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Bonding in pure solids - A Density

Functional approach
Synopsis

The understanding of the mode of bonding in
different elements have begun in 1916 with the pioneering
contribution of G.,N.Lewis[ 1 ] ;%ngbropounded the
electronic theory of chemical bond by assuming that a
single bond forms due to sharing of two electrons parti-
cipating in the bond by two atoms. It was thus possible
to distinguish between various modes of bonding - ionic
bond, covalent bond co-ordinative bond etc, However,
these concepts faced formidable difficulties with the
advent of quantum mechanics, A molecule consists of an
ensemble of nuclei exerting mutually repulsive forces.
Théir dispersion is prevented by the attractive forces
brought to bear by the electrons. Aﬁy two nuclei are
always interacting with the entire electron cloud and it
is not permitted to assoéiate two particular electrons
with a bond since the principle‘of indistinguishability
leads to an ahtisymmetric wave function and imposes on
all electrons the duty to play, on the average, the same
role, However, it is possible to translate some of the
classical concepts of bonding in terms of electron density

which has characteristic forms for different types of bonding.
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The quantum mechanical calculations on molecules
heve been performed and the electron distribution has been
determined in order to understand its characteristic forms,
But the calculation becomes more involved as the number
of participating atoms increases. The application of
Density Functional Formalism proposed by Hohenberg and
Kohn [2 ] to the problem of bonding has been done in this
investigation for evolving a suitable frame work for the
study of bonding. The conventional approach of having
different types of theories for different bonding poses
the problem of describing the intermediate types. The
Born- Meyer theory of ionic bonding cannot incorporate
naturally the mixed ionic-covalent bonding. The Density
Functional T heory has the potential to incorporate all
types of bonding along with their intermixing in terms

of charactéristic electron distributions,

In the present investigation the attempt has been
limited to the metzllic and covalent bonding as observed in
pure elements. The systematics of the bonding behaviour
and the competition of these two possible types of bonding
have been investigated by varying the potential for a given
valency. Since the efforts have been primarily limited to
testing the workability of the framework rigour has been

sacrificed many a times for simplicity.

Chapter 1 describes the preliminaries of the Density

Functional Theory and the current approaches to the under-
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standing of the phenomenon of bonding. The parametric
pseudopotential thecry has also been discussed as it has

been used for ionic potential in the present investigeation,

Chapter 2 is devoted to Metallic bonding. Since the
metallic bond is volume dependent and lacks directionality,
the electrons are assumed to form & homogeneous electron
ges in the simplest approach, The local density functional
equation has been used to determine the total energy of
the system by using Ashcroft's empty core pseudopotential.
The electron distribution has one parameter and the energy
has been exXpressed as a parametric function. The elements
are characterised by the valency and the core- radius in
the pseudopotential. The Davidon Fletcher and Powell method
hes been carried out in all the cases of optimization
required in this investigetion. ‘The variétion in the
minimum of energy and the corresponding atomic radius has
been found out as a function of the core radius for
different valencieé. By direct minimisation an analytical
relation between the core radius and the atomic radius
has been determined. The total energy obtained in this
model for various elements has been found to be lower than
the experimental values. Further, the pseudo-potential
for a given element as obtained from the observed value
of atomic radii has been compared with that used by previous

workers.,
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The stability in the uniform gas model has been
analysed with respect to a flow of charge out of the atomic
cell lowering its energy. The uniform gas model has been
found to be stable in the above sense for elements with
r > 2.4127 a.u, when r  is the radius of the Spheriéal‘
volume containing one electron., The Univalent elements
have re greater than this limiting value and so, uniform
gas model works quite well for these-elements. There are
a large number of elements in metallic and covalent solids
having r < 2.4127 a.u, where an inhomogenéity in electron
density is expected. A weak inhomogeneity in electron
density has been introduced earlier within the frame work
of second order perturbation theory. In the present investi-
gation a step model has been introduced where the atomic
cell has been split into two segments having different
electron densities, The segment immediztely around the ion
core has been termed as the inner cell and it is surrounded
by a outer spherical shell, The.electrons in the inner
cell and the outer shell are distributed homogeneouSley
with different densities. Thus, the inhomogeneity in
electron density in the atomic ceil has been created, The
energy functional has been worked out with this density
profile in the atomic cell and it has been expressed as a-
function of three parameters namely, the inner cell radius,
the amount of charge in the outer shell and the radius

of the atomic cell.
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The variation in the total energy has been observed
with the accumulation of charge in the outer shell for =
particular valency and core radius, It is observed that the
inner cell energy reduces from large negative value to
zero whereas the outer shell energy increases from zero to
higher negative value. However, the total energy of an atomic
cell passes through a minimum for a specific amount of charge
in the outer shell and thﬁs, corresponds to the stable
electron distribution. For small amount of chargé in the
outer shell the decrease in kinetic energy of the inner cell
and the exchange and correlation energy of the outer shell
favour a further trensfer of charge to the outer shell., But
this tendency is soon overcome by the adverse potential
energy contribution from the inner cell and a minimum in
energy is observed, The ground state energy for every element
has been evaluated for verious valencies. It has been
observed that at lower core radii the difference in electron
densities between the inner cell and the outer shell is large
and the corresponding total energy is also large and negative
as compared to that obtained from uniform ges model; The
difference in total energy obtained from the step model
and the uniform gas model starts reducing for higher core
radii and 2t a particular core radius termed the crossover
core radius, the difference vanishes. Since the metallic
bond is prevalent upto a valency of Z = 4 the ground state

energy hcs been obtained by optimization of the energy
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function for various elements characterised by core radius
and valency &nd are observed to be more negative as compared
'to the values determined GXperimenfally. The neglect of
the gredient energy in the densify functional equation has

been responsible for this anomaly.

To overcome the deficiencies due to the neglect of
the gradient term a similar inhomogeneity in electron
density has becn introduced in a continuous manner across
the segment through a tangent hyperbolic function in con-
tinuous density model. The results of this phase of investi-
gntion is given in chapter 3. The electron density in this
model has four parameters characterising the level of electron
density in the two segments, the boundary position of the
segments aﬁd the rate of chfnge in the charge density at
the boundary. One of these parameters can be found out from
chorge neﬁtrhlity of the atomic cell. The Hohenberg-Kohn
eguation hns been used along with its gradient +terms to
find out the energy function in terms of the four floating
parcmeters - three from the electron density and the atomic
radius, This model shows the presence of a substantial
inhomogeneity in electron density at lower core radii
inspite of the gradient energy term. For the same core
redius the extent of inhomogeneity comes down as compared
to thot in the step model. At higher core radius the extent
of inhomogeneity reduces in the continuous density model
as it has been observed for the step model., The cross-

over core radius at which the electron gas inhomogeneity
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almost vanishes, remzins the same as these obtained from
the step model. The quantitative features and trends of
variation in both the step model and the éontinuous model
are similar, The tot2l energy for various‘elements
obtained from this model has becn found to agree with the

experimental results to within + 10% in extreme cases.

The difference in total energy for a given cofe
radius and valency with that obtained in the step model
shows a linearity with the density difference within the
atomic cell of the step model, Due to this linear relation-
ship, it hés been possible to correct the total energies
obtained in the step model and use it further for o discuss-

~ion on bonding behaviour,

The model for covalent bonding has been presented
in chopter 4, to describe the inhomogeneous clectron dis-
tribution charccteristic of covelintly bonded élements.
Since the covalent bond is directionzl, the space of the
clement has been subdivided into a chearged cell around the
ion core and electron cells representing the bonding
charges, The ion core cell and electron_cells outside heave
.uniform gos of different densities, The number of electron
cells per 2tom has been found out by thé number of bonds
given by octet rule, The charge in the cell around the ion
core and tnose in the electron cells should be together
equal to valency. Thus, these cells‘together is equivalent

to neutral atomic cell as it is present in the covalent.
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solids. While using the Density Functional Equation the

. grodient energy has been heglected because these two cells
are assumed to have very little physical contact in the
covalent elements. However, the electrostatic energy

between the charged cell around the ion core and the electron
cell has becn considered through a Madelung type of energy
term in the énergy functional, With the electron density

as described the energy functional is now reduced to &
parametric function with three parametérs nemely, the radius
of the cell around the ion core, the radius of the electron
cells and the amount of charge present in the electron cell,.
The energy has been optimised with respect to these three
parémeters and the ntomic radius of the system is calculated
from the volume of the inner cell and the electron cells. With
the increasing charge in the electron cell thé energy of the
cell around the ion core reduces from large negative value

to zero and the electron cell energy increases from zero

to higher negotive value for an element with a given valency -
and core radius. The total energy of the atomic c¢ell shows
a minimum at a specific amount of charge\in the electron

cell thercby leading to a stoble electron distribution., For
small amount of charge in the electron cell, the positive
terms like kinetic energy =snd clectron-electron repulsion.
energy of the cell around the ion core reduces and the
negative energy terms like the potential, the exchange and
the correlation energy also reduces in the cell around the

ion core., But the exchange and correlation energy more than
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balances the kinetic energy and electron-electron repulsion
energy in the electron cell because the electron density is
small, The electron density in the cell around the ion

core has increased upto a charge flow into the electron cell
and then it decreases., Whereas the density in electron
cell increases steadily. The increase in density in the cell
around the ion core is attributed towards the recovery of
some potential enérgy by an appropriate redistribution of
electrons since the cost in the kinetic and electron=-
electron repulsion energiés are less., The electrostatic
Madelung energy is small initially but reinforces the ten=~
dency to increase electron density because a reduction

in the sizes of the cells leads to a gain in Madelung
energy. But at higher charge transfer it is no longer
possible to reduce the size of the ion core cell because

the gain in energy is more than balanced by the enhanced
kinetic and electron-electron repulsion energies. On the
contrary, the electron gas cells remain more compressible
and the gain in electrostatic energy causes a reduction in
its size resulting in a continuous rise in the electron
density. The cell around the iocn core has a lower energy
compared to that of the neutral 2tomic cell, This is due to
large reduction in kinetic and electron-electron repulsion |
energies compared to the increase in potential and exchénges
and correlation energies. In addition to negative eﬁergy

of the electron cell, Madelung energy helps a continued
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flow of charge to the electron cell. When the Madelung
energy becomes dominating at higher charge in the electron
cell these cells are so much compressed so as to lead to a
positive energy of the electron cell, Under these circums=~

teances the only energy term favouring electron flow is the

Madelung energy.

The ground state energy obtained from this model are
large and negative with more charge in the electron cell at
lower core radius. As the core radius increases the ground
state energy increases to a less negative value, However,
beyond a particular core radius the charge in the electron
cells become zerq‘and the model evolves naturally to the
uniform gas model, The ground st”te energies have been
obtained in-this model for different core radii and valencics.
The core redius at which the electron cell charge vanishes,
increases with velency. Covalency is observed to be pre=-
valent at higher valencies within the framework of this
model. The total energy for clements in the model for
covalent bonding are studied by taking the most favourable
observed Madelung constant, @ = 1,76 corresponding to an
assumed spatial arrangement of electron cells and charged
atomic cells. Since the exact Madelung constant will depend
on the number of electron cells and the precise arrangements
vaerying from element to element the impact of this assumption
has been assessed by comparing the energies with those

obtained from the most unfevourable values of the Madelung
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constant. The optimum total energy for various elements
are compared with the experimental values and the agreement

is quite encouraging,

In chapter 5 the relative stability of the models
characterising the types of bonding have been discussed.
The results of the model for covalent bonding are compared
with the gradient corrected step mcdel to find the region of
stability of covalent bonding over the metallic bonding with
inhomogeneous electron gas. The inhomogeneity of the electron
gas reduces with the increase in the core radius finally
leading to uniform electron gas metallic bonding. For the
elements with valency, Z = 1 , the ecnergy obtained from the
model for covalent bond is higher than the uniform gas model
and the gradient corrected step model in the range of total
energies observed in elements. Also, the gradient corrected
model yields a higher energy for lower core radii in com-
parison with uniform gas model, Thus, uniform gas model is
eminently suitable for elcments with valency, Z2 = 1, For the
elements with valency, 2 > 5, the model for covalent bonding
gives the lowest energies as compared to the energies obser-
ved in the other two modéls in the range of energies observed
in elements. The region of sfability of the uniform gas
model, gradient corrected step model and the model for
covalent bonding for velencies, Z = 2,3 and 4, have also been
studied., The stability for the model for covalent bonding

has been overestimated due to the use of the most favourable



(xii)

value of the Madelung constant, & = 1,76. These results
have beeh supplemented with a calculation taking the most
unfavourable Madelung constant which shows the possible
limits of stability of covalent bonds., In general, the
uniform gas model is stable at low negative values of
total energy, then the corrected step model takes over and
at still higher values of negative energy the covalent
bonds are stable. With an increase in valency the limit
of stability of each model shifts to higher negative

energies.,

The core radius for various elements have been

" obtained by comparing the observed energies of those
elements wifh the calculated curves for the most stable
model at that energy. These core radii are quite compara-
ble with but lower than the core radii reported by earlier
workers, The total energies have been compared to find
the core radii because the atomic radii have been observed
to be a relatively insensitive variable for the variation
in energy especially in the model for covalent bonding and
the gradient corrected step model. However, the present
investigation has established the possibility of using the
Density Functional Formalism for the study of chemical
bonding. The systematic results as obtained in the present
investigation are in conformity with the general trends
of bonding as observed for the elements in the periodic

table,
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 LITERATURE
REVIEW



1.1 Introduction

The electrqnic theory of chemical bonding stafted
with the pioneering contribution of G.N.Lewis[ 1] . He
postulated that a chemical bond forms due to sharing of
two electrons between the two atoms. The detailed picture
for various modes of bonding like ionic bond, covalent
bond, co~ordinative bond etc., has been outlined, But the
development of quantum mechanics raised serious doubts
about the earlier conceptions about bonding. The principle
of indistinguishability invalidates the assignment of
electrons to a bond. 'Any two nuclei in the ensemble of a
molecule are always ihteracting_with the electron cloud
around and are not permitted to have any special interaction
With any two particular electrons., The earlier concepts
of bonding have been salvaged by considering it in terms
of electron distribution in real space rather than specific
electrons. The electron distribution of molecules have
been calculated to understand the type bf bonding but the
complexity of these calculations increases multifold as
the number of atoms in a molecule increases., Still, the
electron distribution characteristic of a type of bonding

has been identified.

The prevalent theories for different types of
bonding have adopted different approaches. For example,

the ionic bonding is explained in the Born-Mayer theory



by accounting for the electfostatic energies between -
different ionic species. But the covalent bonding requires
the consideration of electron states through either orbital
theories or that of inhomogeneocus electron gés. There are
a large number of compounds exhibiting a mixed ionic-
covalent type of bonding which cannot be discribed within
the framework of either of the theories, For all the types
of bondingAa single theoretical framework is necessary for

describing even the intermediate bond types,

In the present investigation the Density Functional
Formalism proposed by Hohenberg and Kohn [ 2 ] has beeh
applied to describe the bonding in pure solids, The des=-
cription here is limited to metallic and covalent bonding
but it can be easilﬁ extended to ionic bonding also. The
model developed for covalent bonding partitions the crystal
space into charged cells around ions and cells containing
bonding electrons. If the electron cells partially over-
lap with charged cells of a certain species a mixed ionic-
covalent bond'Will:result. A complete overlap will cause
the ionic bonding. Thus, the Density Functional Formaliém
~ has the potential to provide a unified framework for all
types of bonding. However, the preseﬁt investigation has
sacrificed rigour in order to retain the simplicity of
calculations. Because the primary objective has been to

to test the workability of the framework rather than its



capability to churn out gocd numbers.,

1,2 Density Functional Formalism

A great deal of attention has been devotéd to using
electron density as a basic variable in applied quantum
mechanics. This basic variable is a better alternative
to the quantum mechanical wave function mainly in three
ways ¢

Firstly, the electron density describes the three
dimensional distribution of electrons in a system, and'
hence is a function of only\the three coordinates and
independent of the number of co-ordinates of the electrons
present, This density-based formalisms offer great sim-
plification over the usual wave function approach because,
difficulty in solving the Schrodinger equation increases
very rapidly as the number of electrons increases. Secondly,
the electron density being a physically observable quantity,
the accuracy of the quantum mechanical calculations and
approXimations can be tested directly. Thirdly, it provides
a classical picture of quantum phenomena, since the electron
density is a function of the three spatial coordinates

and enables one to build up various interpretive models,

The electron density can be utilized as a central
quantity and the formulation of many particle problem

within a single particle like framework,. is the essence of



the Dénsity Functional'fheory. Starting from the Thomas-
Fermi method and its several modifications, Density Funo-
tional Theory (DFT) has been rejuvenated by the pioneering
works of Hohenberg, Kohn and Sham[ 2,3 ], who have laid its
strict mathematical foundation and thus provided a formal
Jjustification for the use of density as a basic quantity.
Since then, a significant body of work has been done to
carry out various modifications and extensive applications
to a wide variety of problems in atomic, molecular and

solid state physics with remarkable practicél success,

1.2.17 Hohenberg-Kohn Theorem

Hohenberg and Kohn[ 2] have proved two theorems. The
first one establishes that the nondegenerate ground state
of an interacting N-particle system under a static external
single particle potential, v(f), which is completely charac~
terised by the single particle density, n(r). The second
theorem states that, for a given external potential, v(r),
the enérgy is a unique functional of the particle den-
sity, n(r), and the ground state energy corresponds to a
minimum of the energy functional with respect to the varia-
tion of the density function. The variation of the particle
density is performed under the constraint of conservation

of particles as given below

fn(r)dr =N e (1.1)



" Where N is the total number of particles in the system. The

stationary condition
3{E[n] -u fn(r) af }=o0 eee(1.2)

- where p is the lagrangian multiplier, has been used to
obtain

Enl _u-p eee(1.3)
dn(r)

where ( 3E[n]/3n(r) ) is a functional derivative of energy
functional, E, with respect to the charge density, n(F).
The equation (1.3) forms a key equation of density func-
tional theory and provides a deterministic equation

for n(f)., If one considers a collection of an arbitrary
number of electrons moving in a system under the influence
of an external potential, v(f), and the mutual coulomb
repulsion, then the Hamiltonian can be constfucted’as a

sum of kinetic energy,T, potential energy, V, and coulomb

repulsion energy, U, as
H = T+7V+U, | o a(1.4)

where one can write T, V, and U as

3
1]

SIV0 (F) VY (F) F .e.(1.5)

<3
1}

SvE) V(F) ¥ (F) oF . ve(1.6)



U =3 [ =l UE) ¥ (F) UE)UE') aF aF
Ir-xt] | (1.7)

where { and ¢* are the field operator and its conjugate
respectively. It has been assumed, for simplicity, that
the ground state is non degenerate, Thus, the electron
density, n(T), for the ground state, ¢ , can be written

as

n(F) = (¢, ¥ (F) U(EF) ) ce(1.8)

which is clearly a functional of external potential, v(T),

through ¢ .

In order to write an expression for energy, in terms
of density, to take help of this theoremn, one requires a
knowledge about its functional form. The energy functional,

E[n ], has been written by Hohenberg and Kohnl[ 2 ] as
E[n] = fV(f) n(F) dE+F[n3 000(109)

where F[n ] is a universal functional valid for any

number of particles and any external potential, viz.,
Flnl]l = <pir+vu} > | eeo(1.10)

‘assumes its minimum value for the correct n(r), if the
admissible functions are restricted by the condition of
equation (1.1). If F[n ]} is a known functional of n, the

problem of determining the ground state energy and density



for a given external potential would be just a problem of
the minimization of a functional 6f the three dimensional
density function. However, the determination of F [n] ,
poses a major complexity in the many electron system,
because of the long range of the Coulomb repulsion. It is

now, convenient to write F{n ] as

Flnl = 3// l'fmfj(f') aF aft + ¢ln ) (1.11)
r -rt

where Gl n] is a universal functional like FlL n] and it

includes kinetic, T[ n ], exchange and correlation, Ey o ],

energy functionals and can be written as
Gln] =T{nl+E _[n] . vee(1.12)

The final expression for E [n] thus becomes,

Eln] = [v(F) n() of + 5 /I T(f) n(f') g5 g7
' « r!

+T[n] + 8 _[n] eee(1.13)

1.2.,2 Local density approximation

Here, the basic idea is to assume the local density
to be uniform in an infinitesimal volume element of the space
coordinates. The kinetic, exchange and correlation energies
for uniform electrbn gas have been taken within that volume
element, and added to the first term in the gradient expen=-

sion of the energy functional. Such approximation might



work well only when one assumes the densify slowly varying
in SpaCe .

- From equation (1.12), one can get the universal
functional, G[ n ], consisting of kinetic, exchange and
correlation energy functionals representable in terms of a

general gradient expansion, and can be written as,
¢lnl = Sg (F) aF + [ gy(F) |vn(r) |° aF + ...
| | | veo(1.14)
In the above expression the first term can be written
as,
J8,(F) &F = [t(n) n(F) oF +fe, (n) n(F) &F  ...(1.15)

where t(n), is kinetic energy and can be written in terms

of density, n(¥), or using the linear measure of density,

ro,
_ 3 1/3
rS = ( E’j‘[ n ) _ 000(1.16)
and '
r(n) = 25 (32n)?/% = 1:]03 - eeo(1.17)
‘ N Ts
The %xc’ is further seperated as the exchange, €., and

correlation, €. s energy respectively, where

e (n) = e (n) + g (n) eea(1.18)

and €.» can be represented as

1

1/3
EX (n) = - 2 ("éél‘ ) - 0.458 oco(1 019)
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Different expressions are available for sc(n), starting
from Wigner[ 4] to the most recent one by Gunnarson et.
al.[ 5] . But, normally, the expression provided by

Nozieres and Pines [ 6 ] has been extensively used as

e, (n) = - 0.0575 + 0.0155 la r_ eeo(1.20)

The above equations (1.17), (1.19) and (1.20) are energies
per electron of a uniform electron gas density, Dy in
‘a.u. The second term in the equation (1.14) is the energy
contribution due to gradient in electron density. gz'has
components coming from the kinetic energy, the exchange
and correlation energiés as given below

A

———— cee(1.21)
8 .n(r)

g, (r) =g, [ nE] +
where, A is a parameter in the kinetic energy contribution
- to the equation (1.21), which was originally proposed by
Weizasacker [ 7 ] with A = 1. This form has been extensively
used in the literature. Jones and Young [ 8 ] have compared
the response function obtained from the truncated gradient
exXxpansion with variable coefficient  to the Lindhard -
reSponse‘function. They found that by choosing A= 1
yields the correct response for perturbations whose wave
length. is small with respect to Fermi wave length whereas
the choice of A = 1/9 is appropriate for perturbations «for

large wave length with respect to the Fermi wave length.
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The gﬁi) is the gradient term of exchange and correlation

energy, which can be written as

4/3

) = ¢ (r) (a(F) ) oee(1.22)

where C(rs) is a variable and is a function of r_. A
piot‘of C(rs) versus Tr_ has been provided by'Rasolt
et.al., [9 ] which can be used to estimate the cost in
energy due to gradient in the charge density in inhomo-

geneous electron gas models,

1.3 Determination of Electron Density

The density functional formalism as explained in
section 1.2.1 has led to the equation (1,13) which gives the
energy functional for the electrons moving in any given
external potential, V(T'). When one finds the charge density
that minimizes E [n] the corresponding value of energy is
the total eneréy of the electrons in the ground state. The
evaluvation of charge density of the ground state at a given
V(F) can be difficult in practice. The ma jor problems
faced are : |

i) The functional Exc [n] » can at present only be
approximated.

ii) On the scale of binding energies, the calculated
value of kinetic energy, T[n] is often insuffi-

ciently accurate,
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iii) For the general polyatomic¢ systems, the minimi-
zation of E[ n ] with respect to n(f¥) in the

current searching algorithms are not effective.

The first problem can be overcome by applying the
local~-density approximation for Exc[ n ], but for the
second problem Kohn and Sham [ 3] proposed bypassing the
evaluation of kinetic energy, T [n] , by simultaneously
constructing a density n(}), and its kinetic energy,

T[ n ], from a set of wave functions of non-interacting
particles., A theorem proposed by Theophilcu [10] , has
shown that for any physical charge density n(¥) there
exists a potential, Uext(f), which is an ordinary function
of T in which the noninteracting particles will have the
same charge density, n(Tr), Then,the Schrodinger equation

for noninteracting particles is

[ =7 92+ U () ] U4(F) = By U (F) eee(1.23)

By construction, the charge density of the real system
is identical to the charge density of the system of
fictitious noninteracting particles given by

” .
n(F) = 205 () | e o(1.20)

where wj is the occupation numbers. The ground state
kinetic energy also constructed in the independent parti-

cle approximation is, likewise, constructed from the
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orbitals of noninteracting particle as

TEa(E) ] = vy <Py(F) | -5 92 15> ...(1.25)

J

Theophilou[ 10 ] proved a one-to-one-to-one correspondence
among the generating potenfial, Uext(F), the ground state
charge density, n(r), and the ground state orbitals,

{ WJ(P)} ; for the noninteracting particles, and a similar
correspondence also for electrons in the system. The

Uext(f) contains information on the external potential,V(¥),
experienced by the electrons as given in the equation (1.13),
which, together with the number of electrons N = § fﬂj 9
‘defines the physicai system and Uext(P) generates the
charge density and kinetic energy from the equations (1.23)

to (1.25).

In the density functional equation (1.13), the
density n(?) is, formally, the independent variable,
However, for a given n(r), it is diffiCult to find T{n ],
unless abproximate gradient series expressions can be
used for T[n] [11,12] . Theophilou's theorem, however,
opens the way to treating either the orbitals {WJ(F) },
as done originally by Hohenberg, Kohn and Sham 2,3 ] ,
or the generating potential U_.(T) as the independent
variable for minimizing the to%al energy in density func-

tional equation.
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The choice between the two possible independent
variables and their type of variation used to minimize
the Hohenberg-Kohn-Sham (HKS) {2,3] tofal energy, c¢an
be seen under the four fundamentally different approaches

as given belows

1.3.1 Wave function sampling method

In this'method; one must select a trial parameter
set {aij } for the equation (1.23) and the wave functions
wj(P; {a} ) are constructed, on the basis of this wave
functions, the density n(r) and the kinetic energy are
evaluated from equations (1.24) and (1.25) respectively.
With this, one can calculate the E [ n;V ] of the density
functional equation (1.13), By repeating the above pro-
cedure, one obtains the minimum of E[n { 3y 4 }, V]
as a function of {aij }. In this process one does not
reguire any solution of the eigenvalue problem and cons-
truction of enerdy can be conveniently dealt with non-
linear parameters {aij }» and the interelectronic corre~
lation effects can be evaluated directly from the wave
functions. This method has been applied extensively to
calculate many body interaction energies, for the systems
of bosons [13] , nuclear matter [14) , Fermiliquidsl 15] ,
solids [ 16 ] and molecules [17 J. However, the number of

parameters increases with the number of occupied single
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particle orbitals {mj } and it requires a good search
method to converge. So, this method is suitable for in-
dependent particle problems only when the number of occupied
states is small, and meny problems in contemporary one-

electron solid-state physics de not satisfy this condition.,

1.3.2 The Wave function gradient or Kohn=Sham method

Kohn-Sham [ 3 ] have proposed, single particle
equation for the variational wave functions of the fictist
tious non-interacting parﬁicles as

3 ‘IJj (%) eeo(1.26)

{- 5 V%« Ve ln (F)1} 11!; (F) = e
where V, [n(r) ] is the potential, the equation (1.26)

is identical to the equation (1.23) and is obtained from
the wave function variational principle J3E[n ]/30 = O
that generates orbitals { IIJJ. } . Unlike Ugt(F) in
equation (1.23), which is a function of T, the Vks[ n(r) ]
is a function of charge density, n(F), which can be written

as

Vig [0(F) J= V(F) + [ ——:Qii%- 4B + 3E,, [n(¥) ]
| v - 7| d n(r) ‘

or = V(T) + V1 [n(F) 1+ v [n(F)] eee(1.27)

where V_ . [n(F) Jand VXC[ n(r) ] are interelectronic

coulomb, exchange and correlation potentials respectively.,



The dependence of , V. , on the charge density requires

ks
that the equations (1.27) and (1.26) have to be solved
iteratively. The wave functions are constructed by selec-
ting the trial set {aij }in the equation (1.23)., Then

the charge density, n(¥), and kinetic energy T [ n(r) ]
are evaluated from equations (1.24) and (1.25). The Kohn~
Sham potential, V. [n(T) ], of equation (1.27) is cal-

- culated from the charge density and the eigenvalqe problem
can be solved from equation (1.26), to obtain new wave
functions, The above procedure has to be repeated until
the input and output wave functions are equal or within

‘a desired limit.

This method has advantage over the wave-function

sampling method, as an arbitrary 'ﬁth'

iteration it
yields solutions for a set. of wave function, {U§?> ()},
which contain more informstion than a single number
E(m) [n ] provided by the wave function sampling, scheme.
This information, then, can be used as a guide to select

the next wave functions. This procedure has been used wifh

various computational approximations like,

a) the size and form of the basis set describ-
ing {¥. }
J
b) the calculation of Kohn-Sham potential from the

charge density,

c) the solution of the eigenvalue problem.,
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d) specification of a consistency between input and

output wave functions,

The difficulties often faced in solving Kohn-Sham problem
are due to the high sensitivity of charge density to com-
putational fluctuations in finding Kohn-Sham potential,
Vi [n(F) ], and the large size of the subspace {aij }
needed to obtain results with the desired accuracy [ 18 ].
Also, there is a problem of covergence, when the trial
wave functions in the 'm"' iteration vgm)(f) is simply
the solution of the eigenvalue equation in the (m--'l)th
iteration. Several methods of mixing Kohn-Sham potentials
obtained in prior iterations have been used to improve

the convergence [ 19,20,21,22 ],

1.3.3 Potential sampling method

The potential sampling method uses a generating
potential in equation (1.23) to arrive at wave functions

and density. This method proceeds as follows :

Selection of the trial set of { %p }in equation
(1.24) and the Upxt [f ;{ 4p }]; solving equation (1.23)
to get the wave function $j(f); calculation of the charge
density, n(r), and kinetic energy, T(n(r)], from equgr'
tion (1.24) and (1.25) respectively, and the evaluation
of E[n( 4p ); V ],
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The above procedure is repeated until the minimum
energy is obtained as a function of { Ko }. 1In this
procedure, the Uext[ £ :{ Hp }] is used merely for
generating the wave functions only, Whereas the physical

potential V(F) is used to find the total energy.

The primary advantages of this method are its
conceptual simplicity and the ease of getting crude so-
lution to simple problems., It does not have complex prob-
lem of calculating Vks[ n(T) ] unlike wave function
gradient method. However, as it is true for any sampling
method, the potential sampling method also faces the prob-

- lem of constructing the trial effective potential for the
subsequent iterations, as it provides at each iteration

only one E(m) [n }. So, the convergence becomes more
difficult and the problem of convergence increases multifdéld
as the number of variables { 4p } increases, so in most ’
applications only a small number of parameters are used[ 22 ].
But, with very little variational freedom in the potential,
the results are not accurate enough in comparison with those
obtained by Kohn-Sham wave function grédient method [23 ],
This method is applied recently in the density functional
context, to the problem of Jellium surfacel 23 ] and electron
hole drops[ 24 Jand in the calculation 6f energies of iso-
lated ions[ 25,26 , However, no application of this method

on the electronic structure of real solids is yet reported,
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1.3.4 Potential gradient method

In this method, the advantages of wave function
gradient method and potential-sampling method have been
.incorporated, The analytic gradient of the total energy
of equation (1.13) with respect to the variational para-
meter { Mp }of the potential is put equal to zero and
the resulting equations are solved, The potential is
" used to generate only the lndependent particle energies
and wave functions ; the resulting values are used through-
out this approach. The response of energies and wave=-
functions to a change in potential can be obtained by
perturbation theory, but for first derivatives, it 1is
sufficient to use first- order perturbation theory.

This gives

R L A N g
and ...(1.28)
Sb.(F) ) 1 S ()
dup J'ij’ b Tegr - ey <y | —a—;;--l vy >

ees(1.29)

The response of the charge density can be obtained. from

equation (1.24) as follows ,
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- oy (T
M—: ij2 Re[qu (f‘) -m..-]_—_ (,._)‘

)
M p ) A Up J 3
1 3U__ . (F) _
.z —E— Re [0 (®) ¥y (F) <Yy | iy ]
' % €:y = € J J ' J 3 Up

J' J

and the equation (1.23) can be menupulated to obtain
- % 572 wj(f). This can be inserted in equation (1.25)

and the variation giving the change in kinetic energy as

| dE. -
3T [ n(f') } = 3 { J - f [ n(;) 6Ue}(‘t(r) +
_ dn.(T) _
+ Uyt (T) ——g——~—-]dr by
Lo
- n (-I-‘) -
h erXt(r) -——J dr 000(1 .31)
g

for the remaining terms in density functional equation(1.13),
the only term in the derivatives comes from a change in

charge density, n(f'), so one can get

o) e Upxt(F) + V(F) + [ar nEr')-
dup v - ' |

. 3E, . [?(r)] 1an(r) - (1.32)
In(r) du, .
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which is,
d3E[n ] 5 |
.,__.,__..-.._..:ZLO. Z' . V ..U '
3 Kp 3 J,j#QjEEEﬁ:j;; Re {<y 1Vyg=Ugpe! ¥50 >
3U__, (F)
< 0. ext N L (1.33
I”J' | 3y Yp | mj } ( )

where V, _ is given by the equation (1.27) and Uext(r) is

an ordinary local function of T,
Uext(f) = Uext(f i { Mo D) | veo(1.34)

This is the fundamental equation in this approach, and is
variationally equivalent to the Kohn-Sham condition, the

gradients become zero while satisfying the condition that

Ve o(F) = U (F 5 {1 }) =0 ees(1.35)

The Steps in this approach are as follows

Firstly the trial set { U4, } has to be selected and

the U__ (F s { up } ) is constructed by the equation (1.23),

t
and then, the independent particles eigenvalue equation
(1.24) is solved to obtain f wj(F) } and fej} . The

éharge density, n(r), is constructed from the orbitals,

{ Wj(f)} , by equation (1.25) and from n(r), the

Vis [n(¥)] , of the equation (1.27) is found, by repeating
the above in steps, until the condition of the equation(1.35)

is satisfied,
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This gives advantage over the selection on next trial
potential, Ué£;1)(f) since, each iteration yields the

function Vig)(f) - Uéﬁ% (¥), rather than the single E<m){n].
So it is easy to find the unique salf-consistent potential,
At the same time, one can include enough free parameters

in the potential to obtain accurate results.

1.4 Pseudopotentials

Any electronic property of a solid is determined by
the energy states, and the associated wave functions of the

electrons obtained by solving the schrodinger equation,
Hf = (T+V){ =E) ves(1.36)

where, § is the wave func¢tion and H is the Hamiltonian

which confains, kinetic energy operator, T, and potential
energy operator, V, In any solid, the potential, V, contains
coulombic contributions from various nuclei and from all

the core and valence electrons as it is included in Hartree
and Hartree Fock equation [ 27 ], In addition, exchange

and correlation energies are also included in the latter

equation.

In a solid, the eigenstates can be classified as valence
states and core states. The valence states are the ones
which are involved in the chemical bonding, Now, it is

desirable to construct a pseudo Hamiltonian, which has the
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same valence eigen values as that of the original Hamil-
tohiap but has no core states of lower energies. In other
words, the Hamiltonian 1is simulated to give the energies
of the valence electron eigenstates and to remove the
latomic-like oscillations of.valence electron wave functions .

inside the core.‘
1.4.1 Philosophy of pseudopotential

On the basis of the work of Harring [ 28 ] who found
that the valence electron wave functions can be expanded
in a rapidly convergent series of plane waves orthogo-
nalised to the core wave functions., Phillips and Klein-
mann [ 29 ] constructed the potential energy operator for
the pseudo Hamiltonian. This potential is called the
pseudopotential and has been fepresented as

Vps(E)=V+ZII|J

z »< IIJC | (E - EC) veo(1.37)

c

where | wc > is the core state eigen function with an
eigenvalue of E_. If Ei is an eigenvalue of the
valence state of H corresponding to the true wave func-
tion, wi , then, by direct substitution, it is evident
that E; is also an eigenstate of Hy =T+ Vps with

eigen function | ®i> , ie

By | by >=H | 0;>=0T+ v (£) 11> eeo(1.38)
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with

0y > =10y >- 2 1> <, |02 eee(1.39)

From the basic philosophy of the above approach, as
explained earlier, one can see that the pseudopotential,
Vps(Ei), is not a unique operator and one can choose a
variety of pseudopotential with the property that the same
eigen value spectrum of valence electrons will be obtained
corresponding to different eigenfunctions. This approach
has been pursued extensively by Harrison [ 30 Jand Heine

et, al.,[ 31].

In general, any pseudopotential can be presented with

any arbitary, complete set of functions,FC, as -

= !
vpS =V+ X [ wc > <F, | oo {1.40)

The above equation (1.40) will have the same properties as
the pseudopotential specified in equation (1.37). This |
allows one to choose < FCI in any form. Austin et.al.,[32]

and Pick et.al.,| 33 ] have chosen the following form

<FC' F - <¢C'V 000(1041)
This leads to the pseudopotential as given below

Ve = (= B1U> < v ver(1.42)

This Vps is different from the original potential energy
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operator, V., Since the projection operator corresponding
to the core states eliminates the corresponding components
from the true wave function, there is an additional poten-
tial term when the eigen value equation is written iﬁ terms
of this transformed wave function. In a metal with a
substantial number of core levels, the pseudopotential,
Vps’ which has been given in equation (1.42), is relatively
very weak, as compared with the original potential, V, and
does not result in any bound core states., This can also

be understood from the point of view of soatfering in terms
of phase shifts [ 34]. One can define pseudopotential as
the one having phase shifts 61'30btained by subtrecting
the integral multiples of 7 from the phase shifts of the

original potential. Thus it has no bound states.

1.4.2 First principle pseudopotential

Since the pseudopotential is weak, the perturbation
theory may be applied quite successfully. Apart from
Austin et,al., [ 32 ] Pick et.al., [33] , a variety of such
pseudopotentials are given by Harrison [ 30] , Hafner [ 35 ],
Shaw, Jr, [36 ], Appapillai et.al., [37] , Williams et.
al., [38] and Zunger et.al.,[ 39] .

The pseudopotential proposed by Phillips=Klein-
marn [29 ], and others results in a normalised pseudo~

wave function having the same shape as the normalised ortho-
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gonalised plane wave (OPW) eigen function in the region

of space out side the cores, but with different amplitudes,
These potentials are generally 'hard core! in character,
i.e., strongly repulsive at the origin. The pseudopotential
developed by Hamann and coworkers [ 40,41 ], matches the

true wave function outside the core both in shape and ampli-
tude. These pseudopotentials are called Norm-conserving

pseudopotentials.

In a practical calculation, the pseudopotential is
usually selected by one of the two broad method :
a) by calculating from first principle, or,

b) by fitting to experiments.

1.4,3 Empirial model potentials

These pseudopotentials are specifically designed for
application to specific elements or compounds or ions. The
ionic pseudopotentials are usually parametric functions and
the parameters are determined by fitting with the observed
values of some properties as discussed in detail by Cohen
and Heine [42 ], in their review paper on this subject., The
pseudopotential applicable to specific elements or compounds
are numerous and only‘a few popular pseudopotentials are

discussed below,.

The pseudopoténtial operator given in equation (1.37)



can be written as |
Ve 10> =VE 0> - 2 LU > <UI VIO > L(1.83)

where < Wb[ ® > has nonzero contributions far the core
state§ WC with angular quantum number, 1, and spin quantum
number, m, because { has compopent having the same 1 and

m due to the orthogonality of spherical harmonic, Ylm(8$),
which are thé'angular part of the core wave functions. Thus,
the potential becomes very weak in the core region due to

the negative term in equation (1.43) and this is called
cancellation. If the core states are more and the cancella-
tion is better and conversely, if there is no cancellation,
then, the electron sees the full potential, For example, in
carbon, the 2s state electrons see a cancelled pseudo-
potential, but the 2p state electrons see the full potene
tial, which is as it should be, since wzp has no correspond-
ing p~-states in the core for causing cancellation. Thus, the
2p electrons are relatively tighly bound compared to the 2s

electrons,

Thus, if for a given 1, there are no core states,

| then the pseudopotential for thest 1 is equal to the real
potential, But, if there are core states, then, the answer
is that VpS is almost zero inside core region of radius,
r., for that 1. This conclusion is derived from empirical

experience as well as from the above theoretical arguments
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often referred to as the cancellation theorem. Ashcroft [ 43]
set Vps equal to zero in side some radius, RM’ which he
adjusted to fit some experimental data and the resulting

values of R, were close to the accepted ionic radii res-

M

pectively, r_ . Abarenkov et.al,, [ 44 ] chose R,, at some

M
arbitrary radius, set VPS(F) to 2 constant, A, inside RM’
and adjusted A to fit the spectroscopically observed energy
levels of an electron in the field of the ion, and again, A
was found close to zero for RM N Therefore, one can

arrive at the empty core model for the ionic pseudopotential

0 for r <R

V = .-.’1.1"["
ps - 2 forr >R (1.44)

M
Here, the empty core parameter Rq, is approximately the
radius, T of the physical atomic core and may vary some~

what around that value,

A similar model used by Harrison [ 30 ], termed the
delta function core model, which is a pure Coulomb poten-
tial of charge, Z, with 2 repulsive delta function of
adjustable strength, D. In Fourier transform with screen-
ing , it yields the pseudopotentiél which does not tend to
zero even at large q, @s it should be. One can correct the
large gq=-behaviour by smearing the delta function out a bit

and can be written as
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Lz D -
v (a) =0 - + = 1/ o e(q) «..(1.45)
where R.. is Harrison's radius which can be varied as a

H
second parameter and € (q) is dielectric constant due to

screening in a crystal, veried as a second parameter., If
RH is chosen around, s the potential given by equation
(1.45) does not differ much from the Fourier transform of
Ashoroft's empty core pseudopotentiall 43 ] except at
g >3 EF.

Simons and Bloch (SB)[ 45 ] introduced a potential

by a given l-dependent ion~core radii derived from free-ion

quantum defects, The SB effective potential is

Ve(F) = Vp (F) + V(F) eea(1.46)

The repulsive potential part Vi(F), originating from the

relaxation of core-valence orthogonality is chosen as

vi(g) = ! 2o o(1.47)
r | —r?—' . X .

Here, Bi is an adjustable constant and Vv(?) is potential
field experienced by the valence electrons., When this
potential is written for the case of a single-valence-
electron system, the complicated valence=-valence inter-
electronic interactions venish and VV(;) is given in the

cantral field 1limit as

V@) = - B 05D vu(1.48)

2r
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where Z is the valency, An expression for orbital radii
in this case as obtained by putting VéB(?) equal to zero

“in equation (1.46) is given below

0 _ 1(1 +1 (4 L
I‘l - Bl/z + “12‘2"""__)' ) ;(1.14‘9)

These orbital radii are characteristic of the atomic core

and structural indices [ 46 ].

1.5 Bonding in pure solids

The chemical bond in a solid is concerned with mutual
interaction of the valence electrons of the atoms in the
Jattice. The nature of the bond is characterised by the
spatial distribution of the valence charges around the atoms
in thé crystal lattice. The bonding in pure solids, thus,
has been classified in two basic forms- metallic and covalent

bonds.

1.9.17 Metallic bonding.

The valence electrons of atoms in the metallic crystal
is sparead over throughout the solid, thereby achieving a
high electrical and heat conduction. The electrons moving
about are said to be delocalized because, the vélence
electron wave function, $v, extends over the entire solid .,
So, the valence electrons are always closer to one or another

nucleus as compared to its position in free atoms. Thus,
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the potential energies of the electrons are lowered in a
solid. Similarly, the kinetic energy of the metallic
valence electron is also lowered because the wave function
is extended more in space, These two factors cdntributing
to a decrease in energy are primarily responsible for meta-
l1lic bonding. Since the valence electrons are delocalized
the bonding is nondirectional and the lattice ions can be
thought of as embedded in the valence electron gas, which
holds the lattice together, In absence of the directionél
forces the lattices of the most of the metals are closely
packed. The bonding energy or the cohesive energy of the

metal, is defined as the energy required to break the metal

down into neutral atoms.

1.5.1.1 Resonating bond theory

The bonding of metals, as suggested by Pauling [47 ],
results from the metallic orbitals permitting the resonance
of electron pair bonds from one interatomic position to
another by the jump of one eleotron:ffom one atom to an
adjacent atom, leading to stabilization due ?9 resonance
energy. For each atom to remain electrically neutral by
retainihg its valence electrons, the stabilization occurs

through permitted synchronized bond resonance,

M — M M M

M = M M M
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which is analogous to that of benzene;moleoule. But the
stabilization caused would be relatively small and will
not explain the extent of stabilization observed in metals,
_.Sb, it has been assumed that there are unsynchronized

resonances as well,

etc,

M = M M M
This unsynchronized resonance would require the use of an
additional orbital on the atom, called metallic orbital,
receiving an extra bond, This type of metallic orbital has
beeh considered in the calculation of interatomic distances

by Pauling L 471 .

1.5.1.2 Electron gas theory

In electron gas theory of ﬁetals, some of the basic
premises of Pauling's [ 47 ] theory is retained, Equal bonds
are formed wifh all the nearest neighbours and that the
electrons resonate between them in a complex way. In
physics, this complex movements of the electrons have been
portrayed as that obtained from an electron gas, There is
a voluminous literature on the calculation of enefgy in an
electron gas which is far more quantitative than the

theories for metals based on chemical approach,
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If a metal crystal is conceived as an array of
positive charges embedded in a nearly uniform sea of negative
charges, the total energy of such a system may be written

as

Ecrystal =E[n]~ Ew * Ebs «2(1.50)

where, the first‘term is the total energy of the atom in the
crystal, which is related to seperated ions and electrons
explained in equation (1.13). The second term is the Ewald
electrostatic energy of point ions in an uniform electron
gas. The bulk of the electrostatic energy of the system
has already been included in the E[n] of equation (1.13)
and E, accounts for the structure dependent part of -the
electrostatic energy. The coulomb repulsion favours simple
symmetrical structures, for which Ew is quite small., Since,
the Wigner - Seitz cell is not far from a sphere and Ew
increases rapidly with any distortion, it stabilizes the

‘simple structures to avoid distortion of Wigner-Seitz cell,

The Ebs is the band structure energy which is the
effect of band gaps in the band structure, i.e., the devia-

tion of electron gas from free electron gas,

If one considers a single Brillouin zone plane g, and
v(g) is positive then the usual nearly free electron treat-
ment of the band gap in terms of 2x2 secular equations, gives

the state at the bottom of the gap as U = Sin ( -;- B.F).
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This can be térmed as purely p-like state, because that is
its symmetry about the atomic site ¥=0, It is infact a
p-bonding state with maximum density |d1|2 half way between
the atom. Similarly, the other states near the bottom of
the gap have also larger p-~like components as compared to
the simple plane-wave state, exp (i g.r ) and pile up
charge between the atoms., In other words, the reduction

in their energy comes from forming s~p hybridized bonds,
However in the metallic bond, one can not assign localized
electrons and the heaping up of charge is a modulation on
the density of the electron gas involving all the electrons
'resonating' between the bonds. These bonds are not orien-
ted in a particular direction with respect to one another,
.The charge density in the bond arises from the overlapping
of these metallic atoms [48,30 ] and one can form any number
of such bonds independently in any direction desired, When
v(g) is negative, the state at the bottom of the band gap
is s-like antibonding one, ¥ = Cos ( % 2.7 ), which
subtract the charge from the regibn between the atoms and
.the same will be true for the electron gas as a whole,

bs
upon the sign of v{g) so that these anti~bonds provide just

However, the lowering of the energy, E,_ does not depend

as strong links as the others. In this the electrons move
towards the lower potential energy. When v(g) is positive,

the bonds are formed in the region away from the centre, i.e.,
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half way between the atoms, The pseudopotential for small
r is relatively high, because of the core level, as in
Animalu and Heine [ 49 ] square well potential characterised
by its depfh, Aj. When v(g) is negative the electron den-
sity increases at the centre of the 2tom.either because

the core radius is so smail, that the Ashcroft's empty core
does not materially effect much or because the Ao of
Animalu and Heine's [49 ], square well potential is also
relatively low for some atoms in keeping with their atomic
and chemical properties., Due to the tendency for the elec-
trons to move towards the centre of the atom, normally one

gets tightly bound s-orbitals in these regions,

The energy involved in these inhomogeneous distri-
bution of electrons has been estimated by the second order
perturbation theory. The deviation in energy'per atom over -

that of the uniform electron gas can be written as

EbS —N-1 “Z - _Z' J<T{+EJV|R>12 000(1051)
k<kp & LRZ - LR+ )2

where, the inner summation excludes é = 0 state and N

is the number of atoms. V is the total potential of the
crystal, From this exXpression one can find that it is
sufficient to sum over the free electron Fermi sphere, The
total potential, V, is in the form of pseudopotential, aris-

ing from the positive ions into the uniform electron gas
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at the atomic sites Rj and can be written as

V = (Const) +g' 8(8) v'°(g) exp (i g.T) eee(1.52)
g ' ‘
where, § is the structure factor and vlon(é) is the poten-

tial of a single ion, which can be written in Fourier

transform as

. A :
viOE) = 0L f vIO™®) exp (-i E.F) aF eee(1.53)

where (L is the atomic volume, The structure factor for the

unit cell can be written as

S(B) =n” I exp (1 E.Ry) veo(1.54)
J .
The summation on j being over the n equivalent atoms in the

unit cell. When the electron gas relaxes, i.e., the electron

gas now can take up inhomogeneity, the total potential gets

screened, Each Foupier component S(g) v o(g) is reduced

by some screening factor, e (g), giving the total pseudo-

potential as

/

V(F) = (Const) + £'S(E) V(B) exp (i B.F) ...(1.55)
g

where, v(g) is the screened ionic pseudopotential as given

below,
yron

v(E) = © 5 e (1.56)



37

The summation in equation (1.55) excludes g = 0. The
screening factor e(g) for a free electron gas can be

written in terms of Lindard dielectric function

s<a>=1-<8“>[1- 17X (@)
Q.q | -2 2 2l

e oo (1.57)

where, X (§) is the form factor, k; is the radius of the

2
Fermisphere of the free electron and Rs is the screened
coulomb interaction with screening constant which can be

written as

X@=v" 5 [1IRZI-bEea) T
k <kp
1 2 ol
=-xZ( 5 Ero ) | eeo(1.58)
1 QEF2 -9 2 g + 2kg
3 log | m————— | ] ...(1.59)
8 q k q - ZKF

The summation being over both spin states, the X (3) is also
called the perturbation characteristics, because, € (q)

is derived by simple perturbation calculation with the
summation extending over all NZ electrons. The factor in
parenthesis in equation (1.57) is twice the Fourier trans-
form of the coulomb potential of the electrons which is
responsible for the screening. The matrix element in the

numerator of the equation (1.51) becomes just S(g) v(g).
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So one can write Ebs as
-y 12 - 2
v s @I v(g) ]

[ 4 IR MR+ 2% ]

21
Bps = W E

z
k < r &

eso(1.60)

Further, it is necessary to modify equations (1.51) and
(1.60) which are incomplete as they stand, because the
coulomb repulsion has been counted twice in the summation
of one electron energies, so electrostatic self energy of
the system as given below, will have to be subtracted once,

1 | — SC, -
v T emmcmmos———a—" z n( ) v ’ cse 1c61)
ot ™ 2 @) @) (

where, vsc(é) is the screening potential of the electron
gas and n(g) is the corresponding electron charge density,
i.e., deviation from the uniform electron gas density. From

equation (1.56) one can write

v°(8) V(g) - VIOR(3)

S8) [ v(&) - v*O%&E) ]

s(g). v(g) [ 1= e(&) ] eee(1.62)

The total charge density obtained from the perturbed wave

function is
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-1

n(g) = 2 s(g) v(g) X (&) e s(1.63)

substituting equations (1.63) and (1.@2)“into equation (1.61)

and subtracting it from equation (1,60) yields the energy per

atom as

Bps™ ] SN2 [ v(E) 12X (B) € (&) L (1.64)

in place of equation (1.66) the equation (1.64) is the
corrected one and it correctly includes the correlation and

exchange contributions from non uniform electron gas.

The charge density in equation (1.63) has the form
of a sum of overlapping spherical pseudoatom charge dis-
tribution [ 30,50,51 ] . The total charge per atom is the
§ ~ 0 limit of 2v(3) X.(3). The limit of v(3) is = -%- Ep,
and limit of X (3) is - 2- z Egl , [52,42,53,54 ] giving a

charge of Z electrons per atom as one would expect.

In equation (1.64) the last three factors v(q),
X (3) and €(3) which can be grouped together as,

bos (@) = [ v(3) 1% X (D) & (@) e (1.65)

This product is named the energy-wave number characteristics,
These three factors depend solely on the element considered
and not on the crystal structure. The reciprocal lattice

vectors come in sets of n, equivalent ones with the same

g
|S |2, e.g., the eight (111) reciprocal lattice vectors, and

it is useful to lump them together giving a total structural
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weight
(@) = ng | (&) |° 2 2(1.66)

for the set., Now the equation (1.64) becomes
Epg = §W(g) ¢, (&) e e s(1.67) |

where, the summation is only over the modulus g and not
all individual g 's. This form is most convenient for
computing. Now, let us return to perturbation theory and
define a X (J) for one dimension from equation (1.58). Tt
diverges for q = ZRF. Therefore one can say that it is
energietically very favourable to introduce a reciprocal
lattice vector at 2k.. But this ignores the féct that

e (% ) in equation (1.57) also contains a factor X (q) and
hence, so does v(q) through equation (1.56). From equa=-

tion (1.64) Ebs is proportional to
[vionz) 12 X(3)/ (&) | ves(1.68)

and the divergence of X(g) cancels in the numerator and
denominator. The function X (J), has a logarithmic singu~-
‘larity in the derivative at q = ZEF, but as Harrison[ 30 ]
has pointed out that, this singularity is so weak, that

one can never see it on a figure. However, X(Q) is always
negative and it decreases rapidly beyond 2k.. So, the zone

planes far- from the Fermi sphere hardly affect the Ecryst
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of the equation (1,50) and the band structure energy, Ebs .
Zone planes with g<2 RF cut the Fermi sphere and con-
tribute substantially . The plane g = ZEF just touches
the Fermi‘Sphere and does not make an abnormally large con-
tribution, in fact less than that obtained when §<2RF, but
the derivative is maximum there, The form factor X , depends
only on the electron concentration, Z and the € (g) is
near unity in the range of g of interest and v(g) can be
treated as a constant, M, in the present case, Under this
'approximation one can expect reasonable results for those
metals with a reciprocal vector for zero potential consi=~
derably smaller than the first reciprocél lattice vectors,
i.e.,, for Berillum, Magnisium, Zinc and Aluminium. Oné can

therefore approximate X very crudely by a step function as

i

X (&)

x(g) =-M for

0 for g > 2kp

© <2k ceo(1.69)"

g1

In such cases Ebs will become,

E,g OC = M ¢ W(g) | .o (1.70)
g |

with g (2§F. Now one can read off from Figure 1.1 which

of the three common structures has the lowest energy. For

z =1, ZRF is just greater than the smallest § of the hcp

structure, which therefore has the lowest energy with a

total W of 1.5, This corresponds to the observance of the
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hep structure of Lithium and Sodium at the lowest tempera-
tures. For Z = 1.5, the bcc structure has the largest
total W'= 12 below ZRF,.which is in accordance with the
observed structure of the g-brass type of alloys. For Z=2,
the hep structure has the lowest energy again according to
~equation (1.70) as found in elements like Berillum, Magne-
sium, Zinc and Cadmium and the fcc structure is energéticaily
favourable for elements like Aluminium with valency Z =3,

A more complete iﬁvestigation of the fcc and hep structures
" has been carried out by Blandin [55 ], who considered their
stability against twinning and various types of stacking
faults, Since the number and distance of nearest neighbours
remains unaltered, the asymptotic form of the atomic interac-
tion was used., The results are qpalitatively in accordance
with the Figure 1.1, But, the bcc structure is left out

of account, One may represent the Ebs interms of real
space version of the theory, which is also.. mathematically
equivalent to its reciprocal space version, However, most
calculations are carried out convehiently in reciprocal
space, Though the calculations in real space encounters

the convergence difficulties in interatomic potentials,

it confirms the existence of a fairly well defined hard

core diameter 2 R_ such that the interatomic potential is
strongly repulsive for R 2 Ro but this potentiai is

comparatively weak and oscillatory for R > 2 Ro . This .
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puts the limitation on the configurations of nearest
neighbours that can be taken up at constant volume, But,
the comparison of fcc and hcp structures which have the
same distribution of the nearest neighbours, are simplified
to some extent when considered in real space. The real
space calculations are applicable : firstly, to rearrange-
ments at constant density only ; secondly, they are strictly.
meaningful in situations where perturbation theory is valid,
The assumption of its validity is difficult to justify with-
out considering the situation in reciprocal space, espe=~

cially when one deals with stramg perturbations,

1.5.2 Covalent bending

‘There have been two seemingly incompatible schools
of thought on the physical reasms for chemical bindiqg.
One séhool goes back to H,Hellmann [ 56 ]who held that inter-
atomic binding is due to a lowering of the kinetic energy
upon molecule formation, This idea appears plausible when
one compares the molecular wave function in certain types
of molecules [ 56] with the atomic wave functions. But the
other school critisizes this approach by pointing out that
the virial theorem is known to hold for the molecules as
well as for free atoms, so that the binding energy, EB, has

the form

Ey = AV +4T <0 «eo(1.68)



45

where AV, the change in potential energy is less than zero
and the kinetic energy, AT, is'greater than zero. The
lowering of energy comes about because of the drop in the
potential energy inspite of an increase in the kinetic energy.
According to the proponents of this critique, the lowering

of potential energy is caused by accumulation of extra

charge in the bond which is attracted by both the nucleii

giving rise to a lower potential energy in the molecule.
i
Most frequently the argument is made to appeal to

physical insight as follows : firstly, it is observed thet
the molecular Hamiltonian operator is more negative every
where, and .in particular between the nuclei, so that there
is an accumulation of higher charge., Secondly, it is obser-
ved that the accumulation of charge in the bond results due
to overlap., But, it should be realised that simultaneously
there is a depopulation of charge near the nuclei resulfing
in a rise in potential energy. Also, the nuclear repulsions
come into play when the atoms are brought together in the
molecule, The crucial question is however, whethér or not
the lowering in potential energy between the nuclei can
outweigh the nuclear repulsions, the additional electronic
repulsion and the rise in the potential energy due to a

depopulation near the nuclei,

In addition, it should also be noted that the electron

distribution in the bonded state can not be conceived as due



46

to overlap of electrons in the atomic state, The covalent
bond is the classical electron pair or homopolar bond as
conveived by the chemists. It 'is a strong bond? in the sense
that it has a high cohesive energy comparable with that in
ionic crystals, although the covalent bond acts between
néutrai atoms. Normally this bonding in crystals is expected
between nonmetallic atoms like Nitrogen, Oxygem, Carbon,
Fluorine and Chlorine, Other elements like Silicon, Ger=-
maﬁium, Arsenic and Selenium form bonds that are partially

covalent and partially metallic.,

A prerequisite for strong covalent bonding is that
each atom have at least one half filled orbital, For exam-
ple, an isdated carbon atbm in its ground state contains
two 25 electrons and two 2p electrons. In diamond crystal
every carbon atom forms four equivalent bonds to the neigh-
bouring 2toms, Pauling[ 47 ]conceived the covalent bonding
in the following way., The energy required to promote a
2s electron to the 2p state is small and it results in four

5 hybrid orbitals, which

unpaired electrons in four sp
will overlap strongly with the orbitals of the neighbouring
étoms in tetrahedral directions., The lowering of energy
caused By the overlap of these orbitals is much more than
the increase in energy caused by promoting an s- electron

to p-state. The more the bonding orbitals overlap, the more

is the lowering of energy, or, the stronger is the bond,
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The amount of overlap is limited either by electrostatic
repulsion or by exclusion principle repulsion. The theory
of covalent bond is, thus, one of co-ordination number, bond
lengths and bond angles, all in real space, However, the
study of electrons in crystals through the concept of Bloch
functions and Brillouin zone is in reciprocal space, So,
the manifestation of covalency in k-space has been described

by several investigators (57 1.

A covalently bonded material is usually an insulator
or semiconductor with a band gap between the occupied bon=-
ding states called valence states and the unoccupied anti-
bonding orﬁitals called conduction states. A suitable
Jone's zone containing the correct number of electrons per
atom was constructed by Mott and Jones[ 58 ] for diamond
and graphite, Since Fermi sphere is enveloped by a number
of zone planes there is an extra lowering of energy. For an
example, in Gallium (113), (211), (202), (022) and (004)
reciprocal lattice vectors cluster in the range of g/2kF
= 0,95 - 0,99. It is because of the energy advantage near
the singularity of X (g) at q = 2k, with a finite v(q) .
But, the structure of covalently bonded solids are more
open with a relatively large unit cell, The reciprocal
lattice véctors, g, are relatively small and the corres-
ponding potentials, v(q), are large due to the general

shape of v(3). So, the second order perturbation theory
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breaks down.

1.5.2,1 Electronic states of small molecules

In a system containing several isolated atoms, &
composite set of electron states will be the collection of
all the states from all the atoms, but if the atoms are
brought togethér closely enough so that the wave functions
of one atom, overlaps with those of the others, the energies
of these states will change. However, the number of the
states will be conserved., If the total energy of the system
is lowered due to the overlap, the atoms are said to be

bound forming a molecule,

The electronic states of the molecule, Y, is written
approximately as a linear combination of the atomic orbitals

as given below,

| 6> = F Uy | o> (1.69)

where Uy's are the coefficients and | @ > represents the
set of the normalised orthogonal atomic states, The coeffi-
cients, Uy , and the energy of the'system, E, are determined

variationally as,

L H LUy . |
THERE 0 eee(1.70)
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From this equation (1.70), one can write the secular deter-

minant as,

det ( Hﬁoc - Eéﬁa ) =0 e (1.71)

where, H , = BlH|e> and éﬁa , is the unit matrix,
o ,

If one considers the simplest case of covalent bonding of

Hydrogen molecule with two electrons, the equation (1.71)

becomes
(es-E)U1-v2U2 = 0

- ‘]2 U1 + (SS - E ) U2 = 0 000(1072)

where one uses two orbitals |1 >and |2 > , which represents
1s states on atom 1 and 2 respectively and e, = <1|H[1> =

< ZIHI.Z > and V, = - <1]H[2> =« <2[H[1 > ., The matrix
element represénting the overlap, i.e., V2 is called the
covalent energy. The equation (1.72) can, now, be solved

to give a low energy solution called the bonding state with
energy ( e -V2) and a high.energy solution called the

antibinding state with the energy (es + v, ).

This simple treatment can also be extended to polar
covalent bond like LiH, where the bonding takes place in
1s orbital of hydrbgen and 2s orbital of Lithium having
two different energies in their atomic states = 6; and 82 ’

the lowering state being called the energy of the anion, Ei,

and the high energy state the energy of the cation, €5
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The secular equation (1.72) can, easily, be.modified to
apply to this case and half of the difference in the values
of the anion and cation energies is called the polar energy,
VB' The energy states of the molecule can be written as,

1/2

E =8+ (V5+V5) cee(1.73)

3

representing the energies of the bonding and the anti-bonding

states and V2 is the covalént energy as define earlier,

The evaluation of U1 and U, will enable to deter-
mined the charge density associated with the bonding and
anti-bonding states. In the case of Hydrogen molecules,

-1/2

as discussed earlier, U, & U, = 2 for the bonding state

-1
and Uy = - U, = 2 . for the antibonding state, But, for

11 elent solid btains U,= U, V (2+21/2V
polar covalent solid one obtains U,= U, V, /( V5 V3) - 3)
for the bonding state. If the atomic wave functions do not
overlap, the prob?bility of finding an electron aon atom 1

will be U /( U U2 ) and that on atom 2 will be

U1 / (U + U2 ). Now, in the case of molecule this proba-
bility is modified to (1. + ay /2, the probability of
finding electron on atom 1 and, (1 - o, )/2, the proba-
bility of finding electron on atom 2, where a _ is defined

s . - 2 1/2
as polarity given by cxp V3/ (V2 + V3 )

s @nd the
dipole that develops in this bond is proportional to ap,

and the complimentary guantity, A 9 defined as

\VARE L Ykt
3008155



51

covalency is given by

1/2

2 )

aC=V2/(V§+V3

In the above simple example, only s states have
been combined to form bonds through the overlap of the
atomic states. However, this concept can be extended

even when other atomic states are involved.

1.5.2.,2 Electronic states in covalent solids

(a) Bond orbital theory

The solids can be ¢conceived as a giant molecule
containing large number of atoms, Here also, the orbi-.
tals can be constructed by linear combination of atomic
states., It has already been explained that in the tet-
rahedral solids the bonding takes place between the sp
hybrid orbitals and this natural choice has been made by
chemists by looking at the tetrahedral symmetry of bon-
ding [ 59] . The sp3 hydrids are formed by the linear
combination of the wave functions of atomic s > orbifals

and three p orbitals - [ p, » , | py_> and | p, >

in the following manner,
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}h1>=[-;: IS>+_le>+!py>+Ipz>}.
| b, > = [% ls >+ lpy >= T, > = lp, > ]
| ng >=05 Is>-1Ip >+ Ip, >~ lp, >]
ln, >=[g s s=lp, >- lpy, >+ Ip, > 1

(1.74)

LThese four hybrid orbitals have the largest charge denéity
in (111), (137 ) , (717.) ~na (374 ) respectively. These
~orbitals are called Sp3 hybrids because the probability
of finding an electron in p-state is three times that of
finding it in s state. It is noted that these hybrids

are not the energy eigenstates and the expectation value

of energy, called the hybrid energy, is given by

€ = € + 38 h ces 1.

n S CEg* 3,0/ (1.75)
where €, = <s|H|s > - «ee(1.76)
and,

€p = <p lHlp, > = < py!Hlpy> =< p lHlp, > «.u(1.77)

For polar covalent solids, the hybrids can be

constructed on each of the atom types present and treated

1

in terms of the lesser hybrid energy €y » the greater

energy e?

h and a hybrid polar energy, Vg , defined as
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(si -S;’ )/2 . Since the hybrids are not the eigen
states, the non-zero matrix elements of the Hamiltonian
can exist between the hybrids. The magnitude of the
resﬁlting matrix elements‘is called thé metallic energy,vﬂ,

and can be written as

v, = =X hiIthj>v = - % (e =c o +.e(1.78)

The matrix elements between the hybrids on two neighbour-
ing atoms pointed to each other is called the hybrid

covalent energy as given below,

h

1 2
> - <h |H|n™ >

\')

H]

i

+2{3 v, + 3V )[4 eeo(1.79)

(~v
ool ppo

SSO
and these terms are explained in figure (1.2).

To calculate the band structure of the covalent
solids, it is possible to use these hybrids for cons-
tructing Bloch states or else, the electron eigen state,
|k > , which can be written approximately as a linear

combination of the atomic orbitals | a> , as
e > = Z U, la>, . +ee(1.80)

The variational solution of the equation (1.80) will

lead to a set of algebraic equation like

H Ot)U - E U =0 see 1081
£<g Il ke = P Vg (1.81)
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The solution of these algebraic equations can be obtained
by diagonalizing the Hamiltonian matrix, < BlH| o>,

through unitary transformation.

The solution for the above equations are possibie
in principlevbut several approximatiocnts have been made
to overcome the computational difficulties. The bond
orbital [ 60 ] approximation neglects all matrix elements
coupling the bonding states and the antibonding states.

th

In other words, the k™ valence band state is written

as a linear combination of bond orbitals.

where Ibi >, represents the bond orbital. The error

introduced by the neglect of the bond-antibond matrix ele-
ments has been corrected in perturbation theory by cons--.
tructing extended bond and antibond orbitals, | B>, and

| A> respectively in the following manner;

B> = o> + E fa >V, / (8p = € ), ...(1.85)
las>=Ja> + 2 |b>v, /(e =8 ). ...(1.84)

b - b
The electronic states of the covalent solid corresponding
to valence and conduction bands are formed by the linear
combinations of their extended bonding and antibonding
states respectively. The secular determinant can be set

and the band structure can be evaluated completely.
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Cohesive energy of covalent solids

The cohesive energy of covalent solids is obtained
by calculating three component energies. Firstly, a pro-
motion energy for prepariné the isolated atoms; secondly,
an overlap interaction energy between atoms as they are
brought together without bonding . and lastly, an energy

gained in bond formation,

The promotion energy can easily be calculated by
considering the energies of the atomic states and the
hybrid states. Teking the specific case of Silicon which
has two electrons in the atomic s states and two electrons
in the atomic p states, the Sp3 hybrid states, when
constructed, have the total energy of 4 ( €S+-38p' ) VA
The total energy of the electrons in the free atom is
2 @S 4-ep ) and, thus, an additional energy of (&_ -

p

€ ) = 4 V, has been required to promote the electrons

from the states of a free atom to the hybrid states.

-After promotion, a quarter of the charge density
arises from s orbitals and three quarters from p orbitals
but, there is no change in electrostatic energy because,
the atoms remain neutral. When the atoms are brought
together the hybridized electron densities are superimposed
leading to a change in the potential, kinetic and the
exchange energies. The overlap interaction in Silicon

has been caerried out by Harrison and Sokel [ 67 Jas shown
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in figure (1.3). The change in kinetic energy and the

sum of coulomb and exchange interaction have also been
plotted in the same figure. The calculation of the ovérlap'
energy has been cabried*out assﬁming'that'all theféléctrohs_
have the same épin and fhérevis"no distortion of the atoms. ‘j
It is evident from fhe figure (1.3), that the overlap |
interaction as conceived, provides a simple interatomic
repulsion. Now, if the bonds are allowed to form, {he
energy of each electron is lowered by the difference bet-
ween the bond enefgy,isb , and'the hYbrid_energy; €h ;
and for a nonpolar system, this energy change per bond is

2 (eh -ea ) = ZVB . However, thelhybrid energies will
change due to the influence of overlap potential but this -

could be included in the electrostatic contribution of the

overlap energy.,

A1l this contributions to the energy can be com=-
bined to give the cohesive energy of the covalent solid,

Ecoh » 85

Ecoh - - Epro - Vo(d) * Ebond ' vee(1.85)

where Epro' is the promotion energy and Vo(d), is the
energy of atomic overlap as a function of interatomic

distence, d., E lis‘the energy due to bond.formation

bond *
which also depends upon bond length. The expression of

the cohesive energy can be minimised to find out the
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'Fig.1.3: VARIOUS CONTRIBUTIONS TO THE
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equalibrium bond length and the bulk modulus.

(b) Pseudopotential theory of covalent bonding

The pseudopotential theory has been used to des-
cribe semiconductors but the pseudopotential perturbation
theory as applied to metals in section (1.5.1.2) is quite
inappropriate for semiconductors. For metals the pertur-
bation expansion is written in terms of the ratio of the
~pseudopotentials to the kinetic energy, which is small.
For covalent solids, on the contrary, the ratio of kinetic
energy to the pseudopotential should be treated as small,
This distinction is important only in the case of approxi-

mate theories using pseudopotentials,

If one considers the specific example of Silicon
and begin with a nearly free electron gas of 4 electraqus
per ion and calculate the energies of the states by writing
it as a linear combination of four plane waves with wave
numbers (110) , (770), ( 007) and ( 007) , the Hamiltonian

matrix, H, can be constructed as given below

2.2 ¥ %

Rkiro7, Y220 10 111

2, 2.
Wo20 A Ko/, 111 Y114

H= *
2

Y114 LEEY h K001/, 0

* >

A - -
w111 \111 0 h kom/zm
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Harrison [ 62 ] has diagonalized the above Hamiltonian,

to show that the two pairs of eﬁergies appearing in the
diagonals are split into four levels, The energies of
'»these.levels'have béén m2tched with the four lowest enérgy
levels at 'X' in the band structure of Silicon and the
agreement is quite impressive, The splitting of the upper
two levels has gi?en the band gap between the valence and
the conduction bands which has arisen primarily from the

pseudopotential matrix elements W w suggesting thet a

11
'simpleitheory may be formulated by neglecting all other

metrix elements except w111; Band structure of group Iv
‘and III-V covalent semiconductors have also been studied .
succeésfully by using orthogonalised plane wave pseudo--

potentials by Garoff and Kleinman[ 63] ,

Cohesive energy

Cohesive}eﬁergy of.covalent semiconductors ﬁibh
treatments based on Heilter-London type methods has been
carried out by Schmid, [ 64 ] Asano-Tomishina [65] and
tho{:66] . Since these treafments involve large overlaps
between bonding orbitals, a thorough going orthogonali-
zation of atomic functions and the evaluation of multi-
centered Coulomb integrals are inevifable. The task

becomes quite laborious,
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The concept of pseudopotential proposed originally
for band calculations, has opened the possibilities of
calcﬁlating various crystal properties directly_andfthé
stability of metals systematically.as discussed.in}section
(1.5;1.2). But, in applying pseudopotential perturbafion
theory to covalenf materials, there are two difficulties :
firstly, the cohesive energy of these crystals are large
compared to those of simple metals; and secondly, there
~is an energy gép-oﬁ the Jones ané-face_corrésponqing to.
‘the.Fermi sufface. These tharacteristics of covalent
crystals require higher order terms in the perturb2tion
theory. | _ |
| | Morita et.al.,[ 67] deveibped third order'pertur-
bation theory of covalent crystals in terms of pseudo=-
potential to calculate cohesive energies and compressi=-

bilities of group IV and III-V covalent crystals,

A crystal consisting of ions located on thé lattice
points, Ri, 's and an electron gas with four valence
electrons pér atom (especially in the éase of Carbon,
Silicon and Germanium ), the pseudopotential seen by a
valence electron is'essehtially nonlocal. But loceal
- Asheroft's [ 43 ] empty core pseudopotential has been taken
as ionic potential for resons of simplicity. The para-
meter corresponding to the empty core radius is deter-

mined from the first zero of the pseudopotential form
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factor interpolated from Cohe@ and“Bergstresser's[ 68 ]
pseudopotential, -

 The oélculafed vglaes,of'the7binding7énérg§ 6f”,
Sili@oh,ih,seodnd.order.theroy hés‘beéhTSEbwh 'bygl
Morita et.al., [67], in which‘it corre5ponds to the
values iﬁ metallic, fcc, bec and hep structures and com-
~ pared with‘the experimenfél values{ It has been observed
thét the Ewald energy, Ey , is unfavourable for the Opén |
vdiamond_strubture'Qompared to‘thOSe:fcr the close paCked
’metallic structuresq, Thé band structure energy, Ebs’ is
favouréble for the former structure in comparison to the
létter7ones.' These two opposing tendencies almost’balance'
each othéf but the diamond structure becémes a iittlé moré
favouréblé when compafed with the metallic“strugturés}_f. |
This fact might be considéfed fo suggest that_the:diaménd '
structure is stable in.second order perturbation theory.
Even the calculated values of the binding-energy is only
~a little iess compared to.the experimental values [ 69 J.
But, the oalculatibns of'phonén dispersion cﬁrves in
Silicon ahd Gefmanium show the‘diamond.structure is unstable
against shear stréss in the second order'perturbation
approximation and all trensverse aéoustic modes héve ime-
ginary frequenoies. In.order'tb have a consistent theory
for covalent crystzls one has to go béYohd the second order

perturbation theory and take into account higher order terms
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producing covalent bonding effects.

In co?alent crystals with diamond or zinc blende
sﬁruotures, w(111) is oﬁly one large pseudo-pbtentialVI
Fourier'tranéform ahd the effectvof W{111) in second order
is comparable to that Qf other W(i)'s is first order.
Heine and Jones[ 70] also have shown that the band gap
at the pbint X (kx = (110) ih 21f/é unit) on the Jones

Zone-faces, is given approximately

E(X) - 2] W
e

g sp (220}]
where, _ .
. E ] - - :
weff(zzo) v w(zzo) +,§ K | W Ikk g
<k - B Wk > | ’
k)( k)( ‘0-0(1087)

2
[ & - (k, -2)]

=

where, the summation £ is limited to the strong Fourier

oat

transform W(111), i.e., kK, - = ( 0,0, + 1). The
energy gap calculated from the above equaticn (1.87) is

in good agreement with observed #alues, s0 one can there-
fore assume the energy gap as cmstant over the:Jones
Zone-faces, The numbef of states whose energies are sub-
stantially lowered by the presence of the band gap is
about Eg /2 times the free electron density of states

' per atom at the Fermi surface, n (EF) = 6/E . On an
F
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average, their energies are lowered by E, /2 .

Consequently, the covalent bond correction to the crystal
enefgy, Ecov’ is given by

ECOV = - n (Bp) { IW_pp(220) |2 - W(220)|° } ...(1.88)



CHAPTER 2

BONDING IN METALS
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2,1 Introduction

The Hohenberg-Kohn (H.K) theorem states that, for
a given external potential, v(¥), the ground state energy
is a unique functional of the particle density, n(r). The
energy functional can be minimized with respect to the
variation in particle density. The corresponding minimum
in energy will be the ground state energy, En; of the

system which can be written as

n(F)n(¥) 4% apt
Rl

g, =/ v(F)n() of + 3/
+ Gn] eee(2.1)

where d[ n] is a universal functional of density, n(T),
contzining the kinetic, the exchange and the correlation
energies, The external potential, v(¥), the Ashcroft's[ 43]
empty core pseudopotential has been chosen as a model
potential, as it yields the cohesive energy values of the
real systems quite in agreement with their experimental
values., This indicates that the empty core pseudopotential
may provide a sufficiently good model potential, This
potential separates the core region of zero potential from

the outer region where the coulomb potential is operative,

The model potential is represented as

V(r) = 1 . r > rc 000(202)

HIN O
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where r, is the core radius, beyond which the full
f

t
ionic potential, % » 1s operative,

Bonding in metals has been investigated'both in
the homogeneous and the inhomogeneous electron gas model
within the framework of density functional formalism. The
formulation of the problem and the results have been

discussed in the following sections.,

2.2 Uniform electron gas model

Due to the volume depenency and a lack of direcw-
tionality in metallic bonding, the simplest electron dis-
tribution assumed is that of a homogeneous electron gas,
The ground state energy of a given metal characterised by
the valency, Z and the core radius, Ty has been deter-
mined by using the Hohenberg-XKohn [2] theorem, The sys-
tematic variation of energy with valency and core radius
has been calculated to match it with the observed trend

in the periodic table,
2.2.1 Formulation

The electron density in the uniform gés model,no,
is independent of the space coofdinates. The size of n,
is the variational parameter which inturn determines the
lattice constant or the atomic volume., The system is

neutral electrically and each atomic cell has a valence
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charge equal to its valency, Z, as expressed below

R
a
[ ndr =2 .ee(2.3)
o (0]
or, ‘ 3 ’
no = ( 32Z/4gqR” ) oo (2.4)

where Ra’ is the atomic radius, with these choices of
v(F) as given in equation (2.2). One can write E  per

atom from the Hohenberg-Kohn equétion (2.,1) as

- 2 2. .16 2 2.5
Eno—-.—ZnnOZ(Ra-rC)+,T5.n no_Ra
+ G{l’lo] 000(2-5)

where the first term is the energy of interaction of
electrons with the ion, the second term is the electron-

electron repulsion energy and the third term, G n, ’ is

a universal functional giving the kinetic, exchange and

correlation energy and is expressed in the local density

approximation as

2/3 /3
(3% °n) z-2(3n ) 2

0

.3
G[ no] = 10

1/3
+Z { -0.0575+0.0155 1n (3ﬂ§5"- ) } .
o

vee(2.6)
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By combining equations (2.5) and (2.6) and substituting
the value of n from equation (2.4) one arrives at the

| following expression for energy as a function of only the
atomic radius, Ra , for a given element with valency, Z,

and core radius, rb .

2
r 2
B, =-1.52° { —— } + 082
0 Ra Rc’l Ra

+

eee(2.7)

-

The valency of an element is known but the core radius, r.,
is an unknown parameter of its ionic potential. The exact
value of r_ can be determined by fitting certain observed
physical quantities like term values of energy obtained
from spectroscopy, resistivity, the volume per atom in the
solid etc., Here, r. has been détermined by deménding
that the minimum of E, as given by equation (2.7) exists

o}
at the observed values of Ra.

The first derivative of the equation (2.7) with

respect to Ra can be expressed as



70

dE 2
N, q,572° b,5 7° ( 2y 0.6 2°
dR - 2 - 2 2 -
‘? Ra | Ra ~Ra Ra
_ 22123 | oussz*? | g.0155
R3 R2 R
a a a .
...(2.8)
dE
n \

At equilibrium ""'HRQ"" =0
a

The last term, which is the contribution from correlation
energy, can be neglected since its contribution towards
the equation (2.8) is less than 5%, and one can get the

radius ratio of core versus atomic radius as

1 | 1/2
r‘ -
C = { 0.2 - 2.21 Z f? + 00458 2-2/3 }
R, 4,5 Ra. 4.5
| e.s(2.9)

By substituting equation (2.9) in equation (2.8) one can

get the above mentioned equilibrium condition. Now the
ground state energy, as given by equation (2.,7), is a

unique function of the atomic radius, Ra . For the observed
atomic radius, Ra’ one can get the core radius, T for a
given element. At a valency, Z, and atomic radius, Ra’ for
a given element ‘the energy, Eno’ can be determine& from
equation (2.7) and compared with the experimental vealues.

Thus, one can get an idea as to how good this uniform density
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assumption is for a given element,

2.2.2 Results and discussion

The table=~2.1 givés the comparison of  experimental
total enerégés of simple metals, with those obtained from
the present uniform gas model. The energies from various
other models using different potentials and charge
densities have also been included. The extent of success
achieved by}the uniform electron gas in explaining the

experimental values of total energy has been analysed in

the light of its limitations.

The results of Weaire as discussed by Heine [ 71]'
give the total energy of various elements which are higher
compared to the experimental values., These results are |
calculated on the basis of Animalu-Heinel[ 49}, model po=-
tential, neglecting the terms with 1 > O, The calcula-
tions are purely volume dependant and structure indepen=-
dant, because, the energy has been calculated for a unifornm
density of electrons. The parameters of the potential
has been determined from the term values bf energy and
so the atomic energy is not an input parameter. Thé
atomic radii of different elements as calculated in this
model have large deviations from the observed values.

Heine [ 71 ] argues that the cohesive energy is propor-

tional to the square of the band gap { 2 v(q) } and a
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neglect of the band structure part has resulted in a large
shift in the calculated atomic radius, Ra’ as shown in
figures 2,1 and 2.2. These figures show the Qariation in
total energy,‘Enzjwith the atomic cell radius, R_. The
experimental results, the calculated results of Weaire[ 7i1],
and those of the present investigation have been presented

for elements of Group IA and ITA of the periodic table,

In figure 2,1, the total energy obtained by
Ashcroft et.al., [72 ] for alkali metals have also been
included. Aschcroft et.al., {72 ], in their model have
included the band structure term in the calculation of to=-
tal energy. However the total energy has been estimated
by demanding the optimum atlthe observed values of atomic
radius by keeping ch =271 Z ri y a floating perameter, At
the same time the band structure term has been calculated
by a core radius from liquid resistivity or Ferﬁi Surface(FS)
data, 1In effect it means that Ashcroft et,al.,[ 72 ] has

used two different core radii for the volume dependant and

structure dependant terms,

From these figures 2,1 and 2.2, it is quite evident
that although the energies obtained by Weaire [ 71 ] are
higher compared to the experimental results, but the energy
versus atomic radius curves for both the calculations of
Weaire[ 71 ] and the present one lie below the experimentally

observed values. If one includes now the band structure



73

term, the calculated curves wjll be pushed further below,
but simultaneously, a change in the Ra will also take
place as anticipated by Heine[ 71] , causing a lateral
shift of the curve, This is borne out by the trend in
the calculation of Aschcroft et,al.,[ 72 ] and is indicated
by him,

The total energy as reported by Ashcroft et.al., [ 721,
is higher than the experimental values except for regions
of lower atomic radii containing elements like Lithium. The
inclusion of the band structure term has resulted in a
part of the calculated energy versus atomic radii curve
being above the experimental curve, due to a lateral shift,
The discrepancy for elements with lower atomic radii how-
ever, can be attributed to a bad choice of potential, an
inadequancy of second.order perturbation theory and the
ignorning of the non local term in the potential, The choice
of potential on the basis of the data on Fermi Surface or
liquid resistivity are dependant only on states near K ﬁf.
It has obviously not given a good approximation for the
states in the entire band. However, for fotal energy, the

energies of all the states are important.

Our calculatiens with uniform gas model have been
lower energies than the values obtained experimentally [69] .
This may have resulted from a neglect of the inhomogeneous

nature of electron distribution and/or from a bad pseudo-

potential when calculated on the basis of observed atomic
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radius excluding inhomogeneity. To examine the model
further, the pseudopotential of a bare ion of Sodium used
by Ashcroft et,al., [ 72 ], Weaire [ 71] and the one used
in the present investigation have been compared in figure
2.3, In this figure the potential used by Weaire[ 71 lh??
been plotted with a well depth, AO inside the radius, RM ’
as obtained by Animalu and Heine{ 49] . Also, the empty
core pseudopotential with a core radius derived from cal-
culations of AshCroft et.al.,t 72 ] and the one used in the
present calculations have been presented, It is observed
that the core radii in the model of Ashcroft et.al., [72 ]
is very near to that obtained in the preéent model, Thus,
the potential obtained in the present investigation is not
much different from that of Ashcroft et.al,,l 72] . If one
calculetes the equivalent core radii for the Animalu and
Heine [ 49 ]potential used by Weair [ 71 ] one gets
r2 =R2 .- £ 4 i ...(2.10)
¢ M 3 S T Z
For Sodium r_ = 1.889 a.u. is equivalent in energy to the
given Animalu and Heine [ 49 ]Jpotential. Thus, the poten-
tial used in the present investigation lies below that of
Ashcroft et.al., [72] and is equivalent to the Animalu
and Heine [ 49] potential, So it may be inferred that the
potential used here is not bad. The energy versus.atomic

radii, R, , curve should shift above the experimental curve
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if inhomogeneity in electron distribution is allowed, as

it is expected similarly for the cealculations of Weaire (711,

It should be noted that with more detaiied calcula-
tions the energy values improved by only a small extent,
as it is evident from the calculations of Janak et.al,, [ 73],
and Moriarty [ 74 1. Since the objective of the present
investigation is not to obtain accurate cohesive energy,
but to understand bonding behaviour, further refinement in
the calculation has not been undertaken., The inhomogeneity
has been included in a manner relevant from the point of

view of bonding, as it will be explained in the next sec-

tions.

2,2.3 Stability of uniform gas model

The expression of Eno, as given in the equation (2.7)
lays down a restriction that every atomic cell must nece-
ssarily have the negative charges equal to the valency,
making the cell neutral, It implies that the solid does
not have the option to accomodate additional space outside
the atomic cell and accomodate part of the charge from the
atbmic cell in this space, Even if it leads to a lowering
of energy. To eXamine this tendency, it is netessary to
write the eXpreséion for energy of the atomic cell when an
amount of chargegcxze, has moved away from the atomic cell,

Now the charge ( Z -£>Ze )s if uniformly distributed in the
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atomic cell will give rise to a uniform density, n,, as

given below,

RO
of nod'f‘ =(Z=~=a2,)
or
n = 3(24" :;e) ee(2.11)
n
o)

The energy expressicn can now be obtained, by subs-
tituting the expression for n_ from the equation (2.,11),

into equations (2.5) and (2.6), to give

1 r2
= 1. c
Eno--1.52(z-aze){Ro -~
o]
0.6 (Z ~a z_ )2
+ e
R
0
2/3 5/3
+ 2 9’; ) Lz -a2,)
4R
Q
| 1/3 L/3
3 9
- AN
7 ( Z:;rgg ) ( o )
o
]

+ (2-202,){-0.0575+0.,0155 1n (
(z- &2, y1/3

oa‘(2012)

The condition that the atomic cell is stable with respect

to the flow of charge away from the cell to outside is
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given by

dEn
2 20 ees(2.13)
dAZe AZe"-"- 0
when,
dE 2
n0=15{1 -rc}-’I.Z(Z-AZe)
daaz ﬁ; RE ﬁb
e )
1.105 5 (2 -0z )7
. R,
1/3
(z <0Z))
+ 0,458 % " = : .000(2011‘*)

0

In the above equation, correlation energy is neglected,

due to its negligible contribution ( <5% ) to the total

expression.

Thus,
Te < { 1.2(z-82,) 1,105.5 (z -Aze)2/3
R~V T 5 TR,

o.58 & (2 ""Ze‘)“3 1/2
-3- 1.52 } ..'(2.15)

+

Since the energy of the uniform electron gas should, in
addition, satisfy the condition for minimum with respect
to RO at the observed radius of the atomic cell, the

equations (2.9) and (2.15) have to be satisfied simul-



78

r
taneously, Transferring the value of uﬁg— from equation
a

(2,9) into equation (2.15) one obtains

I‘s = 2-1/3 Ra) 2.4127 ) 000(2n16)

Thus, it ié clear that only when the uniform electron gas
has a density satisfying equation (2.,16), it is possible

to have stability in the uniform electron gas model,

In this context, one can examine the segment of
periodic table where equafion (2.16) will be satisfied.
The figure 2.4 shows the stability range in the uniform
gas model by plotting core radius, r, s Versus the radius
of the spherical volume containing one electron, L for
the elements with wvalencics, 2 =1 to 7 . The elements
occuring with the lowest core radius and the highest core
radius are shown in each valency. A line of seperation
has been drawn at r = 2.4127 a.,u. to show the limit beyond
which the uniform gas model is stable, It is observed that
all the elements with valency, Z = 1, lie in the uniform
gas model region. For valency, Z = 2, the elements with
core radius less than 1.14 a,u. lie in the region of in-
stability of uniform gas. The elements with the cbre
radius greater than 1,14 a.u. should conform to uniform
gas model as indicated by its success in explaining their
cohesive énergy. Almost all the elements witﬁ valency

Z = 3 fall in the region where r is less than 2,4127 a,u.
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except the element Thallium, In case of valencies, 22 4 ,
all the elements in the periodic table lie in the region
where electron distribution is inhomogeneous and the vali=
dity of the uniform gas model is doubtful. Such elements
demand the application of inhomogeneous electron gas model
as it has been carried out and presented in the following

sections.

2.3 Inhomogeneous Electron Gas : 8tep model

The study of the stability of uniform electron gas
model has shown that at ro o> 2.4127 a,u, the uniform
electron gas model works,., But a large number of simple
metals in the periodic table have ro < 2.4127 a.u., (Sce
fig. 2.4 ) for which the uniform electron gas model is not
stable. There is a tendency of some amount of chargezxze ’
to be away from the uniform bas atomic cells spontaneously.
If the metallic bonding.still persists the next model should
be evolved by violating the assumption of the uniform dis-
tribution of electrons within the atomic cell, The step
model developed in this context assumes the existence,;elec~
tron gases of two different densities in the inner and the
outer region of the cell. But, it will lead to a discon=~
tinuity in the boundary. As a result, the gradient term
in the expression for energy will diverge. The realistic

electron distribution will result by réadjusting the dis-
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tribution at the boundary so as to eliminate the infinite
gradient, However, this model will be instructive to yield
information about the gross behaviour of the electrons from
the point of view of bonding. The model here approximates
an inhomogeneous electron gas in metal in terms of homo-
geneous electron gas in two segments of the atomic cell,
The size of the segments and the corresponding charge den-
sity is dictated by the principle of minimization of total
energy. The advantage of this approach lies in the ability
to build a large non-uniformity in charge, in case it leads
to a 1owering in energy. Also the energy can be calculated
more accurately here than that is possible in perturbation
theary because the density functional formalism is formally
exact, But the representation of the charge density by Jjust
two homogeneous segments may be quite insufficient and a

poor approximation to the true charge distribution,

An atomic cell consisting of electron gas with two
densities as envisaged in this step model will be able to
reflect some features of concern to the chemists. If the
charge density in the inner cell is higher, the metal has
predominantly electrons with s-character. But when the.
outer shell charge density increases it indicates an in=
creasing p=-character of the electrons giving rise to sp
bonding. But this sp bonding is distinctly different from

covaelent sp bonding because the electron distribution here
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is nondirectional. It is more a reflection of the nature
of states occupied by the electrons in a overlapping s-p
band,

In the following sections the density functional
energy has been expressed as a parametric function of the
density parameters., For a given valency and core radius
the energy function has been optimized by Davidon Fletcher
and Powell method [75] to get the ground state energy and

the corresponding charge distribution.

2.3.17 Formulation

With the choice of Ashcroft's[ 43 ] empty core
pseudopotential, v(r), from the equation (2.2), one proceeds
to choose a parametric function for electron density,n(T).
Here, the density has a step discontinuity as given below

n_ for r <R

n(; = men— © © 000(2017)
) [ 1, for RL{r <R

- a
where, ng is the density of the electrons in the inner cell
of radius, RO , wWithin the atomic cell and n, is the elec-
tron density in the outer spherical shell of inner radius,Ro

and outer radius, Ra « The density has four parameters

'no,n1,RO and R, . One of these parameters is fixed by

using the principle of charge neutrality in the atomic cell
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consisting of the inner cell and the outer .shell. Thus,
there remains three parameters or variables for minimi-
zing the energy. The inner cell contains an amount of
charge, (2 -zsze). Since the electron distribution, n,
in the inner cell is uniform the equation (2.11) and the
energy of the inner cell as given in equation (2.12) can

be written directly as,

2
r
E ---1.52(Z-AZ){1-"'T"°
n, © "o Ry
2
0.6(Z -a2Z) 2/3 2/3
+ — * %5 ( __251— ) (2-22p)
o 4 RO
1/3 4/3
_ % ( ___52__.)/ (z -22)
Lom R3 .
@/
- R
+ (Z-212) { - 0.0575 + 0.0155 1n ((Z_ AZE)VE)}
‘..'(2.18)

where, the first term is the energy of interaction of
electrons with the ionic pseudopotential and L is the core
radius. The second term is the electron;electron repulsion
energy and the rest of the terms are kinetic, exchange and

correlation energies respectively,

The remaining & Z_ charge of the atomic cell is now

distributed homogeneously in the outer shell around the
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inner cell to make the atomic cell neutral. But the charge
density in the spherical outer shell may be different from
that in the inner cell and thus, there is a step discon-
tinuity in electron distribution at r = R, o If the charge
density of the electrons in the outer shell is Ny the

charge neutrality of the atomic cell demands that

R
a -
(o}
Or. 3 A7
n, = - .es(2.19)
LT (RS - R )

o]

Following Hohenberg-Kohn[ 2 ] theorem, the energy of the

outer shell can be written as

R R R
a - - a a nan - -
Eflhe{}ll = v(F) ny aF + %f / _1 1 drv dr!
0’1 R R R | T -7t
0 O ©
RaRa n n1 - -
+ /[ == dfart + ¢ [n, ] .ee(2.20)

In!tbis equation, the first term represents the interaction
of the ionic‘pseudopotential, with the outer shell electron
density, n1. The second term is the electron- electron
repulsion within the outer shell., The third term is the
electron-electron repulsion between the inner cell electrons
with those in the outer shell, The fourth term & [n1] is

the universal functional representing the kinetic, exchange
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and correlation energy of the electrons in the outer shell
with a density, n, .

Using equation (2.,19) in (2.20) and the expression
for G [n,] for the uniform electron gas, one arrives at

the following eXpression,

2 2
gshell . _ 1.5 Z’Aze (Ra - Ro )
n_,n
o1 3 3
(Ra - Ry )
4.5 1522
+o— e { 2. g7 _1Rr2RI+ 2RO}
3R3 2 15 a 3 a (0] ﬁ le]
(w22 )
(RS - R%)

+ 1.5 (Z -AZe)AZe

3 3
(R, - R )

1.105 AZZ/3 0.458 & 22/3 .
&2 - R @ -r))

v+ Q0122 a7 In(R2-RJ) - 1n a2z}
...(2.21>

The total energy of the pure metal in the step model
can now be written by combining the energy of the inner cell
given in equation (2.18) and the energy of the outer shell

as given by equation (2.21).

= shell
En Eno + Eno,n1 eee(2.22)
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Now, the total energy, E_, is a function of the inner

n
cell radius, RO, the outer shell radius, Ra , and the
charge contained in the outer shell, 4Z_ . To derive the
energy for a metal with a given valency, Z, and core ra=-
dius, r, , under this model the exXpression for energy.

as given by equation (2.22) is optimized with respect to

the variables RO , Ra and AZe R

2.3.2 Results and discussion

The variation of energies of the inner atomic cell
and the outer shell with & Ze have been shown for a given
univalent metal with r_ = 1.0, 1.6, and 2,6 a,u, in figure
2.5. It is observed that the energy of the inner cell is
increasing from a highly negative value of zero as the
cherge in this cell reduces, On the contrary, the energy
of the outer shell is reducing from zero to a negative value
with the increase in charge in this shell, zsze, as shown
in figure 2.,5. However, the configuration of electron gas
of two different densities will be stable only when there
is a minimum in the total energy for a specific value of
A Ze + In addition to this, the configuration will become
energitically favourable compared to the uniform electron
gas only when the value of total energy, which is the sum
of the energies of the atomic inner cell and the outer shell,

at the minimum is lower than the energy of the atomic cell
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with uniform electron gas .

The difference in behaviour of the total energy with
a Ze y fTor low r, and high r. have been explored as |
shown in figures 2.6a and 2.6b. For r, = 1.0 and 1.6 a.u.,
one observes that the total energy decreases as the charge
in the outer spherical shell increases., However, beyond
the optimum the total energy starts increasing. The depth
of the energy minimum reduces as ionic pseudOpotent}al
becomes weak i.e., r, increases from 1,0 to 1.6 a,u., At

still higher values of r_ , the minima disappears,

Figure 2.7 shows the details of different energy
terms of the inner cell and the outer spherical sheli. It
is observed that the kinetic energy and the electron -
electron repulsion energy of the inner cell reduces with
the charge flow to the outer shell and similarly, the
magnitude of the negative energy terms like the potential,
exchange and correlation energy also reduces. But, the
kinetic energy, the electron - electron repulsion energy
of the outer spherical shell increase and the magnitude of
the negative energy terms like, potential energy, exchange
and correlation energy increase as the outer shell acquires
charge. ~The increase in the potential energy and the
decrease in the electron - electron repulsion energy of the
inner.cell almost balance for small :xze and thus the

decrease in kimetic energy of the inner cell and the exchange
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‘and correlation energy of the outer spherical shell provide
a major impetus for the lowering of energy. However, the
change in energy in the spherical shell starts dominating
the terms favouring the charge transfer outside the inner
cell, but soon the increase in potential energy of the inner
celi grows relatively strongly, disfavouring further charge
transfer. 'AS a result of these two opposing tendencies a
minimum in total energy is obtained for a given quantity of

charge flowing to the outer spherical shell.

The change in the density of electrons in the inner
cell and the outer spherical shell with the increase in
charge in the spherical shell have been shown for the
element Z = 1,0 and r, = 1.0 a.u.iin figure 2.8, In the
outer shell, the electron density, ng has been observed
to rise steadiiy with A‘Ze but, that in the inner cell, n, o
has two peaks. The smaller initial peak is the reflection
of a tendency to recover some potential energy while kinetic
and electron-electron repulsion energies are dominating ,
but due to the change of domination from electron-electron
repulsion to kineticvenergy at‘A Ze = 0,40 , there is a
corresponding peak in n, e However, the increased magnitude
of the change in potential energy at A Ze > 0.40 stimulates
a buildup of charge in an effort to partly compensate for it.
The electron density of the outer spherical shell, n,

increases steadily due to the dominance of the negative



'energy terms like potential energy, exchange and correlation

energy.

The radius of the inner cell, RO » and the outer
radius of the spherical shell, Ra , vary with the charge
in the outer shell as shown in figure 2,9. The inner cell
| radius decreases continuously in order to give an advantage
of higher ionic pseudopotential to electrons in spherical
shell., However, the outer radius increases initially to
restrict the electron density to a level beyond which, the
kinetic and the electron-electron repulsion energy will
become prohibitive , But, an increase in & Z, and a
~decrease in Ro strengthens the potential energy term to
Asuch an extent that the outer Spheriéal shell radius starts

- decreasing.,.

In this investigation, a configuration having no
electrons in the inner core region and all the electrons
in the outer spherical shell has been ruled out as an
artifact of Ashcroft's pseudopotential. The prevalent s-p
bond can not result in such an extreme electron distribu-
tion unless a large number of states with higher quantum
number are involved. The last possibility is not physically
sound because the promotion energies will forbid such an

accurrence,

The figures 2,10 and 2,11 show the total energy of

the inhomegeneous electron gas leading to metallic bonding,
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optimized with respect to R, AsZe and Ré for a given
valency, Z, and fhe core radius, r. . The change in energy
with core radius, re o for a given valency, Z = 1 to 7, has
been shown in figures 2.10 and 2.11. It has been observed
that, at lower core radii, the total energy is large and more
negative compared to that observed for higher core radii for
a particular valency, Z, As valency increases, the total |
energy becomes more negative. The total energies obtained

in the uniform electron gas model have also been plotted

with dotted lines for comparison with the. step model as
shown in figures 2,10 and 2,11, The step model yields a
slightly higher value for the negative total energy for a
particular valency, Z, at lower ranges of core radii. But,
the deviation in total energy in the uniform gas model and
step model becomes smaller for higher core radii. This

trend has been maintained for all valencies,

The variation of the charge in the outer spherical
shell for different elements characterised by valency and
colfe radius of the ionic pseudopotentional is shown in
figure 2,12, It is observed that, for stronger pseudo=-
potentials the values of 4 Ze are higher for a given
valency but, it increases' in certain rapid steps and re-
mains steady before the next increase at some appropriate
lower r_. This staire-like characteristic has been observed

(o]
for all valencies with a larger number of steps for higher
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valencies in the same range of r, under investigation.
But, the electron densities vary smoothly without any of
the above characteristics as observed in the case of z>Ze.
The figure 2,13 , shows the increase in the density of
electrons in the inner cell, ng o and the outer spherical
shell, ny for a decrease in the value of T However,
ne increases at a much faster rate compared to n, in the
outer shell, For large . T, the uniform electron gas model
is approched and the density difference between ng and

n1 reduces,

Figure 2.14 shows the variation of enérgy with the
radii of the atomic cell including the sphericeal shell
around, It is observed that for a given valency 2and o
low atomic radius the step model yields an energy consi=-
derably lower compared to that obtained in the uniform gas
model, Hoﬁever, the difference in energies become negli-~
gible beyond a given limiting value of the atomic radius
for a given valency. Thege limiting values of radii in=-
crease with an increase in valency, Since the density
functional theory is an exact theory it could create, in
its framework, a strong inhomogeneity in charge distri-

bution if it is favoured by a lowering in energy,

A comparison of the results obtained in the step

model with those observwed experimentally shows that the
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step model has invariably given a higher total negative
energy as shown in table 2,2, The total energy obtained
by uniform gas model hés been nearer to the values observed
experimentally in the case of metals.with lower valency,
but for higher valency metals, the uniform electron gas
model gives an energy which is higher than the observed
ones. The step model shows energy values lower than the
experimental ones, It should be pointed out that in the
step model, thé positive gradient energy contribution has
been ignored, This energy term would have checked the
extent of difference in electron densities in the outer
shell and the inner cell considerably., Also, its posifive
contribution to the energy is expected to result in higher
total energy and thus, the agreément would have been better
with experiments. In the next chapter the impact of this
gradient energy contributicn will be examined in a contin-
ucus electron density model and compared with the results

of the step model in order to devise appropriate correction,

2 .4 Summafy

The ground state energy and the cohesive energy of
the elements have been investigated under the assumption
that the electron gas around the ion core is uniform and is
under the Ashcroft's empty core pseudopotential characterised

by a core radius, The ground state energy has been calculated
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using Hohenberg-Kohn density functional formalism, The
energy functional has been reduced to a parametric function
of atomic radius, By knowing the valency of an element,
the core radius of the element has been expressed as a
function of atomic radius by demanding that the ground state
energy corresponds to the minimum of the energy function

at the observed values of atomic radius, Ra . The cohesive
energies determined by this model have been tabulated and
are higher than the experimental values for the corréSpon—
ding atomic diameter, But if one allows for small inhomo-
geneity through second order perturbstion theory there will
be a further lowering of ground state energy but a simul-
taneous shift in the atomic radius will result in a better

matching of the calculated values with the observed ones.

The stability of the uniform electron gas model
has been analysed with respect to a movement of the charge
away from the atomic cell causing a reduétion in the total
energy. For elements with rs> 2.4127 a.u, only the uniform

electron gas model is stable.

A large inhomogeneity in the electron'gas has been
introduéed in a step model where the atomic cell has been
split into two segments with different densities.of electron
gas. The gradient energy in the density functional expan-

sion has been ignored, The density functional is reduced
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to a three parameter function of atomic radius, the radius
of the inner segment and the density of electrons in the
order segment. The ground state energies calculoted are
smaller compared to the observed results for different
elements, However, a correction to this model introduced
by comparing the results with that obtained from continuous
density model presented in the next chapter improves the

performance of this model remarkably.
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2=1T0 4.
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Table-2.2 The total energies En of different elements
obtained from step model and compared with
those obtained from the uniform gas model and
experiments

E, (a.u.)
Ele- Valen- Atomic Experi=- Uniform Step
ment cy Radius mental gas
R (a.u.) [69]

Li 1 3.258 -0,2581 ~0,2785 -0.303

Na 1 3.931 -0,2299 ~0.2375 -0.2410

K 1 4,862 -0,1939 ~0.1966. -0,1966

Rb 1 5.197 -0,185 -0,1852 ~-0.1852

Cs 1 5.625 -0.1726 =0,1724 -0.1724

Be 2 2.351 -1.1342 -1,2288

Mg 2 3.339 -0,8893 ~0,9224 -1.08

Ca 2 4,123 -0.7287 -0,7661 " -0.825

Sr 2 L Lok ~0.7090 ~0.725

Ba 2 4,661 -0.629 ~0,6860 ~-0,686

B 3 2.273 -2 .8357

Al 3 2.984 -2,0824 ~2 4,129 -2,85

Ga 3 3,154 ~2.2088 ~-2,0299 -2.55

In 3 3472 -2 ,0294 ~1.8663 -2,20

T1 3 3.577 -2.1401 ~1.8177 -2.15

Si 4 3.177 ~3,9607 ~3.475 -4,55

Ge L 3.309 ~3.9173 ~3.35 -4,325

Sn 4 5.512 -3.541 ~3.1525 ~4,05

Pb 4 3.648 ~3.,6275 -3,047 -3.80




CONTINUOUS
DENSITY MODEL
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3,1 Introduction

The step model suffers from a serious handi-
éap, since it is incapable of accommodating the gradient
term in the density functional expansion. As in the step
model, the representation of the charge density by two
homogeneous systems may be a poor approximation tq the
true charge distribution., However, the inhomogeneity
can be incorporated in the atomic cell in a continuous
manner to avoid the physically improbable discontinuity
at the boundary of the segmented or the step model resul- -
ting in the divergence of the gradient term in the enérgy
expression., In a realistic electron distribution, the
gradient terms in energy is by no means negligible and
a modifiéation to the electron density is called for to

improve accuracy. But, a continuous inhomogencous density

will introduce additional optimisation parameters., In the-vase
of pure clements the choice of the dénsity used here

is a continuous tangent hyperbolic function similar in

form to the one used by Smith( 76 ] to model the charge

density at the metal surfaces. The analytical form of the

surface charge density has been written as,

n

n(Z) = n_ - ~§~ exp(BZ) for Z < 0 (in metal)

exp (=BZ) for Z » 0 (out side)
. ...(3'1)
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+
the free parameter to be determined variationally. The

where, n, is determined by charge conservation and B is

resulting charge distribution for different metals is
very similar to a tangent hyperbolic function., The cal-
culation of Iang and Kohn [77] with a Jellium model for
the metal surface also yields a charge distribution |

similar in form to that used by Smith [ 76 ].

3,2 Formulation

The Ashcroft's empty core pseudopotential [ 43 ]
has been used here as in the case of step model and the
electron density within the cell, n(r), can be written
as, |

- 1. - -
n(r) = g[:(nc + n1) + (no ~n1) Tanh 8 (ruro ) ]

or
n(r)

A + B Tanh B (F“EO ) 000(392)

where, A is the uniform component and B is the coeffi-
cient of the nonuniform\component of the resultant charge
density. $ 1is the slope and ro is the point of inflec-
tion of this distribution. .From the charge conservation
criterion one can geﬁ

R
a - -
S [aA+BTanh g (v-r ) ] dr =2 ere(3.3)
. O '
where, R_ is the atomic cell radius. For a givenR_, § and
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r one can evaluate A, and then B can be evaluated with
0
the help of the charge conservation criteria yielding

R
B = (Z-4%RAS)/ [ Tanh B (F-F ) &F  ...(3.4)

The evaluation of A and B completely defines the charge
density of the atomic cell, n(r), Using Hohenberg -

Kohn [ 2] expression for the energy functional and the
local density approximation, one can express the energy

of the atomic cell, En, as,

R
En=fa‘v(f)[A+BTanhB(?-x‘=o)]df
rc
% ?a j‘a [ A+B Tanh B (f-fo)] [A+B Tanh B(ftaio)]d; .
° | F - £ |
R 3 5/%
+ I Gy [ A+B Tanh B (F-F ) ]/ oF
o) 10 o
Ra | . b3
+Of Eyo [A+ B Tanh p(F-F ) ] ar
Ra 2
+ [ " gy(F) | v a*B Tanh B(F-F ) ] | doF
O

eee(3.5)

where, the first term is the pseudopotential term and the

‘second is electron~ electron repulsion, the third term and
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fourth term are the kinetic, the exchange and the corre-
lation energy, Exc’ as explained in section 1.2.2 of
chapter 1. The last term is the energy due to gradient
contribution from the kinetic energy - and the exchange

and correlation energy.

The potential energy part, EPE , of the equa-
tion (3.5) is integrated over atomic cell radius, R_ ,

from core radius, r. o and is given below

R
EPE = - 2nZ (Ra - T ). A ;f = B Tanh B (r-ro )ar
c

e e(3.8)

Then, the electron-electron repulsion term of equation (3.5),

Eee s, 1s obtained as,

_ 16 _ 2,2 .5
Ece 5 - " A Ry
R r
+ 2720 (2) BramB (F-F_ ).
o or > T r

. B Tanh B (f'-fo ) dr!

R
+ G (5 )(B Tanhp (F-F ) B Tanhp (F'-F )dF'] of
rF < p/ T |

£) A.B Tanh B (F-F, ) dF!
r
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R
a

(

Y ABTanh B (F' =T ) drf' ] daf ...(3.9) -
<§ T

+
)

S~
He N

The. kinetic energy term, T , 1is evaluated as,

Ra . 53
of [( A+B Tanh B (r-ro)] 4F

2/3
2
(3 7))

13
!
ol™

eee(3.10)

The exchange and correlation energy term, Exc s has been

reduced to the following form

1/3 R _ L/3
B T --27’; (-3;[- ) c)fa[ AtB Tanh B (F-F; ) ] aF
g 0.0155 1y ¢ > ]
3

a
-0.0575
+of [ * 47 [ A+B TanhB (F-i’-o))]

< [ A+B Tanh B (F-r_) ] . df e (3a1)

The gredient energy, E y of this has been incorporated

grad
here as such after substituting the expression for the

electron density as given below,
R . .
> - 2/
_Egrad = of [ M8 + C(rg )(A+B Tanh § (F-T )) ]

[ A*B Tanh B (F-F, ) I

. [82 62( Cosh B (¥ - I-‘O)j;b ] ar eee(3.12)



17

where, the first term in the first square bracket is due
to the kinetic energy and the second term is due fo the
exchange and correlation energy. The parameter, A\ , in
the kinetic energy contribution has been taken as 1/9 which
is appropriate for perturbation calculations involving
large wave lengths in comparison to Fermi wave length

as suggested by Jones and Youngi 8] . The C(rs) is a
gradient coefficient dependent on electron denéity through
the radius of a volume containing one electron,.rs s &S
suggested by Rasolt et.al.,[ 9] . In the equation (3.12)
the value of C(rs) has been taken és 2:{11‘0;"'3 , an average
of the values calculated in the metallic range of electron

densities. -

The integration involved in the equations (3..4)
and (3.8) to (3.12) have been worked out numerically
using 15-point Gaussian quadrature formula. Combining
the equationsfrom (3.8) to (3.12) one gets the total

energy per atom, En s as

E =E,.+E + T + E + E ees(313)

n PE ee Xc grad
which is a function of cell radius, Ra the gradient para-
meter, B , the radius of inflection, T . The optimum
energy is obtained by a parametric wvarietional cele

culation with respect to these parameters.
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3,3 Results and discussion

The variation of the ground state energy with the
core radius, LA in the continuous density model obtained
through optimization as explained in the previous section,
is plotted in figure 3,1, For a particular valency, the
total energy is more negative for lower core radius i.e.»
stronger pseudopotential. With an increase in valency the
pseudopotential again becomes stronger reshlting in a
higher.total negative energy and the cohesive energy. The
arrow mark in figure 3,1 seperates the region between inhomo-
geheous eleciron gas as observed in the COptinuoﬁé dgnsity
model and the uniform electron gas. At lower core radii
the stronger potential favours an inhomogeneous distribu-
tion of electrons in the atomic cell but at the cross over
core radius, ri s, indicated by the arrow, the‘energy of
the inhomogeneous model smoothly Joins with that of the
uniform electron gas model, But the cross over core
radius, rz y shifts to higher values for an increase in

valency due to the resulting stronger potentional.

Figure 3,2 shéws typical electron density distribution
in continuous density model compared with those obtained
in the step and the uniform gas model for the same valency
and the core radius. It is observed thatrthe inclusion

of the gradient energy term as it has been done in continuous
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density model reduces the extent of inhomogeneity as
compared to that in the step model, It is evident from
these figures that the step model exaggerates the inhomo-
geneity by taking advantage of the favourable ionic pseudo-~
potential just outside the core region. The gradient energy
in the continuous density model reduces the electron density
in the inner region and enhances it in the outer region as
compared to those in the step model. Thus, the gradient

in the electron density in the continuous density model is

. kept low, But the uniform electron gas model maintains an
average density as it is required in this model. The atomic
radius in the uniform gas model and the continuous density
model are similar but the step model yields a larger atomic
radius., Because, the electron density in the outer region
of the step model is determined by the balance of potential,
kinetic and repulsion energies; but in the continuous density
model gradient energy shifts the balance to a higher
electron density. Thus, one observes that uniform electron
gas model is a better model yielding a more reasonable
estimate of atomic radius, energy and electron density as

compared to the step model.

When one compares the figure 3,3 for valency, Z = 4,
one observes that the extent of inhomogeneity reduces as the
core radius increases. This trend is common to both the

continuous density model and the step model, It has been
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further demdnstrated in figure 3.4 where the ratio of
electron densities in the inner to that in the outer region
has been plotted against the core radius, L for diffe-
rent valencies, When the potential is strong by reasons

of either lower core rédii or increase in valency, the
extent of inhomogeneity increases. But for every valency,

there is a core radius at which the inhomogeneity vanishes,

Figure 3.5 shows the change in the cross-over core
radius at which the inhomogeneity vanishes with the valency.
The cross-over core radius, rz y increases with an increase
in the valency but saturates beyond a valency, Z = 3, It
is interésting to note that both the step and the continuous
density model yields the same cross-over core radii, rz ’

although the extent of inhomogeneity differs significantly
' *

in both these models, When this cross-over core radii, L

are compared to the limit of stability of the uniform gas
model as it has been analysed in the section 2.2,3, it is
observed that the stability has been overestimated because
it does not consider the additional energy factors in the
outer region favouring the inhomogeneous distribution of

electrons.

In teble 3.1, the typical values of various energy
terms involved in the continuous density model has been

presented for the valency, Z = 2,0 , and for the core
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radii, r, = 0.6 and 2,0 a.u. The various corresponding
energy terms of the uniform electron gas model a nd the
step model are alse tabulated for comparison. The energy
values in the continuous density model and the uniform
gas model are comparable whereas the step model has
energies quite different from these two models. Thus the
positive gradient energy term is pushing the electron dis-
tribution and the energies away from the step model to
ones akin to those obtained in the uniform gas model. This
explains the success of the uniform gas model in explaining
the cohesive energies and the observed ‘atomic radii of the
metals althpugh the uniform gas model appears quite un-
realistic, At higher core radii when the gradient energy
'tepm becomes small due to a reduction in the extent of
inhomogeneity the‘step model, the uniform gas model and the
continuous density model result into similar energy terms
and electron densities,

The difference in the total energy obtained from
thé continuous density model and the uniform gas model,éaECD“Us
has been presented in figure 3,6 for various core radii,
At low core radius the difference in total energy is obser-
ved to be more and it reduces steadily as the core radius
increases for a particular valency. The difference in total
energy also increagges as the valency increases. It is

expected because the inhowogengily decreases as the potential
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becomes weak and so the difference in energies in the uni-
form electron gas model and the continucus density model

should become small.,

The total energy of various metals obtained from
the continuous dénsity model has been presented in table‘
3,2 and the corresponding values obtained from the uni-
form gas model and the experiment have been shown for
comparison. It is observed that the values calculated from
the continuous density model for elements with valency,

Z =1 and 2 of lower core radii like Lithium, Sodium,
Beryllium, Magnesium and Calcium have lower in total
energy in comparison to those obtained from the uniform
gas model, Whereas all the elements with higher valencies,
Z =3 and 4, the calculations of the continuous density
model show a lower total energy compared with the éorres-
ponding results from the uniform gas model. The energy
values obtained from the continuous density model lies
within a limit of 5% from those calculated using the uni-

form gas model,

The total energy of various elements obtained
from continuous density model has also been compared in
table 3.2 with the corresponding experimental values. It
is observed that for elements with valency, Z = 1 , the
total energy for element Lithium is lower than the observed

value, but for other elemerits with the same valency the
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calculated total energies are nearer to and a little lower
than the vaiues observed experimentally. For valency,

Z = 2,0, the elements show highér negative vélues com=
pared to the observed ones but for elements with valen-
cies, Z = 3 and 4, , the observed total energies are lower
(higher negative values ) than the calculated values, The
calculated total energy of the continuous density model

matches with the experimental total energy to within

+ 10%.

3.4 Gradient correction to the step model

The total energy obtained from the sﬁep and the
continuous models show a difference, LXESZCD Whic§ has been
attributed primarily to the gradient correction and has
been shown in figure 3.7 along with the difference in the
electron densities, An, in the two segments of the atomic

cell in the step model, This figure shows an approximately

linear behaviour which can be represented as,

S-CD . '
AE =X+ Y an vee(3.13)

where, AEﬁ-CD

is the energy correction., X and Y afe the
coefficients which are dependent on valency., The coeffi=:
cients X and Y are evaluated by least square fit, The
values of X and Y are calculated for various valencies

and are shown in figure 2.8. X and Y are also observéd to
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vary linearly with the valency. Thus, the correction to
the energy obtained from the step model has been obtained
for the entire range of core radii and valencies under

investigation.

3,5 Summary

In the continuous density model, the inhomo-
geneity in electron density within the atomic cell has been
incorporated as a continuous tangent hyperbolic function
to avoid the physical improbable discontinuity as in the
step model. By using this density and Ashcroft's empty
core pseudopotential the Hohenberg-Kohn density functional
equation has been constructed along with the gradient term,
Now the equation is a function of for parameters namely,
the density in the inner region and the position at dis-
continuity, the density gradient parameter and the atomic

I‘adius .

The electron density distribution has been compared
with the uniform gas and step model and found that, by
including the gradient energy term in the continuous density
model, the electron density in the inner region comes down
considerably as compared to that in the step model. The-
charge neutrality is maintained by an increase in the
electron density in the outer region and by an adjustment

of atomic¢ radius. The total energies obtained from the
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continuous density model and the step model are found to
merge with the uniform gas model at the same energy
smoothly at a high core radius termed the cross-over core
radius. This croés-over core radius has been compared
with the limits of stability of the uniform gas model and
it has been observed that the uniform gas model is less
stable compared to that indicated by the limited analysis

already performed,

The ground state total energies are calculated
for various simple metals and compared with uniform gas
model valués and experimental values, The total energies
of lower valency, Z = 1 and 2, elements with lower core
radii have lower values incomparison to the calculations
of these elements on the basis of the uniform gas model. 1In
higher valency elements with Z = 3 and 4, all the elements
show lower values of total energy incomparison to that
obtained in the uniform gas model, The total energy of
various elements calculated using the continuous density

model has been within + 10% of the experimental values,

The difference in total energy obtained from this
model and the step model shows a linear variation with
the electron density difference within the atomic cell in
the step model, The total energy in the step model has
.been corrected for the gradient contribution in the entire

range of core redii and valencies under investigation. _
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Total energy,Ep (a.u.)

re (a.u.)

Fig.3.1: THE VARIATION OF TOTAL ENERGY, Ep in a.u. WITH CORE
RADIUS,c in a.u. IN CONTINUOUS DENSITY MODEL FOR
VALENCIES, Z=1to 4. THE ARROW MARK [NDICATES
THE BOUNDARY WITH THE UNIFORM GAS MODEL.
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Fig.3.2:THE ELECTRON DENSITY DISTRIBUTION,n(F) IN THE STEP

MODEL -S,THE CONTINUOUS DENSITY MODEL—-C AND THE
UNIFORM GAS MODEL-U FOR THE CORE RADIUS,'c=0.61In
a.u. AND VALENCY,Z=4.
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Fig.3.3: THE ELECTRON DENSITY DISTRIBUTION,n(F) IN
THE STEP MODEL-S,THE CONTINUOUS DENSITY
. MODEL -C AND THE UNIFORM GAS MODEL -U, FCR
THE CORE RADIUS, Ic=1.6a.u. AND THE VALENCY, Z=4.
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Fig.3.4:THE VARIATION OF MAXIMUM TO MINIMUM
RATIO OF ELECTRON DENSITIES WITH THE
CORE RADIUS,c in a.u. FOR THE VALENCIES, -

Z=1to 4. - .
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Table~ 3,2 The total energies of different elements
calculated in the continuous model and
compared with the experimental values and
uniform gas model

Total Energy (a.u.)

Elements  Valen- Experi=- Continuous Uniform gas

cy mentall 69] density

1. Li 1 ~0,2581 -0.279 ~0,2785

2, Na 1 -0.2299 -0.238 ~-0,2372

3. K 1 ~0,1939 -0,1966 -0,1966

4. Rb 1 -0.185 ~0,1852 -0.1852

5. Cs 1 -0,1726 -0.1724 -0,1724

6. Be 2 =1.1342 -1.2750 -1.2288

7. Mg 2 ~-0,8893 ~-1.0 -0,9224

8. Ca 2 -0.7287 -0,780 -0.7661

9, Sr 2 -0.6779 -0,7090 -0,7090

10. Ba 2 -0.629 -0,6860 -0.686

11. Al 3 ~2,0824 2,15 -2.129

12. Ga 3 -2,2088 -2,05 -2,0299

13, In 3 -2,0294  =1.875 ~1.8663

14, T1 3 -2 .14071 -1.825 -1.8177

15. Si 4 -3.9607 ~3.65 -3 J475

16, Ge 4 -3,9173 -5450 -3,35

17« Sn 4 -3 .541 =3.225 -3.1525

18. Pb 4 ~3,6275 =3.20 ~3 047




MODEL FOR
COVALENT
BONDING



137

4,1 Introduction

A study of the stability of the uniform gas model

has shown that, for>r 2.4127 a.u., the uniform electron

s
gas model works, but a large number of pure elementai
solids with covalent and metallic bonding have the atomic
radii corresponding to r_ less than 2,4127 a.u., (see
figure 2,1) where the uniform gas model cannot be used
Justifiably. For these elements there is a lowering of
energy when some amount of charge,észe s is put away from

the uniform gas atomic cells, thereby resulting in an

inhomogeneous electron distribution,

The charge staying out of the uniform gas atomic

cell can distribute itself in two different modes -

i) the electrons can form a shell around the former
cell and result in a non directional metallic bonding as it

has been discussed in chapter-2, or,

ii) these electrons can form electron cells in the
bond directions and result in a directional covalent

bonding.

In the present model for covalent bonding, the
simplicity of the uniform electron gas model has been
retained to the extent possible, The entire crystal space
has been accounted by assuming that, it éonsists of the

electron gas cells around the ions and purely electron cells



138

outside, Both these cells hé@é uhifcrm electron gas of
different densities, The nﬁﬁbéf of bonds per atom has
been found out by the octet rile and the charge outside
the uniform gas cell around the ion has been distributed

in these many number of electron cells.

The electron distribution assumed in this model is
quite crude and does not take into account the gradienf
energy contribution. But rigour has been sacrificed to
maintain simplicity. Also, this crude picture makes it
possible to cénceive a mixed covalent-ionic bonding when
a part of the purely electron cell charge shifts into the
uniform gas cell of aﬁother atom. Pure ionic bonding can
also be explained as an extreme case of electron gas cell
merging entirely with the uniform electron gas cell of

another atom to create the anion uniform gas cell.

The density functional formalism allows a better
estimate of energy for the different segments of uniform
ges compared to second or third order perturbation theory.
However, the eiéctron‘distribution obtained in the latter

approach is superior,

The electron distribution in this model can be
improved by dividing the uniform gas cells into smaller
segments and thus, increasing the number of optimization

parameters, When the size of the segments are small, the
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gradient energy contribution can also be included., The
present investigation is limited to the crude model of
electron distribution, but the possibilities of refining

the model has also been recogniséd.

4,2 Formulation

The electron deﬁsity in the covalent solid is assumed
as a superposition of the electron density of the uniform
electron gas cell around the ion core with a density, n, o
and the remaining charge of the neutral atom, forming
electron cells in the bond directions with a density of n,

_ n 0 {r R
n(f) = { ° © e (B.1)

n, o X (r—ZRO ) SR,
where, the charged cell around the ion core has a radius RO
and the electron cell has the radius of Re « Since, the
electron distribution in the cell around the ion core is
uniform, one can write the expression for energy for’the
charged cell, E_ , directly following equotions (2J11),
(2.12) and (2.17). |

The remaining charge, Aze s Which stays out of the
cell around the ion core, can now be distributed oufside
as seperate electron cells with a different charge density.,

The number of cells with radius Re are the number of bonds
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per atom, 3*/2 , Which can be calculated from the valen-

oy, 2, of the atom in question with,

B =2z forz S 4

and *
. B = ( 8-2 ) for 2 > 4 'co(hoz)

The charge neutrality of the system imposes a condition

that
% Re
(B /2 )Of n, dr = AZe
or
¥#* ’1 3
n,=3 6z, (B /2) /hnR] veo(4.3)

*
The constant $ , for a structure also decides the mag-
nitude of the Madelung energy between the electron cells

and the cells around the ions as given below,

2

% ull
Bo, == G 825 (B/2) [R cou(b4)

where R, is-the distance between the positively charged cell
and the negatiVely charged electron cell and is equal to the
sum of the radii of these two cells and am is the Madelﬁng
constant which has values from 1,38 (for linear chain
structure) to 1.76 (for bcc structure) in the range of

observed crystal structures.

The energy of the negatively charged electron cell,

En , can be written with the help of Hohenberg~ Kohn
e

s _;ff
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equation €8

R R
. e n n - -
E = % S © S ...-..%._:.?.n. . dr gg
Te 0 0 | r=r1|
R R,
e r £ r
+ g’ .\ ‘t(ne) n, df + g‘ xc(ne) n, df

..’(405)

In this equation, the first term is the electron-electron
repulsion term in the electron cell, the second term is

the kinetic energy and the third one is the exchange and the
correlation energy. Now the energy as expressed in equa-
tion (4.5) is a function of the electron cell radiué, Re ,
and the number of electrons in the negatively charged cell,
6 Z, . Replacing n, with AZ_ in equation (4.5) from
equation (4.,3) and integrating one gets the resulting

equation for energy as

-2
E_ - = 0.642‘2 (8%/2) /R,
' 5/3 -
+ 1,105 & Ze/ ( F/2) >3 / Ri
- 04582z (B/2) / R,
M -1
vaz, (BF/2) [ - 040575

+ 0.0155{1n R_ -%— (In R_-1n ( B*/2)) }]

loo(4.6
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The expression for total energy pef atom of the
covalent material, En » may now be written by combining
the energies of the positively charged cell around the ion
core, the electron cells and the electrostatic energy given

respectively by equations, (2.17), (4.6) and (4.4) as

E = E + (8%/2) By * E ...(4.7)

n n

o es

The energy per atom of the covalent material given by
equation (4,7) has been optimized with respect to the
floating parameters - RO y Re and A‘Ze to obtain the mini-
mum energy per atom, At the minimum of energy, one can get
the corresponding values of R, and R_ at equilibrium, The
- bond length for the covalent solid can also be célculated

from these values of Ro and Re .

4.3 Results and discussion

The variation of energies of the cell around the ion
core and the electron cells per atom for an increasing AZe
have been shown for a given valency, Z = 4, with the core
radius, r, = 0.6, 1.0, 1.6 a.,u., as shown in figure h.i.

From this figure, it is observed that the energy of the

cell around the ion core is increasing from a highly negative
value to zero; as the charge in this cell reduces. On the
contrary, the energy of the electron cell is reducing from

zero to a negative value with an increase in “Ze as it has
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also been shown in figure 4,1, However, the configuration
of electron gas with two different densities as proposed

in this model will be stable only when there is a minimum
in the total energy for a specific value of‘AZe- and this
electroﬁ configuration will become energetically favourable
when its energy will be lower than the energy of the atomic
cell in the uniform electron gas or continuous electron

density model,

The impact of core radius bn the variation of the
total energy withéﬁze for low and high core radius, r. o,
have been shown in figure 4.2, for.rc = 0.,6,1.0 and 1.6 a.u.
One observes that the total energy decreases as the charge
in the electron cell increases. However, beyond an optimum,
the total energy starts increasing. The depth of the energy
minimum reduces as ionic pseudopotential becomes weak and
its position shifts to lower A:Ze. Finally, beyond a parti-
cular core radius, the minima disappears, The details of
different energy terms of the oharged.cell around the ion
core and those of the electrons outside constituting the
total energy are shown with respect to a variation in ZBZe
in the figure 4,3, At low A Z, values the positive energy
terms like kinetic energy and electron- electron repulsion
energy of the cell around the ion core reduces with an-

increase in the charge staying out in the electron cell.

Similarly, the magnitude of the negative energy terms like
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the potential, the exchange and the correlation energies
of the electron gas around the ion core also reduces. The
energy of the electron cell is negative, but small because
the exchange and the correlation energy more than balances
the kinetic and electron-electron repulsion energy. in this
cell.

As the number of electrons in the electron cell. increases
outside for the elements with valency, Z = 4.0 and core
radii, r, = 0.6, 1.0, 1.6 a.U,, the corresponding changes in

the density of the electrons in the cell with the ion core,

n_ , and that in the electron cell, n_, have been shown in

e
figure 4.4, For an element with core radius, r, = 0.6 a,u.
the electron density in the cell around the ion core, ng o,

has first increased upto an electron cell charge 42, = 2.0
then the electron density, ng o decreases beyond A;Ze = 2,0,

but the electron density, n_. , in the electron cell increases

e
monotonically with the flow of charge to it, The increase
in the electron density of the inner cell around the ion
core with the flow of charge from it initially is driven
primarily by an attempt to recover some potential energy

by an appropriaté redistribution of electrons where the cost

in the kinetic and the electron - electron repulsion energies

are less. . The Madelung encrgy, although small. initially,
strengthens the tendency to increase-electron density hecause

of a consequent reduction of its size., But, as the charge

transfer to electron cell increases, it is no longer possible
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to gain any advantége in potential energy by increasing

the density, because the cost in the kinetic and the eleg~
tron- eleofron repulsion energy becomes prohibitive. Rather,
it is possible to reduce energy by redudingtthe electron
density because of larger reduction in the positive energy
'terms and thus, the electron density in the ion core cell
reduces. In the electron cells; the electron density
increases continuously, although it causes in increase in
kinetic energy and the electron- electron repulsion energy.
The electrostatic energy term tries in general to reduce
.the size of both the ion core and the electron cell, This
term could not influence the size of the ion core cell
because of high energy cost, but it has been effective in
controlling the size of the electron cell to cause a
continuous rise in the electron density, N . As the core
radius, ros increases from 0.6 to 1.6 for elements with
valency, Z = 4, the rate of increase in density as well as
its magnitude in the ion core cell reduces and the maximum
in‘density shifts to lower values of electron transfer to
the electron cell, ZSZe. In the electron cell, the density
is lower for an element with higher core radius, ros i.e.,
weaker ionic pseudopotential because the large size of

the cell around the ion core makes the Madelung energy
weak and so, it is less effective in controlling the size
of the electron cell outside, The Variatibn in radius of

the ion core cell, Ro , and the radius of the electron cell,
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Re’ with the flow of charge to the electron cell, Azé ’
has been shown in figure 4,5, The size of the cell around
the ion core decreases continuously, but the radius of the
electron cell increases with an increase in the charge,
AZe , in it, initially but subsequently the electron cell
size reduces when the Madelung energy starts dominating.
When the flow of charge to the electron cell, A& Ze s 1S
small the Madelung energy is not strong enough to force a
reduction in the size of these cells even under mosi
favourable Madelung constant, But the charge flow is still
accompanied by a lowering of energy. The cell around the
ion core has a lower energy compared to the neutral atomic
cell. This is due to a large reduction in the kinetic and
the electron-electron repulsion energy compared to the in-
crease in the potential, the exchange and the correlat ion
energies. In addition, this trend is further helped by the
negative energy of electron cell and the Madelung energy
helps a continued increase in the charge inside the electron

cell outside,

When AZe is large the electrons outside the cell
containing the ion core increases the energy of this cell
but the Madelung energy becomes the dominating term to such
an extent that it compresses the electron cell to a density
where its energy becomes positive, Thus, the only energy

term favouring the charge transfer is the Madelung energy,
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The minimum in energy with charge transfer is
observed at a level of charge transfér when the Madelung
energy is not strong enough to dictate the energy of the
electron cell around the ion core. But the energy of the
electron gas cell at this stage may be eithef positive
or negative depending on the extent of influence of the

Madelung energy.

The figures 4.6 and 4,7 show the total energy of
the covalent bonded elements in the present model optimi-
zed with respect of Ro, AZe and Re for a given valency,

Z =2 to 7, and core radius, L The structural constant,
LI has been taken as 1.76 for all the_elements.. It has
been observed from these figures that for a particular
valency, 2, at lower core radii the total energy is large
and more negative compared to those observed at a higher
core radii. As valency increases the total energy becomes
more negative, The arrow marks in these figures indicate
the core radii at which the covalent model evolves to the
limit of uniform electron gas model as the charge outside

the atomic cell becomes zero, This core radius termed as
* ‘

c 3 and its variation for different

crossover core radius, r
valencies has been presented in figure 4.8, For valen-
ey, 2 = 1 , the elements under investigntion do not show
any covalency because the charge transfer is always zero

in the range of core radii of 0.6 to 3.0 a.,u., But for
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valencies Z = 2 onwards, the crossover core radius, rz ’
increases from 2,0 a.u, and increases further upto Z =5

and saturates, This trend is in conformity with the obser-
vation that covolency becomes more and more prevalent at
higher valencies. In the figure 4.9, the total energy at
the crossover core radius has been plotted against valency.
The energy at the crossover is more negative with an in-
crease in the valency but the observed total energies in
the elements becomes far more negative thereby increasing

the possibility to become covalent.

The variation of the charge in the electron cell for
different elements characterised by valency and core radius
of the ionic pseudopotential are shown in figure 4,10, For
a given valency it is observed that at low core radii i.e.,
for stronger pseudopotential the AZ_ is high and it
reduces with an increase in core radii, As the core radius
reaches the crossover point the charge in the electron cell
becomes zero as it.has been pointed out earlier and the
contribution from electron cell energies and the Madelung

energy vanishes. When the valency increases the electron

cell charge, 4 Ze s increases for the same core raodii,

The variations in the electron densities of the

charged ion core, n_ , and the electron cell, ng, , are also

o)
plotted with the core radii, in figures 4,11 and 4,12 for
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various valencies., These figures show that the electron
density in the ion core cell reduces smoothly and steadily
as core radius increases, whereas the electron density

in the electron cell reduces upto a certain core radius
because the Madelung energy favouring an increase in density:
becomes weak as core redii increases resulting in a lower

electron cell charge,

The variation in the total energy for elements with
valency, Z = 4 has been reported earlier with the most
favourable observed Madelung constant Qp = 1,76, The cal=
culation of the exact Médelung constant has been avoided
as it will depend on the number of. electron cells and its
precise arrangement which may vary from element to element.
However the impact of &p on the total energy has been
investigated for the lowest observed ap of 1.386 and the
highest observed ap of 1.76. The figure 4,13 shows the
energy difference between the highest observed am = 1.76
and lowest observed a, = 1,386 scaled with respect to the
total energy obtained with oy = 1,76 for different core
The contribution of an error in ayn is highest

radii, L

for small core radius because electron cell charge and

]

Madelung energy is higher at lower ¢ore radii. As the cor

'S

radius increases the impact of ap reduces steadily till

+*
the crossover core radius, r. = 2.4 a,.u,
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, obtained from

The difference in atomic radii, Ra

the two extreme values of ay , has also been scaled with
the atomic radius obtained with ap = 1,76 and presented
in the figure 4,14, At the core radius of, r, = 0.6. a.u.,
the fractional deviation is negative and high (-8%) but
with the increase in core radius it comes down leading
finally to a positive deviation with a maximum of + 2,6%

then the deviation falls to zero,

The total energies obtained from the calculations of
the model for covalent bonding for various elements have
been compared with the experimental total energies of those
elements to determine the corresponding core radii, r_ .
The observed atomic radii of the elements from the unit cell
dimension show large deviations from those calculated on
the basié of total energies. Since the model yields an
energy expression quite insensitive to a variatign in the
atomic radius the calculations have.given poor results for
atomic size, The reported values of the core radii of
various elements are taken from Harrison[ 78 ] who has
obtained these values using the model 5gtential due to
Animalu and Heine[ 49 ] , except for Oxygen, Sulphur and

Chlorine which are obtained from fitted pseudopotentials

by Cohen and Heinel[ 31] .

In the case of Carbon with valency, Z = 4, the core

radius, o obtained here is 0.4 a,u. whereas the reported
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value of O.699b.a.u. is much higher. The core radius, L
obtained for Silicon is 0,96 a.u. and the reported value is
1.0586 a,u, Similarly, for elements with higher valency of
Z = 5 and above Phosphorous, Oxygen, Sulphuf and Chlorine
show a comparatively lower core radii than those reported.
As the core radii increases i.,e,, the elements with a large
diameter like Antimony, Selenium the core radii}are quite
similar to but lower than the reported values with very
_small differences except for Bismuth and Tellurium where the
obtained values of core radii are slightly more than the

reported values., This indicates that the variation in energy

with the core radii is more accurate at higher core radii,

4,4 Summary

The inhomogeneity in the electron distribution under
covalent bonding has been created by removal of electrons
from the atomic cell and by allowing a seperate electron
cell to from in the bond directions where it is possible to
take into account directionality of the covalent solids,
The electrons around the ion core termed as ion core cell
and the cell of electrons are allowed to have different
densities, With the help of octet rule, the number of
bonds are calculated and it is assumed that the number of
electron cells are equal to the number of bonds.. The

gradient energy contribution has been neglected here for
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simplicity., The total energy has been calculated with the
optimizing'parameters as the radius of the ion core cell,
the electron cell and the amount of charge present in the
electron cell, The Madelung energy term has been included
but it requires the structural orientation of electron cells
around the ion core cell for each individual element. This
problem has been avoided by assuming the maximum Madelung
constant observed uniformly for all elements, The impact

of this assumption has been assessed by examining the situa-

tion with the most unfavourable Madelung constant.

The total energy calculated from this model shows
that for valency, 2 = 1 , the charge transfer is always
zero and so, there is no possibility of co-valendy. For
valency, Z = 2, and above the total energy of this model is
lower than that of the uniform gas model but evolves to it
at higher core radius. But there are no elements in the
range of cofe radius where the energy obtained from model
for covalent bonding is lower than that in the uniform gas
model, The cross~over core radius, ri , increamses to higher
values at higher valencies and comes within the range of
' occurrence of varibus,elements. This trend is in conformity
with the observations from the periodic tablekas the co-
valency becomes more prevalent at valencies higher than
four,

The comparison of the calculated energies with the

observed ones yields the values of core radii for different
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elements like Carbon, Silicon, Oxygen, Phosphorous etc, It
has been observed that the difference between the core
radii so obtained the ones reported earlier reduces for

higher core radii,
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Fig.4.1: THE VARIATION OF ENERGIES in a.u. OF THE ION CORE CELL AND
ELECTRON CELL WITH FLOW OF CHARGE,AZ, FOR VALENCY,Z=4
AND CORE RADH,c=0.6,1.0,1.6 a.u. . .
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Fig.4.4: THE CHANGE OF DENSITY OF ELECTRONS IN THE ION
CORE CELL,noin a.u. AND THE ELECTRON-CELL,Nein
a.u. WITH THE FLOW OF CHARGE,AZ; FOR VALENCY, Z=4
AND CORE RADII, =0.6,1.0,1.6 a.u..
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Fig.4.5: THE. VARIATION IN THE RADIUS OF THE ION CORE CELL,Rq in a.u. AND
THE RADIUS OF THE ELECTRON CELL,Re in a.u. WITH THE FLOW OF
CHARGE,AZe FOR VALENCY,Z =4 AND CORE RADII,¢=0.6,1.0,1.6 a.u..
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Fig.4.6: THE VARIATION OF TOTAL ENERGIES,En in a.u. WITH CORE
RADII,c in a.u. FOR VALENCIES,Z2=2 to 4.
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Fig.4.7: THE VARIATION OF TOTAL ENERGIES,En in a.u. WITH
CORE RADIl,'c in a.u. FOR VALENCIES,Z=5to 7.
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The total energy for various elements are analysed
with the assumption of the electrons in the atomic cell
are uniform in density. The ground state energy has been
achieved with ‘the help of Hohenberg-Kahn[ 2 ] density func-
tional equation for the known valency of an element and
the core radius of the element has been eXpréssed as a
function of atomic radius. The observed values of the
total energies of various elements are found to be lower
than the values obtained in the uniform gas model for the
corresponding atomic radii., It has been realised that by
introducing an inhomogeneity in electron density should
_improve the ground state energy with the shift in atomic
radius as it has been observed while épplying second order
perturbation theory. A study of the stability of uniform
gas model has demonstrated the range of atomic radii corres-
ponding. to r_ < 2.4217 a,u , where the inhomogeneous

electron gas will be more stable,

'The inhomogeneity in electron gas has been intro-'
duced in the step modél by splitting the atomic cell into
inner cell and outer shell by maintaining two different
uniform electron densities respectively. The total energy
calculated from the step model for various elements are
found to be lower as compared to the corresponding values

obtained experimentally. This is attributed to ignoring
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the gradient energy term,

The continuous electron.density model has been intro-
duced to account for the gradient energy contribution and
the electron density in this model varies continuously with-
in the atomic cell, A parametric tangént hyperbolic func=-
tion has been chosen to model the electron density as it
closely retains the feature of step model, The total:
energies of various elements are observed to be in good
agreement‘with the experimental values. Further, the total
. energy oﬁtained from the continuous density model and the
step model élowly evolveé to a uniform density model at
higher core radius and the energy is a continuoﬁs function
of core-radius. The core radius at which the uniform gas
model becomes stable is termed as the crossover core radius,
The difference in total energy obtained from continuous
model and step model shows a linear variation with the |
difference in electron density between the inner and the
outer segment of the atomic <cell in the step model. Thus
the gradient contribution to the total energy in the step
model has been corrected for the entire range of elements
under investigation in order to utilize the results of the
step model,

In covalent solids the inhomogeneity in electron

density has been constructed by removal of electrons from

the atomic cell and allowing a seperate electron cell to
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form in covalent bond directions; so as to achieve direc-
tionality in covalent bonding. With the help of octet
rule the number of bonds are calculated and the number

of electron cells are thereby fixed., In the total energy
calculation the Madelung energy term has been incorported
for the structural orientatipn in the electron cells around
the ion core cell., The highest observed value of Madelung
constant has been assumed for all the elements which gives
an over estimate of the stability of covalent bonding. To
assess the impact of Madelung constant calculations have

also performed with the lowest observed Madelung constant.

The reSﬁlts of the model for covalent bonding'are
compared withvthe gradient corrected step model and here
the gradient corrected step model also has been compared
with the uniform gas model to bring out the regions of
relative stability of each medel in the entire range of core
radii and valencies investigated, Already it has been
pointed out that the model for covalent bonding evolves to
uniform gas model beyond a cert2in core radius for a given
valency. But the inhomogeneous electron gas model like the
step model is hot built in the model for covalent bonding
presented here. So, the energies of each model have been
compared for the given values of valencies and core radii

in order to identify the most stable model,
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For valency Z=1, it has been observed that the
covalent model has always a higher energy compared to the
uniform gas and gradient corrected step model. Also,
the gradient corrected step model yields a higher energy -
for lower core radii when compared to those in the uni-
form gas model and merges with it at a core radius of
r = 1.6 a,u, Thus, the uniform gas model is excellently
suited for simple metals with valency, Z =1.

For elements with valency, Z 2 5., it has been obser-
ved that the model for covalent bonding gives the lowest
energy within the range of experimentally observed energies‘
for different elements as compared to the energies observed
in the other two models. However, the corrected step model
and uniform electron gas model becomes stable at a very |
high core radius where no elements occur in the periodic
table, |

Fig. 5.1 shows the region of stability of the uniform,
corrected step and the model for covalent bonding for Valen--
cies, Z=2,3 and 4., It is observed that upto r, = 1.8,1.8 and
2.0 a.,u., the model for covalent bonding remains the most
stable for valencies Z=2,3 and 4 respectively. These
estimates are highly in favour of covalent model because
the most favourable value of a= 1,76 has been taken for
the calculations. If these energy values are adjusted

with the observed deviation factor for Z = 4.0 the model
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for covalenf bonding becomes less favourable and it remains
stable upto r_ = 1.2, 1.0, and (1.2) reSpectivély for
valencies, Z = 2,3 and 4, Beyond the range of stability

of the model for covalent bonding, the corrected step model
represenﬁing inhomogeneous electron gas distribution becomes
energetically more favourable upto r, = 2.0,2.2 and 2,2 a.u.
for valencies Z = 2,3 and 4 respectively. When the core
radii is above these values of 2.0,2.2 and 2,2 a.,u. the

uniform gas model gives the lowest energy.

The figure 5.2 shows the region of stability of the
uniform, corrected step models and model for covalent bon-
ding for valencies, Z = 2,3 and 4, in terms of energy. It
is obsérvéd that at lower ranges of negative energy the o
uniform gas model is more stable but the corrected step
model becomes more steble at a higher range of negative
energies, Subsequently, model for covalent bonding becomes
more stable in comp&rison to even corrected step model at
still higher ranges of negative energies. As valency
increases the range of stability of each model shifts to
higher energies., Since the model for covalent bonding is
calculated with most favoureble }Madélung constant, Apmk 1,76,
. 1ts stability may have been unduly enhanced but when the
calculations are cérried out with the most unfavourable,
@n=1.386, corresponding to linear chain the model for

covalent bonding becomes stable only at higher energies as
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indicated by the dotted lines. Thus, the stability ranges
of the corrected step model becomes extended in energy
scale, |

The table 5.1 gives the values of the core radius
obtained from the corrected step model for simple metals
and from the model for the. covalent bonding in cases of
covalent solids, These values are compared with the core
radius obtained by earlier workers., It is observed from |
the table 5.1 that the core radius obtained by comparing
the energies of different elements with the calculated
curves for the corresponding model are quite comparable to
those used by the earlier workers, The core radii obtained
here are generally lower than the reported values. The
total energies have been compared to find core radii
because the atomic radii has been observed to become a
relafivély insensitive variable for the variation of energy
in the model for covalent bonding and corrected step model.
It is evident from the large mismatch between the observed
size of the atoms and the calculated atomic radii for

different elements.

The present investigation has shown that it is
possible to study the‘phenomenon of bonding within the
frame work of Density Functional Formalism. The systematic

results are in conformity with the general trends in bonding
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as observed in the elements of the periodic table. The

quantitative metching of results are not always very

satisfactory due to scacrifice of rigour in order to maine-
tain simplicity,
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//// Model for covalent bonding

m Gradient corrected step model

7%

| 1t 1 1 || | IS S N N
0.6 0.8 10 1.2 1.& 16 1.8 2.0 2.2 24 2.6 28 3.0

e (a.u)

Fig.5.1: THE RANGE OF STABILITY OF VARIOUS MODELS
IN TERMS OF CORE RADIUS, ¢ in a.u. FOR
VALENCIES,Z=1,2,3% 4.
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