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RESUME

The work reported in the thesis contains thé results
of the author's_attempt to study the scattering of inter-
mediate and high énergy electrons or positrons by simple
atomic and molecular target system, using the various quantum
mechanical approaches, The whole work has been divided into
three main categories, Under the first cafegory we have
studied the inelastic scattering of electron by éimple atoms
like helium and lithium using various pefturbative methods,
Under the second category, we have studied the positron impact
excitation of helium using same perturbative approaches and
in the last category we have calculated the elastic; inelastic,
total high energy electron and x-ray scattering from the ten
electron systems Ne;, HF, HQO, NH3 and CHQ using SCF-MO wave-
function obtained in double zeta quality basis of Gaussian
contracted wavefunctions within the framework of the first

Born approximation.

The thesis has been written in seven Chapters, The -
-first Chapter gives a brief'review of previous work and
various quantum mechanical approaches which have been used
in different manner. Ambng the various gquantum mechanical
approaches, the perturbative models such as distorted wave
and its variants, eikonal Born series, modified Glauber
approximation, first Bomn approximation are worth mentioning.

In all these approaches the central idea has been to pay
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attention to the second oxder term and attempt to calculate
it as accurately as possible, This chapter forms the ground-

work to the work reported in subsequent chapters.

In recent years it has been noticed that the théoret—
ical calculations suffer from_two sources of uncertainties
(1) adoption of an appra#imate model within the frame work
of which the calculation is carried out (ii) choice of the
bound state wavefunction to represeht the initial and final
states of the atomic targets as input to.e§aluate the
scatterihg amplitude in that particular model, In the subse-
guent chapters, i.e.;, 2,3, and 4 we have tried to minimise
these uncertainties. For‘example, the Chapter 2 present_Our

215,219}

study of electron impact excifation of helium (15—
in the energy range (50500 ev) using thé Cbulommeorn model.
Closed form expressions for scattering amplitudes have been
obtained with Fourier-decomposition of interaction potential
and then the use of accurate correlated wavefunctions. The
results of the present calculations have been compared with

other available theoretical calculations and the experimental

measurements,

Chapter 3 contains the results of‘our calculation
for the differential and total inelastic scattering cross—
section, using electron impact excitation (11s - ?15, QIP)
of helium in distorted wave approximation (beyond Coulomb
Born model as reported in Chapter 2) at intermediate and
high energies, The effect of the gistortion of incident

electron, contribution due to polarization of the target
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and‘the exchange e¢ffect are appropriately taken in both‘

the initial and final channels. Foﬁrier-decomposition of
interaction potential between the projectile and target is
taken and an accurate form factor has been used to calculate
the transition matrix, The resulting rédial Schrgdinger
equation was solved by a standard noniterative procedure
given by Marriott and Percival (Proc.Phys,Soc,72 121(1958)}.
The present results show very good agreement with experi-

ment.,

In Chapter 4; we extend our study (as outlined in
Chapter 2 and 3) for 218 and 21P transitionlof'helium atom
by positron impact. As is well known that the positron impact
studles differ from its similar counterpart study by electron
in two ways (i) No exchange effects are prescnt (iii) the
static distortion pétentiél now bears a negative sign. In
this way we have carried out this study on the same footing
as has been done for electron impact. Present results are

compared with the earlier theoretical estimates.

The Chapter 5, PILSbntS our results of electron impact
excitation of 35 state of lithium in the energy range 20-200 eV,
Differential cross-sections for this transition are obtained
~in eikonal Born series;, Modifiéd Glauber approximation, second.
Born, Glauber and first Born approximation, In addition, we
have also calculated the generalised oscillator strength
employing a variety of target wavefunctions. In this chapter’
we shall also report the results of resonance transition (25-2p)

of -lithium atom in Modified Glauber approximation.
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_'In Chapter 6, we present our results concerning
molecular high energy eléctron and x-ray scattering inten—
sities for ten'électron sys tems (Ne,HF,H?O, NHy and CHQD'
The difference between the usual elastic intensities for
electron and x;ray from nonvibrating but freely rotating
molécules and the fully elastic intensities for scattering
from the J=0 state are studied. The effect of molecular
binding and varioué other trends and systematics in the
inﬁensities have been examiﬁed with the help of difference
) function computed between the present scattering intensities
(totél, elastic, ineléstic) and that for the independent

atom model (IAM).

Chapter 7 summarizes the work reported in the
earlier chapters and contains some comments, pointing out

the drawback and the suggestions far their improvement,
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CHAPTER ~1
INTRODUCTION

1.1 GENERAL REMARKS

The primary aim of Physics is to understand basic laws of
nature, For the convenience, physics is divided into many
branches which equip ﬁs with diﬁferent information about
these laws. The macroscopic aspect fails to explain the‘
basic interaction between the colliding particles and radia-
tions which arises due to eiectronic structure of atoﬁs and -
molecules., The atomic and molecular physics specially
"'collisional physics' provides the information about these
phenomena, The theoretical study of electron, positron and
photon collisions with atomic systems has attracted a consi-
derable amount of interest in recent years because a number of
theoretical ard experimental techniques of atomic and molecular
collision are available in literature. Such study of collision'
processes is very useful in the following diverse fields as

" radiation thsics, electron spectroscopy, plasma physics,
atmosphéric physics, astrophysics, radiation chemistry,
transport propertie§ of gases, fusion process,; chemical reac-
tions, auroral phenomenon, solar corona, radiation biology

and health physics etc. Most of the applicétions of the
collision physics in the above fields heed absolute cross~

section over a wide range of‘energies, which can be obtained



either using the different theories or experimental
techniques, At present, the most i@portant use’of cross—
section is in designing the different types of gas lasers

and tokamék.

Due to the above reasons, the collision physics is
( very wealthy field amﬁ have wide scope for furthér develop~
ments in both the theoretical and experimental sides; The ‘
main work of the workers in the experimental side is to
develop the new techniques to get accurate information
using the hi-fi electronic instruments. But on the theo—
retical side, they compute the absolute cross-sections with
the use of différent.approximationé (given‘in Section 1,2}
-and compare with the experimental data to check the trust-—

worthiness ¢of that method,

In a simpie way the basic ideas which are required in
the analysis of charged particle scattering by atoms -and
molecules; we assume that a well collimated beam of nearly
monoenergetid particles isvincident upon a target from a
- large distance and interact with it, after the collision
with the target, the outgoing particlés are detected by
detector which are aisQ located at a macroscopic distance
from the target so that the whole system reaches in the
stationary state and then their energy and angular distri-
bution are\measuféd.lAs the incident pérticles interact
with the scatterer, a number of changes occur.vHere we shall
discuss only elastic and inelastic process. l1n the elastic

scattering, particle simply scattered without any change



in the interﬁal structure. If during the scatter;né, there

is any transfer of energy of incident particle, in giving

the internal motion of the target then the system undergoes

a change of‘iﬂéernélustructure and the scattering is cailed
‘ipelaétic scatée:ing. But in both the cases, the total

eneréy of:ihe system is congerved, For illustraticn,’ we qonsider

projectile as electron and target as hydrogen atom

e + H(ls! — e + H(ls) : elastic scattering

"

o — *. N ' .
-+ ¢ + H ! excitation
-— 4 - s N
-8 o +tH + e ¢+ ionization.

~

Each different initia; or final state of the colliding
system defines a reactioﬁ channel, For example, here we have
three different channels. A channel is openif the correspond-
ing collision is allowed by known conservation laws (energy
cogservation, charge conservation and angular momentum
conservation), otherwige the channel is said to be closed,
The situation is much more complicated if we are dealing with
molecular systems because molecule possesses_additibnal_
degrees of freedom lik« rotation and vibration. Thus the

the electron molacule.scattering, in addition to elastic
scattering, may include the electronic exéitation, rotational

and vibrational excitations and molecular dissociation.

' The theoretical formulation of electron atom or molecule -
scattering is a many body problem and the Schrodinger equation
of the system is not exactly solvable. Even for the simbiest
system such as an electron and the hydrogén atom; one comes

across a three body'problem‘and as yet no exact solution is



.known. So the.theorists are forced to use the approximate
methods, But there is no ﬁniversal approximation, which
gives entire information over a wide range Of energy.
However, the reliabiliéy and accuracy'of an approximate
mg£hod is aésessed by comparing it with other theoretical
methods and the available experimental data. In general, the
study of the collision processes are carried out in three
different energy regions namely, the low, intermediate and

high energy regions.

Low energies:
The low energy region is the one where only a few states

can be excited or equivalently, only a few states are opens

Intermediate energies:

This is one of the difficult energy range cxtending from the
region where only a few channels are open to a few times

the ionization threshold but below the region in which firﬁt,
BOrnlépproximation becomes accurate. The basic problem here is
to allow in'some averége way for the infinite number of open
channels including continuum; particularly when the convefb

gence of the perturbation theory is poor.

High enefgies:

The applicable energy range extends from a few times the
ionization threshold upwards. The region is characterised
theoretically by thelrapid'convergenée of perturbation thebry

and at sufficiently high energies; the first Born approximation
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will usually, but not always, be applicable,

Recent reviews by Bransden and McDowell(50),rByron and
Joachain (66}, Callaway(77); Henry(141}, Burke and williams (122),
Moiseiwitsch(31) and walters(73) describe in detail about

the.va;iOus theoretical methods.

In the next section (1.?2), we present a brief review of
the,theoretical methods and also discuss the underlying assump—

tions and the region of validity of the various approximations.

1.2 BRIEF _REVIEW OF APPROXIMATE METHODS

Here we are concerned with the atomic system iﬁ which we
assumed that the incident particle (electron, is interact—
ing for a long time with the atom (hydrogén; s0 that the
whole system has reached a stationary state. A non—relativi-
stic collision between an electron and aﬂhydrogeh atom isg

described by Schrodinger equation

HEWE,E,) =0 oo (1,1)

Qhere w(?i,?g) is the wavefunction of the entire system,
incident electron plus the atom with appropriate b0undary
condition, ?&, ?5 are the position vectors of incident
particle and atohic electron with respect to the atomic
nucleus (assumed to be infinitely heavy). H is the total
fHamiltopién of the system and is given by (in atomic units,

N

H= - % v2+Ht(?2)+v('?l,?é)' o oo (1.2)
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In Eq, (1.2); - 37 is the kinetic energy operator of the
incident electron, H. is the Hamiltonian of the target
(hydroggn} and V is the interaction potential between the
incident electron and target atom, E is the total energy

of‘the system and is given by

1.2, _ 1

- i I \
E - 2ki+ei - Qkf{ ef" | . see (‘loq’)

€, g are the target internal energies in the initial and
H

final channéls, given by

HO = ef . oo (1.5)
where P is the eigenfunction of the target (hydrogen) and
€ is the corresponding eigen energy of the incident electron
in the initial and final channels respectively. Due to the
indistinguishability of electrons, the total wavefunction
of the system should be antisymmetric with respect to 1nter~
change of spin and space coordinates of the electron The

space wavefunction of the system is given by
Ty o . .
w (rlir}g) = r EWG /+Ip(r23 l) ] e o0 (l,o6/

where ¥ is for symmetric (singlet) and {~ is for anti-

- symmetric (triplet) space wavefunction.

We assume, when the incident particle is at large

dlstagpe from the target, it can be described by a planu wave

e , and after the interaction with the target, the outgoing



scattering wavefunction F(?&) is described as a superposi-

tion of the incident plane wave and outgoing spherical wave,

we have
-\ V ~..J \
F(rl/ £ exp(k ?l/o £" l 1f(9.¢;exp(kfrl)

cee (1.7)
wﬁerg fif(e,ﬂ) is the scattering amplitude for the transi~-
tion, in which the térget goes from the initial state i

to any final state f., We can easily verify that for aﬁy
function £(§,0), the expression (1.7) satisfies equation (1.1)
asymptotically through terms of order r;l in the region |
where V can be neglected, if the potehtial vanishes faster
than rilas.rl ~» . Using the scattering amplitude f£(8,0),

we can directly calculate the differential (—- ) and total

scattering cross—~sections

Qg‘._.a.@.l.(g \; - }:.f. % 2 l . .
ae Tk [£;(8,0/] (;.8)
k., 2n m ' :
=2 17 [ 1g.60)° sino g ap .., (1,9)
l' N

0 o
for elastic scattering i=f

From this brief introduction, it is obvi0us,that the
baéiC'quahtity of interest, is the scattering amplitude
and is contained in the asymptotic form of the total wave-
function, The evaiuation of this quantity provides a meeting
ground between theory and experiment. The calculation of
scattering amplitude is not so straightfofward; Now we shall
discuss various approximation schemes employed for the evalua—

. . =\, .
tion of the wavefunctlon-w(?i,r?) in equation (1,1) and the

scattering. amplitude.
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1.2,1 Eigen function expansion method

In this approximation, the total wavefunction of the
system is expanded in terms of the target eigenfunctions ﬁn

+ . a
V@5, - kT [ G, G @, @)1 ... o)

s

where + sign refers to the singlet and -~sign to the
. ,

triplet spin case and F;(?} represent the scattering wave—

function while ﬂn(r} represent the eigenfunctions of the

~target. The sum over n, is over the the complete set of the

target eigenfunctions, which includes an integration over

- continuum states of the target. If we solve equation (1.1}

with the use of equation (1.10), an infinite set of coupled
. .

equations for F;C?} is obtained in the fomm
'A12 t o '
<% “(2 ) = )
(v HF (R) =21 [ )F @), Ji, @y,
+
T .Yy
3
Fm<ré)dr2 ] ees (1,11)

where th(?) is the direct local potential

v Jsan @WELEM, @), . ... (1.12)

and Whm is the non—local exchange potential defined as
= ﬂ“ LH e}, (7)) oo (1.13)

This infinite set of equations is just the original Schrddinger
equation in a new basis and as such is not solvable, However,

it can be made tractable and solvable if we adopt some

approximation scheme. S0, we now discuss about the approxi-

mations for solving this equation.



1.2.2 Low energy collision theory

(A} Partial wave analysis

o

The partial wave method is one of the methods used to

solve the set of equations (1,11-1,13)., This method is
applicable for spherically symmetric potentials. In this
approach it is possible to sepérate out the coupled eguat—~

ion (1,11) into its angular and radial variables. This is ach-

ieved by carrying outan expansion of F(?i: and ﬁ;;f;- in

[rl-rel
terms of the Legendre polynomials i, c., .
+ 0 +
L | I R
F () =) [ZOAX £.4 (rlJPK(COSQ) ceo (1,14)
and
- rf |
———— ————— [' X(rlo ) e (lmlb ;
’rl“ 2’ = |
where r, and r, are the lesser and greater of ry, I, and

© is the polar angle of Ly A/ is normalisation constanf.
With the use of equations (1.14—1.15) in the equation (l.ll}.

one gets the following radial equation

‘ -— :':' 4 g - . i ) | ;
=2 T [ V@)@ el (3,20 (2,2,
' | o e (l¢l6)
with |

e G AN A:

l" .

?—" (EFEn mfolo T ce. (1,270
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z' represents the chénge on the incident particle.

+
The radlal function f l(rij is known as K partial wave

w1th the following asymptotlc form

K(? ) rl 31n(k Iy~ £ﬂ' nl’ ces (1,183

1.
TS k
+

wherei;;l is phase shift of lth order and 1s directly  ~

related with scattering amplitude as

£(Q) = “l z (2f+17 exp(iN 1,51nq, K f(cosg
f=o . (1.19)

This equation has been widely used to obtain the collisional
cross—-section in terms of phase shifts using partial wave

method,

(B) Close-coupling approximation

The close coupling is one such method in Which the‘sitr.
uvation can be handled easily. In thls method the first few
intermediate states in the infinite summation in equation
(1.10) are retained whilc the effect of rest is neglected
(150,96), the order of the approximation depends on the
fact that how many atomic states are retained id the
expansion of the total wavefunctidn. This method is highly
accurate if the coupling of neglected states is weak and
is also very successful in predicting resonances but is
less useful in treating excitation processes., Due to
neglect of coupling with higher states and with continuum,

this method suffers from the drawback that the long range
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distortion of thc target is not represented‘properly. While

the 18.6%, and 54.6% dipole polarizability of hydrogen and
hélium(l?h) respectively comes from the contiﬁuum states. So to
remove this drawback, the present method is medified With the
inclusion of neglected states in some way, like (i) second order
potential (SOP} approach in which the effect of neglected states
is accounted by inclusion of some effective potential(27,89, 28]
or (ii) using the pséudo-state approximation(79,121,123,125,127)
in which higher excited and continuum states are replaced by
pseuéo states, chosen to be orthogonal to each other and to the
first few atomic eigenstates included in the eigen function
expansion method, such that they cive risé to the exact polaria—
ability of the atom, A large number of calculations have been
done by various workers(86,182,168) using these approximations.
Another equivalent mcthod for solving the coupled equations for
the radial functions fi(f&} has been introduced by Burke énd
Robb{127] and is called R-matrix approach in which, one expands
the continuum érbital in each channel in a complete set of basis
orbitals. A number of calculations based on this approach have

been done by many workers(36,182,181,170),

(C) Polarized orbital method

It is one of the most successful methods in which the effect
of the polarisation of the target is taken into account by
just adding a perturbing part représenting the polariza-
tion of the target to the unperturbed‘wavefunction of the
target. Using the first order perturbation theory the

perturbing part is oObtained. This method was introduced by
Temkin(19] and Temkin and Lamkin(20) by obtaining the
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single integro-differential equation of the infinite_set
of equations (1.16). The adiabatic and nonadiabatic polari-
zation potential is introduced by Labahn and Callawaj(148)
~and Khare and Shobha(159)., It is described in detail by -

Drachman and Temkin(140),

1,2:3 Intermediate and high energy collision theory

The low energy methods which we have discussed in the Sect-

ion (1,2,2) are not suitable for intermediate and high energy
regions, Because in this energy region,; the low enerqgy method‘
become quite complicated as large number of channels become
open for scattering and a great number of partial waves

are to be computed. Since the intermediate energy region
provides a link between low and high energics, there are two
natural lines of attack, one from low energies and the other
from the high encrgics, We adopt here; the second approach in
which we start correcting the high energy approaches. In general,
the corrections to the first order temm df the multiple scattep-
ing is sought in various ways. To achieve this, we write
equation (1.1) in the integral form (40) in place of different—
ial cquation, This 1ntugral form is highly useful 1n aﬁalyslng
the scattering problem in this region of energy. The integral
form of Schrodinger equation (1.1} for two electron system is
given as

'ﬁf(?i,E;} = exp(lk r ﬁ (_;\ E f ZF(r \ﬁ (2 /G (r1)

t\

?
x v(rl,rQ) (rl,rg)drl dr (1.20)

r2

where Gm(?i,?i: is Green function and given by
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- _! .1-.._ exp( ik (?1—_\’))

{3
rl"rl’

This equation shows summation over an infinite set of the
tafget wavefunctions, -The scattering amplitude for any

initial state i to final state f is given by

foy = - 5n [ (iR GV, B (E), %, )5 a%,
. (1.22)

The Bormn seriés for fhe scattering amplitude can be easily
obtqined‘by iterating the solution of equation (1,20), We
expect that the Born series will converge if the_indident
particle has a high energy and (or; if the potential is

weak encugh.

(2) Eizst Born approximation

Due to simplicity this approximation has becn widely used(95,lQ9)
in'many scattering problems. The underlying assumption in

this approximation is that the incident particle interacts
slightly with the target Eo the wavefunction can be'ekpréSSed

as a plane wave which will be the correct function in the
absence of all interaction, Tovobtain, the first Born express—
ion only the first leading term is retained in series expan—

sion, This is given as

(1) _ 1

_ 1 SFLT LR 2y
£i5° = f5 = = 37 | explike. ’Df r2 v(E,, r2>

ll
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with Vfi(rl> = f ﬂ)?(r?)(i'. ‘jb (r YAz,
1 lrl 2, ,

where'g = fi4ﬁf is the mpmentum transfer vector,. This approxi-
mation is valid if the velocity of incident particle is very
large compared - to the bound electron or energy of incident
particle is‘high. It is well known that for the clastic
‘scattering the first Born temm (fB1> dominates the Born-
series both at small momentum transfer g and at very high
energies, In the region of large q, it converées to the
second Born term, However, for the inelastic scattering
because of the orthogonality of the initial and final bound
state wavefunction, removes the electron nucleus interaction
from the fBl’ as a result the first Born cross-section for
high energy and large angle is of orders of magnitude too

small,

(B) Second Born approximation

Tﬁe first'Born approximation (FBA) which completely neglects
the effects due to the polarization. of the target by the
incdident electron and the distortion of the incident wave,
Tﬁese effects are very important for intermediate eneréies.
In oxder to include these effects of first Born approximation
(FBA). We use the second Born approximation (SBA). The second
Born amplitude is obtained by retaining the first and second
term in the Born series., It is written as
1), (2)

f1 fi

£ cee (1.24)

B2
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where féi’ is the second term of the Born series and given by

(2} _ 1
fi T

- -91\

£ E | exp(ii}.Ei—K%.Ei)qn(rl, R

(rl,V (?i]drl d?i ) e (1.25)

Here the summation on m includes the sum over all bound and
continuum states ¥ of the atom, Hence, its evaluation is
quite difficult. This may be.done by taking the energy of

the intermediate states to be fixed at some average energy
which is different from the ground state energy of the target
and then performing the summation by the closure property(74)
Helt and Moisewitsch(16) and Holt et al(l7), have considered
the first few target states explicitly‘a?a the effects of the
rest is included by replacing the energies of the intermediate

states by an average excitation energy.

(c) Z‘ELIQ_B.QSD_E&QH

There has been no serious attempt made to evaluate the third
Born term into a form which can be used in analysing the
higher order correction to the Born series. One such attempt
in recent past is due to Yates(4), His procedure parallels
that of Glauber(139) amd is very similar to the high energy

small angle potential scattering analysis of Schiff(103).

As the strength of the potential increases, the .
inclusion of higher order term of the Born series is diffi-
cult and therefore,it is not possible to obtain the proper

convergence of the series. Therefore, some high energy semi-

classical and its related methods have been used to study
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the scattering of electron by atomic targets.

(D) Eikonal approximation

It is a semi~-classical approximation, which is applicable

when the wavelength (% = %7} of a particlé is sufficiently
short compared with the di;tance over which the potential
changes appreciably, then it is possible to define the
particle trajectories which obey the laws of cléssical mech—-

anise. If the potential V is of range a, the short wave—

length condition requires

and the high energy condition requires

i / 21

In this approximation, the scattering wavefunction is
written as a product of the incident plane wave and a slowly
varying function of Ty which is a modulating factor to the
incident wave and its departure from unity is a measure of the
scattering effect of the potential and is given by

> : L = { z ' ‘
F(£)) = exp[ iX;.7) - 3= [ Vibz'idz'] ... (1.26)

5

-0

where b is impact parameter and it is assumed here that the
incident wave moves in the z-direction with constant speed vi

- YA .
and ry = b+zki. Using the equation (1.26) the scattering

amplitude is

- l_ B ’ .__\’ -5y &= N - \
£y = = op J ewlan) A5 )vir), 1,08, (x5,

. = o
x exp| - %T_J (b, z')dz" ] d?idr ve. (1.27)
i

~CO



17

Due to straight line trajectoria (66) the eikonal approxima—
tion is only reliable at small angles. For small angles, Ef

is pefpendicular to the incident difection but the actual phase
of tﬁé‘scattering wavefunctioﬁ should be evaluated along the

curved trajectory.

(E) Gl Glauber approximatign

In 1959, Glauber(139) suggeéted an improvement in the wave-
.function equation (1,26) can be achieved by performing the
z—igﬁegration in the phase along a straight 1iné parallel to
the bisector of the scattering angle i.e, perpendicular to 3,
because phase could not be Obtained'along the curved trajectory
of the particle in semi-classical limit. The Glauber approxi—

mation is a special case of eikonal approximation having the usual
conditions of e¢lkonal approximation, The scattering amplitude may
bc written as

ik, - - - ;
. - __;L s - FED Vet - 2 - '
£, = g7 oxplidp)p (¥,) | (%, rQ)P.(rQ)d‘b dr, (1.28)
where; . ‘
r(b,rg/ = l-exp|iM by r, ) j : vee (1,29)
- N
and /(ba I‘Q) ;Ei J v{ ri, I, Jaz

X =~ ) !

Here ¢i éhd ¢f are the target wavefunctions in the initial ..
“and final states respectively, Ea = E¥z§i - is the projectiie:
coordinate and ?% =‘§¥Zii is the coordinates of the target
electron with respect to the nucleus of tho target. The

TA

expansion of the exponential ¢/, gives the Glauber scatter—

ing amplitude in the form of an infinite series, referred as



Glauber eikonal series (GES)

. oo 1 (‘\ a

£16(@B%) = T fig‘(a;ki) voo (1.30)

' n=1

where .
. _ n -y \‘

fon © fif(q,ki)

L E (@ EEE s> (1.31)
= Eﬂn‘,.(db e L f"" ‘ i/ e s -9

We note that fBl = f., because of our choice of z-axis, We

Gl
also see that Glauber terms are alternately real or purely
imaginary, while the Born texms for n3 2 are complex, Yates(3)
and Singh and Tripathi (157) have analysed in détail the Qiff-
erent termé of Glauber eikonal series for elastic and
inelastig scattering of electrons by hydrogen and helium
respectively, Before we point out some improvements made

in the Glauber amplitude, we must point ouwt some of the shértw .
comings with which this approximation suffers, The most_

important of which are the following.

(1) The logarithmic divergence of the imaginary part
of the elastic amplitudes in the forward direction

because of the long range electromagnetic forces.

kii) The excitation .cross—sections' for states for which
(Lf—Mf)—(Li+Mi) is an odd number, are identically
zero whereas for even number, it enhances the cross—
section (hefelbf, Mg and L, M; are the'angulér
momahtum quantum numbers of final and initial
states respectively). The calculation of the

orientation parameters A ad /s is therefore,
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meaningless in this theory.

(iii)vlt does not distinguish between scattering of

positve and negative particles.

These failures can be traced back to tﬁe neglect of
the intermediate energy transfer in the derivetion of
Glauber amplitude, As & result, the first two shortcomings
mentioned above can be removed by introducing an average
excitation energy 6f finite value of the atom as its inter-
mediate states, This has been‘worked out by Rosendorff(1)
in a consistent way. The improved amplitude obtained by him
resembles the conventional Glauber‘amplitude in characte;.
1t satisfies the unitarity theorem (to all orders of the
perturbation expansions)., However, still it does not dis-
tinguish the scattering of positive particles<from that of
negative partiéles. Purther, the vanishing of real part of
fG? from the Glauber series is particularly disturbing as it
amounts to the loss of the leading contrihution from the

térgét polarization,

(F) Eikonal-Born series method
We have seen that the Glauber terms are alternately real or

purely imaginary, while the Born tems for n} 2 are complex i.e.

f

it

G fGl+Im fG2+RG f63 cee (lo32/

I

%+ Re E..4Im E. z £ )
fg = £5;7[ Re Epo+Im i, ]1+[Re Epz*tIm Tz | eee (1,33)

Using the property of Glauber and Born series Byron and

Joachain (67) introduced a new approach called Eikonal-Born
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series(EBS), It basically combines the Born and Glauber
serics to get a consistent picture of the scattering

amplitude through order Eﬁi It is achieved as follows

= : .;..:. - \

EBS
where fg, and fBé are the first and second terms of Born
series, fG3 is the third order Glauber term, It must be
emphasized that for processes in which botﬁ the initial

and final sﬁates are sphgriqally symmetric, the Glauber

term fGn gives in each orderbthe loading piece df the
corresponding Born term (for large ki) at all momentum
transfer, except in the second order. It has been established
further on the basis of potential scattoring_that the'thirdl
order Born term (expanded in powers of l/ki) is almost
identical to the third order Glauber term and can therc-

fore be evaluated easily. This is the rational behind

using the third Glauber term in EBS approach,

(G} Modified Glauber spproximation

This approximation ié apparently very’simil:r to EBS; in
which, the full Glauber amplitude is corrected for the
missing second order real term by substituting the £55 in

place of f This modification was pointed out by Byron

G2*

and Joachain (65) and elaborated by Gein{175), is called

modified Glauber approximation(MG) and is given as

. [ooN
= - + = .g
v fug T Fgfgotiey T fmytEpotfas’ & fan
Q0 D= _
P e (135)

EBS n=l
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This approach, instead of working to order k;? removes

the logarithmic divergence of the Glauber amplitude in the
forward direction and includes the polarization effect of
the target. The modified Glauber amplitude ié more accurate
in the comparison of EBS amplitude because in MG we include
the}higher order Glauber temms. This inclusion of higher
order terms play a significant role at large scattering
angles. A detailed study, comparing the EBS and MG has been
‘done by Tripathi and coworkers( 163, 164, 165,166), Apart £rom
the success of EBS and MG approach, recently Yates{4) has
proposed a high energy 'higher order Born approximation, In
this method he has evaluated all the Born terms on equal
footing, Recently the EBS and MG approach has been unitarised
(68,69) by using a méthod due to Wallace(152; and referred

as UEBS, This method has been used recently by Byron and
coworkers to study the elastic aﬁd inelastic scattering

of electron from hydrogen. In this direction, Dewangan(50)
has proposed a new theoretical model which fully‘incorporétes
the secondeorn amplitude under a closure approximation and
in limit of high energy reduces to Glauber restricted

approximation (82),

The recenf review article by Gerjouy and Thomas(57),
Byron and Joachain(66}, Chain et al(63), Joachain and Duigg(38)
and Tripathi(1l4) have dealt in detail about the various

aspects of these theoretical approaches.
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(H) Corrected_ static_and its variants

We know that the static interaction (VS } correctly reduces

t
for small values of r to the Coulomb interaction acting
between the ptojectile electron and the nucleus of the
target. Therefore, we expect it to govern large angle direct

elastic scattering, If one makes‘an expansion of phe static

scattering amplitude in powers of Vst’ i.ce

N W e
fst = = 57 SKel Ve Vi O Vgetere o Xy .
= f " :‘;_- f (v ) ceo o (1036)
Bl n%2 Bn" “st )

It contains the temm £y (V_ ) of the Born series having the
initial state (grouhd state here) as intermediate state. These
temms correspond to virtual tranéition going through elastic
intermediate states and dominate the direct scattering
amplitude at large ki and large ¢ since the convergence of

the Born series is slower at large g than at small g, it is
therefore useful at large angles to perform an exact (partial
wave) treatment of the potential VSt and théruby the resulting
amplitude fst sums the contribution of Vst to all orders of

the perturbation theory.

For small values of dy however, the static approximation

is poor. This is due tQ the inadequate treatment of fB2’
Since the static potential is real and of short'range and
does not account for absorption and polérization effects
which play an important role at small angles. So in order to
improve this,‘we must add to the fBé that part which lacks

i.e. we now carry out an expansion of the static scattering
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amplitude in powers of ((V—Vst)+vst} giving rise to what

is called corrected static approximation (fcs) (74,25)

- : _ ' )
fos - fst+ [fBg(V, fBQ(VSt) J oo (1037/

This approach does not include the contribution from the
non—-static part of the third and higher order terms which
may be quite important. In the case of elastic scattering
from the 2s state of atomic hydrogen the real part of the
scattering amplitude is found to be dominated by 3 (third
order Glauber term ) in the intermediate and large angle
region. The corrected étatic apprqximation may be ihproved
upon by adding to it the contribution from the non-static
parts of the third and higher order terms in (say} the

Glauber approximation

£= £+ 584 (¢

st st 3
st {Egths) fe *fgs) ees (1.38)

a1 fao™
This equation should lead to an improvement over both the

EBS and the CS approximation(112,116,163).

It can be easily seen here that the MG approximation
can be obtained by dropping terms of order higher than two

in fSt and‘its compensating term fgt.

e = £

"t e2
The EBS amplitude corresponds to further dropping the higher
order Glauber terms G4, G5 esveses in a bid to obtain an

expression correct to order l/ki.

fone = £

s - fm1tteottes
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All these approaches are basically high energy approaches

and rely on convergence of the Born series., They do not work
when applied at loWer energies. At thése energies the Born
series have poor convergence and therefore, all the multiple
scattering series should be evaluated on an equal footing
rather than giving a special treatment to the second order
Born term and ignoring/evaluating higher order terms in

some other approximation. This will avoid disturbing delicate
cancellations between various terms. If Giauber approximation
for the higﬁer order terms are used, then,; the amplitude is

given as
_ st :
| £ = £ +Ef, .o (1.39)

This approach works quite well in the lower enerqy side of
the intermediate energy region particularly for low

polarizability targets.

The basic idea of two-botential method is that the totalv
projectiie—target interaction, is broken up into two pseudo-
potentials and the resulting two terms of the transition
matrix are evaluated in different approximations. Generally
one term of the broken part‘is treated exactly while the
remaining part is evaluated approximately. Various choices
Of this break-up and the approximations have led to the
various methods repdrted in the literature

(i) Distorted wave Born approkimation,

(ii) Distorted wave cikonal approximation,
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(ii1) Two potential eikonal approximation,
(iv) Glauber distorted Born approximation,

(v) Ccpidmb projected Born approximation.

ihese methods have been used axtensively. Ishihare and
Chén(l69) hgve treated the étatic part of the potential
exactly and the remaining part is evaluated in the Glauber
approximation, Madison and Shelton(47) and Culhaum et al(147)
have applied the standard twb potential formalism to obtain |
a systematic distorted wave model for electron impact excita—

o

tion of atoms.

i S A et s s e A e e i SO |

As we have discussed that the Second Born approximation (SBA)
makes partial allowance for the effect of distortion, But the
Qistorted wave approximation provides better account of
distortion. Due to their truthfulness, a large number of
theoretical work is available in thé literature (135,160,

84, 145, 172, 161, 185, 47, 41, 30, 25, 169, 51,90, 78). Basically, in
this approximatioh we make a two state approximation involving
just the initiai state i, which we suppose to be the ground
state of the atom and final state f, neglect coupling to all
other state., This approximation has bezen used in different
ways. A detailed account of the various distorted wave methods

has been given in the review of Bransden and McDowell(30).

(a) Distorted wave first Born (DWBA: approximation
In the recent years, it has been applied by various authors.

The philosophy here has been strictly speaking lies in the
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choice of the distorting potentials. We can write the inter—

action Vi in two parts:

V.
1

iy )
Ve = UgtWg (1.40p;

i

Uy  vee (1.40a;

and we choose Uy and/or Ug as

— \ = ‘ .
vi - AN ¢i[vi‘¢i a vst » " o0 (loll"l,
so that
=V, =& \ \
Wy =Yy <;¢1‘Vi‘¢ij ve. (1,42,

then the first term of the distorted wave Born scries become
WBA ./ VAR \
oy = - s < Ll Vg lhy ) vee (1.43)
where“/,,c satisfies the equation
(P2 (2 = 2v L (x), ¢ =(ior£) ... (144)
The DWBA in this form has been applied by many authors to the

study of excitation of hydrogen (47), helium(26 ],

(b} Distorted wave segond Born (DWSBA) approximation

The sum of the first two terms of the distorted wave Born
series gives the distortcd wave second Boxrn approximation to

the scattering amplitude

WSBA DwBA 1 ey + ~g T \
DV = fBA _ Loy ¥ Ve GV iy eee (1.45)
fi fi on v ME mef or i fmm mi' i

Its application is limited to the‘high'énergy region only if

the closure approximation is used to perform the m summation.
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. THe DWSBA offers a good basis for describing the e—atom
excltation, Recently this approximation has been used by
Dewangan and Waltér's(5l).to study the elastic scattering
and Kingstonand Walters and Winter(6,90; for elecﬁron—

hydrogen excitation,

1,2,4 Exchange approximation - |

Due to indistinguishability of electron, in electron—atom‘
scattering the exchange effect are really very important,

So far we have not taken exchange into account in the
described methods, It is obvious that’ exchange effect is

‘not very important for high energy but for low and inter-
me&iate energies éxchange effect play an important role,

we see from equation (1,11} that in the high energy~approxi—.
hationé the direct and exchange scaitefing amplitude are
obtained séparately and the total scattering amplitude is

by combining these two according to syﬁmetry requirement,

In literaturé a large number of methods are available to
calculate the?exchange scattering amplitude; the most |
familiar methods are Born—Oppenheimer'abproximation (32} and

Ochkur approximation(179}.

1.3 PLAN OF THE THESIS

The primary aim of the present study is to investigate thé
scattering of charged particle (electron and positron) wiﬁh
atomic and molaecular systams at intermediaté and high encrgies
using_gihple}Aaccurate and computationally feasible quantum

mechanical methods. The results obtained in the'present
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investigations are compared with available theoretical

calculations and experimental data.

The whole work has been divided into three main
categories: In the first category we have studied the .
inelastic scattering of electron by simple atoms like hglium
an@ lith;umj under the second category we have studiéd the
positron impact excitation of helium and in the last
qategéry we have calcﬁlated the elastic, inelastic, total
high energy electron and x-ray scattering from the ten

electron‘systems Ne, HF,HQO, NH3 and CHQ.

| “The fir%p category deals with the following investi=-

gations
In general, the theoretical calculations suffer from

two types of uncertainties (i, the basic nature of approxi-~
mation employed for studying thé collision_process and
(ii} use of the approximate wavefunction as input for
evaluating the scattering amplitude within the framework
of the scattering model. In the following two chapters,
we have made an attempt so that the above mentioned
uncertainties are best minimised,

(1} The study of clectron impact excitation of helium

for llS~21é,?lP‘transitions'with the use of many parameter
cérrelated wavefunctions in the Coulomb~Born (CB; moael

- with the inclusion of exchange effect using Bonham-Ochkur
‘approximation,(see Chapter 2). The comparison Qf results with
fhe’éxpefﬁﬁéntal~meaSurement of Suzukai and Takayanagi(75),

Opal and Beaﬁy(37) shows a better agreement compared to the
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other theoretical calculations.

(ii) In Chapter 3, we studied the same problem using
a distorted wave approximation (beyond Coulomb~Born model)
employing the many parameter correlated ﬁavefunctions. The
effect of the distortioh of incident electron, contribution
due to polarization of the target and the exchange effect
are appropriately taken in both the initial and final
channels, The resulting radial Schrodinger equation was
solved by a standard non—itérative procedure given by
marriott and percival (Proc. Phys. Soc.72,121(1958)), The
present results show all the possible features (near about)

of experimental datae.

(iii) The Chapter 5, presents our study of electron
impact excitation of lithium for 25-3S transition using the
eikonal Born series, Modified Glauber approximation, second
Born, Gléuber and first Born approximation and a preliminary
study ofor 2s-2p transition in Modified Glauber approach,
In addition we have also calculated the generalised oscillator
strength employing a variety of target.wévefunction.

Second category presents our comparative study of

1p

positron impact excitation of helium atom for llS~21572
transitions using the same models which we have used in
Chapters 2 and 3, The results aré presented in Chapter 4,

This study differs in two ways (i) No exchange cffects are

present (ii) the static distortion potential now bears a

negative sign.
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In tﬁe last cétegory, Chapter 6, the elastic, inelastic
and fotal x-ray and electron scattering from ten electron
systems Ne,HF;H?O,NH3 and CHA have been calculated using
§Cf~M9 wavefunctions obtained in double zeta quality basis
of Gaussian contracted - ‘wavgﬁgnqtiqns. The effect of mole-
cular bin@%ng and various othér trends and 3ystemqtiés in
the intensitieé have been examined with the help of diff-
erence functions computed between the preSent scattering »’

intensitieS‘and that for IaM,

;

The Chapter 7 contains a summary of the work presented

in the earlier chapters and some comments,
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CHAPTER -2

- SYSTEMATIC APPROACH FOR ELECTRON IMPACT EXCITATION
QF_HELIUM IN_ COULONMB-BORN MODEL

2.1 INIRODUCTION

During the last‘few years the extensivevstudy carried out

on helium atom has provided a great deal of inéight in
understanding the behaviour of discrete excitation funcéions.
Helium is the most suitable candidate to test any theoreti-
cal calculation, the presence of two electrons in helium
permits interelectron.repulsion. Recently, a number of
measurements (105,75,37> of angular distribution for 115—218

1

and 1's-21P have become available. On the theoretical side,

the workers have widely used the wvarious pertﬁrbative
scattering model to study the o's and 2P excitations of
helium in intermediate enerqgy region, Among them, the
distorted wave approximation (47,174,95} and its variants,
the second order optical model (28}, the multichannel eikonal
approximation (120, the many body Green's function (102}
approach, close coupling calculations (90), eikonal Born
series method (65,39, and R-matrix method (180) are worth
mentioning., The work of various workers both on the theoreti-
cal and experimental side upto 1978 has been well reviewed

by Bransden and McDowell(30), The theoreticai calculations

in general suffer from two major sources of discrepancies in

evaluatihg the scattering amplitudes. (i) The first is due

/
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to the kasic nature of the approximation employed for
studying the scattering process. and (ii; The second is tﬁe
use of the approximate wavefunctions as input for explicit
evgluation of the scattering amplitude within the frame work

of the scattering model,

Among the scattering approximation, the first Born

~ being the simplest one, can be computed (188,94 ) with ease‘
by the use of accuratevbound state wavefunctions both at -
Hartree~Fock and bheyond Hartree~Fock levels, However, the
use of accurate bound state wavefunC£ion in evaluatihg the
scattering amplitude in any other approximation is a rather
difficult task., The problem has been recognised in part by
many workers(119, 44, 24} at different places in scattering
theories. The standard procedure to involw: the use of
accurate wavefunction in any scattering approximation is to
take in matrix element £he Fouric¢r transform of the inter-
action potential which is sandwiched betwoen the wavefunctioné
of the initial and final states of the target., Recently,
Dillon and Inokuti(106] havevsuccussfully used this idea to
calcgldfe accurate differential scattering cross—sections

15 and 318 excitations of helium in Coulomb-pro jected

for 2
Born approximation (1517, which essentially tekes into account
the distortion of the projectile electron wavefunction only
in final channel. In fact, the above idea is easily appli-
cable to $-$ transitions, but for S-P transitions the

analyéis is not so straightforward. In this chépter in

addition to S-S5 transition, we further demonstrate the
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applicability'of the above idea to a study of the diécrete'
excitation of the QlP state of helium from its ground
state in the Coulomb-Born model (34,71}. In this model, we
have, thus considered the distortion due to nucleus of
target in both the channels of ingoing wave and 6utgoing
scattered wave of the electron, As is well known(42),

the inclusibn of distortion only in one channel can cause
serious errors in the estimation of cross—sections (77,95),
- Further, we have also used é very accuratc many parameter
corralatedHWavefunCtidﬁs for the initial and final.bound

state of the target atom (heliumj.

We know that at intermediate energies fhe differential
scattering cross~sections'for discrete excitations decrease
very steeply with the increase of scattering angle, and
hence the main contribution to‘the total excitation cross—
| section, comes from the smaller angles., The total cross—
section, therefore cannot be the main criteria of'judging the
suitability of a model where even the first Born results
give fair agreement with the experiment while it fails to
display the behaviour of angular distribution. We; therefore
in this chapter, report our differential scattering crbss—.
section ohly for 218 and QlP transition of helium at inter-
‘mediate energies in the Coulonmb-Born(CB) model, The effect
of exchange is taken into account in the Bonham-Ochkur(134,
179) approximation. In the following section (2.2), we shalli
briefly outline the Coulomb—-Born approximation and obtain

‘the closed form expressions for the scattering amplitudes.
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Section 2,3 contains our results and discussion for the

QlS and QlP transitions of heiium.

2.2 PROCEDURE

The scattering tran51tlon amplitude for the excitation

- of an atom from the initial state i to the final state f
~in the Coulomb~Born approximation is easily dérived from
the two potential formula(4O; for the exact scattefing

amplitude, It is given as

' N o - .
The total interaction potential V(?l’§5’?§} has been
divided into two parts; viz. V=U+W such that the ;('t: and
.4 are respectively outgoing and ingoing distorted project-
ile electron waves (117) in the fiecld of target micleus

with X, and ?} as associated wave-vectors, U;. and W, . are
expressed as

iy () = BT, B5) | W[P,(E,T5)) .o (2,3)

wﬁéfe ¢i and ¢f are the initial and final bound state of

the target atom. . ?&, ?é and ?3 stand.respectively.for .

the spatial cbordinates of the incident and atomic eléCtrons.
z is the nuclear charge of the atom. The choice of the

potentials U and W are arbitrary but are usually chosen as

(2.4a)
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= ']-7 -+ : l '._.' (2.41})
=2 = -2 =
[2)-25 Est

W
-

so that for the inelastic scattering (excitation) in the

present case, the equation (2,1) simplifies to the form

R - * | : \
Tif T T on <~’X'flwif'x‘i> 'y (295/
with |
L= = e -
Wyp = jfé;(r?g 25 Wb, (2, B5 JaZ2,dT5 | ... (2.6)

and the initial and final distorted waves are given as

RPN ii’i 1 r -
Ay (xyl = exp(?k \j(L—a) e 1Filasls l(kirl-ki’?l) 1
32 ce. (2.72)
P ] « T
Yo(3) = expB 3[(1-py ¢ © 1B, [~ L-ilkor, KT, ]
vprIy/ = EXPioy. / / 1710 £5170 e T
' £ ees (2.70)
where
a=;-f-,
l 1
iz
b = =&
ke

Now with the help of Fourier transform of the interaction

potential, we can express Wif as
Wp = 2y a3 §° exp(-i3.2, )¢, () (2,8)
if_?rf? q g b\ Qe Ty / if q, P ’

flf(a} is the transition integral, which is defined as,

2

. . | q.
fif(g) = Jﬁ?(??,?%/( i§2 e ;¢ (r?,IB)dr d?s ( \
: ) PP 209/‘
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'2.2.1 Evalustion of the transition iftegral
To calculate‘fif(a} in equation (2.9), we have used the
properly orthonormglizedﬁmany parameter correlated'(MPC)

Wavefuﬁéfions of Qéiss(??} for both initial and final states

w@ﬁ the;target¢ Tﬁe accurate generalizeg oscillator strength
? £9r variéus discrete transitioﬁs of helium have been calcula-
ted earlier by Kim and Inokuti(188) ahd Bell et}§l(9b:.
Thesg are recomputéd here to generéte the numerical numbers
at different g-values in order to obtain an algebraic
expression in the g-plane for fif(g}, the structure of which
-may be well suited for easy evaluation of the distorted
wave transition matrix element equation (2.5, In this
respect,.we have followed tha prescription 6f Crothers
and McEacHarn(54) and Crothers(55}, This method consists
of loéating all the four conjugate of palres of transition
integral lying on the imaginary g-axis. In this procedures
one pair of the poles is the usual one proposed by
Lassettre(58), but the other six poles arise due to the
indistinguishability of the bound electrons(53), Following
“this procedure; the transition matrix element fif(é?'which

we require, have the following form

s
N _ & a, : a.q
f(q) 1 1 = :" “'51—”2'"'5 + g - ) 5"5 cacve (2.10)
1's-2"s j=1 (g mj} i=> (q +aj)
. 2 4
_ 2 a, a, 6 a
AR B e B : ey I
175-2°P " i=1 (g +aj) i=3 (q +aj} i=> (q +aj)
8 6
e R (2.11)
+ - - q e ve * /]
J=7 (q2+ a§)6



37

The fitted values are accurate to less than 1% even at high
values of qg,lO a,u., The values of adjustable constants as
needed in the equations (2.10-2.11, are given in table (2.1).
The transition integral are also evalua£ed in g-plane in

thé closed form ising the Hartree—-Fock wavefunctions, These
expressions in.q are then directly used to calculate the
distorted wave transition matrix element. The calculation
using the bound state wavefunctions at Hartree-Fock level
was done to sece the effect of correlated wavefunctions in
this model.

2.2.2 Analysis for llS~QlS transition

Using the equation (2,10) the metrix element in equation (2.8)
can be easily evaluated. With the help of following two

integrals

-é
]- —iq.r N 5 é—ajr

— & )
> Q\dq = 21 = voe (2.10a,
',‘q +CCJ/

and
,
-ider

5'_—_ 5 dq 211—(1 ! > ajr) . ceo (?ol?b;
- (q +a ) raj

Wif(rl) becomes i.e.

g (l~e R e a%£l> * g, a, L

(ry) = (r,+ &) %j%1
e rla% 2a’ Sj=2 8a§ ! %

j 3 S
: se e (2.13)

Thus using equation (2,13}, the transition amplitude equat-

ion (2.5) can be put in the following closed form(12,149,33).
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if on i f"'
- .
x4 7 a ('e-,,) -l—?-LJ(a,b,xw,
j=1 9 % o g
. J J '\Z a, 1
-J(a, by x=a ] ;] L '2"1('“" 5 J(a,b, X=q /}
j= da.
J
(2.14)
Whereg
| xR iR T
J(a, b,x) = fd? =
X Flra,l, J.(k K i- )J [b, l,i(k r%k )]
(2.15)

We have included the effect of exchange in the Bonham-
Ochkur(134, 179‘} approximation and transition amplitude for

exchange is given by

ex Tzl 1 577 (s
T2 = — —~=s—exp|=2(=— + —",_«;@l(l-a/r(l“bf
T L
- & d_
x | ;: a, (-:?,;J(a, by x=a
j=1 ac’,
o2 3
d 24%58 42 Y
top =5 (85 000(e, by x='aj/‘_J ... (2,16)

Finally, the diffe_rential cross—section may be written as

Tslog kf i e @ e

s \
56 o ki'Tlf o (2,17}

lS—QlP transition

2,2.3 Analysis for 1
The analysis for this transition is not so straightforward

as described in Section (2.2.2), because 2P state has the
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m=0, +1 magnetic substates, thus the system is not spheris
cally symmetric. Using the functional form of transition
integral given by equation (2.11), we can write theé ecuat-

ion (2.8), after some simplification in the following form,

ior
-t ve(2,18)

W (%) = -4 nca?\uv O 55
R J o (¢+a])

where the operator

. 2
. - . 2 3
D(g?) = § El(d‘ )+ _i J(ﬁ ) ¥ T a agf(d- |

J j=1 2 a? i=3 aa j=2 aa.
b o
2 _ .2
N [{'. ..8. 2 3 SRS
) Tiae 5, glede))
s TI=7IIC aas da
a4 J i J
ol R IR : '
+ lgo(a 2)—] e o (2.19)
a4

Now carrying Vr operator and using the result of equation
1

(2.12b), we get

>
—

W (&, = —1D(a }"-f(r ) ees (2,00)
lls~2 P l ri 1
where
£( )‘:fyl S | ‘
ry/ = 5 I ™ gr" ees (2.00a)

The initial and final motion of the electron is described

by an eigenstate of the Hamiltonian

H: T“g ’ . ) e da (2;21}

il

where T is the kinetic energy term. The following commutator
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relation holds (149).

el 2

LV

= - 31,7 ] | ... (2,22)

This commutator allows to express the transition amplitudes

for all the three magnetic substate as components of

vectors
S S :
Tif = - Sz D(CI,J./ I | P (2023)
With
S myg— - PR .

Reflection symmetry in the plane of‘ﬁi and ﬁ} suggést that
T has only two components in that plane and they are f'ﬁi
anﬂ'f.ﬁ% respectively. Thus; the transition amplitude can
alternatively be represented by two components along
orthogonal directions, i.e. (iif)z’ a component along the
direction of incident electron and (Tif)x’ along an axis

in the scattering plane;

N ! h ,\ ' .
'fif = (7)), k() % ces (2,25)

where (Tif)z and (Tﬁf) can be written(149,3%3) as

x
_ l 2 [ AN
(Tif)z = -5 D(aj)(I.ki) , co. (2.26)
. A - A
(Iﬁf>x = - 5%5 D(a§)(?.kful.kicoéXJ/siﬁX, EXE (2.27)

with

A
cosf = ki’ij as wellas
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2 2
A Lz [ &
’ J
Q-J(a,b,- x=0)-J(a*+l, b; x#aj)+J(a, b} x--ocjﬂ
) Qiki
+J(a+l, by x=q. ~J(a, b; x=q, )- -
] : a_]'
J(a'*'l’b; 'zaj )} ee v (9028>
and
Pk = L exp(EZ b J(1mb) iki"kg l7(a, b+1; x=0)
. = 3 exp - -~ 3. OT Ly =
£7 2 PLok,/ | N

“;
J(a, b; x=0)-J(a, b+1; ? y+J(a, by X=a )
~J(a, b+l; x=a.)+J(a,b; X=aj}

2ik
+ —'J;.i J(a, b, X= (I,J } se ® (2.29)
J | .

’

Here also we have used the Ochkur-Bornham approximation to

evaluate the exchange amplitude and same is given as,

- -l_ 7 2\-—-“1 A =
(1§ 1f z onz D (“j‘l'ki .e. (2.30)
(7 i?‘x = - %Ez D'\a?)(f.if—I.k cosﬁd/51n7 vee (2,319

-where
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57 '
' aa,J J

The differential cross-section for m=0 and m=tl are then

given by the following two expressions,respectively

5
ady f] exy _

(%) = =={(p, ) (1 ), for m=0 ,,. (2,33)
dQ;llS?PlP ki | iffz Tif | .

(43 | l(‘I‘ — (1) ! ? for m = +1
dD‘l S-—? D » ] if! -

. -(2.34)

2.3 RESULTS AND DISCUSSION

We have used the equations(2.17) ard [2.33-2.34) for cal-

1s ols

culating the differential cross—sectinns (DCS) for 1
and QlP excitations of helium. Our calculated values are-
shown %n figures (2.1-2.4) at 100 and 200 eV, dur résults

in the energy region from 50-500 eV are shown in the tables
(2.2-2.4), We have also carried this calculation with'
commonly used simple wavefunctions to see thb changes in thev
cross—sections. For example, llS and 218 are described by

the HartreenPock(HF) wavefunctions of Byron and Joachaln
(64,65),while the wavefunction for 2°P is taken from

Morse et al(131). The results of these wavefunctions. are also
displayed in figures (2,1-2,4). In addition to the present
results, on curves,; we have shown various other results

obtained in different models.

Before; we compare our results with other theoretical



calculations, it is worthwhile to compare first the present
results obtained usiné two different wavefunctions for
" both transitions. For ?lS transition;.it is seen that there
is not much difference between the two sets of results in
ﬁhe smaller angular region eé{BOO, but as the scattering
angle increases (© > 30%), the difference increases, The
‘maximum deviation noticed in the region of larger scattering
is about 12°/, at 100 eV and 57. at 200 eV, In the case of
21P excitation, the two different results differ.in similar

1

fashion as for 27S excitation except that at large angles

the deviations are 137/, at 100 eV and 107, at 200 eV,

2.9.,1 118—218 excitation

In figure (2,1), we present our results'for llS—QlSjexcitation
at 100 eV‘along with other available theoretical calculations
and experimental data. It is seen that at low scattering angles
veéf500, tﬁe firsﬁ Born results falls off very slowly and there-
after it decreases very rapidly with the increase of scatter-
ing angle (97>3003. The reason for this behaviour is well known
and obviously it is due to the drépping of the electron-nucleus
intéraction in the Born matrix element, In the smaller éngular
region €6 & 3005 the results of the present calculationsas well
as those obtained from many other theoretical méthods hardly
differ among themsel&es. At large angles 9};300‘ the results
from'variou