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RESUME 

The work reported in the thesis contains the results 

of the authoris,attempt to study the scattering of inter,- 

mediate and high energy electrons or positrons by simple 

atomic and molecular target system, using the various quantum 

mechanical approaches. The whole work has been divided into 

three main categories. Under the first category we haNe 

studied the inelastic scattering of electron by simple atoms 

like helium and lithium using various perturbative methods. 

Under the second category, we have studied the positron impact 

excitation of helium using same peiturbative approaches and 

in the last category we have calculated the elastic, inelastic, 

total high energy electron and x-ray scattering from the ten 

electron systems Ne, HP, H20, NH3  and CH4  using SCF-MO wave-

function obtained in double zeta quality basis of Gaussian 

contracted wavefunctions within the framework of the first 

Born approximation. 

The thesis has been written in seven Chapters. The 

first Chapter gives a brief review of previous work and 

various quantum mechanical approaches which have been used 

in different manner. Among the various quantum mechanical 

approaches, the perturbative models such as distorted wave 

and its variants, eikonal Born series, modified Glauber 

approximation, first Born approximation are worth mentioning. 

In all these approaches the central idea has been to pay 



attention to the second order term and attempt tocalculate 

it as accurately as possible. This chapter forms the ground- 

work to the work reported in subsequent chapters. 

In recent years it has been noticed that the theoret-

ical calculations suffer from two sources of uncertainties 

(i) adoption of an approximate model within the frame work 

of which the calculation is carried out (ii) choice of the 

bound state wavefunction to represent the initial and final 

states of the atomic targets as input to evaluate the 

scattering amplitude in that particular model, In the subse-

quent chapters, i.e., 2,3, and 4 we have tried to minimise 

these uncertainties. For example, the Chapter 2 present our 

study of electron impact excitation of helium (116- 1s,211,) 

in the energy range (50500 eV) using the Coulomb-Born model. 

Closed form expressions for scattering amplitudes have been 

obtained with Fourier-decomposition of interaction potential 

and then the use of accurate correlated wavefunctions. The 

results of the present calculations have been compared with 

other available theoretical calculations and the experimental 

measurements. 

Chapter 3 contains the results of our calculation 

for the differential and total inelastic scatteriog cross-

section, using electron impact excitation (113 21S, 21P) 

of helium in distorted wave approximation (beyond Coulomb 

Born model as reported in Chapter 2) at intermediate and 

high energies. The effect of the distortion of incident 

electron, contribution due to polarization of the target 
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and the exchange effect are appropriately taken in both 

the initial and final channels. Fourier decomposition of 

interaction potential between the projectile and target is 

taken and an accurate form factor has been used to calculate 

the transition matrix. The resulting radial Schr&linger 

equation was solved by a standard noniterative procedure 

given by Marriott and Percival (Proc.Phys.Soc.Z2 121(1958):. 

The present results show very good agreement with experi-

ment. 

In Chapter 4, we extend our study (as outlined in 

Chapter 2 and 3) for 21S and 21P transition of helium atom 

by positron impact. As is well known that the positron impact 

studies differ from its similar counterpart study by electron 

in two ways (i) No exchange effects are present (iii) the 

static distortion potential now bears a negative sign. In 

this way we have carried out this study on the same footing 

as has been done for electron impact. Present results are 

compared with the earlier theoretical estimates. 

The Chapter 5, presents our results of electron impact 

excitation of 3s state of lithium in the energy range 20,-200 eV. 

Differential cross—sections for this transition are obtained 

in eikonai Born series, Modified Glauber approximation, second .  
Born, Glauber and first Born approximation. In addition, we 

have also calculated the generalised oscillator strength 

employing a variety of target wavefunctions. In this chapter.  

we shall also report the results of resonance transition (2s-2p) 
of .lithium atom in Modified Glauber approximation. 



In Chapter 6, we present our results concerning 

molecular high energy electron and x-ray scattering inten-

sities for ten electron systems (Ne,HF,E[20, NH3  and CH4). 

The difference between the usual elastic intensities for 

electron and x-ray from nonvibrating but freely rotating 

molecules and the fully elastic intensities for scattering 

from the J,0 state are studied. The effect of molecular 

binding and various other trends and systematics in the 

intensities have been examined with the help of difference 

function computed between the present scattering intensities 

(total, elastic, inelastic) and that for the independent 

atom model (lAM). 

Chapter 7 summarizes the work reported in the 

earlier chapters and contains some comments, pointing out 

the drawback and the suggestions for their improvement. 
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CHAPTER:1 

INTRODUCTIO 

1.1 GENERAL REMARKS 

The primary aim of Physics is to understand basic laws of 

nature. For the convenience, physics is divided into many 

branches which equip us with different information about 

these laws. The macroscopic aspect fails to explain the 

basic interaction between the colliding particles and radia-

tions which arises due to electronic structure of atoms and 

molecules. The atomic and molecular physics specially 

'collisional physics' provides the information about these 

phenomena. The theoretical study of electron, positron and,  

photon collisions with atomic systems has attracted a consi-

derable amount of interest in recent years because a number of 

theoretical and experimental techniques of atomic and molecular 

collision are available in literature. Such study of collision 

processes is very useful in the following diverse fields as 

radiation physics, electron spectroscopy, plasma physics, 

atmospheric physics, astrophysics, radiation chemistry, 

transport properties of gases, fusion process, chemical reac-

tions, auroral phenomenon, solar corona, radiation biology 

and health physics etc. Most of the applications of the 

collision physics in the above fields need absolute cross-. 

section over a wide range of energies, which can be obtained 



either using the different theories or experimental 

techniques; At present, the most important use of cross-

section is in designing the different types of gas lasers 

and tokamak. 

Due to the above reasons, the collision physics is 

very wealthy field and have wide scope for further develop-

ments in both the theoretical and experimental sides. The 

main work of the workers in the experimental side is to 

develop the new techniques to get accurate information 

using the hi-fi electronic instruments. But on the theo-

retical side, they compute the absolute cross-sections with 

the use of different approximations (given in Section 1.2) 

and compare with the experimental data to check the trust-

worthiness of that method. 

In a simple way the basic ideas which are required in 

the analysis of charged particle scattering by atoms and 

molecules, we assume that a well collimated beam of nearly 

monoenergetic particles is incident upon a target from a 

large distance and interact with it, after the collision 

with the target, the outgoing particles are detected by 

detector which are also located at a macroscopic distance 

from the target so that the whole system reaches in the 

stationary state and then their energy and angular distri-

bution are, measured. As the incident particles interact 

with the scatterer, a number of changes occur, Here we shall 

discuss only elastic and inelastic process. In the elastic 

scattering, particle simply scattered without 	any change 
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in the internal structure. If during the scattering, there 

is any transfer of energy of incident particle, in giving 

the internal motion of the target then the system undergoes 

a change of internal structure and the scattering is called 

inelastic scattering. But in both the cases, the total 

energy of the system is conserved. For illustration,' we consider 

projectile as electron and target as hydrogen atom 

e H(ls) 	H(1s) 	: elastic scattering 

e  + H' 	: excitation 
e 41-1 	e 	: ionization. 

Each different initial or final state of the colliding 

system defines a reaction channel. For example, here we have 

three different channels. A channel is open if the correspond-

ing collision is allowed by known conservation laws (energy 

conservation, charge conservation and angular momentum 

conservation otherwise the channel is said to be closed. 

The situation is much more complicated if we are dealing with 

molecular systems because molecule possesses additional 

degrees of freedom like rotation and vibration. Thus the 

the electron molecule scattering, in addition to elastic 

scattering, may include the electronic excitation, rotational 

and vibrational excitations and molecular dissociation. 

The theoretical formulation of electron atom or molecule 

scattering is a many body problem and the Schrodinger equation 

of the system is not exactly solvable. Even for the simplest 

system such as an electron and the hydrogen atom, one comes 

across a three body problem and as yet no exact solution is 



known. So the,theorists are forced to use the approximate 

methods. But there is no universal approximation, which 

gives entire information over a wide range of energy. 

However, the reliability and accuracy of an approkimate 

method is assessed by comparing it with other theoretical 

methods and the available experimental data. In general the 

study of the collision processes are carried out in three 

different energy regions namely, the low, intermediate and 

high energy regions. 

Low energies: 

The low energy region is the one where only a few states 

can be excited or equivalently only a few states are open. 

Intermediate energies: 

This is one of the difficult energy range extending from the 

region where only a few channels 'are open to a few times 

the ionization threshold but below the region in which first 

Born approximation becomes accurate. The basic problem here is 

to allow in some average way for the infinite number of open 

channels including continuum, particularly when the conver-

gence of the perturbation theory is poor. 

High energies: 

The applicable energy range extends from a few times the 

ionization threshold upwards. The region is characterised 

theoretically by the rapid convergence of perturbation theory 

and at sufficiently high energies, the first Born approximation 
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will usually, but not always:be applicable. 

Recent reviews by Bransden and McDowell(30):  Byron and 

Joachain(66 :  Callaway(77):  Henry (141), Burke and Williams(122):  

Moiseiwitsch(31) and Walters(73) describe in detail about 

the various theoretical methods. 

In the next section (1.2), we present a brief review of 

the theoretical methods and also discuss the underlying assump-

tions and the region of validity of the various approximations. 

1.2 BRIEF REVIEW OF APPROXIMATE METHODS 

Here we are concerned with the atomic system in which we 

assumed that the incident particle (electron; is interact-

ing for a long time with thu.,  atom (hydrogen, so that the 

whole system has reached a stationary state. A non-relativi-

stic collision between an electron and a hydrogen atom is 

described by SchrOdinger equation 

(H- Cri)  = 0 

( 	N  where , t r r / is the wavefunction of the entire system:  

incident electron plus the atom with appropriate boundary 

	

condition: rl' 	are are the position vectors of incident 

particle and atomic electron with respect to the atomic 

nucleus (assumed to be infinitely heavy ). H is the total 

Hamiltonian of the system and is given by (in atomic units:  

hmme - e =1: -  

H +H 	-1-\7(t 1 2 
v2 
 t 2) 	12 	) 2 IPSO (102) 
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1 	1 
	

(1.3) 
r1 

	

In Eq.(1.2), 	2§-V2 is the kinetic energy operator of the 

incident electron, Ht is the Hamiltonian of the target 

(hydrogen; and V is the interaction potential between the 

incident electron and target atom, E is the total energy 

of the system and is given by 

1 2 	1 = — 
211 2

k
ff • • • 1.4) 

e.1,f are the target internal energies in the initial and 

final channels, given by 

 

Ht
~ 

= 	 ... (105 ) 

where A is the eigenfunction of the target (hydrogen) and 

e is the corresponding eigen energy of the incident electron 

in the initial and final channels respectively. Due to the 

indistinguishability of electrons, the total wavefunction 

of the system should be antisymmetric with respect to inter-

change of spin and space coordinates of the electron. The 

space wavefunction of the system is given by 

	

(-1.11 	= 	(..)]•P 1'2 )I* (r2' rl) 
	

• • ( 

where 1J+ is for symmetric (singlet; and T is for anti—

symmetric (triplet) space wavefunction. 

We assume, when the incident particle is at large 

distaRce'from the target, it can be described by a plane wave 
ik. 1' r 1 and after the interaction with the target, the outgoing 



0)12  sinO (1.0 dcb 

... (1.8) 

... (1. 9) 
0 0 

for elastic scattering itrf 

(10-(0X  = kf 
ki  fif 
 
(
a  A i 

I 

k 
 f

2n 

) Ifif 371 
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scattering wavefunction F(11) is described as a superposi-

tion of the incident plane wave and outgoing spherical wave, 

we have 

F(r 	exp(ki  r 	r if 	0;exp(kf ri ) ■ 

1 	r1 ...)co 	' 1 )6i 	1 i f 
(1.7; 

where f.if  (4a'  0) is the scattering amplitude for the transi-

tion, in which the target goes from the initial state i 

to any final state f. We can easily verify that for any 

function f(49,0), the expression (1.7) satisfies equation (1.1) 

asymptotically through terms of order ri1  in the region 

where V can be neglected, if the potential vanishes faster 

than r1  las r1  -- CD 	Using the scattering amplitude f(.9,0), 

we can directly calculate the differential ( 	) and total 

scattering cross-sections 

From this brief introduction, it is obvious, that the 

basic quantity of interest, is 	the scattering amplitude 

and is contained in the asymptotic form of the total wave-

function. The evaluation of this quantity provides a meeting 

ground between theory and experiment. The calculation of 

scattering amplitude is not so straightforward. Now we shall 

discuss various approximation schemes employed for the 

1Pkr1 

	evalua- 

tion of the wavefunction 	° r2 in equation (1.1) and the 
scattering amplitude. 



1.2.1 Ei en function euaalL2n method 

In this approximation, the total wavefunction of the 

system is expanded in terms of the target eigenfunctions On  

11- 	= 	7  [F 	)0 Cr'' )+F-  (-r'2  )0 ( ) 	... (1.10) 1' 2' r 	n 1 	2 - n 2 n 

where sign refers to the singlet and -sign to the 
/-4■ triplet spin case and Fkr)  represent the scattering  wave-

function while 16 (r) represent the eigenfunctions of the 

target. The sum over n, is over the the complete set of the 

target eigenfunctions, which includes an integration over 

continuum states of the target. If we solve equation (1.1) 

with the use of equation (1.10):  an infinite set of coupled 
f•" equations for F;kr, is obtained in the form 

(7+1c12.1)FAY= 21EV ct )F-(1 JW mgA) m  nm 1 m 1+ la1 

Fm (1.2  )c112  

where Vnm(1) is the direct local potential 

= ff6: Cit2 vc1,7112 )16m 	)d-r).2 	... (1.12) 
and W is the non-local exchange potential defined as nm 

W 	rect )0-1-E10 	1) n 2 	m  ... (1.13 ) 

This infinite set of equations is just the original SchrOdinger 

equation in a new basis and as such is not solvable. However, 

it can be made tractable and solvable if we adopt some 

approximation scheme. So, we now discuss about the approxi-

mations for solving  this equation. 

... (1.11) 



and 

X 
1 	r< 

P 	 A  (fr:  
.r(4-1  

1"2) 
2 X=0  

(1.15 )  

9 

1.2.2 Low_gagsgy collision theory 

(A) Partial wave analysis 

The partial wave method is one of the methods used to 

solve the set of equations (1.11-1.13). This method is 

applicable for spherically symmetric potentials. In this 

approach it is possible to separate out the coupled equat- 

ion (1.11) into its angular and radial variables. This is ach- 

ieved by carrying outan expansion of Frl, and 	in 
11
i
-1'
2 

+ oo 
r .(cosG) F  

• 

Li) = rl 	A It f 1jP X A=0 
... (1.14) 

terms of the Legendre polynomials i.e., 

where r(  and 	are the lesser and greater of r11  r2  and 

4) is the polar angle of r1, AI( is normalisation constant. 

With the use of equations (1.14-1.15) in the equation (1.11). 

one gets the following radial equation 

C i- 2  f k
n
+ 

r 
j 	# r 2 	nx 1 

• (1.16 ) 

with 

WI r  r 0 (t )02  2' 	2A-;-1, 1 2 m 	( 1' n r2` 
I 

z )71  _ (E_cn_et )of  ▪ (1.17 )  
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z represents the change on the incident particle. 

The radial function f;f(r
4 

 l) is known as gth  partial wave 

with the following asymptotic form 

rng 1-+  k ) r 
	n  

sin(knr1- n'( ... (Lis) 

th . where'd 11, is phase shift of A order and is' directly 

related with scattering amplitude as 

++  
-1 c°  

f-(4): = kn 	/ (2gi-1) 	 n exp(i7Cosinll . P (cosQ) 
g=0 	nA 	I 

... (1.19) 

This equatiOn has been widely used to obtain the collisional 

cross-section in terms of phase shifts using partial wave 

method. 

(B) C12=copplinzap.proximatioa 

The close coupling is one such method in which the sit- 

uation can be handled easily. In this method the first few 

intermediate state's in the infinite summation in equation 

(1.10) are retained while the effect of rest is neglected 

(130,96) the order of the approximation depends on the 

fact that how many atomic states are retained in the 

expansion of the total wavefunction. This method is highly 

accurate if the coupling of neglected states is weak and 

is also very successful in predicting resonances but is 

less useful in treating excitation processes, Due to 

neglect of coupling with higher states and with continuum, 

this method suffers from the drawback that the long range 



distortion of the target is not represented properly. While 

the 18.67. and 54.6.4 dipole polarizability of hydrogen and 

helium(124) respectively comes from the continuum states. So to 

remove this drawback, the present method is modified With the 

inclusion of negleCted states in some way, like (i) second order 

potential (SW approach in which the effect Of neglected states 

is accounted. by inclusion of some effective potential(27489,28) 

or (ii) using the pseudo-state approximation(79,121,123,125,127) 

in which higher excited and continuum states are replaced by 

pseudo states, chosen to be orthogonal to each other and to the 

first few atomic eigenstates included in the elgen function 

expansion method, such that they give rise to the exact polaria-

ability of the atom. A large number of calculations have .been 

done by various workers(36,132,168) using these approximations. 

Another equivalent method for solving the coupled equations for 
+-4 
n the radial functions f-/r1-  ) has been introduced by Burke and 

Robb(127) and is called R-matrix approach in which,. one expands 

the continuum orbital in each channel in a complete set of basis 

orbitals. A number of calculations based on this approach have 

been done by many workers(86,182 184170). 

(C Polarized orbital method 

It is one of the most successful methods in which the effect 

of the polarisation of the target is taken into account by 

just adding a perturbing part representing the polariza-

tion of the target to the unperturbed wavefunction of the 

target. Using the first order perturbation theory the 

perturbing part is obtained. This method was introduced by 
Temkin(19: and Temkin and Lamkin(20) by obtaining the 
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single integro-differential equation of the infinite set 

of equations (1.16). The adiabatic and nonadiabatic polari-

zation potential is introduced by Labahn and Callaway(148) 

and Khare and Shobha(159). It is described in detail by 

Drachman and Temkin(140). 

1.2:3 Intermediate  and high energy collision theory  

• The low energy methods which we have discussed in the Sect-

ion (1.2,2) are not suitable for intermediate and high energy 

regions. Because in this energy region, the low energy method 

become quite complicated as large number of channels become 

open for scattering and a great number of partial waves 

are to be computed. Since the intermediate energy region 

provides a link between low and high energies, there are two 

natural lines of attack, one from low energies and the other 

from the high energies. We adopt here, the second approach in 

which we start correcting the high energy approaches. In general, 

- the corrections to the first order term of the Multiple scatter-

ing is sought in various ways. To achieve this, we write 

equation (1.1) in the integral form (40) in place of 'different-

ial equation. This integral form is highly useful in analysing 

the scattering problem in this region of energy. The integral 

form of SchrOdinger equation (1.1) for two electron system is 

given as 
A± ...0% 
'4'(r r ' - exp(iK. "..i NJO C-i 1-2 7 	0 r V --'' 	c 	' • 
A 	11  2 - 	- 	v 1" i 2 ' 	;;.. i 	rn  r2  , m  r2  / m  r, II r.. ) 

	

—1 	m 	 J.  i 
--t, 	, . 	, 	...„ x V(r r ) CE .t )dr di'' 	.... (1.20) 

	

1' 2 	l' 2 	1 	2 

where Gm 1,i1, is Green function and given by 



... (1.21) G 	m — 4, m 	 - rr-r1I 

ex (  'k(J,'))p, m  

13 

This equation shows summation over an infinite set of the 

target wavefunctions. The scattering amplitude for any 

initial state i to final state f is given by 

fn. 32'rr 	exp(_iir 	),511(-r \\TC4  72)4J(11,-r2)d-r'idl.>2  

	

f 	f 2' rl' 

... (1.22) 

The Born series for the scattering amplitude can be easily 

obtained by iterating the solution 	of equation (1.20). We 

expect that the Born series will converge if the incident 

particle has a high energy and (or) if the potential is 

weak enough. 

(A) First  Born avoL=ULLiQa 

Due to simplicity this approximation has been widely used(93,109) 

in many scattering problems. The underlying assumption in 

this approximation is that the incident particle interacts 

slightly with the target so the wavefunction can be expressed 

as a plane wave which will be the correct function in the 

absence of all interaction. To obtain?  the first Born express-

ion only the first leading term is retained in series expan-

sion. This is given as 

f (f1 ) = fBl 	j expWc.7:1)0/2(V2, V(71,12 ) 

exp(iki.r1)0i(Val  

1 	 '4  

27T 	exp(iq.rl)  Vfi(r1Aar1 .000 (1.23) 
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with V (r (  ) m mP (r )( fi 	 j Pf , 1—  — .4 
1 	)0 , r 	

-••••• r )2 
21  

where q = ki-kf  is the momentum transfer vector. This approxi-

mation is valid if the velocity of incident particle is very 

large compared to the bound electron or energy of incident 

particle is high. It is well known that for the elastic 

scattering the first Born term (fin, dominates the Born-

series both at small momentum transfer q and at very high 

energies. In the region of large q, it converges to the 

second Born term. However, for the inelastic scattering, 

because of the orthogonality of the initial and final bound 

state wavefunction, removes the electron nucleus interaction 

from the fB1, as a result the first Born cross-section for 

high energy and large angle is of orders of magnitude too 

small. 

(B) Second Born appraimation 

The first Born approximation (FBA) which completely neglects 

the effects due to the polarization. of the target by the 

incident electron and the distortion of the incident wave. 

These effects are very important for intermediate energies. 

In order to include these effects of first Born approximation 

(FBA). We use the second Born approximation (SBA). The second 

Born amplitude is obtained by retaining the first and second 

term in the Born series. It is written as 

(1) 	(2) f = 1 	f  B2 	fi 	fi ... (1.24) 
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where f (2) f is the second term of the Born series and given by 
i 

(2)  1 r  j'  C 1" f 	= 	exp 	 m  ri, 1, fi 
v (1 )v r  r e' fm 	mi l 'l rl - (1.25 ) 

Here the summation on m includes the sum over all bound and 

continuum states '0m of the atom. Hence, its evaluation is 

quite difficult. This may be done by taking the energy of 

the intermediate states to be fixed at some average energy 

which is different from the ground state energy of the target 

and then performing the summation by the closure property(74) 

Holt and Moisewitsch(16) and Holt et al(17), have considered 

the first few target states explicitly (ild the effects of the 

rest is included by replacing the energies of the intermediate 

states by an average excitation energy. 

(C Third  Born_tagm 

There has been no serious attempt made to evaluate the third 

Born term into a form which can be used in analysing the 

higher order correction to the Born series. One such attempt 

in recent past is due to Yates(4. His procedure parallels 

that of Glauber(159 and is very similar to the high energy 

small angle potential scattering analysis of Schiff(103). 

As the strength of the potential increases, the 

inclusion of higher order term of the Born series is diffi-

cult and therefore, it is not possible to obtain the proper 

convergence of the series. Therefore, some high energy semi- 

classical and its related methods have been used to study 
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the scattering of electron by atomic targets. 

(D) Eikonal approximation 

It is a semi-classical approximation, which is applicable 

when the wavelength (4t = 1 of a particle is sufficiently 

short compared with the distance over which the potential 

changes appreciably, then it is possible to define the 

particle trajectories which obey the laws of classical mech.- 

anise. If the potential V is of range a)  the short wave-

length condition requires 

k. 	1 

and the high energy condition requires 

I v I / 

In this approximations  the scattering wavefunction is 

written as a product of the incident plane wave and a slowly 

varying function of r1  which is a modulating factor to the 

incident wave and its departure from unity is a measure of the 

scattering effect of the potential and is given by 

z 
F(fl ) = exp[A.11 	f V(lopz'dz' 	... (1.26) 

where b is impact parameter and it is. assumed .here that the 

incident wave moves in the z-direction with constant speed v. 

and 1-1 =. bi-zki. Using the equation (1.26) the scattering 

amplitude is 

fE = - 	exp 	) 031( )Vci? 	(1 

	

27 	 f 2 	i° 2 i 2 

x exp L - k7 J V( b, z )dz 	dit'dl2 	- (1.27) 
1 -a 
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Due to straight line trajectorie (66) the eikonal approxima-

tion is only reliable at small angles. For small angles, 

is perpendicular to the incident direction but the actual phase 

of the 'scattering wavefunction should be evaluated along the 

curved trajectory. 

(E) Glauber approximation 

In 1959, Gia0139) suggested an improvement in the waver-

function equation (1,26) can be achieved by performing the 

z-integration in the phase along a straight line parallel to 

the bisector of the scattering angle i.e. perpendicular to 

because phase could not be obtained along the curved trajectory 

of the particle in semi-classical limit. The Glauber approxi-

mation is a special case of eikonal approximation having the usual 
conditions of eikonal approximation4 The scattering amplitude may 
bo written as 

ik. 	 , 
f ry 	 exP(ig.b)16f(2) CS, r2)0id2)d2b d12 	(1.28)  2n 

where, 

(b, r2) = 1-exPliA4b1r2) 1 

po 
and 	7,(t,7;) = — K.  I v(i.1,12 )dz 

..„0  

• • • 1.29) 

Here 0i and Of are the target. wavefunctions in the initial 
A and final states respectively, ri  = b+zk 	is the projectile 

coordinate and r -> 2  = 5q-zki  is the coordinates of the target 

electron with respect to the nucleus of the target. The 

expansion of the exponential of44, gives the Glauber scatter-

ing amplitude in the form of an infinite series, referred as 
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Glauber eikonal series (GEB) 

where 

4cn) 
rif"I' 1/  - 	"if n=1 

... (1.30) 

  

 

= -A db e 	1p 7- 
fci ,17? 	 , 

2ni. 	 f IA,  
(1.31) 

We note that fB1 = fa  because of our choice of z-axis. We 

also see that Glauber terms are alternately real or purely 

imaginary, while the Born terms for nIt. 2 are complex. Yates(3) 

and Singh and Tripathi (157) have analysed in detail the diff-

erent terms of Glauber eikonal series for elastic and 

inelastic scattering of electrons by hydrogen and helium 

respectively. BefOre we point out some improvements made 

in the Glauber amplitude, we must point out some of the short-

comings with which this approximation suffers, The most 

important of which are the following. 

(i) The logarithmic divergence of the imaginary part 

of the elastic amplitudes in the forward direction 

because of the long range electromagnetic forces. 

(ii) The excitation .cross-sections' for states for which 

(Lf—mf )-(L.+M.) is an odd number, are identically 

zero whereas for even number, it enhances the cross-

section (here Lf, mf and L., M. are the angular 

momentum quantum numbers of final and initial 

states respectively). The calculation of the 

orientation parameters A a d /,is therefore, 
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meaningless in this theory. 

(iii) It does not distinguish between scattering of 

positve and negative particles. 

These failures can be traced back to the neglect of 

the intermediate energy transfer in the derivation of 

Glauber amplitude. As a result, the first two shortcomings 

mentioned above can be removed by introducing an average 

excitation energy of finite value of the atom as its inter-

mediate states. This has been worked out by Rosendorff(1) 

in a consistent way. The improved amplitude obtained by him 

resembles the conventional Glauber amplitude in character. 

It satisfies the unitarity theorem (to all orders of the 

perturbation expansions). However, still it does not dis-

tinguish the scattering of positive particles from that of 

negative particles. Further, the vanishing of real part of 

fG2 from the Glauber series is particularly disturbing as it 

amounts to the loss of the leading contribution from the 

target polarization. 

(F) Eihalul-Boazeziesjlethed 

We have seen that the Glauber terms are alternately real or 

purely imaginary, while the Born terms for 	are complex i.e. 

fG = f Gl+Im1G21-Re  1G3 
	 ... (1.32) 

fB = 1B1+ L Re  1B2-1-im  1B2 1+ ERe  1B34-im  1B3 I 
	

so. (1,33) 

Using the property of Glauber and Born szies Byron and 

Joachain (67) introduced a new approach called Eikonal-Born 
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series(EBS). It basically combines the Born and Glauber .  

series to get a consistent picture of the scattering 

amplitude through order 	It It is achieved as follows 

... (1.34) 

where  fB1 and  fB2  are the first and second terms of Born 

series fc3  is the third order Glauber term, It must be 

emphasized that for processes in which both the initial 

and final states are spherically symmetric the Glauber 

term fGn  gives in each order the loading piece of the 

corresponding Born term (for large ki ) at all momentum 

transfer, except in the second order. It has been established 

further on the basis of potential scattering.that the'third 

orderBorhterm(exparldodinpowersofVk.)is almost 

identical to the third order Glauber term and can there-

fore be evaluated easily. This is the rational behind 

using the third Glauber term in BBS approach. 

(0 

This approximation is apparently very similar to EBS, in 

which, the full Glauber amplitude is corrected for the 

missing second order real term by substituting the f32  in 

place of fG"?'  This modification was pointed out by Byron 

and Joachain (65) and elaborated by Gein(175), is called 

modified Glauber approximation(MG) and is given as 
OD 
e fMG f d—fG2 ifB2 =.1 fBlffB241G3 nt4 f  Gn 

oo 
r
4  

= fEBS n 4".  'Gn = 
... (1.35) 



21 

.2 Thisapproacha insteadof working toorderIc
1, 

removes 

the logarithmic divergence of the Glauber amplitude in the 

forward direction and includes the polarization effect of 

the target. The modified Glauber amplitude is more accurate 

in the comparison of EBS amplitude because in MG we include 

the higher order Glauber terms. This inclusion of higher 

order terms play a significant role at large scattering 

angles. A detailed study, comparing the EBS and MG has been 

done by Tripathi and coworkers(163,164,165,166). Apart from 

the success of EBS and MG approach, recently Yates(4) has 

proposed a high energy higher order Born approximation. In 

this method he has evaluated all the Born terms on equal 

footing. Recently the EBS and MG approach has been unitarised 

(68,69) by using a method due to Wallace(152: and referred 

as UEBS. This method has been used recently by Byron and 

coworkers to study the elastic and inelastic scattering 

of electron from hydrogen. In this direction, Dewangan(50) 

has proposed a new theoretical model whidh fully incorporates 

the second Born amplitude under a closure approximation and 

in limit of high energy reduces to Glauber restricted 

approximation (82). 

The recent review article by Gerjouy and Thomas(57)p 

Byron and Joachain(66), Chain et al(63), Joachain and Quigg(38) 

and Tripathi(14) haVe dealt in detail about the various 

aspects of these theoretical approaches. 
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(H) Corrected static and its  variants 

We know that the static interaction (Vst) correctly reduces 

for small values of r to the Coulomb interaction acting 

between the projectile electron and the nucleus of the 

target. Therefore, we expect ,it to govern large angle direct 

elastiC scattering. If one makes an expansion of the static 

scattering amplitude in powers of Vst, i.e. 

fs 	2Tc  <kfiVsti-VstG+Vse'''' 

1+ 	fBn(//st) 	 (1.36) 
n),2 

It contains the term fBn(Vst) of the Born series having the 

initial state (ground state here) as intermediate state. These 

terms correspond to virtual transition going through elastic 

intermediate states and dominate the direct scattering 

amplitude at large ki  and large q since the convergence of 

the Born series is slower at large q than at small q, it is 

therefore useful at large angles to perform an exact (partial 

wave) treatment of the potential V
st and thereby the resulting 

amplitude fst  sums the contribution of Vst  to all orders of 

the perturbation theory. 

For small values of q, however, the static approximation 

is poor. This is due to the inadequate treatment of fB2, 

since the static potential is real and of short range and 

does not account for absorption and polarization effects 

which play an important role at small angles. So in order to 

improve this, we must add to the fB2  that part which lacks 

i.e. we now carry out an expansion of the static scattering 
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amplitude in powers of l(V-Vst )+Vst giving rise to what 

is called corrected static approximation (f
cs 

 ) (74,25 ) 

;Is = fse ifB 	( vst ) 
	

(1.37) 

This approach does not include the contribution from the 

non-static part of the third and higher order terms which 

may be quite important. In the case of elastic scattering 

from the 2s state of atomic hydrogen the real part of the 

scattering amplitude is found to be dominated by fG3 (third 

order Glauber term ) in the intermediate and large angle 

region. The corrected static approximation may be improved 

upon by adding to it the contribution from the non-static 

parts of the third and higher order terms in (say) the 

Glauber approximation 

f = f 	St 	 4 

St s f 2-  B 	B2) 

4

. LG1 

-F

-4-G2 4 -t

42

'4' 
... (1.38) 

This equation should lead to an improvement over both the 

EBS and the CS approximation(112,116,163). 

It can be easily seen here that the MG approximation 

can be obtained by dropping terms of order higher than two 

in f
st 

and its compensating term f
G

t 

• 

G 
= f

G
+ff

G2 

The EBS amplitude corresponds to further dropping the higher 

order Glauber terms G4, G- 
.D 
	 in a bid to obtain an 

expression correct to order 1/ki. 

f 	= f +f +f -2 
EBS Bl B2 G) 
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All these approaches are basically high energy approaches 

and rely on convergence of the Born series. They do not work 

when applied at lower energies. At these energies the Born 

series have poor convergence and therefore, all the multiple 

scattering series should be evaluated on an equal footing 

rather than giving a special treatment to the second order 

Born term and ignoring/evaluating higher order terms in 

some other approximation. This will avoid disturbing delicate 

cancellations between various terms. If Glauber approximation 

for the higher order terms are used, then)  the amplitude is 

given as 

f = f +fcrfst  st  ... (1.39) 

This approach works quite well in the lower energy side of 

the intermediate energy region particularly for low 

polarizability targets. 

(I) .?10—potential methods 

The basic idea of two-potential method is that the total 

projectile-target interaction, is broken up into two pseudo-

potentials and the resulting two terms of the transition 

matrix are evaluated in different approximations. Generally 

one term of the broken part is treated exactly while thb 

remaining part is evaluated approximately. Various choices 

of this break-up and the approximations have led to the 

various methods reported in the literature 

(i) Distorted wave Born approximation, 

(ii) Distorted wave eikonal approximation, 
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(iii) Two., potential eikonal approximation, 

(iv) Glauber distorted Born approximation, 

(v) Opulomb projected Born approximation. 

These methods have been used extensively. Ishihare and 

Chen(169) have treated the static part of the potential 

exactly and the remaining part is evaluated in the Glauber 

approximation, Madison and Shelton(47) and Culhaum et al(147) 

have applied the standard two potential formalism to obtain 

a systematic distorted wave model for electron impact excita-

tion of atoms. 

(J) Di,atorted wavemethod 

As we have discussed that the Second'Born approximation (SBA) 

makes partial allowance for the effect of distortion. But the 

distorted wave approximation provides better account of 

distortion. Due to their truthfulness, a large number of 

theoretical, work is available in the literature (135,160p  

84,1451  172,1611185,471  41, 3o, 25,1692 511 90,78 ). Basically, in 

this approximation we make a two state approximation involving 

just the initial state 1, which we suppose to be the ground 

state of the atom and final state f, neglect coupling to all 

other state. This approximation has been used in different 

ways. A detailed account of the various distorted wave methods 

has been given in the review of Bransden and McDowell(30). 

(a) DiZtortg4_EL.Ya it t Bogai203L14,22'.4QUWAILIU  

In the recent years, it has been apPlied by various authors. 

The philosophy here has been strictly speaking lies in the 
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choice of the distorting potentials. We can write the inter-

action Vi in two parts: 

V.=U.+14. 	 ... (1.40a' 
Vf = Uf +14± 
	 (1.40b) 

and we choose Ui and/or Uf as 

< OilV1101 	 V st 

so that 

• 16.1V.1 3. = V1 	1 1 1/ 

... (1.41: 

... (1.42: 

then the first term of the distorted wave Born series become 

fDWBA . 1 
fi 	-. \ 	I Vfi  7, 

whereY,c  satisfies the equation 

(v24-k2 )4 (r: = 2V 7, c 

,.. (1.43 ) 

c = (i or f) 	... (1.44) 

The DWBA in this form has been applied by many authors to the 

study of excitation of hydrogen (47), helium(26. 

(b) 1441artad_vaa,aug_alm_i2112261aplugaimatisla 
The sum of the first two terms of the distorted wave Born 

series gives the distort wave second Born approximation to 

the scattering amplitude 

.rDwSBA = DWBA 	1 J- y 	7 	V eV .W> ... (1.45) ffi _ 2n ` 	mf or i fm m ml 

Its application is limited to the high energy region only if 

the closure approximation is used to perform the m summation. 



The DWSBA offers a good basis for describing the e--atom 

excitation. Recently this approximation has been used by 

Dewangan and Walter's(51) to study the elastic scattering 

and Kingstonand Walters and Winter(6,90) for electron-

hydrogen excitation, 

1 2 4 EKahanggamroximation 

Due to indistinguishability of electron, in electron-atom 

scattering the exchange effect are really very important. 

So far we have not taken exchange into account in the 

described methods. It is obvious that exchange effect is 

not very important for high energy but .for low and inter-

mediate energies exchange effect play an important role, 

we see from equation (1.11) that in the high energy, approxi-

mationP the direct and exchange scattering amplitude are 

obtained separately and the total scattering amplitude is 

by combining these two according to symmetry requirement. 

In literature a large number of methods are available to 

calculate the exchange scattering amplitude, the most 

familiar methods are Born-Oppenheimer approximation (32) and 

Ochkur approximation(179). 

1.3 PLAN_OF THE THESIS 

The primary aim of the present study is to investigate the 

scattering of charged particle (electron and positron) with 

atomic and molecular systems at intermediate and high energies 

using simple, accurate and computationally feasible quantum 

mechanical methods. The results obtained in the present 
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investigations are compared with available theoretical 

calculations and experimental data. 

The whole work has been divided into three main 

categories: In the first category we have studied the 

inelastic scattering of electron by simple atoms like helium 

and lithium;  under the second category we have studied the 

positron impact excitation of helium and in the it 

category we have calculated the elastic, inelastic, total 

high energy electron and x-ray scattering from the ten 

electron systems Ne;  HP, H200  NH3  and oH4, 

The first category deals with the following investi-

gations 

In general, the theoretical calculations suffer from 

two types of uncertainties (i the basic nature of approxi-

mation employed for studying the collision process and 

(ii) use of the approximate wavefunction as input for 

evaluating the scattering amplitude within the framework 

of the scattering model. In the following two chapters, 

we have made an attempt so that the above mentioned 

uncertainties are best minimised. 

(i) The study of electron impact excitation of helium 

for 11  5-21  S,21  P transitions with the use of many parameter 

correlated wavefunctions in the Coulomb-Born (CB) model 

with the inclusion of exchange effect using Bonham-Oehkur 

approximation (see Chapter 2). The comparison of results with 

the experimental measurement of suzukai and Takayanagi(75), 

Opal and Beaty(37) shows a better agreement compared to the 
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other theoretical calculations. 

(ii) In Chapter 3, we studied the same problem using 

a distorted wave approximation (beyond Coulomb-Born model) 

employing the many parameter correlated wavefunctions. The 

effect of the distortion of incident electron, contribution 

due to polarization of the target and the exchange effect 

are appropriately taken in both the initial and final 

channels. The resulting radial SchrOdinger equation was 

solved by a standard non-iterative procedure given by 

marriott and percival (Proc. Phys.Soc.22,121(1958)). The 

present results show all the possible features (near about) 

of experimental data. 

(iii) The Chapter 5,presents our study of electron 

impact excitation of lithium for 2S-3S transition using the 

eikonal Born series, Modified Glauber approximation, second 

Born, Glauber and first Born approximation and a preliminary 

study ofor 2s-2p transition in Modified Glauber approach. 

In addition we have also calculated the generaliSed oscillator 

strength employing a variety of target wavefunction. 

Second category presents our comparative study of 

positron impact excitation of helium atom for 11S-21421P 

transitions using the same models which we have used in 

Chapters 2 and 3, The results are presented in Chapter 4. 
This study differs in two ways (i) No exchange effects are 

present (ii) the static distortion potential now bears a 

negative sign. 
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In the last category, Chapter 6, the elastic, inelastic 

and total x—ray and electron scattering from ten electron 

systems Ne,HF;H20,NTI3  and CH4  have been calculated using 

SCF—M0 wavefunctions obtained in double zeta quality basis • 

of Gaussian contracted - wavefunctions, The effect of mole-

cular binding and various other trends and Systematics in 

the intersitias have been examined with the help of diff-

erence, functions computed between the present scattering 

intensities and that for IAM, 

The Chapter 7 contains a summary of the work presented 

in the earlier chapters and some comments. 
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CHAPTER -2 
SYSTEMATIC APPROACH FOR ELECTRON IMPACT EXCITATION 
OF HELIUM IN COULOMB-BORN. N_ivJODEL 

2.1 INTRODUCTION 

During the last few years the extensive study carried out . 

on helium atom has provided a great deal of insight in 

understanding the behaviour of discrete excitation functions. 

Helium is the most suitable candidate to test any theoreti-

cal calculation, the presence of two electrons in helium 

permits interelectron. repulsion. Recentlyi  a number of 

measurements (105,75,37) of angular distribution for 11S-21S 

and 11S-21P have become available. On the theoretical sides 

the workers have widely used the various perturbative 

scattering model to study the 21S and 21P excitations of 

helium in intermediate energy region. Among them, the 

distorted wave approximation (47,174,95) and its variants, 

the second order optical model (28), the multichannel eikonal 

approximation (120), the many body Green's function (102) 

approach, close coupling calculations (90),  eikonal Born 

series method (65,39) and R-matrix method (180) are worth 

mentioning. The work of various workers both on the theoreti-

cal and experimental side upto 1978 has been well reviewed 

by Bransden and McDowell(30). The theoretical calculations 

in general suffer from two major sources of discrepancies in 

evaluating the scattering amplitudes. (i) The first is due 
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to the basic nature of the approximation employed for 

studying the scattering process, and (W The second is the 

use of the approximate wavefunctions as input for explicit 

evaluation of the scattering amplitude within the frame work 

of the scattering model. 

Among the scattering approximation, the first Born 

being the simplest one, can be computed (188,94) with ease 

by the use of accurate bound state wavefunctions both at 

Hartreo-Fock and beyond Hartree-ROck leVels. However, the 

use of accurate bound state wavefunction in evaluating the 

scattering amplitude in any other approximation is a rather 

difficult task. The problem has been recognised in part by 

many workers(119,44,24) at different places in scattering 

theories. The standard procedure to involve the use of 

accurate wavefunction in any scattering approximation is to 

take in matrix element the Fourier transform of the ,inter.,  

action potential which is sandwiched betwJen the wavefunctions 

of the initial and final states of the target. Recently, 

Dillon and Inokuti(106 have successfully used this idea to 

calculate accurate differential scattering ,cross-sections 

for 21S and 31S excitations of helium in Coulomb-projected 

Born approximation (151), which essentially takes into account 

the distortion of the projectile electron wavefunction only 

in final channel. In fact, the above idea is easily appli-

cable to S-S.transitions, but for S-P transitions the 

analyeis is not so straightforward. In this chapter in 

addition to S-S transition, we further demonstrate the 
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applicability of the above idea to a study of the discrete 

excitation of the 21P state of helium from its ground 

state in the Coulomb-Born model (340 71). In this model, we 

have, thus considered the distortion due to nucleus of 

target in both the channels of ingoing wave and outgoing 

scattered wave of the electron. As is well known(42), 

the inclusion of distortion only in one channel can cause 

serious errors in the estimation of cross-sections (77,95). 

Further, we have also used a very accurate many parameter 

correlated wavefunetions for the initial and final bound 

state of the target atom (helium). 

We know that at intermediate energies the differential 

scattering cross-sections for discrete excitations decrease 

very steeply with the increase of scattering angle, and 

hence the main contribution to the total excitation cross-

section, comes from the smaller angles. The total cross-

section, therefore cannot be the main criteria of judging the 

suitability of a model where even the first Born results 

give fair agreement with the experiment while it fails to 

display the behaviour of angular distribution. We, therefore 

in this chapter,report our differential scattering cross-

section only for 21S and 21P transition of helium at inter-

mediate energies in the Coulomb-Born(CB) model. The effect 

of exchange is taken into account in the Bonham-Ochkur(134, 

179) approximation. In the following section (2.2), we shall 

briefly outline the Coulomb-Born approximation and obtain 

the closed form expressions for the scattering amplitudes. 
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Section 2.3 contains our results and discussion for the 

21S and 21P transitions of helium. 

2.2 PROCEDURE 

The scattering transition amplitude for the excitation 

of an atom from the initial state i to the final state f 

in the Coulomb-Born approximation is easily derived from 

the two potential formula(40 for the exact scattering 

amplitude. It is given as 

T - = 1-111-IU if 	27r...\ -f if. kil )(7f I fixl I • • • 2, 1) 

4 4 4 The total interaction potential ,l'  r27  r, has been 

divided into two parts, viz. V=U+W such that therf  and 

LI  are respectively outgoing and ingoing distorted project-

ile electron waves (117 in the field of target nucleus 

with k and k f  as associated wavi:-vectors. Uif 	Wif 
and 	are 

expressed as 

Uif(i:1) = KOApt5 iU(Oi(r'?2;t3)).  

= Of(121113)I wr°i(121 3)).  

where 0 and 0f are the initial and final bound state of 

4 4 	4 
the target atom.. rip r2  and r3  stand respectively_ for 

the spatial coordinates of the incident and atomic electrons. 

z is the nuclear charge of the atom. The choice of the 

potentials U and W are arbitrary but are usually chosen as 

... (2.2 ) 

... (2.3 ) 

U = - 	 (2.4a) 
rl 



and the initial and final distorted waves are 

.t 
1 1 

a) e 	1F1(a/1; 

given as 

i(k r 	) i 	J. . 1 
... (2.7a) 

-i(k
f
r
f f.

) 

• (2.7b) 

÷ C r N  exp(U4  
2ki 

Y7f(1)  = exP(R 

 f. r
1 

-13) e 	
1
F
1
L-b

i 
1; 
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w = -------- -+ 
r1-r21 	

111-r31 

• (2,40 

so that for the inelastic scattering (excitation) in the 

present case, the equation (2.1) simplifies to the form 

1 
Ti = f 	f if xi • • • 2,5 ) 

with 

4 -+ -4 
W . = 	 ) 	(r r )dr d1:  if 	f 2'  3 	i 2'  3 '  2 3 

... (2.6) 

where 

iz 

k. ' 

b = -- 
k
f 

Now with the help of Fourier transform of the interaction 

potential, we can express W
i 
 as 
f 

	

("4 	( 

	

w

if 
= 1 jag  exp -lg. )f if 

2n 

• • • 2,8 ) 

) 
f
i  f kq is the transition integral, which is defined aso  

= je(1 	e 	0 ( 	)dr 

iq. r. 

fif (  f 2'  3. 	 . 	r- 	2 
i  

1-2 	

1\ 

 • (2.9) 
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2.2.1 Iy  a io of thutonsitionintgral 

To calculate f. f  CV in equation (2.9), we haVe used  the 

properly orthonormalized many parameter correlated (MPC) 

wavefunctions of Weiss(22) for both initial and final states 

of the target, The accurate generalized oscillator strength 

for various discrete transitions of helium have been calcula-

ted earlier by Kim and Inokuti(188) and Bell at al(94. 

These are recomputed here to generate the numerical numbers 

at different q--values in order to obtain an algebraic 

expression in the q-plane for f if (q), the structure of which 

may be well suited for easy evaluation of the distorted 

wave transition matrix element equation (2.5). In this 

respect, we have followed tha prescription of Crothers 

and McEacharn(54) and Crothers(53 j.. This method consists 

of locating all the four conjugate of paires of transition 

integral lying on the imaginary q-axis. In this procedure, 

one pair of the poles is the usual one proposed by 

Lassettre(58)1. but the other six poles arise due to the 

indistinguishability of the bound electrons(53). Following 

this procedure, the transition matrix element fi f 	which 

we require, have the following form 

4  a' 	 a,q2 
f(q)  1 ' 1 = 	1-2 4  	-- 3-73 

1 s- 2 s 	j.1 (q2-1-cc , '2 	.75 	( q—  +cc,—.  ) - i 	.3 	3 

2 	a. 	A 	a.q2 	 4 6 a q 
f(q) 	. = 

' 2 2 3 	2 2 
 7 _a _ , 

1 3- 1  P P 	j=1 (q +a.) 	J=3 (q +a:'4  '4  J=5 (q2 a + 2 )"' 1 	- 	 ''-- 

6 	
31 	j 

8 	a. q 
+ 	 ...L.* , 

j=
t 

 7 ( c12,1_ _2)0 	 ... (2.11) 
aji 

_ • 

... (2.1o) 
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The fitted values are accurate to less than 17: even at high • 

values of q 10 a. u. The values of adjustable constants as 

needed in the equations (2.10-2.11: are given in table (2.1). 

The transition integral are also evaluated in q--plane in 

the closed form using the Hartree-Fock wavefunctions. These 

expressions in q are then directly used to calculate the 

distorted wave transition matrix element. The calculation 

using the bound state wavefunctions at Hartree-Fock level 

was done to see the effect of correlated wavefunctions in 

this model. 

2.2.2 Analysis air 11S-21S transition 

Using the equation (2.10) the matrix element in equation (2.8) 

can be easily evaluated. Mith the help of following two 

integrals 

f  ,Ada 	7q = 2  2 2 %, q 

and 
. - r 

g 	
2 

2 2 	= 
q (q 	r . a j  

Wif (r1) becomes i.e. 

... (2.12a) 

(2.12b )  

(1-eairl e-airl 	1 	1 if(r 1) - - 	a , 	) 	a 	-_)e  ai ]. r W 
J=1 	 2a, j =5 	8acc • j 

... (2.13) 

Thus using equation (2.13)0  the transition amplitude equat-

ion (2.5) can be put in the following closed form(12,149,33)- 
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Tif 

where, 

j(a 

= - 

b;x 

1 	r rtzil 1— 
f' 

-k  -4 
• r-ikf. 

—2-1  [J(a2b;x=o2 

(1—a ) ITi_b) 

a 

"74=--2 2J 

-5  acci  

-1 
r 

expL -§-‘177 

x 	43 	a4(4-2) 

j=1 	acct  

-J(a2b; x=a 

e
-  

r r 

x=a 

... (2.14) 

x 1F1  ral 1; (ki 	j x iF Do; 1; i 	.1)1 

... (2.15) 

We have included the effect of exchange in the Bonham-

Ochkur(134,179) approximation and transition amplitude for 

exchange is given by 

4 ajla 7 	.3-(a1 1:1, 2i j=1 	aa 
2 

+ • 

	

	 2J(a .,13; x 	cc.)  
a 

2 
 a 

2 1' • a, 

x= a3 , 

... (2.16) 

Finally, the differential cross-section may be written as 

471 

L 

ex 

I.Pi
11s

_

21S i 

11'
if
. -T

i 
 I 

k. 	f 
(2.17; 

2.2.3 Analysis for 11S-21P transition 

The analysis for this transition is not so straightforward 

as described in Section (2 .2 .2), because 2IP state has the 

mxim 	 •••••••■••■•■••••■■•■••■!•••■■•■•••■•■■•■••••■••■■•••••••+01,  
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m=0i+1 magnetic substates, thus the system is not spheriiy-

cally symmetrid. Using the functional form of transition 

integral given by equation (2.11), we can write the equat-

ion (2.8), after some simplification in the following form, 

4 , 4.11 = -1_ D(...2. Ntiv  NI 1F--2 2  141ls...21P, ld 	Iji` rli) q (q  1.a.) 	.6.0.18) 
,en 	

3 

where the operator 

2 
3 

	

N3.1. fl  a 	r 
2 2) 	6 'a_2, 1  4'75 	

". 
iCc
2
il

a- 
(a,,,2.) 0,, 	

3 
2 	2 

	

a n  4 a 2, , 3 cc— 	4 
+ 211(2) ✓ a'a14- 2 (" 	+ tr1( 	 ) am -j-1,77JJ (30?: a . 

4 j 	3 	aj 

:91.40(-2)j 	.66 (2.19) 
acc, 

Now carrying Vr1 operator and using the result of equation 

(2.12b), we get 

e—, 
1 1 rl'

\  = -ip(a2.j 5-2 P 1 
f(rl )  .. (2.2o) 

where 

f(r1) =j 	r.--X1*  a 
?! 
dr ... (2.20a) 

The initial and final motion of the electron is described 

by an eigenstate of the Hamiltonian 

H = T- rl 
	 ... (2.21) 

where T is the kinetic energy term. The following commutator 



relation holds (149). 

4 r1 3  — 
r1 

... (2.22; 

This commutator allows to express the transition amplitudes 

for all the three magnetic substate as components of 

vectors 

2  
if 	

D( 
— 2nz 	aj)  • • • 2.23) 

With 

I 	Krf  I [H, 	f(r )14) 
 

... (2.24) 

Reflection symmetry in the plane of k 4  i  and kf4   suggest that 
-4. 
I has only two components in that plane and they are I.ki  

and T.f:c f  respectively. Thus, the transition amplitude can 

alternatively be represented by two components along  

orthogonal directions, i.e. (Tif)z, a component along  the 

direction of incident electron and ( Tif )x' along  an axis 

in the scattering  plane, 

1\  
. = (T ) k +.(T ) x if 	if z i 	if x ... (2.25) 

where (T.If  ) 	I z 	and (T.f  )x  can be written(149,33) as 

2‘17;1::' (T. ) = 	D(ajk.L.A.1. ) if z 	2nz   ... (2.26) 

 fs = — 	D(o:2 )(?SC. —T.I:cos74)/sin)C 	... (2.27) 2nz 	f 	1 

with 

cos , = k..k.j  as well as 
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-12-gP 
b;  x=ai )+J(as b; x=aj)j  

2ik
i_ 

(a, b; x=cci 	a  

... (2.28 ) 

= 2 
exp() 

-J( b; x=0)-J(a 

+J(ail; b; x=a2 ) "3.  

d(a+10 b; x= 
 

ai 

1, b; x =0) 

rk?-k2  - 

= exp(ifc  )14 	

.F

i-b) 	Oat b+1; x=0) 
f 	

• a4 

J(al  bi x=0 	b+1; x=a, )+J(as b; x=a . ) 

-J ( a, b+1; x=ai )+J(a 	x=ai ) 

21k4  

J( a, b; x=a, ) I 
a4 

and 

• •• 2.29) 

Here also we have used the Ochkur-Borham approximation to 

evaluate the exchange amplitude and same is given as, 

1 	7  / (7,?x) = _ 	D ka ii.k. 
ifiz 	2nz 	j 

• • • 2.30) 

(TeX
if

)
x 	

"'•• 
2nz 

* 	D'

, 

 laj ' 

,

f 
.k -I.k.cosrvitsinh 

	(2.31) 

where 

,, 2\ 	1 tr 
..,2(=q-=)fa'.(21.7) ka.i = —7  ..  f 	2 	am.  

ki j=1 	- aaj 

°' 2  a f - 

3 

2 

6(a- %2 raj 
fi ) 

j=3 
	L aaj  

aj21 24CL -.5 24 
j=  

P 	2  - 	.a 

-• 
20 j4-7 1  

3  4 a 	4 1  12c . 	
2) +mj(;742) 

2 	 3 
) +120210-2) 

acc. 

2 
as 

[180 

as 
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41a N4 	6 a 	

5 t aa2 )  u.3  
(2.32) 

The differential cross-section for m=0 and m.+1 are then 

given by the following two expressions,respectively 

0105 --A —1  (Ti 	1
2 

d0' 1 	1 	k1 • 	'z .if'z 1  • P 
for m.0 	(2,33) 

kf 
'dPlils_21p  = 2k,I if  lx,- (T)  I for m +1 lag\ 

...-(2.34) 

2.3 RESULTS AND DISCUSSION 

We have used the equations(2.17) 	2.53-2.34) for cal- 

culating the differential cross-sections (DCS) for 11S-21S 

and 21P excitations of helium. Our calculated values are 

shown in figures (2.1-2.4) at 100 and 200 eV. Our results 

in the energy region from 50---5oo eV are shown in the tables 

(2.2-2.4). We have also carried this calculation with 

commonly used simple wavefunctions to see the changes in the 

cross-sections. Far example, 11S and 21S are described by 

the Hartree-Fock(HF) wavefunctions of Byron and Joachain 

(64,65), while the wavefunction for 212 is taken from 

Morse at al(131). The results of these wavefunctions. are also 

displayed in figures (2.1--2.4). In addition to the present 	• 

results, on curves, we have shown various other results 

obtained in different models. 

Before, we compare our results with other theoretical 
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calculations, it is worthwhile to compare first the present 

results obtained using two different wavefunctions for 

both transitions. For 21S transition, it is seen that there 

is not much difference between the two sets of results in 

the smaller anejular region 	30°, but as the scattering 

angle increases (,a > 30°), the difference increases. The 

maximum deviation noticed in the region of larger scattering 

is about 12,/, at 100 eV and 5"4 at 200 eV. In the case of 

21P excitation, the two different results differ in similar 

fashion as for 21S excitation except that at large angles 

the deviations are 137, at 100 eV and 107. at 200 eV. 

2.3.1 11S-21S excitation 

In figure (2.1) we present our results for 11S-21S excitation 

at 100 eV along with other available theoretical calculations 

and experimental data. It is seen that at low scattering angles 

3o°, the first Born results falls off very slowly and there-

after it decreases very rapidly with the increase of scatter-

ing angle (0 >30°). The reason for this behaviour is well known 

and obviously it is due to the dropping of the electron-nucleus 

interaction in the Born matrix element. In the smaller angular 

region e ;,‹ 30°, the results of the present calculationsaS well 

as those obtained from many other theoretical methods hardly 

differ among themselves. At large angles •8>,.30°  the results 

from various models, show big improvement over the first Born 

results and approach to experimental results. The present results 

higher than the Coulomb-projected Born (CPB(151) results. The 

distorted-wave polarized orbital (DWP0)(172) curve shows a 

clear minima at e ^0500  and increases again with the increase 
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in scattering angle upto 110°  and after that it shows 

the same pattern as others. It is noted that the measure-

ments of Opal and Beaty (37) and Suzuki and Takayanagi(75) 

differ significantly from each other. The R-matrix(180) 

method does predict the forward peak in the results but 

overestimate the results as compared to all the theoreti-

cal calculations at large scattering angles. The second-

order potential (SOP) calculations of Bransden and winter(28) 

are in fair accord with the measurements of Opal and 

Bealy (37) whereas the variable-charge Coulomb-projected 

Born (VCCPB) results of Singh et al(42) favour the Suzuki 

and Takayanagi(75) measurements. It is rather surprising 

that the magnitudes of DCS obtained in different models 

differ significantly among themselves, particularly in the 

large angular region of scattering. The figure (2.2) shows 

the behaviour of DCS at 200 eV. The variation of DCS shows 

the same pattern as in figure (2.1), but DWPO calculations 

of Scott and NtDowell(172) does not show any minima but 

the cross-section curve still remains at the bottom. The 

present calculations follow closely the VCCPB results at 

the larger scattering angles. Our method overestimates the 

DCS in the region Ge:..50°  and underestimates by an almost 

similar amount at large angles of scattering when compared 

to R-matrix results. 

2.3.2 112e21-p excitation 

The results for 11S-21P excitation of helium are shown in 

figures (2.3-2.4) at 100 and 200 eV respectively. It is 
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clearly seen that results for DCS from different models 

are in reasonably good agreement in the forward direction 

upto e <200  and thereafter they decrease slowly and flatten 

out at large angles. The present method overestimates rosults 

as compared to the R-matrix results between the angles 30°  

and 904  and beyond (:31  ;>900 ) the R.--matrix results stand 

higher by a factor of 3. Recently, Madison and winters(46) 

carried out a distorted wave calculation including higher 

order terms in the distorted wave series. Their second order 

results hardly show any improvement over the first order .  

distorted wave results. Therefore, we have shown in the 

figures (2.3-72.4 only their first order results. The 

measurements of Suzuki and Takayanagi(75 are in reasonably 

goOd accord with the first-order distorted wave results, 

while the calculations of D.14100(172) underestimate the results 

at large scattering angles. At 200 eV (fig.2:4) the R-matrix 

(180) results are in better agreement with the measurements 

in the entire angular regions. The present results show 

,a better improvement with experimental measurements in 

comparison with first-order distorted wave results in the 

angular regiorrupto G -1 80°: Beyond this angular region the 

present calculation underestimates the results 

2.4 CONCLUSION 

The comparison Of present results with other theoretical 

calculations and experimental data shows that the above 

methodology is highly accessible of yielding good results 
for excitation process over quite a wide energy range. At 
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low scattering angles most of the models, including ours 

along with the experimental results show very good agreement 

among themselves. At larger angles, however, the situation is 

different where almost all the theoretical results differ 

among themselves by a certain extent. The differences in the 

results among the distorted wave models can be obviously said 

to be due to the different choices of distortion potential, as 

well as their implementation in the channels. As can be seen 

from figures (2.3-2.4, for the 21P excitation (which Madison 

and Winters (46) also reported), results which took proper 

account of distortions in both channels, along with the use 

of accurate wavefunctions, produced a nice agreement with 

experimental data. The present model, except for taking the 

distortion by the fixed Coulomb field of the target, has all 

the precise feature required. However it has other advantages, 

if 100/: accurate results are not required, such as the model 

is easily approachable as the expressions for differential 

crosswsoctions are in closed foLm and do not require any 

numerical solution for generation of distorted wavefunctions. 

In the next chapter, we shall see how we can improve this 

calculation by taking into account the other physical effects 

(such as polarization and distortion effects) on a more sound 

basis. 



Table 2,1- The expansion parameters of transl.tion 
integral f if (g) for 11s — 21S1  2‘P 
transition's. 

11s .._ 21s 11S - 21P 
aj a j  aj 

1.  375.1315000 4.000000 -24249.4.00 1,841743 
2.  -22.2950800 1.884728 156936.400 2.497592 
3.  -105.6113000 2.540315 -21435.990 1.941743 
4 355.0043000 3.344.414 -14975.100 2.497592 
5 -0.5141655 1.883720 --1074-8.440 1.841742 
6 -146.7487000 2.540315 67675.780 2.497592 
7 -416.7105000 3.344414 -405.769 1.841743 
8 -13283.230 2.497592 
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2.5 FIGURE CAPTIONS 

Figure 2.1 The differential scattering cross-section 
for the 11S-21S excitation of helium atom 
by electron iLilpact at 100 eV, 
Calculation: -- : present results with MPC 
wavefunctions; 0: present results with HF 
wavefunctions; - - - - present results in 
first Born; 	: results in VCCPB(42); 

: results in CPB(151) 
in DWP0(172); --x— : results in R-matrix(180); 

: results in SOP(28); 0 :Experimental 
data of Suzuki and Takayanagi(75); A: Experi-
mental data of Opal and Beaty(37). 

Figure 2,2 Same as figure (2.1) but at 200 eV, 

Figure 2.3 The differential scattering cross-section for 
the 11S-21T excitation of helium atom by electron 
impact at 100 eV. Same as figure 2.10  except 
--*—: results  of Madison and TA.nter(46) 

Figure 2.4 Same as figure 2.3 but at 200 eV. 
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work are given in Chapter 2. We therefore, describe in 

Section 3.2, the theoretical procedure for 11S-21S, 21P 

transitions of helium and the results and discussion are 

presented in Section 3.3. 

3.2 PROCEDURE 

The transition matrix element for the electron impact 

excitation of helium atom from its initial state i to the 

final state f is expressed as (in atomic unit) 

Tif  _Zyf  1;\11 Th+  > 

where VVr.l'  r2, 3) / ' = — 2  
r3  

electron—helium interaction 

... (3.1) 

1 	1 + ----- is the incident 
r1—r31 it2-91. 

potential, tl and r2  refer 

to the position vector  of the atomic electrons relative 

to the center of mass to be fixed as the nucleus of helium. 

r3 is the position vector .of incident electron. y i  is the 

total scattering wavefunction which we approximate in the 

present distorted wave model as 

[0 (1 	)+0 	),]F+(k 	'11$ ( 4  '4  )F +(k 4  ) 2 poi 	2' r3 	1 i' 	r2, r3  

(3.2) 
and similarly, the total wavefunction !iif  in the final channel 

is represented by 

= rIsAll?,2 )+Opoic r) -I?  7 	. 
2  22  3 I 1f ( k f' 3). (3.3) • 

/ where F
+
(ki,r) 4,  and F—(kf,l) are the ingoing and outgoing 

,..4 
distortedwaveswith.and kf as incident and scattered ki  

wave vectors, reppectively. Ø.  and Of  are the initial and 
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final unperturbed wavefunction of helium atom. 0poi represent 

the polarization term of the target. In equation (3.2), we 

have neglected the exchange polarization term as the polari-

zation contribution will be small at distances where 

exchange is importance. Further, representing the ground state 

wavefunction (100) to be expressible as separable Hartree-

Pock wavefunction of the form (see Scott and McDowell(174, 

118)). 

0 Ci 	= 0 	0 (-2?  
i 1' 2' 	1s 11  ls 2' ... (3.4) 

I where 013 ( r) = Rlskr/Y.oo
( r/. We can write then (20,10). 

A ( ! 1 	= [0 a 	)0 a )+0 	)°1s(12)1  1* 22 3 ' 	poi 2' 3 is 	pol 
... (3.5) 

For Apoi 2 r if  we take in the dipole  
ing expression (20, 	10) 

2 r 

approximation the follow- 

N. r.r 	; 	(3.6) 

• 3.7) 

one gets 

[ 	(k2  )] 

(3.8) 

	

'i-e(rart)Ois( ir) 	1  0pol 	-72  Ti-r,P 

with step function 

	

r 0 	r e(r,r 1 ) 	= 1r 
= 0 	 r f  < 
.4,  

Expanding r (ko r; in spherical harmonics 

co 
Fkk,r) = 	/ (2P-1)(ti)g  exp 

,e =0 
u(ks-r*  

X 	1)/(COSicoi 

th a 6/ is the phase shift of the A partial wave. 

In order to obtain uA  ; (k,E we need to solve the following 
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two Schrbdinger equations 

H.W = E. y. 

and 	 ... (3.9) 
Hf = Eort  , 

HereH.1  and Hf are the Hamiltonian corresponding to the 

initial and final channel of the system, respectively, Ei  

and E f  are the corresponding eigen energies. On substitution 

of (Pi  and iff  in equation (3.9), we find that uf(k 1) satisfies 

the following radial equation 

rd  
2 	2 

-2V (r'-2V st 	pol / uf(k11) yr) 
Cdr 	r  

... (3.10) 
With 

XK  
OD 

15- ‘J60 	r1Rls(r')ux(4r"Ar' Aso 
OD 	;X 

Tid7 rR  s(r  f rfRls r )ux,  (k,,r y  /-77-7 dr 

for ingoing wave 

and 

Xf(r)=0, for outgoing wave 

subject to the following usual boundary conditions 

I 	, u (k 	= 0 g  
r4. o 

. u 	1 f(ko r/ = 7r-sin(kr- a  + 
2 ... (3.11; 

In Eq.(3.10) the static potential Vst  and polarization potential 

poi are given by 



and 

2 	-4/ 	nt 	(/ Nt  

4 	6.4 VSt(r  = 177+  6415(r  ): .4  7k1S r  tr-r 

V (r) = <0 pol 	
2 	I 0p0a. 	i> 
r—r ,  
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... (3.12a) 

(3.12b) 

Equation (3.10,' reveals that we have taken the distortion 

effects in both the channels by the ground state (100, of 

helium. This choice is in justification with the fact that one 

can expect the passage time of the projectile to be much 

smaller than that required for the atom to make its transition 

to an excited state so that the projectile is always in the 

field of the ground state. 

Further, the polarization terms appearing in the equations 

(3.2) and (3.3) for VI and W; will be omitted in further evalua-

tion ofTie  (Eq.(3.1)).  We take therefore account of the 

polarization distortion of the target only in obtaining the 

scattering function F Jc,r), but neglect its further effect on 

the T-matrix element. There is no obvious justification of this 

additional approximation, but neglecting this term is consis-

tent (30,172,116 ) with our neglect of exchange polarization term 

in equation (3.2). 

3.2.1 Calculation for 1 S -11S transition 

Using eqs. (3.2) and (3.3), we can write eq.(3.1) for 11S-21S 

excitation as, 

dex 
i Tif = Ti T  if (3.13) 

ex i where if 	 Tif  is direct excitation term and 	is the exchange 
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term and the same will be given by 

Tc.1  = <F—(k 71'.  )0 (, 	'1 1VIO 	)F1*(k 	. (3.14) 
if 	f' 3 f 1' 2' 	i 11  2 	3' 

and 	 • 

T,lf
X = kf'3' '0f 	) 	O1(2213)F4.(ki.,11)1... (3.15) 

First, we evaluate theTif  and write it alternatively as 

where, 

Tc.1  f  = O(kt::;)tV. 
f' 	1 

1"(kii lt3 ) 	 ... (3.16 ) 

V. -4 	A if -4' 	)1 r4 	)' 	
(3.17) r5 	‹p f  ri r2 i V. ris r2) r3 	ri, 2 , 

After taking Fourier transform of V(110 120 V (the inter-

action potential), the above equation (3.17 reduces to 

v
If 31 
 	2  1dg F2  exp(-il• 3' f  i f (C ) 

2m ; 

 ... (3.18 ) 

1-  
Alternatively Vif k

:>■  
ri can also be obtained by first calculat-

ing the transition density Pif(r) and then fitting it into 

some suitable polynomial of r so that the further use of 

integral form of Poisson s equatibn give a closed form 

expression for Vif(). 

In equation (3.18 ), the fif (q) is the transition form factor 

given by 

fif Cq) 	Of(11,t2) 	exp(i1j..)10i(t1s12)) 	(3.19) 
j=1 

It is obtained by choosing, for both . Oi  and Of  the properly 

orthogonalized many parameter correlated (MPC) wavefunctions 

due to Weiss, The resulting expression for fi f (q) is then 
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brought to an analytic form in q plane as discussed in the 

Chapter 2 (see Section 2.2.1) and the same is given by 
2 

	

f. 	q. = 	 1.  ai  

	

i 	 ' 	a"  3 1 	 (3.20)f ( 	" 	2 ,2-2 	I 	2  j=1 (q 	\ 	'175 (q +a ) 

With the form as given in equation (3.20) and using 

equations (2;42a) and (2.12b) of the previous chapt4ro  
(r./.1 becomes v1 1  1 S-2 S 

4 
v 11 (r) =

; 	
Cair 

1  6-2 S 	
••••••■1114.... 

4--  3 ) 2a 

a .-1-0(r 1-)e-ai r  
j=5 . 3  8a,` 	aj 

	.., (3,21) • 

With the help of equations (3.8) and (3.21),. Tdif  can be written • 
in the following form 

df 	AA  1 T. = B x#P#kcosk..kf ) if tto  A  

where, 
kri2/.4-11 exp 60 (k? )4-io 

and 
CD 

= 
, 	 is 	 if 

... (3.22 ) 

... (3.23) 

(3.24) 

In the similar manner, using Bonham-Ochkur(134, 179,47) 

approximation, Equation (5.15) for Tiexf  can be written as 

Tex 	-> 
if - \ F kfJ . 3 J 

Xf  
25 ... (3. 
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--i- 1 	 6-.1q.r3 	(q) 
2 

V? (r ) 	j q q if 3 	 fif
n
2 
 

... (3, 26a) 

where 
2 , 

f (q ) 	(q) if 	2 if k. 
4 

- .1-7,.. 7 -...r....--- + 1  -______ 1,  

k.' jt1 ( 2.1. 2)2  j=5 (q24. 2Y 

.1  [4 afq2 	
7 ajq 

1 	q aj 	a.1` 
i r 	ajq2 	7 ajq2 	 2 2 a ja jq 

- 7\H= ( _i q :_a4) j,..5 (q"- -1-a4 ;a j=5 (q +a .) i 2 2 74+  L 	 5 	 ,2 - 4. 	 2 2 3 
ka. i 

	

) 	.  
... (3.26b) 

Thus, using eq,(3,26b), eq. (3.26a) can be put in the form, 

r 7 exi  1 , Vifkr3, = 71.. 
k. 	.-,j 3. 

a 	3— 	- 	L a4  =0(r.;',..1-)e c(ir  
' 	"cj 	j.5 	-J 	-' 	ai 

. . .-; (3.26c ') 

The values of a 's and a gs.are given in table 2.1 of Chapter-2, 

Using eqs. (3.8) and (3,26c) the exchange matrix element of 

eq.(3.25) on siMplication, becomes 

00 
Tip - 7 Bex  P (cosic 	) 1 	i• 

16,0 

With 
4nc2J4-1. 	2,  2,1 , exp i6 (k. .+ic5(k I I J- 4k.k 	 i ' 	A f j . B 

i f 
and 

1B = 	r) u7,(k frV x(r)dr f ' if 1  

(3.27) 

.... (3.2C 

(3.29) 

, 	• 	, Now combining equations (3.22) and l3.2Tit we get the 

final expr6ssion for Tif  (eqUation 3.13), 

A 	, 

Tif Bef ( cosk k ' • • • 3.30) 



6(k1).1-ox(k2f) 

cosk .k 	(cask
. f' X 
Ik 

... (3132) 

by 

where, 

= 	explia (k)+i6 (k)1 (I -I ) 	(3.31) 
fkikE  Lii g f  A B 

dCr 
The differential cross-section az and total cross section Cr 

can be expressed as 

OD OD r  dCr _ s#Bcosi 
ci P " 1 	A N 

2N1 
r-1504)•-oOkff; P/( 

and 
t  

1 kfB 2  

7 K .  1/ 
(nag  

n 

(3.33) 

3.2.2 Calculation fQr 1/5-2/P tranAltion 

To evaluate the transition matrix for 1
1

S-2
1
P transition of 

helium, we start with the equations (5.15:, (3.15) and (3.16). 

Consider first the equation (3.16 for direct excitation. In 

In this equation Vif  is given by 

	

Vif(r) = \ 	M t 
f 	2/ 	n_.‘r11  r21 4e. (.34 

Following the procedure as outlined and discussed in the 

preceding Chapter 2 (Section 2.2.1, equation (2.11) and 

Section 2.2.3, ,equation (2.18)), the_above expression for 

/-4n 
kri can be put in the form, V

1
ls_
2p 

v

1
ls_

2
1
P 

/ 2,  
r; = -ipk.) -5flri

N  
• • • .35) 

f 
32, i Here D(a.) is the operator as defined by equation (2.19). 

With the use of above equation, transition-matrix (3.16) for. 
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11S-21P can be represented in three components as 

md' + Tc11.i+AZ = y z 

one 	T can easily show that d if(111=0) =Tdf z and i 

4.1 (.,.+1) Td  + - 	-2  

... (3.36) 

(A) Evaluation of P ,',m=o) if 
• MaINIVVI 

We can write, 

z = rcos8 = 

Thus 

<E f ,(kfs  r) -3f r 	Pik kis  t)/ 
r 

-1 j )(  ,T1)1/ / 1 	1 Ya0(r)  

r2 

Using equation (3.8), (TT )2  can be finally expressed as 

1/2 	(.22 

	

1 	i 

	

3k
I
kfl 	X:To 

Co 

2, 	. 
j oxp [ i6, l k i  )+iog  

--; CID 	 i ■ 
x [-j-D(cc2)1 1  u+(k r. a-KI  - 	‘ 

..., jo  
r r 

x JP x(CCA. r. ) .". Y10() p,, v(coskf'il)dr 

... (3.37) 
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The angular integration over the spherical part can be 

done using  the addition theorem (108) and thus the above 

expression takes the. form 

(4n)2  co co 
(tIdz  *  

ik. k f  
expti8g(k2i )+Vof  (k2f 	tni ,(kf  )Yf mCk ) 

2 ji 99 1,21(kI,  r)f(riti* (k 	dr 0 0 0 	 aj J i5 	' 	n 	f r j 

... (3.38) 

Using  the angular momentum al gebra (108), we can further 

write the above expression for transition matrix in which 

only one sum is left)  

(i fii  ) = Tc.1  (m=o) i z if 
op d n 

= 

.f
L 

 0 
B T elp.-_-0),P/(coski.ki ) 	 ... (3.39) 

=/` 
where 

d 	47ti 	
(f+i)e ga+1 KU, P-  r-I el  g g—1 K(1,/-1): 

'.. 	 ' 

... (3.40) 
where, 

LD(a2 ) e (k 4c)  (k )d j _  t,  r 	2  klit 	r 
wit = 8f f (ki cl-ep■x f i 

d (13) Evaluation Of f  m= +1 
----_----- 

As we know that 

 - 9a +10 (x+iy, 	!v' 6- Y (r) 
19  +1 

= 

and 
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Hence 

T. m,+1; = 1—(TX  +iT ) x y 

1 ft,— ( I, -A,. ,, i zitiy ; 1., + ( .1,, 	--.:,•\ 

	

= ---,,, f  , aN.r, .A.. 4. 	7 	4: 1 • vol.  1p 1. ), 
ff . 	

t 	dr) 	1-  
_ 	 ... 	 . Y -'. +i0 

.,( 2 	I 	/ 	"-IA 	1 —1 g— 	/ 1/4 

	

=-- ! —14-)1/4  a . i' 	 ,,E'  l k r . --3--
3
—f 1/4 r ; F+  ( k 

	

. 	1 

	

3 !,,N 3 	f 	f' 1 	 I i 	i 
r 

... (3.41) 

Using the same procedure as we have used for m=0, the matrix 

element T f1/4m=+1: can be expressed as 

co  

Tif 	
7 B(m=i)p,(cos ki.kfi) ei0 

	 3.42) • 

r0 	
A 

in which 

- 2][7kt  
... (3.43) 

ex 
C, Evaluation of T. 

—_—_—__— 	 — 

One can include the effect of exchange in the Bonham-

Ochkur(134,179,49 ) approximation. Equation (3.15) for exchange 
amplitude is given as 

Tex
if 

- 4-
f
(k 

\  

..ex 711/41 1„+ ( k.  

'if 'it 
(3.44) 

,A, 

in which' if ' Vezti is expressed by the expression 

veX 	 2 
e 
 iq r 

dq q 	 1/4q, 
if' 	

271
2 . 	 fif ... (3.45) 

47Ei 
Bd( m=  +1_ 	 e1,1+1 - 

2 

= 
	

f it ( 4rf 
2  

where, 

f. ( 
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This expression for VTIM can be simplified in the same 

. manner as explained earlier (Section (2.2.3)8  equation (2.18)). 

Thus, it can be brought. to the form 

V(1)=-ip t(a‘) 3f( r) 	 "4 (3.46) if 	r3 

where D'6,, is an operator given in equation (2.32), and 

f(r) is defined by the equation (2.20a). To evaluate 

the Tex if  (m=o) and T f  ?x(m=-1- P  1) we follow the same procedure -  
as we have used for Ta f, thus, 

OD 
Ti  = T(M=0)Pi((COS t. lf 	 1.  f f=0 

... (3 .47) 

where, 

x/ 
onf NUI=0 

and 

K i( 1,X+3. ejAg, f--1 K 1 (18 /-1)1 
... (3.48) 

A A 
Tex 

( 
m=1) _ ,c2P e Uxf ? Be m=+1)P1(Cosk..k if f Co )‘ 

in which 

... (3.49) 

ex 
BR ( -1 ..AZ1- 	1040/4-1)i-eil f-1 K t(fol-l) 

12k.k f 

... (3.5o ) 

with 
. 0 ,(k1)+8/o(4) 

K t(P,g") = [—Dqa2i)1. 1°41(kip2. 141  iii,(kf,)dr 
r • o 

Hence, finally 

Tif (m=o'' 
A 	P■. 

m.0)Pg(cosk. k ... (3.51) 



where, 
• m=o) 4Thi 	[( -1-1)0",,X+1(K(fp g+1).-K i(it l-1.1)■ 

,117i—kf  
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-f eiglo g-1 (K(gsg-1)—Kfulf—li  (3.52) 

and 
OD 

T. ( 	Bo(m=1)P (cosk. k 
1=0  

fl 

where 
4ni r 

Bf(M=1) =77=7- e 
j2kikf  

4- ei 11 4-1 (K(Ipg_1)_Ktus g_inj  ... (3.54) 

d4.7 The differential cross-section aT  can be expressed as 

k r  2 
ggr  -f-  dP 	4n k. 

1 Tif  (rn-0)1  +2 Tif(m-,1)121 - 2 (3.55) 

The radial equation (3.10) for Ui(k,r) was solved by a 

noniterative procedure (143) the normalization and the phase 

shifts were obtained by comparison with the JWKB solution(2). 

The numerical integration for IA,K(1 1,1") and IB, Kt(Kts fn) 

was done accurately using Simpson's rule. 

3.3 RESULTS AND DISCUSSIONS 

We have calculated total and differential cross-sections for 

excitation of 21S and 21P in the energy range from threshold 

to 200 eV using many parameter correlated (MPC) as well as 

Hartree-Fock(HF) wavefunctions. Present results for total 

cross-sections are displayed along with others in figures 3.1 

and 3.4 for 21S and 21P respectively. For a detailed comparison, 

the total 11S-21S and 11S-21P cross-sections for incident 

X, f +1 (KU, +1 )-K t  Ot 



66 

electron energies 26.5-200 eV along with the results in 

other approximations are given in tables 3.1 and 3.2. 

Differential cross-sections at 100 and 200 eV are shown in 

figures 3.2, 3.3 for 11S-21S and 3.5 anJ 3.6 for 11S-21P 

respectively, where other results are available for compari-

son and also the present model is expected to give relia-

ble results. 

3.3.1 11  S 1..:2, S excitation 

(A) Total cross-section 

In figure 3.1, our total cross-section results are shown 

for 11S-21S and compared with those of other theories 

[distorted wave models(172,91,42,28), R-matrix(180),close 

coupling(87) as well as first BOrn approximation[ and with 

a recent experiment(60). Among different distorted wave 

models - (172,91,42,28) the distorted waves are taken in initial 

and final channels in various ways. It is therefore, desir, 

able to see how they differ from each other before 

their results are compared. Scott and McDowcll(172, 113) 

incorporated the distortion only in initial channel dub to 

static interaction, the target polarization and exchange 

effects. Singh, Srivastava and Rai(42) took distortion duo 

to static interaction only in the final channel.. Winters(91, 

28) implemented the distortions in both the channels in which 

the initial channel included distortions due to static 

interaction, polarization of• target, absorption and exchange 

effects while the final channel included only distortion due • 



67 

to the static interaction. The present model is similar 

to Winters and Bransden (28) and Winters(91), except that it 

included in addition to polarization in the final channel 

along with static interaction but exclude the absorption 

effects in the initial channel. Further, the present 

model as well as that of Scott and McDowell and Singh, 

Srivastava and Rai evaluated in addition to direct matrix 

element equation (3.15) for the calculation of cross-sections 

while that of winters(91) and Bransden and Winters(28) only 

evaluated the direct matrix element equation (3.14). The 

present results with MPC wavefunctions are higher (within 5Y.) 

than that with HF wavefunction below 200 eV and at high 

energies almost coincide. At energies above 150 eV, all 

results are in agreement except the results of Scott and 

McDowell(172) which become in agreement with these at somewhat 

higher energies. Below 70 eV down to 300 eV, the experimental 

data lie in between present curve and that of Scott and 

McDowell(172) while the remaining curves diverge away from 

these estimates. The maximum value of the present cross-

section is less than that of Scott and McDowell(172; value 

and also slightly displaced towards the lower energy side. 

(B) 	 crourtection 

The differential cross-sections(DCS) for this transition are 

displayed in figure (3.2) at 100 eV. We compare our results 

with distorted wave results, Scott and McDowell(172) 

results, R-matrix(180), FBA and experimental data(75 . It is 
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seen that the present DCS obtained using HF wavefunctions 

follow very closely the results using MP0-wavefunctions. 

The results of Scott and McDowell(172) show a big dip in 

the DCS curve nearly at 50 eV which is not shown by 

any other model. Agreement of our curve with the experi-

ment in contrast to that of Scott and McDowell(172) curve 

reflects the importance of inclusion of distortion effects 

in both the channels. We also observe that below 30°, all 

models give nearly same results. At higher angles, however, 

R-matrix and distorted wave method of Bransden and Winters 

overestimate the DCS as compared to ours and experiment. The 

difference in the results of Brensden and ,Anters(28) 

and the present reveal the importance of the polarization 

contribution. Further, it is also seen from the figure 

(see the results of Singh at al(42))that the distortion 

included only by static potential in the outgoing final 

channels, also reproduces good results at this energy. 

The figure 3.30  presents the comparison of diffL.ent 

theoretical and experimental DCS results at 200 eV. Except 

the distorted wave results of Bransden and Winters which 

is not available, the rest theoretical calculations dis-

played in this figure (3.3) are same as in figure (3.1). It 

is again seen that the present results are in very good 

agreement with the experiment in the entire range of scatter-

ing angles. Scott and McDowell(172) results are greatly 

diverging from the experiment while results of Singh at al(42) 
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are in between the two. The R-matrix method is again seen 

to overestimate the results. 

1 3.3.2 11  sza_P excitation 

.(A) Total cross-section 

The figure (3.4) shows our total cross-section for 11S-21P 

excitation at impact energies ranging from 20-200 eV. We 

have compared our results with the results of many other 

theories such as R-matrix(180), five state close-coupling(87), 

DwP0(172), first Born and with experiment of Suzuki and Tokyo-

Tokyanagi(75). It is seen that the results of present calcula-

tionsusing the MPG wavefunction are always lower (within 41.), 

than that with HF wavefunctions at all impact energies.The 

results obtained using R-matrix method are higher than the 

experimental values but are considerably lower than those 

of five static close coupling calculations. The DWPO results 

lie in between the present results and R-matrix results. 

Further the present calculations show a remarkably good 

agreement with the experimental measurement of Suzuki and 

Tayanagi(75). The above results therefore;  suggest that for 

electron impact excitation of 11S-21P, the present version(as 

given in Section 3.3.1) of distorted wave model is quite 

successful. 

(B) Diffgxential_amss-sacticIn 

The 11S-21P transition is an optically allowed transition. 

This transition has been studied in quite detail both 
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experimentally and theoretically. In recent years various 

groups have measured the 11S-21P differential scattering 

cross-section (DCS). The experimental data obtained by 

Trajmar(87), Hall et al(87), Truhlar et al(87), Chutijian 

and Srivastava(87) are in the lower energy region i.e. 

<80eV',whereas the data of Suzuki and Takayanagi(75), Opal 

Beaty(37), Chamberlin at al(87) and Dillon and Lassettree 

are available in low as well as high energy regions. 

The figures (3.5) and (3.6) display our calculated 

results of the DCS at 100 and 200 eV respectively. On each 

figures we have shown our earlier calculations in Coulomb-

Born model (see Chapter 2) and first Born results. The 

results of Madison and Winter in second order distorted 

wave, the R-matrix calculations of Fon at al(180), DWPO 

results of Scatt'and McDowell(172) along with the experi- 

■ mental measurements of Suzuki and TakayanagiC75; are shown 

in each curve. The experimental data of Opal and Beaty(37) 

is not shown here and Suzuki and Tayanagi(75) are in good 

accord with each other. Therefore, we have only shown the 

data of Suzuki and Tayakanagi on our curves. At. 100 eV it is 

seen that the DCS as a function of electron scattering angle Q 

is sharply peaked in the forward direction, i.e. Q<30°. With 

the increase in scattering angle particularly 301c,“60(7), 

the DCS decreases sloWly and thereafter i.e. 49> 60°, the 

DCS flattens out. The first Born approximation (FBA) results 

give an exceedingly small result for G> 300  as expected. In 
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'the small angular region i.e. Q 4(30°  the results in all 

the theoretical models as well as the present one are same. 

Beyond e'>30°, the differences between the results of cal-

culations obtained in different model become noticeable. 

The calculations of Winters, Scott and McDowell in DWPO 

approach show a rapid fall in the cross-suction and thus 

underestimates the DCS at large angles. The R-matrix cal-

culations remain higher in comparison with all the other 

theoretical calculations as well as experimental data in the 

intermediate and large scattering angles (9>30°,. The present 

calculations agree well with the Madison and Winters results 

and experimental measurements upto 8 '11-. 110°. Beyond 8,,, 110°, 

the calculations of Madison and Winters and X-matrix results 

overestimate the cross-section compared with the present 

calculations. The present results, remain higher, but still 

close to the experimental measurements. 

At 200 eV, the general trend of Variation of the DCS 

are very much similar as seen at 100 eV. The quantitative 

disagreement between the results of the different models 

and the present one (as seen at 100 eV; gradually narrow 

down with the increase of impact energy. This feature is 

clearly seen in figure (3.6).  The present distorted wave 

results show a reasonably good agreement with the results 

of R-matrix and, the second order distorted wave results 

of Madison and Winters at all angles except at intermediate 

angles 3o° (9-:6oc) ,, On the other hand the present results 

are in excellent agreement with the experimental measurements (75 
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in the entire angular region. The present (total and 

differential cross-suction, results for the excitations at 

100 and 200 eV are compiled in Tables (5.1-3.3). 

5.4 CONCLUSION 

From the foregoing analysis of the results we conclude that 

the distorted wave model is a promising and useful approxi-. 

mation to reproduce the differential and total cross-section 

results. Although in order to avoid the complexities, we 

have made a few approximations in the calculation procedure 

(as already mentioned in this chapter which seems reasonable 

in view of final results. Further, we also conclude that 

the target correlation does not play a significant role on 

the final results as very small differences are observed 

in the two sets of results obtained using HF and MPC wave-

functions. The comparison of different distorted wave models 

among themselves as well as with the present approach suggest 

that the inclusion of target polarization in berth the 

channels and exchange contribution provide significant 

improvement in the results. 
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Table 3,3- Differential cross-sections d  17157-(a2Sr71  for p   

11S-213, 21p excitations of helium by 

electron impact. 

Scatter-
ing 
angles 
(deg) 

ENERGY (eV) 

1 	1 1 S-2 S 11S-2 P 

100 200 100 200 

5 1.42(-1) 1.5 2(-1) 3.41 3.05 
10  7.43(-2) 9.02(-2) 1.09 9.31(-1) 
20 3.62(-2) 2.07(-2) 1.18(-1) 3.25 (-2) 
30 1.20(-2).  2.35(-3) 1.48(-2) 6.41(-3 
50 8.32(-4) 6.72(-4) 1.35(-3) 9.35( -4) 
70 9.48(-4) 3.54(-4) 9.00(-4) 3.05(-4) 
8o 8.32(-4) 2.68(-4). 8.01(-4) 1.72( -4) 
100 7.18(-4) 1.57(-4) 5.81(-4) 1.15( -4) 
120 6.00(-4) 1.18(-4) 4.43(-4) 1.05 ( -4) 
150 4.61(-4) 9.51(-5) 3.27(-4) 9.41( -5) 
160 4.41(-4) 9.41(-5) 3.05(-4) 9.07(-5) 
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3.5 FIGURE SZEMEa 
Figur 3.1 Total excitation cross-sectionsfor 11S-21S transi-

tion of the heliuM atom by electron impact. 
Calculations: --- , present results with MPC 

functions; A, present results with HP functions; 

- x -, results in R-matrix (180); --*--;variabte s  
charge Coulomb-projected Born results (VCCPB)(42); 

	 present fesults in first Born; 0, ,  
.results in close-coupling(87);--.--results in DWPO 
(172); 	second order potential results (28); 0, 
experimental data of deHeer and Jansen(60). 

Figure 3.2 Differential cross-sections for 11S-21S excitation 
of helium by electron impact at 100 eV. 
Calculations: ----present results with MPC 

functions; As present results with HF functions; 
-x-, results in R-matrix (180); 	variable 
charge Coulomb projected Born results (VCCPB(42); 

results in DWP0(172); -xx- , results in 
SOP(28); 411, Experimental data of Suzuki and Takayangi 

(75). 

Figure 3.3 Same as figure 3.2 but at 200 eV. 

Figure 3.4 Total excitation cross-section for 11S--21P transi-
tion of the helium atom by electron impact: 
Calculations: --- , present results with MPC 
functions, As present results with HI' functions; 
-x-, R-matrix results (180); -a-, close coupling 
results (87) - - - —p first Born results;---,,,--, 
results in DWPO(171); 0, experimental data (60). 

Figure 3.5 Differential cross-sections for 11S-21P excitation ' 
of the helium atom by electron impact at 100 eV. 

Calculations: 	present results with MPC 
wavefunctions; 	results of Mukesh et al(113); 
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R-matrix results (180); -c.-1  variable 

charge Coulomb-projected Born (VCCPB)(42); 

results in DwP0(172); 	- -4 first Born 

results; Of  Experimental data (75). 

Figure 3.6 Same as figure 3.5 but at 200 eV. 
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CHAPTER =4 

ACOMPARATIVE - STUDY og4.4.022ERINg 

4.1 INTRODUCTION 

The study of positron gas scattering with atoms has become 

an active area of experimental and theoretical research 

during the last decade. Experimental investigations of 

Stein and Kaupplia(173) measuring cross-sections for 

individual transitions were mostly confined to total cross-

sections. However, recently several groups have started 

measuring the cross-sections for some elastic and inelastic 

processes, such as positronium formation, atomic excitation 

and ionisation etc, separately. Amongst the atomic excita-

tion measurements, Coleman and McNutt(130) and Coleman. 

et al(129) have measured the total cross-section for posi-

tron impact elastic scattering of argon and helium atoms 

for the 11S-21S transition respectively. For helium they 

considered positron energies just above the threshold, i.e. 

22-30 eV. In view of the promising progress of positron 

beam experiments of Canter and Mills ( 61), it is expected 

that these will provide us with data not only for total 

cross-sections but also for the differential cross-sections 

which display real scattering behaviour. Consequently, a 

lot of attention has been focused-on similar theoretical 

investigations in recent years. In particular, for helium, 
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a few theoretical attempts(156,161,99,46) have been made. 

These calculations have been performed using eikonal Born 

series (EBS), modified Glauber approximations (MG), the 

close-coupling approximation(CC), the distorted wave 

approximation and its variants. Except for the CC calculat-

ions of Willis et al(156) for the 21S and 21P excitations 

• and that of Madison and Winters (46) for the 21P excitation, 

the other authors report results only for 21S excitation. 

Among the various versions of the distorted-wave approxima-

tion, Saxena et al(161) employed distortion in both the 

channels by the Coulomb potential, Willis et al(156) used 

a distorted-wave Born model in which the distortions in 

both channels were taken in the field of static and polari-

sation potentials of the target ground state, Parcell et al(99) 

used distortion by static potential incorporating various 

polarisation potentials in the final channel and Madison 

and Winters used a distorted-wave Born series approach, 

retaining the second-order term in the series and using in 

place of the second-order potential a local second potential 

evaluated in the closure approximation. In most of the 

approaches outlined above, the representations of the bound-

state wavefunctions of the target were at Hartree-Fock level4 

As we have discussed in Chapters 2 and 3, that the 

theoretical calculations for cross-section suffer from the 

errors caused due to two main uncertainties, namely 

(i) the first, is adoptation of an approximate model within 

the framework of which the calculation is carried out 
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(ii) the second is the choice of different simpler analytic 

wavefunctions to represent the initial and final states of 

the atomic target, as input to evaluate the scattering 

amplitude in that particular model. 

We have made an attempt to minimise the above errors 

in the best possible way. For example, in the chosen theo-

retical description (i.e. model), the second source of 

error can. be handled and the uncertainties in the results 

can be minimised with the use of available accurate general-

ised oscillator strengths for a specific transition. The 

minimisation of the above errors is the present effort 

having the following salient features (i) to include 

electron correlation effect with the use of many parameter 

correlated (MPC) wavefunctions (ii) Use of distorted wave 

approximation in particular Coulomb-Born model and distorted 

wave polarised orbital approach. The effect of electron 

correlation is included through the use of available accurate 

generalised oscillator strength for a specific transition. 

These generalised oscillator strengths are obtained with 

the use of accurate many parameter correlated atomic wave-

functions.Such ideas have been well recognised by earlier 

workers in different contents (119,24). In this way, in 

any theoretical description (i.e. model the second source 

of errors as pointed out above, can be handled and the 

uncertainties in the results can be minimised. Recently, 

Dillon and Inokuti (106) have implemented similar ideas for 
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electron impact excitation of the helium atom and performed 

the calculations using the Coulomb-projected Born (CPB) 

approximation only. The situation with S-P transitions is 

however not so straightforward. 

The distorted-wave first Born model in its various 

versions of Bransden and McDowell(29) and winters(90) has 

proved to be a useful model of electron-atom excitation at 

intermediate energies. Similar studies can also be considered 

for positron impact on atomic systems. The study of positron-

atom scattering can be used as a first step and it would be 

worth exploring the effect of utilisation of accurate wave-

functions in one of the distorted-wave approximation method 

itself. To begin with the attraction is naturally for 

positron impact studies on the helium atom, namely for 

excitations where other theoretical calculations for relative 

comparisons are already available. Further, since positron 

differ from electron only by a sign of the electric charge 

and so its study differs from that of electron in two ways. 

(i) The static interaction (arising from the Coulomb field 

of the undistorted atoms) which was attractive for electron 

scattering will now be repulsive for positrons, while the 

polarization interaction (resulting from the polarization 

of an atom by a passing charged particle) remains attractive 

for both positrons and electrons, (ii) Another important 

interaction i.e. exchange (arising from the indistinguish-

ability of projectile electrons from electrons in the target) 

will be absent for positrons. In this chapter, we therefore 
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present our study for positron impact excitation of the 

21S and 21P state of helium in Coulomb-Born(114) and 

distorted wave polarised orbital approach. Using an 

accurate generalised oscillator strength. In the Section (4.2)1  

we present our complete study in Coulomb-BOrn model and 

Section (4.3), deal our calculations for the same exitations 

in distorted wave polarised orbital approach. These calcula-

tions are also performed using the Hartree-Fock(HF) wave - 

functiona. 

4.2 CALCULATION FOR 2,11,...21 TRANSITIONSIE coo....0A= 
BORN APPROACH 

The transition amplitude for the excitation of the helium 

atom from its initial state i to the final state f by 

positron impact (having ,ki and kf as incident and scattered 

final wavevectors) in the Coulomb-Born approximation is 

given by 

In equation (4.1), ^cf, the distorted incident (scattered) 

wave is chosen to .be a Coulomb wave in the screened charge 

(z2/=-1.4) of the target helium atom. The justification and 

utility of such a choice of distorted waves have already been 

exemplified in the literature (161,106). These have the 

following form 

Af+/---> tyri i = exp(okag,  -a) exp(iit..t1 1  ) 	1'  (a 1 i(ki  r1 i1  )) 

... (4.2a) 
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= exp(RTI-b) exp(iT!f1.11'
/1 
F
1 ' 
(-b 1 -i(k r 

f -1 kf".1
) 

 

• (4.2b) 

with a - 
4 fa 	4 

k" and b= _ 
ki 	

f 
 

With the use of Fourier transform of the interaction poten-

tial between the positron and the helium target atom, the 

expression for f U
i  (

.7 .1 ) is given by 

U 	? ' _ 	e 2 
if

CE 
 1 1  - 

2Tr 	
q q exPUZI • 1  if 

... (4.3 ) 

The form factors f ' f
i 
 lq for 1

15-21S and 11S-21P transitions 
are evaluated using the same procedure as discussed in 

Chapter 2 (see equation (2.10-2.11). Using these forms of 

form factor and equations (4.2(a-b), we can directly obtain 

the transition amplitude as discussed in Chapter 2. So 

finally, using equations (2.10-2.15 and 2.18 -2.29), we 

can write the differential cross-sections for the two 

separate processes in which z equal to zm(-1.4) 

(dc ' 
a2.-  ) 	 -1  T 

1 	1 = k. 	1 	1 
S-2 S 	1 S-2 

o r. (4.4a) 

OCT

dr 
k

,! 1 1 k. 1 1 

kt1T.1  
(m=o)12+2IT 

1 	
1 (m=1)f2 

1 S-2 P 	i I S-2 P 	1 S-2 P 
• (4.4b) 

In order to assess (in the present model) the effect of a 

many-parameter correlated wavefunctiOn (MPC/ compared with 

the coy 	wonly used Hartreer-Forck(HF) wavefunction (156), the 

calculations are also performed using the HF wavefunction. 

T1 have used the accurate HF wavefunction due to Byron and 
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Joachain(64,65) for 11S and 21S states and that of Morse 

et al(131) for 21P state. 

4.2.1 Rgasaita_diagag,igja 

We have used equations (4.4a and 4.4b) to calculate the 

differential cross-sections (DCS) for 21S and 21P excitat-

ions in helium at positron impact energies of 100 and 200eV. 

Most of the other theoretical predictions exist at these 

energies and also the present model is expected to produce 

the best results. The present results obtained using the 

MPC and HF wavefunctions along with others are displayed in 

figures (4.1-4.4) for each of the transitions at above 

two impact energies. Before we present the details of our 

results, it would be meaningful to examine the differences 

noticed in the results obtained using WMPC and (ii) HF 

wavefunctions. For the 21S excitation, there are no signi-

ficant differences between the two sets of calculations in 

the small angular region but this difference is appreciable 

at larger scattering angles (approximately within 6'/. at 

100 eV and 3Y. at 200 eV). For 21P, the situation is similar 

at smaller angles but at larger angles, the deviation 

(approximately within 13"/. at 100 eV and almost the same 

at 200 	is, on average, large. 

Figure (4.1) shows DCS at 100 eV for 11S-21S excitation 

It is apparent that the first Born approximation (FBA) yields 

very small results for Q),30°. This behaviour is not 
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surprising as it is well known that the FBA does not 

provide the leading term of the Born multiple scattering 

series for large momentum transfer (66). The present cal-

culation underestimates the results in the near forward 

direction by almost the same amount as they are over-

estimated by the close-coupling (CC) and modified Glauber 

(MG) approximation methods(156) compared with other theo-

retical results. Except for the modified Glauber approxim-

ation (which is referred to the EBS in the paper of Willis 

et al(156)), no models show secondary maxima. Our model 

overestimates the results at larger angles of scattering 

(500  or more) while close-coupling and MG methods under-

estimate them for 9), 120°  with respect to other results. 

Figure (4.2) shows the DOS results for 21S excitation again, 

but at 200 eV positron impact energy. The general trend of 

the results as displayed in figure (4.1) is followed in a 

similar manner in this case also However, the general 

agreement among all the results including ours has improved 

considerably and .the secondary maximum in the MG cross-

section curve has now disappeared. 

In figure (4.3), we display the results for the 

differential cross-section at 100 eV for the 11S-21P transi-

tion. Among the available results of Madison and Winter(46) 

as well as close-coupling results due to Willis et al(156). 

It is seen for G00°  that the close-coupling and first-

order DWBA results agree closely while second order results 

lie closer to our results. For scattering angle 84 30°, except 
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in the forward direction all approximation results are 

nearly the same. Figure (4.4) shows similar results for 

21P excitation at 200 eV positron energy. In this figure 

however, first-order DWBA results due to Madison and Winters 

(46) are not available. Agreement at this energy seems much 

better as all the three curves are bunched relatively closer. 

Upto e ̂ 16o°, we see a similar trend to that in figure (4.3) 

but above this angle upto 9-v 1000, the second order DWBA 

results coincide with ours and then become higher than ours. 

The situation with FBA results in figures (4.3) and (4.4) 

remaining the same as figures (4.1) and (4.2). We have 

calculated the differential cross-sections for positron-

impact energy in the range of 50-500 eV and the same are 

given in a tabular form in the tables (4.1-4.3). 

4.3 cAISaliaTioN FoR.Jd=214,.ak2E_1B611=_111 
21azaugp kovE PoLAuzuo_gaLuL APPRQACH 

We have seen in Chapter 3, that our consistent version of 

distorted wave Born approximation (DWBA) for electron impact 

21S and 21P excitation of helium, gives results which are 

more accurate than any other modified Born calculations. The 

method also requires less computational effort as compared 

to any close coupling approximation (0CA). Exactly, the same 

DWBA method with only slight modification (needed for posi-

tron scattering) is therefore used for present calculation. 

Without going in detail of the model (for which see the 

Chapter 3) , we give here simply its salient features. In our 
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distorted wave model(145), the distortions effects are 

incorporated in both the ingoing and outgoing positron 

distorted waves due to static and polarization effects. 

Further, instead of using prevalent used Hartree-Fock(HF) 

wavefunctions for target helium, we use for the first time 

many parameter correlated wavefunctions (MPC)(22). The 

polarization effects are incorporated using dipole approxima-

tion method(20). The positron impact studies as mentioned 

earlier differ from its counterpart study (145) by electron 

in two ways (i) No exchange effects are present,. (ii) the 

static distortion potential now bears a negative sign while 

the polarization interaction remain the same as for electron 

study. Our approach is different from other distorted wave 

approaches i.e. of Parcell et al(99) who took distortions due 

to static potential in both channels but polarization contri-

bution only in final channel and also the bound states of the 

helium target were taken at Hartree Fock(HF) level. To avoid 

repetition, we refer our chapter (5) for details regarding 

our DWBA model and calculation procedure. Like previous all 

approaches, we have also neglected presently the contribution 

of positronium foLmation. In the preceding section (4.2) we 

have also reported the discrete excitation of helium by posi- 

•tron impact in a relatively simpler approach using Coulomb-

Born model in which the distortion were taken by Coulomb-

potential of the target but the target wavefunctions were 

represented both by many parameter correlated and by Hartree-

Pock wavefunctions 'separately. We have calculated total and 



88 

differential cross-sections (DCS) for 11S-21S and 11S-21P 

transitions in helium for positron energies from threshold 

to 200 eV. The comparison of the present results with other 

available theoretical and experimental results are shown in 

the figures (4.5-4.10). 

4.3.1 Reaulta_and_aaaullap 
(A) 215=21axcitatiszi 
ligtal_araza=wqticza 
In order to assess the effect of using MPC wavefunctions, 

we have repeated our calculations and obtained results with 

the commonly used accurate HF wavefunctions also. Separate 

results are also obtained using polarization effect only in 

initial or final - channel to see the effectiveness of polari-

zation contribution in each case. Total cross-sections are 

shown in figure 4.5. In this figure we have displayed our 
various total cross-section results along with others and 

experimental data. First Born approximation (FBA calculations 

(obtained using the same HF functions as we used) are due tc? 

Buckley and. Walters. The, other DWBA results are of Parcell et al 

who used self-generated HF function and took distortions by 

static potential in both the channels while incorporated 

polarization effect in final channel by scaled Dalgarno-Lynn 

potential. Three state close coupling (CC) results of Willis' 

et al used the basis consisting of the 11S, 21s and 21P 

states, represented by Slater type orbitals. From this figure, 

various interesting features emerge on comparing, different 



90 

into account in our model as its contribution slightly 

enhances the cross-section just near threshold energy 

region (183). We also realize that the experimental measure-

ments in higher energy range (.40 eV) are desired to see 

the further suitability of any model. 

(b) QiifarglatiAl 

In figure 4.6, we present our differential scattering cross-

section for 11S-21S excitation of helium by positron impact 

at 100 eV. The present results are compared with other 

available theoretical results. Among them the results of 

Willis et al(156) obtained in various perturbative approaches, 

Parcell et al(99) in distorted wave Born method and those 

of Mukesh at al(114) in Coulomb-Born model are worth mention-

ing. It is seen that all other results including ours in 

distorted wave polarized approaCh follow the same trend of 

variation over the entire angular region. The MG and CC 

results overestimate all the other results upto 8‘200  

while the present Coulomb-Born results underestimate upto 
o ii);;, )0 . Further, for the scattering angles Q:00°  the present 

calculations are 'very different than that of Coulomb-Born 

results. In this angular region, the present calculations 

compared well with the results of other theoretical cal-

culations in particular with the results of Parcell at al(99)• 

It shows that the inclusion of distorted waves in both. 

channels due to static and polarization effect is in right 

direction. Since there are no experimental measurements for 
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results among themselves. Our results with MPC wavefunctions 

are higher (within 10'/.) with that we obtained using HF 

function (in the energy range from 70 eV to 200 eV). In 

contrast, similar comparison with electron impact results(145) 

(figure (3.1)) shows that cross-sections with MPC functions 

are lower (within 5'/.) below 70 eV energy than that obtained 

using HF functions (64,65). Thus, for positron scattering, 

correlation effects seems to be of more importance. Further; 

the comparison of our two results with polarization taken only 

in initial or final channel suggests that polarization effects 

are more effective in final channel. One can recall that the 

same is argued by Parcel' et al(99). On overall observation, 

we find that FBA and CC methods overestimates. the cross-sections 

as compared to DWBA. Also, except CC results, all DWBA results 

for high energies as expected. Willis .et al(156) have them-

selves attributed this divergent behaviour in their CC result 

as due to inclusion of 21P state in the basis set. They 

converge to FBA. However, similar divergence in the results 

with the inclusion of more states in CC method is also seen 

in et-H scattering (98). Further; the differences in the 

DWBA results of ours and that of Parcell et al(99) can be said 

to be due to basically the different choices of both the 

wavefunctions and polarization potentials. Our(results below 

40 eV) compare favourably with experiment(129) while that of 

Parcel et al seems to be in error near threshold energies. 

we feel that a better agreement of ours with experiment might 

be obtained if effect of positronium formation is also taken 



DCS, except a few theoretical results, we therefore, pre-

fered to give in detail our DCS results in ,a tabular form. 

These results might be useful for comparison purposes in 

Case new measurements become available. The figure (4.7), 

present our DCS at 200 eV. The trend of variation is very 

similar as noticed at 100 eV in figure (4.6). 

I 
B. 1  Sz2

I-  P QN_cittiQL1 

(a) TsIta1..s.ractiwa 
In figure (4.8), we have shown our results of total cross-

section results for 11S-21P excitation of helium by positron 

impact in distorted wave polarized orbital approach. The 

present results both using the HF and MPC are compared with 

three state close-coupling calculation of Willis et al(156) 

in the energy range 20-200 eV. The calculation peaks around 

6o eV and thereafter show a. relatively rapid fall compared 

to CC results with the increase of incident energies. The 

present results obtained using HF wavefunction differs by 

about 5% in comparison with the results obtained using 

MPC wavefunctions (see table 4.4 for 11S-21S and 11S-21P 

transitions). 

(b) Ditigzsvatial_Qz4taa=LQctial 
In figure (4.9) display our, differential cross-section 

results for 11S-21P excitation of helium at 100 eV. The 

present results in distorted wave polarized orbital method 

are compared only with the theoretical results of Kumar et al 



in Coulomb-Born along with the first and second order DWBA 

result of Madison and winters(46) and close-coupling results 

of Willis et al(156). All results show similar behaviour 

upto e -4300, after that the first Born results as usual 

fall off rapidly. The first order distorted wave results 

of Madison and winters(46) and CC calculations of Willis, 

et al(156) compare well among themselves upto G '*)110°  and 

thereafter the CC results overestimates the first order 

results of Madison and Winters(46). The present calculat-

ion. too show a rapid fall upto 600  and thereafter it under-

estimates both the first and second order distorted wave 

calculations of Madison and Winters upto Q 'v1400  beyond 

which it overestimate the first order and approach to Second 

order distorted wave calculations. The disagreement between 

the present calculation and the second order distorted wave 

calculation of Madison and Winters(46) narrows down with the 

increase in the impact energy, as can be seen from the 

figure (4.10) at 200 eV. Details of our total and differential 

cross-sections are given in the tables (4.4-4.6). 

4.4 0.11CLUILIZI 

It is clearly seen (through figures 4.1-4.10) that, in general, 

all the theoretical rrodels(with which we compared our 

results) including ours (both) show nearly the same behaviour 

for DCS at low scattering angles. The latter differences in 

the behaviour of the different cross-section curves seen 

to narrow down as the impact energies of the positrons are 
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increased. Further, the present work demonstrates the use 

of accurate transition form factors in the evaluation of 

scattering amplitude in both the models. The results we 

obtained thus are closed-form expressions for monopole and 

dipole transitions in Coulomb-Born model as well as being 

free from conflicting assumptions (which usually arise) due 

to choice of 'simple target wavefunctions. jgain, one of the 

attractions of our Coulomb-Born approach is its simplicity 

for obtaining reasonable results. In addition, the results 

obtained in distorted wave polarised orbital method 

are as reliable as those obtained by other DWBA calculat- 

ionsk()56,99,46) at high.  impact energies, Of course, the 

adaptability of any model remains subject to comparison with 

the expected very demanding experimental data which is not 

yet available. 
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(eV) 

Transitions 

1  3-2 P 
Present 	Present I Present 	Present 
(MPC) 	(HF) 	(14PC) 	(HT) 
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, 
Table 4.4- Total cross-sections 0-(Trao

2 
' of helium by 

positron impact in distorted wave polarized 
orbital approach, 

23 2.81(-2: 2.45(-2) 1.21(-1) l.32(-l) 

26 3.14(-2 3.15(-2) 1.23(-1) 1.28(-1) 

28 3.33(-2) 3.35(-2) 1.3o(-1) 

30 3.44(-2) 3.43(-2 1.28(-1) 1.32(-1) 

4o 3.41(-2) 3.45(-2 1.53(-1) 

60 2.83(-2) 2.83(-2) .1.55(-1) 1.62(-1) 

80 2.35(-2) 2.40(-2, 1.50(-1) 1.55 (-1) 

100 1.87(-2 2.15(-2) 1.41(-1) 1.45(-1) 

15o 1.43(-2) 1.53(-2) l.19(-1) 
200 1.10(-2) 1.17(-2) 9,01(-2: 9.03(-2) 
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Table 4.5.- Differential cross-sections 21(a2Si 1) for the dS2  

0 1.465 (-3) 3.504(-2) 5.413(-2) 1.039(-1) 1.499(-1) 1.601(-1) 1.705 (-1) 
to 1.489(-3) 3.390(-2) 5.141(-2) 9.225(-2) 1.147(-1) 1.087(-1) 1.005 (-1) 
20 1.563(-3) 3.o71(-2) 4.409(-2) 6.485(-2) 5.26o(-2) 3.463(-2) 2. 190 (-2 ) 3o 1.696(-3) 2.607(-2) 3.432(-2) 3.677(-2) 1.614(-2) 6.584(-3) 3.305 (-3) 
4o 1.904(-3) 2.o79(-2) 2.447(-2) 1.760(-2) 4.553(-3) 1.778(-3) 1.038 (-3 ) 5o 2.204(-3) 1.565(-2) 1.623 (-2 ) 7.812(-3) 1.7321(-3 )8. 978(-4 ) 5.771(-4 60 2. 614(-3 ) 1.122(-2) 1.026(-2) 3.688(-3) 9.780(-4) 6.450(-4) 4.190(-4 ) 
70 3.151(-3) 7.765(-3) 6.385 (-3 ) 2.076(-3) 7.742(-4) 5.o18(-4) 2.955 (-Lt ) 
80 3.825 (-3 ) 5.312(-3) 4.049 (-3 ) 1.439(-3) 6.573(-4) 3.705 (-4 ) 2.340.(-4) 90 4.635 (-3 ) 3.694(-3) 2.694(-3) 1.197(-3) 5.531(-4) 3.092(-4) 1.595 (-4 ) 100 5.5 67(-3) 2.686(-3) 1.913(-3) 1.106(-3) 4,823 (-4 ) 2.464(-4) 1.246(-4) 110 6.590(-3) 2.07(-3) 1.460(-3) 1.045(-3) 4.o98(-4) 1.771(-4) 1.101(-4) 
120 
130 

7.658(-3) 
8.713(-3) 

1.685(-3) 
1.412(-3) 

1.202(-3) 
1.065 (-3 ) 

9.812(-4) 
9.283(-4) 

3.364(-4) 
3.005 (-4) 

1.612(-4) 
1.505 (-4) 

7.538(-5 ) 
7.426E-5 ) 

140 9.691(-3) 1.192(-3) 1.001(-3) 8.942(-4) 2.837(-4) 1.092(-4) 6.709(5) 
150 
16o 

1.053(-2) 
1.117(-2) 

1.007(-3) 
8.630(-4) 

9.751(-4) 
9.666(-4) 

8, 648 (-4 ) 
8.238(-4) 

2.459(-4) 
2.198(-4) 

1.049(-4) 
1,247(-4) 

4.779(-5 ) 
6.314(-5 ) 

170 
180 

1.158(-2) 
1.172(2) 

7.722(-4) 
7.413(-4) 

9.648(-4) 
9.647(-4) 

7.834(-4) 
7.671(-4) 

2.385 (-4) 
2. 630( -4) 

8.712(-5) 
6.216(-5) 

4.892(-5) 
2.800(-5) 

21S-21S excitation of helium by positron impact 
in distorted wave polarized orbital approach. 
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dCr f  . 
Table 4.6- Differential cross-sections R-7;ao2 1 Sr ifor 

the 11S-21P0  
1
P0 0-1  excitation of helium by 

positron impart in distorted wave polarized 
orbital approach. 

Angles 
(deg) 

 

Energy(eV) 

 

80  100  150  200 

   

0 3.24 4.21 4.52 3.91 

10 1.48 1.52 1.27 9.83(-1) 

20 2.38(-1) 1.58(-1) 7.42(-2) 4.38(-3) 

3o 5.04(-2) 2.78(-2) 4.31(-3) 5.83(-3) 

40 1.21(-2) 7.48(-3) 3.52(-3) 1.88(-3) 

50 2.78(-3) 1.28(-3) 7.9o(-4, 9.21(-4) 

60 1.78(-3) 1.01(-3) 3.75(-4) 4.42(-4) 

70 8.28(-4) 7.89(-4) 3.65(-4 2.73(-4) 

8o 6.42(-4) 6.00(-4) 3.08(-4) 1.78(-4) 
9) i 5.85(-4) 4.43(-4) 1.60(-4) 1.15(-4) 

100 3.65(-4) 3.38(-4) 1.52(-h, 8.49(-5) 

110 3.48(-4) 2.87(-4) 1.40(-4) 6.53(-5) 

120 3.12(-4) 2.43(-4) 1.43(-4) .21(-5) 

130 2.26(-4) 2.11(-4) 1.92(-4) 4.31(-5) 

140 2.19(-4) 1.92(-4) 1.34(-4) 4.01(-5) 

150 1.99(-4) 1.90(-4) 1.50(-4) 3.90(-5) 

160 1.64(-4) 2.00(-4) 1.31(-4 3.81(-5) 
170 1.64(-4) 2.20(-4) 1.37(-4) 3.73(-5) 
180 1.65(-4) 2.50(-4) 1.38(-4) 3.43(-5) 
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4.5 FIGURE CAPTIONS 

Figure.4.1 The differential scattering cross-sections for 11S-21S 

excitation of helium atom by positron impact'at 100 eV 
in Coulomb-Born model. 

Calculation: --- , present calculations with MPC wave-
functions; 0; present calculations with HP wave- 
functions; 	- -2  present calculations in first 
Born approximation; 	x 	results in the MG 
approximation(156); 	xx 	results in the close- 

coupling approximation(156); 	results in the 
DWBA approximation(156); """ 4-2'  results of Parcell 
et al( 99). 

Figure 4.2 Same as figure 4.1 but at 200 eV. 

Figure 4.3 The differential scattering cross-sections for the 
11S-21P excitation of the helium atom by positron 
impact at 100 eV in Coulomb-Born model. 

Same as figure 4.1 except: 	distorted wave 
results of Madison and Winters(46: in second order; 

---y distorted wave results of Madison and 

Winters(46) in first order. 

Figure 4.4 Same as figure 4.3 but at 200 eV 

Figure 4.5 The total scattering cross-sections for the 11S-21S 
excitation of the helium atom by positron impact 
distorted wave polarized orbital approach. 
Calculation: ---;present results with CF wave-
functions; Op present result with HF wavefunctions; 

xx --, results in the close-coupling approximation 
(156); - - - results in the first Born approximet-
ion(25);--,--) distorted wave results of, Parcell 

et al(99); x2  present results with polarization effect 
in final channel; o, present results with polariza- 
tion effect in initial channel; 	experimental data 
of Coleman et al(129). 
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Figure 4.6 The differential scattering cross-sections for 
the 11S-21S excitation of the helium atom by posi- 

tron impact at 100 eV in distorted wave polarised 
orbital approach. 
Calculation: same as figure 4.1, except,...,CB 
results of Mukesh et al(114),---i present results 
with MPC wavefunctions; 0, present results with BF 
wavefunctions. 

Figure 4.7 Same as figure 4.6 but at 200 eV. 

Figure 4.8 The total cross-sections for the 11S-21P excitation 
of the helium atom by positron impact in distorted 
wave polarized orbital approach. 
Calculation: Same as figure 4.5,— xx ---,three 
state close-coupling results of Willis et al(156). 

Figure 4.9 The differential scattering cross-sections for the 
11S-21P excitation of the helium atom by positron 
impact in distorted' wave polarized orbital approach. 
Calculation: Same as figure 4.3)...., CB results 
of Mukesh et al(114),-- , present results with MPC 
wavefunctions. 

Figure 4.10 Same as figure 4.9 but at 200 eV. 
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CHAPTER-5 

ELECTRON IMPACT EXCITATION OF THE 3s  AND p STATES  OF 
LITHIUM ATOM AT INTERMEDIATE AND HIGH ENIMGIES 

5.1 INTRODUCTION . 

Recently the scattering of electrons by lithium atom has 

received a good deal of attention by various authors. This 

process is interesting from the theoretical as well as 

experimental point of view because it offers the simple test 

of electron 'atom collision processes. The extensive studies 

carried out on helium have already provided enough information 

for us to understand the behaviour of discrete excitation 

functions. Therefore in order to obtain more quantitative 
information on excitations  the lithium atom, havini% spectra 

of a one electron nature, is perhaps the most suitable candi-

date. There exist many studies (Srivastava and VUskovic(153-)s, 
Phelps et al(83)) of electron impact excitation of sodium'  

potassium and caesium alkali:-metal atoms at intermediate 

and high energies but relatively few such studies are available 

for the lithium atom. The resonance transition(2s-2p) has 
been subjected to more studies(50) compared to s-s and other 
higher excited transitions in lithium. On the experimental 

side Williams et al(187) were the first to report the 

differential scattering cross-section measurements on a number 
of discrete excitations of lithium in the energy range 10-60 eV. 
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Zajonc and Gallagher(23) and Shuttleworth et al(171) have 

reported the total electron impact excitation cross-section 

for higher excited states (3s, 4s, 3d, 4c1 of the lithium 

atom. The electron impact excitation of the resonance 

transition (2 s-2 p) in lithium has also been studied earlier 

by Zapesochnyl et al(76) and Leep and Gallagher( 48). 

Recently. Vuskovic et al(104) have measured the differential 

and total cross-sections for this (2 s-2 p) transition in the 

energy range of 10-200 eV. 

On the theoretical side, a number of workers have 

reported their differential and total cross-sections using 

the different approximations for 2s-3s and 2s-2p transition 

of lithium atom. Recently, Tripathi(15) and Tayal and Tripathi(167, 

have studied many higher excited states of lithium in addition 

to 2s-3s, 2p transitions using Born and Glauber approximations. 

The 2s-3s has been studied by Sharma et a1(142) using the two 

potential modified Born approximation (TPMB) and very extensively 

by Winters and Vandeipoorten (92) using the,distorted wave 

Born approximation(DWBA) in the intermediate energy range 

10-60 eV. Recently, Moorse(49) has reported a five state close- 

coupling calculation with, correlation for the differential and. 

total excitation cross-section for different discrete transi- 

tion in lithium. However,. he has considered energies only 

upto 10 eV, which is outside the energy range considered in 

the present' study. Apart fx-)m the several calculations reported 

earlier for the resonance transition, Kennedy et al (84) have 

carried out an extensive calculation for total, differential 
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cross-section and coincidence parameters using a unitarised 

distorted wave polarised orbital method (UDWPO) in the energy 

range 5-100 eV. Very recently, Saxena et al(158, 159,160) 

obtained the differential scattering cross-sections and 

angular parameters for 2s-2p transition and the differential 

cross-section for 2s-3s transition using a two potential 

approach in the energy range 10-60 eV. There is a wide variety 

of methods which describe this energy region and recent 

reviews by Bransden and McDowell(29) and Callaway(77,' deal 

with them very exhaustively. A common feature to all the inter-

mediate energy methods is that they all pay attention to 

the second order term of the mutliple scattering series and . 

attempt to treat it as accurately as possible. 

The failure of the first Born approximation to predict 

the large momentum transfer inelastic scattering cross-section 

is due,  to elimination of the electron-nuclear interaction term 

arising out of the orthogonality of initial and final -state 

wavefunctions. However, this term is present in the second 

Born approximation (i.e. second term of the Born series), via 

coupling to the elastic channel in the intermediate states 

and consequently the second Born term will dominate at wide 

angles. Byron and Latour(70) have shown that ls-ns tranait-

ions,theseCondBornter fallsoflikek 2q72  for a 

large q whereas the first Born term (±/31) falls like q 6 

where q = k1-k is the mamentum transfer and k.v kf  are wave  
numbers of the incident and scattered electrons respectively. 
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The scattering amplitude in the simplified second Born 

approximation (SSBA) is defined as 

f = f + f B1 B2 
... (5.1) 

where fB2 is the second Born term, obtained in closure 

approximation. Here it may be pointed out that the SSBA 

is not consistent through or 	kit. In fact a consistent 

calculationthroughorderi72, referred as eikonal Born 

series (EBS) amplitude (as suggested by Byron and Joachain(65) 

discussed in detail in the first Chapter Section (1.2.3) 

is achieved as follows, 

fEss  fBl+f B24-fG3 	 ... (5.2) 

where f G3 is the third order Glauber term. Byron and Joachain(65: 

also proposed a modified version of EBS approximation which 

was subsequently suggested by Gein(175 and referred to as 

the Modified Glauber approximation(175). In this approximat- 

ion the full Glauber amplitude f G  is corrected for the miss- 

ing second real term f G, by substituting the second order Born 

term for the second order Glauber term 

f G f G2+f B2 
op 

= f + 	f EBS 	Gn n=4 
(5.3) 

Thisapproachlinsteadofworkingtoorderk.
2removes the 

logarithmic divergence of the Glauber amplitude in the, forward 

direction and accounts for the target polarization effects. 
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It is found to be better than EBS. The EBS scattering ampli-

tude is different from the MG one, in the sense that the 

former ignores the Glauber terms of order higher than k2  

These perturbative approaches, developed to analyse the 

elastic scattering of electrons by hydrogen, helium and 

lithium atoms(67,163,175), are extended to study' the inelastic 

scattering as well. In particular, these approaches have been 

very successfully applied to study electron impact excitat-

ion of s-s and s-p type transition in hydrogen(70,175) and 

helium(65, 39) atoms. We therefore, in this chapter report , 

our study of the differential and total cross-section for 

excitation of the 2s-3s transition in lithium by electron 

impact using EBS, MG along with the SSBil, first Born and 

Glauber approximation in the energy range of 20-200 eV. In 

this chapter, we have also included our preliminary' study 

by electron impact of the lithium to its resonance transi-

tion (2s-2p) using only MG approximation. We report our 

study at 100 eV. 

In section 5.2, we outline in brief the theoretical 

procedure to obtain the various term needed to evaluate the 

scattering amplitude in SSBA, EBS and MG approximation for 

2s-3s transition of lithium and also discuss the results of 

these calculation in comparison to other theoretical and 

experimental results. Section 5.3 is devoted to study the 
excitation of 2s-2p transition of lithium in MG approximation. 



5.2 EXCITATION  OF 2s-3s TRANSITION _TN LITHIUM 
BY ELECTRONS 

5;2.1 Calculation 

The wavefunction of the lithium atom is expressed as a 

determinant of one electron spin orbital function as 

1=-6  i3351.0:20 (1) ri6±( 2 0is(3  )-4± (3  
... (5.4) 

where 0 is the spatial part of the spin orbital, a and p are 

the components of the spin part. These orbitals are expanded 

in terms of one electron slater type orbital(STO) basis 

functions. We have used the simple Hartree-Fock wavefunctions 

for the one electron orbitals 02s and 03s computed by Hibbert 

(Private Communication) using his CIV5 programme. The coeff-

icients and exponents for these orbital are tabulated in 

table (5.1). For calculating the generalised oscillator 

strength and related first Born matrix, Glauber scattering 

amplitude, the determinantal wavefunction as given by 

equation (5.4) is used. However, for the calculations of 

second Born term and the different terms of the Glauber 

eikonai series (f G2 and fG3)' We have considered the lithium 

atom as a one-electron system with inert core. The absolute 

value of the product of atomic orbitals can be written as, 
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d 	1 ( 
al"'2s = 	e .ex1A-a .rJ + 	a .r exp(-a .r ) 

j=1 
12 

a 3 2 .r 

j=----) J 	) 

15 
L.xp(-a.r)+ 	exp(-a,r)) 

-3 	1=13 3 	• J 

... (5.5) 
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The values of aj and aj are obtained from the coefficients 

and exponents of the orbital given in Table (5.1). 

(i) Evaluation of_firstBorn term 

Within the first Born approximation the differential inelastic 

scattering cross-section of a target for incoming projection is 
defined as 

daM= 2 
k
f 1 	, 
" c1 d 	2 k. i 	6' Q 	q 	if 

... (5.6) 

where f(1) is the generalised oscillator strength and related 

to the Born matrix element by0 

f (7i) . ~2~Ei I si(q) I 
2 	

. . . (5.7) 

with 

=
.~dr f +4.Lila  . 1* 

N 
exp 

j=1 1" Ni 
... (5.8) 

N is the number of electrons of the atom. 

This is referred as length formulation of the Born matrix 

element. Similarly equation (5.8) can be transformed to the 

velocity formula 

	

/-4) 	- 	N 1 	-4 giE 	2 / 	-' 

	

.kqi 	27-\.- i, dr 4if q 	,._ exp(iq. icj , ; tvi ■ , ei 
if 	j=1 

... (5.9) -e s--- l? -2ig( i 
N 

expaq .)Na- 6 ) 3z j=1 	i 

The details of these formulations are given in a paper of 

Tripathi(13). 
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(ii) Evaluation of Glauber scattering  amplitude 

The Glauber amplitude for the scattering of a charge particle 

with an atom can be written as 

i
2Tr 

16/ (r 	
-4 	

1— f 
. 	 3 GA(-4- 

1 = 	
j
11
=1
! F 	Cap n•  

I V( r, s j, zi )Ciz.j ,\J Ili cti. . . --,E.N> exp ( i-cl. Tj)d)":1) 

... (5.10) 

where the N electron atom is initially in the state kvi ( given 
by equation (5.4)) with energy Ei and the incident electron 

-.), has a wave vector ki , after collision, the atom is in the state 

with energy Ef and scattered electron has a wave vector kf . 
V(r,ri ) is the interaction potential between the.incident 

particle and the jth bound electrons. The momentum transfer 

q is defined as q -4 -4 = Ic.-kf and '0.= 1/k.. Taking the product 

of the bound state wavefunctions(eq-uz-ttion 5.4) to have the 

form, 

where 

3 
= T P. 

J 
... (5.11; 

P. [ 	c 	
rte' 

k° eXP ak2 	j J k=1 ... (5.12) 

1 with ar=ara3= - for s-s transitions and aff ar LTTh and 
a3 	112m ? (e2s. 952 )/471- for s-p transition,. Use of equation (5.12: 
in equation (5.10) gives 

ki 	 5 	--0 	2 r 	.1 ia~
FG(7:1214) 	FM; 	17;;" ) 7 P L --1 I 	dr• b 	3 ... (5.13) 

The contribution of the integrals over r appearing in equation 
(5.33) has been discussed by Kumar and Srivastava (155) and 
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Tayal and Tripathi (167). The same is written as 

,t_s  , ;24 	N. 	14.h 
P.11  -11] 	dr

3
. --,, b2  BCr:. Sj  C 	.(-1) 	k''j j . b 	 ,-- k2 j k=1 

_ 
7 qi 
1+-A

4 .3 
L‘v 	1, 
oilak,  j ,1 

C0.t.--24J (Ci-2tJ(t/('t2+2)] 
[ dt 	

Li  i 	0  ii 	ak  
	.......---- 

6 	2- 
“x +akvj  b ; 

= T
i
(b) 

where 
(1411) 

E(11) = 22in r ... (5.15) 

Jo and J1  are the Bessel functions of zeroth and first 

order respectively. The values of th parameters Ck1j and 

akpj in equation (5.12) are obtained from the coefficients 

and exponents of the wavefunction given in table (5.1) 

Finally, the scattering amplitude is obtained by putt-

ing equation (5.14) and (5.15) in equation (5 .13) and carrying 

out integration over Ob4 

 

3 
- TT T.(b)j ... (5.16) 

i=1  
P kg,i/ - ik1  I db bJ1(qb ) 

o 

for s-s transition 
OD 3 GA -4 	010 --( q:  ki  ) = kie-44 	db b 1(qb) 	 T

'
.(3) 	 . (5.17) 

J-1 
 

for s-p transition. 

The integrals in equations (5.16) and (5.17) are 

... (5.14) 
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evaluated numerically following the procedure of Kumar and 

Srivastava (155) and Kumar et al(154). With the axis of 

quantization perpendicular to q, the amplitude FGA for m3.0 

vanishes and !FGA 2 
for mi=1 and mi=-1 are the same. Thus the 

Glauber differential cross-section becomes, 

k.IFGA(el 21 kf  
(dD)GA 

(C12:1 	
k
f 	

2
k. GA .q$ m= 1 	s-p transition ... (5.19) '13.W,GA 2  

iii) Evaluation of second Born term 

The second Born term has been evaluated by considering the 

lithium atom as one electron system with inert core. Using 

the closure approximation and following the procedure outlined 

by Byron and Latour (70),we get the simplified second Born 

term (fB  ) 

f 	4D(a.) J. SB2 . 	3 ... (5.20) 

where D(a )is the linear combination of differential operators 

and is expressed for this transition as 

p(a ' ) 	a 	a ( a 	4.2a .(_ a 	2  . 
J=1 	 =3 j 

	
as )+ 

J='$
3 @ai 

15 
: a.(- t-j=13  °9 

where 
J.  = 	3+,dIi+  dIf,  

II IfWai 	2 	2)  / da. dad 
 

... (5.21) 

q2(q24.2a2) 

a :1 2( 2 2 i.f a1-0' 

... (5.22) 

s-s transition ... (5.18) 
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Here 

dt 

 

 

2. 
ii(aj) = r2---7-177---7--— ........ ...... 

- 	La .ti-t(i-t)ci j 	1..(a .+26). )t j 
2 	j 	tf 2 1/21 

+2 (E-W ).-2ip (a-. t+t( 1- t- )q- )  J 
if  i 

... (5.23) 

The expression for If is obtained simply by substituting 

41if with-{,~1 and a--O f with 	0if is the energy difference
f

between the ground statcoi and the excited state Of of the 

-  2 
lithium atom. Also p

2 
= ki-2,,J and kf f=  45 is the 

average energy of the excitation. The equation (5.23) and 

(5.22) are evaluated numerically. The value of the integral 

as given by equation (5.23) is also required in the limit 

a.,0 for the complete evaluation of equation (5.20). The real 

and imaginary part of this integral in that limit are taken 

from the paper of Byron and Latour (70) and are given as 

Jr 
ReI i 	a=0 ) - jf 	q(p2q2 	ir f 4) )17.2 

''i" f 

1 
Imli (a-110; - 72 Xn q(p2q2., -r.4.(010f  

... (5.24) 

( 2 2  1/2  2 
■p q +40i (4a) 	-1-poql. 

4 6)1.0f 

... (5.25) 

The average excitation energy 5 , required for the calculation 
of fSB2 is chosen following the prescription of Byron and 

Latour and Winteisand Vanderpoorten(92). We use two different 
values for the mean excitation energy(i) one lying very near 

the ionization threshold (5.342 eV) and (ii; the other lying 

just above the 3P level (3.845 eV). 
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(iv) Evaluation of fG2 and f G3 

The expression for second and third order Glauber terms can 

be obtained in a straightforward way following Yates(3) and 

Vanderpoorten and Winters(146) 

2 2 
f = -1-.3D(a)1 G2 k )(a) 	2 2 2‘Xn(g-it )  a, “4 +a ) 

... (5.26) 

and 
1 	2 2 2 

-7D(cl  ) [ 	-{2Xngq-4---aa.  )1- 11-6  -A( gia4 

... (5.27) ki 	a2(q2+a ) 

where the function A(q/a) is expressed as 

co 
A(q/a ) 	2/n2(q/a)A-r2/61- 7 (-q2 /a2 ,ni/n2 

n=1 
go  t _2/q2)n 

= - 
n=1 n2 . ... (5 .28 ) 

Finally, the exchange is taken into account through the Bonham-

Ochkur(1791 134) approximation. 

5.2.2 Results and discussion 

(A) Generalised oscillator_strength 

In order to assess the reliability of the bound state wave-

function, we have computed the generalised oscillator strength 

(gos) in the length and velocity formulation equation (5.7-5.9), 

as defined within the concept of Dorn approximation. The results 

of gos using the present wavefunction is compared with the 

earlier calculations of Tripathi(13) using the Hartree-Fuck 

wavefunction of the WeiSs(21). We have also computed the gos 

q a 
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in length formulation using the Rapp and Chang(52) wave-

function obtained with and without frozen core approximat-

ion. Most of earlier calculations for this transition (2s-3s) 

use thig wavefunction for simplicity. The figure (5.1) shows 

the theoretical values of the gips using the variety of wave-

functions along with the measurements of Shuttleworth et al 

(171) Measured values of the generalized oscillator strength' 

exist over .a small region of q lying between 1.3x10-1  and 

3.4x1072  au. The measurements lie significantly above the 

Born calculation. This lack of agreements between the theo-

retical and measured generalised oscillator strength is due 

to the failure of the Born approximation, owing to coupling 

to other states. However, the present wavefunction predicts 

the gos which are in better agreement with those calculated 
from the Weiss(21) wavefunction than those calculated from the 

Rapp and Chang(52) wavefunction. To illustrate this point, we 

present in table 5.2, the values of gos as obtained using 

various wavefunctions. 

(B) Scatteringanalitude 

Before, we present our results for differential scattering 

cross-section (DCS), it is worthwhile to examine the variat-

ion of the different components of the scattering amplitude. 

Table 5.3 contains the values of different components of the 

scattering amplitude. The figure (5.2), displays the varia-

.tion of the scattering ainolitude with scattering angles at 

200 eV. It is seen that real part of the simplified second 
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Born term (f sB2 ) remain higher throughout the angular 

region for the first choice 0 = 5.342 eV of the average 

excitation energy compared to- the second choice 	-= 3.845 eV). 

Concerning the imaginary party we see that the different 

choice of as do not have any such effect as far as the real 

part. It is also noted that at large scattering angle, 

the real part dominates strongly, but at small scattering 

angle, it deviates from the imaginary part by a factor 

of 2. The behaviour of f G3  and f B1  is very similar. They fall 

off very rapidly in low angular region and pass through the 

minima and maxima in the angular region of 20°-50°  and 

decreases monotonically with the increase of scattering 

angle. This feature differs very much in comparison to the 

elastic results of Tayal et al(163), where fG3  dominates 

the real part for wide range of scattering angles. The trend 

of variation of the amplitude is not very different at 

higher energies. 

(c) Differential scattgring cross—section 

The figures (5.3-5.6) display our differential scattering 

cross—sections at 20,60,100 and 200 eV respectively. The 

calculated differential cross—sections in first Born, 

Glauber approximation, simplified second Born, modified 

Glauber and eikonal Born series approximations are given 

in tables (5.4-5.5) at selected angles in the energy region 

of 20,-200 eV. 

Figures (5.3-5.4) show the results of our calculation 
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for DCS obtained in the first Born, Glauber, second Born, 

EBS and MG approximation at 20 and 60 eV respectively. The 

• present calculations are compared with recent theoretical 

calculations of Winters and Vanderpoorten (92) and 

Sharma et al(142) and with the experimental measurements 

of Williams et al(187). It is clearly seen that at small 

angles 	10°) the first Born results falls off more 

slowly but that as the scattering angle increases, it 

decreases far too rapidly. The failure of the first Born 

approximation at large momentum transfer for inelastic 

processes is well known. The Glauber approxim'ation also 

does not give any better representation of the shape of 

the experimental curve although it falls off more slowly 

compared with the first Born approximation. The EBS and 

second Born results are very close to one another and 

overestimate the cross—section compared with the experi-

mental data indicating the poor convergence of the Born 

series for s—state excitation. The MG and EBS are in 

relatively good agreement.with experimental data at small 

angles (€1 00°) both giving the forward polarization peak. 

The MG results falls off sharply at intermediate angles 

passing through minima around 50°  which is more pronounced 

at 60 eV than 20 eV. The experimental data of Williams at al(18 

also show a structure which is less pronounced and appears 

at a large angle compared with our MG results. At small 

scattering angles (G00°) i.e. prior to the dip the DWBA 

results of Winters and Vanderpoorten (92) tend to underestimate 
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the experimental data while beyond the dip i.e. at 

30P, the results show a secondary maxima around 500. 

Beyond 500  DWBA results compare well with' the measurements 

and are in better agreement with experiment than other 

model calculations presented here. The TPMB results of 

Sharma at al(142) show an improvement over the first Born 

approximation but in general follow very nearly the same 

pattern of variation as observed in the Glauber approximet-' 

ion. As the impact energy increases (see figure 5.3), the 

Glauber results merge with the TPMB results. At 60 eV, the 

measurement is only available upto fa,e.̀30(), where our 

MG results compare well with the data. 

The behaviour of the DCS at 100 and 200 eV is shown in 

figures 5.5 and 5.6 respectively, As the incident energy 

increases, there is hardly any difference between the second 

Born (SSBA) and EBS results. The - MG results show a marked 

difference compared with EBS results except in the forward 

direction. Further, sharp minima exhibited at 60 eV become 

flat with the increase in energy. In the absence of any 

experimental data available at these energies it is difficult 

to assess the accuracy of the calculation. It is suggested 

that new independent measurements for these cross-sections 

would be highly desirable. 

(d)'Total cross-section 

In figure (5.7) our total cross-sections in,various models 

are compared with experimental measurements of Zajdnc and 
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Gallagher(23) in the energy range 20-200 eV. It is apparent 

that the results in SSE, EBS and MG approximations over-

estimates the experimental cross-sections for energies 

less than 50 eV, whereas for energies .00 eV, our results 

particularly in MG approximation are in better agreement with 

experimental data. There do not exist any other calculation 

in this energy range. 

5.3 EXCITATION OF 2s-2p.  TRANSITION IN LITHIUM 
BY ELECTRONS 

The electron impact excitation of the 2s-2p state of atomic 

lithium is of particular interest. Firtly, from an experi-

mental point of view i.e. after the excitation of s-p trans-

ition in hydrogen and helium, it is the process about which 

the differential scattering cross-sections over a wide range 

of energy are available, secondly, the behaviour of per-

turbative approaches for s-p transition are rather different 

than that found for s-s transitions (39,65). For the present 

study, we have employed. only modified Glauber (MG) approxi-

mation. For evaluating the scattering amplitude in this 

approximation (equation (5.3)), we need the Glauber amplit-

ude (fGAY  the second term (fG2)  of the Glauber eikonal series 

and the second Born term of the Born series. For s-p transi-

tions, the relationship between the various terms of Born and 

Glauber eikonal series are different in contrast to s-s 

transitions. For example in the case of s-p transitions, the 
second Glauber eikonal term f

G2 is re.al with a phase factor 
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and the imaginary part is missing. Thus it is expected that 

fG2 should be comparable to the real part of the second Born 
term. 

The 2s-2p excitation of lithium atom is composed of 

three processes, 2s-213,_, and 2s-2p0  where +1 and 0 indicate 

the eigenvalues +1 and 0 of the z-component of the orbital 

angular momentum of bound electron. The Glauber amplitude 

for 2s-2p4.1  processes can be easily computed by using the 

equations (5.42  5.17 and 5.19) as discussed earlier in the 

Section (5.2.1). Here, the z-direction of the system is choser 

to be perpendicular to the momentum transfer. The second 

term f G2 of GES for this process can also be calculated in 

the closed form following the procedure of Yates(3). As for 

the second Born term of the 2s-21)+1  processes2  we shall 

evaluate it in the closure approximation and shall follow 

the approach as outlined by Gein(175) for excitation of 

hydrogen. 

(1) Evaluation of second Born term 

We shall consider the lithium atom as one electron system 

with the use of Hartree-Fock(EF) wavefunction. We have used 

the wavefunction for the initial (2s) state as given by 

Clementi and Roetti(55; and of Stone (132) for the final (2p) 

state. The 2p-state wavefunction is of one term. These are 

given as 
2  6 ( r A. c--- i.t.4. 1  A.  17 e.,&ir y0,0(2,)  

..--  I  11 	i=3 

A CP - c x 2p i - 	P(-r)Ylm ('''') f 
... (5.29 ) 
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with c = 0.228255, C = 0.5227 and mf  is thc,. magnetic quantum 

number for final p-state. Ai ls and 	are taken from element 

and Roetti(55). 

The simplified second Born amplitude is given by (175) 

 f 	 1 	1 	elg. r4 eik. r 
SB2 	— 2k2 2 2-■ kf ki (k -p.- e) 

-e 	.j" + l :\ 

2 - where pi  = 	. 

The absolute value of the product of the radial part of the 

atomic orbitals as given by equation (5.29) can be written as 

	

 
 0 - 	c r -air 	

6 
c.r2 ear

2p 2 - 	a 
	 ... (5.3i )  

where the constants c 's and a 's are given as 

cl 	-0.2600714p c2  = 	0704254., c3  - 9, 0417x105  

c4  = 0.0915659, c5  = 0.0432158, c6  = -0.0987463 

al  - 2.999, a2 = 5.22143, a3 = 0.90620 
a4  = 1.18325, a5  . 1.5927, a6  = 2.1547 

Because of 2p-state., the amplitude for the excitation to a 

particular magnetic sublevels are given as 

f 	= 	 .4- 1 f SB2 	 sB2- x 	SB2`y- 
+1 	1. 	f( 2p 	.( 2p 	I 	... (5.32a) 

f 2p0  = [f2p 
SB2 	SB2 .1z (5.32b) 

Considering the first term of the equation (5.31 and substi- ‘ 
tuting the same in equation (5.50) and carrying the integration 

(5 .30 ) • 
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over the coordinate variables in the matrix element part 

(indicated by >) analytically, one obtains for the first 

term as 

I'2134-1 fSB2 
32f2 ig 2 

— 	C 
j  

-4 d 
c6 ji ) 	 - I7

3k  —77 (k - .-ie )k7.k P f 
q 	k. +k. 	kfxfy. 

2  
2 3 , 

	

J 	f ' -x((:-4-0c275 	( k? -2 -3- 	
, 

+a) 1 	,j/ 

... (5.33) 
2 	a2 

= .1.67(in) 	ciai --2(  2 a. a J j 
J.7.1J. ) ix ly 

- 1  (J  J \-  ---- x(qx )i) 2 	x 	fyi 	2( 24.  2) a3  q . aj) 
... (5.34) 

where J.J. Jfx  and Jfy are components of the vectors ix)   
Ji  and Jf  on the x and y axes respectively. Ji  and Jf  are 

0 
given by 

k. 1 1d3v. 1 	1 	i 
= 2 i 	72 2-7 , -- TN n 	‘k -p.-ie. k 0‹.+ a  ) i i f 

... (5.35a; 

1  (3-4 	1 	 
f - 	d k 2 2  

(k -p.-ie) 

4 
1 	kf 

2 ki
2 ( kf

2  -4- a2) 
(5.35b) 

Similarly for the second teLm of equation (5.31), the 

±SB2 can be obtained from the first term and is given as 

fII,2p ±1 = 6 	) 	
I 
2-  2 
P+1 

sB2 	j:"3 	uaj  _aj SB2 

= 2 f. 16-  a .c 	){_f i22134.1  I jz..3  3 3 4,-2 	sB2 ... (3.36) 
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aj 	j3
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 3 	a. 3 

2q2(q4+3a3(124.4)  

--f 2-'7ct . 5. 	I + .3 a 

f „ 0 	pi-P +I t+, ) (pil-P+i A ) 
= I.(a21 + j 
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Using  the well known Feymmanis (144) Technique of integrcition 

and following  the procedure given by Gien(17.5), we can write 

finally the complete expression of scattering  amplitude 

for 2p4.1  as 

2p1.1 	ri-2(Ai+Ci) 2(A2+c) 
f 	16 ;2 	e 	c.a. 
SB2 	..j=1 	3 - 	(;c 	

77- 

3 	aj 

+ 
(A3+ cm 

 
) 242(

i
4 

4 

  

 312  2 

 

 4) 

a
2 

	
a
Zkg2+a23 

L f.2B1 282 
i cl i+  7 -  7 + 

3 	3 

+ 	- 	+ -7 k 
t2D 	2B2 	83

.... - 3 
f = 	- 6 	4 

, 2D 2D D 

aj  aj  aj- 	- aj  aj 	aj  

r  120,1,1)  12(A2,2) 
41- 	----7 - 2 +2(A4+C4) 

	

aj 	a
j 
	aj  

	

2/ 6 	4 2 	2 4 	6, 	. 12q kg +4q a+6q aj-1-4aj) 
2-17- 	I q 

--g -7 

12B1  12B2 1 
akg 

	

3 	J` 	 a 	a. 

,-12D1 12D2 6D  
a . 
•_- 4.2B f k 	__6. 	-2D4 ki, 2 4 f 

	

. 	
ai 	

a aj 

... (5.3V 
where 

2  ) 
( x dx 	P -P  -14  A 

—3-- /n ■-------1 
o p PI  
1  1-1 X dXf 
77i0E47-17 i. 

... (5.38) 
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1 	.-P+iA / 	131 

i d 7,. 'd x 
P  
-r 

) 	7 'en(  +P+iA)  
0 	P  

i 1 / dx( 1 	1 
- 2- o P2 pi P+iA + pi  +p+i .1/4. ) 

(5 .39: 

- -11-- = -A1) -772 A and A 	A 1 a 	4 - 	2 3 1 
aj  dad 	d( 	d(a.) 

d2 B2 da. 
--2B1' 	

B3  - 	d3 B1  and B - 	B 
3 - dka. / 2\2 1 	4 - d(a2)3 1 

in which 
dx 

  

f 2 
" 

la.•x+x(1-x)„,211/ 2.1(a2+20).  
I 	lf 

-2ip.fa2.x+x(1-x)q211  1, 3 	J 

x+2(- 6.4 ) 

dx 
If(4)I

o  -7 x+x 
 
(1-x

)7 
 1-72T/2_L o. • X+20[a

J 	
,d 	i  lf ) , 

-2ip Wx+x(1-x)q21 1/2 i 
1/2 

P = (k2+x2 q2  +2xkf.q) 

ia.+ ti/2 r 2 
A -1 3 

  

... (5.4o) 

6). is the energy difference between the 2s and 2p state. 

2■ with faj)  k 	in the equation (5.38-5.39)) one can obtain the 

expresSions for C1  and D1. The expressions for C2pC33 C4  and 

D2, D3, D4  can be obtained 1:?y carrying out order order deriva- 

tives with respect to a,2   of C1  and D1  analogous to Ai  

and Bl. 	k, and ki  are algebraic components 
r, 

d2 	3  

\ Byinterchangingthek. witilkf  everywhere and 1.ta2.) 3 
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-* 
of q, kf  and ki  on the plane perpendicular to the 

z-axis. In this plane,. q 2 k
f 
 and k. are all referred to 

as the common positive direction of the axis. Thus 

 

kf  = (kicosQ -kf)ki/q 

kid 	(k.-kf cosG)k /q 

... (5.41a) 

(5.41b) 

where G is the scattering angle. All the vectors q It. 1L 
and kfi  have the same azimuthal angles q' 

It is worth mentioning that with the usual choice of 

being perpendicular to z xis, the Glauber amplitude for the 

process 2s2Po is vanishing and so is the case with the 

fG2 term. However, the corresponding second Born term is not 2P6  
vanishing. The expressionlbr fsB2  can be derived easily from the 

equation (5.37) 

usual choice of 

where q is replaced by q . This with the 
2P,, 

z-axis direction, the ffB2  is given by the 

same equation (5.37), in which ql,= q-z  = 0 and kfz= kiz=kikf sin-g-h/q. 

(ii) Evaluation of fG2 term 

The explicit evaluation of fG2  for s-p type of transition 

can be easily carried out following the procedure of Yates(3). 

Considering the first term of equation (5.31), we can write 

down the 

It2p+1  8J7 n .06  2 
fG2 	q  7 Ci 77-   j=1 

*k-1),n(1-E2.)-eln 
J 

)(_ 73c_77:x  15 	1 	_ 

a. E. 
.3 
 (11-0) 

 

... (5.42 ) 
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with = q/a 

The second term can be easily generated by carrying out one 

more differentiation with respect to aj. Thuss  finally one 

can obtain 

2P 
4  1 

'LG2 

8.42 m 
CN 
- 

q 

- 
2 	F 
L CA_ i  )(- 

-J =1  3 L 	'ci;_j 1 

1  

"--°j 
1  -  --- 

= k. a3.t .(1+t2.) 
J 	3 	J 

2_,),(n(1_0.)2_0.xn,4 	c f(a )( 	)( 
J 	j,73 -74i - j a

a ai  -2ai  

x —7  —1.— ---771(0,-1),(n(1—E2,2-04n 
a .E .(1.+E.) • 	 J 	J- 

J 	J 	 (5.43) 

(11) Evaluation of exchangeamlitude 

In order to have a better comparison with other calculations 

which make allowance for electron exchange, and also with 

experiments  we have calculated eikonal exchange amplitude 

within the frame work of Bonham-Ochkur approximation follow-

ing the formulation of Franco and Halpern(177). The advantage 

of calculating the exchange amplitude in this, formulation 

is that it can be obtained with ease in closed form contain-

ing a well defined phase which can be used unambiguously 

with direct amplitude for calculating the differential scatt-

ering cross-section. With the choice of z-axiss  the final 

• 2P J-1
expression for eikonal exchange amplitude q ex- is given as 

2P G 	+iA, 2 	, 
g6c— = 4-17r(yo-i) e 	7  ca-JA-lf 2. 2 j\."3 	2 

J 
3  j 	(494-10q2-a2,) 

6 	
• 	.7 

- 7  C 	PI-1( 2 2 1%73  2 
 

j TE.!ai  'cci+g  ccii-fl,(e?)"1. 

(5.44) 
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where 

8r21%exp(TC1/2) 

2+i", -si K 	nhnl,  

Here K is equal to (k1.4-34)/,J2 and 1= —1/vi. 

5.3.1 Results and discussions 

The differential cross—section (DCS) for the excitation of 

2s-2P+1 transition of lithium by electron impact at 100 eV 

using modified Glauber (MG) approximation is shown in 

figure (5.8). The present results are compared with the 

conventional Glauber calculations, first Born results, the. 

unitarised distorted wave polarised (UDPO) results of 

Kennedy et al(84) along with the recent measurements of 

Vuskovic et al(104). The other experimental DCS by Williams 

et al(187) is only available upto 60. eV, The Glauber calcula-

tions are in good agreement with the data at low scattering 

angles (.G <200) but it falls off rapidly at high scattering 

angles. The same comments also apply to first Born results. 

The UDPO results show a remarkably good agreement with the 

measurements of Vuskovic(104) in entire angular region. For 

the scattering angle 49 >• 202  the present calculation over. 

estimates the DCS by more than an order of magnitude in 

comparison with the measurements and the UDPO results. The 

values calculated in the MG approximation are very different 

than those obtained with conventional Glauber approximation. 

The removal of the deficiency of the DCS at intermediate and 
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large scattering angles suffered by the conventional 

Glauber amplitude by the replacement of fG2  by fsB2  

leads to real improvement. Our comparison of Ref sB2  and 

f G2 shows that they agree to well within an order of 

magnitude at the energy considered here. The considerat-

ion of eikonal exchange hardly brings any change in the 

DCS at this energy. We believe that the poor convergence 

of the Born series is not responsible for large DCS at 

42) 	The contribution of higher order terms included 

through the Glauber approximation is not found to be enough. 

Their full contribution at least for some part of the inter-

action seems to be imperative. 



Table 5.1 Coefficients and exponents for the 
orbitals appearing in the equation (5.4) 

Clementi type 
Orbital coefficient 

Power of r I  Exponent 
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0.89652 
 

1  2.47580 

 

0.11239 
 

1  4.68780  

 

-0,00039 
 

2  0.75 000 

 

0.00766 
 

2  1.77100 

 

0,00074 
 

2  0.61830 

 

-0,14437 
 1 	2.47580 

 

-0.01602 
 1 
	

4.68780 

2s 
 0.50009 
 

2 
 

0.75000 

 

-0.07864 
 

2 
 

1.77100 

 

0.56144 
 

2 
 

0. 61830 

 

0. 09366 
 

2.30142 

 

-0.92279 
 

2 
 

0.52233 

 

1.49432 
 

3 
 

0.39659 
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Table 5.3 The scattering amplitudes for 2S-3S transition 
of lithium atom at 20 eV. 

3catt-
:ring 
Ingle 
(deg) 

fBl RefSB2 ImfSB2 fG2 fG3 RefG Imf G 

5 3.75 3.35 7.68 6.34 9.19(-1) 2.82 3.54 

10 3.20 2.28 4.13 3.37 1.33 1.66 1.45 
20 1.75 1.66 1.39 1.20 1.10 1.35(-1) 2.83(-1) 
50 1.25(-2) 8.93(-1) 1.09 9.77(-1)-6.99(-1) -3.21(-1) 1.05(-1) 

80 -1.49(-2) 6.85(-1) 4.95(-1) 4.57(-1) 9.53(-2) -1.80(-1) -7.04(-2 
loo -2.08(-3) 6.47(-1) 3.23(-1) 3.04(-1) 1.02(-1) -1.12(-1) -9.65(-2) 
120 2.96(-3) 6.28(-1) 2.41(-1) 2.28(-1) 0.35(-2) -7.08(-2) (--2 )  

140 4.53(-3) 6.18(-1) 1.99(-1) 1.89(-1) 7.55(-2) -4.78(-2) -9.4o(-2) 

160 4.94(-5) 6.12(-1) 1.79(-1) 1.7o(-1) 6.76(-2) -5.63(-2) -9.01(-2) 



1 Table 544- Differential cross-sections 17(a2Si ) for dc4 
electron impact excitation of lithium to 3S 
state at incident energies'20 and 60 eV 

Scatter- 
ing FBA G SSB 	. MG, EBS 
Angle 
(den) 

E w 20 eV 
5.o 9.74 1.75(+1) 1.19(+2 7.36(+.1 1.06(+2) 
10.0 7.12 4.90 5.60(+.1. 2.89(+1) 4.200-1) 
20.0 2.15 1.08 1.69(+1; 6.08 1.01(+1) 
50.0 3.32(-4') 1.11(-1)  1.86 3.55 (-1) 1.98 
80.0 5.08(-4)  3.02(-2e 6.18(-1) .22(-11  5.11(-1 
100.0 3.37(-42 1.82(-2) 2.58(-1 3.55(-1 
120,0. 2.74(-4) 1.26(-2 4.08(-1)  2.83(-1 3.14(-1 
140.0 2.39(-4? 9.73(-31  2.96(-1) 3.02(-1 
160.0 2.20(-4; 8.35(-3) 3.70(-1) 2.99(-i 

E . 60 eV 
5.0 9.85 1.18(+1) 2.71(•1) 2.13(+1) 2.39(4.1) 
10.0 3.65 1,95 3.44. 4.95 6.29 
20.0 8.53(-2' 1.6.1(-1) 9.491,1) ).18(-1) 9.35(-1) 
50.0 1.89(-2 . 	 6(-2)  2.96(-3' 5.29(-2i) 
80.0 4.80(-5) 3.36(-3 3.22(-2) 1.09(-2 2.78(-21  
100.0 2.69(-5 i.63(-3? 2.78(-2 .1.46(-2r  2.58(-2 

2.50(-4 120.0 1.65( -5) 9.86(-4/1  2.59(-2 1.66( -2? 
140.0 
160.0 

1.17( -5) 
9.57(-6) 

7.09 (-4? 
5.87(-4) 

• 2.50(-2; 
2.46(-2) 

1.77( 
1.82(-2) 

2.46(-2) 
2.45 (-25 

131 



132 

d7 
Table 5.5- Differential cross-sections --a2 

1  Sr ) for 
dg 0 

electron impact excitation of lithium to 
3s state at incident energies 100 and 200 eV 

--- 

.ng FBA 
scatter- 

 G - SSB MG EBS 

Ingle 
.deq) 

E=100 eV 

5.0 8.54 8.81 1.55(+1) 1.36(+1) 1.36(+1 )  
10.0 1.66 1.15 3.37 2.35 2.79 
20.0 1.09(-1? 2.65(-1" 1.15(-1) 2.72(-1)  
50,0 

1.25(1 
4.20(-5 4.72(-3 1.61(-2 1.13 (-3 ) 1.35(-2 

80.0 1.21(-5, 7.93(-4 9.41(-3 3. 67(-3 ) 8.98(-3 
L00.0 4.93(-6 3.87(-4) 8.47(-3 4.69(-3 8.44(-3. 
L20.0 2.60(-6 2.36(-4 8.07(-3) 5.27(-3) 8.22(-3 
140.0 1.47(-61 1.54(-4 7.85(-3: 5.70(-3 8.08(-3) 
160.0 1.32(-6 1.43(-4 7.82(-3 5 .76(-3 8.06(-3)  

E=200 eV 

5.0 5.22 5.43 7.81 7.75 7.08: 
10.0 2.11(-1) 5.92(-1) 5.29(-1) 5.74-1) 
20.0 5.67 

2.92(-1 
2.86(-2 5.41 2.18(-2 5.44 

50.0 1.21(-5 5.93(-4) 2.83(-N 5.28(-4i  2.66(-3) 
80.0 8.81(-7 1.08(-q' 1.96(-3i  1.03(-3 2.01(-3: 
100.0 2.8,5  (-7 5.59(-5) 1.85(-31 1.92(-3; 
120.0 1.31(-7 3.58(-5) 1.81(-3 

1.18(-1 
1.28(-3 1.88(-3 

140.0 2.58(-51 1.79(-3 1.3(-3) 1.87(-3i 
160.0 

7.81(-9  
5.80( -8 2.06(-5)  1.78(-3) 1.38(-3) 1.86(-3) 
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5.4 FIGURE CAPTIONS 

Figure 5.1 The generalised oscillator strength for the 2s-3s 
transition of lithium atom. 
Calculations: -- 	CIV3 wavefunctions;-------: 
Weiss wavefunctionsi, 	:Rapp and Chang 
wavefunctions with core; --,.-- :Rapp and Chang 
wavefunctions without core. 
Experimental results: 2 data set 1; : data set 2 
(shuttleworth et al(171)). 

Figure 5.2 The various components of scattering amplitude for 
2s-3s' transition of lithium atom at 20 eV. 
Calculations: - 	: Ref B2  with 

: Ref B2  with (7) = 3.845. 
Imf B2 	= 5.342 ev; 
= 3.845 ev; 	f G3  ; 

= 5.342 eV; 
eV; 

Imf B2  with 

f B1' 

Figure 5.3 The differential scattering crcss—cection for the 
2s-3s excitation of lithium atom by electron impact 
at 20 eV. 
Calculations: 	: Present EBS; 	:PresentS3Bi 
---:Present MG; 	results in FBA; 

results in GA; 	results in TPMB(142); 

: results in SSB(92); 	--:reJults in DWBA(W 
;O: Experimental data(187) 

Figure 5.4 Same as figure (5.3) but at 60 eV. 

Figure 5.5 Same as figure (5.3) but at 100 eV. 

Figure 5.6 Same as fi gure (5.3) but at 200 eV 

Figure 5.7 Total cross—sections for the 2s-3s transition of 
lithium atom. 
Calculations: ------- : results in SSB; 
results in MG; ----- : results in EBS; 
resultsiin FBA; e: Experimental data (23).. 
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Figure 5,8 The differential scattering cross—sections for 

the 2s-2p transition of lithium - atom. by electron 

impact at 100 eV. 

Calculations: 	present results in MG approach; 
/ : results in ULMPOIIt84); 	0 

resultp.in GA approach (155); CZs,  first Born results 
(104); Ok:  Experimental data (104). 
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CHAPTER 6 

SCATTERING OF HIGH ENERGY ELECTRONS AND X-RAYS FROM 
MOLECULES: THE TEN-ELECTRON SERIES:Ne,HF,H202 NE3  AND CH4  

6.1 INTRODUCTION 
NommrtiMalr.130119,61.1.0.MilneMPX.,,  

High energy electron scattering plays an important role 

in the study'of molecular structure (138). It has been 

well established (see Bonham and Fink(136)) that at high 

incident electron energies ( 25 keV) where the first Born 

approximation is valid, there exist simple relationships 

between target properties and the results of a scattering 

experiment. Consequently such studies provide a wealth 

of information valuable in assessing the quality of molecular 

wavefunctions and in understanding chemical binding effects. 

There have been many experimental measurementsfer  total  

(elastic inelastic) cross--sections for scattering from 

various molecules. However, in recent years a few groups have 

started measuring the absolute elastic and inelastic inten-

sities separately. In this regards  the work of Lahmam-

Bennani et al(11) is worth mentioning. On theoretical side, 

a few attempts have also been made where high quality abinitio 

calculations of elastic and inelastic intensities for some 

simple medium sized molecules are performed. 

Among the small and medium sized linear molecules, H2, 
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D2, CO, N2  and 02  have been studied the most. The early 

calculations (85) were based mostly on molecular HF wave-

functions. However/  it is generally expected that a better 

agreement between experimental and theoretical results will 

be attained by configuration interaction (CI) wavefunctions 

instead of HF(176). Epstein and Stewart(80) have calculated 

the total and elastic X-ray scattering intensity for these 

molecules using a near HF quality wavefunction with extensive 

basis sets at experimental Re (internuclear separation) values. 

They have also carried out a multi-configuration self consis-

tent field (MC-SCF) study on CO. However, this wavefunction 

was able to account for only 21% of correlation energy. 

In an attempt to see how important a role electron 

correlation plays in the computed toL,a1 and elastic electron' 

scattering intensities, Breitenstein and collaborators (107) 

have carried out recently a series of moderately high quality 

CI calculations yielding about 607. of the-correlation energy, 

for a series of linear molecules (CO, N2,, CH 0 F2  and 2' 2 2' 21  2 
CO2). Hirota et al(59) have also carried out an electron 
correlation study on N2  but examined only the elastic scatter,- 

ing. it is remarkable to see that as the energetic quality of 

the wavefunction improves, i.e. as one goes from a near HF 

to HF and then to a CI type of wavefunction/  the total electron 
scattering intensity functions move in the right direction, 

i.e. nearer to the experimental measurements. 

Apart from considering the role of electron correlation 

-in the target wavefunction, Thakkar9  Tripathi'and Smith(9) 
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examined some other aspects of scattering calculations 

including basis set effects and the difference between 

the usual elastic intensities for X-ray and electron 

scattering from nonvibrating but freely rotating diatomic 

molecules (H22 	 and and the fully elastic intensities for 

scattering from the J.0 state. 

The other linear molecule which has been studied 

somewhat extensively is the CO2  molecule. Two sets of new 

measurements one by Sasaki and collaborators (18'9) and the 

other by McClelland and Fink(81) have been reported recently. 

Sasaki and his collaborators(189) have also performed 

theoretical calculations for the electron scattering 

Intensities using a HF molecular wavefunction while the 

effect of correlation on the total intensities was estimated 

through the IAM model. There exists a wide disagreement 

between theory and experiment particularly in the region of 
o-1, small g ((:),$-g(4A  ). However, the recent CI calculation 

of Breitenstein et al(107) goes in the right direction with 

the measurements of McClleland and the Fink(81). 

Among the early calculations on the scattering of 

electrons by polyatomic molecules was one by Haber' and 

Hasse(7) on water usiung an abinitio wavefunction and an 

elastic study by Szabo and Ostlund(13 )(H202 NH3  and CH4) using 

semi-empirical CND° type wavefunctions. These results showed 

an improvement over the IAN model calculations but still 

differed significantly from the experimental data(186). It 

is only very recently that various groups have initiated 
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elastic and total electron scattering calculations for 

medium and large size polyatomic molecules. Hirota et al(59) 

and Shibata et al(162) have reported elastic electron 

scattering cross-section calculations on the water and di-

borane molecules employing several molecular wavefunctions 

such as double zeta, triple zeta with and without nolari-

zation functions and CI wavefunctions. Pulay and coworkers(133) 

have performed an abinitio Hartree-Fock calculation of the 

elastic cross-section for electron scattering from the 

SF6  molecule. They used a triple zeta basis set augmented 

with polarization functions and diffuse functions.Kohl et al(45) 

and Shang de Xie et al (150) have also reported elastic 

electron scattering cross-sections for CH4f  CF4  and C2H4 

respectively, using abinitio HP wavefunctions. Shang de 

Xie et al(150) have made an extensive study of basis set 

effects on C2H4* They have used six different basis functions 

ranging from 6-31G to 6-3112. As there are no experimental 

measurements available, it is rather difficult to comment 

on the accuracy of the computed intensities, however, it is 

believed that the SCF calculations at the level of 6-3116°E  

might be sufficient for the experimental calibration and 

related routine structure determination. 

Sharma and Tripathi(36) have reported elastic and 

inelastic differential cross-sections for scattering of 

high energy electrons and X-rays by the NH3, CH4  and H2O 

molecules. They used an impulse approximations Compton pro-

file (IACP) approach to obtain the inelastic part of the 
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differential cross-section. The region of validity for 

such an approach is well known and is explained in the 

literature (see Bonham(137) and ShaLma and Tripathi(35)). 

The various theoretical results upto 1984 and the present 

state of the art in comparison with experiment have been 

reviewed recently by Tripathi and Smith(15). The calculat-' 

ion of elastic and inelastic cross-sections using a confi-

guration interaction (CI) wavefunction which accounts 

reasonably well for the correlation energyt  is relatively 

difficult compared to that for a Hartreer-Fock (HF) wave-

function. It is well known that the experimentalist requires 

elastic and inelastic intensities separately in order to 

analyse electron diffraction data,in structure determinations. 

Consequently, the current practice has been to use the result 

for the elastic intensity calculated at the HF level and the 

result for the inelastic part by using the independent atom 

model(IAM). Although the use of HF wavefunctions cannot be 

expected to yield quantitative accuracy for the calculation 

of the inelastic intensityy nevertheless its calculation if 

performed even at the HF levels  should be better than the 

TAM results. The advantage of such a procedure has been that 

both components are evaluated simultaneously on the same 

footing. The utility of such an approach has been well demons-

trated recently by Thakkar(8). He has shown how the IACP 

results for the inelastic scattering predict unreliable 

results in the region of small momentum transfer by carrying 

out a calculation on CH4, NH3  and H20. Following this approach 
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we have carried out detailed calculations of total)  

elastic and inelastic X-ray and electron intensities for 

the ten electron systems (Nes EDE,H20)  NH3  and CH4 ), employ; 

ing SCF molecular wavefunctions constructed from a double 

zeta quality basis set of contracted Gaussian orbitals by 

Snyder and Basch(101). Various trends and systematics in 

the electron intensities (elastic and inelastic) for these 

systems have been examined. The effect of molecular binding 

has also been examined with the help of difference functions 

computed between the present electron scattering intensities 

and those for IAM. Before we discuss calculationS of elect-

ron scattering in comparison with the experimental measure-

ments)  it is useful to begin by recalling a few well estab-

lished relations within the framework of the first Born 

approximation. In Section 6.2, we describe the theoretical 

methodology and the numerical procedures. The results and 

discussion will be given in Section 6.3. 

6.2 THEORETICAL PROCEDURE 

6.2.1 Theoretical Methodology 

In high energy electron scattering the elaStic (I:g(4)) and 

total (Ied(g)) scattering cross-sections within the frame-

work of the first Born approximation are given respectively 
by 

441:2(4 )/IR  Iu(g)/IT  0-11,(4) orn,(4) 
4 g Itd 

 (g)/IR.. 4r(A)/IT-1-°;e(g)+Unn(11 

... (6.1) 

... (6.2) 



and 
\ 0-  n(g) 	zAZajotAiRA-R.B!) 

A0B 
(6.4) 
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where IR is the characteristic Rutherford constant IT is 

the Thomson factor, and Teis the momentum transfer. Ocie  and 

crnn are the electron-nuclear and nuclear-nuclear inter-

ference terms. They are given by 

0—  (m) — 7 z Re F(Ti.) exp(-0.AA) ne 	A- A ... (6.3) 

in which the sums are over the nuclei with charges ZA  and 

position vectors iZA  and Re 
	• • denotes the real part 

‹. . . .The angular brackets denote the spherical average. 

IT4)/IT  and 4r(A)/IT  are the elastic and total scattering 

intensities for X-rays respectively and they are defined in 

terms of one (P1) and two electron (1)2 ) densities with the 

statistical normalizations N and N( -1) respectively. N is 

the number of electrons in the molecules. 

I'exi(4)/1 	OF(TI)) > 	(6.5) 

with 

- 	
Pl( r) 

-4, 
F(171.) 	e 	dr 

Itr(µ)/I T e 
x(4 )g  ir /Iv&Irrle,(4)/IT 

xr 
Iinel 	

T - <30.0> 

• ( 64 6) 

....(6.7) 

... (6.8) 

with 

S(a) 	 CP2(V1,-2'2)-P1(11) 
(7;1,, _T 

2' 
) 

dr dr, r ) e 	 e 2 - 

... (6.9) 
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For a closed shell system, the elastic and inelastic 

components of the intensities can be calculated simul-

taneously using a self-consistent-field (SCF) molecular 

wavefunction as demonstrated recently by Thakkar(8). 

The elastic intensity defined by eq.(6.1) refers to 

the situation where the rotational energy differences are 

not resolved. In practice all the experimental measurements 

carried out correspond to this situation. However, there 

is a possibility that one can resolve the rotational levels, 

i.e. J.0 and then the conventional definition of elastic 

intensity both for electrons and X-rays needs to be changed. 

This changed intensity will be referred to as the fully 

elastic intensity. The expressions for this fully elastic 

intensity for electron and X-ray scattering are taken from 

the papers of Kolos et al.(184) and Thakkar et al(9). These 

are given as 

2 xr Ifel 	T (4j/I - / FLO\ 1 (6.10) 

and 
4 ed 

4 I 	(A)/IR fel CLIT 0-(4) / • n  
2 

(6.11) 

where 

C5-n( 
	

A o(µ RA ) 
	 ... (6.12 ) 

A semi-quantitative understanding of the electron mole-

cule scattering cross-section in terms of geometrical and 

vibrational parameters of the molecule is achieved with the 

help of the independent atom model(IAM) or promolecule which 
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assumes that the molecular density is the simple sum of 

the spherically averaged atomic densities centred at the 

equilibrium positions of the pertinent nuclei. Although it 

is an approximate model, nevertheless its simplicity compen-

sates somewhat for what it lacks. Except in the forward 

direction, predictions of the SAM are always in good agree-

ment with experiment at large scattering angles. This is not 

surprising as the large scattering angle region is dominated 

by the nuclear charge and core electron distributions. Accu-

rate electron scattering measurements can be used to deduce 

the deviations of the correct charge densities from the IAM 

model. 

6.2.2 Calculations 

During the last few years, high quality abinitio molecular 

wavefunctions at the Hartree-Fock level, have become avail-

able for many small and medium sized linear and polyatomic 

molecules and therefore much attention has been devoted to 

use them in the analysis of high precision electron scatter-

ing experiments. Various groups are engaged currently in 

calculating the elastic and inelastic cross-sections. parti-

cularly for linear molecules and in a few cases for elastic 

scatteringg by polyatomic molecules. In principle, there is 

no restriction in carrying out the calculations for bigger 

molecules, however in practice the amount of computer time 

required is very large. It is basically due to the manifold 

increase in the number of integrals and then to the necessity, 
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performing the angular integrations over the angular vari-

ables. The spherical averaging procedure needed in Eq.(6.1) 

has not received such attention in the past. There are 

several possible ways to do this averaging: 

(i) Numerical integration using quadrature, 

(ii) Expansion of the charge density (one electron 

density) in Eq.(6.6) in an analytical function in 

order to facilitate the evaluation of Eq.(6.1) in 
closed form, 

(iii) An accurate analytic approach which does not use 

any type of numerical approximation. 

The problem of spherical averaging is not of great 

concern as long as one is doing calculations for linear 

molecules. However, the problem becomes somewhat alarming 

if the molecule involved is.a polyatomic with a large number 

of atoms. The problem has been recently examined very ele-

gantly by Pulay and coworkers(133,45). They have developed 

a compact one integral routine for all types of cases 

occurring in the scattering amplitude with Gaussian based 

wavefunctions upto and including d functions. Furthermore, 

they also use the fact that the IAM amplitudes approximate 

the abinitio results very wells  particularly at larger ). 

Following this prescriPtion, they define a difference funct-

ion, 

61(m) - P(g) 	PIAm(4) 
	... (6.13) 

and expand Eq.(6.5) as 
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F 2 	r
d s/ IFI 	

12 
tFM >. i Am(m) + 2Re a 

2 fl
AmCAM ICA) 

+ ja tAI(01 ... (6.14) 

The advantage with Eq.(6.14) is that the first term becomes 

very trivial and the orientational averaging for the second 

one is done analytically. Only the last term needs to be 

evaluated numerically. The integrand, being the square of an 

- 
already small quantity, practically vanishes above 4,5ao

1  

where the numerical integration becomes difficult. In the 

present study we have evaluated all the integrals numerically • 

using quadrature. 

6.3 RESULTS AND DISCUSSION 
We have calculated the elastic and fully elastic, inelastic 

and total electron and X-ray scattering intensities using 

equations (6.1-6.2, 6.5-6.8) for the HF, H20, NH3  and CH4  

molecules. The indicated spherical averaging has been done 

numerically. These molecules are ten electron systems and 

therefore, we have also calculated the elastic and inelastic 

intensity for the Ne atom for the purpose of intercomparison 

of the intensities and its related behaviour on charge density. 

For the neon atom we have used the small size geometrical 

Gaussian basis set wavefunction of Clementi and Corongiu(56). 

The results for X-ray and electron elastic and inelastic 

intensities are presented in tables (6.1-6.4) in the range 

of 4 (momentum transfer) 0‘44 10 au. 
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6.3.1 Difference elastic and fully elastic intensity.  

The difference function between elastic and fully elastic 

intensities for X-rays and electrons are shown in Figures 

(6.1)(a-d) and 6.2(a-d). It is seen that the differences 

are greater for X-ray scattering compared to those for 

electron scattering. The IAM differences which are displayed 

(dotted line) along with the differences computed using the 

molecular wavefunctions, reveal the true nature of mole-

cular differences. In the case of X-rays, the IAN diff-

erences increase at small g and then fall off very rapidly 

with m whereas in the case of electron scattering, the IAM 

differences show a rapid increase in the small angular 

region and thereafter approach to a constant value at very 

large P. in an oscillatory fashion. This behaviour is very 

similar to what has been observed and explained by Thakkar, 

Tripathi and Smith(9) for homonuclear diatomic molecules. 

In general, it is found that the deviation decreases With 

the increase in number of hydrogen atoms in the constituent 

molecule, i.e. it is maximum for HP and minimum for CH4. 

This fact can be rationalised by noting that hydrogen is a 

weak scatterer and so its addition along the sequence does 

not produce any significant difference between the SCF and 

IAM results. On the other hand, it is obserVed that the more 

extended the atomic form factor (presently in the order 

P002 N,C), the more it produces the difference between SCF 

and IAM results. The electron scattering results are relat-

ively better accounted for in shape but not in magnitude by 
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the IAM compared to the X-Ray scattering result. The diff-

erences arise due to the electron-nuclear term. This is 

relfected in Figure 6.3 where the 0-ne  term in the IAM 

always underestimates it contribution in comparison with 

the molecular a-  upto A . 4.0 au. Beyond 4.0 au both O- ne 	 ne 

become very small and they almost merge into each other. 

6.3.2 Differences between the Ixtxl 	0-e r  I r  and 	intensities e 	n 

Figures 6.3(a-d) show the difference between the SCF and IAM 

results for Ixr xr 
t ' Iel  and cle  for the HF, H

20, NH3  and CH4  

systems. From these figures it is observed that the cal-

culated SCF results for all these molecules show a similar 

oscillatory behaviour but differ in magnitude and period of 

the oscillations. There exists a large discrepancy for 
ixr, Ix l and 0-  between the SCF and IAM results in the e 	ne 

small angular region and thus the use of IAN results for 
x It
r  would effect conventional structural analysis. Therefore, 

we believe that the present SCF inelastic results (shown 
xr 	x in table 6.2) when combined with Iel to obtain t

r  may be 

more useful than those of the IAN. However, if the present 

inelastic results are properly corrected for the correlat-

ion contributions to the residual atoms using the standard 

procedure, i.e., 

sCORMO(n) s CFM0(4) sIAMCI(,)_s AMHF(,)  
inel 	inel 	inel 	inel ... (6.15) 

then these results may perhaps become as reliable as those 

obtained with high quality molecular wavefunctions account-

ing for a large amount of the correlation energy. Table (6.3) 
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lists the corrected SCFMO (CORMO) results for all these mole-

cular systems. 

6.33 NH
3  molecule 

Very recently Duguet et al.(5) have measured the elastic 

and inelastic components separately for the NH3  molecule. 

We therefore constructed the difference functions between 

the present elastic and inelastic electron intensities and 

those for the IAM. The results are presented in Figure 6.4 

(a-b), along with the experimental measurement(5) and other 

theoretical calculations. The present elastic scattering 

results (Figures 4a) are in good agreement with recent data 

between 0.3 ‘, µ C 3.0 a. u. Beyond 4 = 1.2 a.u.y the experi-

mental measurements favour more than the abinitio molecular 

calculations of Ostlund (see Ref.5). This theoretical cal-

culation uses the d-type polarisation functions in the basis 

set. The augmentation of the basis set by d-functions influences 

the charge density resulting in a significant change in the 

elastic intensity. Figure (6.4b) displays the several diff-

erence.functions for the inelastic intensity. They are defined 

as follows: 

SCFM0( S. 	41) _ 
inel 

= CORMO( s2 	inel "1  
szAmcio, s

3. inel " 
sEXP (n) 

4 ima . 
s5  = s  XF E 	(0 

inel 

sine inel 

sZAMHF(u) 
inel 
IAMHF(0 
Sinai '- 

IAMBF/ 0J Sinel 	. 

sIAMCI inel 

(6.16) 

... (6.17) 

(6.18) 

000 (6.19 ) 

(6.20)  
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AMLHPI In the present calculations the theoretical Sin' %.1) and 
sIAMCIf..■ kAki values are obtained using the atomic incoherent inel 
scattering factors given by Tavard et al.(43) for HP and 

Tanaka and Sasaki(97) for CI. It is clear that the present 

calculations using molecular wavefunctions at the SCP level 

(SCFMO) does not reproduce the experiment (See Curve S4). 

However, when this calculation is corrected (CORMO curve S2) 

using curve S3  partly for the residual electron correlation 

in the atoms, then it lies in between the experimental 

measurements (see Curves S4  and 83). The experimental curves 

are taken as it is from the paper of Duguet et al(5). The 

correlated independent atom model IAMCI (Curve
3) shows 

a large deviation compared to IAMHF (curve 84) results for 

g values lying between 1 and 3 au. This deviation suggests 

that the inelastic cross—sections are strongly influenced by 

the quality of atomic cross—sections. 
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Table 6.1 Calculated SCFMO Ixrel ell,/IT  for X-ray 
scattering 

4 a. u. 	I 	Ne 	H2O 
 I 
 NH3 	CH4  ) 

0.0 100. 00 100.00 100, 00 100.00 100.00 
0.04 99.951 99.928 99.898 99.858 99.809 
0.10 99.694 99.551 99.362 99.119 98.814 
0.20 98.782 98.219 97.479 96.531 95.351 
0.30 97.287 96.052 94.442 92.400 89.886 
0.40 95.246 93.125 90.392 86.975 82.835 
0.50 92.707 89.536 85.511 80.564 74.694 
0.60 89.728 85.400 80. 002 73.506 65.988 
0.70 86.374 80.840 70.077 66.133 57.202 
0.80 82.716 75.984 67.942 58.750 48.749 
O. 90 78.823 1 0.955 61.784 51.610 40.936 
1.0 74.768 65.865 55.763 44.908 33.963 
1.2 66.428 55.894 44.607 33.288 22.833 
1.4 58.162 46.682 35.102 24.307 15.243 
1.6 50,324 38,573 27.424 17.769 10.420 
1.8 43.145 31.692 21.453 13.198 7.4811 
2.0 36.746 26.002 16.922 10.075 5.7188 
2.2 31.162 21.379 13.529 7.9556 4.6560 
2.4 26.369 17.662 10.998 6.5107 4.0039 
2.6 22.306 14.689 9.1041 5.5100 3.5942 
2.8 18.893 12.315 7.6743 4.8004 3.3260 
3.6 16.047 10.418 65821 4.2815 3.1359 
3.2 13.684 8.8973 5.7365 3.8881 2.9831 
3.4 11.729 7.6751 5.0707 3.5765 2.8454 
3.0 10.114 6.6887 4.5392 3.3201 2.7093 
3.8 8. 7816 5.8887 4.1081 3.1016 2.5721 
4.0 7.6807 5.2365 3.7534 2.9105 2.4352 
4.4 6.0147 4.2605 3.2082 2.5887 2.1756 
4.8 4.8611 3.5872 2.8142 2.3306 1.9517 
5.2 4.0496 3,1097 2.5212 2.1232 1.7651 
5.6 3.4681 2 . 7613 2.2972 1.9528 1.6034 
6.0 3.0430 2.4990 2.1192 1.8052 1.4535 
6.5 2.6582 2.2496 1.9352 1.6355 1.2728 
7.0 2.3794 2.0540 1.7739 1.4720 1,1006 
7.5 2.1667 1.8893 1.6228 1.3137 0.94309 
8.0 1.9948 1.7425 1.4780 1.1638 0.30452 
8.5 1.8477 1.6065 1.3397 1.0257 0.68515 
9.0 1.7159 1.4782 1.2090 0.90101 0.58264 
9.5 1.5939 1.3564 1.0872 0.78937 0.49420 

10. 0 1.4789 1.2409 0.97475 0.68971 0.41780 



Table 6.2 Calculated SCFMO Sinel(W) for X-ray and 
' high energy electron scattering 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
O. 04 0, 003 2 0.0047 0.0066 0.0085 0.0103 
0.10 0.0197 0.0293 0.0408 o. 053o 0.0638 
0.20 0.0782 0.1163 0.1612 0.2088 0.2504 
0.30 0.1741 0.2575 0.3550 0. 45 75 0.5468 
0,40 0.3051 0.4477 0.6129 0.7845 0.9336 
0.50 0.4679 0.6805 0.9231 1.1722 1.3878 
0.6o 0.6590 0.9483 1.2730 1.6019 1.8857 
0.70 0.8743 1.2432 1.6499 2. 0562 2.4059 
0.80 1.1096 1.5575 2,0422 2.5198 2,9305 
0,90 1.3607 1.8840 2, 4398 2.9806 3. 4456 
1, 0 1.6235 2.2165 2. 8350 3.4299 3.9419 
1.2 2.1696 2.8794 3.5957 4.2724 4.8553 
1.4 2.7230 3.5167 4.2969 5.0242 5.6473 
1.6 3.2653 4.1126 4. 9290 5.6798 6.3133 
1.8 3.7847 4.6606 5. 4906 6.2405 6.8573 
2.0. 4.2741 5.1587 5.9832 6.7102 7. 288 7 
2.2 4. 7298 5.6068 6. 4090 7. 095 7 7.6217 
2.4 5, 1500 6.0061 6.7722 7.4062 7. 8737 
2.6 5.5344 6.3586 7.0782 7.6532 8.0630 
2.8 5.8835 6.6672 7.3336 7.8484 8.2064 
3.0 6.1984 6.9354 7.545 7 8.0029 8.3181 
3.2 6.4808 7.1675 7.7217 8.1267 8.4091 
3.4 6.732.9 7.3678 7.8683 8.2281 8.4869 
3.6 6.9569 7.5407 7.9913 8.3134 8.5568 
3.8 7.1554 7. 6901 8. 0958 8.3877 8.6219 
4.0 7.3310 7.8196 8.1859 8.4543 8.6339 
4.4 7.6238. 8.0316 8.33D 6 8.5738 8.8025 
4.8 7.8543 8.1973 8.4594 8.6829 8.9156 
5.2 8.0387 8.3334 8.5683 8.7862 9.0231 
5.6 8.1810 8.4491 8.6682 8.8848 9.1243 
6.o 8.3176 8.5518 8.7620 8. 9788 9.2186 
7.0 8.5735 8.7752 8.9770  9.1926 9.4222 
8.o 8.7800 8.9698 9.1666 9.3735 9.5809 
9.0 3.9594 9.1423 9.3308 9.5214 9.7000 

10,0 9.1189 9.2937 9.4692 9.6385 9.7869 

151 
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Table 6.3 Corrected CORMO Sinel(  X- 4) for ray and 

high energy electron scattering 

4(a.u.) 
HF 

H2O NH3  CH
4  

O. 00 0.0000 0.0000 0.0000 0.0000 
0,04 0.0045 0.005 6 0, 0086 0, 0103 
0.10 0.0281 0.0388 0.0514 0. 0 99 
0.20 0,1109 0.1540 0. 1998 0. 2331 
0.30 0.2446 0.3376 0.4365 0.5100 
0.40 0.4233 0.5821 0, 7464 0.8682 
0.5 0 0.6423 0.8746 1.1113 1.2889 
0.60 0.8911 1.2033 1,5147 1.7492 
0.70 1.1646 1.5542 1.9386 2.2307 
0.80 1.4537 1.9176 2.3693 2. 7180 
0.90  1.7516 2.2843 2.7963 3.2003 
1.00 2, 05 42 2.6473 3. 2134 3, 6707 
1.2o 2.6553 3.3467 4.0004 4.5569 
1.4 3.2321 3.9993 4.7207 5.3567 
1.6 3.7786 4.6006 5.3701 6. 0571 
1.8 4.2937 5.1540 5.9491 0.6504 
2.0 4.7790 5.6581 6.4535 7.1322  
2.2 5.2333 6.1114 6.8821 7.5119 
2.4 5.6535 6.5116 7.2380 7.7994 
2.6 6.0383 6.8535 7.5260 8.0158 
2.8 6.3853 7.1538 7. 7565 8.1793 
3.0 6.6940 7.4044 7. 9393 8.3045 
3.2 6.9670 7.6127 8 . 0860 8.4035 
3.4 7.2051 7.7871 8.2022 8./1856 
3.6 7.4125 7.9325 8.2988 8,5573 
3.8 7.5898 8.0535 8.3803 8.6239 
4. 0  7. 7433 8. 15 68 8.4525 8.6872 '  
4.4 7.9899 8.3228 8.5770 8.8052 
4.8 8.1778 8.4549 8.6864 8.9169 
5.2 8.3255 8.5683 8.7886 99.0252 
5.6 8.4459 8.6692 8.8873 9.1255 
6.0 8.5525 8.7628 8.9814 9.2197 	• 
7.0 8.7763 8.9777 9.1935 9.4230 
8.0 8.9704 9.1676 9.3742 9.5811 
9.0 9. 1426 9.3312 9.5218 9.7006 

10.0 9.2933 9.4691 9.6391 9.7869 



Table 6.4 Calculated SCFMO A4/I Ied(1J. for 
high  

el • or  
high energy electron scattering 
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0.00 
0.04 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 

. 	2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.4 
4.8 
5.2 
5.6 
6.0 
6.5 
7.o 
7.5 
8.0 
8.5 
9.0 
9.5 
10.0 

0.0000 
0.00001 
0.00024 
0.00373 
0.01866 
0. o5790 
0, 13807 
0.27830 
0.49878 
0.81938 
1.2583 
1.8311 
3.4214 
5.6340 
8.4451 

11.775 
15.509 
19.516 
23. 667 
27.847 
3.1.960 
35. 930 
39.700 
43.234 
46.508 
49.514 
52.253 
56.965 
60.765 
63.802 
66.222 
68.155 
69.709 
71.529 
72. 727 
73. 748 
74.662 
75.517 
76.344 
77. 157 

0.0000 
0.00047 
0. 00323 
0.01658 
0, 05 063 
0. 12157 
0.24927 
0. 45498 

- 0.75901 
1.1786 
1.7265 
2.4097 
4.1821 
6. 4477 
9.1075 

12. 051 
15. 185 
18.450 
21.807 
25.232 
28.696 
32. 158 
35.559 
38.828 
41.888 
44. 665 
47. 098 
50.802 
52. 981 
53.995 
54. 428 
54.364 
55.965 
57.721 
59.625 
61. 036 
61.653 
61.700 
61.739 
62.280 

0.0000 
0.00061 
0.00417 
0.02208 
0.06896 
0,16716 
0.34225 
0. 61872 
1. 0161 
1.5460 
2. 2108 
3. 0041 
4.9149 
7.1222 
9.4747 

11.882 
14.329 
16.849 
19.487 
22.273 
25.196 
28.208 
32. 701 
34.138 
36.834 
39.201 
41.142 
43.532 
43.995 
43. 216 
42.320 
42.302 
43.996 
46. 727 
48.928 
49.705 
49.320 
48.724 
48.841 
50.078 

0.0000 
0,00047 
0.00351 
0.02204 
0,07766 
0.20115 
0.42461 
0, 77404 
1.26361 
1.8928 
2. 6467 
3.4996 
5.3746 
7.2860 
9, 1124 

10.368 
12.648 
14.5 60 
16. 672 
18.997 
21.500 
24.115 
28.026 
29. 265 
31.536 
33.401 
34. 720 
35.422 
33.910 
31.775 
30.925 
32.199 
35.609 
38.441 
39. 275 
38.629 
37.688 
37.570 
39. 051 
41. 756 

0,0000 
0.00002 
0.00097 
0.01496 
0.07174 
0.21029 
0, 46667 
0.86294 
1.4005 
2. 05 94 
2.8034 
3.5888 
5.1266 
6. 4814 
7.6819 
3.3846 

10. 235 
11. 795 
13.561 
15.514 
17.645 
19.934 
23.453 
24.551 
26. 421 
27. 616 
27.929 
26. 025 
22.835 
21. 620 
23.535 
26. 911 
29.884 
30.546 
29.874 
28.624 
28.301 
30.492 
33. 766 
34.893 

P(a.u. Ne 
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6.4 FIGURE CAPTIONS 

Figure 6.1 Difference between the elastic and fully elastic 
X-ray intensities for HF, NH39 H20 and CH4  mole- 
cules. 	: Calculated using molecular wave- 
functionsp 	Calculated in the IAM 

Figure 6.2 Difference between the elastic and fully elastic 
electron intensities HFs NHp  H2O and CH4  molecules. 
	. CalcUlated using molecular wavefunctions9  

-: Calculated in the IAM. 

Figure 6.3 Difference between the SCFMO and IAM intensities 
x corresponding to Itr,  

2 Icaxr   and 0:;e  for HF,NH31  
xr H2O and CH4  molecules. ,---- 	61e1  aixr 

t 	ne•  

Figure 6.4 Difference between the SCFMO and IAM results for 
NH3corresponding to elastic and inelastic inten-
sities. 

(a) Elastic: 	. 9 calculated using SCFMO and 
the IAM,-HF; (0) 6-31e4  
(6) 6-31G", (+) 4-31G basis set results 
of Ostlund (Ref.(5); experimental: Jb data 
of Duguet et al.(Ref.5). 

(b) Inelastic: 	S • --.,--s 1' 
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wavefunctions along with the F type wavefunctions as 

well. The distorted waves for each partial wave were 

generated by solving the radial Schrddinger equation by 

a non-iterative procedure of Marriot and Percival. To 

achieve the proper convergence of the transition matrix 

elements - 6 to 5 number of partial waves were needed for 

s-s type transitions at 100 and 200 eV respectively. For 

s-p type transitions 15 to 25 number of partial waves 

were required at these energies to achieve the same 

accuracy. It is seen that this approach is quite success-

ful in reproducing the differential and total cross-

section results. Further, we also noticed that the target 

correlation has only a minor effect on the final results. 

The comparison of different distorted wave models among 

themselves as well as with the present approach clearly 

shows that the inclusion of target polarization in both 

channels and exchange contribution is important and is in 

right direction..  

The Chapter 4 presents a comparative study for posi- 

tron impact excitation of helium to 215s  21P states using 

the Coulomb-Born and distorted wave polarised orbital 

methods. The present positron-atom scattering is one of the 

first such calculations where we have explored the effect of 

utilization of accurate MPC wavofunction within the framework 

of distorted wave approximation itself.One of the attract-

ion of our Coulomb-Born approach is its simplicity for obtain-

ing 'the reasonable results. Further our study in distorted 

wave polarised method is as reliable as obtained by other 

distorted wave calculations at intermediate and high 
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SUMMARY, CONCLUSIONS AND COMMENTS 

In the following we summarise the work presented in Chapters 

2 to 6. These include (i) the study of differential scattering 

cross-sections and total cross-sections for electron/positron 

impact excitation of helium as studied by using the Coulomb-

Born and distorted•wave polarised orbital- methods (ii) the 

DCS and total cross-sections for electron impact excitation 

of lithium, to 2s-3s transition employing various perturbative 

approaches such as eikonal-BOrn series, modified Glauber 

approximation, second Born, Glauber and Born approXimation and 

also to the resonance transition 2s-2p of lithium in Modified 

Glauber approximation (iii) the scattering of high energy 

electron and X-rays from the ten electron molecule serieS. 

such as Ne, HF, H20, NH3  and CH4  in the first Born approximat-

ion. 

Our aim throughout this work has been to investigate, 

extend and propose simple and consistent methods so that the 

results could be improved without unduly complicating the 

procedures at intermediate and high energy region. The accent 

is on simplicity of the approach and computational feasibility. 

In Chapter P we have studied the electron impact excita-

tion of 215, 21P states of helium in the Coulomb-Born model. 
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In the present model we have considered the distortion due to 

the nucleus of target in both the channels. Closed form 

expression for scattering amplitude have been obtained with 

Fourier decomposition of the interaction potential along with 

the use of accurate many parameter correlated (MPC) bound 

state wavefunctions. 	We have also carried out the calcula- 

tions in this model using the commonly used Hartree-Fock(HF) 

wavefunctions to see the changes in the cross-sections 

compared to the cross-sections obtained using the MPC wave 

functions. It is seen that the effect of correlated wave-

functions has been mostly in the region of large scattering 

angles. The differences in the results among the distorted 

wave models can be attributed due to the different choice 

of distorting potential. The present model, except for taking 

the distortion by the fixed Coulomb field of the target* 

has all the precise feature required.- Another advantage of 

the present approach lies in its simplicity and do not require 

any numerical solution for generation of distorted wave 

function and thereby use of less computer time. 

The Chapter 3 deals with the excitation of same transi-

tion in helium beyond Coulomb-Born level*  referred as distorted 

wave polarised orbital approach. It is often seen that not 

much consistent effOrt is made to include in both channels the 

distortion of the incident particle*  polarization of target 

and contribution due to exchange. In view-of these, we haV'e 

attempted to include these features in a systematic manner in 

both the channels. In addition*  we have also used the MPC. 



158 

impact energies. Due to lack of experimental data for 

differential cross-sections and total cross-sections at 

higher energies, it is rather difficult to comment on the 

accuracy and adoptability of any specific model. 

In Chapter 5, we have applied various perturbative 

approaches such as eikonal-Born series, Modified Glauber 

method, simplified second Born, Glauber approximation and 

first Born methods to study the electron impact excitation 

of lithium (.2s-3 ) transition. The resonance transition (2s-2p) 

is studied only in Modified Glauber approximation. One of 

the important features here, has been that we give special 

attention to the second order term of the multiple scatter-

ing series and attempt to calculate it as accurately as poss-

ible. For the 2s-3s transition, the EBS and second Born 

results are very close to one another and overestimate the 

cross-section compared to experimental data indicating a 

poor convergence of the Born series for this process. The 

modified Glauber approximation are found to reproduce the 

experimental results better than eikonal-Bern series and 

second Born results. It is perhaps due to the presence of 

higher order terms in modified Glauber approXiMation. For the 

case of resonance transition (2s-2p), we find that the 

results of calculation in modified Glauber approximation 

show a marked improvement over the conventional Glauber and 

first Born calculations. The present calculation over-

estimates the differential cross-section by more than order 

of magnitude in comparison with experimental Oata. This shows 
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that the inclusion of higher order term in modified Glauber 

approximation through Glauber approximation is not sufficient. 

Their full contribution at least for some part of the inter-

action (for example static, polarisation potential etc) seems 

to be imperative. 

Finally, we report our calculations for the elastic3  

inelastic and total intensities for high energy electrons 

and X-ray from the ten electron systems Ne,  HF, H20, NH3  

and CH4. We note the following points. 

i) For each molecule, the differences between the 

calculated total (elastic and inelastic) and the 

experimental cross-section have similar nodal 

pattern but differ in the amplitude of oscillat-

ion. 

ii) At Hartree-Fock level, one can calculate with a 

little additional effort the inelastic scattering 

cross-section along with the elastic scattering 

cross-section. Thus both components can be cal-

culated at the same footing. Consequently for the 

calculation of total intensity the use of inelastic 

component taken from the IAM can be avoided. Further, 

the present inelastic calculations can be easily 

corrected for the correlation contribution to the 

residual atoms using the standard procedure (see 

Eq.(6.15)), making this result more reliable. 

iii) It is also seen that the elastic scattering cross- 
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section is not very sensitive to the selection 

of basis set, however, one should include the 

d-functions in its representation (not taken 

in the present study see fig.6.4(a)). 

(iv) The calculation beyond BF level is always more 

demanding and worth pursuing. 

(v) Further, in ordet to have a better understand 

ing of electron correlation effects and also 

hoW well a HF level calculation predicts the 

cross-sections  new measurements are needed'separa-

tely for elastic and inelastic components of the 

cross-section. 
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