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The connecting-rod big-end bearing, which is subjected to a 

complex dynamic loading, is an important component of an internal 

combustion engine. Gas force, inertia force due to the reciprocating 

masses (Piston,.gudgeon pin, and small-end of the connecting-rod) and 

the centrifugal force due to the rotary mass of the 

connecting-rod big-end, contribute to the total load experienced by 

the big-end bearing, which varies in magnitude and direction. The 

relative speed of the bearing with respect to the crank pin is also 

variable. These factors make the analysis and design of the big-end 

bearing quite complex. 

The existence of the fluid-film at all crank angles, consistent 

with its required minimum thickness in the clearance space of the 

big-end bearing, is imperative to obviate unnecessary wear and 

enhance the life of the system. Time history of the minimum film 

thickness depends on the motion of the bearing centre which has been 

studied-  by various investigators. A review of the available 

literature on the studies of the big-end bearing is presented in 

Chapter 1. 

The literature indicates that some aspects of  the big-end bearing 

analysis need further studies. With this view point, studies were 

planned in the area of the big-end bearing analysis to include the 

temperature and pressure (piezo-thermal) effects on viscosity, non- 

Newtonian lubricant characteristics, misalignment of the bearing and 

pin axes, effect of grooves, and deformation of the bearing body. 

Navier-stokes equations are used in the analysis instead of the 

traditional Reynolds equation so that variations of viscosity may be 
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accounted for piezoviscous, non-Newtonian and piezo-thermal effects. 

This thesis work presents the solution of the following 

problems. 

1. Rigid bearing with isoviscous lubricants, 

2. Rigid bearing with piezoviscous lunbricants, 

3. Rigid bearing with the lubricants having piezo-thermal effects on 

viscosity, 

4. Rigid bearing with non-Newtonian lubricants, 

5. Rigid bearing (ungrooved) with axes(i) parallel and (ii) skewed, 

G. Elastothermohydrodynamic (ETHD) lubrication. 

The clearance space is discretized using three dimensional 

isoparametric elements by a mesh of 12x4x1 elements, each containing 

20 nodes. Full Sommerfeld boundary condition is used to solve the 

Navier-Stokes equation and the continuity equation. To account for 

the cavitation effect, all the negative values of the nodal pressures 

are replaced by zero. At each crank angle interval, the pressure and 

velocity fields are established by solving the momentum and 

continuity equations in the cylindrical coordinates. The finite-

element formulation based on Galerkin's method and a direct iterative 

technique is used. The boundary conditions are substituted at the 

element stage to reduce the computer storage requirements. The global 

system equations are solved with each respective column of the right 

hand side to evaluate the pressure field contributions due to wedge, 

squeeze, and whirling actions of the fluid-film. In the case of 

deformation calculation, the three dimensional deformations in the 

bearing body are obtained by using the forntal solution techinque to 

reduce the computer storage requirement. For the time marching 

scheme,Euler-Cauchy's predictor-corrector method is employed which is 
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found more suitable in comparison to Runge-Kutta or  higher-order 

predictor-corrector methods(such as Adams-Moulton) for this problem. 

The algorithm evolved in this work is general and can be used for 

the solution of any dynamically loaded circular bearings with 

isoviscous/piezoviscous/non-Newtonian lubricants, and can also handle 

piezo-thermal effects on viscosity. Using additional subroutines, the 

elastothermohydrodynamic effect is also studied. Deformations of the 

bearing body are computed using the hydrodynamic pressure developed 

in the fluid-film. 

A summary of the studies based on the data of the big-end bearing 

of a Ruston-Hornsby 6VEB-X, Mk-III engine [101 reported in this 

thesis is given below. 

The salient values in the column 3 refer to a .SAE-30 oil(viscosity 

14.95 mPa.s at 890C) 

Bearing specifications  Bearing characteristics  Salient value 

1. Rigid bearing,  (a) bearing centre orbit 

isoviscous lubricants 
 

(b) minimum film thickness  3.85 pm 

(c) maximum film pressure  38.61 MPa 

2. Rigid bearing,  (a) bearing centre orbit 

piezoviscous lubricants  (b) minimum film thickness 
 

4.09 p.m 

(c) maximum film pressure 
 

42.30 MPa 

(d) power loss 
 

1.24 kW 
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3. Rigid bearing, 

piezo-thermal effects 
on viscosity 

(a) bearing centre orbit 

(b) minimum film thickness 	3.15 pm 

(c) maximum film pressure 	48.07 MPa 

(d) maximum temperature rise 300C 

(e) power loss 	1,11kW 

4. Rigid bearing, 	(a) bearing centre orbit 

non-Newtonian lubricants (b) -minimum film thickness 	3.17 pm 

(cubic shear stress law) 	(c) maximum film pressure 	41.10 MPa 

5. Ungrooved bearin 

 

(a) bearing centre orbit 

(b) minimum film thickness 	9.10 )1m 

(c) maximum film pressure 	19.35 MPa 

parallel axes 

 

    

6. Ungrooved bearing, 	(a) bearing centre orbit 	- 

skewed axes 	(b) minimum film thickness 	6.56 pm 

,(a = 6 = 0.0001) 	(c) maximum film pressure 	28.25 MPa 

The big-end bearing performance characteristics are also studied 

considering the bearing body deformation along with the lubricant 

having piezo-thermal viscosity characteristics. The results are 

obtained for a finite crank rotation with 20  interval. 

The detailed results are presented in Chapter 6. A modular 

computer program is developed and described with the help of flow 

diagrams in Chapter 5. From the results obtained, it can be concluded 

that the minimum film thickness is comparetively smaller 'in the 

presence of non-Newtonin and piezo-thermal effects than those for 

lubricants either isoviscous or piezoviscous. The piezoviscosi,ty 

effect on the minimum film thickness, however, noticeable only at 

high loads. The CPU time required for each of the cases of rigid 
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bearing is of the same order, but in the case of ETHD the CPU time is 

considerably more and is about ten times of that for the isoviscous 

case of the rigid bearing. For accurate analysis or design of the 

connecting-rod big-end bearing, it may however be necessary to 

consider ETHD lubrication but for most practical purposes one may 

analyze or design the big-end bearing as a rigid bearing with 

non-Newtonian lubricants or with the lubricants having piezo-thermal 

viscosity characteristics. 
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NOMENCLATURE 

	

A 	acceleration of the piston 

	

a.,...,a4 	coefficients of the polynomial 

	

B 	aspect ratio (L/2R) 

	

c 	radial clearance 

	

C, 	specific heat of lubricant 

	

Ci,C2,C3 	constants for different non-Newtonian models 

	

D 	diameter of the engine cylinder 

components of bearing body deformation 

	

dr,dz,de 	components of bearing body deformation 
(non-dimensional) 

	

dV,dV' 
	

elemental volume for fluid and bearing body 
respectively 

	

dA,dA' 
	

elemental area for fluid and bearing body 
respectively 

	

E 
	

Young's modulus of bearing body material 

	

em 	total number of elements in the elastic continuum 
of bearing body 

	

F 	external force on crank pin 

	

F. 	inertia force of the reciprocating engine parts 

	

Fo 	gas force in the cylinder 

	

F1 	centrifugal force of the rotating mass 

	

F2 	force component transmitted to the bearing 
through connecting-rod 

• • 

Fm(e , (i) 

• • 

Fri(e , 13) 

fluid-film force along line of centres due to 
squeeze and whirling actions of fluid 

fluid-film force normal to the line of centres due 
to squeeze and whirling actions of fluid 

F.,F.,Fp 	force components of surface traction 

Fr,Fm,Fe 	force components of surface traction 
(non-dimensional) 
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F01. 	coefficient of column vector for surface traction 
force 

	

Ff 	friction force 

	

Ff 	friction force (non-dimensioal) 
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gas pressure inside the cylinder 

	

P.-,P=,1De 	components of nodal pressure in r,z,0 direction 

	

Ph 	fluid-film pressure due to wedge action 
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Pe 	fluid-film pressure due to squeeze action per unit 
of squeeze velocity 

	

pn 	fluid-film pressure due to whirl action per unit of 
whirl velocity 
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radial coordinate of system measured from bearing 
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T. 	non-dimensional crank pin surface temperature 
(T./T.) 

	

t 	time 

	

t 	non-demensional time (at) 

	

th 	bearing body thickness 

	

th 	(th/R) 

	

u,v,w 	fluid velocity components in (9,r,z directions 
respectively (non-dimensional) 

Ve,Vr,VZ 

W. 

W. 

fluid velocity compoments in e,r,z directions 
respectively 

external load on the bearing 

external load on the bearing (non-dimensional) 

load component along line of centres 
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z 	axial coordinate of the bearing in hydrodynamic 
part (z/R) 

	

z' 	axial coordinate of the bearing in EHD part (z'/t1,) 

axial coordinate of bearing measured from central 
plane 

z 	axial coordinate of node inside the bearing body 
measured from central plane of the bearing ( or 
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a1 	angle between connecting-rod axis and crank axis, 
Fig 4.1 

	

a 	position of load vector measured from an axis 
parallel to the engine axis, Fig.4.1 

	

a, 	piezoviscous coefficient (non-dimensional) 
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an axis parallel to the engine axis, Fig.4.4 
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elments of strain matrix 
Y.e,Yre,Yrx 

shear strain rate 

non-dimensional shear strain rate 

	

175,(5 	angle between bearing and pin axes due to 
misalignment (Appendix A-5) 

	

e 	eccentricity ratio 

squeeze velocity (dG/dt) 

	

6 	squeeze acceleration 

angular coordinate measured from the position of 
the maximum fluid--film thickness in the bearing 
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crank angular rotation 

e1 	instantaneous 	value of crank angle 
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temperature 
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nT 	total heat resistance 



angular speed of bearing rotation relative to the 
crank pin speed 

 

r  shear stress 
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))1)/ 	local coordinates in 0,r,z directions respectively 

Matrices  

	

{a} 	global column vector for unknown quantities 

	

[Bell 	ELI [Me] 

	

{d} 	colum vector for nodal displacements 

column vector for non-dimensional nodal displacements 

	

(Dell 	elasticity matrix 

	

[111] 	non-dimensional elasticity matrix 

	

{F0} 	column vector for nodal traction forces 

column vector for non-dimensional nodal forces 

 

{FT}  column vector for viscous dissipation term 
. _ 
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for right hand side for wedge action 

for right-hand side for whirl terms 

for 

for 

right-hand side 

traction forces 

for squeeze terms 

column vector 

column vector 

	

fis}' 	column vector 

	

{Tr} 	column vector 

	

ITfJ 	row vector for traction forces 

	

{T} 	column vector for temperature 

	

{it.} 	sub-column vector for velocity variables for element 
equation 

sub-column vector for pressure variables for element 
equation 

column vector fot nodal velocities (u,v,w)and 
nodal pressuree (p) for the entire assemblage 

	

{$} 	column vector for nodal displacement components- 

strain column matrix 
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L $ J 	row vector for nodal displacement components. 

vectors {RA}, tRwl and {Rs} are for the entire 
assemblage obtained after applying the boundary 
conditions 
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-(bar)  Superscript for non-dimensional quantities 

 

.(dot)  Superscript for derivative with respect to time 

 

..(double dot)  superscript for acceleration 

 

T  superscript for transpose of a matrix 

 

e  superscript for element numbers 

 

i,i  subscript for local node numbers 

 

m,n  subscript for global node numbers 

 

p  superscript for predicted values Chapter 5 

 

c  superscript for corrected values Chapter 5 
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CHAPTER 1 

I NTRODUCT I ON 

The internal combustion engines particularly the diesel 

engines,  are the most widely used energy conversion devicies 

employed as prime-movers. Of their many important components, the 

big-end bearing, Fig. 1.1, certainly is one. The performance of the 

big-end  bearing of an internal combustion engine is therefore 

critical for the satisfactory performance of the engine as a whole. 

The performance of the big-end bearing has been a subject of 

extensive investigations, both, theoretically and experimentally for 

the last two decades. This Chapter aims at presenting the state-of 

the art on the analysis and design of the big-end bearing which is 

subjected to a complex dynamic' loading that varies both in magnitude 

and direction during each cycle of the engine. The gas force, 'the 

inertia force due to reciprocating masses and the centrifugal force 

due to rotary mass of the engine are the main forces which act on 

the big-end bearing. For computation of the total inertia forces at 

the big-end bearing, masses of the connecting-rod, piston and other 

accessories may be represented by an equivalent mass system 

comprising a reciprocating mass at the piston-end and a rotating 

mass at the big-end of the connecting-rod. The gas force acting on 

the piston and the inertia force due to the equivalent mass at the 

piston-end is communicated to the big-end bearing through the 

connecting-rod. These forces are vectorially added to the inertia 

force due to the equivalent mass at the big-end to determine the 

resultant dynamic force on the big-end bearing. 



Fig. I• I 	Sectional view of a connecting-rod and 
piston assembly 
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In the big-end bearing design, due consideration is given to 

the  existence of the fluid-film in the clearance space between'the 

bearing and•the crank pin surface. The possibility of metal to metal 

contact between the pin and the bearing surfaces in the running 

condition should be mininized by suitably designing the bearing. 

The minimum fluid-film thickness in the hydrodynamic bearings 

depends on the following parameters. 

(i) Hydrodynamic parameters: Load,speed, constitutive behaviour 

of lubricant, oil film history, dilution of fuel in lubricant, 

contamination of lubricant and flow condition etc. 

(ii) Geometrical parameters : Bearing shape, clearance 

geometry,  oil holes and grooves, oil drain system, misalignment 

between bearing andjournal axes, aspect ratio etc. 

(iii) Elastohydrodynamic parameters: Bearing liner material, 

rigidity of housing structure, etc.. 

The performance of a journal bearing subjected to a load which 

varies both in magnitude and direction with time, was first 

investigated in 1920 by Harrison [36] and was later studied by Swift 

[58] in 1937. Harrison and Swift showed that the load capacity of 

bearing may vary considerbly in dynamic condition in comparison to 

that in the static condition. In 1947, Burwell [1] discussed in 

detail, the equations for the film pressure and load capacity of a 

dynamically loaded bearing. In deriving the equation for pressure, 

the usual assumptions of the hydrodynamic theory were considered and 

the results were obtained for 
 

diesel-engine connecting-rod 

big-end bearing, and a radial-aircraft-engine master-rod bearing. In 

the case of the diesel-engine big-end bearing, the maximum 

eccentricity ratio = 0.989 was calculated which is equivalent to a 
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minimum film thickness of 0.000011in during the cycle and in the 

case of radial- aircraft engine master-rod bearing, the maximum 

eccentricity ratio was 0.88. 

In ASME-ASLE Lubrication Conference, 1956, three papers were 

presented on the experimental work on big-end bearings. Pigott and 

Walsh [48) described their Universal Bearing Tester; Hersay, and 

Snapp [27,59) presented two papers in which Bearing Test Machines 

with  dynamic loading or non uniform motion were described and 

classified  according to the type of loading employed. In these 

three studies  [27,48,59] the engine bearings were tested for wear 

and. fatigue failure. 

Russell [52] developed a machine. for testing the bearings 

subjected to the impulsive type of load produced in compression-

ignition-engines. The procedure for assesing the load capacity of 

bearings were described and the maximum impulsive pressure to cause 

failure in bearings of different materials were given in tabular 

form. After conducting a large number of experiments on an engine 

big-end bearing, the following conclusions were drawn. (i) with the 

tin-base and lead-base linings the reduction of the thickness of the 

linings from 0.508 mm (0.02in) to 0.1524mm (0.006in) increases the 

load capacity, (ii) the copper-lead linings, produced by the 

sintering process have higher-load-carring capacity than the cast 

copper-lead lining,  (iii) the use of low viscosity oil reduces the 

running temperature of bearings 

In 1961_, Blount [2] studied the effects of some design 

parameters on the fatigue resistance of big-end bearing 

experimentally. He used various combinations, of bearing materials 

and measured the fatigue strength, under static and dynamic load. In 



5 

`the case of big-end bearings, he studied the influence of housing 

rigidity, effect of shell thickness, oil groove and bearing 

' clearance. He concluded that it was common place to blame fatigue 

failures of the bearing shell whereas the bearings might well be 

blameless and suffering might come only from the weaknesses of its 

companion housing. He also concluded that (i) ungrooved bearing have 

a higher fatigue strength, 	(ii) during the firing load, an oil 

groove in the engine bearing does not reduce its temperature, (iii) 

variations in diameteral clearance affect•the fatigue life, and (iv) 

the aluminium-tin shell bearings appeared to have quite high fatigue 

strength. 

Horsnell and McCallion [28] made an attempt to take into 

account 	more accurately the effects of oil film disruption in a 

finite width 	journal bearing and to estimate their imporatance by 

comparison with 	on evaluation ignoring such disruptions. It was 

assumed that in the cavitation region, the lowest possible pressure 

was constant and equal to the vapour pressure. The solution of the 

governing equations was obtained by a relaxation technique and the 

method was applied to the main bearings 	of 'a diesel engine 

subjected to dynamic load. 

Carl [9) and Radermarcher [53] presented their experimental 

work 	which was done on bearings subjected to sinusoidal loading or 

loads varying in magnitude and direction. 

For _the analysis of dynamically loaded bearings, a graphical 

method called Mobility Method which can also be applied for big-end 

bearings, was presented by Booker [3). The limitation of the 

mobility method is that it is only applicable for bearings with 

circumferential symmetry and axially straight profile (ideal 
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bearings). 

Lloyd, Horsnell and McCallion [38,39] investigated the 

performance of dynamically loaded finite bearings using a high speed 

digital. computer. In the first paper [38], they presented the theory 

of the method used. The method rests on the assumptions that the oil 

film is isothermal and the inertia forces associated with the 

bearing accelerations are not important. Numerical solutions of the 

Reynolds equation were obtained and stored for both wedge and 

squeeze film terms, at a number of bearing eccentricities which 

require a large storage in the computer. At intermidiate 

eccentricities, the required pressures were obtained by 

interpolation. Finite difference method was used to solve the finite 

bearing problem. In the second paper [39] they demonstrated the use 

of the method described in [38] by studing the main and big--end 

bearing of a diesel engine and drew some useful conclusions; (i) an 

increase in the minimum film thickness by 14% and a decrease in the 

peak pressure by 3% was noticed when the effect of connecting-rod 

obliquity was neglected, (ii) the minimum oil film thickness 

decreased with the increase of inertia load, since the maximum load 

is caused principally by the gas load, which the inertia load 

opposes. The result was that the maximum cycle load decreases with 

the increase of inertia load, 	(iii) the most striking change 

affected by the increase of bearing clearance was the reduction in 

the temperature rise across the bearing. 

McCallion, H.,et al [43) also developed a test rig to verify 

their theoretical results [38]. Two perpendicular load components 

were applied mechanically through cam driven spring levers. Load 

records and journal loci were obtained and compared with the results 
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from computer program described in [38). Correlation between the 

theoretical and experimental results was good. The measured load 

carrying capacity was, however, found to be lower than that 

predicted. This may be accounted for by the variation of oil 

viscosity with temperature. 

Martin and Booker [44), have studied the influence of engine 

inertia forces on the minimum film thickness in the big-end bearing 

using the engine data from Ref. [38]. The effects of connecting-rod 

obliquity and clearance on the minimum film thickness were studied 

using the numerical mobility method with ,n-film and short bearing 

approximations. They concluded that the eccentricity ratio in the 

big-end bearing due to peak firing load seldom exceeds that due to 

the inertia load alone, although this load was smaller than the peak' 

firing load. Therefore, as an approximation, the gas force was 

neglected in the study. The effect of a reasonable change in crank 

throw to connecting-rod length ratio on minimum film thickness was 

found to be small. For a more practical range of - eccentricity ratios 

encountered (above 0.80), the oil film thickness was found to 

increase with decrease in clearance. 

Campbell e't al [10], compiled the research work which was 

carried out before 1967-68 and presented the methods of solution and 

the results for big-end bearings in a very systamtic way. This 

review paper has proved very helpful to the big-end bearing design 

engineers and investigators. To analyze the big-end bearing, most of 

the investigators have selected the Ruston-Hornsby 6 VEB-X Mk-III 

engine as an example. In this review,, the results for the 6 VEB-X 

engine big-end bearing were presented with greater emphasis. The 

journal centre cyclic paths, Fig.1.2, and variation of the minimum 
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(g) Cyclic path computed by Horsnell 
	

(h) Cyclic path computed by Lloyd 

(j) Cyclic path based In Hahn Someya solution, 	(k ) Cyclic path based on modified Holland solution;  
computed by Karlsruhe Technical University 	computed by Rheinstahl Hanomag Programme' 
(N.B2b/d-4.0.5 instead of 0.282 ) 

(I) Cyclic path base• on Hahn-Someya solutions  (m) Cyclic path from the dynamic similarity 
computed by Rheinstahl Hanomag Programme2 	machine at Glacier Metal Co. Ltd. 
( N.B. b/d=0.5 insted of 0.282 ) 

Fig.1.2.Predicted journal centre cyclic paths for the Ruston-Hornsby 6 VEB-X Mk-III 

connecting-rod bearing (10 ) 



(a) Cyclic path using equivalent speed concept• 

(c)Cyclic path by Blok's graphical method as 
carried out by the authors (using iso- 
impulse map based on Herrebrugh and 
and Moes) 

540°  

270°  

60° 

(e) Cyclic path computed by Booker(using 
short bearing theory and inertia loading 
only ) 

(b) Cyclic path based on Booker (short bearing 
theory) (author's graphical method ) 

540 180°  

(d) Computed cyclic pathos computed and 
carried out by Herrebrugh and Moes 

540°  
70°  

450 

360°  
(f ) Cyclic path computed by Booker (using 

Warner finite bearing theory and inertia 
loading only ) 

9 
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film thickness, Fig.1.3, obtained by other investigators using 

constant viscosity and different techniques were reviewed. These 

techniques vary in their approximating assumptions, computation 

time, and method of solution. 

Butcher [4] conducted the experiment on the same 6 VEB-X engine 

in 1967-68 and measured the oil film thickness in one complete cycle 

with the help of capacitance transducers. He plotted the variation 

of the minimum film thickness against crank angle and found the 

value of the minimum film thickness as 3.17pm (0.000125in). 

Lloyd and McCallion (40] presented another computer program 

with  modifications for the design of the big-end and the main 

bearings of  the diesel engine. They claimed that their computer 

program has the capability to solve bearing problems of (i) two or 

four strokes cycle engine,  (ii) multi-cylinder engine, (iii) Vee 

engines having  different firing• orders in two cylinders, (IV) 

different gas load  cycles in the cylinders, and (V) articulated 

connecting-rod configuration. The computer program can also analyze 

the main  bearings. The oscillation of the big-end bearing was 

included in the  analysis. The program can accommodate one or two 

lands in the bearing but it can not handle bearing deformation, 

axial grooving, non- circular bearings, partial circumferential 

grooving or oil holes. 

The viscosity of the lubricating oils significantly varies with 

temperature. Hence it is necessary to know the temperature rise in 

the fluid-film of the big-end bearing accurately. Furuhama [15] 

attempted to measure temperature variations in the big-end bearing 

with thermocouples. He developed a system to measure the temperature 

in various parts such as piston, small-end, connecting-rod, big-end 
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and main bearings, directly using a running engine. He graphically 

showed, how the temperature varies from piston to main bearing and 

to the sump in a running diesel engine. In the case of big-end 

bearing, the results indicated that there was a very small variation 

in the temperature. 

In 1968, Lloyd and McCallion [411 modified their computer 

program of Ref. [40] to accommodate the effect of groove or oil 

holes. They presented some curves to show the effect of half-groove 

(1800) and 	full-groove in the big-end bearing. For the bearing in 

- the example, they found that the maximum eccentricity ratio reduced 

from 0.970 to 0.960 due to changing a full groove to half groove, 

but suggested 	that the temperature rise and the peak oil film 

pressure are likely to be substantially smaller in the case of the 

full-groove bearing. 

Ross and Slaymaker [54] developed a computer program to analyze 

the bearings subjected to the dynamic loadings and used particularly 

for engine main, big-end,and small-end bearings. They used the short 

bearing approximation with an equivalent speed criteria. The . 

positive 	pressure was assumed up to 1800  of the circumfrerence 

(n-film approximation). They studied three cases. The first case 

deals. W i t h an 1, -4- ; 
o f the pth within A hushing 

subjected to a constant, unidirectional load starting from an 

arbitrary position. The second case traces the path of crank pin in 

a 6 cylinder-in-line diesel engine and compares the minimum film 

thickness with experimental results. Finally, the third of these 

studies pertains to the paths taken by the crank pin and the journal 

of crank shaft in a V-8 diesel engine and relate them to the wear 

pattern observed in an associated bearing subjected to dynamometer 
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testing. 

Dehart and Harwick [12] presented design considerations for the 

automotive engine bearings and emphasized the importance of the 

following factors in their design; size of bearing, load, speed, 

friction, oil flow, heat generated, and film thickness. There are 

many factors other than those normally considererd in a purely 

analytical program which have enormous effects on the bearing 

performance. Some of the more important considerations are those of 

lubrication system, geometry, distortion and bearing material 

selection. 

Booker [5] later developed a new approach to find the maximum 

film pressure in the oil film under dynamic loading.' He suggested a 

conceptually simple method for calculating film pressure from 

journal orbit computation which is also applicable to the big-end 

bearing. In the paper, the data maps were presented for short 

bearings. 

Wear and fatigue in a bearing are directly related to the film 

thiCknes and pressure in the lubricant film. Again by using the 

short bearing approximation and equivalent speed criteria, Ross [55] 

found how the film ,pressure varies with load rating, bearing angular 

coordinate, crank angle, chaff mnnlca 'anti tho vAriAtinn of minimum 

film thiCkness. 

The graphical mobility method has been converted into a 

numerical approach [6] by Booker himself. He reviewed the mobility 

method and given details for its numerical handling, with an example 

of reciprocating machinery. For a 6 VEB-X Mk-III engine bearing, he 

computed that the maximum eccentricity ratio 0.960 ( corresponding 

to the minimum film thickness of 130x10-bin ) occurs at 2750  after 
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the top-dead-centre (TDC). 

Direct measurement of bearing centre locus in the big-end 

bearing is a very tedius job. But a successful endeavour was made by 

Hiruma and Furuhama [29] in their work. They developed a special new 

device to measure the film thickness or the bearing centre locus in 

the big-end bearing directly in the running condition of engine. By 

means of their technique using inductance transducers, the 

measurement could be made with stable results at 5000 rpm upto full. 

load. They have presented various loci and concluded that (i) the 

crank pin centre makes a tour along the vicinity of the bearing 

surface due to the inertia force. In the combustion period, however, 

the crank pin centre passes near the centre point of bearing, (ii) 

increasing the speed and the oil temperature brings the locus of the 

pin closer to bearing surface, i.e., the minimum oil film thickness 

decreases. 

During the late sixties, the finite element method also 

appeared  in the lubrication field. In 1973, Shelly and Ettles [601 

used the  FEM technique for the calculation of locus paths in 

dynamically loaded bearings. In this approach, the speacial 

properties of an  exponentially shaped element were used togther 

with a satisfactory approximation for, the axial pressure profile. 

This approach was claimed one hundred times faster than a 

conventional finite difference solution of equivalent accuracy. The 

predictor-corrector  method, to march out a locus path were briefly 

out lined by Shelly  and Ettles and several typical loci were 

presented as examples. The main problem encountered in the analysis 

was the unstable tendency for the high-order predictor-corrector 
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method in certain loading 	conditions, for example at the gas 

ignition point during the loading cycle of a big-end bearing. 

Blok [7], using the moblility method, developed a different 

approach called Impulsive Method and claimed that this method 

carries integration one step farther than the mobility method and 

can be applied to the bearings under dynamically loading. No 

particular example was, however, solved by him. 

Ritchie [56) used a semit-analytical method of predicting 

bearing 	centre loci in diesel engine bearings. A somewhat original 

feature of the method was the use of an approximate solution of the 

. Reynolds 	equation which is similar to, but more accurate than, the 

short bearing solution. 

Selection of materials for the bearings of high speed diesel 

engine is a difficult task. Bearing materials are selected on the 

basis of load carrying capacity, strength, temperature, coefficient 

of friction, dirt embeded ability, corrosion resistance and ability 

to accept misalignament. Unfortunately no one material possesses all 

the desirable properties and for this reason, the bimetal and 

trimetal bearings having steel back have been evolved. Davison [13], 

in his paper, outlined many such combinations of the bimetal and 

trimcf al hoar inn hmwing  	Pc, ri.mimcIrl tht th,=,  m=te-, i= 1  'A' 

(as designated in the paper) containing 14% to 20% lead, 4% to 6% 

tin and remainder copper have the rating 62.1 MN/m2  (i.e., load 62.1 

MN per unit area of the bearing) which is the highest among other 

materials 'B' and 'C'. He also explained the manufacturing method of 

these bearings. 

Goodwin and Holmes [20,21) have also made a successful attempt 

to 	obtain the continuous monitoring of oil film thickness [201 and 
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temperature [21) in an engine bearing. The measurements of oil film 

thickness were successfully carried out using an inductive method. 

They presented the variation of minimum film thickness for plain 

model, half-grooved model, grooved-model bearing under full load, no 

load, no firing conditions at 750 rpm, 850 rpm and 920 rpm speed. 

The temperature measurements were made in a big-end bearing of 

marine diesel engine. For this bearing, they studied the effects of 

dilution of lubrication oil by fuel, effect of priming the 

lubrication system on the big-end bearing temperature distribution. 

No adverse effects were produced even by a short period of running 

with the oil diluted by 13% fuel. With regard to priming, their 

results suggested that when an engine was to be brought to full 

speed and put on load in a very short time after starting, priming 

was a very worthwhile safegaurd even after a brief shut-down period. 

Fantino et al [16,17] considered the deformation of the body of 

the big-end bearing to obtain the minimum film thickness. In the 

first paper [16], the elastic deformation and pressure distribution 

were obtained by iterative method in the steady state condition 

under realistic speeds and loads (5500 rpm, 25000N). Plane 

elasticity relations were used in the study. The effects of the 

following' parameters were investigated; (i) bearing thickness (th ) 

and bearing clearance (c), (ii) journal speed (N.) and applied load 

(W),  viscosity (.1„,) and piezoviscous coeffecient (ap). 

It was found that as a result of the bearing body deformation, 

the maximum pressure and the attitude angle both decrease and the 

relative eccentricity greatly increased. An empirical dimensional 

equation for the minimum oil film thickness (h.,) was derived 

numerically for the bearing under study [161 and the expression of 
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0.3.2 

g. N. 0.5 	B 	th 
h;„ N ( 	 ) 	(1+0.06x10 	a,„) C 	 

c  O . 09 

In the second paper [17], they verified their theoretical 

results by experiments. A speckle image of the rough surface of the 

big-end bearing was formed and'recorded on a holographic plate both 

before and after the load was applied. This plate was then examined 

point by point in a diffractometer. 

Generally, in heavy duty diesel engines trimetallic bearings 

are used. The bearing construction consists of lead-irdium overlay, 

copper-lead-tin bearing lining and a low carbon steel back. A nickel 

barrier is also plated between the overlay and the bearing lining to 

prevent tin diffusion from the overlay to the lining. When the big-

end bearing overlay was examined of various field returned diesel 

trucks with the help of Scanning Electron Microscope (SEM), Patel 

[49] found a premature overlay removal of such bearings. He 

concluded that the oil balls, (discrete spherical particles) 

composed of oil additive elements, were the, contributing factors to 

premature overlay removal. 

After monitoring the temperature and film thickness in their 

previous work, Goodwin and Holmes [22] tried to measure the 

deformation of the housing and the temperature variation across the 

film. They presented the distorted clearance circles at 3000 rpm and 

also the temperature variations for different loadings. The maximum 

variation of temperture was of the order of 60C-70C for the majority 

of the load cases studied. 
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In 1983, a second review work on engine bearings was presented 

by Martin [45). In this paper, some of the important recent 

- developments in the engine bearings design techniques were 

highlighted. The availability of increased computing power has 

enabled considerations of more realistic assumptions regarding 

bearing, behaviour; these include, among others, oil feed features, 

oil film history, non- circular bearings, improved prediction of 

main bearing load, flexible housing and special bearings. References 

to these advances are made in the review together with illustrations 

of how they affect the bearing performance. Experimental 

investigations were also presented which help to verify and give 

confidence to the analytical predictions. Ultimately, this paper 

[45] is useful to the designers and researchers of engine bearings. 

The curve-fits [23] for journal bearing systems were used by 

Goenka and a set of analytical curce-fits were presented. The set 

includes the two components of mobility vectors, location and 

magnitude of the maximum film pressure, and the starting and 

finishing angles of the pressure curve. For an ideal journal bearing 

system, the curve-fits of Goenka [23] give results with an accuracy, 

comparable to that of an expensive finite element analysis. With the 

help of the curve fits for the case study of a big-end bearing, the 

miniumum film thickness was calculated as 3.50 )m and the maximum 

film pressure as 34.57 MPa. It was concluded that the CPU time 

requirement was very small in comparison to that of FEM. But the 

curve-fit method is also only applicable to ideal bearings. Goenka 

[24], in his further work solved the same problem [23] with finite 

element method. An important feature of his analysis was relatively 

low computing cost. He solved an illustrative example with a total 
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of 17 different cases of a connecting-rod big-end bearing, 5 of 

ideal. bearings, 6 of various groove/hole configurations and the 

remaining with different geometric variations of the bearings. 

Fant'ino, Godet and Frene (18] have studied the dynamic 

behaviour  of an elastic connecting-rod big-end bearing using an 

iterative  method. Reynolds equation was solved-using short bearing 

approximation and deformations in the bearing housing were 

obtained with plane elasticity relations.They calculated the locus 

of the bearing centre for the dynamic loading conditions of a 

big-end bearing. Instantaneous elastic deformations and pressure 

distributions were obtained for different values of the load. 

Variation of the minimum film thickness, torque and flow rate 

with respect to crank rotation were compared with those obtained for 

a rigid bearing housing under the same dynamic conditions. Results 

show that with respect to the rigid bearing case, instantaneous 

radial and tangential deformations and also radial rates Of 

deformation, (i) increase significantly the eccentricity ratio which 

can vary between 0.5 and 3.8 over two crank rotations, (ii) increase 

slightly the friction torque but significantly the axial flow, and 

(III) decrease the minimum film thickness by up to 15% only. 

Fantino and Frene [19] used the earlier work [18] to compare 

the  performance (minimum film thickness, torque and flow rate) of 

two  different bearings of petrol and diesel engines. Their results 

show  that of all the mechanical factors considered (load, speed, 

viscosity,...), the most significant was the load which together 

with the elastic deformation of bearing body governs the film 

thickness .distribution. The results calculated for each respective 

load diagram and speed condition show that, (i) the eccentricity 
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ratio, which varies between 0.5 and 3.8 for the, petrol engine, 

varies only between 0.6 and 1.0 in the diesel engine, (ii) torque 

increases slightly in both cases, 	(iii).  flow increases 

significantly in the petrol engine but does not vary for the diesel 

engine, and (iv) the minimum film thickness decrease by 15% for the 

petrol engine and increases by 20% for diesel. 

The difference between petrol and diesel engine bearings 

performance was attributed to the difference in their load diagrams 

and particularly to the fact that the very high loads obtained with 

the diesel occur only over a short arc situated on both sides of the 

connecting-rod axis where under compression the connecting-rod is a 

very rigid structure. 

Oh and Goenka [47] also studied the elastohydrodynamic (EHD) 

lubrication of journal bearings under dynamic loadings. The Newton-

Raphson algorithm was used in conjUction with Murty's algorithm [46] 

and the finite element method to analyze the EHD lubrication of a 

journal bearing system under dynamic loading condition including 

cavitation, boundary conditions to establish the positive pressure 

zone. Solution for the film pressure, the film thickness and its 

rate of change with time were obtained as functions of the crank 

angles. 

A numerical method was proposed by Tempel, Moes and Bosma 

[64,65] in their recent study for calculating the film thickness in 

flexible short journal, bearings under dynamic loading. The system of 

elastohydrodynamic integro-differential equations were discretized 

directly and solved by a two step Newton-Raphson method. The results 

for the big-end bearings of medium and high-speed combustion engines 

were compared. In their second paper [65], a starvation model was 
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incorporated to their previous work [64]. The system of EHD integro-

differential equations were coupled with continuity equation for the 

lubricants, considering central circumferential oil grooves and a 

constant supply pressure. Results for several groove geometries were 

compared with those for a fully flooded bearing. 

LaBouff and Booker [42] studied the 6VEB-X engine bearing 

including elastic deformation of the bearing body. Due to a large 

requirement of computer time, the results were obtained only for a 

finite crank rotations. The minimization of the functional was used 

for _hydrodynamic solution and a two dimensional model for 

deformation computation. 

The literature indicates a considerable scope for further 

studies on the big-end bearings considering such aspects as pressure 

and temperature dependence of viscosity, non-Newtonian 

characteristics 	of lubricants, misalignment between the crank pin 

and the bearing, and deformation of the bearing body. This thesis 

presents the 	solutions of the following problems of a big-end 

bearing. 

1. Rigid bearing with isoviscous lubricants, 
2. Rigid bearing with piezovisgous lubricants, 

3. Rigid bearing with lubricants having viscosity variation due to 

pressure and temperature, both (piezo-thermal effects), 

4. Rigid bearing with non-Newtonian lubricants, 

5. Ungrooved bearing with parallel and skewed axes, 

6. Elastothermohydrodynamic (ETHD) effects (i.e., solution of 

bearing considering the flexibility of the bearing body and 

viscosity variations with temperature and pressure, both). 

A general solution procedure evolved in a modular form and 
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briefly outlined here, is used to solve all the six problems. The 

clearance space between the bearing and the crank pin is discretized 

into a mesh of 12x4x1 three dimensional isoparametric elements, each 

containing 20 nodes. Full Sommerfeld boundary condition is used to 

solve the Navier-Stokes equations which are used in the analysis, 

instead of the traditional Reynolds equation, to account for the 

variation of viscosity. The cavitation effect is accounted by 

replacing the negative values of nodal pressure by zero values. At 

each crank angle.  interval, the pressure and velocity fields are 

established by solving the momentum and continuity equations in 

cylindrical coordinates. The finite element formulation is based on 

Galerkin's method and a direct iterative technique is used for the 

solution of global system equations. The boundary conditions are 

introduced at the element stage to minimize the computer storage 

requirements. The global system equations are solved for the columns 

of the right hand side simultaneously. to evaluate the pressure 

-fields due to wedge, squeeze and whirling actions of the fluid-film. 

For the time marching scheme, Euler-Cauchy's predictor-corrector 

method is employed which is found more stable and computationally 

econonmical in comparison to Runge-Kutta or any higher-order 

prediCtor-corrector methods for this problem. An emphasis is given 

to calculate the time histroy of the bearing centre with respect to 

the crank pin centre for one duty cycle, hereafter called as bearing 

centre orbit. 

To obtain the bearing centre orbit for a rigid bearing with 

isovicous lubricants, the solution is started from an arbitrarily 

selected crank angle 1100  with suitable time steps. 

The solution is continued even beyond two revolutions (7200) 
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unless the orbit repeated itself. In this case the computed minimum-

film thickness in the orbit is very close to the reported values 

[10] which supports the validity of the algorithm. 

A circumferential groove to supply the lubricant in the bearing 

is considered as a typical example, Fig.1.4. This groove is 

accounted in the analysis by considering the resulting symmetry and 

solving for  only one land of the bearing which shares half of the 

load on the  bearing. The  pressure in the groove is taken as 

ambient pressure. Grooves in the bearings significantly alter the 

peak film pressure. Fig.1.5 shows the effects of introducing a 

groove into a bearing while maintaining the same projected area. The 

variations of the maximum film pressure and the minimum film 

thickness are also presented as a function of crank angle in the 

results. 

In the case of rigid bearing with piezoviscous lubricant, the 

viscosity is modified using the  pressure viscosity  relation 

apt) 
= e  ) where ap is the piezoviscbus coefficient and p is the 

fluid-film pressure.. Using this relation with a suitable value of 

ap, the results (bearig centre orbit, the minimum film thickness, 

the maximum pressure, and the power loss) are 'calculated. A 

comparison of these results is also made with those of isoviscong 

case. 

It is a well known fact that the viscosity of lubricant is 

sensitive to temperature variations. Although according to the 

experimental data available, the temperature rise in connecting-rod 

big-end bearings is not high (only of the order of 100  to 250  C), 

this rise of temperature reduces the viscosity of lubricants enough 

to affect the performance of the bearing. The literature on the 
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solution of the big-end bearing with lubricants having variable 

viscosity is scant. A truly general and realistic solution of the 

connecting-rod big-end bearing problem should include piezo-thermal 

effects. These effects are included in this thesis for both , for 

rigid bearing and for flexible bearing. For a rigid bearing with 

piezo-thermal effects 	the bearing centre orbit, the minimum film 

thickness, the maximum peak pressure, the maximum temperature rise 

and the power loss are calculated. 

For the rigid bearing, the effect of non-Newtonian behaviour of 

lubricants is also studied. In the case of non-Newtonian lubricants, 

the relation between 'shear stress (r) and shear strain rate (1) is 

non-linear. For example, Hsu and Saibel [30] expressed shear strain 

rate in terms of -powers of shear stress (r + k 1.3  = Y ) for the 

analysis of infinite width slider bearings. This -relation was claimed 

to be more representative over a wide range of shear rate. There are 

several other models available for non-Newtonian behaviour of the 

lubricants. In the algorithm used by the author, any'non-Newtonian 

model [35] can be accommodated, but in this thesis, bearing centre 

orbit is calculated using the cubic 	shear 	stress law 	model 

stress law model (r+kr = I) by taking a suitable value of constant 

K. The square root of the second invarint of shear strain tensor is 

taken in place of Y and the corresponding equiqvalent shear stress 

(r) is calculated using Newton-Raphson method. The apparent viscosity 

at each Gaussian integration point is calculated as A. = (r / Y) 

and the solution is upgraded using these apparent viscosities in each 

iteration. The variations of the minimum film thickness and the 

maximum film pressure as a function of crank angle are found and 

compared with those of the Newtonian lubricant case. 



26 

The bearing centre locus, values of the minimum film thickness, 

and the maximum film pressure are also obtained at 100  interval for a 

finite crank rotation using the curve-fit model. In this model, a 

fourth degree polynomial is fitted, using the least square method, 

on the availbie experimental data of g. and Y for a non-Newtonian 

oil. By using the computed velocity field in the bearing at each 

crank  angle, the values of strain rate (i) are calculated at each 

Gaussian 'point and by introducing these values in the polynomial 

expression (non-dimensional form), the values of apparent viscosity 

().t.) are calculated and the solution is then  upgraded  in an 

iterative manner. The results obtained by the curve-fit model and by 

cubic shear stress law model are found to be almost identical. 

The big-end bearing in the example has a circumferential groove 

inside. This bearing is also studied assuming it to be without groove 

for the cases of parallel and skewed axes. In both the cases, the 

bearing centre orbits, the variations of the minimum film thickness 

and the maximum film pressure as a function of crank angle are 

calculated.' 

It is established that in a heavily loaded bearing, the fluid-

film pressure deforms the bearing liner significantly even when the 

outer surface of the bearing liner is encased in a fixed housing. It 

has been observed that the big-end bearing behaves as a flexible 

bearing and its elastic distortion due to hydrodynamic pressure is 

often larger than the nominal radial• clearance. This deformation 

changes the film geomtry and in turn the performace characteristics 

of the big-end bearing significantly. In this thesis, the work is 

extended to study the effect of ETHD. In the ETHD case, to' start 

with, the pressure and velocity fields are obtained considering the 
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bearing as rigid and the lubricant as isoviscous. Using the 8 noded 

isoparameteric elements and elasticity relations, the nodal 

displacement components at inner and outer surfaces of the bearing 

body are obtained. The nodes on that portion of the bearing body 

which is integrated with the connecting-rod are considered as fixed. 

The radial displacement components dominate the displacement field, 

therefore, the other two components (axial and circumferential) are 

neglected. The fluid-film thickness is then modified by adding algeb-

raically the radial displacement components to the corresponding 

radial coordinates of the nodes which lie at the inner surface of the 

bearing body. Using the computed velocity field, the energy equation 

is solved to obtain the temperature field. The relation 
(app-8T(T-1)) 

u. = e 	is used to calculate the values of apparent 

viscosity at Gaussian points. Using these upgraded values of 

viscosity and the modified film 'geometry due to deformation, the 

modified pressure field is obtained which yields the fluid-film force 

components. These modified film force components are substituted in 

the time marching scheme, and the bearing centre orbit points are 

then obtained. A large computation time is required for convergence 

at each time interval, therefore, the ETHD effect on the bearing 

performance is studied for only a finite crank rotation using 20  

interval. 

The algorithm evolved in this work is quite general and can be 

implemented for the solution of connecting-rod big-end bearing with 

isoviscous/piezoviscous/non-Newtonian lubricants. It can be used to 

study the effects of elastothermohydrodynamic lubrication and piezo-

thermal viscosity behaviour of lubricants on the performance of the 

big-end bearing. The computer program can also handle the solution of 
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big-end bearing without groove and with misalignment of the axes. 

From the results obtained for the rigid bearing cases, it can be 

concluded that non-Newtonian and piezo-thermal effects yield smaller . 

value of the minimum film thickness in comparison to that in the 

isoviscous case. The piezoviscous effect slightly improves the value 

of the minimum film thickness. In the case of the ungrooved bearing 

with parallel axes, the minimum film 'thickness is appreciably larger 

in comparison to that in the grooved bearing. The effect of 

misalignment is also noticeable in the ungrooved big-end bearing. 

For accurate analysis and design it would be necessary to 

consider ETHD effects, it, however, requires a large CPU time. From a 

practical point of view, therefore, one may analyze or design the 

connecting-rod big-end bearing considering it as a rigid bearing with 

non-Newtonian lubricants or the lubricants having piezo-thermal 

viscosity characteristics. 
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CHAPTER 2 

FLOW—FIELD 

The flow-field description in the clearance space of a journal 

bearing, when expressed by Reynolds equation, implies several 

assumptions. In addition to the assumption of negligible body and 

fluid inertia forces, Reynolds equation assumes that the viscosity of 

the fluid in the clearance" space is also constant which is not always 

true. It is difficult to accommodate the variation of viscosity 

across the film thickness whether due to piezoviscous effect, non-

Newtonian fluid characteristics and or by thermal effect in the 

analysis through Reynolds equation. .Therefore, in this analysis, the 

momentum and continuity equations in the cylindrical coordinates, 

which conform to the actual geometry of the fluid-film profile in the 

clearance space of a journal bearing, are solved numerically by 

finite element method using Galerkin's technique and the variation of 

viscosity is incorporated by upgrading the solution vector 

iteratively. 

2.1.1 Navier-Stokes Equations (cylindrical coordinates) 

The nondimensional momentum equations in cylindrical coordinates 

governing the flow-field in the clearance space of a finite journal 

bearing are given as 

Du  u v  R Op  2  dv 
Re [---- + ----] + -  = A. [\/2u +  -  (2.1a) 

Dt  r  7 60  r2 60  F2 

-•■• 

Dv  u2  _ Op_  2 du 
Re [---- + ---] + R  = p 	[\/2 v - 	- ---] (2.1b) 

Dt  r  Or  r2  60  F2  

Dw  6p 
Re (----) + 

Dt 	dz 
[ \/2 7

.41 (2.1c) 
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where, 

D  1 6 
+v 	 

DT  R at r 68  OT 

and 
02 
 

1 6  1 62  1 62  
\/2 =    ) 

(572 T di r2 002  R2 6z2 

In the present analysis, the fluid inertia is not included. So, 

neglecting the terms representing the local and convective fluid 

inertia, Eqs.(2.1a-2.1c) reduce to 

idp — 
 — 2 6V 

  = M. [\/ 2  U  ---] 

Y.  00  -r-2 60  F2 

_ OP—  — 2 6u 
R  p. [\/- v - 	---] 

67  r2 de  F2 

(2.2a) 

(2.2b) 

Op 
\/2 w) 
 

(2.2c) 
6i 

2.1.2 Continuity Equation: 

The continuity equation for a source free control volume is 

66" 1 6(@u)  6(@v)  @v 1 6(@w)  
+   +-   +   +   = 0  (2.3) 

61  T  de  di-  i  . g  di 

If the fluid is homogenous and incompressible, as in the case of 

lubricants, the density is constant which simplifies Eq.(2.3) to, 

1 du  6v v 1 Ow 
  + (  + -) +   = 0  (2.4) 

i de  di F N di 

2.2 BOUNDARY CONDITIONS: 

The boundary conditions which can be applied to the flow-field 

are either in terms of pressure or in terms of velocity components. 

For the bearing, used as an example [10], there is a circumferential 

groove all around in the middle of the inner surface of the bearing , 
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hence, the following boundary conditions are applied at the element . 

equation stage to minimize the computer storage required for the 

global fluidity matrix. 

p ( 9 ,z ) = 0 
	

at z - = ±15 	 (2.5a) 

1 	cosoi 	E 	en 
( 1 + - ) (1 + 	 ) 	sine + 	cos9 	= 	+ 171-  

R 	 j(v-sin 2 9.1) 	E-4 	R 
(2.5b) 

v = (6 / R) cos° + (en / R) sing , 	r - = R + h 	(2.5c) 

w - = 0 , 	r = R , 	+ h ) 	 (2.5d) 

- = 0 , 	r - = R 	 (2.5e) 

= 0 , 	r = R 	 (2.5f) 

where , h - = 1 + E cos 0 . 

2.3 FINITE ELEMENT FORMULATION: 

The complete circumference of the bearing is divided into 48 

isoparametric elements. The discretization has been done by twelve 

divisions circumferentially, four axially. In the circumferantial 

direction the grid is non-uniform, having finer spacings in the zone 

of maximum pressure. In each element, velocity components are 

approximated by a quadratic variation (20-nodes) and the pressure by 

a linear variation (8-nodes).. This mixed type of formulation is 

favoured by Zienkiewicz [69] and other [33]. 

Applying the orthogonality condition of Galerkin's finite element 

method [33,69] to the momentum (Eqs.(2.2a)-(2.2c)) and continuity 

(Eq.2.4) equations, the following equations are obtained for an 

element in the clearance space-of a journal bearing system. 
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rrr  R dp 2 dv  u r 

J,3 Ni t-  - 17-(\/2171-  + -  - ---)) - de di-  dz =0  (2.6a ) 

e r 
 

(50  r2 00  r2  R 

rrr Op  _ 2 du v r  _ 
JJJ Ni [i - u,.(\/2v - 7--  - ---)] - de dr dz=0 (2.6b) 

e 
_ 

OT  r2 00  r2 R 

Iff (v2w)] 	dO dr 

e 

Op _  _ r 

(51 
= 0  (2.6c) 

^ ^ 
1 du  v  dv  1 Ow r 

HT 1.1 [- ____ 4. ___ + ____ + ___ ____] _ de dr dz = 0  (2.6d) _  _ 
e r 00  r  Or  R dz 

where i = 1,   , 20 velocity nodes, 

= 1,   , 8 pressure nodes, 

and 

_ 20  _ _ 20  _ _ 20  _  8  _ 
u = E Ni ul , v = E Ni vi , w = E Ni  w1 , p = E Mj  pi  . 

i=1  1=1  1=1  j=1 

The shape functions for velocities (Ni, i=1,2,3,....,20) and 

pressures  (Mi,j=1,2,3,   ,8 ).  in terms of local coordinates 

q  ,)  ), are given below. 

For corner nodes, 

1 
Ni = - (1 + 4'0) (1 + 	(1 + 50) (ri o + Y(o + Ito - 2) 

8 

For mid sides nodes (1 = 0), 

1 
= - (1 - 2 )(1 + Y/o) (1 + co) 

4 

For mid sides nodes ( )71. = 0), 

1 

Ni = - (1 + (3) (1 - /2 ) (1 + CO) 
4 

For mid sides nodes ( 51 = 0) 

1 

Ni =  (1  'i0) (1  10) (1 ''' 12 ) 
4 

(2.7) 

(2.8) 

(2.9) 

(2.10) 



and 

1 
= - (1 + (3) (1 +  (1 + /10) 
	

(2.11) 
8 
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where,  o =Us. , 	/70 =  171 ,  co = 151. and Et, qi, qi are the values 

of (  ) at the its node. 

Evaluating the integerals involved, after proper substitutions, 

the element equations (2.6a-2.6d) reduce to the following form, 

651° 	=  0 } 
 

(2.12) 

where [G]im the element fluidity matrix, is given by 

e 

= 

  

  

 

and 

eT 
{a}- ° = [-O-u 	Op 1 	= [Ux V1 Wa. U2 V2 W2 	 

eT 

	

U20 V20 W20 pi P2 P3 	psi 

KL

- 1

, KP and KIP are the submatrices for viscous terms, pressure 

terms, and continuity equation terms respectively. The coefficients 

of submatrice.p are defined as : 

Kt' = 
mn 

rr_  ONJ  ON,  1  ONI  NJ  
  + • 

.e  6r  61  r  r  r2  09  68 

1 6N, (511  Ni  
  +  NJ ) - dO dr dz 

R 2  6i 6z  r2 

for m = n = 1,4,7,   58;  i = (m+2)/3 so i = 1,....,20 

= (n+2)/3 j = 1,....  20 
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rir 	2 	aN, 
JJJ )1. E - 	Ni 	1 	de dr dz 

i2 	oe 

for m = 1,4,7,...,58; i = (m+2)/3 so i = 1,...,20 

n = 2,5,8,...,59; j = (n+1)/3 	j = 1,...,20 

	

for m = 1,4,7, 	 ,58; i = (m+2)/3 	so i = 1,...,20 

	

n = 3,6,9, 	 ,60; j = 	n/3 	j = 1,...,20 

	

m = 3,6,9, 	 ,60; i = 	m/3 	so i = 1,...,20 

	

n = 1,4,7, 	 ,58; j = (n+2)/3 	j"= 1,...,20 

2Ni  ON r 
-. [31. 	----I - dO dr d z  

r 2 	*69 

for m = 2,5,8,...,59; i = (m+1)/3 so 	i = 1,...,20 

n = 1,4,5,...,58; j = (n+2)/3 	j = 1,...,20 

6N1  6NJ 	Ni  ONj 	1 6NI 6Nj 	1 	aNi  r 	_ _ 
jjj  -  +  +  ----] - d9 dr dz 
e 	6i 	Or 	r 	r 	r2 6e 	60 	R 2  JE 	R 

	

for m = n = 3,6,9,...,60; i = 	m/3 	so 	i = 

	

j = 	n/3 	j = 1,...,20 

irr 	6Ni 	_ - 

	

RP  = JJJ [- 	Mj] - de dr dz 
mn e r 68 K 

• for m = 1,4,7,...,58; i . = (m+2)/3 	so 	i = 1,...,20 

	

n = 61,62,...,68; j = (n-60) 	j = 1,...,8 

6N1 

	

= J[- 	Mil - d8 dr dz 
e 	Or 

= 0 

e 
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for n = 2,5,8,...,59; i = (m+1)/3 	so 	i = 1,...,20 

n = 61,62,...,68; i = (n-60) 	j = 1,...,8 

6N1 	z 	_ _ 
jj 	--:7 11J) 2  dO dr dz 
e 	6z 

for m = 3,6,9,...,60; i = 	m/3 	so 	i = 1,...,20 

n = 61,62,...,68; j = 	(n-60) 	j = 1,...,8 

pr 1 6Ni  
R IP= 	jj‘ (- MJ) 
mn e  69 

- de dr dz 

for m = 61,62,...,68; j = 	(m-60) 	so 	= 1,...,8, 

	

n = 1,4,7,...,58; i = (n+2)/3 	i = 1,...,20 

, i! 	6NI 	Ni _ _ 

	

= ,Jj 	[---- M3+ --- 1,1] - de dr dz 

	

e 	or 

for  m = 61,62,...,68; j = 	(m-60) 	so 	j = 

1 001  
= dod (2 --:— 

e R 6z 

n = 2,5,8,...,59; i = (n+1)/3 

_ _ • 
Mi) — dO dr dz 

K 

i = 1,...,20 

for m = 61,62,...,68; j = 	(m-60) 	so 	j = 1,...,8 

The derivatives 

n = 3,6,9,...,60; i = 	n/3 	i = 1,...,20 

601 	ONI 	60I 
1 	I and ---- used for defining the ' 

60 	6i 	di 

— — 
coefficients of submatrices (KL1  , KP and VP), are obtained from the 

6N1 	601 	6NI 
• derivatives ---- , 	, and ---- using the following transformation 

og 	6'7 	oq 
[69]. 

owl , 

del 
ONi 

(2.13) 
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where,  [J] is a Jacobian matrix and is 

Oa  Oi  aZ 

defined  [69]  as 

65 (5 
60" OF  aZ 

[3] = 
an  6/ 

de 
 

(2.14) 

Or  di 

(5q 65  6c 

To transform the variables to 'define the  integrals  in terms of 

curvilinear coordinates, the following relations are used [69]. 

dO dr dz = 131 (J dl caq  (2.15a) 

 

Prr r 

jjJ - dO dr di = , f I r-  IJI d an al 
1  

e R  -1 -1 -1 R 
(2.15b) 

After the element equatiohs (2.12) are modified for the boundary 

conditions (Eqs.(2.5a)-(2.5f)), the element contributions are 

assembled as usual for all the elements of the flow-field and the 

following global system equation is obtained: 

[K] fil =  + eIFTs1  136Twl  (2.16) 

2.4 NON-NEWTONIAN LUBRICANT MODEL-ANALYSIS 

Engine bearings are recognized to be of major importance in. 

relation to the overall engine performance. The specific engine. 

performance factors and associated vAriAhlos Arp Omar, oil 

consumption, fuel economy, hot starting, cold starting, noise and 

shear stability. The bearing performance depends on the oil used for 

lubrication. Engine oils are defined by both a viscosity 

classification system (SAE J300C) and by a test performance and 

service classification (SAE J183a). [37]. Bearings are believed to 

operate under hydrodynamic mixed and or boundary lubrication regimes. 

The performance of bearings in hydrodynamic lubrication regimes 
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depends on the viscosity of the oil used. For most of the oils, 

measurements of shear stress and shear rate ( at various magnitudes 

of both) indicate a linear relationship between the two. However, 

this simple relationship becomes complicated when mixed lubrication, 

boundary lubrication, pressure viscosity effects, shock loading and 

high shear rate effects are combined with engine oils modified by 

viscosity index (VI) improver additives. The polymer additives, in 

addition make the thickened oil non-Newtonian in shear behaviour. 

Many complex non-Newtonian fluids are not purely viscous (,especially 

polymeric fluids used for engine lubrication). However, measurements 

of shear stress and shear rate may be made for these materials in 

steady shearing flows, and the ratio of these quantities may be 

defined as Theological characteristic. Since this ratio is not 

constant (as in the case of Newtonian fluids), it defines a function 

which is called the apparent viscosity ()i,). 

2.4.1 NON-NEWTONIAN LUBRICANT MODELS: 

The non-Newtonian fluids may be classifed in terms of the 

variation of apparent viscosity (4.) with shear stress (r) of shear 

rate (i). The most successful attempts at discribing the steady shear 

stress-shear rate behaviour of non-Newtonain fluids are largely 

empirical. The following represents some of the more commom empirical 

models in non-dimensional form [35]. 

1. Cubic shear stress law model 

r - + Kr3  = 
 

(2.17a) 

where, K is a non-linear factor 

2. Power low model 

r - = CI (1) 
 

(2.17b) 



3. Prandtl model 

• 
F = Cx sin-i (1/C2) 

4. Eyring model 

r - = Y/Ci + C2 sin (r/C3) 

5. Power-Eyring model 
• 

r - = Ci Y + C2 sinh-3- (C31) 

6. Williamson model 

r   + pm 

C2 + 

7. Reinier-Philippoff model 

r (1 + Ci r2) 

1. + C2CJ2 
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• 
= 

(2.17c) 

(2.17d) 

(2.17e) 

(2.17f) 

(2.17g) 

where, C1, C2, and C3 are the constants (Eqs.(2.17b)-(2.17g)) 

and Tim (Eq.2.17f) is the viscosity at infinite shear strain rate. In 

Eqs.(2.17a-2.17g), 7 is made independent of the shear strain rate for 

three dimensional (0,r,z) flow and is given by (141. 

_  _  _  
.1_  6v  1 du v  1 Ow  du u 1 6v 
1 = [21(----) 2  + (- ---- + -) z  + (- ---- ) 21 + {---- - - + - ----1 2  _     

OF  r 60 r  R 6z  Or r r 00 

1 dw 1 du  1 6v  6w 
2 	f- 	_-_-)2]1/2 	(2.18) 

i 60 K1. A; 	R o• 	611: 

The above expression (Eq.2.18) is written in non-dimensional form 

using the usual normalizing foctors. For the value of Y calculated 

from Eq.2.18 at every Gaussian intergration point, r can be 

calculated using any model (Eq.2.17a-2.17g), with the help of Newton-

Raphson method. The apparent viscosity (Ti.) in non-dimensional from 

is then defined as 
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p. = r / y  (2.19) 

All the models (Eqs.2.17a-2.17g) are not applicable to the oils 

which are generally used for the lubrication of bearings. In this 

dissertation, the general relation (i.e., the pseudoplastic 

behaviour) which is represented by cubic shear stress law (Eq.2.17a) 

and is applicable to Most of the practical engine oil lubricants 

[66], is used to obtain the bearing centre orbit. The algorithm used 

for this purpose is quite general and can be used for any non-

Newtonian lubricant models (Eqs.2.17a-2.17g). 

2.4.2 Non-Newtonian Model Using Curve Fit (Curve-Fit-Model) 

The empirical models described in Section (2.4.1)' for non-

Newtonian fluid are hypothetical models. In real practice, the oil 

apparent viscosity, which varies with temperature and shear rate, can 

only be found out by actual measurments. These measurements have been 

• 
made by, among others, Johnson and O'Shaughnessy [37) in their 

extensive experimental work and the apparent viscosity (1.) at 

different temperatures (OF) 100, 150, 210, 280 and 320 and at shear 

rate (sec-i) low, 2.5x105, 5x105  and 10x105  was measured for 

different kinds of commercial and experimental oils. 

Using the given values of apparent viscosity' and shear rate from 

Table-2.1 (reproduced from Ref.[37]) at 2100F temperature, the 

viscosity of one kind of oil SAE 10W-40 (C-2) with stryene-ester as 

VI improver is plotted, Fig.2.1, as a function of shear rate. Using 

the least-square method, a polynomial of fourth degree was found to 

represent the viscosity curve of Fig.2.1 and is used to calculate the 

apparent viscosity (u.) corresponding to shear rate  (i) occuring in 

the big-end bearing clearance space at any crank angle. The 



Table-2.1 

Apparent viscosities of non-Newtoian oils (37) as function of 
shear rate at 990C (2100F) 

Shear Rate x 10-5  Low  2.5  5  10 

 >  (sec-1 ) 

Code no. Apparent Viscosity (m  Pa.S) 

C-1 12.5 10.4 10.0 9.3 

C-2 12.6 9.7 9.2 8.7 

C-3 13.0 10.5 9.7 9.2 

C-4 12.3 10.2 10.0 9.4 

C-5 11.9 9.5 9.2 8.8 

C-6 11.8 9.6 9.3 9.0 

E-1 12.1 11.4 10.9 10.5 

E-2 11.9 9.5 9.0 8.7 

E-3 11.0 9.3 8.9 8.6 

E-4 11.5 8.8 8.5 8.3 

E-5 11.9 10.0 9.4 9.0 

40 
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dimensional coefficients of the polynomial are given in Table-2.2 for 

various oils; the polynomial is of the following form, 

A. = ao + aii + a2i' + a3i3  + a4i4 	(2.20) 

The orbit (for a finite crank rotation ) of the motion of the 

big-end bearing centre is calculated only for one oil, SAE 10W-40, 

code C-2 (Appendix A-1), as an example. However the computer program 

can handle any lubricating oil with any non-Newtonian model. 

2.5 PIEZO-THERMAL VISCOSITY CHARACTERISTICS (Piezo-Thermal Effects) 

The improtance of thermal effects (i.e. viscosity variation 

across the film thickness due to temperature rise of bearing) on the 

bearing performance is now well recognized. The temperature rise and 

its distribution in the bearing has been studied by a number of 

investigators and Huebner [31) has'presented a summary of the work of 

the investigators on the studies of thermal effects on bearing 

behaviour for stationary condition. In this dissertation, not only 

the thermal effect but,a combine effect of temperature and pressure 

on viscosity and in turn on the performance of big-end bearing is 

studied. The energy equation and its boundary conditions are 

discussed in the following sections. 

2.5.1 Energy Equation: 

The equation used to determine the distribution of temperature 

within the fluid is a mathematical statement of the principle of 

energy conservation. Pai (1956) has presented a derivation of the 

energy equation for a fluid, and the full equation in cylindrical 

coordinates can be written as 
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Table-2.2 

Values of the coefficients (ao, ai, a2, a3, 'a4) for the 
polynomial, Eq.(2.20), representing the non-linear relation between 
the apparent viscosity (11.) and shear rate (i) for different non-
Newtonian oils 

Oil 	Eq.(2.20) 	p. = .30 + aiY + a2i2  + a2i3  + a4i4  
code 

ao a2 a 3 a4 

C-1 11.96 -0.78 0.096 -0.0055 0.11x10-3  

C-2 11.31 -0.85 0.111 -0.0065 0.13x10-3  

C-3 11.94 -0.88 0.114 -0.0066 0.13x10-3  

C-4 10.37 -0.03 -0.017 +0.0012 -0.02x10-3  

C-5 10.10 -0.30 0.029 -0.0015 0.03x10-3  

C-6 10.22 -0.33 0.039 -0.0022 0.04x10-3  

E-1 12.80 -0.76 0.100 -0.0059  0.12x10-3  

E-2 10.91 -0.77 0.102 -0.0059 0.12x10-3  

E-3 10.60 -0.68 0.089 -0.0051 0.10x10-3  

E-4 9.71 -0.48 0.062 -0.0034 0.06x10-3  

E-5 11.38 -0.72 0.089 -0.0050 0.10x10-3 
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DH  Dp  1 6  6T  1 6  OT  0  6T 
@-- - -- = - -- (Kor --) + --- -- (K0 --) + -- (K0 --) + 0, 

 

Dt  Dt  r 6r  6r  r2 60  60  6z  6z  1(2.21) 
I 	I 
1  1  1 

 

( Conve-I  1 

 

ctive 1  (conduction term) 

 

term)  I 
(adiabatic compression term) 
 

(viscous dissipation) 
term 

In case of incompressible viscous fluids (lubricants), the 

adiabatic term is zero, the thermal conductivity (K0), density (@), 

specific heat (C,) are constant in lubrication problems. Considering 

these assumptions, the energy equation (Eq.2.21) reduces to the 

following form (32], 

 

6T  6T Ve 6T  OT  1 6 .6T 1 6 OT 6 dT 
@C,  + @C,(Vr --+--  ---) = Ko (- 

6t 
 

Or r 60  6z  r Or Or r200 60 dz 6z' 

 

(convective term)  (conduction term) (2.22) 

where, 

6V,  1 6Ve  V,  6V.  1 6Ve  Ve  1 6V, 

2p.[(---)2 + (-  + --)2  + (---)2 + -(--- -  + - ---)2 
Or  r 60 r  6z  2 Or .r .r 60 

1 1 6V.  6Ve  1  6V,  6V. 

 

(-  + --- ) 2  +  (  + --- ) 2 ]  (2.23) 
2 r 60  6z  2  6z  Or 

Using the following normalizing factors, 

lion2R2  1  c2  
Ko- =  , 0,- =  ( ----) 0, , T 

Ko To 	- 40 	R2 612  To 

p. 
A.- = 	, 

u. 
@C,Rnc 

k-, =   
Ko 

 

Ve  V.  V. 

r = - , z = - , R = - , u =  , v = -- and w =  , 
R 	c 	Rn  Ra  RR 

the energy equation (Eq.2.22) in non-dimensional form is 

_ 1 di  _ di  1.T6i  I; 6i  1 6  677  1 62T.  1 62i  _ 
K,[-  + v  + -  +.- --]-[-  (r  )+-  +  -7- ]-1(0,=o 

R 61  (.17  T. 60  R di  r Or  
 .   

Or  r260 2  R2  0z2 
(2.24) 
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2.5.2 The Boundary Conditions for Solution of Energy Equation: 

Isoparametric elements with 20 nodes are taken to discretize and 

analyze the temperature field. The following boundary conditions are-

applied to solve the energy equation (2.24). 

The crank pin surface temperature are specified as constant, 

i.e. Ti = T. and 6T/6n = 0 at pin surface. 

2.5.3 Viscosity Relation with Temperature and Pressure 

The following relation is used to calculate the apparent 

viscosity at each Gaussian integration point of each element to 

include the effects of temperature and pressure both. 

flmJk = exp  - 5,(Tik _1)} 
 

(2.25) 

where, 5T is the viscosity exponent or viscosity temperature 

coefficent and TiK  is the temperature at kth Gaussian point of j" 

element. 

2.5.4 Finite Element Formulation for Energy Equation 

Assuming that the unknown temperature distribution within 

typical three-dimensional element can be approximated by 

_  s 6;e  s 
T-  = E 

 
N  [N16) and -- = T-  = E Ni Ti 

i=1  di  1=1 

where the Ni  are approximating fundtions defined over individual 

elements, s is the number of nodes per element and Ti are the unknown 

nodal temperatures. 

Applying Galerkin's technique, the error distribution principle 

to be satisfied for an element if 
_e  e  e  e  _e  e 

 

_  _  _ _  _ _  _  _  _e  
PPP  1 6T  6T  u 6T  w OT  (5 2T  1 6T  1 62T 
JJJ /,4(w,i- --- + v --- + - --- -1- - ---1 - {---- + - --- + - ---- 

e 	R (51  drr 69  6r2  Or  i2602 

e 
1 62'F _ r 

+ .   } -- k-9 9,]  dO di-  dz = 0 

R2 

(2.26) 
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The second order terms are converted in first order terms using 

integration by parts as 

 

_e  _e 

F if ,J0  

62T  1° e  I, 
  dV = Ji N1  

6T r  rir  6N1 6T, r 
c10‘dz - jJj  - de di' di 

vol  (5i2  sur  dr R  vol 6i Or R 
(2.27) 

Similarly, other second order derivative terms are also integrated by 

parts. 

In view of the adiabatic boundary conditions, the surface 

integrals vanish on parts (where,6T/6n = 0) of the boundary surface, 

hence the equation (2.26) can be written now as 

1 ,  OT  u OT  OT  oNi OT ,  

1{Nix.„(- T +  + -  + - ----)} - 1 - 
Or r 60 R 6z  dr Or 

NI 6T. 1. ON1 6T 1 ON1 OT _ 

--- } - N1i0 Ov]  d9 di di=0 
i Or  t2 60. 60  fq2 di  6i 

Eq.(2.28) is rewritten as 

NIk, I;  Pc.P NO7  ON1 Ni 6T  1 6N1 6Ti;    ., . 
J , [  Ti_(Nik_ v+ ____ _ ___)____+(________ + _ ____) ____ 

R  6r  -  - r 6r  r  r2 60  60 

Nik,  1 ON1 6T r  _  rr; _ _ r 
+(  + - -7--)----)- d0drdz = JJAL1(00, - 

R  R2 (5-i  dz R  R  (2.29) 

The elment equation (2.29) in matrix form is written as 

[17T]' {T)' _+ ERRJ° {T}7 _= {FT}'  [RRP" {T}' 
 

(2.30) 
t+6t  t+Ot  t+6t 

It is stipulated that once the bearing centre starts to move in a 

limit cycle in uniform bearing running Condition, the temperature of 

the bearing also become stationary and there is no temperature 

fluctua'tion with time: the transient term from Eq.(2.30) can be 

neglected and Eq.(2.30) reduces to 

[KT]' {T1'.  {Tr)"  (2.31) 

where, the coefficients Of matrix 11771- and {TT}" are given as 
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_e,  6Nj  20  61\11_ ON  Ni 6Nj  

KT1.  2. 01  (IL N1  ( E Nk ‘"ik) 
k=1  Or Or  r dr 

Ni  ON  20 _  1 ON1 ONj  
  ( E Nkuk) +  ) 4  ( K, 

N1 	6N j  

 

i  60  k=1  r2 60 60  R  oi 

20  1 ON1 ON, 

( E NkWk) + 	)] - d9 dr di 
k=1  R2 OE  67 

and 
rrr 

= jui, Ni' K m  - de di-  di 

 

e e e  e T 
fT1-  f Ti T2 T3 	 Teo) 

6\, 2 1 6U  v 2 1 61,T,  

fi, . 2-1.1.E(  • ) + (  ---- + --- ) + (- --- ) 
Or  r 69  r  R 6z 

1 1 6w 1 6u 2 1 1 6v  6.c 

 

+ - ( + -  )  +   +   ) I  (2.33) 

2 i 60  if 6i  2 R 6z  Or 

-After the element equation (2.31) are modifed for the boundary 

conditions (Sec.2.5.2), the element contributionF, are assembled for 

all the elements and the following system equation is obtained 

[1-<T) {T} = 1-F7T1  (2.34) 

2  1 

+  ( 
2 

2 

6U 

(2.32) 

5 1 
____i__ 
- - r r 

6Ti 
___ 

2 
) 

6T 60 
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CHAPTER -- 3 

EL AS T I C DEFORMAT I ON 

It is well known that the elastohydrodynamic (EHD) 

lubrication plays a significant role in controlling the performance 

of rolling element bearings. It is also recognised that the 

deformations also occur in the hydrodynamic journal bearings and the 

EHD effects are often quite significant. Since the runner and the 

bearing shell in practice are elastic and deform under hydrodynamic 

pressure, the correct film geometry, on which hydrodynamic pressure 

depends, can not be established without taking into account their 

elastic deformations. The deformation of the bearing can be of the 

order of the fluid-film thickness (defined for rigid bearing system) 

when the bearing operates at high eccentricities with heavy loads. 

The deformation of the bearing appreciabily modifies the fluid-film 

geometry and in turn, may significantly change the pressure 

distribution in the fluid-film and the performance characteristics of 

the bearing. The big-end bearing generally operates at high 

eccentricities and under' dynamic loads, so a study of the big-end 

bearing under EHD lubrication condition, will give a better 

understanding of its performance. 

Mathematically, EHD studies involve simultaneous solutions 

of hydrodynamic equations for lubricant flow and the elasticity 

equations for bearing deformations. 

3.1 BIG-END BEARING MATERIAL 

The bearing materials used in dynamic load service are 

fairly well standardized. For moderate duty automotive service, strip 
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bearings containing a babbit layer of 0.05 mm (0.002in) to 0.127mm 

(0.005in) thickness over a steel backing are used (68). For heavier 

duty service, lead babbit from 0.025mm(0.001in) to 0.05mm (0.002in) 

thick is plated over a lead-copper alloy. The lead copper in turn is 

laid down on a steel base strip. This type of bearings 	(called 

trimetal bearings) are normally used in diesel engine service. The 

thickness of the liner is provided very small hence in the big-end 

bearing case not only the liner deforms but here complete body of the 

bearing deform freely so, in the big-end bearing, the deformation of 

complete body is considered and the material of the body was taken as 

Iron (42) 

3.2 DEFORMATION IN BEARING BODY- FINITE ELEMENT FORMULATION 

The analysis of hydrodynamic flow-field is discussed in the 

Chapter-2. The present Chapter-3 deals with the elastic deformation 

of the bearing body. 

The bearing body is discretized using eight noded hexahedral 

isoparameteric elements. The displacement components ih the elements 

are considered to vary linearly and are represented by 

= CM 

Within the realm of linear elastic theory, the expression for 

the potential energy for an element in the discretized elastic domain 

when the bearing is subjected only to surface traction force iT=.11 

is given by (69] 

TT 	= 1/2 Iff Y I 	{a } dV' 	- Si LT=.) {$ } dA'a 	(3.2) 
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or 

7741 • = 1/2 J JJ LS j[L )  [De} (L HS  dV1.-ff LTrj{$ }dA' (3%3) 

where, {va} is known as the strain matrix and {o.41 } is called the 

stress matrix. 

The strain matrix can be defined as [69] 

Odr 
Yr  

Or' 

15d 
Y r  

dz' 

dE  1 ddr 
Ye + - 

{Y 1= r'  r'  00 

1  (5d. 

Y.8 

ire 

r'  09  Oz' 

1  6dr  6de 

r'  69  Or' 

de 

r' 

Yr. 

dz'  Or' 

vl 
(vull ii:!]far4 UnivEm 01 v.4vItift 

00110 



a 

dr' 
0 0 d. 

0 
dz' 

0 

1 a 
0 

r r' 	00 

= 0 
1 	6 6 

-[L.]{$6.) 
r'60 6z' 

(3.4) 

1 6 6 1 
0 (-- 	)- - 

r' 00 Or' r 

.6 6 

dz' Or' 
0 de 

EL ] is known as the operator matrix , and LS 	= [dr d. de]. 

The stress vector is given by 

Icr 	= ED:I {Y} = [De] EL] i$} 	(3.5) 

51 

0 

0 

0 

0 

0 

G3 

  

    

  

(3.6) 

     

in 	which 	[Dd] matrix 	is 

defined as, 

called 

G. G2 G2 0 0 

G2 Gx G2  0 0 
011 

[DeL]=E • G2 G2 Gx 0 0 

0 0 0 G3  0 

0 0 0 0 G3 

0 0 ' 0 0 0 

( 1-  Pp) 
where, Gx = 	 ; G2 = 

elasticity matrix and may be 

Ap 
	 ; and G3 

(1+11p)(1-21,) 	(1+Aw)(1-2)1,) 	2(11)1p) 

4p is the Poisson's ratio of the material. 
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System 'equations are  derived by  minimizing the potential 

energy with respect to the nodal displacement components and this 

gives 

a77 

ddr 

. 
em  677 
E  --- 

e=1 1. 
dd. 

677 

(3.7) 

L  dde J  

Using Eq.(3.3), Eqs.(3.7) are written as 

em 	r  . T  . 
E  (Bel [Pc] (Bal{d } r'dOdr'dz' - 0,[M l {Tt} R/BdOdz')= 0 
e=1 

(3.8) 

where, [Be] = [L ] [M l  (3.9) 

The traction force over the bearing surface is caused due to 

hydrodynamic pressure and is written as 

r. 
Fr 

  

 

  

   

4 x. 
{Tt} = ( Fr  =  E Ms 

i=1 

4 
E Mt Pet 

i=1 

Fe 

(3.10) 
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• 
Nodal pressures p=i 

 

 p.i and pal are the components of the 

th 
hydrodynamic pressure at the i  node of element e. Integrations in 

Eq.(3.8)  are carried out using Gaussian quadrature  formula to 

obtain a set of simultaneous algebraic equations in terms of the 

nodal displacement vectors {d}. 

e. 
E  ((Ka) {d  - {Fa}) = 0  (3.11) 
e=1 

The matrix [Ka), and vector {F:} respectively represent the 

element stiffness and equivalent nodal force due to surface traction 

force {TE}, Eq.(3.10). 

r'  z'  (Da]  
Normalizing Eqs.(3.10-3.11) by  =  , z' =  , [D6].=  , 

th  th  

• fdl 
{ -a-1  = --- and 5 

RE  (R+c) 

 

 

and RB 

  

and assembling 

   

Aen(R/c) 2 
	

th 	th 

the element contributions for the entire displacement field, the non-

dimensional global system equation is obtained. 

	

[id] {d} = 	{i.} 	 (3.12) 

where, the nondimensionai coefficients of the element matrix are 

given as 

$5,  [Da] (Fid)ridedr'dz' 
ij 

	

+1 	+LeTales 

[Ed] [Pe] [Ba]r' 01 dc dl dI 

and 

r  
Fait' = 	Em  {Trl  RB d8 d-Z-' 
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{-d). =  iiedT 

pon 	th 	R 3 

 

(I)  (   )  (----) (---) is a nondimensional quantity known 
E  R  c 

as the deformation coefficient [361, and Rs is the nondimensional 

radius of bearing inner surface. 

3.3 LOADING AND BOUNDARY CONDITIONS 

In big-end bearing case, the complete body of the bearing 

deforms freely in all direction because it is free to expand  in 

space. Only those element nodes which lie at the junction of 

connecting-rod and the bearing, are assumed as fixed nodes and hence 

{d}j  = 0  (3.13) 

where, j is the node number of the nodes at the outer surface of the 

 

bearing  lie on the junction of the connecting-rod and bearing, 

Fig.3.i. The tangential traction fOsces (Fe , F,) at bearing shell-

fluid-film interface are zero and only non zero value of the radial 

traction (Fr ) is obtained. This reduces the external fluid-film 

force vector for an element, to 

	

_A 	_a  

{Fm} = [F.  0  Oli 
 

(3.14) 

where, jt'l node falls on the interface between the fluid-film and 

the bearing shell. 

Mathematically, the elastic deformation problem now reduces' 

to the determination of displacements {d} in the  bearing  by 

solving Eq.(3.12) satisfying the boundary conditions Eq.(3.13) and 

with the load given by Eq.(3.14). 



Flexible bearing 
housing F: ,Pin 	force (=W) 

W: Force on the bearing 
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Connecting-rod 

Z (axial ) 

0 (circumferential) 

r (radial ) 

At 	nodes 
{d} = 0 

Crank pin 

Fig. 3.1 Big-end bearing geometry 
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CHAP TER 4 

BEARING CHARACTERISTICS 

4.1 Bearing Force and Relative Motion 

The big-end bearing is subjected to a complex dynamic load. 

The components of the dynamic load on the bearing as a function of 

the crank angle, can be computed from the engine data, viz., geometry, 

component masses and inertia, and pressure history. 

The accelaration (A) of the piston of a slider crank 

mechanism, Fig.4.1, is given by [62], 

(q 2-1) cos201 + cos'  Oi 
A = R1 a2 (cosex +. 
	

(4.1) 

(q2 -sin29x)3/2 

The inertia force of the reciprocating masses (piston, gudgeon 

pin and the small-end of the connecting-rod ) is- obtained from the 

relation 

F1 = (Mx+Mp)x A 	 (4.2) 

where, M1 (usually equal to (1/3) MT) is the equivalent mass of the 

connecting-rod at the small-end. 

A centrifugal force (F1 = M2R1R2 ) of constant magnitude is 

experienced by the big-end bearing,where M2 (usually equal to (2/3) 

MT) is the mass associated with the big-end bearing. 

The gas force ( Fa = (n/4) D2p,) acts on the piston and is 

transmitted to the bearing through the connecting-rod, Fig.4.1. 

The resultant force (W) on the bearing is given by 

W = [F12  + F22  - 2F1F2 cos (8 + g1)]2-/2 	 (4.3) 

where, 

F2 = (F0 - F/) secOx 	 (4.4) 
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. F1 	Resultant of gas and 
inertia force 

F2 Centrifugal force 
F 	Force on crank pin 
W 	Force on the beoring 

    

    

     

Fig. 4.1 Forces acting on a slider crank mechanism 
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The reaction of the resultant force (W) on the crank-pin is  in 

the opposite direction as shown in Fig.4.1 and is denoted by 

F (external force = W ). The profiles of the polar plot of load W, 

although unique to an individual engine bearing, are typically 

similar to the one plotted, Fig.4.2j, from the load components given 

by Campbell et al [10) which are compiled in Table A-4.1, Appendix 

A-4. 

The angular speed of the bearing (Rx) relative to the crank-pin 

is function of time due to the oscillating motion of the connecting-

rod. From Fig.4.1, 

01.1 	= 	01 	 J4.5) 

Differentiating Eq.(4.5) with respect to time (t), 

dal dOi d01  
(4.6) 

dt 	dt 	dt 

dOx 	cose,_ 	de,_ 
Using the relations slam = 	 and 

dt 	,r(q2 - sin201) 	dt 

Eq.(4.6) can be written as 

dal  d81 	cosOi 
= 	[ 1+ 	 

dt 	dt 	i(q2 - sin2e1) 

or 
cosOi 

= SI [ 1+ 	  
1r(q 2  - sin281) 

and 
ax 	cos81 

ai = ---= 1 1+ 	 1 	 (4.7) 
c(q2 - sin201) 

Ri is the nondimensional speed of the bearing relative to the 

crank-pin or vice -versa and, is a function of crank angle (ex) . The 

dimensional relative speed (NB) of the bearing in the example is 

shown in Fig.4.3. 
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4.2 FRICTION FORCE AND POWER LOSS 

The power loss in the bearing is caused by the viscous 

resistance of the lubricant in the clearance space to the relative 

motion between the bearing and the crank--pin surfaces. Power loss is 

directly propotional to the viscosity of the lubricant, increases as 

the square of the speed and decreases as the oil film thickness is 

increased. 

In a journal bearing, the shear stress at the moving surface is, 

6Ve  
r = 

 

 (4.8) 
Or 

In a big-end bearing, the friction force on the bearing surface may 

be obtained as 

	

2n 	0V8 

F t  = 
[ 

 U. 	(R+c) dOdz 
	

(4.9a) 
j 	2 
	o 	Or 

or 

= 

J -L./2 

2n 	6Ve 
A. ---- R{1+(c/R)} dedz 

o Or 
(4.9b) 

In Eq.(4.9b), the , value of c/R is very small and can be 

ignored. This reduces the friction force expression to the following 

form, 

2n 	oVe 

Fr = R  r 	ded.z 
 

(4.9c) 
Or 

Using the normalizing factors, 

- PRA 
	dye 	z 	 Ft  

4. 	u = 	; z = - ; and Fr   ; r = - 
A. 	Ra 	R 	p.R2R(R/c) 

+B 	2m 	du — 
Ft- = r 	r  P. ---- CIACIZ 

-B o 

(4.10a) 



62 

or 

+1 +1 	20 	6N5. _ 
Fr = r 	r 	A. 	E 	( 	 ut) 	13.1 (1' d4 

J 	3 	i=1 	(51-  
-1 -1 

The nondimensional power loss can be written as 

(4.10b) 

+1 +1 _ 	20 	6Ni  _ 	20 	_ 
P   (al.) E (NJ AJ) 13.1 

J 	i=1 	(51- 	j=1 
-1 -1 	 (4.11) 

where, 

F = 
uo R2  R3(R/C) 

The friction force and power loss has been calculated using a 

single land of the 6VEB-X engine bearing and the total power loss is 

twice of the calculated value. 

To consider the piezoviscous effect, the viscosity at Gaussian 

points may be written as 

C410k 

e 
	

(4.12) 

4 
where, 15k = E Nipt at kth Gaussian point on the surface 

	
the 

i=1 
bearing-shell in contact with the fluid-film. 

4.3 EQUATIONS OF MOTION OF THE BEARING CENTRE (Fig.4.4) 

The big-end bearing is subjected to dynamic load, and so the 

bearing centre moves around the crank pin centre in an orbit. As the 

bearing centre moves around the pin centre, it acquires squeeze and 

whirl velocity components. The equations of motion can be written by 

equating the algebraic sum of all the forces acting on the bearing to 

zero in two mutually perpendicular directions. The external force (W) 

is balanced by the forces generated by the hydrodynamic wedge, 

squeeze, and whirling actions of the fluid-film under the dynamic 



Fig. 4.4 Kinematic and dynamic quantities for a journal 
bearing system 
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loading condition and the inertia force components due to mass (M2) 

associated with the big-end bearing. The equations of motion of the 

big-end bearing centre are thus, 

• • 	 • 

S. +  + W. - 1712x(E - e 62 )  0 (4.13a ) 

• •  . 
S4 + Ffl(e , (3) - in - M2x(2e 5 + e  = 0  (4.13b) 

:-!. 	 • • • ,.. 	 • • 

The inertia force components (i.e.M2(C - C (32)and m2(2e f3 + e pH 

are generally quite small [40], in the range of 10-4  times the 

external force (-41) as compared to the other force components in the 

equations of motion (Eqs.4.13a-4.13b). After linearizing and ignoring 

the inertia forces associated with the bearing accelerations, the 

equations of motion (Eqs.4.13a-4.13b) reduce to 

—  — 

e 52  (3 S3  Wm = 0 

• 
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CHAPTER — 5 

SOLUTION SCHEME AND 

COMPUTER PROGRAM STRUCTURE 

The 	analysis, of connecting-rod big-end bearing, 	which is 

subjected to a dynamic load, Fig. 4.2, presents a complex non-liner 

time dependent problem. Therefore, the solution strategy for the big-

end bearing is also not direct but differs from the solution methods 

for the conventional static and dynamic journal bearing problems. In 

the following sections, the solution technique used for the numerical 

integration of the equations of motion of the big-end bearing centre 

to obtain the orbit is presented. 

The sustenance of fluid-film, consistent with its required 

minimum thickness, in the clearance'space between the bearing and the 
• 

crank pin, is essential to avoid undue wear of the pin and the 

bearing surfaces. Theoretically calculated bearing centre orbit 

trajectory readily gives the time history of the variation of the 

minimum film thickness. The orbit is obtained by using a numerical 

time marching integration scheme for 00  to 7200  (two crank 

revnintinns) crank rotation. Euler-Cauchy's predictor-corrector 

method with suitable time intervals in terms of crank rotation angle 

is used in the time marching scheme. 

The bearing in example consists a full (2n) circumferential 

groove in mid plane. Therefore, it is analyzed by taking only one 

land (L/2R = 0.28125) which is subjected to one half of the given 

load. 

But to solve the same bearing without groove, the full length 
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(including the width 12.7 mm of the groove, 	(L/2R) = 0.625) which is 

subjected to full load, is considered. To account for misalignment of 

the bearing axes at the time\  of bearing assembly in the connecting-

rod end, the film thickness expression is modified accordingly. The 

problems is also extended from the rigid bearing condition to the 

flexible bearing. 

5.1 SOLUTION PROCEDURE TO OBTAIN NODAL PRESSURES, VELOCITY FIELD AND 

FLUID-FILM FORCES 

According to the analysis given in the foregoing Chapters, the 

aim is to obtain the bearing centre orbit which require the solution 

of equations of motion, Eq.(4.14). To solve the equations 'of motion, 

the forces Si to S6 are required and hence 	turn nodal pressures 

are to be obtained first. The complete solution method is divided in 

two main parts: 

1. To obtain the nodal pressures for rigid bearing and for EHD 

' bearing, and 

2. To obtain orbit using the information from the firt part of the 

solution. 

For the first part, the solution algorithm is as follows: 

5.1.1 Rigid Bearing 

5.1.1a Tgoviscous Lubricants 

In the7-Case of rigid bearing with isoviscous lubricant, the 

pressure, velocity field, positive pressure zone and the fluid-film 

force components (Si to S6) are obtained as follows : 

A value of eccentricity ratio(e) is given as input data alongwith 

viscosity 	1 and the already defined data for bearing geometry in 

the computer program. First for the given value of e, the mesh of the 

elements (global nodal numbers and three (r,0,z) coordinates) is 
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generated for full (2n) film, using the full Sommerfeld boundary 

condition ,Fig. 5.1a. From the momentum equations (Egs.2.2a-2.2c) and 

the continuity equation (Eq.2.4), and using the Galerkin's finite-

element technique, the element fluidity matrix and other element 

matrices are derived (Sec.2.3): In the element equations, the boundry 

conditions (Eqs.2.5a-2.5f) are incorporated to minimize the computer 

storage. By the usual assembly method, the global fluidity matrix and 

the right hand side column vectors represented by Eq.(2.16) are 

obtained. The global system equation (2.16) is then solved by the 

direct Gauss elimination method. The elimination operations are done 

simultaneously to all three right hand side vectors and this gives 

three solution vectors having nodal pressures and velocity field 

corresponding to wedge,'squeeze and whirl actions in -the fluid-film. 

In the pressure field, since 2n film was assumed, there is a zone 

of negative resultant nodal pressures. The fluid-film can not sustain 

the negative pressure, hence,• before integration of pressures over 

bearing area to calculate force components, the positive pressure 

zone is established by taking into consideration the following 

criteria. 

All the three actions (wedge, squeeze and whirl), take place 

simultaneously in the clearance space of the bearing, the resultant 

nodal pressure (p,) may be defined as the algebraic sum of three 

pressures such as 

iSeJ + 	iSMJ 	 (5.1) 

Hence, at those 'nodes where the resultant pressure (T)j) is negative, 

all the three pressure components (ph,, LoJ, p0J) are set to zero. In 

this way, the remaining nodes having the positive values of resultant 

pressure establish the positive pressure zone. The modified 
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pressure vectors after proper integration over the bearing area give 

the force components S. to. SS . The flow diagram of the algorithm is 

shown in BLOCK-I, Fig. 5.1b. The computer program including 

subroutine ATODAT, Fig. 5.1a, represented by flow diagram , Fig.5.1b, 

gives the nodal pressures, velocity field and force components -J.,. to 

S6 for the given eccentricity ratio (e) for rigid bearing isoviscous 

case. 

5.1.1b Piezoviscous Lubricants 

To take into account the effect of variation of viscosity with 

pressure (piezoviscous effect), the initial trial solution is 

obtained  with Ir. = 1 as described in Section 5.1.1a, BLOCK-I, 

Fig.5.1b. Then using the values of resultant nodal pressures 

obtained from BLOCK-I (after establishing the positive pressure 

zone), the apparent viscosity ( A. ) is calculated on each Gaussian 

integration point of each element using the following relation. 

= exp (app  k) (4.12') 

where, subscripts j and k represent respectively the element and the 

Gaussian integration point. Using these new values of viscosity A.ik, 

the new element stiffness matrices are generated. The modified global 

system equations yield the new pressure and velocity fields, and 

forces S to Ss. The flow diagram for the piezoviscous lubricant case 

—utilizing flow diagram of BLOCK-I, Fig. 5.1b, is shown in BLOCK-II, 

Fig. 5.2, which can be used to get the solution for a rigid bearing 

with a piezoviscous lubricant. 

5.1.1c Lubricants having'Piezo-Thermal Viscosity Characteristics 

For considering the combined effects of temperature and presure 

on viscosity, the initial trial solution is again obtained first for 

the corresponding isoviscous A. = 1) case, and then the temperature 



COMPUTE FORCES S1— 55 
BY INTEGRATION OF PRESSURE 

I 

SOLUTION OF GLOBAL 
SYSTEM EQATION EQ.( 2.16) 

ESTABLISHMENT 
OF 

POSITIVE PRESSURE ZONE 

) 
( 	

OUTPUT PRESSURE, _ 
VELOCITY FIELD,  FORCES S1—S6 

CONTINUE 

OIMM•111. •••••■■ 411•••••• }MI& ••■•■• -J 

BLOCK I 
 

70 

   

) 
READ DATA 
n 2R P C I -1  A 

I GENERATION OF ELEMENT 
MESH AND NODAL COORDINATES 

(CALL ATODAT ) 

al 

  

GENERATION OF ELEMENT 
FLUIDITY MATRIX 

 

   

    

 

I
BOUNDARY  CONDITIONS 

 

  

NO 

 

GLOBAL FLUIDITY MATRIX 

HAVE 
ALL ELEMENT 

FLUIDITY MATRIX 
BEEN ASSEMBLED 

 

SUBROUTINE  
ATODAT 	TO GENERATE ELEMENT 

MESH AND NODAL COORD 

LEGEND  
• ECCENTRICITY RATIO 
B"ANGULAR POSITION OF 

LINE OF CENTRES 

• -•••ASPECT RATIO 2R 
R  --CLEAR EN CE RATIO 

01--CRANK POSITION 

YES 

Fig. 5.1 b Flow diaffram for the hydrodynamic problem 



L 	  

L 
----------- •••••••• ----- 

0•1=0 	 eIMMINIO 411•1■11• •■••■ 	 ••■■■ 

BLOCK II 
1 

DEFINE it: 

I MM3=0 

LEGEND. 

I p --PIEZOVISCOUS COEFFICIENT 

;lia -*APPARENT VISCOSITY 

I 	KFRIC=0 NO CALCULATION OF 
POWER LOSS 

I 	KFRIC =1 , CALCULATION OF 
POWER LOSS 

M M 3 —a- CONTROL INDEX 

I 
I 

I 
I 
I 
I 

(.._ OUTPUT MODIFIED PRESSURES 
VELOCITY FIELD, FORCES 31-36  

(CONTINUE) 

Fig. 5.2 Flow diagram for piezoviscous effect 

71 

 	BLOCK=I 

NO 

YES 

COMPUTE VISCOSITY 
BY linik=ep Pjk 

COMPUTE 
FRICTION FORCE EQ.(4.10) 

COMPUTE 
POWER LOSS Ea( 4.11 

MM3a.1 



72 

field is obtained by solving Eq.(2.34) which is derived from energy 

equation , Eq.(2.24). After knowing the temperature and pressure, the 

apparent viscosity 01.).) is calculated using the following relation 

= exp {appJk-  Ow(TJk-1)} 	 (2.25') 

The following method is used to solve Eq.(2.34) which yields 

temperature distribution in the flow field. To establish the 

temperature field in the fluid-film, the known velocity field (from 

BLOCK-I) is used to calculate the dissipation function 0, (Eq.2.33) 

and the convective terms (Eq.2.22). The nodal temperatures at the 

crank-pin surface (T.) are assumed to be constant (T. is not 

available in the literature) at a value somewhat higher than the oil 

supply temperature- (890C). The nodal tempeatures at the bear,ing and 

fluid-film interface are also taken equal to the supply temperature 

= 1.0) in the first iteration. The space or surrounding 

temperature (in which the bearing rotates) is assumed uniform and 

less than the supply temperature 	= 0.9). From the specified 

boundary condition (Sec.2.5.2), the temperature in the fluid-film is 

obtained by solving the equation (2.34). When all the nodal (20 

nodes) temperatures are known for each element, the nodal temperature 

OT : 
gradient ( 

	

	) 	at the nodes on the bearing inner surface 
or :r=Ri 

and in turn 	heat rate, Eq.(A-2.2), are calculated..The heat rate, 

which transfer from the bearing inner surface to the outer surface 

through conduction and the same heat rate from bearing outer surface 

to the surrounding by convection process is calculated in terms of 

Eq.(A-2.6). 	By equating these two heat rates (Eq.A-2.2 and 

Eq.A-2.6), the new value of Tb is calculated from the relation given 

in Appendix A-2,Eq.(A-2.7). 
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By using these calculated values of ft, as the new boundary 

conditions, the equation (2.34) is again solved and heat rates are 

equated to obtain the new values of Tb. To improve the convergehce of 

the iteration, the following criteria is used for Tb. 
k-1 

Tb = Wr 	+ (1-14r) 
_k 
 (5.2) 

where, We  is the weighting factor (We = 0.8) and k is the iteration 

counter in Eq. (5.2). The convergence has generally been achieved in 

four to five iterations. 

The new temperature field is thus obtained and corresponding to 

these temperatures, the viscosity value is modified for each Gaussian 

integration point. Using the modified viscosities, a new set of nodal 

pressure, velocity field and forces §1. to S6 is obtained from the 

global system equation (2.16). The flow diagram of the solution to 

include the effects of temperature and pressure on viscosity of 

lubricants'is shown in BLOCK-III, Fig. 5.3. 

5.1.1d Non-Newtonian Lubricants 

To account for the viscosity variation for lubricants with 

nonlinear constitutive equation (non-Newtonian), the value of 

apparent viscosity (A.) is calculated either from any one of the 

non-Newtonin models (Eqq.7.17.17g) or f rviii the ,u,ve f it model 

(Eq.2.20) based on experimental, data (374. These calculated values 

of(T.) are substituted in the integral expressions generating the 

element fluidity matrix (Sec.2.3). 

The following procedure is used to obtain the apparent viscosity 

for the non-Newtonian lubricants. 

The intial trial solution is obtained as described in BLOCK-I 

with 
	

= 1 (Newtonian lubricants) and the velocity field is 
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established. For this velocity field, the strain rate (Y) is 

calculated at each Gaussian integration point in _each element using 

Eq.(2.18). For any selected non-Newtonian model (Eqs.2.17a-2.17g), 

the corresponding shear stress (T) is calculated by Newton-Raphson 

method. The apparent viscosity is then obtained from the relation 

A. = (F/T) , (Eq.2.19). 

In the case of curve-fit model, for any selected oil (C- 2, 

Appendix A-1), a polynomial is fitted by the least square method 

between the viscosity and shear rate experimental data, Table-2.1, 

which is converted into nondimensional form. A fourth order 

polynomial is obtained to express the' functional relationship between 

the non-dimensional values of viscosity and shear rate. Using the 

velocity field (known from the solution of BLOCK-I with p- = 1), the 
shear rate(Yjk) occuring in the fluid-film element is then obtained 

and from the polynomial, the corresponding value of apparent 

viscosity 	(17.Jk) is computed. Once these updated values of apparent ' 

viscosity for each element are known, they are substituted in place 

of 	= 1 in the element equation and the updated pressure, velocity 

field and forces gx to S6 are obtained. The corresponding flow 

diagram is shown in BLOCK-IV, Fig.5.4. 

5.1.1e Misalignment of Axes 

If the axes of the crank pin and the big.:-end bearing are not 

parallel, the expression of the film thickness must be modified to 

include the skew components a and 6, it results a change in the 

radial coordinates, of the nodal points. The expression of the film 

thickness is derived in Appendix A-5. The solution procedure given in 

BLOCK-I may be used for skewed axes case also.- 
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5.1.2 Flexible Bearing 

In case of EHD -  lubrication, the computer program-has two main 

parts. The fi4st part determines the pressure and velocity field 

(BLOCK-I, for isoviscous case, BLOCK-II for piezoviscous case, and 

BLOCK-III 	for piezo-thermal case) in the fluid-film, it is named 

here as the hydrodynamic part. The second part gives the nodal 

elastic displacments corresponding to the pressure field, it is named 

as the elasticity part.. 

In the following subsection, the procedure to obtain the nodal 

displacment in the flexible body of the bearing is described. 
• 

Solution algorithm for hydrodynamic part has been described in 

Sec.5.1.1. 

Elasticity Part  

In this case, the bearing body is discretized in such .a manner 

that all the nodes lying at fluid-film and bearing body interface 

match to each other in both-  (fluid-film or bearing body) 

discretization , systems. The elasticity matrix, eleMent fluidity 

matrix and the element nodal traction force vector are obtained using 

the analysis described in Chapter 3. Then after applying the boundary 

conditions (Sec.3.3) all the element matrices and vectors are stored 

on computer disk/tape. The frontal solution method is used which 

yields the nodal displacements (dr, de, (71.) in three directions. It 

is observed that the nodal displacements (de, Ei.) along 

circumferential and axial direction are much smaller in comparison to 

the radial displacement (d). Therefore, only the nodal radial 

displacements (dr) at the fluid-film and bearing shell interface are 

added algebraically to the radial coordinates of the fluid-film 

element nodes. For the EHD isoviscous, EHD piezoviscous and ETHD 
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lubrication cases, the flow diagram is shown in BLOCK-V, Fig.5.5. 

5.2 INTEGRATION SCHEME FOR THE EQUATIONS OF MOTION OF THE BEARING 

CENTRE 

The bearing centre orbit requires the bearing centre 

instantaneous position (ei, 81) and velocities (ei, OL) at it' 

interval of crank rotation. The velocities (ei, no are obtained by 
solving the force balance ( i.e.,Eqs.4.14, equations of motion) by 

using the known froce components S1 to S6. Force components are known 

from the solution'procedure presented in BLOCK-I,II,III,IV or V. The 

following time marching scheme (or integration scheme ) to obtain the 

bearing centre orbit is found to work well. 

5.2.1 Intergration Scheme 

Let eml and 8.1 are the coordinates of the bearing centre 

corresponding to the quasi-static equilibrium condition of bearing 

under the external load at the it' interval of crank rotation which 

are obtained as given in Appendix A-6. The scheme works as follows: 

Step 1. To begin with, the initial input data are given as ei = 

= e.i+oe , 	r31 = 	= al+0‘1,Fig.4.4),911,e1=131=es.=01=0,}1.=1 and 

time increment in terms of crank rotation interval (501) for any 

crank angle position defined by ith 	The solution may be 

started at any arbitrary crank angle position (i.e.,it" interval) and 

with any 'values of el and el. But it was found, that a fast 

convergence is possible; if for any particular crank angle eli ,the 

values of EL = e4i + ae and -(31 = R.J. are used. The hydrodynamic 

part, BLOCK-I, is first solved. 

To include other effects, the program runs through BLOCK- II, 

III, IV or V which give modified' values of force components "S-1,to 
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GENERATION OF ELEMENT 
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111••■ 	•■• _L 411■•• 

Fig. 5.5 Flow diagram for solution of the elastic problem 
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Step 2. The values of el , 1,1 are calculated using the equations of 

motion (4.14), 

E1 52 + oi s3 = - (Vi. + Si) 	 ( 9 .19a ' ). 

E, S5 + Til S6 = - ( -Wir, + S4) 	 (4.14b') 

P , 	 , 
Step 3 The eccentricity ratio (ei„), angle of line of centres 

-LP 
((ii,i) and the velocities (61,3.. , (3i,m) are predicted using Euler's 

formula (only for one initial interval i.e., the (i+l)tt' interval). 

ei„ 	ei  + at ES 
	 (A-3.5') 

et,. = 	E1 = Ei ( in starting only) 

where, 61 is the non-dimensional time increament,( 61 =(Rx 6t)= .68i) 

For crank angle 03_14-3_ 	= Oai + 663,), using the predicted values 
P 	P 

- ei„ ,(31-,,the hydrodynamic part is solved. The positive pressure 
.P 	. .P 

zone is established usinge="ei,, and 13=(3i,3. in Eq.(5.1). This yields 

a new set of force components §2. to S6 for crank angle. 03_1.3_. 	The 

values of 	and ni,i are then calculated from Eqs.(4.14a'-4.14b'). 

At this stage, corresponding to the calculated values of E1+1, 51+1/  

the values of e1l-a.,01+3. are corrected for the same position of crank 

angle(ext.i) by using the following Euler-Cauchy's corrector formula 

[34). 

ei+, = ei + (1/2) at (e1+3. + gi) 

= ni 	(1/2) at (1314-1 + 51) 
	 (A-3.4') 

The values of accelerations are also calculated using the backward 

difference formula [25). 

G1+1 = (C1+2.-g1)/6t 

 

4141 

51+1 = 
(A-3.6') 

For convergence of solution, using these corrected values of 
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el*x and 014-1, the whole process of solution is repeated unless the 

respective difference between the values of € and 0 obtained from the 

previous and current iteration become smaller than the predefined 

tolerance limit. For convergence, the following tolerance limit is 

defined. 

n 

e
n 

i-e„. -3 

5 10 and 

m 'm -X 

01 -131. -2 

5 10 (5.3) 

e, 

where, n is the current iteration number at 	crank interval. The 

iteration generally is terminated when n 	4. 

Step 4 Once the time marching process reaches the second point (i+1), 

it is possible to operate with higher-order prediction formula, such 

as Euler-Cauchy's predictor formula [34]. The next values of 
,  

11? 
e„., 131,2, e1,2 and (31+2 are predicted as 

eit2 = e + 2 dte,,. 
(A-3.3') 

e1,2 = e, + 2 ate,,. 

Using this scheme (flow diagram, Fig.5.6), a complete or a 

partia.1 orbit of the big-end bearing centre for any loading case can 

be obtained. The time process is extended even beyond two 

reyroni- inns (7200) 4- ; 1 1 	 or,bit starts repeating itself into a 

limit cycle. 
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READ INPUT DATA € sx es+ t 
Bs;  ell  ;ei=lii=ei-iti.o.o 

KSTART KPZ KTP, KVIS I KEHL 

401 	 KNET 

NY=0 

CALL FORC 

LEGENDS 
KSTART = 0 USE EULER'S FORMULA 

KPZ = 1 USE OF BLOCK II 
( PIEZOVISCOUS EFFECT ) 

KT P = 1 USE OF BLOCK III 

( TEMP. & PRESSURE EFFECT ) 

KNET = I . USE OF BLOCK IV 

( NON NEWTONIAN EFFECT ) 

KVIS = 0 NON NEWTONIAN MODEL 

KVIS = 1 CURVE FIT MODEL 

KEHL = 1 KPZ=0 EHD ISOVISCOUS 

KEHL = 1 KPZ=1 EHD PIEZOVISCOUS 

USE r BLOCK I OR II OR III OR IV OR V 

LZ 
COMPUTE ei Al ei raj 

EQS 	 ) 

SUBROUTINE 
FORC 	TO CALCULATE EXTERNAL FORCE 

FROM GIVENDATA 

E.C. 	 EULERCAUCHY15 METHOD 

NY. 	 CONTROL INDEX ON ITERATION 

NUMBER 

el  1+1.e41i  +aei 

PRINT RESULT 

FOR CRANK ANGLE el; 

Fig. 5.6 Flow diagram for the time marching scheme 



83 

CHAPTER— 6 

RESULTS AND DI S CU S S I ON S 

The big-end bearing, as one of the most important components of 

the internal combustion engine and subjected to a complex dynamic 

loading, has been an interesting problem for investigation. It is 

also one of the most practical problems of the bearing under dynamic 

loading. In the present work, although, the problem is quite involved 

and non-linear in nature, the author has tried to obtain its solution 

in a:general way. The momentum and the continuity equations are used 

to represent the flow-field; the full (2n) film is discretized for 

analysis, and to account 'for the cavitation, all the resultant 

negative pressures are set equal to zero. Galerkin's technique is 

used for finite-element formulation and Euler-Cauchy's predictor-

corrector method is used for the time marching scheme, all of which 

are described 	in detail in the foregoing Chapters. This Chapter 

deals with the computed results and the discussions thereof. 

The bearing centre orbits with respect to the crank pin centre 

and fixed axis along engine cylinder axis,are calculated for two 

revolutions of the crank for a four stroke engine. The orbit alSo 

gives the variation of the minimum film thickness as a function of 
-.• 

crank rotation in the rigid bearing case. To validate the computer 

program, the static characteristics of the circular bearing are first 

calculated and compared with the existing data available in the 

literature. 

The computed results are presented in two main sections. The 

first 'section includes the results of the big-end bearing with rigid 
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body accounting for effects of various parameters on the performance 

characteristics of the big-end bearing, Table-6.1. The second section 

includes the results of the bearing considering body deformation and 

the dependence of viscosity on pressure and temperature, both. The 

required computational CPU time for all cases is also compiled. 

Table- 6.1 

Studies for the rigid big-end bearing 

Cases* 
	1 	2 	3 
	

5 	6 
studied 

Bearing ** 	a,b,c 	a,b,c,d a,b,c,d,e 	a,b,c 	a,b,c 	a,b,c 
characteristics 
presented 

1. isoviscous lubricant, 

2. piezoviscous lubricant, 

3. piezo-thermal effects on viscosity, 

4. non-Newtonian lubricants, 

5. ungrooved bearing with parallel axes, 

6. ungrooved bearing with skewed axes. 

** a. bearing centre orbit, 

b, variation of the maximum film pressure, 

c. variation of the minimum film thickness, 

A 	...- 
U. WOWer 1OSS 

e. the maximum temperature rise in the fluid-film 	at. various 
crank angles. 

In the second section which includes the deformation of the 

bearing body, the following results for the big-end bearing are 

obtained and presented for a finite crank rotation. They are bearing 

centre locus, minimum film thickness, maximum radial deformation and 

temperature rise. 
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Results are also presented to show that Euler-Cauchy's predi‘ctor-

corrector method for the time marching scheme is more suitable for 

the present problem than higher-order predictor methods, such as 

Runge-Kutta, Adams-Moulton methods. 

6.1 SAMPLE PROBLEM 

The results presented in this study are for the Ruston-Hornsby 

6 VEB-X, Mk-III engine connecting-rod big-end bearing for which the 

input data and results are available in the literature for 

combarison. It is most analysed bearing in the literature 

[4,6,10,23,24,42,45,50,54,56,60] 	This 	bearing 	has 	a 	central 

circumferential groove as shown in Fig.l.4. Using the symmetry about 

the central plane, only one of the lands of the bearing subjected to 

one half of the given load is discretised for the computation of the 

bearing characteristics. Details of the bearing geometry and the 

loading are given in several referthices (for instance Campbell et al 

[10] ) and are briefly summarized in Appendix A-4. For the bearing 

analysed here, the dynamic load is given in terms of its two 

perpendicular components at intervals of crank rotational angle for 

two revolutions [10], but if the geometry of the engine 

(connecting-rod length, crank radius, cylinder bore, masses of the 

reciprocating and rotary parts etr.) and the cylinder gas prac=1•re 

are kndwri, the dynamic load components can be calculated in 

accordance to the analysis presented in Sec.4.1 and for which a 

subroutine is prepared. In the present problem, the bearing load 

components with reference to the engine cylinder axis [10] are 

converted to resultant force vector in SI units and is shown as load 

diagram in Fig.4.2. 
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6.2 DISCRETIZATION OF FLUID-FILM 

The fluid-film domain and the bearing body are divided in to 48 

isoparametric elements each. Keeping in view the computer storage 

requirement, a 12x4x'1 grid consists of 12 circumferential and 4 axial 

divisions, Fig.6.1. The bearing is divided in four circumferential 

zones. The size of the elements in each zone was decided on the basis 

of the anticipated pressure, using the smallest size in the zone 

where the maximum pressure is expected to occur. The elements are 

equal in size in each respective zone and their numbers vary from one 

zone to the other. In each element of the fluid-film, the velocity 

components and temperature are approximated by quadratic variations 

(20 nodes), the pressure in the fluid-film and the deformation in the 

bearing body by linear variations (8 nodes), Fig.6.2. 

6.3 SELECTION OF THE METHOD FOR NUMERICAL INTEGRATION OF THE 

EQUATIONS OF MOTION OF THE BEARING CENTRE 

_There are various numerical integration methods available which 

can be Used to obtain the bearing centre orbit. Euler's method is 

suitable only for small time• intervals, hence it is not 

computationally economical. The higher-order predictor methods (for 

instance, Runge-Kutta or Adams-Moulton) are more accurate but were 

not found suitable for the present type of problem..  

The trials indicated that .Euler-Cauchy's predictor-corrector 

method can be used succesfully with good accuracy. The values ofe,13 

obtained by Euler-Cauchy's predictor-corrector method were compared 

with those obtained by using a combination of Runge-Kutta (up to 

initial five points) and higher-order predictor-corrector formula 

due to Adams-Moulton (25] at 100  interval for a finite crank 

rotation,Table-6.2. Table-6.2 shows that after the crank angle G. 
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Table-6.2 

Comparison of 	the 	results 	obtained by Euler-Cauchy's 
predictor-corrector and Runge-Kutta-higher-order predictor-corrector 
methods 

Crank 	Euler-Cauchy's Method 	R-K", P-Cb Method 
angle 

 

Remark 

  

O. 6 0 CPU Time 
(min.) 

e 0 CPU Time 
(min.) 

70 0.87629 -28.40 - 0.87629 -28.40 - 

80 0.87632 -28.72 2 0.88395 -27.20 4 R-K method 

90 0.90725 -24.29 2 0.88883 -26.11 4 R-K method 

100 0.91316 -21.27 2 0.89633 -24.07 4 R-K method 

110 0.91704 -19.22 2 0.90481 -21.39 4 R-K method 

120 0.92193 -16.74- 2 0.91250 -18152 4 R-K method 

130 0.92715 -13.87 2 0.91917 -15.48 2 P-C method 

140 0.93203 -10.83 2 0.92525 -12.30 2 P-C method 

150 0.93657 - 	7.67 2 0.93071 -9.04 2 P-C method 

160 0.94045 -4.40 2 0.93524 -5.69 2 P-C method 

170 0.94369 -0.99 2 0.93899 -2.20 2 P-C method 

180 0.94645 +2.56 2 0.94232 +1.42 3 P-C method 

190 0.94898 6.23 2 0.94513 5.20, 2 P-C method 

200 0.95135 10.06 2 0.94774 9.11 2 C
-r 	

SG  + ,^A 

210 0.95344 14.04 2 0.95006 13.16 3 P-C method 

220 0.95532 18.20 2 0.95220 17.39 2 P-C method 

230 0.95703 22.54 2 0.95397 21.79 2 P-C method 

240 0.95831 27.08 2 0.95548 26.39 2 P-C method 

250 0.95909 31.93 2 0.95660 31.24 2 P-C method 

260 0.95952 37.19 2 0.95726 36.44 3 P-C method 
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Runge-Kutta method, b Higher-order predictor-corrector method. 
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1800, both the (Euler-Cauchy and combination of Runge-Kutta, Adams-

Moulton) methods give almost same values of e and 0 . Higher-order 

methods (Runge-Kutta or Adams-Moulton or combination of both), though 

attractive, are found computationally more expensive and also give 

unstable results in the segments of rapid change of force vector. 

This is observed by the author and also by Shelly[601. Fantino and 

Frene (18] have mentioned that Runge-Kutta method creates 

difficulties of convergence for EHD (elastohydrodynamic) lubrication 

'problems. Hence, it was decided to use the Euler-Cauchy's predictor-

corrector method for the time marching scheme in this thesis. 

6.4 RESULTS AND DISCUSSIONS 

In this section the computed results are presented and discussed. 

They are compared with each other to highlight the effects of various 

parameters and also with the existing results wherever necessary. The 

authenticity of the computer programHis established first. 

Using the analysis and the solution algorithm presented in the 

forgoing Chapters, a general computer program was developed. To 

authenticate the algorithm and the computer program, the static.  

characteristics of the cylindrical hydrodynamic journal bearing were 

computed. These characteristics (i.e, Sommerfeld number (S), attitude 

angle (O.)) of the plain cylindrical bearing are compared with those  

of Pinkus [51] and Raimondi [57] in Table-6.3; they compare well. 

To compare the results of plain cylindrical bearing with non-

Newtonian lubricants under static condition, the load capacity (Ws) 

'of the plain bearing using e = 0.2, 0.4, 0.6, 0.8, and cubic shear 

stress law (Eq. (2.17a), with K = 0.58) were computed and checked 

with the experimental results [67]. Fig.6.3 shows good agreement 

and validates the computer, program involving the nonlinear behaviour 
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Table-6.3 

Static . performance of circular bearing (aspect ratio = 1.0) 
and its comparison with the data available in the literature 

++ +++ ++ 	+++ 

0.2 0.643  0.632 0.631 73.17  74.00  74.02 

0.4 0.264  0.261 0.264 62.09  62.00  63.10 

0.6 0.123  0.120 0.121 50.36  50.00  50.58 

0.8 0.0453  0.0448 0.0446 36.28  36.00  36.24 

Present Analysis S -  Sommerfeld number 

++ Pinkus  [51] 

+++ Raimondi and Boyd (571 0. -  Attitude angle 
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of the lubricant. 

6.4.1 Rigid Bearing with Isoviscous Lubricants 

Performance of the big-end bearing, in terms of its bearing 

centre orbit, minimum film thickness and maximum film pressure for 

one complete duty cycle, are obtained for isoviscous lubricants 

considering the bearing body as rigid. The results are summarized 

below; 

6.4.1a Bearing Centre Orbit:- 

Fig. 6.4 gives the bearing centre orbit of the big-end bearing 

subjected to the dynamic load with respect to the crank pin centre, 

Fig.4.2. The complete bearing centre orbit is obtained by using the 

Euler-Cauchy's predictor-corrector method (Appendix A-3). From the 

calculations, the maximum eccentricity ratio is found as e = 0.95341 

and the corresponding value of 13 is 41.830. This value of C occurs at 

Gi = 2700  crank angle, with reference to the top-dead-centre(TDC) at 

O. = 00  ; 0e<e1<1800  crank rotation represents the, expanion stroke 

of the engine. The computed orbit, Fig. 6.4, is drawn With reference 

to a fixed axis along the engine cylinder axis. The orbits, Fig.1.2, 

given in the literature (for instance Campbell et al [10]) are drawn 

with reference to connecting-rod axis. When the points of the 

computed orbit are transformed with ''''forfaneP to the connecting-rod 

axis,. it is found that the transformed orbit compare very well to the 

orbits of Fig.1.2. 

The minimum film thickness or maximum eccentricity ratio occurs 

at 2700  crank angle and does not occur at 100  crank angle at which 

the load is maximum, Fig. 4.2. This condition may be explained as 

follows: 

In a dynamically loaded bearing if the angular velocity of the 
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relative motion of the bearing and the rotational velocity .of the 

load vector are Ni and NL, then the approximate load capacity of the 

bearing is directly propotional to the effective velocity of bearing 

(Ni-2NL). 

At 2700  crank angle, the load vector rotates at a speed larg 

enough in the same direction as does the bearing (i.e., clockwise, 

Fig.4.2), hence, the effective velocity of the bearing decreases and 

in turn the load capacity of the bearing is considerably reduced in 

the vicinity of 2700  crank angle, whereas at 100  crank angle, the 

load rotates in the direction opposit to that of the bearing, so the 

load capacity of the bearing increases and in turn the eccentricity 

ratio is obtained as smaller. A similar effect of increase in load 

capacity is observed during the crank rotation from 6700  to 600  where 

the load vector rotates in direction opposit to that of the bearing, 

Fig.4.2. 

6.4.1b Maximum Film Pressure:- 

Fig.6.5 shows the values of the peak pressure in the fluid-film 

for two revolutions of the crank shaft. The peak pressures are 

plotted as a function of crank angle. The maximal value (i.e, the 

largest of the peak value) of film pressure, hereafter called as the 

maximum film pressure, in rigid bearing case is found to be 38.61  MPa 

which occurs at the crank angle position 1800  after TDC. For the same 

big-end bearing geometry, Goenka [24] has obtained the value of 

maximum film pressure as 34.40 MPa which is about 11% smaller than 

the value (38.61 MPa) obtained in the isoviscous case. 

6.4.1c Minimum Film Thickness:- 

Fig.6.6 shows the minimum film thickness variation with time or 

crank rotation. In the isoviscous case of rigid bearing, the minimal 
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value (i.e., the smallest of the minimum value of film thickness), 

hereafter called as the minimum film thickness, is obtained as 

3.85pm. 

The other reported values of the minimum film thickness along 

with the present value for the 6VEB-X engine big-end bearing are 

presented in Table-6.4 for'comparison . Table-6.4 indicates that the 

value of the minimum film thickness in the present study (3.85 p.m) 

lies in the range of the values of the minimum film thickness 

obtained by others [10). From these observations, it can be concluded 

that the analysis, the solution algorithm and the computer program 

are all valid. 

The value'of minimum film thickness does not occur at those crank 

angles where the bearing load is maximum (e.g., at 83. = 100  or 3600, 

Fig.4.2), but it occurs at crank angle 2700  . In the literature (10), 

the crank position at which the minimum film thickness occurs is also 

reported in the vicinity of 2700  crank angle, Table-6.4. 

6.4.2 Rigid Bearing with Piezoviscous Lubricants 

Performance of the same big-end bearing considering the effect of 

pressure on viscosity of lubricants is obtained in terms of the 

bearing centre orbit, variations of the peak pressure, the minimum 

film ,thickness and the power loss. These results are also compared 

with those obtained in the isoviscous- -case 1, Table-6.1. For 

viscosity modification, the value of piezoviscous coefficient Wp is 

taken as 0.02133 (1.5x10-e Pa-1 ) in Eq.(4.12). The results are as 

follows: 

6.4.2a Bearing Centre Orbit:- 

Fig.6.7 shows the bearing centre orbit of the big-end bearing 

having piezoVisCous lubricants. The shape of the orbit is almost 



11. General Motors Research Co. 
Goenka: FEM 
Goenka: rapid curve fit 

12. Glacier Metal Co. 
Jones: finite bearing 
Jones: .with film history 

Computed 
Computed 

Computed 
Computed 

13. University of Sussex  
Dede: finite bearing,mass 	Computed 
effect 
Dede: 1D solution,mass effect Computed 

14. Present study 
	

Computed 
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Table-6.4 
Comparison of the minimum film thickness obtained in the 

isoviscous case with the experimental and theoretical values 
available in the literature for the Ruston-Hornsby 6 VEB-X, MK-III 
engine big-end bearing 

Sr.No. 	Source 
	

Remarks 
	

$ 

240 

270 

273 

274 

271 

271 

1. Glacier Metal Co. 
From R & H 6VEB engine 
From dynamic similiarity rig 

2. Booker: short bearing 

3. Block: finite bearing 

4. Martin-Booker: short bearing 

5. Booker: short bearing 

6. Booker: finite bearing using 
Warner solution 

7. Blok: finite bearing, 
Herrebrugh & Moes 

8. Horsnell: finite bearing 

9. Lloyed: finite bearing 

10. General Electric Co.,U.K.  
Ritchie: finite bearing 
Ritchie: optimised short 
bearing 

2.79" 

3.30" 

5.58" 

3.30' 

5.84" 

5.84* 

2.31' 

2.90* 

5.44' 

4.47' 

** 
3.63** 
3.30 

** 
3.48** 
3.48 

1 

** 
3.56** 
2.29 

4.45 
. ** 

3.73 

3.85 

Experimental 

Experimental 

Graphical 

Graphical 

Computed 

Computed 

Computed 

Computed 

Computed 

Computed 

Computed 
Computed 

280 

273 

289 

270 

* Campbell et al (10), ** Martin [45], $ Minimum film thickness (Am) 
# Crank shaft position after T.D.C. at minimum film thickness 
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Fig.6.7 Bearing centre orbit (Piezoviscous case) 



100 

similar to that of the isoviscous case, Fig. 6.4 but the values of 

eccentricity ratios are slightly smaller than the values obtained in 

the isoviscous case. The maximum value of e in the piezoviscous case 

is 0.95059 which occurs at the-crank angle 2700  like that in the 

isoviscous case. Also the maximum value of e in the piezoviscous case 

is only slightly smaller than the corresponding value(0.95341) in the 

isoviscous case. Piezoviscous effect is, .however, observed as 

significant at high loads(for instance at 100, 1800, and 3600  crank 

angles). 

6.4.2b Maximum Film Pressure:- 

Fig.6.8 shows the peak pressure variation versus crank shaft 

angle for the cases 1 and 2, Table-6.1. From Fig.6.8 it is noticed 

that almost in entire duty cycle the pressure generated in the fluid-

film due to piezoviscous effect are larger than those in the 

isoviscous case. It is due to the increase of viscosity of the 

lubricant with pressure.The value of the maximum film pressure for 

the piezoviscous lubricant is found about 10% larger than that in the 

isoviscous case. 

6.4.2c Minimum Film Thickness:- 

A comparison of the minimum film thickness as a function of crank 

angle is shown in Fici.6.9 for cases 1 and 
	

The minimum film 

thickness values are larger in the piezoViscous case in comparison to 

those in the isoviscous case. The minimum film thickness in the 

piezoviscous case is about 6% larger than that obtained in the 

isoviseous case. In both the cases 1 and 2, Table-6.1, the minimum 

film thickness occurs at the crank angle 2700. 

6.4.2d Power Loss:- 

Power loss accounting for pressure dependent viscosity variations 
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is calculated and is plotted against crank angle, Fig. 6.10. The 

maximum power loss is observed as 1.24 kW at the crank angle 100  in 

one duty cycle. The power loss is significant in the segment of crank 

rotation 3200  to 4000  in which the bearing speed is large, Fig. 4.3. 

6.4.3  Rigid Bearing with the lubricants having  Piezo-Thermal 

Viscosity Characteristics. (Piezo-Thermal case) 

The combined effects of temperature and pressure on viscosity of 

lubricant is also considered to obtain the performance 

characte'ristics of the rigid big-end bearing. In the preceeding 

sections, the viscosity is taken as constant or pressure dependent 

but in reality the viscosity of lubricant is more sensitive to 

temperature change. Hence, considering the'viscosity variation with 

pressure and temperature both, the big-end bearing centre orbit, 

, variation of the minimum film thickness, the peak pressure, power 

loss and the maximum temperature rise are calculated. The following , 

results are observed and compared with those of the isoviscous case. 

6.4.3a Bearing Centre Orbit:- 

Fig. 6.11 shows the bearing centre orbit for one duty cycle. The 

shape of the orbit is similar to those previously obtained but in 

the piezo-thermal case almost all the values of eccentricity are 

larger than the values obtained in the isoviscous case. The maximum 

eccentricity ratio is calculated as 0.96176 and the corresponding 

value of (3 is 43.00  while, in the isoviscous case, the maximum 

eccentricity ratio is calculated as 0.95341 and the corresponding 

value of  is 41.80. 

6.4.3b Maximum Film Pressure:- 

Fig. 6.12 shows the variation of the peak pressure in both, 

piezo-thermal and isoviscous case. In almost entire duty cycle, the 
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pressure values in the former case are more than those in the latter 

case. The maximum film pressure in the piezo-thermal case 3, Table-

6.1, occurs at the crank angle 2000  appoximately. The maximum film 

pressure in the case 3 is about 24% larger than that in the 

isoviscous case 1. In the isoviscous case, the maximum film pressure 

occurs at 1800  crank angle. 

6.4.3c Minimum Film Thickness:- 

Fig.6.13 presents the variation of the minimum film thickness 

against crank angle for both the cases 1 and 3. In the piezo-thermal 

case 3, the values of viscosity reduce significantly due to 

temperature rise of the fluid-film and in turn the load capacity of 

the bearing decreases. Hence, in this case, almost all the values of 

the minimum film thickness are smaller than those in the isoviscous 

case, Fig. 6.13. The value of minimum film thickness in the piezo-

thermal case is calculated about 18% smaller than that obtained in 

the isoviscous case. The value of the minimum film thickness (3.15 

p,m) in the piezo-thermal case agrees more with the experimental 

values (2.79Am(103,3.1711m(4)). The position of occurance of the 

. minimum film thickness is almost same as in the isoviscous case i.e., 

in the vicinity of 2700  crank angle position. 

6.4.3d Maximum Temperature Rise- 

For the calculation of temperature rise in the fluid-film of the 

bearing in example, the SAE-30 oil was selected as lubricant for 

which the value of the 	constants ( 	) are given in 

Appendix A-2. The supply temperature is assumed as 890The crank pin 

surface temperature is taken uniform as 1000C and the bearing 

surrounding temperature (i.e., temperature in the crank case) is 

assumed as 800C. The maximum temperature rise under these conditions, 
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is shown in Fig. 6.14. The maximum temperature rise is obtained in 

the range of 100C to 300C which is comparable to the theoretically 

calculated value 250C reported in the literature [63]. 

6.4.3e Power Loss:- 

The variation of power loss and its comparison with that in the 

piezoviscous case 'is shown in Fig. 6.15. The maximum power loss 

obtained in the piezo-thermal case is found to be about 105 smaller 

than that (1.24kW) in the piezoviscous case. From Fig. 6.15, it may 

be concluded that due to reduction in viscosity, the power loss 

decreases under piezo-thermal condition. 

6.4.4 Rigid Bearing with Non-Newtonian Lubricants 

In the foregoing sections of this Chapter, the isoviscous, 

piezoviscous and piezo-thermal cases are discussed considering the 

lubricant as Newtonian. But the heavy duty engines require lubricants 

with superior viscosity index. The viscosity index is improved by 

adding suitable additives in the base oil which makes the behaviour 

of the lubricant non-Newtonian [37]. Hence, in this thesis the 

performance of the big-end bearing is also found with non-Newtonian 

lubricants represented by models, Eqs. (2.17) or curve-fit model, 

Eq.(2.20). The following results are obtained. 

6.4.4(i) Cubic Shear Stress (c.s.$) Law Model  

6.4.4(i)a Bearing Centre Orbit:- 

Fig. 6.16 shows the bearing centre orbit using non-Newtonian 

lubricants. The non-Newtonian behaviour of the lubricants implies 

reduction in viscosity at high shear rate in the flow-field (range 

2.5x105  sec-1  to 10x105  sec-1), and so, the load capacity of the 

bearing decreases. Due to this reason, the values of eccentricity 

ratio are obtained some what higher with 'non-Newtonian lubricants 
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when compared to those obtained with the Newtonian lubricants in 

almost entire duty cycle. The orbit, Fig. 6.16, is obtained by 

representing the relation between shear strain rate (1) and shear 

stress (r) with the cubic shear stress law, Eq.(2.17a). The cubic 

shear stress law represents the constitutive equation for most of the 

non-Newtonian oils in a wide range of shear rates. The value of 

constant K = 0.58 in Eq. (2.17a) is taken for calculation of complete 

orbit and other relevant results. The computer program is general and 

can handle any non-Newtonian model, Eqs. (2.17). A large CPU time is 

however required to compute one orbit, therefore, only one orbit 

using the cubic shear stress law with a selected value of K is 

calculated. 

By comparing the orbit of Fig. 6.16 of the non-Newtonian case 

with that of Newtonian case, Fig. 6.4, a difference in the values of 

the maximum eccentricity ratio is .noticed. For the non-Newtonian 

analysis, the maximum eccentricity ratio is found as 0.96165 in 

comparison to that (0.95341) in the Newtonian case. The maximum 

values of e occur at 2700  crank angle in both the cases 1 and 4, 

Table-6.1. 

6.4.4(i)b Maximum Film Pressure:- 

Fig. 6.17 is the plot of the peak pressure values which occur in 

the fluid-film of non-Newtonian lubricants at different position of 

the crank. These values of the peak pressure are also compared with 

those obtained in the Newtonian case. From Fig. 6.17, it is 

noticeable that in most part of the duty cycle the values of the peak 

pressure in both (Newtonian and Non-Newtonian) cases 1 and 4 are 

similar. The maximum value of the peak pressure for the non-Newtonian 
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lubricant is only about 6% smaller than that for the corresponding 

Newtonian lubricant. 

6.4.4(i)c Minimum Film Thickness:- 

Fig. 6.18 shows the variations of the minimum film thickness 

against crank angle for cases 1 and 4. In most part of the duty 

cycle, the values of the minimum film thic.kness for the non-Newtonian 

lubricant case are smaller in comparison to those in the Newtonian 

case. The value of the minimum film thickness for non-Newtonian 

lubricant is 17% smaller than that.for the corresponding Newtonian 

lubricant. The reduction in the value of the minimum film thickness 

is appreciable, hence, the non-Newtonian behaviour of lubricants 

should be taken into account for a more accurate design and analysis 

of the big-end bearing. 

6.4.4(ii) Curve-Fit Model  

For any lubricant, a relation between the apparent viscosity (4.) 

• 
and shear strain rate (T) can be established by curve fits on 

experimental data. Experimental datdare available for several non-

Newtonian (Commercial) oils at different temperatures [37). Using the 

least square method, a fourth order polynomial is fitted on the 

values of )1. and i for one of the oils (code C-2, at 990  C), 

Eq.(2.20). Using this equation in the non-dimensional form, a part of 

the orbit is obtained with.100  interval for a finite crank rotation 

1100<91.<2700. The cubic shear stress law, Eq. 2.17a, represents the 

non-linear behaviour of a wide range of non-Newtonian lubricants. The 

values of C and 0 obtained by using the cubic shear stress law and 

the curve-fit model are given for'comparison in Table-6.5. The Table 

shows that the values of e,0 are almost identical in the two cases. 

Using the least square method, other given values of 4. and Y for 



Table-6.5 

Comparison of the results obtained for the big-end bearing 
having non-Newtonian lubricants (cubic shear stress law and curve-fit 

model) 

Crank 
angle 

Ai 

Curve-fit model Cubic shear stress law model 

110 0.91818 -19.49 0.91755 -19.32 

120 0.92455 -17.49 0.92293 -17.05 

130 0.93077 -14.91 0.92846 -14.33 

140 0.93641 -11.97 0.93354 -11.32 

150 0.94125 -  8.84 0.93805 -  8.16 

160 0.94557 -  5.54 0.94205 -  4.85 

170 0.94921 -  2.09 0.94541 -  1.43 

180 0.95206 +  1.49 0.94823 +  2.13 

190 0.95460 5.24 0.95074  5.85 

200 0.95692 9.15 -  0.95308 9.72 

210 0.95898 13.24 0.95518 13.75 

220 0.96093 17.51 0.95702 17.94 

230 ,0.96252 21.97 0.95870 22.30 

240 0.96371 26.66 0.96013 26.89 

250 ' 0.96458 31.64 0.96102 31.81 

260 0.96495 37.03 0.96152 37.14 

270 0.96502 43.14  0.96165 43.06 

115 
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other oils [37) are fitted in fourth ortir polynomials whose 

coefficients are given in Table-2.2 for each oil. These values of 

coefficients may be useful for further studies. 

6.4.5 Ungrooved Rigid Bearing with Isoviscous Lubricants 

The 6VEB-X engine bearing has a circumferential groove of 12.7mm 

(0.5in) width. There are some big-end bearings which do not• have this 

type of groove. So, to evaluate the performance of the big-end 

bearing without circumferential groove, the same big-end bearing with 

full length subjected to full load, Fig. 4.2, 	is solved and the 

results are compared with those previously presented for the grooved 

bearing. The same configuration of bearing with small misalignment, 

if present, is also studied. The bearing centre orbit, the maximum 

film pressure, and the minimum film thickness are obtained for, both, 

parallel and misaligned bearing assembly. The results are presented 

as follows: 

6.4.5(i) Parallel Axes System  

6.4.5(i)a Bearing Centre Orbit:- 

Fig. 6.19 shows the bearing centre orbit of the big-end bearing ,  

without groove. In the absence of a circumferential groove, the 

relevant boundary conditions and in turn the pressure profile, 
, 

Fig. 1.5, are different which significantly change the bearing 

performance. From the solution it is found that in-this case, the 

eccentricity decreases significantly and the bearing operates with a 

larger minimum film thickness. The maximum eccentricity ratio is 

calculated as e = 0.88974 and the corresponding value of 0 is 43.500. 

The two orbits", Figs. 6.19 and 6.4, show that the eccentricities for 

ungrooved bearings are significantly smaller than those for grooved 

bearings. 
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6.4.5(i)b Maximum Film Pressure:- 

Fig. 6.20 is the plot of the peak values of the fluid-film 

pressure which occur in, both, grooved and ungrooved bearings. From 

Fig. 6.20, it is indicated that the fluid-film peak pressures are 

smaller in the ungrooved' bearing in comparison to 'those in the 

grooved bearing due to different pressure boundary conditions in both 

the cases 1 and 5, Table-6.1. The maximum film pressure in the 

ungrooved bearing is about 50% smaller than that in the grooved 

bearing. It shows that the ungrooved bearings operate at low fluid-

film pressures in comparison to the grooved bearings subjected to the 

same external load. It enhance the life of the bearings. 

6.4.5(i)c Minimum Film Thickness:- 

Fig. 6.21 is the plot of the minimum film thickness variations 

versus crank angle for the cases 1 and 5. In most part of the duty 

cycle, the values of the minimum film thickness for ungrooved 

bearings (parallel axis) are almost 3 times that of the corresponding 

values obtained in the grooved bearing case. The • minimum film 

thickness in ungrooved bearings is about 136% larger than that in the 

grooved bearings. 

6.4.5(ii) Skewed Axes System  

Error in the assembly of the bearing in the connecting rod end 

makes the axes of the bearing and the crank pin misaligned. 

Considering a small misalignment of a. (5= 0.0001, Fig. A-5.1, between 

the bearing and the crank pin axes, the ungrooved big-end bearing 

performance characteristics are computed and the results are as 

follows. 

6.4.5(ii)a Bearing Centre Orbit:- 

Fig. 6.22 shows the bearing centre orbit (skewed axes) which is 
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Fig.6-22 Bearing centre orbit of the big - end bearing without 
circumferential groove 
(Skewed axes case i.e. o = 6 = 0.0001 and B = 0.625 ) 

( Force variation. fig.4'2) 
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very similar to that of Fig. 6.19. In the case of skewed bearing, 

the maximum mid plane eccentricity ratio is obtained as 0.88990 and 

the corresponding value of 0 is 43.430  which are close to the values 

e - 0.88974 and 0 = 43.500  obtained in the parallel axes bearing 

system. 

6.4.5(ii)b Maximum Film Pressure:- 

Fig. 6.23 shows the values of the peak pressure in the bearing 

having skewed axes• and their comparison with the peak pressures 

obtained in the parallel axes bearing assembly. From Fig. 6.23, it is 

noticed that in almost entire duty cycle, the peak pressure generated 

in the skewed axes bearing assembly are larger than the peak pressure 

in the parallel axes bearing assembly. The maximum value of the peak 

pressure in the skewed axes bearing system is about 263o larger than 

that value obtained in the parallel axes bearing system. 

6.4.5(ii)c Minimum Film Thickness:j 

In. the case of skewed axes bearing assembly, the minimum film 

thickness occurs on one of the sides of the bearing away from its 

central plane. Fig. 6.24 shows the variations of the minimum film 

thickness in skewed axes bearing system and its comparison with that 

for parallel axes bearing system. The two variations are similar but 

the magnitudes of the minimum film thickness differ significantly in 

entire duty cycle. In the case of skewed axes bearing system, the 

minimum film thickness occurs at crank angle 2200, not occurs at 2700  

crank angle like in other cases. The minimum film thickness in skewed 

axes bearing system is about 28% smaller than that in parallel axes 

bearing system. It may be concluded, that if the mioalignment is 

larger, the possibility of occurance of metal to metal contact in the 

skewed assembly increase. 
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In the sub sections (6.4.1 to 6.4.5), the results of the big-end 

bearing with rigid body are discussed. Results are obtained for 

various cases, Table-6.1, considering the effects of various 

parameters. For these cases, the values of the minimum film thickness 

and the maximum film pressure, Table-6.6, may be noted as important 

operating parameters useful for designers. To show the peicent 

deviations for these two quantities with respect to the values 

obtained for isoviscous lubricant case 1, are also compiled in the 

Table. 
Table - 6.6 

Deviations in the minimum film thickness and the maximum film 

pressure for the rigid bearing cases. 

Minimum film thickness (pm) 

cases studied * 
	

2 
	

6 

3.85 	4.09 
	

3.15 	3.17 
	

9.10 	6.56 

Percentage change ** - 	6.23 -18.18 -17.66 136.36 	70.39 

Maximum film pressure (MPa) 

cases studied * 
	

1 	2 	3 	4 
	

6 

38.61 	42.30 	48.07 	41.10 	19.35 	28.25 

Percentage change ** 
	

9.55 	24.50 	6.45 -49.88 -26.83 

* 	 * * 

1- isoviscous lubricants 
2- piezoviscous lubricants 
3- piezo-thermal effects on viscosity 
4- non-Newtonian lubricants 
5- ungrooved bearing with parallel axes 	J = 2,3,4,5,6 
6- ungrooved bearing with skewed axes 

x 100 
Col.(J)-Col.(1) 

'001.(1) 
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6.4.6 	Elastothermohydrodynamic (ETHD) Lubrication Study of the Big- 

End Bearing. 

In the foregoing section, the performance characteristics of the 

big-end bearing for various lubrication.conditions without including 

the flexibility of the bearing body are discussed. But it is well 

known today that elastic deformation in the bearing body whether 

permanent or transient, significantly affects the performance of the 

hydrodynamic bearings. Hence, the analysis of the problem of the big-

end bearing is extended to include the ETHD considerations. In the 

case'of the big-end bearings, due to the deformation of bearing body, 

both inner and outer surfaces of bearing deform and experience change 

in shapes. The bearing ,body is assumed as cylindrical initially, and 

made of cast iron (42), which give the value of deformation 

coeffecient (T) = 0.009229, 	(R/t1„) = 1.77 and (c/tt,) = 0.00144. Th'e 

outer po‘rtion of the big-end, bearing (about 2/9 part), which is 

integrated with the connecting-rod, is considered as fixed boundary 

and the remaining outer surface of the bearing is taken free to 

deform. The following results are obtained in this condition. 

Starting from any arbitrary crank angle, e.g., 2500, and using 

a nondimensional time step of 20, the values of 6,8, the minimum film 

thickness, the maximum deformation, and the maximum temperature rise 

are calculated for a finite crank rotation, upto crank angle 3200  and 

are reported in the Table-6.7. From this Table it may be seen that 

considerable deformation occurs in the bearing body. The deformation 

pattern of both the bearing surfaces (inner and outer) at some (2600, 

2700, 2800, and 3000) crank angles are shown in Figs.6.25. Due to the 

irregular and significant deformations in the bearing body,Figs.6.25, 

the convergence of the solution at each crank angle takes a large CPU 
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Table-6.7 

Values of C,  , the minimum film th ickness ( h,„„ ), the 
maximum temperature rise 

 
Tm." ), and the max imum deformati on at the 

inner surface of the bearing body 
 

in the 

elastothermohydrodynamaic lubrication case for finite crank rotation 

Crank 

angle 
(Jim) 

d  ITU& X 

(Jim) 
T MM 

(0c) 

250 0.94948 30.29 4.15 - 

252 0.94994 31.44 7.69 4.70 7.21 

254 0.95038 32.76 6.64 4.37 7.21 

256 0.95048 34.14 6.20 3.79 7.30 

258 0.95041 35.55 6.26 4.12 7:30 

260 0.95022 37.00 6.27 4.04 7.30 

262 0.94993 38.50 6.43 4.37 7.39 

264 0.94959 40.18 7.82 8.33 7.56 

266 0.94881 42.15 7.47 9.98 7.92 

268 0.94750 44.25 7.44 9.91 8.45 

270 0.94588 46.42 7.50 10.15 9.52 

272 0.94385 48.70 7.52 10.15 10.68 

274 0.94319 50.73 7.82 10.48 10.14 

276 0.94318 52.97 8.80 10.90 10.68 

278 0.94186 56.07 10.41 13.70 9.88 

280 0.93921 59.70 9.57 15.27 9.35 

282 0.93545 • 63.72 10.38 .16.01 10.77 

284  0.93280 68.37 14.15 20.22 9.70 

286 0.93082 73.52 13.85 19.48 10.32 

288 0.92803 78.90 14.00 .  20.06 10.15 

290 0.92819 82.72 .  16.73 21.07 10.41 
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Table-6.7 Contd... 

1 2 3 4 5 6 

292 0.93018 85.00 19.84 26.02 6.23 

294 0.93552 89.77 21.48 29.80 6.50 

296 0.94625 95.73 23.86 24.68 8.54 

298 0.94996 101.62 16.77 21.05 14.60 

300 0.95106 108.68 19.43 22.78 12.10 

302.  0.95411 115.68 24.08 27.65 11.30• 

304 0.96871 122.16 25.64 29.22 10.68 

306 0.97742 126.08.  27.11 27.42 8.63 

308 0.97746 127.74 23.97 23.30 7.92 

310 0.97758 130.41 24.50 23.71 6.32 

312 0.97938 132.98 25.25 24.12 6.40 

314 1.05874 136.34 35.47 47.28 7.12 

316 1.15368 141.20 30.11 46.14 7.47 

318 1.18836 146.00' 33.22 53.16 7.89 

320 1.21673 149.81 21.49 43.91 6.67 
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Fig.6.25c Deformation pattern of bearing body at 280 deg. 
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time (about 15 minutes on DEC-2050 computer). Table- 6.7 shows that 

as a result of deformation, the minimum film thickness increases in 

the case of elastothermohydrodynamic analysis. Hence, the possibility 

'of the occurance of metal to metal contact is less. The CPU time for 

the iterative solutions accounting for deformations of large 

magnitude is excessive, therefore, the minimum film thickness values 

for the entire duty cycle has not been calculated. Table- 6.7 gives 

the computed ETHD orbit points for only a finite crank rotation. 

6.5 COMPUTATIONAL CPU TIME 

The performance characteristics of the big-end-  b'eat-rtig--under -

various conditions along with discussions are presented in the 

.section 6.4 of this Chapter. Information regarding the computer time 

needed on DEC- 2050 system in getting those resutls are tabulated 

below. 

Table-- 6.8 

CPU time required for the cases studied. 

Case studied 
	

Remark 
	

CPU time in hours 

Selection of numerical method 

Isoviscous lubricants 

piezoviscous lubricants 

piezo-Thermal effects on viscosity 

Non-Newtonian lubricants(C.S.S)* 

Non-Newtonian lubricants(C.F.M)** 

Ungrooved bearing(parallel axes) 

Ungrooved bearing(skewed axes) 

Elastothermohydrodynamic 
lubrication 

1.5 

Full orbit 
	

7 

F1111 nrhit- 	12 

Full orbit 
	

18 

Full Orbit 
	

13 

Partial orbit 
	

2/(13)$ 

Full orbit 
	

7.  

Full orbit 	7 

Partial orbit 	6.5/(80)$ 



136 

The total CPU time used in computing the results presented in 

this thesis is about 74 hours. 

Cubic shear stress law model. 

** Curve fit model 

$  Estimated CPU, time in hours to obtain full orbit. 



137 

6.6 CONCLUSIONS 

6.6.1 Algorithm and the Computer Program 

The solution algorithm presented in Chapter 5, is general and may 

be useful to the designers of the big-end bearing for any type of 

engine. The algorithm and the computer program were made efficient 

and economical by incorporating the following features.. 

1. Boundary conditions were introduced at the element stage to 

minimize computer core storage requirements. 

2. For the time marching scheme Euler-Cauchy's predictor-

corrector method was used which was found to be more suitable 

in comparison to Runge-Kutta or higher-order predictor-

corrector method for this problem. 

3. The frontal solver was used to economize the computer memory 

storage requirements for the computation of deformations, in 

the big-end bearing body. 

4. The subroutine used for non-Newtonian lubricant's is based on 

a general algorithm which can handle any non-Newtonian model. 

5. The size of time steps, when adjusted properly for successive 

segments of a duty cycle on the basis of the load on the 

bearing and its variation, considerably improves the 

convergence of the solution. 

The following time steps were found suitable. 

Crank'angle range (deg.) time steps 	(deg.) 

60 	- 250 \ 10 

250 	- 510 5 

510. 	- 690 10 

690 	- 720 - 	60 2 	- 
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6.6.2 Bearing Performance 

On the basis of the results presented in the preceeding Sections 

of this Chapter for the big-end bearing of a Ruston-Hornsby 6VEB-X, 

Mk-III engine, the following general conclusions can be drawn. 

1. For the rigid bearing with an isoviscous lubricant, the 

bearing ccntre orbit, variations of the minimum film 

thickness and the maximum film pressure are close to those 

reported in the literature, which validates the algorithm 

structure and the computer program. 

2. In the case of piezoviscous lubricants, the effect of 

piezoviscosity on the minimum film thickness and the maximum 

film pressure is not significant. This effect is, however, 

noticeable at high loads. Power loss is maximum near the top-

dead-centre position of the crank. 

3. The temperature effect on 'viscosity causes a significant , 

change in the minimum film thickness. In the case of rigid 

bearing with lubricants having piezo-thermal viscosity 

characteristics, the minimum film thickness is about 18 

percent smaller than that in the isoviscous case:The maximum 

temperature rise is about 100C to 300C and due to reduction 

in viscosity, power loss also decreases. In this case, the 

minimum film thickness is closer to the experimental value in 

comparison to other cases studied. 

4. For the non-Newtonian lubricants, the load, capacity of the 

bearing decreases. Hence, the values of the minimum film 

thickness for the bearing with non-Newtonian lubricants are ,  

found smaller to those for the Newtonian case. 



139 

. 5. For studying the characteristics of big-end bearing with non-

Newtonian lubricants, cubic shear stress law and curve-fit 

models are used to represent the constitutive equations for 

non-Newtonian bchaviour. By comparing the results of both 

the 	models, it is noticed that cubic shear stress law 

(constant K = 0.58) gives almost the same results as obtained 

using the curve-fit model. 

6. Replacing a 12.7mm (0.5in) wide full circumferential groove 

by a supply hole significantly affected the characteristics 

of the big-end bearing. For this ungrooved bearing, two cases 

have been studied and the following conclusions are drawn: 

(a) Parallel axes case:- In the case of ungrooved bearing 

with parallel axes, the values of the minimum film thickness 

are considerably larger and the values of the maximum film 

pressure smaller than thoSe obtained in the corresponding 

grooved bearing for the entire duty cycle. 

(b) Skewed axes case:- A small amount of misalignment between 

pih and bearing axes decreases the value of the minimum film 

thickness. Hence, if misalignment increases, there is a 

possibility of metal to metal contact at the edge of the 

LJGQ1.1104. • 

7. In I the elastothermohydrodynamic (ETHD) study, 	the 

deformation in the bearing body is found significant. The 

temperature rise and power loss are smaller than those in the 

rigid case. The ETHD case represents the realistic problem 

but is computationally quite expensive. 

8. For the grooved bearing configuration, the minimum value of 

film thickness occurs in the vicinity of 2700  crank angle'for 
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all the cases studied. For the ungrooved bearing with 

parallel axes, the position of- occurance of the minimum film 

thickness 	is also at 2700  crank 	angle, 	but in 	the 

corresponding bearing, with skewed axes, it occurs at 2200  

crank angle. 

9. Isoviscous study Of rigid bearing takes the minimum CPU time 

in comparison to the other cases studied, but in the 

isoviscous case, the value of the minimum film thickness is 

not comparable with that of available experimental value. The 

ETHD case represents the more realistic solution of the big-
. 

end bearing problem but it is computationally more expensive. 

However, the case of rigid bearing with non-Newtonian 

lubricants or with lubricants having piezo-thermal viscosity 

characteristics takes reasonable CPU time and the 

corresponding results are also closer to the available 

experimental results. Hence, for accurate design one has to 

consider the effects ofETHD lubrication, but for practical 

purpose one may design or analyze the big-end bearing on the 

basis of the results for rigid bearing with lubricants having 

piezo-thermal viscosity characteristics or non-Newtonian 

behaviour. 
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CLOSURE 

The kinematics of the big-end bearing and its dynamic loading are 

quite complex. The big-end bearing, therefore, has been a subject of 

extensive investigations, both theoretical and experimental, by a 

number of authors, particularly during the last two decades. A survey 

of .the literature on the big-end bearing indicates that the study of 

some aspects such as variation of viscosity of lubricants due to 

temperature and pressure or due to its dependence on shear strain 

rate and misalignment in the bearings need more attention. To the 

best of the author's knowledge, most of the studies on the big-end 

bearing, have assumed the viscosity as constant. With this 

assumption, accurate  solutions of the bi_g-end bear-d-ng—p-r--oblems --can- 

not be obtained. 

An analysis of the big-end bearing, taking into account the 

variation of viscosity, is rather complicated. In this thesis, an 

endeavour is made to include the viscosity variation due to pressure 

and temperature, in the analysis of the big-end bearing.. 

The author has not come across any literature on the. analysis of 

the big-end bearings having non-Newtonian lubricants. For heavy duty 

'engines, lubricants with specific properties are required which are 

often achieved by mixing various additives such as oxidation 

inhibitor, corrosion inhibitor, viscosity index improver, detergents,  

dispersents, defoaming agents in the base oils. Such lubricants show 

nonlinear relationship between shear stress and shear strain rate 

(non-Newtonian behaviour). 

It is' well known today that both the 'elastic deformation of 

.bearing surface and the variation of viscosity of lubricants with 
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pressure can have a significant effect on the bearing performance. 

The elastic distortion of the big-end bearing due to hydrodynamic 

pressure is often larger than the nominal radial clearance. Hence, 

the present problem is also extended to study the effect, of 

elastothermohydrodynamic lubrication on the performance of the big-

end bearing. 

The big-end bearing problem, being complex and challenging, 

attracts a large number of investigators. With the increasing 

computing power available, more and more complicated problems would 

big-end bearing. 

the author feels that the big-end bearing problem 

taking into account the effects of contamination of 

and variation of viscosity of non-Newtoinan lubricants with 

temperature. The solutions of complex problems obtained through 

involved algorithms need experimental validation. The author hopes 

that parallel experimental work on the big-end bearing will match 

theoretical investigations. 

be solved to obtain very realistic solutions for the 

In this regard, 

would be analyzed 

oils 
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APPENDIX 

List of Non-Newtonian Oils 

The following is the list of some of the oils (373 with code 

and viscosity index (VI) improver type. (All 10W-40 oils) 

Commercial Oils  

Code  VI improver type 

C-1  Ethyl -propylene 

C-2  Styrene-ester 

C-3  Methacrylate 

C-4  Ethylene-propylene 

C-5  Methacrylate 

C-6  EP and methacrylate 

Experimental Oils  

E-1  Hydrogenerated diene-styrene' 

E-2  Hydrogenerated diene-styrene 

E-3  Methacrylate 

E-4  Styrene-ester 

E-5 	Ethylene-propylene 

In the literature (611, it has been shown that at low shear rate 

(below 103(sec.-1)) as well as at high shear rate(above 106(sec.-1)), 

the apparent viscosity has become constant. This condition has also 

been applied in the present calculation. 



150 

APPENDI X A-2 

Heat Balance Condition  

(1) 	To obtain the heat rate (Qi) at the interface of ' lubricant 

and bearing inner surface, the following heat conduction equation is 

applied. 
OTI 

Q1 = -K.2nRiL -- I 
Orlr=Ri 

or 

(A.2.1) 

 

_ dT I 
=-RI -- I _ _ 

Or I r=R1  
(A.2.2) 

2nK.T.L 

where, Eq.(A.2.2) is written in nondimensional form and K. is the 

thermal conductivity of oil, Ri is the bearing inner radius, L is the 
OT 

axial length of bearing portion from which heat conduct and -- is 
Or 

the temperature gradient in radial "direction 

(2) 	Heat rate (Q2) from bearing inner surface to the bearing outer 

most surface (considering only the conduction of heat in radial 

direction) is given by 

Km2nL 
	 (Tb  T3) = 

R. 
log.-- 

Ri 

Tb -T3 

(A.2.3) 

 

flm 

where, TD  and T3 are the bearing inner and outer most surface 

temperature. respectively, RD is the bearing outer most radius and 

(lm is defined as the heat resistance of the bearing body material. 

(3) 	Heat rate from bearing outer most surface to the surrounding 

is given by 

T3-Tm 

Q3 = h.21tR.L (T3-T.) =  	 (A.2.4) 



OT I 
= 	7 

Tb-i. = - Ki nT 	_ 
or Ir=Ri 

(A,?7) 

151 

where, h. is the convection heat transfer coeffiCient, T. is the 

surrounding temperature and (la is the heat resistance due to 

convection of heat. 

Now applying the condition that 02 =Q3 and by eliminating T3 

from equations (A.2.3-A.2.4), the following equation is obtained. 

Tin 'To. 

02 = 
n, 

where, n, is the total heat resistance and defined as 

1 	R. 	1 

(A.2.5) 

n, = nm + na = 	 log. 
Km2TEL 	Ri 	h.2m1R„,L 

From Eq.(A.2.5), the heat rate Q2 or Q3 in nondimensional form may be 

converted as 

02 = 03 = 

  

(A.2.6) 

  

nT 

.which gives the normalizing factor for n, as 

nT = 2TEK.IAT 

 

(4) 	Now equate QI,to Q2 or Q3 , the following relation is 

obtained which has been used to calculate bearing inner surface 

temperature (Tb). 
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Thermal Constants  

Oil' used SAE - 30 

Properties of SAE-30 oil at different temperature [11) 

Temperature  250C  400C  1000C  Value of relation 

constants 

Density 
886  876  839  b = 1361 

@(Kg/m3 )  a = 0.023669 

Absolute viscosity 229.474  98.725  10.50  6T=23.3 
11.„(mPa.S)  . [37=0.032/0C 

Vogel formula  

A. = a exp {b/(T+OT)} 

Reynolds formula  p. 	A. exp {-0T(T-T0)} 

Supply temperature To = 890C 

density  @0 = 850 Kg/ms 

Viscosity at supply temperature p. = 14.95 mPa.S(2.17x10-sreyn) 

From Reference (81  

Lubricant thermal conductivity kc, = 0.13 W/m°C or N/S°C or 

Jouls/Sec.m°C 

Specific heat C = 2000 J/Kg 0C 

Bearing material thermal conductivity Km = 51.9 W/m°C 

0.05265 , (Eq.(2.24)) 

@.C, R a c 
= 6891.21 ,  (Eq.(2.24)) 

K. 
Peclet number  =  =6891.21/1230 =5.6 

Calculation of thermal total resistance (nT) 

Value of Ro =0.1590 m (6.25 in) Ref.(42] 

K„ 
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Ri  = 0.1016 m (4.0 in) 

In case of forced convection heat transfer, the value of h„ 

(heattransfer coefficient ) can be taken quite large, 'hence using 

h. = 2000 W/m2  0C in the case of spalashed lubrication system. 

K. 	R. 	K. 
n, = 	log. 	+ 	 

KE, 	RI, 	h. R. 

= 0.0011 + 0.0004 

= 0.0015 

and 

13-T = BT x T. = 2.848 
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AP P END I X A— 3 

Predictor-Corrector Formulae  

The higher-order predictoi-corrector formulae by Adams-Moulton 

(25) are given as 

Predictor:  

p 	ais 	 2_ 

	

= ei + 	(551-591-1+37C1-2-9 et-3) 
24 

(A.3.1) 

at 

	

= 51 + 	(5551-5951.-i+3751-2-9(31-3) 
24 

Corrector : 

at 

	

et, = et + 	(9et,1 + 19et - se.-1 + ei-2) 
24 

(A.3.2) 
at • • 

51,1 = 5i + 	(95i,i+1951-5(3t-i+51-2) 
24 

The predictor-corrector relations due to Euler-Cauchy modified 

formula are given as 

Predictor:  
• 

= 	+.2 at et ; (31+1D1.-1 + 2 at 5i 
(A.3.3) 

0. _ - 0. _ 	2 at e 	. A. 	- A. 	+ 2 At R. 	(A.11) 

Corrector:  

	

_ 	• 
et„ = ei  + (1/2) at (e14-1 +ei) ; 	ol+(1/2) Ot(514-1+01) 

(A.3.4) 

The Euler's predictor formula is given as 

•  
ei+2. = ei + at 	; 	01+1 = Oi 	at Di 

The backward difference formula is 
. 	. 	. 	• 

et = (et - et-.)/ dt ; i3 = 	ót 

(A.3.5) 

(A.3.6) 
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APPENDIX A-4 

DATA FOR THE RUSTON-HORNSBY 6 VEB-X., Mk-III CONNECTING-ROD BIG-END 

BEARING USED THROUGHOUT THIS WORK. 

Engine  6 cylinder,600 rev/min, 600 b.h.p., turbo-charged diesel, 

four stroke, in line. 

Bearing length (total) = 127.0 mm (5.0 in) 

Bearing grooving central circumferential, 12.7 mm (0.5 in) wide 

Bearing length of one land = 57.15 mm (2.25 in) 

Radial clearance =82.55  m (0.00325 in) 

Bearing diameter (inner) = 203.2 mm (8.0 in) 

Bearing diameter (outer) = 318 mm  (12.52 in) 

Length of connecting-rod = 782.3 mm (30.8 in) 

Crank radius = 184.1 mm (7.25 in) 

Engine speed (600 rev/min) = 62.84 rad/S. 

Weight of piston and gudgeon pin ='805.08 N (181.0 lbf) 

Weight of connecting-rod = 800.64 N (180.0 lbf) 

Approximate reciprocating weight = 2/3 X 800.64 = 533:76N (120.0 -lbf) 

Approximate reciprocating weight = 1/3 X 800.64+805.08=1071.96N(241.o 

lbf) 

Estimated operating oil viscosity in bearing=14.95mPa.S(2.17X10-6reyn) 

Oil supply pressure = 0.2758 MPa (40.0 lbf/in2 ) 

Bearing body material IRON [42) 

Young's Modulus (E) = 107 GPa 

Poisson's Ratio  = 0.25 

Thickness of bearing body  = 57.4 mm (421 

Deformation coefficient 4) = 0.009229 
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Table-A-4.1 

Force components (SI units) on the connecting-rod big--, 
end bearing of the Ruston-Hornsby 6VEB-X, Mk-III engine relative to 
the Cylinder axis 

Crank 
angle 

Big-End Bearing Forces, (kN) 

8i 
(deg.) Fnx F. Anglem(deg.) 

0 115.34 -0.0 0.00 

10 207.37 -17.28 -04.76 

20 133.17 -27.92 -11.84 

30 73.19 -33.38 -24.52 

40 41.30 -37.43 -42:18 

50 27.38 -41.11 -56.33 

60 26.53 -45.01 -59.49 

70 34.53 -49.15 -54.91 

80 44.66 -52.18 -49.44 

90 58.76 -54.58 -42.89 

100 72.95 -55.33 -37.18 

110 85.98 -54.13 -32.19 

120 ,  97.19 -50.75 -27.57 

130 105.95 -45.17 -11  10 ,..../..,. 

140 112.89 -38.28 -18.73 

150 115.65 -29.57 -14.34 

160 114.63 -19.88 -09.84 

170 113.34 -09.96 -05.02 

180 110.44 0.0 0.00 

190 107.82 09.73 5.16 

200 105.11 1  19.11 10.31 



Table-A-4.1 Contd... 

1 2 3 4 

210 100.26 27.75 15.47 

220 94.16 35.41 20.61 

230 85.76 41.66 25.91 

240 74.82 46.13 31.65 

250 61.03 48.44 38.44 

260 44.30 48.53 47.61 

270 24.80 46.35 61.85 

280 02.99 42.25 85.95 

290 -20.34 36.68 119.01 

300 -44.12 30.31 145.51 

310 -67.12 23.78 160.49 

320 -88.07 17.62 168.68 

330 -105.77 12.17 173.43 

340 -119.16 07.53 176.38 

350 -127.52 03.58 178.39 

360 -130.37 -0.0 180.00 

370 -127.52 -03.58 181.61 

380 -119.16 -07.53 183.62 

390 -105.77 -12.17 186.57 

400 -88.07 -17.62 191.32 

410 -67.12 -23.78 199.51 

420 -44.12 -30.31 214.49 

430 -20.34 -36.68 240.99 

440 02.99 -42.25 274.05 

450 24.80 -46.35 298.15 

460 44.30 -48.53 312.39" 
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Table 4.1 	Contd... 

1 2 3 4 

470 61.03 -48.44 321.56 

480 74.82 -46.13 328.35 

490 85.76 -41.66 334.09 

500 94.16 -35.41 339.39 

- 	510 100.26 -27.75 344.53 

520 104.35 -19.05 349.65 

530 106.75 -09.69 354.81 

540 107.51 0.0 360.00 

550 106.76 09.69 365.19 

560 104.35 19.05 370.35 

570 100.26. 27.75 375.47 

580 94.16 35:41 380.61 

590 86.87 41.86 385.73 

600 77.04 46.57 391.15 

610 63.96 49.11 397.51 

620 49.06 49.68 405.36 

630 31.40 47.95 416.78 

640 13.06 44.70 433.47 

650 -04.92 40.18 456.99 

660 -18.06 35.74 476.81 

670 -27.49 31.05 491.53 

680 -28.25 26.78 496.53 

690 -13.09 23.16 479.48 

700 +15.71 18.43 409.55 

710 51.37 10.89 371.97 

720 115.34 0.0 360.00 
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APPENDI X A— 5 

EXPRESSION FOR FILM THICKNESS IN SKEW AXES SYSTEM  

Definition: Fig.A-5.1a 

On 	= origin of crank pin axes system (X',Y 1 ,2') 

Ob 	= origin of bearing axes system (X,Y,Z) 

R 	= crank pin radius 

RB 	= (R+c) = bearing radius 

r 	= radial coordinate measured from 0, 

e 	= eccentricity 

h 	= film thiCkness 

= angular position of line of centres from fixed axis X' 

The transformation from crank pin fixed axes X', Y', Z' to 

bearing 	axes 	X,Y,Z can be obtained by two rotations u and 6 , 

Fig.A-5.1b. The first rotation 	is about X' and the second 

rotation 
	

is about Y'. Right hand screw rule . is followed in 

deciding the sign of the rotation. The transformation is 

     

     

)C 

L z
J  

Therefore, 

cos6 	0 	-sind 

sing sind 	cosy 	sing cosh 

sind (-ris:rs  -sing 	coso cos6 

  

(A.5.1) 

  

    

    

    

  

	

cosy 	sing sind 	sind cosy 

0 	cosu 	-sing 

	

-sind 	sing cos6 	coso cos6 

(A.5.2) 

  

The equation of the bearing surface contour at any section 

with reference to the bearing or pin axes system, when the bearing 

centre Ob, and the pin centre Op, Fig.A-5.1b, are coincident, can be 

written as 
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2 

x2  + y2  = RD 	 (A.5.3) 

Substituting the values of x and y from Eq.(A.5.2) into Eq.(A.5.3), 
2 	 2 	2 

(x'cos(5+y'sinusino+z'sinocosu) +(y'cosu-z'sinu) = RB  (A.5.4) 

The skew components o and (5.being very small, sino and sinO may be 

taken as a and (3 respectively and cosu and cos6 both as unity. Also, 

neglecting the  terms containing squares and products of small 

quantities, Eq (A.5.4) reduces to the following form: 

2 	2 	 2 

	

X' +y' +2x'z'o-2y'z'u = RB  (A-.5.5) 

If the bearing centre, (I„ is shifted at an eccentricity e from the 

pin centre Op, the equation (A.5.5) of the bearing surface contour 

is modified to the following form, 

-e cose )2  +(y'-e sine )2  +2(x'-e cos)z'o 
2 

-2(y'-e sine )z'u = RB  (A.5.6) 

or neglecting comparatively small terms, 

2 	 2 

x' -2x'e cose +y' -2y'e sine +2x'z'o -2y'z'u = RB 

Eq.(A.5.7) can be expressed in cylindrical cordinates by 

substituting, x' = rcos(e+0) and y' = rsin((3+0), and x'2  +y'2=r2  

r2  -2rcos((3+0).e cose -2rsin(e+0).e sine 
2 

+2rcos(e+0)z'd -2rsin(0+0)z'a = RB 

or 

r2  -2r(e cos(0+0)cos(3 

2 

+e sin(e+0)sine-z'Ocos((i+0)+ziusin((3+0))-R8  =0 

or 

(A.5.8) 

(A.5.9) 

2 	 2 

r -2r(e cos() -zidcos((3+0)+z'asin((+0))-RB  = 0  (A.5.10) 

Solving for r, and neglecting the terms containing squares and 

products of the small quantities, 

r = e cos0 -zga cos((3+0)+z'usin(0+0)+RB  (A.5.11) 

• 
(A.5.7) 
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At any section, the film thickness, h is given by 

h = r-R 

Hence, the expression for film thickness,' when bearing axes 

are skewed with respect to pin axes, can be obtained from 

Eqs.(A.5.11 and A.5.12) and relation R E3  = R+c, such as 

h = c + e cos8 - z'ocos((3+6) + z'a sin((34.0) 
	

(A.5.13) 

Using the normalizing factors, the nondimensional film thickness is 

— 	— — 
h = 1+6 cos8 - z' R6 cos((3+6) + z'Ru sin((3+19) 	(A.5.14) 
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Fig. A-5-I Axes misalignment in bearing system 
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APPENDIX A-6 

THE BIG-END BEARING EQUILIBRIUM LOCUS  

The big-end bearing centre orbit is calculated point by point 

using a time marching scheme. Initial conditions at any arbitrarily 

selected crank angle are reqUired to compute the points on the orbit. 

The initial conditions are, however, not known a-priori. The values 

of e and 0 obtained considering the wedge action alone is a good 

approximation of the initial conditions. to compute the orbit points. 

For a selected crank angle, the value of eccentricity ratio e can be 

iteratively computed at which the resultant of the fluid-film force 

components along and perpendicular to the line of centres, is equal 

to the force on the bearing. The attitude angle is then readily 

obtained from the values of the two fluid-film force components, 

which in turn gives 13, Fig.4.4. 

In order to have an option to calculate the bearing orbit points 

starting from any crank angle position, the values of e and 0 are 

computed for the bearing load, Fig.4.2, considering the wedge action 

alone, at various crank angles. The equilibrium locus of C and (1 is 

given in Fig.A-6.1, which is useful for'selecting a suitable crank 

angle as a starting point at which the change in the values of e or 

13 is not steep. From the Fig,A-1, It is seen that any crank angle 

lying, for example, between 700  and 1800  is suitable for good 

convergence of the orbit points. 
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Fig. A-6.I Bearing centre equilibrium locus 
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Fig.A-6.I Bearing centre equilibrium locus 
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