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ABSTRAQCT iv

The connecting-rod big-end bearing, which is subjécted to a
complex dynamic 1loading, 1is an important component of an internal
~ combustion engine. Gas force, inertia force due to the reciprocating
masses (Piston,.gudgeon pin, and small-end of the connecting-rod) and
the centrifugal force  due to the’ rotary mass of the
conﬁecfing-rod big-end, contribute:to the total load experienced by
the big-end bearing, which varies in magnitude and direction. The
relative speed of the bearing with respect to the crank pin is also
variable. These factors make the analysis and design of the big-end
bearing quite complex.

The existence of the fluid-film at all crank angles, «consistent
with its required minimum thickness in the clearance space of the
big-end bearing, 1is- imperative to obviate unnecessary wear and
enhance the 1life of the system. Time history of the minimum film
thickness depends on the motion of the bearing centre which has been
studied by various investigators. A review vof the available
literature on the studies of the big-end bearing is presented in
Chapter 1.

The 1iterature indica%es that some aspects of the big-end bearing
analysis need.further studies. With this view point, studies were
planned 1in the area of the big-end bearing analysis to include thé
temperature and pressure (piezo-thermal) effects on viscosity, non-
Newtonian lubricant characteristics, misalignment of the bearing and
pin axes, effeét of grooves, and deformation of the bearing body.
Navier-stokes equations ,are wused in the analysis instead of tﬁe

traditional Reynolds equation so that variations of viscosity may be



accounted for piezoviscous, non-Newtonian and piezo-thermal effects.

This thesis work presents the solution of the following

problems.

1. Rigid bearing with isoviscous lubricants,

2. Rigid bearing with piezoviscous lunbricants,

3. Rigid bearing with the lubricants having piezo-thermal effects on
viscosity,

4. Rigid bearing with non-Newtonian lubricants,

5. Rigid bearing (ungrooved) with axes(i) parallel and (ii) skewed,

6. Elastothermohydrodynamic (ETHD) lubrication.

Thé clearance space is discretized wusing three dimensional
isoparametric elements by a mesh of 12x4xl elements, each containing
20 nodes. Full Sommerfeld boundary condition is used to solve the
Navier—Stokeé eguation and the continuity equation. To account for
the cavitation effect, all the negative values ;} the nodal pressures
are replaced by zero. At each crank anglelinterval, the:pressure and
velocity fields are established gy solving 'the momentum and
continuity equations in the cylindrical coordinatés‘ The finite-
element formulation based on Galerkin's metpod and a direct iterative
technique is used. The boundary conditions are substituted at. the
element stage to reduce the computer storage requirements. The global
system equations are solved with eacﬁ respective column of the right
hand side to evaluate thé pressure field contributions due to wedge,
squeeze, and whirling actions of the fluid—filmf In fhe case of
deformation calculation, the three dimensional deformétions in  the
bearing body are obtained by using the forntal solution techinque to
reduce the computer storage reguirement. For the time marching

scheme,Buler-Cauchy's predictor-corrector method is employed which is
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found more suitable in comparison to Runge-Kutta or higher-order
predictor-corrector methods(such as Adams-Moulton) for this problem.

The algorithm'evolved in this work is general and can be used for
the 'sclution of any dynamically 1loaded circular bearings with
isoviscous/piezoviscous/non-Newtonian lubricants, and can also handle
piezo-thermal effects on viscosity. Using additional subroutines, the
elastothermohydfodynamic effect is also studied. Deformations of the
bearing body are computed using the hydrodynamic pressure developed
in the fluid-film.

A summary Bf the studies based on the data of the big-end bearing
of a .Ruston*Hornsby 6VEB~-X, Mk-~III ehgine [10] reported 1in this
thesis is éiven below. - |
The salient values in the column 3 refer to a .SAE-30 oil(viscosity

14.95 mPa.s at 899°C)

e e mm  m e mm v e e e me e M e M e e en A e e Tm M s e A e set FE Lt emp e ar m & T hem e mm . fmr e S e e e e i Rs m A Y ¥ vy e e e e e e et

Bearing specificatidns oo Beariﬁg characteristics - Salient wvalue
1. Rigid bearing, ‘ - {a) bearing centre orbit | -
isoviscous lubricants (b) minimum £ilm thickness 3.85 um
(c) maximum film pressure 38.61 MPa
2. Rigid bearing, (a) bearing centre orbit -
piezoviscous lubricants  (b) minimum £ilm thickness 4.09 um
(c) maximum film pressure 42.30 MPa

(d) power loss ' 1.24 kW
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3. Rigid bearing, (a) bearing centre orbit ' -
piezo-thermal effects (b) minimum film thickness 3.15 um
on viscosity :

{(c) maximum film pressure 48.07 MPa

(d) maximum temperature risec 30°C

(e) power loss 1.11kW
4. Rigid bearing, (a) bearing centre orbit -
non-Newtonian lubricants (b) -minimum film thickness 3.17 um
(cubic shear stress law) (c) maximum film pressure 41.10 MPa
5. Ungrooved bearing, (a) bearing centre orbit -
parallel axes (b) minimum film thickness 9.10 um
"{c) maximum film pressure 19.35 MPa
6. Ungrooved bearing, (a) bearing centre orbit . -
skewed axes (b) minimum film thickness 6.56 Um
(o =6 = 0.0001) (c) maximum film pressure 28.25 MPa

‘The big-end bearing performance tharaéteiistics are also studied
considering the bearing body deformation along with the 1lubricant
having piezo-thermal viscosity characteristics. The results are

obtained for a finite crank rotation with 2¢ interval.

1 D)

-

The detailed results are presented in Chapter 6. A modular
cohputer program is devéloped and described with the help of flow
diagiams in Chapter 5. From the £esdlts obtained, it can be concluded
that the minimum film thickness is- comparetively smaller in the
presence of hon-Newtonin and’ piezo-tﬁermal effécts than those for
lubricants either 1isoviscous or piezoviscous. The piezoviscosity
effect on the minimum film'thickness, however, noticeable only at

high 1loads. The CPU time required for each of the cases of rigid
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bearing is of the same order, bpt in the case of ETHD the CPU time is
considgrably more and is about ten times of that for the isoviscous
case of the 1rigid bearing. For accurate analysis or design of the
connecting-rod big-end bearing, it may however be necessary to
consider ETHD 1lubrication but for most practical purposes one may
analyze or design the big-end bearing as a rigid bearing with
non-Newtonian lubricants or with the lubricants having piezo-thexrmal

viscosity characteristics.
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CHAPTER 1

INTRODUCTION

The internal combustion engines particularly the diesel

~—

engines, are the most widely used energy conversion devicies
employed as prime-movers. Of their many important components, the
" big-end bearing, Fig. 1.1, certafnly is one. The performance of the
big-end bearing of an interhal combustion engine is theréfore
‘critical for the satisfactory performance of the engine as a whole.

| The performance of the big-end bearing has been a subject of
extensive investigations, both, theéretically and experimentally for
the last two decades. This Chapter aims at presentiﬁg the siate—of
the art on the analysis and design'of the big-end bearing which is
subjected to a complex dynamic loading that varies both in magnitude
and direction during eaéh cycle of the engine. The gas force, 'the
inertia force due to reciprocating masses ané the centrifugal force
due to rotaéy mass of the engine are the main fogces thch act on
the big-end bearing. For computation of the total inertia forces at
the big-end bearing, masses of the connecting-rogd, pistén and other
accessories may be represented \by an equivalent mass system
coﬁprising a reciprocating mass at the piston-end and g,rotating
mass at thg big-end of the connecting—roa. The gas force acting on
the piston and the inertia force due to the equivalent ﬁass at the
piston-end is communicated to the .big—end ‘bearing through the
connecting-rod. These forces are vectorially added to the inertia

force due to. the equivalent mass at the big-end to determine the

resultant dynamic force on the big-end bearing.
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“Fig. I'l  Sectional view of a connecting-rod and
- piston assembly



. In the big-end bear;ng design, due consideration is given to -
the eiistence of the fluid-film in the clearance séace between the
bearing and-the crank pin surface. The possibility of metal to metal
contact -between the pin and the bearing surfaces in the running
condition should be mininized by suitably designing the beariﬁq.

The minimum fluid-film thickness in the hydrodynamic bearings

) {
depends on the following parameters.

(1) Hydrodynamic parameters: Load,speed, constitutive behaviour
of 1lubricant, o0il film histofy, dilution of fuel in lubricant,
contamination of lubricant and flow condition etc.

(ii) Geometrical parameters : Bearing shape, clearance
géometry, oil holes and grooves,_oil drain system, misalignment
-between bearing andjournal axes, aépect ratio etc.

(iii) Elastohydrodynamic parametérs; Bearing liner material,
rigidity of housing structure, etc..

The perfprmance of.a journal bearing subjected to a load which
varies both in magnitude and :airection with time, was first
investigated in 1920 by Harrison [36] and was later studied by Swift
(58] in 1937. Harrison and Swift showed that-thé load capacity of
bearing may vary conéiderbly in dynamic condition in comparison to
that 1in ‘the static condiiion. In 1947, Burwell [1l] discussed in
detaii, the equations for the film pressuie and load cépacity 6f a
dynémically loaded bearing. In deriving the equation for pressure,
the usual assumptions of the hydrodynamic théory were considéred and
the results were obtained for a diesel-engine connectingfrod

" big-end bearing, and a radial-aircraft-engine master-rod bearing. In

the case of the diesel-engine big-end bearing, the maximum

eccentricity ratio = 0.989 was calculdted which is equivalent to a



minimum film thickness of . 0.000011lin during the éycle and in the
case ~of radial- aircraft engine master-rod bearing, the maximum
eccentricity ratio was 0.88.

In ASME-ASLE Lubrication Conference, 1556, three papers wére
presénted on the experimenéél work on big-end bearings. Pigott and
Walsh (48] described their Universal Bearing Tester; Hersay, and
Snapp [27,59] preseﬁted two'papers in which Bearing Test Machines
with dynamic loading or non uniform motion were described and
classified according tb the fype of loading employed. In these
three studies [27;48,59] the engine beariﬂgs were tested for wear
and. fatique failure. |

Russell [52] developed a machine- - for testing the bearings
subjected to the .impulsive"type.of load produced in compression-
ignition-engines. The procedure for assesing the load'capacity of
bearings were described and the max imum impulsive pressdre to éause
failgre in bearings of differeht materials were given in tabular
form. After conducting a iarge number of experiments on an engine
big-end bearing, the follbwing cohclusions were drawn. (i) with the
tin-base and lead-base linings the reduction of the thickness of‘the
linings from 0.508 mm (0.0Zih) to 0.1524mm (0.006in) increases the
load capacity, (ii) the 'copper-lead 1linings. produced by the
sintering process have higher-load-carring caéacity than the cast
copper-lead lining, (iii) the use of low viscosity o0il reduces the
running temperature of bearings .

In 1961, Blount [2] studied the effects of some design
parameters on the fatique resisténce- of big-end bearing
experimentally. He wused various combinations. of bearing materials

and measured the fatigue strength under static and dynamic load. In



‘the case of big-end bearihgs, he studied the influence of housing
rigidity, effect of shell thickness, 01l groove and bearing
clearance. He concluded that it was common place to blame fatigue
failures of the bearing shell whereas the bearings might well be
blameless and suffering might come only from the weaknesses of its
companion housing. He also concluded that (i) ungrooved bearing have
‘a higher fatique strength, (ii) during the firing load, an oil
groove in the engine bearing does not reduce its temperature, (iii)
‘'variations in diameteral clearance affect-the fatique life, and (iv)
the aluminium-tin shell bearings-appeared to have quite high fatigue
strength. | |

Horsnell and McCallion [28] made an vattempt to take into
account more accurately the effects of oil film disruption in a
finite width journal bearing and to estimate their imporatance by
comparison with on evaluation ignoring such disruptions. It was
assumed that in the cavifatidn region, the lowest possible pressure
was cgnstant and equal to the vapour pfessure. The solution of the
governing equations was obtained by a relaxation technigue and the
ﬁethod was applied to the main bearings of "a diesel engine
subjected to dynamic load.

Carl [9}\ and Radermarcher [53j presented their experimental
wark yhich wés done on bearings subjected to sinusoidal loading or
loads varying in magnifude and direction.

For _the analysis of dynamically loaded bearings, a graphical
method called Mobility Methdd which.can also be applied for big~end
bearings, was presented by Booker [3]. The 1limitation of the
mobility method is that it is only applicable for bearings with

circumferential symmetry and axially straight profile (ideal



bearings).

Lloyd, Horsnell and McCallion [38,39] investigated the
performance of dynamically loaded finite bearings using a high speed
~digital computer. In the first paper [38], they presented the theory
of the method'uséd. The method rests on the assumptions that the oil
film is 1isothermal and the 1inertia forces associated with the
bearing accelerations are not important. Numerical solutions of the
Reynolds egquation were obtained and stored for both wedge and
squeeze film terms, at a " number of bearing eccenfricities which
require a large storage in the computer.' At intermidiate
eccentricities, the required pressures were obtained by
interpolation. Finite difference method was.used té solve tﬁe finite
bearing problem. In the second paper (391 they demonstrated the use
of the method described in [38] by studing the main and big-end
bearing of a diesel enqiné and drew some useful conclUsions;.(i) an
increase in the minimum film thickness by 14% and a decrease in the
peak preésure by 3% was noticed when the effect of connecting-rod
obliquity was neglected, (ii) the minimum o0il £film thickness
decreased with the increase of inertia load, since the maximum load
is caused principally by the gas 1oad, which the inertia load
opposeé. The result was that the maximum cycle load decreases with
the  increase of inerfia_ load, (iii) the most 'striking change
atfected by fhevincrease of bearing cleérance was the reduction in
the temperature rise across the'beéring;

McCallion, H.,et al [43] also developed a test rig to verify
their theoretical results [38]. Two perpendicular load éomponents
were applied mechanically thfough cam driven spring levers. Load

records and journal loci were obtained and compared with the results



from computer program described in [38). Correlation between the
theoretical and experimental results was good. fhe measured load
carrying capacity was, however, found to be lower 'than that
predicted. This may be accounted for by the variation of oil
viscosity with temperature.

Martin and Booker [44], have studied the influence of engine
inertia forces on the minimum film thickness in the big-end bearing
using the engine data from Ref. [38]. The effects of connecting-rod
Iobliquity and clearance on the minimum f£ilm thickness were studied
using the numerical mobility method with _nw-film and shdrt bearing
approximations. They concluded that the eccentricity ratio in the
big-end bearing due tQ peak firing load seldom exceeds that due fo

the inertia load alone, although this load was smaller than the peak

firing 1load. Therefore, as an approximation, the gas force was

'

neglected 1in the study. The effect of a reasonable change in crank
throw to connecting-rod length ratio on minimum film thickness was
found to be small. For a more practical range of eccentricity ratios
encountered (above 0.80), the o0il film' thickness was found to
increase with decrease in clearance. | |
Campbeil et al (101, compiled the research work which was
Earried put.beforev1967—68 and presented the methods of solution and
the results for big-end bearings in a very systamtic way. This
revieQ paper has proved very helpful to the big-end bearing design
engineers and inveétigators. To analyze the big-end bearing, most of

the inveétigators have selected the Ruston-Hornsby 6 VEB-X Mk-III

engine as an example. In this review, the results for the 6 VEB-X -~

engine big-end bearing were presented with greater emphasis. The

journal centre cyclic paths, Fig.l1.2, and variation of the minimum



K
1

(g) Cyclic path-computed by Horsnell

(j\) Cyclic path based 6n Hahn Someya solution, (k) Cyclic path based on modified Holland solution
computed by Karlsruhe Technical University computed by Rheinstahl Hanomag Programme’
(N.B.’bld=0.5 instead of 0.282)

' A T
0 30°
. 70°
/ 0%720°

50°

.

(1) Cyclic path based on Hahn-Someya solution, (m) Cyclic path from the dynamic similarity
computed by Rheinstahl Hanomag Programme 2 machine at Glacier Metal Co. Ltd.

(N.B. b/id=0.5 insted of 0.282) v
Fig.1.2.Predicted journal centre cyclic paths for the Ruston-Hornsby 6 VEB-X Mk-III
connecting-rod bearing (10 ]

;-



(¢)Cyclic path by Blok®s graphical method as
carried out by the authors (using iso-
impulse map based on Herrebrugh and
and Moes

)
540"

-

600

(e) Cyclic path computed by Booker{using
:2&r§ becr\'mg theoryand inertia toading

(b) Cyclic path based on Booker {short bearing
theory) (author’s graphical method )

5407180°

90°

(d) Computed cyclic pathas computed and
carried out by Herrebrugh and Moes

540°

360°

(f) Cyclic path computed by Booker (using
Warner tinite bearing theory and inertia
loading only )
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film thickness, Fig.1.3, obtained by other investigators using
constant viscosity and different techniques were reviewed. These
techniques wvary in their approximating assumptions, computation
time, and method of solution. -

Butcher [4] conducted the experiment on the same 6 VEB-X engine
in 1967-68 and measured the oil film thickness in one complete cycle
with the help of capacitance transducers. He plotted the variation
of the minimum film thickness against crank angle and found the
. value of the minimum film thickness as 3.17um (0.000iZSin);

Lloyd and McCallion [40] presented another computer program
with modifications for the design of the big-end and the main
bearings of the diesel engine. They claimed that their computer
program has the capability to solve bearing problems of (i) two or
four strokes cycle engine, (ii) multi—cyliﬁder engine, (1ii) Vee
engines having Adifferent firing - orders in two cylinderé, (IV)
: differenf gas load cycles in the cylinders, agd (V) articulated
connecting-rod configuration. The computér program can also analyze
the main bearingax The oscillation -of  the big-end bearing was
included in the analysis. Tﬁe.program can accommodate one or two
lands in the bearing but it can not handle bearing deformation}
axial grooving, non- circulaf bearings, partial ciréﬁmferential
grooving or oil holes.

The viscosity of the lubricating oils significantly varies with
temperature. Hence it is necessary.to know the temperature rise in
the fluid-film of the big-end beéring accurately. Furuhama [(15)
attempted to measure temperature variafions in the bié-end bearing

with thermocouples. He developed a system to measure the temperature

in wvarious parts such as piston, small-end, connecting-rod, big-end
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and main bearings, directly using a running engine. He graphically
showed, how the temperature varies from éiston to main bearing and
to the Sump in a rhnning diesel engine. In the case of big-end
bearing,'the results indicated that there was a very small variat;on
in the temperature.

In 1968, .Lloyd and McCallion [(41] modified their computer
program of Ref. [40] to accommodate the effect of groove or oil
holes. They presented some curves to show the effect of half-groove
(180°) and full-groove in the big-end bearing. For the bearing in
the example, they found that tﬁe maximum eccentricity ratio reduced
from 70.970 . to 0.960 due to changing a full groove to half.groove,
but suggested that the temperature 1rise and the peak oil film
pressure ére likely to be subsfantially smaller in the case of ﬁhe
full-groove beéring. |

Ross and Slaymaker [54]ldeveloped a computer program to analyze
the bearings subjected to the dynamic loadings and used particularly

for engine main, big-end,and smallQend bearings. They used the short

bearing apprdxiﬁation with an equivalent speed <criteria. The
positive | pressure was assumed up to 1800 of the circumfrerence
(n-film approximation). They studied three cases. The first case
deals. with an evaluation o¢f the Journal path within a bushing

subjectéd to a constant, unidirectional load starting from an
arbitrary position. The second case traces the path of crank pin in
a 6 cylinder~in~iine diesel engine and compares the minimum film
thickness with experimental results. Finally, the third of these
studies pertains to the paths taken by the crank pin and the journal
of crank‘ shaft 1in a V-8 diesel engine and relate them to the wear

pattern observed 1in an associated bearing subjected to dynamometer
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testing.

Dehar£ ?nd Harwick [12] presented design considerations for the
automotive engine bearings and emphasized the importance of the
following factors in their design; size of bearing, load, -speed,
friction, o0il flow, heat genegated, and film thickness. There are
many factors other than those normally considererd in a purely
analytical pfogram which have enormous effects on the bearing
performance. Some of the more important considerations are those of
lubrication system, geometry, distortion and bearing material
selecfioﬁ.

Booker [5] later developed a new approach to find the maximum
film pressure in the oil film under dynamic loading. He suggested a
conceptually simple method for calculatinq film -pressure from
Journal orbit cbmputation which 1is also‘applicéble to the big-end
bearing. In the: paper, ’the 'daté maps were presented for short
bearings. -

Wear and fatiguevin a bearing are directly related to the film
thicknes and pressure in the 1lubricant film. Again by using the
short bearing approximation and equivalent speed-criteria, Ross [55]
-foﬁnd how the film pressure varies with load rating, bearing angular

-
i

Lat" el " ch

e, <crank angle, shaft angle and the variation of minimum

coordi
film thickness.

The graphical mobility method has been converted into a
numerical approach [6] by Booker himself. He reviewed the mobility
method and given details for its numerical handling, with an example
~of reciprocating machinery. For a 6 VEB-X Mk-III engine bearing; he

computed that the maximum eccentricity ratio 0.960 ( corresponding

to the minimum film thickness of 130x10-¢in ) occurs at 2750 after
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the top-dead-centre (TDC).

Direct measurement of bearing centre locus in the big-end
bearing is a very tedius job. But a_successful endeavour was made by
'Hiruma and Furuhama [29] in their work. They deve;oped a épecial new
device to measure the film thickness or the bearing centre locus in
the big-end bearing directly in the running condition of engine. By
means. of their technique wusing inductance transducers, the
measurement could be made with stable results at 5000 rpm upto full .
load. They have presented varioqs loci and concluded that (i) the
crank pin ceﬁtre makes a tour along the vicinity of the bearing
surface due to the inertia forée. In the combustion period, however,
the crank pin centre passes near the centre point of bearing, (ii)
increasing the épeed and the oil temperature brings the locus of the
pin closer to bearing surface, i.g., the minimum oil film thickness
decreases.

During thé- late sixties, 'the finite element methoé also
appeared iﬁ the lubrication field. In 1973, Shelly and Ettles [60]
used the ~FEM technique for the calculation‘ of locus paths in
dynamically loaded bearings. 1In ‘thié approach, the speacial
properties of an exponentiélly shapéd element were useé togther
with a .satisfactory approximation for the axial pressure profile,
This -approach was claimed one hundred times faster than a
conventional finite 'diffeience solution of equivalent accuracy. The
predictor-corrector method, to march out a locus path were briefly
out lined by Shelly and Ettles and several typical loci were
presented as examples; The main problem encountered in the analysis

)

was the wunstable tendency for the high-order predictor-corrector
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method in certain loading conditions, for -example at the gas
ignition point during the loading cycle of a big-end beariné.

Blok 7], wusing the moblility method, deveioped a different
approach called Impulsive Method and claimed that this method
carries integration one step farther than the mobility method and
can be applied to the bearings\ under dynamically 1loading. No
particular example was, however, solved by him.

Ritchie [56] wused a semi-analytical method of predicting
bearing centre loci in diesel engine bearinés. A somewhat original
featﬁ;e of the method was the use of an approximate solution of the
‘Reynolds equation which is similar té, but more accurate than, the
short 'bearing-solution.

Selection 6f materials for the bearings of.high speed diésel
engine 1s a difficult task. Bearing materials are selected on the
basis vof load carrying capacity, strength, temperature, coefficient
of friction, dirt embeded ability, corrosion resistance.and ébility
to accept ﬁisalignament. Unfortunately no one material possesses all
the desirable properties and for this reason, the bimetal and
trimetal bearings having steel back have been evolved. Davison [13],

in his paper, outlined many such combinations of the bimetal and

trimetal bearing having steel back. He claimed that the material “A!
(as designated 1in the papef)'containing 14% to 20% lead, 4% to 6%
tin and remainder copper have the rating 62.1 MN/m* (i.e., load 62.1
MN per " unit area of the bearing) which is the highest among other
materiais ‘B' and 'C'. He also explained the manufacturing method of
these bearings. |

Goodwin and Holmes [20,21] have also made a successful attempt

to obtain the continuous monitoring of oil film thickness [20] and



16

temperature (21] in an engine bearing. The measurements of o0il film
thickneés were suécessfully carried out using an inductive method.
They presented the variation of minimum film thickness for plain
model, half-grooved model, grooved-model bearing under full load, no
load, no firing conditions at 750 rpm, 850 rpm and 920 rpm sbeed.
The temperature measurements were made in a big~end bearing of
marine diesel engine. For this bearing, they studied the effects of
éilution of 1lubrication o0il by fuel, effect of priming the
lubrication system on the big-end bearing temperature distribution.
No adverse effects wére produced even by a short period of running
with -the . 0il diluted by 13% fuel. With regard to priming, their
results suggested that when an engine was to be brought to full
speed and put on load in a very short time after starting, priming
was a very worthwhile safegaurd even after a brief shut-down period.

Fantino et al [16,17] considered the deformation of the body of
the big-end beafing to obtain £he minimum f£ilm thickness. In the
tirst paper [16], the elastic deformation and pressure distribution
 were obtained by iterative method 1in the steady gtate condition
under‘ realistic speeds and loads (5500 . rpm, 25000N). Plane
elasticity relations were used 1in the study. The effects of the
following parameters were investigated; (i) bearing thickness (tn)
and bearing clearance (c), (ii) journél speed (Na) gnd applied load
Y(W), (iii). viscosity (Mo) and piezoviscous éoeffecient (ap) .

It‘was f&und that' as a result of the bearing body deformation,
the maximum pressure and the attitude angle botm decrease and the
relative ec;entricity greatly increased. An empirical dimensional
equation for the minimum o0il film thickness (hw) was derived

numeiically for the bearing under study [16] and the expression of
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the minimum film thickness was found as,

Ho Na o.s e tn
A » (—~~-- ) (140.06x10 ag) (---=-=--- ).
W . co-09

In the second paper (171, they wverified their theoretical
results by experiments. A_speékle image of the rough éurface of the
big-end bearing was formed and recorded on a holographiciplate both
before and after the load was applied. This plate was then examined
point by point in a diffractometer.

Generally, in heavy duty diesel engines trimetallic bearings
-are used. The bearing construction consists of lead-irdium overlay,
copper-lead-tin bearing_iining and a low carbon steel back.lA nickel
barrier is also plated betweén the overlay and the bearing lining to
prevent tin diffusion from the overlaylto the lining, When the big-
end bearing overlay was examined of various field returned diesel
trucks with the help of Scanning Electron Microécope (SEM), Patel
[(49] found a \premature overlay femoval of such bearings. He.
'concluded. that the o0il balls, (discrete spherical  particles)
composed of o0il additiye elementsf were the contributing factors to
preméturé overlay removal. |

After monitoring the temperature and film thickness in their
previous woik, Goodwin and Holmes [22] tried to measure the
deformafion of the housing and theltemperature variation across the
film. They presentéd the distorted. clearance circles at 3000 rpm and
alsd the temperature variations for different loadings. The maximum

variation of temperture was of the order of 60C-70C for the majority

of the load cases studied.
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.In 1983, a second review work on engine bearings was presented
by Martin [45]). 1In this paper, some of the important recent
"developments in the engine bearings design techniques were
highlighted. The availability of increaseé computing ‘power has
enabled considerations of more realistic assumptions regarding
bearing .- behaviour; these include, among others, oil feed features,
oil film history, non- <circular bearings, improved prediction of
méin bearing load, flexible housing and special bearings. References
to these advances are made in the review together with illustrations
of how they affect | the bearing 'performance. Experimental
investigations were also presented which ﬁelp to verify and give
confidence to the analytical predictions. Ultimately, this paper
(451 is useful to the designers and researchers of engine bearings.

The curve;fits [23] for journal bearing systems were used by
_ Goenka and a set of analytical curce-fits were presented. The set
includes the two components of mobility vectors, location and
magnitude of the maximum film pressure, and the' starting and
finishing angles of the pressure curve. For an ideal journal bearing
system, the curve-fits of Goenka [23] give results with an accuracy, -
coméarable to that of an expensive finite element analysis.VWith'thé

-

hel ie curve fits for the case study of a big-end bearing, the

help of tl
miniumum fiim thickness wasAcalculated as 3.50 pm and the maximum
film pressure as 34.57 MPa. It was concluded that the CPU time
requirement was very small in comparison to that of FEM. But the
curve-fit method 1is also only applicable to ideal bearings. Goenka
[24], in his further wofk solved the same prbblem [23) with finite

element method. An important feature of his analysis was relatively

low computing cost. He solved-an illustrative example with a total
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of 17 different cases of a connecting~rod big-end bearing, 5 of
ideal. bearings, 6 of wvarious groove/hole configurations and-the
remaining with different geometric variations of the bearings.

Fantino, . Godet and Frene (18] have studied the dynamic
behaviour | of an elastic connecting-rod big-end bearing using an
iterativer method. Reynolds equation was solvéd’using short bearing
approximation and deformations .in the bearing housing were
obtained with plane el;sticity relations.Theyvcalculated the locus
of the Bearing centre for the dynamic 1loading conditions of a
big-end bearing. Instantaneous elastic deformations. and pressure
distributions weré obtained for different values of %he load.

Variation of the minimum f£ilm thickness, torque and flow rate
with respect to crank rotation were cdmpéred with those obtaihed for
a rigid bearing housing under the same dynamic conditions. Results
show that with respect to the Trigid bearing case, inStantaneous
rédial and tangential deformations and also radial rates of
deformation, (i) increase significantly the ecéentricify ratio which
can vary between 0.5 and 3.8 over two crank rotations,lfii)'increase
51ightly the friction torque but significantly the axial flow, and
(II1) decrease the minimum film thiéknesé py up to 15% only.

Fantino ‘and Frene [19] used the earlier york (18] to compare
the performancé (minimum filh,thickness, torque and flow rate) of
two different bearings of petrol and diesel engines. Their reéults
show that of all the mechanical factors considered (load, speed,
viscosity,...), the most significant was the load which together
with the elastic deformation of bearing body governs the film

thickness .distribution. The results calculated for each respective

load diagram and speed condition show that, (i) the eccentricity
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ratio, which varies between 0.5 and 3.8 for the petrol engine,
varies only between 0.6 and 1.0 in the diesel engine, (ii) torque
increases slightly in both céses, (iii)  flow increases
significantly 1in the petrol engine but does not vary for the diesel
engine, and (iv) the minimum film thickness decrease by 15% for the
petrol engine and increases by 20% for diesel.

The difference between petrol and diesel engiqe bearings
pérformance was attributed to the difference in their load diégrams
and particularxly to the fact that the very high loads obtained with
the diesel occur only over a short arc situated on both sides of the
connecting-rod axis where under compression the connecting-rod is a
very rigid structure. '

' Oh and Goenka .[47] also studied the elastohydrodynamic (EHD)
lubrication of journal bearings under dynamic loadings. The Newton-
Raphson algorithm was used in conjuction with Murty's algorithm {[46]
éﬁd the finité element method to analyze the EHD lubrication of a
journal bearing system under dynamic loading condition including
cavitation. boundary conditions to establish the positive pressure
zone. Solution' for the film pressure, the film thickness and its
rate of change with time were obtgined as functions of the crank
angles.

A numerical method was proposed by .Tempel, Moes and Bosma
[64,65] 1in their recent study for célculating tﬁe film thickhess iﬁ
flexible short journal bearings under dynamic loading. The system of
elastohydrodynamic 1integro-differential equations were discretized
directly and solved by a two step Newton-Raphson method. The results

for the big-end bearindgs of medium and high-speed combustion engines

were compared. In their second paper [65], a starvation model was
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incorporated to their previous work [64]. The system of EHD integro-
differential equations were coupled with continuity equation for the
lubricants, considering central circumferential oil gfooves and a
constant supply pressure. Results for several groove geometries were
cohpared with those for a fully flooded bearing.

LaBouff and Boéker [42] studied the 6VEB—X.engine bearing
including elastic deformation of th? bearing body. Due to a large
requi;ement of computer Eime, the results were obtained only for a
finite crank rotations. The minimization of the functional was used
for . hydrodynamic solution and a two dimensional model for:
deformation computation.

The literature ‘indicates, a considerable scope for further
studies on the big-end bearings c&nsidering such aspects as pressure
and ‘temperature depéndence of viscosity, non-Newtonian
characteristics of lubricants, mﬁsalignment between the crank pin
and the bearing, and deformation of the bearing body. Thrsrthesis
presents tﬁe solutions of the following problemé of a big—end
bearing. |

1. ‘Rigid bearing with isoviscous lubricants,

2. Rigid bearing with piezoviscous lubricants,

3. Rigid bearing with lubricants having viscosity variation dué to
pressure and temperature, bbth (piezo-thermal effects),

4. Rigid bearing with non—NéWtonian 1ubrican£s,

5. Ungrooved bearing with parallel and skewed axes,

6. Elastéthermohydrodynamic (ETHD) effects (i.e., solution of
bearing considering - the flexibility of the bearing body and
viscosity variations with temperature and pressure, both).

A general solution procedure evolved 1in a modular form and
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briefly outlined here, 1is used to solve all the six problems. The
clearance space between the bearing and the crank pin is discretized
into a mesh of 12x4x1 three dimensional isoparamefric eleménts, each
containing 20 nodes. FullKSommerfeld boundary condition is used to
solve the Navier-Stokes -equations which are used in the analysis,
instead of the traditional Reynolds equation, to account for the
variation of viscoéity. The cavitation effect 1is accounted by
replacing the negative values of ﬁodal pressure by zero values. At
each crank angle interval, the pressure and QelOcity fields are
established byA solving the momentum and continuity equqtions in
cylindrical éoordinates. The finite element formulation is based on
_Gale?kin's methbd and a direct iterative technigue is used for the
solution of global system equations. The boundary conditions are
introduced - at the element stage to minimize the computer stogage
requirements. The global system equations are solved for the columns
of the right hand side simultaneousiy. to evaluate the pressure
~fields due to wedge, squeeze and whirling.actions of the fluid-film.
"For the time marching :scheme, Euler-Cauchy's predictor-correctoi
method is employed which.is found ﬁore stable and computationally
ecdnonmical in comparispn to Runge-Kutta or any higher-order
predictor-corrector -methoés for this problen.,Ah'emphasis is given
to calculate the time histroy of the bearing centre with respect to
the crank pin centre for one duty cycle, hereafter called as bearing
centre orbit.

To obtain the bearing centre orbit for a rigid bearing with
isovicous 1lubricants, the solution is started from an arbitrarily

selected crank angle 1100 with suitable time steps.

The solution is continued even beyond two revolutions (7200)
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unless the orbit repeated itself. In this case the computed minimum
film thickness in the orbit is very close to the reported values
[10] which supports the validity of the algorithﬁ.

| A circumferential groove to supply the lubricant in the bearing
is . considered as a typicél example, Fig.l1.4. This groové is
accounted 1in the analysis by considering the resulting symmetry and
solving for only one land of the bearing which shares half of the
load on the bearing. The: pressure in the groove is~taken as
ambient pressure. Grooves in the bearings sigﬁificantly altef the
peak film pressure. Fig.1.5 shows the effects of introducing a
groove into a bearing while maintéining the sa&e projected area. The
variations of the maximum film pressure and the minimum film
thickness are also presented as a function of crank angle in the
~results.

In the «case of riqgid bearing with piezoviscous lubricant, the
viscosity 1is modified using the ’pressure viscésity | relation
(Ha = ea?p) where ay is the piezoviscbus coéffiéient and p 1is fhe
fluid-film pressure.  Using this relation with a sﬁitable value of
op, the results (bearig centre orbit, the minimum film thickness,
the maximum pressure, and the power loss) are 'calculated. A
comparison of these results is also made with those of isoviscous
case.

It is a well known fact that the viscosity of lubricant is‘
sénsifive to temperature Qariations. Although according to the
experimental data avai}able, the temperature.rise in connecting-rod
big-end bearings is not: high (only of the order of 100 to 250 (C),
this rise of temperature reduces the viscosity of lubricants enough

to affect the performance of the bearing. The literature on the



| /Piston
é—_—-/l"iston pin or wrist pin
Rifle drilled passage

i / in connecting rod

oitin | Oil in
-— / -
Y Circumferential groove
i . A ) in main bearing
. /; :
Clrcgmfer-entioi groove L Circumferentialgroove
in main bearing in rod bearing

Drilted passage in crankshaft

Fig.1-4 Oil passages for lubrication of enginev bearings

Ungrooved bearing

Grooved
bearing

s N .

Oil film pressure

'/Oil inlet hole
L L
2 2
‘ b}
Qircumferentj
- lial groove |

Fig.I-5 Circumferential grooved bearing showing
effect on pressure distribution



25

solution of the big-end bearing with lubricants having variable
viscosit} is scant. A truly general and realistic solution of the
connecting-rod big-end bearing problem should include pieze—thermal
effects. These effects are included in this thesis for both , for
rigid bearing and for £flexible ‘bearing. For a rigid bearing with
piezo-thermal effects ; the.bearing centre orbit, the minimum film
_thickness, thet maximum peak pressure, the maximum temperature rise
and the power loss are calculated.

For the rigid bearing, the effect of non-Newtonian behaviour of
lubricants is also studied. In the case of non-Newtonian lubricants,
the ielation between 'shear stress (I) and sﬁear strain rate (Y) is
non-linear. For example, Hsu and Saibel [30]-expressed shear strain
rate in terms of -powers of shear stress (I + k I'? = ¥ ) for the
analysis of infiﬂite width slider bearings; This -xrelation was claimed
to be more representative over a wide range of shear rate. There are
several other models evailable for non-Newtonian behaviour of the
lubricants. In the algorithm used by the author, any non-Newtonian
model [35] <can be éccommodated, but in this thesis, bearing centre
orbit is calculated using the cubic shear stress law  model
etress iaw model_(?+kF;=_Y) by taking a suitable value of constant
K. The square root of the second invarint of shear strain tensor is
taken 1in place of ¥ and the correspohding equigvalent shear stress
(r') is calculated using'Newton—Réphson method. The apparent viscosity
at each Gaussian integration point is calculated as Ma = (T / ?)
and the solution is upgraded using these apparent viscosities in each
iteration. The veriations of the. minimum f£ilm thickness and the
maximum film pressure as a function of crank angle are found and

compared with those of the Newtonian lubricant case.



26

The bearing ceﬁtre locus, values of the minimum film thickness,
and the maximum film pressure are also obtained at 100 interval for a
finite crank rotation using the curve-fit model. In this model, a
fourth degree polynomial is fitted, wusing the least square method,
on the availble experimental data éf la and Y for a non-Newtonian
| oil. By wusing the computed velocity field in the bearing at each
crank angle, the values of strain rate (?) are calcul;ted at each
Gaussian 'point and by introducing these values in the polynomial
expression (non-dimensional form), the values of apparent viscosity
(ﬁ.) are calculated.and the solution is then upgraded ' in an
iterative manner. The results obtained by the curve-fit model and by
cubic shear stress 1aw‘mode1 are found to be almost identical.

The big—ené bearing in the example has a circumferential groove
inside. This bearing is also studied assuming it to be without groove
for the cases of parallel and skewed axes. In both the céses, the
bearihg centre orbits, the variations of the minimum film thickness
and the maximum film pressure as a function of crank angle are
calculated.: o

It is established that in a heavily loaded bearing, 'the fluid-
film .pressqre deforms the bearing liner significantly even when the
outer surface of the bearing liner is encased in a fixed housing.' It
has been observed that the big-end bearing behaves as a flexible
bearing and its eléstic distortion due to hydrodynamic pressure 1is
often larger than fhe nomigallradial' clearance. This deformation
changes the film geomtry and in turn the performace characteristics
of the big-end bearing significantly. In this thesis, the work is
extended to study the effect of ETHD. 1In the ETHD'case, to start

with, the pressure and velocity fields are obtained considering the
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bearing as rigid and the lubricant as isoviscous. Using the 8 noded
isoparameteric elements and elasticity relations, -tHe nodal
displacement components at inner and outer surfaces of £he bearing
body are obtained.. The nodes on that portion of the bearing body
which 1is integratéd with the éonnecting—rod are considered as fixed.
The radial displacement components dominate the displacement fiéld,
therefore, the other two components (axial and circumfeiential) are
neglected. The fluid-film thickness is then modified by adding algeb-
raically the radial displacement components to the corresponding
radial coordinates of the nodes which lie at the inner surface of the
bearidg body. Using the computed velocity field, the energy equation
is solved to obtain the  temperature field. The ‘relation
(app-B=x(T-1)) ‘ B

Ha = e is used to calcula;e the. values of apparent
viscosity at Gaussian points. Using these upgraded values .of
viscosity and the modified fiim " geometry due to deformation, the
moaified pressure field is obtained which yields the flu}d—film force
components. These modiﬁied fiim force components are substituted in
the time nmarching s;heme, and the bearing centre orbit points are
then obtained. A 1arge computatidn time is required for convergence
at eacﬁ t ime interval,, therefore, the ETHD effect on the bearing
performance is studied for only a‘finite crank rotation using 29
interval. -t

The algorithm evolved in this work is quite general and can be
implementéd ‘for'the solution of connecting-rod big-end bearing with
isoviscous/piezoviscous/non"Néwtonian lubricénts. It can be used to
stu@y the effects of elastothermohydrodynamic lubrication and piezo-

thermal viscosity behaviour of lubricants on the performance of the

big-end bearing. The computer program can also handle the solution of
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big-end bearing without groove and with misalignment of the axes.
From the results obtained for the rigid bearing cases, it <can be
concluded that non-Newtonian and piezo-thermal effects yield smaller .
value of the minimum film thickness in comparison to that 1in the
isoviscous case. The piezoviscous effect slightly improves the value
0of the minimum film thi;kness. In the case of the ungrqoved bearing
with parallel axes, the minimum film thickness is appreciabiy larger
in comparison to that in the grooved bearing. The effect ‘of
misalignment is also noticeable in the ungrooved big-end bearing.

For\ accurate analysis and design it would be ’necessary to
'consider ETHD effects, it, however, requires a large CPU time. From a
practical point of viéw, therefore, one may anélyze or design the
connecting-rod big-end bearing considefing it as a rigid bearing with.

non-Newtonian lubricants or the lubricants. having piezo-thermal

viscosity characteristics.
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CHAPTER 2
A
FLOW—FIEILD

The fiow—fieid description in the clearance space of a Jjournal
bearing, when expressed ,by' Reynolds equation, 1implies several
assumptions. In addition to the assumption of negligible body and
fiuid inertia forces, Reynolds equation assumes that the viscosity of
the fluid in the clearance ‘space is also constant which is not always
true. It 1is difficult to accommodate the variation of viscosity
across the film thickness whethef due to piezoviscous effect, Aon—
Newtonian fluid characteristics and or by thermal effect 1in the
analysis through Reynolds equétion. .Therefore, in this analysis, the
momentum and continuity eguations in the cylind;ical coordinates,
.which cqnforﬁ to the actual geometry of the fluid-film brofile in the
clearancé space of a journal bearing, are solved numerically by
fiﬁite element method using Gale;kin's technique and the variation of
viscosity is incorporated by upgrading the solution vector
iteratively.

2;1.1 Nayier-Stokes Equations (cylindrical coordinates)

The nondimensional momentum equations in cylindrical coordinates

governing the fiow-field in the clearanc¢ space ot a finite Jjournal

bearing are given as

Du auv R ép. - _ _— 2 év u

Re (--=- + --=-1 + = ---- = Ja (\/2u + -==~ ---= - ---] (2.la)
Dt r r 69 r: 69 T2
Dv uz _ & 2 bu v

Re [~-z= + -==] + R ~-=- = pa [\/® v -~ -== —--- - --=-]1 (2.1b)
‘Dt Y §r e .60 T
Dw 6p

Re [--=-] + ==-= = Jo [\/% w) (2.1c)

Dt 6z



where,
D 1 & u 6 é w 0
—— Lt Tt o )
Dt R 4t r &6 or R &z
and
. 62 1 & 1 62 1 62
\/% = ( — + - -+ - 8 t - )
0rz r Or rz - 002 Rz {4z

In the present analysis, the fluid inertia is not included.
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So,

neglecting the terms representing the local and convective fluid

inertia, Eqgs.(2.1a-2.1c) reduce to

R 6ép L 2 v u
S = Ha [\/ 2z u + = - l (Z.2a)
T 46 T: 60 T
_ ép L 2 8u v
R —— = Ja [\/2 Vv - - ] (2.2b)
6r r: 46 T2
6o _ . _
— = Ja [\/2 W] - (2.2¢)
dz T

2.1.2 Continuity Equation:

The continuity equation for a source free control volume is

6@ 1 é(eu) s(@v) &v 1 6(@w)
+ - + — + - = =0 (2.3)
6t r 66 ot r 'R 5z

If the fluid is homogenous and incompressible, as in the case

lubricants, the density is constant which simplifies Eg.(2.3) to,

u . 3v v 1 6w
r

= 0 (2.4)

+ =)t -
66 - ot R oz

1
r

2.2 BOUNDARY CONDITIONS:

of

The boundary conditions which can be applied to the flow-field

are either in terms of pressure or in terms of velocity components.

For the bearing, used as an example [10], there is a circumferential

groove all around in the middle of the inner surface of the bearing ,
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hence, the following boundary conditions are applied at the element
equation stage to minimize the computer storage required for the

global fluidity matrix.

p (868 ,z) =20 at z = B (2.5a)
_ 1 c0os61 g_ eﬁ' _ _ —
u = (1 + - ) (1l + -==mmmmmmmmm ) - - sinB + - cos8 , r = R + h
R v{(gz-sinz26,) R R
(2.5Db)
v = (E / R) cosB + (€8 / R) sin® , r =R +h (2.5¢c)
w =0, r =R , (R + h) (2.5d)
u =0, r =R (2.5e)
v =20, r =R (2.5f)
where , h = 1+ € cos 8

2.3 FINiTE ELEMENT éORMULATION:

-The complete circumference of the'gearing is divided 1into 48
isoparametric eleménts. The discreéization has been done by twelve
divisions circumferentially, four .axially. 1In the circumferantial
direction the grid is ﬁon—unif§rm, haviﬁg finer spacings in the zone
of maximum preséure. In each element, velocit? components are
app:oximaﬁed by a‘quadratic variation (20-nodes) and the pressure by
a linear wvariation (8-nodes). This mixed type of formulation is
favoured by Zienkiewicz [69] and other [33]. _

Apélying the orthogonality condition of Galerkin's finife element
method [33,69] to the momentum (Egs.(2.2a)-(2.2c)) and continuity
(Eq.2.4) eqguations, the following equations are obtained for an

element in the clearance space-of a journal bearing system.
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”r R é6p _ __ _ 2 8v u r L
Jdd No [- ==-- - pa(\/?u + - -——- - --=)] - 48 dr dz =0 (2.6a)
e S r 49 r: 80 r? R
M _ép  _ ___ 2 6u v r o
JIJ Na (R =-=- - Ma(\/2V - -== ---- - --=)] - d8 dr dz=0 (2.6b)
e or rz 06 r: R
!\!\!« ’65 _ — ; _ _
JIJ Ny [==== -pa (\/2w)] - d6 dr dz = 0 (2.6c)
e 62z R
f‘” 1 du v 6v 1 8w T o
R I e S T ] - a8 dr dz = 0 (2.6d)
e r 48 be Or R 8z R
where i =1, , 20 velocity nodes,
j =1, . . . . ., 8 pressure nodes,
and )
_ 20 _ 20 _ _ 20 _ _ 8 _
u=°rC Nsugs , v==tr Nyve, w==Ir Ni{ws , p=15 My ps
i=1 i=1 i=1 j=1

The shape functions for velocities (N., 1=1,2,3,....,20) and
pressures (Ms,3=1,2,3,..... , 87, in terms o0f 1local coordinates
'(é M % ), are given below. | |
For corner nodes(

1 | - -
N. = g (1 + %) (1 4+ M) (L + Zo) (o + Mo + G - 2) (2.7)

For mid sides nodes ( & = 0),

Ne = - (1= ) (1 + %) (1+ %) | (2.8)

S ]

For mid sides nodes ( % = 0),
1 o .
Ny = = (1 + %) (1 - %) (1 + %) (2.93)
4 :
For mid sides nodes ( 4 = 0)

Ny = - (1 + %) (1 + %) (1 - 9*) (2.10)
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and

v

1 :
Ms = = (1 + %) (1 + ) (1 + %) (2.11)

8 .
where, % =¥t , Mo = MM, Yo = Y% and K, W, 4 are the values
of (§,7.,9) at the i®" node.

Evaluating the . integerals involved, after proper substitutions,

the elemént equations (2.6a-2.6d) reduce to the following form,

[Gl= {a}= = { 0} | | (2.12)

where [G]™ the element fluidity matrix, is given by

- €

3 - ]
) %K“ : KP§

- |

[G)= = i
§o
P S
(K'® 0
-

and
_ _ _ eT - - - -
{fat=® = [fa Po 1 = [uzs Vi Wi Uz Vz Wz.......
..... Uzo Vzo Wzo Di Pz Pz .... Pel

K2, K¢ and K'® are the submatrices for viscous terms, pressure
terms, and continuity equation terms respectively. The coefficients

0f submatrices are defined as

_ { f_ ONg ON4 ON. 0N, 1 0Ny Ny
Ke = ‘JJM.[ ————————————— S +
mn e 6r 8r Y r Y? 38 586
1 6Ns  ONs N, r
- mmmom memee + ---- N4] - do dr dz
Rz &8z 6z r? R
form=n=1,4,7,...... 58; 1 = (m+2)/3 S0 i=1,....,20
j = (n+2)/3 j o= 1,....,20
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daid [Ha

e

*

1] ln ;x

i
i ‘\j v.!

e

i

1

1

(m+2)/3 so

(n+1)/3

i

3

(m+2)/3 so i

n/3 )
m/3 so i
(n+2)/3

(n+2)/3 j
ON 1 IN 4
_— o e - m*__]
36 Rz gz
m/3 SO i
n/3 3

i

N

2 oNs r -
[- --=- Ny -—--- ] - d8 dr az
r? 2] R
form = 1,4,7, ,58; 1
n=2,5,8, ,59; 3
for m = 1,4,7,..... ,58; 1
n=3,6,9,..... ,60; 3
m= 3,6,9,..... ,60; 1
n=1,4,7,..... ,98; 9
2N, 06Ny r o
o e ] - d6 dr dz
rz -8 R
for m = 2,5,8, ,59; 1
n=1,4,5, ,58; 3
6Ni ONs Ni 6Ny 1 ©ON.
y - - - -tz
5r  Or r r r: 66
for m=n= 3,6,9, ,60; 1
3
R 6N r L
— ---- My] - 46 dr dz
X é6 R
for m = 1,4,7,...,58; i
n=261,62,...,68; J
6N, r L
R -~-- Ms] - d6 dr dz
0r R
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..,20

.., 20

“dr dz

.., 20



for m = 2,5,8, ,59; 1 = (m+l)/3
n=+61,62,...,68; 3 = (n-60)
[I"{‘ N 3 -
= JJh - ---=- Ms} - d6 dr dz
e 0z R
for m = 3,6,9, ,60; 1 = m/ 3
n=+61,62,...,68; j = (n-60)
,68; 5 = (m-60)
,58;, 1 = (n+2)/3
dr dz
for m = 61,62,...,68; 3 = (m-60)
n=2,5,8, ,59; 1 = (n+l)/3
W )P r L
= J4d [z ---- Ms] - de dr az
e R 4z R
for m = 61,62,...,68; 3 = (m-60)
n=23,6,9,...,60; i = n/3
6Ny SN SNy ,
The derivatives ----, ---- , and ~---- used
66 or 0z

coefficients of submatrices (K@ ,

éNi GNi
derivatives ---- , ----,
0F N

[ N,

GNL
and ----

6%
[69].

36
SN,
or
6N,

6z

=[J]-2

K and E'P), are

35

so i=1,...,20
j=1,...,8
so 1 =1, ;20
j =1, , 8
so 3 =1, .8
i =1, , 20
so 3 =1, ;8
i=1,...,20
so J =1, ,; 8
i =1,...,20
for defining the

obtained from the

using the following transformation

[ 5N, ]
08
5N
W
SN,

o

(2.13)
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where, [J] is a Jacobian matrix and is defined (69] as

46 or 6z
(13 % (e}
68 - or 8z
(31 = -——- ———- ——=- ‘ (2.14)
&1 - &N N
36 or .. 0z
| o 6% 65

To transform the variables to Hefine the integrals in terms of
curvilinear coordinates, the following relations are used [(69].
de dr dz = |J| dg d1 ag ‘ (2.15a)

de 4t 4z = f J J |31 dr an ag (2.15b)

r
R

ol R

After the element equations (2.12) are mdédified for the boundary
conditions (Eqs.(2.5a)—(2.5f)), the element contributions are
assembled as usual for all the elements of the flow-field and the

following global system equation is obtained:

(K] 17} = {Ral + €{Ra} + BIRw) O (2.16)

2.4 NON-NEWTONIAN LUBRICANT MODEL-ANALYSIS ! |

Engine bearings are recognized to be of major importance in-
relation to the overall engine performance. The specific engine.
performance factors and. associated variables are wear, . o¢il
consumption, fuel economy, hot stafting, cold starting, noise and
shear stability. The bearing performanée depends on the oil used for
lubrication. Engine oils are defined by both a viscosity
classification system (SAE J300C) ahd‘ by a test performance apd
service classification (SAE J183a)- [37]. Bearings are believed to
operate under hydfbdynamic mixed and or boundary lubrication regimes,

The performance of bearings . in hydrodynamic 1lubrication regimes’
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depends on the viscosity of the o0il used. For most 6f the oils,

measurements of shear stress and shear rate ( at various magnitudes

of both) indicate a linear relationship between the two.AHowever,

this simple relationship becomes complicated when mixed lubrication,

boundary lubrication, pressure viscosity effects, shock loading and

high shear rate effects are combined with engine oils modified by

viscosity index (VI) 1improver additives. The polymér additives, in

addition make the thickened o0il non-Newtonian in shear behaviour.
Many complex non-Newtonian fluids are not purely viscous ( ,especially

polymeric fluids used for engine lubricatioh). However, measuremengs

of shear stress and shear rate may be made for these materials in

steady shearing flows, and the ratio of these guantities may be

defined as rheological characte:isticl -Since this ratig ié not .
constant (as in tﬁe case of Newtonian fluids), it defines a function

which 1s called the apparent viscosity (Ha).

2.4.1 NON-NEWTONIAN LUBRICANT MODELS:

The non-Newtonian fluids may be classifed in ‘terms of .the
variation of apparent viscosity (Ma) with shear stress (r)'of shear
rate (Y¥). The most successful attempts at discribing the steady shear
stress-shear rate behaviour of non-Newtonain fluids are largely'
empirical. The following represents some of the more commom empirical
models in non-dimensional form [35].

1. Cubic shear stress law model

T+ KT =Y . . (2.17a)

wheré, K is a non-linear factor
2. Power low model

- . C2
' = Ca (Y) ‘ . (2.l7b)
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3. Prandtl model
I = C, sin~* (¥/Cz) (2.17¢c)
4. Eyring model

T = Y/Cx + C2 sin (T/Ca) (2.17d)

5. Power-Eyring model
I'=Ci Y + Cz sinh™* (CsY) ©(2.17e)

6. Williamson model

T = [~===-- -t pe 1Y ‘ (2.17f)

R ' (2.17q)

where, Ci, C=z, and Cs are the constants (Egs.(2.17b)-(2.17g))
and He (Eqg.2.17f) is the viscosity at infinite shear strain rate. In
Egs.(2.17a-2.17q), ?'is made independent of the shear strain rate for

three dimensional (8,r,z) flow and is given by (14].

. dv 1 du Y 1 dw du u 1 4dv
Y = [2§(----)% + (- --=- + =) + (= --=-)2%} 4+ {---- - -+ - ----}2
or r 46 r R 6z or r r 48
1 Ow 1 4u 1 4v ow \
t{- —--- - —--=}F 4 {- --o- 4 ----}2]202 (2.18)
r 46 R 4z R 4z 5 ' ‘

The above expression (Eqg.2.18) is written in non-dimensional form

-using the usual normalizing foctors. For the value of ¥ calculated

from Eg.2.18 at every Gaussian intergration point, T can be
calculafed.using ahy model (Eg.2.17a-2.17g), with the help of Newton-

. Raphson method. The apparent viscosity (Ha) in non-dimensional from

is then defined as
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fe =T / ¥ (2.19)
All the models (Egs.2.17a-2.17g) are not appiicable to the oils
which are generally used for the lubrication of bearings. In this
dissertation, the general relation (i.e., the péeudoplastic

“behaviour) which is representéd by cubic shear stress law (Eg.2.17a)
and 1is applicable to most of the practical engine o0il 1lubricants
[66], 1is used_to obtain the bearing centre orbit. The algorithm used
for this purpose 1is quite general and can be used for any non-
Newtonian lubricant models (Egs.2.17a-2.17qg).

2.4.2 Non-Newtonian Model Using Curve Fit-(Curve—Fit—Model)>

The empirical models described in Section (2.4.1) for non-
Newtonian £luid are hypothefical models. In real practice, the oil
apparent viscosity, which varies with temperaturé and shear rate, can
only be found out by actual measUrmgnts. These measurements have-geen
made by, among others, 5ohnson and 0'Shaughnessy. [37)] 1in their
extensive éxperimental work and the apparent viscosity (Ha) at
different temperatures (°F) 100, 150, 210, 280 aﬁd 320 and at shear
rate (sec”™®) low, 2.5x10%, 5x10® and 10x10%® was measuredl for
different kinds of commeréial and experimental‘dils. |
“Using the giVeﬁ values of apparent viscosity\and shear rate from

Table-2.1 (reproduced from Ref.[37]) at 2100F temperature, the
viscosity of one kind of oil SAE lOW—40'(C—2) with stryene-ester as
VI impibver is plotted, Fig.2.1, as a function of shear rate. Using.
the 1least-sqguare method, a polynomial of fourth degree was found to
répresent the viscosity curve of Fig.2.1 and is used to calculate the
apparent viscosity (Ha) corresponding ﬁo shear rate (Y) occuring in

the big—end bearing clearance space at any crank angle. The
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Apparent viscosities of non-Newtoian oils {37} as function of

shear rate at 990C (2100F)

Shear Rate k 10-%

e > (sec™?)

2.5 5

- 10

Code no.

Apparent Viscosity (m Pa.

S)

c-1 12. 10. 4 10.0 9.3
c-2 12. 9.7 9.2 8.7
c-3 13. 10.5 5.7 9.2
c-14 12. 10.2 10.0 9.4
c-5 11. 9.5 9.2 8.8
c-6 11. 9.6 9.3 9.0
E-1 12. 11.4 - 10.9 10.5
E-2 11. 9.5 9.0 8.7
E-3 11. 9.3 8.9 8.6
E-4 11. 8.8 8.5 8.3
E-5 11. 10.0 9.4 9.0




41

40012 0 (2-0) |10 |DIJ4BWWOD 10} 940J JD3YS }O uol}ouny D SO A}S0ISIA juaspnddy

(0]0)]

06

(1-935) cO1 X ILVY YVIHS

-2 914

T

o 2-3 ¥od

cl

(S'0d W) -ALISOOSIA LN3YVddV



42

dimensional coefficients of the polynomial are given in Table-2.2 for
various oils; the polynomial is of the following form,

Ha = @0 + @1¥ + az¥2 + as¥ + aq¥s (2.20)

The orbit (for a finite crank rotation ) of the motion-of the
big-end bearing centré is calcﬁlated only for one oil, SAE 10W-40,
code - C-2 (Appendix A-1), as an example. However the computer program
can handle any lubricating oil with any non-Newtonian model. )
2.5'PIE26—THERMAL VISCOSITY CHARACTERISTICS (Piezo-Thermal Effects)

Thé improtance of thermal effects (i.e. viscosity variation
across the film thickness due to temperature risé of bearing) on the
beaiing performance is now well recognized. The temperature rise and
its distribution in the bearing has been studied by a number of
investigators and Huebner [31)] has *presented a summary of the work of
the 1investigators on the studies o0of thermal effects on bearing
vbehaviour for stationary condit;on. In this dissertation, not only
the thermal effect but .a combine effect of temperature and pressure
oﬁ viscosity and in turn on the performance of big—end bearing is
studied. The energy equation and 1its boundary conditions are
discussed in the following sections.

2.5.1 Energy Equation:

The eguation used to determine the distribution of temperatu:é
vwithih. the fluid is a mathematicai statement of ‘the principle of
enerqgy coﬁsérvation. Pai (1956) has presented a derivation of the
energy equation for a.fluid,. and the full equation in cylindrical

coordinates can be written as
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Table-2.2

Values of the coefficients (ao, a1, az, as, a«} for the
polynomial, Eq.(2.20), representing the non-linear relation between
the apparent viscosity (Mda) and shear rate (Y) for different non-
Newtonian oils

0il EQ.(2.20) Ma = @o + ax¥ + az¥2 + as¥3 + a<¥s
code
do aax az as =P

c-1 11:96 - -0.78 0.096 -0.0055 . 0.11x10-3
c-2 11,31‘ -0.85 0.111 -0.0065 0.13x10-2
c-3 11.94 ~0.88 0.114 -0.0066  0.13x10"3
c-4 10.37 -0.03 ~0.017 £0.0012  -0.02x10-3
c-5 10.10 -0.30 0.029 -0.0015 0.03x10-73
C-6 10.22 -0.33 0.039 -0.0022 0.04x10-3
E-1 12.80 -0.76 0.100 ~0.0059 o.i2x10-3
E-2 10.91 0.7 0.102  -0.0059  0.12x10-2
E-3 10.60 -0.68 0.089 -0.0051 0.10x10-2
E-4 9.71 -0.48 0.062 -0.0034 0.06x10"2

E-5 11.38 -0.72 0.089 -0.0050 0.10x10"73
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DH Dp 16 8T 1 ¢ 6T d = 4T
g-- - - = - == (Kox --) + --— -~ (Ko =) + —= (Ko --) + @+
Dt Dt r 6r Or rz 48 68 dz dz [(2.21)
I | ; |
l | l |
{ Conve-| . | ) |
ctive | {conductiocn term) |
term) | |
(adiabatic compression term) {viscous dissipation)
' term
In case of incompressible viscous fluids (lubricants), the

adiabatic term is zero, the thermal conductivity (Ko), density (@),
specific heat (C.) are constant in lubrication problems. Considering
these assumptions, the energy -equation (Eq.2.21) reduces to the

following form (32},

0T 0T Ve OT oT 146 6T 16 8T & 47T
@Cy -- + @Cu(Vy ——#=~ ==+Vz ~~) = Ko [- --(r==)+= —=(~-=)+-—(--) 140,
Jt ér. r 68 dz r r Or 1r286 66 06z bz
(convective term) (conduction term) (2.22)
where,
: 6 Ve 1 6Ve Vi 6V. 1 6Ve Ve 1 6Vi
B = Ual(---)2 + (- -=—= + ==)2 4+ (-=-=)2 4 —(==-= - — + = --—-)2
6r r 686 r 0z 2 Or r .r 0486
1 1 &V. 6Ve 1 Ve OV
t - (- ==+ —==)2 4+ - ( --= + -==)2] (2.23)
2

r 60 0z 2 6z 0r

_ WoR3R2  _ 1 c2 T
g = ==—————~ 7 gv = - ( "'"——) ﬁv 7 T = -
Ko To Ho RzQ2 Te
_ Ha @C.Rac
Ha = —- ’ Ky = —=====~ 4
“o KO
_ Y _ z . R . Ve _ Ve — Vz
r=-,2=-,R=-,u=--,v==--andw=--,
c R c RS R R&

the energy equation (Eq.2.22) in non-dimensional foim is

Kel= ==+ Voo 4 = == 47~ —=)=[= -2 (€ -2 )#4= --- + = === 1-KpPo=0
R ot 8y 58 R &6z r o8¢ Sy rz268¢t R2 8z
' (2.24)

16T _ 6T uwél woT 148 6T 1 62T 1 62T
- -
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2.5.2 The Boundary Conditions for éolution of Energy Equation:

Isoparametric elements with 20 nodes are taken to discretize and
analyze the £emperature field. The following boundary conditions are -
applied to solve the enerqgy equation (2.24),

The crank pin surface vtemperature are specified as constant,
i.e. T, = Ta and 6T/8n = 0 at pin surface.
2.5.3 Viscosity Relation with Temperature and Pressure

The following relation is wused to 'calculate the apparent
viscosity at each Gaussian integration point of each element to
include thé effects of temperature and pressure both.

Hasx = exp {@oDPsx - Bx(Tsx-1)1 o (2.25)

where, fx is the viscoéity exponent or viscosity temperature
coefficent and Tsx ié the temperature at k*®" Gaussian.point of j=r
element.
2.5.4 Finite Element Formulation for Energy Equation
Assuming that the unknown temperature distribut}on within  a’
tYpical three-dimensional element can be approximated by
_ e dre .

S | _ S o
T= =T Ny T, = [N}MT} and -- =T" =L Ns T
i=1 ot i=

e
i

where the Ni are approximating functions defined over individual
elements, s is the number of nodes per element and T. are the unknown

nodal temperatures.

Applying Galerkin's technique, the error distribution Vprinciple

"to be satisfied for an element if

- _e _€e - _e - _e __e _e _e
ppp 1 6T _ 6T u 6T  w 8T 52T 1 47T 1 62T
JJJ NilKof= ===+ Vv —== 4 = === 4 = ===} = {==== 4 = =oc 4 - ——o-

e R 8t 6r r 6 R 6z drz r Ot r260:
e
1 627 o L
+ - mmee } - Kg Bo) -~ d0 dr dz = 0 (2.26)
: Rz 4§z R '



46

The second order terms are converted in first order terms using

integration by parts as
e e e

IR -- - de dr dz

2z
-
i
1
{
i
!
|
(o))
<t
1]
ol
=4
frs
I
1
|
l
!
i
o

. @
o}
Nt
|

<«

[@ JERE

)

(o]

o]

On

=

o]

(2.27)
Similarly, other second order derivative terms are also integrated by
parts.
In view of the adiabatic boundary conditions, the surface
integrals vanish on parts (where,éT/8n = 0) of the boundary surface,‘

hence the equation (2.26) can be written now as

[ _ 1. 8T 0 4T w 4T 6N: OT
N T e T St § S S
R (34 r 46 R 4z dr or
Ns 6T. 1 6Ni 0T 1 68Ny OT oz
foomo mmoo o o —ee- eee o - ee-e —oo- ) - NuKg o] - dB dr dz=0
R . .

r dr rz 60. 66 R: 6z 6z
Eg.(2.28) is rewritten as

3N, N. 6T  NuKeu . 1 &N, 6T

poNRe L
R R T+(NsKo VH === = mom)mmomd (mmmmmmme 4 = mmem) e
R or r or r rz 49 38
NiK+ 1 6Ny O6T ¥  _ _ - M- - -
N W4 - —-—-)----]- d6dTdZ = |JIN.KeB. - dediaz
R R2 6z 6z R R (2.29)

The elment eqguation (2.29) in matrix form is written as

(Ke)® {T)= _+ (Kal® {T}® _= {Fr}*  (Kn)® {T}= (2.30)
E+ot t+6t b+t t -

It is stipulated that once the bearing centre starts to move in a
limit cjcle in uniform bearing running condition, the temperature of
the bearing also become‘stationary and there is no femperature
fluctuation with time: thé transient term from Eqg.(2.30) can be
neglected and Eq.(2.30) reduces to

[(Kx)® (T}= = {Fr}= . | (2.31)

where, the coefficients of matrix [Kr)® and {Fr}* are qiveﬁ as
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_e. \I‘J‘ éNj 20 _ GNJ. éNj Ni de
Kras = dJdJ (Ko No ==== [ I Nk Vi) + ==== === = —=n ———u)
e or k=1 dr oOr T or
N N4 20 1 O6N: 6Ng N 6Ny
+(Ky ==== ===m- (£ NxUx) + - ~-=— ---- )+ ( Ky —-=- ====-
T 66 k=1 r: 60 436 R 5z
20 1 6N. 06N, b4
(£ NieWx) + = ~==- —=-- )] - d6 dr dz .
k=1 Rz 6z 6%z R
and .
_e ?fr _ _ I -
Fry = JJJ N1 Kp B - d6 dr dz
e R
! e e e e
{Ti® = [T, Tz T» Tzo) (2.32)
v 2 1 48u v 2 1 6w 2 1 du a1l 6v 2
P = Wal(——) + (= t = )+t (z —) t-(—— - —t- —)
0r r &8 r R 4z 2 4o r r 0686
1 1 6w 1 6u 2 1 1 &v 5w 2
o~ (- t - =) 4 - (= ¥ ) ] (2.33)
2 T 466 R 6z 2 5z dr

-‘After the element equation (2.31) are modifed for the boundary
conditions (Sec.2.5.2), the element contributions are assembled for
all the elements and the following system equatioh is obtained

(Kel {T} = {Fz} . ' ' (2.34)
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CHAPTER-—3

ELASTIC DEFORMATION

It is well known that the elastohydrodynamic (EHD)
lubrication plays a significant role in controlling fhe performance
of rolling element bearings. It 1is also recognised. that the
deformations also occur in the hydrodynamic journal bearings and the
EHD effects are often quite significant. Since the runner and the
bearing 'shellAin practice are elastic and deform under hydrodynamic
_pressuie, the correct film geometry, on which hydrodynamic pressure
depends, can not.be established without taking 1into account their
'elastié deformations. The deformation of the bearing can be of the
order of the fluid-film thickness (definéd for rigid beaiing system)
when the bearing operates at high eccentricities with heaQy loads.
The deformation of the bearing appfeciabjly modifies the fluid-£film
| geometry and - in turn, may significantly change the pressure
distribution in the fluid—fiim and the performance cha:acteriétics of
the bearing. The big-end bearing generally operates _at high
eccentricities and’ under dynamic loads, so a study of the big-end
bearing .under EHD lﬁbrication conditibn, wili give a better
understanding of its performance.

vMathematically, EHD . studies involve simultaneous solutions
o£ hydrodynamic equations for lubricant flow and the elasticity
~equations for bearing deformations.‘

3.1 BIG-END BEARING MATERIAL
The bearing materials used in dynamic load service are

fairly,well,standardized. For moderate duty automotive service, strip



bearings containing a babbit layef of 0.05 mm (0.002in) to 0.127mm
(0.005in) thickness over a steel backing are used [68]. For heavier
duty service, lead babbit from 0.025mm(0.001lin) to 0.05mm (0.002in)
thick is plated over a lead-copper alloy. The lead copper in turn is
laid down on a steel base strip. This type of bearings (calleq
trimetal bearingg) are normally used in diesel enéine service. The
thickness of the liner is provided very small hence in the big-end
béaring case not only the liner deforms but here complete body of the
bearing deform freely so, in the Big—énd bearing, the deformation of
Complete body is consiacred and the materiai of the body was taken as
Iron [42])
3.2 DEFORMATION IN BEARING BODY- FINITE ELEMENT FORMULATION
The analysis o0f hydrodynamic flow-field is discussed in the

Chapter-2. The present Chapter-3 deals with the eléstic deformation
of the Béaiing body. -

| The bearing body is discretized using eight noded hexahedral
isoparameteric elements. The displacement components - in the élements

are considered to vary linearly and are represented by

- .

dx
{$ 1} =‘dz¥ = (M ] {4} (3.1)
de -

%

Within the realm of linear elastic theory, the expression for
the potential energy for an element in the discretized elastic domain
when -the bearing is subjected onlx to .surface traction force LT:J,
is given by [69i

7 s ) o ey avt 2] LT2) (5} an" (3.2)
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or

- - e T - - - - - -« -
77 = 1/2‘IJ t$ J(L ]} [Dal(L ]1{$ } 4V' -IJ LTeJ{$ }dA' (3.3)
where, {¥*} is known as the strain matrix and {o*} is called the
streés matrix.

The strain matrix can be defined as [69]

- i - i
[ 6dx
Yx: ———
or'
- 4d =
Y. o
édz'
- d- 1 éd:
- Ye -— + - -—=
{y 1= > = ¢ xr' r' 68 s
- 1 6d= 6d.
Yze el T
r' &6 éz!
- 1 46d- dde de
Yre - memm o —m= = e
r! 66. or! r'
d ¢ ' Ldz‘ 0r! J

L1933 |
eeal Lihyary LUniversivg ol yuuinle
(ontral L | e
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- S
é ] -
-- 0 0 d-
or'
é
0 - 0
é6z' |
' i
1 1 6
- 0 - -
r' r' 46
J . 14 ) - - -
=¢ 0 - -- -—- Hd,}:w 1{$ }
r'ée 0z'
(3.4)
1 ) é 1
- - 0 (== )= -
r'. &6 or' r'
-6 6 , -
-- -- 0 de
6z ér!
[L ] is known as the operator matrix , and |$ J = [d: d= del.
‘The stress vector 1is given by
{c } = (Da) {¥ } = [Dal) [L ] {$ } | ' (3.5)

in which [Da].matrix is called elasticity matrix and may be

defined as,

r
G: Gz Gz O 0 0 ]

Gz G» Gz 0 0 0
[Dal=E Gz Gz Gi O 0 .0 o (3767
0 0 0 Ga O 0

0 0 0 0 Ga 0

0 0 - 0 0 0 Gs
((1- Mo) | T !

where, Gy = —==----- ——==; G2 = —Tm—mm————- ; and Gs ------

(14Up) (1-2Up)  © (1+Mg) (1-2Ug) , 2(1+Up)

He is the Poisson's ratio of the material.
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System 'equations are derived by minimizing the potential
energy with respect to the nodal displacement components and fhis

gives

r‘ -
877
ddt
em|677
ES T
e=1]| - =0 . (3.7)
877
dde
Using Eq.(3.3), Egs.(3.7) are written as
€m {}‘P « T - - - s " ® e -
L {L‘J (Bal [Dal [Bal{d } r'dedr'dz' - JJ[M ] {Ta} RedBdz'l= 0
e=1 .
(3.8)
where, [Bal = [L ] [M ] : (3.9)

The traction forcé over the bearing surface is caused due to

hydrodynamic pressure and is written as

N [ 4 e o]
Fr £ M, Pxs
i=1 : -
{Te} =4 Fuyp = LroMe pms ! (3.10)
i=1 '
L] 4 »ea -
Fe T Mg Pes
L '- Ll:l . -
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Nodal pressures p.: , P=s and pe: are the components of the

€h
hydrodynamic pressure at the 1 node of element e. Integrations 1in

Eq.(3.8) are carried out using Gaussian quadrature formula to
obtain a set of simultaneous algebraic equations in terms of the

nodal displacement vectors {d}.

em - - -
E ([(Ka) {d } - {Fol) =0 (3.11)
e=1

-The matrix [Kal, and vector {F.} respectively represent the

element stiffness and equivalent nodal force due to surface traction

force {Te}, Eq.(3.10).

. _ r' — z! . [Dal
Normalizing Egs.(3.10-3.11) by r' = -- , z' = -- , [Dal=z ----,
. ‘ tn t'? E
{d} _ P _ R= (R+c)
{d} = --- and p = ---------- and R = -=== = —=—====- and assembling
c Mof(R/C)2 S tn

the element contributions for the entire displacement field, the non-

dimensional global system equation is obtained.

[Ka] {d} = & {Fo} _ (3.12)

Ay

where, the nondimensional coefficients of the element matrix are

given as

T - ! — T _=» - __ — —
Ka = \I\lfl[ [(Bal [Dal)l [Balr‘dedr'dz'
5

+l +1 +l e T -

[ [ [ fEer e (BalZ' 131 dg an df

-1 -1 -1
and

e =t @ R as az'
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— T

{d} = (de dx del

_ Ho tr R -
= (----- ) (----) (---) is a nondimensional quantity: known
E R c
as the deformation coefficient (36}, and §g is the nondimensional
radius of bearing inner sﬁrface. ‘
3.3 LOADING AND BOUNDARY CONDITIONS
In >big—end bearing case, the Complete body of the bearing
deforms freely in all direction because it is free to expand in
space. Only those -elehenf nodes which lie at the Jjunction of
connecting-rod and the'bea:ing,are assumed as fixed nodes and hence
{dls = 0 | | (3.13)

where, j is the node nuhber of the nodes at the outer surface of the

bearing lie on the junction of the connecting-rod and bearing,

Fig.3.1. The tangential traction forces (Fe ,'-Ez) at bearing shell-

fluid-film interface are zero and only non zero value of the radial

traction (Fz) 1is obtained. This reduces the external fluid-film
force vector for an elemént, to

- ’ - T ) -
{Fo} = [F: 0 O]j (3.14)

where, j*" node falls on the interface between the fluid-film and

!

the bearing shell..

- Mathematically, the elastic deformation problem now reduces®
to the determination of displaceménts>{5} in the bearing Dby
solving Eq.(3.12) satisfying the boundary conditions Eq.(3.13) and

with the load given by Eg.(3.14).
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Connecting-rod

/ | Z (axial)
/ .
\ /
\ [} 7 '
N /,’ '
\_""‘\ 6 (circumferential)
Bearing Iine\( r(radial)
at  nodes
{d}=0

\
\

Crank pin

Flexible bearing
housing

F: Pin force (=W)
W: Force on the bearing

Fig. 31 Big-end bearing geometry
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CHAPTER 4

IBEBZXEQ]ZDJCSV CHARACTERISTICS

4.1 Bearing Force and Relative Motion

The big-end bearing is subjected to a complex dynamic load.
The components of the dynamic load on the bearing as a function of
" the crank angle, can be éomﬁuted from the engine dafa, viz., geometry,
component masses and inertia; and pressure history.

The' accelaration (A) of' the piston of a slider crank
~ mechanism, Fig.4.1, isAgiven by [62],

(g2-1) cos281 + cos* 0.

A = Ry Q2[cosB1 + = ------ommmomooo——mm—e e ) (4.1)

(g2 -sinz2@8.)372

The inertia force of the recliprocating masses (piston, gudgeon

pin and the small-end of the connebting—rod ) is” obtained from the
relation
Fr = (My+Mp)x A , (4.2)

where, Mi (usually equal to (1/3) Mrx) is the equivalent mass of - the
connecting-rod at the smail—end.

A centrifugal force (Fa = Mleaz) of constant magnitude 1is
experienéec by the big-end bearing,where Mz (usually equal to (2/3)
Mr) is the méss associafed with the bgalghd bearing. |

The gas force ( Fa = {n/4) D?pg) acts on the piston and is
transmitted to the bearing through the connecting-rod, Fig.4.1l.

The resultant force (wj on the bearing is given by

W = [Fi2 + F22 - 2F.Fz cos (8 + f1)]1*72 (4.3)
whére, | |

F = (Fg - Fz) secfa _ (4.4)
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i‘ 2
tH?
‘ “
4 "F; Resultont of gas and
N4 inertia force
2 Centrifugal force

Force on crank pin
Force on the bearing

Fig. 4:1 Forces acting on a slider crank mechanism
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The reaction of the resultant force (W) on the crank-pin is in
the opposite direction as shown in Fig.4.1 and 1is denoted by
F (external force = W ). The profiles of the polar plot of load W,
although wunique to an individual engine bearing, are typically
similar to the one plotted, Fig.4.21 from the load components given
by Campbell et al [10) which are compiled in Table A-4.1, Appendix
A-4, .

The angular speed of the bearing (21) relative to the crank-pin
is function of time due to the oécillating motibn of the connecting-
rod. From Fig.4.1, .

®x = 81 + Ba - . | (4.5)
Differentiating Eg.(4.5) with respect to time (ty,
dea 461 df.

R ‘ (4.6)
dt dt at

sinBa dfa cos81 de.
‘Using the relations sinfa = =----- and ---- T ———m-m————— - A
C q dt vy(gz - sin28;) dt
Eq,(4.€) cén-be written as
d(!]. deé. cosBa1
-—= = --— [ 14+ ----=--= == 1
dt dt v(g? - sin28.)
or
co0s8a
2 =8 [ 1+ -=-=—==-—- ] .
. v{g? - sinz28x1) ___
and
_ R cosfa
2 = ---=[ 1+ --=--m-—- ] (4.7)
f . v{q2 - sinz28.1) ' -

Q1 is the nondimensional speed of the bearing relative to the
crank-pin or vice ~versa and is a function of crank angle (8i) . The
dimensional relative speed (Ns) of the bearing in the example is

shown in Fig.4.3.
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Engine axis X

direction

0O 20 40 60 kN
[ 1 J

Fig.4-2 Polar force diagram of the big-end 'beoring
(centrifugal force + inertia force + gas force)
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4.2 FRICTION FORCE AND POWER LOSS

The power 1loss in the beariﬁg is caused by the viscous
resistance of the lubricant in the clearance space to the relative
motion between the bearing and the erank"pin surfaces. Power loss is
directly propotional to the viscosity of the lubricant, iAcreases as
the square of the speed and decréases as theloil film thickﬁess is

increased.

In a journal bearing, the shear stress at the moving surface is,

7

' Ve
I' = Ha -—- (4.8)
Or .
In a big—end.bearing;_ the friction force on the bearing surface may

be obtained as

27 0Ve
Fe = [*5/2 © Ja ---- (R+c) 46dz (4.9a)
J-L,z s.iO Or '
or .
27 6Va . , .
Feg = (*&72 " Ua ---- R{1+(c/R)} d6dz (4.9Db)
J ~L/2 x.}O or

In Egq.(4.9b), the wvalue of c/R is very small and <can be
ignored. This reduces the fr;ction force expression tovthe following
form,

‘ 27 GYE“.
Feg = R [[*®72 ! Ya ---- d6dz (4.9¢)

Jd-no2 Jo Or

Using the normalizing factors,

~ Ma _  6Ve _ ' z _ Fe .
Ua = == ; u = --; 2 =- ; and Fe = —-----~ ;o= -
Ho R& 'R HoRZQ(R/cC) c
_ +B aw _ du _ '
Fe = | [ Ma ---- dedz ' (4.10a)
' J oo 0r
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or

3 +1 +1 20 N, _

Fe = r [ Ma T  (=---- us)  1Jal dg an , (4.10b)
A i=1 oT .
-1 -1

‘The nondimensional power loss can be written as

_ +1 +1 20 ONs _ 20 _ :
P = I \J‘ Ha n (=~——= Uy ) L (Nsy us) |Jal da d‘q
J i=1 33 j=1
-1 -1 ‘ (4.11)
where, '
_ P
P o e ———— i —

Lo 22 R2(R/C)

The friction force and power loss has been calculated using a
single land of the 6VEB—X engine bearing and the total power loés is
twice of the calculated value.

To consider the piezoviscous effect, the viscos&ty at Gaussian
points may be written as

—_ aﬁﬁk ’ .
(Ha)x = & o (4.12)
4 -
where, DPx = L Nip: at k®" Gaussian point on the surface of the
i=1 . ‘
bearing-shell in contact with the fluid-film.

4.3 EQUATIONS OFVMOTION OF THE BEARING CENTRE (Fig.4.4)

The big-end bearing is subjected to dynamic load, and so the
bearing centre moves around the crank pin centre in an orbit. As tﬁe
bearing centre moves around the pin centre, it écquires squeeze and
whirl veiocity components. .The equations of motion can be written by
equafing the algebraic sum of all the forces acting on the bearing to
zero in two mutually perpendicular directions. The external force (W)

is balanced by the forces generated by the hydrodynamic wedge,

© squeeze, and whirling actions of the fluid-film under the dynamic



Xi —

Fluid film

Flg 4-4 Kinematic and dynamic quantities for a journal
bearing system
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loading condition and the inertia force components due to mass (Mz)
associated with the big-end bearing. The eguations of motion of the

big-end bearing centre aré thus,

Sy + Fa(€ , B) + Wa - Mz2x(€ - € BZ) = 0 (4.13a)

.

Sa + Fn(€ , B) - Wn - M2X(2€ B + € B) = O (4.13b)

The inertia force components (i.e.ﬁj(g - € EZ)and Mz(2é E + € E))
are -generally quite small 1[40), in the range of 10-° times the
external force (W) as compared to the other force éomponents in the
equations of motion gEqs.4.l3a~4,l3b)..After linearizing and igﬁoring
the inertia forcesbassociated with the bearing accelerations, the

equations of motion (Egs.4.13a-4.13b) reduce to

7]
P
+
M.
0|
[N
+
+ |
28]
W
+
= |
[
i
o

(4.14a)

S« + €S + B Se - Wa =0 © (4.14b)
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CHAPTER — 5
SOLUTION SCHEME AND

COMPUTER PROGCRAM STRUCTURE

The analysis  of connecting-rod big-end bearing( which is
subjected to a dynamic load, Fig. 4.2, presehps a complex non-liner
time dependent pioblém. Therefore, thé solution strategy for the big-
end bearing is also not direct but differs from the solution methods
for'the cbnventional static and dynamic journal bearing problems. 1In
the following sections, the solution technique used for the numerical
integration ofAthe equations of motion of the big—end bearing centre
to obtain the orbit is presented.

The sustenance of fluid-film, conqistenﬁ with 1its required
minimum thickness, in the clearance space between the bearing and the
cfank pin, 1is essential to avoid undﬁe wear of tﬂe pin and the
bearing surfaces. Theoretically calculated. bearing' centre orbit
trajectory readily gives the time‘history of the variation  of the
minimum film thickness. The orbit is obtained by using a ‘numerical
time marchihg integration scheme for 00 to 7200 (two crank
revolutions) crank rotation. Euler—Cauchy's predicpor-corrector
method with suitable time intervals in terms of crank rotation angle
is used in the time marching scheme.

The bearing in example consists a full (2n) circumferential
grodvé in mid plane. Theregore, it is ahalyzed by taking only one
land (L/2R = 0.28125) which is subjected to one half of the given
load. -

But to solve the same bearing without groove, the full 1length
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(including the width 12.7 mm of the groove, (L/2R) = 0.625) which is
subjected to full load, is considered. To account for misalignment of
the bearing axes at the time' of bearing assembly in the connecting-
rod end, the film thickness expression is modified accordingly. The
problems is also extended from the rigid bearing condition to the
flexible bearing.
5.1 SOLUTION PROCEDURE TO OBTAIN NODAL PRESSURES, VELOCITY FIELD AND
FLUID-FILM FORCES

According to the analysis given in the foregoing Chapters,b'the
aim is to obtain the bearing centre orBit which require the solution
of equations of motion, Eg.(4.14). To solve the equations of motion,
the forces S, to Se are required and hence .in turn nodai pressures
are to be obtained first. The complete solution method is divided in
two main parts:
1. To obtain the.nodal pfessures for rigid bearing and for EHD

) beariné, and |

2. To obtain orbit usiﬁg the- information from the first part of the

solutign. ’

for the first'part, the solution algorithm is as follows:
5.1.1 Rigid Bearing
5.1.1a .Isovisccus Lubricants

In the ¢case of rigid bearing w{th isoviscous 1lubricant, the
presSure, velocity field, positive pressure zone and the fluid-film
force components (S, to Se) aré obtained as follows

A value of eccentricity ratio(€) is given as input’databalongwith
viscosity T = 1 and the already defined data for bearing geometry in

the computer program. First for the gived value of €, ﬁhe mesh of the

elements (global nodal numbers and three (r,8,z) coordinates) |is
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~

generated for full (2n) £ilm, wusing the full Sommerfeld boundary
condition ,Fig. 5.l1a. From the momentum equations (Egs.2.2a-2.2c) and
the continuity equation (Eq.2.4), and using the Calerkin's finite-
element technique, the element fluidity.matrix and other element
matrices are derived (Sec.2.3). In the element equations, the boundry
conditions (Egs.2.5a-2.5f) are incorporated to minimize the computer
storage. By the usual assembly method, the global fluidity matrix and
the 1right hand side column vectors represented by Eq.(2.16) are
obtained. The global system equation (2.16) is then solved by the
direct Gagss elimination method. The elimination operations are done
simultaneously to all three right hana side vectors and this gives
three solution vectors having nodal pressures .and velocity field
corresponding to wedge, “squeeze and whirl actions in the fluid-film.

In the pressure field, since 2n film was assumed, there is a zone
of negative resultant nodal pressureé; The fluid-film can not sustain
the negative pressﬁre, hence,' before integration of pressures over
bearing' area to calculate force éomponents, .the posifiver pressure
zone 1s established by taking into consideration the following
criteria. \ |

All the three actions (wedge, squeeze and whirl). take place
simuitaneously in the clearénce space of the bearing, the resultant

nodaifuﬁtessure (ps) may be defined as the algebraic sum of three

pressures such as

.
—

35 = Pns t € Des + B Dons (5.1)
Hence, at thosé nodes where the resultant pressure (ps) is negative,
all ﬁhe three pressure components (Ehj( Des, Dms) are set to zero. In
this way, the remaining nodes having the positive values of resultaﬁt

pressure establish - the positive pressure zone. The modified
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Fig. 5:l a Flow diagram for mesh generation (Subroutine ATODAT)
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pressure vectors after proper integration over the bearing area give
the force components Si to Se . The flow diagraﬁ of the algorithm is
shown in BLOCK-I, Fig. 5.1b. The computer program including
subroutine ATODAT, Fig. 5.la, represented by flow diagram ; Fig.5.1b,
gives the nodal pressures, velocity field and force components S. to
Ge for the given eccentricity ratio (€) for rigid bearing 1isoviscous
case. |

5.1.1b Piezoviscous Lubricants

To take .into account the effect of variation of viscosity wi£h
pressure (plezoviscous effect), the 1initial trial solution |is
obtained with Ja = 1 as described in Section 5.1.1a, BLOCK-I,
Fig.5.1b. Then luéing the values of resultant nodal pressures
obtained from BLOCK—I (after establishing the positive pressure
zone), the apparent viscosity ( Ma ) is calculated on each Gaussian
integration point Qf each element using the following relation.

Masw = XD (apDsx) | (4.12")
where, subscripts j and k represent respectively the element and the
Gaussian integfation point. Using these new vaiues of viscosity-ﬁ;jk,
the néw element stiffness matrices are generatea. The modified global
system equations yield the new pressure and velocity 'fields, and
forces E;vto Se. The flow diagram fqr the piezoviscous lubricant case
—utilizing flow diagram of BLOCK-1, Fig. 5.1‘b,v is shown in BLOCK-1I,
Fig. 5.2, - which can be used to get the solution for a rigid bearing
with a piezoviscous lubficaﬁt.
5.1.1c Lubricants having Piezo-Thermal Viécosity Characteristics

For considering the'combinedveffects.of temperature and pressure
on viscosity, the initial trial solutién is again obtained first for

the corresponding isoviscous-ﬁ; = 1) casé, and then the temperature
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Fig. 5-1b Flow diagram for the hydrodynamic problem .
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Fig. 5-2 Flow diagram for piezoviscous effect
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field 1is obtained by solving Eq.(2.34) which is derived from energy
equation , Eq.(2.24). After knowing the temperature and.pressurq, the
apparent viécosity (ﬁ;sk) is calculated using the following relétion

Hasx = exp {¢pPax- Bx(Tax-1)] (2.25')

The following method 1is wused to solve Eq.(2.34) which yiéids
temperature distribution in the flow field. To establish the
A temperature field in the fluid-film, the known velocity field (from
BLOCK-I) 1is wused to calculate the dissipation function B (Eq.2.33)

and the convective terms (Eq.2.22). The nodal temperatures at the
crank-pin surface (Ta) are assumed to be constant (T. 1is not:
available in the literature) at a value somewhat -higher than the oil
supply temperature - (8§0C). The nédal tempeatures at the beaxring and
fluid-film interface. are also taken equal to the supply temperaturé
(i.e.,Te = 1.0) in the first iteration. The space or surrounding
temperature (in which the bearing rotates) is assumed uniform and
less than the supply témperature (i.e.,ﬁ; = 0.9). From the specified
boundary condition (Sec.2.5.2), the temperature in the fluid-film is

obtained by solving the equation (2.34). When all the nodal (20

nodes) temperatures are known for each element, the nodal temperature

3T :
gradient ( ~---: ") at the nodes on the Dbearing inner surface
dr :r=Ri

and in turn  heat rate, Eqg.(A-2.2), are calculated. The heat rate,
which transfer f;om‘ the bearing inner surface to the outer surface
through conduction and the same heat rate from bearing outer surface
to the surrounding by convection process is calculated iq terms of
lfb; Eqg.(A-2.6). By equating~~ these two heat rates (Eq.A-2.2 and

Eq.A~-2.6), the new value of T, is calculated from the relation given

in Appendix A-2,Eq.(A-2.7).
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By using these calculated values of T, as the new boundary
conditions, the -equation (2.34) 1is again solQed and heat rates are
equated to obtain the new values of Ts. To improye the convergernce of
the iteration, the following criteria is used for Ts.

' k-1 _k

Te = We To + (1-We) To (5.2)

where, We 1is the weighting factor (We = 0.8) and k is the iteration
counter in Eq. (5.2). The convergence has generally been achieved in
four to five iterations.

‘The  new temperature f}eld is thus obtained and corresponding to
these temperatures, the viscosity value is modified for each Gaussian
integration point. Using the modified viscosities, a new set of nodal
pressure, velocity £field and forces S, to Se is obtainedlfrom the
global system equation (2.16). The fiow diagram of the solution to
_include the effects of temperature and pressure on viscosity of
lubricants 'is shown in BLOCK-III, Fig. 5.3.
5.1.1d Non-Newtonian Lubricants

To éccqunt for the wviscosity variation for lubricanté with

nonlinear constitutive equation (non-Newtonian), the value of

apparent viscosity (ﬁ.) is calculated either from any one of the

non-Newtonian ﬁode-s (Egs.2.17a-2.17g) or from the curve-£fit model
(Eq.2.20) based on experimenfal,data [37]. These calculaEeQ values
of (la) are substituted in the integral expressions generating the
element fluidity matrix (sec.2.3). ’

The following procedure is used to obtain the apparent viscosity
for the non-Newtonian lubricants.

The 1intial trial solution is obtained as described in BLOCK-I

with ﬂ. = 1 (Newtonian 1lubricants) and the velocity field is
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established. For this ‘velocity field, the strain rate (¥) is
calculated at each Gaussian integration point in .each element using
Egq.(2.18). For any selected non-Newtonian model (Egs.2.17a-2.17qg),
the corresponding shear stress (T) is calculated by Newton-Raphson
method. The apparent viscosity is then obtained from the relation

Ha = (T/¥) , (Eq.2.19).

In the case of curve-fit model, for any selected oil (C- 2,
Appendix A-1), a polynomial 1is fitted by ﬁhe least square method
between the viscosity and shear rate experiméntal data, Table-2.1,
which is converted into nondimensional form. A fourth order
polynomial is obtained to express the functional relationship'between
the non—dimensional values o0f wviscosity and shear rate. Using the
velocity field (known from the solution of BLOCK-I with Ha = 1), the
-shear rate(?,k) occuring in the fluid-film element is then obtained
and from the polynomial, the <Jdorresponding value of apparent
viscdsity (Hasx) is computed. Once these updated values of apparent>
viscosity for each elemént are known, they are substituted in place
of Ua = 1 in the element equation and the updated pressure, velocity
field énd forces GSa to Se are obtained. The corresponding flow
diagram is shown in BLOCK-1IV, Fig.5.4.
5.1.1e Misalignment of Axes

;f the axes of the crank pin and the_ng;end bearing are not
parallel, the\ expression of the film thickness musf be modified to
include the skew components o and 4, it results a change in the
radial. coordinates;of the nodal points. The expression of the film

thickness is derived in Appendix A-5. The solution procedure given in

BLOCK-I may be used for skewed axes case also.-
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77

5.1.2 Flexible Bearing

In case of EHD- lubrication, the computer program.has two main
parts. The first part -determines the pressure and velocity field
(BLOCK-I, for isoviscous case, BLOCK-II for piezoviscous case, and
BLOCK-III for piezo-thermal casé) in the fluid-film, it is named
here as the hydrodynamic part. The second part gives the nodal
elastic displacments qorresponding to.the pressure field, it is named
as the elasticity part.. |

In the following subsection, the procedure to obtain the nodal
displacment in the flexible body of the bearihg is described.
Solution ‘algérithm for hydrodynamic part has been described. in
Sec.5.1.1.

Elasticity Part

In this case, the bearing body is discretized in such.a manner
that all the nodes lying at fluid~film and bearing body intefface
match to each other  in both':(fluid—film or bearihg body)
discretizétion--systems. The elasticity matrix, eleﬁent fluidity:
matrix and the element nodal traction force'vector are obtained using
the analysisAdescribed in Chapter 3. Then aftér applying the boundary
conditions (Sec.3.3) éllithg element matrices and vectors are stored
on computer disk/tape. The frontal solution method is used which

yields the nodal displacements (E,, Ee, d=) in three directions. It

is observed .that the nodal displacements (de, dx=) along
circumferential and axial‘direction are much smaller in comparison to
the radial displacement (d.). Therefore, only the nodal radial
displacements '<a:) at the fluid-film and bearing shell interface are
added balgebraically to the radial coordinates of the fluid-film

element nodes. For the EHD isoQiscous, EHD piezoviscous and ETHD
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lubrication cases, the flow diagram is shown in BLOCK-V, Fig.5.5.

5.2 INTEGRATION SCHEME FOR THE EQUATIONS OF MOTION OF THE BEARING
CENTRE | '

| The bearing centre orbit reqﬁires the rbearinq centre
instantaneous position (ex,’ B.) and velocities (éi}' Ea) at i=r
interval of «crank rotation. The velocities (é;, ﬁa) are obtained by
solving the force balance ( i.e.,Egs.4.14, équations of motion) by
using the known froce components Si to Se. Force components are known
.from the soiution’procedure presented in BLOCK-I,II,III,IV or V. The
following time marching scheme (or integration scheme ) to obtain.the
bearing centre orbit is found to work well.

5.2.i Interération Scheme

Let €a.: and Ba: are the coordinates of the bearing centre

corresponding to the quasi—sfatiq equilibriuh condition of béaring
under the external load at the i®® interval of crank rotation which

L]

are obtained as given in’Appendix A-6. The scheme works as follows:

Step 1. fo begin with, the 1initial input data are given as €, =
€a:+6€ , Bs = Bas(Bas = as+fus,Fig.4.4),01:,E:=Bs=€:1=F1=0,Ha=l and
time increment 1in terms of crank rotation interval (66.) for any
‘crank angle position defined by ith iﬁteréal. The solution may be
" started at any arhitrary crank angle position (\i».e.,ith inter;al) and
with any "values of €5 and Bi:. But it was found, that a fast
converggnce is ﬁossiblg[ if for any particular crank angie 811 ,the
values of €; = €4s + 0€ and B: = Bas: are used. The hydrodynamic
part, BLOCK-I, is first solved.

To 1include other effects, the program runs fhrougﬁ BLOCK- II,

III, IV or V which give modified values of force components S, .to Se.
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Fig. 5-5 Flow diagram for solution of the elastic problem
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Step 2. The values of € , 8. are calculated using the equations of
motion (4.14),
€s Sz + By S3 = - (Wa t+ S21) (4.14a"'):
€1 Ss + Bs Se = - (-Wn + Sa) ' (4.14b")

N P Al
Step 3 The eccentricity ratio (€s+.), angle of 1line of centres

<] — L =4
(Bs+a) and the velocities (€i+a2 , Bi+a1) are predicted wusing Euler's

formula (only for one initial interval i.e., the (i+1)®™ interval).

=4 — . !

ei-rl = 61 + dt e; (A‘3.5')
2, - e .

€ivx = €4 +. 6t € = €: ( in starting only)

where, 0t is the non-dimensional time increamenf,( 3t =(ax ot)= 681)

For crank angle 8i1:1+1 (Ba1:1+2 = 811 + 082), using the predicted values

=4 »
-~-- €142 ,Bi+1,the hydrodynamic part is solved. The positive pressure

b4 T P

zone is established’usingé=éi+l and B:§i+l in Eq.(5.1). This yields
a new set of force components §. to §e¢ for crank angle'811+1. .The
values oﬁ éﬁ*l and ﬁ;+1 are then calculated from Egs.(4.14a'-4.14b').
At thié stage, corresponding to the calculated values of é1+1, §1+1,
the values of €;:+1,B1+1 are cofrected for the same position of crank
angle(0ii1+2) by using the following Euler-Cauchy's corrector formula
[34]. —

<

€iva = €4 + (1/2) 8t (€141 + €1) ‘
(A-3.4")

(=)

Bawas = Ba + (1/2) 6t (Bava + Ba)
The values of accelerations are also calculated using the backward
difference formula [25].

(€s+2-C1) /8¢

N
[
+
#
i

2 - L - (A-3.6")
(Bava-Bs) /0t

@)
-
+
[
{

For convergence of solution, using these corrected values of
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< <

€i+1 and Bi+1, the whole process of solution is repeated unleés the
respective difference between the values of € and B obtained from the
previous and current iteration become smaller than the predefined

tolerance 1limit. For convergence, the following tolerance limit is

defined.
n n—-31 ' n '‘n—1
€:1-€,4 i -3 Bsi-B. -2 :
---------- <10 and [---------=] < 10 (5.3)
€ s

where, n is the current iteration number at i®" crank interval. The
iteration generally is terminated when n > 4.
Step 4 Once the %ime marching process reaches the second point (i+l),
it is possible to operate with higher-order prediction formula, such
as Euler-Cauchy's predictor formula [341. The next values of
- S = P P N ‘
€i+2, Bi+rz, €1+2 and Bi+2 are predicted as
4 -

€132 = €1 + 2 6t€1+1
P _= ' ' . (A-3.3")
€isvz = €4 + 2 0t€si+2

Using this scheme (flow diagram, Fig.5.6), a complete or a

partial orbit of the big-end bearing centre for any loading case can

be Obtained.i The time process is extended even beyond two

bt

revolutionsg (7200} til he orbit starts repeating itselft into a

~

limit cycle.
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Fig. 5-6 Flow diagram for the time marching scheme
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CHAPTER-—6

RESULTS AND DISCUSSIONS

The * big-end bearing, as one of the most important components of
the 1internal combustion engine and subjected to a complex dynamic
loading, has been an interesting problem for.investigation. It is
also one of fhe mosé practical problems of thevbea¥ing under dynamic
loading. In the preseht wofk, aithough, the problem is quite involved
and non-linear in nature, the author has tried‘to obtain its solution
in acggneral way. The momentum and the continuity équatioﬁs are used
to represent the flow-field; the full (2n) film is discretized ifor
analysis, and to account 'for the cavitation, all the resultant
négative pressures are set equal to Zero.. Galerkin's technique is
used for finite-element formulation and Euler-Cauchy's predictor-
corrector method is used for the t{me marching scheme, all of which
are described in detéil in the foregbing Chapters.' This Chapter
deals with the cbmputed results and the discussions thereof.

The bearing centre orbits with respect to the crank pin centré
and fixed axis along engine c¢ylinder axis,are calculated for two
revolutions of the crank for a foﬁr stroke engine. The orbit also.
gives the variation Qf the minimum .film thickness as a function of
crénk rotation ﬁin the rigid bearing case. To validate the computer
program,'the static characteristics of the circular bearing are first
calculated and compared with the  existing data évailable in the
literature. -

The computed results are presented in two main sections. The

first section includes the results of the big-end bearing with rigid



body accounting for effects of various parameters on the

characteristics of the big-end bearing, Table-6.1.

84

performance

The second section

includes the results of the bearing considering body deformation and

the dependence of viscosity on pressure and temperature,

both.

réquired computational CPU time for all cases is also compiled.

Table- 6.1

Studies for the rigid big-end bearing

Cases* 1 T2 3 4
studied

The

e o - s - - —_— ———— - b e o d b o e Mt G o — —— o — o~ b bt o i n m —a A m i Ak SaL S L A A e e —

Bearing ** a,b,¢ a,b,c,d a,b,c,d,e a,b,c
‘characteristics
presented

e e e et e A e A e e e e e e e e e e e e S e e A T M S e e G S T e T ST W M T e et N e S me) TUM W A e e rar o b e e e e ) o e v -

* 1. isoviscous lubricant,
2. piezoviscous lubricant,
3, piezo-thermal effects;on viscosity,
4. non-Newtonian lubricants,
5. ungrooved bearing Qith parallel axes,
6. ungrooved bearing with skewed axes.
** 3. bearing centre orbit,
b, variation of the maximum film pressure,
c. variation of the minimum £ilm thickness,

~ e mm a1 e
. pUWwWCL 4AVUOO0

e. the maximum temperature rise in the fluid-film at.

crank angles. .

In the second section which includes the

deformation

vari

of

ous

the -

| bearing body, the following results for the big-end bearing are

obtained and presehted for a finite crank rotation.

They are bearing

centre locus, minimum film thickness, maximum radial deformation and

temperaturé rise.
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Results are also presented to show that Euler-Cauchy's predictor-
corrector method for the time marching scheme is more suitable for
the present problem than higher-order predictor methods, such as
Runge-Kutta, Adams-Moulton methods.

6.1 SAMPLE PROBLEM

The results presented in this study are for the Ruston-Hornsby
6 VEB-X, Mk-III engine.connecting~rod big-end bearing for which the
input data and results are available in the literature for
comparison. It is most analysed bearing in the literature
»[4,6,10,23,24,42,45,50,54,56,6&] - This bearing has‘ a Acentral
circumferential groove as shown in Fig.1.4. Using thevsymmetry about
the central plane, only one 0f the lands of the bearing subjected to
one half of the given load is discretised for the compﬁtation of the
bearing characteristics. Details of the bearing geometry and the
loading are given in several references (for instance Campbell et al
,[io] ) and are briefly summarized in Appendix A-4. For the bearing
analysed here, the dynamic 1load is giVen in terms ~of its two
perpendicular components at intervals of crank rotational angle for
two revolutions (10],  but if the geometry éf the engine
(connecting-rod 1length, crank radius, cylinder bore, mésges.of the
reciprocatiné and rotary parts etc.) and the cylinder gas pressure
are knéwrni, the dynamic 1load components can be calculated in
.aécordance to the analysis preséntgd in Sec.4.1 and for which a
subroutine is prepared. In the present problem, the beéring load
components with réference fo the engine cylinder axis (10] are
converted to resultant'force_vector in SI units and is shown as‘load

diagram in Fig.4.2.
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6.2 DISCRETIZATION OF FLUID-FILM

The fluid-film domain and the bearing body are divided in to 48
'isoparametric elements each. Keeping in view the computer storage
requirement, a 12x4x1,grid consists of 12 circumferential and 4 axial
divisions, Fig.6.1. The bearing is divided in’four circumferential
zones. The size of the elements‘in each zone was decided on the basis
of thé anticipated pressure, wusing the smallest size in the zone
where the maximum pressure is expected to occur. The elements are
equal in size in each respective zone and their numbers vary from one
zone to the other. In each element of thé fluid-film, the vélécity
components and  temperature are approximated by quadratic variations
(20 nodes), the pressure in the fluid—film and the deformafion in the
bearing body by linear variations (8 nodes), Fig.6.2.
6.3 SELECTION OF THE METHOD FdR NUMERICAL INTEGRATION Oé THE
EQUATIONS OF' MOTION OF THE BEARING CENTRE

_There are various numerical integration methods available which
can be Used to obtain the bearing centre orbit. Euler's method 1is
suitable only for small time: intervals, hence it is not
'éomputationally economicél. ‘The higher-order predictor methods <(for
instance, Runge—Kutta or Adams-Moulton) are more accurate but were
not found suitable for the present type of pro |

The trials indicated that .Euler-Cauchy's predictor-corrector
method can be used succesfully with good accuracy. The values ofe,f
obtained bybEule;-Cauchy's predictor-corrector method were compared
with those dbtained by usiné a combination o0of Runge-Kutta (qp to
initial five points) and'highEr-order predictor—cofrector formula
due to Adams-Moulton (25] at 100 interval fbr a finite crank

rotation,Table~6.2. Table-6.2 shows that after the crank aggle 8. =
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Table-6.2
Comparison of the results obtained by Euler-Cauchy's
predictor-corrector and Runge-Kutta-higher-order predictor-corrector
methods
Crank Euler-Cauchy's Method R-K=, P-C® Method
angle . Remark
81 € f CPU Time € B CPU Time
' (min.) (min.)
70 0.87629 -28.40 - 0.87629 -28.40 -
80 0.87632 -28.72 2 0.88395 -27.20 4 R-K method
90 0.90725 —24.29 2 10.88883 -26.11 4 R-K method
100 0.91316 -21.27 2 0.89633 -24.07 4 R-K ﬁetﬁod
110 0.91704 -19.22 2 | 0.50481 ~21.39 4 R-K method
120 0.92193: -16.74\ 2 0.91250 -181:52 4 R-K method
130 0.92715 -13.87 2 0.91917 -15.48 2 P-C method
140 0.93203 -10.83 2 6.92525 -12.30 .2 P-C method
150 0.93657 - 7.67 2 0.93071 -9.04 2 P-C method
160 0.94045 -4.40 2 0.93524 .~5.69 '2 P-C method
170 0.94369 -0.99 2 0.93899 -2.20 2 P-C method
180 0.94645 ¥2,56 2 0.94232 +1.42 3 ‘P-C method
190 0.94898/ 6.23 2 0.94513 5.20 2 P-C method
200 0.95135 10.06 2 b.947”4 5.11 2 P-C methed
210 0.95344  14.04 2 0.95006  13.16 3 P-C method
220 0.95532 18.20 2 0.95220 17.39 2 P-C method
230 0.95703 22.54 2 0.95397 21.79 2 P-C method
240 0.95831 27.08 2 0.95548 26.39 2 P-C method
250 0.95909 31.93 2 0.95660 31.24 2 P-C'method
260 0.95952 37.19 2 - 0.95726 36.44 3 P~-C method

Ruhge-Kutta method,

P Higher-order predictor-corrector

method.
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1800, both the (Euler-Cauchy and combination of Runge-Kutta, Adams-
Moulton) methods give alﬁost same values of € and B . Higher-order
methods (RungeQKutta or Adams-Moulton or combination of both), though
attractive, are found computationally more expensive and also give
unstable results 1in the segments of rapid change of force vector.
This gs observed by the aufhor and also by Shelly[GO].bFantino and
Frene (18] have mentioned that Runge-Kutta method creates
difficulties of convérgence for EHD (elastohydrédynamic) lubrication
‘problems. Hence, it was decided to use the Euler-Cauchy's predictor-
.corrector method for the time marching scheme‘in this thesis.

6.4 RESULTS AND DISCUSSIONS

In this section the computed results are presented and discussed.
They are compared with each other to highlight tpe effects of various
parameters and also with the existing fesults wherever necessary. The
authenticity of the computer program is established first.

Using .the. analysis and the solution algorithm presented in the
forgoing Chapters, a general computer progfam was aeveloped. To
adthenticaté the algorithm and the computer prbgram, the static
characteristics of the cylindrical hydrodynamic journal bearing were
computed. These characteristics (i.e, Sommerfelq number (S), attitude
angle (ﬂ.))vof the plain cylindrical bearing are compared with those

"of Pinkus [51] and Raimondi [57] in Table—6.3} they compare well.

To compare the results of plain cylindrical bearing with non:
Newtonian lubricants under static condition,v the 1load capacity (Wa)
'of the plain bearing using € = 0.2, 0.4, 0.6, 0.8, and cubic shear
stréss law (Eq. (2.17a), with K = 0.58) wére computed and checkéd_

with the experimental results (67]. Fig.6.3 shows good agreement

and validates the computer program involving the nonlinear behaviour
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Table-6.3
Static performance of circular bearing (aspect ratio = 1.0)
and its comparison with the data available in the literature
S /.
€
+ ++ +++ + ++ +++

0.2 0.643 0.632 0.631 73.17 74.00 74.02
0.4 0.264 0.261 0.264 62.09 62.00 63.10
0.6 0.123 0.120 0.121 50.36 50.00 50.58
0.8 0.0453 0.0448 0.0446 36.28 36.00 36.24
+ Present Analysis S - Sommerfeld number

++ Pinkus [51]

+++  Raimondi and Boyd (57} g. -

Attitude angle
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Fig.6-3 ‘Comporison" of load capacity for non- Newtonian
lubricants using cubic shear stress law (static load)
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of the lubricant.
6.4.1 Rigid Bearing with Isoviscoqs Lubricants

Performance of the big-end bearing, in terms of 1its bearing
centre orbit, minimum film thickness and maximum film pressure for
one complete duty cycle, are obtained for isoviscous lubricants
considering the bearing body as rigid. The results are summarized
'Below; |
6.4.1la Bearing Centre Orbit:-

Fig. 6.4 gives the bearing centre orbit of the big-end beariﬁg
subjected to the dynamic load with respect to the crank pin centré,
Fig.4.2. The complete bearing centre orbit is obtained by using the
Euler-Cauchy's ‘prediétor—corrector method (Appendix A-3). From the
calculations, the maximum eccenfricity ratio is found as € = 0.95341

and the corresponding value of B is 41.830. This value of € occurs at

81 2700 crank angle, with reference to the top—dead—centre(TDCi at
61' = 00; 0°<821<1800 crank rotation represents the expansion stroke
of the engine. The cohbuted orbit, Fig. 6.4,.is drawn with reference
to a fixed axis along the engine cylinder axisQ The orbits, Fig.l.2,
given 1in the literature }for_instance Campbell et al [10]) are drawn
with réferenée fo connecting-rod . axis. When the points of the
computed orbit are transiorimed with reference to the connecting-rod
axis,. it is found that the transformed.orbit compare very well to the
orbits of Fig.l.2.

The minimum film thickness or maximum eccentricity ratio occurs
at 270¢° ‘crank angle and does not occur at 10° crank angle at which
tﬁe. load " is maximum, Fig. 4.2. This condition may be explained as

follows:

In a dynamically loaded bearing if the angular velocity of the
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direction
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~ Fig.6'4 Bearing centre orbit ( Isoviscous case )
: (Force variation, Fig. 4-2)

(The figure on curve represent the crank angular position
in degrees from t.d.c.) -
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relative motion of the bearing and the rotational velocity of the
load vector are Na and N., then the approximate load capacity of the
bearing 1is directly propotional to the effective velocity of bearing
(N2-2Ng).

At 2709 crank angle, the load vector rotates at a speed larg
enbugh in the same direction as does the bearing (i.e., cldckwise,
Fig.4.2), hence, the effective velocity of the bearing decreases and
in turn the load capacity of the bearing is considerably reduced 1in
the wvicinity of 2700 crank angle, whereas at 100 crank angle, the
load rotates in the direction opposit to that of the bearing, so the
load Capacity of the bearing incréases and in turn the ecéentricity
ratio is obtained as smaller. A similar effect of increase in load
' capacity is observed during the crank rotation from 6700 to 600 where
the load vector rotates in direction opposit to that of the bearing,
. Fig.4.2.
6.4.1b Maximum Film Pressure:-

Fig.6.5 shows the values of the peak pressure in ﬁhe fluid-£film
for two revolutions of the crank shaft. The peak pres;ures are
. plotted ‘as a function of crank angle. The maximal value (i.e, - the
largest of fhe peak value) of film pressure, hereafter called as the
maximum £ilm preésure, in rigid.bearing case is found to be 38.61 MPa
which occurs at thé érank anglé position 1800 after TDC. For the same
big-end bearing geometry, Goenka " [24] has obtained the value of
ﬁaximum film pressure as 34.40 MPa which.is about 11% smaller than
the value (38.61 MPa) obtained in the isoviscous case. '
6.4.1c Minimum Film Thickness:-

Fig.6.6 shows the minimum film thickness variation with time or

.crank rotation. In the isoviscous case of rigid bearing, the minimal
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value ii.e., the smallest of the minimum value of film thickness), -
hereafter called as the minimum £film thickness, is obtained as
3.85um. |

The other reported values of the minimum film thickness along
with the present' value for the 6VEB:k engine big-end bearing are
presented in Table-6.4 for‘'comparison . Table-6.4 indicates that the
value of the minimum film thickness in the present study (3.85 um)
lies in’ the range of the values of the minimum film thickness
obtained by others (10). From these observations, it can be concluded
that the analysis, the solution algorithm and the computer _program
aré all valid. |

The value'of minimum film thickness does not occur at those crank
angles where the bearing load is maximum (e.g., at By = 100 or 3609,
Fig.4.2), but it occurs at crank angle 2700 . In the literature {101,
the crank position at which the minimum film thickness occurs is also
réported in the vicinity of 276O crank angle, Table-6.4.
6.4.2 Rigid Bearing with»PiezoviscOus Lubricants

Performance of the same big-end bearing considering the effect of
pressure on viscosity of lubricants is obtained in terms of the
beéring centre orbit, variations of the peak pressure, the minimum
film ‘thickness and the power loss. These results are also compared
with those obtained in the isoviscoué-'tase 1, Table-6.1. For
viscosity modification, ‘the value of piezoviscous coefficient Wy is
taken as 0.02133 (l.5x104° Pa-*) in Eq.(4.12). The results are as
follows:
6.4,2a Bearing Centre Orbit:-

Fig.6.7 shows the bearing centre orbit of the big-end bearing

héving piezoviscous 1lubricants. The shape of the orbit is almost
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Table-6.4
Comparison of the minimum film thickness obtained in the
isoviscous case with the experimental and theoretical values
available in the literature for the Ruston-Hornsby 6 VEB-X, MK-III.
engine big-end bearing
Sr.No. Source - Remarks $ #
1. Glacier Metal Co. Experimental 2.79" 240
From R & H 6VEB engine
From dynamic similiarity rig Experimental 3.30" 270
2. Booker: short bearing Graphical 5.58™ 277
3. Block: finite bearing Graphical 3.30" 274
4., Martin-Booker: short bearing Computed 5.84" -
5. Booker: short bearing Computed 5.84" 271
6. Booker: finite bearing using Computed 2.31" 271
Warner solution
7. Blok: finite bearing, Computed 2.90" 280
Herrebrugh & Moes
8. Horsnell: finite bearing Computed 5.44" 273
9. Lloyed: finite bearing Computed 4.47" 288
10. General Electric Co.,U.K. nn
Ritchie: finite bearing Computed 3.63nm -
Ritchie: optimised short Computed 3.30 -
bearing :
11. General Motors Research Co. wn
Goenka: FEM Computed '3.48xnn -
Goenka: rapid curve fit Computed 3.48 -
program '
12. Glacier Metal Co. B wn
- Jones: finite bearing Computed 3.56mn -
Jones: ‘with film history Computed 2.29 -
13. University of Sussex .
. Dede: finite bearing,mass Computed 4.45 -
effect . ww
Dede: 1D solution,mass effect Computed 3.73 -
14. Present study . Computed 3.85 270

* Campbell et al [10]), *% Martin [45], $ Minimum f£ilm thickness (um)

“#

Crank shaft position after T.D.C. at minimum film thickness
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Fig.6-7 Bearing centre orbit (Piezoviscous case)
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similar to that of the isoviscous casé, Fig. 6.4 but the values of
eccentricity ratios aré slightly smaller than the values obtained in
the isoviscous case. - The maximum value of € in the piezoviscous case
is 0.95059 which occurs ét the.- crank angle 2700 like that 1in the
isoviscous case. Also the maximum value of € in the piezoviscous case
is only slightly smaller than the corresponding value(0.85341) in the
isoviscous «case.  Piezoviscous effect 1is,  however, observed as
significant at high loads(for instance at 100, 18009, and 360° crank
angles). )

6.4.2b Maximum Film Pressure: -

Fig.6.8 shows the peak pressure variation versus crank shaft
angle for the cases 1 and 2, Table-6.1. From Fig.6.8 it is nbticed
that almost in entire duty cyciejthe pressure generéted in the fluid-
film due to piezoviscous effect are larger than those 1in the
isoviscous casé._ It is due to the increase of viscosity of the
lubricant with pressure.The value of the maximum film pressuré. for
the piezoviscous lubricant is found about 10% larger than that in the
isoviscous cése.

6.4.2c Minimum Film Thickness:-

- A comparison of the minimum film thickness as a function of crank
angle 1s shown in Fig.6.9 for cases 1 aﬁd 2 .The minimum £ilm
-thickhess values are larger in the piezdviscous case in comparison to
those in the iso&iscoﬁs case. The minimum film thickness in the
piezoviscoué case is about 6% 1érqér than that obtained in the
isoviseous case. In both the cases 1 and 2, ~Table-6.1, the minimum
film thickness occurs at the crank angle 2700,
6.4.2d Power Loss:-

Power loss accounting for pressure dependent viscosity variations
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is calculated and is plotted againsf crank angle, Fig. 6.10. The
maximum power loss is observed as 1.24 kW at the crank angle 100 in
one duty cycle. The power loss is significant in the segment of crank
rotation 3200 to 4000 in which the bearing speed is large, Fig. 4.3;
6.4.3 Rigid Bearing with the lubricants having Piezo-Thermal
Viscosity Characteristi&s. (Piezo-Thermal case)

The combined effects of temperature and pressure on viscosity of
‘lubricant } is also considered to obtain the» performaﬁce'
charactefisticé of the rigid ‘big-end bearing. In the preceeding
sections; the wviscosity 'is gaken as constant or pressure dependent
but in reality the Qiscosity of lubricant |is moré sensitive to
temperéture change. Henée, considering the'viscosity_variatioh with
pressure: and temperature both, the big-end bearing centre orbit,
variation of the minimuﬁ film thickness, the peak pressure, power
loss and thé maximum temperature fise are calculated. The following
results are observed and compared with those of the isoviscous case.
6.4.3a Bearing Centre Orbit:- |

Fig. 6;11 shows the bearing centre orbit for one duty cycle. The
shape Qf thé orbit. is similar to those préviously obtained but in

<

the piezo-thermal case almost all the values of eccentricity are

cr

larger than the valunes obtained in

he isoviscous)case. The maximqm
eccentricity ratio is calculated as 0.96176 and .the corresponding
value of B is 43.00 while, 1in the 1isoviscous case, the maximum
eccentricity xaﬁio is calculated as 0.95341 and the corresponding
value of B is 41.89°.
6.4;3b Maximum Film Pressuré:—

Fig. 6.12 shows the wvariation of the peak 'pressure\ inA both,

piezo-thermal and isoviscous case. In almost entire duty cycle, the
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- Fig. 6-11 Bearing centre orbit (Piezo-thermal case)
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pressure values in the former case are more than tpPse in the latter
case. ‘The maximum film pressure in the piezo-thermal case 3, Table-
6.1, occurs at the crank angle 2009 appoximately. The maximum £film
pressure in the case 3 is about 24%’ lérger than that 1in the
isoviscous case 1. In the isoviscous case,lthe maximum £ilm pressure
occurs at 1800 crank angle.

6.4.3c Minimum Film Thickness:-

Fig.6.13 presents the variation of the minimum film thickness
against crank angle for both the céses 1 and 3. In the piezo-thermal
case 3, the values of ‘viscosity reduce - significantly due to -
temperature iise " of the fluid-£film and in turn the 1056 capacity of
the bearing decreases. Hence, in this case, almost all the values of
the minimum ~fi1m thickness are smailer than those in the isoviscous
éase, Fig. 6.13. The value of minimum f£ilm thickness in the piezo-
thermal case is calculated about 18% smaller than that obtained in
thé isoviscous case. The value of the minimum film thickness (3.15
-Hm) in the piezo—thérmal case agrees more with thé'experimental
values (2.79um[10],3.l7pm(4]). The position of occurance .of the
minimum film thicknéss is almost saﬁe as in the isoviscous case i.e.,
- in the vicinity of 2700 crank anqig position.
6.4.3d Maximum Temperature Rise:-

For the calculation of temperature rise in the fluid—film of the
bearing. in example, the SAE-30 o0il was selected as lubricant for
which the wvalue o0f the constants ( E;,E,,E;,h.,) are given in
Appendix A-Z. The supply temperature is assumed as 899The crank pin
surface temperature 1is taken wuniform as 1000C and the bearing
surrounding temperature (i.e., tehperature in the crank case) ié

assumed as 80°C. The maximum temperature rise under these conditions,
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is shown in Fig. 6.14. The maximum temperature rise is obtained in
the range of 100C to 30°C which is comparable tQ the theoretically
calculated value 25°C reported in the literature [63].

.6.4.3e Power Loss:-

The variation of power loss and its comparison with that in the
piezoviscous case 'is shown in Fig. 6.15. The maximum power 1loss
obtained 1in the piezo-thermal case is found to be about 10% smallecr
than that (1.24kW) in the piezoviscous case. From Fig. 6.15, it may
be concluded that due to reduction in viscosity, the power loss
decreases under piezo-thermal conditionl
6.4.4 Rigid Bearing with Noé~Newtonian Lubricants

In the foregoing sections of this Chapter, the iéoviscous,
piezoviscous and piezo-thermal cases are discussed considering the
lubricant as Newtonian. But the heavy duty engines require lﬁbricants
with superior wviscosity inde#. The viscosity index is improved by
adding suitable additives in the base o0il which makes the behaviour
ofi the 1lubricant non-Newtonian [37]. Hence, in this thesis the
performance 6f the big-end bearing is also found with non-Newtonian
1ubriéants represented by models, Egs. (2.17) or curve-fit model,

Eg.(2.20). The following results are obtained.

6.4.4(1)‘Cubic Shear Stress (c.s;si Law Model
6.4.4(i)a Bearing Centre Orbit:-

Fig. 6.16 shows the bearing centre orbif using non?Newtonian
luﬂricants.' The non-Newtonian behaviour of the 1lubricants implies
reduction in viécosity at high shea; rate in the flow-field (range
2.5x10® sec™* to 10x10° sec™™), and so, the load cépacity of the
bearing decreases. Due to this reason, the values of eccentricity

ratio are obtained some what higher with non-Newtonian lubricants
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when compared to those obtained with the Newtonian 1lubricants in
almost entire duty cycle. The orbit, Fig. 6.16, is obtained by

representing the relation between shear strain rate (i) and shear
stress (I) with the cubic shear stress law, Eg.(2.17a). The cubic
shear stress law represents the constitutive equation for most of tﬁe
non-Newtonian o0ils in a wide range of shear rates. The value of
constant K = 0.58 in Eq. (2.17a) is taken for calculation of complete
orbit and other relevant results. The computer program is general and
can handle any non-Newtonian model, Egs. (2.17). A large CPU time is
however required to compute one orbit, thérefore, only one ozxrbit
usin§ the cubic shear stress law with a selected value of K is
calculated.

By comparing the orbit of Fig. 6.16 of the non-Newtonian case
with fhat of Newtonian case, Fig. 6.4, a difference in the values of
the maximum eccentricity ratio is’noticed. For the non-Newtonian
analysis, the maximum eccentricity ratio is found as 0.96165 in
comparison to that (0.95341) in the Newtonian case. The maximum

values of € occur at 2700 crank angle in both the ~cases 1 and 4,

Table-6.1.

6.4.4(1)b  Maximum Eifm Pressure:-

Fig. 6.17 is the plot of the peak pressure values which occur in
the fluid-film of non-Newtonian lubricants at different position of
the crank. These values of tﬁe peak pressure are also compared with
those obtained in the Newtonian caée; From Fig. 6.17, it 1is
noticeable that in most part of the duty cycle the values of the peak
pressure in both (Newtonian and Non-Newtonian) cases 1 and 4 are

similar. The maximum value of the peak pressure for the non-Newtonian
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Fig. 6-16 Bearihg centre orbit (Non-Newtonian case,
cubic shear stress law model )
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lubricant is only about 6% smaller than that for the corresponding
Newtonian lubricant.
6.4.4(i)c Minimum Film Thickness:-

Fig. 6.18 shows the variations of the minimum £ilm thickness
agaihst crank angle for cases 1 and 4. 1In most part of the duty
cyclg, the values of the minimum film thickness for the non-Newtonian
lubricant case are smaller in comparison to tﬁose in the Newtonian
case. The wvalue of the minimum film thickness for non-Newtonian
lubricant 1is 17% smaller than that for the corresﬁonding Newtonian
1ubricapt. The reduction in the value 6f the minimum film thickness
is appreciable) hence, the non-Newtonian behaviour of lubricants
should - be taken into account for a ‘more accurate design and analysis
of the big-end bearing.
6.4.4(ii) Curve-Fit Model

Fof any lubricant,,a relation between the apparent viscosity (Ma)
and shear strain rate (&) can be established- by Eurve fits on
eﬁperimental data. Experimental data are available for several non-
Newtonian (Commercial) oils at different temperatures [37}7 Using the
least square method, a fourth order polynomial is fitted on the
values of Vp. .and Y for one of the oils (code C-2, at 99° C),
Eg.(2.20). Using this equation in the non—dimensionél form,-a part of
the orbit is obtained with-lOO interval for a finite crank rotation
1100<81<2700. The cubic shear stresg law, Eg. 2.17a, represents the
non-linear behavigur of a wide range of non-Newtonian lubricants. The
values of € and 8 obtained by using the cubic shear stress l;w and
the curve—fit model are'given for’ comparison in Table—6.5. The Table

‘'shows that the values of €,3 are almost identical in the two cases.

Using the least square method, other given values of Ha and Y for



Table~-6.5

115

the results obtained for the big-end bearing

Comparison of
having non-Newtonian lubricants (cubic shear stress law and curve-fit
model)
Crank Curve-fit model Cubic shear stress léw model
angle
6y e e B
110 .0.91818. -19.49 0.91755 -19.32
120 0.92455 -17.48 0.92293 -17.05
130 0.93077 -14.91 0.92846 ~14.33
140\ 0.93641 -11.97 0.93354 -11.32
150 0.94125 - B8.84 0.93805 - 8.16
160 0.94557 - 5.54 0.94205 - 4.85
170 0.94921 - 2.09 0.94541 - 1.43
180 0.95206 + 1.49 0.94823 + 2.13
190 0.95460 5.24 0.95074 5.85
200 0.95692 9.15 " 0.95308 9.72
210 0.95898 13.24 0.95518 13.75
220 0;96093v 17751 0795702 17.94
230 . 0.96252 21.97 0.95870 22;30
240 0.96371 .26.66 0.96013 26;89
250 0.96458. 31.64 0.96102 31.81
260 - 0.96495 37.03 0.961572 37.14
270 0.96502 43.14 0.96165 4?.06
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other o0ils (37} are fitted 1in fourth order polynomials whose
coefficients are given in Table-2.2 for each oil. These values of
coefficienfs may be useful for further studies.
6.4.5 Ungrooved Rigid Bearing with Isoviscous Lubricants

The 6VEB-X engine bearing has a circumferential gioove of 12.7mm
(0.5in) width. There ‘are some big-end beafings which do not' have this
type of groove. So, to cvaluate the performance of the big-end
bearing without circumferential groove, the same big-end bearing with
fﬁll length subjected to full load, Fig. 4.2,' is solved and ' the
results are compared with those previously.presénted for the grooved.
bearing. The same configuration of bearing‘with small misaliqnment}
if present, 1is also studied. The bearing centre orbit, the maximum
film pfessure,‘and the minimum film thickness are obtained fér, both,
parallel and misaligned béaring assembly. The results are presented

as follows:

6.4.5(i) Parallel Axes System ' -
6.4.5(i)a Bearing Centre Orbit:-

Fig. 6.13 shows the bearing’centre orbit of the‘big—end bearing.
without grodve. In the absence of a circumferential groove, the
relevant boundary conditions and in turn the pressure proffle}
Fig.\l.S, are diffefent which significaﬁtly change the bearing
perfdrmance. From the solution it is found that in-this case, the
..eccentricityvdecreases significantly and the bearing operates with a
larger minimum film thickness. The maximum eccentricity ratio is
calculated as € = 0.88974 and the cérresponding value of B is 43,500.
The'two orbits, Figs. 6.19.and 6.4, show that the eccentricities for
ungrooved bgarings are significantly smaller than those for grooved

bearings.



119

=

Engine oxis
direction

180 200

180

Fig.619 Bearing centre orbit of the big-end béoring without
circumferential groove B o
(Parallel axes case i.e. 0o =86 =0and B = 0-625)

( Force.variation fiq.42)
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6.4.5(i)b Maximum Film Pressure:- .

Fig. 6.20 1is the plot of the peak values o0f the fluid-film
pressure which occur in, both, grooved and ungrooved‘bearings. From
Fig. 6,20, it is‘ indicated that the fluid-film peak pressures are
smaller in the ungrooved bearing in comparison to "those in the
grooved bearing due to different pressure boundary conditions in both
the cases 1 and 5, Table-6.1. The maximum film pressure in the
ungrooved bearing 1is about 50% smaller than that in the grooved
bearing. It shows that the ungrooved bearings operate at low fluid-
film pressures in comparison to thé grooved bearings subjected to the
same external load. It enhance the' life of the bhearings.
6.4.5(i)c Minimum Film Thickness:- | |

Fig. 6.21 1is the plof 0of the minimum film thickness variations
versus crank angle for the cases 1 and 5. 1In most part of the duty
cycle, the values of the minimum £film thickness for ungrooved
béérings (parallel axis) are almost 3 tiﬁes that of the corresponding
values obtained 1in the‘ grooved bearing case. The ‘minimum film
thickneés in ungrooved bearings is about 136% larger than that in the

grooved bearings.

~ 6.4.5(ii) Skewed Axes System

Error in the assembly of the bearing in the connecting rod end

n

makes the axes of 'the bearing and the crank pin misaligned.
Considering a small misalignment of o= 6= 0.0001, Figqg. A—S.l, between
the bearing and the crank pin axes, the ungrooved big~end bearing
performance characte£i;tics are computed and the results are as
follows.

6.4.5(ii)a Bearing Centre Orbit:-

Fig. 6.22 shows the bearing centre orbit (skewed axes) which |is
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Engine axis
direction
X

180

Fig.6:22 Bearing centre orbit of the big - end bearing without
circumferential groove . -
(Skewed axes case i.e. 0~ =86 =0-000l oand B =0-625))
(Force variation. fig.4:2)
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very similar ~to that of Fig. 6.19. In the case of skewed bearing,
the maximum mid plane eccenpricity ratio is obtained as 0.88990 and
the corresponding value of f is 43.43%9 which are close to the values
€ = 0.88974 and 3 = 43.500 obtained in the parallel axes bearing
sYstem.

6.4.5(1i)b Maximum Film Pressure:-

Fig. 6.23 shows the values of the peak pressure in the bearing
having skewed axes*' and their comparison with the peak pressures
obtained in the parallel axes bearing assembly. From Fig. 5.23, it is
noticed 'that in almést entire duty cycle, thg/Peak pressure generated
in the skewed axes bearing assembly are larger than the peak pressure
in the parallel axes bearing assembly. The maximum value of the peak
pressure in the skewed axes bearing system is about 26% larger than
that value obtained in the parallel axes bearing system.
6.4.5(ii)c Minimum Film Thickhess:-

In- the case of skewed axes bearing assembly, the minimum film
thickness occurs on ode of tﬁe sides of the bearing a@ay from 1its
central plane. Fig. 6.24 shows the variations of the minimum film
thickness in skewed axes bearing system and its cdmparison with that
for parallel axes bearing system. The two variations are similar but
the mégnitudes of the miﬁimum film thickness differ significantly in
entire duEyvcycle. In thé case of skewed axes beariﬁg system, the
minimum film thickness occurs at crank angle 2209, not occurs at 270¢

crank angle like in other cases. The minimum film thickness in skewed
axes Dbearing system is about 28% smaller than that in parallel axes
bearing system. It may be concluded, that'if the misalignment is

larger, the possibility of occurance of metal to metal contact in the

skewed assembly increase.
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In the sub sections (6.4.1 to 6.4.5), the results of the big-end
bearing with 1rigid body are discussed. Results are _obtained for
various cases, Table-6.1, considering the effects ‘df various
parameters. For these cases, the values of the minimum film thickness
and the maximum film pressure, Table-6.6, may be noted as important
opérating parameters useful for designers. To show the percent
deviatioﬁs for these two quéntit}es with respect to the wvalues
obtained for isoviscous lubricant case 1, are also compiled in the

Table.
Table - 6.6

Deviations in the minimum film thickness and the maximum film

pressure for the rigid bearing cases. -

Minimum film thickness {(um)

cases studied * 1 2

3 4 5 6
3.85 4.09 3.15 3.17 . 9.10 - 6.56
Percentage change ** -  6.23 -18.18 -17.66 136‘36 70.39

Maximum film pressure (MPa)

cases studied * 1 2 3 - 4 5 6

38.61 42.30 ‘48.07. 41.10 19.35 28.25

Percentage change ** - 9.55  24.50 6.45 -49.88 -26.83
X . ) .'k:k .
1- isoviscous lubricants Col.(J)-Col. (1)
2- piezoviscous lubricants I e x 100
3- piezo-thermal effects on viscosity : “'Col. (1)

4- non-Newtonian lubricants :
5- ungrooved bearing with parallel axes J =2,3,4,5,6
6= ungrooved bearing with skewed axes
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6.4.6 Elastothermohydrodynamic (ETHD) Lubrication Study of the Big-
End Bearing.

In the foregoing section, the perforﬁance characteristics of the
big-end bearing for various lubrication.conditions without including
‘the flexibility of the bearing body are discussed. But it is well
known today that elastic deformation in the bearing body whether
permanent or transient,l significantly affects the performance of the
hydrqdynamic bearings. Hence, the analysis of the problem of the big-
end bearing is extended to include the ETHD considerations. 1In the
case of the big-end bearings, due to the deformation of beariﬁg body,
both inner and outer surfaces of‘bearing deform and experience change
in.shapes. The bearing!body is assumed as cylindrical initiallg, and
made of cast 1iron (421, which give. the wvalue of deformation
coeffecient (®) = 0.009229, (R/th) = 1.77 and (c/tn) = 0.00144. The
ouﬁer .po}tion of the big—end.seafing (about 2/9 part), which is
integrated'with the conhecting—rod, }is considered as fixed boundary
and the remaiﬁing outer surface of the bearing is -t;ken free to
deform.” The following results Srg obtained in this condition.

Staiting from any arbifrary crank angle, e.g., 2509, and using
a nondimensional time step of.20, the values of €,8, the minimun fiié
thickness, the maximum deformation, and the maximum temperature'rise
-ére calculated for a figite‘cxank rotation, upto crahk angle 3200 ahd
are reported in the Téble—6.7.. From this Table it may be seen that
coﬁsiderable deformation occurs in the bearing body. The deformation
pattern of both the bearing surfaces (inner and outer) at some (2600,
2700, 2800, and 300°) crank angles are shown in Figs.6.25. Due to the

irregular and significant deformations in the bearing body,Figs.6.25,

the convergence of the solution at each crank angle takes a large CPU

/
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Table~-6.7

Values of €, 8 , the minimum film thickness ( hmin 1}, the
maximum temperature rise ( Tmax ), and the maximum deformation at the
inner sur face of the bearing body ( drmax ) in - the
elastothermohydrodynamaic lubrication case for finite crank rotation

Crank
angle € B hmsin Axmax T e
8. (pm) (pUm) : (oC)
250 0.94948  30.29 4.15 C - | -
252 0.94994  31.44 7.69 4.70 7.21
254 0.95038  32.76 6.64 1.37 7.21
256 0.95048  34.14 ' 6.20 3.79 7.30
258 0.95041  35.55 6.26 4.12 7730
260 0.95022  37.00 6.27 4.0 7.30
262 0.94993  38.50 6.43 4.37 7.39
264 0.94959 40.18 7.82 8.33 - 7.56
266 0.94881  42.15 1.7 9.98 7.92
268 0.94750 - 44.25 S 7.44 9.91 8.45
270 0.94588  46.42 7.50 -+ 10.15 . 9.52
272 0.94385  48.70 | 7.52 10.15 10.68
274  0.94319  50.73 7.82 10.48 110.14
276 0.94318  52.97 8,80 10.90 10.68
278 0.94186  56.07 10.41 13.70 9.88
280 0.93921  59.70 o 9.57 | 15.27 - 9.35
282 0.93545 - 63.72 10.38 16.01 10.77
284 . 0.93280  68.37 14.15 $20.22 9.70
286 0.93082  73.52 13.85 19.48 10.32
288 0.92803  78.90 14.00 . 20.06 110.15

290 0.92819 82.72 . 16.73 21.07 - 10.41
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Table~6.7 Contd...

1 2 3 4 5 6
f292 0.95018 85.00 19.84 26.02 6.23
294 0.93552  89.77 21.48 ~29.80 6.50
. 296 0.94625  95.73 - 23.86 | 24.68 8.54
298 0.94996 101.62- 16.77 21.05 14.60
300 0.95106 108.68 . 19.43 22.78 12.10
302 0.95411 115.68 ' 24.08 | 27.65 11.30-
304 0.96871 122.16 25.64 29.22 \ 10.68
306 0.97742 126.08 27.11 . 27.42 8.63
308 0.97746 127.74 23.97 23.30 7.92
310 0.97758 130.41 24.50 23.71 ©6.32
312 0.97938 132.98 25.25 : 24.12 6.40
314 1.05874 136.34 : 35.47 47.28 7.12
3ls 1.1536§ 141.20 30.11 . 46.14 | 7.47
318. 1.18836 146.00 33.22 53.16 7.89

320 1.21673 149.81 21.49 43.91 6.67
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time (about 15 minutes on DEC-2050 computer). Table- 6.7 shows that
as a result of deformation, the minimum film thickness increase; in
the case gf elastothermohydrédynamic analysis. Hence, the possibility
"of the occurance of metal to metal cbntact‘is less. The CPU tihe for
the iterative solutions accounting for deformations of large
magnitude is exceséive, thereforé, the minimum film thickness values
for the entire duty cycle has not been calculated. Tablé; 6.7 gives
the computed ETHD orbit points for only a finite crank rotation.

6.5 COMPUTATIONAL CPU TIME

P S —

The peiformance characteristics of the big-end bearing —under -
various «conditions aléhg with discussions are presented. in the
.section 6.4 of this Chapter. Information regarding the computer time
needed on DEC- 2050 systeﬁ in getting those resutls are tabulated
below. |

Table- - 6.8

CPU time required for the cases studied.

Casée studied , ‘ ' Remark CPU time in hours

Selection of numerical method - o 1.5
Isoviscous lubricants : - . Full orbit 7
pgezaviscous lubricants | Full orbit 12
piezo-Thermal effects on viscosity Full orbit 18
Non—Newtdnian lubricants(C.S.S5)* Full orbit 13
Non-Newtonian lubricants(C.F.M)** Partial orbit 2/(13)$
Ungrooved bearing(parallel axes) Full orbit - : 7.
Ungrooved bearing(skewed axes) ‘ Full orbit 7
Elastothermohydrodynamic | vPartial orSit 6.5/(80)$

lubrication
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The total CPU time used in computing the results presented in
this thesis is about 74 hours.
* Cubic shear stress law model.
%  Curve fit model

$ Estimated CPU, time in hours to obtain fulf orbit.
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6.6 CONCLUSIONS

6.6.1 Algorithm and the Computer Program ' N

The solution algorithm presented in Chapter 5, is general and may

be useful to the designers of the big-end bearing for any type of

engine.

The algorithm and the computer program were made efficient

and economical by incorporating the following features.

1.

Boundary conditions were inﬁroduced.at the element staqé to

minimize computer'core storage requirements.

For the time marching scheme Euler-Cauchy's ﬁredictor*

corrector method was Qsed which was found to be more suitable -
in Comparison to Runge—Kutta or higher-order predictor-

corrector method for this problem.

The frontal solver was used to economize the computer memory
storage requiremen£s for the computation of deformations . in
the big-end bearing body.

The subroutine used for non-Newtonian lubricants is based on

a_genefal algorithm which can handle aﬁy non—Newtonian:model.
The size of time steps, when adjustea properly for sgccessive
segments of a duty cycle on the basis of the loadv on _the

bearing and its wvariation, considerably improves the

convergence of the solution.

The following time steps were found suitable.

Crank: angle range (deg.) . time stéps (deg.)
60 - 250 | v 10
250 - 510 5
510 . - 690 10

690 - 720 - 60 , 2 -
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6.6.2 Bearing Performance

On the basis of the results presented in the preceeding Sections

of this Chapter for the big-end bearing of a Ruston-Hornsby 6VEB-X,

Mk-III engine, the following general conclusions can be drawn.

1.

'For the rigid bearing with an 1isoviscous lubricant, the

bearing, centre orbit, variations of the minimum film
thickness and the maximum film pressure are close to tho;e
reported in the literature, which validates the algorithm
st;ucture and fhe computer program. |

In the case of piezoviscous lubricants, the effect of

_ plezoviscosity on the minimum film thickness and the maximum

film pressure is not significant. This effect is, however,

noticeable at high loads. Power loss is maximum near the top-

dead-centre position of the crank.

The temperature effect Qn'viscosity causes a significant
change in the minimum film thickness. 1In the case of rigid
bearing with lubricants having’ pieio-therﬁal- viscosity
characteristics, the minimam film thickness is about 18
percent smaller than that in the isoviséous case. The maximum
temperature rise is about 1OOC.to 300C and due té reduction
in viscosity, power loss also decreases. In this case, the

minimum f£ilm thickness is closer to the experimental value in

~comparison to other cases studied. E '

For the non-Newtonian lubricants, the load capacity of the
bearing decreases. Hence, the values of the minimum film
thickness for the bearing with non-Newtonian ITubricants are

found smaller to those for the Newtonian case.

|
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For studying the characteristics of big-end bearing with non-
Newtonian 1lubricants, cubic shear stress law and curve-fit
models are used to represent the constitufive equafiogs for
non-Newtonian bchaviour. By comparing the results of both
the models, it 1is noticed that cubic shear stress law
(constant K = 0.58) gives almost the same results as obtained
&sing the curve-fit model.

Replacing a 12.7mm (0.5in) wide full circﬁmferential groove
by a supply hole significantly affected the characteristics
of the big-end bearing. For this ungrooved bearing, two cases
have beeﬁ studied énd the following conclusions are drawn:

(a) Parallel axes case:- In the case of ungrooved bearing

with parallel axes, the values of the minimum film thickness
are - considerably larger and the values of the maximum film
pressure smaller than those obtained in the corresponding

A

grooved bearing for the entire duty cycle.

(b) Skewed axes case:- A small amount of misalignment between

pin and bearing axes decreases the value of the minimum film
thickness. Hence, 1if misalignment increases, there is a

possibility of metal to metal contact at the \edge of the

AT e~

b
In | the - elastothermohydrodynamic (ETHD) study, the
deformation 1in the bearing body is found significant. The
temperature rise and power loss are smaller thén thosé in the

rigid case. The ETHD case represents the realistic problem

but is computationally quite expensive.

For the grooved bearing configuration, the minimum value of

film thickness occurs in the vicinity of 2700 crank angle "for
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all the cases studied. For the ungrooved bearing -with
parallel éxes, the position of-occurance of the minimum film
thickness is also at 270° crank ‘ angle, but in the
corresponding bearing with skewed axes, it occurs at 2200
crank angle.

Isoviscous study 6f rigid bearing takés the minimum CPU time
in comparison to thé other casés studied, but 1in the
»iéoviscous case, the value of the minimum film thickness is
not comparable with that of availgble experimental value. The
ETHD case represents the more realistic solution of the bié—

end bearing problem but it is computationally more expensive;'

However, the case of 1rigid bearing with non-Newtonian

lubricants or with lubricants having Ezézo—thermal viscosity
characteristics takes reasonable CPU time and the
corresponding results are'(also closer to the ~available
experimental results. Heﬁce, for accurate design one has to
consider the effects 0f ETHD lubrication, but for practical
purpose one may design or analyze the big-end bearing on the
basis of the results for rigid bearing with lubricants having
piezo-thermal viscosity éharacteristics or non-Newtonian

behaviour.
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CLOSURE

The kinematics of the big-end bearing and its dynamic loading are
guite complex. The big-end bearing, therefore, has been a subject of
extensive investigations, both theorefical and experimental; by a
number ofvauthors, particularly during the last two decades. A survey
of .tﬁe literature on the big-end beariﬁg indicates that the study’of
some aspects such as variation of viscosity of 1lubricants due to
temperature and pressure or due to its dependence‘on shear strain
rate and misalignment in the Bearings need more attention. To the
best of the author's knowledge, most of thé studies.on the big-end

‘bearing, - have assumed the viscosity as constant. With this

assumption, accurate soiutipns*oiﬁtha_big:end_beaL$ng—pﬁeblems~vcan—

not be obtained.
An analysis of the big-end bearing, taking into accodnt the
variation of viscosity, is rather complicated. 1In this thesis, an

[
endeavour is made to include the viscosity variation due to pressure

and tempefature, in the analysis of the big-end beéring..
The author has not come across any literature on the. analysis of
the bié—end-bearings having nonﬁNthonian lubricants. For heavy duty
‘engines,{ lubricants with specific properties are required which are.
often . achieved by mixing various additives such as oxidation
, _ . . ;
inhibitor, corrosion inhibitor, viscosity index improver, detergents,
dispefsents, defoaming agents in the base oils. Such lubricants show
nonlinear relationship‘ between shear stress and shear strain {ate
(non—Newtonian behaviouri.

It is' well known today that both the ‘elastic deformation of

- bearing surface and the variation of viscosity of lubricants with

’
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pressure can have a significant effect on the bearing performance.
The elastic distortion of the big-end bearing due to hydrodynamic
pressure 1is often larger than the nominal radial c¢learance. Hence,
tﬁe present problem is also extended to study the effect of
elastothermohydrodynamic Iubricatioﬁ on the performanée of the big-
end bearing.

The big-end bearing problem, being complex and challenging,
attracts a large number of investigators. With the increasing
computing power available, more and more complicated problems would
be solved to obtain very realistic solutipns for the big-end bearing.
In this regard, the author feels that the big~end bearing problemn

would be analyzed taking into account the effects of,contamihation of

"0ils and variation of viscgéity of non—Néwtoihan 1ubricants. with
temperature. The solutions of complex problems obtained through
‘involved algorithms need experimental validation._ The author hopes
thét parallel experimental work on the big-end bearing will match

‘theoretical investigations.
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APPENDIX A-—1

List of Non-Newtonian QOils

The following is the list of some of the oils [37] with code
and viscosity index (V1) improver type. {All 10W-40 oils)

Cbmmercial Oils‘

Code VI improver type
e Bthyl -propyleme
C;2 ~ Styrene-ester
C-3 | Methacrylate
C-4 - Ethylege~propyiene
cC-5 ' Methacrylate
c-6 EP ana methacrylate

E-1 ‘ ' ‘Hydrogenerated diene-styrene

E-2 Hydrogenerated diene-styrene
E-3 | ' o Methacrylate

E-4 Styrene-ester .
E-5 | Ethylene-propylene

o . G e - G e e . = o S o — —— e - o tar o o o e o ot e = - -

In the literature (61}, it has been shown that atviow shear rate
(below 103(sec.”*)) as well as at high shear rate(above 10€(sec." %)),
the apparent viscosity has become constant. This condition has also

been applied in the present calculation.
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APPENDIX A—2

Heat Balance Condition

(1) To obtain the heat rate {(Q.) at the interface of ' lubricant

and bearing inner surface, the following heat conduction equation is
! ]

applied.
OT|

Qs = -Ko2wRsL --| _ (A.2.1)
0rlr=R.

or _ X

_ Qa1 _ 0T |

Qi = -————=-- =-Rs -- | _ _ (A.2.2)

2nKoToL 6r | r=Rgs

where, Eg.(A.2.2) 1s written in nondimensioﬁal form and Ko is the

thermal conductivity of o0il, R: 1s the bearing inner radius, L is the

_ 6T
axial 1length of bearing portion from which heat conduct and -- is
or
the temperature gradient in radial ‘direction.
(2) Heat rate (Qz) from bearing innetr surface to the bearing outer

most surface (considering only the conduction of heat in radial

direction) is given by

Km2nL - Te-Ta )
Q2 = ————-- (Tp-Tz) = ——=—=——m ‘ (A.2.3)
Ro Nm
l10Ga-- \
Ry

‘where, T» and Ts ‘are the bearing inner and outer most sﬁrface
temperature. respectively, Ro is the bearing outer most radius and
N'Om is defiheé asbthe heat resistance oflthe bearing body material.

(3) Heat rate from bearing outer most surface to the surrounding

is given by

Q3 = hnzﬁRaL (T‘B‘T-) = =T . (A.2.4)
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-

where, ha. 1is the convection heat transfer coefficient, Ta is  the
surrounding temperature and Na is the heat resistance due to

convection of heat.
Now applying the condition that Q- =Qs and by eliminating Ts

from equations (A.2.3-A.2.4), the following equation is obtained.

Qs = Qs = —omma- | . (A.2.5)

where, Nr is the total heat resistance and defined as

Km2nL R ha?2nRoL

From Eq.(A.2.5), the hcat rate Q= or Q= in nondimensional form may be

converted as

Q= = 63 = mmommme (A.2.6)

;which gives the normalizing facto£ for Nx as

Nz = 2nKoLNr

(4) Now equate Q. .to Q= or 63>, the fdllowiné relation |is
obtained which has been used tovcalculate bearing inner surface

temperature (Tw) .



Thermal Constants
0il used SAE - 30

Properties of SAE-30 oil at different temperature [1l1]

Temperature 250C 400C 1000C value of relation

constants
Density
886 876 839 b = 1361
@(Kg/m?) a = 0.023669
Absolute viscosity 229.474 98.725 10.50 0r=23.3
o (mPa.S) . .« Br=0.032/0C .

Vogel formula

la = a exp {b/(T+8x)}

Reynolds formula Ma = Ho €Xp {-Br(T-To)}

g8g90oC

1]

Supply temperature To

density @o 830 Kg/m*
Viscosity at supply temperature Mo = 14.95 mPa.S(2.17x107%reyn)

From Reference [8]

‘Lubricant thermal conductivity ko = 0.13 W/m®C or N/S°©C
Jouls/Sec;m°C
Specific heat Cv = 2000 J/Kg ©C

Bearing material thermal conductivity Km = 51.9 W/m°C

_ Mo ?R? '
Ko = -==--- = 0.05265 , (EgQ.(2.24))
KoTo |
N @-Cv R @ C
Ky = —m—mmmmmmm = 6891.21 , (Eg.(2.24))
Ko :

TKo/R) =6891.21/1230 =5.6

Peclet number
Calculation of thermal total resistance (Nx)

Value of Ro =0.1590 m (6.25 in) Ref.[42]

152

or
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Ry = 0.1016 m (4.0 in)
In case of forced convection heat transfer, the value of ha
(heat transfer coefficient ) can be taken quite large}'hence using

he = 2000 W/m2 ©°C in the case of spalashed lubrication system.

_ Ko Ro Ko
Np = —= log‘. —-_ et ,—————
Km Ri. h- Ro

0.0011 + 0.0004

0.0015

and

Br = Br X To = 2.848
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Predictor—-Corrector Formulae
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The higher-order predictor-corrector formulae by Adams-Moulton

[25] are giveﬁ as

Predictor:
] Gg 2 A 2 =
611-1 = €, + --- ('5561"5961—1‘*3761—2"9 61_3)
24 ‘
) =4 GE A s = .
Bavzr = By + --- (SSBL—Sgﬂi—l+3791~2—9BL—3)
24 ‘
Corrector :
= ot - - -~ -
€1+1 = €3 + ——= (9€1+2 + 19€s - B5€3;-1 + €1-2)
24 '
< 5t . L =
Bavs = Bs + === (9B1+1+19B1-5Bs-1+Bs1-2)
24

The predictor-corrector

formula are given as

Predictor:

» —— 2

€i+1 = €3-2 + 2 0t €14 ; Bavz = fa-1 + 2 6
- - L CX I -
... = E,_5 + 2 3t €, ine = Be 2 + 24
s 2 e N~ 2 - Ed L - A ¥ 4 [ S i [EarS hn R aad b
Corrector:

<

The Euler's predictor formula is given as

=4 -— P —

€1+ = €5 + Ot €4 ; PBi+a = B2 + Ot EL

The backward difference formula is

€1 = (€, - €i-1)/ Ot ;

Bs = (Bsa-Ba-2)/ 6t

relations due to

D

€iva = €4 + (1/2) 6T (€rex +€1) ;Biva = Bat(1/2) O6E(BavatBs)

(A.3.1)

(A.3.2)

Euler-Cauchy modified

(A.3.4)

(A.3.5)

(A.3.6)
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APPENDIX A—4

DATA FOR THE RUSTON-HORNSBY 6 VEB-X, Mk-III CONNECTING-ROD BIG-END
BEARING USED THROUGHOUT THIS WO&K.

Engine 6 cylinder,600 rev/min, 600 b.h.p., turbo-charged diesel,
four stroke, in line. | |

Bearing iength {total) = 127.0 mm (5.0 in)

Bearing grooving central circumferential, 12.7 mm (0.5 in) wide
'Bearing length of one land = 57.15 mm (2.25 in)

’ 4

Radial clearance =82.55 m (0.00325 in)

Bearing diameter (inner) 203.2 mm (8.0 in)

Bearing diameter (outer) 318 mm (12.52 in)

i

Length of connecting-rod 582.3 mm (30.8 in)
Crank radius = 184.1 mm (7.25 in)
Engine speed (600 rev/min) = 62.84 rad/s.

Weight of piston and gudgeon pin ?‘805,08 N (181.0 1bf)

Weight of connecting-rod = 800.64 N (180.0 1bf)

Approximate reciprocating weight 2/3 X.800.64 = 533.76N (120.0 1bf)

1/3 X 800.64+805.08=1071.96N(241.0

1}

Approximate reciprocating weight
1bf)

Estimated'operating oil viscosity in bearing=l4.95mPa.S(2.lﬁXlO‘5reyn)
0il supply pressure = 0.2758 MPa (40.0 lbf/in?%) |

Bearing body material IRON ([42]

Young's Modulus (E) = 107 GPa
Poisson's Ratio = 0.25
Thickness of bearing body = 57.4 mm (42]

Deformation coefficient ¢ = 0.009229
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Table-A-4.1

Force components (SI units) on the connecting-rod big--,
end bearing of the Ruston-Hornsby 6VEB-X, Mk-III engine relative to
the Cylinder axis .

Crank Big-End Bearing Forces, (kN)

angle

8s | .

(deg.) Faxa - Fya Anglea(deg.)

0 115.34 ' Z0.0 | 0.00

10 207.37 -17.28 ' -04.76
20 ' 133.17 - ~’2;1.92 -11.84

30 | 73.19 33.38 ~24.52

40 41.30 ~37.43 o -42:18

50 27.38 S L -56.33

60 - 26.53 ~45.01 ) s9.49

70 | , 34.53 , “49.15 ~54.91

80 44.66 ~52.18 o ~49.44

90 , 58,76 -54.58 . -42.89
100° 72.95 ' . -55.33 -37.18
110 ‘ 85.98 -54.13 -32.19
120 N . 97.19 ~50.75 -27.57
130 105.95 ~45.37 -23.18

> |

140 112.89 ~38.28 . -18.73 .
150 . 115.65 -29.57 ~14.34
160 ‘ . 114.63 , ~19.88 -09.84 /
170 113.34 ~09.96 ' -05.02
180 110.44 0.0 0.00
190 107.82 : 09.73 5.16

200 105.11 ‘19.11 10.31
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1 2 4
210 100.26 27.15 15.47.
220 94.16 35.41 20.61
230 85.76 41.66 25.91°
240 74.82 46.13 31.65
250 61.03 48.44 38.44
260 44.30 48.53 47.61
270 24.80 46.35 61.85
280 02.99 42.25 85.95
290 -20.34 36.68 119.01
300 -44.12 30.31 145.51
310 -67.12 23.78 160.49
320 -88.07 17.62 168.68
330 -105.77 12.17 173.43
340 ~119.16 07.53 176.38
350 ~127.52 03.58 ©178.39
360 -130.37 -0.0 180.00
370 -127.52 ~03.58 181.61
380 -119.16 -07.53 183.62
390 -105.77 -12.17 186.57
400 ~88.07 -17.62 191.32
410 - -67.12 ~23.78 199.51
420 -44.12 ~30.31 214.49
430 -20.34 -36.68 240.99
440 02.99 -42.25 274.05
450 24,80 -46.35 298.15
460 14.30 ©-48.53 312.39
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1 2
270 61.03 ~28.44 321.56
480 74.82 -46.13 328.35
490 85.76 -41.66 334.09
500 94.16 -35.41 339.39
510 100.26 -27.75 344.53
520 104.35 -19.05 349.65
530 106.75 ~09.69 354.81
540 107.51 0.0 360.00
550 106.76 09.69 365.19
560 104.35 19.05 370.35
570 100.26. 27.175 375.47
580 94.16 3541 380.61
590 86.87 41.86 185.73
600 77.04 46.57 391.15
610 63.96 49.11 397.51
620 49.06 49.68 405,36
630 31.40 47.95 416.78  °
640 13.06 44.70 433.47
650 ~04.92 40.18 456.99
660 -18.06 35.74 476.81
670 -27.49 31.05 491.53
680 -28.25 26..78 496.53
690 -13.09 23.16 479 .48
700 +15.71 18.43 409.55
710 51.37 10.89 371.97
120 115.34 0.0 360.00
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APPENDIX A—5

EXPRESSION

Definition:

FOR FILM THICKNESS IN SKEW AXES SYSTEM

Fig.A-5.1a '

Op = origin of crank pin axes system (X',Y',2')

Os = origin of bearing axes system (X,Y,Z)

R = crank pin radius ‘

Rs = (R+c) = bearing radius

r = radial coordinate measured from Op

e = eccentricity

h - = film thickness ] . '

B = angular position of line of centres from fi%ed axis Xt
The transformation from crank pin fixed axes X', Y', Z2' to

bearing axes X;Y,Z can be obﬁained by two rotations o and ¢ ,

Fig.A-5.1b. The first rotation is about X' and the second

rotation 'is &bout Y'. Right hand screw rule  is followedv in

deciding the

Therefore,

-
X

{1

J

Y

z

" The

N /

sign of the rotation. The transformation is

F‘X‘l

-

cosd 0 -siné
sino siné coso sino cosd | / y (A.5.1)
L'siné cosa -sino coso cosd z
cosd sinoc sind sind cosd- x!
0 coso -sino y! (A.5.2)
-sind sino cosé coso cosd z'
eduation of the bearing surface contour at any section

with reference to the bearing or pin axes system, when the bearing

centre Op,

written as

" and the pin centre Og, Fig.A-5.1b, are coincident, can be
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2

X% + yZ = R | (A.5.3)

Substituting the values of x and y from Eq.(A.5.2) into Eg.(A.5.3),
2 ’ 2 2
(x'cosb+y'sinosind+z'sindcoso) +(y'coso-z'sino) = Ra (A.5.4)

The skew components o and 6 being very,small, sinoc and sind may be
taken as o and 8 respectively and coso and cosé both as unity. Also,
neglecting the terms containing squares and products of small

quantities, Eq (A.5.4) reduces to the following form:

2 2 2

x' +y' +2x'2'6-2y'z'c = Ra (A.5.5)
If the bearing centre, - On is shifted at an eccentricity e from the

pin-centre Op, the equation (A.5.5) of the bearing surface contour

i

is modified to the following form,

(x'-e cosB )2 +(y'-e sinB )? +2(x'-e cosB)z'S
2

~2{(y'-e sinff )z'c = Ra - ’ (A.5.6)

or neglecting comparatively small terms,
- 2 2 N = .

X' -2x'e cosfi +y' -2y'e sinB'+2x'z'6 -2y'z'oc = R; ‘ ' (A.5.7)

Eq.(A.5.7) can be ekpressed'in cylindrical cordinates by
substituting, x' = rcos(B+8) and y' = rsin(B+6), and x'? +y'?=r?
r2? -2rcos(f+8).e cosB -2rsin(B+8).e sinB
+2rcos(B+é)z;6.—2rsin(B+8)Z'0 = R: . (A.5.8)

or

1% -2r(e cos(B+8)cosp . . _ .
4

te sin(B+6)sinB-z'dcos(B+8)+z'osin(B+8))-Rs =0 (A.5.9)
or
2 2
r -2r(e cos@ -z'Scos(B+8)+z'osin(B+8))-Ra = 0 (A.5.10)

?

Solving for r, and neglecting the terms containing squares and
products of the small quantities,

r = e cos® -z'6 cos(B+8)+z'osin(B+6)+Rr (A.5.11)
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At any section, the film thickness, h is.given by
h = r-R |

Hence, the expression for film thickness, when bearing axes
are skewed with respect to pin axes, can bé obtained from
Egs.(A.5.11 and A.5.12) and relation Rs = R+c, such as
h =c+ e cos8 - z'dcos(fB+8) + z'c sin(B+8) | (A.5.13)
Using the normalizing factors, the nondimensional f£ilm thickness is

h = 1+€ cos8 - z' RO cos(B+68) + z'Ro sin(B+8) (A.5.14)
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Fig. A-5-1 Axes misalignment in beqr’ing system
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APPENDIX A—6
THE BIG-END BEARING EQUILIBRIQM LOCUS

The big-end bearing centre orbit is calculated point by point
using a time marching scheme. Initial condifions at any arbitrarily
selected crank angle are required to compute the points on the orbit.
The initial conditions are, hpwever, not knoyn a-priori. The values
of € and B obtained considering the wedge action alone is a good
approximation of the initial conditions'to compute the orbit points.
For a selected crank angle, the value of eccentricity ratio € can be
iteratively computed at which the resultant of the flgid—film force
components along and perpenaicular to the line of centres, is equal
to ‘tﬁe force on the bearing. The attitude aﬁgle is then readily
obtained from the values of the two fluid-film force components,
which‘in turn gives 3, Fig.4.4. |

In order to have an option to’calculate the bearing orbit points
starting from any crank angle position, the values.of € and B are
computed for-thg beafing load, Fig.4.2, considering fhe wedge action
alone, at various crank angles. The equilibrium.locus of € and @ is
given 1in Fig.A-6.1, which is useful for‘selectidg a‘suitablé crank
angle as a starting point‘at which~the change in the values of € -or
ﬁ is not steep. From the Fig.A-6.1, it is éeen that any crank angle

lYing, for exémple,"between 70¢ and 1809 lis suitable for good

convergence of the orbit points.
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Fig. A-6-| Bearing centre equilibrium locus
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