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(i) 

Bonding in pure solids - A Density 

Functional approach 

Synopsis 

The understanding of the mode of bonding in 

different elements have begun in 1916 with the pioneering 

contribution of G.N.Lewis [ 1 ] ;,.He propounded the 

electronic theory of chemical bond by assuming that a 

single bond forms due to sharing of two electrons parti- 

cipating in the bond by two atoms. It was thus possible 

to distinguish between various modes of bonding - ionic 

bond, covalent bond co-ordinative bond etc. However, 

these concepts faced formidable difficulties with the 

advent of quantum mechanics. A molecule consists of an 

ensemble of nuclei exerting mutually repulsive forces. 

Their dispersion is prevented by the attractive forces 

brought to- bear by the electrons. Any two nuclei are 

always interacting with the entire electron cloud and it 

is not permitted to associate two particular electrons 

with a bond since the principle of indistinguishability 

leads to an antisymmetric wave function and imposes on 

all electrons the duty to play, on the average, the same 

role. However, it is possible to translate some of the 

classical concepts of bonding in terms of electron density 

which has characteristic forms for different types of bonding. 



The quantum mechanical calculations on molecules 

have been performed and the electron distribution has been 

determined in order to understand its characteristic forms. 

But the calculation becomes more involved as the number 

of participating atoms increases. The application of 

Density Functional Formalism proposed by Hohenberg and 

Kohn [2 ] to the problem of bonding has been done in this 

investigation for evolving a suitable frame work for the 

study of bonding. The conventional approach of having 

different types of theories for different bonding poses 

the problem of describing the intermediate types. The 

Born- Meyer theory of ionic bonding cannot incorporate 

naturally the mixed ionic-covalent bonding. The Density 

F unctionai T heory has the potential to incorporate all 

types of bonding along with their intermixing in terms 

of characteristic electron distributions. 

In the present investigation the attempt has been 

limited to the metallic and covalent bonding as observed in 

pure elements. The systematics of the bonding behaviour 

and the competition of these two possible types of bonding 

have been investigated by varying the potential for a given 

valency. Since the efforts have been primarily limited to 

testing the workability of the framework rigour has been 

sacrificed many a times for simplicity. 

Chapter 1 describes the preliminaries of the Density 

Functional Theory and the current approaches to the under- 



standing of the phenomenon of bonding. The parametric 

pseudopotential theory has also been discussed as it has 

been used for ionic potential in the present investigation. 

Chapter 2 is devoted to Metallic bonding. Since the 

metallic bond is volume dependent and lacks directionality, 

the electrons are assumed to form a homogeneous electron 

gas in the simplest approach. The local density functional 

equation has been used to determine the total energy of 

the system by using Ashcroft's empty core pseudopotential. 

• The electron distribution has one parameter and the energy 

has been expressed as a parametric function. The elements 

are characterised by the valency and the core- radius in 

the pseudopotential. The Davidon Fletcher and Powell method 

has been carried out in all the cases of optimization 

required in this investigation. The variation in the 

minimum of energy and the corresponding atomic radius has 

been found out as a function of the core radius for 

different valencies. By direct minimisation an analytical 

relation between the core radius and the atomic radius 

has been determined. The total energy obtained in this 

model for various elements has been found to be lower than 

the experimental values. Further, the pseudo-potential 

for a given element as obtained from the observed value 

of atomic radii has been compared with that used by previous 

workers. 



(iv) 

The stability in the uniform gas model has been 

analysed with respect to a flow of charge out of the atomic 

cell lowering its energy. The uniform gas model has been 

found to be stable in the above sense for elements with 

rs  > 2.4127 a.u, when rs  is the radius of the spherical 

volume containing one electron. The Univalent elements 

have rS  greater than this limiting value and so, uniform 

gas model works quite well for these—  elements. There are 

a large number of elements in metallic and covalent solids 

having r <2.4127 a.u, where an inhomogeneity in electron 

density is expected. A weak inhomogeneity in electron 

density has been introduced earlier within the frame work 

of second order perturbation theory. In the present investi-

gation a step model has been introduced where the atomic 

cell has been split into two segments having different 

electron densities. The segment immediately around the ion 

core has been termed as the inner cell and it is surrounded 

by a outer spherical shell. The electrons in the inner 

cell and the outer shell are distributed homogeneousley 

with different densities. Thus, the inhomogeneity in 

electron density in the atomic cell has been .created. The 

energy functional has been worked out with this density 

profile in the atomic cell and it has been expressed as a 

function of three parameters namely, the inner cell radius, 

the amount of charge in the outer shell and the radius 

of the atomic cell. 



(v) 

The variation in the total energy has been observed 

with the accumulation of charge in the outer shell for a 

particular valency and core radius. It is observed that the 

inner cell energy reduces from large negative value to 

zero whereas the outer shell energy increases from zero to 

higher negative value. However, the total energy of an atomic 

cell passes through a minimum for a specific amount of charge 

in the outer shell and thus 9  corresponds to the stable 

electron distribution. For small amount of charge in the 

outer shell the decrease in kinetic energy of the inner cell 

and the exchange and correlation energy of the outer shell 

favour a further transfer of charge to the outer shell. But 

this tendency is soon overcome by the adverse potential 

energy contribution from the inner cell and a minimum in 
energy is observed. The ground state energy for every element 

has been evaluated for various valencies. It has been 

observed that at lower core radii the difference in electron 
densities between the inner cell and the outer shell is large 

and the corresponding total energy is also large and negative 

as compared to that obtained from uniform gas model. The 

difference in total energy obtained from the step model 

and the uniform gas model starts reducing for higher core 

radii and at a particular core radius termed the crossover 

core radius, the difference vanishes. Since the metallic 

bond is prevalent upto a valency of Z = 4 the ground state 

energy has been obtained by optimization of the energy 



(vi) 

function for various elements characterised by core radius 

and valency and are observed to be more negative as compared 

to the values determined experimentally. The neglect of 

the gr'dient energy in the density functional equation has 

been responsible for this anomaly. 

To overcome the deficiencies due to the neglect of 

the gradient term a similar inhomogeneity in electron 

density has been introduced in a continuous manner across 

the segment through a tangent hyperbolic function in con-

tinuous density model. The results of this phase of investi-

gation is given in chapter 3. The electron density in this 

model has four parameters characterising the level of electron 

density in the two segments, the boundary position of the 

segments and the rate of change in the charge density at 

the boundary. One of these parameters can be found out from 

charge neutrality of the atomic cell. The Hohenberg-Kohn 

equation has been used along with its gradient terms to 

find out the energy function in terms of the four floating 

parameters -.three from the electron density and the atomic 

radius. This model shows the presence of a substantial 

inhomogeneity in electron density at lower core radii 

inspite of the gradient energy term. For the same core 

radius the extent of inhomogeneity comes down as compared 

to that in the step model. At higher core radius the extent 

of inhomogeneity reduces in the continuous density model 

as it has been observed for the step model. The cross-

over core radius at which the electron gas inhomogeneity 



almost vanishes, remains the same as these obtained from 

the step model. The quantitative features and trends of 

variation in both the step model and the continuous model 

are similar. The total energy for various elements 

obtained from this model has been found to agree with the 

experimental results to within + 10% in extreme cases. 

The difference in total energy for a given core 

radius and valency with that obtained in the step model 

shows a linearity with the density difference within the 

atomic cell of the step model. Due to this linear relation-

ship, it has been possible to correct the total energies 

obtained in the step model and use it further for c. discuss-

ion on bonding behaviour. 

The model for covalent bonding has been presented 

in chapter 4, to describe the inhomogeneous electron dis-

tribution characteristic of cove Lntly bonded elements. 

Since the covalent bond is directional, the space of the 

element has been subdivided into a charged cell around the 

ion core and electron cells representing the bonding 

charges. The ion core cell and electron cells outside have 

uniform gas of different densities. The number of electron 

cells per atom has been found out by the number of bonds 

given by octet rule. The charge in the cell around the ion 

core and tLaose in the electron cells should be together 

equal to valency. Thus, these cells together is equivalent 

to neutral atomic cell as it, is present in the covalent. 



solids. While using the Density Functional Equation the 

grdi.ent energy has been neglected because these two cells 

are assumed to have very little physical contact in the 

covalent elements. However, the electrostatic energy 

between the charged cell around the ion core and the electron 

cell has been considered through a Madelung type of energy 

term in the energy functional. With the electron density 

as described the energy functional is now reduced to 

parametric function with three parameters namely, the radius 

of the cell around the ion core, the radius of the electron 

cells and the amount of charge present in the electron cell. 

The energy has been optimised with respect to these three 

parameters and the ,atomic radius of the system is calculated 

from the volume of the inner cell and the electron cells. With 

the increasing charge in the electron cell the energy of the 

dell around the ion core reduces from large negative value 

to zero and the electron cell energy increases from zero 

to higher negative value for an element with a given valency 

and core radius. The total energy of the atomic cell shows 

a minimum at a specific amount of charge in the electron 

cell thereby loading to a stable electron distribution. For 

small amount of charge in the electron cell, the positive 

terms like kinetic energy Pnd electron-electron repulsion. 

energy of the cell around the ion core reduces and the 

negative energy terms like the potential, the exchange and 

the correlation energy also reduces in the cell around the 

ion core. But the exchange and correlation energy more than 



balances the kinetic energy and electron-electron repulsion 

energy in the electron cell because the electron density is 

small. The electron density in the cell around the ion 

core has increased upto a charge flow into the electron cell 

and then it decreases. Whereas the density in electron 

cell increases steadily. The increase in density in the cell 

around the ion core is attributed towards the recovery of 

some potential energy by an appropriate redistribution of 

• electrons since the cost in the kinetic and electron-

electron repulsion energies are less. The electrostatic 

Madelung energy is small initially but reinforces the ten-

dency to increase electron density because a reduction 

in the sizes of the cells leads to a gain in Madelung 

energy. But at higher charge transfer it is no longer 

possible to reduce the size of the ion core cell because 

the gain in energy is more than balanced by the enhanced 

kinetic and electron-electron repulsion energies. On the 

contrary, the electron gas cells remain more compressible 

and the gain in electrostatic energy causes a reduction in 

its size resulting in a continuous rise in the electron 

density. The cell around the ion core has a lower energy 

compared to that of the neutral atomic cell. This is due to 

large reduction in kinetic and electron-electron repulsion 

energies compared to the increase in potential Lind exchanges 

and correlation energies. In addition to negative energy 

of the electron cell, Madelung energy helps a continued 



(x) 

flow of charge to the electron cell. When the Madelung 

energy becomes dominating at higher charge in the electron 

cell these cells are so much compressed so as to lead to a 

positive energy of the electron cell. Under these circums-

tances the only energy term favouring electron flow is the 

Madelung energy. 

The ground state energy obtained from this model are 

large and negative with more charge in the electron cell at 

lower core radius. As the core radius increases the ground 

state energy increases to a less negative value. However, 

beyond a particular core radius the charge in the electron 

cells become zero and the model evolves naturally to the 

uniform gas model. The ground state energies have been 

obtained in this model for different core radii and valencies . 

The core r,dius at which the electron cell charge vanishes, 

increases with vc.lency.  . Covalency is observed to be pre-

valent at higher va.lencies within the framework of this 

model. The total energy for elements in the model for 

covalent bonding are studied by taking the most favourable 

observed Madelung constant, a = 1.76 corresponding to an 

assumed spatial arrangement of electron cells and charged 

atomic cells. Since the exact Madelung constant will depend 

on the number of electron cells and the precise arrangements 

varying from element to element the impact of this assumption 

has been assessed by comparing the energies with those 

obtained from the most unfavourable values of the Madelung 

i 



constant. The optimum total energy for various elements 

are compared with the experimental values and the agreement 

is quite encouraging. 

In chapter 5 the relative stability of the models 

characterising the types of bonding have been discussed. 

The results of the model for covalent bonding are compared 

with the gradient corrected step model to find the region of 

stability of covalent bonding over the metallic bonding with 

inhomogeneous electron gas. The inhomogeneity of the electron 

gas reduces with the increase in the core radius finally 

leading to uniform electron gas metallic bonding. For the 

elements with valency, Z = 1 , the energy obtained from the 

model for covalent bond is higher than the uniform gas model 

and the gradient corrected step model in the range of total 

energies observed in elements. Also, the gradient corrected 

model yields a higher energy for lower core radii in com-

parison with uniform gas model. Thus, uniform gas model is 

eminently suitable for elements with valency, Z = 1. For the 

elements with valency, Z > 5, the model for covalent bonding 

gives the lowest energies as compared to the energies obser-

ved in the other two models in the range of energies observed 

in elements. The region of stability of the uniform gas 

model, gradient corrected step model and the model for 

covalent bonding for va lencies, Z = 2,3 and 4, have also been 

studied. The stability for the model for covalent bonding 

has been overestimated due to the use of the most favourable 



value of the Madelung constant, a = 1.76. These results 

have been supplemented with a calculation taking the most 

unfavourable Madelung constant which shows the possible 

limits of stability of covalent bonds. In general, the 

uniform gas model is stable at low negative values of 

total energy, then the corrected step model takes over and 

at still higher values of negative energy the covalent 

bonds are stable. With an increase in valency the limit 

of stability of each model shifts to higher negative 

energies. 

The core radius for various elements have been 

obtained by comparing the observed energies of those 

elements with the calculated curves for the most stable 

model at that energy. These core radii are quite compara-

ble with but lower than the core radii reported by earlier 

workers, The total energies have been compared to find 

the core radii because the'atomic radii have been observed 

to be a relatively insensitive variable for the variation 

in energy especially in the model for covalent bonding and 

the gradient corrected step model. However, the present 

investigation has established the possibility of using the 

Density Functional Formalism for the study of chemical 

bonding. The systematic results as obtained in the present 

investigation are in conformity with the general trends 

of bonding as observed for the elements in the periodic 

table. 



ACKNOWLEDGEMENT 	xiii 

I express my sincere gratitude and thanks to my teacher 

Dr. Ratna Gosh who has encouraged and appreciated my interest 
in this field; She introduced me to Dr. S.Ray in a fateful 
moment to initiate me to the world of research. It was a tur-

ning point in my carrier. The guidance, help and co-opera-
tion of Dr. S.Ray is gratefully acknowledged. My association 
with him far excels the scope of this study. His co-operation 

and understanding has helped me to get over the moments of 
frustations and crisis generally inevitable during any research 

work. 
My sincere thanks are due to Dr. S.Basu, who helped me 

in computer programming. His strong but constructive criti-

cisms and suggestions have provided the incentive to improve 
my results. 

I would also like to take this opportunity to thank my 
friends, Mr. S.Chakravarthi, Mr. and Mrs. R.C.Agarwala-, Mr. and 
Mrs. R.Shankar, Mr. R.Sadasivam and Mr. C.Mohan Ram, who shared 

my joys and sorrows with me. My grateful thanks are due to my 
parents who inspired me to go in for higher studies and re-

search. It will be unjust on my part if I fail to make a spe-
cial mention of the patience and co-operation of my wife du-

ring this investigation. 

The financial assistance provided by CSIR for carrying 

out this investigation is acknowledged. Special thanks are due 
to Dean of Research and Industrial Laison who provided me adhoc 
U.G.C. Senior fellowship in the final phase of this work. 

I thank Mr. Ram Gopal for neatly typing the thesis. 

Behind every study there stands a myraid of people 
whose help and contribution make it successful.. Since such a 
list will be prohibitively long, I may be excused for import-
tant omissions. 

V. BALASUBRAMANIAN 



xiv 

LIST OF FIGURES 

Fi g .No . 	Title 	 Page 

	

1.1 	Magnitudes of the reciprocal lattice 
vectors, g with structural weights, 

W(g) for the fcc, hcp and bcc struc-

tures, relative to 2kF  for various 

electron-per-atom ratios, Z. 	43 

	

1.2 	The coupling of atomic orbitals in 
Lithium-Row Diatomic molecules and the 
resultant bond designations. 	54 

	

1.3 	Various contributions to the total 
energy per bond. 	 58 

	

2.1 	The variation in total energy, En  in 
a.u. with atomic cell radius, Ra  in 
a.u. for elements in group I of the 
periodic table. 	 94 

	

2.2 	The variation in total energy, E in 
a.u. with atomic cell radius, Ra  in 
a.u. for elements in group II of the 

periodic table. 	 95 

	

2.3 	The pseudopotential of a bare Sodium 
ion, shown in real space used in the 

calculation of Ashcroft [ 43 J , Weaire 
[71 ] and the present investigation. 	96 

n 



Fig.No. 	Title 	Page 

2.4 	The change of core radii, rc  in a.u. 
with rs  in a.u. for various elements 
with valencies, Z = 1 to 7. The uni-
form gas model stable after r5.>2.4127 
a.u. 	 97 

2.5 The variation of energies, in a.u. of 
the inner cell and the outer shell 
with the charge flow, o Ze  for the 
univalent elements with core radii, 
rc =1.0,1.6 and 2.6a.u. 98 

2.6 The difference in behaviour of the 
total energy, En  in a.u. with the 
charge flow from the inner cell to 
outer shell, (a) for low core ra- 
dius, rc  = 1.0 a.u. and (b) for high 
core radius, rc  = 1.6 a.u. 	in valency Z .99 
=1 . 

2.7 The change of different energy terms 
involved in step model with the charge 
flow, A Ze  from inner cell to outer 
shell in an atom with valency, Z = 1 
and core radius, rc  = 1.0 a.u. 100 

2.8 The change in the density of electrons 
in the inner cell, no  and the outer 

shell, n1  with the flow of charge, o Ze  
to the outer spherical shell for the 
element with valency, Z = 1 .0 and 
core radius, rc  = 1.0 a.u. 101 



xvi 

Fig. N o . 	Ti 	 P, _a ee 

	

2.9 	The variation of radius of the inner 
cell, R in a.u. and the radius of 
the spherical shell, Ra  in a.u. with 
the charge in the outer shell,o Ze  
for valency, Z=1 and core radii, 
rc =1.0and1.6a.u. 	102 

	

2.10 	The change in total energy, E in 
a.u. with core radius, r  in a.u. 
for various valencies, Z=1 to 3 in 
step model and the uniform gas model 	103 

	

2.11 	The change in total energy, En  in 
a.u. with core radius, r  in a.u. for 
various valencies, Z=4 to 7 in the 
step model and the uniform gas. model 	104 

	

2.12 	The variation of the charge, o Z e  in 
the outer spherical shell, with core 
radius, r  in a.u. for the elements 
with valencies, Z = 1 to 4. 	105 

	

2.13 	The variation of electron density in 
a.u. (a) in the inner cell, no  and 
(b) the outer spherical shell, n1  with 
core radii, r  in a.u. for different 
valencies, Z = 1 to 4. 	106 

	

2,14 	The variation of total energy, En  in 
a.u. with atomic radii, Ra  in a.u. 
for various valencies, Z = 1 to 4. 	107 



Xvii 

Fes. No . 	Title 	 Page 

	

3,1 	The variation of total energy, E in 
a.u. with core radius, r  in a.u. in 
continuous density model for valen-
cies , Z=1 to 4. The arrow mark indi-
cates the boundary with the uniform 
gas model. 	 126 

	

3.2 	The electron density distribution, 
n(r) in the step model-S, the con-
tinuous density model-C and the 
uniform gas model - U for the core 
radius, rc  = 0.6 in a.u. and valen- 
cy, Z=4. 	 127 

	

3.3 	The electron density distribution, 
n(r) in the step model -S, the con-
tinuous density model -C and the 
uniform gas model -U, for the core 
radius, r = 1 .6 a.u.  and the va- 
lency, Z=4. 	 128 

	

3.4 	The variation of maximum to mini- 
mum ratio of electron densities with 
the core radius, r  in a.u. for the 
valencies, Z=1 to 4. 	 129 

	

3.5 	The change in cross-over core ra- 
dius, rc  in a.u. with valency, Z 
( 	) line for step and contin- 
uous density models and ( ----) 
line indicates the limits of sta- 
bility of the uniform gas model 	130 

M 



Fig. ljc  . 	Title  P____ 

	

3.6 	The variation in the difference in 

total energy, Q ECD-U as obtained 

from the continuous density model 

and the uniform gas model for va- 
lencies, Z=1 to 4, 	131 

	

3.7 	The difference in total energy, 
A En -CD between the step model 
and the continuous density model 
with the difference in electron 

density A n in the atomic cell of 
the step model for the valencies, 
(a)Z=1 &3and (b)Z =4. 	132 

	

3,8 	The variation of the parameters 
(a) X and (b) Y ] of the linear 

least square fit of total energy 

with valency. 	 133 

	

4.1 	The variation of energies in a.u. 
of the ion core cell and electron 

cell with flow of charge,A Ze  for 
valency, Z=4 and core radii, rc  = 0.6, 
0.1 , 1.6 a.u. 	 154 

	

4.2 	The variation of the total energy,En  
in a.u. with charge flow, Q Ze  for 
the valency, Z = 4 and core radii, 

rc  = 0.6, 1.0, 1.6 a.u.. 	155 

	

4.3 	The change in the different energy 
terms with the flow of charge , A Ze  
relating to the ion core cell and 
the electron cell for the valency, 

. Z = 4 and corQ radius,, rc  = 0.6 a.u. 	156 



Fig. No. 	Title 	 Page 

	

4.4 	The change of density of electrons 

in the ion core cell, no  in a.u. 

and the electron cell, tie  in a.u. 
with the flow of charge, o Ze, for 
valency, Z = 4 and core radii, 
rc  = 0.6, 1.0, 1.6 a.u. 	 157 

	

4.5 	The variation in the radius of the 
ion core cell, .R0  in a.u. and the 
radius of the electron cell, Re  in 
a.u. with the flow of charge, AZe  
for valency, Z = 4 and core radii, 
rc  = 0,6, 1.0, 1.6 a.u. 	158 

	

4.6 	The variation of total energies,E 
in a.u. with core radii, rc  in a.u. 
for valencies, Z = 2 to 4. 	 159 

	

4.7 	The variation of total energies,En  
in a.u. with core radii, rc  in a.u. 
for valencies, Z = 5 to 7. 	160 

	

4.8 	The change in the cross-over core 

radii, r  in a.u. with the uniform 

gas model for different valencies. 	161 

4.9 	The variation of total enerties,En  
in a.u. at the cross-over core radii, 
r in a.u. for different valencies. 	162 

I 



xx 

Fib 	 Title 	 Page 

	

4.10 	The variation of charge flow, ' Ze  
with core radii, rc  in a.u. for 
the valencies, Z = 2 to 7. 	163 

	

4.11 	The variation of electron den- 
sities in the ion core cell, no  
in a.u. and the electron cell, ne  
in a.u. with core radii, rc  in a.u. 
for the valencies, Z = 2 to 4. 	164 

	

4.12 	The variation of electron densities 
in the ion core cell, no  in a.u. and 
the electron cell, ne  in a.u. with 
core radii, r  in a.u. for the valen- 
cies , Z = 5 to 7. 	 165 

	

4.13 	The difference in total energy in a.u. 
with Madelung constant, am = 1.76 and 
1.386 scaled with total energy obtained 
with am  = 1.76 for valency, Z = 4. 	166 

	

4.14 	The difference in the atomic radius in 
a.u. obtained from am  = 1.76 and 1.386, 
scaled with atomic radius obtained from 
am  = 1.76 for valency, Z = 4. 	167 

	

5.1 	The range of stability of various models 
in terms of core radius, r  in a.u. for 
valencies, Z = 1,2,3 and 4. 	176 

	

5.2 	The range of stability of various models 
in terms of total energy,En  in a.u. for 
valencies Z = 1,2,3 and 4. 	177 



LIST OF TABLES 

Table No. 	Title 	 Pag  

	

2.1 	The total energies of different 

elements obtained in various 

models compared with the experi- 

mental values. 	 108 

	

2.2 	The total energies E of different 

elements obtained from step model 

and compared with those obtained 

from the uniform gas model and 
experiments. 	 1:10 

	

3.1 	The various energy terms involved 
in uniform gas, step and contin-

uous density model, for the valen- 

cy, Z = 2., at r := 0.6 and 2.0 a.u. 	134 

	

3.2 	The total energies of different ele- 
ments calculated in the continuous 

model and compared with the experi- 

mental values and uniform gas model. 	135 

	

5.1 	The values of core radius, rc  , for 
various elements obtained by matching 

the experimental total energy. 	178 

xxi 



CONTENTS 

Chapter 

CANDIDATE' S DECLARATION 

SYNOPSIS 

ACKNOWLEDGEMENT 

LIST OF FIGURES 

LIST OF TABLES 

LITERATURE REVIEW 1 

1 .1 Introduction 2 

1.2 Density functional formalism 4 

1.2.1 	Hohenberg-Kohn theorem 5 

1.2.2 	Local density approximation 8 

1.3 Determination of electron density 11 

1 .3.1 	Wave function sampling method 14 

1.3.2 	The wave function gradient 

or Kohn-Sham method 15 

1.3.3 	Potential sampling method 17 

1.3.4 	Potentional gradient method 19 

1.4 Pseudopotentials 22 

1.4.1 	Philosophy of pseudopotential 23 

1..4.2 	First principle pseudopotential 25 

1.4.3 	Empirical model- potential 26 

1.5 Bonding in pure solids 30 



Chapter 	 Page 

1.5.1 Metallic bonding 30 

1.5.1 .1 Resonating bond 

theory 31 

1.5.1 .2 Electron gas theory 32 

1.5.2 Covalent bonding 44 

1.5.2.1 Electronic states 

of small molecules 48 

1.5.2.2 Electronic states 
in covalent solids 51 

a) Bond orbital 
theory 51 

b) Pseudopotential 
theory of cova- 
lent bonding 59 

2 	BONDING IN METALS 65 

2.1 	Introduction 66 

2.2 	Uniform electron gas model 67 

2.2.1 Formulation 67 

2.2.2 Results and discussion 71 

2.2.3 Stability of uniform gas 
model 75 

2.3 Inhomogeneous electron gas: Step 
model 	 79 

2.3.1 Formulation 	 81 

2.3.2 Results and discussion 	85 

2.4 Summary 	 91 



xxiv 

Chapter Page 

3 CONTINUOUS DENSITY MODEL 111 

3.1 	Introduction 112 

3.2 	Formulation 113 

3,3 	Results and discussion 118 

3.4 	Gradient correction to the step 
model 121 

3.5 	Summary 124 

4 MODEL FOR COVALENT BONDING 136 

4.1 	Introduction 137 

4.2 	Formulation 139 

4,3 	Results and discussion 142 

4.4 	Summary 151 
5 CONCLUSION 169 

REFERENCES 181 



CHAPTER 

LITERATURE 
REVIEW 



1 .1 Introduction 

The electronic theory of chemical bonding started 

with the pioneering contribution of G.N.Lewis [ 1) . He 

postulated that a chemical bond forms due to sharing of 

two electrons between the two atoms. The detailed picture 

for various modes of bonding like ionic bond, covalent 

bond, co-ordinative bond etc. has been outlined. But the 

development of quantum mechanics raised serious doubts 

about the earlier conceptions about bonding. The principle 

of indistinguishability invalidates the assignment of 

electrons to a bond. Any two nuclei in the ensemble of a 

molecule are always interacting with the electron cloud 

around and are not permitted to have any special interaction 

with any two particular electrons. The earlier concepts 

of bonding have been salvaged by considering it in terms 

of electron distribution in real space rather than specific 

electrons. The electron distribution of molecules have 

been calculated to understand the type of bonding but the 

complexity of these calculations increases multifold as 

the number of atoms in a molecule increases. Still, the 

electron distribution characteristic of a type of bonding 

has been identified. 

The prevalent theories for different types of 

bonding have adopted different approaches. For example, 

the ionic bonding is explained in the Born-Mayer theory 

2 
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by accounting for the electrostatic energies between 

different ionic species. But the covalent bonding requires 

the consideration of electron states through either orbital 

theories or that of inhomogeneous electron gas. There are 

a large number of compounds exhibiting a mixed ionic-

covalent type of bonding which cannot be discribed within 

the framework of either of the theories. For all the types 

of bonding a single theoretical framework i.s necessary for 

describing even the intermediate bond types. 

In the present investigation the Density Functional 
Formalism proposed by Hohenberg and Kohn [ 2 ] has been 

applied to describe the bonding in pure solids. The des-
cription here is limited to metallic and covalent bonding 

but it can be easily extended to ionic bonding also. The 

model developed for covalent bonding partitions the crystal 

space into charged cells around ions and cells containing 

bonding electrons. If the electron cells partially over-

lap with charged cells of a certain species a mixed ionic-

covalent bond will result. A complete overlap will cause 

the ionic bonding. Thus, the Density Functional Formalism 

has the potential to provide a unified framework for all 
types of bonding. However, the present investigation has 

sacrificed rigour in order to retain the simplicity of 

calculations. Because the primary objective has been to 

to test the workability of the framework rather than its 



capability to churn out good numbers. 

1,2 Density Functional Formalism 

A great deal of attention has been devoted to using 

electron density as a basic variable in applied quantum 

mechanics. This basic variable is a better alternative 

to the quantum mechanical wave function mainly in three 

ways : 

Firstly, the electron density describes the three 

dimensional distribution of electrons in a system, and 

hence is a function of only the three coordinates and 

independent of the number of co-•ordinates of the electrons 

present. This, density-based formalisms offer great sim-

plification over the usual wave function approach because,. 

difficulty in solving the Schrodinger equation increases 

very rapidly as the number of electrons increases. Secondly, 

the electron density being a physically observable quantity, 

the accuracy of the quantum mechanical calculations and 

approximations can be tested directly. Thirdly, it provides 

a classical picture of quantum phenomena, since the electron 

density is a function of the three spatial coordinates 

and enables one to build up various interpretive. models. 

The electron density can be utilized as a central 

quantity and the formulation of many particle problem 

within a single particle like framework,, is the essence of 

L. 
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the Density Functional Theory. Starting from the Thomas-

Fermi method and its several modifications, Density Func-

tional Theory (DFT) has been rejuvenated by the pioneering 

works of Hohenberg, Kohn and Sham[ 2,3 J,  who have laid its 

strict mathematical foundation and thus provided a formal 

justification for the use of density as a basic quantity. 

Since then, a significant body of work has been done to 

carry out various modifications and extensive applications 

to a wide variety of problems in atomic, molecular, and 

solid state physics with remarkable practical success. 

1.2.1 Hohenberg-Kohn Theorem 

Hohenberg and Kohn [ 2 ] have proved two theorems. The 

first one establishes that the nondegenerate ground state 

of an interacting N-particle system under a static external 

single particle potential, v(r), which is completely charac-

terised by the single particle density, n(r). The second 

theorem states that, for a given external potential, v(r), 
the energy is a unique functional of the particle den-

sity, n(r), and the ground state energy corresponds to a 

minimum of the energy functional with respect to the varia-

tion of the density function. The variation of the particle 

density is performed under the constraint of conservation 

of particles as given below 

f n (r) d r 	N 	 ...(1.1) 



Where N is the total number of particles in the system. The 

stationary condition 

3 {E [n ) -µ fn (r) dr }=o 	 ...(1 .2) 

where 4 is the lagrangian multiplier, has been used to 

obtain 

JEn_I-a =0 
8n(r) 

...(1 .3) 

where ( 3 E[n]/3n(r) ) is a functional derivative of energy 
functional, E, with respect to the change density, n(r). 
The equation (1.3) forms a key equation of density func-

tional theory and provides a deterministic equation 

for n(r). If one considers a collection of an arbitrary 

number of electrons moving in a system under the influence 

of an external potential, v(r), and the mutual coulomb 
repulsion, then the Hamiltonian can be constructed as a 

sum of kinetic energy,T, potential energy, V, and coulomb 

repulsion energy, U, as 

H = T + V + U. 	 ...(1.4) 

where one can write T, V, and U as 

T 	= 2 f o 4r  (r) 7  r (r`) dr 	...(1.5) 

V 	= f V(r) 	Yj (r) '!' (r)  di- 	...(1.6) 
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u = 	f --_ _--- fir#  (r) s (r) 4r(r')1G(T') ax" dr' 

where t1 and i► are the field operator and its conjugate 
respectively. It has been assumed, for simplicity, that 

the ground state is non degenerate. Thus, the electron 

density, n(r), for the ground state, 4) , can be written 

as 

n(r) = ( 4) , 4J() 1J(r) I4 ) 	 ...(1 .8) 

which is clearly a functional of external potential, v(r), 
through 0 . 

In order to write an expression for energy, in terms 

of density, to take help of this theorem, one requires a 

knowledge about its functional form. The energy functional, 

E [ n ] , has been written by Hohenberg and Kohn [ 2 ) as 

E [ n ] = f v(r) n(F) dr + F [n ] 	•..(1  .9) 

where F [ n ] is a universal functional valid for any 

number of particles and any external potential, viz., 

F[n)= <11IT+U1$> 	 ...(1 .10) 

assumes its minimum value for the correct n(), if the 

admissible functions are restricted by the condition of 

equation (1 .1) . If F [ n ] is a known functional of n, the 

problem of determining the ground state energy and density 



for a given external potential would be just a problem of 

the minimization of a functional of the three dimensional 

density function. However, the determination of F [n ] , 

poses a major complexity in the many electron system, 

because of the long range of the Coulomb repulsion. It is 

now, convenient to write. F[ n ] as 

F[n]  _ff 'nsr~n(- 	- dx dr1 + G[n] 	(1.11) it - r1 1 
where G [ n ] is a universal functional like F [ ni and it 

includes kinetic, T [ n ], exchange and correlation, Exc [n] , 

energy functionals and can be written as 

G[n]  = T[ n 3+ Exc [n 3 	 ...(1.12). 

The final expression for E [n] thus becomes, 

E [ n ] = f v(r) n(r) dF + jj' n(r) ntr~ dr` dr' 
r - r' 

+ T[n]  + Exc [n] 	 ...(1.13) 

1.2.2 Local density approximation 

Here, the basic idea is to assume the local density 

to be uniform in an infinitesimal volume element of the space 

coordinates. The kinetic, exchange and correlation energies 

for uniform electron gas have been taken within that volume 

element, and added to the first term in the gradient expen-

sion of the energy functional. Such approximation might 
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work well only when one assumes the density slowly varying 

in space. 

From equation (1.12), one can get the universal 

functional, G[ n] , consisting of kinetic, exchange and 

correlation energy functionals representable in terms of a 

general gradient expansion, and can be written as, 

G [ n ] = f g o(F) d.+ f g2(r) 17n(r)  1 2  dF + ... 
...(1 .14) 

In the above expression the first term can be written 

as , 

fg o(r) dF =ft(n)  n(F) dF +f c'xc (n) n(r)  dr 	....(1.15) 

where t(n), is kinetic energy and can be written in terms 

of density, n(r), or using the linear measure of density, 

rs, 

1/3  rs  = ( 	) 	 ...(1.16) 

and 
r(n) = p (32)2/3  - 115 	...(1.17) 

r $ 
The xc, is further seperated as the exchange, c, and 
correlation, £c  , energy respectively, where 

	

sX(n) + ec(n) 	....(1.18) 

and 

	

	, can be represented as 

cX  (n) _ _ 

 

1 /5 3 (.. 	) 	_ 	0.458 	
0.. (1  •19) s 
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Different expressions are available for £c(n), starting 

from aligner[ 4] to the most recent one by Gunnarson et. 

al.[ 5] . But, normally, the expression provided by 

Nozieres and Pines [ 6 1 has been extensively used as 

- 0.0575 + 0.0155 In r S. 	 ,(1 .20) 

The above equations (1.17), (1.19) and (1.20) are energies 

per electron of a uniform electron gas density, no, in 

a.u. The second term in the equation (1.14), is the energy 

contribution due to gradient in electron density. g2  has 

components coming from the kinetic energy, the exchange 

and correlation energies as given below 

g2 (r) = gxc[n()] + 
	....(1.21) 

where, X is a parameter in the kinetic energy contribution 
to the equation (1 .21) , which was originally proposed by 

Weizasacker [ 7 ] with A = 1. This form has been extensively 
used in the literature. Jones and Young [8 ] have compared 

the response function obtained from the truncated gradient 

expansion with variable coefficient to the Lindhard 

response function. They found that by choosing X = 1 
yields the correct response for perturbations whose wave 

length. is small with respect to Fermi wave length whereas 

the choice of k = 1/9 is appropriate for perturbations (.for 
large wave length with respect to the Fermi wave length. 
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The 	is the gradient term of exchange and correlation 

energy, which can be written as 

(2)  _ 	-4/3 
gxc 	C (re)  (n(r) 	 ...(1.22) 

where C(r5 ) is a variable and is a function of rs. A 

plot of C(r)  versus rs  has been provided by Rasolt 

et.al ., [9 1 which can be used to estimate the cost in 

energy due to gradient in the charge density in inhomo-

geneous. electron gas models. 

1.3 Determination of Electron Density 

The density functional formalism as explained in 

section 1.2.1 has led to the equation (1.13) which gives the 

energy functional for the electrons moving in any given 

external potential, V(r). When one finds the charge density 

that minimizes E [n] the corresponding value of energy is 

the total energy of the electrons in the ground state. The 

evaluation of charge density of the ground state at a given 

V(r) can be difficult in practice. The major problems 

faced are e 

i) The functional Exc  [ni , can at present only be 

approximated. 

ii) On the scale of binding energies, the calculated 

value of. kinetic energy, T [n] is often insuffi-

ciently accurate. 
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iii) 	For the general polyatomic systems, the minimi- 

zation of E[ n ] with respect to n(F) in the 

current searching algorithms are not effective. 

The first problem can be overcome by applying the 

local-density approximation for Exc  [ n ] , but for the 

second problem Kohn and Sham [31 proposed bypassing the 

evaluation of kinetic energy, T [n] , by simultaneously 

constructing a density n(r), and its kinetic energy, 

T[ n ], from a set of wave functions of non-interacting 

particles. A theorem proposed by Theophilcu [10] , has 

shown that for any physical charge density n(r) there 
exists a potential, Uext(r)9  which is an ordinary function 

of r in which the noninteracting particles will have the 
same charge density, n(r). Then,the Schrodinger equation 

for noninteracting particles is 

[ - 	2  + Uext(r)  ] 1j(r) 	E 	j(r) 	...(1.23) 

By construction, the charge density of the real system 

is identical to the charge density of the system of 

fictitious noninteracting particles given by 

2 
n() = 	 ...(1 .24) 

J 

where w 	is the occupation numbers. The ground state 

kinetic energy also constructed in the independent parti-

cle approximation is, likewise, constructed from the 
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orbitals of noninteracting particle as 

T[ n(~^) ] =: w <1J(r) 	- 	V 2 	 (r)> 	...(1.25) 

Theophilou [ lo ] proved a one-to--one-to-one correspondence 

among the generating potential, Uext(r), the ground state 

charge density, n(r), and the ground state orbitals, 

{ 4J()} , for the noninteracting particles, and a similar 

correspondence also for electrons in the system. The 

Uext(r) contains information on the external potential,V(r), 

experienced by the electr cns as given in the equation (1.13), 

which, together with the number of electrons N = Z wj 9 
J 

defines the physical system and Uext(r) generates the 

charge density and kinetic energy from the equations (1.23) 

to (1.25). 

0 
In the density functional equation (1.13), the 

density n(r) is, formally, the independent variable. 

However, for a given n(r), it is difficult to find T [ n ] , 

unless approximate gradient series expressions can be 

used for T [ n] [ 11 ,12 ] . Theophilou's theorem, however, 

opens the way to treating either the orbitals {4 (r) }, 

as done originally by Hohenberg, Kohn and Sham [2,3 ] , 

or the generating potential Uext(r) as the independent 

variable for minimizing the total energy in density func-

tional equation. 
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The choice between the two possible independent 

variables and their type of variation used to minimize 

the Hohenberg-Kohn-Sham (HKS) [2,3] total energy, can 

be seen under the four fundamentally different approaches 

as given below. 

1 .3.1 Wave function sampling method 

In this method, one must select a trial parameter 

set { aid  } for the equation (1.23) and the wave functions 

r . (r ; {a} ) are constructed, on the basis of this wave 

functions, the density n(r) and the kinetic energy are 

evaluated from equations (1.24) and (1.25) respectively. 

With this, one can calculate the 	E [ n;V ] of the density 

functional equation (1.13). By repeating the above pro- 

cedure, one obtains the minimum of 	E [n { aid  }, V ] 

as a function of {aid  } . In this process one does not 

require any solution of the eigenvalue problem and cons-

truction of energy can be conveniently dealt with non-

linear parameters {aid  }, and the interelectronic corre-

lation effects can be evaluated directly from the wave 

functions. This method has been applied extensively to 

calculate many body interaction energies, for the systems 

of bosons [13 ] , nuclear matter [ 14] , Fermiliquids[ 15 ] 

solids [ 16 ] and molecules [ 17 ] . However, the number of 

parameters increases with the number of occupied single 
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particle orbitals {1J } and it requires a good search 
method to converge. So, this method is suitable for in-

dependent particle problems only wh en the number of occupied 

states is small, and many problems in contemporary one-

electron solid-state physics do not satisfy this condition. 

1.3.2 The Wave function gradient or Kohn-Sham method 

Kohn-Sham [ 3 3 have proposed, single particle 

equation for the variational wave functions of the ficti- -L 

tious non-interacting particles as 

1  °2  + Vks [ n  (r) 	} 	(r) = s 	; () 	...(1.26) 

where Vks  [ n(r-) ] is the potential, the equation (1,26) 

is ident-ica11 to the equation (1.23) and is obtained from 

the wave function variational principle 3E [ n ] /JET = 0 
that generates orbitals {Vi  } . Unlike Uext(r) in 

equation (1.23), which is a function of r, the Vks[ n(r) 

is a function of charge density, n(r), which can be written 

M 

Vks [n(r-)  ]= V(r)  + f 	n r 	dr,  + 	3Exc  [n( r) ] 

or 	= V(r) + Vcoul [ n(r) 3 + Vxc[n(r) ] 	...(1.27) 

where Vcoul [r) and Vxc  [ n()] are interelectronic 

coulomb, exchange and correlation potentials respectively. 
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The dependence of , Vks, on the charge density requires 

that the equations (1.27) and (1.26) have to be solved 

iteratively. The wave functions are constructed by selec-

ting the trial set {aid  }in the equation (1.23). Then 

the charge density, n(r), and kinetic energy T [n(r) ] 
are evaluated from equations (1.24) and (1.25). The Kohn-

Sham potential, Vks  [n(r) ] , of equation (1 .27) is cal-
culated from the charge density and the eigenvalue problem 

can be solved from equation (1.26), to obtain new wave 

functions. The above procedure has to be repeated until 

the input and output wave functions are equal or within 

a desired limit. 

This method has advantage over the wave-function 

sampling method, as an arbitrary 'mth,  iteration it 

yields solutions for a set- of wave function, { i4 ) (r) } , 
which contain more information than a single number 

E(m)  [n I provided by the wave function sampling, scheme. 

This information, then, can be used as a guide to select 

the next wave functions. This procedure has been used with 

various computational approximations like, 

a) the size and form of the basis set describ-

ing  

b) the calculation of Kohn-Sham potential from the 

charge density, 

c) the solution of the eigenvalue problem., 
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d) specification of a consistency between input and 

output wave functions. 

The difficulties often faced in solving Kohn-Sham problem 

are due to the high sensitivity of charge density to oom-

putational fluctuations in finding Kohn-►Sham potential, 

V [n(F) ] , and the large size of the subspace {aid  } 

needed to obtain results with the desired accuracy [ 18 ] 

Also, there is a problem of covergence, when the trial 

wave functions in the tmth I iteration iJ m)(r) is simply 

the solution of the eigenvalue equation in the (m-1)th  

iteration. Several methods of mixing Kohn-Sham potentials 

obtained in prior ,iterations have been used to improve 

the convergence [ 19,20,21 ,22 ] , 

1.3.3 Potential sampling method 

The potential sampling method uses a generating 

potential in equation (1.23) to arrive at wave functions 

and density. This method proceeds as follows : 

Selection of the trial set of { "p }in equation 

(1 .24) and the Uext  [F ; { 1p } ] ; solving equation (1 .23) 

to get the wave function 1J (r) 9 calculation of the charge 
density, n(F), and kinetic energy, T[n(r)], from equa-

tion (1.24) and (1.25) respectively, and the evaluation 

of 	E [n( µp ); V j. 



The above procedure is repeated until the minimum 

energy is obtained as a function of { up 	} . 	In this 

procedure, the 	Uext [ r  y 	{ 	'p } ] is used merely for 
generating the wave functions only. Whereas the physical 

potential V(r`) is used to find the total energy. 

The primary advantages of this method are its 

conceptual simplicity and the ease of getting crude so-

lution to simple problems. It does not have complex prob-

lem of calculating Vks  [ n(r) ] unlike wave function 

gradient method. However, as it is true for any sampling 

method, the potential sampling method also faces the prob-

lem of constructing the trial effective potential for the 

subsequent iterations, as it provides at each iteration 

only one E(m)  [n ] . So, the convergence becomes more 

difficult and the problem of convergence increases ,multifold 

as the number of variables { µp } increases, so in most 

applications only a small number of parameters are used[ 22 ]. 

But, with very little variational freedom in the potential, 

the results are not accurate enough in comparison with those 

obtained by Kohn-Sham wave function gradient method [23 1. 
This method is applied recently in the density functional 

context, to the problem of Jellium surface[ 23 ] and electron 

hole drops [ 24 ] and in the calculation of energies of iso-

lated ions[ 25,26] . However, no application of this method 

on the electronic structure of real solids is yet reported. 



1.3.4 Potential gradient method 

In this method, the advantages of wave function 

gradient method and potential-sampling method have been 

incorporated. The analytic gradient of the total energy 

of equation (1.13) with respect to the variational para-

meter { µp }of the potential is put equal to zero and 

the resulting equations are solved. The potential is 
used to generate only •the independent particle energies 

and wave functions ; the resulting values are used through-

out this approach. The response of energies and wave-

functions to a change in potential can be obtained by 

perturbation theory, but for first derivatives, it is 

sufficient to use first- order perturbation theory. 

This gives 

II 
aE • 	dU 	(r) 	 aU 	(r) 

=up = < j 	 ~j 	f n j(r) 3µp 	dr 

and 	 ...(1 .28) 

6~ M 	E V ~(r) '`'°1_ < 	13Uext(r) 13 Up 	
jtJ J 	Ej 	cj 	3? 	d Up 	J 

...(1.29) 

The response of the charge density can be obtained from 

equation (1.24) as follows , 

19 
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. E 	 2 	Re [ J~ (r) 	., (r) <~ ,; I auext(r) it •>J ~, * ~ 	ejt - EJ 	J 	J 	J  

and the equation (1.23) can be manupulated to obtain 

- 7 v 2 TJ.(r). This can be inserted in equation (1.25) 
and the variation giving the change in kinetic energy as 

3T [ n(r) 	2 1 	 . r 	auext(r) + 
6Ua 	 f [ n ) 3 3~ p 	 3 ( 	aup 

	

+ Uext(r). 	.1 ---- ] dr 	wj 
iLtp 

3n .(r) 
= - f Uext(r) `_"k__. 	dr 	...(1.31) 

3Up 

for the remaining terms in density functional equation(1.13), 
the only term in the derivatives comes from a change in 

charge density, n(r), so one can get 

3E[n] _ 
= f dr [  - Uext(r) +.V(r) +  f dr 

IL 

JExc [n()] 	j3n(r) 	
...(1 .32) 



which is, 

~. E n 
= E cO 	 2 j j 	j 	Re { < ~Tj Vks-Uext 	j' > 

3U (F) 
< j I 	ext 	I ~rj >1 	...(1.33) 

where Vks is given by the equation (1.27) and Uext(r) is 

an ordinary local function of F, 

Uext(F) 	Uext(r ; { Up}) 	 ...(1 .34) 

This is the fundamental equation in this approach, and is 

variationally equivalent to the Kohn-Sham condition, the 

gradients become zero while satisfying the condition that 

Vks (r) - Uext(r ; { 'p }) = 0 	...(1.35) 

The steps in this approach are as follows o 

Firstly the trial set { up } has to be selected and 

the Uext(r ; { up } ) is constructed by the equation (1.23), 

and then, the independent particles eigenvalue equation 

(1.24) is solved to obtain { i1J3(r) } and { c} 	The 

charge density, n(r), is constructed from the orbitals, 

{ $i(r) } , by equation (1 .25) and from n(r), the 

Vks [ n(r) ] , of the equation (1.27) is found, by repeating 

the above in steps, until the condition of the equation(1.35) 

is satisfied. 

21 
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This gives advantage over the selection on next trial 

potential, Uext' )(r) since, each iteration yields the 
function v() - Uemt (r), rather than the single E[n]. 
So it is easy to find the unique sail-consistent potential. 

At the same time, one can include enough free parameters 

in the potential to obtain accurate results. 

1.4 Pseudopotentials 

Any electronic property of a solid is determined by 

the energy states, and the associated wave functions of the 

electrons obtained by solving the schrodinger equation, 

Hill = ( T + V ) 4J = E j 	...(1 .36) 

where, J is the wave function and H is the Hamiltonian 

which contains, kinetic energy operator, T, and potential 

energy operator, V. In any solid, the potential, V, contains 

coulombic contributions from various nuclei and from all 

the core and valence eleotrcns as it is included in Hartree 

and Hartree Fock equation [ 27] . In addition, exchange 

and correlation energies are also included in the latter 

equation. 

In a solid, the eigenstates can be classified as valence 

states and core states. The valence states are the ones 

which are involved in the chemical bonding. Now, it is 

desirable to construct a pseudo Hamiltonian, which has the 
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same valence eigen values as that of the original Hamil- 

tonian but has no core states of lower energies. In other 

words, the Hamiltonian is simulated to give the energies 

of the valence electron eigenstates and to remove the 

atomic-like oscillations of valence electron wave functions 

inside the core. 

1.4.1 Philosophy of pseudopotential 

On the basis of the work of.Harring [ 28 ] who found 

that the valence electron wave functions can be expanded 

in a rapidly convergent series of plane waves orthogo-

nalised to the core wave functions. Phillips and Klein- 

mann [ 29 ] constructed the potential energy operator for 

the pseudo Hamiltonian. This potential is called the 

pseudopotential and has been represented as 

vps(E) = V + E 	c >< ~c I (E - Ec ) 	...(1.37) 
C 

where 1 $c > is the core state eigen function with an 

eigenvalue of Ec. If Ei is an eigenvalue of the 

valence state of H corresponding to the true wave func-

tion, ~T , then, by direct substitution, it is evident 

that Ei is also an eigenstate of H = T + Vps with 

eigen function Iof > , ie 

Ei I 0i > = HPI di > _ [ T + Vps(E.) ii Oi >  



with 

>=ITV > - >.< t~ 	14.> 	...(1.39) 

From the basic philosophy of the above approach, as 

explained earlier, one can see that the pseudopotential, 

Vps(Ei), is not a unique operator and one can choose a 

variety of pseudopotential with the property that the same 

eigen value spectrum of valence electrons will be obtained 

corresponding to different eigenfunctions. This approach 

has been pursued extensively by Harrison[ 30 ]and Heine 

et. al., [ 31 ] . 

In general, any pseudopotential can be presented with 

any arbitary, complete set of functions, Fc , as 

Vp s = V + E ( $c > < Fc 	 ...(1.40) 

The above equation (1.40) will have the same properties as 

the pseudopotential specified in equation (1.37). This 

allows one to choose < Fc I in any form. Austin et.al. , [32 ] 

and Pick et.al. , [ 33] have chosen the following form 

<Fc l = - <$C IV 	 ...(1 .41) 

This leads to the pseudopotential as given below 

Vps = (1 - E I 'c > < t' I ) V 	 ...(1 .42) 

This Vps is different from the original potential energy 
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0 

operator, V. Since the projection operator corresponding 

to the core states eliminates the corresponding components 

from the true wave function, there is an additional poten-

tial term when the eigen value equation is written in terms 

of this transformed wave function. In a metal with a 

substantial number of core levels, the pseudopotential, 

Vps, which has been given in equation (1.42), is relatively 

very weak, as compared with the original potential, V, and 

does not result in any bound core states. This can also 

be understood from the point of view of scattering in terms 

of phase shifts [34 ] . One can define pseudopotential as 

the one having phase shifts 61's obtained by subtracting 
the integral multiples of it from the phase shifts of the 

original potential. Thus it has no bound states. 

1.4.2 First principle pseudopotential 

Since the pseudopotential is weak, the perturbation 

theory may be applied quite successfully. Apart from 

Austin et .al . , [32 ] Pick et .al . , [33 ] , a variety of such 

pseudopotentials are given by Harrison [301 , Hafner [ 35 ] , 

Shaw. Jr, [ 36 ] , Appapillai et .al. , [37 ] , Williams et. 

al., [ 38] and Zunger et .al . , [ 39 ] . 

The pseudopotential proposed by Phillips-Klein- 

mane [29 ], and others results in a normalised pseudo-i 

wave function having the same shape as the normalised ortho- 
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gonalised plane wave (OPW) eigen function in the region 

of space out side the cores, but with different amplitudes. 

These potentials are generally 'hard core' in character, 

i.e., strongly repulsive at the origin. The pseudopotential 

developed by Hamann and coworkers [ 40,41 ] , matches the 

true wave function outside the core both in shape and ampli-

tude. These pseudopotentials are called Norm-conserving 

pseudopotentials. 

In a practical calculation, the pseudopotential is 

usually selected by one of the two broad method 

a) by calculating from first principle,. or, 

b) by fitting to experiments. 

1 .4.3 Empirial model potelitials 

These pseudopotentials are specifically designed for 

application to specific elements or compounds or ions. The 

ionic pseudopotentials are usually parametric functions and 

the parameters are determined by fitting with the observed 

values of some properties as discussed in detail by Cohen 

and Heine [42 ], in their review paper on this subject. The 

pseudopotential applicable to specific elements or compounds 

are numerous and only a few popular pseudopotentials are 

discussed below. 

The pseudopotential operator given in equation (1 .37) 



can be written as 

VpS 1 0>=vi 0>- Z I ~> < V~~I V I 0> 	...(1.43) 

where < t~ I 4) > has nonzero contributions for the core 

states 4J with angular quantum number, 1, and spin quantum 

number, m, because 0 has component having the same 1 and 

m due to the orthogonality of spherical harmonic, Ylm(ev) 

which are the angular part of the core wave functions. Thus, 

the potential becomes very weak in the core region due to 

the negative term in equation (1.43) and this is called 

cancellation. If the core states are more and the cancella-

tion is better and conversely, if there is no cancellation, 

then, the electron sees the full potential. For example, in 

carbon, the 2s state electrons see a cancelled pseudo-

potential, but the 2p state electrons see the full poten4 

tial, which is as it should be, since 2p has no correspond-

ing p-states in the core for causing cancellation. Thus, the 

2p electrons are relatively tighly bound compared to the 2s 

electrons. 

Thus, if for a given 1, there are no core states, 

then the pseudopotential for thF.t 1 is equal to the real 

potential. But, if there are core states, then, the answer 

is that Vps is almost zero inside core region of radius, 

rc, for that 1. This conclusion is derived from empirical 

experience as well as from the above theoretical arguments 
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often referred to as the cancellation theorem. Ashcroft [ 43] 

set Vps  equal to zero in side some radius, R M, which he 

adjusted to fit some experimental data and the resulting 

values of RN  were close to the accepted ionic radii res-

pectively, r0. Abarenkov et.al.,[ 44] chose RN  at some 

arbitrary radius, set Vps(r) to a constant, A t  inside RN,  

and adjusted A to fit the spectroscopically observed energy 

levels of an electron in the field of the ion, and again, A 

was found close to zero for RN  N rc. Therefore, one can 

arrive at the empty core model for the ionic pseudopotential 

0 	for r < R 
M 

ps  V ={ 	- 	for r > R r 	M 
...(1.44) 

Here, the empty core parameter. R(M  is approximately the 

radius, rc, of the physical atomic core and may vary some-

what around that value. 

A similar model used by Harrison [30] , termed the 

delta function core model, which is a pure Coulomb poten-

tial of charge, Z, with a repulsive delta function of 

adjustable strength, D. In Fourier transform with screen-

ing , it yields the pseudopotential which does not tend to 

zero even at large q, as it should be. One can correct the 

large q-behaviour by smearing the delta function out a bit 
and can be written as 
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Vps(~) =[ '- 4 2Z + 
( ~ 

+D.,2
RH ) 

2 ] / •c'- e(q) ...(1.45) 
~1   

where RH is Harrison's radius which can be varied as a 

second parameter and c (q) is dielectric constant due to 

screening in a crystal, varied as a second parameter. If 

RH is chosen around, r, the potential given by equation 

(1 .45) does not differ much from the Fourier transform of 

Ashoroft's empty core pseudopotential[ 43 ] except at 

q 

Simons and Bloch (SB) [ 45 ] introduced a potential 
by a given 1-dependent ion-core radii derived from free-ion 

quantum defects. The SB effective potential is 

VSB(r) = Vr (r) + Vv(r)  ...(1.46) 

The repulsive potential part Vr(r), originating from the 

relaxation of core-valence orthogonality is chosen as 
B. 

v(r) _ 	 :..(1.47) 
r 

Here, B1 is an adjustable constant and Vv() is potential 

field experienced by the valence electrons. When this 

potential is written for the case of a single-valence-

electron system, the complicated valence-valence inter-

electronic interactions vanish and Vv(r) is given in the 

central field limit as 

Vv() _ -  + '1(1 + 1 
2r 
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where Z is the valency. An expression for orbital radii 

in this case as obtained by putting VSB(r) equal to zero 

in equation (1.46) is given below 

r = Bl/Z + :L(2Z +I ) 
	

.(1.49) 

These orbital radii are characteristic of the atomic core 

and structural indices [ .46 ] 

1.5 Bonding in pure solids 

The chemical bond in a solid is concerned with mutual 

interaction of the valence electrons of the atoms in the 

lattice. The nature of the bond is characterised by the 

spatial distribution of the valence charges around the atoms 

in the crystal lattice. The bonding in pure solids, thus, 

has been classified in two basic forms- metallic and covalent 

bonds. 

1.5.1 Metallic bonding 

The valence electrons of atoms in the metallic crystal 

is sparead over throughout the solid, thereby achieving a 

high electrical and heat conduction. The electrons moving 

about are said to be delocalized because, the valence 

electron wave function, Jv, extends over the entire solid 

So, the valence electrons are always closer to one or another 

nucleus as compared to its position in free atoms. Thus, 
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the potential energies of the electrons are lowered in a 

solid. Similarly, the kinetic energy of the metallic 

valence electron is also lowered because the wave function 

is extended more in space. These two factors contributing 

to a decrease in energy are primarily responsible for meta-

llic bonding. Since the valence electrons are delocalized 

the bonding is nondirectional and the lattice ions can be 

thought of as embedded in the valence electron gas, which 

holds the lattice together. In absence of the directional 

forces the lattices of the moot of the metals are closely 

packed. The bonding energy or the cohesive energy of the 

metal, is defined as the energy required to break the metal 

down into neutral atoms. 

1.5.1.1 Resonating bond theory 

The bonding of metals, as suggested by Pauling [47 ], 

results from the metallic orbitals permitting the resonance 

of electron pair bonds from one interatomic position to 

another by the jump of one electron from one atom to an 

adjacent atom, leading to stabilization due to resonance 

energy. For each atom to remain electrically neutral by 

retaining its valence electrons, the stabilization occurs 

through permitted synchronized bond resonance, 

N— M 	M M 
I 	1 	 4 

M --= M 	MM 
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which is analogous to that of benzene molecule. But the 

stabilization caused would be relatively small and will 

not explain the extent of stabilization observed in metals. 

.So, it has been assumed that there are unsynchronized 

resonances as well. 

M —"" M 	M —.-.. M- 
+ 	etc. 

M -- M 	M 	M 

This unsynchronized resonance would require the use of an 

additional orbital on the atom, called metallic orbital, 

receiving an extra bond. This type of metallic orbital has 

been considered in the calculation of interatomic distances 

by Pauling [L7] 

1.5.1.2 Electron gas theory 

In electron gas theory of metals, some of the basic 

premises of Pauling's [ 47 ] theory is retained. Equal bonds 

are formed with all the nearest neighbours and that the 

electrons resonate between them in a complex way. In 

physics, this complex movements of the electrons have been 

portrayed as that obtained from an electron gas. There is 

a voluminous literature on the calculation of energy in an 

electron gas which is far more quantitative than the 

theories for metals based on chemical approach. 
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If a metal crystal is conceived as an array of 

positive charges embedded in a nearly uniform sea of negative 

charges, the total energy of such a system may be written 

as 

Ecrystal = E [n] + Ew + Ebs 
	...(1.50) 

where, the first term is the total energy of the atom in the 

crystal, which is related to seperated ions and electrons 

explained in equation (1.13). The second term is the Ewald 

electrostatic energy of point ions in an uniform electron 

gas. The bulk of the electrostatic energy of the system 

has already been included in the E[n]  of equation (1 .13) 

and Ew  accounts for the structure dependent part of the 

electrostatic energy. The coulomb repulsion favours simple 

symmetrical structures, for which EW  is quite small. Since, 

the Wigner - Seitz cell is not far from a sphere and w 

increases rapidly with any distortion, it stabilizes the 

simple structures to avoid distortion of Wigner-Seitz cell. 

The Ebs  is the band structure energy which is the 

effect of band gaps in the band structure, i.e., the devia-

tion of electron gas from free electron gas. 

If one considers a single Brillouin zone plane g, and 

v(g) is positive then the usual nearly free electron treat-

ment of the band gap in terms of 2x2 secular equations, gives 

the state at the bottom of the gap as 	Sin ( 1  g ) 2 'r 
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This can be termed as purely p-like state, because that is 

its symmetry about the atomic site r=0. It is infact a 
p-bonding state with maximum density (012  half way between 

the atom. Similarly, the other states near the bottom of 

the gap have also larger p-like components as compared to 

the simple plane-wave state, exp (i g.r ) and pile up 

charge between the atoms. In other words, the reduction 

in their energy comes from forming s-p hybridized bonds. 

However in the matallic bond, one can not assign localized 

electrons and the heaping up of charge is a modulation on 

the density of the electron gas involving all the electrons 

'resonating' between the bonds. These bonds are not orien-

ted in a particular direction with respect to one another. 

The charge density in the bond arises from the overlapping 

of these metallic atoms [48,30 1  and one can form any number 

of such bonds independently in any direction desired. When 

v(g) is negative, the state at the bottom of the band gap 

is s-like antibonding one, 	1JT = Cos ( 	 - g,r 	) , which 

subtract the charge from the region between the atoms and 

the same will be true for the electron gas as a whole. 

However, the lowering of the energy, Ebs  does not depend 

upon the sign of v(g) so that these anti-bonds provide just 

as strong links as the others. In this the electrons move 

towards the lower potential energy. When v(g) is positive, 

the bonds are formed in the region away from the centre, i.e., 
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half way between the atoms. The pseudopotential for small 
r is relatively high, because of the core level, as in 

Animalu and Heine [49 ) square well potential characterised 

by its depth, Ao. When v(g) is negative the electron den-

sity increases at the centre of the atom.either because 

the core radius is so small, that the Ashcroft's empty core 

does not materially effect much or because the Ao of 

Animalu and Heine's [49 ], square well potential is also 

relatively low for some atoms in keeping with their atomic 

and chemical properties. Due to the tendency for the elec-

trons to move towards the centre of the atom, normally one 

gets tightly bound s-orbitals in these regions. 

The energy involved in these inhomogeneous distri-

bution of electrons has been estimated by the second order 

perturbation theory. The deviation in energy per atom over 

that of the uniform electron gas can be written as 

Fbs _ N-~ E - 	E ' 	t < k + f V k > L 	
so . (i .51) - 1 1I+ g `2 

where, the inner summation excludes g = 0 state and N 

is the number of atoms. V is the total potential of the 
crystal. From this expression one can find that it is 

sufficient to sum over the free electron Fermi sphere. The 
total potential, V, is in the form of pseudopotential, aris-

ing from the positive inns into the uniform electron gas 



at the atomic sites R and can be written as 

V = (Const) + ~° S(g) vion(g, 	exp (i g.r) 	...(1 .52 ) 

where, S. is the structure factor and vion(g) is the poten-

tial of a single ion, which can be written in Fourier 

transform as 
vion(g) = fj /' vion(`r) exp (-i R.F) dr'' 	...(1.53) 

where C- is the atomic volume. The structure factor for the 
unit cell can be written as 

s (g) = n-~ E exp (i g.R.) 	 ...(1 .54) 

3 

The summation on j being over the n equivalent atoms in the 

unit cell. When the electron gas relaxes, i.e., the electron 

gas now can take up inhomogeneity, the total potential gets 
-  screened. Each Fourier component S(g) v'°''() is reduced 

by some screening factor, e(g), giving the total pseudo-

potential as 

V(r) = (Const) + E's() v(g) exp (i g.r) ...(1.55) 
g 

where, v(g) is the screened ionic pseudopotential as given 

below, 

ion 
v(g) = v(g)/ (_) 	 ...(1.56) g 
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The summation in equation (1.55) excludes g = 0. The 

screening factor e(g) for a free electron gas can be 

written in terms of Lindard dielectric function 

	

8 TL E2 	q /2 
s2q 	 2 	.2 q 2+ k+   

F 	s 

...(1.57) 

where, x, (q) is the form factor, kF  is the radius of the 

Fermisphere of the free electron and ks2  is the screened 

coulomb interaction with screening constant which can be 

written as 

x (q) = N-1 	[ 	k 2 	- 	(k + 4 ) 
k < tF  

-1 
Z ( 3  EFo  ) 	 ...(1.58) 

4kFZ  - q Z 	q+ 2 kF  
[ + 	 log

J —  ( ] 	... (1 .59) 

	

RFF 	 I  q- 2 kF  

The summation being over both spin states, the X (q) is also 

called the perturbation characteristics, because, c (q) 

is derived by simple perturbation calculation with the 

summation extending over all NZ electrons. The factor in 

parenthesis in equation (1.57) is twice the Fourier trans-

form of the coulomb potential of the electrons which is 

responsible for the screening. The matrix element in the 

numerator of the equation (1.51) becomes just S(g) v(g). 



So one can write Ebs as 

	

= 
1 	 ' 	I S(S)I2{ v(g) 	12 

Ebs 	N 	-~ - 	£ 	 - -- 	_...~ 
k 	kF g 	C 	

ikl2- 1(k + g )2 

...(1.60) 

Further, it is necessary to modify equations (1.51) and 

(1.60) which are incomplete as they stand, because the 

coulomb repulsion has been counted twice in the summation 

of one electron energies, so electrostatic self energy of 

the system as given below, will have to be subtracted once. 

vcoul = 	1 	z n(g) v
sc
(g) 	...(1.61) 

2X)- 	gg 

where, v60(g) is the screening potential-of the electron 

gas and n(g) is the corresponding electron charge density, 

i.e., deviation from the uniform electron gas density. From 

equation (1 .56) one can write 

Vsc(g) 	V(g) - V
ion

(g) 

= S(g) E v(g) -- vion(g) 1 

	

= S(g) • v(g) [ 1- c (g) ] 	...(1 .62) 

The total charge density obtained from the perturbed wave 

function is 
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n(g) = 2 	1 S(g) v(g) X- (g) 	...(1.63) 

substituting equations (1.63) and (1.62) into equation (1.61) 

and subtracting it from equation (1,60) yields the energy per 

atom as _.. 	
Ebs E~.t s~(g)!2 [ v(g) j2 x. (g) e (g) 	...(1.64) 

g - 

in place of equation (1.66) the equation (1.64) is the 

corrected one and it correctly includes the correlation and 

exchange contributions from non uniform electron gas. 

The charge density ih equation (1.63) has the form 
of a sum of overlapping spherical pseudoatom charge dis- 

tribution [ 30,50,51 ] . The total charge per atom is the 

-. 0 limit of 2v(q) X-(). The limit of v(q) is - 2 EFo 

and limit of 	( q) is - 	Z EFo , [52 9 42 9 53 9 54 ] giving a 

charge of Z electrons per atom as one would expect. 

In equation (1.64) the last three factors v(q), 

X. () and C (q) which can be grouped together as, 

Obs(q) _ [ v(q) ] 2 X- (q) c() 
	 ....(1.65) 

This product is named the energy-wave number characteristics,. 

These three factors depend solely on the element considered 

and not on the crystal structure. The reciprocal lattice 

vectors come in sets of ng equivalent ones with the same 

Is 12, e.g., the eight (111) reciprocal lattice vectors, and 

it is useful to lump them together giving a total structural 
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W(g) = ng  1 S(g) 12  

for the set. Now the equation (1.64) becomes 

Ebs  = E W(g) Ob(g) 	 .,.(1.67) 
g 

where, the summation is only over the modulus g and not 

all individual g Is. This form is most convenient for 

computing. Now, let us return to perturbation theory and 

define a 7C (q) for one dimension. from equation (1 .58) . It 

diverges for 	q = 2kF. 	Therefore one can say that it is 

energietically very favourable to introduce a reciprocal 

lattice vector at 2kv . But this ignores the fact that 

c(1 ) in equation (1.57) also contains a factor X (q) and 

hence, so does v(q') through equation (1.56). From equa-

tion (1.64) Ebs  is proportional to 

[ .vlon(g) j2  X()/ c() 	 ...(1.68) 

and the divergence of X(g) cancels in the numerator and 

denominator. The function x,(q), has a logarithmic singu-

larity in the derivative at q = 2kF, but as Harrison[ 30 

has pointed out that, this singularity is so weak, that 

one can never see it on a figure. However, X(q) is always 

negative and it decreases rapidly beyond 2kF. So, the zone 

planes far- from the Fermi sphere hardly affect the Ecryst 
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of the equation (1.50) and the band structure energy, Ebs  
Zone planes with g<2 k, cut the Fermi sphere and con-

tribute substantially . The plane g = 2rF  just touches 

the Fermi sphere and does not make an abnormally large con-

tribution, in fact less than that obtained when g < 2iF, but 

the derivative is maximum there. The form factor X , depends 

only on the electron concentration, Z and the e (g) is 

near unity in the range of g of interest and v(g) can be 

treated as a constant, M, in the present case. Under this 

approximation one can expect reasonable results for those 

metals with a reciprocal vector for zero potential consi-

derably smaller than the first reciprocal lattice vectors, 

i.e.,  for Berillum, Magnis ium, Zinc and Aluminium. One can 

therefore approximate x very crudely by a step function as 

2C, (g) = 0 	for g- > 2kF  

X() = -- M for g` < 2kF  

In such cases Ebs  will become, 

Ebs  0C - M E W() 	 ...(1.70) 

g 

with g < 2iF . Now one can read off from Figure 1.1 which 

of the three common structures has the lowest energy. For 

Z = 1, 2R, is just greater than the smallest g of the hcp 

structure, which therefore has the lowest energy with a 

total W of 1.5. This corresponds to the observance of the 
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h cp structure of Lithium and Sodium at the lowest tempera-

tures. For Z = 1.5, the bcc structure has the largest 

total W= 12 below 27F, which is in accordance with the 

observed structure of the j3-brass  type of alloys. For Z=2, 

-the hop structure has the lowest energy again according to 

equation (1.70) as found in elements like Berillum, Magne-

sium, Zinc and Cadmium and the fcc structure is energetically 

favourable for elements like Aluminium with valency Z =3. 

A more complete investigation of the fcc and hop structures 

has been carried out by Blandin [55 ], who considered their 

stability against twinning and various types of stacking 

faults. Since the number and distance of nearest neighbours 

remains unaltered, the asymptotic form of the atomic interac-

tion was used. The results are qualitatively in accordance 

with the Figure 1.1. But, the bcc structure is left out 

of account. One may represent the Ebs  interms of real 

Space version of the theory, which is also .:.mathematic ally 

equivalent to its reciprocal space version. However, most 

calculations are carried out conveniently in reciprocal 

space. Though the calculations in real space encounters 

the convergence difficulties in interatomic potentials, 

it confirms the existence of a fairly well defined hard 

core diameter 2 Ro  such that the interatomic potential is 

strongly repulsive for R .<,2  Ro  but this potential is 

comparatively weak and oscillatory for R > 2 Ro  . This 
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VECTORS,.g WITH STRUCTURAL WEIGHTS,W (g ) 
FOR THE fcc,hcp and bcc STRUCTURES, RELATIVE 
TO 2kF FOR VARIOUS ELECTRON-PER-ATOM 
RATIOS,Z . 
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puts the limitation on the configurations of nearest 

neighbours that can be taken up at constant volume. But, 

the comparison of fcc and hcp structures which have the 

same distribution of the nearest neighbours, are simplified 

to some extent when considered in real space. The real 

space calculations are applicable °. firstly, to rearrange-

ments at constant density only ; secondly, they are strictly, 

meaningful in situations where perturbation theory is valid. 

The assumption of its validity is difficult to justify with-

out considering the situation in reciprocal space., espe-

cially when one deals with strcn g perturbations. 

1 .5.2 Covalent bonding 

There have been two seemingly incompatible schools 

of thought on the physical reas is for chemical binding. 

One school goes back to H.Hellmann[ 56 ]who held that inter-

atomic binding is due to a lowering of the kinetic energy 

upon molecule formation. This idea appears plausible when 

one compares the molecular wave function in certain types 

of molecules [ 56 ] with the atomic wave functions . But the 

other school critisizes this approach by pointing out that 

the virial theorem is known to hold for the molecules as 

well as for free atoms, so that the binding energy, EB, has 

the form 

EB  = °V +AT <0 	 ...(1..68) 
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where /V, the change in potential energy is less than zero 

and the kinetic energy, o T, is greater than zero. The 

lowering of energy comes about because of the drop in the 

potential energy inspite of an increase in the kinetic energy. 

According to the proponents of this critique, the'lowering 

of potential energy is caused by accumulation of extra 

charge in the bond which is attracted by both the nucleii 

giving rise to a lower potential',  energy in the molecule. 
A 

Most frequently the argument is made to appeal to 

physical insight as follows : firstly, it is observed that 

the molecular Hamiltonian operator is more negative every 

where, and in particular between the nuclei, so that there 

is an accumulation of higher charge. Secondly, it is obser-

ved that the accumulation of charge in the bond results due 

to overlap. But, it should be realised that simultaneously 

there is a depopulation of charge near the nuclei resulting 

in a rise in potential energy. Also, the nuclear repulsions 

come into play when the atoms are brought together in the 

molecule. The crucial question is however, whether or not 

the lowering in potential energy between the nuclei can 

outweigh the nuclear repulsions, the additional electronic 

repulsion and the rise in the potential energy due to a 

depopulation near the nuclei'. 

In addition, it should also be noted that the electron 

distribution in the bonded state can not be conceived as due 
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to overlap of electrons in the atomic state. The covalent 

bond is the classical electron pair or homopolar bond as 

conveived by the chemists. It 'is a strong bond, in the sense 

that it has a high cohesive energy comparable with that in 

ionic crystals, although the covalent bond acts between 

neutral atoms. Normally this bonding in crystals is expected 

between nonmetallic atoms like Nitrogen, Oxygen, Carbon, 

Fluorine and Chlorine. Other elements like Silicon, Ger-

manium, Arsenic and Selenium form bonds that are partially 

covalent and partially metallic. 

A prerequisite for strong covalent bonding is that 

each atom have at least one half filled orbital. For exam-

ple, an isdated carbon atom in its ground state contains 

two 2s electrons and two 2p electrons. In diamond crystal 

every carbon atom forms four equivalent bonds to the neigh-

bouring atoms. Pauling [ 47 ] conceived the covalent bonding 

in the following way. The energy required to promote a 

2s electron to the 2p state is small and it results in four 

unpaired electrons in four spa  hybrid orbitals, which 

will overlap strongly with the orbitals of the neighbouring 

atoms in tetrahedral directions. The lowering of energy 

caused by the overlap of these orbitals is much more than 

the increase in energy caused by promoting an s- electron 

to p-state. The more the bonding orbitals overlap, the more 

is the lowering of energy, or, the stronger is the bond'. 
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The amount of overlap is limited either by electrostatic 

repulsion or by exclusion principle repulsion. The theory 

of covalent bond is, thus, one of co-ordination number, bond 

lengths. and bond angles, all in real space. However, the 

study of electrons in crystals through the concept of Bloch 

functions and Brillouin zone is in reciprocal space. So, 

the manifestation of covalency in k-space has been described 

by several investigators [ 57 1 

A covalently bonded material is usually an insulator 

or semiconductor with a band gap between the occupied bon-

ding states called valence states and the unoccupied anti-

bonding orbitals called conduction states. A suitable 

Jone's zone containing the correct number of electrons per 

atom was constructed by Mott and Jones [ 58 ]for diamond 
and graphite. Since Fermi sphere is enveloped by a number 

of zone planes there is an extra lowering of energy. For an 

example, in Gallium (113), (211), (202), (022) and (004) 

reciprocal lattice vectors cluster in the range of g/2kF  

= 0.95 - 0.99. It is because of the energy advantage near 

the singularity of X( at q = 2kF  with a finite v(q) 

But, the structure of covalently bonded solids are more 

open with a relatively large Unit cell. The reciprocal 

lattice vectors, g, are relatively small and the corres-

ponding potentials, v(q), are large due to the general 

shape of v(q). So, the second order perturbation theory 



• 
a 

breaks down, 

1.5.2.1 Electronic states of small molecules 

In a system containing several isolated atoms, a 

composite set of electron states will be the collection of 

all the states from all the atoms, but if the atoms are 

brought together closely enough so that the wave functions 

of one atom, overlaps with those of the others, the energies 

of these states will change. However, the number of the 

states will be conserved. If the total energy of the system 

is lowered due to the overlap, the atoms are said to be 

bound forming a molecule. 

The electronic states of the molecule, 1T, is written 
approximately as a linear c-ombination of the atomic orbitals 

as given below, 

(111> 	aUaIa> 	 ...(1.69) 

where Uats are the coefficients and I a > represents the 

set of the normalised orthogonal atomic states. The coeffi-

cients, Ua  , and the energy of the system, E, are determined 

variationally as, 

<i I HLIJJ> 	= 0 	...(1.7o) 
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From this equation (1.70), one can write the secular deter-

minant as, 

dot ( H~ a - E~~a ) =  0 	 ...(1.71) 

where, H 	, = f3 1HIa > and 6Pa , is the unit matrix. 
3c 

If one considers the simplest case of covalent bonding of 

Hydrogen molecule with two electrons, the equation (1.71) 

becomes 

( ss - E ) U1 - V2 U2 = 0 

- V2 U1 + (6s - E ) U2 = 0 	 ...(1.72) 

where one uses two orbitals 	1 > and 12 > , which represents 

1 s states on atom 1 and 2 respectively and es = < 11H11 > = 

< 21H12 > and V2 = - <11H12>  = - < 21H( 1  > . The matrix 

element representing the Qverlap, i.e., V2 is called the 

covalent energy. The equation (1.72) can, now, be solved 

to give a low energy solution called the bonding state with 

energy ( es -V2) and a high energy solution called the 
a 

antibinding state with the energy (es + V2 ). 

This simple treatment can also be extended to polar 

covalent bond like LiH, where the bonding takes place in 

Is orbital of hydrogen and 2s orbital of Lithium having 

two different energies in their atomic states - C and ss , 

the lowering state being celled the energy of the anion, es, 

and the high energy state the energy of the cation, e 	. 
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The secular equation (1.72) can, easily; be modified to 

apply to this case and half of the difference in the values 

of the anion and cation energies is called the polar energy, 

V3. The energy states of the molecule can be written as, 

E = E + (V2 + V3 ) 
1/2 	

...(1.73) 

representing the energies of the bonding and the anti-bonding 

states and V2 is the covalent energy as define earlier. 

The evaluation of V1 and U2 will enable to deter-

mined the charge density associated with the bonding and 

anti-bonding states. zn the case of Hydrogen molecules, 

as discussed earlier, U1 * U2 = 2"1/2 for the bonding state 

and U1 = - U2 = 2-1/2 for the antibonding state. But, for 
1 

polar covalent solid one obtains U1= U2 V2 /((V2 + V3 ) -V3) 

for the bonding state. If the atomic wave functions do not 

overlap, the prob^bility of finding an electron on atom 1 

will be U /( U + UZ ) and that on atom 2 will be 

U1 / (U + U2 ). Now, in the case of molecule this proba-

bility is modified to (1 + ap )/2.; the probability of 

finding electron on atohi 1 and, ( 1 - ap )/2, the proba-

bility of finding electron on atom 2, where a p is defined 

as polarity given by a = V3/ (V + V )1/2, and the 

dipole that develops in this bond is proportional to ap, 

and the complimentary quantity, ac , defined as 

• viii  
gQQBXB it Ubtar~ s 1 	~n~  
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covalency is given by 

ac 	V2  /( V2 + V2 
 ) 1/2 

In the above simple example, only s states have 

been combined to form bonds through the overlap of the 

atomic states. However, this concept can be extended 

even when other atomic states are involved. 

1.5.2.2 Electronic states in covalent solids 

(a) Bond orbital theory 

The solids can be conceived as a giant molecule 

containing large number of atoms. Here also, the orbi-

tals can be constructed by linear combination of atomic 

states. It has already been explained that in the tet-

rahedral solids the bonding takes place between the sp 

hybrid orbitals and this natural choice has been made by 

chemists by looking at the tetrahedral symmetry of bon-

ding [ 59] . The spa  hydrids are formed by the linear 

combination of the wave functions of atomic I s > orbitals 
and three p orbitals - ( px  > y I pY 

 > and 1' pz  > 

in the following manner. 
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h > _ 11 	is > + IpX  > + IPy  > + IPz  > I 

h > =[ 	Is > + IPX  > - ( py  > - IPZ  > ] 

I h3  > _ L2 	Is > - IpX  > + IPy  > - Ip2  > ] 

h4  > = [1 	is > - 1px  > - IPy  > + ( pz  > 1 

(1.74) 

These four hybrid orbitals have the largest charge density 

in (111), (1 '! ) , (711 ) ^.nd (T1i ) respectively. These 

orbitals are called spa  hybrids because the probability 

of finding an electron in p-state is three times that of 

finding it in s state, It is noted that these hybrids 

are not the energy eigenstates and the expectation value 

of energy, called the hybrid energy, is given by 

E h  = ( e s  + 5ep  ) /4 	...(1  .75) 

where ss  = < sIHIs > 	 ...(1.76) 
and, 

E p  = <PX IHIPX  > = < py IHIPy> =< pZ IHIpZ  > ...(1.77) 

For polar covalent solids, the hybrids can be 

constructed on each of the atom types present and treated 

in terms of the lesser hybrid energy sh , the greater 
energy e 2 and a hybrid polar energy, V3 , defined as 
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(sh - C 	)/2 . Since the hybrids are not the eigen 

states, the non-zero matrix elements of the Hamiltonian 

can exist between the hybrids. The magnitude of the 

resulting matrix elements is called the metallic energy,V, 

and can be written as 

V1 _ -< hI 1HIh~ > 	_ - 	(E - s 	). 	...(1.78) 

	

p 	s 

The matrix elements between the hybrids on two neighbour- 

ing atoms 	pointed to each other is called the hybrid 

covalent energy as given below, 

V 	- - < h1 (H1h2 >_ 

= (—Vs s o + 2'-3 Vs p 6 + 3 Vpp 6) /4 	•..(1.79) 

and these terms are explained in figure (1.2). 

To calculate the band structure of the covalent 

solids, it is possible to use these hybrids for cons-

tructing Bloch states or else, the electron eigen state, 

lk > , which can be written approximately as a linear 

combination of the atomic orbitals 	a> , as 

k >= a Uka I a> 	 ...(1.80) 

The variational solution of the equation (1.80) will 

lead to a set of algebraic equation like 

a < 	(Hf a> Uka - Ek Ukp = 0  
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The solution of these algebraic equations can be obtained 

by diagonalizing the Hamiltonian matrix, < tJHI a >, 

through unitary transformation. 

The solution for the above equations are possible 

in principle but several approximations have been made 

to overcome the computational difficulties. The bond 

orbital [ 60 ] approximation neglects all matrix elements 

coupling the bonding states and the antibonding states. 

In other words, the kth  valence band state is written 

as a linear combination of bond orbitals. 

Uki  I b1> 	 ...(1.82) 

where {bi  > , represents the bond orbital. The error 

introduced by the neglect of the bond-antibond - matrix ele-

ments has been corrected in perturbation theory by cons-,- 

tructing extended bond and antibond orbitals, i B>, and 

I A> respectively in the following manner; 

I B > _ {b > + E I a > Vab  / (eb - sa ), ...(1.83) 
a 

A > = Ia > + E lb > Vba  / (ca  - sb  ). ...(1 .84) 
b 

The electronic states of the covalent solid corresponding 

to valence and conduction bands are formed by the linear 

combinations of their extended bonding and antibonding 

states respectively. The secular determinant can be set 

and the band structure can be evaluated completely. 



Cohesive energy of covalent solids 

The cohesive energy of covalent solids is obtained 

by calculating three component energies. Firstly, a pro-

motion energy for preparing the isolated atoms; secondly, 

an overlap interaction energy between atoms as they are 

brought together without bonding . and lastly, an energy 

gained in bond formation. 

The promotion energy can easily be calculated by 

considering the energies of the atomic states and the 

hybrid states. Taking the specific case of Silicon which 

has two electrons in the atomic s states and two electrons 

in the atomic p states, the spa  hybrid states, when 

constructed, have the total energy of 4 (Es  + 36p  )/4 

The total energy of the electrons in the free atom is 

2 (e + e ) and, thus, an additional energy of (cp  - 
S 	p 

es  ) = 4 V1  has been required to promote the electrons 

from the states of a free atom to the hybrid states. 

•After promotion, a quarter of the charge density 

arises from s orbitals and three quarters from p orbitals 

but, there is no change in electrostatic energy because, 

the atoms remain neutral. When the atoms are brought 

together the hybridized electron densities are superimposed 

leading to a change in the potential, kinetic arid the 

exchange energies. The overlap interaction in Silicon 

has been carried out by Harrison and Sokel [61 ]as shown 

56 
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in figure (1.3). The change in kinetic energy and the 

sum of coulomb and exchange interaction have also been 

plotted in the same figure. The calculation of the overlap 

energy has been carried out assuming that all the, electrons 

have the same spin and there is no distortion of the atoms. 

It is evident from the figure (1.3), that the overlap 

interaction as conceived, provides a simple interatomic 

repulsion. Vow, if the bonds are allowed to form, the 

energy of each electron is lowered by the difference bet-
ween the bond energy,.Eb  , and the.hybrid energy,. oh  , 
and for a nonpolar system, this energy change per bond is 

2 (eh  -c ) = 2V2 . However, the hybrid energies will 
change due to the influence of overlap potential but this 

could be included in the electrostatic contribution of the 
overlap energy. 

All this contributions to the energy can be com-

bined to give the cohesive energy of the covalent solid, 

Ec oh , a s 

Ecoh = - Epro  - V0(d)  + Ebond 	...(1.85) 

where Epro, is the promotion energy and V0(d), is the 

energy of atomic overlap as a function of interatomic  

distance, d. Ebond 9 
is the energy due to bond formation 

which also depends upon bond length. The expression of 

the cohesive energy can be minimised to find out the 
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equalibrium bond length and the bulk modulus. 

(b) Pseudopotential theory of covalent bonding 

The pseudopotential theory has been used to des-

cribe semiconductors but the pseudopotential perturbation 

theory as applied to metals in section (1.5.1.2) is quite 

inappropriate for semiconductors. For metals the pertur-

bation expansion is written in terms of the ratio of the 

pseudopotentials to the kinetic energy, which is small. 

For covalent solids, on the contrary, the ratio of kinetic 

energy to the pseudopotential should be treated as small. 

This distinction is important only in the case of approxi-

mate theories using pseudopotentials. 

If one considers the specific example of Silicon 

and begin with a nearly free electron gas of 4 electrQas 

per ion and calculate the energies of the states by writing 

it as a linear combination of four plane waves with wave 

numbers (110) , (9'T0) , ( 007) and ( 001) , the Hamiltonian 

matrix,-H, can be constructed as given below 

22 k1l0/2m W220 tid110 W111 

W220 
2 2_ 

k110/2m w111 W111 
H = 

W111 
# 
W111 

2 
fi k001/2m 0 

111 ~~111 0 
2 

k001 /2m 
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Harrison [ 62 ] has diagonalized the above Hamiltonian, 

to show that the two pairs of energies appearing in the 

diagonals are split into four levels, The energies of 

these levels have been matched with the four lowest energy 

levels at 'X' in the band structure of Silicon and the 

agreement is quite impressive. The splitting of the upper 

two levels has given the band gap between the valence and 

the conduction bands which has arisen primarily from the 

pseudopotential matrix elements W j 1 , suggesting that a 
simple theory may be formulated by neglecting all other 

matrix elements except W,~ ,1 , Band structure of group IV 

and III-Vcovalent semiconductors have also been studied , 

successfully by using or:thogonalised plane wave pseudo-

potentials by Garoff and Kleinman[ 63 ] 

Cohesive energy 

Cohesive energy of covalent semiconductors with 

treatments based on Heilter-London type methods has been 

carried out by Schmid, [ 64 ] Asano-Tomishina [65] and 

Goto [ 66] . Since these treatments involve large overlaps 

between bonding orbitals, a thorough going orthogonali-

zation of atomic functions and the evaluation of multi-

centered Coulomb integrals are inevitable, The task 

becmmes quite laborious. 
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The concept of pseudopotential proposed originally 

for band calculations, has opened the possibilities of 

calculating various crystal properties directly.and the 

stability of metals systematically as discussed in section 

(1.5.1.2). But, in applying pseudopotential perturbation 

theory to covalent materials, there are two difficulties 

firstly, the cohesive energy of these crystals are large 

compared to those of simple metals; and secondly, there 

is an energy gap- on the Jones Zone-face corresponding to 

the Fermi surface. These characteristics of covalent 

crystals require higher order terms in the perturbation 

theory. 

Morita et.al.,[ 67] developed third order pertur-

bation theory of covalent crystals in terms of pseudo-

potential to calculate cohesive energies and compressi-

bilities of group IV and 1II-V covalent crystals. 

A crystal consisting of ions located on the lattice 

points, Ri, 's and an electron gas with four valence 

electrons per atom (especially in the case of Carbon, 

Silicon and Germanium ), the pseudopotential seen by a 

valence electron is essentially nonlocal. But local 

Ashcr oft 's [ L+3]  empty core pseudopotential has been taken 

as ionic' potential for resons of simplicity. The para-

meter corresponding to the empty core radius is deter-

mined from the first zero of the pseudopotential form 
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factor interpolated from Cohen and `Bergstresser's [ 68 ] 

pseudopotential. 

The calculated values of the binding energy of 

Silicon in second order.theroy has been shown by. 

Morita et .al . , [67] , in which it corresponds to the . 

values in metallic, fec, bcc and hcp structures and com-

pared with the experimental values. It has been observed 

that the Ewald energy, E 	, is unfavourable for the open 

diamond structure compared to those for the close packed 

metallic structures.. The band structure energy, Ebs, is 

favourable for the former structure in comparison to the 

latter ones. These two opposing tendencies almost balance 

each other but the diamond structure becomes a little more 

favourable when compared with the metallic structures. 

This fact might be considered to suggest that the diamond 

structure is stable in second order perturbation theory. 

Even the calculated values of the binding energy is only 

a little less compared to the experimental values [ 69 J. 

But, the calculations of phonon dispersion curves in 

Silicon and Germanium show the diamond structure is unstable 

against shear stress in the second order perturbation 

approximation and all transverse acoustic modes have ime-

ginary frequencies. In order to have a consistent theory 

for covalent crystals one has to go beyond the second order 

perturbation theory and take into account higher order terms 



producing covalent bonding effects. 

In covalent crystals with diamond or zinc blende 

structures, W(111) is only one large pseudo-potential 

Fourier transform and the effect of W(111) in second order 

is comparable to that of other W(q)'s is first order. 

Heine and Jones[ 70] also have shown that the band gap 

at the point X (k = (110) in 2 it/a unit) on the Jones 

Zone-faces, is given approximately 

E(X)2(  Weff (22o)( 

where, 

Weff (220) = W (220) + Z'  < _TcX ` W ` X 	- 	> 
g 

• < kx  - g {W) 1 > 2 	...(1.87) 

where, the summation E is limited to the strong Fourier 
g 

transform W(111), i.e., kx  - 'g = ( 0,0,+ 1) . The 

energy gap calculated from the above equation (1.87) is 

in good agreement with observed values, so one can there-

fore assume the energy gap as cmstant over the Jones 

Zone-faces. The number of states whose energies are sub-

stantially lowered by the presence of the band gap is 

about Eg  /2 times the free electron density of states 

per atom at the Fermi surface, n (EF) = 6/E  . On an 
F 
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• average, their energies are lowered by Eg  /2 , 

Consequently, the covalent bond correction to the crystal 

energy, Ecov , is given by 

Ecov 	- n (EF )  f IWeff(220) { 2  - IW(220)I2  } ...(1.88) 



CHAPTER 2 

BONDING IN METALS 



2.1 Introduction 

The Hohenberg-Kohn (H.K) theorem states that, for 

a given external potential, v(r), the ground state energy 

is a unique functional of the particle density, n(r). The 

energy functional can be minimized with respect to the 

variation in particle density. The corresponding minimum 

in energy will be the ground state energy, En, of the 

system which can be written as 

E = f v(r) n(r) dr + Z f f  n(r)nr )  dr  d  ' 
n fr-r' I 

+G[n] 
	

...(2.1) 

where G[ xi]  is a universal functional of density, n(r) , 
containing the kinetic, the exchange and the correlation 

energies, The external potential, v(), the Ashcroft's[ 43 ] 

empty core pseudopotential has been chosen as a model 

potential, as it yields the cohesive energy values of the 

real systems quite in agreement with their experimental 

values. This indicates that the empty core pseudopotential 

may provide a sufficiently good model potential. This 

potential separates the core region of zero potential from 

the outer region where the coulomb potential is operative. 

The model potential is represented as 

	

0 	r< rC  

v(£) 	{` r 	r>  rc 
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where rc is the core radius, beyond which the full 
~ Z ~ 

ionic potential, r 	, is operative. 

Bonding in metals has been investigated'both in 

the homogeneous and the inhomogeneous electron gas model 

within the framework of density functional formalism. The 

formulation of the problem and the results have been 

discussed in the following sections. 

2.2 Uniform electron gas model 

Due to the volume depenency and a lack of direct. 

tionality in metallic bonding, the simplest electron dis-

tribution assumed is that of a homogeneous electron gas. 

The ground state energy of a given metal chary cterised by 

the valency, Z and the core radius, rc, has been deter-

mined by using the Hohenberg-,Kohn [21 theorem. The sys-

tematic variation of energy with valency and core radius 

has been calculated to match it with the observed trend 

in the periodic table. 

2.2.1 Formulation 

The electron density in the uniform gas model,no, 

is independent of the space coordinates. The size of no 

is the variational parameter which inturn determines the 

lattice constant or the atomic volume. The system is 

neutral electrically and each atomic cell has a valence 

t 



charge equal to its valency, Z, as expressed below 

R a 
f node =Z 	...(2.3) 
0 

or, 

no = ( 3Z/4 ,R3 ) 	...(2.4) 

where Ra, is the atomic radius, with these choices of 

v(r) as given in equation (2.2). One can write E1 per 

atom from the .Hohenberg-Kohn equation (2,1)' as 

En = - 2 n n Z (Ra - rc ) + 	n ~5 o 	 2 no Ra 
0 

+ G ( no ] 	 ,..(2.5) 

where the first term is the energy of interaction of 
electrons with the ion, the second term is the electron- 

electron repulsion energy and the third term, G no 	, is 

a universal functional giving the kinetic, exchange and 

correlation energy and is expressed in the local density 

approximation as 

2 
G[n] = 	(3 12 n)2/3 Z- 3 ( 3 n )Z 0 10 	0 	n n 

 
0 

1/3 
+ Z { -0.0575+0.0155 In ( 	) 	} . 

0 

...(2.6) 



By combining equations (2.5) and (2.6) and substituting 

the value of n from equation (2.4) one arrives at the 

following expression for energy as a function of only the 

atomic radius, Ra for a given element with valency, Z. 

and core radius, r0 . 

En = -1.5Z2 { 1 
o 	Ra 

2 rc 	+ o . 

R~  Ra 

+ 
3 

 1 b~ 9 	)2/3 z _ (  '9z 	)l /3 z 
3 	 4 zc Ra 
a 

	

+ Z { -0.0575 + 0.0155 in ( Ra/ 	) } 
Z 

The valency of an element is known but the core radius, rc , 

is an unknown parameter of its ionic potential. The exact 

value of rc can be determined by fitting certain observed 

physical quantities like term values of energy obtained 

from spectroscopy, resistivity, the volume per atom in the 

solid etc. Here, rc has been determined by demanding 

that the minimum of E as given by equation (2.7) exists no 
at the observed values of R. 

The first derivative of the equation (2.7) with 

respect to Ra can be expressed as 



dE 
no 	1.5 Z2 	4.5 Z2 	rc 	0.6  Z2

Ft2 	- R2  

	

a. 	a 	a 	 a 

- 2.21 Z 5 /3  + 0.458 Z 4/ 3  + 0.0155 z  
3 

Ra. 	 Ra 	Ra 
...(2.8) 

dE 
n 

At equilibrium 	°.-- = 0 
a 

The last term, which is the contribution from correlation 

energy, can be neglected since its contribution towards 

the equation (2.8) is less than 5%, and one can get the 
radius ratio of core versus atomic radius as 

r 	1 1/2 

	

___ _ { 0.2 - 2,21 	-o- +  0.458  z2/3  } 
Ra 	 4.5 	Re. 	4.5 

By substituting equation (2.9) in equation (2.8) one can 
get the above mentioned equilibrium condition. Now the 

ground state energy, as given by equation (2.7), is a 
unique function of the atomic. radius, Ra  . For the observed 

atomic radius, R, one can get the core radius, rc, for a 

given element. At a valency, Z, and atomic radius, Ra, for 
a given element the energy, E , can be determined from n o  
equation (2.7) and compared with the experimental values. 
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Thus, one can get an idea as to how good this uniform density 



assumption is for a given element. 

2.2.2 Results and discussion 

The table-2.1 gives the comparison of experimental 

total energies of simple metals, with those obtained from 

the present uniform gas model. The energies from various 

other models using different potentials and charge 

densities have also been included. The extent of success 

achieved by the uniform electron gas in explaining the 

experimental values of total energy has been analysed in 

the light of its limitations. 

The results of Weaire as discussed by Heine[ 71] 

give the total energy of various elements which are higher 

compared to the experimental values. These results are 

calculated on the basis of Animalu-Heine [ 49 ] , model po-

tential, neglecting the terms with 1 > 0. The calcula-

tions are purely volume dependant and structure indepen-

dant, because, the energy has been calculated for a uniform 

density of electrons. The parameters of the potential 

has been determined from the term values of energy and 

so the atomic energy is not an input parameter. The 

atomic radii of different elements as calculated in this 

model have large deviations from the observed values. 

Heine [ 71 ] argues that the cohesive energy is propor-

tional to the square of the band gap { 2 v(q)I and a 

71 
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neglect of the band structure part has resulted in a large 

shift in the calculated atomic radius, Ra, as shown in 

figures 2.1 and 2.2. These figures show the variation in 

total energy, En, with the atomic cell radius, Ra. The 
0 

experimental results, the calculated results of Weaire[ 71], 

and those of the present investigation have been presented 

for elements of Group IA and IIA of the periodic table. 

In figure 2.1 , the total energy obtained by 

Ashcroft et .al. , [ 72 ] for alkali metals have also been 

included. Aschcroft et . al . , [ 72 ] , in their model have 

included the band structure term in the calculation of to-

tal energy. However the total energy has been estimated 

by demanding the optimum at the observed values of atomic 

radius by keeping ocA  = 27t Z r , a floating parameter. At 

the same time the band structure term has been calculated 

by a core radius from liquid resistivity or Fermi Surface(FS) 

data. In effect it means that Ashcroft et.al. 9  [ 72 ] has 

used two different core radii for the volume dependant and 

structure dependant terms. 

From these figures 2.1 and 2.2, it is quite evident 

that although the energies obtained by Weaire [ 71 ] are 

higher compared to the experimental results, but the energy 

versus atomic radius curves for both the calculations of 

Weaire[ 71] and the present one lie below the experimentally 

observed values. If one includes now the band structure 
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term, the calculated curves will be pushed further below, 

but simultaneously, a change in the R will also take 

place as anticipated by Heine[ 71 ] , causing a lateral 

shift of the curve. This is borne out by the trend in 

the calculation of Aschcroft et.al.,[ 72 ] and is indicated 

by him. 

The total energy as reported by Ashcroft et.al., [ 72 ] , 

is higher than the experimental values except for regions 

of lower atomic radii containing elements like Lithium. The 

inclusion of the band structure term has resulted in a 

part of the calculated energy versus atomic radii curve 

being above the experimental curve, due to a lateral shift. 

The discrepancy for elements with lower atomic radii how-

ever, can be attributed to a bad choice of potential, an 

inadequancy of second order perturbation theory and the 

ignorning of the non local term in the potential. The choice 

of potential on the basis of the data on Fermi Surface or 

liquid resistivity are dependant only on states near k kF. 

It has obviously not given a good approximation for the 

states in the entire band. However, for total energy, the 

energies of all the states are important. 

Our calculations with uniform gas model have been 

lower energies than the values obtained experimentally [69] . 

This may have resulted from a neglect of the inhomogeneous 

nature of electron distribution and/or from a bad pseudo-

potential when calculated on the basis of observed atomic 
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radius excluding inhomogeneity. To examine the model 

further, the pseudopotential of a bare ion of Sodium used 

by Ashcroft et.al., [ 72 ] , 'Teaire [71] and the one used 

in the present investigation have been compared in figure 

2.3. In this figure the potential used by Weaire[ 71 ]-has 

been plotted with a well depth, Ao  inside the radius, RM  , 

as obtained by Animalu and Heine[ 49] . Also, the empty 

9  core pseudopotential with a core radius derived from cal-

culations of Ashcroft et . e.l . , [ 72] and the one used in the 

present calculations have been presented. It is observed 

that the core re.dii in the model of Ashcroft et.al., [ 72 ] 

is very near to that obtained in the present model. Thus, 

the potential obtained in the present investigation is not 

much different from that of Ashcroft et.al.,,[ 72 ] . If one 

calculates the equivalent core radii for the Animalu and 

Heine [ 49 ]potential used by Weair[ 71] one gets 

R3  
rc  = RM  - 3  Ao  ""` 	•..(2.10) 

For Sodium rc  = 1.889 a.u. is equivalent in energy to the 

given Animalu and Heine [49 ]potential. Thus, the poten-

tial used in the present investigation lies below that of 

Ashcroft et.al., [72] and is equivalent to the Animalu 

and Heine[ 49] potential. So it may be inferred that the 

potential used here is not bad. The energy versus atomic 

radii, Ra  , curve should shift above the experimental curve 
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if inhomogeneity in electron distribution is allowed, as 

it is expected similarly for the calculations of Weaire [ 71 1. 
It should be noted that with more detailed calcula-

tions the energy values improved by only a small extent, 

as it is evident from the calculations of Janak et .al. , [ 73] , 

and Moriarty [ 74 ] . Since the objective of the present 

investigation is not to obtain accurate cohesive energy, 

but to understand bonding behaviour, further refinement in 

the calculation has not been undertaken. The inhomogeneity 

has been included in a manner relevant from the point of 

view of bonding, as it will be explained in the next sec-

tions. 

2.2.3 Stability of Uniform gas model 

The expression of Eno, as given in the equation (2.7) 

lays down a restriction that every atomic cell must nece-
ssarily have the negative charges equal to the valency, 

making the cell neutral. It implies that the solid does 

not have the option to accomodate additional space outside 

the atomic cell and accomodate part of the charge from the 

atomic cell in this space. Even if it leads to a lowering 

of energy. To examine this tendency, it is necessary to 

write the expression for energy of the atomic cell when an 

amount of charge,& Ze, has moved away from the atomic cell. 

Now the charge ( Z -AZ   ) , if uniformly distributed in the e 
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atomic cell will give rise to a uniform density, no, as 

given below, 

R 0 
f 	no de = ( Z - A Ze ) 
0 

or 
3(Z-AZ ) 

no = 	-e---- 	 ...(2.11) 
4 n R3 

0 

•The energy expression can now be obtained, by subs- 

tituting the expression for no from the equation (2,11), 
into equations (2.5) and (2.6), to give 

r2 

E = - 1 .5 Z ( Z - o Z e ) { R - _ G 
0 	o 	R3 

0 

0.6(Z-AZe )2 

0 

( 	)2/391  

4R3 0 

. ( Z - A Ze )
5/3 

_ 	
~ 

( 9 
1/3 

~ 
0 

4/3 
(z - A Ze ) 

R 0 
+ ( Z- o Ze ) (-0.0575+0.0155 In ( 1/3 ) } 

(Z- o Ze ) 

...(2.12) 

The condition that the atomic cell is stable with respect 

to the flow of charge away . from the cell to outside is 



given by 

dE 
0 	>0 	...(2.13) 

dAZe 	A Ze = 0 

when, 

dEno 
	1 	

r 	
12 (Z _ A Ze ) 

dAZ 	o R 	 o e 	 o 

5 (Z_AZe )2/3 
-1.105 3 

0 

4 	(Z -AZ )1 /3 
+ 0.458 	-3 ---------~----- 	... (2.14 ) 

0 

In the above equation, correlation energy is neglected, 

due to its negligible contribution ( <5% ) to the total 

expression.. 

Thus, 

r 	1.2(Z-AZe) 	1.105.5 (Z -AZe ) 2/3 

R {1 	- 	3 o 0 

(Z -AZ  )1 /3 	1/2 0.458 	e 	} 	...(2.15) 

Since the energy of the uniform electron as should, in 

addition, satisfy the condition for minimum with respect 

to Ro at the observed radius of the atomic cell, the 

equations (2.9) and (2.15) have to be satisfied simul- 
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taneously. Transferring the value of -- - from equation 

a 
(2.9) into equation (2.15) one obtains 

rs  = Z-1/3  Ra > 2.4127 	 ...(2.16) 

Thus, it is clear that only when the uniform electron gas 

has a density satisfying equation (2.16), it is possible 

to have stability in the uniform electron gas model. 

In this context, one can examine the segment of 

periodic table where equation (2.16) will be satisfied. 

The figure 2.4 shows the stability range in the uniform 

gas model by plotting core radius, rc  , versus the radius 

of the spherical volume containing one electron, rs  , for 

the elements with valencies, Z = 1 to 7 . The elements 

occuring with the lowest core radius and the highest core 

radius are shown in each valency. A line of seperation 

has been drawn at rs  = 2.4127 a.u. to show the limit beyond 

which the uniform gas model is stable. It is observed that 

all the elements with valency, Z = 1, lie in the uniform 

gas model region. For valency, Z = 2, the elements with 

core radius less than 1.14 a.u. lie in the region of in-

stability of uniform gas. The elements with the core 

radius greater than 1.14 a.u. should conform to uniform 

gas model as indicated by its success in explaining their 

cohesive energy. Almost all the elements with valency 

Z = 3 fall in the region where rs  is less than 2.4127 a.u. 
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except the element Thallium. In case of valencies, Z>4 , 

all the elements in the periodic table lie in the region 

where electron distribution is inhomogeneous and the vali-

dity of the uniform gas model is doubtful. Such elements 

demand the application of inhomogeneous electron gas model 

as it has been carried out and presented in the following 

sections. 

2.3 Inhomogeneous Electron Gas : Step model 

The study of the stability of uniform electron gas 

model has shown that at rs  > 2.4127 a.u. the uniform 

electron gas model works. But a large number of simple 

metals in the periodic table have rs  < 2.4127 a.u., (See 

fig. 2.4 ) for which the uniform electron gas model is not 

stable. There is a tendency of some amount of charge a Ze  , 

to be away from the uniform bas atomic cells spontaneously. 

If the metallic bonding still persists the next model should 

be evolved by violating the assumption of the uniform dis-

tribution of electrons within the atomic cell. The step 

model developed in this context assumes the existence, elec-

tron gases of two different densities in the inner and the 

outer region of the cell. But, it will lead to a discon-

tinuity in the boundary. As a result, the gradient term 

in the expression for energy will diverge. The realistic 

electron distribution will result by readjusting the dis- 
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tribution at the boundary so as to eliminate the infinite 

gradient. However, this model will be instructive to yield 

information about the gross behaviour of the electrons from 

the point of view of bonding. The model here approximates 

an inhomogeneous electron gas in metal in terms of homo-

geneous electron gas in two segments of the atomic cell. 

The size of the segments and the corresponding charge den-

sity is dictated by the principle of minimization of total 

energy. The advantage of this approach lies in the ability 

to build a large non-uniformity in charge, in case, it leads 

to a lowering in energy. Also the energy can be calculated 

more accurately here than that is possible in perturbation 

theory because the density functional formalism is -  formally 

exact. But the representation of the charge density by just 

two homogeneous segments may be quite insufficient and a 

poor approximation to the true charge distribution. 

An atomic cell consisting of electron gas with two 

densities as envisaged in this step model will be able to 

reflect some features of concern to the chemists. If the 

charge density in the inner cell is higher, the metal has 

predominantly electrons with s-character. But when the. 

outer shell charge density increases it indicates an in-

creasing p-character of the electrons giving rise to sp 

bonding. But this sp bonding is distinctly different from 

covalent sp bonding because the electron distribution here 
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is nondirectional. It is more a reflection of the nature 

of states occupied by the electrons in a overlapping s-p 

band. 

In the following sections the density functional 

energy has been expressed as a parametric function of the 

density parameters. For a given valency and core radius 

the energy function has been optimized by Davidon Fletcher 

and Powell method [75] to get the ground state energy and 

the corresponding charge distribution. 

2.3.1 Formulation 

With the choice of Ashcroft's [ 43 ] empty core 

pseudopotential, v(r), from the equation (2.2), one proceeds 

to choose a parametric function for electron density,n(r). 

Here, the density has a step discontinuity as given below 

n 	for r < R 
n(r) 	°  

•n1 	f or R < r < Ra  

where, no  is the density of the electrons in the inner cell 

of radius, R , within the atomic cell and n1  is the elec-

tron density in the outer spherical shell of inner radius,R0  

and outer radius, Ra  . The density has four parameters 

no,n1  ,Ro  and Ra  . One of these parameters is fixed by 

using the principle of charge neutrality in the atomic cell 



consisting of the inner cell and the outer shell. Thus, 

there remains three parameters or variables for minimi-

zing the energy. The inner cell contains an amount of 

charge, (Z - o Ze) . Since the electron distribution, no  , 

in the inner cell is uniform the equation (2.11) and the 

energy of the inner cell as given in equation (2.12) can 

be written directly as, 

r 2 
E 	= _ 1 .5 Z (Z - oZ e) { 	- --c 	} 
no 	o R 

+ 0.6(Z -A Ze)2  + 3 	2/3 	5/3 

o 	T   4 
) 
	

(Z-Q Z 2)  

0 

- 3  (.--- 9 	)/ 

 

1/3 (Z - A Z e ) 4 i2R3  
0 

+ (Z- oZe) {- 0.0575+0.0155In( ---R 	)} 
(Z- A  Ze  ) 

...(2.18) 

where, the first term is the energy of. interaction of 

electrons with the ionic pseudopotential and r0 , is the core 

radius. The second term is the electron-electron repulsion 

energy and the rest of the terms are kinetic, exchange and 

correlation energies respectively. 

The remaining o Ze  charge of the atomic cell is now 

4/3 

distributed homogeneously in the outer shell around the 
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inner cell to make the atomic cell neutral. But the charge 

density in the spherical outer shell may be different from 

that in the inner cell and thus, 'there is a step discon-

tinuity in electron distribution at r = Ro . If the charge 

density of the electrons in the outer shell is n1, the 

charge neutrality of the atomic cell demands that 

R 
a 

f n1 dr = L~ Z 
0 

or 	3 o Z 
ni = 	e 	 ...(2.19) 

4n(Ra-Ro ) 

Following Hohenberg-Kohn[ 2 ] theorem, the energy of the 

outer shell can be written as 

	

R 	RR n n Eshenl 	f a v(r) n1 dr` + I f
a 

f 
s 	

dr dr 
0 1 R 	Ro Ro I r- r►{ 

0 
RR non1 

+1 f — 	-- drdr I + G [n1 ] 

	

R Ro 	-'R 
0 

In this equation, the first term represents the interaction 

of the ionic pseudopotential, with the outer shell electron 

density, n1 . The second term is the electron- electron 
repulsion within the outer shell. The third term is the 

electron-electron repulsion between the inner cell electrons 

with those in the outer shell. The fourth term G [ n~ ] is 
the universal functional representing the kinetic, exchange 



M 

and correlation energy of the electrons in the outer shell 

with a density, n1  . 

Using equation (2.19) in (2.20) and the expression 

for G [ni l for the uniform electron gas, one arrives at 

the following expression, 

shell 1.5  Z'AZe  (Ra - 	Ro ) E 	_ - 
no,n1 	(R3  - R3  ) a 	0 

4.5 AZ2  
+ 	{ 2  R5- 1 R2 R3 + 2  R5 } 

(R3-R3  ) 2 	15 a 3 a o 	10 o 
a o 

+ 1 .5 (Z -6  Ze ) A Ze  

1,105 oZ5/3  
+ 	 - 

(Ra _ R3o)2/3  

(R2  - Ro ) 
3 	3 (R -R ) 

0.458 o Z4/3  
- 0.0575 AZe  

(R3 - R3  )1/3)1 /3 
a 

+ 0 	AZ { in(R3-R) - In A Z} 

...(2.21 ) 

The total energy of the pure metal in the step model 

can now be written by combining the energy of the inner cell 

given in equation (2.18) and the energy of the outer shell 

as given by equation (2.21) . 

	

E _ E + Eshell 	...(2.22) 
n 	no 	no 9n1 
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Now, the total energy, E , is. a function of the inner 

cell radius, Ro, the outer shell radius, Ra  , and the 

charge contained in the outer shell, o Ze  . To derive the 

energy for a metal with a given valency, Z, and core ra-

dius, rc  , under this model the expression for energy 

as given by equation (2.22) is optimized with respect to 

the variables R , R and AZe  

2.3.2 Results and discussion 

The variation of energies of the inner atomic cell 

and the outer shell with o Ze  have been shown for a given 

univalent metal with rc  = 1 .0, 1.6, and 2.6 a.u. in figure 

2.5. It is observed that the energy of the inner cell is 

increasing from a highly negative value of zero as the 

charge in this cell reduces. On the contrary, the energy 

of the outer shell is reducing from zero to a negative value 

with the increase in charge in this shell, A Ze, as shown 

in figure 2.5. However, the configuration of electron gas 

of two different densities will be stable only when there 

is a minimum in the total energy for a specific value of 

L Ze  . In addition to this, the configuration will become 

energitically favourable compared to the uniform electron 

gas only when the value of total energy, which is the sum 

of the energies of the atomic inner cell and the outer shell, 

at the minimum is lower than the energy of the atomic cell 



with uniform electron gas . 

The difference in behaviour of the total energy with 

A Ze  , for low r  and high rc  have been explored as 

shown in figures 2.6a and 2.6b. For rc  = 1.0 and 1.6 a.u.,  

one observes that the total energy decreases as the charge 

in the outer spherical shell increases. However, beyond 

the optimum the total energy starts increasing. The depth 

of the energy minimum rsduces as ionic pseudopotential 

becomes weak i.e., rc  increases from 1.0 to 1.6 a.u. At 

still higher values of rc  , the minima disappears. 

-Figure 2.7 shows the details of different energy 

terms of the inner cell and the outer spherical shell. It 

is observed that the kinetic energy and the electron - 

electron repulsion energy of the inner cell reduces with 

the charge flow to the outer shell and similarly, the 

magnitude of the negative energy terms like the potential, 

exchange and correlation energy also reduces. But, the 

kinetic energy, the electron - electron repulsion energy 

of the outer spherical shell increase and the magnitude of 

the negative energy terms like, potential energy, exchange 

and correlation energy increase as the outer shell acquires 

charge. " The increase in the potential energy and the 

decrease in the electron - electron repulsion energy of the 

inner cell almost balance for small a Z e  and thus the 

decrease in kinetic ez'Lergy of the inner cell, and the exchange 



and correlation energy of the outer spherical shell provide 

a major impetus for the lowering of energy. However, the 

change in energy in the spherical shell starts dominating 

the terms favouring the charge transfer outside the inner 

cell, but soon the increase in potential energy of the inner 

cell grows relatively strongly, disfavouring further 'charge 

transfer. As a result of these two opposing tendencies a 

minimum in total energy is obtained for a given quantity of 

charge flowing to the outer spherical shell. 

The change in the density of electrons in the inner 

cell and the outer spherical shell with the increase in 

charge in the spherical shell have been shown for the 

element Z - 1 .0 and r 	1.0 a.u. in figure 2.8. In the 

outer shell, the electron density, n1  , has been observed 

to rise steadily with A Z but, that in the inner cell, no  , 

has two peaks. The smaller initial peak is the reflection 

of a tendency to recover some potential energy while kinetic 

and electron-electron repulsion energies are dominating , 

but due to the 'change of domination from electron-electron 

repulsion to kinetic energy at 4 Ze  = 0.40 , there is a 

corresponding peak in no  . However, the increased magnitude 

of the change in potential energy at o Ze  > 0.40 stimulates 

a buildup of charge in an effort to partly compensate for it. 

The electron density of the outer spherical shell, n1  :. 

increases steadily du e to. the dominance of the negative 



energy terms like potential energy, exchange and correlation 

energy. 

The radius of the inner .cell, Ro  , and the outer 

radius of the spherical shell, Ra  , vary with the charge 

in the outer shell as shown in figure 2.9. The inner cell 

radius decreases continuously in order to give an advantage 

of higher ionic pseudopotential to electrons in spherical 

shell. However, the outer radius increases initially to 

restrict the electron density to a level beyond which, the 

kinetic and the electron-electron repulsion energy will 

become prohibitive . But, an increase in A Ze  and a 

decrease in Ro  strengthens the potential energy term to 

such an extent that the outer spherical shell radius starts 

decreasing. 

In this investigation, a configuration having no 

electrons in the inner core region and all the electrons 

in the outer spherical shell has been ruled out as an 

artifact of Ashcroft's pseudopotential. The prevalent s-p 

bond can not result in such an extreme electron distribu-

tion unless a large number of states with higher quantum 

number are involved. The last possibility is not physically 

sound because the promotion energies will forbid such an 

accurrence. 

The figures 2.10 and 2.11 show the total energy of 

the inhommgeneous electron gas leading to metallic bonding, 



optimized with respect to Ro  , o Ze  and Ra for a given 
valency, Z, and the core radius, rc  . The change in energy 

with core radius, rc  , for a given valency, Z = 1 to 7, has 

been shown in figures 2.10 and 2.11. It has been observed 

that, at lower core radii, the total energy is large and more 

negative compared to that observed for higher core radii for 

a particular valency, Z. As valency increases, the total 

energy becomes more negative. The total energies obtained 

in the uniform electron gas model have also been plotted 

with dotted lines for comparison with the. step model as 

shown in figures 2.10 and 2.11. The step model yields a 

slightly higher value for the negative total energy for a 

particular valency, Z, at lower ranges of core radii. But, 

the deviation in total energy in the uniform gas model and 

step model becomes smaller for higher core radii. This 

trend has been maintained for all valencies, 

The variation of the charge in the outer spherical 

shell for different elements characterised by valency and 

core radius of the ionic pseudopotentional is shown in 

figure 2.12. It is observed that, for stronger pseudo-

potentials the values of o Z e  are higher, for a given 

valency but, it increases in certain rapid steps and re-

mains steady before the next increase at some appropriate 

lower rc  . This stair-like characteristic has been observed 

for all valencies with a larger number of steps for higher 
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But, the electron densities vary smoothly without any of 

the above characteristics as observed in the case of AZ. 

The figure 2.13 , shows the increase in the density of 

electrons in the inner cell, no  , and the outer spherical 

shell, ni  , for a decrease in the value of rc . However, 

n o  increases at a much faster rate compared to n1  in the 

outer shell. For large r the uniform electron gas model 

is approched and the density difference between no  and 

n1  reduces. 

Figure 2.14 shows the variation of energy with the 

radii of the atomic cell including the spherical shell 

around.. It is observed that for a given valency and e. 

low atomic radius the step model yields an energy consi-

derably lower compared to that obtained in the uniform gas 

model. However, the difference in energies become negli-

gible beyond a given limiting value of the atomic radius 

for a given valency. These limiting values of radii in-

crease with an increase in valency. Since the density 

functional theory is an exact theory it could create, in 

its framework, a strong inhomogeneity in charge distri-

bution if it is favoured by a lowering in energy. 

A comparison of the results obtained in the step 

model with those observed experimentally shows that the 
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step model has invariably given a higher total negative 

energy as shown in table 2.2. The total energy obtained 

by uniform gas model has been nearer to the values observed 

experimentally in the case of metals with lower valency, 

but for higher valency metals, the uniform electron gas 

model gives an energy which is higher than the observed 

ones. The step model shows energy values lower than the 

experimental ones. It should be pointed out that in the 

step model, the positive gradient energy contribution has 

been ignored. This energy term would have checked the 

extent of difference in electron densities in the outer 

shell and the inner cell considerably. Also, its positive 

contribution to the energy is expected to result in higher 

total energy and thus, the agreement would have been better 

with experiments. In the next chapter the impact of this 

gradient energy contribution will be examined in a contin-

uous electron density model and compared with the results 

of the step model in order to devise appropriate correction. 

2.4 Summary 

The ground state energy and the cohesive energy of 

the elements have been investigated under the assumption 

that the electron gas around the ion core is uniform and is 

under the Ashcroft's empty core pseudopotential characterised 

by a core radius. The ground state energy has been calculated 
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using Hohenberg-Kohn density functional formalism. The 

energy functional has been reduced to a parametric function 

of atomic radius. By knowing the valency of an element, 

the core radius of the element has been expressed as a 

function of atomic radius by demanding that the ground state 

energy corresponds to the minimum of the energy function 

at the observed values of atomic radius, Ra  . The cohesive 

energies determined by this model have been tabulated and 

are higher than the experimental values for the correspon-

ding atomic diameter. But if one allows for small inhomo-

geneity through second order perturbation theory there will 

be a further lowering of ground state energy but a simul-

taneous shift in the atomic radius will result in.a better 

matching of the calculated values with the observed ones. 

The stability of the uniform electron gas model 

has been analysed with respect to a movement of the .charge 

away from the atomic cell causing a reduction in the total 

energy. For elements with rs  > 2.4127 a.u. only the uniform 

electron gas model is stable. 

A large inhomogeneity in the electron gas has been 

introduced in a step model where the atomic cell has been 

split into two segments with different densities. of electron 

gas. The gradient energy in the density functional expan-

sion has been ignored. The density functional is reduced 
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to a three parameter function of atomic radius, the radius 

of the inner segment and the density of electrons in the 

order segment. The ground state energies calculated are 

smaller compared to the observed results for different 

elements. However, a correction to this model introduced 

by comparing the results with that obtained from continuous 

density model presented in the next chapter improves the 

performance of this model remarkably. 
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Table-2.2 The total energies E of different elements 

obtained from step model and compared with 
those obtained from the uniform gas model and 
experiments 

E (a•u•) 

Ele- Valen- Atomic Experi- 	Uniform 	Step 
ment cy Radius mental gas 

Ra(a.u.) [69] 

Li 1 3.258 -0.2581 -0.2785 -0.303 

Na 1 3.931 -0.2299 -0.2375 -0.2410 

K 1 4.862 -0.1939 -0.1966- -0.1966 

Rb 1 5.197 -0.185 -0.1852 -0.1852 

Cs 1 5.625 -0.1726 -0.1724 -0.1724 

Be 2 2.351 -1.1342 -1.2288 

Mg 2 3.339 -0.8893 -0.9224 -1.08 

Ca 2 4.123 -0.7287 -0.7661 -0.825 

Sr 2 4.494 -0.7090 -0.725 

Ba 2 4.661 -0.629 -0.6860 -0.686 

B 3 2.273 -2.8357 

Al 3 2.984 -2.0824 -2.129 -2.85 

Ga 3 3.154 -2.2088 -2.0299 -2.55 

In 3 3.472 -2.0294 -1.8663 -2.20 
Ti 3 3.577 -2.1401 -1 .8177 -2.15 
Si 4 3.177 -3.9607 -3.475 -4.55 
Ge 4 3.309 -3.9173 -3.35 -4.325 
Sn 4 3.512 -3.541 -3.1525 -4.05 
Pb 4 3.648 -3.6275 -3.o47  -3.80 



CHAPTER 3 

CONTINUOUS 
DENSITY MODEL 



3.1 Introduction 

The step model suffers from a serious handi-

cap, since it is incapable of accommodating the gradient 

term in the density functional expansion. As in the step 

model, the representation of the charge density by two 

homogeneous systems may be a poor approximation tQ the 

true charge distribution. However, the inhomogeneity 

can be incorporated in the atomic cell in a continuous 

manner to avoid the physically improbable discontinuity 

at the boundary of the segmented or the step model resul-

ting in the divergence of the gradient term in the energy 

expression. In a realistic electron distribution, the 

gradient terms in energy is by no means negligible and 

a modification to the electron density is called for to 

improve accuracy. But, a continuous inhomogeneous density 

will introduce additional optimisation parameters. In the'-c-ase 

of pure elements the choice of the density used here 

is a continuous tangent hyperbolic function similar in 

form to the one used by Smith [ 76 1 to model the charge 

density at the metal surfaces. The analytical form of the 

surface charge density has been written as, 

n 
n(Z) = n+  -- 2 exp( R Z) for Z < 0 (in metal) 

n =2 -. exp (- 13Z) for Z > 0 (out side) 

112 
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where, n+  is determined by charge conservation and L3  is 

the free parameter to be determined variationally. The 

resulting charge distribution for different metals is 

very similar to a tangent hyperbolic function. The cal-

culation of Lang and Kohn [ 77] with a jellium model for 

the metal surface also yields a charge distribution 

similar in form to that used by Smith [ 76 3. 

3.2 Formulation 

The Ashcroft's empty core pseudopotential [/4.3 1 
has been used here as in the case of step model and the 

electron density within the cell, n(F), can be written 

as, 

n(r) = . [ (no  + n1 ) + (no  -n1 ) Tanh P (-r ) 
or 

n(r) = A + B Tanh P (r-ro  ) 	...(3,2) 

where, A is the uniform component and B is the coeffi-

cient of the nonuniform component of the resultant charge 

density. 	is the slope and ro  is the point of inflec- 

tion of this distribution. From the charge conservation 

criterion one can get 

Ra  

f 	[ A + B Tanh ti (r-ro  ) ) di = Z 	...(3.3) 
0 

where, Ra  is the at omic cell radius. For a given Ra  , 3 and 
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r one can evaluate A, and then B can be evaluated with 
0 

the help of the charge conservation criteria yielding 

B = (Z - •4"JI RaA/3 ) / 
Ra 

of Tanh 3 (r-ro ) dr ...(3.4) 

The evaluation of A and B completely defines the charge 

density of the atomic cell, n(r). Using Hohenberg - 

Kohn [2] expression for the energy functional and the 

local density approximation, one can express the energy 

of the atomic cell, En, as, 

Ra 

	

E =f 	v(r)[A+ BTanh ~(r-r` ) ]dr n rc 	 0 

1 Ra Ra [ A+B Tanh 3 (r-ro ) ] [A+B Tanh P (f f eft- `0 )] 
+ 2 f f 	 dr dr 

0 0 r - r' 

R 
+ f a 3 .(3 7t )2/3 [ A+B Tanh i (i-i) ]5/3 dr 

	

0 	10 	 0 

R  
a 	 4/3 

+ f Exc [ A + B Tanh 13 (r-ro ) ] 	dr 

R 	 2 
+of a g2(r) I V [ A+B Tanh c3 (r-ro ) ] ( 	dr 

...(3.5) 

where, the first term is the pseudopotential term and the 

second is electron- electron repulsion, the third term and 
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fourth term are the kinetic, the exchange and the corre-

lation energy, E0, as explained in section 1.2.2 of 

chapter 1. The last term is the energy due to gradient 

contribution from the kinetic energy • and the exchange 

and correlation energy. 

The potential energy part, EPE , of the equa-

tion (3.5) is integrated over atomic cell radius, Ra 

from core radius, r , and is given below 

R 

EPE _ - 2 ' Z (R - r ) A -f a r B Tanh i (r-ro )dr 
rc 

...(3.8) 

Then, 'the electron-electron repulsion term of equation (3.5), 

Ece , is obtained as, 

Eee 
= 16 = n2A2 R 

15 	a 

+ 2 ff a [ .f 	r (2 ) 
0 	or > r 	r 

BTanhP (r-ro ) . 

. B Tanh i (r '-ro ) dr' 

R a + f _ ( ~) (B Tanh ~ (r-r o ) B Tanh j3 (r I -ro ) dr' ] dr 
rr < r 

+f a`[ fr ( 2 ) A.:B Tanh {3 (r -r0 ) dr' 
o or >i F. 
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R a 
+ f 	(? ) A B Tanh P (r 1 - r ) dry ] dr 	...(3.9) 

rr < r i r' 

The- kinetic energy term, T , is evaluated as, 

2i3 R 	 5/3 
T 	10 ` (3 ~2 ) 	f a [( A+B Tanh R {r-ro) ] dr 

0 
...(3.10) 

The exchange and correlation energy term, ECc , has been 

reduced to the following form 

1/3 R 	 4/3 
Exc 	- 	( 3 ) 	f [ A+B Tanh 	(r~-ro ) ] 	.dr 

0 

+ Ra . .p 	+ •0- ,055 In 	3 	] of [ 0575 3 
4 (+ Tanh (3 (r`-ro) 

[ A+B Tanh (3 (r_ro ) •] 	di 	 ...(3.11) 

The gradient energy, Egrad , of this has been incorporated 

here as such after substituting the expression for the 

electron density as given below, 

Ra _ 	-2/3 
Egrad f [ X/8 + C(rs )(A+B Tanh ( (r-ro)) 	) 

[ A+B Tanh j3 (F-i 0 ) 1+1 

	

2 	 .. • [ B2 (( Cosh ~ (r - ro ))-4 I dr 	... (3.12) 
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where, the first term in the first square bracket is due 

to the kinetic energy and the second term is due to the 

exchange and correlation energy. The parameter, ), , in 

the kinetic energy contribution has been taken as 1/9 which 

is appropriate for perturbation calculations involving 

large wave lengths in comparison to Fermi wave length 

as suggested by Jones and Young[ 8] . The C(r) is a 

gradient coefficient dependent on electron density through 

the radius of a volume containing one electron,. r6  , as 
suggested by Rasolt et .al. , 1 9 ] . In the equation (3..12) 
the value of C(r5) has been taken as 2x10-3  , an average 

of the values calculated in the metallic range of electron 

densities. 

The integration involved in the equations (3.4) 

and (3.8) to (3.12) have been worked out numerically 

using l5-point Gaussian quadrature formula. Combining 

the equationsfrom (3.8) to (3.12) one gets the total 

energy per atom, E , as 

En EPE + ee +  T  + Exc + Egrad  

which is a function of cell radius, Ra  the gradient para-

meter, P , the radius of inflection, ro. The optimum 

energy is obtained by a parametric variational cal-

culation with respect to these parameters. 



3.3 Results and discussion 

The variation of the ground state energy with the 

core radius, rc, in the continuous density model obtained 

through optimization as explained in the previous section, 

is plotted in figure 3.1. For a particular valency, the 

total energy is more negative for lower core radius i.e..  

stronger pseudopotential. With an increase in valency the 

pseudopotential again becomes stronger resulting in a 

higher total negative energy and the cohesive energy. The 

arrow mark in figure 3.1 seperates the region between inhomo-

geneous electron gas as observed in the continuous density 

model and the uniform electron gas. At lower core radii 

the stronger potential favours an inhomogeneous distribu-

tion of electrons in the atomic cell but at the cross over 

core radius, r , indicated by the arrow, the energy of 

the inhomogeneous model smoothly joins with that of the 

uniform electron gas model. But the cross over core 

radius, rc  , shifts to higher values for an increase in 

valency due to the resulting stronger potentional. 

Figure 3.2 shows typical electron density distribution 

in continuous density model compared with those obtained 

in the step and the uniform gas model for the same valency 

and the core radius. It is observed that the inclusion 

of the gradient energy term as it has been done in continuous 
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density model reduces the extent of inhomogeneity as 

compared to that in the step model. It is evident from 

these figures that the step model exaggerates the inhomo-

geneity by taking advantage of the favourable ionic pseudo-

potential just outside the core region. The gradient energy 

in the continuous density model reduces the electron density 

in the inner region and enhances it in the outer region as 

compared to those in the step model. Thus, the gradient 

in the electron density in the continuous density model is 

kept low. But the uniform electron gas model maintains an 

average density as it is required in this model. The atomic 

radius in the uniform gas model and the continuous density 

model are similar but the step model yields a larger atomic 

radius. Because, the electron density in the outer region 

of the step model is determined by the balance of potential, 

kinetic and repulsion energies, but in the continuous density 

model gradient energy shifts the balance to a higher 

electron density. Thus, one observes that uniform electron 

gas model is a better model yielding a more reasonable 

estimate of atomic radius, energy and electron density as 

compared to the step model. 

When one compares the figure 3.3 for valency, Z = 4, 

one observes that the extent of inhomogeneity reduces as the 

core radius increases. This trend is common to both the 

continuous density model and the step model. It has been 
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further demonstrated in figure 3.4 where the ratio of 

electron densities in the inner to that in the outer region 

has been plotted against the core radius, rc , for diffe-

rent valencies. When the potential is strong by reasons 

of either lower core radii or increase in valency, the 

extent of inhomogeneity increases. But for every valency, 

there is a core radius at which the inhomogeneity vanishes. 

Figure 3.5 shows the change in the cross-over core 

radius at which the inhomogeneity vanishes with the valency. 

The cross-over core radius, rc , increases with an increase 

in the valency but saturates beyond a valency, Z = 3. It 

is interesting to note that both the step and the continuous 

density model yields the same cross-over core radii, r~ , 

although the extent of inhomogeneity differs significantly 

in both these models. When this cross-over core radii, rc , 

are compared to the limit of stability of the uniform gas 

model as it has been analysed in the section 2.2.3, it is 

observed that the stability has been overestimated because 

it does not consider the additional energy factors in the 

outer region favouring the inhomogeneous distribution of 

electrons. 

In table 3.1, the typical values of various energy 

terms involved in the continuous density model has been 

presented for the valency, 1 = 2.0 , and for the core 
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radii, r = 0.6 and 2.0 a.u. The various corresponding 

energy terms of the uniform electx n gas model a nd the 

step model are also tabulated for comparison.. The energy 

values in the continuous density model and the uniform 

gas model are comparable whereas the step model has 

energies quite different from these two models. Thus the 

positive gradient energy term is pushing the electron dis-

tribution and the energies away from the step model to 

ones akin to those obtained in the uniform gas model. This 

explains the success of the uniform gas model in explaining 

the cohesive energies and the observed atomic radii of the 

metals although the uniform gas model appears quite un-

realistic. At higher core radii when the gradient energy 

term becomes small due to a reduction in the extent of 

inhomogeneity the step model, the uniform gas model and the 

continuous density model result into similar energy terms 

and electron densities. 

The difference in the total energy obtained from 
CD-U 

the continuous density model and the uniform gas model, E 	s 

has been presented in figure 3.6 for various core radii. 

At low core radius the difference in total energy is obser-

ved to be more and it reduces steadily as the core radius 

increases for a particular valency. The difference in total 

energy also increases as the valency increases. It is 

expected because the inhomogeneity decreases as the potential 
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becomes weak and so the difference in energies in the uni-

form electron gas model and the continuous density model 

should become small. 

The total energy of various metals obtained from 

the continuous density model has been presented in table 

3.2 and the corresponding values obtained from the uni-

form gas model and the experiment have been shown for 

comparison. It is observed that the values calculated from 

the continuous density model for elements with valency, 

Z = I and 2 of lower core radii like Lithium, Sodium, 

Beryllium, Magnesium and Calcium have lower in total 

energy in comparison to those obtained from the uniform 

gas model. Whereas all the elements with higher valencies, 

Z = 3 and 4, the calculations of the continuous density 

model show a lower total energy compared with the corres-

ponding results from the uniform gas model. The energy 

values obtained from the continuous density model lies 

within a limit of 5% from those calculated using the uni-

form gas model, 

The total energy of various elements obtained 

from continuous density model has also been compared in 

table 3.2 with the. corresponding experimental values. It 

is observed that for elements with valency, Z = I , the 

total energy for element Lithium is lower than the observed 

value, but for other elements with the same valency the 
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calculated total energies are nearer to and a little lower 

than the values observed experimentally. For valency, 

Z = 2.0, the elements show higher negative values com-

pared to the observed ones but for elements with valen-

cies, Z = 3 and 4, , the observed total energies are lower 

(higher negative values ) than the calculated values. The 

calculated total energy of the continuous density model 

matches with the experimental total energy to within 

+ 1pg6, 

3,4 Gradient correction to the step model 

The total energy obtained from the step and the - 
continuous models show a difference, D ES ,CD which has been  

attributed primarily to the gradient correction and has 

been shown in figure 3.7 along with the difference in the 

electron densities, o n, in the two segments of the atomic 

cell in the step model. This figure shows an approximately 

linear behaviour which can be represented as, 

S-CDC 
 X Y. AE 	v n 	...(3.13) 

where, o E 	is the energy correction. X and Y are the 

coefficients which are dependent on valency. The coeffi-

cients X and Y are evaluated by least square fit. The 

values of X and Y are calculated for various valencies 

and are shown in figure 3.8. X and Y are also observed to 
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vary linearly with the valency. Thus, the correction to 

the energy obtained from the step model has been obtained 

for the entire range of core radii and valencies under 

investigation. 

3.5 Summary 

In the continuous density model, the inhomo-

geneity in electron density within the atomic cell has been 

incorporated as a continuous tangent hyperbolic function 

to avoid the physical improbable discontinuity as in the 

step model. By using this density and Ashcroft's empty 

core pseudopotential the Hohenberg-Kohn density functional 

equation has been constructed along with the gradient term. 

Now the equation is a function of for parameters namely, 

the density in the inner region and the position at dis-

continuity, the density gradient parameter and the atomic 

radius. 

The electron density distribution has been compared 

with the uniform gas and step model and found that, by 

including the gradient energy term in the continuous density 

model, the electron density in the inner region comes down 

considerably as compared to that in the step model. The -

charge neutrality is maintained by an increase in the 

electron density in the outer region and by an adjustment 

of atomic radius. The total energies obtained from the 
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continuous density model and the step model are found to 

merge with the uniform gas model at the same energy 

smoothly at a high core radius termed the cross-over core 

radius. This cross-over core radius has been compared 

with the limits of stability of the uniform gas model and 

it has been observed that the uniform gas model is less 

stable compared to that indicated by the limited analysis 

already performed. 

The ground state total energies are calculated 

for various simple metals and compared with uniform gas 

model values and experimental values. The total energies 

of lower valency, Z = 1 and 2, elements with lower core 

radii have lower values incomparison to the calculations 

of these elements on the basis of the uniform gas model. In 

higher valency elements with Z = 3 and 4, all the elements 

show lower values of total energy incomparison to that 

obtained in the uniform gas model. The total energy of 

various elements calculated using the continuous density 

model has been within + 10% of the experimental values. 

The difference in total energy obtained from this 

model and the step model shows a linear variation with 

the electron density difference within the atomic cell in 

the step model. The total energy in the step model has 

been corrected for the gradient contribution in the entire 

range of core rodii and valencies under investigation. 
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[DI 
0.4 	0.8 	1.2 

rc (a.u.) 

Fig.3. 4:THE VARIATION OF MAXIMUM TO MINIMUM 
RATIO OF ELECTRON DENSITIES WITH THE 
CORE RADIUS,rc in a.u. FOR THE VA'LENCIES, 
Z=1 to 4. 
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Valency, Z 

Fig.3.5: THE CHANGE IN CROSS-OVER CORE RADIUS, r*  
in a.u. WITH VALENCY, Z . ( 	) LINE FOR STEP AND 
CONTINUOUS DENSITY MODELS AND (----) LINE 
INDICATES THE LIMITS OF STABILITY OF THE 
UNIFORM GAS MODEL. 
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Fig.3.6: THE VARIATION IN THE DIFFERENCE IN TOTAL 
ENERGY, FAD-U  AS OBTAINED FROM THE CONTINUOUS 
DENSITY MODEL AND THE UNIFORM GAS MODEL FOR 
VALENCIES, Z = 1 to 4 . 
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Fig.3.7: THE DIFFERENCE IN TOTAL ENERGY, AE 	BETWEEN THE 
STEP MODEL AND THE CONTINUOUS DENSITY MODEL WITH 
THE DIFFERENCE IN ELECTRON DENSITY An IN THE ATOMIC 
CELL OF THE STEP MODEL FOR THE VALENCIES,(a) Z=1 & 3 
AND (b) Z=4. 
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Fig.3.8 : THE VARIATION OF THE PARAMETERS [(a) X AND (b)Y] 
OF THE LINEAR LEAST SQUARE FIT OF TOTAL ENERGY 
WITH VALENCY. 
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Table- 3.2 The total energies of different elements 

calculated in the continuous model and 

compared with the experimental values and 
uniform gas model 

Total Energy (a.u.) 

Elements Valen- Experi- Continuous Uniform gas 
cy mental[ 69] density 

1. Li 1 -0.2581 -0.279 -0.2785 

2. Na 1 -0.2299 -0.238 -0.2372 

3. K 1 -0.1939 -0.1966 -0.1966 

4. Rb 1 -0.185 -0.1852 -0.1852 

5. Cs 1 -0.1726 -0.1724 -0.1724 

6. Be 2 -1.1342 -1.2750 -1.2288 

7. Mg 2 -0.8893 -1.0 -0.9224 

8. Ca 2 -0.7287 -0,780 -0.7661 

9, Sr 2 -0.6779 -0.7090 -0.7090 

10. Ba 2 -0.629 -0.6860 -0.686 

11. Al 3 -2.0824 -2.15 -2.129 

12. Ga 3 -2.2088 -2.05 -2.0299 

13. In 3 -2.0294 -1.875 -1.8663 
14. Ti 3 -2.1401 -1.825 -1.8177 

15. Si 4 -3.9607 -3.65 -3.475 

16. Ge 4 -3.9173 -3.50 -3.35 
17. Sn 4 -3.541 -3.225 -3.1525 

18. Pb 4 -3.6275 -3.20 -3.047 
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4.1 Introduction 

A study of the stability of the uniform gas model 

has shown that, for > rs  2.4127 a.u., the uniform electron 

gas model works, but a large number of pure elemental 

solids with covalent and metallic bonding have the atomic 

radii corresponding to rs  less than 2.4127 a.u., (see 

figure 2.1) where the uniform gas model cannot be used 

justifiably. For these elements there is a lowering of 

energy when some amount of charge , o Z e  , is put away from 

the uniform gas atomic cells, thereby resulting in an 

inhomogeneous electron distribution. 

The charge staying out of the uniform gas atomic 

cell can distribute itself in two different modes - 

i) the electrons can form a shell around the former 

cell and result in a non directional metallic bonding as it 

has been discussed in chapter-2, or, 

ii) these electrons can form electron cells in the 

bond directions and result in a directional covalent 

bonding. 

In the present model for covalent bonding, the 

simplicity of the uniform electron gas model has been 

retained to the extent possible. The entire crystal space 

has been accounted by assuming that, it consists of the 

electron gas cells around the ions and purely electron cells 

137 
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outside. Both these cells h.' uniform electron gas of 

different densities. The number of bonds per atom has 

been found out by the octet rule and the charge outside 

the uniform gas cell around the ion has been distributed 

in these many number of electron cells. 

The electron distribution assumed in this model is 

quite crude and does not take into account the gradient 

energy contribution. But rigour has been sacrificed to 

maintain simplicity. Also, this crude picture makes it 

possible to conceive a mixed covalent--ionic bonding when 

a part of the purely electron cell charge shifts into the 

uniform gas cell of another atom. Pure ionic bonding can 

also be explained as an extreme case of electron gas cell 

merging entirely with the uniform electron gas cell of 

another atom to create the anion uniform gas cell. 

The density functional formalism allows a better 

estimate of energy for the different segments of uniform 

gas compared to second or third order perturbation theory. 

However, the electron distribution obtained in the latter 

approach is superior. 

The electron distribution in this model can be 

improved by dividing the uniform gas cells into smaller 

segments and thus, increasing the number of optimization 

parameters. When the size of the segments are small, the 
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gradient energy contribution can also be included. The 

present investigation is limited to the crude model of 

electron distribution, but the possibilities of refining 

the model has also been recognised. 

4.2 Formulation 

The electron density in the covalent solid is assumed 

as a superposition of the electron density of the uniform 

electron gas cell around the ion core with a density, no  , 

and the remaining charge of the neutral atom, forming 

electron cells in the bond directions with a density of ne  

n 	0 < r < R 

ne 	0 <(r-2R ) < Re 

where, the charged cell around the ion core has a radius Ro  

and the electron cell has the radius of Re  . Since, the 

electron distribution in the cell around the ion core is 

uniform, one can write the expression for energy for the 

charged cell, E 	, directly following equnti-ons (21.111) , 
0 

(2.12) and (2.17) . 

The remaining charge, LZe  , which stays out of the 

cell around the ion core, can now be distributed outside 

as seperate electron cells with a different charge density. 

The number of cells with radius Re  are the number of bonds 
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per atom, 	/2 , which can be calculated from the valen- 

cy, Z, of the atom in question with, 

= Z for t . 4 

and 
*= ( 8-Z ) for Z > 4  

The charge neutrality of the system imposes a condition 

that 
R 

( P /2 )  f e  n dr = AZ e  
0 

or 
..1 

ne  3 AZ (P* /2  ) 	/ 4 n Re  

The constant t , for a structure also decides the mag-

nitude of the Madelung energy between the electron cells 

and the cells around the ions as given below, 

-1 Ees  = - am Q Z2 ( 
 / i 

where Ri  is the distance between the positively charged cell 

and the negatively charged electron cell and is equal to the 

sum of the radii of these two cells and am  is the Madelung 

constant which has values from 1.38 (for linear chain 

structure) to 1.76 (for bcc structure) in the range of 

observed crystal structures. 

The energy of the negatively charged electron cell, 

E , can be written with the help of Hohenberg- Kohn 
e 



equation ^s 

RR 
- 1 f o i e n ne~ dr Ene - 

0 
o-rr) • 

R 	 R 
+ f e 	t(ne) ne dr` +o e £xc(ne) ne dr 

In this equation, the first term is the electron-electron 

repulsion term in the electron cell, the second term is 

the kinetic energy and the third one is the exchange and the 

correlation energy. Now the energy as expressed in equa-

tion (4.5) is a function of the electron cell radius, Re 

and the number of electrons in the negatively charged cell, 

A Ze . Replacing ne with AZe in equation (4.5) from 
equation (4.3) and integrating one gets the resulting 

equation for energy as 

-2 
En - 0.6 o Z ( 	/2 ) 	/ Re 

5/3 
+ . 1 .105 Ale 

4/3 
- 0.458 AZ 

-4/3 - 

( 	/2 ) 
	/R e 

-1 
+ AZ ( P /2 ) 	I - 0.0575 

+ 0.0155 { In Re - 3 (in Re-ln ( E */)) } l 

...(4.6 
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The expression for total energy per atom of the 

covalent material, E , may now be written by combining 

the energies of the positively charged cell around the ion 

core, the electron cells and the electrostatic energy given 

respectively by equations, (2.17), (4.6) and (4.4) as 

En  = En  + ( j3 */2 ) En + Ees o 	e 
. . *( 4 #7) 

The energy per atom of the covalent material given by _ 

equation (4.7) has been optimized with respect to the 

floating parameters - Ro  , Re  and A Ze  to obtain the mini-

mum energy per atom. At the minimum of energy, one can get 

the corresponding values of Ro  and Re  at equilibrium. The 

bond length for the covalent solid can also be calculated 

from these values of R and Re  

4.3 Results and discussion 

The variation of energies of the cell around the ion 

core and the electron cells per atom for an increasing o Ze  

have been shown for a given valency, Z = 4, with the core 

radius, rc  = 0.6, 1 .0, 1,6 a.u., as shown in figure 4.1. 

From this figure, it is observed that the energy of the 

cell around the ion core is increasing from a highly negative 

value to zero, as the charge in this cell reduces. On the 

contrary, the energy of the electron cell is reducing from 

zero to a negative value with an increase in A Ze  as it has 
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also been shown in figure 41. However, the configuration 

of electron gas with two different densities as proposed 

in this model will be stable only when there is a minimum 

in the total energy for a specific value of AZe  and this 

electron configuration will become energetically favourable 

when its energy will be lower than the energy of the atomic 

cell in the uniform electron gas or continuous electron 

density model. 

The impact of core radius on the variation of the 

total energy with o Z e  for low and high core radius, rc  , 

have been shown in figure 4.2, for r = 0.6,1.0 and 1.6 a.u. 
One observes that the total energy decreases as the charge 

in the electron cell increases. However, beyond an optimum, 

the total energy starts increasing. The depth of the energy 

minimum, reduces as ionic pseudopotential becomes weak and 

its position shifts to lower o Ze. Finally, beyond a parti-

cular core radius, the minima disappears. The details of 

different energy terms of the charged cell around the ion 

core and those of the electrons outside constituting the 

total energy are shown with respect to a variation in 

in the figure 4.3. At low Ale  values the positive energy 

terms like kinetic energy and electron- electron repulsion 

energy of the cell around the ion core reduces with an 

increase in the charge staying out in the electron cell. 

Similarly, the magnitude of the negative energy terms like 



144 

the potential, the exchange and the correlation energies 

of the electron gas around the ion core also reduces. The 

energy of the electron cell is negative, but small because 

the exchange and the correlation energy more than balances 

the kinetic and electron-electron repulsion energy in this 

cell. 

As the number of electrons in the electron cell : increases 

outside for the elements with valency, Z = 4.0 and core 

radii, rc  = 0.6, 1.0, 1.6 a.u., the corresponding changes in 

the density of the electrons in the cell with the ion core, 

no  , and that in the electron cell, ne, have been shown in 

figure 4.4. For an element with core radius, rc  = 0.6 a.u. 

the electron density in the cell around the ion core, no  , 

has first increased upto an electron cell charge AZe  = 2.0 

then the electron density, no  , decreases beyond o Ze  = 2.0, 

but the electron density, ne  , in the electron cell increases 

monotonically with the flow of charge to it. The increase 

in the electron density of the inner cell around the ion 

core with the flow of charge from it initially is driven 

primarily by an attempt to recover some potential energy 

by an appropriate redistribution of electrons where the cost 

in the kinetic and the electron - electron repulsion energies 

are less. The Madelung energy, although small. initially, 

strengthens the tendency to increase electron density because 

of a consequent reduction of its size. But, as the charge 

transfer to electron cell increases, it is no longer possible 
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to gain any advantage in potential energy by increasing 

the density, because the cost in the kinetic and the elec.,► 

tron- electron repulsion energy becomes prohibitive. Rather, 

it is possible to reduce energy by reducing the electron 

density because of larger reduction in the positive energy 

terms and thus, the electron density in the ion core cell 

reduces. In the electron cells, the electron density 

increases continuously, although it causes in increase in 

kinetic energy and the electron- electron repulsion energy. 

The electrostatic energy term tries in general to reduce 

the size of both the ion core and the electron cell. This 

term could not influence the size of the ion core cell 

because of high energy cost, but it has been effective in 

controlling the size of the electron cell to cause a 

continuous rise in the electron density, ne. As the core 

radius, rc, increases from 0.6 to 1.6 for elements with 

valency, Z = 4, the rate of increase in density as well as 

its magnitude in the ion core cell reduces and the maximum 

in density shifts to lower values of electron transfer to 

the electron cell, o Ze. In the electron cell, the density 

is lower for an element with higher core radius, rc, i.e., 

weaker ionic pseudopotential because the large size of 

the cell around the ion core makes the Madelung energy 

weak and so, it is less effective in controlling the size 

of the electron cell outside. The variation in radius of 

the ion core cell, Ro  , and the radius of the electron cell, 
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Re, with the flow of charge to the electron cell, AZe 

has been shown in figure 4.5. The size of the cell around 

the ion core decreases continuously, but the radius of the 

tiectr©n cell increases with an increase in the charge, 

AZ , in it, initially but subsequently the electron cell 

size reduces when the Madelung energy starts dominating. 

When the flow of charge to the electron cell, A Z , is 

small the Madelung energy is not strong enough to force a 

reduction in the size of these cells even under mosf 

favourable Madelung constant. But the charge flow is still 

accompanied by a lowering of energy. The cell around the 

ion core has a lower energy compared to the neutral atomic 

cell. This is due to a large reduction in the kinetic and 

the electron-electron repulsion energy compared to the in-

crease in the potential, the exchange and the correlation 

energies. In addition, this trend is further helped by the 

negative energy of electron cell and the Madelung energy 

helps a continued increase in the charge inside the electron 

cell outside. 

When AZe  is large the electrons outside the cell 

containing the ion core increases the energy of this cell 

but the Madelung energy becomes the dominating term to such 

an extent that it compresses the electron cell to a density 

where its energy becomes positive. Thus, the only energy 

term favouring the charge transfer is the Madelung energy. 
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The minimum in energy with charge transfer is 

observed at a level of charge transfer when the Madelung 

energy is not strong enough to dictate the energy of the 

electron cell around the ion core. But the energy of the 

electron gas cell at this stage may be either positive 

or negative depending on the extent of influence of the 

Madelung energy. 

The figures 4.6. and 4.7 show the total energy of 

the covalent bonded elements in the present model optimi-

zed with respect of Ro, AZe  and Re  for a given valency, 

Z = 2 to 7, and core radius, rc. The structural constant, 

am, has been taken as 1.76 for all the elements. It has 

been observed from these figures that for a particular 

valency, Z, at lower core radii the total energy is large 

and more negative compared to those observed at a higher 

core radii. As valency increases the total energy becomes 

more negative. The arrow marks in these figures indicate 

the core radii at which the covalent model evolves to the 

limit of uniform electron gas model as the charge outside 

the atomic cell becomes zero. This core radius termed as 

crossover core radius, rc  , and its variation for different 

valencies has been presented in figure 4.8. For valen-

cy, Z = 1 , the elements under investig^tion do not show 

any covalency because the charge transfer is always zero 

in the range of core radii of 0.6 to 3.0 a.u. But for 
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valencies Z = 2 onwards, the crossover core radius, r , 

increases from 2.0 a.u. and increases further upto Z =5 

and saturates. This trend is in conformity with the obser-

vation that covalency becomes more and more prevalent at 

higher valencies-. In the figure 4.9, the total energy at 

the crossover core radius has been plotted against valency. 

The energy at the crossover is more negative with an in-

crease in the valency but the observed total energies in 

the elements becomes far more negative thereby increasing 

the possibility to become covalent. 

The variation of the charge in the electron cell for 

different elements characterised by valency and core radius 

of the ionic pseudopotential are shown in figure 4.10. For 

a given valency it is observed that at low core radii i.e., 

for stronger pseudopotential the o Ze  is high and it 

reduces with an increase in core radii. As the core radius 

reaches the crossover point the charge in the electron cell 

becomes zero as it has been pointed out earlier and the 

contribution from electron cell energies and the Madelung 

energy vanishes. When the valency increases the electron 

cell charge, A Ze  , increases for the same core radii. 

The variations in the electron densities of the 

charged ion core, no  , and the electron cell, ne  , are also 

plotted with the core radii, in figures 4.11 and 4.12 for 
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various v'alencies. These figures show that the electron 

density in the ion core cell reduces smoothly and steadily 

as core radius increases, whereas the electron density 

in the electron cell reduces upto a certain core radius 

because the Madelung energy favouring an increase in density -

becomes weak as core radii increases resulting in a lower 

electron cell charge. 

The variation in the total energy for elements with 

valency, Z = 4 has been reported earlier with the most 

favourable observed Madelung constant am = 1.76. The cal-

culation of the exact Madelung constant has been avoided 

as it will depend on the'number of. electron cells and its 

precise arrangement which may vary from element to element. 

However the impact of am on the total energy has been 

investigated for the lowest observed am of 1.386 and the 
highest observed am of 1.76. The figure 4.13 shows the 
energy difference between the highest observed am = 1.76 

and lowest observed am = 1.386 scaled with respect to the 

total energy obtained with am = 1.76 for different core 

radii, rc. The contribution of an error in am is highest 

for small core radius because electron cell charge and 

Madelung energy is higher at lower core recdii. As, the c~'e 
radius increases the impact of am reduces steadily till 

the crossover core radius, r = 2.4 a.u. 
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The difference in atomic radii, Ra  , obtained from 

the two extreme values of am  , has also been scaled with 

the atomic radius obtained with am  = 1.76 and presented 

in the figure 4,14. At the core radius of, rc  = 0.6 ;  a.u., 

the fractional deviation is negative and high (-8%) but 

with the increase in core radius it comes down leading 

finally to a positive deviation with a maximum of + 2.6% 

then the deviation falls to zero. 

The total energies obtained from the calculations of 

the model for covalent bonding for various elements have 

been compared with the experimental total energies of those 

elements to determine the corresponding core radii, r  . 

The observed atomic radii of the elements from the unit cell 

dimension show large deviations from those calculated on 

the basis of total energies. Since the model yields an 

energy expression quite insensitive to a variation in the 

atomic radius the calculations have given poor results for 

atomic size. The reported values of the core radii of 

various elements are taken from Harrison[ 78 ] who has 

obtained these values using the model potential due to 

Animalu and Heine [ 49 ] , except for Oxygen, Sulphur and 

Chlorine which are obtained from fitted pseudopotentials 

by Cohen and Heine [ 31] . 

In the case of Carbon with valency, Z = 4, the core 

radius, rc  , obtained here is 0.4 a.u. whereas the reported 
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value of 0.6994 a.u. is much higher. The core radius, r  , 

obtained for Silicon is 0.96 a.u. and the reported value is 

1.0586 a.u. Similarly, for elements with higher valency of 

Z = 5 and above Phosphorous, Oxygen, Sulphur and Chlorine 

show a comparatively lower core radii than those reported. 

As the core radii increases i.e., the elements with a large 

diameter like Antimony, Selenium the core radii are quite 

similar to but lower than the reported values with very 

small differences except for Bismuth and Tellurium where the 

obtained values of core radii are slightly more than the 

reported values. This indicates that the variation in energy 

with the core radii is more accurate at higher core radii. 

4.4 Summary 

The inhomogeneity in the electron distribution under 

covalent bonding has been created by removal of electrons 

from the atomic cell and by allowing a seperate electron 

cell to from in the bond directions where it is possible to 

take into account directionality of the covalent solids. 

The electrons around the ion core termed as ion core cell 

and the cell of electrons are allowed to have different 

densities. With the help of octet rule, the number of 

bonds are calculated and it is assumed that the number of 

electron cells are equal to the number of bonds.. The 

gradient energy contribution has been neglected here for 

0 



152 

simplicity. The total energy has been calculated with the 

optimizing parameters as the radius of the ion core cell, 
the electron cell and the amount of charge present in the 

electron cell. The Madelung energy term has been included 

but it requires the structural orientation of electron cells 

around the ion core cell for each individual element. This 

problem has been avoided by assuming the maximum Madelung 

constant observed uniformly for all elements. The impact 

of this assumption has been assessed by examining the situa-

tion with the most unfavourable Madelung constant. 

The total energy calculated from this model shows 

that for valency, Z = 1 , the charge transfer is always 

zero and so, there is no possibility of co-valency. For 

valency, Z = 2, and above the total energy of this model is 

lower than that of the uniform gas model but evolves to it 

at higher core radius. But there are no elements in the 

range of core radius where the energy obtained from model 

for covalent bonding is lower than that in the uniform gas 

model. The cross-over core radius, rc  , increases to higher 

values at higher valencies and comes within the range of 

occurrence of various elements. This trend is in conformity 

with the observations from the periodic table as the co-

valency becomes more prevalent at valencies higher than 

four. 

The comparison of the calculated energies with the 

observed ones yields the values of core radii for different 
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elements like Carbon, Silicon, Oxygen, Phosphorous etc. It 

hn s been observed that the difference between the core 

radii so obtained the ones reported earlier reduces for 

higher core radii. 
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.6 

.2 

8 

4 
n 	r 	2 	 3 	4 	5 	6 	7 

3 

2 

16? 

Volency,Z 

Fig.4.8 : THE CHANGE IN THE CROSS-OVER CORE RADII, 
rc in a.u. WITH THE UNIFORM GAS MODEL FOR 
DIFFERENT VAL ENCI ES. 



d 

C 
w 

i 
C 
a, 

0 

-31--. -3i- 

l~= 

5F- 

162 

o

r 

-9-- 

— -- —Uniform gas model 
----Model for covalent bonding 

1 	2 	 3 	4 	5 	6 	7 

Valency, Z 

Fig.4.9 : THE VARIATION OF TOTAL ENERGIES, En in a.u. AT THE 
CROSS-OVER CORE RADII, rc* in a.u. FOR DIFFERENT 
VALENCIES. 



10 

10 
N 

a, 

10 2  

—3 
1( 

Z=7 

Z= 6 

Z=5 

0 Z= 4 
3 

Z= 2 

1 

 
0.8 	1.2 	1.6 	2.0 	2.4 	2. 

163 

rr  (a.u.) 

Fig.4.10: THE VARIATION OF CHARGE FLOW, AZe WITH CORE 
RADII,rc in a.u. FOR THE VALENCIES,Z= 2 to 7. 
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Fig.4.11: THE VARIATION OF ELECTRON DENSITIES IN THE 
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ne  in a.u. WITH CORE RADII,rc  in a.u. FOR THE 
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The total energy for various elements are analysed 

with the assumption of the electrons in the atomic cell 

are uniform in density. The ground state energy has been 

achieved with the help of Hohenberg-Kcbn[ 2 J density func-

tional equation for the known valency of an element and 

the core radius of the element has been expressed as a 

function of atomic radius. The observed values of the 

total energies of various elements are found to be lower 

than the values obtained in the uniform gas model for the 

corresponding atomic radii. It has been realised that by 

introducing an inhomogeneity in electron density should 

improve the ground state energy with the shift in atomic 

radius as it has been observed while applying second order 

perturbation theory. A study of the stability of uniform 

gas model has demonstrated the range of atomic radii corres-

ponding to rs  < 2.4217 a.0 , where the inhomogeneous 

electron gas will be more stable. 

The inhomogeneity in electron gas has been intro-

duced in the step model by splitting the atomic cell into 

inner cell and outer shell by maintaining two different 

uniform electron densities respectively. The total energy 

calculated from the step model for various elements are 

found to be lower as compared to the corresponding values 

obtained experimentally. This is attributed to ignoring 
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the gradient energy term. 

The continuous electron••density model has been intro-

duced to account for the gradient energy contribution and 

the electron density in this model varies continuously with-

in the atomic cell. A parametric tangent hyperbolic func-

tion has been chosen to model the electron density as it 

closely retains the feature of step model., The total 

energies of various elements are observed to be in good 

agreement with the experimental values. Further, the total 

energy obtained from the continuous density model and the 

step model slowly evolves to a uniform density model at 

higher core radius and the energy is a continuous function 

of core-radius. The core radius at which the uniform gas 

model becomes stable is termed as the crossover core radius. 

The difference in total energy obtained from continuous 

model and step model shows a linear variation with the 

difference in electron density between the inner and the 

outer segment of the atomic cell in the step model. Thus 

the gradient contribution to the total energy in the step 

model has been corrected for the entire range of elements 

under investigation in order to utilize the results of the 

step model. 

In covalent solids the inhomogeneity in electron 

density has been constructed by removal of electrons from 

the atomic cell and allowing a seperate electron cell to 
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form in covalent bond directions, so as to achieve direc-

tionality in covalent bonding. With the help of octet 

rule the number of bonds are calculated and the number 

of electron cells are thereby fixed. In the total energy 

calculation the Madelung energy term has been incorported 

for the structural orientation in the electron cells around 

the ion core cell. The highest observed value of Madelung 

constant has been assumed for all the elements which gives 

an over estimate of the stability of covalent bonding. To 

assess the impact. of Madelung constant calculations have 

also performed with the lowest observed Madelung constant. 

The results of the model for covalent bonding are 

compared with the gradient corrected step model and here 

the gradient corrected. step model also has been compared 

with the uniform gas model to bring out the regions of 

relative stability of each model in the entire range of core 

radii and valencies investigated. Already it has been 

pointed out that the model for covalent bonding evolves to 

uniform gas model beyond a certain core radius for a given 

valency. But the inhomogeneous electron gas model like the 

step model is not built in the model for covalent bonding 

presented here.. So, the energies of each model have been 

compared for the given values of valencies and core radii 

in order to identify the. -most stable model. 



0 

	 172 

For valency Z=1, it has been observed that the 

covalent model has always a higher energy compared to the 

uniform gas and gradient corrected step model. Also, 

•the gradient corrected step model yields a higher energy -

for lower core radii when  compared to those in the uni-

form gas model and merges with it at a core radius of 

r = 1.6 a.u. Thus, the uniform gas model is excellently 

suited for simple metals with valency, Z =1. 

For elements with valency, Z 1 5., it has been obser-
ved -thet the model for covalent bonding gives the lowest 

energy within the range of experimentally observed energies 

for different elements as compared to the energies, observed 

in the other two models. However, the corrected step model 

and uniform electron gas model becomes stable at a very 

high core radius where no elements occur in the periodic 

table. 

Fig. 5.1 shows the region of stability of the uniform, 

corrected step and the model for covalent bonding for valen-

cies, Z=2,3 and 4. It is observed that upto rc  = 1.8,1.8 and 

2.0 a.u. the model for covalent bonding remains the most 

stable for valencies Z=2,3 and 4 respectively. These 

estimates are highly in favour of covalent model because 

the most favourable value of a= 1.76 has been taken for 

the calculations. If these energy values are adjusted 

with the observed deviation factor for Z = 4.0 the model 
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for covalent bonding becomes less favours.ble and it remains 

stable upto r = 1.2, 1.0, and (1.2) respectively for 

valencies, Z = 2,3 and 4. Beyond the range of stability 

of the model for covalent bonding, the corrected step model 

representing inhomogeneous electron gas distribution becomes 

energetically more favourable upto rc  = 2.0,2.2 and 2.2 a.u. 

for valencies Z = 2,3 and 4 respectively. When the core 

radii is above these values of 2.0,2.2 and 2.2 a.u. the 

uniform gas model gives the lowest energy. 

The figure 5.2 shows the region of stability of the 

uniform,. corrected step models and model for covalent bon-

ding for valencies, Z = 2,3 and 4, in terms of energy. It 

is observed that at lower ranges of negative energy the 

uniform gas model is more stable but the corrected step 

model becomes more stable at a higher range of negative 

energies. Subsequently, model for covalent bonding becomes 

more stable in comparison to even corrected step model at 

still higher ranges of negative energies. As valency 

increases the range of stability of each model shifts to 

higher energies. Since the model for covalent bonding is 

calculated with most favourable Madelung constant, am p 1.:76, 

its stability may have been unduly enhanced but when the 

calculations are carried out with the most unfavourable, 

am=1.386, corresponding to linear chain the model for 

covalent bonding becavmes stable only at higher energies as 
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indicated by the dotted lines. Thus, the stability ranges 

of the corrected step model becomes extended in energy 

scale. 

The table 5.1 gives the values of the core radius 

obtained from the corrected step model for simple metals 

and from the model for the. covalent bonding in cases of 

covalent solids. These values are compared with the core 

radius obtained by earlier workers. It is observed from 

the table 5.1 that the core radius obtained by comparing 

the energies of different elements with the calculated 

curves for the corresponding model are quite comparable to 

those used by the earlier workers. The core radii obtained 

here are generally lower than the reported values. The 

total energies have been compared to find core radii 

because the atomic radii has been observed to become a 

relatively insensitive variable for the variation of energy 

in the model for covalent bonding and corrected step model. 

It is evident from the large  mismatch betwen the observed 

size of the atoms and the calculated atomic radii for 

different elements. 

The present investigation has shown that it is 

possible to study the phenomenon of bonding within the 

frame work of Density Functional Formalism. The systematic 

results are in conformity with the general trends in bonding 
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as observed in the elements of the periodic table. The 

quantitative matching of results are not always very 

satisfactory due to scacrifice of rigour in order to main-

tain simplicity. 



rr (a.u.) 

4 

3 

N 

1 

176 

Fig.5.1 : THE RANGE OF STABILITY OF VARIOUS MODELS 
IN TERMS OF CORE RADIUS,rc in a.u. FOR 
VALENCIES, Z=1, 2,3 & 4 
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