            | Matrix | Carbide |
|----------------------|-------------------------------------------|--------|---------|
| B1 & B2<br>(1.5% Cu) | C <sub>Cr</sub> /C <sub>Cr</sub><br>B2 B1 | 1.29   | 1.19    |
|                      | C <sub>MR</sub> /C <sub>MR</sub><br>B2 B1 | 1.29   | 1.20    |
| B3 & B4<br>(3.0% Cu) | C <sub>cr</sub> /C <sub>cr</sub><br>B4 B3 |        | 0.96    |
|                      | C <sub>Mn</sub> /C <sub>Mn</sub><br>B4 B3 |        | 1.18    |

Table- G Concentration ratio at 950°C, 10 Hrs., AC heat-treatment

Table-H Concentration ratio at 1050°C, 10 Hrs., AC heat-treatment

| Alloy                | Concentration ratio of element            | Matrix | Carbide |
|----------------------|-------------------------------------------|--------|---------|
| B1 & B2<br>(1.5% Cu) | C <sub>Cr</sub> /C <sub>Cr</sub>          | 0.93   | 1.02    |
|                      | $C_{Mn}$ / $C_{Mn}$<br>B2 B1              | 1.18   | 1.08    |
| B3 & B4<br>(3.0% Cu) | $C_{cr} / C_{cr}$<br>B4 B3                | 0.80   | 0.88    |
|                      | С <sub>мп</sub> /С <sub>мп</sub><br>в4 вз | 1.47   | 1.10    |

(ii) However, on raising the heat treating temperature to 1050°C, Cr partitioning (due to a higher Mn content) into both the carbide and the matrix phases was no more preferential, however, its amount in the matrix was somewhat reduced (Table G & H) [Alloys B1 & B2].

- (iii) However, for the higher Cu alloys Mn is reducing the Cr distribution into the carbide (remaining unchanged if corrected for volume fraction) (Table G & H) [\*1050°C heat treatment]. At the lower heat treating temperature Mn is not influencing Cr partitioning into the carbide.
  - (iv) There is a definite reduction in the Cr content within the matrix (Mn is playing its customary role as austenite

| Alloy | Variation, % |              |     |     |               |    |
|-------|--------------|--------------|-----|-----|---------------|----|
|       | Cr           | Matrix<br>Mn | Cu  | Cr  | Carbide<br>Mn | Cu |
| B1    | 167          | 28           | -35 | 127 | 13            |    |
| В2    | 92           | 18           | -16 | 93  | 3             |    |
| B3    | 89*          | 12*          |     | 134 | 20            |    |
| В4    | 52*          | 62*          |     | 116 | 12            |    |

Table- I Percentage variation in the element concentration between the two heat-treatments

(ii) The percentage increase is very high with regard to Cr (particularly for lower Mn alloys, B1 & B3) as compared to percentage increase in Mn which is marginal (in the carbide) to moderate (in matrix).

#### 5.2.2 DISCUSSION

The EPMA data which has been critically represented in the above sections needs to be carefully analysed to derive useful inferences regarding partitioning and its consequent impact on alloy design. Although a more extensive EPMA work would have been beneficial, none the less the limited experiments performed can serve as a basis for arriving at useful conclusions.

The primary interest in such studies centres around basic partitioning and as Mn is being given primacy, the initial interest would centre around it. The partition ratio,  $Mn_{carbide}/Mn_{matrix}$  in the present study has varied from ≈1.5 to ≈1.8. This appears to be in fair agreement with an earlier study conducted by Singh(99) in which this partition ratio was found to be ≈1.5:1. The difference, however, is that whereas in the latter the heat treating temperatures did not exceed 850°C, they

(temperatures) have been relatively higher in the present study. This in itself can account for the slightly larger partition ratios obtained.

The important implications of these observations is that although Mn is considered to be an austenite stabilizer (implying a large partitioning into austenite), in the true sense its known carbide forming tendency pushes a fair proportion of it into the carbide phase. This is further made apparent when partitioning of a conventional austenite stabilizer like Ni is considered (based on data reported by Sandoz(100). Therefore, the amount of Mn is to be suitably increased to ensure that the requisite amount of Mn is available in austenite.

the partition ratio of Mn is considered after correcting If for volume fraction of different phases then at the lower of heat treating temperature the effective partition ratio is 1:1 which reduces to ≈0.11 to 0.12:1 on raising the temperature to 1050°C. former suggests a general evening out of the partitioning at The lower temperatures. However, since this data still implies that a larger proportion of Mn is partitioning to carbide than much earlier inference with regard to incorporating a expected, the still holds. content larger The Mn marked decrease in Mn concentration in the carbide can be explained by stating that the carbide at the higher temperature volume fraction of is negligible.

Talking about Cu partitioning it is seen that bulk of the Cu partitions into the matrix. This is to be expected because of its inherent tendency as austenite stabilizer and negligible carbide stabilizing tendency. On raising the heat treating temperature, the amount of Cu in the carbide is negligible. This is again as per expectations and consistent with the behaviour of other graphitizing elements Ni and Si, which are essentially found in the matrix. It may, however, be remembered that the graphitizing tendency of Cu is not as marked as that of Ni or Si. Therefore, if Cu is being utilized to affect graphitization then it would be effective only a higher temperatures.

In so far as Cr partitioning is concerned, the partition ratio  $Cr_{carbide}/Cr_{matrix}$  is  $\approx 8:1$  at lower temperature which is consistent with its known carbide forming tendency. However, on raising the heat treating temperature to 1050°C, the ratio is varying from  $\approx 7$  to 10 in the lower Mn alloys and from 8-11 in the higher Mn alloys. This is to say that higher Mn and higher Cu concentrations are ensuring a larger Cr partitioning into carbide. This is consistent with the fundamental considerations since both Mn and Cu will partition to matrix thus releasing Cr to partition to the carbide phase.

Having thus discussed the general partitioning pattern, it would now be appropriate to comment upon the nature of the carbide. The observation that approximately equal amounts of Mn and Cr partition to the carbide phase reveal that the carbides formed are mixed Fe, Mn, Cr type. This would mean that  $M_{23}C_6$ ,  $M_3C$ and whatever  $M_7C_3$  carbide is present are triple carbides. However, this can not be so for a  $M_5C_2$  type carbide since only Fe and Mn form such carbides. Since it has been suggested that  $M_5C_2$ is in fact a dispersed carbide, quite clearly the triple carbide deduction is not valid for this type of carbide. This is further

evident from the fact that our observations are mostly confined to the massive carbide and that more detailed EPM analysis is required on the dispersed carbides as well as on other carbides to clearly earmark regions representing the  $M_5C_2$  carbides.

On raising the temperature to  $1050\,^{\circ}$ C, it is observed that the total Mn and Cr concentration in the carbide has increased from about 18-20% (observed at 950°C heat treatment) to about 31-36%. Since in a majority of the instances the higher temperature carbide is  $M_7C_3$  type and since all the three elements Fe, Mn, Cr are known to form this carbide, the concentration of the elements is bound to be larger than what was observed on heat treating at 950°C.

Finally it becomes incumbent to comment upon the influence element on the partitioning of the others into different of one phases. The effect of Mn on Cu partitioning suggests no special preference on heat treating at 950°C while heat treating at 1050°C, the partitioning of Cu is more in the higher Mn alloys. is consistent with the austenite stabilizing nature and This normal affinity of Mn and Cu for one another especially when the microstructure is predominantly austenitic. Mn appears to promote larger partitioning of Cr both into the matrix and the carbide at lower temperature but not so at higher temperature. This is equivalent to saying that at higher temperature Mn and Cu together are playing a dominant role than Cr due to the microstructure being mainly austenitic.

Considering now the effect of Cu on the partitioning of Mn, it is seen that the effect on Mn partitioning is marked only at higher temperatures. Increased Mn levels both in the matrix and

in the carbide is an indication that Cu is promoting Mn to perform its customary function. A somewhat similar effect is observed on Cr partitioning; in fact, expectedly the amount of Cr in the matrix appears reduced thereby further confirming that Cu is promoting Cr to perform its usual function of forming/stabilizing the carbide. 5.3 Thermal analysis

Differential thermal analysis work comprised (i) assessment of the critical/transformation temperatures, and (ii) thermogravimetric studies, inclusive of modelling, carried out to a limited extent. The data thus obtained have been summarized in the Tables 5.45-5.46 and in the Figures 5.12-5.15. Results have been discussed in the following sections.

5.3.1 Results

5.3.1.1 Critical/transformation temperatures

- (i) First set of transformations occurred in all the alloys between 722-750°C (Table 5.45).
- (ii) The second set of transformation(s) similarly occurred in the temperature range of 890-955°C (Table 5.45).
- (iii) A third set of transformations, observed only in B2 andB4, occurred between 1050-1075°C (Table 5.45).

#### 5.3.1.2 DTA

- (i) For the first transformation, DTA values were positive for alloys B1 and B3 (ranging from 0.2 to 0.35mV) and negative for the alloys B2 and B4 (ranging from -0.85 to -0.90mV)[Table 5.46].
- (ii) For the second set of transformation(s), DTA values were negative; however, similarity between B1 and B3 (-0.52 to -0.70mV) and that between B2 and B4 (-2.15 to -2.65mV) still persisted(Table 5.46).
- (iii) The third set of transformation(s), observed only in B2 and B4, were once again characterized by negative DTA values ranging from -0.90 to -0.98mV(Table 5.46).

108

٠.

5.3.1.3 Thermogravimetric studies

This data, summarized in the form of plots between %TG as a function of temperature, are shown in the Figure 5.16.

From the figures, the following inferences were drawn

- (i) %TG increased very slowly with an increase in temperature. This was followed by an exponential increase on raising the temperature further.
- (ii) The nature of these plots was a function of the microstructure.
- (iii) In the as-cast state, the weight gain was nearly a constant upto approximately 600°C. %TG corresponding to this condition was a minimum for B2 followed by B1, B4 & B3. A steep increase in the %TG was observed at temperatures upwards of 600°C it being most marked in B2 followed by B4, B3 and B1.
  - (iv) In the 950°C, 10 hours heat-treated condition, the weight gain was nearly a constant upto approximately 700°C. %TG corresponding to this condition was a minimum for B2 followed by B3, B4 & B1 (Fig. 5.17).
  - (v) In the 1050°C, 10 hours heat-treated condition, the weight gain was nearly a constant upto approximately 800°C. %TG corresponding to this condition was a minimum for B2 followed by B3, B1 & B4 (Fig. 5.18).

5.3.2 Discussion

The DTA studies proved useful in substantiating the structural observations reported earlier ( Chapter 4, Section 4.1.2). Such a study was expected to prove helpful in resolving some of the existing inconsistencies and to provide additional information

on the possibility of employing the experimental alloys for high temperature applications. The least that was expected from the study was by way of information on the transformation/ critical temperatures.

### 5.3.2.1 Critical/transformation temperature(s)

The first set of transformation temperature(s) evidently represent the  $\alpha \rightarrow \tau$  transformation in the experimental alloys. The negative DTA values associated with B2 and B4 reveal a more stronger tendency to form  $\tau$  and this is consistent with the composition of these alloys which contain relatively higher proportion of Mn compared with B1 and B3. A marginally more negative value of DTA associated with B4 reveals a marginally enhanced  $\tau$ -stabilizing tendency which can be attributed to a higher Cu content of B4 as compared with B2.

next set of transformation temperatures evidently The represent a carbide transformation which has also been indicated through optical metallographic studies (Figs.4.7-4.32). X-ray studies (Tables 5.2-5.41) revealed that the possible carbide transformation in the temperature range 900-935°C comprises the possible formation of  $M_{23}C_6$ ,  $M_5C_2$  and  $M_7C_3$  type carbides. While the presence of M<sub>3</sub>C carbide has not been commented saying so - upon since its presence is represented through approximately intensities in the diffractograms (Tables 5.2-5.41). equivalent Based on more negative DTA value it is surmised that the carbide transformation(s) are more marked in the alloys B2 and B4 in comparison with the alloys B1 and вЗ. In an effort to rationalize this observation further, the x-ray observation

summary Table 5.42 was scrutinized afresh. It emerged that whereas  $M_{23}C_6$  formed in approximately similar amounts in all the alloys, B2 and B4 revealed a distinct preference for the formation of  $M_5C_2$  and  $M_7C_3$  type of carbides. Thus from all accounts the second set of transformation(s) represent the formation of  $M_{23}C_6$ ,  $M_5C_2$  and  $M_7C_3$  carbides, and more distinctly the latter two types because  $M_{23}C_6$  dissolves on prolonged holding at 900°C.

The third transformation is occurring only in the alloys B2 and B4 in the temperature range of 1050-1075 °C. DTA values indicate this change to be not as distinctly favoured as the transformations discussed above. It is inferred that this transformation comprises yet another carbide transformation of the type  $M_7C_3 \longrightarrow M_2C$  requiring a larger activation in the form of a higher temperature for initiating and sustaining it. This inference is consistent with the carbide transformation sequence as revealed from a study of the phase diagrams(66).

Although efforts have been made to arrive at definitive deductions on the basis of DTA results, perhaps a more rigorous experimentation would have enabled doing so with greater certainty. Such an experimentation would comprise (i) employing different heating rates starting from the lowest value e.g. of the order of 0.1°C/min., (ii) plotting out of the initial and peak transformation temperatures, (iii) extrapolating the initial and peak transformation temperatures to a heating rate equivalent to zero to obtain the equilibrium transformation temperatures, and (iv) calculation of heat of reaction based on the peak area finally culminating in the calculation of heat capacities of the

reactants and that of the products(101-102). It is suggested that the DTA studies be more rigorously carried out in order to arrive at precise information on the transformation behaviour of the experimental alloys.

5.3.2.2 Thermogravimetric studies

Thermogravimetric studies proved helpful in drawing inferences regarding the usefulness of the experimental alloys for high temperature applications. Since, the basic aim of the study was to optimize the microstructure (through heat treating) for getting the best in terms of corrosion resistance and the behaviour, the as-cast microstructure was deformation not to respond very favourably when exposed to expected high temperatures. All the same, its high temperature behaviour was investigated to arrive at some initial data in this regard and to use this as a reference base for assessing the high temperature response of other selected microstructures.

From a perusal of the thermogravimetric data (Fig. 5.16) it emerges that the TG data for as-cast microstructure has two distinct regions, (i) upto 600°C and (ii) beyond 600°C and extending upto 1050°C. The first of these is characterized by a very small and more or less uniform increase in %TG suggesting the usefulness of as-cast structure upto 600°C. An equally important aspect is that whereas in the first temperature region the behaviour of the alloy B2 was superior to others, there is a reversal of this trend in the second region (marked at temperature ≥700°C) such that the increase in %TG is maximum in B2 followed by B3, B4 and B1. Thus attention will have to be

given in explaining this reversal of the trend and the difference in the high temperature response of the alloys.

understand this the TG data was re-examined in the То context of critical / transformation temperatures(Table 5.45). From this it emerges that the sharp increase in %TG between 800 1050°C may be directly related with the susceptibility to and carbide transformation (M<sub>5</sub>C<sub>2</sub> formation) in general which is marked in B2 and B4 as compared to B1 and B3 (Section 5.3.2.1). This is clearly demonstrated when percentage increase in TG is considered between the temperature ranges 900-1000°C (actual temperatures representing carbide transformation are in the range of 890-935°C [Table 5.45]). The data shows percentage increase in TG to be a maximum in B2 followed by B4, B3 and B1. Amongst B1 and B3, the latter is more prone to the formation of  $M_5C_2$ . Thus, overall superiority of B1 over all the other alloys can be the attributed to its least proneness to form  $M_5C_2$  type of carbide. may explain the further sharp increase in A similar reasoning %TG in B2, in comparison to the other alloys, on heating to 1000-1050°C.

The TG data further reflects upon the usefulness of the austenite based microstructures in influencing high temperature behaviour. This is clearly brought out by the lower %TG values observed in the temperature range 700-800°C (structure austenite based) compared to those observed in the temperature range 600-700°C (structure  $\alpha$  based).

In the light of the abovesaid discussion when the TG data for microstructures corresponding to 950°C, 10 hrs. and 1050°C, 10 hrs. heat-treatments are compared, it is easy to assess why

the latter is proving to be more effective than the former upon heating upto 800°C. Since, both these heat-treatments stabilize austenite and exclude the carbide transformations occurring around 900°C, the present data once again favourably reflects upon the usefulness of  $\tau$  based structures and supports the contention that the primary reason for the pronounced increase in the %TG is the carbide transformations. Needless to state that, the enrichment of parent austenite brought about by high temperature treatments must have further favourably contributed improved behaviour the high temperature of these to microstructures as compared with the behaviour of the as-cast microstructure.

Looking to the overall deductions based on the TG data, it is evident that where the microstructure is austenite based the high temperature behaviour would be controlled by the stability austenite and proneness of the alloys to carbide of transformations. Since these two factors are a function of the alloy content, the behaviour of the experimental alloys is expected to differ from one another. In the situation where the matrix is not austenitic, other factors need consideration e.g. an alloy with a martensitic matrix or a partly martensitic matrix may respond favourably to high temperatures till martensite decomposition has not occurred. Thereafter, its behaviour will depend upon the decomposition kinetics of martensite. On the other hand an alloy which is not fully or partly martensitic to begin with may not respond as favourably to high temperatures as the alloy in the earlier instance but its behaviour is likely to

114

. .

be more consistent as compared to a martensite bearing allow bluow undergo softening after the martensite has which decomposed. A somewhat similar reasoning may account for the overall superiority of B2 and B4 (more so of B2) over B1 and B3 upto about 500°C and a marginally improved performance of B1 thereafter 700°C. for differences upto Reasons in high temperature response beyond 700°C have already been discussed. It would the less appropriate to state that the none be interpretation of the overall high temperature behaviour may not simplistic. Furthermore, a clearer picture would have be as emerged if the P content of the four alloys were identical.

## 5.3.3 Modelling of the TG data

The discussion contained in the Section 5.3.2.1 essentially dealt with the high temperature of response some selected microstructures and of the possible impact of various transformations, occurring during heating, in affecting the overall high temperature behaviour. Having done so, it would now be appropriate to look into modelling aspect of the TG data. In order to do so, it would be necessary to examine the processes involving high temperature oxidation per se and arrive at the possible rate laws relevant to the present study, which would eventually form the basis of modelling.

Oxidation of metals can be expressed by a simple chemical reaction as

 $aMe + b/_2O_2 --> Me_aO_b$  ...(5.1)

However, the reaction path and the oxidation behaviour of a metal may depend on a variety of factors, and reaction mechanism(s) may as a result prove complex.

The initial step in the metal-oxygen reaction involves the adsorption of gas on the metal surface. As the reaction proceeds, oxygen may dissolve in the metal forming an oxide on the surface either as a film or as a separate oxide nuclei. Adsorption and the initial oxide formation are both functions of surface orientation and condition, concentration of crystal defects at the surface, and impurities in both the metal and the gas(103).

The surface oxide separates the metal from the gas. This oxide may either be in the form of thin tenacious film or as a porous oxide scale.

For a particular metal, the reaction mechanism is a function of the pre-treatment and surface condition, temperature, gas composition and pressure, and elapsed time of reaction. Looking to the possibility of a large variation in the properties of different metals and alloys and their oxides, a number of theories are needed to describe the oxidation behaviour of metals(104-106).

A detailed understanding of this phenomenon requires knowledge of reaction rates and kinetics, the temperature and oxygen pressure dependence of the reaction, the composition, structure, and growth mechanism of the reaction products.

Rate equations describing oxidation may be classified as logarithmic, parabolic, and linear. These are discussed in detail elsewhere(104-110) and are not relevant to the present study because temperature dependence of oxidation behaviour alone has been studied.

Numerous oxidation reactions have shown empirically that the

temperature dependence of oxidation rate constants at a constant ambient oxygen pressure obeys an Arrhenius-type equation

$$k = k_{o} exp(-Q/RT)$$
 ...(5.2)

where Q is the activation energy commonly given in cal/mole, R is the gas constant(1.986 cal/°K mole), and the T the absolute pre-exponential factor, temperature. The k\_, is within experimental accuracy, usually found to be independent of temperature. Using Eq.5.2, the activation energy Q is determined by plotting log10k as a function of 1/T, in which case the slope of the curve is given by Q/2.303R. The rate constant at different temperatures is commonly determined from isothermal measurements, but may also be determined from a single run under conditions of linearly increasing temperature(111).

Nucleation and growth phenomena may give rise to unusual oxygen pressure-dependence of the process of oxidation(112-114). Considering oxidation of Fe as an example,  $Fe_3O_4$  is initially formed on the surface (FeO is unstable below 570°C), and  $Fe_2O_3$  is subsequently nucleated in the  $Fe_3O_4$  surface. When  $Fe_2O_3$  has grown to form a continuous layer, the oxidation rate is substantially reduced.

A scrutiny of the Figure 5.16 reveals that although the %TG varies exponentially with temperature, the plot has two distinct parts, the nature of variation in one being opposite to that of the other. The first part (from ambient temperature to 200°C) can be represented by an asymptotic curve as

 $TG = A1'(exp^{-\tau/A2'-1})$  ...(5.3)

and the second part can be represented as

 $TG = A1 + A2(exp^{-A3/T})$  ...(5.4)

where, Al', A2', A1, A2, and A3 are constants, and T is temperature in °K.

The %TG increase in the first part is very small( $\approx 2$ %) compared to the overall increase of upto ( $\approx 27-30$ %) attained at highest heating temperature. It was therefore, felt appropriate to neglect the former in arriving at the proposed model. As before multi-variable nonlinear constraint optimization technique(54,55) was employed to do so. The correlations thus obtained are summarized as follows:

Alloy B1 %TG = 1.561878 + 2665.150 exp(-7529.676/T) ...(5.5) Alloy B2 %TG = 1.310813 + 9623.292 exp(-8771.445/T) ...(5.6) Alloy B3 %TG = 1.515658 + 3465.314 exp(-7609.409/T) ...(5.7) Alloy B4 %TG = 1.566102 + 4004.606 exp(-7792.101/T) ...(5.8)

The %TG calculated from the aforesaid correlations for temperatures  $\geq 300$  °C revealed that predicted data are within ±6% of the experimentally determined data for the alloys B1 & B3 and within ±10% for the alloys B2 & B4 (Figs. 5.19). The scatter is within the permissible range and favourably reflects on the validity of the model.

## CHAPTER VI

# ELECTRO-CHEMICAL CHARACTERIZATION AND DEFORMATION BEHAVIOUR OF THE ALLOYS

The results reported thus far dealt with the transformation behaviour of the experimental alloys arrived at on the basis of hardness measurements, optical metallography, X-ray diffraction, EPMA and DTA. Having achieved this target, it was appropriate to characterize the alloys for their corrosion and deformation behaviour. Potentiostatic studies and compression testing were utilized for this purpose. The data thus obtained have been summarized and discussed in the following sections.

## 6.1.1 Electro-chemical characterization

The experimental alloys were characterized for their corrosion behaviour in the as-cast and in the heat-treated conditions in order to substantiate the findings of Jain(115). He investigated the alloys in 5% NaCl solution in the oil quenched condition using the weight loss method. Selection of this technique is justified because the experimental alloys undergo uniform corrosion. The study(115) had shown that :

- (i) Corrosion resistance in the as-cast condition improved upon heat-treating.
- (ii) Similarly, corrosion rate decreased on raising the soaking period at a given heat-treating temperature (range 900 to 1050°C) except on heat-treating at 950°C.
  (iii) In general, corrosion rate decreased with an increase in the heat-treating temperature at 4 hrs soaking period.
  (iv) At 10 hours soaking period, corrosion rate increased sharply on raising the temperature from 900 to 950°C

followed by a sharp decrease in it on increasing the temperature upto 1050°C.

- (v) Microstructures corresponding to the following heat-treatments improved corrosion resistance :
   (a) 1050,10,00, (b) 1050,4,00 and (c) 1000,10,00
- (vi) Similarly, microstructures corresponding to 900,4,0Q and 950,10,0Q heat-treatments impaired corrosion resistance. Limited studies on the higher Cu alloys i.e. B3 and B4 in 10% (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> had revealed that(115):
- (i) The experimental and the standard alloys exhibited active-passive behaviour.
- (ii) In the as-cast state, B4 responded more favourably than B3 based on  $I_{pp}$  and  $I_{corr}$  values.
- (iii) The 900°C, 4hours, OQ heat-treatment led to an improvement in the corrosion resistance of B3 and B4 over that observed in the as-cast state. The value of  $I_{PP}$  reduced considerably while  $I_{corr}$  was more or less unaltered. Alloy B4 again responded more favourably.
- (iv) Of the two standard alloys, KC (nodular graphite) was found to be better than KC1 (flake graphite), based on  $I_{pp}$  and  $I_{cr}$  values.

The aforesaid study while establishing the usefulness of experimental alloys, none the less, did not reveal their behaviour when subjected to accelerated corrosion testing. It was therefore, decided to carry out such a study and analyze the data thus obtained. Representative microstructures were characterized for their electro-chemical response in a 5% NaCl

solution using the potentiostatic method. To facilitate a comparison, two standard alloys namely flake graphite Ni-resist and spheroidal graphite NI-resist were also investigated.

Studies were carried out in the potential range -1200mV to -300 mV by constructing polarization curves within the Tafel region (Figs.6.1 to 6.23). Corrosion potentials and the currents obtained from the plots were noted down for further analysis and are summarized in the Tables 6.1-6.3. Summary tables were also prepared for  $I_{corr}$ (Table 6.2) and for  $E_{corr}$ (Table 6.3).

A scrutiny of the Figs.6.1 to 6.23 and the Tables 6.1-6.3 revealed that:

- (i) The corrosion potentials,  $E_{corr}$  (with respect to a reference electrode) essentially lie in the range of -0.426 to -0.645 V.
- (ii) For the 10 hrs. soaking period,  $E_{corr}$  increased on increasing the heat-treating temperature from 900 to 950°C; a further increase in the temperature upto 1050°C made  $E_{corr}$  more noble (less -ve).
- (iii)  $E_{corr}$  was a minimum for B2(1050, 10, AC heat-treatment) and a maximum for B1(950, 10, AC heat-treatment).
- (iv)  $I_{corr}$  increased with an increase in the heat-treating temperature from 900 to 950°C and decreased thereafter on increasing temperature upto 1050°C (10 hrs. soaking period) in all the alloys i.e. the heat-treating parameters had an identical effect on the  $E_{corr}$  and  $I_{corr}$ .
- (v) In general, 1050, 4, AC heat-treatments showed higher  $E_{corr}$  as compared to both 1000, 10, AC and 1050, 10, AC heat-treatments.

- (vi) The corrosion potentials  $(E_{corr})$  when noted from the polarization curves, were different from those measured against a reference electrode. This difference was less marked for heat-treatments such as 900,10,AC, 1000,10,AC and 1050,10,AC and more marked for the 950,10,AC heat-treatment.
- (vii) The corrosion currents  $I_{corr}$  for the experimental alloys were in the range of 107-198  $\mu$ A/cm<sup>2</sup>.
- (viii) The corrosion potentials and the currents for the standard alloys were lower than that for the experimental alloys. Further, the performance of KC was better than KC1(115) based on  $E_{corr}$  and  $I_{corr}$  values.
- (ix) In some instances, two stepped polarization plots were obtained. In such instances it was difficult to measure  $I_{corr}$  with certainty. However, potentials corresponding to both the steps were noted.
- (x) The second step was marked for the 950°C, 10 hrs., AC heat-treatment for all the alloys.

### 6.1.2 Discussion

A careful study of the basics of electro-chemical characterization reveals that one method of conducting accelerated aqueous corrosion testing is by determining the potentiostatic behaviour of a material. Rather than plotting the entire polarization curve, it may suffice to confine the studies to the Tafel region. The critical parameters of interest are  $E_{corr}$  and  $I_{corr}$ ; the latter is determined by drawing a tangent at the linear segment of the region I (Fig.6.1) and noting down

current corresponding to the point of intersection of the tangent with the horizontal (representing  $E_{eperr}$ ).

A microstructure would resist corrosion if it has an Ecorr less negative i.e. more closer to the H<sub>2</sub> electrode which is potential. Any heat-treatment that alters the microstructure so that the  $E_{corr}$  becomes more noble would be adjudged to be a beneficial heat-treatment. It is equally important that a given microstructure should additionally exhibit a low Icorr value. Thus, if two microstructures attain a nearly similar Ecorr, the exhibiting a lower Icorr value will be more preferred. one Similarly, a low value of I. is desirable irrespective of whether or not a material shows `active-passive' behaviour. This is because  $I_{\odot}$  is synonymous with  $H_2$  liberation/formation and a large value would signify a large  $H_2$  adsorption/absorption and embrittlement(116). The abovesaid analysis is useful in hence explaining the data obtained.

Corrosion resistance in the heat-treated condition, in general, is improved over that in the as-cast state since most heat-treatments considered in the present study are conducive to attaining an austenite based microstructure. As against this, the microstructure in the as-cast condition is not suitable in

attaining good resistance to corrosion due to the multiplicity of

the microconstituents present within the matrix. On heattreating, a general improvement in corrosion resistance is due to (i) a reduction in the Vf of MC and DC and (ii) the formation of a successively increasing amount of austenite whose stability increases with temperature as more and more amount of MC and DC dissolve in it. Needless to add that in the absence of a second phase (both MC and DC) the corrosion resistance would have been better than what has been obtained. In order to compare the relative effects of MC and DC in influencing corrosion, it would be useful to assess the happenings corresponding to the 10 hrs. heat-treatments.

On doing so it emerges that the DC are playing a dominant in determining the corrosion behaviour on heat-treating at role 950°C. The reason is that the DC undergo maximum coarsening at this temperature as would be borne out by the coarsening index data (Section 4.2.8, p.68). The larger the coarsening, more enhanced would be the galvanic action and the lower would be the corrosion resistance. At temperatures higher than 950°C dispersed carbides have no bearing on the corrosion behaviour because they are no more present in the microstructure. Although DC are corresponding to the 4 hrs. heat-treatment, their (i) present fraction, (ii) size and distribution together do not volume enhance the galvanic action sufficient enough to adversely effect resistance. This reasoning is appropriately justified corrosion since the volume fraction of MC at the 900°C, 10 hrs., AC and 950°C, 10 hrs., AC heat-treatments is nearly the same. Quite clearly the enhanced galvanic action in the latter condition is as a consequence of (i) coarsening as would be borne out by the coarsening index and (ii) a critical volume fraction of DC.

It would be appropriate to reiterate that the massive carbides also enhance galvanic action, its magnitude being a function of the volume fraction and morphology. Thus the least that can happen in the presence of a second phase (in any form)

is that the galvanic action is enhanced; the specific effect being governed by its (second phase) nature.

On the basis of the above reasoning it would be possible to appreciate the results summarized in the Tables 6.1 to 6.3 and in the Figures 6.1 to 6.5. The overall corrosion behaviour based on potentiostatic studies also agrees well with the observations made by Jain(115) based on weight loss.

Coming to specifics, attention needs to be given to explaining (i) the presence of two steps in the polarization curves whose presence is marked corresponding to the 950°C, 10 hrs. heat-treatment, (ii) an unexpected decrease in corrosion resistance in B2 and B4 corresponding to the 1050°C, 4 hrs. heat-treatment (no mention has been made of B1 and B3 because of the non-availability of the corrosion data for 1050°C, 4 hrs. heat-treatment), (iii) 950°C, 10 hrs., AC heat-treatment impairing corrosion resistance and (iv) the standard alloys resisting corrosion better than the experimental alloys, although, the difference is marginalized when the best corrosion resistance exhibited by the experimental alloys is considered.

Presence of a two step polarization plot is a clear indication that the galvanic action is occurring in two stages. In instances such as the one experienced at 950°C, 10 hrs. heattreatment, (effective surface area due to a combined presence of MC and DC being large enough), the corrosion resistance is being controlled predominantly by the second phase to start with (MC+DC). Evidently, the high hardness associated with the second phase has lead to a slowing down in corrosion. That this is not a true representation is revealed by a relatively large value of

Ecorr. Generally Ecorr is close enough to Einmersion. As potential is further superimposed, the matrix-second phase galvanic action is accelerated giving rise to an increase in current / current density which is followed by a decrease in it as is normally expected. This minimum, which is a representative of the  $E_{max}$  normally observed (Tables 6.1 & 6.3), is occurring at currents/ current densities appreciably higher than generally attained (Figs. 6.1-6.4), primarily due to the presence of a larger number of galvanic cells. For this reason the second step is not marked. Hereafter, the plot proceeds in the usual manner. That this hypothesis, based on an enhanced galvanic action, is correct is further borne out by the coarsening index value which is the lowest corresponding to the 950°C, 10 hrs. heat-treatment (signifying maximum coarsening that has been observed in the present study).

Corrosion resistance is impaired corresponding to 1050°C, 4 hrs. heat-treatment because of the formation of a large volume fraction of an eutectic (anomalous eutectic) comprising austenite + carbide (Chapter IV, Section 4.1.2) which has platy/needle like morphology detrimental to corrosion resistance. Thus, a large volume fraction of the second phase and its unfavorable morphology have contributed to this result.

The unusual deterioration in corrosion resistance corresponding to 950°C, 10 hrs. heat-treatment is primarily due to enhanced galvanic action due to coarsening of DC and this aspect has already been discussed.

The standard alloys have a better overall corrosion

6.1) (Table primarily resistance because the matrix is austenitic containing negligible second predominantly phase (graphite; the amount of carbide being more or less insignificant). Presence of a large Ni content has beneficially contributed to an enhanced stability of the matrix. In the experimental alloys, the total alloy content is much smaller. the experimental alloys That the corrosion resistance of approaches that of the standard alloys at the 1050°C, 10 hrs., AC is heat-treatment clear indication stability a that of a primary factor in controlling the corrosion. is austenite behaviour; the other factors are the effect of the second phase and difference in electro-chemical potentials between the matrix and the second phase (which is larger for the standard alloys and for the experimental alloys). It is thus clear that much smaller improved corrosion resistance can be attained in the experimental provided the deductions arrived at are duly implemented alloys through improved alloy design.

## 6.2 Modelling of the corrosion behaviour

An analysis of the literature reviewed in section 1.2 reveals the manner in which different microconstituents influence corrosion behaviour. Excluding the matrix to start with, their effect depends upon their nature and size, shape and distribution. When the matrix is also considered, its characteristics (crystal structure and stability) and difference in the electro-chemical potentials between the matrix and the constituents also assume significance. Interestingly, most of the correlations have been qualitative in character. Any effort aimed at modelling the corrosion behaviour will have to incorporate the abovesaid aspects.

The first effort in this regard was made by Jain(117) who attempted to correlate corrosion rate with the microstructural features comprising austenitic matrix, massive carbides and dispersed carbides. He selected heat-treatments carried out at 900 & 950°C primarily because the different alloys constituting the study attained nearly constant hardness values at these temperatures. Whereas the hardness was more or less independent of the soaking period, the volume fraction of MC & DC varied. It was felt appropriate to examine the methodology adopted by him before enlarging upon the ideas conceived in his work reported

recently by Patwardhan & Jain(118).

He conceived that the CR could be expressed as a function of

different parameters namely,

CR ≈ f(austenite Vf/ stability)

 $CR \approx f(Vf \text{ of } MC)$ 

 $CR \approx f(Vf of DC)$ 

CR = f(distribution of the DC)

To begin with, the last term was excluded and the volume fraction of MC & DC was combined into a single term to develop the initial stage model. This was justified on the assumption that since the second phase in general would enhance CR, their overall effect can be cummulated into a single factor.

From the experimental data it was concluded that the functional relationship interrelating corrosion rate with the total volume fraction of carbides can be represented by a second order polynomial :

 $CR = A1 + A2(VCb) + A3(VCb)^{2}$  ...(6.1)

The contribution of the second phase, i.e. the role of dispersed carbides, was included in the above expression by incorporating a factor based on the number of particles, NOP. This led to the following expression :

 $CR = [A1' + A2'(VCb) + A3'(VCb)^{2}](NOP)^{A4'} \qquad \dots (6.2)$ 

The constants A1', A2', A3', and A4' were calculated by using multi-variable constraint optimization technique and the final equations are (54-55):

## Test duration : 168 hours

B1 :  $CR = [1516.9 - 79.6(VCb) + 1.13(VCb)^2](NOP)^{-0.48}$  ...(6.3) B2 :  $CR = [7999.8 - 541.2(VCb) + 9.45(VCb)^2](NOP)^{-0.73}$  ...(6.4) B3 :  $CR = [9.94 - 0.624(VCb) + 0.0099(VCb)^2](NOP)^{1.4}$  ...(6.5) B4 :  $CR = [44.3 - 3.07(VCb) + 0.0545(VCb)^2](NOP)^{0.83}$  ...(6.6)

The above constants were determined within a limiting condition of ±8000. When this restriction over the limits was removed and a larger number of iterations were taken to obtain better optimum values, then the above equations assumed the

following form :

## Test duration : 168 hours

B1 :  $CR = [3593.0 - 188.5(VCb) + 2.751(VCb)^2](NOP)^{-0.52} \dots (6.7)$ B2 :  $CR = [25957.48 - 1772.55(VCb) + 30.96(VCb)^2](NOP)^{-0.99} \dots (6.8)$ B3 :  $CR = [38.95 - 2.445(VCb) + 0.0389(VCb)^2](NOP)^{1.02} \dots (6.9)$ B4 :  $CR = [44.69 - 3.10(VCb) + 0.0551(VCb)^2](NOP)^{0.82} \dots (6.10)$ 

The equations 6.7-6.10 in essence are similar to those originally developed by Jain(117). In order to understand the physical implications of the aforesaid model as a whole, the values of the constants were carefully scrutinized. It emerged that whereas the first three constants are consistent from alloy to alloy i.e. they are either all positive or all negative, the last constant is negative for B1 & B2 and positive for B2 & B4. To understand its possible implications, the factor (NOP)<sup>A4</sup> was calculated for all the alloys and the values thus obtained are given below.

| Heat-treatment |         | (NOP) ** | - •    |       |
|----------------|---------|----------|--------|-------|
|                | B1      | в2       | B3     | B4    |
| 900, 4,AC      |         | 0.056    | 203.68 | 23.59 |
| 900,10,AC      | 0.163 . | 0.068    | 211.05 | 19.57 |
| 950, 4,AC      | 0.183   | 0.082    | 168.02 | 19.71 |
| 950,10,AC      | 0.216   | 0.073    | 154.36 | 17.93 |

Evidently, the factor (NOP)<sup>A4</sup> is varying widely. This gave an indication that either NOP can not be regarded as a satisfactory parameter for representing DC or the constants have been calculated without adequately understanding the physical implications of the their effect on the corrosion rate. The latter aspect was given precedence by visualizing that

EFFECT OF SOAKING PERIOD ON HARDNESS IN A.C. CONDITION

.

| TIME<br>(HRS)                                  |                                                                                                       |                                                                                           |                                                                                       |                                                                                           | HAR)<br>(H                                                                | DNES:<br>V30)                                                                           | 5                                                                                          |                                                                                                             |                                                                             |                                                      | SD                               | AVERAGE<br>(HV30)  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|----------------------------------|--------------------|
| 2<br>4                                         | 695                                                                                                   | 695                                                                                       | 692                                                                                   | 690                                                                                       | 690                                                                       | 700<br>690<br>741                                                                       | 690                                                                                        | 690                                                                                                         | 685                                                                         | 685                                                  |                                  | 696                |
| 4<br>6                                         | 730                                                                                                   | 730                                                                                       | 720                                                                                   | 720                                                                                       | 710                                                                       | 741<br>710<br>736                                                                       | 700                                                                                        | 695                                                                                                         | 685                                                                         | 685                                                  | 21.90                            | 725                |
| 8                                              | 725                                                                                                   | 720                                                                                       | 720                                                                                   | 720                                                                                       | 720                                                                       |                                                                                         | 705                                                                                        | 695                                                                                                         | 690                                                                         | 690                                                  | 21.65                            | 724                |
| 10                                             | 741                                                                                                   | 741                                                                                       | 741                                                                                   | 736                                                                                       | 736                                                                       | 736                                                                                     | 730                                                                                        | 730                                                                                                         | 730                                                                         | 725                                                  |                                  | 7 <b>34</b><br>723 |
| FOR DI<br>66'<br>BEST I<br>STANDA<br>FOR DI    | 7.000<br>FIT N<br>ARD I                                                                               | ))<br>/ALUF<br>)EVI/                                                                      | .17<br>5 69<br>TION                                                                   | 9357<br>97.9<br>V IS                                                                      | 7719                                                                      | -1.2<br>9.0                                                                             | 2321<br>730.                                                                               | .3 7<br>508                                                                                                 | 731.0                                                                       | 5 72                                                 | 23.1                             |                    |
| 654<br>BEST I<br>STANDA                        | 4.399<br>FIT V<br>ARD I                                                                               | 90<br>/ALUE<br>DEVIA                                                                      | 26.<br>55 69<br>101                                                                   | 7864<br>97.0<br>1 IS                                                                      | 1<br>72(                                                                  | -2.9<br>).8<br>8.7                                                                      | 9198<br>730<br>72517                                                                       | .3 1<br>734                                                                                                 | 729.8                                                                       |                                                      | 24.0                             | •                  |
|                                                | 4.399<br>FIT V<br>ARD I<br>-4.2<br>622                                                                | 90<br>VALUE<br>DEVIA<br>1<br>622                                                          | 26.<br>ES 69<br>ATION<br>CEMP.<br>618                                                 | 7864<br>97.0<br>1 IS<br>(DEG                                                              | 4<br>72(<br>3.C)<br>618                                                   | -2.9<br>).8<br>8.7<br>614                                                               | 9198<br>730<br>72515<br>610                                                                | $\frac{3}{734}$                                                                                             | 729.8<br>350<br>610                                                         | 3 72<br>606                                          |                                  |                    |
| 654<br>BEST D<br>STANDA<br>TABLE               | 4.399<br>FIT V<br>ARD I<br>-4.2<br>622<br>606<br>690                                                  | 90<br>/ALUE<br>DEVIA<br>622<br>606<br>690                                                 | 26.<br>25 69<br>ATION<br>CEMP.<br>618<br>602<br>690                                   | 7864<br>97.0<br>IIS<br>(DEG<br>618<br>594<br>690                                          | 720<br>720<br>618<br>590<br>685                                           | -2.9<br>).8<br>8.7<br>614<br>590<br>685                                                 | 9198<br>730<br>72517<br>610<br>586<br>685                                                  | .3<br>734<br>= 8<br>610<br>586<br>680                                                                       | 729.8<br>350<br>610<br>583<br>680                                           | 606<br>579<br>675                                    | 13.88                            | 603                |
| 654<br>BEST D<br>STANDA<br>TABLE               | 4.399<br>FIT V<br>ARD I<br>-4.2<br>622<br>606<br>690<br>675<br>680                                    | 0<br>7ALUE<br>DEVIA<br>622<br>606<br>690<br>671<br>680                                    | 26.<br>25 69<br>ATION<br>CEMP.<br>618<br>602<br>690<br>671<br>675                     | 7864<br>97.0<br>IIS<br>(DE0<br>618<br>594<br>690<br>671<br>675                            | 720<br>5.C)<br>618<br>590<br>685<br>666<br>671                            | -2.9<br>).8<br>8.7<br>614<br>590<br>685<br>661<br>671                                   | 9198<br>730<br>72517<br>610<br>586<br>685<br>685<br>657<br>671                             | .3<br>734<br>= 8<br>610<br>586<br>680<br>657<br>666                                                         | 729.8<br>350<br>610<br>583<br>680<br>657<br>661                             | 606<br>579<br>675<br>657<br>657                      | 13.88<br>12.29                   | 674                |
| 654<br>BEST I<br>STAND<br>TABLE                | 4.399<br>FIT V<br>ARD I<br>-4.2<br>622<br>606<br>690<br>675<br>680<br>675<br>680<br>657<br>710<br>680 | 0<br>7ALUE<br>DEVIA<br>622<br>606<br>690<br>671<br>680<br>657<br>695<br>680               | 26.<br>55.69<br>TION<br>CEMP.<br>618<br>602<br>690<br>671<br>675<br>657<br>695<br>675 | 7864<br>97.0<br>IS<br>(DEC<br>618<br>594<br>690<br>671<br>675<br>657<br>695<br>675        | 720<br>618<br>590<br>685<br>666<br>671<br>657<br>695<br>675               | -2.9).8<br>8.7<br>614<br>590<br>685<br>661<br>671<br>652<br>690<br>671                  | 9198<br>730<br>72515<br>610<br>586<br>685<br>657<br>671<br>652<br>690<br>671               | $ \begin{array}{c} 3 \\ 734 \\ = 8 \\ 610 \\ 586 \\ 680 \\ 657 \\ 666 \\ 652 \\ 685 \\ 661 \\ \end{array} $ | 729.8<br>350<br>610<br>583<br>680<br>657<br>661<br>652<br>685<br>657        | 606<br>579<br>675<br>657<br>657<br>644<br>680<br>657 | 13.88<br>12.29<br>10.56          | 674                |
| 654<br>BEST D<br>STAND<br>TABLE<br>2<br>4<br>6 | 4.399<br>FIT V<br>ARD I<br>-4.2<br>622<br>606<br>690<br>675<br>680<br>657<br>710<br>680<br>725<br>690 | 0<br>7ALUE<br>DEVIA<br>622<br>606<br>690<br>671<br>680<br>657<br>695<br>680<br>715<br>690 | 26.<br>ES 69<br>TION<br>EMP.<br>618<br>602<br>690<br>671<br>695<br>675<br>710<br>685  | 7864<br>97.0<br>IS<br>(DE0<br>618<br>594<br>690<br>671<br>675<br>695<br>675<br>705<br>685 | 720<br>618<br>590<br>685<br>666<br>671<br>657<br>695<br>675<br>705<br>680 | -2.9<br>.8<br>8.7<br>614<br>590<br>685<br>661<br>671<br>652<br>690<br>671<br>705<br>680 | 9198<br>730<br>72517<br>610<br>586<br>685<br>657<br>671<br>652<br>690<br>671<br>700<br>675 | 3<br>734<br>= 8<br>610<br>586<br>680<br>657<br>666<br>652<br>685<br>661<br>700<br>675                       | 729.8<br>350<br>610<br>583<br>680<br>657<br>661<br>652<br>685<br>657<br>700 | 606<br>579<br>675<br>657<br>644<br>680<br>657<br>695 | 13.88<br>12.29<br>10.56<br>13.92 | 674<br>662         |

following form :

### Test duration : 168 hours

| B1 | : | CR | = | [3593.0 - 188.5(VCb) + 2.751(VCb) <sup>2</sup> ](NOP)-0.52             | (6.7)  |
|----|---|----|---|------------------------------------------------------------------------|--------|
| в2 | : | CR | = | [25957.48-1772.55(VCb)+30.96(VCb) <sup>2</sup> ](NOP)- <sup>0.99</sup> | (6.8)  |
| в3 | : | CR | = | [38.95 - 2.445(VCb) + 0.0389(VCb) <sup>2</sup> ](NOP) <sup>1.02</sup>  | (6.9)  |
| в4 | : | CR | = | [44.69 - 3.10(VCb) + 0.0551(VCb) <sup>2</sup> ](NOP) <sup>0.82</sup>   | (6.10) |

The equations 6.7-6.10 in essence are similar to those originally developed by Jain(117). In order to understand the physical implications of the aforesaid model as a whole, the values of the constants were carefully scrutinized. It emerged that whereas the first three constants are consistent from alloy to alloy i.e. they are either all positive or all negative, the last constant is negative for B1 & B2 and positive for B2 & B4. To understand its possible implications, the factor (NOP)<sup>A4</sup> was calculated for all the alloys and the values thus obtained are given below.

| Heat-treatment |       | (NOP)** |        |       |
|----------------|-------|---------|--------|-------|
|                | B1    | B2      | B3     | B4    |
| 900, 4,AC      |       | 0.056   | 203.68 | 23.59 |
| 900,10,AC      | 0.163 | 0.068   | 211.05 | 19.57 |
| 950, 4,AC      | 0.183 | 0.082   | 168.02 | 19.71 |
| 950,10,AC      | 0.216 | 0.073   | 154.36 | 17.93 |

Evidently, the factor  $(NOP)^{n4}$  is varying widely. This gave an indication that either NOP can not be regarded as a satisfactory parameter for representing DC or the constants have been calculated without adequately understanding the physical implications of the their effect on the corrosion rate.

The latter aspect was given precedence by visualizing that

the presence of DC will enhance corrosion rate and as such the constants A4' should necessarily by positive. Based on this premise, the constants were redetermined in the present study and the equations now assume the form :

· -

## Test duration : 168 hours

B1 :  $CR = [2003.968-101.423(VCb)+1.290(VCb)^{2}](NOP)^{O-187}$  ...(6.11) B2 :  $CR = [177.200-10.94(VCb)+0.192(VCb)^{2}](NOP)^{O-011}$  ...(6.12) B3 :  $CR = [550.60-34.71(VCb)+0.558(VCb)^{2}](NOP)^{O-199}$  ...(6.13) B4 :  $CR = [105.01-6.830(VCb)+0.125(VCb)^{2}](NOP)^{O-199}$  ...(6.14)

## Test duration : 720 hours

B1 : CR =  $[2074.523-105.768(VCb)+1.356(VCb)^2](NOP)^{\circ.117}$  ...(6.15) B2 : CR =  $[195.200-12.28(VCb)+0.211(VCb)^2]$  (NOP)^{\circ.011} ...(6.16) B3 : CR =  $[528.935-33.462(VCb)+0.538(VCb)^2]$  (NOP)^{\circ.199} ...(6.17) B4 : CR =  $[16.384-0.387(VCb)+0.006(VCb)^2]$  (NOP)^{\circ.199} ...(6.18) To understand the physical significance of the refined models emerging from this study, the relative contributions of the two factors constituting the model were assessed and the data thus computed is summarized in the following table.

The analysis of the data reveals that for the alloys B1, B3 & B4 the ratio of factor I/factor II is ranging between 5.2 to 9.6 whereas that for B2 the ratio is varying between

approximately 21 to 25 i.e. at least nearly 4 times that generally attained for the alloys B1, B3 & B4. This leads to the deduction that there is an apparent anomaly in visualizing the elements of the model. A possible reason is that the term VCb already includes the effect of DC which is being represented by the NOP. Therefore, of the two options namely, VCb and DC, the latter was more representative of the

| Heat-treatme | ent Bl | в2     | B3     | B4     |
|--------------|--------|--------|--------|--------|
| 900, 4,AC    |        | 25.992 | 12.247 | 11.809 |
| 900,10,AC    | 10.883 | 22.552 | 10.911 | 11.760 |
| 950, 4,AC    | 18.571 | 21.991 | 11.629 | 12.253 |
| 950,10,AC    | 14.214 | 22.965 | 13.528 | 13.140 |

... Summary of the values of the first parameter based on VCb and NOP Test duration : 168 hours

Test duration : 720 hours

| Heat-treatm | ent B1  | B2     | В3     | В4     |
|-------------|---------|--------|--------|--------|
| 900, 4,AC   |         | 20.431 | 10.006 | 10.242 |
| 900,10,AC   | -13-145 | 18.556 | 8.712  | 10.328 |
| 950, 4,AC   | 18.610  | 16.833 | 9.398  | 10.192 |
| 950,10,AC   | 14.705  | 19.113 | 11.226 | 10.158 |

Summary of the values of the second parameters based on VCb and NOP Test duration : 168 hours

|              | 10     | ov udruvrv |       |       |  |
|--------------|--------|------------|-------|-------|--|
| Heat-treatme | ent Bl | В2         | В3    | B4    |  |
| 900, 4,AC    |        | 1.044      | 2.084 | 2.142 |  |
| 900,10,AC    | 2.020  | 1.041      | 2.094 | 2.052 |  |
| 950, 4,AC    | 1.934  | 1.038      | 2.029 | 2.052 |  |
| 950,10,AC    | 1.812  | 1.040      | 2.005 | 2.005 |  |

Test duration : 720 hours

| Heat-treatme | ent Bl | B2    | В3    | B4    |  |
|--------------|--------|-------|-------|-------|--|
| 900, 4,AC    |        | 1.044 | 2.084 | 2.142 |  |
| 900,10,AC    | 1.553  | 1.041 | 2.094 | 2.040 |  |
| 950, 4,AC    | 1.511  | 1.038 | 2.029 | 2.052 |  |
| 950,10,AC    | 1.450  | 1.040 | 2.005 | 2.005 |  |

|                | 1050 0 |            | nours    |     |
|----------------|--------|------------|----------|-----|
| Heat-treatment |        | Factor I/f | actor II |     |
|                | B1     | B2         | в3       | В4  |
| 900, 4,0Q      |        | 24.9       | 5.9      | 5.5 |
| 900,10,OQ      | 5.4    | 21.7       | 5.2      | 5.7 |
| 950, 4,0Q      | 9.6    | 21.2       | 5.7      | 6.0 |
| 950,10,0Q      | 7.8    | 22.1       | 6.7      | 6.6 |

Table representing ratio of factor I/factor II (VCb & NOP)

## Test duration : 168 hours

Test duration : 720 hours

| Heat-treatment | t    | Factor I/f | actor II |     |
|----------------|------|------------|----------|-----|
| . <u></u>      | B1   | B2         | B3       | в4  |
| 900, 4,0Q      |      | 19.6       | 4.8      | 4.8 |
| 900,10,00      | 8.5  | 17.8       | 4.2      | 5.1 |
| 950, 4,0Q      | 12.3 | 16.2       | 4.6      | 5.0 |
| 950,10,0Q      | 10.1 | 18.4       | 5.6      | 5.1 |

DC as the larger the number of particles the more enhanced would be the galvanic action. VCb was replaced by VMC and therefore, the model proposed earlier is more aptly modified as

 $CR = [A1 + A2(VMC) + A3(VMC)^{2}] (NOP)^{A4} \dots (6.19)$ 

The constants A1, A2, A3 and A4 were recalculated and the models thus evolved are :

## Test duration : 168 hours

| B1 | : | CR = | [165.554-11.771(VMC)+0.232(VMC) <sup>2</sup> ] (NOP) <sup>0.074</sup> | (6.20) |
|----|---|------|-----------------------------------------------------------------------|--------|
| в2 | : | CR = | [126.646-11.524(VMC)+0.312(VMC) <sup>2</sup> ] (NOP) <sup>0.013</sup> | (6.21) |
| в3 | : | CR = | [650.510-65.711(VMC)+1.715(VMC) <sup>2</sup> ] (NOP) <sup>0.010</sup> | (6.22) |
| В4 | : | CR = | [21.679-0.316(VMC)+0.01(VMC) <sup>2</sup> ] (NOP) <sup>0.067</sup>    | (6.23) |

## Test duration : 720 hours

B1 :  $CR = [67.605-4.248(VMC)+0.080(VMC)^2] (NOP)^{0.128}$  ... (6.24). B2 :  $CR = [177.124-17.133(VMC)+0.453(VMC)^2] (NOP)^{0.011}$  ... (6.25) B3 :  $CR = [732.30-74.52(VMC)+1.934(VMC)^2] (NOP)^{0.0245}$  ... (6.26) B4 :  $CR = [13.061-0.186(VMC)+0.001(VMC)^2] (NOP)^{0.199}$  ... (6.27)

As before the values of the two factors constituting the modified models were computed and the data is summarized in the following table.

A scrutiny of this table reveals that based on the modified approach the discrepancies observed in the model incorporating VCb and NOP are greatly reduced in the model incorporating VMC and NOP. The superiority of the latter approach over that of the former is thus clearly established. This prompted us to refine the above model further to examine whether the actual happenings during corrosion could be more closely approximated. A possible method to do so was to represent the DC by the distribution factor, DF as was suggested by Patwardhan in the earlier study. On doing so the modified model assumes the form :

 $CR = [A1 + A2(VMC) + A3(VMC)^{2}] (DF)^{A4}$  ...(6.28)

The constant A1, A2, A3 and A4 were recalculated as before and the models thus developed assumed the form :

## Test duration : 168 hours

|    |   |      | [390.380-27.505(VMC)+0.528(VMC) <sup>2</sup> ] (DF) <sup>0.448</sup> | (6.29) |
|----|---|------|----------------------------------------------------------------------|--------|
| в2 | : | CR = | [48.300-0.091(VMC)+0.01(VMC) <sup>2</sup> ] (DF) <sup>0.907</sup>    | (6,30) |
| в3 | : | CR = | [683.507-69.060(VMC)+1.803(VMC) <sup>2</sup> ] (DF) <sup>0.010</sup> | (6.31) |
| B4 | : | CR = | [26.55-0.282(VMC)-0.01(VMC) <sup>2</sup> ] (DF) <sup>0.010</sup>     | (6.32) |

|              | Tes    | t duration : | 168 hours |        |  |
|--------------|--------|--------------|-----------|--------|--|
| Heat-treatme | ent Bl | В2           | B3        | B4     |  |
| 900, 4,AC    |        | 24.579       | 24.163    | 19.285 |  |
| 900,10,AC    | 17.549 | 22.134       | 22.992    | 19.186 |  |
| 950, 4,AC    | 16.865 | 22.234       | 21.433    | 19.413 |  |
| 950,10,AC    | 21.090 | 21.838       | 25.786    | 19.256 |  |

Summary of the values of the first parameter based on VMC and NOP Test duration : 168 hours

.

## Test duration : 720 hours

| Heat-treatme | ent Bl | В2     | в3     | B4     |
|--------------|--------|--------|--------|--------|
| 900, 4,AC    |        | 20.028 | 17.404 | 9.888  |
| 900,10,AC    | 12.221 | 18.964 | 17.086 | 10.280 |
| 950, 4,AC    | 11.229 | 17.104 | 15.077 | 9.654  |
| 950,10,AC    | 13.858 | 18.455 | 20.488 | 9,962  |

Summary of the values of the second parameters based on VMC and NOP Test duration : 168 hours

| Heat-treatmo | ent Bl | в2    | В3    | B4    |  |
|--------------|--------|-------|-------|-------|--|
| 900, 4,AC    |        | 1.053 | 1.037 | 1.292 |  |
| 900,10,AC    | 1.321  | 1.049 | 1.038 | 1.271 |  |
| 950, 4,AC    | 1.298  | 1.046 | 1.036 | 1.274 |  |
| 950,10,AC    | 1.265  | 1.048 | 1.036 | 1.264 |  |

| Test duration | : | 720 | hours |
|---------------|---|-----|-------|
|---------------|---|-----|-------|

| Heat-treatme | ent B1      | B2    | B3    | В4    |  |
|--------------|-------------|-------|-------|-------|--|
| 900, 4,AC    | · / <u></u> | 1.044 | 1.095 | 2.142 |  |
| 900,10,AC    | 1.618       | 1.041 | 1.095 | 2.040 |  |
| 950, 4,AC    | 1.570       | 1.038 | 1.091 | 2.052 |  |
| 950,10,AC    | 1.502       | 1.040 | 1.089 | 2.005 |  |

| Heat-treatment | Factor I/factor II |      |      |      |  |
|----------------|--------------------|------|------|------|--|
|                | B1                 | B2   | B3   | B4   |  |
| 900, 4,0Q      |                    | 23.3 | 23.3 | 14.9 |  |
| 900,10,00      | 13.3               | 21.1 | 22.2 | 15.1 |  |
| 950, 4,0Q      | 13.0               | 21.3 | 20.7 | 15.2 |  |
| 950,10,0Q      | 16.7               | 20.8 | 24.9 | 15.2 |  |

Table representing ratio of factor I/factor II (VMC and NOP) Test duration : 168 hours

### Test duration : 720 hours

| Heat-treatment    | Factor I/factor II |      |      |     |  |
|-------------------|--------------------|------|------|-----|--|
|                   | В1                 | B2   | в3   | в4  |  |
| 900, 4,0Q         |                    | 19.2 | 15.9 | 4.6 |  |
| 900,10,0Q         | 7.6                | 18.2 | 15.6 | 5.0 |  |
| 950, <b>4,</b> 00 | 7.2                | 16.5 | 13.8 | 4.7 |  |
| 950,10,00         | 9.2                | 17.7 | 18.8 | 5.0 |  |

## Test duration : 720 hours

B1 :  $CR = [491.519-32.537(VMC)+0.589(VMC)^2] (DF)^{0.959}$  ...(6.33) B2 :  $CR = [58.24-1.292(VMC)+0.027(VMC)^2] (DF)^{0.999}$  ...(6.34) B3 :  $CR = [825.84-84.07(VMC)+2.187(VMC)^2] (DF)^{0.0270}$  ...(6.35) B4 :  $CR = [50.023-1.237(VMC)+0.01(VMC)^2] (DF)^{0.463}$  ...(6.36)

Since the values of DF differ greatly from CR & VMC, an analysis of the constants in the above equations revealed a large variation in the values. Therefore, normalisation technique was used to recalculate the constants and the resulting equations are:

#### Test duration : 168 hours

B1 :  $CR = [10.386-19.866(VMC)+10.301(VMC)^2] (DF)^{O-518} \dots (6.37)$ B2 :  $CR = [0.938 - 0.002(VMC) + 0.076(VMC)^2] (DF)^{O-878} \dots (6.38)$ 

B3 :  $CR = [25.03 - 51.85(VMC) + 27.747(VMC)^2] (DF)^{0.010} \dots (6.39)$ B4 :  $CR = [0.941 - 0.001(VMC) + 0.012(VMC)^2] (DF)^{0.044} \dots (6.40)$ 

## Test duration : 720 hours

B1 :  $CR = [5.728 - 9.151(VMC) + 4.275(VMC)^2] (DF)^{0.567} \dots (6.41)$ B2 :  $CR = [1.129 - 0.130(VMC) + 0.001(VMC)^2] (DF)^{0.985} \dots (6.42)$ B3 :  $CR = [33.84 - 70.62(VMC) + 37.670(VMC)^2] (DF)^{0.027} \dots (6.43)$ B4 :  $CR = [1.451 - 0.558(VMC) + 0.001(VMC)^2] (DF)^{0.461} \dots (6.44)$ 

It may however be mentioned that the predicted values of CR based on the normalized equations differ little from those predicted on the basis of un-normalized equations. Therefore the un-normalized equations were considered for further analysis.

The values of the two factors were calculated as before and the data are summarised in the following tables.

A scrutiny as before revealed that although the ratio factor I/factor II was in the range of 23 to 27 for the alloy B3 & B4, it varied from 50-82 for the alloy B1 to 99-117 for B2. Thus, on the face of it the model comprising VMC & DF did not appear to be as satisfactory as the one incorporating VMC & NOP. This was some what worrisome because DF is a more accurate representation of how heat-treating parameters influenced the distribution of the DC. One possible reason to explain this apparent anomaly is that the DF more accurately represents DC based on surface area considerations whereas NOP is more representative of the galvanic effect i.e. when DF is considered, then the surface area representation of DC is getting reflected through increased values of the factor I thereby leading to a large value of the ratio: factor I/factor II. Even if this were

| Heat-treatm | ent B1 | В2     | В3     | в4     |   |
|-------------|--------|--------|--------|--------|---|
| 900, 4,AC   |        | 51.208 | 25.488 | 24.802 |   |
| 900,10,AC   | 37.077 | 49.404 | 24.202 | 24.615 |   |
| 950, 4,AC   | 32.657 | 50.799 | 22.576 | 24.984 |   |
| 950,10,AC   | 46.710 | 49.450 | 27.126 | 24.756 | Ø |

Summary of the values of the first parameter based on VMC and DF Test duration : 168 hours

Test duration : 720 hours

| Heat-treatme | ent Bl | в2     | B3     | В4     |
|--------------|--------|--------|--------|--------|
| 900, 4,AC    |        | 42.864 | 21.492 | 30.130 |
| 900,10,AC    | 54.749 | 44.480 | 20.656 | 32.426 |
| 950, 4,AC    | 42.401 | 43.615 | 18.503 | 28.784 |
| 950,10,AC    | 69.574 | 44.395 | 24.384 | 30.561 |

Summary of the values of the second parameters based on VMC and DF Test duration : 168 hours

| Heat-treatme | ent Bl | B2    | В3    | B4    |
|--------------|--------|-------|-------|-------|
| 900, 4,AC    |        | 0.517 | 0.991 | 0.993 |
| 900,10,AC    | 0.622  | 0.454 | 0.992 | 0.991 |
| 950, 4,AC    | 0.665  | 0.435 | 0.990 | 0.992 |
| 950,10,AC    | 0.570  | 0.482 | 0.990 | 0.990 |

| Test | duration | : | 720 | hours |
|------|----------|---|-----|-------|
| rest | uuracion |   | 120 | ποι   |

| Heat-treatm | ent Bl | в2    | В3    | B4    | <b>.</b> |
|-------------|--------|-------|-------|-------|----------|
| 900, 4,AC   |        | 0.487 | 0.975 | 0.738 |          |
| 900,10,AC   | 0.362  | 0.423 | 0.978 | 0.662 |          |
| 950, 4,AC   | 0.417  | 0.403 | 0.974 | 0.699 |          |
| 950,10,AC   | 0.300  | 0.451 | 0.973 | 0.622 |          |

| Heat-treatment                  | Factor I/factor II |       |      |      |         |  |
|---------------------------------|--------------------|-------|------|------|---------|--|
|                                 | B1                 | В2    | В3   | в4   |         |  |
| 900 <sup>°</sup> , <b>4</b> ,0Q |                    | 99.0  | 25.7 | 25.0 | <b></b> |  |
| 900,10,0Q                       | , <b>59.</b> 6     | 108.8 | 24.4 | 24.8 |         |  |
| 950, <b>4</b> ,00               | 49.1               | 116.8 | 22.8 | 25.2 |         |  |
| 950,10,0Q                       | 81.9               | 102.6 | 27.4 | 25.0 |         |  |

## Table representing ratio of factor I/factor II Test duration : 168 hours

Test duration : 720 hours

| Heat-treatment | Factor I/factor II |       |      |      |  |  |
|----------------|--------------------|-------|------|------|--|--|
|                | B1                 | в2    | в3   | В4   |  |  |
| 900, 4,0Q      |                    | 80.0  | 22.0 | 40.8 |  |  |
| 900,10,00      | 151.2              | 105.2 | 21.1 | 48.9 |  |  |
| 950, 4,0Q      | 101.7              | 108.2 | 19.0 | 41.2 |  |  |
| 950,10,0Q      | 231.9              | 98.4  | 25.1 | 49.1 |  |  |

so, the reason why the effect is more pronounced in the alloys B1 & B2 only is not clearly understood. One possible option is to represent the DC by a factor which is a combination of DF & NOP which could become a subject matter for further study.

The other possibility is to re-examine the basis on which

the models were developed by considering the variation in the average values of CR, VMC, NOP and DF for all the alloys. The data thus collated is given in the following table. This table revealed the variation to be small and this did not justify the large variation in factor I/factor II as observed in the earlier model predictions.

| Parameter     | Alloy(s) |       |       |       |  |  |
|---------------|----------|-------|-------|-------|--|--|
|               | B1       | в2    | в3    | B4    |  |  |
| VMC           | 23.6     | 18.8  | 18.7  | 18.6  |  |  |
| NOP           | 34       | 40    | 37    | 38    |  |  |
| · DF          | 0.345    | 0.437 | 0.392 | 0.437 |  |  |
| CR (168 hrs.) | 23.97    | 23.70 | 24.37 | 24.58 |  |  |
| CR (720 hrs.) | 19.53    | 19.31 | 20.90 | 20.71 |  |  |

Evidently, therefore, there was a strong case for examining afresh the variation in CR as influenced by microstructure. This was done by constructing 3D-plots between CR vs (i) VCb & NOP (Figs. 6.6 & 6.7), (ii) VMC & NOP (Figs. 6.8 & 6.9) and (iii) VMC & DF (Figs. 6.9 & 6.10) for all the values for 168 hrs. and 720 hrs. test duration. These plots showed the variations to be irregular. This may perhaps explain the inconsistencies which have been observed during modelling as highlighted through the data summarized in the earlier tables.

Since, it has been concluded from the earlier analysis that a model incorporating VCb and NOP was not physically consistent, it was decided to determine the optimal minima for all the alloys incorporating the two physically consistent models namely, (i) CR vs VMC & NOP and (ii) CR vs VMC & DF (for both 168 and 720 hrs. test durations). The 3D-plots thus obtained are shown in Figures 6.12-6.15.

Based on the optimal minima, unified models (one model for all the alloys) for 168 and 720 hrs. test durations are given below:

#### CR vs VMC & NOP

#### 168 hours

 $CR = [-7.140 + 2.790(VMC) - 0.0625(VMC)^{2}] (NOP)^{-0.008} \dots (6.45)$ 720 hours

 $CR = [8.484 - 0.177(VMC) + 0.0036(VMC)^{2}] (NOP)^{0.2944} \dots (6.46)$ 

## CR vs VMC & DF

#### 168 hours

 $CR = [-2.343 + 2.186(VMC) - 0.0493(VMC)^{2}] (DF)^{-0.069} \dots (6.47)$ 720 hours

CR = [69.680 - 3.950(VMC) + 0.0839(VMC0<sup>2</sup>] (DF)<sup>0.3364</sup> ... (6.48)

The importance of these equations is that in order to get the best in terms of properties (corrosion resistance) for each alloy, the microstructure is to be so controlled that the constants should attain a value close enough to those indicated in the equations 6.45-5.48.

On the basis of the final unified models (Equation no. 6.45-6.48), contour plots (Figs. 6.16-6.19) were made incorporating VMC from 0 to 100%, NOP from 0 to 100 and DF from 0 to 1.0 to determine the variation of CR as influenced by these parameters. For the 168 hrs. test duration, the CR was negative beyond  $\approx$ 42-47% and below  $\approx$ 3% VMC. This was due to the negative constant associated with the term VMC<sup>2</sup> as is clear from a perusal of the plots (Figs. 6.12-6.15) which show a maxima for 168 hrs. (Figs. 6.12 & 6.14) and a minima for 720 hrs. (Figs. 6.13 & 6.15). This is the reason for the opposite nature of constants (A1, A2 and A3) for the two test durations. The constant A4 also showed an opposite nature for the two test durations. This was differently reflected in how the CR varied with NOP (Figs. 6.12-6.15) - a

decrease with an increase in NOP for 168 hrs. (Figs. 6.12 & 6.14) and an increase with an increase in NOP for 720 hrs. (Figs. 6.13 & 6.15) test duration.

This apparently anomalous behaviour can be explained easily on re-examining the final models (Eqs. 6.45-6.48) in the light of the Figures 6.12-6.15. To begin with it would be useful to realize that opposite trends can not exist for an identical variation in VMC & NOP or VMC & DF. Further, if the 3D-plots representing the overall corrosion behaviour at 168 hrs. are reexamined, it would be observed that a trend similar to that observed at 720 hrs. test duration could have been attained if one or two CR values would have been lower than what has been observed; in a more general sense if lower overall CR values were obtained. Further, the constant A4 which is making all the difference has a very small negative value. This can be considered to imply that because of certain surface/ structural features, the initial general corrosion was appreciably larger i.e. the bulk did not significantly contribute to its occurrence. However, at 720 hrs. test duration there is equilibration because of a larger period involved and as such the variation in CR with either VMC/ NOP or VMC/ DF is on the expected lines. In fact, it would not be incorrect to say that the same trend is almost indicated even at 168 hrs. on the premise that the value of the constants A4 although negative has a very small magnitude.

An additional observation which needs to be made is that slight inconsistencies in the interrelations summarized in the Figures 6.6-6.11 may have also arisen because it is difficult to

keep one of the dependent parameters as a constant and vary the other e.g. by retaining VMC constant and varying NOP/ DF or viceversa. The problem, primarily responsible for the inconsistencies observed, also points out the complexities that exist in the system under investigation. The problem will further accentuate the number of structural variables increase which would lead as degree of concentration/ structural inhomogeneities. to larger discussion further highlights the necessity of designing The alloys based on simpler chemistries/ microstructures and of incorporating features such that the formation of extraneous constituents is minimized/ eliminated. Dispersed carbide is the unintended/ extraneous constituent in the experimental alloys. Having attained the same, the present study also records the various attempts that have been made to reduce their adverse effect on properties. Optimization studies based on modelling constitute a significant step in this regard.

Before concluding, it would be appropriate to compare the predictions based on the `unified model' with the CR experimentally determined (Fig. 6.18). On doing so it emerges that:

## VMC - NOP model

(i) For the 168 hrs. test duration the deviation is from as low

as 0.17% to as high as 19% (observed only in one instance); in fact in most situations the deviation is within ±10%. (ii) The maximum deviation is occurring corresponding to the 950°C, 10 hrs. heat-treatment. (iii)For a test duration of 720 hrs., a nearly similar situation as above exists except that the deviation is a little higher. Summary table of experimentally determined and predicted CR values based on the unified model (eqs. 64.5-6.48)

.

..

| H/T        | schedule                                         | CR exp.                              | CR pred                              | l. %dev.                         | CR exp.                              | CR pred                              | . %dev.                          |
|------------|--------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|----------------------------------|
|            |                                                  | 168 hours                            |                                      |                                  | 720 hours                            |                                      |                                  |
| B1,        | 900,10,AC<br>950, 4,AC<br>950,10,AC              | 22.234<br>21.948<br>26.730           | 23.275<br>22.014<br>23.268           | - 0.17<br>- 0.30<br>12.95        | 19.911<br>17.821<br>20.913           | 19.124<br>17.882<br>16.215           | 3.95<br>- 0.34<br>22.46          |
| В2,<br>В2, | 900, 4,AC<br>900,10,AC<br>950, 4,AC<br>950,10,AC | 26.040<br>20.900<br>22.634<br>25.221 | 23.267<br>20.890<br>23.256<br>21.059 | 10.67<br>0.05<br>- 2.75<br>16.50 | 20.923<br>18.681<br>17.429<br>20.202 | 20.261<br>19.478<br>17.470<br>18.849 | 3.16<br>- 4.27<br>- 0.23<br>6.70 |
| ВЗ,<br>ВЗ, | 900, 4,AC<br>900,10,AC<br>950, 4,AC<br>950,10,AC | 25.002<br>22.912<br>22.482<br>27.092 | 23.115<br>22.230<br>22.543<br>21.938 | 7.55<br>2.98<br>- 0.27<br>19.02  | 21.157<br>20.372<br>18.204<br>23.870 | 18.872<br>19.281<br>18.328<br>18.170 | 10.80<br>5.35<br>- 0.68<br>23.88 |
| В4,<br>В4, | 900, 4,AC<br>900,10,AC<br>950, 4,AC<br>950,10,AC | 25.782<br>23.175<br>23.305<br>26.075 | 22.622<br>21.205<br>23.150<br>22.463 | 12.26<br>8.50<br>0.66<br>13.85   | 23.728<br>20.085<br>18.438<br>20.586 | 19.825<br>18.814<br>18.435<br>18.037 | 16.45<br>6.35<br>0.01<br>12.38   |

(a) VMC, NOP & CR

(a) VMC, DF & CR

| H/T        | schedule                                         | CR exp.                              | CR pred                              | • %dev.                            | CR exp.                              | CR pred                              | . %dev.                           |
|------------|--------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|
|            |                                                  |                                      | 168 hour                             | S                                  | 720 hours                            |                                      |                                   |
| В1,        | 900,10,AC<br>950, 4,AC<br>950,10,AC              | 22.234<br>21.948<br>26.730           | 23.506<br>22.081<br>23.763           | - 1.17<br>- 0.61<br>11.10          | 19.911<br>17.821<br>20.913           | 16.259<br>17.805<br>15.614           | 18.34<br>0.09<br>25.34            |
| В2,<br>В2, | 900, 4,AC<br>900,10,AC<br>950, 4,AC<br>950,10,AC | 26.040<br>20.900<br>22.634<br>25.221 | 23.013<br>21.246<br>23.246<br>21.279 | 11.62<br>- 1.66<br>- 2.70<br>15.63 | 20.923<br>18.681<br>17.429<br>20.202 | 18.271<br>20.865<br>17.421<br>21.134 | 12.67<br>-11.69<br>0.05<br>- 4.61 |
| ВЗ,<br>ВЗ, | 900, 4,AC<br>900,10,AC<br>950, 4,AC<br>950,10,AC | 25.002<br>22.912<br>22.482<br>27.092 | 23.216<br>22.290<br>22.753<br>22.342 | 7.14<br>2.71<br>- 1.21<br>17.53    | 21.157<br>20.372<br>18.204<br>23.870 | 17.428<br>19.506<br>18.198<br>18.563 | 17.63<br>4.25<br>0.04<br>22.24    |
| в4,<br>в4, | 900, 4,AC<br>900,10,AC<br>950, 4,AC<br>950,10,AC | 25.782<br>23.175<br>23.305<br>26.075 | 22.381<br>21.529<br>22.959<br>22.775 | 13.19<br>7.10<br>1.49<br>17.53     | 23.728<br>20.085<br>18.438<br>20.586 | 19.985<br>20.348<br>18.430<br>17.939 | 15.78<br>- 1.31<br>0.05<br>12.86  |

### VMC - DF model

Nearly similar observations as above obtained.

Based on these deductions it can be stated that the methodology employed for developing a unified model is sound. It has also proved helpful in explaining the inconsistencies observed in the earlier models.

The model is particularly useful in predicting the best in terms of corrosion resistance that can be obtained with the present set of compositions. It also reveals the usefulness of B2. It is therefore, suggested that the alloy design in the future should incorporate the useful features of the alloy B2 as well as of other compositions.

## 6.3.1 Modelling of the deformation behaviour

Hardness is a very useful measure of the mechanical properties (deformation behaviour) of materials. Therefore, it is regarded as a quick yet a reliable parameter to measure. The higher the hardness the larger is the UTS and smaller the %elongation value. In ferrous materials (steels) hardness and tensile strength are related empirically by a conversion factor

5 VHN<sub>30</sub>  $\equiv$  1 tsi UTS  $\equiv$  15.5 MPa

A similar empirical law is not expected to be obeyed in cast irons in general and white irons in particular because, as engineering materials, they are a class apart from steels due to their brittleness and a generally complex microstructure. An attempt was, therefore, made to examine the possibility of establishing quantitative relations between the hardness and the deformation behaviour in the experimental alloys. The information thus generated was expected to provide a back up to the mathematical modelling work being actively organized(117).

6.3.1.1 Interrelation between compressive strength and hardness

To begin with CS(117) was plotted as a function of hardness (Fig. 6.19). As no definite relationship emerged, it was decided to plot CS/H as a function of hardness. The plot thus obtained (Fig.6.20) showed the behaviour to be consistent with a second order polynomial. The functional relationship between CS/H(R) and hardness can be represented as

 $R = A1 + A2 (H) + A3 (H)^{2}$  ...(6.49) where R = CS/H,

 $H = hardness, HV_{30},$ 

A1, A2 and A3 are constants.

The constants A1, A2, and A3 were computed as before and the correlations thus obtained are :

Alloy B1 :  $R = 19.87 - 0.051H + (0.3897E-04)H^2$ ...(6.50)Alloy B2 :  $R = 30.14 - 0.089H + (0.7548E-04)H^2$ ...(6.51)Alloy B3 :  $R = 23.08 - 0.061H + (0.4825E-04)H^2$ ...(6.52)Alloy B4 :  $R = 26.35 - 0.075H + (0.6306E-04)H^2$ ...(6.53)

Based on the above equations, CS was predicted for different hardness values and a plot of  $CS_{exp}$ . vs  $CS_{pred}$ , showed the scatter to be within ±5% except in some instances corresponding to the 1050°C, 10 hours heat-treatment (Fig. 6.21).

CS for different hardness values (air cooled condition) obtained in the present study, were determined on the basis of the above models. A comparison between the predicted and the experimentally determined values reveals that the difference in most cases does not exceed ±5% (Fig. 6.21). In some instances the experimental and the predicted values differed by a large margin due to casting defects present in the specimens.

### 6.3.1.2 Interrelation between %strain and hardness

Similar steps (Figs 6.22 & 6.23) as above were initiated to arrive at models interrelating %strain(117) and hardness. The quantitative relationships arrived at are :

Alloy B1 :  $R = 0.1917 - 0.3909E-03H + 0.1677E-06H^2$  ...(6.54) Alloy B2 :  $R = 0.3880 - 1.1049E-03H + 0.8280E-06H^2$  ...(6.55) Alloy B3 :  $R = 0.3015 - 0.8005E-03H + 0.5465E-06H^2$  ...(6.56) Alloy B4 :  $R = 0.2709 - 0.6229E-03H + 0.3544E-06H^2$  ...(6.57) where R = %strain/H,

 $H = hardness, HV_{30}$ 

A1, A2, and A3 are constants.

%strain calculated on the basis of the above models were plotted against experimentally determined values of %strain. It was found that data points fall well within ±10% error band except one or two instances reflecting favourably on the validity of the models developed (Fig. 6.24).

### 6.3.2 Discussion

Models interrelating deformation behaviour with the hardness are successfully developed. Unlike in steels, the microstructure cast irons is complex. The problem is furthermore accentuated of in white irons especially with martensitic matrices because of their extreme brittleness. On heat-treating, as has been observed in the present investigation, the matrix transforms to austenite whose volume fraction and stability increase with heat-treating time and temperature. The second phase mainly comprises massive carbide and dispersed carbide which are extremely hard and therefore, further increase the embrittling behaviour when present in martensitic matrix and will counteract а the usefulness of an austenitic matrix when present in austenite-based microstructures. Therefore, the deformation behaviour will follow the following trend :

- (i) A relatively low strength and % strain in the as-cast condition, wherein the matrix microstructure comprises
   P/B + M and the carbides are massive and mostly interconnected.
- (ii) A marked improvement in strength more so the %strain as the matrix transforms to austenite.

(iii) A further improvement in these parameters as the

stability and the volume fraction of austenite increase which is simultaneously offset due to the complex nature of the massive carbides and a coarsening of dispersed carbides; their combined adverse effect reaching a peak corresponding to the 950°C, 10 hrs. heat-treatment.

- (iv) A further marked improvement in CS and %strain due to a decrease in volume fraction of massive carbides and dissolution of dispersed carbide; the former will reach a maximum corresponding to 1050°C, 10 hrs. heat-treatment whereas the latter dissolve on prolonged soaking at 1000°C.
  - (v) Any slowing down of the above trends (involving improvement in CS and %strain) if transformation producing adverse microstructural features is initiated along with the changes mentioned in point (iv).

The models representing an interrelation involving a second order polynomial are therefore not only appropriately justified but are consistent with the transformations occurring in the experimental alloys. This deduction is evidently valid both for the compressive strength as well as for the %strain values. In

purely mathematical terms, the validity of the models is duly substituated on the basis that the predicted values in most instances are within ± 10% of the experimental values (Tables 6.4-6.11).

Models at equations 6.50-6.57 have been employed for assessing the mechanical properties corresponding to the hardness values obtained in the present investigation (Figs. 6.25-6.28; Table 6.12). This is justified since the experimental alloys resemble those investigated in the earlier study. The models thus developed are both physically and mathematically consistent.

# CHAPTER VII

GENERAL DISCUSSION, CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 7.1 General discussion

The present investigation has succeeded in assessing the transformation behaviour of the experimental alloys in a fair detail. The alloys intended to resist corrosion, were designed to include low cost indigenously available alloying elements Mn, Cr and Cu. Possible clues to their likely transformation behaviour are provided by their composition. The least alloyed amongst them (B1) is designed to produce 'M' on air cooling from 800°C to 850°C and retain austenite in large amounts on air cooling from higher temperatures (Section 4.1.2).

Austenite stabilizing tendency of the other alloys is at least equivalent or higher than B1. Based on these considerations easy to comprehend the logical pattern followed by the it is changes microstructural on heat-treating, namely the as-cast microstructure changing into M + MC + DC (+ some austenite?), MC + DC , austenite + MC + DC and finally austenite M + + MC as the temperature is raised from 800 to 1050°C austenite + and the time varied at each of these temperatures from 2 to 10 mechanism of the formation of dispersed carbides is The hours.

highlighted and temperature regime of their stability indicated. The coarsening behaviour of the DC has been assessed on the basis of a newly evolved parameter called the 'coarsening index'. The effect of heat-treating parameters in decreasing the volume fraction and in altering the morphology of MC has been discussed in detail. This aspect of the investigation has been concluded by identifying the nature of the carbides formed by X-ray diffraction enabling the sequence of carbide transformation to be established.

Hardness measurements were shown to be consistent with microstructural changes i.e. hardness successively decreased with temperature and time. This enabled the transformation behaviour to be mathematically modelled. The model has been shown to be 'mathematically' and 'physically' consistent. 3-D plots amongst hardness, temperature and time helped in arriving at a better understanding of the transformation behaviour of the alloys at a glance. The significance of the 'iso-hardness' plots has been explained.

X-ray diffractometry proved extremely useful in deciding upon the nature of the matrix microstructure in 'marginal' cases and in identifying carbides. This study was helpful in revealing the presence of elemental copper and Fe<sub>8</sub>Si<sub>2</sub>C. A part of the ambiguities, still persisting, were successfully resolved with EPM analysis which additionally proved useful in determining the partitioning of the different elements (Mn, Cr, Cu etc.) into the matrix and carbide phases.

The DTA studies, besides establishing the transformation temperatures, also predicted the high temperature response of different microstructures attained in the experimental alloys. This proved useful in deciding upon the most useful microstructure from the point of view of high temperature applications. Such a data is of considerable design interest.

Electro-chemical characterization of the different microstructures on the basis of potentiostatic studies confined

to the Tafel region, established the usefulness of a large volume fraction of austenite with enhanced stability in improving the corrosion resistance in 5% NaCl solution. The studies also revealed how an 'unfavourable' morphology of the MC and 'optimally' coarsened dispersed carbides adversely affected corrosion resistance.

High speed compression testing was useful in characterizing different microstructures based on their deformation the behaviour. The data clearly brings into 'focus' that 'brittleness' is manifested by low CS & %strain values. The study further establishes how these parameters improve as the heat-treating temperature and time are increased. It has been possible to establish qualitatively authentic interrelations between the microstructure and deformation behaviour. Models have been developed interrelating R (CS/H or %strain/H) with the this hardness and would enable prediction of mechanical properties based on 'hardness' values.

A key aspect of the present investigation has been the extensive quantification of the microstructure and the development of models interrelating (i) hardness with the heat-treating parameters, (ii) 'distribution factor' representing DC with temperature and time, (iii) weight gain with temperature and time, (iv) hardness with compressive strength and %strain, (v) corrosion rate with the microstructure and (vi) corrosion rate with the deformation behaviour. These models would prove extensively useful in optimizing the microstructures and in alloy design in general.

fact, this idea has been put into practice while In modelling the corrosion behaviour. This has been a high point of perhaps the first effort aimed at optimizing the microstructure in terms of VMC and NOP/DF. The analysis put forth has helped not only in understanding why inconsistencies arose while developing the earlier models but also in evolving what best can be achieved corrosion resistance from the compositions of in terms the present study. This has investigated in led to the development of a unified model for predicting the corrosion behaviour of all the experimental alloys.

#### 7.2 Conclusions

Under the existing experimental conditions, the following conclusions may be arrived at:

Low cost elements Mn, Cu along with Cr can be usefully 1. designing alloy white irons with useful employed in mechanical properties and corrosion behaviour. The that were characterized microstructures for their deformation and electro-chemical behaviour (mostly in 5% NaCl solution) are P/B + M + MC,  $M + \tau + MC$ ,  $M + \tau + MC + DC$ + DC and  $\tau$  + MC. Most of the aforesaid τ MC microstructures were generated through heat-treatments. The temperature ranges over which different microstructures exist are given below:

As-cast : P/B + M + MC with and without RA.

Upto 900°C : M + MC + DC with and without RA depending upon ST and SP.

Upto 1000°C : A + MC + DC or A + MC with and without M (in traces) depending upon ST and SP.

1050°C : A + MC.

- 2. The volume fraction of MC decreased with temperature or with soaking period at a given heat-treating temperature. The decrease was marked at temperatures only at ≥1000°C. MC were rendered discontinuous from the early stages of heat-treatment. The 'rounding-off' tendency set in at 1000°C.
- 3. Dispersed carbides formed during soaking, corresponding to the 800°C, 10 hrs. heat-treatment, by a mechanism involving precipitation from austenite and also during air cooling.

Particles constituting them belonged to classes I and I. (size upto 1.16 micron). On heat-treating the overall spread of the particles extended upto class VI (size upto 3.48 micron).

- Dispersed carbides underwent coarsening which was characterized by the 'spilling over' of the particles into the classes III to VI. Coarsening was marked at 900 and 950°C and was assessed on the basis of the coarsening index.
   DC get dissolved on heat-treating at 1000°C.
- 6. The carbides to form in the experimental alloys are  $M_3C$ ,  $M_{23}C_6$ ,  $M_5C_2$  and  $M_7C_3$ .  $M_3C$  and  $M_{23}C_6$  carbides dissolved/ transformed or were replaced by the higher temperature carbides  $M_5C_2$  and  $M_7C_3$  (\*950-1000°C). The latter is predominant in B1 and B2 whereas both are present in B3 and B4 on prolonged soaking at 1050°C.
- 7. The morphology of M<sub>7</sub>C<sub>3</sub> in the eutectic formed at 1050°C is harmful from the point of view of overall properties because it is in the form of plates bridging massive carbide regions. There are definite indications to suggest that the carbide begins to form even on prolonged soaking at 1000°C (soaking period ≈10 hrs. or more).
- 8. Hardness in general decreased with an increase in the heat-treating temperature in the order  $H_{1050} < H_{950} < H_{950} < H_{950} < H_{850} < H_{800}$
- 9. For a given heat-treating temperature, hardness varied linearly with the soaking period. It increased with an increase in soaking period on heat-treating from 800 and

850°C, remained practically unaltered on heat-treating from 900 and 950°C and decreased on heat-treating from 1000 and 1050°C. Exceptions are B2 and B4 when heat-treated from 850°C (hardness was independent of the soaking period).

- 10. For a given heat-treating period, the variation in hardness with temperature was in the form of a horizontal 'S' shape.
- 11. X-ray diffractometry revealed the presence of 'M' in marginal cases. It also revealed the presence of Fe<sub>a</sub>Si<sub>2</sub>C and elemental Cu.
- 12. Transformation behaviour of the experimental alloys, over the entire range of temperature and soaking period, can be represented by the equations:

 $B_1$ : H = 168.213 e<sup>1471.47/T</sup> + (0.043-0.374x10<sup>-4</sup>T)t

 $B_2$ : H = 100.779 e<sup>1889.66/T</sup> + (0.026-0.223x10<sup>-4</sup>T)t

 $B_3$ : H = 98.285 e<sup>2021.33/T</sup> + (0.037-0.316x10<sup>-4</sup>T)t

 $B_4$ : H = 78.357 e<sup>2205.77/T</sup> + (0.027-0.244x10<sup>-4</sup>T)t

where H = Vicker's hardness at 30 kg. load

T = temperature in °K

t = time in seconds.

The first parameter models the matrix transformation and the second parameter the carbide transformation.

13. 3-D plots interrelating temperature and time with hardness represented that the stage at which the second factor in the above model became negative can be represented by a surface. 14. The carbide transformation sequence observed is

M<sub>3</sub>C present upto 1000°C, 4 hours

- M<sub>23</sub>C<sub>6</sub> present upto 950°C, 4 hours & at best in traces upto 950°C, 10 hours
- M<sub>5</sub>C<sub>2</sub> present upto 1000°C,10 hours/ 1050°C, 4 hours
- M<sub>7</sub>C<sub>3</sub> present from 1000°C, 10 hours to 1050°C, 10 hours
- 15. DTA data showed that whereas the alloys B1 & B3 undergo the (i)  $\alpha/\alpha'$  -> austenite (722-735°C) and (ii) a carbide transformation (890-955°C), the alloys B2 & B4 undergo an additional carbide transformation at 1050-1075°C.
- 17. TG data showed that the as-cast microstructure was only suitable upto ≈600°C. However, on heat-treating from 950 and 1050°C, the temperature upto which the alloys could be usefully employed was increased to 800°C in the latter instance and slightly <800°C in the former.</p>
- 17. Mathematical modelling of the TG data showed that %TG is related to the temperature by an equation Alloy B1 %TG = 1.561878 + 2665.150 exp(-7529.676/T) Alloy B2 %TG = 1.310813 + 9623.292 exp(-8771.445/T) Alloy B3 %TG = 1.515658 + 3465.314 exp(-7609.409/T) Alloy B4 %TG = 1.566102 + 4004.606 exp(-7792.101/T)
- 18. The higher the stability of austenite and larger the volume fraction, the higher the corrosion resistance.
- 19. Presence of second phase in general lowered corrosion resistance, its effect being a function of the morphology

& size, shape and distribution. The combined adverse effect of MC + DC approached a maximum corresponding to the 950°C, 10 hrs., AC heat-treatment. Similarly the adverse effect of MC was a maximum at the 105°C, 4 hrs., AC heat-treatment.

20. On heat-treating from 900 and 950°C, the corrosion rate is related with the volume fraction of MC+DC (VCb) and NOP through the following equations:

#### Test duration : 168 hours

Alloy B1:  $CR = [2003.968-101.423(VCb)+1.290(VCb)^{2}](NOP)^{\circ.187}$ Alloy B2:  $CR = [177.200-10.94(VCb)+0.192(VCb)^{2}](NOP)^{\circ.011}$ Alloy B3:  $CR = [550.60-34.71(VCb)+0.558(VCb)^{2}](NOP)^{\circ.199}$ Alloy B4:  $CR = [105.01-6.830(VCb)+0.125(VCb)^{2}](NOP)^{\circ.199}$ 

# Test duration : 720 hours

Alloy B1:  $CR = [2074.523-105.768(VCb)+1.356(VCb)^{2}](NOP)^{0.117}$ Alloy B2:  $CR = [195.200-12.28(VCb)+0.211(VCb)^{2}](NOP)^{0.011}$ Alloy B3:  $CR = [528.935-33.462(VCb)+0.538(VCb)^{2}](NOP)^{0.199}$ Alloy B4:  $CR = [16.384-0.387(VCb)+0.006(VCb)^{2}](NOP)^{0.199}$ where VCb = total volume fraction of MC+DC

NOP = number of particles(DC)

CR = corrosion rate in mdd.

This model when modified as

 $CR = [A1 + A2 (VMC) + A3 (VMC)^{2}](NOP)^{A4}$ 

gave a more representative idea of the physical happenings.

#### Test duration : 168 hours

Alloy B1:  $CR = [165.554-11.771(VMC)+0.232(VMC)^2](NOP)^{0.074}$ Alloy B2:  $CR = [126.646-11.524(VMC)+0.312(VMC)^2](NOP)^{0.013}$ Alloy B3:  $CR = [650.510-65.711(VMC)-1.715(VMC)^2](NOP)^{0.010}$ Alloy B4:  $CR = [21.679-0.316(VMC)+0.01(VMC)^2](NOP)^{0.067}$ 

#### Test duration : 720 hours

Alloy B1:  $CR = [67.605-4.248(VMC)+0.080(VMC)^2](NOP)^{0.128}$ Alloy B2:  $CR = [177.124-17.133(VMC)+0.453(VMC)^2](NOP)^{0.011}$ Alloy B3:  $CR = [732.30-74.52(VMC)+1.934(VMC)^2](NOP)^{0.0245}$ Alloy B4:  $CR = [13.061-0.186(VMC)+0.001(VMC)^2](NOP)^{0.199}$ 

21. On incorporating the effect of DC on the basis of the distribution factor (DF), the above equations are modified as:

#### Test duration : 168 hours

Alloy B1: CR =  $[390.380+27.505(VMC)+0.528(VMC)^2](DF)^{0.448}$ Alloy B2: CR =  $[48.300-0.091(VMC)+0.01(VMC)^2](DF)^{0.907}$ Alloy B3: CR =  $[683.507-69.060(VMC)+1.803(VMC)^2](DF)^{0.010}$ Alloy B4: CR =  $[26.55-0.282(VMC)-0.01(VMC)^2](DF)^{0.010}$ 

# Test duration : 720 hours

Alloy B1: CR = [491.519-32.537(VMC)+0.589(VMC)<sup>2</sup>](DF)<sup>0.959</sup> Alloy B2: CR = [58.24-1.292(VMC)+0.027(VMC)<sup>2</sup>](DF)<sup>0.99</sup> Alloy B3: CR = [825.84-84.07(VMC)+2.187(VMC)<sup>2</sup>](DF)<sup>0.0270</sup> Alloy B4: CR = [50.023-1.237(VMC)+0.01(VMC)<sup>2</sup>](DF)<sup>0.463</sup> where VMC = volume fraction of MC

DF = distribution factor.

The above equations after normalization assumed the form

#### Test duration : 168 hours

Alloy B1: CR = [10.386-19.866(VMC)+10.301(VMC)<sup>2</sup>](DF)<sup>0.518</sup> Alloy B2: CR = [0.938-0.002(VMC)+0.076(VMC)<sup>2</sup>](DF)<sup>0.878</sup> Alloy B3: CR = [25.035-51.8556VMC)+27.747(VMC)<sup>2</sup>](DF)<sup>0.010</sup> Alloy B4: CR = [0.941-0.001(VMC)+0.012(VMC)<sup>2</sup>](DF)<sup>0.044</sup>

## Test duration : 720 hours

Alloy B1:  $CR = [5.728-9.151(VMC)+4.275(VMC)^2](DF)^{0.567}$ Alloy B2:  $CR = [1.129-0.130(VMC)+0.001(VMC)^2](DF)^{0.985}$ Alloy B3:  $CR = [33.841-70.622(VMC)+37.670(VMC)^2](DF)^{0.027}$ Alloy B4:  $CR = [1.451-0.558(VMC)+0.001(VMC)^2](DF)^{0.461}$ 

- 22. 3D plotting of the minima optimals in terms of (i) CR, VMC & NOP and (ii) CR, VMC & DF indicate the optimal conditions vis-a-vis the microstructure to attain the best in terms of corrosion resistance.
- 23. Using these minima optimals as the base a unified model describing the corrosion behaviour of all the experimental alloys is of the form :

CR vs VMC & NOP

168 hours

 $CR = [-7.140 + 2.790(VMC) - 0.0625(VMC)^2] (NOP)^{-0.008}$ 720 hours

 $CR = [8.484 - 0.177(VMC) + 0.0036(VMC)^2] (NOP)^{0.2944}$ 

CR vs VMC & DF

168 hours

 $CR = [-2.343 + 2.186(VMC) - 0.0493(VMC)^{2}] (NOP)^{-0.069}$ 

#### 720 hours

CR = [69.680 - 3.950(VMC) + 0.0839(VMC0<sup>2</sup>] (NOP)<sup>0.3364</sup>

Barring few instance the deviation between the predicted and the experimentally determined values does not exceed ±10-12%.

24. From the corrosion resistance point of view the alloy B2 has again been found to be better than the rest followed by B4, B3 and B1.

and %strain are not linearly related with hardness as is 25. CS found in the case of steels. It is because of the heterogeneous nature of the microstructures generally found in cast irons. It was established that the CS and %strain can be related with hardness as a second order polynomial as Alloy B1 :  $R = 19.87 - 0.051H + (0.3897E-04)H^2$ Alloy B2 :  $R = 30.14 - 0.089H + (0.7548E-04)H^2$ Alloy B3 :  $R = 23.08 - 0.061H + (0.4825E-04)H^2$ Alloy B4 :  $R = 26.35 - 0.075H + (0.6306E-04)H^2$ where R = CS/H and CS in MPa Alloy B1 : R = 0.1917645 - 0.3909492E-03H + 0.1677448E-05H<sup>2</sup> Alloy B2 : R = 0.3880980 - 1.1049360E-03H + 0.8280589E-06H<sup>2</sup> Alloy B3 : R = 0.3015848 - 0.8005172E-03H + 0.5465336E-06H<sup>2</sup> Alloy B4 : R = 0.2709832 - 0.6229439E-03H + 0.3544085E-06H<sup>2</sup> where R = %strain/H,

 $H = hardness, HV_{30}$ 

- 26. From the point of view of mechanical properties, martensite bearing microstructures are brittle whereas the austenite based microstructures give high values of CS and %strain. The effect of DC on the deformation behaviour depends upon their size, shape and distribution. Similarly, the effect of MC is governed by their volume fraction, morphology and compatibility with the matrix.
- 27. From the point of view of overall mechanical properties, the alloy B2 has been found to be most useful followed by B4, B3 and B1. It is possible that the presence of a higher P content in B3 and B4 may have lead to some what inferior properties in them.

28. In view of 21 and 24 it is recommended that the future modifications in the alloy chemistry should incorporate the beneficial features of the composition B2. Further, the alloying elements should be so adjusted that the microstructure(s) of form on heat-treating from lower temperatures.

# 7.3 Suggestions for future work

The future work should be carried out on the following lines:

- Crystal structure determination of carbides by X-ray diffractometry.
- 2. Detailed structural identification by EPMA.
- 3. Extensive use of DTA for transformation study.
- 4. High temperature performance study by DTA.
- 5. Extensive electro-chemical characterization of different microstructural couples by potentiostatic method.
- Development of useful interrelations using numerical methods and computing devices.

# REFERENCES

| 1.  | Butlef and Ison, 'Corrosion and its prevention in water',    |
|-----|--------------------------------------------------------------|
|     | Leonard Hill, London.                                        |
| 2.  | Hurst, J.E., and Piley, R.V., JISI, 155, 172, 1974.          |
| 3.  | 'Corrosion', edited by Shreir, L.L., Newness-Butterworths,   |
|     | London, vol.1,pp.3:86, 8:123.                                |
| 4.  | Metals Hand-book, vol.1, 'Properties and Selection; Irons    |
|     | and Steels', 9th edition, ASM, Metals Park, Ohio, p.76,1978. |
| 5,  | Jackson, R.S., JISI, No.208, pp.163-167, 1970.               |
| 6,  | Kutner, C., Tech. Mitt. Krup., No.1, March 17, 1933.         |
| 7.  | 'Ni-resist austenitic cast irons : Propreties and            |
|     | applications', International Nickel Co. Inc., pp.1-21, 1965. |
| 8.  | Hoar, T.P., Journal Applied Chemistry, no.11, p.121, 1961.   |
| 9.  | Vernon, W.H.J., 'The conservation of natural resources',     |
|     | Instn. of Civil Engineers, London, p.105, 1957.              |
| 10. | Potter, E.C., 'Electrochemistry', Cleaver Hume, London,      |
|     | p.231, 1956.                                                 |
| 11. | Uhlig, H.H.(Ed.), 'The corrosion hand-book', Wiley, New York |
|     | and Chapman and Hall , London, 1948.                         |
| 12. | Uhlig, H.H., 'Corrosion and corrosion control', Wiley, New   |
|     | York, 1971.                                                  |
| 13. | Fontana, M.G., and Greene, N.D., 'Corrosion Engineering',    |
|     | McGraw Hill, 1967.                                           |
| 14. | Fontana, M.G., and Stachle, R.W., 'Advances in corrosion     |
|     | science and technology', Plenum Press, New York, 1970.       |
| 15. | Evans, U.R., 'The corrosion and oxidation of metals :        |
|     | Scientific principles and practical applications', Edward    |

Arnold Publishers Limited, London, p.12, 1960.

,

- 16. Webster's third new international dictionary, G and C Merriam Co., Springfield, Mass., p.512, 1966.
- 17. Jain, N.C., Ph.D. Thesis, University of Roorkee, Roorkee, 1986, p.14.
- 18. Cleary, H.J. and Greene, N.D., 'Corrosion properties of iron and steel', Corrosion Science, vol.7, pp.821-831, 1967.
- 20. Campbell, H.S., 'Metallurgical Factors', Hand-book of corrosion testing and evaluation, Corrosion monograph series, Ed. Ailor, W.H. etal., Reynold Metals Co., Virginia (USA), 1971, p.5.
- 23. Roherg, K., Gisserie, 58, 1971, pp. 697-705.
- 24. Boniszewski, T. Wathinson, F., 7(2), 7(3), 90, 145, (1973).
- 25. Benson, R.B., Jr., Dann, R.K. and Roberts, L.W., Trans. Met. Soc. AIME, Vol. 242, p. 2199-2205 (1966).
- 26. Steigerwald, R.F., Vol. 33, No. 9, 1977, pp. 338-342
- 27. Krauss, G. and Marder, A.R., Met. Trans., 2, 2345 (1971).
- 28. Snape, E., Schaller, F.W. and Forbesjones, R.M., Corr., Vol. 25, No. 9, Sept. 1969, p-380.
- 29. Lena, A., Metal progress, 66, pp. 97-99 (1954).
- 30. Michael, L. Streicherg, Corrosion, Vol. 30, No. 4, April, 1974.
- 31. Hochman, R.F., NACE Basic corrosion course, Official publication, Chapter 11, pp. 3-18, Univ. of Miami, FLA.
- 32. Gainer, L.J. and Wallwork, G.R., Corr., Oct. 1979, Vol.35, No. 10, P-435.
- 33. Biom, K.J. and Degerbeck, J., Vol. 16, Oct. 1983, Metals abstracts, Pulp and paper industry corrosion problems, Vol.4.

- 34. Firivkusm, Z.P., and Ohlig, H.H., J. Electrochem. Soc., 111, 522 (1964).
- 35. Bain E.C., and Paxton, H.W., 'Alloying elements in steels' ASM, Metals Park, Ohio, 1962.
- 36. Metals Hand-book, Vol. 10, 8th edition, 'Failure analysis and prevention', ASM, Metas park, Ohio, 1975.
- 37. Patwardhan, A.K., Personnal communication.
- 38. Jain, N.C., Ph.D. Thesis, University of Roorkee, Roorkee, 1986.
- 39. Yang, W. and Pourbaix, A., Metal Abstracts, 8212-72-0550, Metalic corrosion, 8<sup>th</sup> International congress on metallic corrosion, Vol. 1.
- 40. Pearce, J.G., and Bromage, K., 'Copper in cast iron', C.D.A. publication, No. 65, Hutchinson of London for the Development Association, 1964, pp. 61-64.
- 41. Jain, N.C., Ph.D. Thesis, University of Roorkee, Roorkee, 1986, pp. 39-41.
- 42. Singh, S.S., Ph.D. Thesis, University of Roorkee, 1982.
- 43. Jain, N.C., Ph.D. Thesis, University of Roorkee, Roorkee, 1986, pp.43-44.
- 44. Angus, H.T., 'Cast iron', Butterworths, London, 1976, p-53.

45. Kumar, V. and Mohanty, B., 'X-ray diffractogram index',

Software Section, Scripta Metallurgica, Vol.20, Dec.1986.

- 46. Index (Inorganic) to the Powder diffraction File 1971, compiled and published by JCPDS, Pennsylvania.
- 47. Fink's (six-entry) Inorganic Index to the Powder Diffraction File 1971, ibid.
- 48. Selected Powder Diffraction Data for Metals and Alloys,

JCPDS, Pennsylvania, First ed., 1978, vol.1 & 2.

- 49. Pearson, W.B., 'A Handbook of Lattice Spacings and Structures of Metals and Alloys', Pergammon Press, Oxford, vol.2, 1967.
- 50. Singh, S.S., Ph.D. Thesis, University of Roorkee, 1932.
- 51. Greene, N.D., Experimental electrode Kinetics, Ressenlaer polytechnic Institute, Troy, New York (1965).
- 52. G-1-72, Standard practice for preparation, cleaning and evaluating corrosion test specimens, Annual book of ASTM standards, part 10, Philadeiphia, 1978.
- 53. G.31, Standars recommendation practice for preparation, cleaning and evaluating corrosion test specimens, Annual book of ASTM standards, part 10, Philadeiphia, 1978.
- 54. Himmelblau, D.M., 'Applied Non- Linear Programming', McGraw-Hill book company, 1975.
- 55. Non-Linear Programming-2, Editted by Mangasarian, O.L., Meyer, R.R., and Robinson, S.M., Academic Press, Inc., New York, San Francisco, London, 1975.
- 56. Singh, S.S., Ph.D. Thesis, University of Roorkee, 1982.
- 57. Bolten, J.D., Petty, E.R., and Allen, G.B., JISI, 209, 1314 (1969).
- 58. Orowan, E., 'Symposium on internal Stresses in metals and alloys', 451 (1948).
- 59. Smallman, R.E., 'Modern physical netallurgy', Third edition, Butterworths, London, 1970, pp. 405-459.
- 60. Reiss, M., Rosenthal, P.C., Loper, C.R., and Heine, R.W., AFS Transactions, 79, 1971, p-565.

- 61. Burgess, P.B., AFS Trans., 71, 1963, p.477.
- 62. Pearce, J.G. and Bromage, K., 'Copper in Cast Iron', Copper Development Association, London, 1964, pp.41-43.
- 63. Pearce, J.G. and Bromage, K., ibid., pp.91.
- 64. Heine, R.W. and Rosenthal, P.C., 'Principles of Metal Casting', McGraw-Hill, New York, 1967.
- 65. Wagner, C., Z. Elecktrochem., 65(61), 581.
- 66. Metals Handbook, ASM, Vol.8, 8th ed., Metals Park, Chio.
- 67. Lewis, M.H. and Hattersley, B., Acta Met., 1965, 13, p.1159.
- 68. Mahla, E.M. and Nielsen, N.A., Trans.ASM, 1951, 43, p.290.
- 69. Kinzel, A.B., J.Met., 1952, 4, p.469.
- 70. Stickler, R. and Vinckier, A., Trans. ASM, 1961, 54, p.362.
- 71. Stickler, R. and Vinckier, A., Corros. Sci., 1963, 3, p.1.
- 72. Stickler, R. and Vinckier, A., Rev. Met., 1963, 60, p.489.
- 73. Stickler, R. and Vinckier, A., Trans. Met. Soc. AIME, 1962, -224, p.1021.
- 74. Lewis, M.H. and Hattersley : as above
- 75. Ronald, T.M.F. and Bodsworth, C., JISI, 1965, 203, p.352.
- 76. Beech, J. and Warrington, D.H., JISI, May 1966, pp.460-467.
- 77. Martray, F. and Usseglio, R., 'Atlas of Transformation Charatectristics of Cr and Cr-Mo White Irons', Climax-Molybdenum, S.A., pp.7-8.
- 78. Metals Handbook, ASM, Metals Park, Ohio, Vol.7, pp.166-169.
- 79. Metals Handbook, ASM, Metals Park, Ohio, Vol.7, p.141.
- 80. Goldschmidt, H.J., 'Interstitial Alloys', 1967, p.88.
- 81. Westgren, A., Nature, Lond., 132, 1933, p.480.
- 82. Goldschmidt, H.J., 'Interstitial Alloys', 1967, pp.108-113.
- 83. Beckitt, F.R. and Clark, B.R., Acta Met., 1967, 15, p.113.

- 84. Goldschmidt, H.J., 'Interstitial Alloys', 1967.
- 85. Goldschmidt, H.J., 'Interstitial Alloys', 1967.
- 86. Wever, F. and Koch, W., Stehl Eisen, 1954, 74, p.989.
- 87. Smith, E. and Nutting. J, JISI, 1957, 187, pp.314-329.
- 88. Pickering, F.B., 4th Int. Conf. on Electronmicroscopy, 1958, Berlin, 668.
- 89. Nutting, J., JISI, Vol.207, June 1969, pp.872-893.
- 90. Woodhead, J.H. and Quarrell, A.G., JISI, 605, 1965, p.203.
- 91. Mills, K.C., Argent, B.B. and Quarrell, A.G., JISI, Jan 1961, pp.9-21.
- 92. Kuo, K., JISI, 1953, 173, pp.363-374.
- 93. Honeycombe, R.W.K. and Seal, A.K., JISI, 188, 1958, p.9
- 94. Bilby, B.A. and Pickering, F.B., ISI Sp. Report 64, 313.
- 95. Balluffi, R.W. et al., Trans. ASM. 1951, 43, p.493.
- 96. Patwardhan, A. K., Ph.D. Thesis, University of Roorkee, Roorkee, 1979.
- 97. May, I.L. and Schetky, L.M.'Copper in Iron and Steel', John Wiley & Sons, New York, 1982.
- 98. Swarup, D. and Rastogi, A., 'Elements of metallurgy', Rastogi Publications, Meerut, p.16.
- 99. Singh, S.S., Ph.D. Thesis, University of Roorkee, Roorkee, 1983.

100. Sandoz, G., 'Recent research in cast iron', Ed. H. Merchant, Gordon and Beach, New York, 1968, p.50.
101. Schutze, D., 'Differential Thermal Analysis', Weinhim Verlag, Cherie, 1969.

102. Mackenzie, R.C., 'Differential Thermal Analysis', Vol.1,

Academic Press, London, 1970, p.32.

- 103. Kofstad, P., 'High Temperature Oxidation of Metals', John Wiley & Sons Inc., New York, 1966.
- 104. Kubaschewski, O. and Hopkins, B.E., 'Pxidation of Metals and Alloys', Butterworths, London, 1962.
- 105. Hauffi, K., 'Oxydation Von Metallen Und Metallefierungen, Springer', Berlin, 1957.
- 106. Benard, J., 'Oxydation des Metaux', Gauthier Villars et C, Paris, 1962.
- 107. Evans, U.R., 'The Corrosion and Oxidation of Metals', Edward Arnold Ltd., London, 1960.
- 108. Loviers, J., Compt. rend., 229(1949), p.547.
- 109. Webb, W.W., Norton, J.J. and Wgner, C., J. Electrochem. Soc., 103, 1956, p.107.
- 110. Haycock, E.W., J. Electrochem. Soc., 106, 1059, p.771.
- 111. Kofstad, P., Acta Chem. Scand. 12, 1959, p.501.
- 112. Sewell, P.B. and Cohen, M., J. Electrochem. Soc., 111, 1964, p.501.
- 113. Sewell, P.B. and Cohen, M., J. Electrochem. Soc., 111, 1964, p.508.
- 114. Rahmel, A., Z. Elektrochem., 66, 1962, 363, p.284.
- 115. Jain, N.C., Ph.D. Thesis, University of Roorkee, Roorkee, 1986, pp.67-70.
- 116. Patwardhan, A.K., Ph.D. Thesis, University of Roorkee, Roorkee.
- 117. Jain, N.C., Ph.D. Thesis, University of Roorkee, Roorkee, 1986, pp. T-65 to T-75.
- 118. Patwardhan, A.K. and Jain, N.C., Met. Trans. (to appear).

|       | Type 1<br>Aus101a | Type 1B<br>Aus101b | Type 2<br>Aus102a | Type 28<br>Aus102b | Type 3<br>Aus105 | Түре 4      | Type 5      |
|-------|-------------------|--------------------|-------------------|--------------------|------------------|-------------|-------------|
| <br>C | 3.00 max          | 3.00 max           | 3.00 max          | 3.00 max           | 2.60 max         | 2.60 max    | 2.40 max    |
| Si    | 1.00-2.80         | 1.00-2.80          | 1.00-2.80         | 1.00-2.80          | 1.00-2.00        | 5.00-6.00   | 1.00-2.00   |
| Mn    | 1.00-1.50         | 1.00-1.50          | 0.80-1.50         | 0.80-1.50          | 0.40-0.80        | 0.40-0.80   | 0.40-0.80   |
| Ni    | 13.50-17.50       | 13.50-17.50        | 18.00-22.00       | 18.00-22.00        | 28.00-32.00      | 29.00-32.00 | 34.00-36.00 |
| Cu    | 5.50-7.50         | 5.50-7.50          | 0.50 max          | 0.50 max           | 0.50 max         | 0.50 max    | 0.50 max    |
| Cr    | 1.75-2.50         | 2.75-3.50          | 1.75-2.50         | 3.00-6.00          | 2.50-3.50        | 4.50-5.00   | 0.01 max    |

Table-1.3(a) Chemical composition of Ni-resist irons, Percent

1 Where the presence of copper offers corrosion resistance advantages, type 1 is recommended.

2 For handling caustics, food, etc., where copper contamination can not be tolerated, type 2 is recommended.

3 Where some machining is required, the 3.0 to 4.0 Cr level is recommended.

4 Where higher hardness, greater strength and added heat resistance are desired, the chromium may be 2.5-3.0% at the expense of increased expansivity.

|     | Туре В-2  | Type D-2B | Type D-2C | Type D+2M. | Type D-3  | Type D-3A | Type D-4  | Type D-5  | Type D-5B |
|-----|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|
| С   | 3.00 max  | 3.00 max  | 2.90 max  | 2.70 max   | 2.60 max  | 2.60 max  | 2.60 max  | 2.40 nax  | 2.40 max  |
| Si  | 1.75-3.00 | 1.75-3.00 | 2.0-3.0   | 1.5-2.6    | 1.50-2.80 | 1.50-2.80 | 5.0-6.0   | 1.50-2.75 | 1.50-2.75 |
| Min | 0.70-1.0  | 0.70-1.0  | 1.80-2.40 | 3.75-4.50  | 0.50 max  |
| Р   | 0.08 max  | 0.08 max  | 0.08 max  | 0.08 max   | 0.08 max  | 0.08 max  | 0.08 max  | 0.08 max  | 0.08 max  |
| Ni  | 18.0-22.0 | 18.0-22.0 | 21.0-24.0 | 21.5-24.0  | 28.0-32.0 | 28.0-32.0 | 29.0-32.0 | 34.0-36.0 | 34.0-36.0 |
| Cr  | 1.75-2.50 | 2.75-4.0  | 0.50 max  | 0.2 max    | 2.50-3.50 | 1.00-5.50 | 4.50-5.50 | 0.10 max  | 2.0-3.0   |

Table-1.3(b) Chemical composition of S6 Ni-resist irons, percent

| Table-1.4a Me | chamical prop | erties of | Ni-resist | irons |
|---------------|---------------|-----------|-----------|-------|
|---------------|---------------|-----------|-----------|-------|

|                                                                            | Type 1<br>Aus 101a | Type 1B<br>Aus 1016 | Type 2<br>Aus 102a | Type 2B<br>Aus 102b | Type 3<br>Aus 105 | Type 4    | Type 5    |
|----------------------------------------------------------------------------|--------------------|---------------------|--------------------|---------------------|-------------------|-----------|-----------|
| Tensile Strength                                                           | 11-13.5            | 11-15.5             | 11-13.5            | 11-15.5             | 11-15.5           | 11-13.5   | 9-11      |
| ton/in² (Kg/m²)                                                            | (17-21)            | (17-24)             | (17-21)            | (17-24)             | (17-24)           | (17-24)   | (14-17)   |
| Compressive Strength                                                       | (44-53)            |                     | 44-53              | 58-71               | 44-50             | 36        | 36-44     |
| ton/in² (Kq/m²)                                                            | (69-84)            |                     | (69-84)            | (91-112)            | (69-79)           | (57)      | (57-69)   |
| Torsional Strength                                                         | 35-40              |                     | 35-40              | 45-60               | 35-45             | 29        | 30-35     |
| 1b/in²x10³(Kq/mm²)                                                         | (25-28)            |                     | (25-28)            | (32-42)             | (25-32)           | {20}      | (21-25)   |
| Modulus of Elasticity                                                      |                    |                     |                    |                     |                   |           |           |
| 1b/in <sup>2</sup> x10 <sup>6</sup> (Kg/mm <sup>2</sup> x10 <sup>3</sup> ) | 12-14              | 14-16               | 15-16.2            | 15-16.2             | 15-16.5           | 15        | 10.5      |
| (at 25% of Tensile Strength)                                               | (8.4-9.3)          | (9.6-11.2)          | (10.5-11.4)        | (10.5-11.6)         | (10.5-10.0)       | (10.5)    | (7.4)     |
| Permanent Set Point                                                        | 3000               |                     | 3000               |                     |                   |           |           |
| lb/in²(Kg/mm²)                                                             | (2.1)              |                     | (2.1)              |                     |                   |           |           |
| Transverse Properties(18 in)                                               | 2.0-2.2            |                     | 2.0-2.2            | 2.4-2.8             | 2.0-2.4           | 1.8       | 1.8-2.0   |
| load-16x103(Kgx103)                                                        | (0.9-1.0)          |                     | (0.9-1.0)          | (1.1-1.3)           | (0.9-1.1)         | (0.8)     | 1.8-0.9   |
| deflection-inch(cm)                                                        | 0.3-0.5            |                     | 0.3-0.6            | 0.2-0.4             | 0.5-0.6           | 0,3-0.6   | 0.5-1.0   |
|                                                                            | (0.8 - 1.5)        |                     | (0.8 - 1.5)        | (0.5-1.0)           | (1.3-1.5)         | (0.8-1.5) | (1.3-2.5) |
| Vibration Damping                                                          |                    |                     |                    |                     |                   |           |           |
| Capacity                                                                   | 8i gh              | medium              | High               | Medium              | High              | Medium    | High      |
| Endurance Limit                                                            | 12,000             |                     | 12,000             | 18,000              | 13,500            | 9,000     | 9,900     |
| lb/in²(Kq/mm²)                                                             | (8.4)              |                     | (8.4)              | (12.6)              | (9.5)             | (6.3)     | (7.0)     |
| Hardness Brinell                                                           | 130-170            | 150-210             | 125-170            | 170-250             | 120-160           | 150-210   | 100-125   |
| Toughness by Impact(Izod)                                                  | 100                | 80                  | 100                | 60                  | 150               | 80        | 150       |
| ft./1bf(Kan)\$                                                             | (14)               | (11)                | (14)               | (8)                 | (21)              | (11)      | (21)      |

|                                                                             | · Type D-2<br>Aus 202a | Туре П~2b<br>Аиз 202b | Type D-2c<br>Aus 203 | Туре D-3<br>Ац5 205 | Type D-3a     | Type D-4   | Type D∽5    | Type D-5b |
|-----------------------------------------------------------------------------|------------------------|-----------------------|----------------------|---------------------|---------------|------------|-------------|-----------|
| Tensile Strength                                                            | 24-30                  | 26-31                 | 24-29                | 24-30               | 24-29         | 27-32      | 24-27       | 1         |
| ton/in²(kg/mm²)                                                             | (38-47)                | (41-49)               | (38-46)              | (38-47)             | (38-44)       | (43-50)    | (38-43)     |           |
| Yield Strength (2% offset)                                                  | 14-16                  | 14.5-16.5             | 13.5-15.5            | 14.5-16.5           | 14-17         | 17-20      | 13.5-16.5   |           |
| ton/in2{kg/mm²)                                                             | (22-23)                | (23-26)               | (21-24)              | (23-26)             | (22-27)       | (27-32)    | (21-26)     |           |
| Elongation, % on 2 in (5.1 cm)                                              |                        | 7-15                  | 20~40                | 7-18                | 13-18         | 1.5-4.0    | 20 - 40     |           |
| Froportional Limit                                                          |                        | 7.1-8.5               | 5.4-7.1              | 7.1-8.5             | 6.7-8.5       | 5.4-7.1    | 4.2-4.9     |           |
| ton/in2(kg/@m²)                                                             | (11.6-13.0)            | (11, 2-13, 4)         | (8.4 - 11.2)         | (11.2-13.4)         | (10.5 - 13.4) | (8.4-11.2) | (6.7-7.7)   |           |
| Modulus of Elasticity                                                       | 16.5 - 18.5            | 16.5-19               | 15                   | 13.5-14.5           | 16-18.5       | 13         | 16-20       | 16-17.5   |
| ]b/in <sup>2</sup> x 10 <sup>6</sup> (kg/m <sup>2</sup> x 10 <sup>3</sup> ) | (11.6-13.0)            |                       | (10.5)               | (9.5-10.2)          | (11.2 - 13.0) | (6.1)      | (11.2-14.1) |           |
| Hardness Brinell                                                            | 140 - 200              |                       | 130-170              | 140-200             | 130-190       | 170-240    | 130-180     |           |
| lapact ft-lbf{kgm/cm²}                                                      |                        |                       |                      |                     |               |            |             |           |
| Charpy V-notch                                                              | 12 (2.075)             | 10 (1.73)             | 28 (4.84)            | 7 (1.21)            | 14 (2.42)     |            | 17 (2.94)   | 6 (1.04)  |
| Room Temperature                                                            | -                      |                       |                      |                     |               |            |             |           |

Table-1.4b Mechanical properties of SG Ni-resist irons

.

T-4

.

| Element | Ferrite<br>stabili-<br>zation | Austenite<br>stabiliz-<br>ation | Graphitization | Carbide forming<br>tendency                          | Eutectoid<br>carbon |
|---------|-------------------------------|---------------------------------|----------------|------------------------------------------------------|---------------------|
| Al      | <u></u>                       |                                 |                | میں میں اور      |                     |
| В       |                               | -                               |                |                                                      | -                   |
| С       | -                             |                                 | un i           | -                                                    | _                   |
| Co      | -                             |                                 | -              | (Fe)                                                 |                     |
| Cr      |                               | -                               |                | W <cr<mn< td=""><td><si< td=""></si<></td></cr<mn<>  | <si< td=""></si<>   |
| Cu      |                               | >1.2%                           |                | _                                                    | <ni< td=""></ni<>   |
| Mn      | -                             |                                 | -              | Cr <mn<fe< td=""><td><cr< td=""></cr<></td></mn<fe<> | <cr< td=""></cr<>   |
| Мо      |                               | -                               |                | >Cr                                                  | <np< td=""></np<>   |
| Nb      |                               | -                               |                |                                                      | < V                 |
| Ni      | -                             |                                 |                | -                                                    | <mn< td=""></mn<>   |
| - ₽     |                               | <u></u> ,, .                    | mild-          | <b></b>                                              | -                   |
| S       | ·                             | -                               | -              |                                                      | -                   |
| Si      |                               | ~                               |                | -                                                    | <mo< td=""></mo<>   |
| Ti      |                               | _                               | -              |                                                      |                     |
| V       |                               | -                               |                |                                                      | <ti< td=""></ti<>   |
| W       |                               | -                               | -              |                                                      |                     |

T-6

~

.

·

| Eutectoid<br>temperature                                                                                                                                                      | Chill depth                                                                  | Hardenability                            | Partitioning             | Corrosion<br>resistance       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------|--------------------------|-------------------------------|
|                                                                                                                                                                               | ann an dù Aill ann a Nuith Meil Maine gu gann ann an san ann an san ann an s | if dissolved                             | , Al2O3, AlxNy           |                               |
| -                                                                                                                                                                             |                                                                              |                                          | -                        | -                             |
| -                                                                                                                                                                             |                                                                              | 5                                        |                          | -                             |
| _                                                                                                                                                                             |                                                                              |                                          |                          | -                             |
| <si< td=""><td>&lt;1%51</td><td>Mn</td><td>&gt;Cb, CrxOy</td><td>&gt;12%Cr</td></si<>                                                                                         | <1%51                                                                        | Mn                                       | >Cb, CrxOy               | >12%Cr                        |
| <ni< td=""><td>&lt;4%Si<br/>&gt;4%Si</td><td>When in solution<br/>pronounced (0.5-2%Mo</td><td>(&gt;0.8%Cu)<br/>) elemental</td><td>(3-10%Cu)<br/>(atmospheric CR)</td></ni<> | <4%Si<br>>4%Si                                                               | When in solution<br>pronounced (0.5-2%Mo | (>0.8%Cu)<br>) elemental | (3-10%Cu)<br>(atmospheric CR) |
| <cr< td=""><td>in presence<br/>of sulphur</td><td>&gt;Cr</td><td>&gt;Cb, Mns<br/>MnO,SiO2</td><td>helpful in<br/>reducing Ni</td></cr<>                                       | in presence<br>of sulphur                                                    | >Cr                                      | >Cb, Mns<br>MnO,SiO2     | helpful in<br>reducing Ni     |
| <nþ< td=""><td>1/3Cr</td><td></td><td>, CЪ</td><td>0.25-0.75 Mo<br/>for pitting</td></nþ<>                                                                                    | 1/3Cr                                                                        |                                          | , CЪ                     | 0.25-0.75 Mo<br>for pitting   |
| <۷                                                                                                                                                                            | -                                                                            |                                          | , Cb                     | (1-4% Cl ions)                |
| <mn< td=""><td>1/4 Si</td><td></td><td>NiSi(?)Ni3Al</td><td>(14-36%)</td></mn<>                                                                                               | 1/4 Si                                                                       |                                          | NiSi(?)Ni3Al             | (14-36%)                      |
|                                                                                                                                                                               |                                                                              |                                          |                          | -                             |
|                                                                                                                                                                               | in presence<br>of Mn                                                         |                                          | (Mn Fe)S,ZrS             |                               |
| <mo< td=""><td>na i la en ser a ser i se</td><td>&gt;Ni</td><td>SiO2 MXOY</td><td></td></mo<>                                                                                 | na i la en ser a ser i se                                                    | >Ni                                      | SiO2 MXOY                |                               |

. Cb, TixOy

<Ti

TixNyC2,TixNy Cb,VxOy,VxNy

Strong

СЪ

| Heat<br>resistance   | Remarks                                                                                                                                                    |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Modifies corrosion behaviour, much better scaling<br>resistance than Fe & Si alloys, limited use due to brittle-<br>ness and castability.                  |
| .B.strengh-<br>ening | provides resistance to inter-granular corrosion in<br>Austenitic S.S., pitting resistance improves slightly.                                               |
| Retains<br>strength  | Helpful in retaining high hardness at high temperatures by maintaining coherency.                                                                          |
|                      | CrS inclusions> resistance to pitting and crevice corrosion improves.                                                                                      |
| -                    | Atmospheric corrosion resistance is improved.                                                                                                              |
| -                    | Mn<0.03% - pitting corrosion resistance improves, better<br>C.R. to Austenitic stainless steel but poorer to high Si<br>irons.                             |
|                      | Helpful in reducing temper-embrittlement, at high temperature applications(oxidizing atmosphere).                                                          |
|                      | Extremely helpful in preventing stress corrosion cracking in stainTess steels.                                                                             |
|                      | Improves corrosion resistance and high temperature oxida-<br>tion resistance by forming austenitic matrix.                                                 |
| -                    | Ni increases the ability of phosphorous to enhance corresion.                                                                                              |
| t shortness          | Improves machinability but produces hot shortness.                                                                                                         |
| . *                  | Helpful in designing corrosion resistant and oxidation<br>resistant irons, only useful in the presence of other<br>alloying elements like Ni, Mn, Si, ect. |
|                      | Phosphorous-induced embrittlement is reduced, useful in attaining secondary hardening.                                                                     |
|                      | Useful in attaining secondary hardening                                                                                                                    |
|                      | Same as V but less effective.                                                                                                                              |

.

<u>.</u>...

۰,

| RAW MATERIAL                    | С           | Si          | Р           | S           | Mn      | Cr            | Cu    |
|---------------------------------|-------------|-------------|-------------|-------------|---------|---------------|-------|
| PIG IRON                        | 3.55        | 2.15        | 0.40        | 0.05        | 1.12    |               |       |
| FERRO-CHROMIUM<br>(LOW CARBON)  | 0.10<br>MAX | 0.70<br>MAX | 0.03<br>MAX | 0.01<br>MAX | <b></b> | 67.0-<br>75.0 | ••••  |
| FERRO-MANGANESE<br>·LOW CARBON) | 0.03<br>MAX |             | 0.03<br>MAX | 0.008       | 97.0    | ·             | ··· , |
| FERRO-SILICON<br>(LOW CARBON)   | 0.03<br>MAX | 75.0        |             | ••••        | ,       | <b></b>       | ••••  |
| COPPER<br>(ELECTROLYTIC)        |             |             |             |             |         | · · • •       | 99.99 |

TABLE- 3.1 CHEMICAL ANALYSIS OF RAW MATERIALS

|       |      |       |       |      |     | -     |      |
|-------|------|-------|-------|------|-----|-------|------|
| ALLOY | C    | S     | P     | Si   | Mn  | Cr    | Cu   |
| B1    | 3.05 | 0.07  | 0.183 | 2.24 | 6.1 | 4.8 · | 1.46 |
| B2    | 2.90 | 0.065 | 0.173 | 2.14 | 7,5 | 4.8   | 1.48 |
| вз    | 2.90 | 0.068 | 0.280 | 1.80 | 6.2 | 4.7   | 2.84 |
| B4    | 2.85 | 0.072 | 0.305 | 1.80 | 7.3 | 4.5   | 2.86 |
|       | · ·  |       |       |      |     |       |      |

TABLE- 3.2 CHEMICAL ANALYSIS OF ALLOYS

EFFECT OF SOAKING PERIOD ON HARDNESS IN A.C. CONDITION ALLOY : B1 AS CAST HARDNESS(HV30) = 594 TABLE-4.3 TEMP.(DEG.C) = 900 \_\_\_\_\_ TIME HARDNESS SD AVERAGE (HRS) (HV30) (HV30) 602 602 598 594 594 594 594 588 586 586 2 586 586 586 583 583 579 579 579 575 575 8.21 587 583 575 571 568 568 568 561 561 561 561 4 557 557 557 554 550 550 550 540 540 537 11.95 558 594 594 590 586 586 586 583 583 579 579 6 579 575 571 571 568 568 564 557 557 550 12.54 576 598 594 594 590 590 586 586 586 586 583 8 583 583 579 579 579 575 571 571 568 554 10.35 581 10 606 602 598 594 594 590 590 590 590 586 586 586 586 583 583 583 583 579 571 557 10.58 586 FOR DEGREE OF 1 COEFFICIENTS ARE 571.3000 1.0500 BEST FIT VALUES 573.4 575.5 577.6 579.7 581.8 STANDARD DEVIATION IS 13.0779700 FOR DEGREE OF 2 COEFFICIENTS ARE 598.8000 -10.7357 0.9821 BEST FIT VALUES 581.3 571.6 569.7 575.8 589.7 STANDARD DEVIATION IS 12.1866440 FOR DEGREE OF 3 COEFFICIENTS ARE 664.6009 -56.9530 9.7948 -0.4896EEST FIT VALUES 586.0562.2569.7585.2585.0STANDARD DEVIATION IS8.7251705 TABLE-4.4 TEMP.(DEG.C) = 950 . 2 575 568 568 564 564 561 557 557 557 557 554 554 554 554 550 550 547 543 540 540 9.33 555 564 561 557 554 550 547 547 547 547 547 4 543 543 540 540 540 540 540 537 530 530 8.98 545 543 537 537 537 533 533 533 533 530 530 6 530 527 527 527 523 523 523 523 523 514 6.77 529 8 530 523 520 520 520 520 520 520 517 517 517 517 517 514 514 511 511 508 508 508 5.57 516 550 550 547 543 543 543 540 533 530 530 10 527 523 520 520 520 520 517 517 511 505 13.54 529 FOR DEGREE OF 1 COEFFICIENTS ARE 559.1000 -4.0500 BEST FIT VALUES 551.0 542.9 534.8 526.7 518.6 STANDARD DEVIATION IS 9.6038187 FOR DEGREE OF 2 COEFFICIENTS ARE 583.6000 -14.5500 0.8750 BEST FIT VALUES 558.0 539.4 527.8 523.2 525.6 STANDARD DEVIATION IS 7.2525858 FOR DEGREE OF 3 COEFFICIENTS ARE 538.7993 16.9172 -5.1251 0.3333 BEST FIT VALUES 554.8 545.8 527.8 516.8 528.8 STANDARD DEVIATION IS 1.6733191

T-9

| TABLE                                                                                                                           | : B:<br>-4.5                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                               |                                                                                                |                                        |                          |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|
| TIME<br>(HRS)                                                                                                                   | •                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DNES:<br>V30)                                                                                                                                              |                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                               |                                                                                                | SD                                     | AVERAGE<br>(HV30)        |
| 2                                                                                                                               | 554<br>530                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                               |                                                                                                |                                        | 533                      |
| 4                                                                                                                               | 493                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                          | 487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 481                                                                                                                                                        | 481                                                                                                                                                                                                                                                                                         | .478                                                                                                                                                   | 476                                                                                                           | 476                                                                                            |                                        | 474                      |
| 6                                                                                                                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                        | 476                                                                                                           |                                                                                                |                                        | 470                      |
| 8                                                                                                                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                        | 465<br>411                                                                                                    |                                                                                                | 10.07                                  | 476                      |
| 10                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                               |                                                                                                | 8.04                                   | 410                      |
| 10                                                                                                                              | 393<br>370                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                               |                                                                                                | 12.24                                  | 371                      |
| FORD                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CIEN                                                                                                                                                       | rs ai                                                                                                                                                                                                                                                                                       | RE                                                                                                                                                     |                                                                                                               | 1****                                                                                          | ,,,,,                                  |                          |
| BEST                                                                                                                            | 9.200<br>FIT '                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                                                                                                                        | 452                                                                                                                                                                                                                                                                                         | . 8                                                                                                                                                    | 414.0                                                                                                         | 03                                                                                             | 75.2                                   |                          |
| STAND                                                                                                                           | ARD I                                                                                                                                                                                                           | DEVI                                                                                                                                                                                                                                                                     | ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.3                                                                                                                                                       | 20852                                                                                                                                                                                                                                                                                       | 260                                                                                                                                                    |                                                                                                               | _                                                                                              |                                        |                          |
| FOR                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                                                                                                                             | RE                                                                                                                                                     |                                                                                                               |                                                                                                |                                        |                          |
| BEST                                                                                                                            | 5.200<br>י דידי                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            | 5000<br>456                                                                                                                                                                                                                                                                                 | . 8                                                                                                                                                    | 416.0                                                                                                         | 03                                                                                             | 71.2                                   |                          |
| STAND                                                                                                                           |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            | 40098                                                                                                                                                                                                                                                                                       |                                                                                                                                                        | 1101                                                                                                          | • •                                                                                            |                                        |                          |
| FORE                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | राम्य ज                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | יאיבדיי                                                                                                                                                    | ኮሮ ለ1                                                                                                                                                                                                                                                                                       | DT                                                                                                                                                     |                                                                                                               |                                                                                                |                                        |                          |
|                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                               | - * -                                                                                          |                                        |                          |
|                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 8334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.8                                                                                                                                                        | <b>B7</b> 50                                                                                                                                                                                                                                                                                |                                                                                                                                                        | -0.3!                                                                                                         |                                                                                                | 678                                    |                          |
| 60<br>BEST<br>STAND                                                                                                             | FIT '                                                                                                                                                                                                           | VALUI                                                                                                                                                                                                                                                                    | ES 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .8334<br>29.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br>480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.8<br>6.8                                                                                                                                                 | 8750<br>456                                                                                                                                                                                                                                                                                 | . 8                                                                                                                                                    |                                                                                                               |                                                                                                | 67.8                                   |                          |
| BEST                                                                                                                            | FIT Y<br>ARD I                                                                                                                                                                                                  | VALUI<br>DEVI                                                                                                                                                                                                                                                            | ES 52<br>ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .8334<br>29.8<br>N IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>48<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.8<br>6.8<br>26.7                                                                                                                                         | 8750<br>456<br>77312                                                                                                                                                                                                                                                                        | . 8<br>200                                                                                                                                             | 422.8                                                                                                         |                                                                                                | 67.8                                   | <b>-</b>                 |
| BEST<br>STAND                                                                                                                   | FIT )<br>ARD 1<br>2-4.6<br>473                                                                                                                                                                                  | VALUI<br>DEVIA                                                                                                                                                                                                                                                           | ES 52<br>ATION<br>TEMP.<br>467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .8334<br>29.8<br>N IS<br>.(DE(<br>465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 480<br>G.C)<br>465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.8<br>26.7<br>459                                                                                                                                         | 8750<br>456<br>77312<br>457                                                                                                                                                                                                                                                                 | . 8<br>200<br>=1<br>457                                                                                                                                | 422.8<br>050<br>451                                                                                           | 8 3                                                                                            |                                        |                          |
| BEST<br>STAND<br>TABLE<br>2                                                                                                     | FIT<br>ARD<br>-4.6<br>473<br>451                                                                                                                                                                                | VALUI<br>DEVIA<br>473<br>449                                                                                                                                                                                                                                             | ES 52<br>ATION<br>TEMP.<br>467<br>446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .8334<br>29.8<br>N IS<br>.(DE<br>465<br>446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48<br>3.C)<br>465<br>446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.8<br>26.7<br>459<br>446                                                                                                                                  | 8750<br>456<br>77312<br>457<br>457<br>446                                                                                                                                                                                                                                                   | . 8<br>200<br>=1<br>457<br>441                                                                                                                         | 422.8<br>050<br>451<br>441                                                                                    | 8 3<br>451<br>436                                                                              |                                        | 453                      |
| BEST<br>STAND<br>TABLE                                                                                                          | FIT<br>ARD<br>5-4.6<br>473<br>451<br>379                                                                                                                                                                        | VALUI<br>DEVIA<br>473<br>449<br>377                                                                                                                                                                                                                                      | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .8334<br>29.8<br>N IS<br>.(DEC<br>465<br>446<br>375                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 480<br>G.C)<br>465<br>446<br>371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.8<br>26.<br>459<br>446<br>370                                                                                                                            | 8750<br>456<br>77312<br>457<br>446<br>370                                                                                                                                                                                                                                                   | .8<br>200<br>=1<br>457<br>441<br>368                                                                                                                   | 422.3<br>050<br>451<br>441<br>368                                                                             | 8 3<br>451<br>436<br>366                                                                       | 10.76                                  | 453                      |
| BEST<br>STAND<br>TABLE<br>2                                                                                                     | FIT (<br>)ARD )<br>                                                                                                                                                                                             | VALUJ<br>DEVIJ<br>473<br>449<br>377<br>364<br>370                                                                                                                                                                                                                        | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8334<br>29.8<br>15<br>.(DE<br>465<br>446<br>375<br>358<br>366                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 480<br>3.C)<br>465<br>446<br>371<br>355<br>366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.8<br>26.<br>459<br>446<br>370<br>355<br>364                                                                                                              | 456<br>77312<br>457<br>457<br>446<br>370<br>349<br>362                                                                                                                                                                                                                                      | .8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360                                                                                                     | 422.3<br>050<br>451<br>441<br>368<br>346<br>360                                                               | 8 3<br>451<br>436<br>366<br>346<br>357                                                         | 10.76<br>10.68                         | 363                      |
| BEST<br>STAND<br>TABLE<br>2<br>4<br>6                                                                                           | FIT<br>DARD<br>4.6<br>473<br>451<br>379<br>366<br>373<br>357                                                                                                                                                    | VALUJ<br>DEVIJ<br>473<br>449<br>377<br>364<br>370<br>351                                                                                                                                                                                                                 | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .8334<br>29.8<br>15<br>.(DEC<br>465<br>446<br>375<br>358<br>366<br>351                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 480<br>3.C)<br>465<br>446<br>371<br>355<br>366<br>349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8<br>26.<br>459<br>446<br>370<br>355<br>364<br>348                                                                                                       | 457<br>457<br>457<br>457<br>446<br>370<br>349<br>362<br>348                                                                                                                                                                                                                                 | .8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348                                                                                              | 422.3<br>050<br>451<br>441<br>368<br>346<br>360<br>344                                                        | 8 3<br>451<br>436<br>366<br>346<br>357<br>336                                                  | 10.76<br>10.68                         | 363                      |
| BEST<br>STAND<br>TABLE<br>2<br>4                                                                                                | FIT<br>ARD<br>473<br>451<br>379<br>366<br>373<br>357<br>329                                                                                                                                                     | VALUJ<br>DEVIA<br>473<br>449<br>377<br>364<br>370<br>351<br>329                                                                                                                                                                                                          | ES 52<br>ATION<br>IEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .8334<br>29.8<br>15<br>.(DEC<br>465<br>446<br>375<br>358<br>366<br>351<br>328                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 481<br>3.C)<br>465<br>446<br>371<br>355<br>366<br>349<br>328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8<br>26.<br>459<br>446<br>370<br>355<br>364<br>348<br>325                                                                                                | 457<br>457<br>457<br>446<br>370<br>349<br>362<br>348<br>323                                                                                                                                                                                                                                 | .8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323                                                                                       | 422.3<br>050<br>451<br>441<br>368<br>346<br>360<br>344<br>321                                                 | 8 3<br>451<br>436<br>366<br>346<br>357<br>336<br>321                                           | 10.76<br>10.68<br>9.92                 | · 363<br>356             |
| BEST<br>STAND<br>TABLE<br>2<br>4<br>6                                                                                           | FIT<br>ARD<br>473<br>451<br>379<br>366<br>373<br>357<br>329<br>321<br>280                                                                                                                                       | VALUJ<br>DEVIA<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>278                                                                                                                                                                                            | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .8334<br>29.8<br>15<br>.(DEC<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8<br>26.3<br>459<br>446<br>370<br>355<br>364<br>325<br>315<br>276                                                                                        | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>348<br>323<br>314<br>276                                                                                                                                                                                                         | .8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276                                                                         | 422.3<br>050<br>451<br>368<br>346<br>360<br>344<br>321<br>314<br>275                                          | 8 3<br>451<br>436<br>366<br>346<br>357<br>336<br>321<br>308<br>275                             | 10.76<br>10.68<br>9.92<br>6.23         | - 363<br>356<br>320      |
| BEST<br>STAND<br>TABLE<br>2<br>4<br>6<br>8                                                                                      | FIT<br>ARD<br>473<br>451<br>379<br>366<br>373<br>357<br>329<br>321<br>280                                                                                                                                       | VALUJ<br>DEVIA<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>278                                                                                                                                                                                            | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .8334<br>29.8<br>15<br>.(DEC<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8<br>26.3<br>459<br>446<br>370<br>355<br>364<br>325<br>315<br>276                                                                                        | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>348<br>323<br>314<br>276                                                                                                                                                                                                         | .8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276                                                                         | 422.3<br>050<br>451<br>441<br>368<br>346<br>360<br>344<br>321<br>314                                          | 8 3<br>451<br>436<br>366<br>346<br>357<br>336<br>321<br>308<br>275                             | 10.76<br>10.68<br>9.92<br>6.23         | 363<br>356<br>320        |
| BEST<br>STAND<br>TABLE<br>2<br>4<br>6<br>8                                                                                      | FIT<br>ARD<br>473<br>451<br>379<br>366<br>373<br>357<br>329<br>321<br>280<br>275                                                                                                                                | VALUJ<br>DEVI/<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>278<br>275                                                                                                                                                                                     | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277<br>274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .8334<br>29.8<br>15<br>.(DE(<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276<br>274                                                                                                                                                                                                                                                                                                                                                                                                                               | 489<br>489<br>489<br>489<br>489<br>446<br>371<br>355<br>366<br>349<br>328<br>315<br>276<br>274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.1<br>6.8<br>26.<br>459<br>446<br>370<br>355<br>364<br>348<br>325<br>315<br>276<br>271                                                                    | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>348<br>323<br>314<br>276<br>268                                                                                                                                                                                                  | .8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276<br>266                                                                  | 422.3<br>050<br>451<br>368<br>346<br>360<br>344<br>321<br>314<br>275                                          | 8 3<br>451<br>436<br>366<br>346<br>357<br>336<br>321<br>308<br>275                             | 10.76<br>10.68<br>9.92<br>6.23         | 363<br>356<br>320        |
| BEST<br>STAND<br>2<br>4<br>6<br>8<br>10<br>FOR I<br>47                                                                          | FIT<br>ARD<br>ARD<br>473<br>451<br>379<br>366<br>373<br>357<br>329<br>321<br>280<br>275<br>DEGREI<br>3.900                                                                                                      | VALUJ<br>DEVIJ<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>278<br>275<br>E OF                                                                                                                                                                             | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277<br>274<br>1<br>-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .8334<br>29.8<br>15<br>.(DE(<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276<br>274<br>CO<br>.150(                                                                                                                                                                                                                                                                                                                                                                                                                | 4<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8<br>26.2<br>459<br>446<br>370<br>355<br>364<br>325<br>315<br>276<br>271<br>CIEN                                                                         | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>349<br>362<br>348<br>323<br>314<br>276<br>268<br>TS AI                                                                                                                                                                           | . 8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276<br>266<br>RE                                                           | 422.3<br>050<br>451<br>441<br>368<br>346<br>360<br>344<br>321<br>314<br>275<br>266                            | 8 3<br>451<br>436<br>366<br>357<br>336<br>321<br>308<br>275<br>266                             | 10.76<br>10.68<br>9.92<br>6.23<br>4.11 | 363<br>356<br>320        |
| BEST<br>STAND<br>2<br>4<br>6<br>8<br>10<br>FOR I<br>BEST                                                                        | FIT<br>ARD<br>ARD<br>473<br>451<br>379<br>366<br>373<br>329<br>321<br>280<br>275<br>EGREI<br>3.900<br>FIT                                                                                                       | VALUJ<br>DEVIJ<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>278<br>275<br>E OF<br>00<br>VALUJ                                                                                                                                                              | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277<br>274<br>1<br>-20<br>ES 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .8334<br>29.8<br>15<br>.(DEC<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276<br>274<br>COI<br>.1500<br>33.6                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>4<br>4<br>3.C)<br>465<br>446<br>371<br>355<br>366<br>349<br>328<br>315<br>276<br>274<br>EFFIC<br>393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.8<br>26.7<br>459<br>446<br>370<br>355<br>364<br>325<br>315<br>276<br>271<br>CIEN'<br>3.3                                                                 | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>348<br>323<br>314<br>276<br>268<br>IS AI<br>353                                                                                                                                                                                  | . 8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276<br>266<br>RE<br>. 0                                                    | 422.3<br>050<br>451<br>441<br>368<br>346<br>360<br>344<br>321<br>314<br>275<br>266                            | 8 3<br>451<br>436<br>366<br>357<br>336<br>321<br>308<br>275<br>266                             | 10.76<br>10.68<br>9.92<br>6.23<br>4.11 | 363<br>356<br>320        |
| BEST<br>STAND<br>Z<br>4<br>6<br>8<br>10<br>FOR I<br>47<br>BEST<br>STAND                                                         | FIT<br>ARD<br>ARD<br>473<br>451<br>379<br>366<br>373<br>357<br>329<br>321<br>280<br>275<br>EGREI<br>3.900<br>FIT<br>DARD                                                                                        | VALUJ<br>DEVIA<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>278<br>275<br>20<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>7<br>5<br>1<br>8<br>275                                                                                                       | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277<br>274<br>1<br>-20<br>ES 43<br>ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .8334<br>29.8<br>1S<br>.(DEC<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276<br>274<br>CO<br>33.6<br>1S                                                                                                                                                                                                                                                                                                                                                                                                           | 4<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8<br>26.3<br>26.3<br>459<br>446<br>370<br>355<br>364<br>325<br>315<br>276<br>271<br>CIEN'<br>3.3<br>21.3                                                 | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>348<br>323<br>314<br>276<br>268<br>IS AI<br>353<br>26893                                                                                                                                                                         | . 8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276<br>266<br>RE<br>. 0                                                    | 422.3<br>050<br>451<br>441<br>368<br>346<br>360<br>344<br>321<br>314<br>275<br>266                            | 8 3<br>451<br>436<br>366<br>357<br>336<br>321<br>308<br>275<br>266                             | 10.76<br>10.68<br>9.92<br>6.23<br>4.11 | 363<br>356<br>320        |
| BEST<br>STAND<br>Z<br>4<br>6<br>8<br>10<br>FOR I<br>50<br>FOR I<br>50<br>50                                                     | FIT<br>ARD<br>ARD<br>473<br>451<br>379<br>366<br>373<br>357<br>329<br>321<br>280<br>275<br>EGREI<br>3.900<br>FIT<br>ARD<br>DEGREI<br>02.400                                                                     | VALUI<br>DEVI<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>278<br>275<br>275<br>275<br>200<br>VALUI<br>DEVI<br>200<br>500                                                                                                                                  | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277<br>274<br>1<br>-20<br>2<br>4<br>TION<br>2<br>-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .8334<br>29.8<br>1S<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276<br>274<br>COI<br>.150<br>33.6<br>1S<br>COI<br>.364                                                                                                                                                                                                                                                                                                                                                                                            | 4 48<br>4 48<br>4 46<br>3 71<br>3 55<br>3 66<br>3 49<br>3 28<br>3 15<br>2 76<br>2 74<br>EFFIC<br>3 9<br>EFFIC<br>3 9<br>3 28<br>3 15<br>2 76<br>2 74<br>EFFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.8<br>26.2<br>26.2<br>459<br>446<br>370<br>355<br>364<br>325<br>315<br>276<br>271<br>CIEN<br>3.3<br>21.2<br>CIEN<br>1.0                                   | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>348<br>323<br>314<br>276<br>268<br>314<br>276<br>268<br>353<br>26893<br>TS All<br>353<br>26893<br>TS All                                                                                                                         | . 8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276<br>266<br>RE<br>.0<br>40<br>RE                                         | 422.3<br>050<br>451<br>441<br>368<br>346<br>360<br>344<br>321<br>314<br>275<br>266                            | 8 3<br>451<br>436<br>366<br>357<br>336<br>321<br>308<br>275<br>266                             | 10.76<br>10.68<br>9.92<br>6.23<br>4.11 | 363<br>356<br>320        |
| BEST<br>STAND<br>Z<br>4<br>6<br>8<br>10<br>FOR I<br>50<br>FOR I<br>50<br>BEST<br>50<br>BEST                                     | FIT<br>ARD<br>ARD<br>ARD<br>ARD<br>473<br>451<br>379<br>366<br>373<br>357<br>329<br>321<br>280<br>275<br>EGREI<br>3.900<br>FIT<br>DEGREI<br>02.400<br>FIT                                                       | VALUJ<br>DEVIJ<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>278<br>275<br>275<br>205<br>VALUJ<br>DEVIJ<br>E OF<br>00<br>VALUJ                                                                                                                              | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277<br>274<br>1<br>-20<br>274<br>1<br>-20<br>274<br>274<br>1<br>-20<br>25<br>44<br>54<br>2<br>4<br>4<br>55<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .8334<br>29.8<br>1S<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276<br>274<br>COI<br>.1500<br>33.6<br>1S<br>COI<br>.364<br>41.7                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>5<br>4<br>4<br>6<br>3<br>7<br>1<br>3<br>5<br>5<br>3<br>6<br>3<br>4<br>9<br>3<br>2<br>7<br>6<br>2<br>7<br>4<br>5<br>5<br>3<br>6<br>3<br>4<br>9<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>2<br>7<br>6<br>3<br>9<br>3<br>5<br>5<br>3<br>5<br>5<br>3<br>5<br>5<br>3<br>2<br>7<br>6<br>3<br>5<br>5<br>3<br>5<br>5<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 5.8<br>26.<br>26.<br>459<br>446<br>370<br>355<br>364<br>348<br>325<br>315<br>276<br>271<br>CIEN'<br>3.3<br>21.<br>CIEN'<br>9.2                             | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>348<br>323<br>314<br>276<br>268<br>314<br>276<br>268<br>15 Al<br>353<br>26891<br>15 Al<br>353<br>26891<br>179<br>344                                                                                                             | .8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276<br>266<br>266<br>RE<br>.0<br>140<br>RE<br>.9                            | 422.3<br>050<br>451<br>441<br>368<br>346<br>360<br>344<br>321<br>314<br>275<br>266                            | 8 3<br>451<br>436<br>366<br>357<br>336<br>321<br>308<br>275<br>266<br>7 2                      | 10.76<br>10.68<br>9.92<br>6.23<br>4.11 | 363<br>356<br>320        |
| BEST<br>STAND<br>TABLE<br>2<br>4<br>6<br>8<br>10<br>FOR I<br>50<br>FOR I<br>50<br>BEST<br>STAND<br>FOR I<br>50<br>BEST          | FIT<br>ARD<br>ARD<br>ARD<br>ARD<br>A73<br>451<br>379<br>366<br>373<br>357<br>329<br>321<br>280<br>275<br>DEGREI<br>3.900<br>FIT<br>ARD<br>DEGREI<br>02.400<br>FIT<br>DARD                                       | VALUJ<br>DEVIJ<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275                                                                                                                             | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277<br>274<br>1<br>-20<br>ES 42<br>ATION<br>2<br>-32<br>ES 44<br>ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .8334<br>29.8<br>15<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276<br>274<br>COI<br>33.6<br>1500<br>33.6<br>1500<br>33.6<br>1500<br>33.6<br>1500<br>33.6                                                                                                                                                                                                                                                                                                                                                         | 4 48<br>4 48<br>4 48<br>4 46<br>3 71<br>3 55<br>3 66<br>3 49<br>3 28<br>3 15<br>2 76<br>2 74<br>EFFI<br>3 9<br>3 9<br>3 8<br>3 8<br>3 8<br>3 8<br>3 8<br>3 8<br>3 8<br>3 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.8<br>6.8<br>26.<br>459<br>446<br>370<br>355<br>364<br>348<br>325<br>315<br>271<br>CIEN'<br>3.3<br>21.2<br>CIEN'<br>9.2<br>23.                            | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>348<br>323<br>314<br>276<br>268<br>314<br>276<br>268<br>314<br>276<br>268<br>314<br>276<br>268<br>314<br>276<br>268<br>314<br>276<br>268<br>314<br>353<br>26893<br>IS AI                                                         | .8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276<br>266<br>266<br>RE<br>.0<br>140<br>RE<br>.9<br>340                     | 422.3<br>050<br>451<br>441<br>368<br>346<br>360<br>344<br>321<br>314<br>275<br>266<br>312.7                   | 8 3<br>451<br>436<br>366<br>357<br>336<br>321<br>308<br>275<br>266<br>7 2                      | 10.76<br>10.68<br>9.92<br>6.23<br>4.11 | 363<br>356<br>320        |
| BEST<br>STAND<br>TABLE<br>2<br>4<br>6<br>8<br>10<br>FOR I<br>50<br>BEST<br>STAND<br>FOR I<br>50<br>BEST<br>STAND<br>FOR I       | FIT<br>ARD<br>ARD<br>ARD<br>ARD<br>ARD<br>A73<br>451<br>379<br>366<br>373<br>357<br>329<br>321<br>280<br>275<br>EGREI<br>3.900<br>FIT<br>ARD<br>DEGREI<br>02.400<br>FIT<br>DEGREI<br>DEGREI<br>DEGREI<br>DEGREI | VALUI<br>DEVI<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>275<br>275<br>275<br>275<br>275<br>20<br>50<br>VALUI<br>DEVI<br>DEVI<br>DEVI<br>E OF<br>00<br>VALUI<br>DEVI<br>20<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277<br>274<br>1<br>-20<br>2<br>274<br>1<br>-20<br>2<br>5<br>4<br>4<br>ATION<br>2<br>-32<br>2<br>5<br>4<br>4<br>ATION<br>3<br>5<br>1<br>3<br>2<br>8<br>317<br>277<br>274<br>1<br>-20<br>2<br>3<br>2<br>8<br>4<br>4<br>4<br>5<br>8<br>317<br>2<br>7<br>4<br>3<br>5<br>8<br>317<br>2<br>7<br>4<br>3<br>5<br>8<br>317<br>2<br>7<br>4<br>4<br>6<br>3<br>3<br>5<br>8<br>317<br>2<br>7<br>4<br>4<br>6<br>3<br>3<br>5<br>8<br>317<br>2<br>7<br>7<br>3<br>5<br>8<br>317<br>2<br>7<br>7<br>3<br>5<br>8<br>317<br>2<br>7<br>7<br>3<br>5<br>8<br>317<br>2<br>7<br>7<br>3<br>5<br>8<br>317<br>2<br>7<br>7<br>3<br>5<br>8<br>317<br>2<br>7<br>7<br>3<br>5<br>8<br>317<br>2<br>7<br>7<br>3<br>5<br>8<br>317<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>4<br>2<br>7<br>7<br>3<br>2<br>8<br>3<br>1<br>7<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>7<br>3<br>5<br>8<br>3<br>3<br>7<br>2<br>7<br>7<br>2<br>7<br>4<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>4<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>4<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>4<br>3<br>5<br>8<br>3<br>2<br>8<br>3<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>4<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>7<br>2<br>7<br>4<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>7<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>4<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>7<br>7<br>2<br>7<br>2<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2 | .8334<br>29.8<br>15<br>.(DEC<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276<br>274<br>CO<br>33.6<br>1500<br>33.6<br>1500<br>33.6<br>1500<br>33.6<br>1500<br>33.6<br>1500<br>33.6<br>1500<br>33.6<br>1500<br>33.6<br>1500<br>33.6<br>1500<br>33.6<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>150                                                                                                                                                                                                  | 4 48<br>4 48<br>4 46<br>3 71<br>3 55<br>3 66<br>3 49<br>3 28<br>3 15<br>2 76<br>2 76<br>2 74<br>EFFIC<br>3 9<br>3 8<br>3 8<br>3 8<br>3 8<br>3 8<br>3 8<br>3 8<br>3 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.8<br>6.8<br>26.7<br>459<br>446<br>370<br>355<br>364<br>325<br>315<br>276<br>271<br>CIEN'<br>3.3<br>21.5<br>CIEN'<br>9.2<br>23.7<br>CIEN'                 | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>348<br>323<br>314<br>276<br>268<br>15<br>Al<br>353<br>26893<br>15<br>Al<br>353<br>26893<br>15<br>Al<br>353<br>26893<br>15<br>Al<br>353<br>26893<br>17<br>344<br>71738<br>15<br>Al                                                | . 8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276<br>266<br>RE<br>.0<br>440<br>RE<br>.9<br>340<br>RE                     | 422.<br>050<br>451<br>441<br>368<br>346<br>346<br>346<br>321<br>314<br>275<br>266<br>312.<br>308.0            | 8 3<br>451<br>436<br>366<br>357<br>336<br>321<br>308<br>275<br>266<br>7 2<br>6 2               | 10.76<br>10.68<br>9.92<br>6.23<br>4.11 | 363<br>356<br>320        |
| BEST<br>STAND<br>TABLE<br>2<br>4<br>6<br>8<br>10<br>FOR I<br>50<br>BEST<br>STAND<br>FOR I<br>50<br>BEST<br>STAND<br>FOR I<br>63 | FIT<br>ARD<br>ARD<br>ARD<br>ARD<br>A73<br>451<br>379<br>366<br>373<br>357<br>329<br>321<br>280<br>275<br>EGREI<br>3.900<br>FIT<br>ARD<br>EGREI<br>02.400<br>FIT<br>ARD<br>EGREI<br>02.400<br>FIT                | VALUJ<br>DEVIJ<br>473<br>449<br>377<br>364<br>370<br>351<br>329<br>318<br>278<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275                                                                                                                      | ES 52<br>ATION<br>FEMP.<br>467<br>446<br>377<br>358<br>370<br>351<br>328<br>317<br>277<br>274<br>1<br>-20<br>274<br>1<br>-20<br>274<br>1<br>-32<br>274<br>1<br>-32<br>274<br>1<br>-32<br>274<br>1<br>-32<br>2<br>4<br>4<br>ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .8334<br>29.8<br>15<br>(DE(<br>465<br>446<br>375<br>358<br>366<br>351<br>328<br>315<br>276<br>274<br>CO<br>33.6<br>150(<br>33.6<br>150(<br>33.6<br>150(<br>33.6<br>150(<br>33.6<br>150(<br>33.6)<br>150(<br>33.6)<br>150(<br>33.6)<br>150(<br>33.6)<br>150(<br>33.6)<br>150(<br>33.6)<br>150(<br>33.6)<br>150(<br>33.6)<br>150(<br>351, 15)<br>150(<br>33.6)<br>150(<br>351, 15)<br>150(<br>351, 15)<br>150(<br>351, 15)<br>150(<br>351, 15)<br>150(<br>351, 15)<br>150(<br>150(<br>150(<br>150(<br>150(<br>150(<br>150(<br>150( | 4 48<br>4 48<br>4 46<br>3 71<br>3 55<br>3 66<br>3 49<br>3 28<br>3 15<br>2 76<br>2 74<br>EFFIC<br>3 9<br>EFFIC<br>3 8<br>2 76<br>2 74<br>EFFIC<br>3 9<br>3 8<br>2 76<br>3 7<br>3 7<br>3 7<br>3 7<br>3 7<br>3 7<br>3 7<br>3 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.8<br>6.8<br>26.<br>459<br>446<br>370<br>355<br>364<br>348<br>325<br>315<br>276<br>271<br>CIEN<br>3.3<br>21.<br>CIEN<br>9.2<br>23.<br>CIEN<br>18.0<br>0.4 | 3750<br>456<br>77312<br>457<br>446<br>370<br>349<br>362<br>348<br>323<br>314<br>276<br>268<br>323<br>314<br>276<br>268<br>15<br>Al<br>353<br>26891<br>15<br>Al<br>353<br>26891<br>15<br>Al<br>353<br>26891<br>15<br>Al<br>344<br>344<br>344<br>344<br>344<br>344<br>344<br>344<br>344<br>34 | . 8<br>200<br>=1<br>457<br>441<br>368<br>349<br>360<br>348<br>323<br>314<br>276<br>266<br>266<br>RE<br>.0<br>140<br>RE<br>.9<br>340<br>RE<br>.9<br>340 | 422.3<br>050<br>451<br>441<br>368<br>346<br>360<br>344<br>321<br>314<br>275<br>266<br>312.7<br>308.0<br>-0.9' | 8 3<br>451<br>436<br>366<br>346<br>357<br>336<br>321<br>308<br>275<br>266<br>7 2<br>6 2<br>792 | 10.76<br>10.68<br>9.92<br>6.23<br>4.11 | 363<br>356<br>320<br>273 |

| EFFEC           | T OF           | SOA         | KING          | PER           | IOD          | ON F       | HARDN          | ESS      | ÍN A       | C.         | CONDIT       | ION               |
|-----------------|----------------|-------------|---------------|---------------|--------------|------------|----------------|----------|------------|------------|--------------|-------------------|
| ALLOY<br>TABLE  | : B:<br>-4.7   | 2 .         | AS CA<br>TEMP | AST<br>. (DE) | HARD<br>G.C) | NESS       | 5(HV3)         | 0)=<br>= | 590<br>800 |            |              |                   |
| TIME<br>(HRS)   |                |             |               |               | HAR<br>(H    |            |                |          |            |            | SD           | AVERAGE<br>(HV30) |
| 2               |                |             |               |               |              |            | 2 618          |          |            |            |              |                   |
| 4               |                |             | 606<br>648    |               |              |            | 5 602<br>4 644 |          |            |            |              | 615               |
|                 | 631            | 631         | 626           | 626           | 626          | 622        | 2 622          | 618      | 618        | 618        | 11.93        | 633               |
| 6               |                |             | 648<br>635    |               |              |            | 3 644<br>1 631 |          |            |            | 9.82         | 638               |
| 8               | 675            | 675         | 666           | 6 <b>66</b>   | 666          | 661        | E 661          | 657      | 657        | 648        |              |                   |
| 10              |                |             |               |               |              |            | 4 644<br>) 671 |          |            |            |              | 652               |
| 10              |                |             |               |               |              |            |                |          |            |            |              | 668               |
| FOR D           |                |             |               |               |              | CIEN       | ITS AI         | RE       |            |            |              |                   |
|                 | 3.700          |             |               |               |              | 0 7        | <b>CA1</b>     |          | 059        | 7 0        | 6 <b>6</b> 6 |                   |
| BEST<br>STAND   |                |             |               |               |              |            | 641<br>4785(   |          | 653.       | 1 6        | 66.2         |                   |
| FOR D           |                |             |               |               |              |            |                |          |            |            |              |                   |
|                 | 6.200          |             | <b>5</b> .    |               |              |            | 0893           |          |            |            |              |                   |
| BEST            |                |             |               |               |              |            |                | . 5      | 653.       | 36         | 66.9         |                   |
| STAND           |                |             |               |               |              |            | 1541'          |          |            |            |              |                   |
| FOR D           |                |             | 3             | COI           | EFFI         | CIEN       | ITS A          | RE       |            |            |              |                   |
|                 | 5.198          |             | 19.           |               |              |            | 7232           |          |            |            |              |                   |
| BEST I<br>STAND |                |             |               |               |              |            |                |          | 650.       | 36         | 68.4         |                   |
| TABLE           | -4.8           | <br>        | remp.         | ( DE(         | G.C)         |            | <u> </u>       | ÷        | 850        |            |              |                   |
| 2               | 533            | 533         | 533           | 533           | 530          | 527        | 7 527          | 527      | 523        | 523        |              | <u> </u>          |
|                 |                |             |               |               |              |            |                |          |            |            |              | 520               |
| 4               |                |             |               |               |              |            | 537            |          |            |            |              | 500               |
| 6               |                |             |               |               |              |            | 530            |          |            |            | 9.94         | 529               |
| 0               |                |             |               |               |              |            |                |          |            |            | 10.08        | 526               |
| 8               |                |             |               |               |              |            | 533            |          |            |            |              | 010               |
|                 |                |             |               |               |              |            |                |          |            |            | 12.30        | 528               |
| 10              |                |             |               |               |              |            | 3 533          |          |            |            |              |                   |
|                 | 527            | 527         | 527           | 523           | 520          | 514        | 514            | 505      | 505        | 505        | 12.05        | 526               |
| FOR D           | ក្នុភ្នា       | 7<br>0<br>5 | 1             |               |              | יד דייא    |                | <br>ק    |            |            |              |                   |
|                 | 2.500          |             |               |               |              | o t GIV    | на п           | E        |            |            |              |                   |
| BEST            |                |             |               |               |              | 4.7        | 525            | . 8      | 526.       | 95         | 28.0         |                   |
| STAND           | ARD I          | )EVI/       | ATION         | IS IS         |              | 3.         | 49761          | L63      |            | 5          |              |                   |
| FOR D           |                |             |               |               |              |            |                | RE       |            |            |              |                   |
|                 |                |             |               |               |              |            | 3036           |          | <b>.</b>   | _          |              |                   |
| BEST            |                |             |               |               |              |            |                |          | 528.       | 15         | 25.6         |                   |
| STANDA          |                |             |               |               |              |            | 83341<br>WG A1 |          |            |            |              |                   |
| FOR D           |                |             |               |               |              |            | ITS AI<br>8037 |          | <u> </u>   | 999        |              |                   |
| BEST            | ።./ሀረ<br>ምፓጥ የ | /           | 14.<br>75 50  | 20 4          | L<br>521     | ‴⊥.<br>7 5 | 528            | 2        | 526        | 000<br>5 R | 26.4         |                   |
| STAND           | ARD I          | DEVI        | ATION         | i IS          | 04           | 3.         | 10759          |          |            |            | 10.4         |                   |
|                 |                |             |               |               |              |            |                |          |            |            |              |                   |

÷17 ō.

EFFECT OF SOAKING PERIOD ON HARDNESS IN A.C. CONDITION

|                                    | : B2<br>-4,9                                                     |                              |                                |                                     |                        |                            |                                |                                       |                |            |                                                         |                   |
|------------------------------------|------------------------------------------------------------------|------------------------------|--------------------------------|-------------------------------------|------------------------|----------------------------|--------------------------------|---------------------------------------|----------------|------------|---------------------------------------------------------|-------------------|
| TIME<br>(HRS)                      |                                                                  |                              |                                |                                     | HARI<br>(HV            | DNESS<br>730)              | 5                              |                                       |                |            | SD                                                      | AVERAGE<br>(HV30) |
| 2<br>4                             | 517 5<br>505 5<br>508 5                                          | 505                          | 499                            | 499                                 | 499                    | 493                        | 490                            | 484                                   | 484            | 484        | 10.32                                                   | 502               |
| 6                                  | 490 4<br>511 5                                                   | 487<br>505                   | 487<br>502                     | 487<br>499                          | 487<br>496             | 484<br>493                 | 481<br>493                     | 481<br>487                            | 481<br>487     | 478<br>484 | 9.53                                                    |                   |
| 8                                  | 505 5                                                            | 505                          | 505                            | 499                                 | 499                    | 499                        | 493                            | <b>4</b> 90                           | 487            | 487        | _11_25_                                                 |                   |
| 0                                  | 508 5                                                            | 508                          | 505                            | 505                                 | 499                    | 496                        | 496                            | 493                                   | 493            | 493        | 14.20<br>12.06                                          |                   |
| 50<br>BEST                         | EGREE<br>0.8000<br>FIT VA                                        | OF<br>)<br>ALUE              | 1<br>-1.<br>S 49               | COH<br>7000                         | 2FFI(<br>)<br>494      | CIEN<br>4.0                | rs AH<br>490.                  | RE . 6                                |                | <u> </u>   | ar lefann an star fra fra fra fra fra fra fra fra fra f | - • • •           |
| FOR DI<br>51<br>BEST<br>STAND      | ARD DE<br>EGREE<br>7.8000<br>FIT VA<br>ARD DE<br>EGREE           | OF<br>)<br>ALUE<br>EVIA      | 2<br>-8.<br>S 50<br>TION       | COH<br>9857<br>2.3<br>VIS           | CFFI(<br>49:           | CIEN<br>0.0<br>1.6<br>0.7  | IS AH<br>5071<br>485.<br>71713 | RE<br>. 7<br>. 7<br>. 7<br>. 7<br>. 7 | 484.{          | 3 4        | 88.7                                                    |                   |
| 51<br>BEST<br>STAND                | 3.6004<br>FIT VA<br>ARD DE                                       | ALUE<br>SVIA                 | -6.<br>S 50<br>TION            | 0360<br>2.0<br>IS                   | )<br>492               | 0.0<br>2.2<br>0.3          | )447<br>485<br>35857           | .7<br>704                             | 484.2          |            | 89.0                                                    |                   |
| 2                                  |                                                                  | 451                          | 451                            | 451                                 | 451                    | 451                        | 449                            | 449                                   | 444            | 444        | 7.28                                                    | 455               |
| 4                                  |                                                                  | 444                          | 444                            | 444                                 | 444                    | 439                        | 434                            | 432                                   | 427            | 425        | 10.41                                                   | 446               |
| 6<br>8                             | 457 4<br>446 4<br>465 4                                          | 444                          | 444                            | 439                                 | 439                    | 439                        | 432                            | 432                                   | 422            | 422        | 9.85                                                    | 443               |
|                                    |                                                                  | 444                          | 441                            | 441                                 | 441                    | 439                        | 436                            | 432                                   | 432            | 427        | 10.21                                                   | 446               |
| +                                  |                                                                  |                              |                                |                                     |                        |                            |                                |                                       | 429            | 427        | 8.61                                                    | 444               |
| 45<br>BEST<br>STAND<br>FOR D<br>46 | EGREE<br>3.4000<br>FIT VA<br>ARD DH<br>EGREE<br>3.4000<br>FIT VA | O<br>ALUE<br>EVIA<br>OF<br>O | -1.<br>5 4!<br>TION<br>2<br>-5 | .100(<br>51.2<br>N IS<br>CO<br>.385 | )<br>44:<br>EFFI(<br>7 | 9.0<br>3.'<br>CIEN'<br>0.3 | 446<br>7594:<br>TS AJ<br>3571  | . 8<br>329<br>RE                      |                | · .        | . '                                                     |                   |
| STAND<br>FOR D<br>47<br>BEST       | ARD DE<br>EGREE<br>8.800:<br>FIT V<br>ARD D                      | EVIA<br>OF<br>3<br>ALUE      | TION<br>3<br>-16<br>5 4        | N IS<br>CO<br>2020<br>55.2          | EFFI)<br>5<br>44:      | 2.0<br>CIEN<br>2.4<br>5.4  | 6295(<br>TS A1<br>4197<br>443  | 041<br>RE<br>.9                       | -0.1:<br>445.4 | 146        |                                                         | · ·               |

• .

.

T-12

•

| EFFEC'                                                          | r of                                                                                   | SOAI                                                                                  | KING                                                                  | PER                                                                              | IOD                                                           | ON H                                                                   | ARDN                                                                          | ESS                                                | IN A                | C.        | CONDIT | ION               |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|---------------------|-----------|--------|-------------------|
| ALLOY<br>TABLE-                                                 | ; B<br>-4.1                                                                            | 2 1                                                                                   | AS C.<br>TEMP                                                         | AST<br>. (DE)                                                                    | HARD<br>G.C)                                                  | NESS                                                                   | (HV3)                                                                         | 0)=<br>=1                                          | 590<br>000          |           |        |                   |
| TIME<br>(HRS)                                                   |                                                                                        |                                                                                       |                                                                       |                                                                                  |                                                               |                                                                        |                                                                               |                                                    |                     |           | SD     | AVERAGE<br>(HV30) |
| 2                                                               | 427                                                                                    | 427                                                                                   | 425                                                                   | 420                                                                              | 418                                                           | 418                                                                    |                                                                               | 418                                                | 415                 | 406       | 9.18   | 426               |
| 4                                                               | 415                                                                                    | 415                                                                                   | 415                                                                   | 413                                                                              | 411                                                           | 411                                                                    | $\begin{array}{c} 418\\ 406 \end{array}$                                      | 406                                                | 404                 | 402       | 6.13   | 414               |
| 6                                                               | 400                                                                                    | 400                                                                                   | 400                                                                   | 400                                                                              | 400                                                           | 398                                                                    |                                                                               | 398                                                | 398                 | 391       | 5.05   | 402               |
| 8                                                               |                                                                                        |                                                                                       |                                                                       |                                                                                  |                                                               |                                                                        | 377<br>370                                                                    |                                                    |                     |           | 8.86   | 374               |
| 10                                                              |                                                                                        |                                                                                       |                                                                       |                                                                                  |                                                               |                                                                        | 358<br>337                                                                    |                                                    |                     |           | 11.82  | 350               |
| BEST H<br>STANDA<br>FOR DH<br>430<br>BEST H<br>STANDA<br>FOR DH | D.80<br>FIT<br>EGRED<br>D.80<br>FIT<br>ARD<br>EGRED<br>5.20<br>FIT<br>ARD I            | 00<br>VALUI<br>DEVI/<br>E OF<br>00<br>VALUI<br>DEVI/<br>CE OF<br>02<br>VALUI<br>DEVI/ | -9<br>ES 4:<br>2<br>-1.<br>ES 4:<br>ATION<br>3<br>2<br>ES 4:<br>ATION | .6000<br>31.6<br>VIS<br>COL<br>0280<br>25.9<br>VIS<br>COL<br>9040<br>25.5<br>VIS | 2 41:<br>2 FF1:<br>5 41:<br>2 FF1:<br>5 41:<br>6 41:<br>6 41: | 2.4<br>6.0<br>CIEN<br>-0.5<br>5.3<br>3.0<br>CIEN<br>-1.4<br>5.1<br>4.3 | 393<br>6932<br>TS AI<br>7143<br>398<br>17130<br>TS AI<br>4643<br>398<br>30282 | . 2<br>794<br>RE<br>. 9<br>009<br>RE<br>. 9<br>225 | 376.<br>0.0<br>376. | 93<br>417 | 49.1   |                   |
| <u></u>                                                         |                                                                                        |                                                                                       |                                                                       |                                                                                  |                                                               |                                                                        | 411                                                                           |                                                    |                     | 409       |        |                   |
| 4                                                               |                                                                                        |                                                                                       |                                                                       |                                                                                  |                                                               |                                                                        | 402<br>371                                                                    |                                                    |                     |           |        | 409               |
| 6                                                               | 368                                                                                    | 364                                                                                   | 364                                                                   | 362                                                                              | 362                                                           | 362                                                                    |                                                                               | 353                                                | 353                 | 351       | 7.31   | 365               |
| 8                                                               | 329                                                                                    | 326                                                                                   | 320                                                                   | 317                                                                              | 317                                                           | 314                                                                    |                                                                               | 309                                                | 302                 | 301       | 16.82  | 329               |
| 10                                                              | 295                                                                                    | 294                                                                                   | 294                                                                   | 294                                                                              | 289                                                           | 289                                                                    | 289                                                                           | 289                                                | 287                 | 282       | 8.53   | 297               |
|                                                                 |                                                                                        |                                                                                       |                                                                       |                                                                                  |                                                               |                                                                        |                                                                               |                                                    |                     |           | 8.05   | 263               |
| BEST H<br>STANDA<br>FOR DH<br>452<br>BEST H<br>STANDA<br>FOR DH | ).600<br>FIT '<br>ARD I<br>EGREI<br>2.600<br>FIT '<br>ARD I<br>EGREI<br>5.600<br>FIT ' | DO<br>VALUI<br>DEVIA<br>E OF<br>DO<br>VALUI<br>DEVIA<br>E OF<br>D1<br>VALUI           | -18.<br>ES 40<br>-23.<br>ES 40<br>ATION<br>3<br>-32.<br>ES 40         | 0000<br>94_6<br>1 IS<br>COH<br>1429<br>08.0<br>1 IS<br>COH<br>9763<br>9763       | )<br>368<br>369<br>2FFI(<br>369<br>369                        | B.6<br>4.1<br>CIEN'<br>5.9<br>2.2<br>CIEN'<br>2.3<br>4.9               | 332.<br>13118<br>TS AH<br>4286<br>329.<br>24244<br>TS AH<br>3036<br>329.      | 6<br>323<br>RE<br>2<br>451<br>RE<br>2              | 294.                | 9 2       |        |                   |

.

| 2                |            |               |                |       | HAR        | DNES       | 5          |      |            |                                           | SD    | AVERAGE<br>(HV30) |
|------------------|------------|---------------|----------------|-------|------------|------------|------------|------|------------|-------------------------------------------|-------|-------------------|
|                  | 695        | 695           | 705<br>695     | 690   | 690        | 690        | 690        | 690  | 685        | 685                                       | 7.05  | 696               |
| 4                |            |               | 715            |       |            |            |            |      |            |                                           | 9.93  | 700               |
| 6                | 730        | 730           | 700<br>725     | 725   | 725        | 720        | 720        | 715  | 715        | 715                                       |       |                   |
| 8                |            |               | 715<br>752     |       |            |            |            |      |            |                                           | 6.93  | 716               |
|                  | 741        | 741           | 741            | 741   | 736        | 736        | 736        | 736  | 730        | 730                                       | 7.66  | 743               |
| 10               |            |               | 763<br>741     |       |            |            |            |      |            |                                           | 9.98  | 745               |
| FOR DE           | EGREI      | E OF          | 1              | COI   | EFFI       | CIEN       | rs ai      | RE   | ·····      |                                           |       |                   |
|                  |            |               | 6.             |       |            | a F        | 800        |      |            |                                           | •••   |                   |
| BEST I<br>STANDA |            |               |                |       |            |            |            |      | 734.       | 3 7                                       | 48.2  |                   |
| FOR DE           |            |               |                |       |            |            |            |      |            |                                           |       |                   |
|                  |            |               | <u>د</u><br>5. |       |            |            |            | .×Ф  |            |                                           |       |                   |
| BEST H           |            |               |                |       |            |            |            | 7 '  | 733 3      | 97.                                       | 48 9  |                   |
| STAND            |            |               |                |       |            |            |            |      |            |                                           | 10.0  |                   |
| FOR DI           |            |               |                |       |            |            |            |      |            |                                           |       |                   |
| 721              | 7.399      | 99            | -26.           | 5713  | 3          | 6.2        | 2768       | -    | -0.34      | 437                                       |       |                   |
| BEST I           | ዋገጥ ነ      | <b>ZATIJI</b> | <b>ES 6</b> 9  | 96.6  | 699        | 9.5        | 719        | .7 ' | 740.       | 5 7-                                      | 45.6  |                   |
| STANDA           | ARD I      | DEVIA         | ITION          | IS IS |            | 5.3        | 13948      | 321  |            |                                           |       |                   |
| rable-           | -4.14      | £ 1           | remp           | ( DE( | G.C)       |            |            | = {  | 350        |                                           |       |                   |
| 2                | 583        | 583           | 583            | 579   | 579        | 575        | 571        | 571  | 571        | 568                                       |       |                   |
|                  | 568        | 568           | 568            | 564   | 564        | 561        | 561        | 557  | 557        | 554                                       |       | 569               |
| 4                |            |               | 594            |       |            |            |            |      |            |                                           |       |                   |
|                  |            |               |                |       |            |            |            |      |            |                                           | 10.99 | 578               |
| 6                |            |               | 626            |       |            |            |            |      |            |                                           |       |                   |
| _                |            |               |                |       |            |            |            |      |            |                                           | 8.54  | 615               |
| -                |            | 095           | 631            | 631   | 626        | 622        | 622        | 622  | 622        | 622                                       |       |                   |
| _                | 644        |               |                |       |            |            |            |      |            |                                           |       |                   |
| 8                | 618        | 618           | 618            |       | 618        | 614        | 614        |      | 610        | 610                                       |       | 621               |
| 8                | 618<br>652 | 618<br>652    | 618<br>652     | 648   | 618<br>648 | 614<br>648 | 614<br>648 | 648  | 610<br>648 | $\begin{array}{c} 610 \\ 644 \end{array}$ |       |                   |

EFFECT OF SOAKING PERIOD ON HARDNESS IN A.C. CONDITION

| ALLOY<br>TABLE                                |                                                            |                                                      |                                                    |                                                     |                               |                                          |                                                 |                                  |               |             |       |                   |
|-----------------------------------------------|------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------|---------------|-------------|-------|-------------------|
| TIME<br>(HRS)                                 |                                                            | ······                                               |                                                    |                                                     |                               |                                          | 5                                               |                                  |               |             | SD    | AVERAGE<br>(HV30) |
| 2<br>4                                        | 511                                                        |                                                      | 511                                                | 508                                                 | 505                           | 502                                      | 517<br>502<br>511                               | 499                              | 496           | 496         | 12.28 | 513               |
| 6                                             | 505                                                        | 505                                                  | 505                                                | 505                                                 | 502                           | 499                                      | 499<br>517                                      | 499                              | 499           | 493         | 8.86  | 507               |
| 8                                             | 514                                                        | 514                                                  | 514                                                | 508                                                 | 508                           | 508                                      |                                                 | 505                              | 505           | 505         | 6.70  | 513               |
|                                               | 508                                                        | <b>5</b> 05                                          | 505                                                | 502                                                 | 502                           | 499                                      |                                                 | 496                              | 496           | 496         | 10.66 | 509               |
|                                               |                                                            |                                                      |                                                    |                                                     |                               |                                          |                                                 |                                  |               |             | 8.38  | <b>5</b> 20       |
|                                               | 7.60                                                       | 00                                                   | 0.                                                 | . 8000                                              | )                             |                                          |                                                 |                                  |               |             |       |                   |
| BEST<br>STAND<br>FOR D                        | FIT<br>ARD 1<br>EGRE                                       | VALUI<br>DEVIA<br>E OF                               | ES 50<br>ATION<br>2                                | )9.2<br>N IS<br>CO                                  | 51(<br>EFFI(                  | 4.9<br>CIEN                              | 95 <mark>3</mark> 13<br>TS Al                   | 122                              | 514.0         | <b>)</b> 5: | 15.6  |                   |
| BEST<br>STAND<br>FOR D                        | FIT<br>ARD 1<br>EGRE1                                      | DEVI/<br>E OF                                        | ES 51<br>ATION<br>3                                | 12.6<br>1 IS<br>COI                                 | 505<br>EFFI                   | 9.1<br>4.(<br>CIEN                       | 509.<br>2846<br>IS AH                           | 394<br>RE                        |               |             | 19.0  |                   |
| 51<br>BEST<br>STAND                           | FIT '                                                      | VALUI                                                | ES 51                                              | 12.3                                                | 50\$                          | 9.7                                      |                                                 | .0 8                             |               |             | 19.3  | <b>11</b>         |
| TABLE                                         | -4.1                                                       | 6 7                                                  | CEMP.                                              | (DE)                                                | G.C)                          |                                          |                                                 | = {                              | 950           |             | L-12  |                   |
| 2<br>4                                        | 493                                                        | 493                                                  | 493                                                | 493                                                 | 493                           | 487                                      | 496<br>487<br>505                               | 481                              | 481           | 473         | 6,95  | 492               |
| 6                                             | 496                                                        | 496                                                  | 496                                                | 496                                                 | 496                           | 493                                      | 493<br>499                                      | 493                              | 493           | 493         | 7.31  | 500               |
| 8                                             | 496                                                        | 493                                                  | 493                                                | 490                                                 | 490                           | 490                                      |                                                 | 490                              | 490           | 484         | 7.88  | 496               |
| 10                                            | 499                                                        | 499                                                  | 499                                                | 496                                                 | 496                           | 496                                      | 473<br>496                                      | 496                              | 493           | 487         |       |                   |
|                                               |                                                            |                                                      |                                                    |                                                     |                               |                                          |                                                 |                                  | 481           | 481         | 7.13  | 489               |
| BEST<br>STAND<br>FOR D<br>49<br>BEST<br>STAND | 8.700<br>FIT '<br>ARD ]<br>EGRE<br>1.200<br>FIT '<br>ARD ] | DO<br>VALUI<br>DEVIA<br>E OF<br>DO<br>VALUI<br>DEVIA | -1.<br>ES 49<br>ATION<br>2<br>2.<br>ES 49<br>ATION | 0500<br>96.6<br>1 IS<br>CON<br>1643<br>94.5<br>N IS | )<br>494<br>EFFI(<br>3<br>49! | 4.5<br>5.8<br>CIEN<br>-0.2<br>5.6<br>6.2 | 492.<br>57075<br>IS AF<br>2679<br>494.<br>20598 | .4 4<br>570<br>3E<br>.5 4<br>371 |               |             |       |                   |
| FOR D<br>45<br>BEST<br>STAND                  | 3.399<br>FIT '                                             | 93<br>VALUI                                          | 28.<br>ES 49                                       | 7148<br>91.8                                        | 3<br>50:                      | -5.3<br>1.0                              | 3305<br>494.                                    | .5 4                             | 0.28<br>186.0 | 313<br>) 48 | 38.8  |                   |

| ALLOY<br>TABLE                                                             | 7 : B3<br>1-4.17                                                                                                    | AS CAST<br>TEMP.(DE                                                     | HARDNESS<br>G.C)                                                                     | S(HV30)=<br>=1                                                                      | 652<br>000         |       |                   |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------|-------|-------------------|
| TIME<br>(HRS)                                                              | •                                                                                                                   |                                                                         | HARDNES<br>(HV30)                                                                    | SS                                                                                  |                    | SD    | AVERAGE<br>(HV30) |
| 2                                                                          | 476 476                                                                                                             | 6 476 470                                                               | .470 470                                                                             | 481 478<br>470 470<br>427 425                                                       | 467 467            | 7.84  | 477               |
| 6                                                                          | 422 422                                                                                                             | 2 420 418                                                               | 418 418                                                                              | 3 418 415<br>7 387 385                                                              | 415 415            | 5.83  | 422               |
| 8                                                                          | 383 377                                                                                                             | 377 375                                                                 | 375 373                                                                              |                                                                                     | 368 364            | 8.83  | 380               |
|                                                                            | 377 375                                                                                                             | 5 375 371                                                               | 371 366                                                                              | 366 366                                                                             | 366 362            | 11.41 | 378               |
| 10                                                                         |                                                                                                                     |                                                                         |                                                                                      | ) 368 368<br>346 346                                                                |                    |       | 359               |
| 48<br>BEST<br>STAND<br>FOR D<br>54<br>BEST<br>STAND<br>FOR D<br>58<br>BEST | FIT VALU<br>ARD DEVI<br>DEGREE OF<br>3.2000<br>FIT VALU<br>DARD DEVI<br>DEGREE OF<br>5.2003<br>FIT VALU             | ATION IS<br>2 CC<br>-38.000<br>JES 475.2<br>ATION IS<br>3 CC<br>-67.500 | 0<br>431.2<br>19.<br>EFFICIEN<br>0 2.<br>423.2<br>9.<br>EFFICIEN<br>2 7.<br>417.2    | 403.2<br>0333040<br>ITS ARE<br>0000<br>387.2<br>7672923<br>ITS ARE<br>6250<br>387.2 | 367.2 3<br>-0.3125 | 63.2  |                   |
| TABLE                                                                      | -4.18                                                                                                               | TEMP. (DE                                                               | G.C)                                                                                 | =1                                                                                  | 050                |       |                   |
| 2<br>4                                                                     | 398 398                                                                                                             | 398 <mark>3</mark> 96                                                   | 396 393                                                                              | 404 404<br>391 391<br>368 368                                                       | 385 381            |       | 399               |
| 6                                                                          | 366 366                                                                                                             | 366 360                                                                 | 360 360                                                                              | 357 355<br>358 358                                                                  | 351 344            |       | 364               |
| 8                                                                          | 358 358                                                                                                             |                                                                         | 355 353                                                                              | 351 349<br>299 295                                                                  | 344 344            | 6.64  | 357               |
|                                                                            | 289 289                                                                                                             | 287 287                                                                 | 287 287                                                                              | 285 285<br>285 285<br>265 264                                                       | 282 270            |       | <b>29</b> 3       |
| 10                                                                         |                                                                                                                     |                                                                         |                                                                                      | 205 204<br>254 251                                                                  |                    | 7.12  | 261               |
| 43<br>BEST<br>STAND<br>FOR 1<br>BEST<br>STAND<br>FOR 1<br>40<br>BEST       | 8.9000<br>FIT VALU<br>DARD DEVI<br>DEGREE OF<br>3.4000<br>FIT VALU<br>DARD DEVI<br>DEGREE OF<br>07.8002<br>FIT VALU | ATION IS<br>2 CC<br>-6.421<br>JES 396.9<br>ATION IS<br>3 CC<br>-2.488   | 0<br>369.5<br>14.<br>EFFICIEN<br>4 -0.<br>373.1<br>14.<br>EFFICIEN<br>2 -1.<br>373.9 | 334.8<br>3747460<br>TS ARE<br>9107<br>342.1<br>7328590<br>TS ARE<br>6607<br>342.1   | 303.7 2<br>0.0417  | 58.1  |                   |

EFFECT OF SOAKING PERIOD ON HARDNESS IN A.C. CONDITION ALLOY : B4 AS CAST HARDNESS(HV30) = 621 TABLE-4.19 TEMP. (DEG.C) = 800SD AVERAGE HARDNESS TIME (HV30) (HRS) (HV30) 671 671 671 666 666 666 666 657 657 657 2 652 652 652 648 644 644 644 644 644 644 10.40 655 657 657 657 652 652 652 648 648 648 644 4 639 639 639 639 639 639 639 639 639 635 635 7.59 644 671 666 661 661 661 661 657 657 657 657 6 657 652 652 648 648 648 644 644 631 9.23 653 680 675 671 671 671 671 666 661 661 661 8 657 657 657 657 657 657 652 652 648 648 9.10 661 10 690 690 690 685 680 680 680 680 680 675 675 675 675 675 675 671 671 671 671 666 6.86 677 FOR DEGREE OF 1 COEFFICIENTS ARE 639.7000 3.0500 BEST FIT VALUES 645.8 651.9 658.0 664.1 670.2 STANDARD DEVIATION IS 8.7158861 FOR DEGREE OF 2 COEFFICIENTS ARE 666.2000 -8.3071 0.9464 BEST FIT VALUES 653.4 648.1 650.4 660.3 677.8 STANDARD DEVIATION IS 3.6916896 FOR DEGREE OF 3 COEFFICIENTS ARE 683.0006 -20.1075 3.1965 -0.1250BEST FIT VALUES 654.6 645.7 650.4 662.7 676.6 STANDARD DEVIATION IS 3.5856849 = 850 TABLE-4,20 TEMP. (DEG,C) 557 557 554 554 550 550 550 543 543 540 2 540 537 537 537 533 533 527 527 527 523 10.74 540 537 537 533 533 533 533 533 533 530 527 523 4 523 523 523 523 523 523 520 520 514 511 7.28 526 557 557 554 554 554 554 550 550 550 550 6 550 547 547 547 543 543 543 533 530 530 8.15 547 8 543 543 543 543 540 537 537 537 533 533 533 530 530 530 527 527 527 517 514 514 9.14 523 520 517 517 517 517 517 517 517 514 531 10 514 514 511 511 511 511 508 508 508 508 4.35 514 FOR DEGREE OF 1 COEFFICIENTS ARE 545.7000 -2.3500BEST FIT VALUES 541.0 536.3 531.6 526.9 522.2 STANDARD DEVIATION IS 11.9485000 FOR DEGREE OF 2 COEFFICIENTS ARE 6.8643 -0.7679 524.2000 BEST FIT VALUES 534.9 539.4 537.7 530.0 516.1 STANDARD DEVIATION IS 12.1702250 FOR DEGREE OF 3 COEFFICIENTS ARE 574.6006 -28.5361 5.9822 -0.3750 BEST FIT VALUES 538.5 532.2 537.7 537.2 512.5 STANDARD DEVIATION IS 12.9084710

| EFFEC'           | T OF        | SOA             | KING           | PER           | IOD          | ON H         | ARDN           | ESS        | IN A                                  | .C.  | CONDIT | ION               |
|------------------|-------------|-----------------|----------------|---------------|--------------|--------------|----------------|------------|---------------------------------------|------|--------|-------------------|
| ALLOY<br>TABLE   | : B<br>-4.2 | 4 1             | AS CA<br>TEMP  | AST (<br>(DE) | HARD<br>G.C) | NESS         | (H <b>V</b> 3) | 0)=<br>=   | 621<br>900                            |      |        | •                 |
| TIME<br>(HRS)    |             |                 |                |               | HAR<br>(H    | DNES<br>V30) | S              |            |                                       |      | SD     | AVERAGE<br>(HV30) |
| 2                | 487         | 484             | 481            | 481           | 476          | 473          | 473            | 473        | 473                                   | 473  |        |                   |
| 4                |             |                 |                |               |              |              | 470            |            |                                       |      | 6.03   | 473               |
| 4                |             | _               |                |               |              |              | 484<br>473     |            |                                       |      | 9.71   | 480               |
| 6                | 484         | 484             | 484            | 481           | 478          | 478          | 476            | 476        | 476                                   | 476  |        |                   |
| •                |             |                 |                |               |              |              | 470            |            |                                       |      | 5.48   | 475               |
| 8                |             |                 |                |               |              |              | 487<br>476     |            |                                       | 484  | 5 17   | 484               |
| 10               |             |                 |                |               |              |              | 493            |            |                                       |      | 0.11   |                   |
|                  | 487         | <b>4</b> 87     | 487            | 487           | 484          | 484          | 484            | 481        | 481                                   | 476  | 5.68   | 488               |
| FOR DI           |             |                 |                |               |              | CIEN         | TS AI          | RE         | · · · · · · · · · · · · · · · · · · · |      |        |                   |
|                  |             | 00              |                |               |              | • •          |                | •          |                                       |      |        |                   |
| BEST I<br>STANDA |             |                 |                |               |              |              |                |            | 483.4                                 | 4 4  | 86.8   |                   |
| FOR DI           |             |                 |                |               |              |              |                |            |                                       |      |        |                   |
|                  |             |                 |                |               |              |              | 1429           |            |                                       |      |        |                   |
| BEST I           | FIT N       | VALUI           | ES 41          | 74.3          | 47(          | 5.0          | 478.           | .9         | 482.8                                 | 8 44 | 37.9   |                   |
| STAND            |             |                 |                |               |              |              |                |            |                                       |      |        |                   |
| FOR DI           |             |                 |                |               |              |              |                |            |                                       |      |        |                   |
| 46;              | 3.998       | 95<br>7 A F 111 | 6.             | .8694         | 4            | -1.          | 1697           | ~          | 0.0'                                  | 729  |        |                   |
| BEST I           | ARD I       | DEVIA           | LS 4.<br>ATION | 13.6<br>1 IS  | 41           | 7.4<br>5.1   | 478.<br>37852  | .9.<br>287 | 481.4                                 | 4 4  | 58.6   |                   |
| TABLE            |             |                 |                |               |              |              |                |            | 950                                   |      |        |                   |
|                  | 400         |                 | 4.0.1          | 480           |              | 470          | 480            | 480        | 408                                   |      |        |                   |
| 2                |             |                 |                |               |              |              | 470            |            |                                       |      |        | 470               |
| 4                |             |                 |                |               |              |              | 473            |            |                                       |      |        | 410               |
| -                |             |                 |                |               |              |              | 462            |            |                                       |      |        | 468               |
| 6                |             |                 |                |               |              |              | 457            |            |                                       |      |        |                   |
| _                |             |                 |                |               |              |              | 446            |            |                                       |      | 6.98   | 453               |
| 8                |             |                 |                |               |              |              | 451            |            |                                       |      | 0 00   |                   |
| 10               |             |                 |                |               |              |              | 434<br>449     |            |                                       |      | 8,99   | 444               |
| 10               |             |                 |                |               |              |              |                |            |                                       |      | 6.37   | 445               |
|                  |             |                 |                |               |              |              |                |            |                                       |      |        |                   |
| FOR DI $-478$    |             |                 |                |               |              | JIEN.        | TS AI          | κE.        |                                       |      |        |                   |
| BEST             |             |                 |                |               |              | 34           | 456            | 0          | 448 6                                 | 5 44 | 11 2   |                   |
| STAND            |             |                 |                |               |              |              |                |            |                                       |      |        |                   |
| FOR DI           |             |                 |                |               |              |              |                |            |                                       |      |        |                   |
|                  |             |                 |                |               |              |              | 2143           |            |                                       |      |        |                   |
| BEST I           |             |                 |                |               |              |              |                |            | 447.'                                 | 7 44 | 42.9   |                   |
| STAND            |             |                 |                |               |              |              |                |            |                                       |      |        |                   |
| FOR DI           |             |                 |                |               |              |              | 15 AI<br>0982  |            | 0.29                                  | 306  |        |                   |
| BEST             |             |                 |                |               |              |              |                |            |                                       |      | 45.2   |                   |
| STAND            |             |                 |                |               |              |              |                |            | • •                                   |      |        |                   |
|                  |             |                 |                |               |              |              |                |            |                                       |      |        |                   |

| ALLOY<br>TABLE               | : B<br>-4.2           | 4 1                    | AS C.<br>TEMP       | AST I<br>. (DE      | HARDI<br>G.C) | NESS                | (HV3)                  | 0)=<br>=10 | 621<br>000 |            |       |                   |
|------------------------------|-----------------------|------------------------|---------------------|---------------------|---------------|---------------------|------------------------|------------|------------|------------|-------|-------------------|
| TIME<br>(HRS)                |                       |                        |                     |                     | HARI<br>(H    | DNES:<br>V30)       | 5                      |            |            |            | SD    | AVERAGE<br>(HV30) |
| 2<br>4                       | 429                   | 427                    | 427                 | 427                 | 427           | <b>4</b> 27         | 432<br>422<br>385      | 418        | 415        | 415        | 8.11  | 429               |
| 4<br>6                       | 385                   | 385                    | 383                 | 383                 | 381           | 379                 | 379<br>387             | 379        | 379        | 366        | 8.07  | 385               |
| 8                            | 377                   | 377                    | 377                 | 375                 | 371           | 370                 | 370<br>346             | 368        | 368        | 368        | 9.12  | 379               |
| 10                           | 341<br>301            | 341<br>301             | 341<br>294          | 341<br>291          | 339<br>290    | 339<br>290          | 337<br>287             | 336<br>287 | 334<br>283 | 323<br>282 |       |                   |
|                              |                       |                        |                     |                     |               |                     |                        | . <u> </u> | 270        | 270        | 9.33  | 283               |
| FOR DI<br>46                 | 4.000                 | 00                     | -16                 | .7000               | )             |                     |                        |            |            |            |       |                   |
| BEST I<br>STAND<br>FOR DI    | ARD I                 | DEVIA<br>E OF          | ATION<br>2          | IS<br>COI           | EFFI          | 15.(<br>CIEN        | 37588<br>Is Ai         | 340        | 330.4      | 1 29       | 97.0  |                   |
| BEST I<br>STAND              | FIT '<br>ARD I        | VALUI<br>DEVI/         | ES 42<br>ATION      | 21.7<br>N IS        | 401           | 1.6<br>15.:         | 372.<br>20901          | L90        | 334.8      | 3 28       | 38.1  |                   |
| FOR DI                       | EGREI<br>9 80:        | E OF<br>10             | 3<br>-64            | COI<br>3810         | EFFI(<br>7    | CIEN'               | FS A1<br>5180          | RE -       | -0.64      | 158        |       |                   |
| BEST STAND                   | FIT '                 | VALUI                  | ES 42               | 27.9                | 389           | 9.2                 | 372.                   | .7 :       | 347.2      | 2 28       | 31.9  |                   |
| TABLE                        | -4.2                  | 4 ]                    | remp.               | . ( DE(             | G.C)          |                     |                        | =10        | 050        |            |       |                   |
|                              | 402                   | 402                    | 400                 | 396                 | 389           | 389                 |                        | 383        | 381        | 379        | 11.74 | 400               |
| 4<br>6                       | 328                   | 328                    | 326                 | 325                 | 325           | 320                 | 334<br>311<br>308      | 309        | 308        | 307        | 12.87 | 328               |
|                              | 302                   | <b>30</b> 2            | 301                 | 295                 | 295           | 295                 |                        | 294        | 294        | 289        | 7.98  | 302               |
| 10                           | 253                   | 253                    | 252                 | 251                 | 250           | 249                 | 2 <b>4</b> 8           | 248        | 240        | 239        |       | 261               |
|                              |                       |                        |                     |                     |               |                     |                        |            | 236        | 236        | 6.63  | 242               |
|                              | 1.500                 | 00                     | ~19.                | .1500               | )             |                     |                        |            |            |            |       |                   |
| BEST<br>STAND<br>FOR D<br>46 | ARD I                 | DEVIA<br>E OF          | ATION<br>2          | N IS<br>COI         | EFFIC         | 16.:<br>CIEN'       | 18950<br>FS AF         | 030        | 268.3      | 5 Z:       | 50.0  |                   |
| BEST I<br>STAND<br>FOR DI    | FIT<br>ARD I<br>EGREI | VALUI<br>DEVI/<br>E OF | ES 39<br>ATION<br>3 | 96.2<br>N IS<br>CON | 338<br>EFFI(  | 3.4<br>9.8<br>CIEN' | 293.<br>36914<br>Is Af | 152<br>RE  |            |            | 13.0  |                   |
| 500<br>BEST<br>STAND         | FIT '                 | VALUI                  | ES 39               | 98.6                | 333           | 3.6                 |                        | 6 2        |            |            | 0.6   |                   |

EFFECT OF SOAKING TEMPERATURE ON HARDNESS IN A. C. CONDITION

| TABLE-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1<br>.25                                                                     | AS<br>TI                                                             | CAS<br>ME(HI                        | r hai<br>RS)                                             | RDNE:                                                              | SS(H                                                       |                                                           |                                 | 4<br>2                  |            |              |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|-------------------------|------------|--------------|-------------------|
| TEMP<br>(DEG.C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                                      |                                     |                                                          | HARDI<br>(HV)                                                      |                                                            |                                                           |                                 |                         |            | SD           | AVERAGE<br>(HV30) |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 695                                                                           | 695                                                                  | 692                                 | 690                                                      | 690                                                                | 690                                                        | 690                                                       | 690                             | 697<br>685              | 685        | 7.27         | 696               |
| 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 606                                                                           |                                                                      | 602                                 | 594                                                      | 618<br>590                                                         | 590                                                        | 610<br>586                                                | 586                             | 583                     |            | 13.88        | 603               |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 586                                                                           | 602<br>586                                                           | 586                                 | 583                                                      | 594<br>583                                                         | 579                                                        | 594<br>579                                                | 579                             | 575                     |            | 8.21         | 587               |
| 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 554                                                                           | 554                                                                  | 554                                 | 554                                                      | 564<br>550                                                         | 550                                                        | 547                                                       | 543                             | 540                     |            | 9.33         | 555               |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 530                                                                           | 530                                                                  | 530                                 | 530                                                      | 540<br>530                                                         | 527                                                        | 527                                                       | 527                             | 527                     | 520        | 7.79         | 533               |
| 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                                                      |                                     |                                                          | 465<br>446                                                         |                                                            |                                                           |                                 |                         |            | 10.76        | 453               |
| FOR DEG<br>134.<br>BEST FI<br>STANDAR:<br>FOR DEG<br>158.<br>BEST FI<br>STANDAR:<br>FOR DEG<br>2691.<br>BEST FI<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STANDAR:<br>STA | T VAI<br>D DEV<br>REE (<br>96311<br>T VAI<br>D DEV<br>REE (<br>5937(<br>T VAI | LUES<br>7IAT<br>DF 2<br>LOOO<br>LUES<br>7IAT<br>DF 3<br>DOOO<br>LUES | 61<br>ION<br>ION<br>ION<br>-8<br>68 | 75.2<br>IS<br>-1.3<br>77.7<br>IS<br>COEF<br>34.3<br>89.7 | 63:<br>22<br>FICII<br>74129<br>632<br>633<br>FICII<br>46364<br>616 | 3.6<br>3.464<br>ENTS<br>3.1<br>5.971<br>ENTS<br>400<br>5.1 | 592.<br>49700<br>ARE<br>590.<br>L6360<br>ARE<br>(<br>580. | )<br>.0<br>)<br>)<br>.904<br>.4 | 29273<br>548.4<br>4497( | 34<br>1 5( | -0.0         | 469.5             |
| ABLE-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 26                                                                          | TIT                                                                  | 1E ( HI                             | 33)                                                      |                                                                    |                                                            |                                                           | = 4                             | 4                       |            |              |                   |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 730                                                                           | 730                                                                  | 720                                 | 720                                                      | 710                                                                | 710                                                        | 700                                                       | 695                             |                         | 685        | 21.90        | 725               |
| 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 675                                                                           | 690<br>671                                                           | 671                                 | 671                                                      | 685<br>666                                                         | 661                                                        | 685<br>657                                                | 657                             | 657                     | 657        | 12.29        | 674               |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 557                                                                           |                                                                      | 557                                 | 554                                                      |                                                                    | 550                                                        | 550                                                       | 540                             | 540                     |            | 11.95        | 558               |
| 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 543                                                                           |                                                                      | 540                                 | 540                                                      | 540                                                                | 540                                                        | 540                                                       | 537                             |                         | 530        | 8.98         | 545               |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 476                                                                           | 487<br>473                                                           | 473                                 | 470                                                      | 481<br>470                                                         | 470                                                        | 481<br>465                                                | 457                             | 457                     | 451        | 10.95        | 474               |
| 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                                                      |                                     |                                                          | 371<br>355                                                         |                                                            | 370<br>349                                                |                                 | 368<br>346              |            | 10.68        | 363               |
| FOR DEG<br>183.<br>BEST FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72286<br>T VAI<br>D DEV<br>REE (<br>01686                                     | 5000<br>LUES<br>/IAT<br>OF 2                                         | 72<br>10N 1                         | -1.38<br>29.6<br>[S<br>COEF]                             | 26<br>FICIE<br>00961                                               | 40).3<br>5.034<br>ENTS<br>65                               | 591.<br>10420<br>ARE<br>-0                                | )<br>),008<br>.8 - 1            | 85704                   | .5         | 52.7<br>54.1 |                   |

| ALLOY<br>TABLE-                                                       | : B1<br>4.27                                                                                  | AS<br>TII                                                                      | CAS<br>ME (H                                | T HA<br>RS)                                                                  | RDNE                                                                       | SS(H                                                                      | <b>V</b> 30)                                              |                                        | 4<br>6              |                 |                                 |                   |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|---------------------|-----------------|---------------------------------|-------------------|
| TEMP<br>(DEG.C                                                        | )                                                                                             |                                                                                |                                             | ]                                                                            | HARD<br>(HV                                                                | NESS<br>30)                                                               |                                                           |                                        |                     |                 | SD                              | AVERAGE<br>(HV30) |
| 800                                                                   |                                                                                               |                                                                                |                                             |                                                                              |                                                                            | 736<br>705                                                                |                                                           |                                        |                     |                 | 21.65                           | 724               |
| 850                                                                   | 680                                                                                           | 680<br>657                                                                     | 675                                         |                                                                              | 671                                                                        | 671<br>652                                                                | 671                                                       | 666                                    | 661<br>652          | 657             | 10.56                           |                   |
| 900                                                                   | 594                                                                                           | 594<br>575                                                                     | 590                                         |                                                                              | 586                                                                        | 586                                                                       | 583                                                       | 583                                    | 579                 | 579             | 12.54                           |                   |
| 950                                                                   | 543                                                                                           | 537<br>527                                                                     | 537                                         | 537                                                                          | 533                                                                        |                                                                           | 533                                                       | 533                                    | 530                 | 530             | 6.77                            | - · -             |
| 1000                                                                  | 493                                                                                           | 490                                                                            | <b>490</b>                                  | 487                                                                          | 487                                                                        | 481                                                                       | 478                                                       | 478                                    | 476                 | 476             |                                 | <b>4</b> 76       |
| 1050                                                                  | 373                                                                                           | 370                                                                            | 370                                         | 366                                                                          | 366                                                                        |                                                                           | 362                                                       | 360                                    | 360.                | 357             |                                 |                   |
| BEST FI<br>STANDAN<br>FOR DEC                                         | .6190<br>(T VA)<br>RD DE'<br>REE (<br>.8970)<br>(T VA)<br>RD DE'<br>REE (<br>.2753)<br>(T VA) | 5000<br>LUES<br>VIAT<br>5500<br>LUES<br>VIAT<br>5000<br>LUES                   | 72<br>ION<br>ION<br>ION<br>72               | -1.3<br>28.5<br>IS<br>COEFI<br>0.6<br>19.1<br>IS<br>COEFI<br>48.3<br>26.2    | 9714:<br>65:<br>1:<br>FICII<br>90310<br>66:<br>2:<br>FICII<br>5572:<br>65: | 290<br>3.6<br>9.751<br>ENTS<br>0.54<br>0.5<br>0.520<br>ENTS<br>500<br>0.4 | 588<br>4260<br>ARE<br>596<br>596<br>ARE<br>590            | D.01:<br>.3 :<br>D.52:<br>.6 :         | 12838<br>526.4      | 53<br>145       |                                 | 369.8             |
| TABLE-4                                                               | 4.28                                                                                          | TII                                                                            | 1E ( HI                                     | RS)                                                                          |                                                                            |                                                                           |                                                           | = 8                                    | 3                   |                 |                                 | ****              |
| 800<br>850                                                            | 730                                                                                           | 763<br>730<br>695                                                              | 725                                         | 752<br>725<br>695                                                            | 725                                                                        | 746<br>725<br>690                                                         | 720                                                       | 720                                    | $741 \\ 710 \\ 685$ | 695             | 17.45                           | 734               |
| 900                                                                   | 680                                                                                           | 680                                                                            | 675                                         | 675                                                                          | 675                                                                        | 671<br>586                                                                | 671                                                       | 661                                    | 657                 | 657             | 13.92                           | 681               |
| 950                                                                   | 583                                                                                           | 583                                                                            | 579                                         | 579                                                                          | 579                                                                        | 575<br>520                                                                | 571                                                       | 571                                    | 568                 | 554             | 10.35                           | 581               |
| 1000                                                                  | 517                                                                                           | 517                                                                            | 517                                         | 514                                                                          | 514                                                                        | 511<br>413                                                                | 511                                                       | 508                                    | 508                 | 508             | 5.57                            | 516               |
| 1050                                                                  | 409                                                                                           | 406                                                                            | 406                                         | 406                                                                          | 406                                                                        | 404<br>325                                                                | 404                                                       | 404                                    |                     | 398             | 8.04                            | 410               |
|                                                                       |                                                                                               |                                                                                |                                             |                                                                              |                                                                            | 315                                                                       |                                                           | 314                                    |                     |                 | 6.16                            | 320               |
| BEST FI<br>STANDAH<br>FOR DEC<br>83.<br>BEST FI<br>STANDAH<br>FOR DEC | . 85614<br>T VAI<br>RD DE<br>SREE (<br>. 2114<br>T VAI<br>RD DE<br>SREE (<br>. 5055)<br>T VAI | 4000<br>JUES<br>VIATI<br>OF 2<br>1500<br>JUES<br>VIATI<br>OF 3<br>2000<br>JUES | 75<br>ION 1<br>ION 1<br>ION 1<br>ION 1<br>I | -1.68<br>50.9<br>IS<br>COEFI<br>1.07<br>38.5<br>IS<br>COEFI<br>13.02<br>36.7 | 84570<br>660<br>11<br>71229<br>669<br>12<br>71211<br>25820<br>671          | 090<br>3.7<br>5.169<br>5.8<br>5.0<br>960<br>9.2<br>9.2<br>1.552<br>500    | 582.<br>2070<br>ARE<br>592.<br>28800<br>ARE<br>-(<br>593. | )<br>.014<br>.4 5<br>)<br>.144<br>.8 5 | 19286<br>508,2      | 5<br>2 41<br>.4 | 4.0 3<br>6.5 3<br>0.00<br>4.0 3 | 017.3<br>0046794  |

| ALLOY :         |       |       |       |       | RDNE         | SS(H' | <b>7</b> 30):  |      |       |            |        |         |
|-----------------|-------|-------|-------|-------|--------------|-------|----------------|------|-------|------------|--------|---------|
| TABLE-4         | . 29  | TI    | 1E(H  | RS)   |              |       |                | = 1  | 0     |            |        |         |
| TEMP<br>(DEG.C) |       |       |       | 1     | HARD<br>(HV) |       | (              | HV3  | )     | <b>.</b> . | ŞD     | AVERAGE |
| 800             | 741   | 741   | 741   | 736   | 736          | 736   | 730            | 730  | 730   | 725        |        |         |
|                 | 720   | 715   | 715   | 715   | 715          | 715   | 710            | 710  | 710   | 690        | 13.68  | 723     |
| 850             | 725   | 715   | 710   | 705   | 705          | 705   | 700            | 700  | 700   | 695        |        |         |
|                 | 690   | 690   | 685   | 685   | 680          | 680   | 675            | 675  | 671   | 666        | 15.77  | 692     |
| 900             | 606   | 602   | 598   | 594   | 594          | 590   | 590            | 590  | 590   | 586        |        |         |
|                 | 586   | 586   | 586   | 583   | 583          | 583   | 583            | 579  | 571   | 557        | 10.58  | 586     |
| 950             | 550   | 550   | 547   | 543   | 543          | 543   | 540            | 533  | 530   | 530        |        |         |
|                 | 527   | 523   | 520   | 520   | 520          | 520   | 517            | 517  | 511   | 505        | 13.54  | 529     |
| 1000            | 393   | 391   | 385   | 383   | 383          | 379   | 377            | 377  | 375   | 373        |        |         |
| -               | 370   | 370   | 370   | 370   | 358          | 358   | 358            | 358  | 358   | 349        | 12.24  | 371     |
| 1050            | 280   | 278   | 277   | 276   | 276          | 276   | 276            | 276  | 275   | 275        |        |         |
|                 | 275   | 275   | 274   | 274   | 274          | 271   | 268            | 266  | 266   | 266        | 4.11   | 273     |
| FOR DEGI        | REE ( | )F 1  | (     | COEFI | FICIN        | ENTS  | ARE            |      |       |            |        |         |
| 225.3           | 7428: | L000  | -     | -1.86 | 88570        | 90    |                |      |       |            |        |         |
| BEST FI         | r vai | LUES  | 76    | 62.6  | 669          | 9.1   | 575.           | 7 4  | 482.3 | 38         | 38.9 2 | 295.4   |
| STANDARI        | DEN   | /IAT] | ton 1 | [S    | 36           | 5.048 | €56 <b>6</b> 0 | ł    |       |            |        |         |
| FOR DEGI        | REE ( | DF 2  | (     | COEFI | FICIE        | ENTS  | ARE            |      |       |            |        |         |
| -103.2          | 25174 | 1000  |       | 5.30  | 5966         | 630   | -0             | .038 | 37812 | 28         |        |         |
| BEST FI         | F VAI | LUES  | 7:    | 30.3  | 675          | 5.6   | 601.           | 6 5  | 508.1 | 39         | 95.3 2 | 263.1   |
| STANDARI        |       |       |       |       |              |       |                |      |       |            |        |         |
| FOR DEGI        | REE(  | DF 3  | (     | COEFI | FICIE        | ENTS  | ARE            |      |       |            |        |         |
| -1035.4         |       |       |       |       |              |       |                |      |       | 1          | 0.00   | 119600  |
| BEST FI         | T VAI | LUES  | 72    | 25.8  | 681          | 1.9   | 605.           | 1 5  | 504.5 | 5 38       | 39.0 z | 267.6   |
| STANDARI        | ישם כ | 7TAT1 | ION 1 | s     | 26           | 3.733 | 35330          | 1    |       |            |        |         |

EFFECT OF SOAKING TEMPERATURE ON HARDNESS IN A.C. CONDITION

:

| ALLOY :<br>TABLE-4                                                                                                             | B2<br>. 30                                                                             | AS<br>TIN                                                                      | CAS<br>1E(H                                                                                                                      | T HAI<br>RS)                                                                  | RDNE                                                                                              | SS(H                                                                     | 730)                                                     | = 59<br>=                       | 0<br>2                  |                  |       |                   |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|-------------------------|------------------|-------|-------------------|
| TEMP<br>(DEG.C)                                                                                                                |                                                                                        |                                                                                |                                                                                                                                  |                                                                               | HARD<br>(HV                                                                                       | NESS<br>30)                                                              |                                                          |                                 |                         |                  | SD    | AVERAGE<br>(HV30) |
| 800                                                                                                                            | 610                                                                                    | 606                                                                            | 606                                                                                                                              | 606                                                                           | 606                                                                                               |                                                                          | 602                                                      | 602                             | 602                     | 602              | 14.61 | 615               |
| 850                                                                                                                            | 523                                                                                    | 520                                                                            | 520                                                                                                                              | 520                                                                           | 511                                                                                               | 527<br>511                                                               | 508                                                      | 508                             | 523<br>508              | 499              | 10.18 | 520               |
| 900                                                                                                                            | 505                                                                                    | 505                                                                            | 499                                                                                                                              | $\begin{array}{c} 511 \\ 499 \end{array}$                                     | 499                                                                                               | .511<br>493                                                              | 490                                                      | 484                             | $505 \\ 484$            | 484              | 10.32 | 502               |
| 950                                                                                                                            |                                                                                        |                                                                                |                                                                                                                                  | 465<br>451                                                                    |                                                                                                   | 459<br>451                                                               |                                                          |                                 | 454<br>444              |                  | 7.28  | 455               |
| 1000                                                                                                                           | 439                                                                                    | 439                                                                            | 439                                                                                                                              | 436                                                                           | 434                                                                                               | 432<br>418                                                               | 432                                                      |                                 | 429<br>415              |                  | 9.18  |                   |
| 1050                                                                                                                           | 429                                                                                    | 427                                                                            | 427                                                                                                                              | 413                                                                           | 413                                                                                               | 411<br>402                                                               | 411                                                      | 409                             | 409                     | 409              |       |                   |
| FOR DEG<br>120.<br>BEST FI<br>STANDAR<br>FOR DEG<br>330.<br>BEST FI<br>STANDAR<br>FOR DEG<br>1098.<br>BEST FI<br>STANDAR       | 61619<br>T VAI<br>D DEV<br>REE (<br>2479<br>T VAI<br>D DEV<br>REE (<br>1924(<br>T VAI  | 9000<br>LUES<br>71AT:<br>DF 2<br>7000<br>LUES<br>7000<br>LUES<br>2000<br>LUES  | 51<br>ION<br>(<br>ION<br>(<br>ION<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>( | -0.7'<br>34.9<br>IS<br>COEFI<br>-5.3,<br>05.5<br>IS<br>COEFI<br>30.5(<br>09.2 | 7657.<br>540<br>21<br>541<br>4810:<br>541<br>541<br>541<br>541<br>541<br>541<br>541<br>541<br>530 | 143<br>5.1<br>3.123<br>ENTS<br>920<br>2.0<br>5.423<br>ENTS<br>400<br>6.8 | 507<br>ARE<br>490<br>32360<br>ARE<br>(<br>487            | )<br>.8<br>)<br>)<br>.298<br>.8 | 4711(<br>451.9<br>3085( | )2<br>9 42<br>)0 |       | 411.4<br>0098528  |
| TABLE-4                                                                                                                        | . 31                                                                                   | TIM                                                                            | 1E ( HI                                                                                                                          | RS)                                                                           |                                                                                                   |                                                                          | 5                                                        | = 4                             | 1                       |                  |       |                   |
| 800                                                                                                                            |                                                                                        |                                                                                |                                                                                                                                  |                                                                               |                                                                                                   | 644<br>622                                                               |                                                          |                                 | 635<br>618              |                  | 11 93 | 633               |
| 850                                                                                                                            | 547                                                                                    | 540                                                                            | 540                                                                                                                              | 540                                                                           | 540                                                                                               |                                                                          | 537                                                      | 537                             | 533<br>514              | 530              | 9.94  | -                 |
| 900                                                                                                                            | 508                                                                                    | 508                                                                            | 508                                                                                                                              | 502                                                                           | 499                                                                                               | 499                                                                      | 496                                                      | 496                             | 493                     | 493              |       |                   |
| 950                                                                                                                            | 459                                                                                    | 459                                                                            | 459                                                                                                                              | 457                                                                           | 454                                                                                               | 484<br>454                                                               | 454                                                      | 451                             | 449                     | 446              | 9.53  | 492               |
| 1000                                                                                                                           | 425                                                                                    | 422                                                                            | 420                                                                                                                              | 420                                                                           | 418                                                                                               | 418                                                                      | 418                                                      | 418                             | 415                     | 415              | 10.41 |                   |
| 1050                                                                                                                           | 375                                                                                    | 375                                                                            | 371                                                                                                                              | 371                                                                           | 371                                                                                               | $\begin{array}{c} 411 \\ 371 \end{array}$                                | 371                                                      | 371                             | 370                     | 368              | 6.13  |                   |
|                                                                                                                                |                                                                                        |                                                                                |                                                                                                                                  |                                                                               | ·····                                                                                             |                                                                          |                                                          | 353                             | 353                     | 351              | 7.31  | 365               |
| FOR DEGI<br>139.<br>BEST FI'<br>STANDAR<br>FOR DEGI<br>318.<br>BEST FI'<br>STANDAR<br>FOR DEGI<br>1797.<br>BEST FI'<br>STANDAR | 4791(<br>I VAI<br>D DEV<br>REE (<br>2222)<br>I VAI<br>D DEV<br>REE (<br>4779(<br>I VAI | )000<br>JUES<br>71AT:<br>DF 2<br>)000<br>JUES<br>71AT:<br>DF 3<br>)000<br>JUES | 6(<br>ION (<br>62<br>ION (<br>62<br>ION (<br>62                                                                                  | -0.98<br>03.5<br>IS<br>COEFI<br>-4.88<br>21.0<br>IS<br>COEFI<br>53.34<br>28.1 | 3914:<br>554<br>2:<br>7ICIH<br>3707:<br>550<br>10<br>FICIH<br>49394<br>540                        | 342<br>4.0<br>1.712<br>ENTS<br>740<br>0.5<br>6.829<br>ENTS<br>400<br>0.6 | 504.<br>21890<br>ARE<br>490.<br>1880<br>ARE<br>(<br>484. | )<br>5 4<br>)<br>).541<br>9 4   | L0699<br>141.1          | 91<br>. 40       | 2.1   |                   |

| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TEMP<br>(DEG.C)                                                                                         |                                                                                                                                       |                                                                                                                       |                                                                                                        | ]                                                                                                                | HARDI<br>(HV:                                                                                    | NESS<br>30)                                                                                                     |                                                                                                          |                                                                                  |                                                                                       |                                                                    | SD                                      | AVERAG<br>(HV30           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|---------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         | 639                                                                                                                                   | 639                                                                                                                   | 635                                                                                                    | 635                                                                                                              | 635                                                                                              | 631                                                                                                             | 631                                                                                                      | 631                                                                              | 618                                                                                   | 618                                                                | 9.82                                    | 638                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         | 527                                                                                                                                   | 527                                                                                                                   | 520                                                                                                    | 520                                                                                                              | 517                                                                                              | 517                                                                                                             | 517                                                                                                      | 514                                                                              | 514                                                                                   | 511                                                                | 10.08                                   | 526                       |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         | 484                                                                                                                                   | 484                                                                                                                   | 478                                                                                                    | 478                                                                                                              | 478                                                                                              | 478                                                                                                             | 476                                                                                                      | 476                                                                              | 473                                                                                   | 473                                                                | 11.25                                   | 486                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         | 446                                                                                                                                   | 444                                                                                                                   | 444                                                                                                    | 439                                                                                                              | 439                                                                                              | 439                                                                                                             | 432                                                                                                      | 432                                                                              | 422                                                                                   | 422                                                                |                                         | 443                       |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         | 400                                                                                                                                   | 400                                                                                                                   | 400                                                                                                    | 400                                                                                                              | 400                                                                                              | 398                                                                                                             | 398                                                                                                      | 398                                                                              | 398                                                                                   | 391                                                                |                                         | 402                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000                                                                                                    | 353<br>329                                                                                                                            | 349<br>326                                                                                                            | 348<br>320                                                                                             | 346<br>317                                                                                                       | $344 \\ 317$                                                                                     | $343 \\ 314$                                                                                                    | $343 \\ 314$                                                                                             | 343<br>309                                                                       | 302                                                                                   | 301                                                                | 16.82                                   | 329                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STANDAR<br>FOR DEG<br>BEST FI<br>STANDAR<br>FOR DEG<br>2402.                                            | D DEV<br>REE (<br>39419<br>T VAI<br>D DEV<br>REE (<br>59340                                                                           | /IATI<br>DF 2<br>0000<br>LUES<br>/IATI<br>DF 3<br>0000<br>LUES                                                        | 6:<br>6:<br>10N<br>-<br>6:<br>6:                                                                       | IS<br>COEFI<br>-3.64<br>22.0<br>IS<br>COEFI<br>73.62<br>32.2                                                     | 2:<br>FICII<br>4372:<br>55:<br>2:<br>FICII<br>2835:<br>53:                                       | 2.173<br>ENTS<br>330<br>2.4<br>2.605<br>ENTS<br>500<br>3.0                                                      | 73150<br>ARE<br>489.<br>55760<br>ARE                                                                     | )<br>.01:<br>.6<br>)<br>).774                                                    | 36413<br>433.(<br>4089:                                                               | 74<br>5 3;<br>L4                                                   | 84.4<br>-0.0                            | 342.0<br>0274077          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STANDAR                                                                                                 | D DEV                                                                                                                                 | TAI                                                                                                                   | ION :                                                                                                  | IS                                                                                                               | 1(                                                                                               | ),428                                                                                                           | 34190                                                                                                    | )                                                                                |                                                                                       |                                                                    |                                         | -                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STANDAR                                                                                                 | D DEV                                                                                                                                 |                                                                                                                       |                                                                                                        |                                                                                                                  |                                                                                                  |                                                                                                                 | 34190                                                                                                    | )                                                                                |                                                                                       |                                                                    |                                         | ······                    |
| 900         505         505         499         499         493         490         487         487           476         478         476         473         473         473         470         468         465         465         14.20         484           950         465         459         457         457         454         454         451         449         446           444         444         441         441         439         436         432         427         10.21         446           1000         387         387         387         377         377         375         375           373         373         373         373         373         375         305         305         305         295         295 | STANDAR<br>TABLE-4                                                                                      | D DEV<br>.33<br>675<br>648                                                                                                            | TIN<br>675<br>644                                                                                                     | 1E(H)<br>666<br>644                                                                                    | RS)<br>666<br>644                                                                                                | 666<br>644                                                                                       | 661<br>544                                                                                                      | 34190<br>=<br>661<br>644                                                                                 | )<br>= {<br>657<br>639                                                           | 3<br>657<br>639                                                                       | 634                                                                | 12.40                                   | 652                       |
| 444         444         441         439         436         432         427         10.21         446           1000         387         387         387         377         377         375         375         373         373         373         373         373         373         370         370         370         357         353         8.86         374           1050         309         308         307         305         305         305         295         295                                                                                                                                                                                                                                                                   | STANDAR<br>TABLE-4<br>800                                                                               | D DEV<br>.33<br>675<br>648<br>543                                                                                                     | TIN<br>675<br>644<br>543                                                                                              | 1E(H)<br>666<br>644<br>543                                                                             | RS)<br>666<br>644<br>540                                                                                         | 666<br>644<br>540                                                                                | 661<br>644<br>537                                                                                               | 661<br>644<br>533                                                                                        | )<br>657<br>639<br>533                                                           | 3<br>657<br>639<br>533                                                                | 634<br>530                                                         |                                         |                           |
| 373 373 373 373 373 373 370 370 370 357 353 8.86 374<br>1050 309 309 308 307 305 305 305 305 295 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STANDAR<br>TABLE-4<br>800<br>850                                                                        | D DEV<br>. 33<br>675<br>648<br>543<br>530<br>505<br>476                                                                               | TIN<br>675<br>644<br>543<br>530<br>505<br>478                                                                         | 1E (H)<br>666<br>644<br>543<br>530<br>505<br>476                                                       | RS)<br>666<br>644<br>540<br>527<br>499<br>473                                                                    | 666<br>644<br>540<br>523<br>499<br>473                                                           | 661<br>544<br>537<br>520<br>499<br>473                                                                          | 34190<br>=<br>661<br>644<br>533<br>511<br>493<br>470                                                     | 657<br>639<br>533<br>511<br>490<br>468                                           | 657<br>639<br>533<br>508<br>487<br>465                                                | 634<br>530<br>502<br>487<br>465                                    | 12.30                                   | 528                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STANDAR<br>TABLE - 4<br>800<br>850<br>900<br>950                                                        | D DEV<br>. 33<br>675<br>648<br>543<br>530<br>505<br>476<br>465<br>444                                                                 | TIN<br>675<br>644<br>543<br>530<br>505<br>478<br>459<br>444                                                           | 1E (H)<br>666<br>644<br>543<br>530<br>505<br>476<br>457<br>441                                         | 8666<br>644<br>540<br>527<br>499<br>473<br>457<br>441                                                            | 666<br>644<br>540<br>523<br>499<br>473<br>454<br>441                                             | 661<br>544<br>537<br>520<br>499<br>473<br>454<br>439                                                            | 34190<br>661<br>644<br>533<br>511<br>493<br>470<br>454<br>436                                            | 657<br>639<br>533<br>511<br>490<br>468<br>451<br>432                             | 657<br>639<br>533<br>508<br>487<br>465<br>449<br>432                                  | 634<br>530<br>502<br>487<br>465<br>446<br>427                      | 12.30<br>14.20                          | 528<br>484                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STANDAR<br>TABLE-4<br>800<br>850<br>900<br>950<br>1000                                                  | D DEV<br>. 33<br>675<br>648<br>543<br>530<br>505<br>476<br>465<br>444<br>387<br>373                                                   | TIN<br>675<br>644<br>543<br>530<br>505<br>478<br>459<br>444<br>387<br>373                                             | 1E (H)<br>666<br>644<br>543<br>530<br>505<br>476<br>457<br>441<br>387<br>373                           | RS)<br>666<br>644<br>540<br>527<br>499<br>473<br>457<br>441<br>387<br>373                                        | 666<br>644<br>540<br>523<br>499<br>473<br>454<br>441<br>377<br>373                               | 661<br>544<br>537<br>520<br>499<br>473<br>454<br>439<br>377<br>370                                              | 34190<br>661<br>644<br>533<br>511<br>493<br>470<br>454<br>436<br>377<br>370                              | 657<br>639<br>533<br>511<br>490<br>468<br>451<br>432<br>377<br>370               | 657<br>639<br>533<br>508<br>487<br>465<br>449<br>432<br>375<br>357                    | 634<br>530<br>502<br>487<br>465<br>446<br>427<br>375<br>353        | 12.30<br>14.20<br>10.21<br>8.86         | 528<br>484<br><b>44</b> 6 |
| FOR DEGREE OF 2 COEFFICIENTS ARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STANDAR<br>TABLE-4<br>800<br>850<br>900<br>950<br>1000<br>1050<br>FOR DEG<br>166.<br>BEST FI<br>STANDAR | D DEV<br>. 33<br>675<br>648<br>543<br>530<br>505<br>476<br>465<br>444<br>387<br>373<br>309<br>295<br>REE C<br>6000C<br>T VAI<br>D DEV | TIN<br>675<br>644<br>543<br>530<br>505<br>478<br>459<br>444<br>387<br>373<br>309<br>294<br>F 1<br>0000<br>UES<br>/IAT | 1E (H)<br>666<br>644<br>543<br>530<br>505<br>476<br>457<br>441<br>387<br>373<br>308<br>294<br>6<br>10N | RS)<br>666<br>644<br>527<br>499<br>473<br>457<br>441<br>387<br>373<br>307<br>294<br>COEFI<br>-1.30<br>26.0<br>IS | 666<br>644<br>523<br>499<br>473<br>454<br>441<br>377<br>373<br>305<br>289<br>FICID<br>0000<br>56 | 661<br>644<br>537<br>520<br>499<br>473<br>454<br>439<br>377<br>370<br>305<br>289<br>ENTS<br>000<br>1.0<br>3.526 | 661<br>644<br>533<br>511<br>493<br>470<br>454<br>436<br>377<br>370<br>305<br>289<br>ARE<br>496.<br>55790 | 657<br>639<br>533<br>511<br>490<br>468<br>451<br>432<br>377<br>370<br>305<br>289 | 3<br>657<br>639<br>533<br>508<br>487<br>465<br>449<br>432<br>375<br>357<br>295<br>287 | 634<br>530<br>502<br>487<br>465<br>427<br>375<br>353<br>295<br>282 | 12.30<br>14.20<br>10.21<br>8.86<br>8.53 | 528<br>484<br>446<br>374  |

.

•

ALLOY : B2 AS CAST HARDNESS(HV30)= 590

| TEMP     |       |      | de historie and it a sint sin for | ٦.    | IARDI       | NESS  |                  |           |       |      | SD     | AVERAGE       |
|----------|-------|------|-----------------------------------|-------|-------------|-------|------------------|-----------|-------|------|--------|---------------|
| (DEG.C)  |       |      |                                   |       | (HV         |       |                  |           |       |      | ~1/    | (HV30         |
| 800      | 695   | 690  | 680                               | 680   | 680         | 680   | 671 <sup>.</sup> | 671       | 671   | 666  |        |               |
|          |       | -    |                                   |       |             |       |                  |           |       |      | 12.30  | 668           |
| 850      |       |      |                                   |       |             |       | 533              |           |       | 530  |        |               |
|          | 527   | 527  | 527                               | 523   | 520         | 514   | 514              | 505       | 505   | 505  | 12.05  | 526           |
| 900      | 508   | 508  | 505                               | 505   | 499         | 496   | 496              | 493       | 493   | 493  |        |               |
|          | 490   | 487  | 481                               | 481   | 481         | 481   | 478              | 476       | 473   | 467  | 12.06  | 489           |
| 950      | 462   | 457  | 454                               | 451   | 451         | 446   | 446              | 446       | 444   | 444  |        |               |
|          | 444   | 444  | 444                               | 441   | <b>4</b> 41 | 441   | 436              | 434       | 429   | 427  | 8.61   | 444           |
| 1000     | 370   | 366  | 364                               | 364   | 362         | 362   | 358              | 357       | 353   | 353  |        |               |
|          | 341   | 341  | 341                               | 341   | 341         | 341   | 337              | 337       | 337   | 336  | 11.82  | 350           |
| 1050     | 278   | 278  | 274                               | 269   | 269         | 269   | 268              | 268       | 264   | 263  |        |               |
|          | 261   | 261  | 260                               | 260   | 260         | 258   | 256              | 254       | 252   | 249  | 8.05   | 263           |
|          |       |      |                                   |       |             |       |                  | · · · · · |       |      |        |               |
| FOR DEGI | REE   | OF 1 | (                                 | COEFI | FICH        | ENTS  | ARE              |           |       |      |        |               |
| 182.9    | 9895: | 2000 |                                   | -1.4  | 8457:       | 140   |                  |           |       |      |        |               |
| BEST FI  | r vai | LUES | 64                                | 42.2  | 568         | 8.0   | 493.             | . 8       | 419.0 | 5 34 | 45.3 2 | 271. <b>1</b> |
| STANDARI | D DE' | VIAT | ION                               | IS    | 23          | 8.003 | 18760            | C         |       |      |        |               |
| FOR DEGI | REE ( | OF 2 | (                                 | COEFI | FICI        | ENTS  | ARE              |           |       |      |        |               |
| 211.     | 4698: | 2000 |                                   | -2.1  | 0565        | 450   | ŧ                | 0.00      | 3357: | 21   |        |               |
| BEST FI  | T VA  | LUES | 6.                                | 45.0  | 56          | 7.4   | 491              | .5        | 417.3 | 3 34 | 44.8   | 273.9         |
| STANDAR  | D DE  | TAIV | ION                               | ÍS    | 3           | 2.19  | 79400            | D         |       |      |        |               |
| FOR DEGI | REE   | OF 3 |                                   | COEFI | FICI        | ENTS  | ARE              |           |       |      |        |               |
| 2814.    | 3254  | 0000 |                                   | 87.3  | 7855        | 100   | (                | 0.92      | 99250 | 67   | -0.00  | 0333949       |
| BEST FI  | T VA  | LUES | 6                                 | 57.4  | 54          | 9.9   | 481              | .6        | 427.4 | 4 30 | 62.3 3 | 261.3         |
|          |       |      |                                   |       |             |       |                  |           |       |      |        |               |

EFFECT OF SOAKING TEMPERATURE ON HARDNESS IN A.C. CONDITION ALLOY : B3 AS CAST HARDNESS(HV30) = 652 TABLE-4.35 TIME(HRS) = 2 SD AVERAGE HARDNESS (HV30) TEMP (DEG.C) 800 850 900 950 1000 1050 TABLE-4.36 TIME(HRS) = 4 720 720 715 715 710 710 705 705 700 700 700 700 700 700 695 695 695 690 690 685 9.93 800 -702 

 594
 594
 594
 594
 590
 590
 586
 582
 579
 575

 575
 575
 571
 571
 571
 571
 568
 564
 564
 564
 10.99

 523
 523
 520
 517
 517
 517
 511
 505
 505
 505

 505
 505
 505
 505
 502
 499
 499
 499
 493
 8.86

 850 578 900 507950 517 511 508 508 508 505 505 505 505 499 496 496 496 496 496 493 493 493 493 493 7.31 500 436 429 429 429 428 427 427 425 425 422 1000 422 422 420 418 418 418 418 418 415 415 415 5.83 422 
 377
 373
 373
 371
 370
 368
 368
 368
 368

 366
 366
 360
 360
 357
 355
 351
 344
 8.30
 1050 364 
 FOR DEGREE OF 1
 COEFFICIENTS ARE

 165.65243000
 -1.23714340

 BEST FIT VALUES
 666.8
 605.0
 543.1
 481.2
 419.4
 357.5
 STANDARD DEVIATION IS 30.2839720 
 STANDARD
 DEVIATION
 IS
 Standard
 Deviation
 IS
 Standard
 IS

|                    | ~~ ~ . ~ |        |       |         |       |         |
|--------------------|----------|--------|-------|---------|-------|---------|
| STANDARD DEVIATION | IS       | 29.343 | L1710 |         |       |         |
| FOR DEGREE OF 3    | COEFFI   | CIENTS | ARE   |         |       |         |
| 2756.67090000      | -84.117  | 90300  | 0.87  | 7878636 | -0.0  | 0308954 |
| BEST FIT VALUES    | 696.3    | 585.2  | 519.5 | 476.2   | 432.0 | 363.8   |
| STANDARD DEVIATION | IS       | 21.303 | 31590 |         |       |         |

EFFECT OF SOAKING TEMPERATURE ON HARDNESS IN A.C. CONDITION

| ALLOY :<br>TABLE-4                                                     | B3<br>.37                                                                               | AS<br>TIN                                                                    | CAS<br>1E(HI                          | r hai<br>RS)                                                                  | RDNE                                                                  | SS(H)                                                                    | -                                                         |                                     | 2<br>6                  |                           |                                  |                                        |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------|-------------------------|---------------------------|----------------------------------|----------------------------------------|
| TEMP<br>(DEG.C)                                                        |                                                                                         |                                                                              |                                       | E                                                                             | HARD)<br>(HV)                                                         | NESS<br>30)                                                              |                                                           |                                     |                         |                           | SD                               | AVERAGE<br>(HV30)                      |
| 800                                                                    | 715                                                                                     | 715                                                                          | 715                                   | 710                                                                           |                                                                       | 720<br>710                                                               |                                                           | 715<br>710                          |                         | 715<br>710                | 6.93                             | 716                                    |
| 850                                                                    | 618                                                                                     | 631<br>618                                                                   | 618                                   | 614                                                                           | 610                                                                   | $\begin{array}{c} 618\\610\end{array}$                                   | 606                                                       | 602                                 | 618<br>602              |                           | 8,54                             | 615                                    |
| 900                                                                    | 527<br>514                                                                              | 514                                                                          | 523<br>514                            | 508                                                                           | 508                                                                   | 517<br>508                                                               | 517<br>505                                                | 514<br>505                          | 505                     | 514<br>505                | 6.70                             | 513                                    |
| 950                                                                    |                                                                                         | 493                                                                          | 493                                   |                                                                               | 490                                                                   | 502<br>490                                                               | 499<br>490                                                |                                     | 490                     | 496<br>484                | 7.88                             | 496                                    |
| 1000                                                                   | 383                                                                                     | 393<br>377                                                                   | 377                                   | 375                                                                           | 375                                                                   | 387<br>373                                                               | 370                                                       |                                     | 368                     |                           | 8.83                             | 380                                    |
| 1050                                                                   |                                                                                         |                                                                              |                                       |                                                                               |                                                                       | 358<br>353                                                               |                                                           |                                     | 358<br>344              | 358<br>344                | 6.64                             | 357                                    |
| BEST FI<br>STANDAR<br>FOR DEG<br>386.<br>BEST FI<br>STANDAR<br>FOR DEG | 2D DE<br>REE (<br>6973)<br>T VA<br>2D DE<br>REE (<br>2304)<br>T VA                      | LUES<br>VIAT<br>5000<br>LUES<br>VIAT<br>OF 3<br>1000<br>LUES                 | 69<br>ION<br>71<br>ION<br>7<br>7<br>7 | 92.6<br>IS<br>COEFI<br>-5.8!<br>L2.5<br>IS<br>COEFI<br>L6.9(<br>L4.1          | 62(<br>25<br>FICIN<br>51518<br>61(<br>20<br>FICIN<br>0953<br>614      | 0.7<br>9.251<br>ENTS<br>360<br>3.7<br>6.423<br>ENTS<br>500               | L946<br>ARE<br>532.<br>38410<br>ARE<br>531.               | ).02:<br>.9 4<br>)<br>).144<br>.6 4 | 3855:<br>461.0<br>40108 | 3 <b>1</b><br>) 40:<br>34 | 5.0 3<br>1.0 3<br>-0.00<br>3.3 3 | 352.9<br>0043306                       |
| TABLE-4                                                                | . 38                                                                                    | TI                                                                           | 1E ( HI                               | RS)                                                                           |                                                                       |                                                                          |                                                           | = {                                 | 3                       |                           |                                  | ······································ |
| 800                                                                    |                                                                                         | 741                                                                          | 741                                   | 741                                                                           | 736                                                                   | 746<br>736                                                               | 736                                                       | 736                                 | 730                     | 730                       | 7.66                             | 743                                    |
| 850                                                                    | 618                                                                                     | 618                                                                          | 618                                   | 618                                                                           | 618                                                                   | 622<br>614                                                               | 614                                                       | 622<br>610                          | 610                     | 622<br>610                | 8,77                             | 621                                    |
| 900                                                                    | 508                                                                                     | 505                                                                          | 505                                   | 502                                                                           | 502                                                                   |                                                                          | 499                                                       | 496                                 | 496                     | 496                       | 10.66                            | 509                                    |
| 950<br>1000                                                            | 484                                                                                     | 481                                                                          | 481                                   | 481                                                                           | 481                                                                   | 490<br>478<br>383                                                        | 473                                                       | 473                                 |                         | 470                       | 9.74                             | 485                                    |
|                                                                        |                                                                                         | 375                                                                          | 375                                   | 371                                                                           | 371                                                                   | 366                                                                      | 366                                                       | 366                                 | 366                     | 362                       | 11.41                            | 378                                    |
| I <sup>II</sup> ·                                                      |                                                                                         |                                                                              |                                       |                                                                               |                                                                       |                                                                          |                                                           |                                     |                         |                           | 10.02                            | 293                                    |
| BEST FI<br>STANDAF<br>FOR DEG<br>333.<br>BEST FI<br>STANDAF<br>FOR DEG | 2132<br>IT VA<br>ID DE<br>IREE (<br>4155)<br>IT VA<br>ID DE<br>IREE (<br>1438)<br>IT VA | 8000<br>LUES<br>VIAT<br>OF 2<br>4000<br>LUES<br>VIAT<br>OF 3<br>0000<br>LUES | 7<br>ION<br>7<br>ION<br>1<br>7<br>7   | -1.7:<br>L9.3<br>IS<br>COEFI<br>-4.4:<br>31.5<br>IS<br>COEFI<br>67.2:<br>40.7 | 15999<br>633<br>71011<br>24539<br>633<br>633<br>71011<br>84540<br>613 | 940<br>3.5<br>6.268<br>ENTS<br>590<br>1.1<br>7.445<br>ENTS<br>000<br>8.2 | 547.<br>3487(<br>ARE<br>538.<br>5923(<br>ARE<br>(<br>530. | )<br>.0 4<br>)<br>).69<br>.7 4      | 46403<br>452.2<br>76725 | 74<br>2 37:               | 5.1 2<br>3.7 3<br>-0.00<br>5.6 2 | 302.5<br>)246175                       |

| ALLOY : B3 AS CAST HARDNESS(HV30) = 6 | ALLOY : |
|---------------------------------------|---------|
|---------------------------------------|---------|

| TABLE-4         | . 39  | TII         | 1E ( HI | RS)  |               |       | =           | - 10  | )                  |     |        |                   |
|-----------------|-------|-------------|---------|------|---------------|-------|-------------|-------|--------------------|-----|--------|-------------------|
| TEMP<br>(DEG.C) |       |             |         | I    | HARDI<br>(HV) |       |             |       |                    |     | SD     | AVERAGE<br>(HV30) |
| 800             | 763   | 763         | 763     | 757  | 752           | 752   | 752         | 746   | 746                | 741 |        |                   |
|                 | 741   | 741         | 741     | 736  | 736           | 736   | 736         | 736   | 736                | 736 | 9.98   | 745               |
| 850             | 652   | 652         | 652     | 648  | 648           | 648   | 648         | 648   | 648                | 644 |        |                   |
|                 | 644   | 644         | 644     | 644  | 644           | 631   | 631         | 631   | 631                | 622 | 8.63   | 642               |
| 900             | 533   | 533         | 530     | 530  | 527           | 523   | 523         | 523   | 523                | 523 |        |                   |
|                 | 520   | 520         | 517     | 517  | 517           | 511   | 511         | 508   | 508                | 505 | 8.38   | 520               |
| 950             | 499   | <b>49</b> 9 | 499     | 496  | 496           | 496   | 496         | 496   | 493                | 487 |        |                   |
|                 | 487   | 487         | 484     | 484  | 484           | 481   | 481         | 481   | 481                | 481 | 7.13   | 489               |
| 1000            | 375   | 375         | 373     | 371  | 370           | 370   | 368         | 368   | 368                | 362 |        |                   |
|                 | 358   | 357         | 353     | 351  | 351           | 348   | 346         | 346   | 343                | 341 | 11.57  | 359               |
| 1050            | 270   | 270         | 270     | 269  | 269           | 269   | 265         | 264   | 263                | 263 |        |                   |
|                 | 262   | 262         | 260     | 260  | 258           | 257   | 254         | 251   | 251                | 246 | 7.12   | 261               |
| FOR DEG         | REE ( | OF 1        | 1       | COEF | FICI          | ENTS  | ARE         | -     |                    |     |        |                   |
| 224.            | 6951  | 9000        |         | -1.8 | 3571          | 370   |             |       |                    |     |        |                   |
| BEST FI         | T VA  | LUES        | 7       | 38.4 | 64-           | 4.1   | 549         | . 8   | 455.               | 5 3 | 61.2 : | 267.0             |
| STANDAR         | D DE  | VIAT        | ION     | IS   | 23            | 2.90: | L442(       | )     |                    |     |        |                   |
| FOR DEG         | REE   | OF 2        | I       | COEF | FICI          | ENTS  | ARE         |       |                    |     |        |                   |
| 220.            | 4464  | 3000        |         | -1.7 | 9305:         | 910   | -(          | 0.00  | 0500               | 34  |        |                   |
| BEST FI         | T VA  | LUES        | 7       | 38.0 | 64            | 4.2   | <b>5</b> 50 | .1    | 455.9              | 9 3 | 61.3   | 266.5             |
| STANDAR         | D DE  | VIAT        | ION     | IS   | 2             | 6.440 | 06330       | )     |                    |     |        |                   |
| FOR DEG         | REE   | OF 3        | :       | COEF | FICI          | ENTS  | ARE         |       |                    |     |        |                   |
| 1559.           | 2521  | 0000        | -       | 45.6 | 5405          | 300   | (           | 0.470 | 608 <del>9</del> : | 21  | -0.00  | 0171770           |
| BEST FI         | AV T  | LUES        | 7       | 44.3 | 63            | 5.2   | 545         | .0    | 461.               | 1 3 | 70.4   | 260.0             |
| STANDAR         | D DE  | VIAT        | ION     | IS   | 2             | 8.14  | 6616        | 0     |                    |     |        |                   |

EFFECT OF SOAKING TEMPERATURE ON HARDNESS IN A.C. CONDITION

| ALLOY<br>TABLE-                                                                           | B4<br>4.40                                                                                     | AS<br>TIN                                                                              | CAS<br>ME(HI                                                                        | T HAI<br>RS)                                                                           | RDNE                                                                  | SS(H                                                                            | V30)                                                                 |                                             | 1<br>2                |                        |                           |                           |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|-----------------------|------------------------|---------------------------|---------------------------|
| TEMP<br>(DEG.C)                                                                           | )                                                                                              |                                                                                        |                                                                                     | E                                                                                      |                                                                       | NESS<br>30)                                                                     |                                                                      |                                             |                       |                        | SD                        | AVERAG<br>(HY30           |
| 800                                                                                       |                                                                                                |                                                                                        |                                                                                     |                                                                                        |                                                                       |                                                                                 |                                                                      | 657                                         |                       |                        |                           | 0.5.5                     |
| 850                                                                                       | 557                                                                                            | 557                                                                                    | 554                                                                                 | 554                                                                                    | 550                                                                   | 550                                                                             | 550                                                                  | 543                                         | 543                   | 540                    |                           | 655                       |
| 900                                                                                       | 487                                                                                            | 537<br>484                                                                             | 481                                                                                 | 481                                                                                    | 476                                                                   | 533<br>473                                                                      | 473                                                                  | 527<br>473                                  | 473                   | 523<br>473             |                           |                           |
| 950                                                                                       | 499                                                                                            | 473<br>487                                                                             | 481                                                                                 |                                                                                        | 478                                                                   | 473                                                                             | 470                                                                  | 467<br>470                                  | 467                   | 462<br>467             | 6.03                      |                           |
| 1000                                                                                      | 444                                                                                            |                                                                                        | 436                                                                                 |                                                                                        | 436                                                                   | 436                                                                             | 432                                                                  | 462<br>432                                  | 432                   | 457<br>429             |                           | 470                       |
| 1050                                                                                      | 418                                                                                            | 413                                                                                    | 413                                                                                 | 413                                                                                    | 411                                                                   | 406                                                                             | 406                                                                  |                                             | 404                   |                        |                           | 429                       |
|                                                                                           | 402                                                                                            | 402                                                                                    | 400                                                                                 | 396                                                                                    | 389                                                                   | 389                                                                             | 387                                                                  | 383                                         | 381                   | 379                    | 11.74                     | 400                       |
| FOR DEC                                                                                   | REE (<br>6029:                                                                                 | DF 1                                                                                   | (                                                                                   | COEFE                                                                                  | FICH                                                                  | ENTS                                                                            | ARE                                                                  |                                             |                       |                        |                           |                           |
| BEST FI<br>STANDAF<br>FOR DEC                                                             | T VAI<br>DEV                                                                                   | LUES<br>VIAT:<br>DF 2                                                                  | 60<br>ION (                                                                         | 09.6<br>IS<br>COEFF                                                                    | 563<br>35<br>11017                                                    | 3.5<br>5.48<br>ENTS                                                             | 7623(<br>ARE                                                         | D                                           |                       |                        | 25.5 (                    | 379.4                     |
| BEST FI                                                                                   | T VAI                                                                                          | LUES                                                                                   | 64                                                                                  | 11.4                                                                                   | 553                                                                   | 7.2                                                                             | 492                                                                  |                                             |                       |                        | L9.1 4                    | 11.2                      |
| STANDAF<br>FOR DEC                                                                        |                                                                                                |                                                                                        |                                                                                     |                                                                                        |                                                                       | 3.400<br>ENTS                                                                   |                                                                      | 0                                           |                       |                        |                           |                           |
| 2502.                                                                                     | .6094(                                                                                         | 0000                                                                                   | - '                                                                                 | 74.9                                                                                   | 5537(                                                                 | 000                                                                             | 6                                                                    | 0.76                                        | 59271                 | 51                     | -0.00                     | 262306                    |
| BEST FI<br>STANDAF                                                                        | T VAI                                                                                          | JUES<br>ZIATI                                                                          | 63<br>ION                                                                           | 51.1<br>IS                                                                             | 54:<br>14                                                             | 3.4<br>4.61:                                                                    | 484.<br>5463(                                                        | .34<br>)                                    | 154.(                 | 0 43                   | 32.9 4                    | 101.3                     |
| TABLE-2                                                                                   | 4.41                                                                                           | TIN                                                                                    | 1E ( HI                                                                             | RS)                                                                                    |                                                                       |                                                                                 |                                                                      | = 4                                         | 1                     |                        |                           | · ••• · · · ·             |
| 800                                                                                       |                                                                                                |                                                                                        |                                                                                     |                                                                                        |                                                                       |                                                                                 |                                                                      | 648                                         |                       |                        |                           |                           |
| 850                                                                                       |                                                                                                | 639<br>537                                                                             |                                                                                     | 639<br>533                                                                             |                                                                       |                                                                                 |                                                                      | 639<br>530                                  |                       | 635<br>523             | 7.59                      | 644                       |
| 900                                                                                       |                                                                                                | 523<br>493                                                                             |                                                                                     | 523<br>493                                                                             |                                                                       | 523<br>484                                                                      | 520                                                                  | 520<br>481                                  | 514                   | 511                    | 7.28                      | 526                       |
| 950                                                                                       | 481                                                                                            | 478                                                                                    | 478                                                                                 | 476                                                                                    | 476                                                                   | 473                                                                             | 473                                                                  | 465<br>473                                  | 465                   | 462                    | 9.71                      | 480                       |
|                                                                                           | 467                                                                                            | 467                                                                                    | 467                                                                                 | 465                                                                                    | 465                                                                   | 465                                                                             | 462                                                                  | 459                                         | 454                   | 454                    | 7.88                      | 468                       |
| 1000                                                                                      | 385                                                                                            | 385                                                                                    | 383                                                                                 | 383                                                                                    | 381                                                                   | 387<br>379                                                                      | 379                                                                  | 385<br>379                                  | 379                   | 385<br>366             | 8.07                      | 385                       |
| 1050                                                                                      | 348                                                                                            | 348                                                                                    | 343                                                                                 | 343                                                                                    | 339                                                                   | 339                                                                             | 334                                                                  | 333                                         | 333                   | 331                    |                           |                           |
| 1050                                                                                      | 328                                                                                            | 328                                                                                    | 326                                                                                 | 320                                                                                    | 325                                                                   | 320                                                                             | 311                                                                  | 309                                         | 308                   | 307                    | 12.87                     | 328                       |
| FOR DEG                                                                                   | 328<br>REE (                                                                                   | OF 1                                                                                   | (                                                                                   | COEFE                                                                                  | FICIE                                                                 | INTS                                                                            |                                                                      | 309                                         | 308                   | 307                    | 12.87                     | 328                       |
| FOR DEG                                                                                   | 328<br>REE (<br>6905;                                                                          | OF 1<br>3000                                                                           | (                                                                                   | COEFE                                                                                  | FICIE<br>51429                                                        | ENTS<br>910                                                                     | ARE                                                                  |                                             |                       |                        | <u></u>                   |                           |
| FOR DEG<br>153.<br>BEST FI<br>STANDAF                                                     | 328<br>REE (<br>6905;<br>T VAI<br>RD DE                                                        | OF 1<br>3000<br>LUES<br>/IATI                                                          | (<br>61<br>LON                                                                      | COEFE<br>-1.15<br>15.8                                                                 | FICIE<br>51429<br>558<br>26                                           | ENTS<br>910<br>3.2<br>5.840                                                     | ARE<br>500.                                                          | 6 4                                         | 43.0                  | ) 38                   | 12.87<br>35.5 3           |                           |
| FOR DEG<br>153.<br>BEST FI<br>STANDAF<br>FOR DEG<br>248.<br>BEST FI                       | 328<br>REE (<br>6905;<br>T VAI<br>RD DE<br>REE (<br>8104(<br>T VAI                             | DF 1<br>3000<br>LUES<br>/IATI<br>DF 2<br>0000<br>LUES                                  | (01)<br>(01)<br>(01)<br>(02)<br>(02)<br>(02)<br>(02)<br>(02)<br>(02)<br>(02)<br>(02 | COEFE<br>-1.19<br>15.8<br>IS<br>COEFE<br>-3.22<br>25.1                                 | FICIE<br>558<br>26<br>FICIE<br>55752<br>556                           | ENTS<br>310<br>3.2<br>5.840<br>ENTS<br>240<br>3.3                               | ARE<br>500.<br>3570<br>ARE<br>493.                                   | 0.6 4<br>0.011<br>1 4                       | 43.0                  | ) 38                   | 35.5 3                    | 327.9                     |
| FOR DEG<br>153.<br>BEST FI<br>STANDAF<br>FOR DEG<br>248.<br>BEST FI<br>STANDAF<br>FOR DEG | 328<br>REE (<br>6905;<br>T VAI<br>REE (<br>8104(<br>T VAI<br>REE (<br>REE (                    | )F 1<br>3000<br>JUES<br>/IAT]<br>)F 2<br>0000<br>JUES<br>/IAT]<br>)F 3                 | (0<br>10N (0<br>62<br>10N (0<br>10N (0)                                             | COEFE<br>-1.19<br>15.8<br>IS<br>COEFE<br>-3.22<br>25.1<br>IS<br>COEFE                  | FICIE<br>51429<br>558<br>26<br>FICIE<br>25752<br>556<br>29<br>FICIE   | ENTS<br>3.2<br>5.840<br>ENTS<br>240<br>5.3<br>7.372<br>ENTS                     | ARE<br>500.<br>357(<br>ARE<br>493.<br>2207(<br>ARE                   | 0.6 4<br>0.011<br>1 4                       | 43.0<br>2128<br>35.6  | ) 38<br>56<br>5 38     | 35.5 a<br>33.6 a          | 327.9<br>337.2            |
| FOR DEG<br>153.<br>BEST FI<br>STANDAF<br>FOR DEG<br>248.<br>BEST FI<br>STANDAF<br>FOR DEG | 328<br>REE (<br>6905;<br>T VAI<br>REE (<br>8104(<br>T VAI<br>RD DEV<br>REE (<br>7761(<br>T VAI | DF 1<br>3000<br>JUES<br>/IAT]<br>DF 2<br>J000<br>JUES<br>/IAT]<br>DF 3<br>J000<br>JUES | (0<br>61<br>10N<br>62<br>10N<br>(0<br>                                              | COEFF<br>-1.19<br>15.8<br>IS<br>COEFF<br>-3.22<br>25.1<br>IS<br>COEFF<br>78.73<br>36.1 | FICIE<br>51429<br>558<br>28<br>FICIE<br>558<br>29<br>558<br>29<br>540 | ENTS<br>310<br>3.2<br>5.840<br>5.3<br>240<br>5.3<br>3.372<br>ENTS<br>300<br>0.8 | ARE<br>500.<br>357(<br>ARE<br>(<br>493.<br>2207(<br>ARE<br>(<br>484. | 6 4<br>)<br>011<br>.1 4<br>)<br>831<br>.4 4 | 43.0<br>12128<br>35.6 | ) 38<br>56<br>38<br>73 | 35.5 3<br>33.6 3<br>-0.00 | 327.9<br>337.2<br>0295730 |

EFFECT OF SOAKING TEMPERATURE ON HARDNESS IN A.C. CONDITION

| ALLOY :<br>TABLE-4                                                                                                       | B4<br>1.42                                                                         | AS<br>TIN                                                                      | CAS'<br>1E(HI                              | r hai<br>RS)                                                                  | RDNES                                                                      | 5S(H\                                                                                                     |                                                             |                              | 1<br>6            |                                           |                                   |            |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|-------------------|-------------------------------------------|-----------------------------------|------------|
| TEMP<br>(DEG.C)                                                                                                          |                                                                                    |                                                                                |                                            |                                                                               |                                                                            | NESS<br>30)                                                                                               |                                                             | (HV3)                        | )                 |                                           | SD                                | AVERAGE    |
| 800                                                                                                                      | 657                                                                                | 652                                                                            | 652                                        | 648                                                                           | 648                                                                        | 661<br>648                                                                                                | 644                                                         | 644                          | 644               | 631                                       | 9.23                              | 653        |
| 850<br>900                                                                                                               | 550                                                                                | 557<br>547<br>484                                                              | 547                                        | 547                                                                           | 543                                                                        | 554<br>543<br>478                                                                                         | 543                                                         | 533                          | 550<br>530<br>476 | 530                                       | 8.15                              | 547        |
| 950<br>950                                                                                                               | 476                                                                                |                                                                                | 476                                        |                                                                               | 470                                                                        | 470<br>457                                                                                                | 470                                                         | 470                          | 467<br>457        | 465                                       | 5.48                              | 475        |
| 1000                                                                                                                     | 396                                                                                |                                                                                | 391                                        | 389                                                                           | 389                                                                        | 449<br>387                                                                                                | 387                                                         | 383                          | 444<br>381        | 381                                       | 6.98                              | 453        |
| 1050                                                                                                                     | 317                                                                                |                                                                                | 314                                        | 309                                                                           | 309                                                                        | 370<br>309<br>295                                                                                         | 308                                                         | 307                          | 305               | 302                                       | 9.12<br>7.98                      | 379<br>302 |
| FOR DEG<br>167.<br>BEST FI<br>STANDAR<br>FOR DEG<br>250.<br>BEST FI<br>STANDAR<br>FOR DEG<br>2328.<br>BEST FI<br>STANDAR | 33386<br>T VA<br>D DE<br>REE (<br>39364<br>T VA<br>D DE<br>REE (<br>8272(<br>T VA) | 5000<br>LUES<br>VIAT<br>DF 2<br>4000<br>LUES<br>VIAT<br>DF 3<br>D000<br>LUES   | 63<br>ION<br>63<br>ION<br>ION<br>64<br>ION | -1.30<br>31.1<br>IS<br>COEFI<br>-3.11<br>39.2<br>IS<br>COEFI<br>71.20<br>49.2 | 03429<br>56<br>22<br>FICII<br>13662<br>564<br>22<br>FICII<br>05815<br>550  | 910<br>5.9<br>1.73(<br>ENTS<br>200<br>4.3<br>3.561<br>ENTS<br>500<br>).3                                  | 500<br>274(<br>ARE<br>(<br>494<br>116(<br>ARE<br>(<br>486   | )<br>.00!<br>.2<br>)<br>.74! | 9785(<br>129.:    | )4<br>L 36                                | 0.4. 3<br>8.8 3<br>-0.00<br>2.8 3 | 313.4      |
| TABLE-4                                                                                                                  | . 43                                                                               | 1IT                                                                            | 1E ( HI                                    | RS)                                                                           |                                                                            |                                                                                                           | :                                                           | : {                          | 3                 |                                           |                                   |            |
| 800<br>850                                                                                                               | 657                                                                                | 657                                                                            | 657                                        | 657                                                                           | 657                                                                        | 671<br>657<br>537                                                                                         | 652                                                         | 652                          | 648               | 648                                       | 9.10                              | 661        |
| 900                                                                                                                      | 493                                                                                | 530<br>493                                                                     | 530<br>490                                 | 530<br>487                                                                    | 527<br>487                                                                 | 527<br>487                                                                                                | 527<br>487                                                  | 517<br>487                   | 514<br>484        | $\begin{array}{c} 514 \\ 484 \end{array}$ | 9.14                              | 531        |
| 950                                                                                                                      | 467                                                                                | 454                                                                            | 454                                        | 454                                                                           | 454                                                                        | 481<br>451<br>439                                                                                         | 451                                                         | 446                          | 446               |                                           | 5.17<br>8.99                      | 484<br>444 |
| 1000                                                                                                                     | $360 \\ 341$                                                                       | 360<br>341                                                                     | $353 \\ 341$                               | 351<br>341                                                                    | 348<br>339                                                                 | 346<br>339                                                                                                | 346<br>337                                                  | 346<br>336                   | 346<br>334        | 343<br>323                                | 8.62                              | 343        |
| 1050                                                                                                                     |                                                                                    |                                                                                |                                            |                                                                               |                                                                            | 261<br>252                                                                                                |                                                             |                              |                   |                                           | 11.93                             | 261        |
| BEST FI<br>STANDAF<br>FOR DEG<br>197.<br>BEST FI<br>STANDAF<br>FOR DEG                                                   | 0399<br>T VA<br>D DET<br>REE (<br>5811-<br>T VA<br>REE (<br>6587(<br>T VA)         | 5000<br>LUES<br>VIAT:<br>OF 2<br>4000<br>LUES<br>VIAT:<br>OF 3<br>0000<br>LUES |                                            | -1.48<br>40.0<br>IS<br>-1.80<br>41.4<br>IS<br>COEFI<br>74.83<br>52.1          | 37999<br>569<br>24<br>FICII<br>55106<br>569<br>28<br>FICII<br>32549<br>550 | 940<br>5.6<br>4.895<br>510<br>5.3<br>5.707<br>5.707<br>5.707<br>5.707<br>5.707<br>5.707<br>5.707<br>5.707 | 491<br>5784(<br>ARE<br>(<br>490<br>7394(<br>ARE<br>(<br>481 | )<br>.1<br>)<br>).79         | 1714(<br>415.1    | )9<br>7 34:<br>12                         | -0.00                             | 269.4      |

•

| ALLOY :         |       |             |         |       |               | SS(HV | <b>/3</b> 0): | = 62: | 1           |      |      |         |
|-----------------|-------|-------------|---------|-------|---------------|-------|---------------|-------|-------------|------|------|---------|
| TABLE-4         | 44    |             | 4E ( HI | RS)   |               |       | 3             | = 1(  | }           |      |      | ·····   |
| TEMP<br>(DEG.C) |       |             | _       | ł     | HARDI<br>(HV: |       |               | (HV3) | )           |      | SD   | AVERAGI |
| 800             | 690   | 690         | 690     | 685   | 680           | 680   | <b>6</b> 80   | 680   | 680         | 675  |      |         |
|                 | 675   | 675         | 675     | 675   | 675           | 671   | 671           | 671   | 671         | 666  | 6,86 | 677     |
| 850             | 523   | 520         | 517     | 517   | 517           | 517   | 517           | 517   | 517         | 514  |      |         |
|                 | 514   | 514         | 511     | 511   | 511           | 511   | 508           | 508   | 508         | 508  | 4.35 | 514     |
| 900             | 499   | 493         | 493     | 493   | 493           | 493   | 493           | 493   | 493         | 490  |      |         |
|                 | 487   | 487         | 487     | 487   | 484           | 484   | 484           | 481   | <b>4</b> 81 | 476  | 5,68 | 488     |
| 950             | 454   | 452         | 451     | 451   | 451           | 451   | 449           | 449   | 449         | 446  |      |         |
|                 | 446   | <b>4</b> 46 | 444     | 444   | 444           | 436   | 436           | 436   | 436         | 434  | 6.37 | 445     |
| 1000            | 301   | 301         | 294     | 291   | 290           | 290   | 287           | 287   | 283         | 282  |      |         |
|                 | 280   | 280         | 278     | 275   | 275           | 274   | 274           | 274   | 270         | 269  | 9.57 | 282     |
| 1050            | 253   | 253         | 252     | 251   | 250           | 249   | 248           | 248   | 240         | 239  |      |         |
|                 | 239   | 239         | 239     | 238   | 238           | 237   | 236           | 236   | 236         | 236  | 6.63 | 242     |
| FOR DEG         | REE ( | DF 1        | (       | COEFI | FICI          | ENTS  | ARE           |       |             |      | U    |         |
| 198.            | 1591  | 0000        |         | -1.6  | 6514          | 340   |               |       |             |      |      |         |
| BEST FI         | T VAI | LUES        | 6       | 49.5  | 56            | 6.2   | 483           | .0    | 399.'       | 7 31 | 6.4  | 233.2   |
| STANDAR         | D DE  | TAIV        | ION     | IS    | 4             | 1.30  | 88310         | ט     |             |      |      |         |
| FOR DEG         | REE ( | OF 2        | (       | COEF  | FICI          | ents  | ARE           |       |             |      |      |         |
| 238.            | 7608  | 4000        |         | -2.5  | 5056          | 460   | (             | 0.00  | 4786        | 06   |      |         |
| BEST FI         | T VAI | LUES        | 6       | 53.5  | 56            | 5.4   | 479           | . 8   | 396.9       | 5 31 | 5.6  | 237.2   |
| STANDAR         | D DE  | TAIV        | ION     | IS    | 4             | 7.51  | 22371         | 5     |             |      |      |         |
| FOR DEG         | REE   | OF 3        |         | COEF  | FICE          | ENTS  | ARE           |       |             |      |      |         |
| 1847.           | 1399  | 0000        | -       | 55.2  | 4312          | 900   | 1             | 0.57  | 7339:       | 24   | -0.0 | 0206357 |
| BEST FI         | T VA  | LUES        | 6       | 61.1  | 55            | 4.6   | 473           | .6    | 402.8       | 8 32 | 6.5  | 229.4   |
| STANDAR         | ਤਰ ਰ  | VIAT        | ION     | IS    | 5             | 4.91  | 0073          | C     |             |      |      |         |

EFFECT OF SOAKING TEMPERATURE ON HARDNESS IN A.C. CONDITION

Table 4.45 Summary table of effect of heat-treatment on hardness

.

| h/t temp.<br>(deg.C) |     |     | B1              |     |         |     |     | B2  |     |     |     |     | B3      |     |     |     |     | B4  |     |     |
|----------------------|-----|-----|-----------------|-----|---------|-----|-----|-----|-----|-----|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|
|                      | ŝ   | Ŧ   | 9               | 8   | 10      | 73  | ት   | ග   | æ   | 10  | 8   | ት   | 9       | ß   | 10  | 0   | 4   | 9   | 8   | 10  |
| 800                  | 696 | 725 | 724             | 734 | 734 723 | 615 | 633 | 638 | 652 | 668 | 696 | 702 | 702 716 | 743 | 745 | 655 | 644 | 653 | 661 | 677 |
| 850                  | 603 | 674 | 603 674 662 681 | 681 | 692     | 520 | 529 | 526 | 528 | 526 | 569 | 578 | 615     | 621 | 642 | 540 | 526 | 547 | 531 | 514 |
| 006                  | 587 | 558 | 576 581         | 581 | 586     | 502 | 492 | 486 | 484 | 489 | 513 | 507 | 513     | 509 | 520 | 473 | 480 | 475 | 484 | 433 |
| 950                  | 555 | 545 | 529             | 516 | 529     | 455 | 446 | 443 | 446 | 444 | 492 | 500 | 496     | 485 | 489 | 470 | 463 | 453 | 444 | 445 |
| 1000                 | 533 | 474 | 476 410         |     | 371     | 426 | 414 | 402 | 374 | 350 | 177 | 422 | 380     | 378 | 359 | 429 | 385 | 379 | 343 | 283 |
| 1050                 | 453 | 363 | 453 363 356 320 | 320 | 273     | 409 | 365 | 329 | 297 | 263 | 399 | 364 | 357     | 293 | 261 | 400 | 328 | 302 | 261 | 242 |

,

.

T-32

| Alloy | Temp.<br>(Deg.) | 2            | ន<br>4 | oaking 1<br>6 | Ouration(<br>8 | hrs.)<br>10 |  |
|-------|-----------------|--------------|--------|---------------|----------------|-------------|--|
|       |                 |              |        |               |                |             |  |
| B1    | 800             | 26.7         | 26.5   | 26.3          | 26.2           | 25.8        |  |
|       | 850             | 27.2         | 26.8   | 26.5          | 25.8           | 24.9        |  |
|       | 900             | 26.5         | 24.7   | 24.2          | 23.8           | 24.0        |  |
|       | 950             | 25.9         | 23.6   | 20.2          | 20.1           | 19.7        |  |
|       | 1000            | 18.1         | 17.9   | 15.9          | 14.8           | 13.9        |  |
| B2    | 800             | 22.5         | 21.6   | 20.7          | 20.0           | 19.5        |  |
|       | 850             | 22.9         | 22.2   | 21.8          | 20.5           | 19.7        |  |
|       | 900             | 20. <b>4</b> | 19.3   | 18.4          | 17.8           | 17.4        |  |
|       | 950             | 20.1         | 17.9   | 17.4          | 16.5           | 16.3        |  |
|       | 1000            | 15.3         | 14.2   | 14.0          | 13.5           | 13.2        |  |
| B3    | 800             | 23. <b>3</b> | 22.2   | 21.3          | 20.6           | 20.5        |  |
|       | 850             | 22.5         | 21.8   | 21.1          | 20.8           | 20.8        |  |
|       | 900             | 21.4         | 20.3   | 20.4          | 20.0           | 19.5        |  |
|       | 950             | 20.7         | 19.6   | 19.1          | 18.1           | 17.3        |  |
|       | 1000            | 16.9         | 13.8   | 15.0          | 13.5           | 12.6        |  |
| B4    | 800             | 21.3         | 20.8   | 19.8          | 20.0           | 20.1        |  |
|       | 850             | 21.8         | 21.2   | 21.5          | 20.6           | 19.7        |  |
|       | 900             | 20.3         | 19.4   | 18.7          | . 18.5         | 18.3        |  |
|       | 950             | 20.0         | 18.9   | 18.4          | 18.1           | 17.8        |  |
|       | 1000            | 17.8         | 17.4   | 16.8          | 16.5           | 16.3        |  |

## TABLE 4.46 EFFECT OF HEAT-TREATMENT ON THE AMOUNT OF MASSIVE CARBIDE

Effect of heat-treatment on size and dispersion of 2nd phase particles

Table-4.47 (Alloy B1) As-cast hardness = 594

| Table          | -4.47                                   | (Al         | loy     | B1)            | As-ca         | st ha          | rdness        | s = 594            |             | and in the second se |              |                                                                                                                       |               |                | -            |
|----------------|-----------------------------------------|-------------|---------|----------------|---------------|----------------|---------------|--------------------|-------------|-----------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------|---------------|----------------|--------------|
| Temp.<br>Deg.C | Time<br>Hrs.                            | HV30        | QM #    | lst (<br>%area | class<br>%NOP | 2nd<br>%area   | class<br>%NOF | 3rd c<br>%area     | NOP %       | 4th c<br>%area                                                                                                  | lass<br>%NOP | 5th c<br>%area                                                                                                        | class<br>%NOP | 6th c<br>%area | lass<br>%NOP |
| 800            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 96          |         |                |               | 6.             |               | 10                 | 0           | 4 •                                                                                                             | 0            | 0.00                                                                                                                  | 0             | •              | 0            |
| 800            | 00                                      | 222         |         | 0              |               | Ò.             |               |                    | 0           | •                                                                                                               | 0            | +                                                                                                                     | 0             |                | 0            |
| 850            | 0                                       | 03          | 9.9     | - <del>-</del> |               |                |               | ۲.                 |             | •                                                                                                               | 0            |                                                                                                                       | 0             |                | 0            |
| 850            | 4                                       | 4           | 9       | · • •          |               | ŝ              |               | <b>ا</b> مینو<br>۲ | 0           | •                                                                                                               | 0            | •                                                                                                                     | 0             | •              | 0            |
| 850            | ю                                       | 662         | 0.65    | 0.90           | 56            | 5.74           | -40           | 0.95               | പ           | 0.31                                                                                                            | 0            | 0.00                                                                                                                  | 0             | 0.00           | 0            |
| 850            | 10                                      | 92<br>0     | 9.      | 6              |               | ਼              |               | <u>ى</u>           | က           |                                                                                                                 | 0            |                                                                                                                       | 0             |                | 0            |
| 006            |                                         | 87          | цС<br>, | ς<br>Γ         |               | 4              |               | 4.                 |             |                                                                                                                 | 0            | •                                                                                                                     | 0             | -              | 0            |
| 900            | 4                                       | 58          | φ.      | с<br>С         |               | Θ.             |               | ۲.                 | 4           | •                                                                                                               | 0            | •                                                                                                                     | 0             | -              | 0            |
| 006            | 9                                       | <u>7</u> 6  | ~       | ю.             |               | ω,             |               | æ.                 | 2           | •                                                                                                               | 0            | •                                                                                                                     | 0             | •              | 0            |
| 900            | 10                                      | 36          | 9.      | ŗ.,            |               | Ω,             |               | θ.                 | ഹ           | •                                                                                                               | 0            | •                                                                                                                     | 0             | •              | 0            |
| 950            | 0                                       | 55          | ~       | <u>ი</u>       |               | <u>ი</u>       |               | 7                  | θ           | •                                                                                                               | 0            |                                                                                                                       | 0             | •              | 0            |
| 950            | 4                                       | 45          | ω.      | ი              |               | <u>ی</u>       |               | 4                  | 4           | •                                                                                                               | 0            |                                                                                                                       | 0             | •              | 0            |
| 950            | G                                       | 50          | ۲.      | <u>ه</u>       |               | ч <u>э</u>     |               | 0,                 | 9           | •                                                                                                               | •+           | •                                                                                                                     | 0             | •              | 0            |
| 950            | 10                                      | 29          | ω.      | 9.             |               | е.             |               | æ.                 | Q           | -                                                                                                               | ო            | •                                                                                                                     | 0             | •              | 0            |
| Table          | -4.48                                   | (AL         | loy     | B2)            | As-ca         | st ha          | rdness        | 080 1 3            |             | والمتحديقة المحالية ا |              | <b>ور المحمد بالمحمد - المحمول المحمد المحم</b> |               |                |              |
| Temp.<br>Deg.C | Time<br>Hrs.                            | Hv30        | QM n    | lst <<br>%area | class<br>%NOP | Znd o<br>%area | class<br>%NOF | 3rd c<br>%area     | NOP<br>%NOP | 4th c<br>%area                                                                                                  | lass<br>%NOP | 5th c<br>%area                                                                                                        | class<br>%NOP | 6th c<br>%area | lass<br>%NOP |
| 800            | 2                                       | 15          | 9       | 1 .            |               |                |               | 9.                 | 1           | 1 4                                                                                                             |              | 1 .                                                                                                                   |               | f •            |              |
| 800            | 10                                      | 68          | ю       | •              |               | θ.             |               | 4                  | <b></b> i   | •                                                                                                               |              | •                                                                                                                     |               | •              | -            |
| 850            | 01                                      | 20          | ø,      | •              |               | €1             |               | 4                  | Ţ           | •                                                                                                               |              |                                                                                                                       |               | •              |              |
| 850            | 4                                       | 6<br>2<br>0 | 9.      | ٠              |               |                |               | с <u>ч</u>         | ť           | •                                                                                                               |              | ,                                                                                                                     |               | •              |              |
| 850            | 9                                       | 526         | 0.65    | 0.95           | ទទ            | 6.42           | 41            | 1.10               | 03          | 00.00                                                                                                           | 0            | 00.00                                                                                                                 | 0             | 00.00          | 0            |
| 850            | 10                                      | 26          | Θ.      | •              |               | θ              |               | ∾.                 | 01          | •                                                                                                               |              | •                                                                                                                     |               | •              |              |
| 900            | 0                                       | 020         | 9       | •              |               | <b>4</b>       |               | თ,                 | 20          | •                                                                                                               |              | •                                                                                                                     |               |                |              |
| 900            | 4                                       | 82<br>8     | 9       | •              |               |                |               | -                  | N           | •                                                                                                               |              | •                                                                                                                     |               | •              |              |
| 900            | 9                                       | 86          | 9.      | •              |               | °.             |               | -                  | 2           | •                                                                                                               |              | •                                                                                                                     |               | •              |              |
| 900            | 10                                      | 89          | 9       | •              |               | <u>,</u>       |               | ω.                 | Ŧ           | •                                                                                                               |              | •                                                                                                                     |               | •              | -            |
| 950            | 0                                       | ය<br>ශ      | ΰ.      | •              |               | <del>.</del>   |               | တိ                 | ഹ           |                                                                                                                 |              |                                                                                                                       |               |                |              |
| 950            | ব                                       | 46          | 9       | •              |               | 9.             |               | ∾.                 | ഗ           |                                                                                                                 |              | •                                                                                                                     |               | . •            |              |
| 950            | 9                                       | 43          | 9.      | •              |               | ц<br>С         |               | Υ<br>Υ             | ഹ           | •                                                                                                               |              | ٠                                                                                                                     |               | •              |              |
| 950            | 10                                      | 44          |         | •              |               | +1             |               | 0                  | 9           | •                                                                                                               |              | •                                                                                                                     |               | •              | -            |

Effect of heat-treatment on size and dispersion of 2nd phase particles

| Temp.<br>Deg.C |              |        |              |                |               |                |               |                  |               |                |               |                |               |                                                                                                                 |               |
|----------------|--------------|--------|--------------|----------------|---------------|----------------|---------------|------------------|---------------|----------------|---------------|----------------|---------------|-----------------------------------------------------------------------------------------------------------------|---------------|
|                | Time<br>Hrs. | Hv30   | ал           | lst<br>%area   | class<br>%NOP | 2nd<br>%area   | class<br>%NOP | 3rd (<br>%area   | class<br>%NOP | 4th<br>%area   | class<br>%NOP | 5th <<br>%area | class<br>%NOP | 6th<br>%area                                                                                                    | class<br>%NOP |
| 800            | 0            | တ      | 9.           | 1.0            | 57            | 5.             | 41            | 4                | 1             | •              | 0             | •              | Ð             | •                                                                                                               | 0             |
| 800            | 10           | 745    | 0.63         | 0.99           | 62            | 5.00           | 34            | 1.10             | 01            | 0.31           | 0             | 0.00           | 0             | 0.00                                                                                                            | 0             |
| 850            |              | Ó      | Θ,           | 1.0            | 56            | ω,             | 40            | φ.'              | ო             | •              | 0             | •              | 0             | •                                                                                                               | 0             |
| 850            | 4            | $\sim$ | 9            | 0.8            | 54            | ιC.            | 40            | ٢.               | 4             | •              | 0             | -              | 0             | •                                                                                                               | 0             |
| 850            | 9            |        | . 6          | 0.9            | 55            | ন্থ.           | 40            | ۲.               | ന             | •              | 0             | •              | 0             | •                                                                                                               | 0             |
| 850            | 10           | 1      | ю.           | 1.0            | 60            | 9              | 38            | 4                | <b></b> i     | •              | 0             | •              | 0             | -                                                                                                               | 0             |
| 906            |              | -1     | цр<br>•      | 1.3            | 11            | 4              | 27            | 4                | <b></b> 1     | •              | 0             | r              | 0             | •                                                                                                               | 0             |
| 900            | 4            | Ç      | 9.           | 0.7            | 56            | Φ.             | 38            | <u>م</u>         | Ţ             | •              | 0             |                | 0             | •                                                                                                               | 0             |
| 008            | 9            | -      | <u>م</u>     | 1.3            | 71            | 4.             | 27            | 4                |               | 2              | 0             |                | 0             | •                                                                                                               | 0             |
| 900            | 10           | 3      | θ.           | 0.9            | 58            | <u>دی</u>      | 37            | 4                | ო             | •              | 0             |                | 0             | ٠                                                                                                               | 0             |
| 950            |              | σ      | 9.           | 0,9            | 54<br>4       | 4              | 41            | 4.               | ი             | •              | 0             | •              | 0             |                                                                                                                 | 0             |
| 950            | 4            | Ó      | ~ .          | 0.7            | 54            | 4              | 36            | φ                | 8             | •              | 0             |                | 0             | •                                                                                                               | 0             |
| 950            | 9            | တ      | <b>.</b> ~   | 0.8            | 55            | 8              | 36            | ۍ<br>د           | 9             | ٠              | ⊷             | •              | 0             | •                                                                                                               | 0             |
| 950            | 10           | 8      | ۲.           | 0,8            | 64            | Θ.             | 62<br>23      | <u>۰</u>         | ស             | -              | 9             |                | 0             | •                                                                                                               | 0             |
| IGUIC          | 4.00         | TU)    | 107          | D# /           | 20104         | 2              |               |                  |               |                |               |                |               | a di bash yang di ba |               |
| Temp.<br>Deg.C | Time<br>Hrs. | Hv30   | MD H         | lst (<br>%area | class<br>%NOP | 2nd (<br>%area | class<br>%NOP | 3rd <<br>%area   | class<br>%NOP | 4th (<br>%area | class<br>%NOP | 5th<br>%area   | class<br>%NOP | 6th<br>%area                                                                                                    | class<br>%NOP |
| 10             | 2            | 1 0    | 6            | 0              |               | 9              |               | ю                | 0             | •              | 0             | °.             | 0             | ÷ ۱                                                                                                             | 0             |
| 0              | 10           | · [~-  | 9            | <u>_</u>       |               | 9.             |               | θ.               | 1             | •              | 0             | ς.             | 0             | •                                                                                                               | 0             |
| ഹ              | 2            | 4      | ю<br>,       | ი<br>ი         |               | . 1            |               | ۲.               | 4             | -              | 0             | ୍              | 0             | •                                                                                                               | 0             |
| ιú             | 4            | $\sim$ | 6            | თ<br>          |               | ст)            |               | 9                | e             | •              | 0             | 2              | 0             | •                                                                                                               | 0             |
| 850            | 9            | 547    | 0.62         | 1.09           | 62            | 5.45           | 34            | 1.42             | ო             | 00.00          | 0             | 0.00           | 0             | 0.00                                                                                                            | 0             |
| ഹ              | 10           |        | <del>ن</del> | <u>.</u>       |               |                |               | <u>-</u> ،       | 4             | •              | 0             | •              | •             | •                                                                                                               | 0             |
| 0              | 0            | $\sim$ | 9            | Ч,             |               | Θ.             |               | 4.               | ო             | •              | 0             | ਼              | 0             |                                                                                                                 | 0             |
| 0              | 4            | θ      | ю.           |                |               | <u>م</u>       |               | -                | 2             | •              | 0             | ς.             | 0             | •                                                                                                               | 0             |
| 0              | Ŷ            | €      | φ.           | တို            |               | 4.             |               | 4                | e<br>2        | ۴              | 0             | ਼              | 0             |                                                                                                                 | 0             |
| 0              | 10           | ω      | <u>ب</u>     | <u>.</u>       |               | ς.             |               |                  | ო             | •              | 0             | °.             | 0             | -                                                                                                               | 0             |
| ΥΩ             | N            | 5      | Θ.           | ω.             |               | G.             |               | <del>، -</del> ۲ | 4             |                | ¢             | °.             | 0             | ٠                                                                                                               | 0             |
| ŝ              | ন            | 9      | 9.           | თ<br>          |               | 9.             |               | <b>4</b>         | 4             | •              | 0             | <u>с</u>       | 0             | `                                                                                                               | 0             |
| 5              | 9            | ŝ      |              | ٢.             |               | б.             |               | 0                | 9             | •              | 0             | °.             | 0             |                                                                                                                 | 0             |
| ŝ              | 10           | 4      | ω.           | 9              |               | e.             |               | ი                |               |                | 0             | <u>،</u>       | Ö             | •                                                                                                               | 0             |

**T**-35

~

| Temp.<br>Deg.C | Alloy | Soa<br>2 | king p<br>4 | eriod(<br>6 | Hrs.)<br>10 | Alloy | Soa<br>2 | king p<br>4 | eriod(<br>6 | Hrs.)<br>10 |
|----------------|-------|----------|-------------|-------------|-------------|-------|----------|-------------|-------------|-------------|
| 800            | B1    | 0.52     |             |             | 0.55        | B3    | 0.63     | wa na na na |             | 0.63        |
| 850            |       | 0.61     | 0.62        | 0.65        | 0.66        |       | 0.65     | 0.69        | 0.67        | 0.61        |
| 900            |       | 0.54     | 0.67        | 0.73        | 0.67        |       | 0.54     | 0.67        | 0.54        | 0.65        |
| 950            |       | 0.70     | 0.67        | 0.77        | 0.81        |       | 0.68     | 0.75        | 0.74        | 0.79        |
| 800            | B2    | 0.62     |             |             | 0.63        | B4    | 0.60     |             |             | 0.61        |
| 850            |       | 0.60     | 0.62        | 0.65        | 0.67        |       | 0.65     | 0.68        | 0.62        | 0.67        |
| 900            |       | 0.65     | 0.63        | 0.68        | 0.64        |       | 0.62     | 0.62        | 0.66        | 0.64        |
| 950            |       | 0.69     | 0.69        | 0.66        | 0.77        |       | 0.69     | 0.67        | 0.71        | 0.82        |

Table-4.51 Effect of h/t on mean diameter of dispersed carbides

 $\gamma$ .

| Temp.<br>Deg.C | Alloy | Soa<br>2 | king p<br>4 | eriod(<br>6 | Hrs.)<br>10 | Alloy | Soa<br>2 | king<br>4 | period(<br>6 | Hrs.)<br>10 |
|----------------|-------|----------|-------------|-------------|-------------|-------|----------|-----------|--------------|-------------|
| 800            | B1    | 50       |             |             | 46          | B3    | 56       |           |              | 49          |
| 850            |       | 57       | 54          | 49          | 52          |       | 59       | 47        | 54           | 50          |
| 900            |       | 56       | 49          | 48          | 39          |       | 56       | 43        | 56           | 51          |
| 950            |       | 47       | 42          | 39          | 33          |       | 53       | 41        | 46           | 38          |
| 800            | B2    | 58       |             |             | 51          | B4    | 51       |           |              | 52          |
| 850            |       | 51       | 44          | 53          | 53          |       | 51       | 56        | 54           | 47          |
| 900            |       | 54       | 52          | 47          | 51          |       | 56       | 54        | 53           | 41          |
| 950            |       | 43       | 48          | 37          | 38          |       | 47       | 42        | 41           | 33          |

Table-4.52 Effect of h/t on the average no. of dispersed carbides

.

| Temp.           | Alloy | <u></u> | Soaking | period(Hrs.) |       |
|-----------------|-------|---------|---------|--------------|-------|
| Deg.C           |       | 2       | 4       | 6            | 10    |
| 800             | B1    | 10.63   |         |              | 10.93 |
| 850             |       | 16.71   | 16.15   | 16.41        | 17.52 |
| 900             |       | 13.01   | 17.19   | 19.94        | 13.66 |
| 950             |       | 18.04   | 14.86   | 18.08        | 17.08 |
| 800             | B2    | 17.59   |         |              | 15.87 |
| 850             |       | 14.18   | 13.18   | 17.62        | 18.63 |
| 900             |       | 18,10   | 18.31   | 17.24        | 16.45 |
| <del>9</del> 50 |       | 16.11   | 17.87   | 12.70        | 17.76 |
| 800             | B3    | 17.22   |         |              | 15.39 |
| 850             |       | 19.66   | 17.53   | 18.94        | 14.75 |
| 900             |       | 13.01   | 14.94   | 13.01        | 16.67 |
| 950             |       | 19.03   | 18.05   | 19.57        | 18.55 |
| 800             | B4    | 14.47   | <b></b> |              | 15.26 |
| 850             |       | 16.92   | 20.50   | 16.56        | 16.70 |
| 900             |       | 17.11   | 16.15   | 18.27        | 13.04 |
| 950             |       | 17.53   | 14.86   | 16.23        | 17.32 |

-(

|       |                |      |                   | Table            | 2-4.55 | Table-4.55 Effect | ef krit on | ı percent        | area of                | di spersed | sed carbides        | ц.            | different cla       | 855£5          |           |                |           |        |
|-------|----------------|------|-------------------|------------------|--------|-------------------|------------|------------------|------------------------|------------|---------------------|---------------|---------------------|----------------|-----------|----------------|-----------|--------|
|       |                |      | Class 1           | -                |        | C] 455            | 5 2        | <u>د</u> ا       | Class J                |            | Class               |               | Claes               | ស<br>ភា<br>ទ្រ |           | υ<br>          | Class 6   |        |
| Allay | teæp.<br>Beg.C | · ~  | -0<br>-2          | <b>9</b>         | 2      | न्व               | ¢ 10       | 8<br>0<br>0<br>0 | హా<br>జా<br>శా<br>మాణా | 1 a d      | 1 6 d - H<br>2 4    | r 5.)<br>6 10 | <b>भ</b> ा<br>एन    | -4             | 10        | 64             | ې<br>۲    | 10     |
| BI    | 809            | 1.14 |                   | . 1.01           | 3.98   | :                 | 4.04       | 0.00             | 0                      | 0.16 0     | 0.00                | 0.00          | 0.09                |                | 0.00      | 0.00           |           | 0.00   |
|       | 850            | 1,12 | 1.12 1.16 0.90    | 90 0.53          | i 6.14 | 5.57              | 5.74 6.02  | 0.79             | 1.10 0.75 1.           | 1.58 0     | 0.00 0.00 0.0       | 31 0.00       | 0.00 0.00 0.00 0.00 | 0.00           |           | 0.09 0.        | 0.00 0.09 | 00.00  |
|       | 906            | 1.30 | 1.30 0.91 0.82    | az 0.79          | 4,49   | 5.62              | 5,61 3,58  | 0.47             | 1.74 2.84 1.89         |            | 9.00 0.00 0         | 0.31 0.31     | 0.00 0.00           | 0.00           | 0.00      | 0.00 0.        | 0.00 0.00 | 0 0.00 |
|       | 950            | 0.93 | 0.93 0.91 0.66    | 66 0 <b>.</b> 61 | 1 3.98 | 3.69              | 4.55 3.35  | 3.16 1.42        | . 42 2.65 1.89         |            | 0.67 0.62 0.93      | 1.86          | 0.00 0.51           | 0.51           | 0.51      | 0.00 0.        | 0.00 0.00 | 0 0.00 |
| 28    | 808            | 51.3 |                   | 1.00             | ) é.70 | :                 | 5.85       | 0.63             | 0.                     | 0,47 0     | 0.00                | 0.31          | 0,00                |                | 0.00      | 0,00           |           | . 0.00 |
|       | 850            | 1.97 | 1.07 0.43 0.45    | 95 0.88          | 9 5.28 | 4.15              | 6.42 6.82  | 0.47 1.26        | 1.26 1.10 1.26         |            | 0.00 0.00 0.00      | .00 0.00      | 0.00 0.00           | 00.00          | 0.06 0.60 | 0.00 0.        | 0.00 0.00 | 0 0.00 |
|       | 00¢            | ú.98 | 0.98 1.00 0.80    | 30 1.02          | 2 6.48 | 5.74              | 6.08 5.00  | 0.95             | 1.10 1.10 1.           | 1.89 0     | 0.31 0.00 0.31      | 0.00          | 0.00 0.00           | 0.00 0.00 0.00 | 0.00      | 0.00 0.00 0.00 | 00 0.0    | 0 0.00 |
|       | 930            | 0.74 | 0.74 1.05 0.85 0. | 85 0.90          | 5.11   | 3-69              | 2.56 2.16  | 1.89             | 2.21 1.58 2.           | 2.05 0     | 0.00 0.62 0         | 0.62 2.17     | 0.00 1.02           | 0.51 0.51      |           | 0.00 0.        | 0.00 0.00 | 0 0.76 |
| £3    | 800            | 1.05 | -                 | . 0.99           | ) b.7b | :                 | 5.00       | 0.47             |                        | 1.19 0     | 0.00                | 0.31          | 0.00                | i              | 0.00      | 0.00           |           | . 0.00 |
|       | 850            | 1.07 | 1.07 0.82 0.96    | 96 1.00          | 0 4.82 | G.5)              | 6,42 5.62  | 5° - 28          | 1.74 1.74 D.           | 9.47 0     | 0.00 0.31 0.00 0.00 | 00.0.00.      | 0.00 0.00 0.00 0.00 | 0.00           | 0,00      | 0.00 0.00      | 00 0.00   | 00.00  |
|       | 006            | 1.30 | 1.30 0.78 1.30 0. | 50 0.98          | 4.49   | 4.83              | 4.49 5.62  | 6.47             | 1.58 0.47 1.42         |            | 0.00 0.00 0.00 0.00 | .00 0.00      | 0.00 0.00 0.00 0.00 | 0.00           | 0.00      | 0.00 0.60 0.00 | 60 O,Û    | 0 0.00 |
|       | 950            | 0.95 | 0.95 0.74 0.83    | 83 0,81          | 1 6,48 | 6.5°              | 4.83 2.67  | 1.42             | 2.84 2.53 1.           | 0 127      | 0,31 0-62 1         | 1,24 3.71     | 0.00 6.0(           | 6.60 0.09 0.09 | 0.00      | 0.00 0.        | 0.00 0.00 | 0 0,60 |
| 54    | 800            | 1.02 | :                 | . 1.03           | 5 5,62 | ÷                 | 5.68       | 0.32             | <del>.</del>           | 0.63 0     | 0.00                | 00.6          | 0.00                | :              | 0.00      | 0.00           |           | . 0.00 |
|       | 850            | 6.98 | 6.98 0.90 1.09    | 09 0.83          | 3 5.11 | 7.39              | 5.45 5.13  |                  | 1.74 1.58 1.42 1.74    |            | 0.31 0.00 0.00 0.31 | .00 0.31      | 0.00 0.00 0.00 0.00 | 0.00           |           | 0.00 0.        | 0.00 0.00 | 0 0.00 |
|       | 005            | 1.13 | 1.13 1.10 0.95    | 15 0.80          | 5.68   | 5.37              | 6.42 4.37  | 1.42             | 1.10 1.42 1.10         |            | 0.00 0.00 0         | 0.00 0.00     | 0.00 0.00           | 0.00           | 0.00      | 0.00 0.        | 0.00 0.00 | 0 0.00 |
|       | 926            | 0.82 | 0.32 0.91 0.76    | 76 0.66          | 5.57   | 3.69              | 4.37 2.61  | 1.74             | 1.42 2.05 3.           | 3.31 0     | 0.31 0.62 0         | 0,62 1.24     | 0.00 0.51           |                | 0.00 0.51 | 0.00 0.        | 0.00 0.00 | 0 0.60 |

T-40

Frame area = 207.81 µm²

## TABLE-5.1 PHASES UNDER CONSIDERATION

X-RAY WAVE LENGTH(A°)= 1.9373

PHASE(S) UNDER CONSIDERATION:

.

| 110 | 10 mV   | buy on (a)      |                  | E LOOT O |           |         |
|-----|---------|-----------------|------------------|----------|-----------|---------|
|     | ASTM    | PHASE(S)        | LATTICE          |          | E PARAME' |         |
| (ລ) | ) CODE  |                 | TYPE             | A<br>    | B         | C       |
| 1   | 06-0696 | ALPHA IRON      | CUBIC(BCC)       | 2.8664   | 0.0000    | 0.0000  |
|     | 23-298  | AUSTENITE       | CUBIC(FCC)       | 3,6000   | 0.0000    | 0.0000  |
| 3   |         | MARTENSITE      | CUBIC (BCT)      | 0.0000   | 0.0000    | 0.0000  |
| 4   | 14-0407 | CR23C6          | CUBIC            | 10.6380  | 0.0000    | 0.0000  |
| 5   |         | MN23C6          |                  | 0.0000   | 0,0000    | 0.0000  |
| 6   | 06-0570 | FE3C(CEMENTITE) | ORTHORHOMBIC     | 2.7540   | 0.0000    | 4.3490  |
| 7   | 20-509  | FE5C2           | MONOCLINIC       | 11.5630  | 4.5730    | 5.0580  |
|     | 20-508  | FE5C2(HAGG)     | MONOCLINIC       | 11.5600  | 4.5600    | 5,0300  |
|     | 14-176  | MN5C2           | MONOCLINIC       | 5,0860   |           | 11.6600 |
|     | 6-0038  | MN5C2(PD5C2)    | MONOCLINIC       | 11.6600  | 4.5730    | 5.0860  |
| 11  |         | FE7C3(2)        | HEXAGONAL        | 6,8820   | 0.0000    | 4.5400  |
| 12  |         | CR7C3(2)        | HEXAGONAL        | 13.9000  | 0.0000    | 4.5400  |
|     | 11-0550 | CR7C3           | HEXAGONAL(TRIGO) | 13.9800  | 0.0000    | 4.5230  |
|     | 05-0720 | (CR, FE)7C3     | HEXAGONAL        | 13.9800  | 0,0000    | 4,5230  |
|     | 03-0975 | (CR7C3+MN7C3)   | <b></b>          | 2.2220   | 0.0000    | 0.0000  |
|     | 14-519  | CR2C            | HEXAGONAL        | 2.7900   | 0,0000    | 4.4600  |
| 17  | 4-406   | CR3C2           | ORTHORHOMBIC     | 11.4600  | 5.5200    | 2.8210  |
|     | 26-782  | FE2C(NETA)      | ORTHORHOMBIC     | 4.7040   | 4.2180    | 2.8300  |
|     | 20-522  | FE0.6MN5.4C2    | HEXAGONAL        | 5.7700   | 0.0000    | 6.9800  |
|     |         | C(GRAPHITE)     | HEXAGONAL        | 2.4630   | 0.0000    | 6.7140  |
|     | 13-534  | FE203           | RHOMBOHEDRAL     | 5.0340   |           | 3,7520  |
|     | 6-504   | CR203           | HEXAGONAL        | 4.9540   | 0.0000 1  |         |
|     | 26-1116 | CU2S(1)         | HEAXGONAL        | 3.9610   | 0.0000 3  |         |
|     | 6-518   | MNS             | CUBIC            | 5.2236   | 0.0000    | 0.0000  |
|     | 4-836   | COPPER          | CUBIC            | 3.6150   | 0.0000    | 0.0000  |
|     | 26-798  | FE8SI2C         | TRICLINIC        | 6.3470   | 6.4140    | 9.7200  |
|     | 05-0708 | FE-CR           | TETRAGONAL       | 8.7990   | 0.0000    | 4.5440  |
|     | 06-645  | CRMN3           | TETRAGONAL       | 8.8000   | 0.0000    | 4.5880  |
|     | 20-706  | MN15C4          | HEXAGONAL        | 7.4920   | 0.0000 1  |         |
| 30  | 17-897  | FE2C            | MONOCLINIC       | 2.7940   | 2.7940    | 4.3600  |

T-41

TABLE 5.2-A SUMMARY TABLE OF DIFFRACTOGRAM INDEXING

|   | ALI<br>HE          | LOY<br>A T - | r:<br>TR | B<br>EA                                 | l<br>TMI                                | EN         | Γ          | : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AS                                      | Сл                                             | AS                                                  | <br>[             |             |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                         |                                                                                                                                 |             |                  |                                         |             |                  |                  |                          |                       |                                         |                                                                                        |               |             |            |      |                                                                    |
|---|--------------------|--------------|----------|-----------------------------------------|-----------------------------------------|------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------------------|-------------------|-------------|-----------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-----------------------------------------|-------------|------------------|------------------|--------------------------|-----------------------|-----------------------------------------|----------------------------------------------------------------------------------------|---------------|-------------|------------|------|--------------------------------------------------------------------|
|   | DII<br>AN(         | FF<br>GLI    | 5 1      |                                         | 3                                       |            | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                       |                                                | 9                                                   | -                 | 11          | PE                                      | HA:<br>1 3  | 3E (<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S<br>5     | )                                       | 17                                                                                                                              | 1           | 19               | 2                                       | 21          | 2                | 23               | 2                        | 25                    |                                         | 27                                                                                     | ć             | 29          |            |      | ENT                                                                |
| × | 455556899911<br>11 | 8678253718   |          | 000000000000000000000000000000000000000 | 011000000000000000000000000000000000000 | 1000000110 | 1000001110 | $     1 \\     1 \\     1 \\     1 \\     1 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\    $ | 000000000000000000000000000000000000000 | 1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1 | 0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0101000000        | 00100000000 | 001000000000000000000000000000000000000 | 0010001110  | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000000010 | 000000000000000000000000000000000000000 | 0000001000                                                                                                                      | 11000000010 | 0000000100       | 001000000000000000000000000000000000000 | 01000000000 | 0000010000       | 0<br>1<br>1<br>0 | 0000100000               | 00000000010           | 000000000000000000000000000000000000000 | $ \begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | 0100101010    | 01010000000 | 0000100000 | 10   | 8.3<br>11.0<br>7.5<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 |
|   |                    |              | 3        |                                         | 0                                       | 3          | 4          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       | 6                                              | 0                                                   | 0                 | 0           | 0                                       | 4           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0          | 0                                       | 0                                                                                                                               | 3           | 0                | 0                                       | 0           | 0                | 0                | 0                        | 0                     | 0                                       | 0                                                                                      | 4             | 0           | 0          |      |                                                                    |
|   | 0<br>TA            | =<br>B1.3    | AB       | SE!<br>5.2                              |                                         |            | -          | =<br>ድጥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | RE:<br>LEI                                     | SEN<br>N                                            |                   |             | k :<br>Ys:                              |             | PRC<br>OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                         | JE<br>ASF                                                                                                                       |             | EFE<br>S N       |                                         |             | IGI<br>14t       | 'E<br>'FA        |                          |                       |                                         | -BE<br>รุญา                                                                            |               | ł F         | RAI        | )IA3 | CION                                                               |
|   | <u>.</u><br>S.     |              |          | ASI                                     |                                         |            | ESI        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                |                                                     |                   |             | PEA<br>INT                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                         |                                                                                                                                 |             | Ī                | )                                       |             |                  | F I<br>IES       |                          |                       | C                                       | ONE                                                                                    | <br>7         |             |            |      |                                                                    |
|   | <br>(              | 1)           | AL       | PH                                      |                                         | IR         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                |                                                     |                   |             |                                         |             | I/I<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                         |                                                                                                                                 |             | <u>[3</u><br>2.0 |                                         |             | אנ<br>10.        |                  |                          |                       |                                         | 417<br>9.8                                                                             |               |             |            |      |                                                                    |
|   |                    |              |          |                                         |                                         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                | 85<br>111                                           | 5.                | į           |                                         | 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                         | 133                                                                                                                             |             | [ . 4<br>[ . 1   | )27 $433$ $17($                         |             |                  | ) –<br>:         | 20                       |                       |                                         |                                                                                        | j             |             |            |      |                                                                    |
|   | (                  | 2)           | CR       | 230                                     | 6                                       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                | 40<br>91<br>11                                      | 5.(<br>7.2<br>1.9 | 2           | 1                                       | 5           | 52<br>100<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 1.2<br> .2                              | 182<br>292<br>169                                                                                                               |             | L . 2            | 370<br>29:<br>17(                       |             | 120<br>544<br>75 | )<br>-<br>}      | 50<br>60<br>91           | )<br>]<br>}           | - 98<br>- 98<br>- 98                    |                                                                                        | /<br>}<br>}   |             |            |      |                                                                    |
|   | (                  | 3)           | MN       | 230                                     | 26                                      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                | 48<br>93                                            |                   | j<br>7      |                                         | Š           | 52<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 2.3                                     | 382<br>328                                                                                                                      |             |                  | 380<br>330                              |             | 120<br>22        |                  | 50<br>35                 | į 1                   | LŎČ<br>9§                               |                                                                                        | į             |             |            |      |                                                                    |
|   | (                  | 4)           | FE       | зc                                      | (CI                                     | EMI        | EN         | ΓI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ſE                                      | )                                              | 9145555                                             |                   |             |                                         |             | $\begin{array}{c} 1007\\ 5200\\ 5300\\ 3000\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 781\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 10$ |            |                                         | )21<br>13<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                         |             | $\frac{2}{1}$    |                                         |             |                  |                  | 2356953346765320         |                       | 98<br>100<br>100<br>99<br>100           |                                                                                        | 3<br>)<br>}   |             |            |      |                                                                    |
|   | (                  | 5)           | FE       | 5C)                                     | 2(1                                     | HA         | GG         | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                | - 64<br>- 43<br>- 56                                |                   | 1<br>)<br>) | 1                                       | /<br>3<br>1 | 7<br>8<br>1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32         |                                         | 37(<br>382<br>364                                                                                                               |             | L. 8             |                                         |             | $\frac{1}{202}$  | 2                | $\frac{30}{20}$          | ) ]<br>)<br>)         | 100<br>99<br>99                         | ) (<br>} 8<br>} 8                                                                      | }<br>}<br>}   |             |            |      |                                                                    |
|   | (                  | 6)           | CR       | 70                                      | 3                                       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                |                                                     |                   |             | 100<br>100<br>100                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                         | )21<br>)77<br>337<br>338<br>24<br>10<br>27<br>5<br>27<br>5<br>27<br>5<br>27<br>5<br>27<br>5<br>27<br>5<br>5<br>5<br>5<br>5<br>5 |             |                  | )30<br>980<br>170<br>130<br>290<br>170  |             |                  |                  | 000<br>200<br>550<br>600 | )<br>)<br>)<br>)<br>) |                                         |                                                                                        | 7<br>}}<br>}} |             |            |      |                                                                    |

| Т      | ABLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ξ 5                                                    | . 3 <sup>.</sup>      | -A               |            | S          | JMI         | AL         | RY         | T/                            | ABI             | ΞE             | 0]                                      | F 1           | DI                                      | FF.        | RA                                      | CT                | OGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RAI                                     | 1                                                                                       | INI        | DE:                                    | XII                                     | ٩G                                      |                                         |                                         |                   |                  |            |            |                   |                                                                                                          |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------|------------------|------------|------------|-------------|------------|------------|-------------------------------|-----------------|----------------|-----------------------------------------|---------------|-----------------------------------------|------------|-----------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------|------------------|------------|------------|-------------------|----------------------------------------------------------------------------------------------------------|
| S      | LLO)<br>OAK<br>OOLJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ING                                                    | B1<br>TI<br>MI        | 1<br>Emi<br>Ed : | PEI<br>I A | RA:        | rui<br>A    | RE<br>I R  | ċ          | 90<br>100                     | )0<br>LEI       | C<br>C         |                                         |               | SO.                                     | AK         | IN                                      | G (               | נטם                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RA'                                     | <b>F</b> I(                                                                             | NС         | :                                      | 4                                       | H                                       | נטכ                                     | RS                                      |                   |                  |            |            |                   |                                                                                                          |
| D<br>A | IFF<br>NGLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51                                                     |                       | 3                |            | 5          |             | 7          |            | 9                             |                 | 11             | PI                                      | HA:<br>1 3    | SE                                      | (S<br>15   | )                                       | 17                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19                                      |                                                                                         | 21         |                                        | 23                                      | ,<br>,<br>,                             | 25                                      |                                         | 27                |                  | 29         |            | <b>- 16</b> . / 1 | INT                                                                                                      |
| *      | 48.56<br>5567.00<br>5567.00<br>5567.00<br>5567.00<br>5567.00<br>5567.00<br>5567.00<br>5567.00<br>5567.00<br>5567.00<br>5567.00<br>5567.00<br>5567.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5565.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00<br>5555.00 | 3 0<br>1 0<br>3 0<br>3 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0100000110            | 00110000000      | 1001000100 | 1001000101 | 10101110000 | 0100100000 | 0010000110 | 00100000000                   | 0110010000      | 0000000100     | 000000000000000000000000000000000000000 | 0000000010    | 000000000000000000000000000000000000000 | 1000001000 | 000000000000000000000000000000000000000 | 0000001000        | $     \begin{array}{c}       1 \\       0 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\     $ | 000000000000000000000000000000000000000 | 000000100                                                                               | 0100000000 | 0001000001                             | 000000000000000000000000000000000000000 | 1000001000                              | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0101110000        | 00110000000      | 0100010000 | 0000100100 |                   | $\begin{array}{c} 2 & 0 \\ 15 & 0 \\ 9 & 0 \\ 13 & 0 \\ 4 & 0 \\ 4 & 0 \\ 4 & 0 \\ 6 & 0 \\ \end{array}$ |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                      | 3                     | 0                | 3          | 4          | 5           | 0          | 3          | 0                             | 3               | 0              | 0                                       | 0             | 0                                       | 0          | 0                                       | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                       | 0                                                                                       | 0          | 0                                      | 0                                       | 0                                       | 0                                       | 0                                       | 4                 | 0                | 0          | 0          |                   |                                                                                                          |
| -      | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AB                                                     |                       |                  |            |            |             |            | RES        |                               |                 |                | k :                                     |               |                                         | ЭВЛ        |                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IFI                                     |                                                                                         |            | IGI                                    |                                         |                                         |                                         |                                         |                   |                  | A F        | RAI        | )IA               | TION                                                                                                     |
|        | ABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | at a contra conta con |                  |            |            |             |            | LEI        |                               |                 |                |                                         |               | 0]                                      | F 3        |                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                         | -          |                                        |                                         |                                         |                                         |                                         |                   |                  |            |            |                   |                                                                                                          |
| .S     | .N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PH.                                                    | ASI                   | Ξ. 3             | ?RI        | CSE        | EN.         | Γ          | Į          | NO<br>NO                      | FF<br>ALE       | ]              | PE/<br>INT                              | AK<br>[']     | [/]                                     | 10         |                                         | EAS               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D<br>S'                                 | ו<br>מז                                                                                 | DIE<br>PI  | F<br>LAN                               | IN<br>VES                               | IT<br>STI                               | )<br>[                                  |                                         | NF<br>117         | n                |            |            |                   |                                                                                                          |
| (      | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AU                                                     | STE                   | ENI              | [T]        | 5          |             |            |            | 55                            | <u>ş</u> . g    | 3              | 100                                     |               | 10(                                     | 2          | 2.(                                     | 27                | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.(                                     | 380                                                                                     |            | 211                                    | 1                                       | .00                                     | )                                       | 98                                      | 3.7               | 7                |            |            |                   |                                                                                                          |
| (      | 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CR:                                                    | 230                   | 26               |            |            |             |            |            | 999<br>48<br>56               |                 | 5              | $\frac{120}{120}$                       |               | 10(<br>4(<br>23:<br>10(<br>10(<br>10(   |            |                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 270<br>370<br>370                                                                       |            |                                        | )<br>. 1                                | 50<br>50<br>50                          | )                                       | 98<br>100<br>98                         |                   | í<br>)           |            |            |                   |                                                                                                          |
| (      | 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MN:                                                    | 230                   | 26               |            |            |             |            |            | 65<br>48<br>56                |                 | į<br>}         | 4(13)<br>4(4)                           |               | 100<br>33<br>100                        |            | 1.8                                     | 30:<br>368<br>254 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 300<br>380<br>353                                                                       |            | 531<br>20                              | l<br>)<br>l 1                           | 50<br>50<br>.00                         |                                         | 100<br>99<br>100                        | ).(<br>).7<br>).( | )<br>)           |            |            |                   |                                                                                                          |
| (      | 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FE:                                                    | 3C(                   | (CF              | CME        | ENT        | CI 1        | [E)        | 1          | 56945645645645565656955555555 |                 |                |                                         |               | 100                                     |            |                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | (99)<br>081<br>080<br>060<br>010                                                        |            |                                        |                                         | 800000000000000000000000000000000000000 |                                         | 99<br>100<br>199<br>199                 |                   |                  |            |            |                   |                                                                                                          |
| (      | 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FE                                                     | 5C2                   | 2(\$             | 1AC        | G)         | )           |            |            | 6565<br>655                   |                 | -              | 28<br>6(<br>4(                          |               | 10(<br>3(<br>10(<br>6(<br>44)           |            | 2.0                                     | 364<br>26<br>30   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 970<br>370<br>300<br>270<br>300<br>270<br>300<br>270<br>372<br>372<br>372<br>372<br>372 |            |                                        | )<br>1                                  | 30<br>.00<br>70                         | )<br>  1<br>  1                         | 98<br>100<br>100                        | ).(               | }                |            |            |                   |                                                                                                          |
| (      | 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MN                                                     | 502                   | 2(E              | PD5        | 5B2        | 2)          |            |            | 99<br>55<br>56                | 1.5<br>5.8<br>1 | ,<br>1         | 26<br>100<br>60                         | ;<br>) 1<br>) | 1 1 2 2                                 |            | 1.2                                     | 268<br>)71<br>)6  | 9 1<br>1 2<br>1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 270<br>)78<br>)58                                                                       |            | 31<br>10<br>102                        | į 1                                     | 20<br>.00<br>.80                        | ]<br>)<br>}                             | 99                                      | 4.9<br>9.8        | }                |            |            |                   |                                                                                                          |
| (      | 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FE                                                     | 851                   | [2(              | 2          |            |             |            |            | 555555                        |                 | <br> <br> <br> | 26<br>10(<br>40<br>26<br>26             |               | 6(<br>2(<br>10(<br>4(<br>2(<br>2(       |            |                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 972<br>972<br>970<br>970<br>970<br>972<br>972<br>972                                    |            | 102<br>122<br>121<br>212<br>222<br>224 | 2 1                                     | 80<br>80<br>80<br>80<br>60              | )<br>)<br>)                             | 900<br>900<br>900<br>900<br>900<br>900  |                   | ;<br>;<br>;<br>; |            |            |                   |                                                                                                          |

| I       | ABLE                          | 5                                       | . 4 -                                                              | -A            | (                        | SU | MMA                                     | RY                 | TA                                                                   | <b>ABI</b>                | E            | Oł                    | <u>.</u>         | DIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FI              | RAG                                     | CTC                                                                                                                       | )G]                                   | RAł                                                                                                 | 1 I                                                                     | NE               | EX                                                                                     | IN            | G                                       |                                         |                                        |                   |                 |                 |                 |     |                                                                                                     |
|---------|-------------------------------|-----------------------------------------|--------------------------------------------------------------------|---------------|--------------------------|----|-----------------------------------------|--------------------|----------------------------------------------------------------------|---------------------------|--------------|-----------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------|---------------|-----------------------------------------|-----------------------------------------|----------------------------------------|-------------------|-----------------|-----------------|-----------------|-----|-----------------------------------------------------------------------------------------------------|
| A:01O   | LLOY<br>OAKI                  | :<br>NG<br>NG                           | B1<br>TE<br>ME                                                     | MP<br>DI      | ER/<br>A                 | ΑT | URE<br>AIR                              | ċ                  | 90<br>100                                                            | 13.<br>13.                | °C           |                       | (<br>)           | SOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K]              | EN(                                     | G I                                                                                                                       | DUI                                   | RAI                                                                                                 | CI0                                                                     | N                | :                                                                                      | 10            | H                                       | IOL                                     | JRS                                    | 6                 |                 |                 |                 |     |                                                                                                     |
| Î       | NGLE                          | 1                                       |                                                                    | 3             | Į                        | 5  | 7                                       |                    | 9                                                                    | 1                         | L1           | PH<br>1               | IAS<br>13        | 5E (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S)<br>5         | )                                       | 17                                                                                                                        |                                       | 19                                                                                                  | 2                                                                       | 1                | 2                                                                                      | 3             | 2                                       | 5                                       | 2                                      | 27                |                 | 29              |                 |     | INT                                                                                                 |
| *       | 455556778123566955<br>6666692 | 000001000000000000000000000000000000000 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ | 0001010000000 | 0 0<br>0 0<br>0 0<br>0 0 |    | 111011010000000000000000000000000000000 | 010011010001110    | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | 000110110000000           | 010001001000 | 001001000000000       | 0000010000000010 | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000000010000 | 000000000000000000000000000000000000000 | 000000001000000                                                                                                           | 1000100000000000000000000000000000000 | 001000000000000000000000000000000000000                                                             | 000010000010                                                            | 0001000000000000 | 100000000000000000000000000000000000000                                                | 0000001010000 |                                         | 000000000000000000000000000000000000000 | 0010000000001000                       | 001100111001000   | 010000110100100 | 000100011000100 | 011000100101100 |     | 4.00<br>54.00<br>54.00<br>5194.00<br>8.00<br>1222<br>4.00<br>8.00<br>1222<br>4.00<br>8.00<br>117.00 |
| -       |                               | 0                                       | 3                                                                  |               |                          |    | 90                                      |                    | 3                                                                    | 4                         | 4            | 0                     | 0                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0               | 0                                       | 0                                                                                                                         | 0                                     | 0                                                                                                   |                                                                         |                  | 0                                                                                      |               | 3                                       | 0                                       | 0                                      | 6                 | 5               | 4               | 6               |     |                                                                                                     |
| )<br>יי | ) =<br>TABLE                  | AB:                                     | SEN<br>.4                                                          |               | 1.<br>1                  |    | P<br>TAI                                | RES<br>T GI        |                                                                      |                           |              | k :<br>701            |                  | PRC<br>Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                         |                                                                                                                           |                                       |                                                                                                     |                                                                         |                  |                                                                                        |               |                                         |                                         |                                        |                   |                 | A I             | RAI             | 'AI | FION                                                                                                |
|         | P.41                          |                                         |                                                                    | <br>          |                          |    | -                                       |                    |                                                                      |                           |              |                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | I                                       |                                                                                                                           | 5 ( 6                                 | 5)<br>I                                                                                             |                                                                         |                  |                                                                                        |               |                                         |                                         |                                        | NE<br>NE          | -               |                 |                 |     |                                                                                                     |
|         |                               |                                         | N. MITH BARM IS.                                                   |               |                          |    | ****                                    | والدائناتين البارد | DIE<br>ANC                                                           |                           |              | PEA<br>NT             |                  | 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | MI                                      | LAS                                                                                                                       |                                       | SĪ                                                                                                  |                                                                         | -                | FF<br>AN                                                                               |               |                                         |                                         | II.                                    | 117               | [<br>-          |                 |                 |     |                                                                                                     |
| (       | 1)                            | AUS                                     | STE                                                                | EN I'         | ΤE                       |    |                                         |                    | - 55<br>- 65                                                         | 5.6                       | 51           |                       |                  | 100 $40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 2.0                                     | )77<br>301                                                                                                                |                                       | 2.0<br>1.8                                                                                          |                                                                         | 120              |                                                                                        | 1             | 20                                      | 1                                       | 99<br>00.                              | ).g               | )<br>)          |                 |                 |     |                                                                                                     |
| (       | 2)                            | CR:                                     | 230                                                                | 6             |                          |    |                                         |                    | - 95<br>- 48<br>- 61                                                 | 1.2<br>3.1                |              | 40<br>20<br>7         | )<br>7<br>7      | - 20<br>- 18<br>- 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 2.3                                     | 272<br>378<br>387                                                                                                         |                                       | 2.2                                                                                                 | 270<br>370<br>380<br>300                                                | 2<br>4<br>4      | 20<br>20<br>40                                                                         |               | 50<br>50<br>50                          |                                         | 35                                     | 1.1<br>7.8<br>7.8 | 3               |                 |                 |     |                                                                                                     |
| (       | (3)                           | MN:                                     | 230                                                                | 26            |                          |    |                                         |                    | -65<br>-48                                                           | 3.1                       |              | 40                    | ) :<br>7         | 100<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 2.2                                     | 077<br>801<br>872<br>872<br>878<br>878<br>878<br>878<br>878<br>878<br>878<br>878                                          |                                       | 2.3                                                                                                 | 380                                                                     | - 4              | $\frac{31}{20}$                                                                        |               |                                         | 1                                       | .ŏč<br>99                              | j.č               | j               |                 |                 |     |                                                                                                     |
|         |                               |                                         |                                                                    |               |                          |    |                                         |                    | 56<br>61                                                             | 5.1<br>[.8                | 3            | 35                    |                  | 86     18     18     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 |                 | 2.(                                     | 387                                                                                                                       | 7                                     | $\frac{2}{1}, \frac{2}{5}$                                                                          | )53<br>381                                                              | 5<br>4           | $\frac{11}{40}$                                                                        | Ţ             | л0<br>70                                | I                                       | 99                                     | ).8               | 3               |                 |                 |     |                                                                                                     |
| (       | (4)                           | FE                                      | 3C (                                                               | (CE           | MEI                      | NT | ITE                                     | )                  | 5694664566558055                                                     |                           |              | 40                    |                  | 100028802880218028802102020000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                         | 301<br>288<br>378<br>255<br>978                                                                                           |                                       | 2.3                                                                                                 | 799<br>987<br>980<br>260<br>100                                         | 51<br>2<br>1     | 55<br>12<br>00<br>21                                                                   |               | 50<br>75<br>55<br>55<br>50<br>70        |                                         | gç                                     |                   | 4               |                 |                 |     |                                                                                                     |
| ł       | (5)                           | FE                                      | 502                                                                | 2(H           | AG                       | G) |                                         |                    |                                                                      |                           |              |                       |                  | 790022029202920910592059209205920592059205920592059205920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                         | 002771805514221067775122771280772860<br>002771805514221067775122771280772860<br>77860<br>77860<br>77860<br>77860<br>77860 |                                       |                                                                                                     | )60)2700<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200        | 40211205353      |                                                                                        | 1             | 765500600000000000000000000000000000000 |                                         |                                        |                   |                 |                 |                 |     |                                                                                                     |
|         | (6)                           | MN                                      | 5C2                                                                | 2(P           | D5                       | 82 | :)                                      |                    | 69555                                                                |                           |              | 2(<br>10(<br>3(<br>44 |                  | 20<br>45<br>100<br>35<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                         | 760<br>272<br>277<br>277<br>277<br>277<br>2077                                                                            |                                       | 1.7                                                                                                 | $760 \\ 270 \\ 78 \\ 58 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 1$ | 44010440         | $   \begin{array}{c}     02 \\     31 \\     10 \\     02 \\     11 \\   \end{array} $ | 1             | 10<br>20<br>20<br>80<br>80              |                                         |                                        |                   | )<br>7)<br>9    |                 |                 |     |                                                                                                     |
| •       | (7)                           | FE                                      | 8S)                                                                | [2C           |                          |    |                                         |                    | 555555                                                               | 5.10<br>5.0<br>7.0<br>8.0 |              | 22<br>10(<br>42<br>22 |                  | 22<br>100<br>44<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                         | 972<br>997<br>977<br>972                                                                                                  |                                       | 1.9<br>2.0<br>2.0<br>1.9                                                                            | 972<br>90<br>970<br>970<br>970                                          | 0140000          | 12<br>30<br>122<br>122                                                                 | 1             | 80<br>80<br>80<br>20<br>60              |                                         |                                        |                   |                 |                 |                 |     |                                                                                                     |
|         | (8)                           | CR                                      | MN :                                                               | 3             |                          |    |                                         |                    | 665566                                                               |                           |              | 4(<br>10(<br>2;       | 7                | 40<br>100<br>22<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                                         | 887<br>301<br>972<br>387<br>760                                                                                           |                                       | $   \begin{array}{c}     1 \\     2 \\     1 \\     2 \\     1 \\     1 \\     1 \\   \end{array} $ | 880<br>794<br>970<br>888<br>764                                         | 190994745        | 123<br>15<br>130<br>120<br>77<br>500                                                   | 1             | 10<br>20<br>00<br>90<br>60              | 1                                       | 99999999999999999999999999999999999999 |                   | 3739)<br>37     |                 |                 |     |                                                                                                     |

| TABI                                    | E                | 5.                                      | 5-               | - A                                     |                                         | SI              | UMI              | MAI                                     | RY               | Ţ,                                      | ABI                         | ĿE               | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F 1              | DIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FF               | RAC                                     | CTO                                     | GI                                      | AS                                      | 1 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INI                                                                  | Σ                 | (1)             | IG                   |                                         |                                         |                   |                  |                  |                   |                                        |
|-----------------------------------------|------------------|-----------------------------------------|------------------|-----------------------------------------|-----------------------------------------|-----------------|------------------|-----------------------------------------|------------------|-----------------------------------------|-----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------|-----------------|----------------------|-----------------------------------------|-----------------------------------------|-------------------|------------------|------------------|-------------------|----------------------------------------|
| ALLC<br>SOAK<br>COOL                    | )Y<br>(IN<br>,IN | :<br>IG<br>IG                           | B1<br>TE<br>ME   | L<br>Eme<br>Ed I                        | PEJ<br>I A                              | RA'<br>:        | TUI<br>A         | RË<br>IR                                | :                | 9<br>001                                | 50°<br>LEI                  | °C<br>C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ſ                | soł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AK.              | INC                                     | ] I                                     | DUI                                     | RA?                                     | FIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                                                                    | :                 | 4               | H                    | DUI                                     | RS                                      |                   |                  |                  |                   |                                        |
| DIFF<br>ANGI                            | ĿĖ               | 1                                       |                  | З                                       |                                         | 5               |                  | 7                                       |                  | 9                                       |                             | 11               | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HAS<br>13        | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (S)<br>15        | )                                       | 17                                      |                                         | 19                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21                                                                   | ć                 | 23              | 2                    | 25                                      |                                         | 27                |                  | 29               |                   | IN                                     |
| 45555555555566669866<br>* * * 666669866 | 2208127943159210 | 000001000000000000000000000000000000000 | 0001000000100100 | 000011000000000000000000000000000000000 | 100000000000000000000000000000000000000 | 100010000100001 | 1010111111001000 | 010100100000000000000000000000000000000 | 0010110000101110 | 010011000000000000                      | 01011011000000000           | 0010010000000010 | 000001000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0100010000000100 | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000000001000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 100010000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000010000100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | 0010000000000001  | 000000010000100 | 0000000010001000     | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0001001100100000  | 0010101110001000 | 0101000100010000 | 01100010101114000 | 74846<br>946887<br>128247<br>960<br>40 |
|                                         |                  | 0                                       | 3                | 0                                       | 0                                       | 4               | 9                | 3                                       | 7                | 3                                       | 5                           | 3                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                | 0                                       | 0                                       | 0                                       | 0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                    | 0                 | 0               | 0                    | 0                                       | 0                                       | 4                 | 6                | 4                | 7                 |                                        |
| 0 =                                     | A                | BS                                      | EN               | 1T                                      | ,<br>-<br>-                             | 1               | =                | PI                                      | RES              | 5EI                                     | Ϋ́                          | 2                | * :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 1              | PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DĖA              | 4BI                                     | E                                       | DI                                      | EFE                                     | r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AN                                                                   | IGI               | Æ               | FC                   | R                                       | K-                                      | BI                | ΞŦ               | A F              | RAD               | IATI                                   |
| TABI                                    | E                | 5.                                      | 5-               | -В                                      |                                         | D               | ET.              | AI                                      | LEI              | ) ,                                     | AN                          | AL Y             | YS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IS               | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F I              | ?H/                                     | SE                                      | Č(S                                     | 3)                                      | AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | СТС                                                                  | JAI               | 5L2             | <u> </u>             | PRE                                     | CSI                                     | ΞN'               | Г                |                  |                   |                                        |
| S.N.                                    | F                | PHA                                     | SE               | ΞI                                      | PRI                                     | ESI             | EN'              | T                                       | I<br>A           | DII<br>AN(                              | FF<br>GLE                   | Į<br>E           | PE/<br>IN'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AK<br>F          | I/]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | εo               | I<br>ME                                 | )<br>EAS                                | 5                                       | s1                                      | )<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D]<br>PI                                                             | FI<br>A           | r ]<br>VES      | N1<br>STI            |                                         | 00<br>11.                               | 2NI<br>117        | F<br>r           |                  |                   |                                        |
| ( 1)                                    | A                | ເມສ                                     | STE              | ENJ                                     | ITI                                     | Ε               |                  |                                         | -                | 5                                       | 5.8                         | 3 2              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>j</u> :       | 10(<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 2.0                                     | 071                                     | . 4                                     | 2.0                                     | 080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ]                                                                    | 11                | _ 1             | .00                  | )                                       | 99                                      | <u>.</u>          | 7                |                  |                   |                                        |
| (2)                                     | ) M              | IN 2                                    | 230              | 26                                      |                                         |                 |                  |                                         |                  | 6945G                                   | 000006                      |                  | 22<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9<br>7           | 23<br>17<br>90<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) 1<br>7 2       |                                         | )71<br>301<br>272<br>375<br>375<br>361  |                                         |                                         | )80<br>300<br>270<br>380<br>380<br>353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                   | )               | 80<br>50<br>50<br>50 | )<br>)<br>)<br>)                        |                                         |                   |                  |                  |                   |                                        |
| (3)                                     | ) F              | E3                                      | 3C (             | (CI                                     | EMI                                     | EN'             | TI'              | ΤΞ                                      | )                |                                         | 8-12411 CASE 65-07-7-8      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | $100 \\ 18 \\ 21 \\ 94 \\ 47 \\ 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                         | )875<br>375<br>355<br>361               |                                         |                                         | )52260<br>(993)87<br>(993)87<br>(993)87<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993)<br>(993) |                                                                      |                   |                 | 75<br>25<br>70<br>60 |                                         |                                         |                   |                  |                  |                   |                                        |
| (4)                                     | ) F              | E5                                      | 5C2              | 2(H                                     | HA                                      | GG              | )                |                                         |                  | 000000000000000000000000000000000000000 | 027606766980667807857850686 | 139912192        | $\begin{array}{c} 324 \\ 314 \\ 11 \\ 312 \\ 1034 \\ 1000 \\ 1100 \\ 12 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 $ | 207000070        | $\begin{array}{c} 43\\ 43\\ 12000\\ 12000\\ 12000\\ 12000\\ 12000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000$ |                  |                                         |                                         |                                         |                                         | 370<br>350<br>760<br>260<br>360<br>300<br>760<br>270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                   |                 |                      |                                         |                                         |                   | arcwowcwo        |                  |                   |                                        |
| (5)                                     | ) M              | 1N 5                                    | 502              | 2(I                                     | PD                                      | 5B              | 2)               |                                         | 1                | 155555                                  | B) 128                      |                  | 10(<br>3)<br>4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 545<br>800       | 10(10)<br>3(10)<br>4(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                         | 272272272272272272272272272272272272272 |                                         |                                         | 30000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      | 33                | }<br>)<br>2     | 50<br>70<br>80<br>80 |                                         | 0000000                                 |                   |                  |                  |                   |                                        |
| (6)                                     | ) F              | Έ7                                      | 703              | 3(2                                     | 2)                                      |                 |                  |                                         |                  | 5<br>5<br>5                             | 8.8<br>0.8<br>7.1           | 1<br>3<br>2      | 18<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>3<br>9      | 18<br>4(<br>9(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1.9<br>2.2<br>2.0                       | )65<br>255<br>24                        |                                         | $\frac{1}{2}$                           | 472<br>255<br>019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | $\frac{12}{2}$    |                 | 80<br>31<br>.00      | )<br><br>}                              | 98<br>.00<br>99                         | 9.9<br>0.0<br>9.8 | 9<br>)<br>8      |                  |                   |                                        |
| ( 7)                                    | ) E              | TE 8                                    | 35]              | 120                                     | C                                       |                 |                  |                                         | -                | 11<br>5<br>5                            | 8.1<br>5.{<br>7.            | L<br>3 :<br>7    | 10(<br>4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0 (         | 30<br>10(<br>4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | L.1<br>2.0<br>2.1                       | .30<br>)71<br>)08                       |                                         | L . 1<br>2 . (<br>2 . (                 | 131<br>)7(<br>)1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ()<br>()<br>()<br>()                                                 | 501<br>21(<br>322 | )<br>2 1        | 13     80     .00    | }<br>} 1                                | 99<br>100<br>99                         | ∃.8<br>).0        | 8<br>0<br>9      |                  |                   |                                        |
| (8)                                     | ) (              | CRN                                     | 1N:              | 3                                       |                                         |                 |                  |                                         |                  | പ്രത്രം                                 | 8.5                         | 9<br>1<br>2<br>8 | 1<br>2<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8334 ·           | 18<br>23<br>10(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 20                                      | 969<br>301<br>284<br>971<br>969<br>767  |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                   |                 | 60<br>20<br>60<br>00 |                                         |                                         |                   | 077<br>77        |                  |                   |                                        |

T-45

| SÕĂKI<br>COOLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C B<br>ING T<br>ING M | 1<br>EMPE<br>EDIA | RAT | URE<br>AIR                              | ; 9<br>coo                             | 50°(<br>LED                   | 2                                                                                                                             | Ç.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SOAH                 | CING                                                                                     | DU:                                     | RAT                                                                                                                       | ION                                                                                    | :                | 10                                                   | HOI                                       | URS             | 5             |             |              |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|-----|-----------------------------------------|----------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|------------------------------------------------------|-------------------------------------------|-----------------|---------------|-------------|--------------|----------------|
| DIFF<br>ANGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ē 1                   | 3                 | 5   | .7                                      | 9                                      | 1                             | PH<br>1 1                                                                                                                     | ASE<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>S</b> )<br>15     | 17                                                                                       | 19                                      | 2                                                                                                                         | 1 2                                                                                    | :3               | 25                                                   | 2                                         | 27              | 2             | 29          |              | INT            |
| 470.55<br>555.57<br>557.58<br>61.48<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58<br>62.58 |                       |                   |     | 110110000000000000000000000000000000000 | 11001000000000000000000000000000000000 | 011100000                     |                                                                                                                               | 000010000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                                                                          | 000000000000000000000000000000000000000 |                                                                                                                           |                                                                                        | 0<br>0<br>0<br>1 | 001000000100000                                      | 0010000001011                             | 0011101001000   | 0101000100000 | 10010100010 | 010101010100 | 43295222638366 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00                    | 0 0               | 3   | 70                                      | 60                                     | 3 (                           | 43                                                                                                                            | 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 0                  | 5                                                                                        | 0 0                                     | 0 (                                                                                                                       | 0 (                                                                                    | 3                | 30                                                   | 4                                         | 5               | 3             | 4           | 6            |                |
| 0 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ABSE                  | NT                | 1 = |                                         | RESE                                   |                               | * =                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                                                                          | DIF                                     |                                                                                                                           |                                                                                        |                  |                                                      |                                           |                 |               | A R         | ADIA         | TIO            |
| TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                   |     |                                         | ED.                                    |                               |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                                                                          | (S)                                     |                                                                                                                           | ****•                                                                                  |                  |                                                      |                                           |                 | -             |             |              |                |
| S.N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PHAS                  | e pr              | ESE | NT                                      | DI<br>AN                               | FF<br>GLE                     | PEA<br>INT                                                                                                                    | K<br>I/J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [0 M                 | D<br>IEAS                                                                                | ,<br>5 5'                               | ו כ<br>נ כו                                                                                                               | DIFF<br>PLAN                                                                           | LI<br>ES         | NT<br>TD                                             |                                           | ONF<br>11 T     | ľ             |             |              |                |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MN23                  | C6                |     |                                         | 4                                      | 7.8                           | 9                                                                                                                             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.                   | 389                                                                                      | 2.1.1                                   | 380                                                                                                                       | 420                                                                                    |                  | 50<br>70                                             | 99                                        | 2.8             | 3             |             |              |                |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FE3C                  | (CEM              | ENT | ITE                                     | )<br>0455566                           | 714707823670846               | 949975<br>1997<br>41147<br>797                                                                                                | 50<br>25<br>100<br>100<br>100<br>31<br>100<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | 388769075084690<br>3886320975084690<br>3260975084690<br>3260975084690                    | 1.22.21.11.1                            | 380<br>3881<br>7999<br>3860<br>970<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>3                    | 4312<br>5120<br>1203<br>21132<br>1132                                                  | 1                | 505<br>555<br>505<br>505<br>500<br>500<br>500<br>500 | 99999009900099000990009990009990000990000 |                 | 3             |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FE5C                  |                   |     |                                         | 64<br>5<br>66<br>12                    | 67.88<br>0.88<br>96<br>5<br>5 | $     \begin{array}{c}       11 \\       19 \\       7     \end{array} $                                                      | 150<br>37<br>100<br>775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | $975 \\ 806 \\ 764$                                                                      | 1.                                      | 300                                                                                                                       | 11322020112202112202011220201122020112220201122202011222020112220201122202011222000000 |                  | 10                                                   | - 99                                      | <del>]</del> .8 | 3             |             |              |                |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MN5C                  | 2(PD              | 582 | )                                       | 55                                     | 5.5<br>7.4                    | 100                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                          | 2.0                                     |                                                                                                                           | 510<br>511<br>210                                                                      | 1                | 80<br>80                                             | 100                                       | ).0             | /<br>)<br>}   |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FE7C                  | 3(2)              |     |                                         | 055G                                   | 0.8                           | 45<br>45                                                                                                                      | 1<br>10(<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.<br>2.<br>2.<br>1. | 260<br>017<br>898                                                                        | 2<br>2<br>1                             | 255                                                                                                                       | 120<br>121<br>112                                                                      | 1                | 31                                                   |                                           |                 |               |             |              |                |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0                  |                   |     |                                         | - H                                    | 품 . 정                         | 77                                                                                                                            | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ξ <u>j</u> .         | 260                                                                                      | $\frac{1}{2}$                           | 201<br>270                                                                                                                | 120                                                                                    |                  | 50                                                   | 101<br>101                                | 2.8             | }             |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CR7C                  | 3(2)              |     |                                         | 55                                     | 0.0<br>7 4                    | 7<br>45                                                                                                                       | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55.                  | ñ 1 7                                                                                    | 21                                      | iżň.                                                                                                                      | 121                                                                                    | 1                | 110                                                  |                                           | 1 9             | r -           |             |              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                   |     |                                         | 00000000                               | 07.4<br>1.5<br>1.5<br>90      | 45<br>4<br>100<br>19                                                                                                          | 10(10)<br>10(10)<br>10(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 017<br>898<br>081<br>806                                                                 | 221221                                  |                                                                                                                           | 121<br>112<br>111<br>200                                                               | 1                | 00<br>10<br>00<br>46                                 | 19999<br>9999<br>9999                     |                 |               |             |              |                |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CR7C                  | ER                |     |                                         | 125565656925556                        | 04459655481                   | $7 \\ 454 \\ 100 \\ 19 \\ 14 \\ 140 \\ 451 \\ 14$                                                                             | 10(10)<br>10(10)<br>10(10)<br>144<br>10(10)<br>145<br>10(10)<br>145<br>10(10)<br>145<br>10(10)<br>145<br>10(10)<br>145<br>10(10)<br>145<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(10)<br>10(1                                                                  |                      | 017<br>898<br>8081<br>806<br>806<br>806<br>806<br>806<br>806<br>806<br>806<br>806<br>806 | 21.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 520<br>300<br>308<br>278<br>308<br>278<br>308<br>278<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>30 | 1111000<br>1111000<br>111222<br>111222<br>1112222<br>112222                            | 1<br>1<br>1      | 00<br>10<br>10<br>420<br>17<br>800<br>60             |                                           |                 |               |             |              |                |
| (6)<br>(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CR7C<br>COPP<br>FE8S  | ER<br>12C         |     |                                         | 125555566556656692556665566556         | 557807140715485557814081654   | $\begin{array}{c} 140\\ 10451\\ 17549\\ 44094400514\\ 1045149\\ 104149\\ 1041\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109\\ 10$ | $1000 \\ 1100 \\ 1100 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ $ |                      | 090                                                                                      | 21211122111211                          | 00000000000000000000000000000000000000                                                                                    | 40140042001210004420912070                                                             | 1                |                                                      |                                           |                 |               |             |              |                |

T-46

| Ţ      | TAE                                                                                                                                                                                                | SLE      | 5        | . 8             | -A                                      |                 | ន               | JML                                   | 1AF                                     | RY              | ΤA                                      | BL                   | ĿΕ               | OF                                      | F I             | )II                                     | FI              | RA                                      | CTC                                    | OGI                                   | RAI                                     | M                               | INI             | ŒΣ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (I)                                     | łG                                    |                                         |                                         |                  |                                                                      |                 |                   |    |                             |                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------------|-----------------------------------------|-----------------|-----------------|---------------------------------------|-----------------------------------------|-----------------|-----------------------------------------|----------------------|------------------|-----------------------------------------|-----------------|-----------------------------------------|-----------------|-----------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|------------------|----------------------------------------------------------------------|-----------------|-------------------|----|-----------------------------|-----------------------------------------|
| Ś      | 50 <i>P</i>                                                                                                                                                                                        | OY<br>KI | NG       | B1<br>TH<br>MH  | E<br>E<br>D<br>I                        | PEI<br>I A      | RA'<br>:        | TUI<br>A                              | RE<br>E R                               | ÷               | 10<br>001                               |                      | )°(<br>)         | 2                                       | ç               | 307                                     | AK :            | ING                                     | G I                                    | נטכ                                   | RA'                                     | TIC                             | ОN              | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1(                                      | ) [                                   | IOE                                     | JRS                                     | 5                |                                                                      |                 |                   |    |                             |                                         |
| I<br>A | DIF<br>ANC                                                                                                                                                                                         | F<br>LE  | 1        |                 | 3                                       |                 | 5               |                                       | 7                                       |                 | 9                                       | 1                    | 1                | PH                                      |                 | 3E (                                    | (S)<br>15       | )                                       | 17                                     |                                       | 19                                      |                                 | 21              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                      | 2                                     | 25                                      | -                                       | 27               |                                                                      | 29              |                   |    | INT                         |                                         |
| 1      | 455567250<br>55567250<br>1001102000<br>1002000<br>1002000<br>1002000<br>1002000<br>1002000<br>1002000<br>1002000<br>1002000<br>1002000<br>1002000<br>1002000<br>1002000<br>1002000<br>100200000000 |          | 000000   | 001000100000100 | 000100000000000000000000000000000000000 | 100100101000000 | 100100100010000 | 1001110000000000000000000000000000000 | 011010000000000000000000000000000000000 | 000100100100000 | 011100000000000000000000000000000000000 | 0111100000000000     | 0000001000000000 | 000000000000000000000000000000000000000 | 010000010000000 | 010000000000000000000000000000000000000 | 100001010000000 | 000000000000000000000000000000000000000 | 010001010000000                        | 1001000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000001000000000                | 011000010000000 | 00010000010000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000000000000000000000000000000000000000 | 100001000000000                       | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0011101000000000 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\$ | 001000000100000 | 00001010000000000 |    | 2355.<br>222161150<br>11673 | 000000000000000000000000000000000000000 |
|        |                                                                                                                                                                                                    |          | 0        | 3               | 0                                       | 4               | 4               | 4                                     | 3                                       | З               | 3                                       | 4                    | 0                | Q                                       | 0               | 0                                       | 3               | 0                                       | 3                                      | 0                                     | 0                                       | 0                               | 3               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                       | 0                                     | 0                                       | 0                                       | 4                | 3                                                                    | 0               | 0                 |    |                             |                                         |
|        | ) =<br>                                                                                                                                                                                            |          | ABS      |                 |                                         |                 | 1 :<br>         |                                       |                                         |                 | SEN<br>N                                |                      |                  | k ≍<br>201                              |                 |                                         |                 |                                         | LE ·                                   |                                       |                                         |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                       |                                         |                                         |                  |                                                                      | A J             | RAE               | IA | TIO                         | N                                       |
| -+-    |                                                                                                                                                                                                    |          | с<br>РНЯ |                 | -B                                      |                 |                 |                                       |                                         |                 | ) A<br>DIF                              | -                    |                  | 1.21 with the discussion                |                 | -                                       | _               |                                         |                                        |                                       |                                         | D                               | 98-8-8-e erer   | FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | · · · · · · · · · · · · · · · · · · · |                                         | ·····                                   | SN:<br>DNI       |                                                                      |                 |                   |    |                             |                                         |
| ÷.     |                                                                                                                                                                                                    |          |          |                 |                                         |                 |                 |                                       | -<br>                                   | !               | ANG                                     | LE                   |                  | ΕNΊ                                     |                 |                                         | -               | MÎ                                      | ÍA:                                    | 5                                     | S                                       | ΓD                              | PI              | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | νEŝ                                     | STI                                   | b I                                     | -ĭi                                     | 4I               | Ė.                                                                   |                 | •                 |    |                             |                                         |
| (      | ( 1                                                                                                                                                                                                | .)       | AUS      | 5TI             | EN                                      | IT              | £               |                                       |                                         |                 | 55<br>65                                | j.6                  | 3 1              | 100<br>20                               | ) :             | 100<br>20                               |                 | 2.(<br>1.8                              | )78<br>301                             | 8 2<br>1 1                            |                                         | 280<br>300                      |                 | 111<br>200<br>311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L. 1<br>)                               | -80                                   | )                                       | 98<br>100                               | 9.9<br>0.0       | 3                                                                    |                 |                   |    |                             |                                         |
| (      | ( 2                                                                                                                                                                                                | ?)       | FE:      | 3C (            | (CI                                     | EMI             | EN              | TI:                                   | E)                                      | )               | 126<br>48<br>56<br>57                   |                      |                  | 1324                                    |                 | $\frac{1}{35}$                          |                 | 1.(2)                                   | )83<br>373<br>)54<br>)08               |                                       | $\frac{2}{2}$                           | 30(<br>)8;<br>38(<br>)6(<br>)1( |                 | $   \begin{bmatrix}     1 \\     1 \\     2 \\     1 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\$ |                                         | 80<br>65<br>70<br>.00                 |                                         | 10(<br>99<br>99<br>99                   |                  |                                                                      |                 |                   |    |                             |                                         |
| (      | ( 3                                                                                                                                                                                                | ()       | FE       | 5C2             | 2(1                                     | HA(             | G               | )                                     |                                         |                 | 56<br>56                                | . 3                  | }                | 24<br>- 20                              | Í               | 33<br>20<br>100                         |                 | $\frac{1}{2}$                           | 562<br>)54                             |                                       | L. (                                    | 570<br>260<br>800               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) 1                                     | 30<br>.00                             | )<br>)<br>\                             | 98<br>98<br>100                         |                  | /<br>3                                                               |                 |                   |    |                             |                                         |
| (      | (4                                                                                                                                                                                                 | )        | MN       | 502             | 2(1                                     | PD              | 5B:             | 2)                                    |                                         |                 | LO1<br>50<br>55                         |                      |                  |                                         |                 |                                         |                 |                                         |                                        |                                       |                                         |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 70<br>20<br>70<br>80                  |                                         |                                         |                  |                                                                      |                 |                   |    |                             |                                         |
| ĺ      | ( 5                                                                                                                                                                                                | 5)       | ( CI     | 37(             | 3-                                      | +Ml             | 17(             | C3                                    | )                                       |                 | 57<br>48<br>62                          | · 7                  | ,<br>,           |                                         |                 | 15                                      | 200             | 2.(<br>2.;<br>1.;                       | 108<br>373<br>365                      |                                       | 2.(<br>2.:<br>1.:                       | 116<br>380<br>860               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>1                                  | 80<br>80<br>80<br>00                  | )                                       | -99<br>-99<br>-90                       |                  | 3                                                                    |                 |                   |    |                             |                                         |
| (      | ( 6                                                                                                                                                                                                | ;)       | FE       | 353             | [2(                                     | 2               |                 |                                       |                                         |                 | 5624556656055554605556                  | 5. 6<br>5. 7<br>5. 1 | 7<br>3<br>7      | 13<br>100<br>4<br>20                    | 1               |                                         |                 |                                         | 07010000000000000000000000000000000000 |                                       | 2.(                                     | 26(<br>27(<br>05(<br>05(<br>794 |                 | 555<br>210<br>121<br>322<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 60<br>80<br>80<br>20                  | )<br>)<br>)<br>)                        |                                         |                  |                                                                      |                 |                   |    |                             |                                         |

|    | ТА             | B        | ĹΕ                                      | 5                | . 1              | 0                                       | A                | S                                       | UM               | 1A)              | RY               | T.                                                                   | ABI               | E                | OI                                                          | 7                | DI                     | FFI                                     | RA                                      | СТС               | DGI                                     | RAI                                     | 1                                       | IN                | DE:                      | XII                    | ١G                                      |                                         |                                         |                   |                 |                                         |                  |     |                        |                  |
|----|----------------|----------|-----------------------------------------|------------------|------------------|-----------------------------------------|------------------|-----------------------------------------|------------------|------------------|------------------|----------------------------------------------------------------------|-------------------|------------------|-------------------------------------------------------------|------------------|------------------------|-----------------------------------------|-----------------------------------------|-------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------|--------------------------|------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------|-----------------|-----------------------------------------|------------------|-----|------------------------|------------------|
|    | AL<br>SC<br>CO | A        | KΤ                                      | :<br>NG<br>NG    | B<br>T<br>M      | 1<br>Emi<br>Ed                          | PE)<br>I A       | RA<br>:                                 | TUI<br>A         | RE<br>I R        | ċ                | 10<br>201                                                            | )5(<br>LEI        | )°(              | 2                                                           |                  | SO                     | AK.                                     | IN(                                     | G ]               | נטפ                                     | RA'                                     | rı(                                     | NC                | :                        | 6                      | H                                       | נטכ                                     | RS                                      |                   |                 |                                         |                  |     |                        |                  |
|    | DI<br>AN       | FI<br>GI | r<br>LĖ                                 | 1                |                  | З                                       |                  | 5                                       |                  | 7                |                  | 9                                                                    |                   | 11               | PI                                                          | IA:<br>I 3       | SE                     | (S<br>15                                | )                                       | 17                |                                         | 19                                      | 2                                       | 21                |                          | 23                     | 1                                       | 25                                      | 2                                       | 27                |                 | 29                                      |                  |     | INT                    | 1                |
| ** | 344555566      | 0557456  | 000000000000000000000000000000000000000 | 0000000100000000 | 0000001000000001 | 000000100000000000000000000000000000000 | 0000000000001000 | 000000000000000000000000000000000000000 | 0000001000000000 | 0000101010000000 | 0000001000000000 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\$ | 0000101100000000  | 0000000110000000 | 000000101000000                                             | 0010100110000000 | 00010000100000000      | 001000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0001000100100000  | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000100000000000000000000000000000000 | 10101010000000000 | 1010000010001000         | 0100000000000000010001 | 000001000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000100100000000                       | 0000011011000000  | 000000100000000 | 000000000000000000000000000000000000000 | 0000010001000000 | 12  | 32344775602066290<br>1 | 0000050505550000 |
|    |                |          |                                         | 0                | 0                | 0                                       | 0                | 0                                       | 0                | 3                | 0                | 3                                                                    | 3                 | 0                | 0                                                           | 4                | 0                      | 0                                       | 0                                       | 3                 | 0                                       | 0                                       | 0                                       | 4                 | 4                        | 3                      | 0                                       | 0                                       | 0                                       | 4                 | 0               | 0                                       | 0                |     |                        |                  |
|    | •              | =        |                                         | ABS              |                  |                                         |                  |                                         | =                |                  |                  | SEN                                                                  |                   | *                |                                                             |                  | PRO                    |                                         |                                         |                   |                                         | IFI                                     |                                         |                   | NGI                      |                        |                                         |                                         |                                         |                   |                 | łł                                      | RAE              | )IA | TIO.                   | N                |
|    | TA             |          |                                         | c<br>PH.         |                  | 0-                                      |                  |                                         | ET               |                  |                  |                                                                      |                   |                  |                                                             |                  | OI<br>OI               | · 1                                     |                                         | _                 | 5()2                                    |                                         | -                                       | -                 | UAI                      |                        |                                         |                                         | ISE                                     |                   | -               |                                         |                  |     |                        |                  |
|    | s.             | И        | •                                       | rn.              | 43.              | C .                                     | r fi i           | 10.                                     | LN.              | L                | 1                | AN(                                                                  | FLE               |                  | ΡΕ/<br>NΊ                                                   | ļκ.              | [/]                    | [0                                      | MĒ                                      | )<br>EAS          | 3                                       | s1<br>S1                                | Ď                                       | PI                | IFI<br>LAN               | νEŜ                    | TÍ                                      |                                         | NO.<br>MI,                              | II I              | •               |                                         |                  |     |                        |                  |
|    | (              | 1        | )                                       | FE!              | 5C:              | 2                                       |                  |                                         |                  |                  | _                | 50                                                                   | ).(               | )<br>5 1         | t<br>00.                                                    | ; ·              | 1<br>100               |                                         | $\frac{2}{2}$                           | 293               |                                         | $\frac{2}{2}$                           | 287                                     | 7 (               |                          | )                      | 20                                      | )<br>)<br>)                             | 99                                      | . 9               | )<br>}          |                                         |                  |     |                        |                  |
|    | (              | 2        | )                                       | MN               | 5C:              | 2                                       |                  |                                         |                  |                  |                  | 6556                                                                 |                   | ; -<br>}<br>;    | 197                                                         |                  |                        |                                         |                                         | 311<br>)88<br>)24 |                                         |                                         |                                         |                   |                          |                        | 20<br>70<br>25<br>00                    | 5<br>)<br>)                             | 9999<br>999<br>999                      |                   |                 |                                         |                  |     |                        |                  |
|    | (              | 3 ]      | ) :                                     | MN               | 5C:              | 2(]                                     | PD               | 5B;                                     | 2)               |                  |                  | 50<br>55                                                             | *./<br>).(<br>5.6 | )<br>5 1         | 1<br>1<br>.00                                               | ,<br>j -         | 1<br>100               |                                         |                                         | 293<br>278        |                                         |                                         |                                         |                   | 520<br>510               | រ<br>រ                 | 60<br>70                                | í<br>) 1                                | 99<br>99<br>00                          | 1.7<br>1.7        | ,<br>}          |                                         |                  |     |                        |                  |
|    | (              | 4        | )                                       | CR               | 7 C.             | 3                                       |                  |                                         |                  |                  |                  | 572<br>52<br>50<br>50                                                |                   |                  |                                                             | 3                | 10<br>16               |                                         |                                         | )24<br>583<br>93  |                                         |                                         | )±8<br>580<br>280<br>220                |                   |                          |                        | 80<br>20<br>70<br>50                    | ) 1<br>) 1<br>)                         | 99<br>00<br>99                          | . 7<br>. 0<br>. 7 | ,<br>)<br>}     |                                         |                  |     |                        |                  |
|    | (              | 5        | )                                       | FE               | 85               | 12(                                     | 3.               |                                         |                  |                  |                  | 55655655545565556652                                                 |                   | ,<br>} 1         | $137 \\ 67 \\ 00 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19$ |                  | 100<br>67<br>100<br>19 | ) 1                                     |                                         |                   |                                         |                                         |                                         | ) 4<br>) 1<br>) 1 | 431<br>131<br>131<br>131 | Ī                      |                                         | ) 1<br>)<br>)<br>} 1                    | 999999999999999999999999999999999999999 |                   | <br>            |                                         |                  |     |                        |                  |
|    | (              | 6        | )                                       | AU               | 5T]              | EN                                      | ITI              | £.                                      |                  |                  |                  | 65<br>55<br>126                                                      | 5.6               |                  | -1<br>.00<br>10                                             | j.               | 100<br>100             |                                         | 2.0                                     | 92<br>978<br>984  |                                         | 1.1<br>2.0                              | 94<br>98<br>983                         |                   |                          | ;<br>  1<br>           | 20<br>.00<br>50                         | )<br>}<br>}                             | 99<br>99<br>99                          |                   | )<br>}<br>      |                                         |                  |     |                        |                  |

TABLE 5.12-A SUMMARY TABLE OF DIFFRACTOGRAM INDEXING

| ALLOY : B2<br>HEAT-TREATMENT | `: | AS | CAST |
|------------------------------|----|----|------|

|   | OPAT                                                                               |                  | i ne             | sn i                                    | 1.11                                                                 | 914 S           |                   | • •               | JU                                      | 04               | <u>а</u> р.                             | •                                     |                                         |                                         |                  |                                                           |                   |                                                                                                         |                                                                 |                                         |                                         |                                                                                   |                                         |                                                                                  |                   |                                  |                  |                                         |                   |                  |                  |                  |                                |                                       |
|---|------------------------------------------------------------------------------------|------------------|------------------|-----------------------------------------|----------------------------------------------------------------------|-----------------|-------------------|-------------------|-----------------------------------------|------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|------------------|-----------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|-------------------|----------------------------------|------------------|-----------------------------------------|-------------------|------------------|------------------|------------------|--------------------------------|---------------------------------------|
|   | DIFF<br>ANGL                                                                       | Ė                | 1                |                                         | 3.                                                                   |                 | 5                 |                   | 7                                       |                  | 9                                       |                                       | 1                                       | PF                                      | HAS<br>L 3       | 5E (                                                      | (S<br>15          | )                                                                                                       | 17                                                              |                                         | 19                                      | ź                                                                                 | 21                                      | 2                                                                                | 3                 | 2                                | 25               | 2                                       | 27                | 2                | 29               |                  | ]                              | NT                                    |
| X | 477<br>555<br>5577<br>555<br>555<br>556<br>665<br>935<br>1011<br>89<br>1011<br>119 | 9009250310167820 | 0000100000100100 | 000000000000000000000000000000000000000 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | 000000100000100 | 10000001000101000 | 11111011110000000 | 001000000000000000000000000000000000000 | 1101101001000110 | 000101000000000000000000000000000000000 | 0001011000000000000000000000000000000 | 010001000000000000000000000000000000000 | 011010000000000000000000000000000000000 | 0000100000011100 | 000000000000000000000000000000000000000                   | 1000000010000100  | 101000000000000000000000000000000000000                                                                 | 001000000000000000000000000000000000000                         | 000100000000000000000000000000000000000 | 001000000000000000000000000000000000000 | 000010000000000000000000000000000000000                                           | 000100000000000000000000000000000000000 | 010000000000000000000000000000000000000                                          | 10000011000000000 | 00000001010000000                | 0000000010000100 | 000000000000000000000000000000000000000 | 00010011000000000 | 0101010101010100 | 0001001001001000 | 0100000101000000 | 1021<br>1021<br>11121<br>11121 | 50095005555800000<br>2003005775800000 |
|   |                                                                                    |                  | 3                | 0                                       | 0                                                                    | 0               | 4                 | 9                 | 0                                       | 8                | 0                                       | 3                                     | 0                                       | 4                                       | 4                | 0                                                         | 3                 | 0                                                                                                       | 0                                                               | 0                                       | 0                                       | 0                                                                                 | 0                                       | 3                                                                                | 3                 | 0                                | 0                | 0                                       | 3                 | 7                | 4                | 3                |                                |                                       |
|   | 0 =                                                                                |                  | ABS              |                                         |                                                                      |                 | -                 | =<br>             |                                         |                  | SE)                                     |                                       |                                         | * :                                     |                  |                                                           |                   | AB)                                                                                                     |                                                                 |                                         | IFI                                     |                                                                                   |                                         | NGL                                                                              |                   |                                  |                  |                                         |                   |                  | łF               | łAD              | IAT                            | ION                                   |
|   | TABI                                                                               |                  | с<br>РНЛ         | . 1 :                                   |                                                                      |                 | DI<br>ESI         |                   |                                         |                  |                                         |                                       |                                         | YS:                                     |                  | 01                                                        | · .               |                                                                                                         | ASE                                                             |                                         | 5)<br>                                  |                                                                                   |                                         | JAL                                                                              |                   |                                  |                  |                                         | ONE               | -                |                  |                  |                                |                                       |
|   | р.N.                                                                               |                  | c t13            | 101                                     |                                                                      |                 | 501<br>           | C-14 .            | 1                                       | 1<br>1<br>1      |                                         | GLI<br>GLI                            | C 1                                     | PE/<br>INI                              |                  | [/]                                                       | <u>[</u> 0        |                                                                                                         | D<br>EAS                                                        |                                         | ST                                      | [D                                                                                |                                         | I FE<br>LAN                                                                      | ΈŜ                | ΤĹ                               | ) [              | ĬÌ                                      | 11                | ,<br>,<br>,      |                  |                  |                                |                                       |
|   | (1)                                                                                | 1                | ALE              | PH/                                     | I I                                                                  | IR              | NC                | ,                 |                                         |                  | 57<br>89                                | 7.2<br>5.3                            | Ĩ                                       | 70                                      | ) :              | $100 \\ 12$                                               | 2                 | 2.(<br>1.4                                                                                              | )24<br>433                                                      |                                         | 2.0                                     | )27<br>433<br>170                                                                 | 7 1<br>3 1                              | 110<br>200<br>211                                                                | 1                 | 00<br>20                         | )<br>) 1         | 99<br>100                               | $\frac{9.9}{0.0}$ | }                |                  |                  |                                |                                       |
|   | (2)                                                                                |                  | FE:              |                                         |                                                                      |                 |                   |                   | TE                                      | )                | 81455555666646555566115                 | 751704578235705786185                 |                                         |                                         |                  |                                                           | B124600401120001B | 4111122221111                                                                                           |                                                                 |                                         |                                         |                                                                                   |                                         |                                                                                  |                   |                                  |                  |                                         |                   |                  |                  |                  |                                |                                       |
|   | (4)                                                                                | )                | MN               | 5C2                                     | 2(]                                                                  | PD              | 5B:               | 2)                |                                         |                  | 113<br>5<br>5                           | 8.<br>5.<br>7.                        | 295                                     | ן<br>100                                | )<br>3<br>) :    | 1<br>100                                                  | 4                 | 1<br>2.0<br>2.1                                                                                         | 129<br>067<br>014                                               | 1                                       | $\frac{1}{2}$                           | $130 \\ 550 \\ 010 $                                                              | 0 :<br>8 4<br>6 9                       | 133402                                                                           | 5                 | -80                              | )<br>)<br>) ]    | 99<br>99<br>10(                         | 9.8<br>9.1<br>0.0 |                  |                  |                  |                                |                                       |
|   | (5                                                                                 | )                | CR'              | 7C:                                     | 3()                                                                  | 2)              |                   |                   |                                         |                  | 5554                                    | 8.8                                   | 333                                     | 2:<br>3(<br>1;(                         | 5                | $\frac{23}{42}$                                           | 524               | 21222121121                                                                                             | 974<br>259<br>10€                                               |                                         | 1.2.2                                   | 016<br>0727<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>102 |                                         | 511201201201201201201201000000000000000                                          | )                 | 80<br>80<br>50<br>60             |                  | 99<br>99<br>99                          |                   | 3                |                  |                  |                                |                                       |
|   | (6                                                                                 | )                | CŪ               | 2S                                      | (1                                                                   | )               |                   |                   |                                         |                  | 11<br>4<br>5                            | 1<br>7<br>8.                          | -<br>-<br>-                             | 20                                      | 25               | 10(<br>2(<br>9(<br>10(                                    |                   | 2.<br>1.<br>2.<br>1.                                                                                    | 170<br>381<br>974                                               | 1<br>1                                  | 1.1<br>2.4<br>1.5                       |                                                                                   |                                         | 120 $120$ $121$ $121$ $1021$ $1021$ $102$ $1103$ $103$                           |                   | 50<br>50<br>88                   | )<br>3<br>)      | 999                                     |                   | 7                |                  |                  |                                |                                       |
|   | (7                                                                                 | )                | FE               | 8S:                                     | 120                                                                  | с               |                   |                   |                                         |                  | 5555551455556                           | 2582                                  |                                         | 10231722221 21                          | 7<br>3<br>5<br>7 | 100 $41$ $100$ $90$ $70$ $100$ $70$ $100$ $70$ $70$ $100$ | 5                 | $     \begin{array}{c}       1 \\       2 \\       1 \\       1 \\       1 \\       .     \end{array} $ | 014<br>9759<br>10259<br>1024<br>170<br>977<br>987<br>987<br>987 | 3                                       | 212221211211                            | 87(<br>97(<br>97(<br>88(                                                          |                                         | $   \begin{array}{c}     103 \\     210 \\     212 \\     323 \\   \end{array} $ | 3                 | 00<br>50<br>80<br>98<br>60<br>10 | 3<br>)<br>)<br>) | 000000000000000000000000000000000000000 |                   |                  |                  |                  |                                |                                       |
|   |                                                                                    |                  |                  |                                         |                                                                      |                 |                   |                   |                                         |                  |                                         |                                       | -                                       |                                         |                  | -                                                         |                   |                                                                                                         | -                                                               |                                         |                                         |                                                                                   |                                         |                                                                                  |                   |                                  |                  |                                         |                   |                  |                  |                  |                                |                                       |

| TABLE 5.13-A                                                                                                                            |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DIFFRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CTOGRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M INDEXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NG                                                                                     |                                                                                                                                                              |                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALLOY : B2<br>SOAKING TEMPEI<br>COOLING MEDIA                                                                                           | RATURE<br>: AIR                                                      | : 900°<br>COOLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SOAKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G DÙRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TION: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HOURS                                                                                  |                                                                                                                                                              |                                                                                                                                                                                            |
| DIFF.<br>ANGLE 1 3                                                                                                                      | 57                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PH/<br>1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASE(S)<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        | 29                                                                                                                                                           | INT                                                                                                                                                                                        |
| $\begin{array}{c} 48.2\\ 557.1\\ 57.5\\ 57.5\\ 57.5\\ 57.5\\ 57.5\\ 57.5\\ 57.5\\ 60.42\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$ | $\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | $\begin{array}{cccccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | $\begin{array}{c} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$ | $\begin{array}{c} 3.00\\ 350.00\\ 107.30\\ 4.00\\ 5550\\ 4.00\\ 222\\ 200\\ 22.5\\ 18\\ 18\\ 18\\ 10\\ 22\\ 20\\ 20\\ 20\\ 20\\ 18\\ 18\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$ |
| 0003                                                                                                                                    | 453                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300                                                                                    | 8345                                                                                                                                                         |                                                                                                                                                                                            |
| 0 = ABSENT 1<br>TABLE 5.13-E                                                                                                            |                                                                      | RESENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * =<br>LVST9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROBAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F. ANGLE<br>ACTUALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        | BETA RADI                                                                                                                                                    | IATION                                                                                                                                                                                     |
| S.N. PHASE PRE                                                                                                                          |                                                                      | DIFF<br>ANGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I/I0 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        | NF                                                                                                                                                           |                                                                                                                                                                                            |
| (1) CR23C6                                                                                                                              |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |                                                                                                                                                              |                                                                                                                                                                                            |
| (2) MN23C6                                                                                                                              |                                                                      | $     \begin{array}{r}       65.1 \\       65.9 \\       48.2 \\       65.1     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25<br>7<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccc} 100 & 1 \\ 27 & 1 \\ 16 & 2 \\ 48 & 1 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300 531<br>780 422<br>380 420<br>799 531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 100<br>40 100<br>50 99<br>50 99                                                     | .0<br>.0<br>.8<br>.9                                                                                                                                         |                                                                                                                                                                                            |
| ( 3) FE3C(CEM                                                                                                                           | ENTITE                                                               | 4655851292<br>4655851292<br>4655851292<br>465725875830<br>12457830<br>55630<br>670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5670<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>57000<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700<br>5700 | 857<br>857<br>257<br>528<br>208<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 33 & 2 \\ 100 & 1 \\ 27 & 1 \\ 16 & 2 \\ 43 & 1 \\ 100 & 1 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100 & 2 \\ 100$ | $373 \ 2.33$<br>$371 \ 1.73$<br>$371 \ 1.73$<br>371 | 370 $420300$ $531380$ $422380$ $422380$ $422395$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ $422386$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                   | .9<br>.8<br>.8<br>.8                                                                                                                                         |                                                                                                                                                                                            |
| ( 4) FE5C2(HAG                                                                                                                          | G)                                                                   | 63.2<br>70.6<br>57.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11<br>5<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $     \begin{array}{c}       349 \\       577 \\       1.6 \\       27 \\       2.0 \\       1.6 \\       27 \\       1.6 \\       2.0 \\       1.6 \\       2.0 \\       1.6 \\       2.0 \\       1.6 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.0 \\       2.$                                                                                                                                                                                                                                                                                                 | 50 122<br>80 023<br>30 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |                                                                                                                                                              |                                                                                                                                                                                            |
| ( 5) MN5C2(PD5                                                                                                                          | 5B2)                                                                 | 1127195925515566719871<br>755557845074557455789555<br>1055566756656655598955<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 285<br>2250<br>10288<br>11772115<br>20122012<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>102850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>1028850<br>102850<br>102850<br>102850<br>102850<br>102850<br>102850<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1028500<br>1029500<br>1029500<br>1029500<br>1029500<br>1029500<br>10000000000000000000000000000000000 | $\begin{array}{c} 100 & 2.0 \\ 900 & 1.0 \\ 1000 & 2.0 \\ 1000 & 2.0 \\ 1000 & 2.0 \\ 1000 & 2.0 \\ 1000 & 2.0 \\ 117 & 1.0 \\ 77 & 2.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1000 & 74 & 1.0 \\ 1$                                                                                         | 2111221112112211221122<br>3007271615461469477009208<br>30072716154614694771777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300       312         300       312         300       312         300       312         300       312         300       312         300       312         300       312         300       312         312       312         300       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       312         312       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                   | .08<br>.08<br>.08<br>.00                                                                                                                                     |                                                                                                                                                                                            |
| ( 6) FE7C3(2)                                                                                                                           |                                                                      | 65.9<br>70.2<br>57.5<br>64.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-\frac{7}{7}$<br>20<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 1.<br>7 1.(<br>77 2.(<br>44 1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 781 1.7<br>855 1.6<br>814 2.0<br>816 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79 512<br>590 602<br>590 121<br>520 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{ccc} 70 & 99 \\ 10 & 99 \\ 100 & 99 \\ 100 & 99 \\ 11 & 99 \end{array}$ | .9<br>.8<br>.9<br>.8                                                                                                                                         |                                                                                                                                                                                            |
| (7) CR7C3(2)                                                                                                                            |                                                                      | $     \begin{array}{r}       65.1 \\       57.5 \\       64 5     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25<br>20<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $   \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $   \begin{array}{ccc}     22 & 99 \\     100 & 99 \\     30 & 99 \\   \end{array} $   | . 8<br>. 8                                                                                                                                                   |                                                                                                                                                                                            |
| (8) CRMN3                                                                                                                               |                                                                      | 65.6<br>55.7<br>57.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12<br>100<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \tilde{6}4 & \tilde{1} \\ 100 & 2 \\ 28 & 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 789 1.7<br>074 2.0<br>027 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90 022<br>99 330<br>969 330<br>936 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50 99<br>100 99<br>70 99                                                               | .9<br>.8<br>.7                                                                                                                                               |                                                                                                                                                                                            |
| ( 9) AUSTENITE                                                                                                                          | r<br>S                                                               | 58.9<br>99,8<br>55.7<br>65.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85<br>100<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} 8 \\ 5 \\ 100 \\ 26 \\ 1.6 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 371 & \widehat{1} & \widehat{9}\\ 267 & 1 & 2\\ 074 & 2 & 0\\ 301 & 1 & 8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccc} 100 & 100 \\ 40 & 99 \\ 100 & 99 \\ 80 & 100 \end{array}$         | .0.8                                                                                                                                                         |                                                                                                                                                                                            |

,

| TABL                                                  | E 5                 | . 15              | 5-A                                     | SI                                      | JMN                  | 1AR              | RY     | TA                      | BLI                                                                | εo                                                                                                           | F                   | DIE                                          | FFF                      | RAC                                     | CTC                                          | GR.                     | AM                                                                 | IN             | DEX                                          | (I)         | IG                         |                                         |                                              |                     |                       |                     |                     |                                                    |
|-------------------------------------------------------|---------------------|-------------------|-----------------------------------------|-----------------------------------------|----------------------|------------------|--------|-------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|--------------------------|-----------------------------------------|----------------------------------------------|-------------------------|--------------------------------------------------------------------|----------------|----------------------------------------------|-------------|----------------------------|-----------------------------------------|----------------------------------------------|---------------------|-----------------------|---------------------|---------------------|----------------------------------------------------|
| ALLO<br>SOAK<br>COOL                                  | ING                 | B2<br>TH<br>ME    | MPE<br>DIA                              | RA'<br>:                                | TUF<br>Al            | RE<br>R          | ċc     | 95<br>0L                | O°(<br>ED                                                          | 2                                                                                                            |                     | so/                                          | KI                       | INC                                     | 5 E                                          | UR                      | AT]                                                                | ION            | :                                            | 4           | HC                         | DUF                                     | ٦S                                           |                     |                       |                     |                     | · ,                                                |
| DIFF<br>ANGLI                                         | Ė 1                 |                   | 3                                       | 5                                       |                      | 7                |        | 9                       | 11                                                                 | P                                                                                                            | HA:<br>13           | SE (                                         | (ទ<br>5                  | 1                                       | .7                                           | 19                      | 9                                                                  | 21             | 2                                            | 23          | 2                          | 25                                      | ź                                            | 27                  | 1                     | 29                  |                     | INT                                                |
| 445355557823345567078856<br>666666707978556<br>* 1222 | 9848595841947629860 | 00001000001000000 | 000001000000000000000000000000000000000 | 100000000000000000000000000000000000000 | 10000111111001010000 | 0<br>1<br>0<br>1 | 100000 | 0<br>0<br>0             |                                                                    |                                                                                                              | 0001000001000000000 | 0100000000100100000                          | 101000001000000000       | 100000000000000000000000000000000000000 | 010000000110000100000                        |                         |                                                                    |                | 000000000000000000000000000000000000000      | 1<br>0<br>0 | 0010100010001001000        | 000000000000000000000000000000000000000 | 0000100000100000110                          | 0000111100110110000 | 00000110100000000000  | 0011010100001000000 | 0010001010011000000 | 5723205550055000500500<br>32057435523132847<br>217 |
|                                                       | 0                   | 0                 | 0 0                                     | 3                                       | 8                    | 3                | 6      | 0                       | 4 (                                                                | 0 (                                                                                                          | 0                   | 3                                            | З                        | 0                                       | 4                                            | 3 (                     | ) (                                                                | ) ()           | 0                                            | 4           | 5                          | 0                                       | 4                                            | 8                   | 3                     | 5                   | 5                   |                                                    |
| 0 =                                                   |                     | SEN               |                                         | 1 :                                     |                      |                  |        | EN                      |                                                                    | *                                                                                                            |                     | PRC                                          |                          |                                         |                                              | DIE                     |                                                                    |                | NGL                                          |             |                            |                                         |                                              |                     |                       | łł                  | RAD                 | IATION                                             |
| $\frac{\text{TABLI}}{\text{S.N.}}$                    | E 5<br>PH           |                   | 5-B<br>PR                               | *****                                   |                      | IL,              |        |                         |                                                                    | يد يدا يحصرك نظ                                                                                              |                     | UP<br>1                                      | <u> </u>                 |                                         |                                              |                         |                                                                    |                |                                              |             |                            |                                         |                                              |                     | -                     |                     | •                   |                                                    |
| ю.м.<br>                                              | с †11               |                   | - F.G.                                  | -01                                     | 214.1                |                  |        | IF<br>NG                |                                                                    | PE.<br>IN                                                                                                    | nr.<br>T            | I/I                                          | 0                        | D<br>ME                                 | AS                                           | 5                       | D<br>STD                                                           | ) PI           | FF<br>AN                                     | ES          | TL                         | ) I                                     | ,Iř                                          | )NE<br>117          | ľ                     |                     |                     |                                                    |
| (1)                                                   | MN:                 | 230               | 6                                       |                                         |                      |                  |        | $\frac{47}{70}$         | .9<br>.2                                                           | 1                                                                                                            | 5                   | 29<br>17                                     | 2                        | .3<br>.6                                | 87<br>85                                     | 2.<br>1.                | 38<br>68                                                           | 10 4<br>16 4   | 120<br>122                                   |             | 50<br>20                   |                                         | 99<br>00                                     | ).9<br>).0          | <del>)</del>          |                     |                     |                                                    |
| (2)                                                   | FE:                 | 3C (              | CEM                                     | EN7                                     | ſIŢ                  | 'E )             | 1      | 4706755566666           | 099584179                                                          | $   \begin{array}{c}     1 \\     5 \\     1 \\     3 \\     4 \\     2 \\     1 \\     1 \\   \end{array} $ |                     | 100<br>333<br>700<br>460<br>303<br>200       | 2<br>1<br>1<br>1         | .98.97                                  | 88886177568                                  | 1.22211111              | 08<br>36<br>09<br>97<br>85<br>76                                   |                |                                              | 1           |                            |                                         | 000000000000000000000000000000000000000      |                     | )<br>)<br>)<br>)<br>) |                     |                     |                                                    |
| (3)                                                   | FE:                 | 5C2               | (HA)                                    | GG (                                    | )                    |                  |        | 455855                  | 409090041                                                          | 1<br>3<br>2                                                                                                  |                     | 20<br>43<br>29<br>12                         | 2<br>2<br>1<br>1<br>1    | .30977                                  | 87<br>66<br>75<br>94<br>62                   | 22.1.1.1                | 39<br>98<br>98<br>76                                               |                | 02<br>10<br>11<br>12                         | 1           | 20<br>20<br>20<br>70<br>10 | ><br>}<br>}<br>1                        | 3000000<br>3000000                           |                     |                       |                     |                     |                                                    |
|                                                       |                     |                   |                                         |                                         |                      |                  | 4      | pp.                     | · /                                                                |                                                                                                              | ň,                  | កើកី                                         | ন                        | $\sim$                                  | 0.0                                          | - <del>-</del> - '      | 'nŏ                                                                | nă ž           | 04                                           |             | ħň                         |                                         | ŏŏ                                           |                     |                       |                     |                     |                                                    |
| (4)                                                   |                     |                   | (PD                                     | 5.B2                                    | 2)                   |                  | 1      | 625<br>555<br>558<br>70 | -65982                                                             | 7<br>10(<br>3<br>2                                                                                           |                     | 100<br>100<br>32<br>21<br>9                  | 122211                   | .00.096                                 | 89<br>81<br>66<br>75<br>85                   | 12211                   | 09<br>07<br>05<br>97<br>69                                         |                | 104<br>102<br>122                            | 1           | 20<br>00<br>80<br>80<br>10 | }<br> <br> <br>                         | 9999999<br>999999                            |                     | \$<br>}<br>}          |                     |                     |                                                    |
| (5)                                                   | COI                 | PPE               | R                                       | 5B2                                     | 2)                   |                  | 1      | b2555805485             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 7<br>10(<br>32<br>10(<br>1)<br>2<br>7                                                                        |                     | 100<br>1002<br>219<br>105<br>105<br>73       | 122112111                | 000000000000000000000000000000000000000 | 89165551779                                  | 112211211               | 097<br>097<br>097<br>097<br>097<br>097<br>097<br>097<br>097<br>097 | 088208880      | 04<br>102<br>102<br>102<br>102<br>100<br>201 | 1           | 200881004207               |                                         | 000000000000000000000000000000000000000      |                     | \$<br>}<br>}<br>}     |                     |                     |                                                    |
|                                                       | COI                 | PPE<br>1N3        | R                                       |                                         | 2)                   |                  | 1      | 74556625557569255556656 | 2000476500250064000754                                             | 1332<br>700<br>32<br>100<br>1277<br>1032<br>100                                                              |                     | 2242<br>1002190563333068807<br>1012723068807 | 122111112211121112222112 | 00096082011097                          | 8867968867880785467689<br>968867880785467689 | 12211112211211212221122 | 6309870009608201109708<br>0009608201109708                         | 08820888022904 | 232001112240222110001112000011               | 1           | 1202712088104214000608     |                                         | <b>0000000000000000000000000000000000000</b> |                     |                       |                     |                     |                                                    |

| ANGLE 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29                                                                                                     |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                                                                                                                                   |                            |
|                                                                                                                                                   | INT                        |
| $\begin{array}{c} 47.9 \\ 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                          | 57-32047-43952090005000000 |
| 0 3 0 0 3 8 0 6 4 6 4 3 3 3 3 0 4 3 0 0 0 0 5 4 0 4 8 0 4 4                                                                                       |                            |
| 0 = ABSENT 1 = PRESENT * = PROBABLE DIFF. ANGLE FOR K-BETA RADIAT<br>TABLE 5.16-B DETAILED ANALYSIS OF PHASE(S) ACTUALLY PRESENT                  | CION                       |
| S.N. PHASE PRESENT DIFF PEAK D D DIFF INT CONF<br>ANGLE INT I/10 MEAS STD PLANESTD LIMIT                                                          |                            |
|                                                                                                                                                   |                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                            |                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                            |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                              |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                             |                            |
| 57.4 $43$ $43$ $2.066$ $2.058$ $402$ $60$ $99.657.4$ $43$ $43$ $2.016$ $2.016$ $511$ $80$ $100.058.8$ $21$ $21$ $1.975$ $1.972$ $312$ $80$ $99.9$ |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                             |                            |
|                                                                                                                                                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                              |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                             |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                             |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                             |                            |

T-56

| TABLE 5.17-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUMMARY           | Y TABLE OF                                            | DIFFRACTOGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M INDEXING                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| ALLOY : B2<br>SOAKING TEMPE<br>COOLING MEDIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RATURE<br>: AIR ( | : 1000°C<br>COOLED                                    | SOAKING DURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATION : 4 HOURS                                          |
| DIFF.<br>ANGLE 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57                | PH<br>9 11 1                                          | ASE(S)<br>3 15 17 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21 23 25 27 29 INT                                       |
| $\begin{array}{c} 42.1 & 0 & 0 & 0 \\ 47.0 & 0 & 0 & 0 \\ 48.8 & 0 & 0 & 0 \\ 55.9 & 0 & 0 & 0 \\ 57.7 & 0 & 0 & 0 & 0 \\ 57.8 & 0 & 0 & 0 & 0 \\ 59.7 & 0 & 0 & 0 & 0 \\ 59.7 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 0 & 0 & 0 \\ 65.1 & 0$ |                   |                                                       | $\begin{array}{c} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$     |
| 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                       | 3000330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
| 0 = ABSENT<br>TABLE 5.17-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | ESENT * =<br>ED ANALYSI:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ESENT             | DIFF PEAL<br>ANGLE INT                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D DIFF INT CONF<br>STD PLANESTD LIMIT                    |
| ( 1) FE3C(CEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ENTITE)           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ······································                   |
| ( 2) FE5C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{c} 50 & 2.104 & 2.1\\ 100 & 2.008 & 2.0\\ 50 & 1.968 & 1.3\\ 41 & 1.862 & 1.8\\ 5 & 2.430 & 2.4\\ 8 & 2.104 & 2.3\\ 100 & 2.071 & 2.6\\ 16 & 2.008 & 2.0\\ 100 & 2.067 & 2.6\\ 40 & 1.802 & 1.6\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$     |
| ( 3) FE5C2(HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GG)               | 57.7 16<br>55.9 100<br>65.1 40                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$     |
| ( 4) MN5C2(PD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5B2)              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $   \begin{array}{r}     20 \ 1.090 \ 1.0 \\     5 \ 2.430 \ 2.4 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$     |
| ( 5) CR7C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 59.0 8<br>42.1 4                                      | $\begin{array}{c} 10 \\ 8 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 \\ 1.968 $  | 972 312 80 99.9<br>680 311 20 99.7<br>860 511 70 99.7    |
| (6) FE2C(NET.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A)                | 67.2<br>47.0<br>48                                    | $\begin{array}{c} 183 \\ 5 \\ 2.430 \\ 5 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2.464 \\ 2$ | 750 412 70 100.0<br>420 101 80 99.8<br>370 011 40 99.8   |
| ( 7) FE8SI2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 55.8 98<br>57.7 16                                    | 100 $2.067$ $2.0100$ $2.071$ $2.016$ $2.008$ $2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 060 210 100 99.8<br>070 210 80 100.0<br>010 322 100 99 9 |
| ( 8) AUSTENIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{c} 98 & \overline{2.071} & 2.0\\ 100 & 2.067 & 2.0\\ 16 & 2.008 & 2.0\\ 8 & 1.968 & 1.9\\ 50 & 2.698 & 2.6\\ 100 & 1.968 & 1.9\\ 8 & 1.751 & 1.7\\ 5 & 2.364 & 2.6\\ 100 & 2.067 & 2.0\\ 100 & 2.067 & 2.0\\ 100 & 2.071 & 2.0\\ 16 & 2.008 & 2.0\\ 8 & 1.968 & 1.9\\ 8 & 1.968 & 1.9\\ 8 & 1.504 & 1.8\\ 100 & 2.071 & 2.0\\ 39 & 1.802 & 1.8\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$     |

,

7

| TABLE 5.19-A                                                                                                                                                                                                                                                                                                                                                                    | SUMMARY                                                           | TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OF                    | DIFFR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACTOGE                                                                              | RAM IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEXIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IG                                                                                                               |                             |          |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|--------------------------------|
| ALLOY : B2<br>SOAKING TEMPER<br>COOLING MEDIA                                                                                                                                                                                                                                                                                                                                   | RATURE :<br>: AIR C                                               | 1050°<br>OOLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C                     | SOAKII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NG DUE                                                                              | RATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HOUF                                                                                                             | RS                          |          |                                |
| DIFF.<br>ANGLE 1 3                                                                                                                                                                                                                                                                                                                                                              | 5 7                                                               | 9 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PHA<br>13             | SE(S)<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 :                                                                                | 19 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                               | 27                          | 29       | INT                            |
| $\begin{array}{c} 41.6 & 0 & 0 & 0 & 0 \\ 49.8 & 0 & 0 & 0 & 0 \\ 54.1 & 0 & 0 & 0 & 0 \\ 55.3 & 0 & 1 & 0 & 0 \\ 57.2 & 1 & 0 & 1 & 0 \\ 58.7 & 0 & 0 & 0 & 0 \\ 59.4 & 0 & 0 & 0 & 0 \\ 62.9 & 0 & 0 & 0 & 0 \\ 64.6 & 0 & 0 & 0 & 0 \\ 64.9 & 0 & 1 & 0 & 1 \\ 108.4 & 0 & 0 & 0 & 0 \\ 123.9 & 0 & 0 & 0 & 0 \\ 124.8 & 0 & 0 & 0 & 0 \\ 124.8 & 0 & 0 & 0 & 0 \end{array}$ | $\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00001000001000        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | $\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\$ | 000100000000000000000000000000000000000                                                                          | 00010110100000              |          | 345.000<br>125632200<br>209369 |
| 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                         | 0 3 3 0                                                           | 4 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 5                   | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 5 0                                                                               | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                                                                                                              | 0 4                         | 330      | . <b>_</b>                     |
| 0 = ABSENT                                                                                                                                                                                                                                                                                                                                                                      | 1 = PRE                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                             |          | DIATION                        |
| TABLE 5.19-B                                                                                                                                                                                                                                                                                                                                                                    | DETAILE                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | 5) ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                             | -,       |                                |
| S.N. PHASE PRI                                                                                                                                                                                                                                                                                                                                                                  | ESENT                                                             | DIFF<br>ANGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PEAK<br>INT           | I/I0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D<br>1EAS                                                                           | D D<br>STD P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IFF I<br>LANES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NT<br>STD I                                                                                                      | CONF                        | *'       |                                |
| ( 1) FE5C2                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | 55.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                   | 100 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .088 2                                                                              | 2.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70<br>45                                                                                                         | 99.8                        | -        |                                |
| (2) MN5C2(PD                                                                                                                                                                                                                                                                                                                                                                    | 5B2)                                                              | 346327129124643<br>55655784774479485<br>5565555555565556605<br>155655555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16<br>100<br>4        | $100 \ 211 \ 221 \ 1221 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231 \ 231$ | 085623447714462<br>932462277144714462<br>095188447714462<br>0951847714462<br>095195 | 2.080<br>1.80716229<br>1.0017229<br>1.0017229<br>1.001729<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.00000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.00000<br>1.0000<br>1.0000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.000000<br>1.00000000<br>1.00000000<br>1.000000000<br>1.0000000000 | 221<br>312<br>5110<br>12<br>312<br>12<br>12<br>12<br>12<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45<br>200<br>80<br>10<br>200<br>80<br>10<br>200<br>10<br>200<br>10<br>200<br>10<br>200<br>200<br>10<br>200<br>20 |                             | 7        |                                |
| ( 3) FE7C3(2)                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | 50.7<br>54.1<br>57.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 434                   | $2\frac{3}{2}$ $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 131 2                                                                               | 2.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41<br>00                                                                                                         | 99.8<br>99.8                | 3        |                                |
| ( 4) CR7C3                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | 64.9<br>54.1<br>57.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 423453426<br>153426   | $\begin{array}{c} 4 & 2 \\ 2 & 1 \\ 2 & 2 \\ 3 & 2 \\ 3 & 2 \\ 100 & 1 \\ 22 & 2 \\ 100 & 1 \\ 100 & 1 \\ 17 & 1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 022 -<br>202 -<br>511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22 1<br>70<br>50<br>70                                                                                           | LÕÕ . Õ<br>99 . 7<br>99 . 9 |          |                                |
| ( 5) FE8SI2C                                                                                                                                                                                                                                                                                                                                                                    |                                                                   | $\begin{array}{c} 59.4\\ 564.\\ 108.3\\ 558.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4\\ 559.4$ | 162<br>10022<br>16015 | $100 1 \\ 17 1 \\ 100 2 1 \\ 2 1 \\ 16 2 \\ 100 2 \\ 15 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .956<br>.195<br>.088<br>.977<br>.956<br>.812<br>.088<br>.807                        | 1.980<br>1.194<br>2.080<br>1.970<br>1.970<br>1.960<br>1.810<br>2.080<br>1.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 511 431 212 224 031 111 1 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>60                                                                                                         |                             |          |                                |
|                                                                                                                                                                                                                                                                                                                                                                                 | <del></del>                                                       | 64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1\bar{6}$            | 16 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .812                                                                                | 1.810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>.00                                                                                                        | 99.9                        | -        |                                |
| ( 6) AUSTENIT                                                                                                                                                                                                                                                                                                                                                                   | <u>上</u>                                                          | 55. <i>3</i><br>64.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                    | 150 2<br>15 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 807                                                                               | 1.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8ŏ                                                                                                               | 99:8                        | <u>š</u> |                                |

.

|       | TA                | BLJ            | E 5                                      | . 2            | 0-,                                     | A                                       | SI              | UMI                                   | MA]             | RY              | T.                                                                   | AB:              | LΕ                                                                     | 01                                                                   | E 1             | DI                           | FFI                                     | RA                                      | СТС                                                                       | DGI                                     | RA                                      | 1 ]                                     | INI                                     | DΕΣ             | (11)            | NG                                   |                                         |                   |                      |                  |                                         |                  |     |                                      |                 |
|-------|-------------------|----------------|------------------------------------------|----------------|-----------------------------------------|-----------------------------------------|-----------------|---------------------------------------|-----------------|-----------------|----------------------------------------------------------------------|------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------|------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------|-----------------|--------------------------------------|-----------------------------------------|-------------------|----------------------|------------------|-----------------------------------------|------------------|-----|--------------------------------------|-----------------|
|       | AL)<br>SOJ<br>COO | LO<br>AK<br>DL | Y :<br>ING<br>ING                        | B2<br>TI<br>MI | EMI<br>EDI                              | PEI<br>I A                              | RA'<br>:        | TU<br>A                               | RE<br>I R       | ÷               | 1(<br>201                                                            | ) 5<br>LE]       | 0°0<br>D                                                               | С                                                                    | 1               | SO                           | AK.                                     | IN                                      | GI                                                                        | 001                                     | RA1                                     | <b>r</b> I(                             | лс                                      | :               | 6               | H                                    | DUC                                     | RS                |                      |                  |                                         |                  |     |                                      |                 |
|       | DII<br>AN(        | FF<br>GLI      | Ė 1                                      |                | 3                                       |                                         | 5               | ·                                     | 7               |                 | 9                                                                    |                  | 11                                                                     | P                                                                    | HA:<br>13       | SE                           | (S<br>15                                | )                                       | 17                                                                        | ·· ··                                   | 19                                      |                                         | 21                                      | 2               | 23              |                                      | 25                                      |                   | 27                   |                  | 29                                      |                  |     | INT                                  | <b></b>         |
| * * * | 5(<br>555<br>555  |                | 9877996900000000000000000000000000000000 | 0<br>0         | 000011000000000000000000000000000000000 | 000001000000000000000000000000000000000 | 000000100000000 | 1010111000000000000000000000000000000 | 000101011000000 | 001010000010001 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\$ | 0001110100000000 | $\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$ | $\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\$ | 000001000101000 | 01000000100000               | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 1100000001110000                                                          | 000010000000000000000000000000000000000 | 000000100000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000010000000000000000000000000000000000 | 001000001000000 | 000000100001100 | 100100100001000                      | 000000000000000000000000000000000000000 | 000100000101001   | 000111110100000      | 001011110000000  | 001010000000000000000000000000000000000 | 1011011000000000 |     | 223943236<br>743236<br>1652424<br>44 | 500500555500050 |
|       |                   |                | 0                                        | 0              | 0                                       | 0                                       | 0               | 5                                     | 4               | 4               | 4                                                                    | 4                | 4                                                                      | 3                                                                    | 3               | 0                            | 0                                       | 0                                       | 5                                                                         | 0                                       | 0                                       | 0                                       | 0                                       | 0               | 3               | 4                                    | 0                                       | 4                 | 6                    | 5                | 0                                       | 5                |     |                                      |                 |
|       | 0 =<br>Tae        |                |                                          | SEN<br>. 2(    |                                         |                                         | L =<br>DF       |                                       |                 |                 | SEN<br>N A                                                           |                  |                                                                        | k =<br>791                                                           |                 |                              |                                         |                                         | LE<br>ASE                                                                 |                                         |                                         |                                         |                                         |                 |                 |                                      |                                         |                   |                      |                  | Ϋ́                                      | 1A5              | )IA | <b>T</b> 10                          | N               |
| -     | 5.N               |                | PH.                                      |                |                                         |                                         |                 |                                       |                 |                 | DIF                                                                  |                  |                                                                        |                                                                      |                 |                              |                                         |                                         | DEAS                                                                      |                                         | Ĺ                                       | )                                       |                                         | FF              |                 |                                      | -                                       | CC                | ONE                  |                  |                                         |                  |     |                                      |                 |
| -     | ( 1               | - <u></u>      | FE                                       | 502            | ) / E                                   | INC                                     | 101             | \<br>\                                |                 | ł               | ANC<br>5.0                                                           |                  | []<br>                                                                 | [N]                                                                  | [ ]<br>>        | [/]                          |                                         |                                         |                                                                           |                                         | ST                                      |                                         |                                         |                 | -               |                                      |                                         | - 100 240 00000   | 117                  | -                |                                         |                  |     |                                      |                 |
|       | ( 1               | . )            | re                                       | 502            | 5 ( E                                   | IAC                                     | aca,            | ,                                     |                 | 4               | 55<br>90                                                             |                  |                                                                        |                                                                      | 1               | 75<br>100<br>50              |                                         | 2.0                                     | 263<br>267<br>267<br>267<br>267<br>267<br>267<br>267<br>267<br>267<br>267 |                                         | 2.2                                     |                                         |                                         |                 | 1               | 50<br>00<br>10                       | )<br>)<br>)                             | 99<br>96<br>96    |                      |                  |                                         |                  |     |                                      |                 |
|       | ( 2               | 2)             | MN                                       | 5C2            | 2(F                                     | D5                                      | 5B2             | 2)                                    |                 | ]               | 120<br>55<br>55                                                      |                  |                                                                        | 100<br>5                                                             |                 |                              |                                         | 2.0                                     | )90<br>)88<br>)67                                                         |                                         |                                         | 190<br>178<br>158                       |                                         | 04<br>10<br>02  | 1               | 20<br>00<br>80                       | ) 1<br>)<br>)                           | 100<br>99<br>99   | ). (<br>). 7<br>). 7 | }<br>7<br>7      |                                         |                  |     |                                      |                 |
| (     | (3                | )              | FE                                       | 703            | 8(2                                     | 2)                                      |                 |                                       |                 |                 | 57<br>64<br>50                                                       |                  |                                                                        | 040                                                                  | }<br>-<br>}     | 3<br>4<br>19                 |                                         | 2.(                                     | )11<br>323<br>263                                                         | 12                                      | 2.0                                     | 16<br>20<br>55                          |                                         | $\frac{11}{21}$ | 1               | 80<br>80<br>70<br>31                 | )<br>)<br>[                             | 99<br>99<br>99    | ).9<br>).9           | )<br>)<br>}      |                                         |                  |     |                                      |                 |
|       |                   |                |                                          |                | -                                       | •                                       |                 |                                       |                 |                 | 57<br>64                                                             | . 6              |                                                                        | 10                                                                   |                 | $\frac{19}{22}$              |                                         | 2.0                                     |                                                                           | 2                                       | 2.0                                     | 19                                      |                                         | 21              | 1               | 31<br>00<br>11<br>22                 | )                                       | 99                |                      | }                |                                         |                  |     |                                      |                 |
| (     | 4                 | )              | CR                                       | 703            | ) ( 2                                   | ?)                                      |                 |                                       |                 |                 | 50<br>57                                                             |                  | 5                                                                      | 10000                                                                | ב י<br>         | 85<br>85                     |                                         |                                         | 263<br>111                                                                | 22                                      | 2.2<br>2.0                              | 70<br>20                                |                                         | 20<br>21        | 1               | 420<br>50<br>30                      | ;<br>;<br>;                             | 999               | ).8<br>).8<br>).7    | ,<br>}           |                                         |                  |     |                                      |                 |
| (     | 5                 | )              | COI                                      | PPE            | R                                       |                                         |                 |                                       |                 |                 | 64<br>55<br>64                                                       |                  | 1                                                                      | 4<br>00<br>19                                                        |                 | 100<br>.00                   |                                         | 2.0                                     | 323<br>888<br>308                                                         | 121                                     | . 8<br>. 0                              | 20<br>88<br>08                          |                                         | 01<br>11        | 1               | 30<br>00<br>46                       | )<br>  <u>1</u><br>  1                  | 99<br>00          | ).0                  | )<br> <br>}      |                                         |                  |     |                                      |                 |
| (     | 6                 | )              | FE                                       | BSI            | 2C                                      | ;                                       |                 |                                       |                 | 1               | 10000000000000000000000000000000000000                               | 4000             |                                                                        | 10.00<br>(00000                                                      | 1               | 88009550533490<br>100<br>100 |                                         |                                         |                                                                           | 112222                                  | 208082000088880                         | 78<br>90<br>80<br>70<br>10              |                                         | 201100011023511 | 1               | 000000000000000000000000000000000000 |                                         |                   |                      | ;<br>)<br>;<br>) |                                         |                  |     | ·                                    |                 |
| (     | 7                 | )              | AUS                                      | STE            | NI                                      | TE                                      | 1<br>2          |                                       |                 |                 | 64<br>64<br>55                                                       |                  | 3                                                                      | 19<br>80                                                             | 1               | 3<br>4<br>19<br>.00          |                                         |                                         | 374<br>323<br>308<br>188                                                  | 1<br>1<br>2                             | . 8<br>. 8<br>. 8                       | 80<br>20<br>10<br>80                    |                                         | 15<br>31<br>11  | 1               | 10<br>60<br>20<br>00                 | )<br> <br> <br>                         | 999<br>999<br>999 |                      | 5<br>}<br>}      |                                         |                  |     |                                      |                 |

,

ļ

| ALLOY<br>SOAKI<br>COOLI                                                                             | NG<br>NG | B3<br>TH<br>MH                  | 3<br>Eme<br>Ed I | PEI<br>Í A | RA'                                  | ΓUI<br>Α | RE<br>I R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ċ       | 10                                                                                                  | )5(<br>LEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D ° (<br>D  | С                                       |                                                                                         | 50,                                            | AK       | IN                 | GI                                                                                      | DUI                                           | RA                                      | F1(                      | ЛС                | :                          | 10            | )                                      | HOI                                     | UR                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                      |         |             |        |
|-----------------------------------------------------------------------------------------------------|----------|---------------------------------|------------------|------------|--------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|----------|--------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|--------------------------|-------------------|----------------------------|---------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|---------|-------------|--------|
| DIFF.<br>ANGLÉ                                                                                      | 1        |                                 | 3                |            | 5                                    |          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 9                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11          | PI                                      | HA:<br>13                                                                               | SE                                             | (S<br>15 | )                  | 17                                                                                      | -                                             | 19                                      | ,<br>                    | 21                | 1                          | 23            |                                        | 25                                      | 4                                       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 29                                   |         |             | NT     |
| $\begin{array}{r} 49 & 9 \\ 55 & 6 \\ 56 & 8 \\ 64 & 8 \\ 98 & 6 \\ 125 & 9 \\ 126 & 1 \end{array}$ | 0010000  | 0<br>1<br>0<br>0<br>0<br>0<br>0 | 00000000         | 00000000   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 00000000 | $     \begin{array}{c}       1 \\       1 \\       0 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\     $ | 0010000 | $   \begin{array}{c}     0 \\     1 \\     0 \\     0 \\     0 \\     0 \\     0 \\   \end{array} $ | $     \begin{array}{c}       0 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\     $ | 0001000     | 000000000000000000000000000000000000000 | $   \begin{array}{c}     0 \\     0 \\     1 \\     1 \\     0 \\     0   \end{array} $ | 10110000                                       | 0010000  | 00000000           | $   \begin{array}{c}     1 \\     0 \\     1 \\     1 \\     0 \\     0   \end{array} $ | 000000000000000000000000000000000000000       | 000000000000000000000000000000000000000 | 0010000                  | 1100000           | 0<br>0<br>0<br>0<br>1<br>0 | 0000000       | 0<br>1<br>1<br>0<br>0<br>0<br>0        | 000000000000000000000000000000000000000 | 0101100                                 | $     \begin{array}{c}       0 \\       1 \\       0 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\     $ | 000000000000000000000000000000000000000 | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0 | 0010000 | 5<br>1<br>1 | 2.5000 |
|                                                                                                     | 0        | 0                               | 0                | 0          | 0                                    | 0        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0           | 0                                       | 3                                                                                       | 3                                              | 0        | 0                  | 3                                                                                       | 0                                             | 0                                       | 0                        | 0                 | 0                          | 0             | 0                                      | 0                                       | 3                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                       | 0                                    | 0       |             |        |
|                                                                                                     | AB       |                                 |                  | -          | -                                    | =        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 3EN                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | * :                                     |                                                                                         |                                                | DB,      |                    |                                                                                         |                                               |                                         |                          |                   | IGI                        |               |                                        | DR                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΞTI                                     | A I                                  | RAI     | CAIC        | TON    |
| TABLE                                                                                               | 5        | . 31                            | - E              | 3          | DI                                   | ET/      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EI      |                                                                                                     | AN/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AL.         | YS:                                     | IS                                                                                      | OI                                             | <u> </u> | PH4                | ASI                                                                                     | Ξ(\$                                          | 3)                                      | A                        | CTU               | JAI                        | ЪLҮ           |                                        | PRI                                     | ESE                                     | EN'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Γ                                       |                                      |         |             |        |
| S.N.                                                                                                | PH.      | ASE                             | C E              | PRI        | ISI                                  | EN.      | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I       | DIE<br>ANC                                                                                          | FF<br>FLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>E ]    | PE/<br>INT                              | AK<br>r                                                                                 | I/:                                            | I 0      | l<br>MI            | D<br>EAS                                                                                | 5                                             | I<br>Sl                                 | D<br>FD                  | D]<br>PI          | IFI<br>Al                  | F I<br>VES    | N'<br>STI                              | r<br>D I                                | 00<br>MLL                               | DNI<br>117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T<br>T                                  |                                      |         | :           |        |
| (1)                                                                                                 | FE       | 5C2                             | 2                |            | 51 <b>1946 19</b> 97                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 49                                                                                                  | ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3           | 100                                     | 3                                                                                       | 100                                            | 3        | 2.6                | 297                                                                                     | 7 2                                           |                                         |                          | 7. (<br>) (       | )2()21                     | )             | 2(<br>7(                               | )<br>2 1                                | 99<br>00                                | ).(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                       |                                      |         |             |        |
| (2)                                                                                                 | CR       | 703                             | 3                |            |                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | - 54<br>- 56<br>- 64                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 29<br>29                                |                                                                                         | 10(12)<br>10(12)<br>10(12)<br>10(12)<br>10(12) |          |                    | 508<br>036<br>808                                                                       |                                               | 4.C                                     | 314<br>31(<br>280<br>30( |                   | $\frac{121}{131}$          | 2<br>1<br>1   | 20<br>72<br>70<br>70<br>70<br>40<br>60 |                                         | -99<br>-99<br>-99                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                       |                                      |         |             |        |
| (3)                                                                                                 | ( C]     | R,I                             | FE)              | )7(        | 33                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 98<br>49<br>58                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>  |                                         | 3                                                                                       | $\frac{21}{14}$                                |          | L.:<br>2.:<br>2.:( | 271<br>291<br>236                                                                       | $\begin{pmatrix} 1\\ 7\\ 3\\ 2 \end{pmatrix}$ |                                         | 280<br>300<br>940        | ) -<br>) 1<br>) 1 | 41<br>22                   | -<br> <br>2 1 | 60<br>4(<br>.00                        | )<br>)<br>)                             | 99<br>99<br>99                          | 9.5<br>9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7<br>9<br>9                             |                                      |         |             |        |
| (4)                                                                                                 | COI      | PPE                             | ER               |            |                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 64<br>55<br>64                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8<br>5<br>5 | 100<br>20<br>20<br>100<br>54            |                                                                                         | 10(<br>10(<br>2(                               |          | 1.8<br>2.0<br>1.8  |                                                                                         |                                               | L.8<br>2.0<br>1.8                       |                          |                   | $\frac{131}{200}$          | $\frac{1}{2}$ | .00<br>48                              | )<br> <br>                              | 909999999999999999999999999999999999999 | 9.<br>9.<br>9. [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )<br>7<br>)                             |                                      |         |             |        |
| (5)                                                                                                 | AU       | STI                             | ENI              | ΓT         | Ξ                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 98<br>55                                                                                            | 3.6<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66          | 54                                      | 54                                                                                      | 20<br>100                                      | 5        | [];<br>2]; (       | 27<br>27<br>27                                                                          | 7 1<br>3 2                                    | 2:0                                     | 278<br>280               | 3 2               | 220                        | }.            | 2(<br>.0(                              | )                                       | 99<br>99                                | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                       |                                      |         |             |        |

TABLE 5.31-A SUMMARY TABLE OF DIFFRACTOGRAM INDEXING

.

..

|   | InD                  | L LL                | U                                       | •••               | ۰.                                      | п                   |                     | 1111                | 1171                                    |                     | 11                                      | 2101                |                     |                     |                     |                                                     | ĽĽ.                 |                                         |                                                                                                | 7/31                                    | unu                                     | .u .                                                                                    | 1 141                                   | VE.                                     | 711                | VG.                        |                                         |                          |                     |                      |                     |                      |    |                                        |
|---|----------------------|---------------------|-----------------------------------------|-------------------|-----------------------------------------|---------------------|---------------------|---------------------|-----------------------------------------|---------------------|-----------------------------------------|---------------------|---------------------|---------------------|---------------------|-----------------------------------------------------|---------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------|----------------------------|-----------------------------------------|--------------------------|---------------------|----------------------|---------------------|----------------------|----|----------------------------------------|
|   | ALL<br>SOA<br>COO    | OY<br>KII<br>LII    | NG<br>NG                                | B4<br>TH<br>MI    | EME<br>SDI                              | PEF<br>A            | r A5<br>:           | FUF<br>A 1          | RE<br>IR                                | ċ                   | 90<br>001                               | )0 '<br>LEI         | S.C                 |                     |                     | 50.                                                 | AK                  | IN(                                     | G I                                                                                            | DUI                                     | RA?                                     | ΓIC                                                                                     | NС                                      | :                                       | 4                  | H                          | נטכ                                     | RS                       |                     |                      |                     |                      |    |                                        |
|   | DIF<br>ANG           | F.<br>LÉ            | 1                                       |                   | 3                                       |                     | 5                   |                     | 7                                       |                     | 9                                       | -                   | 11                  | P                   | HA:<br>13           | 3E                                                  | (S<br>15            | )                                       | 17                                                                                             |                                         | 19                                      | 2                                                                                       | 21                                      | r<br>r                                  | 23                 |                            | 25                                      | 4                        | 27                  | 4                    | 29                  |                      |    | INT                                    |
| * | 56<br>57<br>57<br>58 | 0869601594200669109 | 000000100000000000000000000000000000000 | 00001000001000001 | 000001010000000000000000000000000000000 | 0000000000011000000 | 1000000000010010010 | 1101010111100100000 | 000010010000000000000000000000000000000 | 1100011000010100100 | 000011110000000000000000000000000000000 | 0000111000001000000 | 0100000100010000100 | 0101000100000000000 | 0010000100011010000 | 000000000000000000000000000000000000000             | 1000000000101000000 | 101100000000000000000000000000000000000 | 0011000000011100000                                                                            | 000001000000000000000000000000000000000 | 000100000000000000000000000000000000000 | 0000001000010000000                                                                     | 000001000000000000000000000000000000000 | 010000000000000000000000000000000000000 | 100000000100001001 | 00101010010011000000       | 000000000000000000000000000000000000000 | 000010000010000000       | 0010110110011000000 | 01000101010000010000 | 0000011010000100000 | 01010011010111000000 |    | 5.000000000000000000000000000000000000 |
|   |                      |                     | 0                                       | 3                 | 0                                       | 0                   | 4                   | 9                   | 0                                       | 7                   | 4                                       | 4                   | 4                   | 3                   | 5                   | 0                                                   | 3                   | 3                                       | 5                                                                                              | 0                                       | 0                                       | 0                                                                                       | 0                                       | 0                                       | 4                  | 6                          | 0                                       | Q                        | 7                   | 5                    | 4                   | 8                    |    |                                        |
|   | 0 =                  |                     | AB:                                     |                   | •                                       |                     | =                   |                     |                                         | RES                 |                                         |                     |                     | * :<br>             |                     |                                                     | OB.                 |                                         |                                                                                                |                                         | [F]                                     |                                                                                         |                                         | \GI                                     |                    |                            |                                         |                          |                     |                      | \ F                 | RAD                  | AI | TION                                   |
|   | TAB<br>S.N           |                     | с<br><br>?Н/                            | . 3:              |                                         |                     | •                   |                     |                                         | JEI                 |                                         |                     |                     | <u> </u>            |                     | 01                                                  | 4.                  |                                         |                                                                                                | .(9                                     |                                         | AC                                                                                      |                                         |                                         |                    |                            |                                         |                          |                     | -                    |                     |                      |    |                                        |
|   | ю. и<br>             | •                   |                                         | 1.J.C             |                                         | . r. e              |                     | 51N 1               | _                                       | 4                   |                                         | Ë                   | 5.                  | PE/<br>IN'          |                     | I/                                                  | 10                  | M                                       | ÉAS                                                                                            | 3                                       | 51<br>                                  | ťD                                                                                      | PI                                      | FE<br>JAN                               | IES                | STI                        |                                         |                          | )NE<br>111          | [<br>-               |                     |                      |    |                                        |
|   | (1<br>(2<br>(3       | ) :                 | AUS<br>MN2<br>FE:                       | 230               | 26                                      |                     |                     | []]                 | ſE )                                    | )                   | 5624692455                              |                     |                     |                     | )<br>1<br>3<br>)    | 100<br>100<br>2820<br>100<br>100<br>100<br>100      | 00169107000         |                                         |                                                                                                |                                         |                                         | )80<br>)83<br>)83<br>)83<br>)83<br>)83<br>)83<br>)83<br>)83<br>)83<br>)83               |                                         |                                         |                    | 08855376267                |                                         |                          |                     |                      |                     |                      |    |                                        |
|   | (4                   | )]                  | FE                                      | 5C2               | 2(H                                     | IAC                 | G ;                 | )                   |                                         |                     | 5556666455566155566556155566            |                     |                     |                     | Ļ                   | 100711011101110111011101110111011101110             |                     |                                         | 06440000000000000000000000000000000000                                                         |                                         |                                         | 060<br>020<br>070<br>070<br>070<br>070<br>070<br>070<br>070<br>070<br>07                |                                         |                                         | 3                  | 7653412500715087730210     | ) 1                                     |                          | ).(                 | )                    |                     |                      |    |                                        |
|   | (5)                  |                     | MN:                                     |                   |                                         |                     | 6B2                 | 2)                  |                                         | -                   | 112<br>55<br>55<br>56<br>60             |                     |                     | 100                 | 2) :<br>74          | -                                                   |                     |                                         |                                                                                                |                                         |                                         | 800<br>760<br>130<br>788<br>788<br>785<br>775<br>775<br>775<br>775<br>775<br>775<br>775 |                                         |                                         | 1                  | 50<br>80<br>70<br>70       |                                         | 999<br>100<br>999<br>100 |                     |                      |                     |                      |    |                                        |
|   | (6<br>(7             | -                   | FE'<br>CRI                              |                   |                                         | :)                  |                     |                     |                                         | •                   | 56<br>115<br>1555<br>15556              |                     |                     | 101                 | 12027403            | $10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1 \\ 1 \\ 1 \\ 1 \\$ | 4150570577          |                                         | 259<br>214<br>303<br>130<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>216 |                                         |                                         | 255<br>307<br>131<br>307<br>131<br>307<br>036<br>370<br>764                             |                                         |                                         |                    | $31\\.00\\22\\.00\\70\\60$ |                                         | 9999999<br>100           |                     | )<br>}<br>}          |                     |                      |    |                                        |

TABLE 5.33-A SUMMARY TABLE OF DIFFRACTOGRAM INDEXING

T-73

| TABL                                                   | E 5.34-A                                                     | SUMMARY             | TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OF                                      | DIFE                                                                                                          | TRACT                                                                                                       | OGRAM                                                                                                             | I IN                                                                   | DEXING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------|--------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALLO<br>SOAK<br>COOL                                   | Y : B4<br>ING TEMPE<br>ING MEDIA                             | RATURE :<br>: AIR C | 900°C<br>COOLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | SOAK                                                                                                          | KING (                                                                                                      | DURAI                                                                                                             | 101                                                                    | N : 10 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OURS                                                                                                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DIFF<br>ANGL                                           | Ė 1 3                                                        | 57                  | 9 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PHA<br>13                               | SE(S<br>15                                                                                                    | 3)<br>5 17                                                                                                  | 19                                                                                                                | 21                                                                     | L 23 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 27                                                                                                                      | 29     | INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 48<br>5556<br>556<br>557<br>582<br>* 665<br>665<br>125 | $\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$ |                     | 0110010001100011000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000001000011000                         | 00                                                                                                            |                                                                                                             | $\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\$ |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                           |        | $5.0 \\ 3.0 \\ 3.17.0 \\ 12.0 \\ 27.0 \\ 9.0 \\ 4.0 \\ 10.0 \\ 12.0 \\ 7.0 \\ 7.0 \\ 10.0 \\ 12.0 \\ 7.0 \\ 10.0 \\ 12.0 \\ 7.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\$ |
|                                                        | 0 0 0 3                                                      |                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03<br>×=                                |                                                                                                               | 0 0 3<br>BABLE                                                                                              | 0 0                                                                                                               |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                           |        | ΤΑΦΤΩΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 =<br>TABLI                                           | ABSENT<br>E 5.34-B                                           | 1 = PRE<br>DETAILE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                               | PHAS                                                                                                        | DIFE<br>E(S)                                                                                                      |                                                                        | TUALLY P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R K-BET<br>RESENT                                                                                                         | A RAD. | LATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| S.N.                                                   | PHASE PR                                                     | ESENT               | DIFF I<br>ANGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PEAK<br>INT                             |                                                                                                               | D<br>MEA                                                                                                    | I<br>S SĨ                                                                                                         | ) [<br>D ]                                                             | DIFF INT<br>LANESTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONF<br>LIMIT                                                                                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (1)<br>(2)<br>(3)                                      | CR23C6<br>MN23C6<br>FE3C(CEM                                 | ENTITE)             | $\begin{array}{c} 48.0\\ 555.0\\ 4555.0\\ 4565.8\\ 0.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.9\\ 1280.$ | 110110210532110                         | $\begin{array}{r} 83\\100\\371\\820\\100\\17\\100\\525\\23\\23\\23\\23\\23\\23\\23\\23\\23\\23\\23\\23\\23\\$ | 2212211222112222211111<br>22212221122222211111                                                              |                                                                                                                   | 70<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>5 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.7<br>109.9<br>999.9<br>999.8<br>999.9<br>999.9<br>999.9<br>999.9<br>100.9<br>999.9<br>100.0<br>999.9<br>100.0<br>999.8 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (4)<br>(5)                                             | FE5C2(HA<br>MN5C2(PD                                         |                     | 609128066168692604686060<br>680678666667840745567846586655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0105320005823033001823002002<br>1000002 | 11970021105823503601823002002 $1002002002002$ $1002002002$                                                    | 1222221070676171521075171077670<br>732009870009820880000988099708<br>122221122211075171077670               | 943615434712435553370243374473                                                                                    |                                                                        | $\begin{array}{c} 2 1 \overline{2} \\ 2 0 0 \\ 5 0 0 0 \\ 1 0 0 0 \\ 0 0 0 \\ 1 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 0 \\ 0 0 \\ 0 0 0 \\ 0 0 \\ 0 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ | 99999999999999999999999999999999999999                                                                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (6)<br>(7)                                             | FE7C3(2)<br>FE8SI2C                                          |                     | 569260646<br>5655566555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2303300<br>100182                       | 25<br>25<br>100<br>100<br>100<br>183<br>16<br>100                                                             | 1122112221<br>98202<br>80751<br>2000<br>80751<br>2000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10 | 4356337024                                                                                                        | 972<br>320<br>255<br>307<br>307<br>307<br>307<br>307<br>307<br>307     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.7<br>100.0<br>99.7<br>99.8<br>99.8<br>99.8<br>99.8<br>99.8<br>100.0<br>99.9                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (8)<br>(9)                                             |                                                              | °E                  | 04558660<br>55655<br>55655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23<br>00<br>100<br>2<br>100<br>12       | 3<br>0<br>100<br>2<br>100<br>12                                                                               | 1.81<br>1.80<br>2.07<br>1.97<br>1.76<br>2.07<br>1.80                                                        | 4331.8<br>74412.0<br>731.7<br>3                                                                                   | 310<br>310<br>069<br>764<br>080<br>800                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 999.9<br>999.7<br>999.8<br>999.9<br>100.0<br>99.9<br>99.9                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

TABLE 5.36-A SUMMARY TABLE OF DIFFRACTOGRAM INDEXING

ALLOY : B4

.

SOAKING TEMPERATURE : 950°C SOAKING DURATION : 10 HOURS COOLING MEDIA : AIR COOLED

|                                                                                           |             | _                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                             |                                                                                                                                        |                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                            |                                      |                                                                      |                                                          |                                 |                                         |                                                                                   |                                                                         |                                                                      |                                                |                                                                              |                                               |                                                                         |                                                                                             |                                                                                   |                                                                         |                                                          |                                                                              |                                                                         |                                                |                                                                                 |
|-------------------------------------------------------------------------------------------|-------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------|
| DIFF<br>ANGL                                                                              |             | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                    |                                                                                             | 5                                                                                                                                      | _                                         | 7                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                | .1                                                                                         |                                      | IAS<br>. 3                                                           | SE                                                       | (S<br>15                        |                                         | 17                                                                                |                                                                         | 19                                                                   | 2                                              | 21                                                                           | 2                                             | :3                                                                      | -                                                                                           | 25                                                                                | 2                                                                       | 27                                                       | Ĩ                                                                            | 29                                                                      |                                                | INT                                                                             |
| 48.<br>50.<br>54.<br>55.<br>57.<br>58.<br>62.<br>63.<br>64.<br>65.<br>66.<br>125.<br>126. | 89668426178 | 000000000000000000000000000000000000000 | $     \begin{array}{c}       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\     $ | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $     \begin{array}{c}       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       1 \\       0 \\       1   \end{array} $ | 1<br>0<br>1<br>1<br>1<br>0<br>0<br>1<br>0 | 0<br>1<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0 | $     \begin{array}{c}       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       1 \\       0 \\       0 \\       1 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       0 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\     $ | $   \begin{array}{c}     0 \\     0 \\     1 \\     1 \\     0 \\     0 \\     1 \\     0 \\     0 \\     1 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     $ | $   \begin{array}{c}     0 \\     0 \\     1 \\     1 \\     0 \\     0 \\     1 \\     0 \\     0 \\     0 \\     0 \\     0 \\   \end{array} $ | $     1 \\     0 \\     0 \\     1 \\     0 \\     0 \\     1 \\     1 \\     0 \\     0 $ | 0<br>0<br>1<br>0<br>0<br>0           | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\$ | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1<br>0<br>0<br>0<br>0 | 010000000000000000000000000000000000000 | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | $\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0 | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1<br>0<br>0<br>1                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1<br>1<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 | 5.<br>3.<br>11.<br>63.<br>21.<br>7.<br>8.<br>5.<br>7.<br>13.<br>4.<br>49.<br>8. |
|                                                                                           |             | 0                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                    | 0                                                                                           | 4                                                                                                                                      | 9                                         | 7                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                | 6                                                                                          | 5                                    | 7                                                                    | 0                                                        | 3                               | 0                                       | 3                                                                                 | 0                                                                       | 3                                                                    | 0                                              | 3                                                                            | 3                                             | 0                                                                       | 0                                                                                           | 0                                                                                 | 3                                                                       | 8                                                        | 5                                                                            | 6                                                                       | 8                                              |                                                                                 |
| 0 =                                                                                       | A           | BS                                      | EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ΥT                                                                   | -                                                                                           | 1 :                                                                                                                                    |                                           |                                                | RES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                            |                                      |                                                                      |                                                          |                                 |                                         |                                                                                   |                                                                         |                                                                      |                                                |                                                                              |                                               |                                                                         |                                                                                             |                                                                                   |                                                                         |                                                          |                                                                              | <i>4</i> I                                                              | RAE                                            | TATIO                                                                           |
| TABL                                                                                      |             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                             |                                                                                                                                        | ·,                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                            | IS1                                  |                                                                      | 01                                                       | F 1                             |                                         |                                                                                   | 2 { !                                                                   |                                                                      |                                                |                                                                              |                                               |                                                                         |                                                                                             |                                                                                   |                                                                         |                                                          |                                                                              |                                                                         |                                                |                                                                                 |
| S.N.                                                                                      | Ę           | ΉA                                      | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                    | PRI                                                                                         | ESI                                                                                                                                    | EN.                                       | Γ                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )IF<br>ANG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                            | PEA<br>INI                           |                                                                      | I/:                                                      | I 0                             |                                         | D<br>EAS                                                                          | 3                                                                       | ו<br>SD                                                              | )<br>FD                                        |                                                                              | LAN                                           |                                                                         |                                                                                             |                                                                                   |                                                                         | ONE<br>117                                               |                                                                              |                                                                         |                                                |                                                                                 |
| (1)                                                                                       | P           | vD S                                    | STE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ENI                                                                  | ΙT                                                                                          | E                                                                                                                                      | ·                                         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0                                                                                                                                              |                                                                                            | 100                                  |                                                                      |                                                          |                                 |                                         |                                                                                   |                                                                         | 2.0                                                                  |                                                |                                                                              |                                               |                                                                         | .00<br>80                                                                                   |                                                                                   | 99<br>100                                                               | 9.9                                                      |                                                                              |                                                                         |                                                |                                                                                 |
| (2)                                                                                       | Μ           | in 2                                    | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                                                                   |                                                                                             |                                                                                                                                        |                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8<br>3.1<br>5.1                                                                                                                                | Ľ                                                                                          | 12<br>7<br>20                        | 7                                                                    | 1:                                                       | 2 :<br>0 :                      | 1.(<br>2.:                              | 084<br>378                                                                        | 1                                                                       | 1.(<br>2.3<br>1.7                                                    | 083<br>380                                     | 3 3<br>) 4                                                                   | 311<br>420<br>531                             | )                                                                       | 80<br>50<br>50                                                                              | )<br>)                                                                            | 99<br>99                                                                | 9.9<br>9.9                                               | €<br>€                                                                       |                                                                         |                                                |                                                                                 |
| (3)                                                                                       | E           | ΎE3                                     | sc (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (C)                                                                  | EM                                                                                          | EN                                                                                                                                     | ΓΙ                                        | ΓĒ                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50<br>54<br>57<br>57<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 - 8<br>3 - 1<br>7 - 6<br>8 - 4<br>7 - 6<br>8 - 4<br>2 - 4<br>3 - 1                                                                             | L<br>3<br>7<br>5<br>3<br>4                                                                 | 77<br>4<br>17<br>33<br>11<br>12<br>7 | 7<br>1<br>7<br>3<br>2                                                | 5:<br>10:<br>3:<br>3:                                    | 3<br>4<br>2<br>3<br>3           | $1.1 \\ 1.1$                            | 378<br>259<br>102<br>011<br>974<br>87(                                            |                                                                         | 1.0<br>2.3<br>2.3<br>2.0<br>1.8<br>1.8                               | 38(<br>26(<br>10(<br>31(<br>97(<br>37(         |                                                                              | 555<br>112<br>200<br>121<br>103<br>211<br>113 | 2<br>)<br>                                                              | 73<br>65<br>60<br>55<br>30<br>40                                                            |                                                                                   | 99<br>10(<br>99<br>10(                                                  | 9.9<br>9.0                                               | €<br>•<br>•<br>•<br>•                                                        |                                                                         |                                                |                                                                                 |
| (4)                                                                                       | E           | FE5                                     | 5C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 ( )                                                                | HA                                                                                          | GG                                                                                                                                     | }                                         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48<br>50<br>58<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8<br>5.3                                                                                                                                       | 1<br>3<br>3<br>1                                                                           | 7<br>4<br>11                         | 7<br>1<br>1<br>)                                                     | 1<br>1<br>1<br>1<br>2                                    | 9<br>0<br>6<br>4<br>6           | 1.<br>2.<br>1.<br>1.                    | 762<br>378<br>259<br>974<br>803                                                   | 2<br>3<br>7<br>1                                                        | 1.<br>2.<br>1.<br>1.                                                 | 760<br>390<br>260<br>980                       |                                                                              | 212<br>202<br>020<br>511<br>312               |                                                                         | 21<br>50<br>21                                                                              | 0 :<br>0 :<br>0 :                                                                 | 99<br>99<br>10(<br>99<br>10(<br>99                                      | 9.0<br>9.0<br>9.0                                        | 3<br>)<br>3<br>)                                                             |                                                                         |                                                |                                                                                 |
| (~ 5)                                                                                     |             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                             |                                                                                                                                        | 2)                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55<br>57<br>58<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0<br>7.0<br>3.1<br>4.0                                                                                                                         | 5<br>6<br>8<br>6                                                                           | 10(<br>33<br>11                      | ) (<br>3<br>L                                                        | 10<br>3<br>1<br>1                                        | 0<br>3<br>1<br>1                | 2.<br>2.<br>1.<br>1.                    | 07<br>01:<br>97<br>81:                                                            | 7 :<br>4 :<br>3 :                                                       | 2.0<br>2.0<br>1.9<br>1.0                                             | 078<br>010<br>972<br>820                       |                                                                              | 51(<br>51)<br>312<br>42)                      | ) ]<br>L<br>2<br>L                                                      | 101<br>81<br>80                                                                             | 0 1<br>0<br>0                                                                     | 100<br>99<br>99<br>99                                                   | 9.9<br>9.9                                               | )<br>9<br>9<br>7                                                             |                                                                         |                                                |                                                                                 |
| (6)                                                                                       |             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | 2)                                                                                          |                                                                                                                                        |                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50<br>57<br>64<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ).;<br>7.;<br>4.;<br>4.;                                                                                                                         | B<br>6<br>9<br>1                                                                           | 4<br>32<br>13<br>22<br>20            | 4<br>3<br>1<br>3<br>0                                                | 10<br>10<br>3<br>7<br>6                                  | 4<br>0<br>3<br>1<br>1           | 2.<br>2.<br>1.<br>1.                    | 259<br>01:<br>81:<br>80:<br>80:                                                   | )<br>1<br>3<br>5<br>1                                                   | 2.:<br>2.:<br>1.:<br>1.:                                             | 253<br>019<br>807<br>807<br>807                | 5 1<br>9 1<br>7 1<br>7 1                                                     | 120<br>120<br>022<br>022<br>022               | )<br>L 1<br>2<br>2<br>2                                                 | 3:<br>10(<br>2:<br>2:<br>2:<br>2:                                                           | 1<br>0<br>2<br>2<br>2                                                             | 99<br>99<br>99<br>99                                                    | 9.9<br>9.1<br>9.1<br>9.1                                 | 9<br>8<br>7<br>9<br>8                                                        |                                                                         |                                                |                                                                                 |
| (7)                                                                                       |             | CRN                                     | 4N∶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                    |                                                                                             |                                                                                                                                        |                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5!<br>5!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.<br>8.                                                                                                                                         | 6<br>8                                                                                     | 10(<br>12                            | )<br>L                                                               | 10<br>1                                                  | 0<br>1                          | 2.<br>1.                                | 07<br>97                                                                          | 7<br>4                                                                  | 2.<br>1.                                                             | 069<br>9 <b>7</b> 0                            | 9 ;<br>0 ;                                                                   | 330<br>420                                    |                                                                         | 10<br>10                                                                                    | 0<br>0                                                                            | 9<br>9                                                                  | 9.<br>9.                                                 | 8<br>9                                                                       |                                                                         |                                                |                                                                                 |

|       | TABLE                   | 5                                       | . 3'                                    | 7-1                                     | A                       | st                       | JM                       | MAI                                     | ₹Y                       | TA                                      | B]                        | LE                     | 01                                      | F 1                     | DI                                      | FF.                                     | RA                                      | CT                                                                                             | OGI                                     | RAN                                     | 1                                       | INI                                     | DEC                                     | XII                                     | ١G                                      |                                         |                                         |                                        |                          |                         |                          |    |                         |                                         |
|-------|-------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------|--------------------------|--------------------------|-----------------------------------------|--------------------------|-----------------------------------------|---------------------------|------------------------|-----------------------------------------|-------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|--------------------------|-------------------------|--------------------------|----|-------------------------|-----------------------------------------|
|       | ALLOY<br>SOAKI<br>COOLI | NG<br>NG                                | B4<br>TH<br>MH                          | I<br>Eme<br>Ed I                        | PEI<br>[ A              | RA'                      | ruı<br>A                 | RE<br>IR                                | :<br>CC                  |                                         | )0(<br>E]                 | )°(<br>)               | 3                                       |                         |                                         | <b>S</b> 0.                             | AK                                      | IN                                                                                             | G 1                                     | DUI                                     | RA'                                     | TI(                                     | ИС                                      | 1                                       | 4                                       | H(                                      | נטכ                                     | RS                                     |                          |                         |                          |    |                         |                                         |
|       | DIFF<br>ANGLÉ           | 1                                       |                                         | 3                                       |                         | 5                        |                          | 7                                       |                          | 9                                       |                           | 11                     | P                                       | HAS<br>1 3              | SE                                      | (S<br>15                                | )                                       | 17                                                                                             |                                         | 19                                      |                                         | 21                                      | 1                                       | 23                                      | 2                                       | 25                                      | 1                                       | 27                                     |                          | 29                      |                          |    | IN'                     | r                                       |
| *<br> |                         | 000000000000000000000000000000000000000 | 001010000000010000000000000000000000000 | 000001000000000000000000000000000000000 | 00000000010011000000000 | 000001000010010000010001 | 000001101000000100000000 | 101010100000100000000000000000000000000 | 000001000000010100100000 | 001001010000100000000000000000000000000 | 0001110010001010010000000 | 0000000000010000100000 | 000000000001000000000000000000000000000 | 00000000100001010011100 | 100000000000000000000000000000000000000 | 000000000001001000000000000000000000000 | 000000000000000000000000000000000000000 | 110000000001001110001100                                                                       | 000001000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 100110000000000000000000000000000000000 | 000001000000000000000000000000000000000 | 000000000100000000000000000000000000000 | 0110000000010011000000000               | 000000000000000000000000000000000000000 | 001000000000000000000000000000000000000 | 001111101010111001000000               | 000010000110100000010000 | 00011000100000100000100 | 000000100000011100100000 |    | 3369999333<br>339999333 | 000000000000000000000000000000000000000 |
|       |                         | 0                                       | 3                                       | 0                                       | 3                       | 5                        | 4                        | 5                                       | 4                        | 4                                       | 7                         | 0                      | 0                                       | 6                       | 0                                       | 0                                       | 0                                       | 9                                                                                              | 0                                       | 0                                       | 0                                       | 4                                       | 0                                       | 0                                       | 5                                       | 0                                       | 01                                      |                                        | 5                        | 5                       | 5                        |    |                         | <u> </u>                                |
|       | 0 =<br>TABLE            | AB:                                     | 5E)<br>.3                               |                                         | נ<br>ם                  | _                        |                          |                                         | SES<br>LEI               |                                         |                           |                        | k :<br>KS:                              |                         | 2R9<br>01                               | OB,<br>F                                |                                         |                                                                                                | D:<br>E(S                               | IFE<br>S N                              |                                         | AA<br>JTC                               | IGI<br>1AT                              |                                         | FC<br>7 t                               |                                         |                                         | -BE<br>rni                             |                          | \ F                     | ≀AD                      | AI | TIC                     | N                                       |
|       |                         | PH                                      |                                         |                                         |                         |                          |                          |                                         |                          |                                         |                           | · · · · ·              | PE/                                     | ١K                      |                                         |                                         |                                         | D                                                                                              |                                         | s,<br>sī                                | )                                       |                                         |                                         |                                         |                                         |                                         | CC                                      | DNE<br>117                             |                          |                         |                          |    |                         |                                         |
|       | ·<br>( 1)               | AUS                                     | STH                                     | ENI                                     | TT                      | <br>C                    |                          |                                         |                          |                                         | <br>                      |                        |                                         |                         |                                         | 10<br>0 :                               | 2.(<br>2.(                              |                                                                                                |                                         | 2.0                                     |                                         |                                         | 11<br>11                                |                                         |                                         |                                         |                                         | 411<br>).(<br>9.8                      |                          |                         |                          |    |                         |                                         |
|       | (2)                     | FE                                      | 3C (                                    | (CE                                     | EMI                     | ENT                      | <u>r</u> ı:              | ΓE                                      | )                        | 565555                                  |                           |                        | -40                                     |                         | 9<br>4(<br>10(<br>2)                    | 40003                                   | 2.0                                     | 07:<br>30(<br>05:<br>00:<br>97(                                                                |                                         | Լ.Ե                                     | 300                                     | ) 2                                     | 20(                                     | )                                       | -80                                     |                                         | 99<br>99<br>99<br>99                    | 9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>0.8 |                          |                         |                          |    |                         |                                         |
|       | (3)                     | FE                                      | 5C2                                     | 2(F                                     | łA(                     | GΩ                       | )                        |                                         |                          | 66<br>56<br>65                          |                           | 2<br>3<br>1            | 2;<br>4(                                | $\frac{2}{3}$           | 23<br>5<br>100                          | 28                                      | 1<br>2.(<br>1.{                         | 76:<br>25:<br>30(                                                                              |                                         | 1.7<br>2.0<br>1.8                       | 60<br>60<br>80<br>80                    |                                         | 510 $312$                               | 1                                       | 16<br>00<br>70                          | )<br>)<br>) 1                           | 99<br>99<br>00                          | ).8<br>).8<br>).0                      | 3                        |                         |                          |    |                         |                                         |
|       | (4)                     | MN                                      | 5C2                                     | 2(I                                     | PD8                     | 5B2                      | 2)                       |                                         |                          | 6655556                                 |                           |                        | 100<br>94<br>2                          |                         | 1<br>101<br>9<br>2                      | 2904379                                 |                                         | 30007650620775727367742                                                                        |                                         |                                         | )6(())7(())7(())7(())7(())7(())7(())7(( |                                         |                                         |                                         | 10<br>10<br>00<br>80<br>80<br>70        | ) 1<br>) 1<br>) 1                       | 98<br>00<br>99<br>99<br>99<br>99        |                                        | 3)))<br>3)<br>3)<br>7    |                         |                          |    |                         |                                         |
|       | (5)                     | CR                                      | 7C:                                     | 3                                       |                         |                          | T                        |                                         |                          |                                         |                           |                        |                                         |                         |                                         | 7300363                                 |                                         | 779<br>73<br>76<br>779<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74 |                                         |                                         | 79780                                   | Ъ.                                      |                                         |                                         | 700510000000000000000000000000000000000 | ) 1<br>) 1<br>) 1<br>) )                |                                         |                                        |                          |                         |                          |    |                         |                                         |
|       | (6)                     | CO                                      | PPI                                     | ER                                      |                         |                          |                          |                                         | -<br>-                   | 100<br>55<br>98                         | 5.(<br>5.(                | )<br>5 1               | 100                                     | 7<br>) :<br>}           | 2<br>10<br>10                           | 0<br>9                                  | 1.2.0                                   | 279<br>21<br>279<br>279<br>279                                                                 | 3                                       |                                         | 211                                     |                                         | 11                                      | -<br>                                   | 60<br>.00<br>20                         | )<br>)<br>)                             | 98<br>98<br>98                          |                                        | 37                       |                         |                          |    |                         |                                         |

| TABLE 5.38-A                                                                                                      | SUMMARY TABLE OF DIFFRACTOGRAM INDEXING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALLOY : B4<br>SOAKING TEMPE<br>COOLING MEDIA                                                                      | RATURE : 1000°C SOAKING DURATION : 10 HOURS<br>: AIR COOLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DIFF.<br>ANGLE 1 3                                                                                                | PHASE(S)         INT           5         7         9         11         13         15         17         19         21         23         25         27         29         INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} 36.0\\ 43.0\\ 43.0\\ 554.3\\ 49.2\\ 60.0\\ 555.4\\ 99.4\\ 000000000000000000000000000000000000$ | $\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0003                                                                                                              | 0 4 3 3 4 7 0 4 7 0 4 0 6 0 0 4 0 0 0 5 0 3 8 4 5 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                   | 1 = PRESENT * = PROBABLE DIFF. ANGLE FOR K-BETA RADIATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TABLE 5.38-B                                                                                                      | DETAILED ANALYSIS OF PHASE(S) ACTUALLY PRESENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                   | ANGLE INT I/IO MEAS STD PLANESTD LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ( 1) FE5C2                                                                                                        | 55.4 96 100 2.084 2.080 021 70 99.9<br>57.4 5 5 2.018 2.010 312 40 99.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ( 2) FE5C2(HA                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ( 3) MN5C2(FD                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ( 4) CR7C3(2)                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ( 5) COPPER                                                                                                       | 55.3 100 100 2.087 2.088 111 100 100.0 64.6 24 24 1.813 1.808 200 46 99.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ( 6) FE8SI2C                                                                                                      | $ \begin{array}{c} 55.4 & 96 & 100 & 2.084 & 2.080 & 021 & 70 & 99.9 \\ 57.4 & 5 & 5 & 2.018 & 2.010 & 312 & 40 & 99.8 \\ 64.6 & 24 & 25 & 1.813 & 1.814 & 312 & 25 & 100.0 \\ 43.2 & 5 & 75 & 2.631 & 2.620 & 311 & 10 & 99.8 \\ 56.9 & 7 & 100 & 2.035 & 2.030 & 312 & 100 & 99.9 \\ 65.3 & 7 & 100 & 1.795 & 1.800 & 312 & 70 & 99.8 \\ 56.9 & 7 & 7 & 2.035 & 2.035 & 312 & 70 & 100.0 \\ 57.4 & 5 & 5 & 2.018 & 2.016 & 511 & 80 & 99.9 \\ 64.6 & 24 & 25 & 1.813 & 1.820 & 421 & 70 & 99.7 \\ 66.2 & 11 & 11 & 1.774 & 1.779 & 512 & 70 & 99.8 \\ 68.1 & 5 & 5 & 1.731 & 1.732 & 022 & 80 & 100.0 \\ 72.7 & 7 & 7 & 1.635 & 1.636 & 999 & 50 & 99.9 \\ 64.6 & 24 & 100 & 1.813 & 1.820 & 301 & 30 & 99.7 \\ 66.6 & 5 & 23 & 1.789 & 1.790 & 022 & 50 & 100.0 \\ 72.7 & 7 & 7 & 1.635 & 1.636 & 999 & 50 & 99.9 \\ 57.4 & 5 & 23 & 2.018 & 2.020 & 121 & 100 & 99.9 \\ 64.6 & 24 & 100 & 1.813 & 1.820 & 301 & 30 & 99.7 \\ 65.6 & 5 & 23 & 1.789 & 1.790 & 022 & 50 & 100.0 \\ 68.1 & 5 & 23 & 1.789 & 1.790 & 022 & 50 & 100.0 \\ 68.1 & 5 & 23 & 1.789 & 1.279 & 022 & 100 & 99.8 \\ 98.5 & 9 & 9 & 1.279 & 1.278 & 200 & 46 & 99.8 \\ 98.5 & 100 & 100 & 2.087 & 2.088 & 131 & 80 & 99.8 \\ 55.4 & 96 & 96 & 20.084 & 2.080 & 131 & 80 & 99.9 \\ 57.4 & 5 & 5 & 2.018 & 2.010 & 322 & 100 & 99.8 \\ 55.4 & 96 & 96 & 2.084 & 2.080 & 131 & 80 & 99.9 \\ 55.3 & 100 & 100 & 2.087 & 1.680 & 303 & 20 & 99.9 \\ 55.4 & 96 & 96 & 2.084 & 2.080 & 131 & 80 & 99.9 \\ 55.4 & 96 & 96 & 2.084 & 2.080 & 131 & 80 & 99.9 \\ 65.3 & 7 & 7 & 1.795 & 1.794 & 015 & 20 & 100.0 \\ 66.2 & 11 & 11 & 1.774 & 1.780 & 312 & 20 & 99.7 \\ 70.5 & 3 & 3 & 1.678 & 1.680 & 303 & 20 & 99.9 \\ 65.3 & 2 & 7 & 1.795 & 1.800 & 200 & 80 & 99.8 \\ \end{array}$ |
| ( 7) AUSTENIT                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| TABLE 5.39-A                                                                                   | SUMMARY TABLE OF DIFFRACTOGRAM INDEXING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALLOY : B4<br>SOAKING TEMPE<br>COOLING MEDIA                                                   | RATURE : 1050°C SOAKING DURATION : 4 HOURS<br>: AIR COOLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DIFF.<br>ANGLE 1 3                                                                             | PHASE(S)<br>5 7 9 11 13 15 17 19 21 23 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 29 INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} 48.9\\ 9.5\\ 0.0\\ 53.5\\ 5.7\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$ | $\begin{array}{c} 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0 & 1 & 1 \\ 22.5 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$ |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 0 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 = ABSENT<br>TABLE 5.39-B                                                                     | 1 = PRESENT * = PROBABLE DIFF. ANGLE FOR K-<br>DETAILED ANALYSIS OF PHASE(S) ACTUALLY PRESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BETA RADIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| S.N. PHASE PR                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( 1) FE5C2(HA                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ( 2) MN5C2(PD                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī,ģ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( 3) FE7C3(2)                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0<br>.0<br>.7<br>.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ( 4) CR7C3                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0<br>.8<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ( 5) COPPER                                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ( 6) FE8SI2C                                                                                   | $ \begin{array}{c} 101.6 & 6 & 22 & 1.250 & 1.250 & 712 & 20 & 100 \\ 55.5 & 100 & 100 & 2.080 & 2.078 & 510 & 100 & 99 \\ 57.7 & 8 & 8 & 2.007 & 2.016 & 511 & 80 & 99 \\ 58.3 & 5 & 5 & 1.989 & 1.990 & 600 & 80 & 100 \\ 64.0 & 7 & 7 & 1.829 & 1.829 & 402 & 70 & 100 \\ 64.4 & 19 & 19 & 1.818 & 1.820 & 421 & 70 & 99 \\ 66.0 & 6 & 6 & 1.779 & 1.779 & 512 & 70 & 100 \\ 58.3 & 5 & 13 & 1.989 & 1.989 & 300 & 13 & 100 \\ 64.4 & 19 & 51 & 1.818 & 1.820 & 301 & 11 & 99 \\ 64.8 & 37 & 100 & 1.887 & 1.895 & 112 & 5 & 99 \\ 64.8 & 37 & 100 & 1.811 & 1.820 & 301 & 11 & 99 \\ 64.8 & 37 & 100 & 1.811 & 1.810 & 431 & 70 & 100 \\ 48.9 & 3 & 11 & 2.341 & 2.350 & 321 & 20 & 99 \\ 64.7 & 33 & 100 & 1.811 & 1.810 & 431 & 70 & 100 \\ 66.0 & 6 & 19 & 1.779 & 1.780 & 521 & 50 & 99 \\ 98.4 & 16 & 50 & 1.280 & 1.2808 & 111 & 100 & 99 \\ 64.8 & 37 & 37 & 1.808 & 1.808 & 200 & 46 & 100 \\ 65.1 & 28 & 29 & 1.802 & 1.808 & 200 & 46 & 100 \\ 65.1 & 28 & 29 & 1.802 & 1.808 & 200 & 46 & 99 \\ 98.5 & 15 & 15 & 1.279 & 1.278 & 220 & 20 & 99 \\ 64.8 & 37 & 37 & 1.808 & 1.808 & 200 & 46 & 99 \\ 98.5 & 15 & 15 & 1.279 & 1.278 & 220 & 20 & 99 \\ 64.8 & 37 & 37 & 1.808 & 1.808 & 200 & 46 & 99 \\ 98.5 & 15 & 15 & 1.279 & 1.278 & 220 & 20 & 99 \\ 64.8 & 37 & 37 & 1.808 & 1.808 & 200 & 46 & 99 \\ 98.5 & 15 & 15 & 1.279 & 1.278 & 220 & 20 & 99 \\ 64.8 & 37 & 37 & 1.800 & 1.808 & 200 & 46 & 99 \\ 98.5 & 15 & 15 & 1.279 & 1.278 & 220 & 20 & 99 \\ 55.5 & 100 & 100 & 2.080 & 2.070 & 210 & 30 & 99 \\ 55.5 & 100 & 100 & 2.080 & 2.070 & 210 & 30 & 99 \\ 64.4 & 19 & 19 & 1.818 & 1.820 & 015 & 60 & 99 \\ 64.7 & 33 & 33 & 1.811 & 1.810 & 031 & 20 & 100 \\ 66.7 & 6 & 6 & 1.779 & 1.780 & 312 & 20 & 99 \\ 55.5 & 100 & 100 & 2.080 & 2.080 & 111 & 100 & 100 \\ 65.1 & 11 & 11 & 1.802 & 1.800 & 200 & 80 & 100 \\ \end{array}$ | - 9<br>- 9<br>- 7<br>- 9<br>- 7<br>- 7<br>- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ( 7) AUSTENIT                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9<br>.0<br>.9<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**T**-79

| TABLE 5.40-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                      |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ALLOY : B4<br>SOAKING TEMPERA<br>COOLING MEDIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATURE : 1050°C SOAKING DURATION : 6 HOURS<br>: AIR COOLED                                                                                                        |                                                                                                                                                                                                                                                                                                                      |                    |
| DIFF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PHASE(S)<br>5 7 9 11 13 15 17 19 21 23 25 27                                                                                                                     | 29 I                                                                                                                                                                                                                                                                                                                 | NT                 |
| $\begin{array}{c} 48.7 & 0 & 0 & 0 & 0 & 0 \\ 49.9 & 0 & 0 & 0 & 0 & 0 \\ 51.0 & 0 & 0 & 0 & 0 & 0 \\ 55.5 & 0 & 1 & 0 & 0 & 0 & 0 \\ 56.6 & 0 & 0 & 0 & 1 & 0 & 0 \\ 57.4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 57.8 & 0 & 0 & 0 & 0 & 0 & 0 \\ 63.8 & 0 & 0 & 0 & 0 & 0 & 0 \\ 64.2 & 0 & 1 & 0 & 1 & 0 & 0 \\ 63.8 & 0 & 0 & 0 & 0 & 0 & 0 \\ 64.2 & 0 & 1 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 68.1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 125.6 & 0 & 0 & 0 & 0 & 0 \\ 125.6 & 0 & 0 & 0 & 0 & 0 \\ 126. & 0 & 0 & 0 & 0 & 0 \\ \end{array}$ | $\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$                                                                                                 | $\begin{array}{c} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$ | 112922232392113222 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 3 4 4 4 5 4 3 6 3 0 0 3 0 0 0 0 3 0 3 0 3 7                                                                                                                    | 335                                                                                                                                                                                                                                                                                                                  |                    |
| 0 = ABSENT 1<br>TABLE 5.40-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRESENT * = PROBABLE DIFF. ANGLE FOR K-BE<br>DETAILED ANALYSIS OF PHASE(S) ACTUALLY PRESEN                                                                       | ETA RADIAT:<br>JT                                                                                                                                                                                                                                                                                                    | ION                |
| S.N. PHASE PRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                  | <br>                                                                                                                                                                                                                                                                                                                 |                    |
| ( 1) FE5C2(HAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (G) 51.0 4 5 2.249 2.260 020 50 99.7 600 000 000 000 000 000 000 000 000 00                                                                                      | 7                                                                                                                                                                                                                                                                                                                    |                    |
| ( 2) MN5C2(PD5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (552) $55.5$ $100$ $100$ $2.080$ $2.078$ $510$ $100$ $99.8$ $57.1$ $4$ $4$ $2.028$ $2.035$ $312$ $70$ $99.8$ $57.4$ $5$ $5$ $2.017$ $2.016$ $511$ $80$ $100$ $0$ | 3                                                                                                                                                                                                                                                                                                                    |                    |
| ( 3) FE7C3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  | ><br>                                                                                                                                                                                                                                                                                                                |                    |
| ( 4) CR7C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                             | )<br>7<br>)<br>)<br>)<br>)<br>7                                                                                                                                                                                                                                                                                      |                    |
| (5) COPPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.4 23 100 1.280 1.280 60 100.0<br>55.5 100 100 2.080 2.088 111 100 99.8<br>98.4 23 23 1.280 1.278 220 20 99.8                                                  | )<br>3<br>3                                                                                                                                                                                                                                                                                                          |                    |
| ( 6) FE8SI2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125.6 $4$ $4$ $1.089$ $1.090$ $311$ $17$ $99.855.5 100 100 2.080 2.080 131 80 100.056.6 5 5 2.043 2.050 121 80 99.8$                                             | 3<br>)<br>3                                                                                                                                                                                                                                                                                                          |                    |
| (7) AUSTENITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                             | 3<br>7<br>9<br>7<br>7                                                                                                                                                                                                                                                                                                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65.1 40 40 1.800 1.800 200 80 100.0                                                                                                                              | )<br>                                                                                                                                                                                                                                                                                                                |                    |

.

| TABLE 5.41-A                                                                                                                                                                                                              | SUMMA                                     | RY TABLE                                                                                              | OF DIFF                                                                                                                                    | RACTOGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M INDEXIN                                              | ٩G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|
| ALLOY : B4<br>SOAKING TEMPE<br>QUENCHING MED                                                                                                                                                                              | RATURE<br>IA : AII                        | :1050<br>R COOLED                                                                                     | SOAKI                                                                                                                                      | NG DURAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ION :10                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                                                                                  |
| DIFF.<br>ANGLE 1 3                                                                                                                                                                                                        | 57                                        | 9 11                                                                                                  | PHASE(S<br>13 15                                                                                                                           | )<br>17 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 23                                                  | 25 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29                                                              | INT                                                                              |
| $\begin{array}{c} 49.9 & 0 & 0 & 0 & 0 \\ 55.6 & 0 & 1 & 0 & 0 \\ 56.8 & 1 & 0 & 0 & 0 \\ 64.8 & 0 & 0 & 0 & 0 \\ 65.1 & 0 & 1 & 0 & 1 \\ 98.6 & 0 & 0 & 0 & 0 \\ 125.9 & 0 & 0 & 0 & 0 \\ 126.1 & 0 & 0 & 0 \end{array}$ | 000000000<br>0000000000000000000000000000 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                  | $\begin{array}{c} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$ | $\begin{array}{c} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0<br>0 0 0<br>1 1<br>0 0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 | $\begin{array}{r} 2.0\\ 53.5\\ 2.0\\ 14.0\\ 41.0\\ 3.0\\ 11.0\\ 12.0\end{array}$ |
| 0000                                                                                                                                                                                                                      | 003                                       | 0000                                                                                                  | 0330                                                                                                                                       | 0300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000                                                   | 0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                           |                                                                                  |
| • • • • • • • • • • •                                                                                                                                                                                                     |                                           |                                                                                                       |                                                                                                                                            | ABLE DIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | FOR K-BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 | ATION                                                                            |
| TABLE 5.41-B                                                                                                                                                                                                              |                                           |                                                                                                       |                                                                                                                                            | PHASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                               |                                                                                  |
| S.N. PHASE PR                                                                                                                                                                                                             | SENT                                      | DIFF PE<br>ANGLE I                                                                                    | EAK<br>NT I/IO                                                                                                                             | D<br>MEAS ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D DIFF I<br>FD PLANES                                  | INT CONE<br>STD LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,<br>,                                                          |                                                                                  |
| ( 1) FE5C2                                                                                                                                                                                                                |                                           | 49.9                                                                                                  | 3 3 3                                                                                                                                      | 2.297 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 287 020<br>080 021<br>314 312                          | 20 99.8<br>70 100 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>}                                                           |                                                                                  |
| ( 2) CR7C3                                                                                                                                                                                                                |                                           | 968886988898668666<br>954668669888986686666<br>954668986988898668666<br>956899649489568666<br>9569956 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2.297 $2.12.079$ $2.12.0798$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.0306$ $2.12.1006$ $2.12.1006$ $2.12.1006$ $2.12.1006$ $2.12.1006$ $2.12.1006$ $2.12.1006$ $2.12.1006$ $2.12.1006$ $2.12.1006$ $2.12.1006$ $2.12.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.1006$ $2.10$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | 20       99, 80         70       100, 80         25       99, 80         100       99, 80         100       99, 80         100       99, 80         100       99, 80         100       99, 90         100       99, 90         100       99, 90         100       99, 90         100       99, 90         100       99, 17         100       99, 17         100       99, 17         100       99, 17         100       99, 17         100       99, 17         100       99, 17         100       99, 17         100       99, 17         100       100 |                                                                 |                                                                                  |
| (3) (CR,FE)7                                                                                                                                                                                                              | C3                                        | 98.6<br>49.9<br>56.8                                                                                  | $   \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                     | 1.277 1.2<br>2.297 2.2<br>2.036 2.0<br>1.808 1.4<br>2.297 2.3<br>1.808 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | 60 99.7<br>40 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | }                                                               |                                                                                  |
| (4) CR3C2                                                                                                                                                                                                                 |                                           | 64.8<br>64.8                                                                                          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | $   \begin{array}{c}     1.808 \\     2.297 \\     1.808 \\     1.6   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 810 130                                                | 60 99.9<br>00 99.9<br>30 99.9<br>5 99.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                                                                  |
| (5) COPPER                                                                                                                                                                                                                |                                           | 98.6<br>55.6 1<br>64.8                                                                                | $\begin{array}{cccc} 2 & 21 \\ 0 & 1 & 0 \\ 2 & 2 & 2 \\ \end{array}$                                                                      | 1.277 1.2<br>2.079 2.4<br>1.808 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $     \begin{array}{ccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r<br>7<br>}                                                     |                                                                                  |
| ( 6) AUSTENIT                                                                                                                                                                                                             | £                                         | 98.6<br>55.6 1<br>65.1                                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 1.277 1.2<br>2.079 2.0<br>1.800 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 278 220<br>280 111 1<br>300 200                        | 46 100.0<br>20 99.9<br>00 100.0<br>80 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                                  |

T-81

|                                                                                                                    | TABLE                                                        | 5.42 SU                                                       | MARY                      | OF X-I                                                                                      | RAY DI                                             | FFRA                                        | CTOGRAM A                  | NALYSIS              | 5                                     |      |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|----------------------------|----------------------|---------------------------------------|------|
| н/т                                                                                                                |                                                              | MATRIX                                                        | M23                       | МЗ                                                                                          | M5                                                 | M7                                          | FE8SI2C                    | CrMn3                | Cu                                    | Cu2S |
| ALLOY B                                                                                                            | 1                                                            |                                                               |                           |                                                                                             |                                                    |                                             |                            |                      |                                       |      |
| AS CAS<br>900, 4<br>900, 10<br>950, 4<br>950, 10<br>1000, 10<br>1050, 4<br>1050, 6<br>1050, 10                     | , AC<br>, AC<br>, AC<br>, AC<br>, AC<br>, AC<br>, AC<br>, AC | P/B<br>A<br>A<br>A<br>A*<br>A<br>A*<br>A*<br>A*<br>A*         | S/P<br>P<br>P<br>S/T<br>P | P<br>P<br>P<br>P<br>P<br>P<br>T                                                             | P<br>T?<br>S/T<br>S/T<br>T<br>T<br>T?<br>T?        | P<br>T?<br>S/P<br>S/T<br>T<br>S/P<br>P<br>P | T/S<br>T/S                 | T<br>T<br>T          | T/S<br>T<br>T/S                       |      |
| ALLOY B:                                                                                                           | 2                                                            |                                                               |                           |                                                                                             |                                                    |                                             |                            |                      |                                       |      |
| AS CAS<br>900, 10<br>950, 4<br>950, 10<br>1000, 10<br>1000, 10<br>1050, 4<br>1050, 6<br>1050, 10                   | , AC<br>, AC<br>, AC<br>, AC<br>, AC<br>, AC<br>, AC<br>, AC | P/B<br>A*<br>A*<br>A*<br>A*<br>A*<br>A*<br>A*<br>A*<br>A*     | P<br>P<br>T<br>T          | ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ<br>ዋ | P<br>P/S<br>P/S<br>P<br>S/P<br>T<br>T?<br>S<br>S   | P<br>S/T<br>T/S<br>T/S<br>P<br>P<br>P<br>P  | S?<br>T/S<br>S<br>P        | S<br>S<br>S/P<br>S/P | S/P<br>S/P<br>S/T<br>S<br>S           |      |
| ALLOY B:                                                                                                           | 3                                                            |                                                               |                           |                                                                                             |                                                    |                                             |                            |                      |                                       |      |
| AS CAS<br>900, 4,<br>900, 10,<br>950, 4,<br>950, 10,<br>1000, 4,<br>1000, 10,<br>1050, 4,<br>1050, 6,<br>1050, 10  | AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC     | P/B+ M<br>A*<br>A*<br>A*<br>A*<br>A*<br>A*<br>A*<br>A*<br>A*  | P<br>P<br>T/S<br>S/P      | P<br>P<br>P<br>P<br>S/T<br>S<br>T                                                           | P<br>P<br>P/S<br>T<br>T<br>T<br>T<br>T<br>T        | P<br>T?<br>P<br>P<br>P/S<br>P<br>P          | P<br>S<br>S                | S/T<br>S/T<br>S/P    | T?<br>S/T<br>S/T<br>S/T<br>T/S<br>T/S |      |
| ALLOY B                                                                                                            | 4                                                            |                                                               |                           |                                                                                             |                                                    |                                             |                            | -                    |                                       |      |
| AS CAS<br>900, 4,<br>900, 10,<br>950, 4,<br>950, 10,<br>1000, 4,<br>1000, 10,<br>1050, 4,<br>1050, 6,<br>1050, 10, | , AC<br>, AC<br>, AC<br>, AC<br>, AC<br>, AC<br>, AC<br>, AC | α*/B<br>A<br>A*<br>A<br>A<br>A*<br>A*<br>A*<br>A*<br>A*<br>A* | P<br>P<br>S<br>S/T        | P<br>P<br>P<br>P<br>S                                                                       | P<br>P<br>P<br>P<br>P<br>P<br>P<br>T/P<br>T/P<br>T | 5 P 5 5 5 P P P P                           | P<br>P<br>P<br>P<br>P<br>P | P/S<br>T<br>S<br>S/T | T<br>S/T<br>P/S<br>S<br>S             |      |
| P = PRES                                                                                                           | SENT,                                                        | S = SOME                                                      | E, T:                     | = TRAC                                                                                      | ĊΕ,                                                | * = ]                                       | PROBABLE                   |                      |                                       |      |

T-82

¢

| Alloy | Fe    | С    | Si   | Cr   | Mn   | Cu   |
|-------|-------|------|------|------|------|------|
| B1    | 86.10 | 2.48 | 3.50 | 1.20 | 4.61 | 2.11 |
| B2    | 84.41 | 2.94 | 3.15 | 1.55 | 5.94 | 2.02 |

## TABLE 5.43 ELEMENT DISTRIBUTION IN MATRIX

Heat treatment : 950°C, 10 hours, AC

Heat treatment : 1050°C, 10 hours, AC

•••

| Alloy | Fe    | С    | Si   | Cr   | Mn   | Cu   |
|-------|-------|------|------|------|------|------|
| B1    | 85,41 | 2.33 | 1.78 | 3.20 | 5,91 | 1.37 |
| B2    | 85.56 | 1.42 | 2.43 | 2.98 | 7.00 | 1.69 |
| B3    | 84.37 | 1:78 | 2.07 | 2.60 | 5.79 | 3.19 |
| B4    | 80.84 | 1.28 | 2.07 | 2.09 | 8.54 | 5.19 |

| Alloy | Fe    | <u>с</u> | Si   | Cr    | Mn    | Cu   |
|-------|-------|----------|------|-------|-------|------|
| B1    | 74.57 | 6.75     | 0.02 | 10.11 | 8.51  | 0.04 |
| B2    | 70.93 | 6.76     | 0.00 | 12.06 | 10.17 | 0.09 |
| B3    | 73.48 | 6.75     | 0.00 | 11.56 | 8.06  | 0.15 |
| B4    | 72.56 | 6.76     | 0.03 | 11.02 | 9.53  | 0.10 |

. .

Heat treatment : 950°C, 10 hours, AC

Heat treatment : 1050°C, 10 hours, AC

| Alloy | Fe    | С    | Si   | Cr    | Mn    | Cu   |
|-------|-------|------|------|-------|-------|------|
| B1    | 58.72 | 8.60 | 0.04 | 22.95 | 9.65  | 0.04 |
| B2    | 57.63 | 8.60 | 0.00 | 23,30 | 10.47 | 0,00 |
| B3    | 54.60 | 8.62 | 0.00 | 27.02 | 9.70  | 0.00 |
| B4    | 56.87 | 8.60 | 0.00 | 23.83 | 10.66 | 0.03 |

· · ·

| Alloy<br>Desgination | Transfo<br>I | rmation<br>II | temperature, °(<br>III |  |
|----------------------|--------------|---------------|------------------------|--|
| B1                   | 722          | 935           |                        |  |
| B2                   | 750          | 920           | 1050                   |  |
| B3                   | 745          | 890           |                        |  |
| B4                   | 735          | 925           | 1075                   |  |

TABLE 5.45 TRANSFORMATION TEMPERATURE, °C

TABLE 5.46 DTA, mV

| Alloy       | DT    | A, mV |       |
|-------------|-------|-------|-------|
| Desgination | I     | II    | III   |
| B1          | 0.35  | -0.52 | .·    |
| B2          | -0.85 | -2.15 | -0.90 |
| B3          | 0.20  | -0.70 |       |
| B4          | -0.90 | -2.65 | -0.98 |

.

.

.

:

| A11 | oy RT 1 | 00 20  | 0 30 | 0 400 |      |      |      | ratur<br>0 800 |       | 1000  | 1050  |
|-----|---------|--------|------|-------|------|------|------|----------------|-------|-------|-------|
| B1  | 0.0 2.5 | 3.1    | 3.27 | 3.27  | 3.88 | 4.49 | 6,48 | 8.62           | 12.37 | 18.11 | 23.62 |
| B2  | 0.0 1.5 | 2 2.51 | 2.58 | 3.03  | 3.27 | 4.03 | 6.15 | <b>8.66</b>    | 13.10 | 22.66 | 30.71 |
| B3  | 0.0 2.3 | 1 3.07 | 3.38 | 3.53  | 4.00 | 4.78 | 7.07 | 9.22           | 14.47 | 23.07 | 27.69 |
| B4  | 0.0 2.1 | 5 2.64 | 2.96 | 3.22  | 3.63 | 4.70 | 6.93 | 9.25           | 13.15 | 21.78 | 27.23 |

Table 5.47 Effect of heating temperature on the %TG

Table 5.48 Percent increase in %TG on heating in the different temperature ranges

|       |     |      |      |      | Tempe: | ratur | e ran | ze   |      |      | <u></u> |
|-------|-----|------|------|------|--------|-------|-------|------|------|------|---------|
| Alloy | I   | II   | III  |      | _      |       | -     | -    | IX   | Х    | XI      |
| B1    | • • | 24.0 | 5.5  | 0.0  | 18.6   | 15.7  | 44.3  | 33.0 | 43.5 | 46.4 | 30.4    |
| B2    | • • | 65.1 | 2.8  | 17.4 | 7.9    | 23.2  | 52.6  | 40.8 | 51.3 | 73.0 | 35.5    |
| B3    |     | 32.9 | 10.1 | 4.4  | 13.3   | 19.5  | 47.9  | 30.4 | 56.9 | 59.4 | 20.0    |
| B4    |     | 22.8 | 12.1 | 8.8  | 12.7   | 29.5  | 47.4  | 33.5 | 41.1 | 66.9 | 25.0    |

| h/t | schedule   | Ecorr(ref.)<br>mV |        | orr<br>V | Icorr<br>µA | Icorr<br>µA/SQ.CM |  |
|-----|------------|-------------------|--------|----------|-------------|-------------------|--|
|     |            | <b>515</b> Y      | I      | II       | <b>P</b>    |                   |  |
| B1, | 950,10,AC  | -0.645            | -0.830 | -0.655   | 225         | 160               |  |
|     | 1050,10,AC | -0.542            | -0.540 | -0.400*  | 220         | 124               |  |
| B2  | 900,10,AC  | -0.644            | -0.625 |          | 190         | 170               |  |
|     | 950,10,AC  | -0.609            | -0.920 | -0.650   | 190         | 181               |  |
|     | 1000,10,AC | -0.570            | -0.620 |          | 130         | 112               |  |
|     | 1050, 4,AC | -0.600            | -0.885 | -0.610   | 295         | 154               |  |
|     | 1050,10,AC | -0.386            | -0.580 | -0.435*  | 64          | 107               |  |
| B3  | 950,10,AC  | -0.632            | -0.925 | -0.645   | 182         | 198               |  |
|     | 1050, 4,ÁC | -0.590            | -0.715 | -0.650*  | 230         | 149               |  |
|     | 1050,10,AC | -0.487            | -0.530 |          | 210         | 132               |  |
| B4  | 900,10,AC  | -0.573            | -0.580 |          | 120         | 182               |  |
|     | 950,10,AC  | -0.600            | -0.870 | -0.625   | 170         | 172               |  |
|     | 1000,10,AC | -0.573            | -0.580 |          | 270         | 121               |  |
|     | 1050, 4,AC | -0,624            | -0.710 | -0.660*  | 280         | 167               |  |
|     | 1050,10,AC | -0.543            | -0.550 |          | 185         | 111               |  |
| KC  |            | -0.390            | -0.570 | -0.360*  | 48          | 68                |  |
| KC1 |            | -0.350            | -0.520 | -0.350*  | 88          | 95                |  |

÷

Table 6.1 Polarization curve data

Note: Ecorrcorresponding to II denotes second distinct peak and \* represents a change in the slope (probable reduction process).

| h/t schedule | B1  | B2  | B3  | B4    |
|--------------|-----|-----|-----|-------|
| 900,10,AC    |     | 170 |     | 182   |
| 950,10,AC    | 160 | 181 | 198 | · 172 |
| 1000,10,AC   |     | 112 | ·   | 121   |
| 1050, 4,AC   |     | 154 | 149 | 167   |
| 1050,10,AC   | 124 | 107 | 132 | 111   |

Table 6.2 Summary table of Icorr

Table 6.3 Summary table of Ecorr (ref.)

| h/t schedule       | B1     | B2     | <b>B</b> 3          | B4     |
|--------------------|--------|--------|---------------------|--------|
| 900,10,AC          |        | -0.644 |                     | -0.593 |
| 950,10,AC          | -0.645 | -0,609 | -0.632              | -0.629 |
| 1000,10,AC         |        | -0.570 |                     | -0.573 |
| 1050, <b>4</b> ,AC |        | -0.600 | -0.5 <del>9</del> 0 | -0.624 |
| 1050,10,AC         | -0.542 | -0.426 | -0.487              | -0.543 |
|                    |        |        |                     |        |

| Table 6.4 Summary table of compressive strength and | d nardness | nd hardness |
|-----------------------------------------------------|------------|-------------|
|-----------------------------------------------------|------------|-------------|

|      |             |          | UTTON DI | L     |        |         |        |
|------|-------------|----------|----------|-------|--------|---------|--------|
| H/T  | schedule    | hardness | CSexp.   | Rexp. | Rpred. | CSpred. | %error |
| AS-( | CAST        | 594      | 1972.08  | 3.32  | 3.33   | 1975.66 | - 0.18 |
| 900  | ), 4,0Q     | 486      | 2008.08  | 4.13  | 4.29   | 2084.24 | - 3.84 |
| 900  | ),10,0ର୍    | 530      | 2091.73  | 3.94  | 3.79   | 2006.94 | 3.89   |
| 950  | ), 4,୦ର     | 481      | 2094.34  | 4.35  | 4.36   | 2094.82 | - 0.12 |
| 950  | ),10,0Q     | 476      | 2022.91  | 4.25  | 4.42   | 2105.67 | - 4.09 |
| 1000 | ), 4,0Q     | 433      | 2305.35  | 5.32  | 5.09   | 2205.46 | 4.26   |
| 1000 | ), 10, ୦ର୍  | 349      | 2444.66  | 7.00  | 6.82   | 2379.34 | 2.61   |
| 1050 | ), 4,0२     | 363      | 2350.58  | 6.47  | 6.49   | 2356.61 | - 0.34 |
| 1050 | ), 6,0Q     | 307      | 2337.40  | 7.61  | 7.89   | 2420.97 | - 3.63 |
| 1050 | ), 10 , ୦ର୍ | 272      | 2450.40  | 9.00  | 8.88   | 2415.68 | 1.32   |

Alloy B1

## Table 6.5 Summary table of compressive strength and hardness

|              |          | Alloy B | 2     |        |         |        |
|--------------|----------|---------|-------|--------|---------|--------|
| H/T schedule | hardness | CSexp.  | Rexp. | Rpred. | CSpred. | %error |
| AS-CAST      | 590      | 2116.22 | 3.58  | 3.64   | 2145.72 | - 1.59 |
| 900, 4,0Q    | 499      | 2083.67 | 4.16  | 4.30   | 2144.50 | - 3.31 |
| 900,10,00    | 496      | 2132.18 | 4.30  | 4.34   | 2152.97 | - 0.95 |
| 950, 4,OQ    | 457      | 2400.95 | 5.25  | 5.02   | 2296.06 | 4.30   |
| 950,10,00    | 446      | 2464.66 | 5.52  | 5,26.  | 2345.30 | 4.74   |
| 1000, 4,OQ   | 386      | 2747.53 | 7.12  | 6.86   | 2647.23 | 3.68   |
| 1000,10,00   | 339      | 2886.49 | 8.51  | 8.49   | 2878.36 | 0.23   |
| 1050, 4,0Q   | 332      | 2647.93 | 7.97  | 8.76   | 2909.13 | - 9.94 |
| 1050, 6,OQ   | 342      | 2756.52 | 8.06  | 8.38   | 2864.79 | - 3.93 |
| 1050,10,00   | 289      | 3218.40 | 11.17 | 10.59  | 3061.57 | 5.16   |

CS in  $MN/m^2$ 

| Tał | ble | 6.6 | Summary | table | $\mathbf{of}$ | compressive | strength | and | hardness |
|-----|-----|-----|---------|-------|---------------|-------------|----------|-----|----------|
|-----|-----|-----|---------|-------|---------------|-------------|----------|-----|----------|

|      |           |          | NILOY D | <b>.</b> |        |         |        |
|------|-----------|----------|---------|----------|--------|---------|--------|
| H/T  | schedule  | hardness | CSexp.  | Rexp.    | Rpred. | CSpred. | %error |
| AS-0 | CAST      | 652      | 2253.03 | 3.45     | 3.51   | 2287.79 | - 1.71 |
| 90(  | ), 4,0Q   | 486      | 2175.03 | 4.47     | 4.60   | 2234.76 | - 2.87 |
| 900  | ),10,0Q   | 487      | 2228.90 | 4.58     | 4.58   | 2232.28 | - 0.08 |
| 950  | ), 4,0Q   | 455      | 2434,43 | 5.33     | 5.10   | 2318.86 | 4,38   |
| 950  | ),10,0Q   | 463      | 2353.39 | 5.08     | 4.96   | 2296.00 | 2.38   |
| 1000 | ), 4,୦ର୍  | 383      | 2533.79 | 6.62     | 6.61   | 2532.07 | 0.13   |
| 1000 | ), 10, 0Q | 349      | 2779.35 | 7.96     | 7.50   | 2617.63 | 5.77   |
| 1050 | ), 4,0Q   | 307      | 2416.63 | 7.87     | 8.75   | 2687.12 | -11.22 |
| 1050 | ), 6,0ର୍  | 272      | 2559.21 | 9.41     | 9.93   | 2700.03 | - 5.49 |
| 1050 | ),10,0Q   | 245      | 2863.30 | 11.68    | 10.91  | 2673.65 | 6.57   |

Alloy B3

## Table 6.7 Summary table of compressive strength and hardness

|      |            |          | Alloy B | 4     |        |         |        |
|------|------------|----------|---------|-------|--------|---------|--------|
| H/T  | schedule   | hardness | CSexp.  | Rexp. | Rpred. | CSpred. | %error |
| AS-0 | CAST       | 621      | 2352.37 | 3.79  | 3.79   | 2355.24 | - 0.07 |
| 900  | D, 4,0Q    | 476      | 2219.33 | 4.66  | 4.71   | 2241.34 | - 1.05 |
| 900  | ),10,0ର୍   | 476      | 2287.96 | 4.81  | 4.71   | 2241.34 | 2.11   |
| 950  | ), 4,0ର୍   | 441      | 2340.50 | 5.31  | 5.33   | 2349.23 | - 0.32 |
| 950  | D,10,0Q    | 444      | 2297.35 | 5.11  | 5.27   | 2338.99 | - 3.09 |
| 1000 | ), 4,0Q    | 375      | 2682.59 | 7.15  | 6.91   | 2592.52 | 3.31   |
| 1000 | ), 10, ୦ର୍ | 347      | 2845.30 | 8.20  | 7.75   | 2690.06 | 5.46   |
| 105  | ୦, 4,୦ଢ    | 322      | 2552.70 | 7.92  | 8.58   | 2764.35 | - 8.40 |
| 1050 | ), 6,୦ର    | 306      | 2772.33 | 9.06  | 9.16   | 2902.70 | - 1.09 |
| 105  | 0,10,00    | 266      | 2909.22 | 10.94 | 10,74  | 2855.77 | 1.86   |

Alloy B4

CS in MN/m<sup>2</sup>

Table 6.8 Summary table of %strain and hardness

:

| H/T  | schedule   | hardness | %Sexp. | Rexp. | Rpred. | %Spred. | %error |
|------|------------|----------|--------|-------|--------|---------|--------|
| AS-C | AST        | 594      | 28.66  | .105  | .097   | 26.62   | - 7.15 |
| 900  | , 4,OQ     | 486      | 25.98  | .084  | .087   | 26.88   | - 3.45 |
| 900  | , 10 , ୦ଢ଼ | 530      | 24.60  | .070  | .075   | 26.44   | - 7.47 |
| 950  | , 4,0ର     | 481      | 23.87  | .065  | .071   | 26.12   | - 9.42 |
| 950  | ,10,0Q     | 476      | 23.47  | .054  | .053   | 23.35   | .49    |
| 1000 | , 4,0Q     | 433      | 21.18  | .044  | .043   | 20,79.  | 1.84   |
| 1000 | ,10,0Q     | 349      | 21.00  | .043  | .042   | 20.46   | 2.59   |
| 1050 | , 4,0Q     | 363      | 21.96  | .045  | .041   | 20.11   | 8.42   |
| 1050 | , 6,୦ଢ     | 307      | 20.56  | .038  | .031   | 16.79   | 18.33  |
| 1050 | ,10,0Q     | 272      | 7.39   | .012  | .018   | 11.12   | -50.54 |

Alloy B1

Table 6.9 Summary table of %strain and hardness

Alloy B2

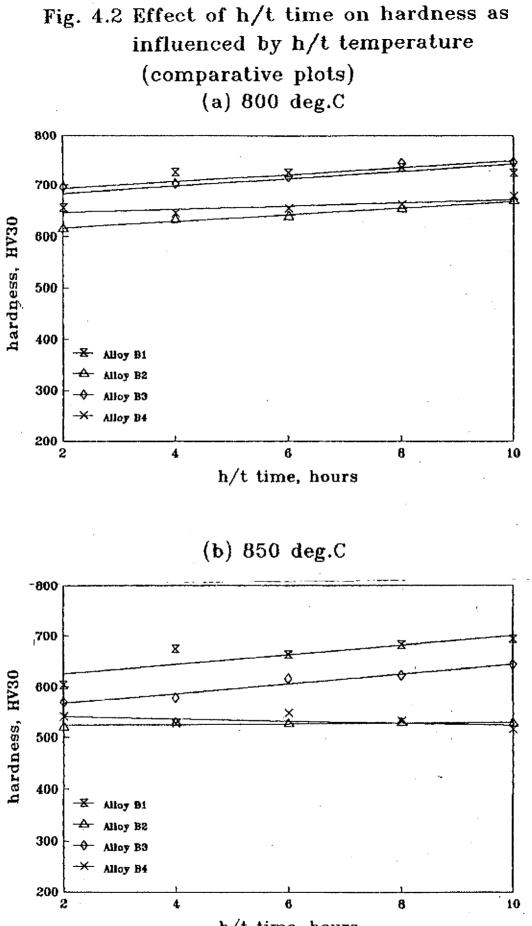
| H/T  | schedule   | hardness | %Sexp. | Rexp. | Rpred. | %Spred. | %error |
|------|------------|----------|--------|-------|--------|---------|--------|
| AS-C | CAST .     | 590      | 42.68  | . 147 | .137   | 39.86   | 6.60   |
| 900  | ), 4,0Q    | 499      | 38.67  | .116  | .112   | 37.36   | 3.39   |
| 900  | ),10,0Q    | 496      | 32.07  | .094  | .108   | 36.84   | -14.89 |
| 950  | ), 4,0Q    | 457      | 35.97  | .105  | .107   | 36.62 / | -1.79  |
| 950  | ), 10, ୦ର୍ | 446      | 29.22  | .075  | .084   | 32.80   | -12.25 |
| 1000 | ), 4,୦ର୍   | 386      | 28.63. | .064  | .060   | 26.76   | 6.51   |
| 1000 | ),10,0Q    | 339      | 28.38  | .062  | .056   | 25.63   | 9.69   |
| 1050 | ), 4,0Q    | 332      | 23,58  | .048  | .044   | 21.71   | 7.94   |
| 105( | ), 6,0ତ୍ୱ  | 342      | 22.43  | .044  | .043   | 21.42   | 4.51   |
| 1050 | ),10,0Q    | 289      | 11.79  | .020  | .024   | 14.42   | -22.29 |

Table 6.10 Summary table of %strain and hardness

|      |          |          | -      |       | •      |         | •      |
|------|----------|----------|--------|-------|--------|---------|--------|
| H/T  | schedule | hardness | %Sexp. | Rexp. | Rpred. | %Spred. | %error |
| AS-( | CAST     | 652      | 30.14  | .143  | .138   | 33.87   | 3.60   |
| 900  | ), 4,୦ର୍ | 486      | 31.54  | .116  | .124   | 33.80   | - 7.17 |
| 900  | ),10,0Q  | 487      | 33.91  | .110  | .107   | 32.95   | 2.82   |
| 95(  | ), 4,0ର୍ | 455      | 31.28  | .090  | .089   | 30.98   | 0.96   |
| 950  | ),10,02  | 463      | 28.07  | .073  | .075   | 28.79   | - 2.55 |
| 1000 | ), 4,0Q  | 383      | 22.58  | .050  | .051   | 22.98   | - 1,74 |
| 1000 | ),10,0Q  | 349      | 22.17  | .048  | .048   | 22.27   | - 0.47 |
| 1050 | ), 4,0Q. | 307      | 20.41  | .042  | .042   | 20.22   | 0.90   |
| 1050 | ), 6,0Q  | 272      | 21.25  | .044  | .041   | 20.14   | 5.22   |
| 1050 | ),10,00  | 245      | 7.47   | .011  | .012   | 7.81    | - 4.55 |

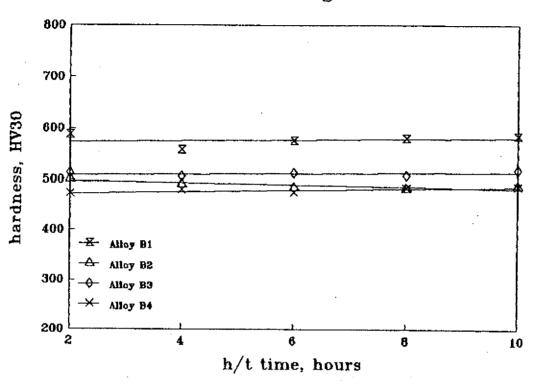
Alloy B3

Table 6.11 Summary table of %strain and hardness


Alloy B4

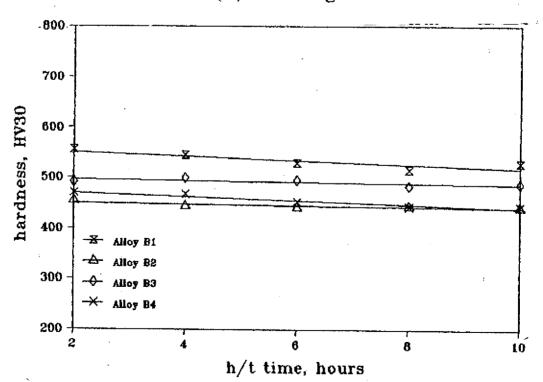
| H/T  | schedule       | hardness | ∛Sexp. | Rexp. | Rpred. | %Spred. | %error |
|------|----------------|----------|--------|-------|--------|---------|--------|
| AS-C | AST            | 621      | 34.81  | .130  | .130   | 34.67   | 0.38   |
| 900  | , <b>4</b> ,0Q | 476      | 34.48  | .112  | .113   | 34.75   | - 0.76 |
| 900  | ,10,0Q         | 476      | 35.80  | . 111 | .107   | 34.50   | 3.63   |
| 950  | , 4,0Q         | 441      | 31.79  | .091  | .097   | 33.83   | - 6.42 |
| 950  | ,10,0Q         | 444      | 30.90  | .082  | .087   | 32.71   | - 5.85 |
| 1000 | , 4,0Q         | 375      | 28.10  | .063  | .065   | 28.75   | - 2.31 |
| 1000 | ,10,0Q         | 347      | 28.43  | .064  | .064   | 28.53   | - Ó.36 |
| 1050 | , 4,0Q         | 322      | 28.31  | .059  | .054   | 26.07   | 7.92   |
| 1050 | , 6,୦ର         | 306      | 27.25  | .057  | .054   | 26.07   | 4.35   |
| 1050 | ,10,0Q         | 266      | 12.01  | .019  | .020   | 12.92   | - 7.60 |

| (based on Eqs. 6.45-6.48) |                                                                                         |                                          |        |                                                                                       |                 |                                                                                  |
|---------------------------|-----------------------------------------------------------------------------------------|------------------------------------------|--------|---------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------|
| H/T schedule              | CS pred.                                                                                | CS exp.                                  | %dev.  | %strain<br>pred.                                                                      | %strain<br>exp. | %dev.                                                                            |
| B1, 900,10,AC             | 2308.84                                                                                 | 2579.29                                  | -11.71 | 22.73                                                                                 | 31.13           | -36.96                                                                           |
| B1, 950, 4,AC             | 2370.75                                                                                 | 2240.73                                  | 5.48   | 23.79                                                                                 | 14.13           | <b>4</b> 0. <b>60</b>                                                            |
| B2, 900, 10,AC            | 2102.70                                                                                 | 2607.47                                  | -24.01 | 23.25                                                                                 | 21.73           | 6.54                                                                             |
| B2,1050,10,AC*            | 3218.40                                                                                 | 1260.02                                  | 60.85  | 42.68                                                                                 | 12.22           | 71.37                                                                            |
| B3, 900, 4,AC             | 2266.29                                                                                 | 2393.89                                  | -5,63  | 21.29                                                                                 | 20.48           | 3.82                                                                             |
| B3, 900,10,AC             | 2381.60                                                                                 | 1706.41                                  | 28.35  | 22.69                                                                                 | 22.82           | 55                                                                               |
| B3, 950, 4,AC             | 2665.00                                                                                 | 3167.60                                  | -18.86 | 24.82                                                                                 | 34.30           | -38.19                                                                           |
| B3, 950,10,AC*            | 2484.12                                                                                 | 1228.24                                  | 50.56  | 23.41                                                                                 | 14.14           | 39,59                                                                            |
| B3,1000, 4,AC             | 2793.64                                                                                 | 2581.28                                  | 7.60   | 30.93                                                                                 | 36.89           | -19.28                                                                           |
| B3,1000,10,AC*            | 2857.64                                                                                 | 1658.31                                  | 41.97  | 32.18                                                                                 | 18.98           | 41.01                                                                            |
| B3,1050, 4,AC*            | 2864.68                                                                                 | 693.27                                   | 75.80  | 40.20                                                                                 | 16.02           | 60.15                                                                            |
| B3,1050,10,AC*            | 3048.48                                                                                 | 979.54                                   | 67.87  | 37.44                                                                                 | 25.85           | 30.95                                                                            |
| B4, 950, 4,AC             | 2485.08                                                                                 | 1844.97                                  | 25.76  | 29.82                                                                                 | 20.93           | 29.81                                                                            |
| B4, 950,10,AC             | 2273.95                                                                                 | 1849.45                                  | 18.67  | 28.49                                                                                 | 30.25           | -6.17                                                                            |
| B4,1000, 4,AC*            | 2752.75                                                                                 | 1610.61                                  | 41.49  | 31.72                                                                                 | 23.72           | 25.22                                                                            |
| B4,1050, 4,AC*            | 2597.76                                                                                 | 1349.73                                  | 48.04  | 36.47                                                                                 | 19.81           | 45.68                                                                            |
| CS in MN/m <sup>2</sup>   | ter mit ved in Elventikans alle ander 2000 kann for de sterne in die de soen onder en s | an a |        | / MR 2001 11 5 16 4 5 16 19 16 5 11 17 20 1 15 16 16 16 16 16 16 16 16 16 16 16 16 16 |                 | , pen kangang pentaka kan na matuka pentakan kana kan kan kan kan kan kan kan ka |

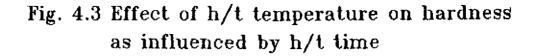

Table 6.12 Summary table of the predicted and experimentally determined compressive strength and %strain values (based on Eqs. 6.45-6.48)

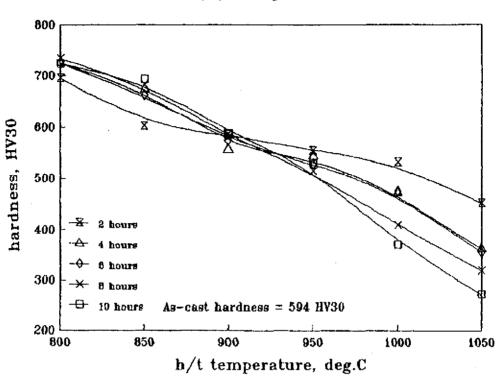
\* Experiment revealed either the presence of inclusions inside the specimen or voids.




h/t time, hours

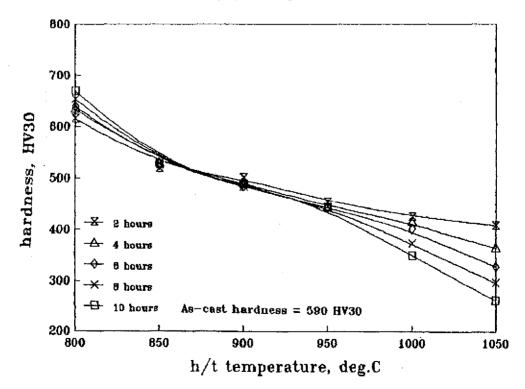
F-3





(c) 900 deg.C

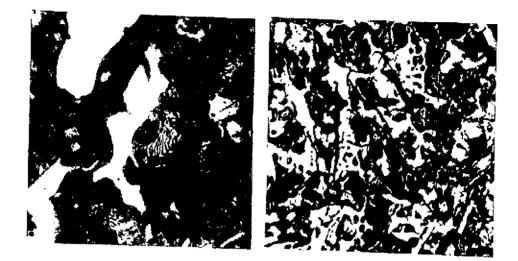
(d) 950 deg.C

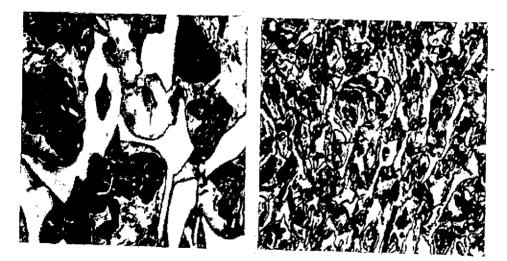



F-4

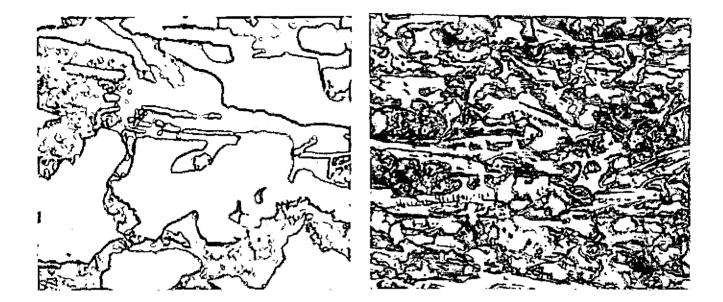


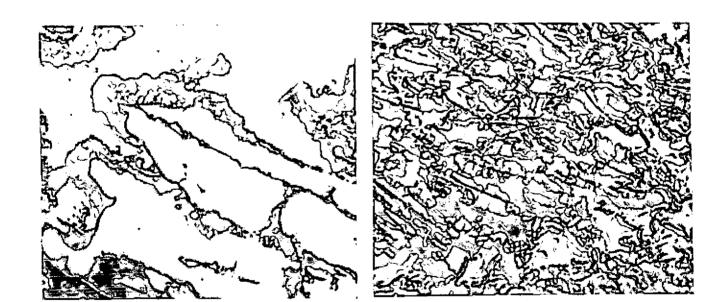



(a) Alloy B1

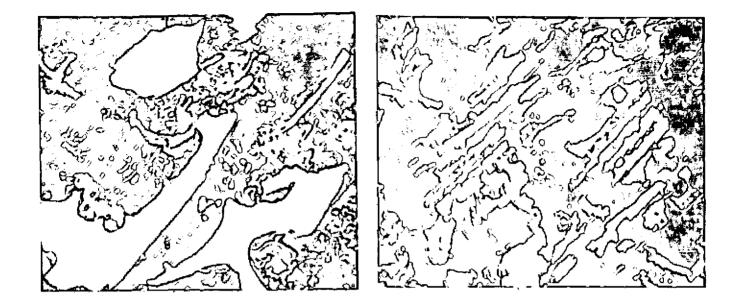

(b) Alloy B2




F-6


, 



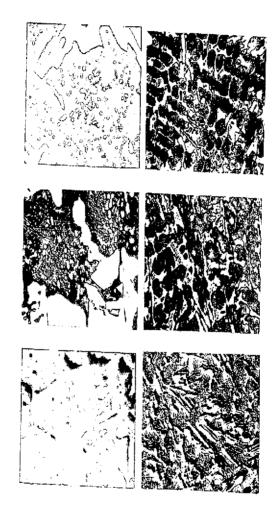


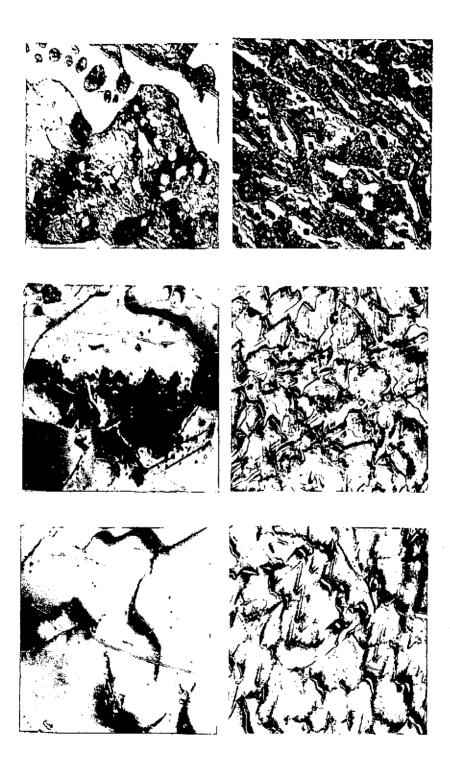

. -

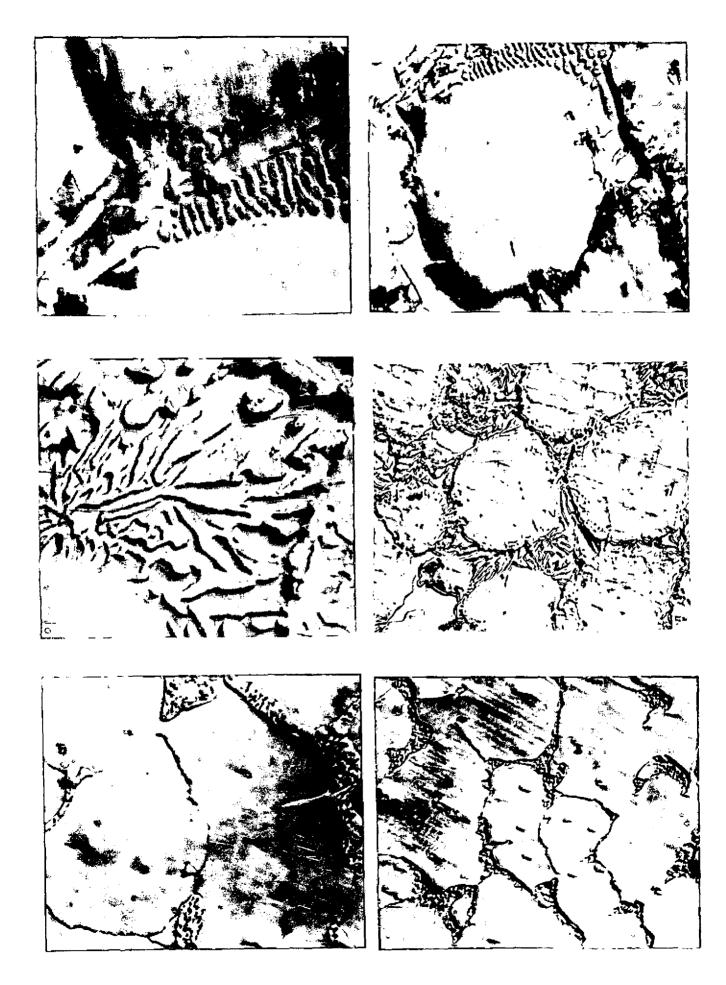




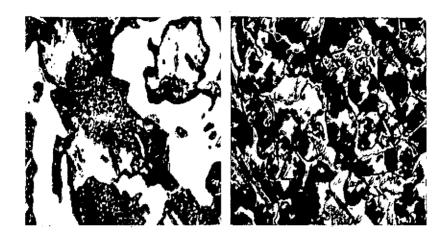

.

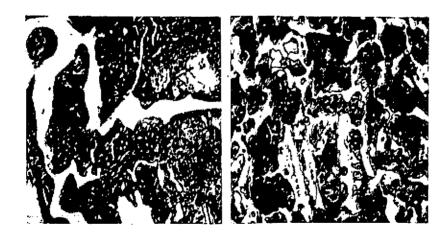




. . . . .

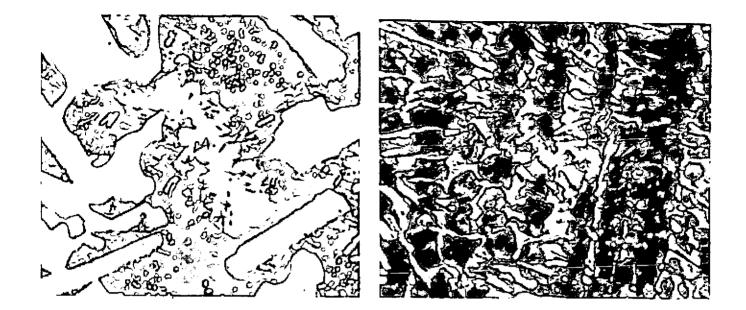


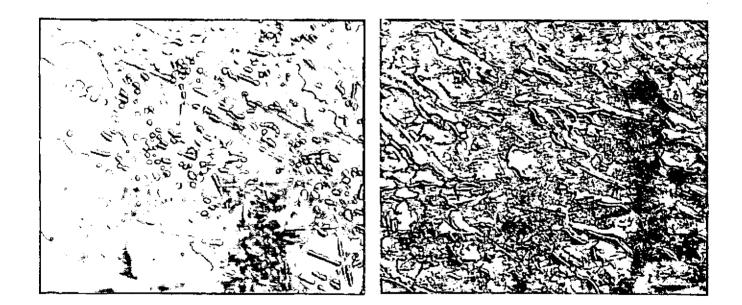

. •





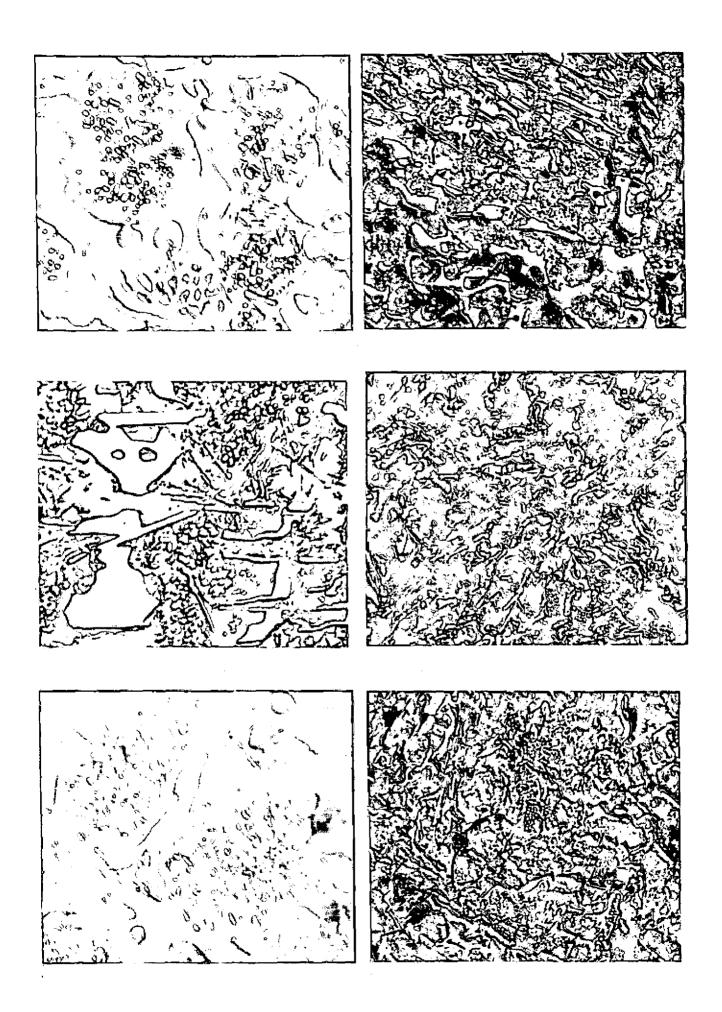


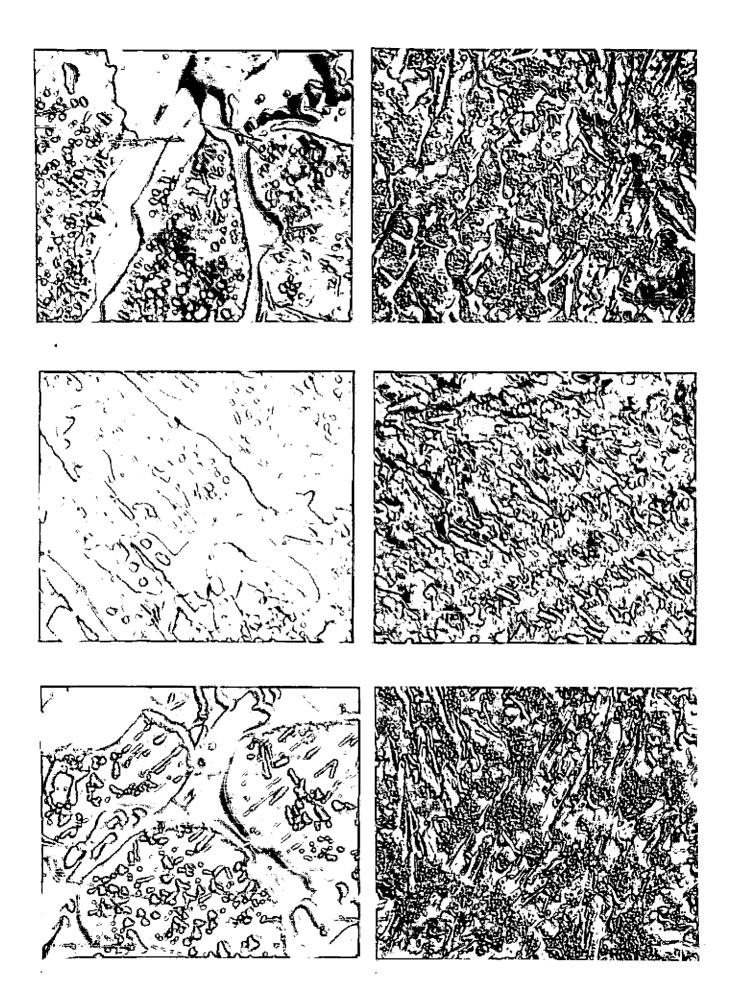


.






.


•






-

. ·

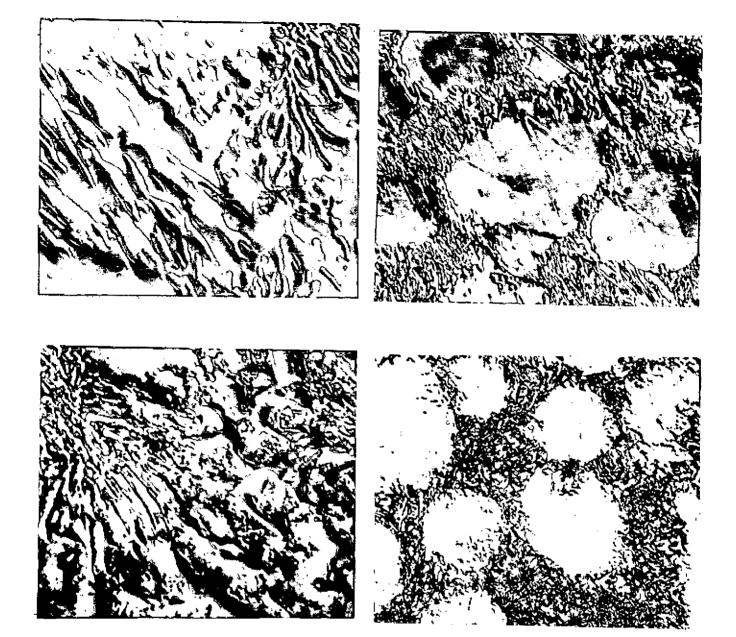


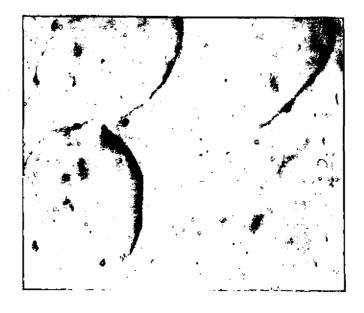


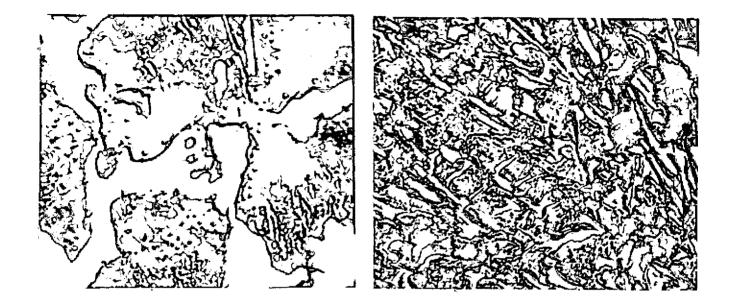
.



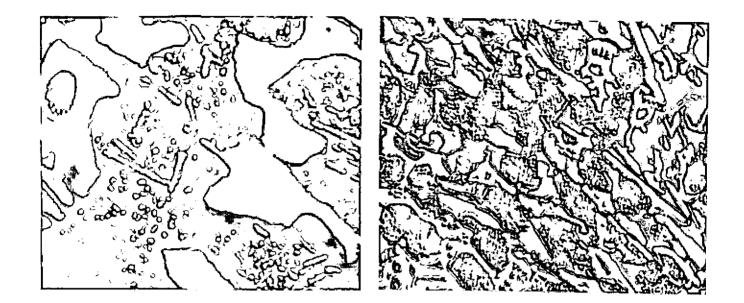




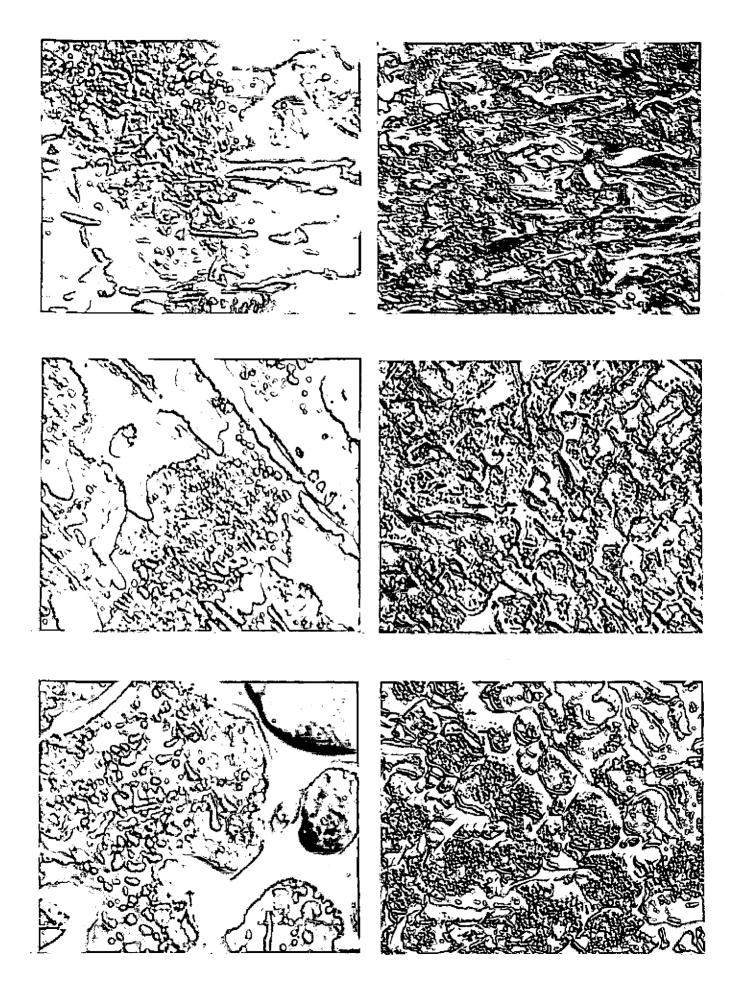



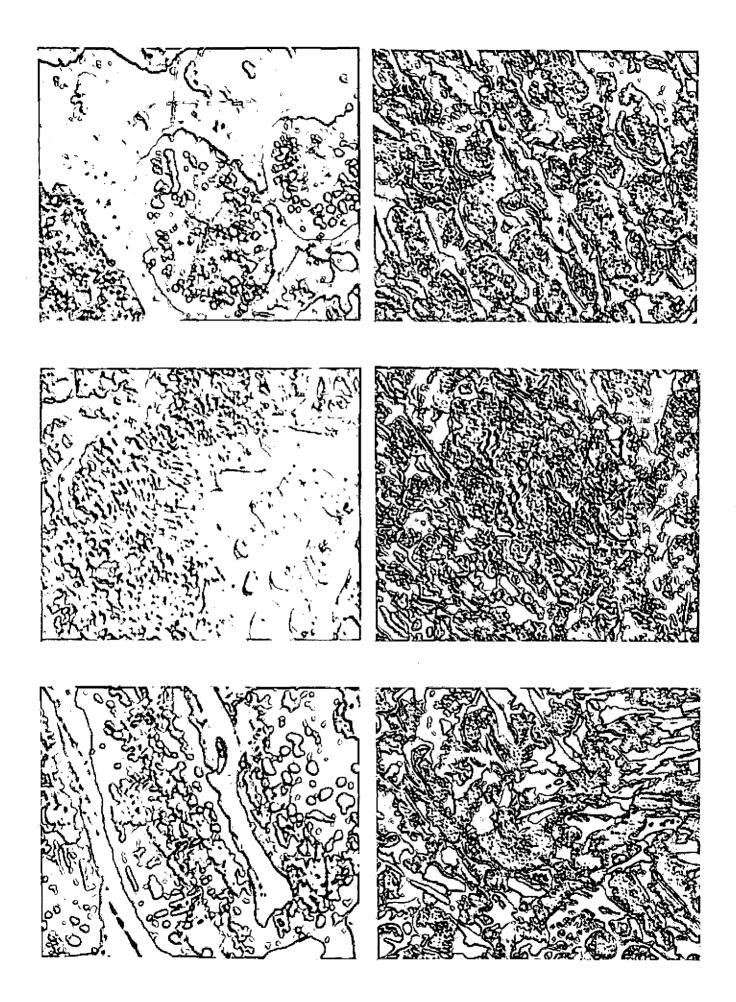


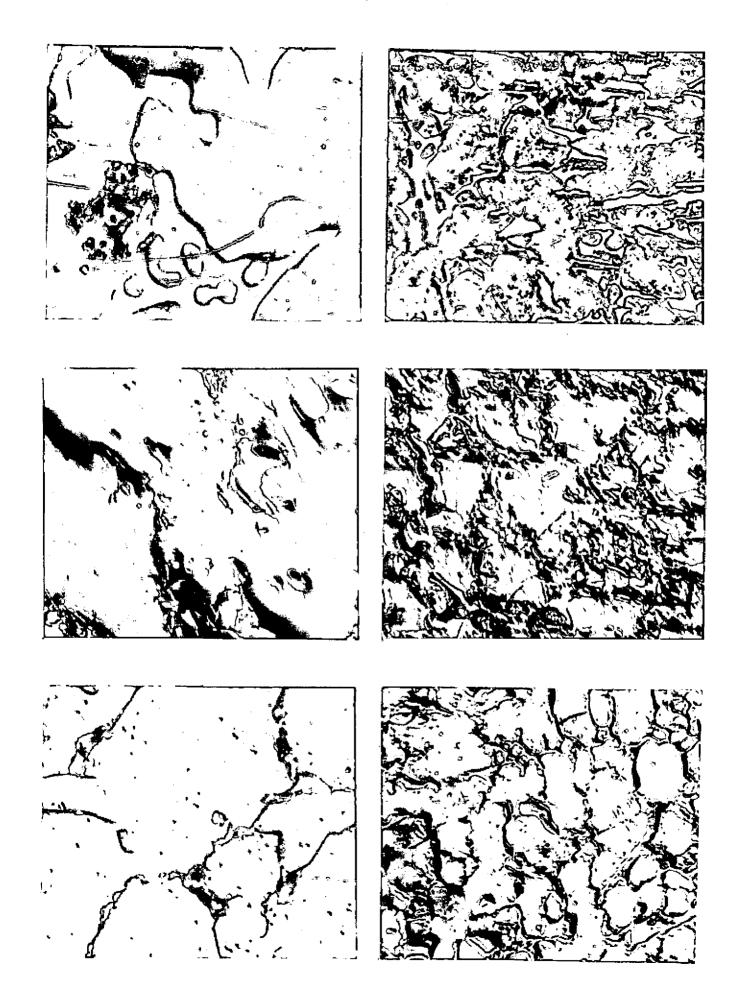


.



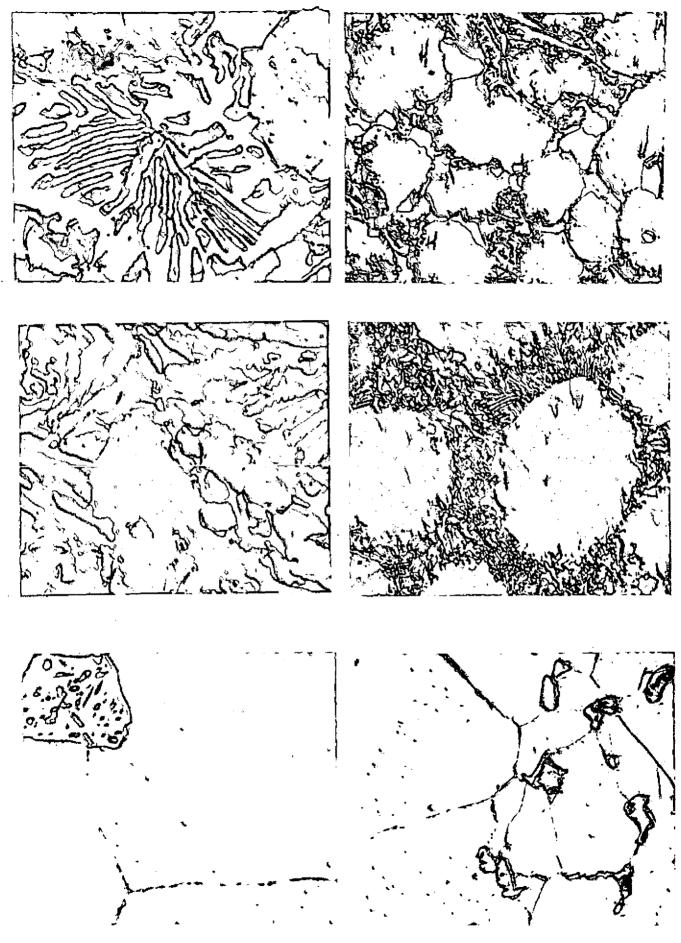




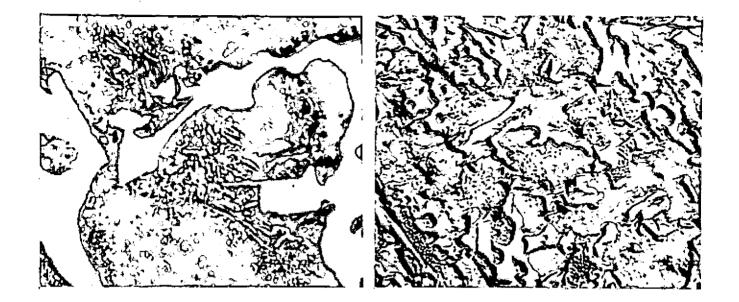



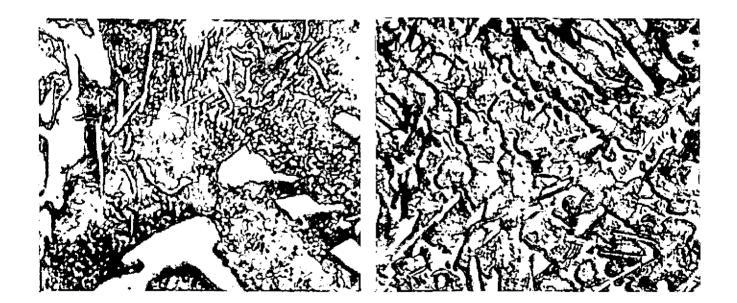







. .





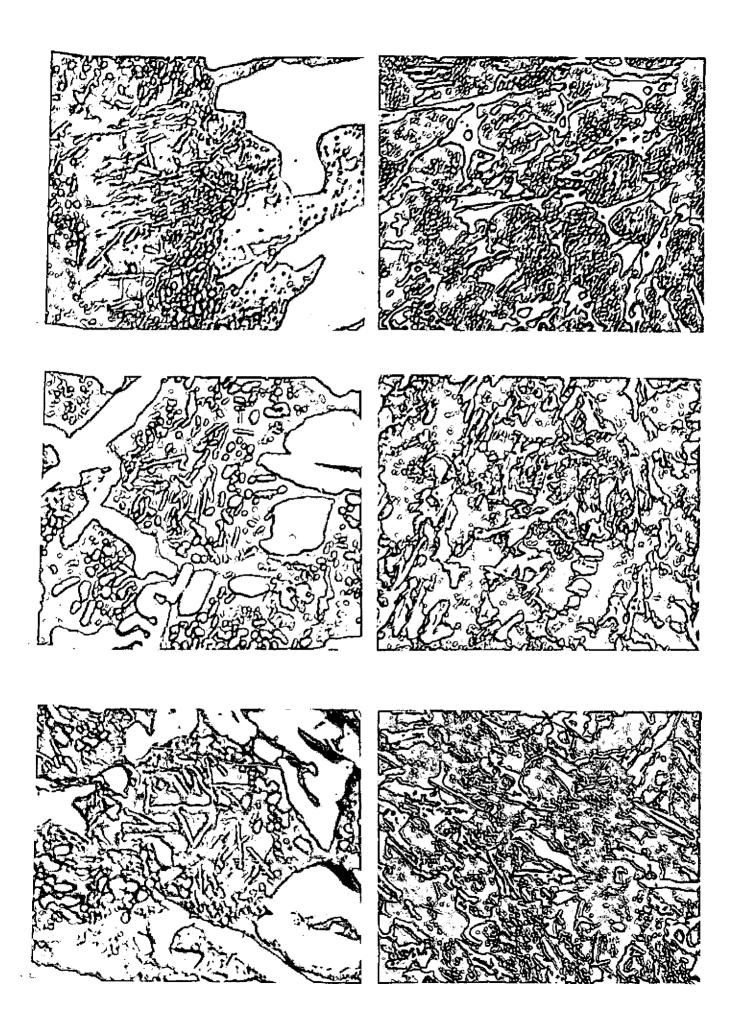



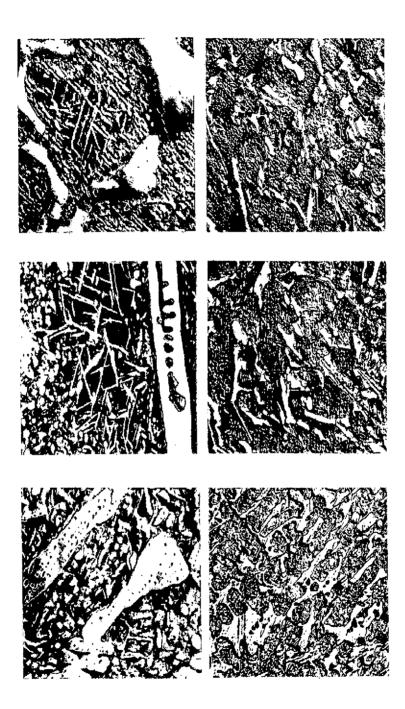

. · . . . • .



.





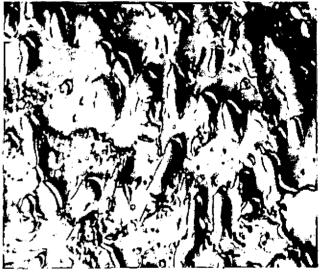


• .



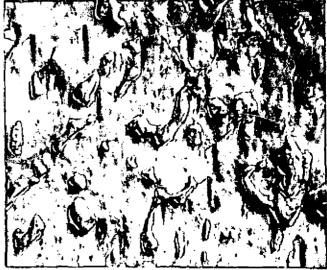


• - .



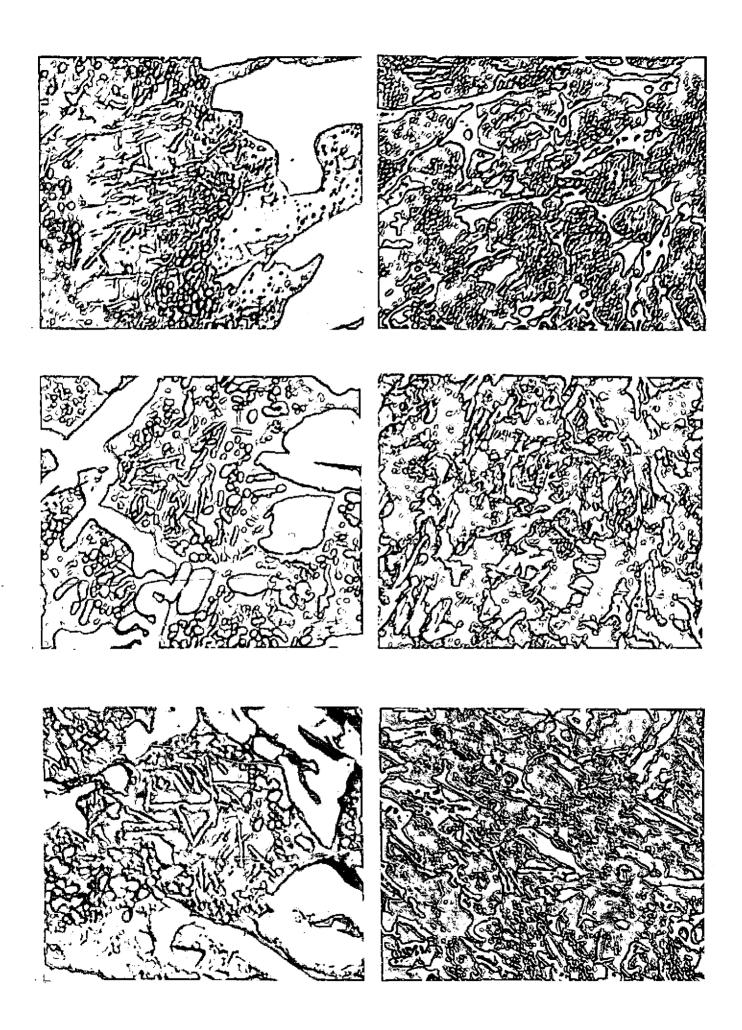



-

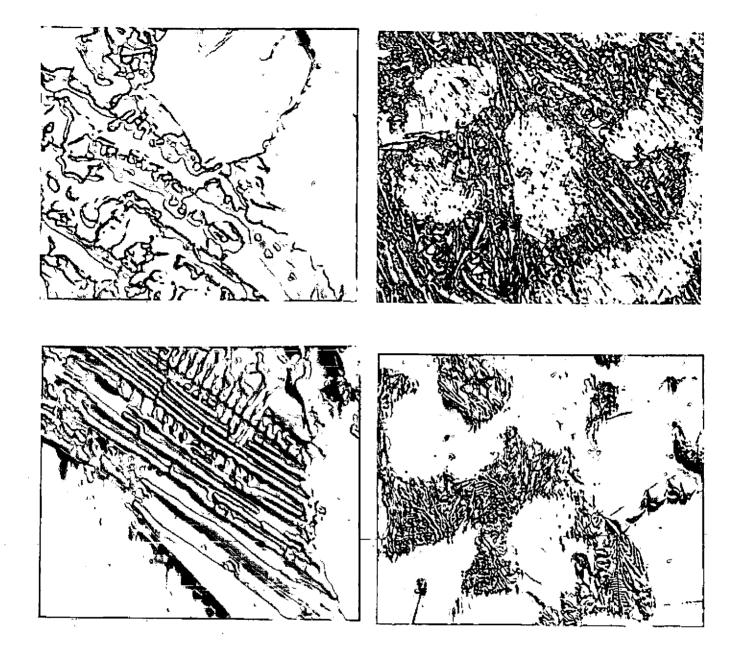









•

. .



.



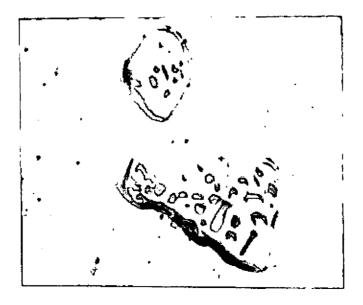
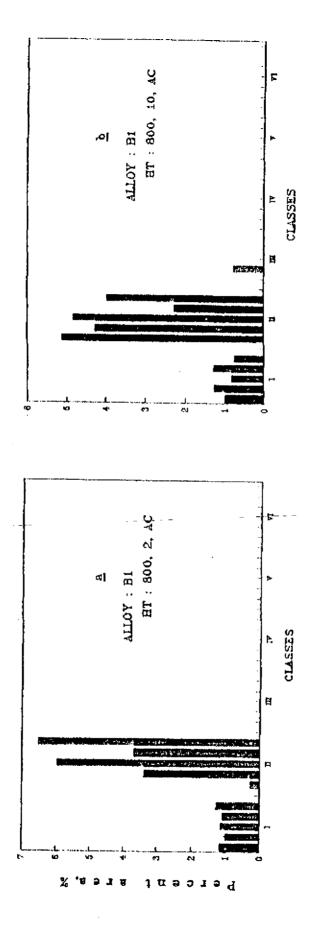




Fig. 4.34 Composite histograms depicting class-wise particle distribution at five different locations



F-40

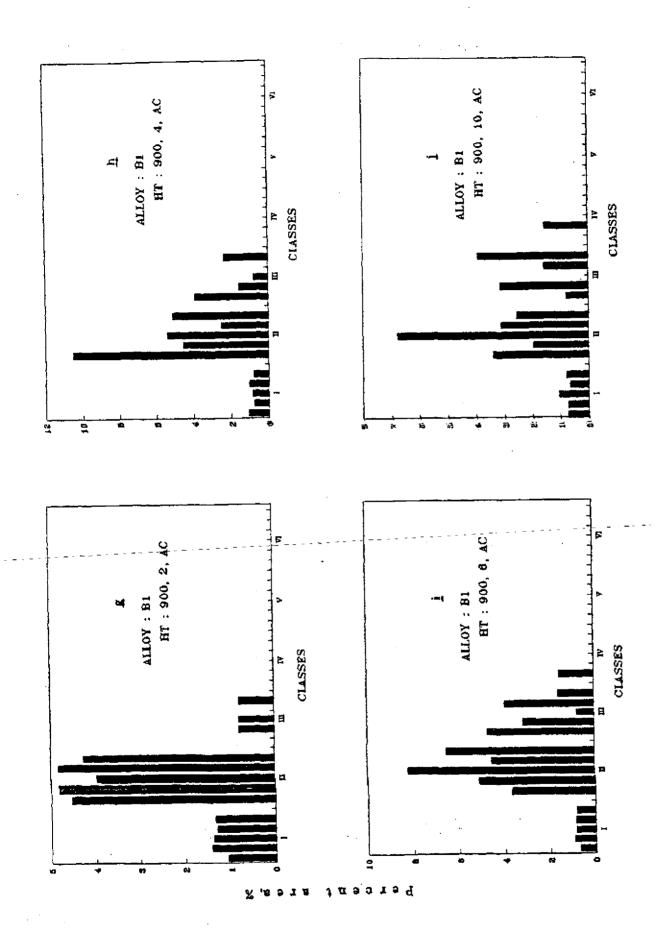
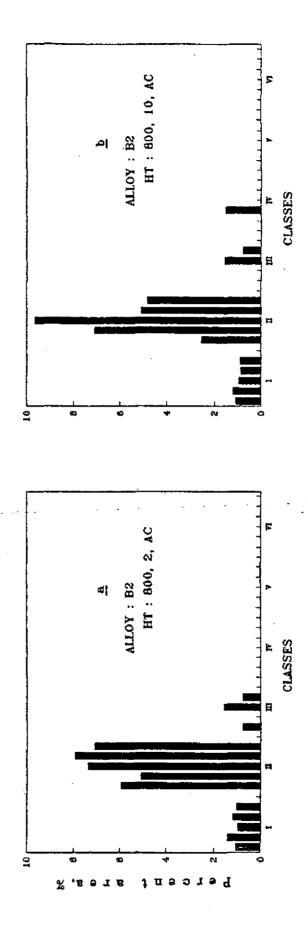
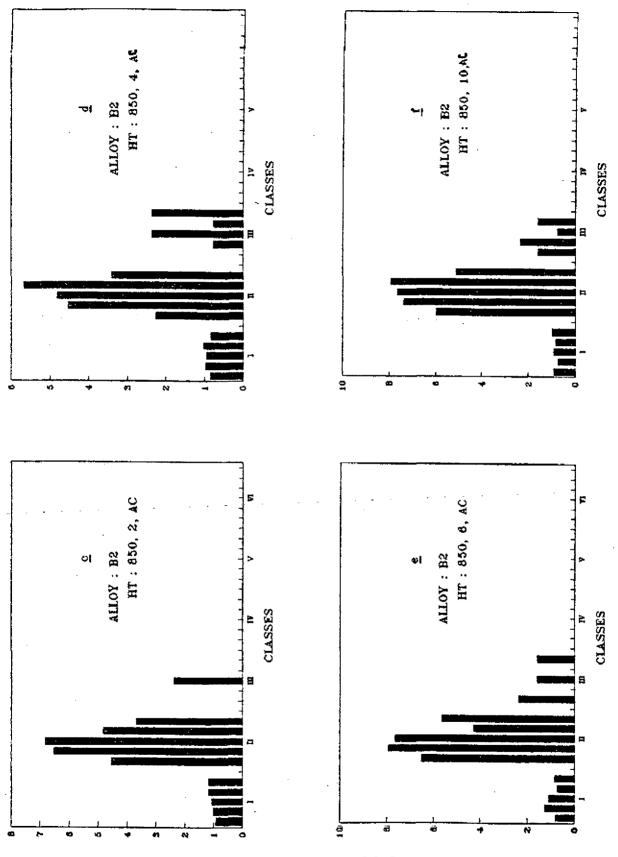
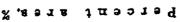
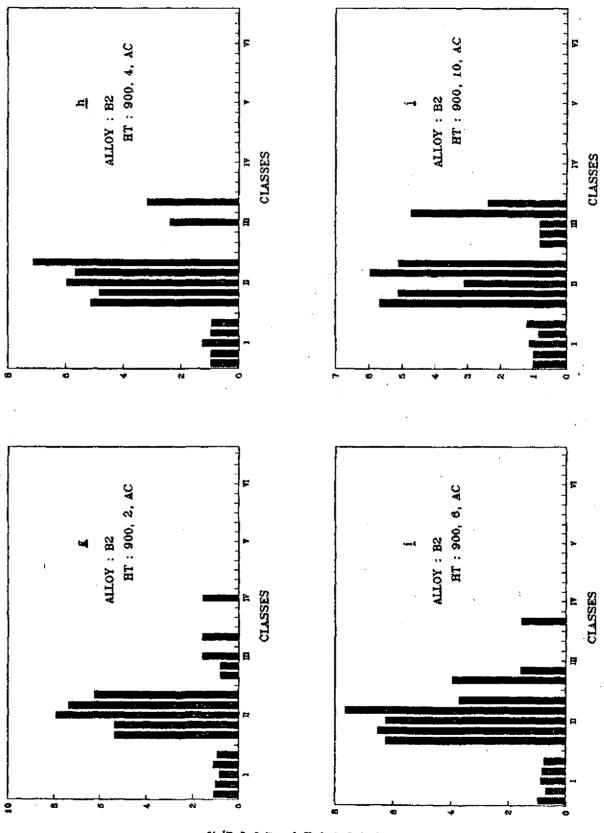







Fig. 4.35 Composite histograms depicting class-wise particle distribution at five different locations

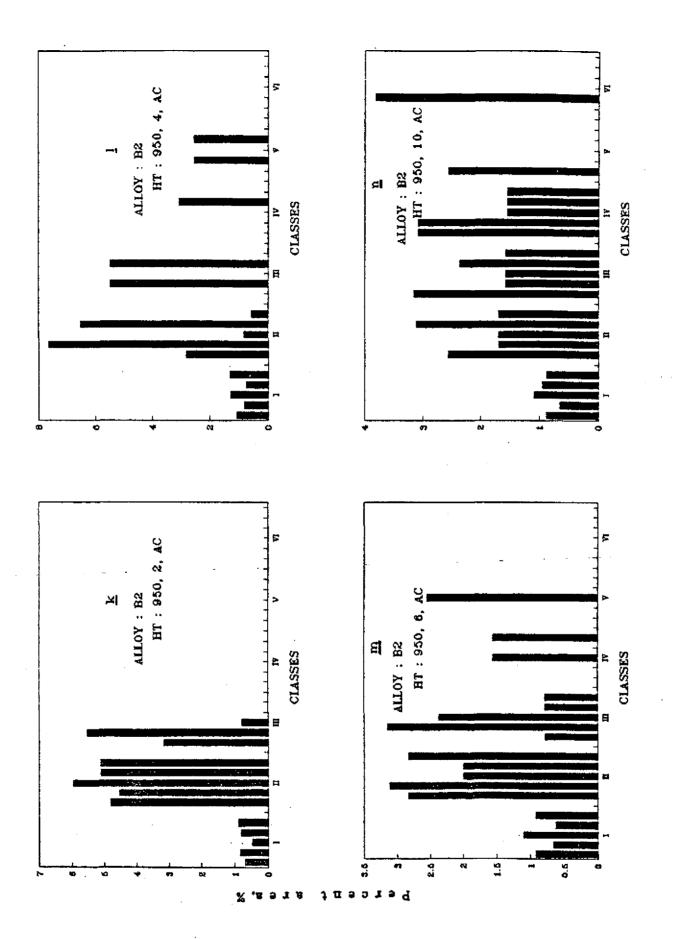
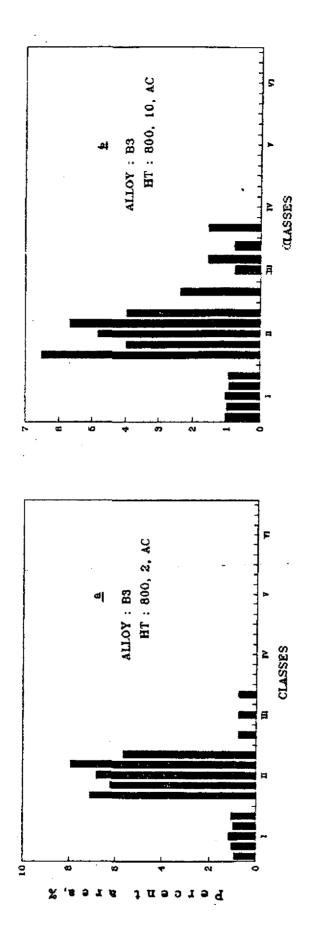
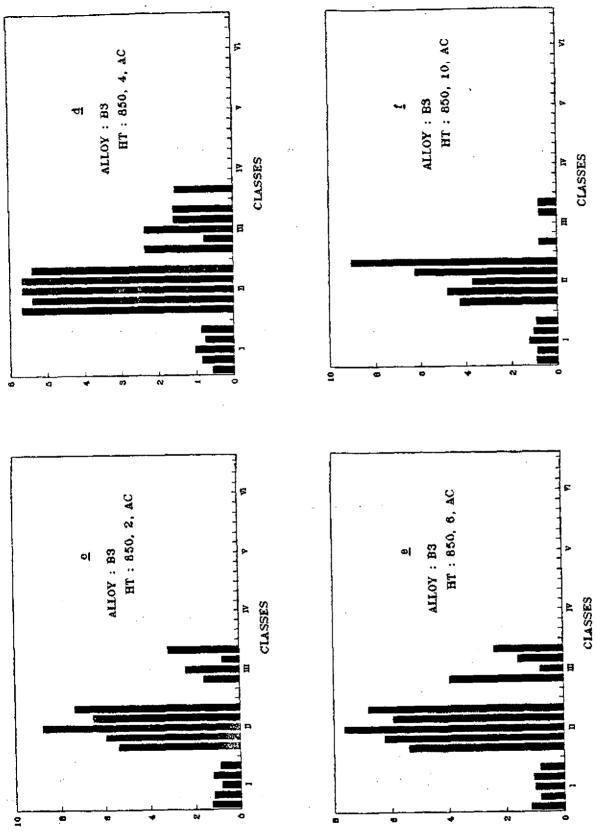


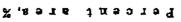


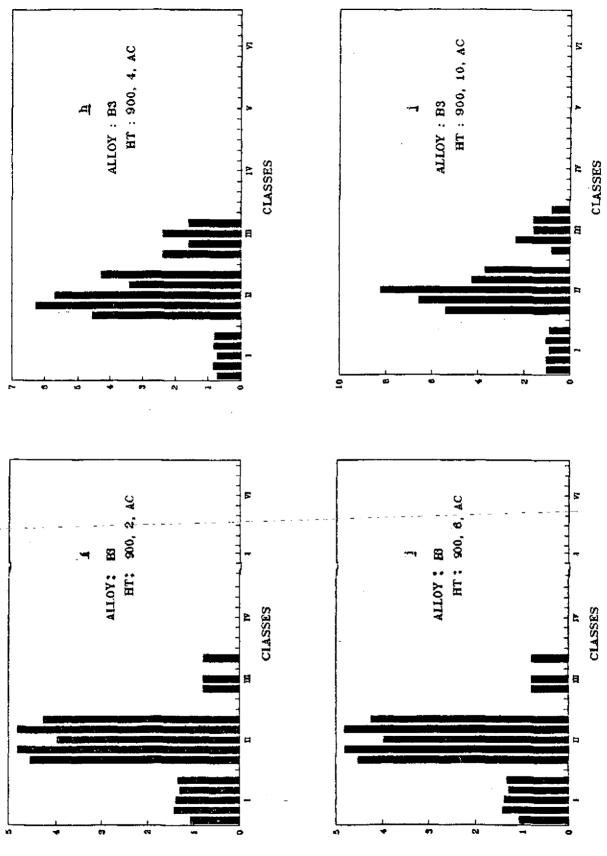


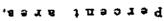


Регселі агеа, %



Fig. 4.36 Composite histograms depicting class-wise particle distribution at five different locations




F-48

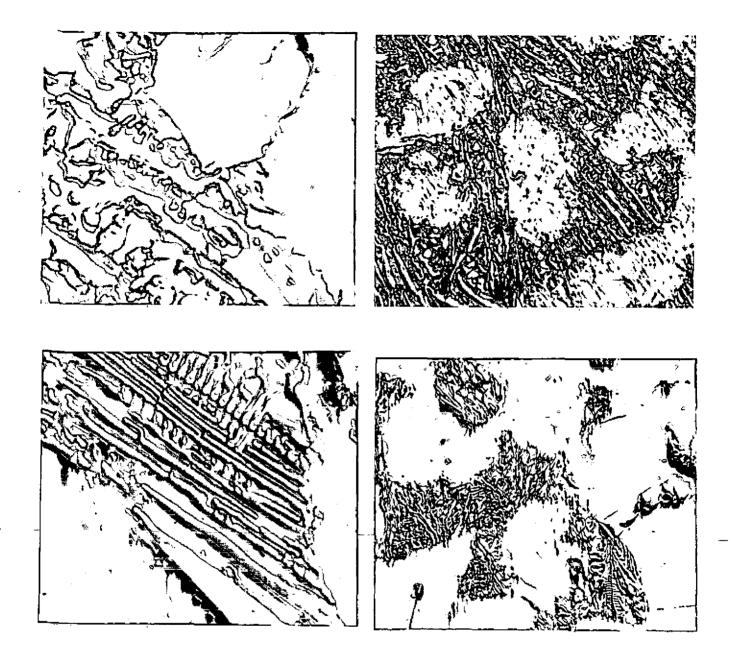
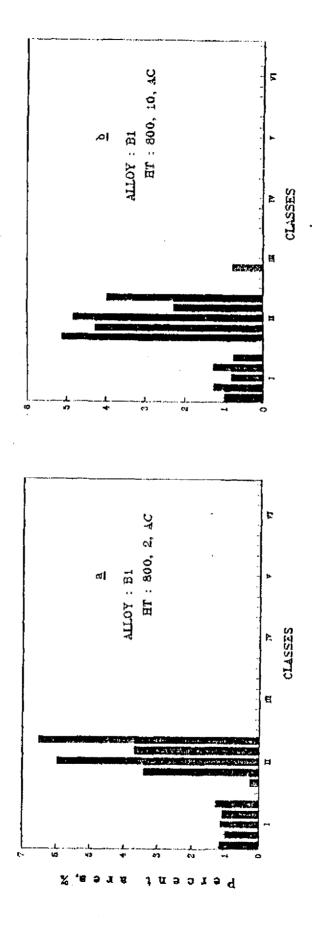
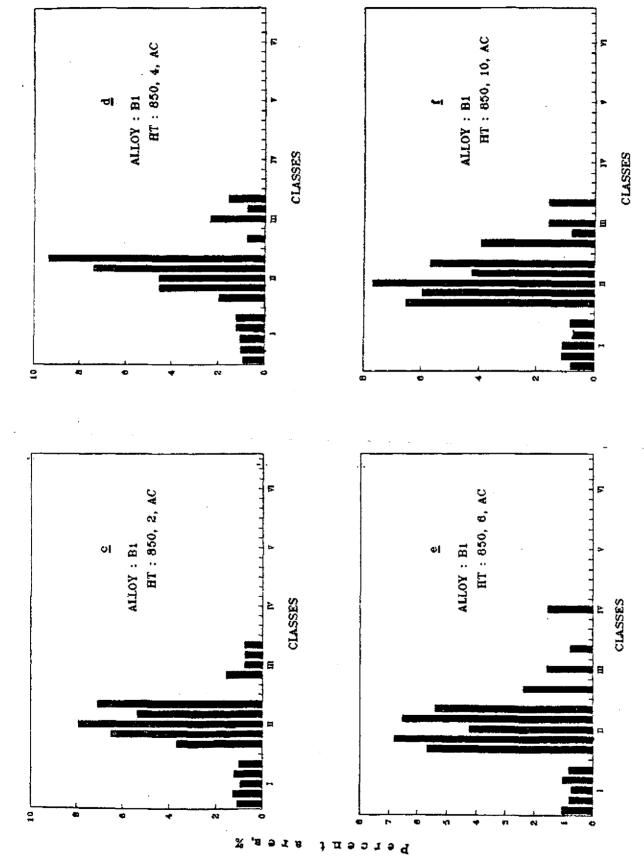


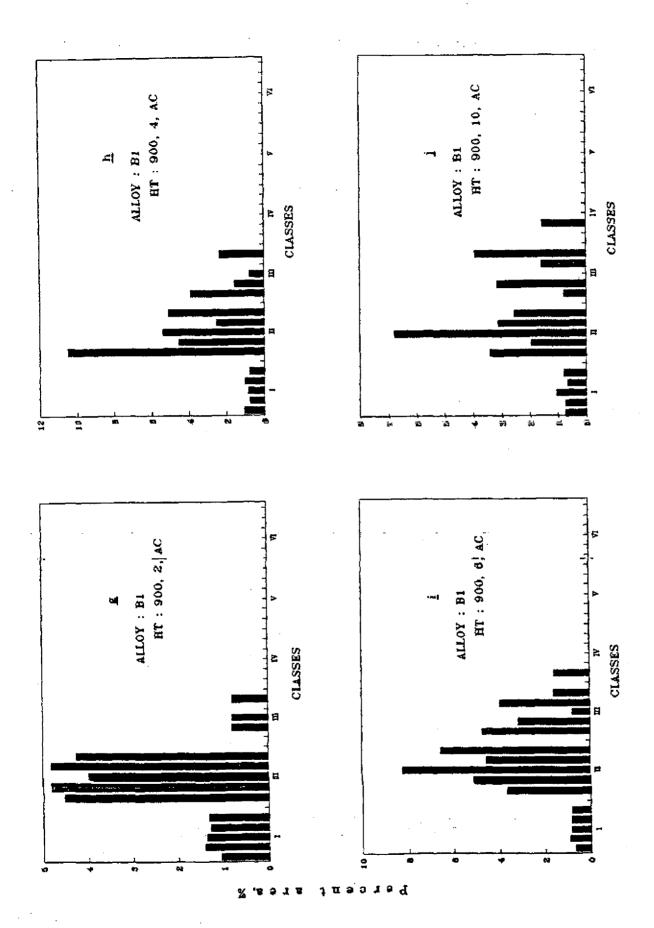


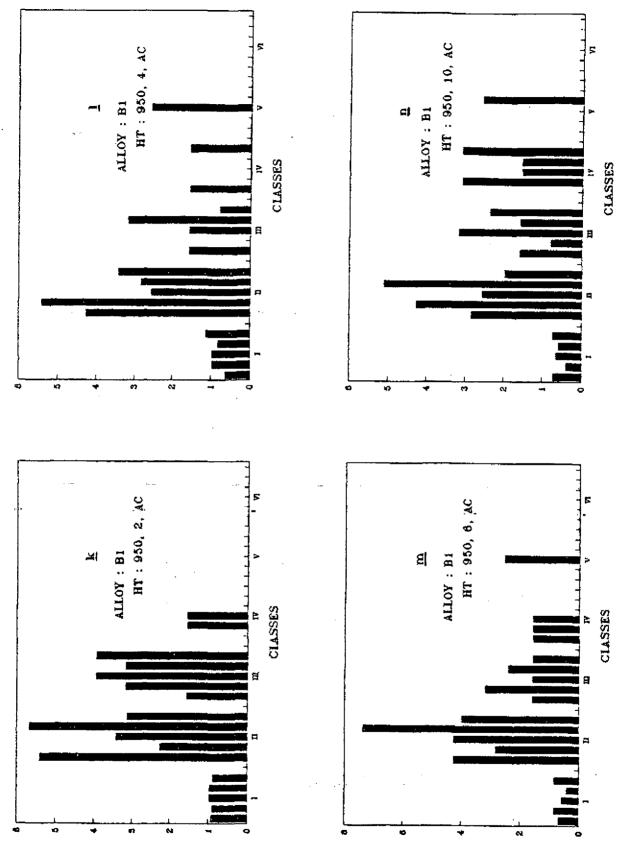








Fig. 4.34 Composite histograms depicting class-wise particle distribution at five different locations



F-40







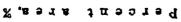
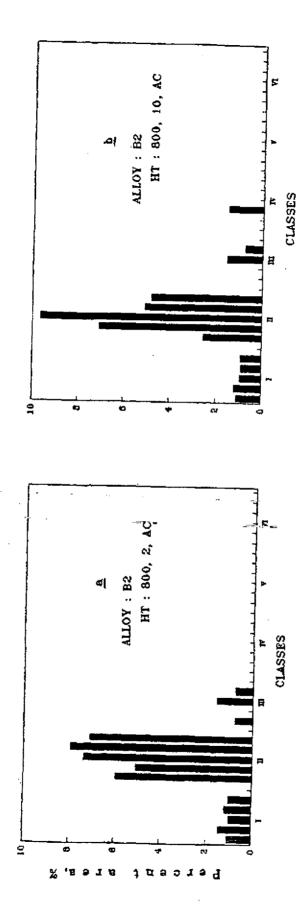
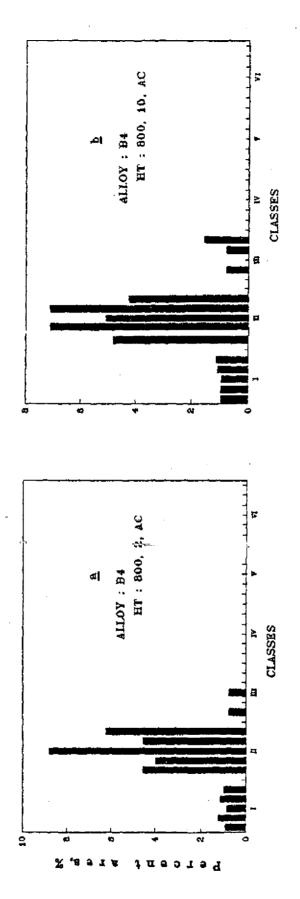
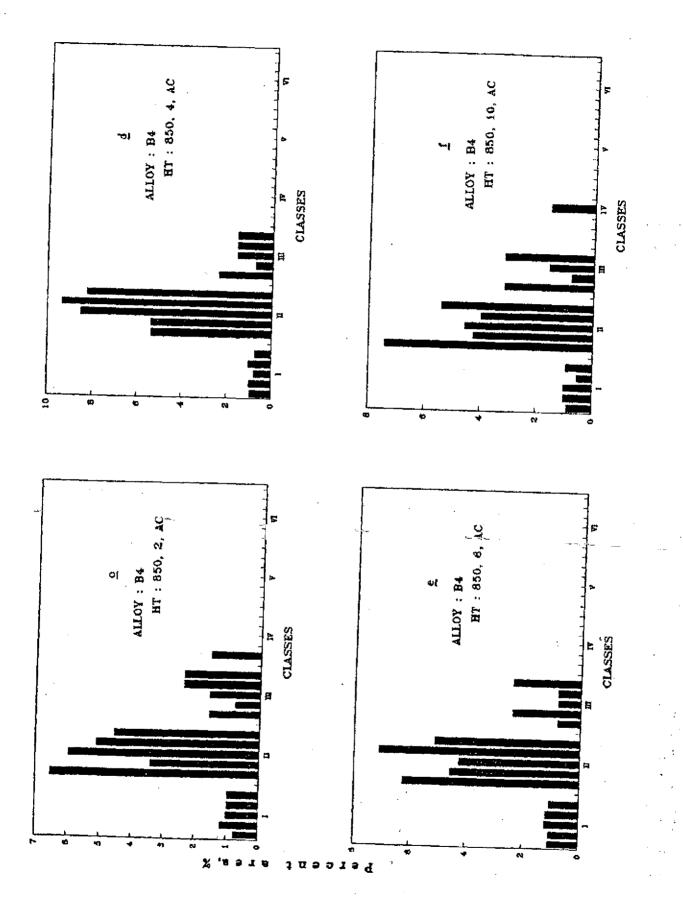
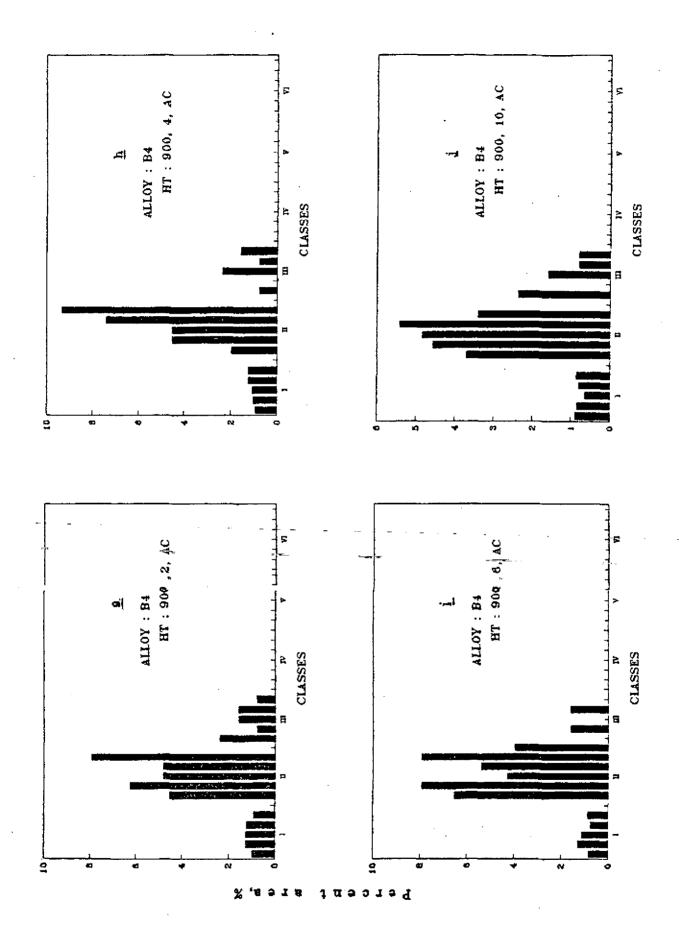
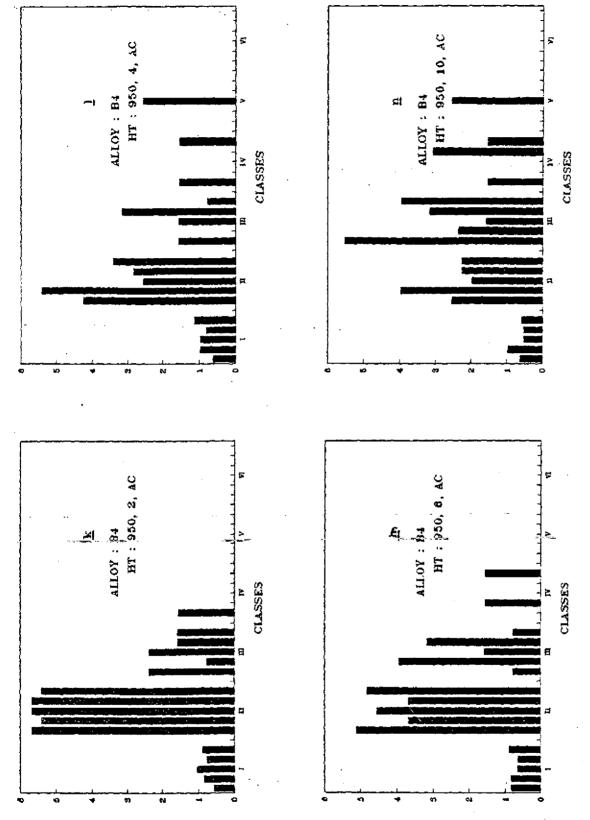



Fig. 4.35 Composite histograms depicting class-wise particle distribution at five different locations

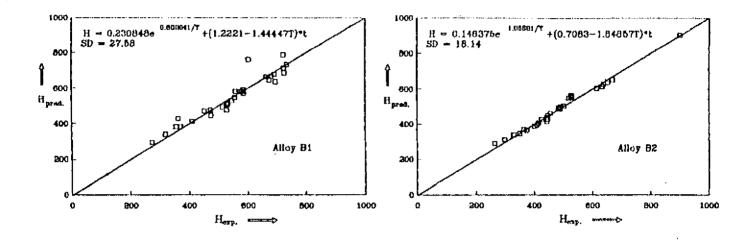


Fig. 4.37 Composite histograms depicting class-wise particle distribution at five different locations



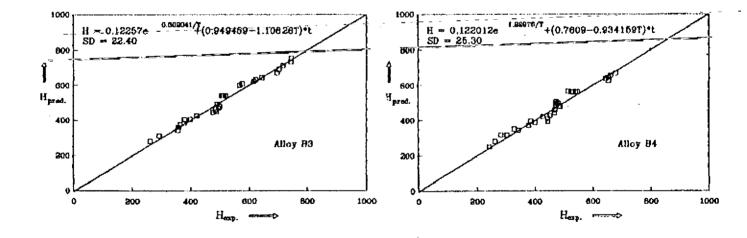


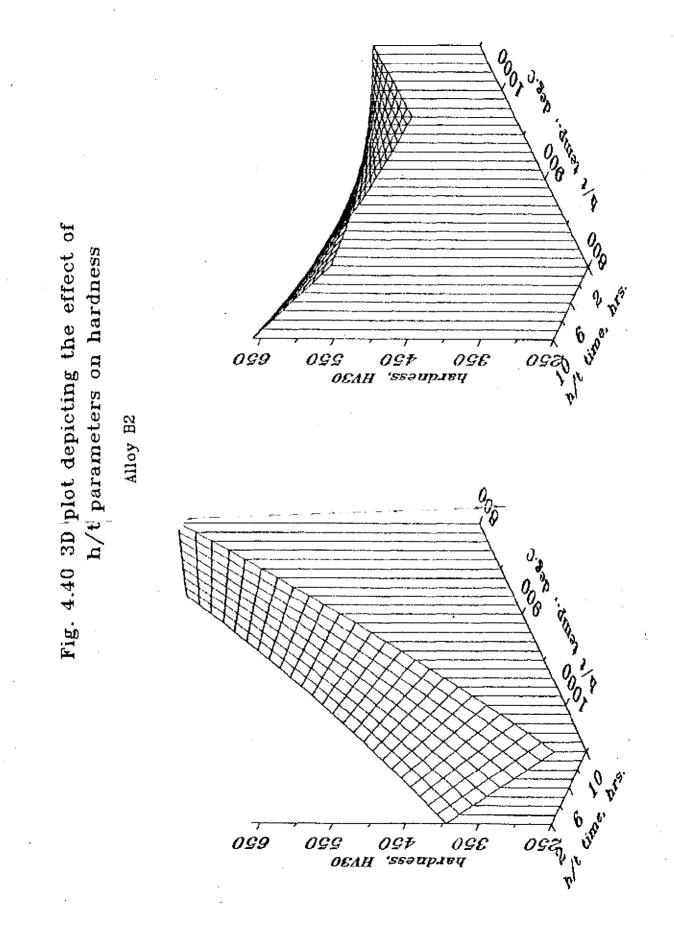


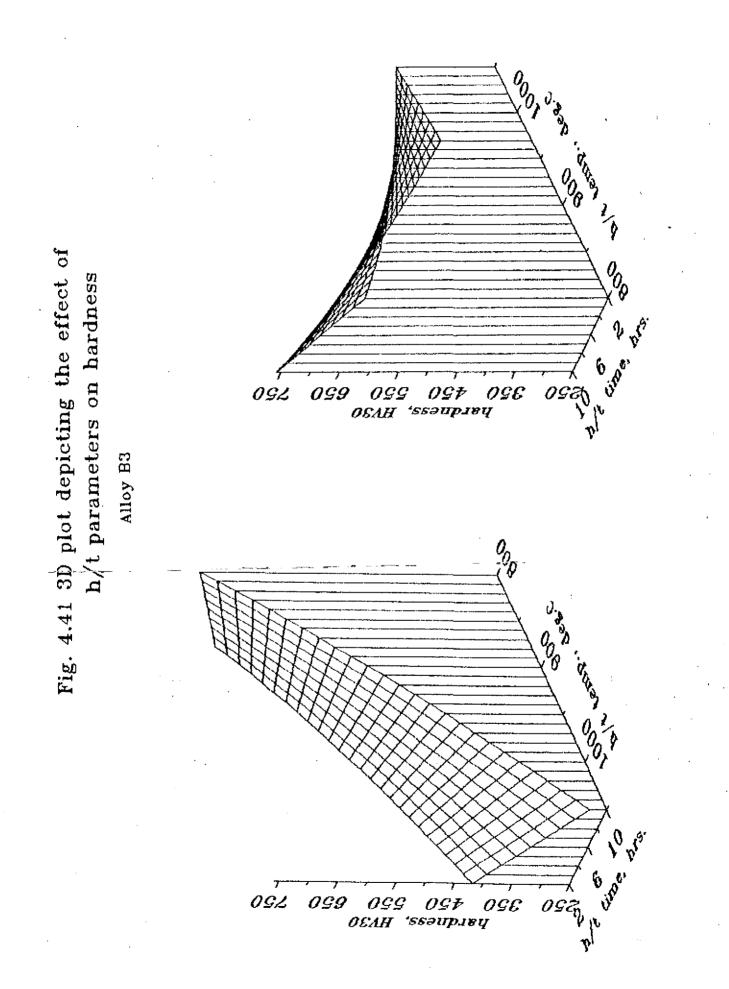



F--53




F-54






## Fig. 4.38 A plot of experimental vs predicted hardness values in the experimental alloys









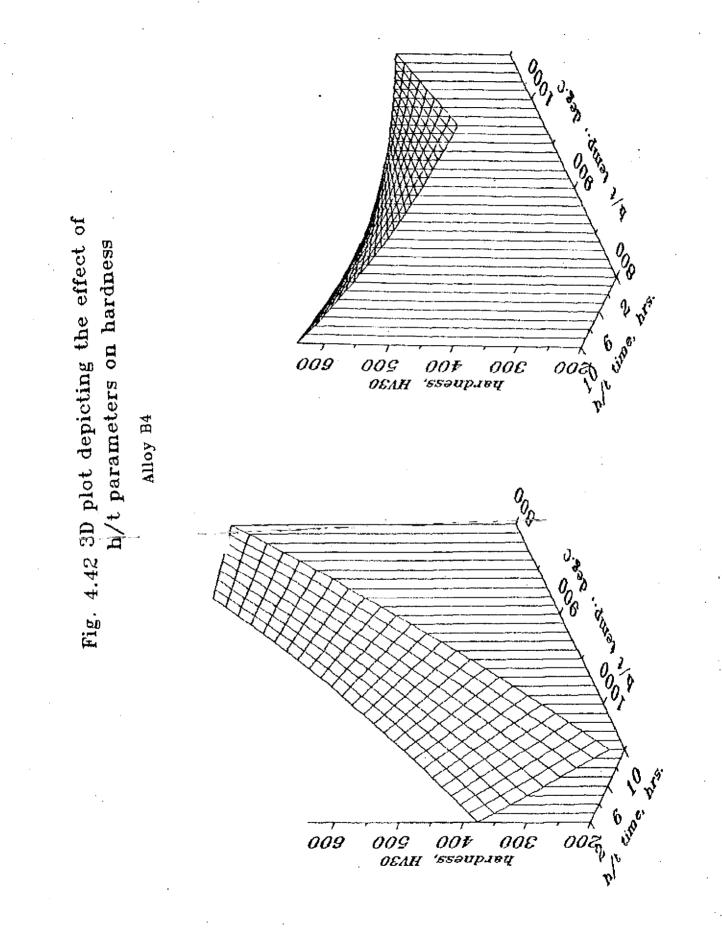
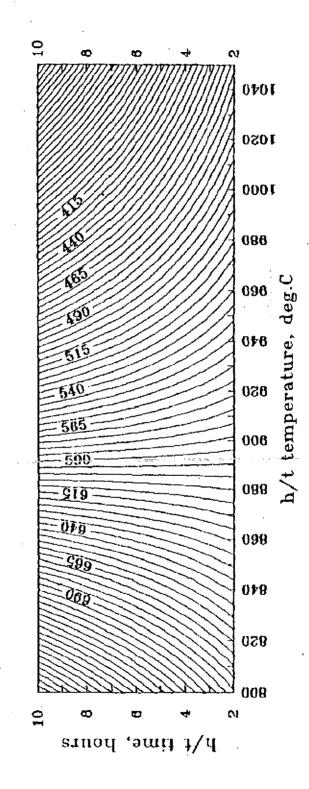
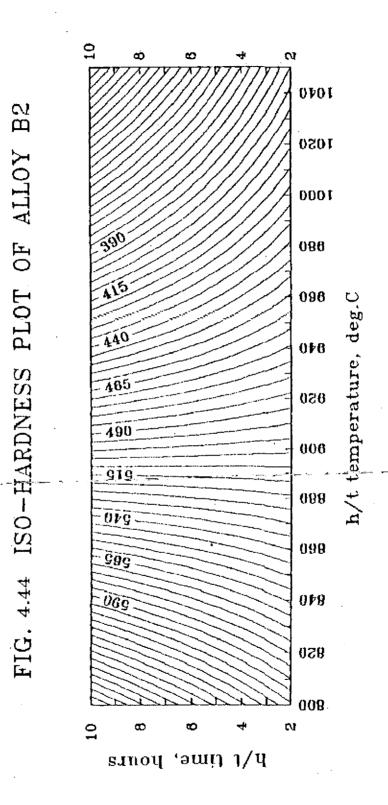
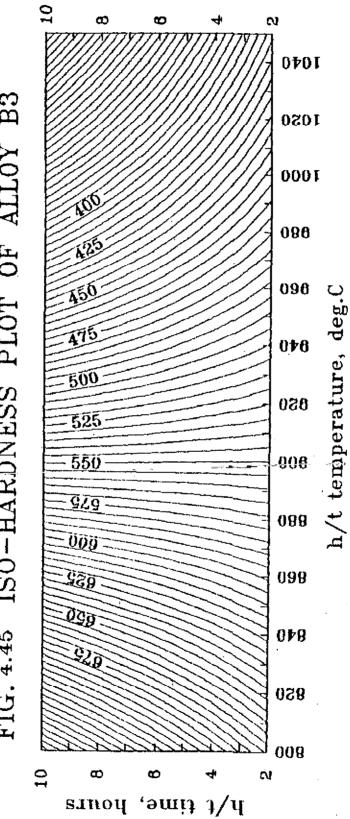






FIG. 4.43 ISO-HARDNESS PLOT OF ALLOY B1









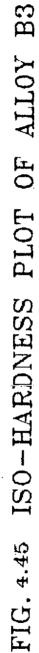
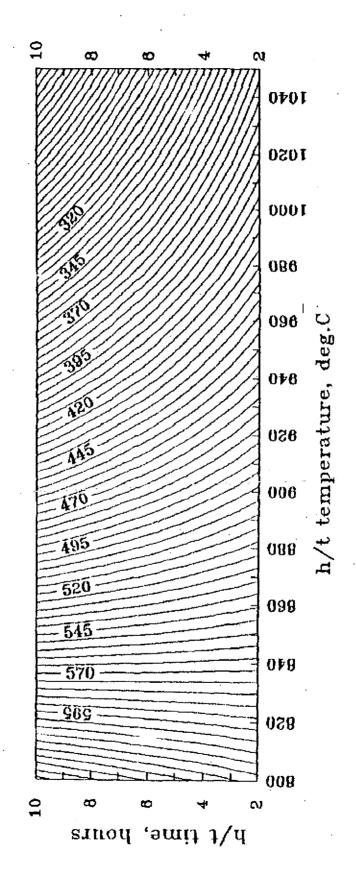






FIG.4.46 ISO-HARDNESS PLOT OF ALLOY B4



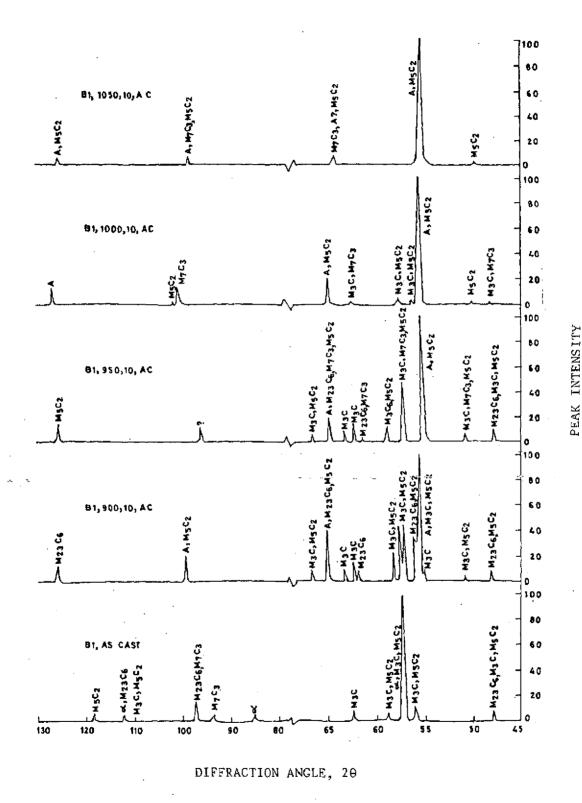



FIG. 5.1- COMPARATIVE X-RAY DIFFRACTOGRAMS OF ALLOY B1

F-65

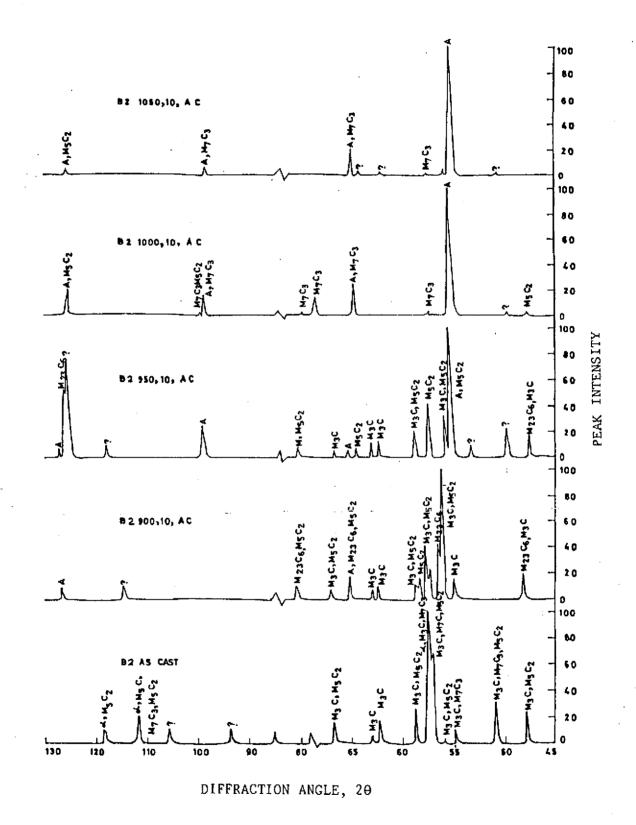
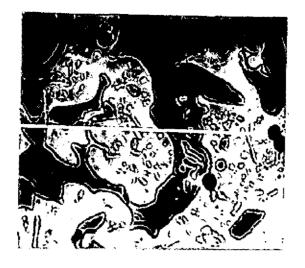
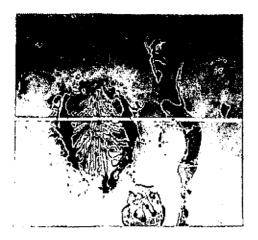




FIG. 5.2- COMPARATIVE X-RAY DIFFRACTOGRAMS OF ALLOY B2

. .







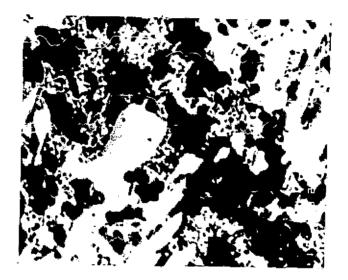

.

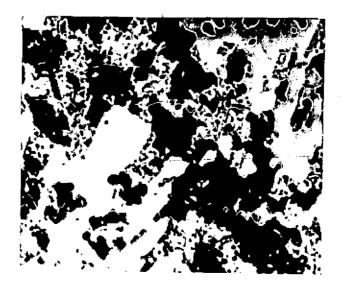
·

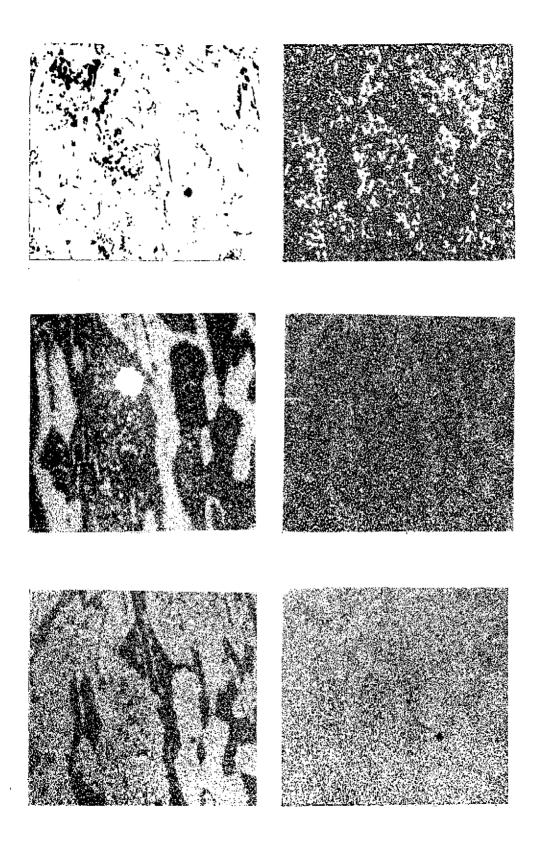
.

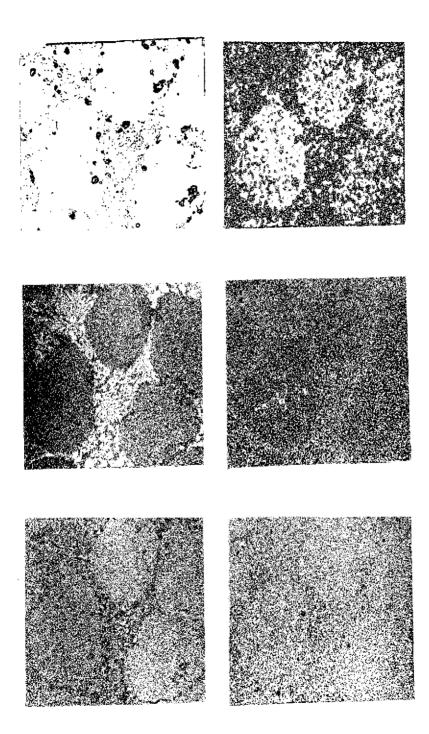
. .

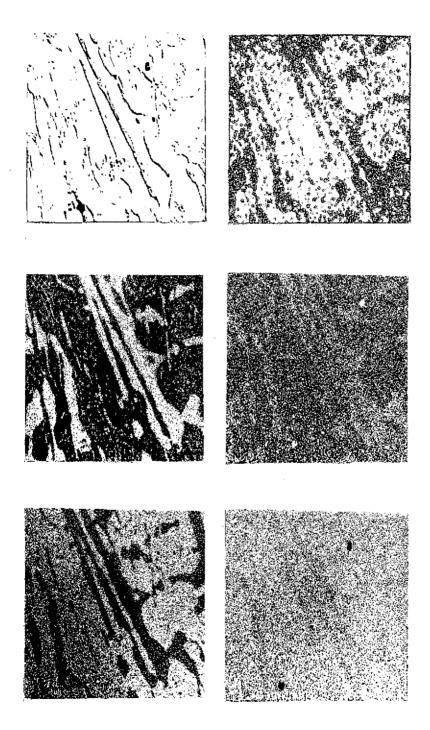






. . . 


.



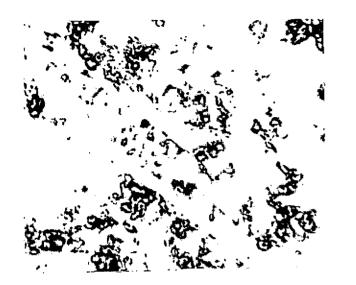


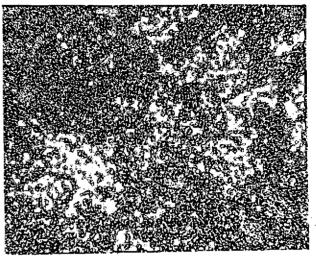


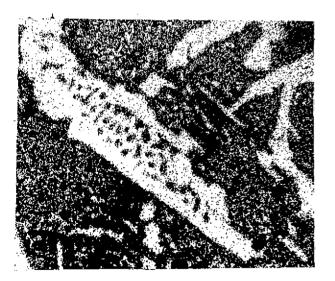


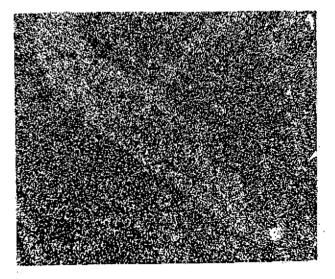




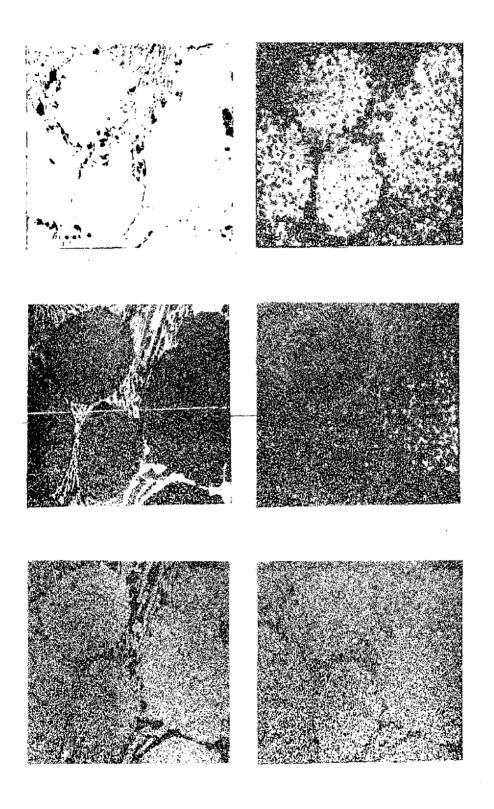


.


· ·

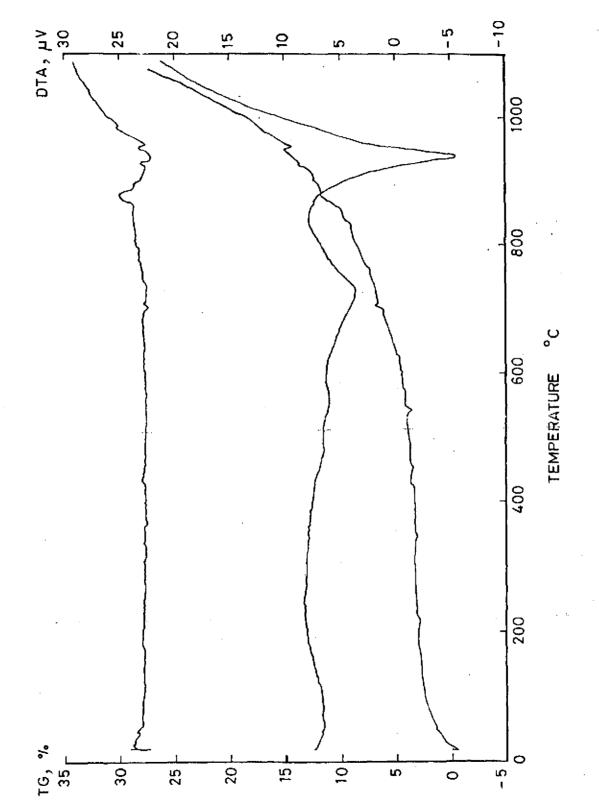

.


.

·

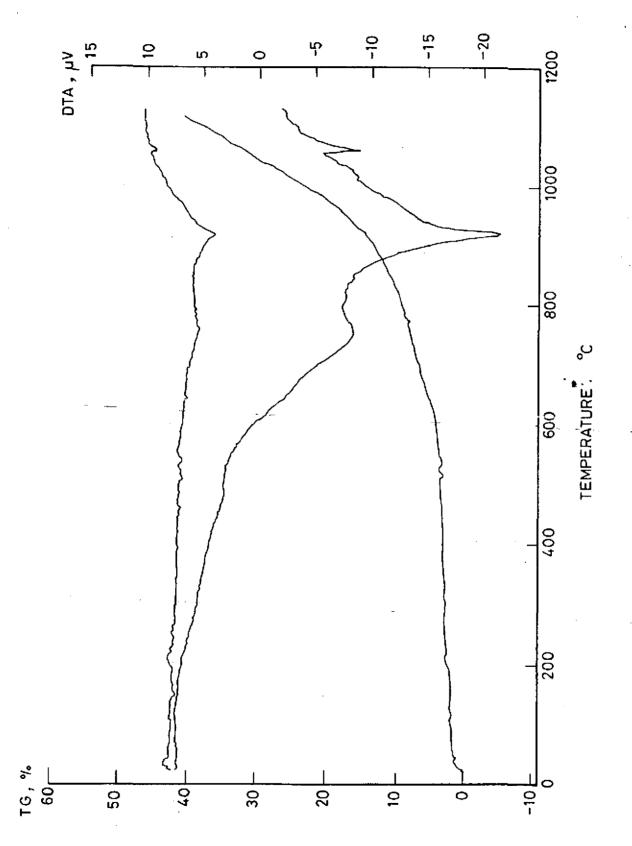




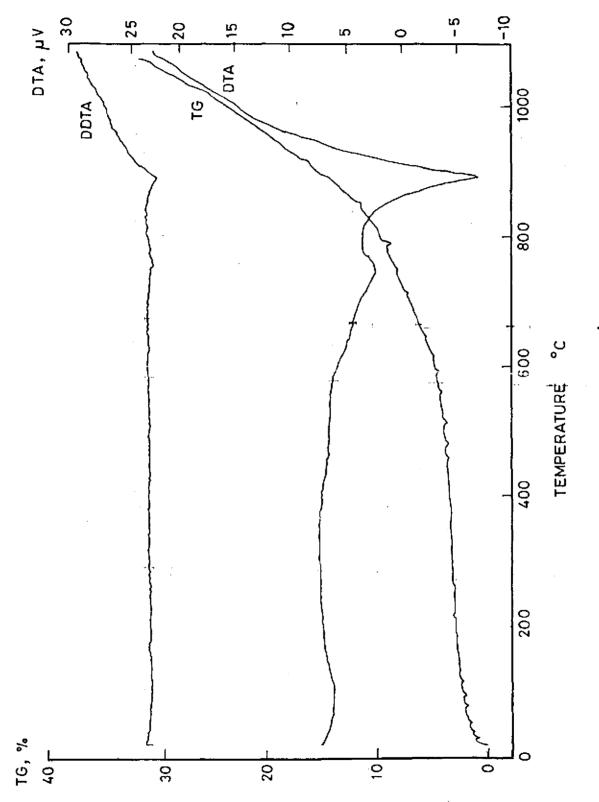



.



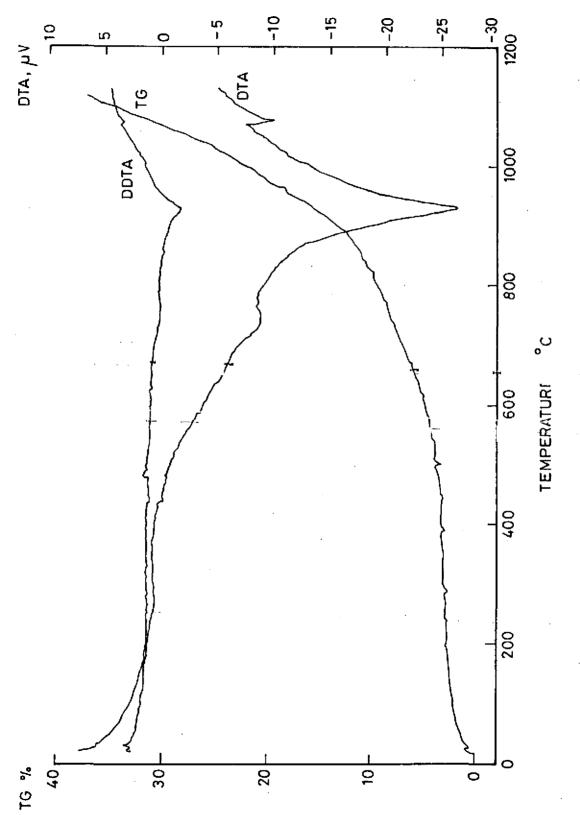




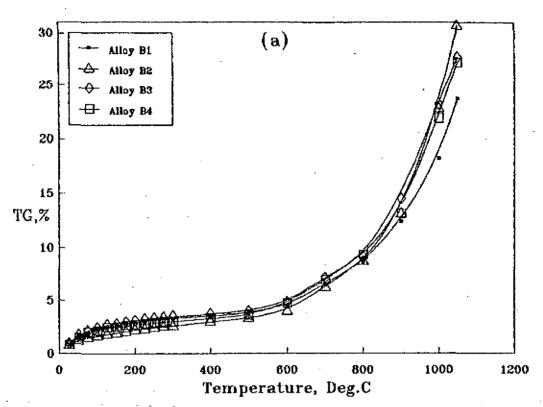

F-76

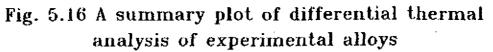




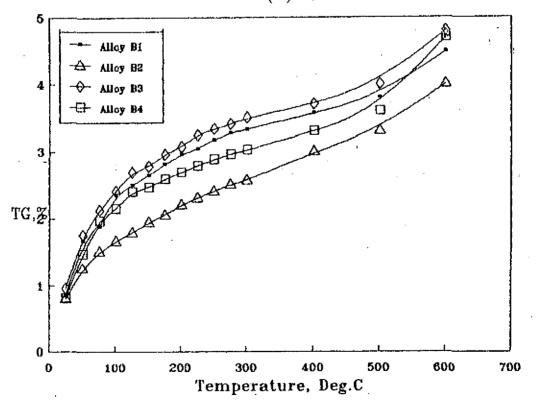






F-78















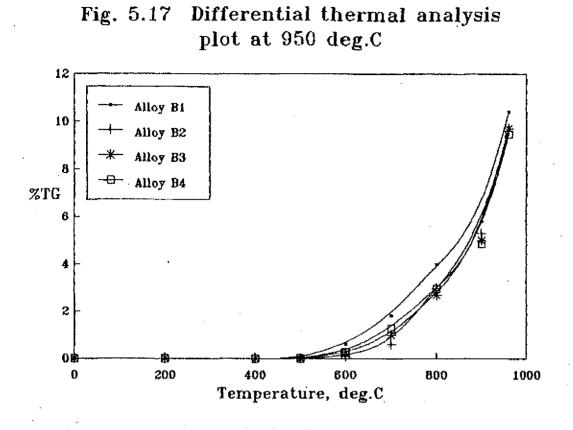




Fig. 5.18 Differential thermal analysis plot at 1050 deg.C

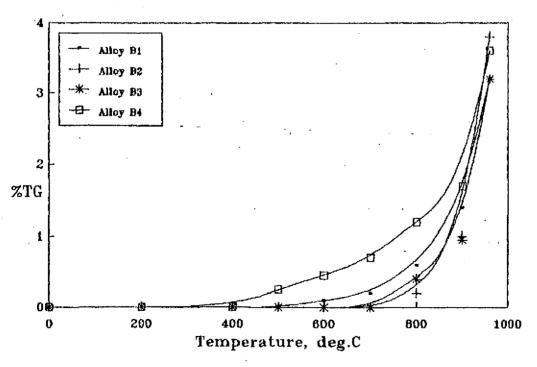
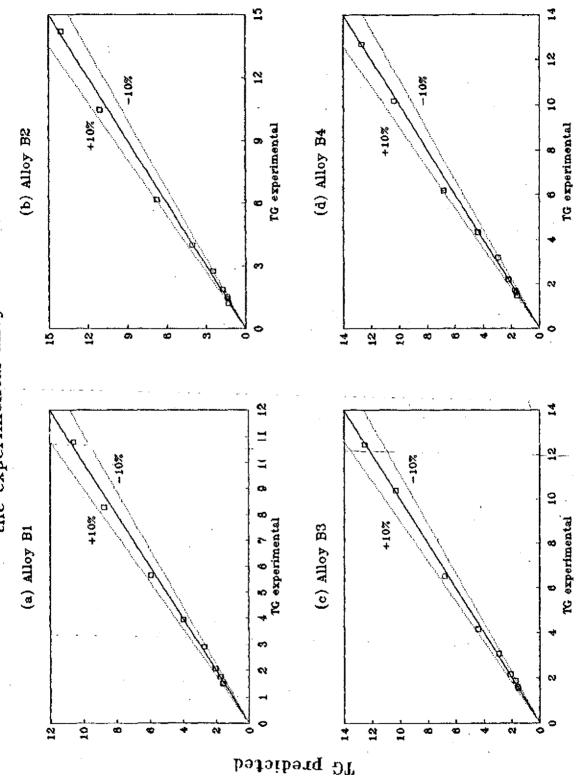
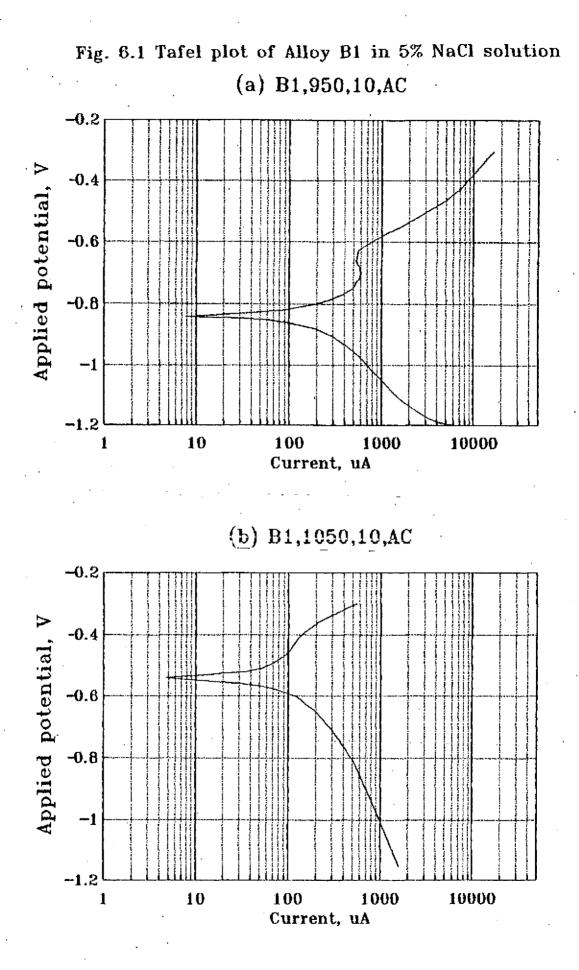





Fig. 5.19 A plot of experimental vs predicted %TG in the experimental alloys





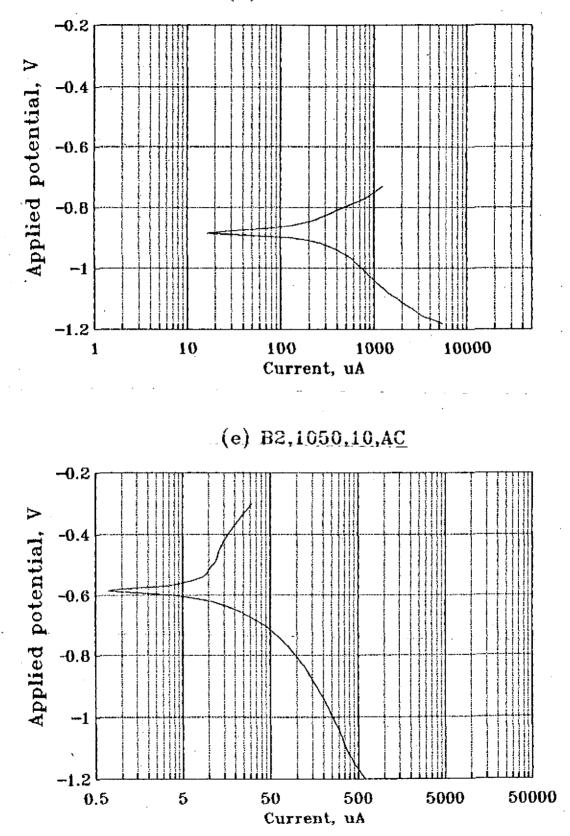



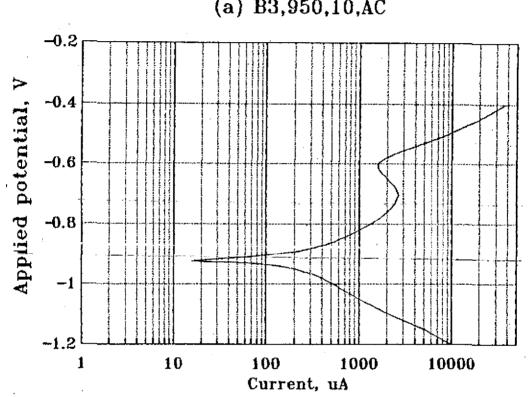
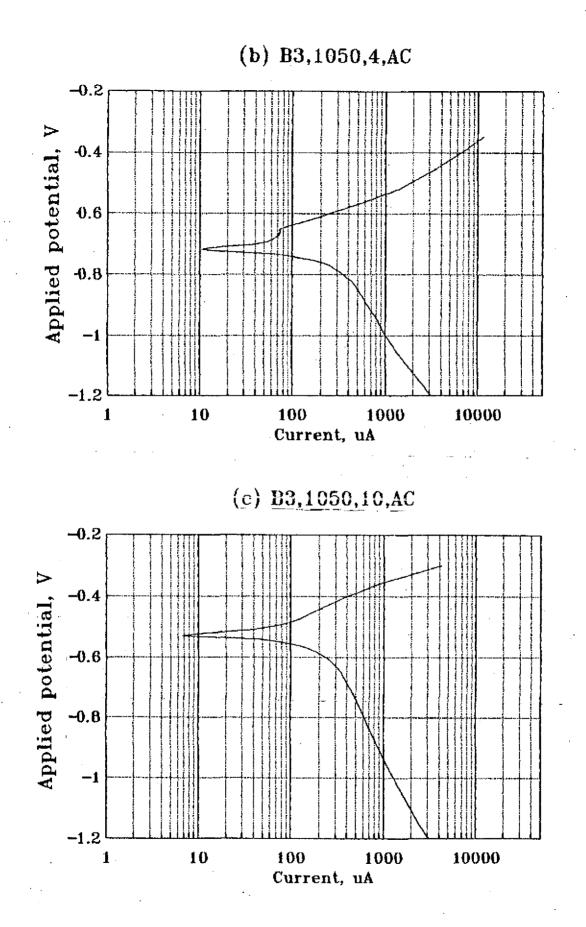
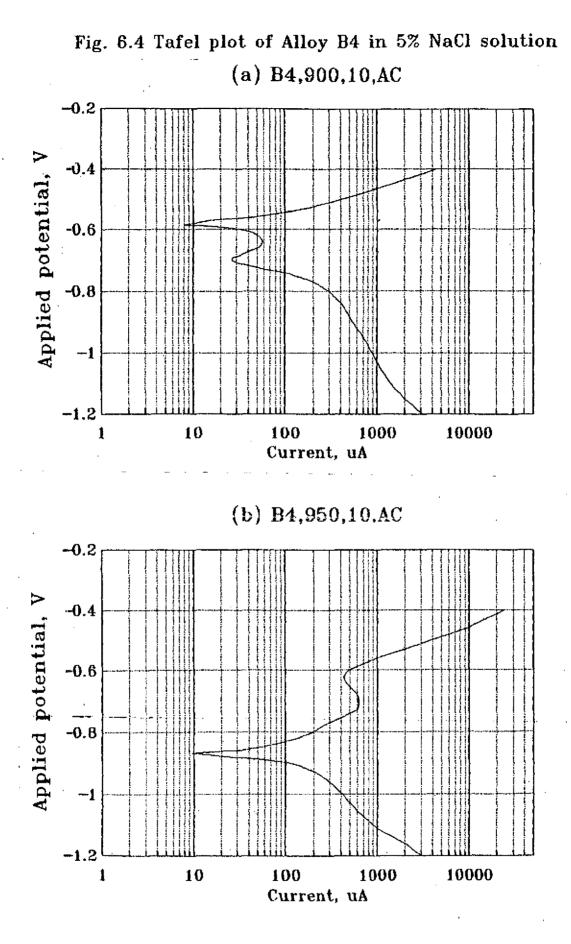
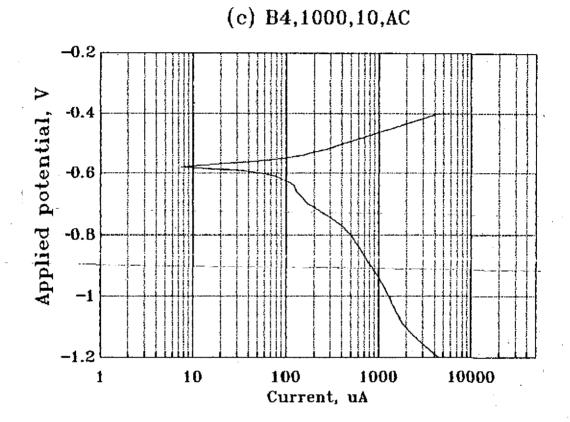

Fig. 6.2 Tafel plot of Alloy B2 in 5% NaCl solution

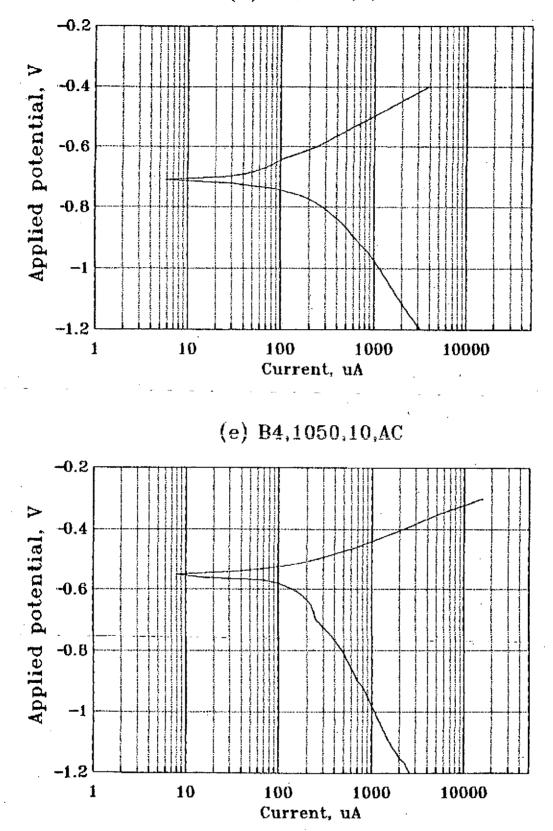
F~84



(d) B2,1050,4,AC





Fig. 6.3 Tafel plot of Alloy B3 in 5% NaCl solution (a) B3,950,10,AC







(d) B4,1050,4,AC



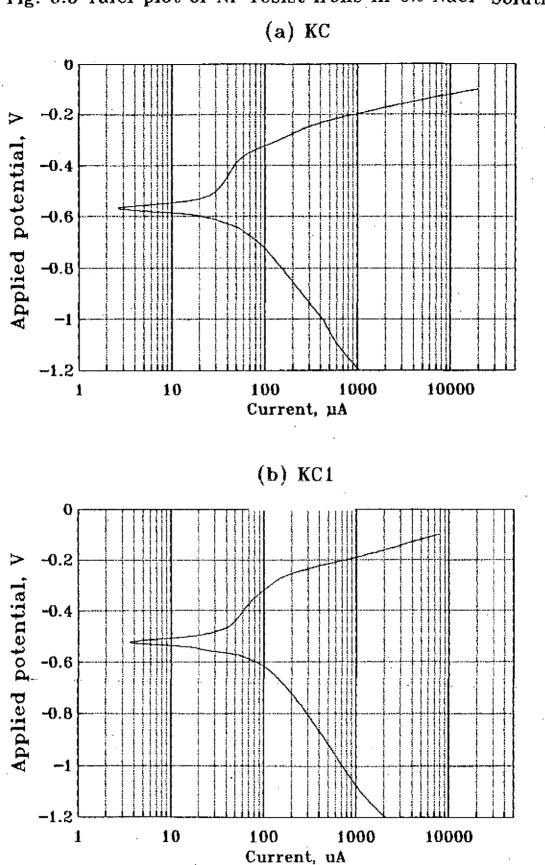
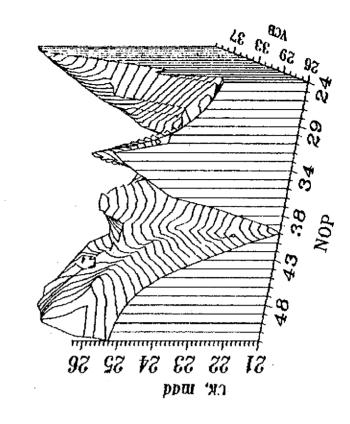
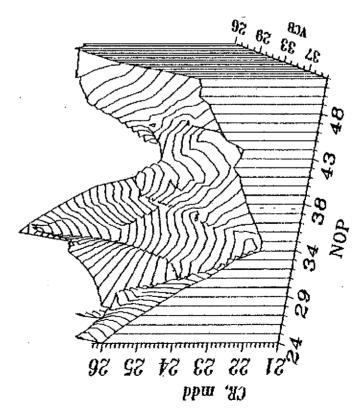
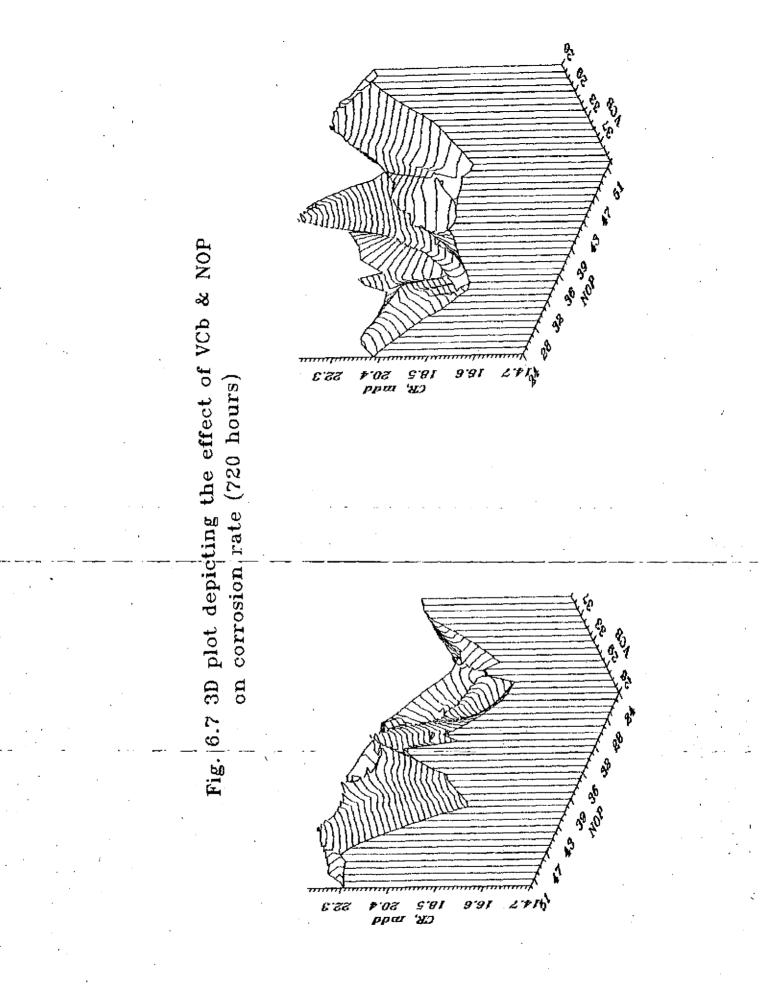
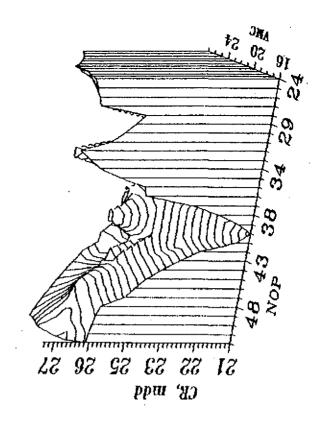
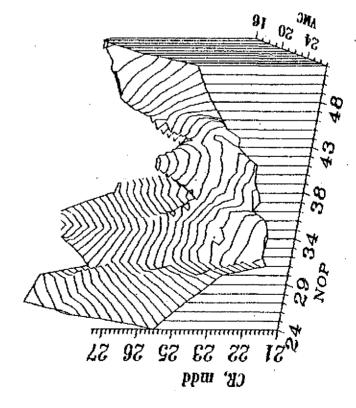
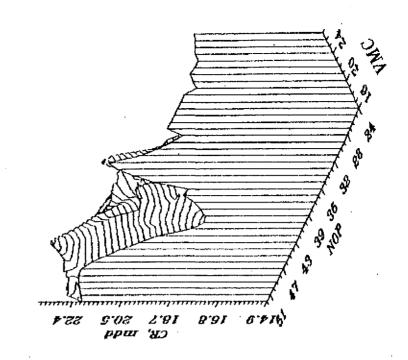




Fig. 6.5 Tafel plot of Ni-resist irons in 5% NaCl Solution





Fig. 6.6 3D plot depicting the effect of VCb & NOP on corrosion rate (168 hours)







6.8 3D plot depicting the effect of VMC & NOP on corrosion rate (168 hours) Fig.



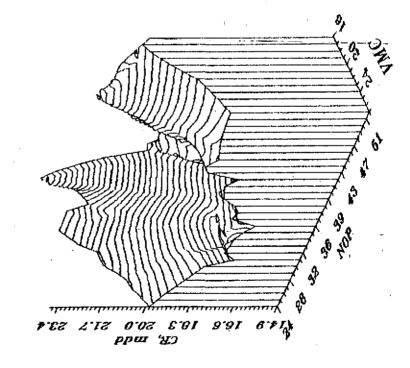
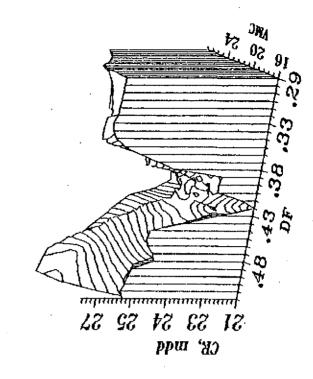
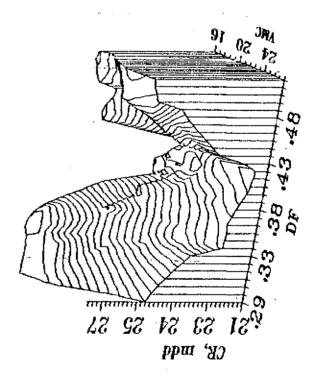
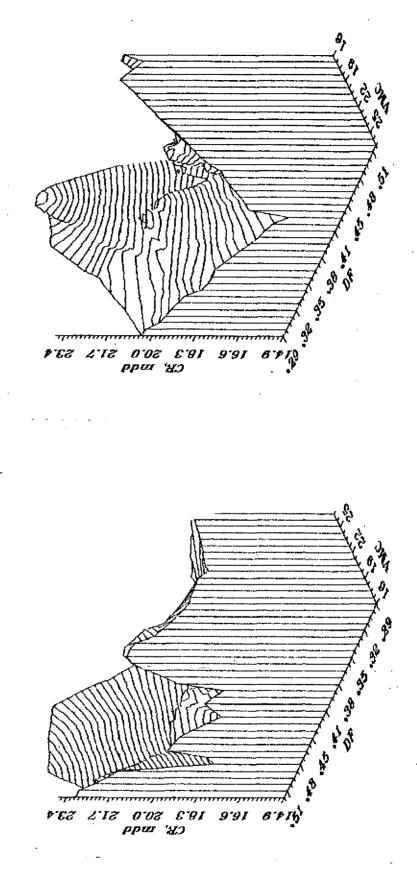
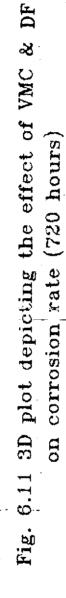
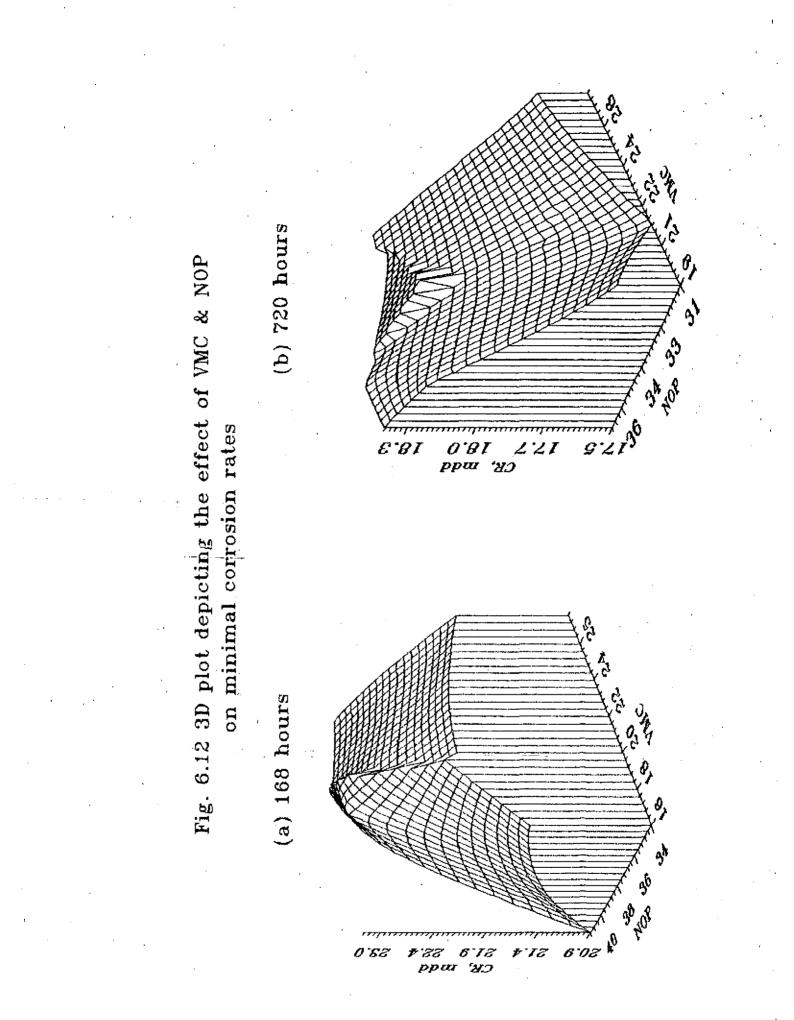
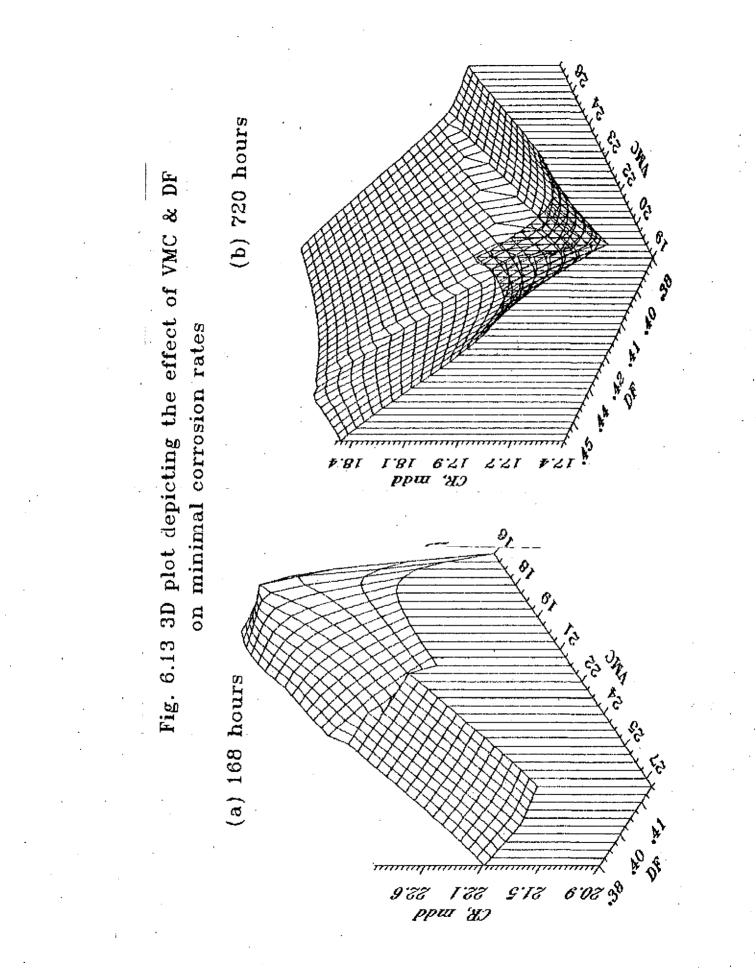
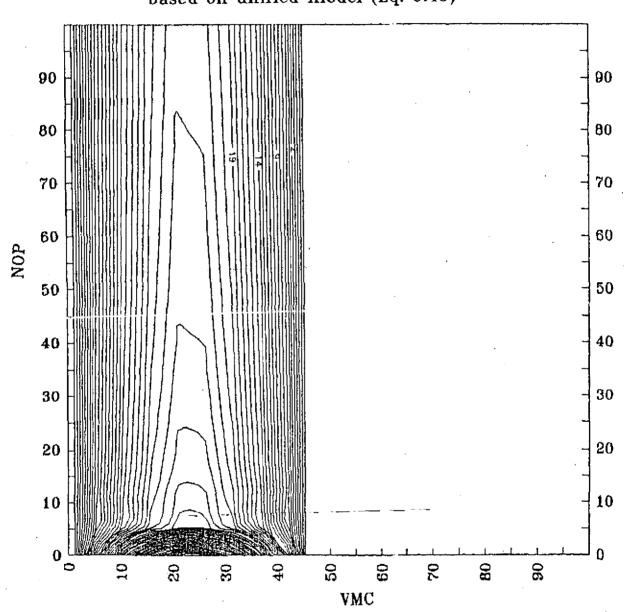




Fig. 6.9 3D plot depicting the effect of VMC & NOP

on corrosion rate (720 hours)





Fig. 6.10 3D plot depicting the effect of VMC & DF on corrosion rate (168 hours)











## Fig. 6.14 Contour plot depicting the combined effect of VMC & NOP on corrosion rate (168 hours) based on unified model (Eq. 6.45)

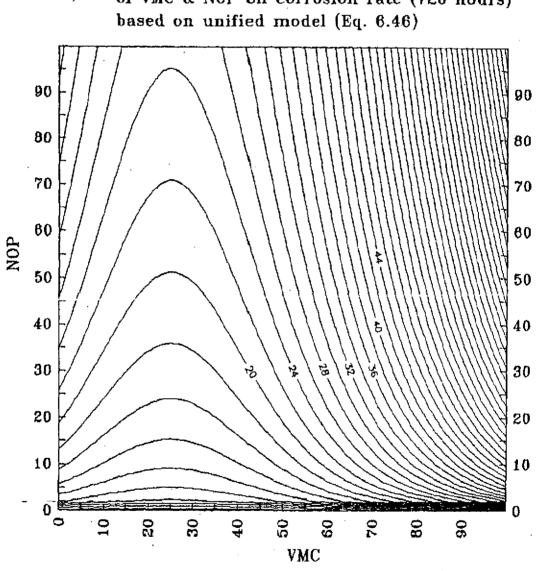



Fig. 6.15 Contour plot depicting the combined effect of VMC & NOP on corrosion rate (720 hours) based on unified model (Eq. 6.46)

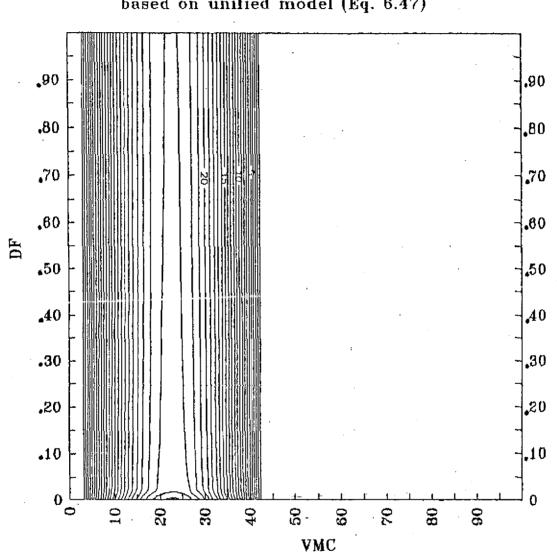



Fig. 6.16 Contour plot depicting the combined effect of VMC & DF on corrosion rate (168 hours) based on unified model (Eq. 6.47)

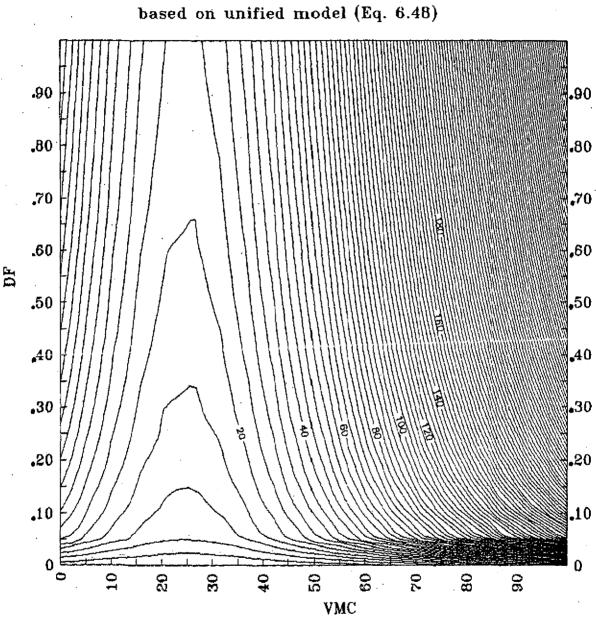



Fig. 6.17 Contour plot depicting the combined effect of VMC & DF on corrosion rate (720 hours) based on unified model (Eq. 6.48)

F-104

5

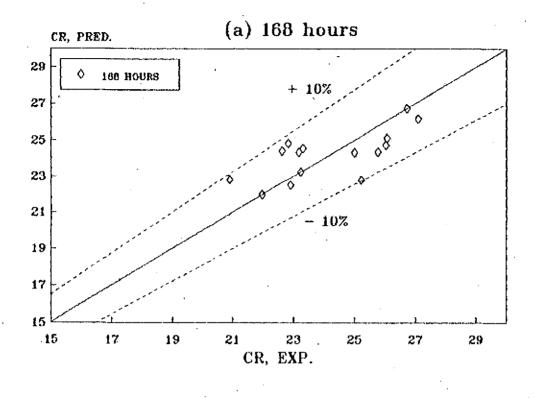
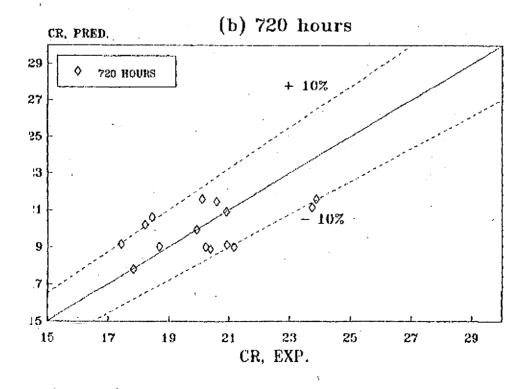
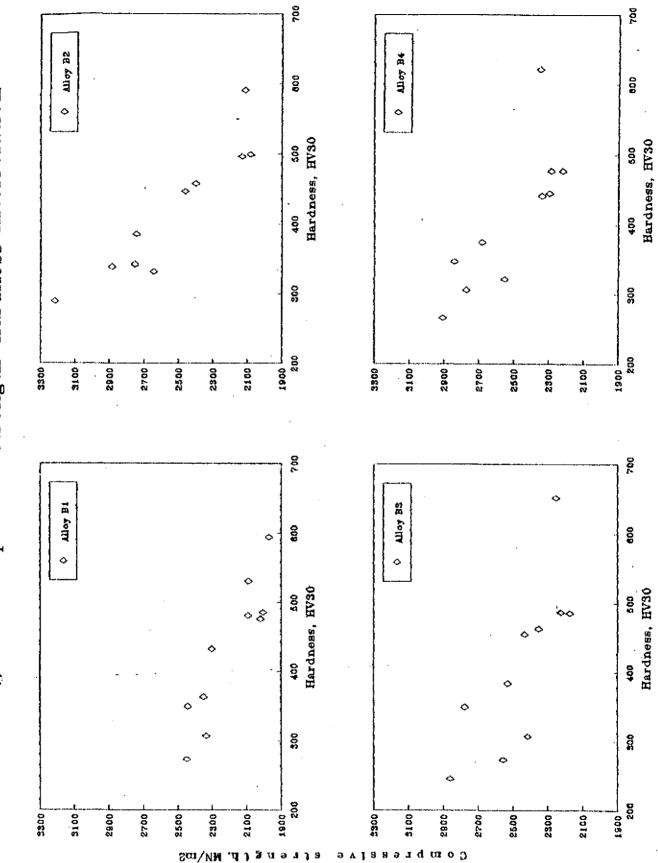
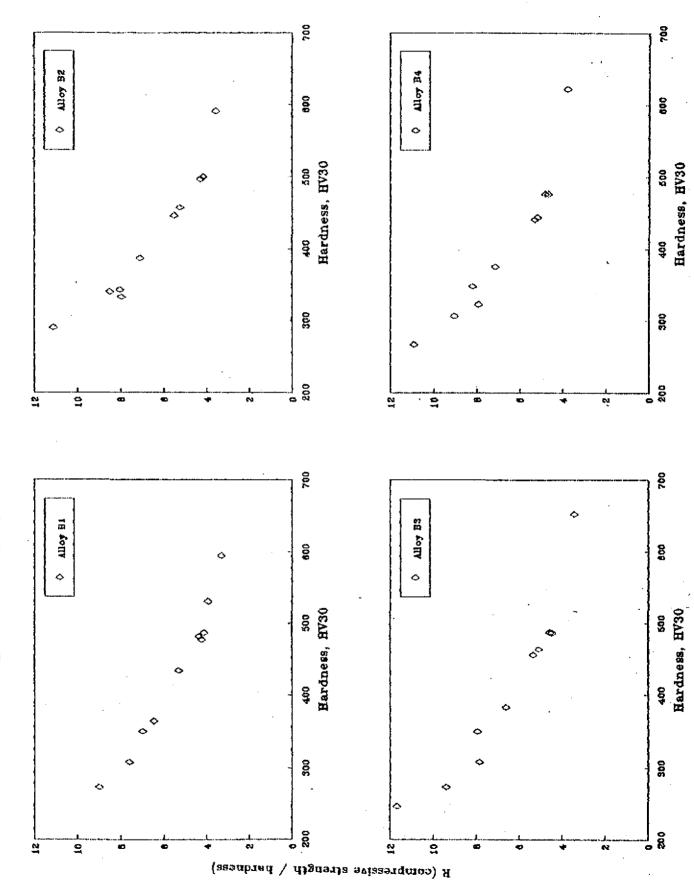
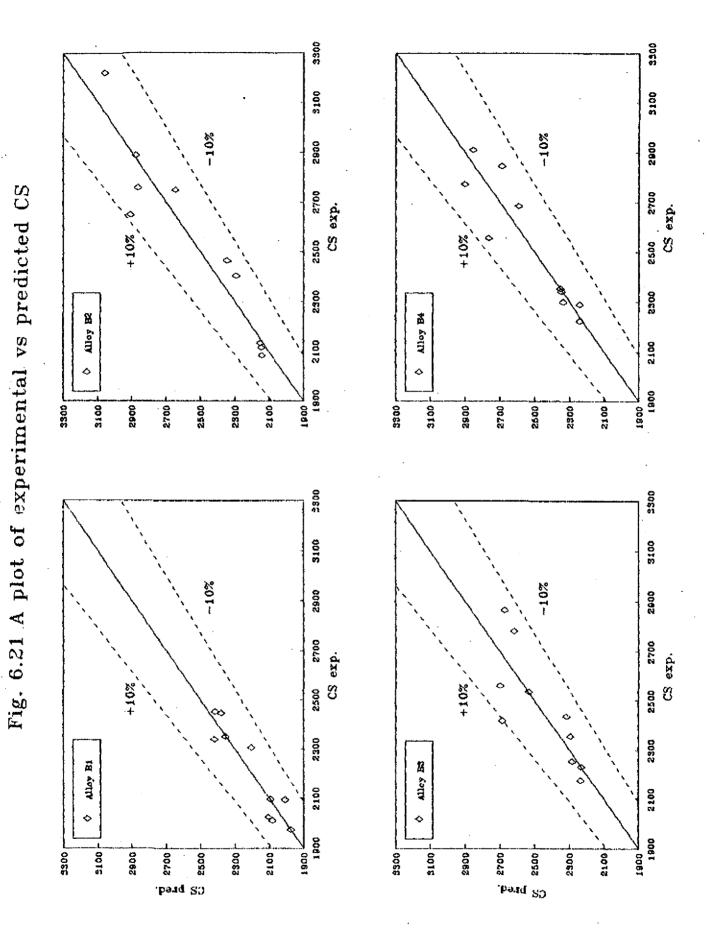




Fig. 6.18 A plot of experimental vs predicted CR based on unified model



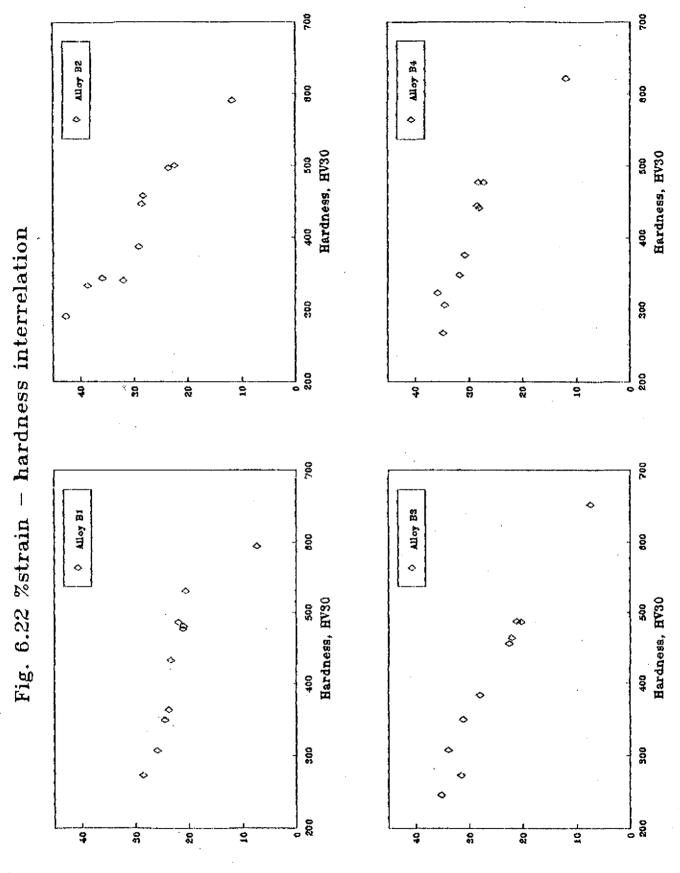
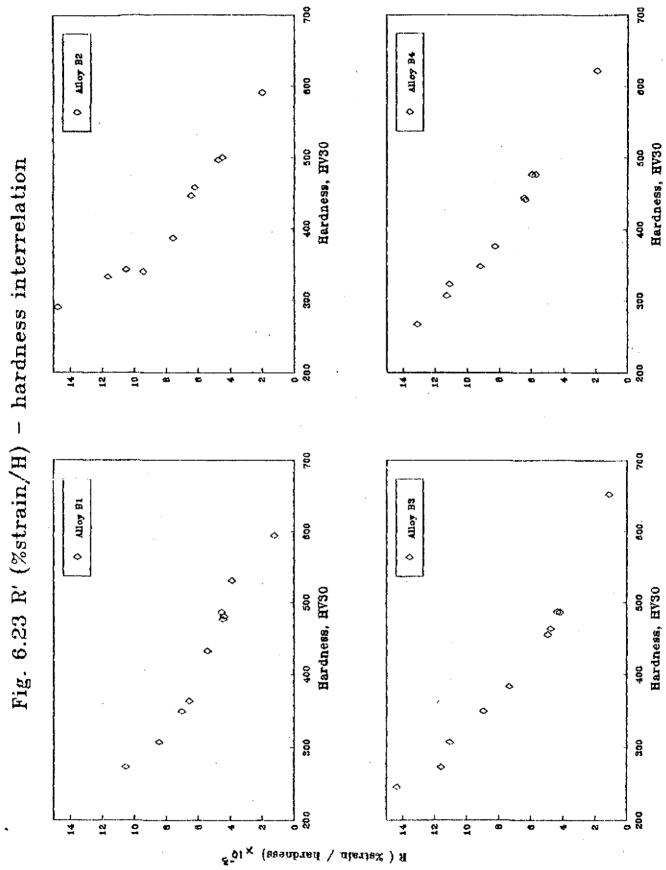
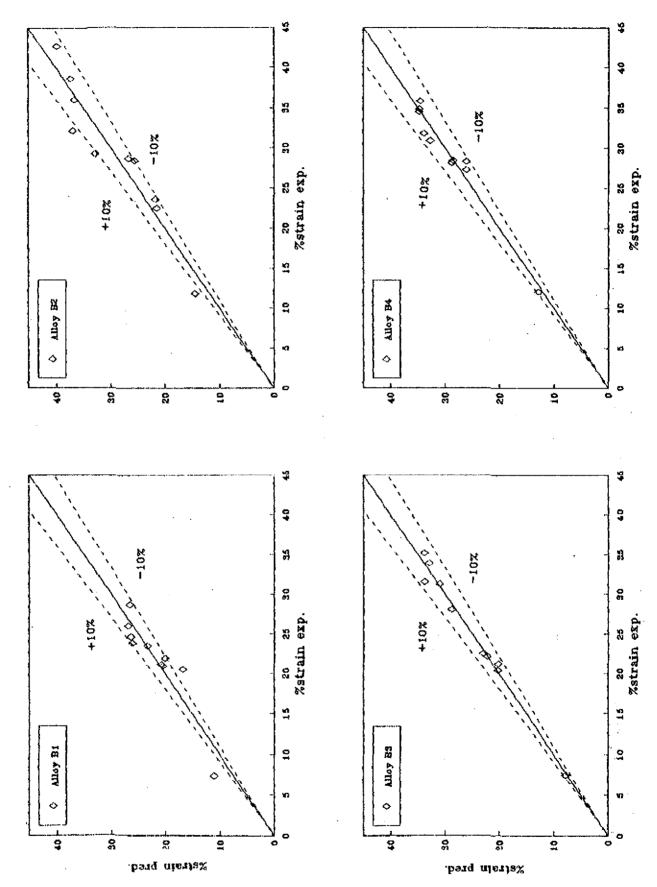


Fig. 6.19 Compressive strength-hardness interrelation

Fig. 6.20 R (CS/H) - hardness interrelation






F-108




**nterte**<sup>#</sup>

F-109







1

F-111

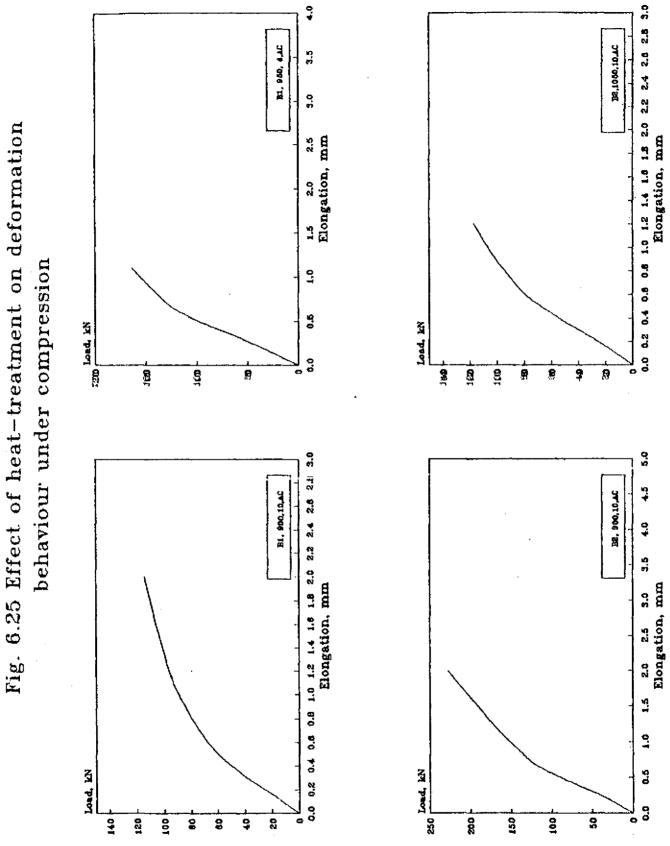
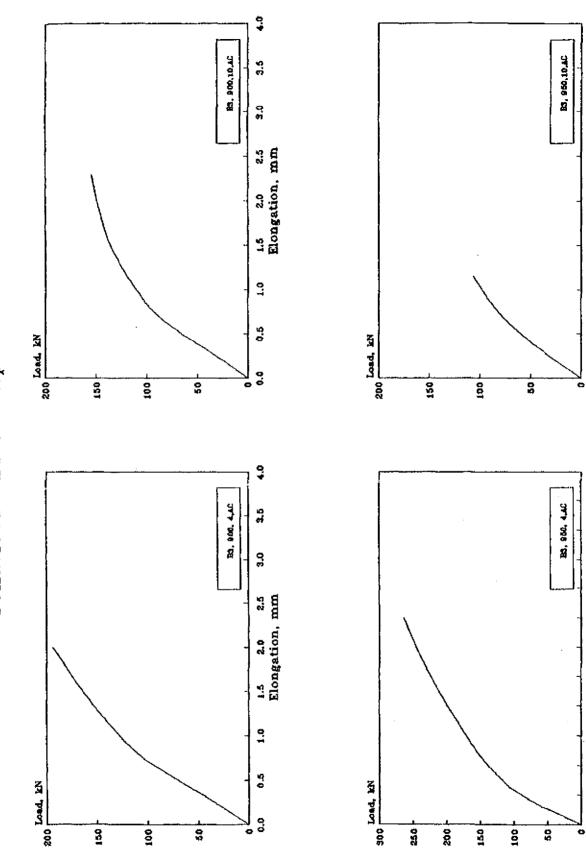




Fig. 6.26 Effect of heat-treatment on deformation behaviour under compression



0;<del>4</del>

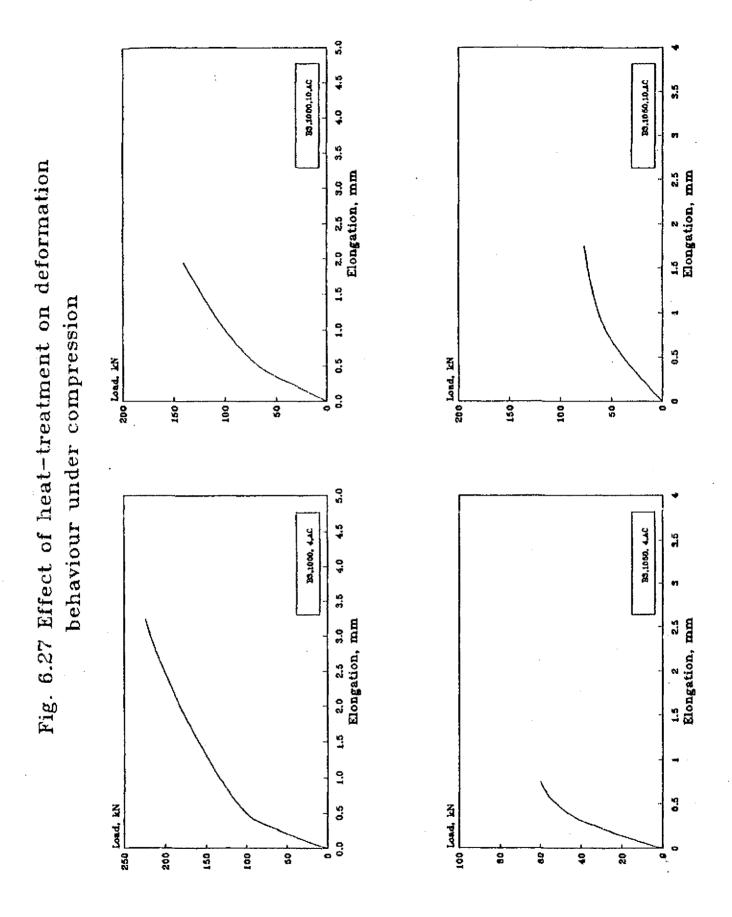
5.5

0.0

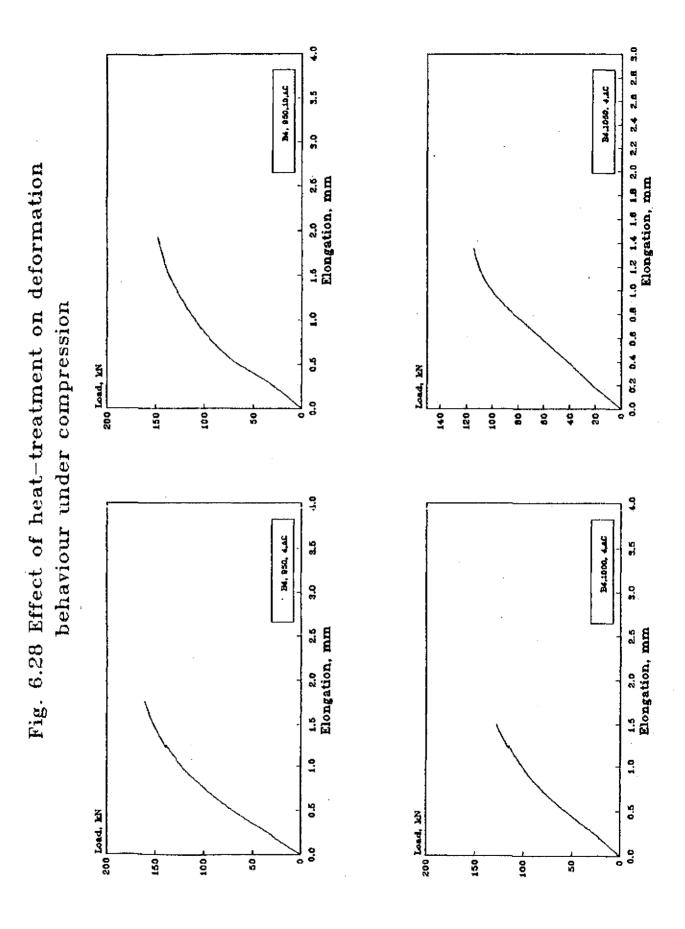
1.5 2.0 2.5 Elongation, mm

. 1.0

0.5


0.0

6.5 0.0


0.3

2.0 2.5 3.0 3.5 4.0 4.5 Elongation, mm

0.0 0.5 1.0 1.5



F-114

