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ABSTRACT

The Sub-Saharan region of Africa has been challenged by natural and man-made stresses

extending from flood and prolonged drought to poor economic and institutional

developments. Ethiopia, situated in the horn of Africa and its economy dominantly based on

agriculture, is becoming a victim of such global challenges. The Rift Valley lakes and rivers

system of Ethiopia has undergone major changes in recent past. Agricultural, water supply,

and hydropower sectors are affected by variable climate patterns. The impact of changing

climate condition is more profound in semi-arid regions of Rift Valley lakes basin where

competition for water is immense. Quantitative assessment of the impacts of climate and

catchment dynamics on runoff generation in the basin is vital.

In the present study, an attempt has been made to explore the impact of climate

change and catchment dynamics on runoff generation in the Rift Valley lakes basin of

Ethiopia. The broad objectives of the present study are:

i. Investigation of the spatial and temporal variability of annual and seasonal rainfall

over Ethiopia,

ii. Identification of non-stationarity and reasons of non-stationarity in hydro-climatic

datasets in the Rift Valley lakes basin of Ethiopia using short and long-term time

dependence analysis,

iii. Assessment of the impacts of topographic, weather and catchment input parameters

on runoff generation using Soil and Water Assessment Tool,

iv. Analysis of the impacts of climate change on runoff generation using coupled

atmospheric-ocean Global Climate Model (GCM) outputs for current and future

climatic conditions under varied greenhouse gas emission scenarios,

v. Evaluation of the impacts of temporal land use/land cover dynamics on runoff

generation using distributed hydrologic model.

Spatial and temporal rainfall variability analysis covers entire Ethiopia whereas

investigation of non-stationarity in hydroclimatic variables is confined to Rift Valley lakes

basin of Ethiopia. Assessment of the impacts of catchment and weather input parameters,

GCM outputs under varied greenhouse gas emission scenario and land use dynamics on

runoff generation are limited to Bilate (5330 km2) and Hare (166.5 km2) watersheds. Specific
iii



methodologies applied to achieve the intended objectives and major findings from the

analysis are summarized as follows.

Spatial and temporal variability of annual and seasonal rainfall over Ethiopia

Monthly gridded rainfall data of 50 years (1951-2000) at 0.5° latitude x 0.5° longitude

resolution covering entire Ethiopia was acquired from Global Precipitation and Climate

Center (GPCC) and its validity for subsequent analysis is examined against nearby observed

series. Trends in seasonal, annual and maximum 30-days extreme rainfall over Ethiopia are

investigated using Mann-Kendall and Theil-Sen's slope estimator approaches. Spatial

coherence of annual rainfall among contiguous rainfall grid points is examined for possible

spatial similarity across the country applying Moran's spatial autocorrelation model. The

association of Atlantic Multidecadal Oscillation index over Ethiopian rainfall pattern is also

explored through statistical analysis.

The main summer season and annual rainfall exhibit significant decreasing trend in

northern, north-western and western part of Ethiopia. In most other parts of the country

(approximately 77% of geographical coverage), the annual rainfall series remained without

significant trend for the second half of 20th century. Based on the Moran's spatial analysis,

annual rainfall for the total sampling points (381 grid stations) is divided into four zones of

annual rainfall spatial similarity. Regions with high annual and seasonal rainfall distribution

exhibit high indices of temporal (n and r2) and spatial (Moran index) autocorrelation

coefficients. Atlantic Multidecadal Oscillation and annual rainfall indices over the last half

century reveal modestly good correlation in the northern region whereas the association is

weakly developed in other parts of the country.

Investigation of non-stationarity in hydroclimatic variables

Statistical analysis of short and long-term persistence in hydro-climatic variables such as

rainfall, stream flow and lake level to detect possible time-trends over the historical period is

undertaken. Mann-Kendall trend detection method, Theil and Sen's slope estimator, Hurst's

coefficient, Spectral and Wavelet analysis approaches are applied to identify trends and

periodic signals in hydro-climatic variables. Temporal land use/cover information and nearby

Indian Ocean SST anomalies are further examined to study their association to hydro

climatic fluctuations.
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Despite less statistically significant trend in seasonal and annual rainfall events and

number of rainy days within the catchment, streamflow and lake level have showed

significant increasing trend for more than 75 percent of events investigated. This observed

non-stationarity is variable across hydro-climatic elements that could likely be attributed to

the combined effect of global climatic variability on local climate and altered catchment

condition over the years. The estimated Hurst's coefficient (H) is greater than 0.5 for all

events of streamflow and lake level, which suggests a likely evidence of long term

persistence in hydrologic variables.

The deterministic cyclic components of streamflow are legitimately represented as

discrete finite Fourier series. The variance explained by the first two harmonics exceeds 96

percent in most cases and the monthly flows are approximated by the first two harmonics.

Trend analysis carried out on various model combinations of discrete wavelet decomposed

signals detected the prevailing trends in hydrologic variables efficiently. The average stations

total rainfall is better correlated to summer season (June-September) SST whereas the

association becomes weak for annual average SST.

Impact of terrain, weather and catchment input parameters on runoff generation

The impact of terrain, weather and catchment input parameters on runoff is assessed using

process oriented Soil and Water Assessment Tool. The limitations of 30m resolution

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 90m

resolution Shuttle Radar Topography Mission (SRTM) DEM in watershed delineation are

explored. Sensitivity of catchment input parameters while simulating runoff at Bilate and

Hare watersheds is investigated and the most sensitive parameters are identified.

Contrary to 90m SRTM DEM, the 30m ASTER DEM resulted in spurious flow

accumulation path that subsequently reduced the watershed area by 29% and affected other

basin parameters at Hare watershed. Soil and Water Assessment Tool effectively captured

the underlying hydrologic processes while simulating runoff at both watersheds. The

simulated annual water yield is within ±3.4% error to the observed series. Initial curve

number for average soil moisture condition, deep aquifer fraction, minimum water depth in

the shallow aquifer for flow and available soil water holding capacity parameters are found

to either attenuate or accentuate the resulting runoff more significantly than other

parameters in the watersheds.



Simulating present and future runoff using Global Climate Model outputs

The impact of large-scale atmospheric-ocean variables on local-scale hydrology is

investigated through Global Climate Model (GCM) outputs under different greenhouse gas

emission scenarios. Downscaled and subsequently bias corrected GCM outputs are applied

to simulate present and future runoff at Bilate and Hare watersheds of Rift Valley lakes

basin of Ethiopia. Future implications of extreme precipitation and runoff events are

discussed from GCMs outputs for varied greenhouse gas emission scenarios.

Large-scale GCM outputs are obtained from BCCR-BCM2.0 of Norway and CSIRO

MK3.0 of Australia GCMs and subsequently reduced to local-scale weather variables

(temperature and precipitation) using station weather data. Since GCMs are operating at

coarser scales, the statistical downscaling model (SDSM) is employed to reduce large-scale

atmospheric variables to local level weather condition. The statistical downscaling model,

followed by bias correction, effectively reproduced the current climate (1990-1999) weather

variables. Statistically downscaled and subsequently bias corrected daily temperature and

precipitation variables are used to simulate runoff for present and two future (AIB and A2)

greenhouse gas emission scenarios at Bilate and Hare watersheds. Simulated future runoff

events are characterized by increased extreme events that ultimately resulted in increase in

the gross annual runoff volume from the watersheds. The simulated runoff varies from -4%

to 18 % at Hare watershed and is within the range of -4 % and 14 % at Bilate watershed.

Simulated average annual water yield shows slight variation between GCMs. It lies within

±10 % at Bilate basin and ranges from -17% to 12% at Hare basin. Future water resources

planning and management could likely be affected by such variability and hence existing

design methods could expand their scope to account for these extreme events.

Impact of temporal land use/land cover dynamics on runoff generation

Temporally varying (1976/1986/2000) Satellite image acquired from landsat satellite system

is processed and land use/cover classes are identified. Runoff is generated using SWAT

model for temporally varying land use /land cover conditions and the ensuing results of land

use dynamics on runoff is discussed. Statistical trend test is also applied to detect the

unexplained natural climate variability.

Joint analysis of watershed modeling for temporally varying land use/land cover

condition and statistical time-trend analysis of streamflow is undertaken to explore the
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impact of altered land use/land cover condition on runoff generation at two watersheds. The

method detected the underlying variability efficiently. The percentage of forest cover

declined substantially at Bilate and Hare watersheds during 1976/2000 analysis period. The

simulated surface runoff component increases progressively since 1970s. Percentage annual

surface runoff varies from 10 to 23% at Bilate and 16% to over twofold at Hare watersheds.

The increasing trend of observed daily maximum flow at Alaba Kulito and slightly raised

slope of rainfall-runoff double mass curve since 1992 supports the attribution of climate

induced changes at Bilate catchment.

Future attempts could incorporate long record observed hydro-climatic variables to

examine the accompanying spatial and temporal variability. Application of GCM outputs

from multi-models better help to understand the future climate variability and its associated

impacts on local Hydrology
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

The cognizance of impact of climate change and variability on our planet, and specifically on

societal development, has got wide publicity among scientific community and governments

since climate modelling tools have begun to emerge. The capability of climate models to

simulate present and predict future climate condition has increased its application in addressing

climate change implications (Marshall et al., 2011).

Climate change and variability due to either continuous seasonal astronomical pattern or

inadvertent effects of man over earth-atmospheric continuum has significantly been affecting

the hydrologic cycle. Varied precipitation in terms of frequency and intensity would result in

more frequent events. Earth's surface temperature is fluctuating due to global climate change

which is evident from increase in average air and sea surface temperature, melting of polar ice

caps, rise in average global sea level and other associated changing aspects of our planet

(Loaiciga et al., 1996; Singh and Kumar, 1997; Barnett et al., 2005; Steele-Dunne et al., 2008).

Over the last one hundred years (1906-2005), global mean surface temperature has risen by

0.74°C ± 0.18°C. The rate of warming per decade in the last fifty years (0.13°C ± 0.03°C) is

nearly twice that over the last hundred years (0.07°C ± 0.02°C) (IPCC, 2007a). However, in

most cases, the effect of such changing climate and its variability on catchment hydrology is not

well investigated. Water resources planning and management system is affected by this

variability and associated uncertainties.

Due to rapid growth in world's population, the natural environment is under tremendous

stress on account of various demands that ultimately influence the global water balance. The

ever increasing need for food, fiber and shelter coupled with growing national economic

interests aggravated land use dynamism. Anthropogenic induced land use/land cover changes

have transformed one-third to one-fourth of ice-free surface of our planet (Vitousek, 1994;

Vitousek et al., 1997). In most parts of the globe, significant area of pristine ecosystems with

lush vegetation has been converted to other forms of land use/land cover management practices.

Conversion of forest cover and dense naturally vegetated area to arable land (Angelsen, 1999;



Barbier, 2004) and cattle grazing field has significantly modified bulk water yield from the

watersheds. Piao et al. (2007) argues that the land use change has been strongest in tropical

regions and its contribution to global runoffoutweighs that of climate change. On global scale,

an average amount of0.08 mm/year2 increase in runoff is observed due to land use changes.

Shifts on onset of seasonal rainfall in some parts of the globe resulted in change in the

hydrologic regime of the globe (Emanuel, 2005). Among the most severe natural disasters

during the last century in Ethiopia, flood and drought accounts for major proportions (48 flood

and 12 drought events) in terms of loss of life and associated damages to people and property

(EM-DAT, 2010). The occurrence of frequent extreme precipitation and temperature events

over the past signals key climate variability in the country and warns a future course of adaptive

measures.

In addition to flood and drought, modification of fragile ecosystem in terms of

deforestation, land degradation and sedimentation have become recurring facets of many

watersheds. As per the world Food and Agricultural Organization (FAO) report of 2006, 30%

of the world's land area only is estimated to be covered by forests with a gross deforestation

rate of 12.9 million ha/yr. With some mitigation measures, the recent net global forest loss was

reduced to 7.3 million ha/yr compared to 8.9 million ha/yr of the 1990s (IPCC, 2007b). Forest

cover in Ethiopia declined phenomenally over the last century. The country's total forest cover

was drastically fallen from 44% in 1885 to 4% in 1985 (McCann, 1997). This is mainly

attributed to conversion of forest land into agricultural land, settlements, infrastructure

developments and logging. Such noticeable man-induced land use/land cover dynamics

substantially altered the hydrologic regime of the basins; by and large, affected the runoff

process by modulating the storm response in the catchments.

The Earth's radiative energy balance due to anthropogenic influences markedly

increased climate fluctuations. The atmospheric-ocean General Circulation Models provide

credible estimates of such fluctuations for future climatic condition at continental scale.

However, identifying impacts associated to continuous decadal climatic variability based on

expected greenhouse gases emission scenario at small spatial scale is usually characterized by

highly uncertain model results and requires significant attempt to approximate the reality.

Quantification of catchment responses under varying climate and catchment

characteristics is required to address key water resources management problems. Stochastic
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analysis of short and long term persistence in hydro-climatic variables such as stream flow and

lake level to detect for possible time-trends over the historical period (Berndtsson et al., 2009;

Ehsanzadeh a , 2010; Burn et al., 2010) provides an insight about climatic variability.

However, statistical trend analysis alone may not deal with a complete sense of complications

arising from climate change. Joint use of such statistical time dependence analysis and

hydrologic modelling may better help understand the response of catchment due to climatic and

man-induced changes (Refsgaard et al., 1989). The natural fluctuation in hydrological variables

caused by climatic and catchment conditions is detected by hydrologic models' and the

remaining unexplained variability is manipulated through statistical time-dependence analysis.

1.2 OBJECTIVES OF THE STUDY

Ethiopian Rift Valley system is part of the Great Rift Valley system of the world that

extends from Syria in the north to Mozambique in the Eastern Africa with total length of about

6400 km. It is a fracture in the Earth's surface that widens over time due to Earth's tectonic

forces forming an opposed dipping faults. Ethiopian Rift Valley lakes basin, covering a total

area of approximately 52,500 km , is one amongst twelve major river basins of the country and

accounts for 49% geographic area of the entire Rift Valley system (FAO, 1997). The basin,

marked by its beautiful natural reservoirs and streams, is administratively shared between two

Regional States (Oromia and Southern Nations, Nationalities and Peoples Republic (SNNPR)).

Geomorphologically, the basin is characterized by lowland plateau and escarpments at both left

and right ends extending from the central part of the country to Cewu Bahir bordering Kenya.

The impact of changing climate condition is more profound in semi-arid regions of the

basin where competition for water is immense. Quantitative assessment of the impacts of

climate and catchment dynamics on runoff generation in the basin is vital. Owing to limited

data availability, little attempt has been made to understand the watershed dynamics of

Ethiopian catchments in response to climate and land use change.

In view of the preceding major concerns, the study investigates the impact of climate

change and catchment dynamics (land use/land cover changes) on runoff generation in the Rift

Valley lakes basin of Ethiopia. To meet this goal, the research objectives are identified as

follows.



i. Investigation of the spatial and temporal variability of annual and seasonal rainfall over

Ethiopia,

ii. Identification of non-stationarity and reasons of non-stationarity in hydro-climatic

variables using short and long-term time dependence analysis in Rift Valley lakes basin

of Ethiopia,

iii. Assessment of the impact of topographic, weather and catchment input parameters on

runoff generation using Soil and Water Assessment Tool,

iv. Analysis of the impact of climate change on runoff generation using coupled

atmospheric-ocean Global Climate Model outputs for current and future climatic

conditions under varied greenhouse gas emission scenarios,

v. Evaluation of the impacts of temporal land use/land cover dynamics on runoff

generation using distributed hydrologic model.

1.3 ORGANIZATION OF CONTENTS OF THE THESIS

The thesis is organized into seven major chapters. Chapter 1 presents introduction and

objectives of the study.

Spatial and temporal variability of annual and seasonal rainfall over Ethiopia is

investigated using trend detection approaches in Chapter 2. Association of Atlantic

Multidecadal Oscillation (AMO) to Ethiopian annual and seasonal rainfall pattern is also

examined in this Chapter.

Non-stastionarity in hydro-climatic variables in the Rift Valley lakes basin of Ethiopia is

investigated in chapter 3. Hydro-climatic variables such as rainfall, streamflow and lake levels

for average and extreme events are investigated for possible long-term and short-term time

dependence. Besides trend detection methods, spectral and wavelet analysis are utilized to

examine the periodic behavior of streamflow and lake levels. Association of Sea Surface

Temperature (SST) and temporal land use/land cover changes to prevailing temporal variability

of hydro-climatic variables is also assessed.

Chapter 4 discusses the impact of weather and catchment input parameters on runoff

using physically based distributed hydrologic modelling. Soil and Water Assessment Tool

(SWAT) model is applied to two study watersheds in the Rift Valley lakes basin of Ethiopia to
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characterize the ensuing effects of variable weather and catchment input parameters and on

runoff.

Chapter 5 concentrates on investigation of impact of climate change on runoff

generation. Climate change and key future signals of its variability are assessed using General

Circulation Models (GCMs). Since GCMs are operating at coarser resolution, statistical

downscaling model (SDSM) is applied to reduce large scale atmospheric variables into

localized weather variables. Bias corrected daily precipitation and temperature variables are

used to simulate runoff for current and future climate scenarios. The implication of changing

climate condition on average and extreme future runoff magnitude is evaluated.

Chapter 6 deals with land use/land cover dynamics and associated impacts on runoff

generation. Real-time land cover information acquired from landsat sensors is further processed

to identify temporal land use/land cover condition in the study watersheds. Runoff is simulated

for varied land use/land cover conditions using distributed hydrologic modelling. The behavior

of simulated runoff is further investigated using statistical analysis of historical hydro-climatic

datasets.

Conclusions drawn from the study and scope for further work are presented in Chapter



CHAPTER 2

TEMPORAL AND SPATIAL VARIABILITY OF ANNUAL AND

SEASONAL RAINFALL OVER ETHIOPIA

2.1 GENERAL

In many parts of Ethiopia, failure of summer monsoon rainfall coupled with traditional farming

practices notably reduced agricultural produce and aggravated poverty stricken economy of the

nation over the last four decades. Impacts of climate variability and change are significantly felt

in agriculture, water supply and hydropower sectors and adversely affecting the socioeconomic

aspect of the livelihood. Assessing spatial and temporal variability of annual and seasonal

rainfall over the country allows us to understand the impact of global climate system on

regional weather pattern. Moreover, reliable knowledge of ecosystem resilience under variable

precipitation condition can be obtained from temporal precipitation analysis so that future water

resources planning and management accommodates commendable adaptive measures.

This chapter is devoted to identification of possible spatial and temporal trends in annual

and seasonal rainfall variability over the country using statistical analysis. Secondly, short term

persistence in annual and seasonal rainfall pattern is investigated and its statistical significance

is examined. Finally, the coherence between North Atlantic Multidecadal Oscillation (AMO)

and annual rainfall indices over the analysis window is assessed.

2.2 OVERVIEW OF RAINFALL VARIABILITY OVER ETHIOPIA

The inter-annual oscillation of Inter-Tropical Convergence Zone (ITCZ) and the influence of

Indian monsoon cause variation in the wind flow patterns and determine the climate pattern

over Ethiopia (Moron, 1998). ITCZ passes over Ethiopia twice a year and this migration

alternately causes the onset and withdrawal of winds from north and south. Such periodic

anomaly of winds as a result of ITCZ movement causes seasonal rainfall variability over the

country. The south western, western and southern part of the country receives high (>1200 mm)

mean annual rainfall. Mean annual rainfall magnitude decreases in the northern and eastern

parts of the country that reaches below 400mm in some locale. Ethiopian main rainfall season

follows both uni-modal (during June-September months when the ITCZ is to the northernmost)
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and bi-modal (March-May and September-November) rainfall pattern (Gissila et al., 2004). The

uni-modal rainfall pattern usually covers the northern part whereas bi-modal rainfall pattern is

associated to southeastern and southern parts of the country.

Ethiopia has been ravaged by persistent drought of varying extent leading to social and

economical ramification (Pankhurst, 1966; Degefu, 1987; Ntale and Gan, 2003). Rainfall

anomalies in the form of extreme wet (1962-1966, 1979, 1998/1999, and 2006/07) and dry

(1971-1973, 1984-1986, 1992, and 2002-2004) years substantially affected the agricultural

sector (Jury, 2010).

The summer rainfall that accounts for major component (approximately 65-95 percent)

of total annual rainfall over the country is governed by El Nino-Southern Oscillation (ENSO)

and further enhanced by local climatic forcing (Korecha and Barnston, 2007). Main rainy

season droughts in Ethiopia are likely associated to warm ENSO episodes (Seleshi and

Demaree, 1995; Tsegay, 1998; Seleshi and Zanke, 2004). The low frequency fluctuation in

North Atlantic Sea Surface Temperature (SST) described as North Atlantic Multidecadal

Oscillation was signaled by both warm and cool phases over the last one and half-century. This

synoptic scale signal affected the rainfall pattern of the globe exerting drought and hurricanes

(Enfield et al., 2001; Uvo and Berndtsson, 2002; Trenberth and Shea, 2006) of variable

magnitude with conspicuous effects in North Atlantic regions. Its impact is also characterized

by detectable features in northern part of Ethiopia as well. The drop in Nile river level during

1970s and early 1980s appears to be related to a multi-year cool phase in the North Atlantic and

a southward retreat of the near equatorial trough (Jury, 2010). Taye and Willems (2012) argue

that changes that occur on the Pacific and Atlantic Oceans influence extreme rainfall and flow

at the upper Blue Nile basin of Ethiopia. AMO shows strong and significant correlation to

rainfall and streamflow during the dry season.

Rainfall trend analysis has drawn considerable attention of many climatologist and

hydrologist since long back and being in use nowadays to trace the impact of climate variability

and change due to natural and anthropogenic influences across the globe (Parthasarathy and

Dhar, 1975; Partal and Kahya, 2006; Christensen et al., 2007; Trenberth et al., 2007; Kampata

et al., 2008; Ghosh et al., 2009; Patra et al., 2012). In highly agrarian community like Ethiopia

where the livelihood of the population and gross domestic product of the country is almost

entirely dependent up on rain-fed agricultural production, analysis of precipitation pattern is of
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paramount importance to cope up with damages associated to crop yield, animal breeding,

power production and ecosystem management.

2.3 TEMPORAL AND SPATIAL VARIABILITY ANALYSIS METHODS

The complex interaction in land-atmosphere-ocean continuum yielding to varied climatic

conditions could be approximated and evaluated through climatic variables such as

precipitation, temperature and stream flow describing the process. Among others, investigation

of precipitation pattern and its possible trends as function of spatial and temporal scale over the

region provides valuable information for future water resources management. Moreover, it acts

as a useful intermediate solution in deriving mitigation measures and evaluating ecosystem

resilience towards such variability.

The weather conditions vary both spatially and temporally depending up on local

orogrpahic effects and large scale climate induced changes. The essence of accounting spatial

variability of rainfall in watershed hydrologic modelling is manifold. Total water yield in the

sub-watersheds could realistically be predicted provided that the spatial distribution of rainfall

over the basin is known in advance. The influence of synoptic scale meteorological forcings and

local orographic effects could be inferred from spatial rainfall pattern of a region. Moreover, it

helps to bolster our knowledge of preliminary rainfall data analysis methods (such as storm

transposition, filling missing data, etc) under limited data conditions.

Analysis of temporal variability of annual and seasonal rainfall pattern over historical

^ observation period provides useful information about time dependence of rainfall events. On the

basis such time-dependent patterns of rainfall events, present and future water resources

management scenarios could be suggested. In this section, a brief review of the applications of

spatial and temporal time series analysis tools is discussed in reference to available literature.

The spatial distribution of seasonal and annual rainfall pattern across the geographic

locations is assessed using the spatial autocorrelation theory. The spatial autocorrelation

method measures the similarity of a variable with respect to adjacent variable as a function of

variable value and distance. Cliff and Ord (1981) provided detail mathematical model of spatial

autocorrelation theory to capture the spatial variability of geographically dependent time series

datasets. The basic notion of spatial autocorrelation is stated by Cliff and Ord as if the adjacent

values are strongly related to each other, then there is strong spatial autocorrelation; if values



are simply arranged at random order over the surface, there should be no apparent spatial

autocorrelation.

Grunsky and Agterberg (1991) presented an algorithm to analyse spatial association

between multivariate datasets. The method computes auto-/cross correlation coefficients of a

multivariate dataset to examine for possible spatial relationships. The developed model is

successfully applied to geochemical datasets to study the spatial distribution.

Koenig (1999) discussed the application of spatial autocorrelation to study the spatial

synchrony of ecological phenomena. He argued that the availability of long-term and large area

datasets such as rainfall and temperature datasets acquired from Global Historical Climatology

Network make possible to understand the underlying spatial pattern.

Cai and Wang (2006) used the Moran index (I) approach to quantify the topographic

index in catchments derived from digital elevation models. The association of topographic

index declines over increasing spatial extent.

The temporal variability of seasonal and annual rainfall pattern is investigated using

short term persistence and time trend analysis. Giles and Flocas (1984) define persistence as a

tendency of the successive values of a time series to remember their antecedent values and to be

influenced by them. It is a correlational dependence of order k between each ith element and the

(i-k)1 element of the series (Kendall, 1975). Such time-lagged dependence is measured using

autocorrelation function. Time domain (autocorrelation) and frequency domain (spectral

estimate) based tests can be applied to investigate persistence in time series. The time domain

technique is applied to assess persistence in seasonal and annual rainfall pattern.

The non parametric, distribution-free trend test method of Mann and Kendall (Mann,

1945; Kendall, 1975) and its variants such as the modified Mann-Kendall trend test (Hamed

and Rao, 1998; Rao et al., 2003) and the prewhitened Mann-Kendall test (Zhang et al., 2001,

Cunderlik and Burn, 2004) used for autocorrelated series are widely used methods to detect

non-stationarity in time series. The parametric regression coefficient approach (Matalas and

Sankarasubramanian, 2003) is also applied in many hydrological time-trend analyses.
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2.4 THE STUDY AREA

The study area covers the entire Ethiopia, situated approximately between 3° to 15°N latitude

and 33°E to 48°E longitude, with a total area of 1.13 million square kilometers (Fig. 2.1). The

region is characterized by highly irregular topography in the central and northern highlands to

lowland of the rift valley plain traversing from north-east to south-west with elevations ranging

from around 110m below mean sea level in the Dallol Depression to 4,620m above mean sea

level at Ras Dejen in the Simen mountain massif (Fig. 2.2a). The three major climatic zones of

Ethiopia are tropical rainy climate characterized by dense forest and intense moisture content,

temperate rainy climate and dry climate. Based on modified Koppen's climate classification of

Ethiopia (Gonfa, 1996; Peel et al., 2007), the climatic zones are further subdivided into a total

of nine categories to account for average local variability.

Monsoon rainfall distribution is highly erratic and unevenly distributed over the country.

The monsoon rainy season is spatially varying in such a way that northern part of the country

(as the rift system approximately describing the divide line) receives its substantial rainfall from

June to October, however, the main monsoon rainy season ('Kiremf season) is usually from

July to September. Relatively low seasonal and annual rainfall distribution is prominent in south

and south-eastern region of the country with highest rainfall magnitude in the months of April

and slightly lower rainfall further extends to the month of October. Traditionally, this region

mainly receives its highest rainfall both in 'Belg' (March-April-May) and 'Kiremf seasons.

Spatial distribution of mean annual and seasonal rainfall pattern is depicted in Fig. 2.2a and Fig.

2.2b respectively. Mean annual temperature varies from over 30 C in lowlands to

approximately 10 °C atvery high altitudes.

2.5 DATA USED AND METHODOLOGY

2.5.1 Data Used and Preliminary Data Analysis

Data Used: Monthly gridded rainfall data at 0.5° latitude x 0.5° longitude resolution of 50

years (1951-2000) covering the entire Ethiopia is acquired from Global Precipitation and

Climate Center (GPCC) under the framework of project Variability Analyses of Surface

^ Climate Observations (http://gpcc.dwd.de). It is an updated and globally gridded precipitation

estimate extracted from surface rain gauge observations with a minimum of 90 percent data

availability over the years 1951-2000. The dataset is compiled in data centers (Food and

Agricultural Organization (FAO) of United

11
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Fig. 2.2 Mean annual rainfall distribution at 200 mm contour interval overlaid on elevation grid

map (a). Mean seasonal rainfall pattern where the country is categorized into two regions based

on main summer (region-I) and spring/summer (region-II) rainfall distribution (b)
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Nations, Climate Research Unit (CRU) and Global Historical Climatology Network (GHCN))

and data transferred via the Global Telecommunication System (GTS) (Adler et al., 2003; Beck

et al., 2005). Beck et al. (2005) had undertaken a rigorous attempt in interpolating the

precipitation data over the world to 0.5° xO.5° grid size using ordinary krigging that resulted in

least interpolation error among other methods. A total of 381 precipitation grid points (Fig. 2.1)

extracted from station data are considered for further statistical analysis. The total number of

existing meteorological observatories in the country until 1999 exceeds 832 (Belete, 1999) with

more monitoring stations being added henceforth. Gridded rainfall data is widely applied in

various hydro-climatological analyses in different parts of the world (Rajeevan et al., 2006;

Baigorria et al., 2007; Ghosh et al., 2009; Mair and Fares, 2010) and is advocated to be suitable

for climate variability study. Jury (2010) applied a 0.5°xO.5° gridded precipitation data over a

period of 1901-2007 from GPCC dataset to study decadal climate variability in Ethiopia.

Observed rainfall data for selected stations of sufficient record length is obtained from National

Meteorological Service Agency (NMSA) of Ethiopia to check the validity of gridded data

through preliminary data analysis.

An unsmoothed and detrended AMO index data of Kaplan (1998) Sea Surface

Temperature Version 2 (1948-2000) is acquired from National Oceanic and Atmospheric

Administration (NOAA) dataset to investigate AMO-rainfall index. Digital elevation model

with 90m resolution (Fig. 2.2a) is obtained from Consultative Group on International

Agricultural Research-consortium for Spatial Information (CGIAR-CSI) center

+ (http://srtm.csi.cgiar.org/) and further analyzed to identify surface elevation variability of the

study area.

Preliminary Data Analysis: Prior to applying analytical evaluation, examining the quality of

available data minimizes the errors that propagate throughout the analysis and eliminates

potential bias in the final decision. Preliminary scrutiny of observed and gridded rainfall data in

terms of time series plots, fitting probability distribution and checking for consistency has been

made. Both observed and gridded rainfall series stem from similar distribution. Spatially close

sets of observed and gridded rainfall series are characterized by statistically similar mean and

standard deviation values.
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Statistical Hypothesis Testing: Hypothesis testing represents a class of statistical decision

making technique to extract information about a population from limited observations. McCuen

(2003) summarizes procedures involved in statistical analysis of hypothesis testing as follows;

formulating the hypothesis, selecting the appropriate statistical model that identifies the test

statistic and its distribution, identifying the level of risk measured as significance level,

computing an estimate of the test statistic from the sample data, obtaining the critical value of

the test statistic which defines the region of rejection and finally comparing the computed test

statistic with critical value to arrive at a conclusion based on the hypothesis. The null hypothesis

is the logical antithesis of the notion that the investigator is seeking to prove while the

alternative hypothesis is its exact opposite. Thus, throughout the sections the null hypothesis is

represented by H0 and its counterpart, alternative hypothesis as HA.

The decision for most hypothesis test can be explained in terms of two tailed, one tailed

lower or upper of the underlying problem statement. For parameter P tested against the standard

value P0 and S denoting the computed test statistic with S() values of the variates associated to

area described by a-term in respective tails are summarized (McCuen , 2003) in Table 2.1.

Table 2.1 Statistical test hypothesis cases

If HA is Then reject H0 if Test Case

P*Po S > Sa/2 or S < Si.^2 two tailed

p<p0 S < S^ one tailed lower

p>p0 S > S^ one tailed upper

Rejection of the null hypothesis does not mean that the alternative hypothesis is always

true. The sampling procedure might have produced an extreme value by chance, though either

this is very unlikely, or the extreme value of the test statistic might have occurred because the

null hypothesis is false. The later has got statistical inference and often accepted in hydrology.

Unless otherwise stated a two tailed problem case where region of rejection is on both sides has

been applied in the subsequent sections.

2.5.2 Spatio-Temporal Variability of Rainfall

2.5.2.1 Spatial Distribution of Annual & Seasonal Rainfall

Climatic variables such as rainfall are highly influenced by local and synoptic scale

meteorological forcings. Therefore, assessing the spatial variability of time series for observed
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or extracted values of variables is highly demanded. Evaluation of feature similarity based on

its location and unique attribute (eg. mean annual and seasonal rainfall magnitudes) assigned to

it simultaneously provide sound technique to analyze whether there is a spatial relationship

(similarity/dissimilarity) in the magnitudes of the variables over space or not.

The concept of variable similarity over space, variously known as spatial

autocorrelation, was developed to capture the realm of regional behavior since the early 19th

century, however, matured conceptual and mathematical model described as in spatial

autocorrelation is to the credit of Cliff and Ord (1969; 1973; 1981). Since then the approach has

received growing application in many literature to describe spatial autocorrelation (Koenig,

1999; Ping et al., 2004; Cai and Wang, 2006; Carl and Kuhn, 2007). The Cliff-Ord model

herein after Moran's spatial autocorrelation (Moran, 1950) method where both location and its

mean annual and seasonal rainfall magnitudes are simultaneously analyzed for possible spatial

autocorrelation is used to examine spatial variability of annual and seasonal rainfall. The

method compares the magnitude of a variable at a point to the magnitude at other points with

explicit reference to location (Goodchild, 1986) in the given space domain and evaluates the

association strength in terms of index. Finally, based on the estimated index at prescribed level

of significance, spatial clustering or dispersion of regions is accomplished. Goodchild (1986)

provides explanatory review of spatial analysis.

The Moran's (1950) test statistic, I of spatial autocorrelation in a vector of residual u as

summarized by Hepple (1991) as:

n n

,_xZZ*.«j».i ,,a.wa
^ n

1 =
\sj

i=i j=i

z«.
j=l

u u

(2.1)

where Uj is a residual value of variable at particular location u} is the residual value of

variable at another locations; w is nx n matrix of spatial weight set denoting the strength of

connection between regions or the weight indexing location of i relative to/ ; n is number of

elements and s being sum of all elements in the weights matrix. For raw standardized matrix,

i.e., when raw elements are scaled to sum to unity, the value of s becomes equal to n. Omitting

the scaling factor (n/s) without loss of generality, the test statistic becomes:

u Wu
1= A (2.2)

u' u

15



Under the null hypothesis of no spatial autocorrelation, the statistic, I is normally distributed.

Cliff and Ord developed the asymptotic distribution to the Moran's test statistic (Z[) with

regression residuals.

Z,=^il (2.3)
VVar (I)

where the expected value and variance assuming the error term follows the normal distribution.

The distribution is critically dependent on the form of idempotent matrix M and hence the

expected value and variance (Anselin, 1988; 1995) are given by:

fn^ rMWlTE(I)= - L J (2.4)
\sJ n-k

'nV

Var (I) =±U— (2.5)
(n-k) (n-k+ 2)

where M is projection matrix equals to 1-X(X X)'lX ; W is weight matrix ; k is the number of

values in the empirical frequency distribution that are more extreme than the observed statistics.

The spatial similarity of a single station to its proximity is described by Anselin's local Moran

index as a function of mean annual rainfall and a Euclidian distance. Features sharing a

common boundary such as adjacent grid points or contiguous polygons are analysed for

similarity of values at spatial scale. Field Moran's index value is statistically evaluated using Z-

score test where the test statistic follows normal distribution. Critical values of Z-score at 10 (5)

and 1 percent significance level are ±1.65 (±1.96) and ±2.58 respectively. The null hypothesis -4-

of the test statistic is that there is no spatial clustering of the values. The null hypothesis is

rejected if Z-score lies beyond the critical level. In general, a Moran's Index value near ±1

indicates clustering while an index value near -1 indicates dispersion. Local and global Moran's

I are computed for respective precipitation locations to annual and seasonal rainfall and their

spatial significance is evaluated.

Spatial distribution of rainfall influences the volume, peak and time to peak of runoff

hydrograph in the catchment (Singh, 1997; Chaubey et al., 1999; Chaplot et al., 2005). The

response of spatial variability is more pronounced when runoff is simulated from poorly -*

networked station rainfall data in large catchments (Smith et al., 2004). Possible systematic

pattern in spatial variability across the compass directions in the study area is demonstrated by

estimating 25, 50, 75 and 100 percentile annual rainfall magnitudes throughout the grid points.
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2.5.2.2 Temporal Dependence of Rainfall

The degree to which hydro-meteorological variables at any time tt is dependent up on the value

of preceding time in the domain of the sequence adequately represents the serial correlation,

sometimes referred as autocorrelation. A tendency for a system to remain in the same state

from one observation to the next described as persistence is associated to positive

autocorrelation. Thus, evaluation of the statistical significance of such dependence in time

series (Box and Jenkins, 1970; Salas et al., 1980) prior to development of stochastic models is a

trustworthy approach. The significance of lag-one serial correlation coefficient for independent

and identically distributed series can be computed using methods suggested by Anderson (1942)

and latter by Kendall and Stuart (1968) that the distribution of rk is approximated as:

N
1 (n-2)

n nz(n-l)

Hirsch et al. (1993) defined a test statistic, t, which follows a student's t- distribution with n-2

degree of freedom, to assess the significance of Pearson product moment correlation coefficient

as:

Vn-2

1-ri J

(2.6)

(2.7)

Presence of significant serial correlation in hydro-climatic time series affects subsequent trend

test (von Storch and Navarra, 1999; Hamed and Rao, 1998; Yue et al., 2002) and need to be

removed prior to trend analysis. To identify whether lag one serial coefficient is different from

zero by sampling error or not, hypothesis testing for computed n is carried out at prescribed

level of significance. Thus, the significance of lag-one serial correlation coefficient is evaluated

by Hirsch's approach and subsequently utilized to pre-whiten annual and seasonal series.

A serial correlation magnitude of lag k, rk, is not significantly different from zero for

random sequences, however, rk value close to unity describes strong time dependence of the

observations. The first-order autocorrelation coefficient is especially important because physical

systems dependence on past values is likely to be strongest for the most recent past. Lags of

higher order are used when the first order autocorrelation coefficient is not sufficiently enough

to describe the serial dependence. A plot of set of autocorrelation coefficients of various lags

known as correlogram has paramount importance in detecting randomness, short term

correlation and stationarity of the sequence over the observation length (McCuen, 2003;

Kottegoda, 1980). The presence of a secular trend in time series is associated to high serial

17



correlation magnitude in the correlogram for smaller lags and decreases slightly at higher lags.

The upper and lower boundary of the correlogram test statistic,/? (Anderson, 1942) for lag k

serial dependence at a level of significance for N observations is given by:

P =
1

N-k
±Z

l-a/2

(N-k-1)" >
N-k

(2.8)

The corresponding normal variate, Z ,, is assumed to follow normal distribution and obtained
/2

from one side test hypothesis.

2.5.2.3 Trend Analysis of Annual and Seasonal Rainfall

Enough evidence exists to suggest that significant changes in trends of observed daily

rainfall has been eminent over the second half of twentieth Century. Substantial change in

heavy rainfall since late 1940's has been observed in Ethiopia (Easterling et al., 1999). Many

early rainfall variability and trend analysis studies conducted in Ethiopia rely on either limited

length of data or qualitative inference of changes from limited preliminary rainfall statistical

analysis, however, recent rainfall variability studies (Segele and Lamb, 2005; Cheung et al.,

2008) are worth mentioning. Segele and Lamb (2005) discussed variability on timing of onset

and cessation of summer rainfall in Ethiopia. Cheung et al. (2008) conducted regression

analysis of rainfall to examine for possible spatial and temporal variability. To the knowledge

of the authors, no rigorous statistical trend analysis has been conducted covering the whole

geographical area of the country with sufficient data length to demonstrate time evolution of

rainfall. The significance of such variability should be verified through further statistical

analysis with prescribed level of acceptance or rejection so that the resulting strength of

statistical analysis could reflect the variability. In the present study, rainfall trend analysis is

conducted covering entire geographical location based on 381 precipitation grid points of 50

years record length.

The distribution of time series has a significant effect on trend analysis and subsequent

methods to be resorted. Hydro-climatic variables might exhibit a variable extent of probability

distribution and hence either must be checked for distribution that fit the time series prior to

assigning trend analysis or use distribution free trend test methods. Thus, application of trend

detection methods that do not rely on the distribution of samples under consideration is

advantageous. It ignores the complication arising in normality test as the distribution might fall

in transition where the deviation from normality is difficult to identify. Even though a plethora
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parame,r,e test ongtnally developed for „o„-eorre,a,ed
computed as:

s-JJvfrj-*^
i=l j=i+l

•a ; > i and the sen function is given by:where xi and xj are observations with j>iand sg

1 if Xj-Xi>0

sgnCx.-x^j 0 if X3-X.-0
_1 if x.-x, <0

(2.9)

(2.10)

,, • ^ VarCS^i of the distribution are.expected value, E(S) and the variance, Var (S)

E(S) = 0
(2.11)

Var(S) =

(2.12)

Ifone0rm„redn,aPointSaret1ed,,hesampleStandardde™t,0n1seorree,edtoaeeoUntfor,ied
elements as:

n(n-l)(2n +5)-St,(.)(i-l)(2i+5)
i=l

Var(S) =
(2.13)

normal test statistics,
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^'' 0

(2.16)
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2.6 RESULTS AND DISCUSSION

2.6.1 Autocorrelation

Statistical significance test of annual and seasonal rainfall is conducted to assess short-term

time dependence and to examine the influence of autocorrelation on subsequent trend analysis.

From student's t-distribution for n-2 degree of freedom the corresponding p-value at 5 and 10

percent significance level is obtained and compared with estimated t-statistic. For sample size

n= 50 with n-2 degree of freedom, the 5% and 10% p-values are 1.68 and 1.30 respectively. If

the t-test value computed in eqn. (2.7) is less than the student's t-distribution mentioned at

prescribed level of significance, then the lag-one autocorrelation is not significant and the

variation is due to sampling error. Summary of t-test results for annual and seasonal (July-

August for region-I and April-October for region-II) rainfall series is presented in Tables 2.2

and 2.3.

Table 2.2 Significance of lag-one autocorrelation coefficient for annual rainfall series

Significance level, Total number of Record length Number of Number of

a (%) samples tested (years) Tests passed Tests failed

5%

10%

381

381

50

50

88 (23)

118(31)

293 (77)

263 (69)

(.) indicates percentage of total sample

Table 2.3 Significance of lag-one autocorrelation coefficient for seasonal rainfall series

Significance level, Total number of Record length Number of Number of

a (%) samples tested (years) Tests passed Tests failed

5

10

381

381

(.) indicates percentage of total sample

50

50

85 (22.3)

91 (23.4)

296 ( 77.7)

290 (76.6)

Among 381 observations, 23 percent found significant for lag-one autocorrelation for

annual and seasonal series at 5 percent significance level. The level of serial dependence is

almost similar in both annual and seasonal series. The autocorrelation coefficient of annual and

seasonal series up to lag n/4 is further computed to build a correlogram. The upper and lower

confidence interval of the correlogram is estimated using Anderson's approach described in
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section 2.4.2.2. Partial plot of significant positive lag-1 autocorrelation coefficient is presented

in Fig. 2.3. It has been observed from the correlogram that the serial dependence for annual

series is high for the first two lags and asymptotically drops to zero. Substantial portion of

western and north western part of the country is characterized by high first and second order lag

coefficients whereas the serial interdependence diminishes as further moved to the eastern and

southern regions. The mean annual rainfall series in such low serially correlated regions is

dominated by independent and identically distributed terms i.e. the white noise case dominates.

Limited portion of central and southern highlands also experience high lag-1 and lag-2

coefficients (Fig. 2.4).

2.6.2 Spatial Variability of Rainfall

The spatial variability of annual and seasonal rainfall is inspected applying the spatial similarity

(spatial autocorrelation) analysis and percentile rainfall distribution over the region. Table 2.5

presents global and local Moran's index for annual and seasonal rainfall distribution over the

years 1951-2000.

The Z-score statistics shows the spatial pattern of annual and seasonal rainfall is

indicative of clustering at 10, 5 and 1 percent significance level. Regions with high annual and

seasonal rainfall distribution exhibit high local Moran's index value. The annual rainfall is

categorized into four distinct zones of spatial association, i.e., either clustering or dispersion

(Fig. 2.5(a)). Zone-I (Moran's 1= 1.2,- 4.1), includes western land masses typical to its high

annual and seasonal rainfall pattern (Western Oromiya, part of Gambela). High Moran's index

value of zone-I is characteristic feature of high spatial similarity (clustering) of annual rainfall

magnitude. Zone-II, (1=1.0 -1.2), low altitude of north-eastern (Afar) and substantial portion of

eastern (Somali) region shows moderate spatial similarity. Zone-Ill (1=0.3-0.9) encompasses a

small transition zone from high to low spatial similarity located in the western and eastern parts

of the country. Zone-IV (I< 0.1) is a region of statistically insignificant spatial correlation

(dispersion) includes rift valley floor and adjacent escarpments, substantial portion of central,

northern & southern (Amhara, Southern Tigray, SNNPR and Oromiya) region. The spatial

distribution of mean annual rainfall at one grid point to its contiguous grid points is highly

erratic in this region. The seasonal rainfall follows a systematic pattern of spatial correlation

both in northern and southern regions. It increases from the central region towards east and west

corners in northern region (Fig. 2.5(b)) whereas decreases from west to east as in southern

region (Fig. 2.5(c)).
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Fig. 2.3 Partial plot ofcorrelogram ofsignificant positive lag-one autocorrelation coefficient for

annual rainfall series. The upper and lower boundaries of the correlogram are plotted as dashed

line. Grid coordinates (longitude, latitude) are givenon top right cornerof each figure
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Fig. 2.4 Time dependent (lag-1, lag-2 and lag-3) distribution of annual rainfall series presented

as figure (a), (b) and (C)

Table 2.4 Moran's Index and corresponding test statistics for annual and seasonal rainfall series

Parameter

Local * Global

Moran Index Moran Index E (I) Var (I) Z- score

Annual Rainfall (-) 0.077 - 4.16 0.71

Monsoon Rainfall ( region-l) (-) 0.077 - 2.81 0.61

Monsoon Rainfall ( region-ll) (-) 0.18- 5.57 0.62

Local Moran index is given in ranges.
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-0.0026 0.0001 63.94

-0.0048 0.0003 37.57

-0.0058 0.0004 32.56
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Fig. 2.5 Distribution of local Moran's index for (a) annual (b) summermain rainy season(July-

September) and (c) Spring/Summer (April- October) seasonrainfall

Analysis of a long term multi-grid climatic data covering wide area could sometimes

become very complex and liable to errors even under high computingability. Thus, categorizing

the data series into ranges in terms of percentiles to undertake subsequent analysis could

minimize the potential threats and provide practical summary. The precipitation magnitude at

each grid points for the analysis period is grouped as percentiles (lower, 0.25, 0.5, 0.75 and

upper) and examined for spatial variability. The spatial variability of annual precipitation at

various segments traversing from one end to the other over the country is discerned as box plots.

Six combinations of north-south and west-east segments are selected to depict the spatial

variability of mean annual precipitation over the country (Fig. 2.6). The corresponding box plots

of mean annual precipitation along the transects are discerned in Fig.2.7. Trend line fitted to the

median values of annual rainfall approves falling trend from west-to-east at all segments while



the north-south traverse has a falling trend in the eastern vertical segment. Finally, annual

percentile distribution over the region is mapped as raster with rainfall contours overlaid (Fig.

2.8).
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Fig. 2.6 North-South and East-West transects considered for annual rainfall spatial variability

analysis

2.6.3 Trends in Rainfall

Annual, seasonal and annual maximum 30-days rainfall trend analysis is carried out by applying

Mann-Kendal trend test for original and pre-whitened series. Mann-Kendall test statistics (S) and

the probability that the null hypothesis could produce a sample as extreme as the observed events

by chance represented as P-value are computed for annual, seasonal and maximum 30-days

series and their significance is evaluated at 5 and 10 percent significance level. Total number of

grid points characterized by significant increasing and decreasing trend at prescribed level of risk

of rejection are listed in Table 5 and their respective geographical distribution is mapped as in

Figs. 2.9 and 2.10. The Sen's slope estimator, b, and its minimum and maximum threshold for

95 percent confidence limit are estimated. The total number of significant trends identified by

Sen's method is compared to that of MK test. Almost all samples identified as significant using

MK trend test have maintained the same level of trend strength as in Sen's method. Added to

this, natural series with significant ri is subjected to MK test after pre-whitening. As the size of

test statistics is large enough, the summary of all test events is presented in Table 2.5. Detail
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trend test statistics typical to annual rainfall series at 5 percent significance level is presented in

Table 2.6.
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Fig. 2.8 Spatial distribution of lowestbound, 25, 75 and upper bound percentile annual rainfall

of Ethiopia averaged over the time period 1951-2000

Table 2.5 Total number of grid points with significant trends at 5 and 10 percent significance

level

MK Orig inal MKPre -whitened

Variables a=-5% a==10% a =5% a=10%

IT DT IT DT IT DT IT DT

Annual rainfall 17

0

72

20

87

73

67

24

90

42

118

77

4 4 8 15

Seasonal rainfall 0 8 0 68

maximum 30-days (-) (-) (-) (-)
a ^significance level IT= increasing Trend DT=Decreasing Trend
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Fig. 2.9 Regions showing significant trend of annual rainfall series (1951-2000) with mean

annual rainfall contour overlaid, (a) MK-test at a= 5%, (b) MK-test at a=10%, (c) MK pre-

whitened test at a =5%, (d) MK-Pre-whitened at a=10%

Limited portion of eastern part of the country shows increasing annual rainfall trend

(Fig. 2.9) over the analysis period based on both MK original and pre-whitened test methods.

However, MK original test at 10% significance level is an invariant resulting in increasing

annual rainfall trend covering substantial part of eastern Ethiopia. Most part of the eastern and

north eastern peripheries show significant decreasing annual rainfall trend, whereas all other

parts of the country discern no significantly increasing or decreasing trends. Seasonal summer

rainfall follows decreasing trends in most parts of the northern, north-western and north-eastern

Ethiopia. Anincreasing seasonal rainfall trend is signaled at limited part of eastern (Somali and

eastern Oromiya) region at 10percent significance level forunfiltered series (Fig. 2.10).
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Fig. 2.10 Map of regions showing significant trend of seasonal rainfall series (1951-2000); (a)

MK-test at ct= 5%, (b) MK-test at a=10%, (c) MK pre-whitened test at a =5%, (d) MK pre-

whitened at a=10%
*

A noticeable fall in number of grid points detected as significant trends (increasing or

decreasing) is observed due to pre-whitening. Most precipitation grid points captured as

increasing or decreasing trend when original series is subjected to MK-test, fail to show similar

trends for pre-whitened series. Fig. 2.9 and Fig. 2.10show the area covered by significant trends

using both methods. The percentage area covered by significant annual rainfall trends dropped to

27.3 and 21.7 percent at 5 and 10 percent significance level respectively when pre-whitened

series is subjected to trend analysis. Similar reduction (9.1 and 47.2 percent) is evident for

seasonal series at 5 and 10 percent significance level respectively. It is observed that pre-

whitening eliminates some of the actual trend components from the time series and should be

applied cautiously in trend detection. This is in agreement with discussions by Hamed (2009)

addressing the adverse effects of pre-whitening when true trend exists in the time series. The
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mutual influence between significant autocorrelation and associated trends in time series is also

addressed with suggestive remedial techniques in the literature (Kulkarni and von Storch, 1995;

Hamed and Rao 1998; Douglas et al., 2000; Yue et al., 2002).

Trends in extreme events are essential to study the impact of global climate change over

regional climatic variability whereby present and future water resources planning and

management sector extracts key information for sustainable resource utilization. Even though

interpolation to finer grids could have some influence (such as generating outliers) in the

distribution of extreme events over the region, trends in maximum 30-days rainfall events are

examined without omitting the outliers. Contrary to substantial portion of northern and western

regions of the country, the south-eastern regions show increasing trend of maximum 30-days

rainfall. Severe drought years (1983-1984, 1987-1988 and 1990-1992) described as a period of

significantly below 50 years average annual rainfall due to failure of main rainy season are

identified from gridded rainfall dataset. The warm ENSO episodes documented in literature

(Pankhurst, 1966; Quinn and Neal, 1987; Degefu, 1987; Tsegay, 1998) conforms to similar time

span of the drought years, however, the cause-effect relationship between drought years and

warm ENSO episodes requires further investigation and is not covered under present work.

2.6.4 Atlantic Multidecadal Oscillation (AMO) Signal and Rainfall

Understanding the effect of SST on regional rainfall pattern requires full investigation of

dominating perturbations caused by global oceans such as north and south AMO, Indian Ocean

modulation and Pacific Decadal Oscillation (Folland et al., 1986). In the present context, our

investigation is limited to statistical analysis of AMO and rainfall index for possible association.

The association of AMO warm and ensuing cool phase to average annual rainfall is

investigated by plotting AMO index computed from low-pass filtered area average sea surface

temperature over North Atlantic region (Enfield et al., 2001) and time coinciding standardized

annual rainfall over 1951-2000. A 10 year running average of standardized annual rainfall is

superimposed onto the AMO index and the correlation coefficient between AMO and annual

rainfall index is examined. It has been observed that the annual rainfall pattern in the northern

half of the region (above 9°25' latitude) including Blue Nile basin follows a modestly good

correlation (R2=0.55 - 0.83) to AMO index where the warm AMO phases (1951-1965 and

1996-2000) are associated to above average annual rainfall in the region (Fig. 2.11). However, a

noticeable diminution in correlation (R2 = 0.01 - 1.0) is reflected in the southern region (below
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9°25' latitude). The results from present analysis are in agreement with previous studies (Segele

and Lamb, 2005; Jury, 2010; Taye and Willems, 2012). Fig. 2.12 shows partial correlation

coefficient between AMO and rainfall index over the analysis window. Diverse pattern of

fluctuation in wetter and drier years is ascertained from the plot of standardized decadal running

average of annual rainfall, i.e., above and below long term average rainfall oscillates with a

period of 10-28 years across the country. The associated perturbation of AMO on Ethiopian

rainfall cannot be discounted as the north and central part of the country contiguous to the

eastern part of Sahel region shows modestly strong AMO-rainfall correlation. However, the

association is very weak to rainfall grid points in the southern part of the country. The warm

(1951-1965 and 1996-2000) and cool (1966-1995) phases of AMO are well associated to the

above and below average rainfall index respectively in northern latitudes of the country whereas

a contrasting case is eminent in the southern latitudes.

2.7 CONCLUSIONS

Characterization of seasonal and interannual spatial and temporal variability of rainfall in a

changing climate is vital attempt to assess climate induced changes and suggest adequate future

water resources management strategies. Trends in seasonal, annual and maximum 30-days

extreme rainfall over Ethiopia are investigated. Spatial coherence of annual rainfall among

contiguous rainfall grid points is examined for possible spatial similarity across the country.

Furthermore, correlation between time coinciding north Atlantic Multidecadal Oscillation

(AMO) index and annual rainfall variability is examined to understand the underlying

coherence.

Main summer season (July - September) and annual rainfall exhibit significant

decreasing trend in northern, north-western and western part of the country whereas very

limited portion of eastern blocks, bounded by 7°-9°N latitude and 43°- 45°E longitude, show

increasing annual and seasonal (April-October) rainfall trend. In most other parts of the country

(approximately 77% of geographical coverage) the annual rainfall series remained without

significant trend for the second half of20th century (Figs. 2.9 and 2.10). This is in agreement
with Mwale et al. (2004) arguing that East Africa suffered a consistent decrease in the

September-October-November rainfall from 1962 to 1997 and climate trend analysis of Kenya

(Fact Sheet-2010) that suggests the unlikely increase of summer rainfall for the region for the
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Fig. 2.11 A 10-year running average ofstandardized annual rainfall (smooth line) superimposed

over AMO index (dashed line). Precipitation grid locations are given with numbers and

corresponding compass directions (NW=North-West, NE= North-East, C= central, S = South,

NC=North-Central)
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observed series. Moreda and Bauwens (1998) also observed a declining mean annual and
«

summer rainfall over four consecutive decades since 1951 in the upper Awash basin of

Ethiopia. However, IPCC (2007a) Fourth Assessment Report argues that the projected (21st

Century) mean annual rainfall trend is likelyto be increasing in East Africa.

Regions with moderately high to high rainfall (western and north western regions) are

characterized by high positive lag-one and lag-two serial correlation whereas the serial

dependence diminishes as further moved to east and south. Based on the Moran's spatial

analysis, annual rainfall for the total sampling points (381 grid stations) is divided into four

zones of annual rainfall spatial autocorrelation. Regions with high annual and seasonal rainfall

distribution exhibit high indices of temporal (n and r2) and spatial (Moran index)

autocorrelation. AMO and annual rainfall indices over the last half century reveal modestly

good correlation in the northern region whereas the association is weak in other parts of the

country. Future studies might focus on global meteorological forcing such as ITCZ, El-Nino and

La-Nina episodes in relation to rainfall trends which otherwise is beyond the scope of the present

investigation.
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CHAPTER 3

INVESTIGATION OF NON-STATIONARITY IN HYDRO

CLIMATIC VARIABLES IN THE RIFT VALLEY LAKES

BASIN OF ETHIOPIA

3.1 INTRODUCTION

Hydro-climatic variables are under constant dynamism over time and space domain and are

subjected to trends and periodic components. The hydrologic variability could be attributed to

either a single or combined effect of (1) natural climatic variability and change (cyclical

astronomical behaviour, volcanic eruption and oceanic circulation) and (2) anthropogenic

effects (increased greenhouse gases content, catchment wise man-induced disturbances)

(McGuffie and Henderson-Sellers, 2005).

Many early time series models, both statistical and empirical, are based on the

fundamental assumption of stationary model parameters (Box and Jenkins, 1970) and rely on

notion that past is representative of the future. However, the hydrologic model parameters do

not remain constant and, as a matter of fact, require continuous revision to mimic the dynamic

environment as a result of global climatic change and man-induced disturbances in the

watersheds. Underpinned by various climate models, such approximation requires further

improvement to account for non-stationarity (Leclerc and Ouarda, 2007; Wilby, 2007; Vaze et

al., 2010). More vividly, prominent researchers of recent days (Milly et al., 2008) have

stressfully asserted that the fundamental assumption of stationarity is undermined by climate

change and as a result future water supply, demand and risk assessment are highly affected by

such variability.

To develop stochastic model presumably representing the non-stationary behavior of

time series, firstly existence of non-stationarity in time series should be investigated and

secondly the most probable reason for such nonstationrity should be identified. In most of the

studies reported in literature, only the first aspect, i.e investigation of nonstationarity in hydro

climatic variables, is widely endeavoured. The second aspect, i.e whether the nonstationrity is

due to climate change and/or catchment changes is seldom attempted. In light of this,
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simultaneous analysis of both hydro-climatic variables and landuse dynamics is required. In the

present study both of these aspects are investigated for watersheds from Rift Valley lakes basin

of Ethiopia.

The behavior of some transitory or hidden hydrologic processes could not be easily

captured by a single time series model due to intrinsic model deficiency. The hydrologic

behavior that could not be captured by one stochastic model due to such inherent model

deficiency could be made easy through other approaches. Therefore, application of multiple

hydrologic time series models (Refsgaard et al., 1989; Lorup et al., 1998; McCuen, 2003) to

detect the prevailing long and short term changes in hydro-climatic variables increases the

confidence to adequately explainthe behaviour of time evolution of hydro-climatic series.

Recent studies (Boer et al., 1992; Dore, 2005) strongly argue that global reallocation of

precipitation and streamflow is a realistic signature of climate change though regional and local

variability is more pronounced (Markgraf et al., 2000). Constantly increasing demand of water

use for various purposes and intense rural land use operation to feed the ever growing

population substantially altered the flow regimes in eastern parts of Africa (Koutsouris et al.,

2010). The effect of frequent rainfall anomalies and associated variation in flow volume has

become more pronounced in rain-fed agriculture and hydropower sector (Ziervogel et al., 2008;

Conway and Schipper, 2011). Added to such anomalies, man-induced catchment modification

aggravated thealteration of flow regime, however, the latter is notwell perceived by many.

The Rift Valley lakes basin of Ethiopia has undergone a major land use change in the

past, and such alterations remain vivid nowadays too, affecting the hydrology and ecology of

the basin. Hawassa lake, one among Ethiopian central Rift Valley lakes, is known for its

beautiful scenery and exotic aquatic life. Foreshadowed by disquieting future climate condition,

growing demand of available water for agricultural and water supply purposes raised the

apprehension for sustainability. Similar environmental pressures are also practical in other

watersheds of economic interest in the Rift Valley basin where the use of available water

resources for irrigation is becoming crucial for rural livelihood. Well motivated by

environmentally and ecologically fragile nature of the basin as a result of resource competition,

provision of more realistic explanation about time evolution of streamflow, analysis of lake

level and precipitation in relation to climate change and prevailing catchment dynamics at local

level could help to render key information to water resources planners and end users. The
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present study is aimed at investigation of non-stationarity and subsequent identification of

possible reasons for such variability in hydro-climatic elements over various length oftime.

3.2 SHORT AND LONG TERM TIME DEPENDENCE IN HYDRO

CLIMATIC VARIABLES

Historical hydro-climatic observations are composed oftrends, shifts, periodicities and jumps as

a result of natural and man-made influences within the climate and catchment system. The

random nature of hydrologic variables makes the existing pattern very complex and hence it is

difficult to model them deterministically. However, the uncertain part of the hydrologic process

canbe modelled stochastically having known priori information with some level of confidence.

Therefore, the underlying behavior of time series can be traced by extracting dominant signals

representative ofthe time evolution of the variables from past observations.

Siegel and Castellan (1988) describes the relative merits of parametric and non-

parametric test statistics applicable to time series models. The parametric test approach usually

assumes that the observation is drawn from homoscedastic and normally distributed population

whereas the non-parametric test is a distribution-free method entirely based on the ordinals or

signs of the observations rather than the scores. Even though parametric methods are robust,

they are not successfully applied when the observation deviates from normality and the

available dataset is limited to rankings rather than actual scores.

As water resources planning and management is highly influenced by random and

uncertain physical processes, investigation of short and long-term persistence in hydro-climatic

variables is useful to identify how the past knowledge is sufficient enough to understand the

future behavior of a time series. The tendency of a system to remain in the same state from one

observation to the other termed as persistence is a common phenomena in hydrologic time

series. This is because most hydrological and geophysical processes are influenced by the

carryover inertia that yields to the occurrence of other similar events. For example, the

likelihood of rainy days to follow another rainy day is greater than to follow a dry day.

Malamud and Turcotte (1999) classify persistence in time series in terms of time-scale

(short and long) and behavioural strength (weak and strong). If trend and periodic components

of a time series are removed, the remaining behaviour is well described by the stochastic

component. Virtually stochastic components are composed of statistical distribution of the
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parameters and persistence that could be behaviourally weak, strong or of white noise.

Autocorrelation, rescaled range analysis, spectral analysis and wavelet transformations are

commonly used methods to detect persistence in time series.

Short-term persistence occurs when the effect of an observation on future event

diminishes at short length of time whereas in long-term persistence the correlation between

adjacent values in the long range is dominant. Short term persistence can be explained in terms

of autocorrelation function where the successive observations exhibit similar informations. As

time lag extends longer, the time dependence of the variables diminishes. However, in some

hydrological datasets the observed dependence extends to large lags of infinite memory.

Hurst (1951) introduced a cumulative sum theory to analyze long range dependence of

water in reservoir. In 1956, he further extended his study to the computation of adjusted

rescaled range analysis and concluded that for purely random process the Hurst's coefficient

(H) is equal to 0.5 whereas H > 0.5 for long memory processes. Mandelbrot and Wallis (1968)

later came up with explanatory connotation of long-term persistence to the Biblical legend of

'Joseph Effect' in the Old Testament (Behold, there come seven years of great plenty

throughout all the land of Egypt; And there shall arise after them seven years offamine...,

Genesis 41: 29-30) to describe the long-term memory in time series. Since Hurst's first

motivation, the long term memory notion has got growing attention in the area of economics,

hydrometeorology and geophysical data analysis.

Climatic variables such as rainfall and temperature are highly influenced by synoptic

scale influences and show certain level of variability on time-space domain. One of the

hallmarks of time-trend analysis over the last couples of decades is to identify the non-

stationary behavior of hydro-climatic time series in space-time domain emanating from

variable natural and man-induced influences.

Many hydrologic time series events are composed of seasonal variability either in the

short or long-term runs of the observation. The cyclic nature of a signal and its strength which

collectively forms the spectrum of the signal could be explained by advanced periodic functions

such as spectral and wavelet analyses.

Andreo et al. (2006) used spectral and wavelet methods to identify the distribution of

periodicity in multiannual temperature, rainfall and groundwater outflow observations in
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Iberian Peninsula. The observed multiannual periodic variations in south of Iberian Peninsula

are attributed to climatic variations such as North Atlantic Multidecadal Oscillations. Almedeij

and Al-Ruwaih (2006) applied unsmoothed spectral estimate (periodogram) approach to

investigate the periodic pattern of groundwater fluctuations in residential province of Kuwait

and associated the prevailing variations to Quasi-Biennial Oscillation in zonal wind.

Fourier transform based spectral analysis is limited to the frequency domain and does

not provide the time-frequency distribution ofa signal. The property that how the power of a
signal changes over time is not captured by the conventional Fourier transform constructed
from an infinite oscillating sine and cosine functions. Processes that involve stationary periodic

behaviour, such as electronic signals in electrical engineering, can be described by the Fourier

transform. However, hydrological processes usually involve a transient processes with varying

frequency over time (Labat, 2005, Labat et al., 2005) and could not be adequately represented
by the Fourier transform. To circumvent this limitation, a wavelet analysis that operates in

frequency-time domain became appropriate mathematical tool.

Brillinger (1994) carried out the Haar wavelet analysis to examine abrupt anomalies in

the mean river level of Nile at Aswan Dam of Egypt and Amazon at Manaus of Brazil. The

river level change points were at the outset of twenty century (the time where low Aswan dam

was built) for Nile river and around 1970 for Amazon river. Gaucherel (2002) used continuous

wavelet transform to identify streamflow variability that is not well explained by standard times

series models in French Guyana basins of South America. He detected a short March summer

meteorological phenomena as a result ofAtlantic Ocean influence in the continent. Labat et al.

(2005) applied wavelet analysis method to investigate streamflow from different basins and
climatic indices (Southern and North Atlantic Multidecadal Oscillations) variability. They

identified different time-scale cycles extending from couples of months to three decades in

streamflow and climatic indices.

Wavelet analysis is gaining momentum in recent years and became applicable to study

temporal variability ofenvironmental aspects such as hydrology and water quality monitoring
(Kang and Lin, 2007; Koirala et al., 2010), flood forecasting (Adamowski, 2008), precipitation
variability analysis (Partal and Kucuk, 2006) and wind velocity and temperature variability

study (Bolzan and Vieira, 2006; Steel and Lange, 2007).
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3.3 STUDY AREA AND DATA USED

3.3.1 The Study Area

The Rift Valley (RFV) lakes basin of Ethiopia (Fig. 3.1), situated in the horn of Africa, is

known for its major natural and artificial lakes (Koka , Ziway , Langano ,Abiyata, Shala,

Hawassa, Abaya, Chamo and Chew Bahir) of ecological interest and respective tributaries

debouching into terminal pool. The RFV divides the country into two halves of northern and

southern highlands of massive escarpments. Geographically the basin is located between

4°24'29" to 8°26'38" N latitude and 36°35'45" to 39°23'31" E longitude with sub-humid to

moderate tropical semi-arid climatic condition. Three major sub-basins described by their main

lake systems form the Rift Valley lakes basin of Ethiopia; the first sub-basin comprises lakes

Ziway, Abiyata and Langano, the second is lake Awassa sub-basin and the third sub-basin

encompasses the southern lakes of Abaya, Chamo and Chew Bahir. Annual and ephemeral

streams contribute substantial amount of runoff to the terminal lakes.

Mean annual rainfall varies from 600 mm at extreme downstream to 1220 mm at

uppermost western region of the basin. In the present study, lake level, streamflow and

precipitation variability and land use dynamics investigation concentrate on three catchments of

the RFV lakes basin. These include Hawassa Lake (1460 km2), Bilate (5330 km2) and Hare

(166.5 km ) catchments extending from middle to lower regions of the RFV lakes basin

drainage system.
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Fig. 3.1 Map of Rift Valley lakes basin showing study catchments, observed and gridded

rainfall location points

3.3.2 Hydro-climatic Data

Hydro-climatic parameters used in the present investigation can be broadly categorized as

streamflow, lake level and rainfall. Extreme and average streamflow records are used to

better explain fluctuation in hydro-climatic variables; accordingly, mean annual, annual

maximum and minimum daily streamflow and lake level records are utilized for subsequent

analysis. Hydro-climatic variables of varying temporal and spatial extents are acquired from

various organizations and online sources. Observed daily streamflow data are obtained from

Ministry of Water Resources (MoWR), Ethiopia for the period of 27-38 years, i.e., Bilate



streamflow (1971-2005), Hawassa lake level (1970-2007), Tikur Wuha streamflow (1980-

2007) and Hare streamflow (1980-2006). A 0.5° latitude x 0.5° longitude resolution gridded

rainfall data (Beck et al., 2005) covering entire Rift Valley lakes basin of length 50 years

(1951-2000) are acquired from Global Precipitation Data Center via online sources

(http://gpcc.dwd.de). Observed daily rainfall data (Fig. 3.1) for selected stations in the study

area is accessed from National Meteorological Service Agency (NMSA) of Ethiopia, Addis

Ababa and Southern Region Meteorological Agency, Hawassa.

Historical observations and global rainfall data records are further checked for data

consistency and gaps. As statistical models are sensitive to minor changes in time series,

thorough examination of observed values in terms of time series plot, comparison with

adjacent stations and regressing runoff over rainfall have been carried out to minimize

systematic errors in observed magnitudes. Among available rainfall stations, five stations,

namely; Alaba Kulito, Hawassa, Arba Minch Estate Farm and Chencha each with record

lengths extending from 1970-2009 and Bilate Estate Farm (1970-2003) are selected for time

dependence analysis.

An optimally interpolated l°xl° latitude and longitude monthly Sea Surface

Temperature (SST) version-2 is acquired from Earth System Research Laboratory Physical

Science Division (http://www.esrl.noaa.gov/psd/) (Reynolds and Smith, 1995). The Western

Indian Ocean surface bound by 0°-10° N latitude and 45°-65°E longitude that could have

influence on Ethiopian rainfall pattern has also been utilized in the subsequent analysis. SST

data from 1982-2010 is used to examine its association to available observed rainfall in Rift

Valley lakes basin of Ethiopia.

3.3.3 Land Use/Land Cover Data

Orthorectified four band multi-Spectral Scanner (MSS) LandSat-4, Thematic Mapper (TM)

and seven band Enhanced Thematic Mapper Plus (ETM+) land cover images are acquired

from Global Land Cover Facility archives (http://glcf.umiacs.umd.edu/data/landsat) and

further classified using ERDAS Imagine 9.2 and ArcGIS 9.3 following vigorous standard

image processing procedures. Table 3.1 summarizes the characteristics of raw satellite

images utilized in the present study.
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Table 3.1 Landsat images acquired and their respective characteristics

Area ID
Sensor

Type
Date acquired Path/Row

Rift Valley Lakes Basin 029-736 MSS Jan. 31,1973 181/055

Rift Valley Lakes Basin 012-383 TM Nov. 22, 1984 169/055

Rift Valley Lakes Basin 012-382 TM Nov. 22, 1984 169/054

Rift Valley Lakes Basin 012-371 TM Jan. 21, 1986 168/055

Rift Valley Lakes Basin 037-657 ETM+ Nov. 26, 2000 169/054

Rift Valley Lakes Basin 037-658 ETM+ Nov. 26, 2000 169/055

Rift Valley Lakes Basin 037-883 ETM+ Feb. 5, 2000 168/055

3.4 STATISTICAL TEST METHODS

Persistence, a characteristic feature of fluctuation in weatherand climatic elements where the

rate of mixing is strong and eventually decreases as the time span between events of same

order increases, has been analyzed using various statistical models in terms of trends and

periodicities. The various statistical tests used in the present study are well mentioned in

different literature; however, a brief statistical background is summarized in the subsequent

sections.

3.4.1 Autocorrelation

Time dependence of successive values of a variable in a series is essential to assess

randomness and identify possible time series model to represent the hydrologic process. The

first few lags of autocorrelation function are of interest while examining for randomness,

however, time lags up to one-fourth of the observations are usually utilized to assess time

series model of a particular process. The significance of lag one serial correlation coefficient

(ri) could be evaluated applying the t-test statistics with n-2 degree of freedom (Hirsch et al.,

1993; Chatfield , 1981) and normally distributed exact test for lag-one (Clarke,1973). An

exact test for lag-one serial correlation coefficient (Clarke, 1973) assumes that n is normally

distributed with N , -r . The upper and lower range of the exact test for
(n-1) (n-1)

lag-one serial correlation for n observations at a= 0.05 significance level is given as:
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1 ±1.96>-2>
n-1

P= \±Z^
n-k

(n-3)M

If the computed first order autocorrelation coefficient lies outside the range given in eqn.

(3.1), then it is likely that n is significantly different from zero. In such cases the random

walk case where successive values in the time series exhibit short term dependence

dominates. However, if the lag-one serial coefficient is not statistically significant, then the

sample events are the result of random process where the white noise situation prevails.

Serial dependence of second and third order is examined for significance using Anderson's

credibility bounds (Anderson, 1942) when statistical significance of lag-one correlation

coefficient is not justifiable.

The upper and lower bounds of the correlogram test statistic,/? (Anderson, 1942) for

lag k serial dependence at a level of significance for n observations is given by:

(n-k-1)05 *
n-k

(3.1)

(3.2)

where Z , is independently and identicallydistributed normal variate.
72

3.4.2 Von Neumann Ratio Test

It is a non-parametric test for independence usually applied to time series of length

approximately greater than thirty years. The test statistics (R) for a time series Z(t) of length

N with the null hypothesis of independence (von Neumann, 1941; Bartels , 1982) is

approximated as:

NX(Z(t +l)-Z(t)):
t=i

R =

(N-l)JT(Z(t)-Z):
t=i

(3.3)

with Z being the mean of the series. The test statistics follows a normal distribution with

mean and variance of [ 2N/ (N-1) ] and [ 4(N-2)/ (N-1)2] respectively. The standardized test
statistic, C, is given by:

2N

77T (3-4)C =

R-
N-1

4(N - 2)

(N-1)2
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If |C| > Zfl-o/2) where Z(i.a/2) is the value ofstandard normal variate at (l-a/2) significance
level , the null hypothesis that the series consists of independent observations is rejected.

3.4.3 Mann-Kendall (MK) Trend Test

|

The Mann-Kendall (Mann, 1945; Kendall, 1975) trend test is a distribution free non-

parametric test originally developed for non-correlated data. Mann-Kendall family of trend

tests are commonly used methods to detect monotonic trends in streamflow (Douglas, 2000;

Kahya and Kalayci, 2004), precipitation (Xu et al., 2003; Partal and Kahya, 2006),

temperature (Jhajharia and Singh, 2011), evaporation and evapotranspiration (Jhajharia etal.,

2009; Dinpashoh et al., 2011; Jhajharia et al., 2012) time series. Statistical background of

Mann-Kendall trend test is elaborated in section 2.4.4. Existence of possible step change in

streamflow and lake level is also investigated using non parametric Mann-Whitney-Pettitt's

(Pettitt, 1979) test. Details of test statistic can be referred from theauthor.

Presence of significant positive serial correlation in hydro-climatic time series

affects subsequent trend test (Kulkarni and von Storch, 1995; Yue et al., 2002) and need to

be removed prior to trend analysis. On the other hand, presence of significant trend also

alters the magnitude of serial dependence. Such mutual influence between serial correlation

and trend is discussed in Yue et al. (2002). To circumvent such mutual influence, Yue et al.

(2002) suggests pre-whitening the time series followed by detrending and finally blending

the pre-whitened series with deterministic trend component. Trend analysis could be carried

out on final blended time series (Xc) which significantly reduces the effect of serial

correlation on trend detection.

Yue et al. (2002) summarizes the following steps to detect significant trend under

serially correlated time series. The slope of a trend line, b is identified and its statistical

significance is examined. If the slope of the trend line is different from zero, then the

detrended series (XDET) of the time series Xt is computed as:

XDET=Xt-b*t (3.5)

with t being the time unit (t =1,2,3,...,N). Secondly, Pre-whiten (Xpw) the detrended series
> usingri of the detrended seriesusing

xpw=xdet. ri*(xt.,)DET (3.6)

Thirdly, combine the pre-whitened series and deterministic trend component (T=b*t).
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Xc=Xpw+b*t (3.7)

3.4.4Theil-Sen Trend Slope Estimator

The slope of trend line, b is estimated applying Theil (1950) and Sen (1968) referred herein

after as Theil-Sen's approach. It is used to investigate the existence of trend and evaluate its

strength (Gibbons et al., 2009), if any, compared to MK-trend test. Besides, the trend

component of a series could be removed using slope of a trend line as in eqn. (3.5). Theil-

Sen's trend slope estimator, Q , for N' number of data points is

(Xi-X,)
Q = —1 for j>i

(j-i) (3-8)

Thus, the estimate of slopeof trend line, b for equally spaced data points is givenas:

b = Median Xj-Xi
j-i

for j > i
(3-9)

with Xj and Xj being data values at time i and j respectively. The trend slope identified in

eqn. (3.9) should be tested for the null hypothesis of zero slope (no trends) by computing the

confidence limits at prescribed significance level. The theoretical lower and upper

confidence limits of Theil-Sen's trend slope are computed using the following relationship.

M,=

M2 =

N'-Z,_a/2*VVar(S)

(3.10)

N' + 7 * VVar(S)

2 (3.11)

where N' being number of data pairs with j > i and Zi-o/2 is the (l-a/2) value of the normal

distribution. For two sided 95 percent (a =0.05) confidence limit the corresponding Zi.a/2

value is 1.96. The lower and upper confidence limits will be the (Mi)th and (Mi+l)th largest

value of Q arranged in ascending order. If the (Mi)th value of Q is greater than zero, then the

null hypothesis of no trend is rejected.
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3.4.5 Spectral Analysis

The distribution of the variance of a process over frequency known as spectrum describes the

frequency-dependent signals of a stochastic process. The sample raw spectral density

function gf for discrete series at any frequency f is estimated as:

l+2JTrkcos(27rfk)
k=l

(3-12)

with rk being the sample autocorrelation function and mis the maximum lag up to which rk

is computed. The maximum frequency that can be detected from the data points is 0.5 cycles

perunit time. Accordingly, the frequency f at any harmonic number, k, is approximated as

0 5*kf=3 K (3.13)
m

The spectral density function given by eqn. (3.14) is biased and not efficient. Therefore, the

raw spectral estimated in eqn. (3.14) should be corrected to remove the bias using one of the

following two methods. The first approach applies smoothing in the lag domain prior to

estimation of the spectral density while the second method implements an equivalent

smoothing technique in the frequency domain. The latter case has been applied in the

spectral estimate of monthly streamflow series under consideration. An equivalent smoothing

procedure to the Blackman and Tukey (1958) window i^G^

S0 =-(g0+gi)

Sk=-(gk) + -(gk+,+gk-,) for0<k<m

S =-(p ,+g ) for0<k<m (3-16)
"m ~ Vom-1 Dm /

where go and gm corresponds to f = 0 and f = 0.5 respectively. The spectral estimate obtained

from the above procedure usually has high and low spikes when plotted to harmonics and

hence limiting the confidence interval (C.I) for further interpretation is required. The

confidence interval is estimated from the chi-square distribution with v - degree of freedom.

CJ--^<yf£-^L_ (3-17)
3U(i_o/2) %v {aI2)

v = —-- (3.18)
m 3

with Sf being the average spectral estimate.
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Periodic discrete hydrologic time series can appropriately be represented in terms of

oscillating sine and cosine functions representative of the first few dominant harmonics. The

finite Fourier series of a discrete time series Xt at finite number of time points, tj ( i= 1, 2, 3,

..., n) spaced equally can be described in terms of sine and cosine functions as:

X, =X +2>mcos(2jtf1Bt) +bmsin(27ifmt) (3.19)
m=I

with q being an integer function of n/2 and n is the maximum size of finite data points. The

coefficients ofthe mth harmonic am and bm are given by:

am=-ZX.cos(27lf,nt)

7 _m.bm=-£Xtsin(27rfmt)

(3.20)

(3-21)

with fm being the m harmonic and is given as (m/n) for m=l ,2,3, ... ,q.

3.4.6 Wavelet Transform

Hydro-climatic time series signals are composed of numerous transitory characteristics like

trends, shifts and periodic components. In most cases, the conventional time series models

fail to adequately isolate the dominant signal in time-frequency domain. The Short Fourier

Transform (STFT) has been utilized to analyze the non-stationary behaviour of time series

signal; however, it yields in constant resolution of signal at all frequencies. To overcome

this problem, a wavelet transform that operates in multi-resolution mode by which different

frequencies are analysed with different resolution became effective over the last couple of

decade.

Partal and Kucuk (2006) applied Mann-Kendall test and wavelet based trend analysis

to identify possible trends in annual precipitation at Marmara region of Turkey. The wavelet

trend analysis documented as in Partal and Kucuk (2006) is the first appealing attempt of its

kind to isolate the dominant periodic component that affects the precipitation trend. Wavelet

transform is useful in extracting dominant time-frequency relationships by maintaining the

energy of a signal pertaining to the original series. An explanatory set of documentation in

wavelet analysis is presented in many literatures (Wang and Ding, 2003; Lau and Weng,

1995; Torrence and Compo, 1998; Labat, 2005), however, a concise theoretical background

of wavelet transform is summarized herein to refresh the readers.
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Wavelet transform discomposes a signal into a set of basis function called wavelets.

The wavelets are generated from a single basic wavelet \|/(t) called mother wavelet by scaling

( dilation or compression) and translation as :

't-O
vMt) = s-1/2M/

k s ;
di x, s e R , s *. 0

(3.22)

where v|/T]S(t) is a successive wavelet; s is a scaling (frequency) factor ; x is shifting (time)

factor and R is the domain in real number.

For finite signal f(t), the one dimensional successive wavelet transform of f (t) is defined

as ;

\\i (x,s) =s-|/2 Jf(t) <, 't-T>
dt

V s ; (3.23)

where \(/*T,s(t) is a complex conjugate function of v|/(t). In wavelet transform the translation

parameter, x is related to the location of the wavelet function as it is shifted to the signal.

Thus, time information of the finite signal is obtained from translation parameter. The

scaling parameter, s either compresses or dilates the signal. It is an absolute inverse of

frequency and carries detail information associated to frequency domain. Many hydrologic

time series data are characterized by hidden signals that provide subtle information during

time series analysis. Under such circumstances dilating the signal (using large scales)

provides detail information about the hidden signal. Large scales (low frequencies) last for

entire duration of the signal and hence useful in capturing valuable information over the

signal length. In contrast, small scales (high frequencies) compress the signals and are useful

when global signal information is required.

In real applications successive wavelet signals are discrete and hence computing the

wavelet coefficients at discrete points generates sufficient details. If scale and positionare so

selected based on power of two, the discrete wavelet transform has the form:

M< (m,n) =s0"m/2 Jf(t)V
f. m \t-nT0s0

dt

and the analyzing wavelets are discretized as follows.
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-m/2

M>(m,„) = S0 \|/
t~nT0s0

(3.25)

where m and n are integers that control the scale and time factor; s0 is specified fixed dilation

step greater than 1 and x0 is location parameter. In eqn. (3.24) and eqn. (3.25) the scale and

translation parameters are discretized as s= s0m and x = nx0 respectively. Mallat (1989)

argues that for practical case, the power of two logarithmic scale (dyadic wavelet transform)

is the simplest and efficient case.

For a discrete time series, x(t) the discrete wavelet transform , Wm>n for s0=2 and x0 = 1 is

given as:

M'in,

orj

B) = 2-m/2 Jf(t)H/*(2-mt-n)dt

where scale, s = 2m and location, x = 2m.n

(3.26)

The original signal f(t) is obtained from inverse function of the wavelet transform. The

inverse wavelet transform is given by:

f(t) =— J JV(T,S)M/T,s(t) dsdb

(3.27)

where C¥-2« j" \|/(G>)
dco <oo

CO

(3.28)

3.4.7 Long Term Persistence in Streamflow

Time series analysis for possible short and long term persistence over observation period has

become a useful tool to assess the behavior of time evolution of various natural process and

historical observations. Hydro-climatic observations such as rainfall and stream flow of

today are highly associated to recent past. Such interdependence extends to large lags of

infinite memory and hence examination of long term persistence in hydro-climatic variables

helps in evaluating whether the time series is built up of random or autocorrelated events.

The notion of long memory dependence in time series is pioneered to Hurst (1951). It has

been an active area of thought since then and intensively utilized with slight modification in

hydrology (Wallis and O'connell, 1973; Rao and Bhattacharya, 1999; Sakalauskiene, 2003;
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Koutsoyiannis, 2003; Otache et al., 2008; Mielniczuk, 2007) to account for long range

persistence.

Hurst (1951) developed the range statistic (R/S) approach to estimate long term

dependence known as Hurst phenomenon. The adjusted range R„* is a difference of the
maximum and minimum accumulated departures from the sample mean.

R/=max(0,SpS2,S3,...SJ-min(0,S,,S2,S3,...Sn)

where Sj is cumulative departure and represented as

Si=SM+(x,-x) (3.30)

with So = Sn = 0 ; n is the size of sub-blocks used to compute rescaled range and 1< i <n.

The adjusted rescaled range Rn" is obtained by dividing the adjusted range Rn by standard

deviation, Sn.

R„ =——
Sn (3.31)

From multiple observations of hydrological, geophysical and economic indices data of

various lengths, Hurstestablished an empirical relationship of the form:

R/*=-^- =an I!

(3.32)

where H is Hurst coefficient equal to 0.5 for purely random walk and H > 0.5 is evidence for

persistence; the constant, a , is empirically fixed as 0.5 inHurst's expression.

As Hurst's exponent applies to data sets that are derived from statistically selfsimilar

distribution, computation of rescaled range for sub-sequences of n < N in the range of total

samples (N) is employed. Rescaled range statistic (R/S) is computed for different blocks of

data set within observation period where the minimum block length is approximately equal

to 8 to 10. Log transformed rescaled range is computed for n = N, N/2, N/4, ..., 8 block

widths and average log (R/S) for each division is worked out. The Hurst coefficient, H, is

estimatedas best fit slope of averaged log (R/S) versus log (n) plot.
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3.5 RESULTS AND DISCUSSION

3.5.1 Time Dependence of Hydro-climatic Variables

Correlogram analysis of observed seasonal (June-September and March- May) and annual

rainfall series reveals that almost all positive rh r2 and r3 values computed at a=0.05 lie

within 95 percent credibility bounds of the correlogram. This is further justified through

exact test for lag-one autocorrelation coefficient. None of the positive first order

autocorrelation coefficients found to be significant at a = 0.05 (Table 3.2) and the second

(ri ) and third (rj ) order theoretical autocorrelation coefficients are less than their

corresponding empirical counterparts, r2 and r3. This is indicative of propensity towards

Markov linear type persistence in the series yet it is not statistically significant. The annual

and 'Kerimet' (June-September) rainfall series show negative r2 and r3 magnitudes which is

indicative of marked high frequency oscillation. Gridded rainfall for 21 grid points in the

study area follows similar persistence pattern as that of observed series, however, few grid

points (41966, 49363, 49558, 49364) in the north and north eastern parts of RFV lakes basin

have shown significant ri for annual and June - September rainfall series.

Observed annual and seasonal rainfall series at all stations found to be statistical

insignificant for the first three lags (Table 3.2). Four grid points out of 21 (19 % of total

observations) of annual gridded rainfall are characterized by statistically significant r,

whereas only two grid points found significant for June-September rainfall series at a - 0.05

(Table 3.3). Rainfall series with significant rl are subjected to prewhitening before detecting
for possible trends following the methods discussed in section 3.4.3.

Time dependence is further investigated using time-lag of various magnitudes and

corresponding correlogram function for streamflow and lake level. Annual and extreme lake

level events, maximum daily streamflow of Bilate and Hare, minimum daily streamflow of

Hare and annual average streamflow of Tikur Wuha exhibit statistically significant lag-one

where the red noise case dominates (Table 3.4 and Fig. 3.2). Detrending and subsequently

pre-whitening the time series when there is no actual trend significantly reduced the

magnitude of lag-1 serial correlation whereas detrending to remove the actual trend

substantially increased the lag-1 serial dependence.
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Table 3.2 Autocorrelation test statistics for annual and seasonal observed rainfall series

Parameters ri r2 r3 Limit of e octtest

= 0.5

Anderson's credability bound at a = 0.5

:or v-i at a h r2 r3

Annual series

Alaba Kulito 0.188 -0.270 -0.179

-0.206

(-0.356, 0.305) (-0.335,0.284) (-0.340,0.287) (-0.345,0.291)

Bilate Farm 0.209 -0.210 (-0.394, 0.333) (-0.366,0.306) | -0.372,0.310) (-0.379,0.314)

Hawassa 0.147 -0.332 -0.253 (-0.356, 0.305) (-0.335,0.284) (-0.340,0.287) | -0.345,0.291)

Arba Minch Farm 0.164 -0.341 -0.214 (-0.356 0.305) (-0.335,0.284) 1-0.340,0.287) | -0.345,0.291)

Chencha 0.184 -0.332 -0.268 (-0.368, 0.314) (-0.345,0.291) -0.350,0.294) -0.355,0.298)

June - September series

Alaba Kulito 0.188 -0.177 -0.035 (-0.356 0.305) (-0.335,0.284) -0.340,0.287) -0.345,0.291)

Bilate Farm -0.092 0.192 0.002 (-0.394, 0.333) (-0.366,0.306) -0.372,0.310) -0.379,0.314)

Hawassa 0.076 -0.109 -0.161 (-0.356 0.305) (-0.335,0.284) -0.340,0.287) -0.345,0.291)

Arba Minch Farm 0.089 -0.346 -0.051

0.030

(-0.356 0.305) (-0.335,0.284) -0.340,0.287) -0.345,0.291)

Chencha -0.061 -0.052 (-0.368 0.314) (-0.345,0.291) -0.350,0.294) -0.355,0.298)

March - May series

Alaba Kulito -0.162 0.197 0.019

-0.404

(-0.356 0.305) (-0.335,0.284) -0.340,0.287) (-0.345,0.291)

Bilate Farm 0.218 0.058 (-0.394 0.333) (-0.366,0.306) (-0.372,0.310) -0.379,0.314)

Hawassa -0.074 0.119 -0.326 (-0.356 0.305) (-0.335,0.284) (-0.340,0.287) (-0.345,0.291)

Arba Minch Farm -0.029 0.130 -0.233 (-0.356 , 0.305) (-0.335,0.284) (-0.340,0.287) (-0.345,0.291)

Chencha 0.122 -0.285 -0.337 (-0.368 0.314) (-0.345,0.291) (-0.350,0.294) (-0.355,0.298)
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Fig. 3.2 Empirical and theoretical correlogram (K inyears) ofdependent hydrologic processes:
(a) Bilate river atAlaba Kulito (b) Tikur Wuha river at Dato Village (c) Hare river (d) Hawassa
lake level

Average annual, annual maximum and minimum daily streamflow and lake level at

four gauging stations are also subjected to short term dependence analysis using Von

Neumann ratio test. A total of 12 events of dependence tests are carried out to examine short

term time dependence in hydro-climatic variables under investigation. Von Neumann test

statistics, C, is evaluated withrespect to prescribed significance level. In the present case, a 5

% significance level is considered and the corresponding value of Zfl-o/2) is 1.96. If the

computed test statistic (C) value is greater than the Z(i.o/2) value, then the null hypothesis of

independence is rejected. Annual and daily minimum flow of Bilate at Alba Kulito,

maximum daily flow at Tikur Wuha and annual flow at Hare are characterized by random

(white noise) cases at 5 %significance level. However, all other (approximately two-third of

streamflow and lake level) events analyzed using Von Neumann ratio test have shown short

term dependence (red noise case) in annual average and daily extreme events (Table 3.5).

Apparently all events ofHawassa lake level and maximum daily flow at Alba Kulito (82008)

and Hare (82019) are characterized by significant short term dependence.
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Table 3.5 Von Neumann ratio test statistic of streamflow and lake level

Gauging Station Von Nueman Annual flow Maximum Minimum

/ code / test Parametrs Daily Flow Daily Flow
Bilate R 1.946 1.203 1.94

at Alaba Kulito E(R) 2.059 2.059 2.059

82008 Var( R ) 0.114 0.114 0.114

C -0.293 -2.533 -0.353

Statistical Significance WN RN WN

Tikur Wuha R 0.875 1.932 0.838

at Dato Village E(R) 2.074 2.074 2.074

82027 Var( R) 0.143 0.143 0.143

C -3.175 -0.375 -3.272

Statistical Significance RN WN RN

Hare R 1.461 1.112 1.292

at Arba Minch E(R) 2.077 2.077 2.077

Bridge site Var( R ) 0.148 0.148 0.148

82019 C -1.6 -2.509 -2.04

Statistical Significance WN RN RN

Hawassa R 0.452 0.793 0.246

Lake level E(R) 2.054 2.054 2.054

82004 Var( R) 0.105 0.105 0.105

C -4.941

RN

-3.888 -5.575

Statistical Significance RN RN
RN= red noise , depeiident case WN= white no se, random case

Annual and seasonal rainfall trend during the analysis period has been assessed using

MK trend test and Theil-Sen's slope estimator. Observed and gridded annual and seasonal

rainfall series found to exhibit insignificant trends at a = 0.05 and 0.1 level of significance for

most cases (Table 3.6 and 3.7). However, June-September rainfall at Alaba Kulito and Bilate

Farm found to follow decreasing trend at a = 0.1. Number of annual and seasonal rainy days

(number of events with total daily rainfall magnitude > 0.1mm) was also subjected to trend

analysis to observe the time variance ofsignificant rainfall over the last four decades. The rainy

days remain stable at 5 and 10 percent significance level for annual and seasonal rainfall series

and no statistically significant trend is observed (Table 3.8). Streamflow in Rift Valley lakes
basin varies seasonally and exhibits two distinct flow regimes; namely storm runoff and base

flow. The dominant base flow regime usually begins in the month of November and extends to

the end of May at Bilateand Tikur Wuha watersheds where as it extends from December to mid

ofMarch in lower Rift Valley lakes system. Annual average and extreme (annual minimum and

maximum daily) runoff and lake level events for three different watersheds in the Rift Valley
lakes basin are examined for a total of 16 independent variables to study periodic and
monotonic time dependent behavior. Both MK trend test and Theil-Sen's slope estimator reveal
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that about 75 percent of hydrologic variables tested for annual and seasonal series are

characterized by increasing trends (Table 3.9 and Table 3.10). At similar significance level, the

results obtained from Theil-Sen's trend slope estimator are at reasonable concordance to MK

trend analysis method.

Table 3.6 MKtrend analysis for observed annual and seasonal rainfall series

Statistical parameters Original Mann -Kendall test

Rainfalll stations Mean Std Dev. S Z trend at

(mm) (mm) a=0.05 o=0.1

Annual series

Hawassa 964.3 140.6 -32 0.358 NS NS

NS

NS

Alaba Kulito 1016.4 195.9 -102 1.172 NS

Bilate Farm 763.9 174.4 -99 1.447 NS

Arba Minch Farm 871.9 180.5 72 0.822 NS NS

NSChencha 1258.0 256.1 61 0.749 NS

June-September series

Hawassa 469.3 101.1 -107 1.235 NS NS

D

D

NS

NS

Alaba Kulito 461.6 122.5 -168 1.951 NS

Bilate Farm 321.1 106.5 -123 1.812 NS

Arba Minch Farm 261.7 104.7 -126 1.454 NS

Chencha 426.2 128.7 7 0.075 Ns

March - May series

Hawassa 298.8 82.5 16 0.174 NS NS

Alaba Kulito 341.6 108.2 12 0.127 NS NS

Bilate Farm

Arba Minch Farm

247.4 82.0 -21 0.294 NS NS

NS343.8 91.7 14 0.151 NS

Chencha

N

469.1 139.7 -19 0.225 NS NS

S = Not stat stically significant D = Decreasing trend

3 = Mann-Ke ndall test statistic Z = Standard score

For a = 0.05 a nda = 0.1th e critical Z-values are 1.960 and 1.645 res pectively.
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Table 3.7 MK trend test statistics for gridded annual and seasonal rainfall series

Mann-Kendall test statistics

Grid

code

Longitude

(Decimal deg.)

Latitude

(Decimal deg.]

Mean Std. Dev. Annua series June- Sepember March -May
(mm) (mm) S Z S Z S Z

50128

50314

50494

50129

50315

49361

49556

49750

49938

50130

50316

49165

49362

49557

49751

49939

50131

49166

49363

49558

36.75

36.75

36.75

37.25

37.25

37.75

37.75

37.75

37.75

37.75

37.75

38.25

38.25

38.25

38.25

38.25

38.25

38.75

38.75

38.75

39.25

5.75

5.25

4.75

5.75

5.25

7.75

7.25

6.75

6.25

5.75

5.25

8.25

7.75

7.25

6.75

6.25

5.75

8.25

7.75

7.25

7.75

1097 218 106

72

-43

98

57

163

177

183

160

123

77

106

162

178

192

168

165

74

161

165

172

0.878

0.593

0.352

0.812

0.469

1.356

1.472

1.522

1.332

1.022

0.636

0.878

1.347

1.480

1.598

1.398

1.372

0.611

1.338

1.372

1.429

5 0.034 -104

-129

-159

-114

-131

109

64

13

-63

-68

-96

62

49

60

39

-4

-16

72

59

56

39

0.861

1.071

1.323

0.944

1.087

0.904

0.527

0.100

0.519

0.561

0.794

0.510

0.402

0.493

0.317

0.025

0.126

0.595

0.485

0.461

0.317

824 170 9 0.066

631 148 -6 0.041

1053 211 62 0.510

781 164 60 0.493

1226 170 -29 0.234

1189 191 9 0.066

1145 210 55 0.349

1057 210 77 0.636

982 201 108 0.895

850 181 -32 0.260

1020

1017

139

149

-25 0.201

0

58

0.000

0.4781019 165

1003 184 92 0.760

969 197 92 0.760

916 191 122 1.013

882 147 -31 0.251

901 150 3 0.016

928 160 7 0.050

49364 847 152 -5 0.034
S= Manr -Kendall test statistic Z=Staridard sco re

The cril ical Z-values are 1.96 and 1.645 at 5 anc 10 %siginificance evel respectively.

Table 3.8 MK trend test for total number of rainy days of annual and seasonal observed rainfall

series

No. of rainy days events Mann-Kendall test statistics No. of rainy days trend at
S Z a = 0.05 a =0.10

Alaba Kulito gauging station

Annual rainfall -32 0.937 NS NS

June-September rainfall 12 0.333 NS NS

March-May rainfall -41 1.211 NS NS

Arba Minch Farm gauging station

Annual rainfall 112 1.518 NS NS

June-September rainfall 12 0.15 NS NS

March-May rainfall 80 1.083 NS NS

Hawassa gauging station

Annual rainfall -34 1.001 NS NS

June-September rainfall 35 1.034 NS NS

March-May rainfall -37 1.092 NS NS

Critical Z-values 1.960 1.645

S= Mann-Kendall test statistic Z = Standard score NS = No sta titically signific
————^_

3 nt trend
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Table 3.9 MK trend test statistics for annual and seasonal streamflow series

Statistical Test Methods ( at a = 0.05)

S.No. Parameters Mann-Kendall original series Mann-Kendall prewhitened series Mann-Kendall seasonal series

& Stations X S Z Trend T s z Trend t S Z Trend

Annual Series

0.082

0.566

0.077

0.581

49

214

27

408

0.676

3.910

0.536

3.912

NS

+

NS

+

1 Bilate 0.079 47 0.648 NS

2 Tikur Wuha 0.519 196 4.418 +

3 Hare 0.100 35 0.701 NS

4 Hawassa lake level 0.661 465 4.417 *

Max. Daily Series

0.313

-0.149

-0.117

0.540

186

-56

-41

379

2.612

1.087

0.826

3.901

NS

NS

+

5 Bilate 0.382 227 3.291 +

6 Tikur Wuha -0.079 -30 0.568 NS

7 Hare -0.164 -57 1.175 NS

8 Hawassa lake level 0.616 433 3.291 +

Min. Daily Series

0.335

0.506

0.194

0.530

197

191

68

372

2.807

3.7190

1.398

3.891

+

+

NS

+

9 Bilate 0.358 213 3.090 +

10 Tikur Wuha -0.127 -48 0.921 NS

11 Hare 0.268 94 1.943 NS

12 Hawassa lake level 0.661 465 3.891 +

Monthly Series
0.113

0.357

0.118

j 0.548

805 2.132 +

1617 3.891 +

499 1.645 NS

4621 3.891 +

13 Bilate

14 Tikur Wuha

15 Hare

16 Hawassa lake level

Max. = Maximum , Min. = Minimum Avg = average N = No statistically significant trend .+ = Increasing trend
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Table 3.10 Theil-Sen's trend slope estimator and r, magnitude of streamflow before and
after prewhitening

Serial correlation, rx Sen's Slope Estimator
S.No. Parameters Original

series

DET-PWH

Series b

95 % Confidence bound

& Stations LCL UCL

Annual Series

0.032

0.511

0.280

0.846

0.017

0.368

0.093

0.801

1 Bilate 1.457 -2.639 4.925
2 Tikur Wuha 1.618 0.921 2.335
3 Hare 0.255 -0.651 1.287
4 Hawassa lake level 0.047 0.032 0.061

Max. Daily Series

0.391

-0.291

0.456

0.796

0.462

0.083

0.2005

0.694

5 Bilate 0.897 0.254 1.756
6 Tikur Wuha -0.018 -0.039 0.017
7 Hare

r__

-0.355 0.099
8 Hawassa lake level 0.047 0.03 0.062

Min. Daily Series

0.061

0.118

0.346

0.831

0.073

-0.233

0.1993

0.723

9 Bilate 0.008 0.002 0.014
10 Tikur Wuha 0.046 0.016 0.078
11 Hare 0.018 -0.006 0.043
12 Hawassa lake level 0.046 0.03 0.060

DET-PWH=Detrended &Prewhitened LCL =LowerConfidence Limit UCL =Upper Confidence Limit

No persistent step change in streamflow and lake level is examined. Hawassa lake

level and Tikur Wuha river exhibit a localized jump in year 1997/98 due to increased

summer rainfall over the same period. The hydrologic variables recovered their

monotonically increasing trend soon after such rainfall anomaly.

3.5.2 Streamflow Spectral Analysis

The spectrum of discrete time series is not entirely lying within the boundary of the
confidence limits in all cases. Thus the monthly runoff is characterized by deterministic

cyclic components represented as spikes in spectral density plot (Fig. 3.3). This is further

evident from correlogram analysis ofmonthly series where the lag plot follows a systematic
oscillation with known frequency ofone cycle per year (Fig. 3.4). The deterministic cyclic
components are represented as discrete Fourier series of time events. The percentage

contribution to variance explained by the first two harmonics of streamflow and lake level

data ranges from 88-98.3 in the watersheds investigated. The degree ofassociation between

observed and simulated hydrologic variables is further evaluated by computing various
model efficiencies such as coefficient of determination (R2), Root Mean Square Error
(RMSE) and Nash-Sutcliff (N-S) (Nash and Sutcliffe, 1970) model efficiency. The N-S and

R efficiency values appeared to be closer to unity with significantly small RMSE. Finite
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Fourier series fitted to the first two harmonics of streamflow and lake level (Fig. 3.5) is at

reasonable agreement to the observed series.

12 18 24 30 36 42

Harmonic, K (months)

12 18 24
Harmonics, K(months)

100

12 18 24

Harmonics, K(months)

12 18 24 30

Harmonics, k (months)

Fig. 3.3 Spectral density of monthly runoffof (a) Bilate river at Alaba Kulito (b) Hare river

(c) Tikur Wuha river at Dato village and (d) Hawassa lake level. The 95 percent confidence

bound is depicted as broken line plot

1.0

0.5

0.0

-0.5

-1.0

LUMMl *(a)
'»>•> i'\ l'\ j>\ l\ ;•; ri H rv r* n n ft n n n r^?

lags,k
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(C)
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lags.K

Fig. 3.4 Correlogram of monthly hydrologic series (a) Bilate river at Alaba Kulito (b) Hare

river (c) Tikur Wuha river at Dato village and (d) Hawassa lake level. The smooth curve is

theoretical correlogram of AR (1) process
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Fig. 3.5 Monthly streamflow and lake level fitted to finite Fourier series for the first two

harmonics: (a) Bilateat AlabaKulito (b) Hare river (C) Tikur Wuha at Dato village and (d)

Hawassa lake level

3.5.3 Wavelet Analysis

Wavelet transform is carried out for monthly and annual lake level (Hawassa lake) and three

streamflow (Bilate, Tikur Wuha and Hare) time series signals ranging from 1970-2007. The

Daubechies wavelet transform is used to extract the dominant information with sufficient

energy level of the signal. Annual and monthly original hydrologic series (streamflow and

lake level) are decomposed into corresponding detail (2-year, 4-year, 8-year, 16-year and

32-year) and approximate signal components. Fig. 3.6 presents the detail and approximate

wavelet decomposition result obtained from Daubachies-4 (db-4 at level 5) method for

monthly lake level records at Hawassa. Compressing the original signal of annual lake level

and Tikur Wuha streamflow using one of Daubechies wavelet family (db-4) with 5 levels of

details removed most of the noises and preserved 98.24 % of the energy in the original

signal. The wavelet coefficients are efficiently zeroed out through automatic threshold

method. The denoised signal plot of monthly and annual Hawassa lake level and Tikur

Wuha streamflow (Fig. 3.7 and Fig. 3.8) intuitively illustrates an increasing overall trend.

This is further verified by statistical trend analysis of discrete wavelet (DW) decomposed

hydrologic components.
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Fig. 3.6 Wavelet decomposition ofmonthly lake level at Hawassa lake during 1980-2007

Annual streamflow and lake level series are decomposed into corresponding detail and

approximate discretewavelet signals and are subjectedto MK-trend analysis. Following the

methods suggested by Partal and Kucuk (2006), the trend analysis is carried out for different

model combinations of DW decomposed series. The effectiveness of wavelet decomposed

series in identifying the underlying trends in original series is evaluated in terms of MK test

statistics (Z-score). Total mean square error (MSE) and coefficient ofdetermination (R2) are

used to examine how well the different model combinations of wavelet decomposed series

have predicted the original series.

Fig. 3.9 presents standardized discrete wavelet decomposed signals of Tikur Wuha

streamflow (1980-2007) and Hawassa lake level (1970-2007) using Daubechies algorithm.

The contribution to total streamflow and lake level in each year is shown as a time series

plot of the DW coefficients. For example, Dl indicates DW coefficients for 2-year mode;

D2 shows DW coefficients for 4 -year mode and so on. Streamflow at Bilate and Hare

rivers are also decomposed into similar detail and approximate signals, however, graphical

display is not presented here.
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Table 3.11 MK-trend analysis statistics and model efficiency of wavelet decomposed signals of

Tikur Wuha and Hare streamflow

Tiki jr Wuha streamflow Hare streamflow

Model Signal combinations MK- test statistics Model efficiency MK- test statistics Model eff ciency

No. S Z MSE R2 S Z MSE R2

1 Original series 214

197

294

255

246

177

175

412

208

238

252

165

224

208

214

4.21

3.87

5.79

5.02

4.84

3.48

3.44

4.17

4.09

4.68

4.96

3.24

4.41

4.09

4.21

- - 26

71

24

139

72

69

91

38

69

45

53

53

47

27

26

0.52

1.46

0.48

2.88

1.48

1.42

1.88

0.77

1.42

0.92

1.08

1.08

0.96

0.52

0.52

- -

2 Dl + approx. 0.30 0.71 0.64 0.44

3 D2 + approx. 0.38 0.65 0.11 0.89

4 D3 + approx. 0.42 0.61 1.17 0.15

• 5 D4 + approx. 0.44 0.60 1.19

0.28

0.45

0.46

0.66

0.68

0.90

0.15

0.73

0.59

0.58

0.43

0.42

0.28

6 Dl + D2 + approx. 0.14 0.86

7 Dl + D3 + approx. 0.19 0.81

8 Dl + D4 + approx. 0.18 0.82

9 D2 + D3 + approx. 0.33 0.69

10 D2 + D4 + approx. 0.28 0.73

11 D3 + D4 + approx. 0.34 0.68

12 Dl + D2 + D3 + approx. 0.09 0.91 0.13 0.87

13 D2 + D3 + D4 + approx 0.23 0.77 0.49 0.56

14 Dl + D2 + D4 + approx. 0.44 0.77 0.14

0.00

0.86

1.0015 Dl + D2 + D3 + D4 + approx. 0.00 1.00

Critical Z-value is 1.96 at 5 % signi ficance level and Bold f gures show significant values

Various combinations of wavelet decomposed signals are further investigated to

identify statistically strong trends with higher model efficiency. Stream flow of Tikur Wuha

and Hare are decomposed into four DW coefficients ( Dl to D4) and an approximate signal

whereas Hawassa lake level and Bilate streamflow series, with relatively long record

periods, are decomposed into five DW coefficients (Dl to D5) and an approximate signal.

For each hydrologic series a total of 15 to 30 signal combinations are identified and

subjected time-trend analysis.

Tables 3.11 and 3.12 present the different model combinations and their respective

time-trend analysis results. The tables also provide model efficiency of original series

against various DW model combinations. All model combinations of annual average Tikur

Wuha streamflow are characterized by increasing trends with acceptable model performance

indices. The total MSE is low (0.0 to 0.44) and R2 is lying between 0.60 and 1.0. Observed

from trend statistics and model efficiency values, the combination of Dl signal found to

reproduce the original signal efficiently (Table 3.11). It is only one (D3+approximate)

model combination (6% of total models) that resulted in increasing trend of Hare
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streamflow. However, these increasing trend model is characterized by poor model

efficiency (MSE =1.17 and R =0.15) and is an artifact of the actual trend. This permits us

to conclude that the trend component of annual streamflow variable of Hare river is not

statistically significant.

Table 3.12 MK-trend analysis statistics and model efficiency of wavelet decomposed signals of

Hawassa lake level and Bilate streamflow

Hawassa ake level Bilate streamflow

Model Signal combinations MK- test statistics Model eff ciency MK- test statistics Model efficiency

No. S Z MSE Ri S Z MSE R2

1 Original series 407

584

472

379

701

688

448

369

559

581

324

452

514

372

434

666

317

438

487

432

365

318

498

445

324

432

381

481

389

373

5.11

7.33

5.92

4.75

8.80

8.66

5.62

4.63

7.02

7.30

4.06

5.67

6.45

4.66

5.44

8.37

3.97

5.49

6.11

5.42

4.58

3.99

6.25

5.58

4.06

5.42

4.78

6.03

4.88

4.68

- - 49

230

261

425

200

109

175

231

175

135

251

191

133

251

203

136

173

131

109

107

163

167

71

149

149

65

69

63

105

63

0.68

3.25

3.69

6.02

2.83

1.54

2.47

3.27

2.47

1.90

3.55

2.70

1.87

3.55

2.87

1.92

2.44

1.84

1.53

1.51

2.30

2.36

0.99

2.10

2.10

0.91

0.97

0.88

1.48

0.88

- -

2 Dl + approx. 0.43 0.61 0.86 0.31

3 D2 + approx. 0.31 0.71 0.89 0.29

4 D3 + approx. 0.30 0.72 1.27

1.28

0.12

0.125 D4 + approx. 0.46 0.58

6 D5 + approx. 0.40 0.63 1.76 0.01

7 Dl + D2 + approx. 0.27 0.74 0.40 0.63

8 Dl + D3 + approx. 0.27 0.74 0.65 0.44

9 Dl + D4 + approx. 0.42 0.61 0.62 0.46

10 Dl + D5 + approx. 0.36 0.66 0.84 0.32

11 D2 + D3 + approx. 0.12 0.88 0.67 0.43

12 D2 + D4 + approx. 0.30' 0.72 0.63 0.46

13 D2 + D5 + approx. 0.25 0.76 0.87 0.31

14 D3 + D4 + approx. 0.30 0.71 1.02 0.23

15 D3 + D5 + approx. 0.24 0.77 1.29 0.11

16 D4 + D5 + approx. 0.36 0.66 1.14 0.17

17 Dl + D2 + D3 + approx. 0.10 0.90 0.24 0.77

18 Dl + D2 + D4 + approx. 0.26 0.75 0.19 0.81

19 Dl + D2 + D5 + approx. 0.21 0.79 0.37 0.65

20 Dl + D3 +D5 + approx. 0.21 0.80 0.63 0.46

21 Dl + D3 + D4 + approx. 0.28 0.74 0.47 0.58

22 D2 + D3 + D4 + approx. 0.13 0.87 0.48 0.57

23 D2 + D4 + D5 + approx. 0.21 0.79 0.53 0.53

24 D3 + D4 + D5 + approx. 0.22 0.79 0.94 0.27

25 Dl + D2 + D3 + D4 + approx. 0.10 0.90 0.07 0.92

26 Dl + D3 + D4 + D5 + approx. 0.19 0.82 0.40 0.63

27 D2 + D3 + D4 + D5 + approx. 0.06 0.94 0.40 0.63

28 Dl + D2 + D4 + D5 + approx. 0.18 0.82 0.11 0.88

29 Dl + D2 + D3 + D5 + approx. 0.05 0.95 0.21 0.79

30 Dl + D2 + D3 + D4 + D5 + approx. 0.03 0.97 0.01 0.98

Critical Z-value is 1.96 at 5% significance level; approx. =approximate DWsignal; Bold figures show significant values

All model combinations of annual average lake level show increasing trends (Table

3.12). Model efficiency indices are at acceptable range in each case. Based on combined
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performance criteria (statistically strong significant trend, lower MSE and higher R ), model

combinations with D3 signal perform better than others for Hawassa lake level. Model

number 25 (Dl+D2+D3+D5+approximate) found to show statistically strong trend with

higher model efficiency for lake level data. About 53% of model combinations examined

for Bilate streamflow reveals increasing trend based on the MK-trend statistic. Model

efficiency in most cases is very low. Model numbers 7, 17, 21, 22 and 25 are modestly

showing acceptable model efficiency indices (MSE= 0.07 to 0.48 and R = 0.57 to 0.92).

These statistically significant model combinations of Bilate streamflow include Dl signal.

However, it should be noted that the original annual streamflow series of Bilate river does

not show significant trends.

The annual average lake level observed during the years 1970-2007 is further

analyzed for periodic behaviour using Morlet continuous wavelet transform. The dark

yellow patches in Fig. 3.10 are well aligned to an 8-years time scale. This indicates that

average annual lake level events are characterized by 8-year periodic signals. The wavelet

transform of annual Tikur Wuha streamflow demonstrates a 4-years and 8-10 years

periodicity (Fig. 3.10). Annual rainfall series (observed as well as gridded) does not show

systematic periodic or monotonic trend components in most cases, however, a 4-years

periodic signal is inferred from annual rainfall signal at Bilate basin during 1984-2000. The

results obtained from wavelet analysis are in suitable agreement with previously discussed

methods. The time-frequency relationships of the wavelet transform identified the

occurrence of periodic signal that is not clearly captured by spectral analysis.

3.5.4 Long Range Dependence

Albeit limited length of available hydrological records, the adjusted rescaled range analysis

(R/S) of Hurst has been applied to examine the long term dependence in stream flow and

lake level. Both annual and monthly events of length varying from 27-456 are subjected to

R/S analysis. Hurst coefficients, H, computed from annual series are 0.54, 0.68, 0.96 and

0.89 for Bilate, Hare, Tikur Wuha streamflows and Hawassa lake level respectively.

Similarly, the monthly series yields an H estimate of 0.52, 0.89, 0.64 and 0.97 respectively.

In all the subject matters examined Hurst's coefficient is greater than 0.5 and this is a likely

evidence of long term persistence in hydrologic variables. Annual events of Tikur Wuha

river (H=0.96) and Hawassa lake level (H=0.89) and monthly series of Hare river (H=0.89)

and Hawassa lake level (H=0.97) are characterized by strong persistence. No random walk

situation is examined from rescaled range analysis for monthly and annual series.
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Fig. 3.10 Continuous wavelet spectrum for Hawassa lake level (a), stream flow of Tikur

wuha at Dato village (b), streamflow of Bilate at Alaba Kulito (c), and streamflow of Hare

at Arba Minch (d)
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3.5.5 Association of Sea Surface Temperature (SST) to Rainfall

The largest fraction of the annual rainfall in northern Ethiopian Rift Valley lakes basin is

received during the summer season (June-September) with the second highest extending

from March to May. Monthly SST anomalies based on 1982-2010 average SST data are

first examined for likely systematic fluctuations. Secondly, annual as well as seasonal SST

magnitudes are correlated with corresponding observed rainfall in the region for possible

associations. Even though the micro-climate condition varies at short horizontal profiles due

to various circumstances, the influence of large scale oceanic perturbation is distributed

uniformly over the nearby land surface. Thus, to obtain a sub-regional view of prevailing

association, an average stations total rainfall is correlated with the same span SST

magnitudes. Association of June-September SST to total rainfall during the observation

period is also accomplished to investigate for seasonal effects.

Positive SST anomalies with frequent signals are eminent over the last two decades

(Fig. 3.11). Extreme wet years (1997-98 and 2006-07) are marked with increased positive

SST anomalies whereas extreme dry years (1984-86 and 2002-04) are characterized by

negative SST anomalies (Fig. 3.12). Even though there are such apparent associations

between extreme rainfall magnitudes and SST, the frequency of above average total rainfall

years to occur is relatively less during the analysis window. The average stations total

rainfall is better correlated to summer season (June-September) SST whereas the

association becomes weakly developed for annual average SST (Fig. 3.13).
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3.5.6 Land Use Dynamics: A potential Implication to Streamflow Trends

Surface cover, soil physical properties and slope of terrain noticeably affect overland flow

and material transport by limiting the infiltration rate. Land use /cover either attenuate or

accentuate over land flow mechanism even under stationary climatic condition and hence it

alters surface or subsurface flow regime. Conversion of forest area to agricultural land,

urbanization, industrial development, cattle raising and local energy consumption results in

modification of natural land cover. Such land use dynamics serve as a proxy data set to

identify streamflow variability. Assessment of land use pattern over specified temporal scale

provides useful information about the interaction between ecological process and

streamflow.

As in most other parts of Ethiopia, major portion of Rift Valley lakes basin is

dominated by agrarian community where crop production and animal breeding has become
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the decisive mainstay of the livelihood. Such intense engagement on agricultural production

to feed the ever increasing population and spare the national economy has substantially

modified the ecosystem over the last three to four decades (Hurni et al., 2005). Immense

land area under grass, shrub and forest cover have been converted to cultivated area and

bare soil which by far aggravated surface runoff and erosion of top soil layer.

Temporal investigation of land use dynamics is a capable means of characterizing

constantly changing catchment behavior affecting the flow regime (Seibert and McDonnel,

2010; Read and Lam, 2002). Temporal Multispectral Scanner and Enhanced Thematic

Mapper plus land use/cover data acquired from global land cover data set for the years

1973, 1986 and 2000 are further processed and classified (Cermak et al., 1979) using

ERDAS Imagine 9.2. The raw landsat image has been classified into 15 independent land

use classes and subsequently merged to 7-8 dominant classes for ease of analysis (Fig. 3.14

and Fig. 3.15). Land use/cover status in the year 1973 is considered as a baseline for

temporal land use variation.

Owing to intense catchment modification due to man-induced effects, the gross size

of rural cultivated area and bare soil is increased by 23.1 and 15.8 percent at Bilate and

Hawassa lake basin respectively. Eroded areas, unsuitable for crop production increased to

17 percent in 2000 compared to its baseline size of 7 percent at Bilate catchment.

Percentage change in cultivated land and rural settlement area between 1973 and 2000

accounts for 64 and 50 at Bilate and Hawassa lake catchments respectively. Dense forest,

open bush and wood land coverage decreased dramatically in both catchments. Both rural

settlements and urban built-up area is increasing over the last 3-4 decades. The relative

proportion of urban built-up area coverage in the watershed is very small. Therefore, direct

influence of urbanization, either in attenuating or accentuating the runoff process is minimal

at present context. The impacts of rural land use management operations (cultivation,

overgrazing, timbering, deforestation as a result of local energy consumption) in the

watershed are more significant and obvious than urbanization effects.
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Table 3.13 Temporal land use/cover distribution at Bilate catchment

S.N

Land use class 1973 1986 2000 % land use change

Area (km2) % area Area (km2) % Area Area (km2) % Area (1973/2000)

1 Cultivated land and Settlement 1607.5 29.2 1828.3 33.3 2318.0 42.2 ( + ) 44.5

2 Dense Forest 659.5 12.0 871.9 15.9 440.0 8.0 ( - ) 33.3

3 Open Wood land 714.5 13.0 615.3 11.2 481.6 8.8 ( - ) 32.3

4 Bushland 975.5 17.7 820.1 14.9 570.5 10.4 ( - ) 41.2

5 Grassland and shrubland 1161.1 21.1 633.1 11.5 723.0 13.2 ( - ) 37.4

6 Bare soil 375.6 6.8 723.8 13.2 930.4 16.9 ( + ) 148.5

7 Water body 2.8 0.05 4.0 0.07 33 0.6 »( + ) 100

Total area 5496.5 100.0 5496.5 100.0 5496.5 100.0

( + ) = increment (-) = decrement

Table 3.14 Temporal land use/cover distribution at Hawassa lake catchment

S.N

Land use class 1973 1986 2000 % land use change

Area (km ) % area Area (km ) % Area Area (km ) % Area (1973/2000)

1 Cultivated land and Settlement 383.3 26.2 453.4 31.0 483.1 33.0 ( + ) 26.0

2 Dense Forest 180.5 12.3 165.5 11.3 80.1 5.5 (-) 55.3

3 Open bush and woodland 387.0 26.4 341.3 23.3 381.1 26.0 (-) 1-5

4 Grassland and vegetation 325.0 22.2 225.5 15.4 198.0 13.5 (-)39.1

5 Urban built-up 5.2 0.4 7.5 0.5 10.8 0.7 ( + )75

6

7

Bare soil + slight cultivation 80.0 5.5 174.0 11.9 212.0 14.5 ( + ) 163.6

Gross water body 102.6 7.0 96.0 6.6 98.2 6.7 (-) 4.3

*Cheleleka Lake (swampy area)

*Hawassa Lake surface area

13.0

89.6
-

5.6

90.4

1.6

96.6
-

(-) 87.7

( + ) 7.8

Tota 1 a rea 1463.0 99.9 1463.0 1463.0 100.0

*= sub-classes of gross water body (+) = increment (-) = decrement
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Gross water body in Lake Catchment found to decline in size which is further

evidenced by almost drying small lake of Cheleleka and its adjoining swampy shores. The

very striking phenomena of lake catchment is that the upstream swampy area gradually

reduced its size over the past three decades, (13km2 in 1973 to 1.6km2 in 2000) and

almost become abandoned, however, the main lake surface has increased by 7.8 percent

compared to its coverage in 1973 (Table 4.13 and 4.14) . This might be attributed to

highly modified catchment condition (encroachment of agricultural plot to swampy area,

highly altered and unstable land use condition due to intense cultivation) aggravated

overland flow. An important aspect of such land use alteration is further verified from

increasing trend of Tikur Wuha flow and lake level over the analysis period.

3.6 CONCLUSIONS

Streamflow, lake level and rainfall events of various extents are subjected to short and

long term time dependence analysis to investigate for possible fluctuations in hydro

climatic variables. Temporal land use/cover information and Sea Surface Temperature

anomalies are further investigated to study their association to hydro-climatic variables.

Annual and seasonal rainfall events are characterized by statistically insignificant

autocorrelation where successive time lagged events are weakly associated. Moreover,

negative r2 and r3 which is indicative of high frequency oscillation in time series have

become typical to most of observed annual and summer rainfall. MK-trend analysis for

June-September rainfall at Alaba Kulito and Bilate Farm reveals decreasing trend over the

observation period. Theil-Sen's trend slope estimator is in harmony with MK-trend test at

similar level of confidence limit. Despite less statistically significant trend in seasonal

and annual rainfall events and number of rainy days within the catchment, streamflow and

lake level have showed significant increasing trend for more than 75 percent of events

investigated. It is well observed from the study that observed non-stationarity is not linear

over different hydro-climatic elements. This important phenomenon could likely be

attributed to the combined effect of global climatic change and variability on local climate

and altered catchment condition (reduction in forest cover, increase in cultivated area and

expansion of eroded or bare soil) over the years. The decreasing trend of summer rainfall

in Bilate catchment is a characteristic example of influence of global climate change in

micro-climate. The long range dependence in hydrologic variables is examined using

Hurst's coefficient. The estimated Hurst's coefficient (H) is greater than 0.5 for all events
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of streamflow and lake level which suggests a likely evidence of long term persistence in

hydrologic variables. Annual events of Tikur Wuha river (H=0.96) and Hawassa lake

level (H=0.89) and monthly series of Hare river (H=0.89) and Hawassa lake level

(H=0.97) are characterized by strong persistence. No random walk situation is examined

from rescaled range analysis for monthly and annual series.

The deterministic cyclic components of streamflow are legitimately represented as

discrete finite Fourier series. The variance explained by the first two harmonics exceeds

96 percent in most cases and the monthly flows are approximated by the first two

harmonics. Observed and simulated monthly flows are analyzed for model efficiency

using error coefficients and found to be in suitable harmony. The N-S and R magnitude

is greater than 0.97 with reasonably small RMSE. The wavelet transform is utilized to

overcome the deficiency of Fourier transform in capturing time-frequency signal

simultaneously. Annual rainfall series does not show systematic periodic or monotonic

trend components in most cases, however, a 4-years periodic signal is inferred from

annual rainfall data at Bilate basin during 1984-2000. Trend analysis carried out on

various model combinations of discrete wavelet decomposed signals detected the

prevailing trends in hydrologic variables efficiently. The predictive ability of different

discrete wavelet combinations to reproduce the original signals is further verified using

model efficiency indices. All model combinations of Hawassa lake level and Tikur Wuha

streamflow are characterized by increasing trends with sufficiently acceptable model

performance indices (MSE = 0 to 0.46 and R2 =0.58 to 1.0). Morlet continuous wavelet
transform reveals that annual lake level events are characterized by 8-year periodic

signals whereas Tikur Wuha streamflow follows a 4 and 8-10 years cycles.

Examined from SST anomalies over 1982-2010 analysis window, positive SST

anomalies with frequent signals are eminent over the last two decades. Extreme wet years

(1997-98 and 2006-07) are marked with increased positive SST anomalies whereas

extreme dry years (1984-86 and 2002-04) are characterized by negative SST anomalies.

Even though there are such apparent associations between extreme rainfall magnitudes

and SST, the frequency of above average total rainfall years to occur is relatively less

during the analysis window. The average stations total rainfall is better correlated to

summer season (June-September) SST whereas the association becomes weakly

developed for annual average SST. Conclusively, simultaneous analysis of catchment
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dynamics and hydro-climatic variables using multiple time series models to detect non-

staionarity eliminates potential biasness of ruling outthe effect of catchment dynamics.
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CHAPTER 4

CATCHMENT HYDROLOGIC MODELLING USING SOIL

AND WATER ASSESSMENT TOOL

4.1 GENERAL

Topographic, land use, soil andclimatic parameters vary significantly over space and time in

a watershed and the resulting model outputs such as runoff, sediment yield and nutrients load

are affected by such variability. Capturing the watershed behavior at a very small possible

spatial scale characterized by unique topographic, land cover and soil attributes known as

hydrologic response units (HRUs) minimizes uncertainties generated during model

simulation and calibration.

In this chapter, the impact of topographical, weather and catchment parameters on

runoff generation is investigated. Concise review of watershed modelling, description of

SWAT model and temporal and spatial input datasets pertinent to SWAT modelling are

presented. Watershed delineation, runoff simulation, model parameter sensitivity analysis,

calibration and validation phases are elaborated. Finally, based on results from subsequent

analysis, conclusions are drawn.

4.2 THE NEED FOR HYDROLOGIC MODELLING IN THE STUDY

WATERSHEDS

A plethora of deterministic hydrologic models (Abbott and Refsgaard, 1996; Beven, 2001),

extending from empirical models such as unit hydrograph, regression methods and artificial

neural network to physically based distributed hydrologic models like Sysfeme

Hydrologique Europ'een (SHE) (Abbott et al., 1986a, 1986b), Institute of Hydrology

Distributed Model (IHDM) (Beven et al., 1987) and Soil and Water Assessment Tools

(SWAT) (Arnold et al., 1998) are in vogue owing to their suitability with respect to available

data and problem under consideration. The application of SWAT model in runoff and

sediment yield modelling (Chaplot, 2005; Tripathi et al., 2006; Schuol et al., 2008; Setegn et

al., 2008; Srinivasan et al., 2010; Betrie et al., 2011; Oeurng et al., 2011), nutrient and
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pollutant load prediction (Kannan, 2007; Galvan, 2009) and climate change impact study

(Wu and Johnston, 2007; Ficklin, 2009; Bae et al., 2009; Moradkhani et al., 2010; Sridhar

and Nayak, 2010) has drawn significant attention of researchers over the past two decades

due to its simplicity to address wide range of watershed problems at desired spatial and

temporal scale.

In runoff simulation, peak and baseflow components are significantly affected by

basin physiographic features, land use/cover condition, soil and groundwater parameters.

Easily accessible gridded elevation data added to rapid enhancement of GIS interface to

capture the realm of spatial information highly improved grid cell watershed modelling

(Pandey et al., 2006). However, limitations in available Digital Elevation Models (DEMs) to

extract valuable watershed features (Pryde et al., 2007; Bhang and Schwartz, 2008; Rahman

et al., 2010) and limited ability of automated watershed delineation methods such as

ArcHydro and Topographical Parameterization (TOPAZ) to accurately generate watershed

parameters (Orlandini et al., 2003) are challenges besetting distributed hydrologic modelling.

Watershed parameters generated from grid-based DEMs data should well conform to

the natural drainage pattern. Verifying the delineated watershed parameters against surrogate

ground truths extracted from landsat data before employing hydrologic modelling minimizes

errors. Thus, to represent the watershed behavior more accurately and increase confidence in

predicting the output, model input parameters should be investigated thoroughly and their

relative merit should be verified. Under rigorous definition of parameter ranges to resemble

the watershed physical condition, modelers can substantially minimize the uncertainties. The

magnitude of uncertainty could also be predicted at prescribed significance level that could

help as a proxy tool for evaluating the accuracy of input variables.

As in most other developing countries, Ethiopian watersheds suffer from unreliable

and inadequate hydrologic data that leads to loss of fidelity in obtaining valuable information

for water resources management in the basin. The impact seems more profound in ungauged

catchments where the broad catchment properties are forcibly represented as lumped

parameters to estimate runoff and sediment yield.

To assess the impact of terrain, weather and catchment parameters on runoff

generation, the Soil and Water Assessment Tool (SWAT 2005) is applied to two watersheds
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of Rift Valley lakes basin of Ethiopia. Published research studies on runoff and sediment

yield assessment using SWAT model in Ethiopia are limited to Blue Nile Basin (Setegn et

al., 2008; Betrie et al., 2011) of Ethiopia.

Only limited attempt has been made in the past to apply process based continuous

hydrologic models to study the combined effect of required input parameters on runoff

generation in Rift valley lakes basins of Ethiopia. Bekele (2001) investigated water resources

potential of Abaya-Chamo sub-basin of the lower Rift Valley basin using conceptual models.

Tadele (2009) applied SWAT model to explore watershed responses to land use

management practices in the Hare watershed.

In the present study an attempt has been made to explore the influence of

Topographic parameters, weather variables and catchment characteristics on basin's water

yield. The specific objectives of the study are (1) to explore the merits of two important

watershed delineation methods (TOPAZ and ArcHydro) using 90m Shuttle Radar

Topography Mission (SRTM) and 30m Advanced Space-borne Thermal Emission and

Reflection Radiometer (ASTER) DEM data ; (2) to investigate the suitability of SWAT

model to simulate runoff and (3) to assess the relative influence of basin and sub-basin

parameters on runoff generation using two example watersheds operating under diverse

climatic condition in the Rift Valley lakes basin. The schematic representation of

methodology used in the present study is shown in Fig. 4.1.
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Fig. 4.1 Schematic representation ofmethodology employed in the study

4.3 DESCRIPTION OF THE SWAT MODEL

The hydrological component of SWAT model is based on the water balance equation that

accounts for soil water content (SW), rainfall (Rj), surface runoff (QO, evapotranspiration

(ETi), amount of water entering thevadose zone from the soil profile (Wseep,) and return flow

(Qgw). The equation is given by:

SW,; =SW0 +X W ~Qt ~ETt - wseep>i - Q ) (4.1)

Where SW0 is the initial soil water available for plant uptake and is the difference between

the initial soil water content and the permanent wilting point; SWtis the final state soil water

content; t is time in days and other parameters are as defined above in units of mm of water

depth.

The SCS-CN (USDA-SCS, 1972) and Green-Ampt's soil moisture method (Green

and Ampt, 1911) are two options available in ArcGIS interface based Soil and Water
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Assessment Tool (SWAT-2005) to estimate runoff. In the present study the SCS-CN

approach has been used as available weather data is limited to daily basis only. SCS-CN

method identifies three CN values corresponding to dry, average and wet antecedent

moisture conditions for subsequent estimation of direct runoff.

The Direct runoff is computed using SCS-CN method as:

Q,-<'•-">' (4.2)
( P, -I, +S)

where Qj is daily runoff; Pj is daily rainfall depth (mm); la is initial abstraction (mm) and

include components such as interception, surface storage or pre-runoff infiltration amount

and S being a retention parameter (mm). The retention parameter is a function of soil, land

use, slope and soil water content parameters and approximated as a function of Curve

Number (CN).

S = 25.4
1000

CN
•10 (4.3)

Initial abstraction (la) is commonly approximated as 20% of maximum potential retention

(S) and eqn. (4.2) is further simplified as:

(P, -0.2S)2
Q, = (Ps +0.8S)

Once the curve number value for average soil moisture condition (CN2) is identified, the

corresponding CN values for dry (CNi) and wet (CN3) days are computed as:

20*(100-CN2)
CN, = CN2

(100-CN2+exp[2.533-0.0636*(100-CN2)] )

CN3 = CN2 *exp[ 0.00673 *(100 -CN2)]

(4.4)

(4.5)

Peak runoff is estimated using rational method in which the time of concentration

(time where the entire watershed area contributes to the outlet) is the sum of time of

concentration for overland and channel flow. In this method, the rate of runoff increases until

rainfall duration is equal to time of concentration and eventually decreases.

The rational formula is given as:

CiAr
-peak

3.6
(4.6)
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where Qpeak is peak runoff (m3/s); C is runoff coefficient ; i is average rainfall intensity

(mm/hr) during the time of concentration and Ac being sub-basin area (km ). In SWAT

model the amount of rainfall falling during the time of concentration is estimated as a

fraction of daily rainfall occurring on specified day. The fraction ranges from one-twenty

fourth of time of concentration for storms of uniform intensity to unity for short duration

storms. The Overland flow time of concentration is computed as function of slope length and

overland flow velocity.

L.
t

3600 *V0V

Where tov is time of concentration (hrs); Ls is sub-basin slope length (m) and Vov being

overland flow velocity (m/s). Overland flow velocity (Vov) is computed applying Manning's

roughness equation for a unit width of channel section down the slope.

The Manning's equation is given as:

v =!r2/3s1/2
n

(4.7)

(4.8)

where V is flow velocity (m/s); R is hydraulic radius given as ratio of flow area and wetted

perimeter (A/Pw); S is channel bed slope (m/m) and n being Manning's roughness

coefficient. Draining areas that are not forming stream lines are generally treated as overland

flow areas. A very thin layer of flow occurs on overland flow areas and the depth of flow is

generally considered to be small and subsequently the wetted perimeter for overland flow is

approximated by the width of the channel. Thus, overland flow velocity for unit width down

slopping channel section will be:

( Yn
--*— S,/2 (4.9)
V PV ov * w /

v_. =
1

Simplifying eqn. (4.9) yields

2/5 c3/10

v„. =
q S

.3/5
(4.10)

where q is average overland flow rate (m3/s). Assuming an average unit flow rate of 6.35

mm/hr (Neitsch et al., 2005), average overland flow velocity over entire slope length is given

as:

V„„ =
0.005 *LS2/5 S3/1°

„3/5 (4.11)
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Substituting Vov in eqn. (4.7) from eqn. (4.11), the time of concentration for overland flow

becomes:

T 3/5 n3/5
t =ti L_ (412)

v 18*S3/1° y^-1*-)

The Manning's roughness coefficient for overland flow is dependent on the land

management and cover condition.

The time of concentration for channel flow (tCh) is computed using the following relation.

0.62*L*n3/4 ,,,„
U = . „« g 3/8 (4-13)

where tch is time of concentration for channel flow (hr) and L is the longest channel flow

path (km); Ac is sub-basin area (km2) and SCh is channel slope (m/m). Median size of bed

material, channel irregularity, shape and size of the channel cross section, and surface cover

are among few parameters influencing Manning's roughness coefficient for channel flow

(Chow, 1959).

The total amount of surface runoff entering to the main channel includes the

computed daily runoff and surface runoff amount lagged from previous days. The surface

runoff lag coefficient (SURLAG) component accounts for the fraction of runoff allowed to

enter a reach in a given day. Thus, the amount of surface runoff entering the main channel at

day i (Qsj) is given by:

* Q.^CQ'm+Q^-i)
SURLAG ^

tc
1-exp (4.14)

where Q\\ is surface runoff generated in the sub-basin in day i (mm); Qiag, i-i is surface

runoff lagged from previous day (mm) and tc is time of concentration (hrs). Appreciable

amount of water is held in storage when the SURLAG value is smaller hence the runoff

magnitude lagged from previous days would contribute substantial amount of runoff in the

next days.

Transmission losses in SWAT model are estimated considering area of sub-basin,

fraction of total sub-basin area contained in each HRUs, effective hydraulic conductivity,

tributary channel width, length of longest flow path of tributary channel. Such transmission

losses are expected to supplement moisture to the shallow aquifer.
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The difference between the soil water content at permanent wilting point and field

capacity termed as available soil water content is an essential component that limits the plant

water uptake. Albeit both saturated and unsaturated flow take place within soil layer, SWAT

simulates saturated flow directly assuming that the water is distributed uniformly within

individual soil layer. The unsaturated flow governed by the difference in potential gradient

of water in the soil layers usually moves in all directions and estimated indirectly from depth

distribution of plant water uptake and soil water evaporation. Fraction of water in excess of

field capacity moves down as percolation water. Percolation water moves down as long as

the soil layer below is unsaturated and not frozen.

The potential water uptake by plants from soil surface in the root zone on a given day

is estimated as:

W = ^
upz [l-exp(-pw)]

1-exp 8 *
r w

(4.15)
*T J

where Wup z is the potential water uptake from the soil surface at specified depth Z (mm);

Et is the maximum plant transpiration (mm);pw is water distribution parameter; Z is depth

from the soil surface and Zris the depth of root zone.

In SWAT, runoff generated from individual HRUs joins the respective stream path

and routed through variable storage and Muskingum channel routing techniques while

accounting for all possible losses in the channel. The variable storage routing method

(Williams and Harm, 1973; Arnold et al., 1995) is employed in the present case. In Variable

storage channel routing the travel time is computed as a simple linear function of volume of

water in the channel and flow rate. The channel storage coefficient is estimated using travel

time. Finally, the outflow volume will be the fraction of inflow volume into the reach and

water stored in the reach. The fractional component is called the storage coefficient.

Expressing the continuity equation in terms of inflow and outflow rate at two defined

time steps as:

Om,l + Vin,2 I . I Oout.l + 00ut,2 At = Vs,2-V, (4.16)

where Qjn and Qout are inflow and outflow rates (m3/s) respectively, Vs is storage volume (m3)

and At is the time step (s). Subscripts 1 and 2 indicate the beginning and end of time steps.
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The total travel time is computed as ratio of inflow volume and flow rate in the reach

as:

T.~V"
Q0

(4.17)

where Ttr is travel time (s) and Vs is volume of water stored at any given time (m ) and Qout

is corresponding outflow rate (m /s).

Re-arranging eqn. (4.16) we have,

Q,„ +
"s,l Vout.l __ ^s.2
At 2 At

+ •
Q out, 2

where Qin is an average inflow rate (m /s).

(4.18)

Eliminating the storage volume from eqn. (4.18) by substituting eqn. (4.17) and further

simplifying gives

Q out, 2

2 At ^
V2T.+At

2 At

v2Tfr+At

Q,n + 1
2 At

2 L„ + At
'out,I (4.19)

The term is known as storage coefficient (SC). Expressing the flow rate in

volume units and rearranging the eqn. (4.19) for Vout, yields

Vout=SC (Vin+Vs,,) (4.20)

Transmission losses from the channel to the sub soil profile are eminent during dry

periods. Effective hydraulic conductivity of the channel alluvium, flow travel time, wetted

perimeter and channel length are parameters limiting transmission losses. Likewise,

evaporation losses from reach are also computed as function of potential evapotranspiration,

channel geometry (length and width) and fraction of time step in which water is moving in

the reach. SWAT models the movement of water from bank storage to adjacent unsaturated

zone to meet part of the evapotranspiration demand. The groundwater 'revap' coefficient

(GWREVAP.gw) for the HRU in the sub-basin accounts for such losses from bank storage.

Groundwater contribution to channel flow is modeled as shallow and deep aquifer in

each sub-basin. SWAT considers the shallow aquifer contribution to the reach, however, the

deep aquifer is assumed to contribute flow away from the watershed. The daily shallow

aquifer water balance components are the inflow (antecedent shallow aquifer storage content
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and recharge amount) and the outflow (base flow, 'revap' component to meet root zone

water deficiency and amount removed from shallow aquifer by pumping). The base flow

component for a steady state groundwater flow response to recharge is:

8000 *K ,
Qgw= 2sa'*hWT (4.21)

gw

where Qgw is base flow to main channel (mm); Ksat is saturated hydraulic conductivity

(mm/day); hWT is water table height (m) and Lgw is distance from a sub-basin groundwater

divide to main channel (m). The movement of water from the shallow aquifer to the

overlying unsaturated zone represented as 'revap' is significant when the saturated zone is

close to the surface and estimated as a fraction of the potential evapotranspiration.

Evaporation is estimated using Penman-Monteith method as its uses more weather

parameters influencing the evapotranspiration process.

4.4 MODEL SENSITIVITY AND UNCERTAINTY ANALYSIS

Uncertainties arising from assumptions considered during model development, input

variables, model parameters and measured data need to be assessed. The sensitivity of model

parameters to such uncertainties should be evaluated prior to fine tune model parameters.

Defining model parameter values within physically permissible limits minimizes errors

propagated during model calibration and validation. The sensitivity analysis techniques

employed in SWAT 2005 model are summarized below.

The Latin Hypercube (LH) Sampling: The LH simulation uses a stratified sampling

approach that is based on Monte Carlo simulation (Mckay, 1988). The stratified sampling

techniques aids in materializing efficient output values over limited number of simulations.

The LH approach subdivides the distribution of each parameter into N ranges each of which

with a probability of occurrence equal to 1/N. Each range is sampled randomly once in the

prescribed boundary. Finally, the model runs N times with the random combination of

parameters.

One-Factor-At-a-Time (OAT) Sampling: The OAT method is designed to cover local to

global sensitivity method (Morris, 1991). The local sensitivity analysis using OAT method

is handled by changing one parameter at a time during the run and the change in output is
ultimately attributed to the input parameter changed. Model output is evaluated in terms of
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sum of square errors (SSQ) that matches observed and simulated outputs. OAT sampling

appears to be widely used in SWAT modelling (van Griensven et al., 2001).

The LH-OAT Sampling: The LH-OAT sampling enjoys the benefit of LH sampling that

ensures all parameters ranges are sampled applying OAT design that describes the change in

output is uniquely attributed to particular input change. The method is robust in identifying

sensitive parameters and for m intervals in LH and p number of parameters, a total of

m*(p+l) runs are required.

Sequential Uncertainty Fitting Version 2 (SUFI-2) Analysis. Sequential Uncertainty Fitting

(Abbaspour, 2009) accounts for all sources of uncertainty associated to modelling. The

strength of uncertainty analysis is measured by two important factors (P-factor and R-factor)

in SUFI-2. The percentage of measured data bracketed by the 95 percent prediction

uncertainty (95PPU) is described as P-factor. The 95PPU is measured at the lower 2.5% and

upper 97.5% of the cumulative distribution function neglecting the 5% bad simulations. R-

factor, the average thickness of the 95PPU band divided by the standard deviation of the

measured data, is used to describe the cumulative uncertainty in the model. R-factor is

determined from the expression:

^(Xu-XJi
R- factor =- ""* =-^ (4.22)

G*. 0\

P - factor n j

where XL andXu are the 2.5th and 97.5th percentiles of the cumulative distribution of every

simulated point respectively; ax is the standard deviation of measured variable x and n

being the number of observed data points.

SUFI-2 begins with large parameter uncertainty with physically meaningful range so

that the observed values are well bracketed by the 95PPU band and eventually decreases the

size of uncertainty band over successive simulations. The P-factor values range between 0

and 100% while R-factor is lying between 0 and +oo . P-factor value of 1 and R-factor value

of 0 being an ideally optimal case where the simulated series exactly corresponding to the

observed data.
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4.5 MODEL PERFORMANCE EVALUATION TECHNIQUES

Watershed models are capable of simulating required output at desired location as a function

of the input parameters. An ideal situation is where the model output is exactly equal to the

observation values at every segment of the analysis window. Practically, simulated output is

judged as acceptable if the predicted output is reasonably close to the observation. However,

uncertainties associated to model input, assumptions considered in the model development,

and uncertainty in observed values used for calibration and validation significantly affect the

model performance. The uncertainties and assumptions are evaluated in terms of model

efficiency indices. Some of commonly used model performance indices (Moriasi et al.,

2007) applied for present analysis are discussed briefly in this section.

Nash-Sutcliffe Efficiency (NSE): NSE is a dimensionless index that compares residual

variance to observed data variance (Nash and Sutcliffe, 1970). It is computed applying the

following relationship.

NSE = 1

Z(Q,°
1=1

-Q,s)2

. i=l

-Q0)2

(4.23)

where Q^ is the il observation discharge ; Q;s is the ith simulated discharge ;Q° is the mean

of observed discharge and n being the total number of observations. The NSE values range

from - oo to 1 with NSE = 1 being a perfect match of observed data to simulated one and is

an ideal optimal value whereas NSE =0 indicates that the model predictions are as accurate

as the mean of the observed values. When the residual variance described by the nominator

in eqn. (4.23) is larger than the data variance described as denominator, the observed mean is

a better predictor than the model and under such circumstances NSE becomes negative.

Generally, positive NSE values indicate acceptable level of performance whereas negative

NSE values are judged as unacceptable. However, the NSE model alone does not adequately

describe the model performance as poor models can give a high NSE value and vice-versa

(Jain and Sudheer, 2008). Therefore it should be accompanied with other model efficiency

performance tests.

Coefficient of Determination ( R ): Coefficient of determination describes the proportion

of the variance in measured data explained by the model. R2 ranges from 0 to 1 and values
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greater than 0.5 shows acceptable level of model performance (Moriasi et al., 2007). Legates
•y

and McCabe (1999) argues that R index is over sensitive to outliers and insensitive to

proportionally increasing or decreasing model outputs with respect to observed values.

Z(Q.0-Q0)(Q,S-QS)
R2 =

i=l

Z(Q,0-Q0)2Z(QS'-QS)'
(4.24)

i=l

where Q° and Qf are as defined in eqn. (23).

Modified Coefficient of Determination (bR ): Modified Coefficient of determination

index has the advantage over conventional R2 in magnifying the sensitivity of coefficient of

determination due to proportionally increasing or decreasing model outputs compared to

observations. The slope of best fit straight line (b) of observed and simulated values is

multiplied by R2 and the resulting index is a reasonable estimate ofmodel efficiency.

Percent Bias (PBIAS): Percent bias is a measure of the average departure of simulated data

from the observed series. The optimum value of PBIAS is 0.0 with lower values indicate

sufficiently reasonable model simulation (Gupta et al., 1999). The model underestimates bias

when PBIAS is positive and overestimates when it is negative.

Percent bias is estimated applying the following relationship.

X(Q,°-Q,s)*ioo
PBIAS =

1=1

ZQ.
i=l

(4.25)

where Qj° and QjS are as defined above.

Root mean square error-observations standard deviation Ratio (RSR): Lower values of Root

Mean Square Errors (RMSE) are usually acceptable as better model performance is

associated to lower RMSE. Singh et al. (2005) further extended the statistic RMSE to

account for standard deviation of observed values and hence a standardized RMSE known as

RSR is developed. RSR is a ratio of RMSE to standard deviation of observed values and

includes the normalization factor. An optimal value of RSR is 0.0 and the lower values of

RSR conform to better model performance.
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Thus, RSR is computed using the statistics,

RMSE

obs
RSR =

STDEV

|Z(Qi0-Q°)3
(4.26)

where STDEVobs is the standard deviation of observed discharges ; Q° is mean of observed

discharges and all other terms are as defined above.

4.6 DESCRIPTION OF THE STUDY AREA

The study area encompasses Bilate and Hare watersheds of Rift Valley Lakes basin of

Ethiopia (Figure 4.2).

Weira and Guder rivers emanating from the Silte and Butajira highlands are the two

major perennial tributaries of Bilate river. Soon after the confluence of the two rivers, it is

named as Bilate river and debouches into the terminal pool of Lake Abaya. Bilate

watershed, with gross watershed area of 5330 km , stretches from an elevation of 3300 m at

upstream highland to 1200 m downstream in the Rift Valley floor.

Bilate watershed is characterized by humid and semi-arid climatic conditions with

bimodal rainfall pattern with major rainfall during the summer monsoon season. Mean

annual rainfall observed at Alaba Kulito exceeds 1000 mm. The elevation of the watershed

ranges from 3300 m at west of Butajira where Bilate river flowing down a ravine course to

1165 m at downstream outlet. Deforestation due to expansion of agricultural lands, cattle

grazing and timbering substantially reduced the vegetation cover in the watershed. Series of

deep gullies and massive bare soil pillars at upstream part of the watershed testifies its

vulnerability to erosion hazard. The entire watershed practices a mixed cropping pattern

where the lower foot of the watershed utilizes irrigation (approximately 1260 ha of

government owned farm) to grow commercial crops such as tobacco and maize. Currently

the demand for irrigation water is increasing and small scale communal and medium scale

private investors are under urgent course of water demand.

'y

Hare watershed (166.5 km at the gauging outlet) is characterized by steep valleys at

upstream mountainous highland and progressively stretches to flat fluvial plain until it joins

the terminal lake Abaya. The lower plain area of the watershed is known for its intense
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competition for irrigation water. The upstream highland region of the watershed experiences

a humid climate with an average annual rainfall magnitude of 1250mm in contrast to 870mm

of rainfall at Arba Minch region of the downstream sub-watershed area.

The upstream community of Hare basin is fully engaged on rain-fed cultivation and

associated agricultural activities. The lower fluvial plains utilize communal based traditional

and modern irrigation schemes to supplement rain-fed cultivation on nearly 2200 ha of land.

Maize, sweet potato, banana, mango and cotton are among the major crops growing in the

semi-arid irrigated watershed territory. Land resource competition as a result of growing

number of population aggravated conversion of forest cover into agricultural plots and

residential area. Household energy consumption is almost entirely based on wood biomass in

the watershed and becomes another culprit to forest reduction.
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Fig. 4.2 Location and watersheds map of the study area: Bilate (1) and Hare (2) watersheds
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4.7 ACQUISITION AND PRELIMINARY PROCESSING OF DATA

FOR SWAT MODEL

It is not uncommon that most distributed hydrologic models are data intensive and adequate

definition of spatial and temporal datasets is an essential preliminary step in application of

these models for watershed modelling.

4.7.1 Topographical Data

Essential watershed morphologic parameters are computed from DEM data and

subsequently utilized for watershed modelling. Elevation Model (DEM) is used to define

flow direction, flow accumulation, stream network and eventually limits draining watershed

area with respect to either predefined or model simulated outlet. An enhanced 90mx90m

longitudinal resolution processed Shuttle Radar Topographic Mission (SRTM) DEM data

version 4.1 (Jarvis et al., 2008) is accessed from International Centre for Tropical

Agriculture online source (http://srtm.csi.cgiar.org). A 30m Advanced Space-borne Thermal

Emission and Reflection Radiometer (ASTER) data was acquired from Global Land Cover

Facility online sources (www.landcover.org). To augment the raster digital data, a

topographical map of scale 1:250,000 covering the study area was used in watershed

delineation.

4.7.2 Soil and Land Use Data

Field scale definition of soil and land use parameters for large watershed is impractical. Soil

classes organized by Ministry of Water Resources (MoWR) of Ethiopia from small scale

FAO soil map are supplemented by basin-specific previous studies (Makin et al., 1975) in

the region. The soil classes at Bilate and Hare basins are categorized into 9 and 4 dominant

soil units respectively. The dominant soil units in Bilate watershed, as per FAO-90 soil class

legend, are Vitric Andosols (28%), Chromic Luvisols (21.8%) , Humic Nitisols (17.5 %) ,

Lithic Leptosols (12.6%), Mollic Andosols (3.7%) and remaining 1.3% covers other soil

units. Humic Alisols (83%), Eutric Regosols (10%), Haphilic Ferralsols (5.8%) and Eutric

Fluvisols (1.1 %), are identified as major soil categories in Hare watershed. Respective soil

physical properties such as maximum soil depth, soil hydraulic conductivity, soil water

holding capacity, soil texture are defined for each soil units based on literature and previous

site specific studies (Makin et al., 1975; Tadele, 2009).
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Orthorectified four band multi-Spectral Scanner (MSS) LandSat-4 and seven band

Enhanced Thematic Mapper Plus (ETM+) land cover images were acquired from Global

Land Cover Facility online sources (http://glcf.umiacs.umd.edu/data/landsat). The landsat

images were analysed using ERDAS imagine 9.2 and ArcGIS 9.3 following standard image

processing procedures (Cermak et al., 1979; Gonzalez and Woods, 2002). Accordingly, land

use/cover information for the year 2000 is extracted and major land use/cover units are

identified. Table 4.1 provides the percentage area coverage of dominant land cover units in

the study watersheds. Six (Bilate basin) and four (Hare basin) major land use classes are

identified and latter converted to basic SWAT land use classes for initial model run; namely

cultivated area (AGRL), range and bush land (RNGE), mixed green forest (FRST) and

grassland (PAST). Reclassified soil, land use/cover and slope map for the study area is

presented in Figs. 4.3, 4.4 and 4.5 respectively.

4.7.3 Hydro-meteorological Data

Climate data such as rainfall, temperature, wind speed and relative humidity were collected

from Southern Nations Nationalities and Peoples Republic (SNNPR) meteorological

department at Hawassa and National Meteorological Service Agency (NMSA) at Addis

Ababa. Some of the meteorological stations located close to the study watersheds are

mentioned in Table 4.2. SWAT model selects weather input data on the basis of proximity to

the sub-watershed centeroid. Following the notion of station proximity to the watershed

centeriod, five weather stations (Alaba Kulito , Bilate Farm, Hawassa, Arba Minch and

Chencha) with record length of 1990-2009 have been used for watershed modelling.

Missing short length weather data values were filled up applying the weather generator

(WXGN) option (Sharply and William, 1990) supplying monthly weather statistics as an

input.

Observed daily stream flow data from single monitoring station at each watershed

(Bilate and Hare) were obtained from Ministry of Water Resources (MoWR), Ethiopa for the

analysis period. Preliminary rainfall-runoff analysis has been carried out to identify the

reliability of gauge data.
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Table 4.1 Land use/Cover distribution at Bilate and Hare watersheds in the year 2000

Land use/cover class Land cover perce ntage of total Basin's area

Bilate basin Hare basin*

Cultivated land and settlement area 42.2 53.2

Dense forest 8.0 28.0

Open bush and woodland 10.4 6.0

Grassland and green vegetation 13.2 12.6

Open Woodland 8.8 -

Barren land 16.9
"

* Dominant land use classes are cons dered
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Fig. 4.5 Land slope map at Bilate ( a) and Hare (b) watersheds

Table 4.2 Meteorological stations near the study area

Meteorolgical Latitude Longitude Altitude

stations (decimal degrees), N (decimal degrees), E (m)

Alaba Kulito 7.33 38.08 1750

Arba Minch Farm 6.08 37.58 1300

Bilate Farm 6.75 38.07 1300

Bilate Tena 6.40 38.05 1550

Boditi School 6.57 37.51 1860

Chencha 6.25 37.55 2680

Hawassa 7.08 38.48 1750

Hosaina 7.33 37.52 2200

Mirab Abaya 6.18 37.47 1260

Yirgalem 6.45 38.23 1735

At site and multi site rainfall analysis is carried out to identify consistency in the data

series using double mass curve (Fig. 4.6) analysis and visual plots (Fig. 4.7). Kolmogorov-

Simrnov (K-S) goodness-of-fit test for annual rainfall series confirms that annual rainfall
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series at Alaba Kulito, Hawassa, Arba Minch and Chencha are normally distributed (Fig.

4.8). Statistical parameters of annual rainfall series are summarized in Table 4.3 for four

stations located in the watersheds.

Temperature variability and rainfall-runoff relationship in the watershed was also

investigated for possible discrepancies in observed series. Long term average daily

maximum temperature is observed during the months from January to April at Alaba kulito

and Hawassa stations. It ranges from 28.5-31 degree Celsius with average minimum

temperature of 10 degree Celsius in the months of November and December. The semi-arid

climatic zone of lower Hare watershed is characterized by relatively higher daily maximum

and minimum temperature during the same season. The average maximum temperature

varies between 32 and 33 degree Celsius with minimum of 15 degree Celsius.

Table 4.3 Rainfall statistical parameters at nearby stations to watershed outlets

Rainfall station Mean Std. dev. Cv Cs CK Percentiles K-S Statistic
f

25%
r r

50% 75% D "crit.

Alaba Kulito 981.3 151.9 0.15 0.57 -0.72 864.9 953.5 1105.8 0.183 0.513

Arba Minch Farm 898.7 156.9 0.17 0.69 0.2 785.3 868.6 965.2 0.159 0.720

Chencha 1298.5 339.9 0.26 1.22 3.33 1080.3 1269.6 1467.5 0.123 0.935

Hawassa 953.1 143.5 0.15 0.25 -0.72 841.7 924 1068.4 0.118 0.942

Cv=Coefficient of Variation Cs =coeffi :ient of Skewness , CK=Coefficent of kurtosis , K-S =Kol mogorov-Si mrnov
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4.8 WATERSHED DELINEATION AND SWAT MODEL SETUP

4.8.1 Watershed Delineation

In the present study ArcHydro of ArcGIS/ArcSWAT and TOPAZ (Topographical

Parameterization) (Garbrecht and Martz, 1997) of Watershed modelling System (WMS) are

used to delineate the watersheds from 90m SRTM and 30m ASTER GDEM data. The

delineated watershed boundary, stream network and main stream path are further verified

using Landsat derived and Google Earth extracted stream and existing watershed map.

Limitations of 90m SRTM and 30m ASTER DEM data in generating flow path and

watershed boundary are explored using two example watersheds.

Both ArcHydro and TOPAZ watershed delineation tools utilize a deterministic eight

-neighbour flow direction matrix (D8) algorithm (O'callagham and Mark, 1984) in which

each pixel discharges into one of its eight neighbours, separated by 45° from the nearest

point, in the direction of the steepest descent. Sensitivity to DEMs, ability to produce

spurious flow paths in flat terrain and failure to represent flow paths in convex slopes are

commonly reported limitations of D8 approach (Gallant and Wilson, 1996; Tarboton, 1997;

Martz and Garbrecht, 1998; Orlandini et al., 2003). Attempts have been made to minimize

the problems encountered in the conventional D8 approach. The D8-TOPAZ algorithm

(Garbrecht and Martz, 1997) overcomes some of the drawbacks encountered in D8 approach.

Spatially referenced and depression filled 90m and 30m DEM are subjected to step

by step procedure of watershed delineation using ArcHydro and TOPAZ methods. The

ArcHydro watershed delineation is based on the premises of systematically defined sub-

basin outlets based on elevation data from DEM so that the user is either prompted to define

the outlet or rely on automatically generated pour points as outlet. Stream networks and sub-

basin boundary generated applying user defined "draining area" threshold requires further

enhancement to produce seamless sub-watershed units.

4.8.2 Model Setup

Accuracy of the model output is judged by adequate assignment of land use and soil

parameters. SWAT-2005 land use database contains approximately 102 land use properties

and has a flexibility to include more land and soil databases. Slope classification up to 5

different slope class ranges is also possible. On the premise of this, the land use, soil and
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slope units are reclassified based on the respective dominant properties. The required soil,

land use and slope data are overlaid and a unique combination of these parameters called

hydrologic response units (HRUs) are identified. HRUs threshold values for land use, soil

and slope class is selected as percentage over sub-basin (10%), land use (15%) and soil

(15%) respectively. For example, if the land use unit covers at least 10% of the sub-basin

area, then it is assigned a land use class whereas the land use unit that covers less than 10%

of the sub-basin area is proportionally spread over other dominant land use classes.

Following similar notion, 15% threshold value is assigned for soil and slope units. A total of

56 HRUs at Bilate and 14 HRUs at Hare watersheds are identified. Observed daily weather

data from nearby stations and station location parameters are supplied to the model as input

parameters. Associated soil, land use, groundwater, management, crop, basin and HRUs

parameters are edited to suit the prevailing watersheds behaviour.

4.9 RESULTS AND DISCUSSION

4.9.1 DEMs and Limitations of Watershed Delineation Algorithms

A rigorous attempt has been made to analyze the effect of different resolution Digital

Elevation Model data while generating watershed morphological parameters. Watershed

area, flow accumulation path and stream networks are generated by two automated water

delineation approaches (ArcHydro and TOPAZ) from 90m SRTM and 30m ASTER DEM

and subsequently evaluated for their performance.

It has been observed that the 30m ASTER DEM data generated spurious flow

accumulation area at Hare watershed, as sketched by dark solid arrows, in the eastward

direction that drains away from the watershed boundary and joins the adjoining watershed.

A maximum Euclidean distance of 1.86 km flow accumulation and subsequent stream path

offset is observed. Such deviation in flow path resulted in reduction of 29.2 % in actual

watershed area (Fig. 4.9). The longest flow path generated from 90m and 30m DEM is

compared and an offset in terms of Euclidean distance for 147 points is summarized. An

average offset of 0.162 km with standard deviation of 0.375km is observed. The stream path

and basin boundary generated from 90m SRTM data using ArcHydro and TOPAZ methods

are at reasonable agreement.
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The observed difference in area between the two automated watershed delineation

methods are 1.14km2 at Hare and 0.6km2 at Bilate watersheds. The density of stream

network, in both cases, is proportional to draining area threshold. Both TOPAZ and

ArcSWAT fail to capture the actual flow path accurately in flat terrain of Bilate basin. The

main stream flow path deviates from surrogate Landsat (acquired for the year 2000) and

Google Earth (2005/2006 image) extracted main stream path by an average distance of 7.5

km in west-east direction for a total stream length of 30km at the lower foot (Fig. 4.10). Fig.

4.11 presents ArcHydro and Topaz generated watershed boundary and stream network

compared against Google Earth map extracted stream path.
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Fig. 4.9 SRTM-90m and 30m ASTER DEM data generated watershed boundary and flow

path at Hare watershed
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ArcHydro generated basin parameters from 90m SRTM DEM are utilized for

subsequent watershed modelling. Accordingly, both Bilate and Hare watersheds are divided

into three sub-basins each based on the location of monitoring stations, outlets and average

basin slope (Fig. 4.12). Computed watershed geo-morphological parameters are summarized

in Table 4.4.
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Table 4.4 Bilate and Hare watershed morphological parameters estimated at basin outlets

Basin Parameters Bilate basin Hare basin
2

Basin area (km ) 5302.2 166.5

Basin slope (m/m) 0.1 0.3

Basin length (km) 168.4 21.9

Basin perimeter (km) 664.9 77.4

Shape factor [- ] 5.4 2.9

Sinuousity factor [- ] 1.3 1.2

Mean basin elevation (m) 1924.0 2561.7

Maximum flow distance (km) 222.2 26.8

Maximum flow slope (m/m) 0.0 0.1

maximum stream length (km) 220.2 25.4

maximum stream slope (m/m) 0.0 0.1

Distance from centeroid to stream (km) 1.5 0.9
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Fig. 4.12 ArcSWAT delineated watershed characteristics at Bilate (a) and Hare (b) basins

Elevation is varying in the watersheds approximately from 741m to 3656m above

mean sea level. The cumulative area below a given elevation is computed to identify

elevation-area relationship in both basins. It is observed that cumulative area increases

sharply as elevation increases at Hare basin, whereas the increase in area under a given

elevation is moderate and becomes constant at higher elevations at Bilate basin (Fig. 4.13).
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4.9.2 Model Sensitivity Analysis

Catchment dynamics and climatic conditions pertinent to the region alters soil, land use,

groundwater and other watershed properties. The parameters do not remain stable throughout

the analysis period. Such model parameter uncertainties propagate during model run and

affect the final output. Therefore, to represent the watershed behavior realistically, sensitive

parameters should be identified prior to model calibration and such parameters are fine-tuned

over physically meaningful bound. Model sensitivity analysis is carried out for flow

parameters using with and without observed discharge. Twenty flow parameters are

identified as runoff influencing variables and an (n+l)*P number of iteration is made to

evaluate the degree of sensitivity where n being the total number of parameters (n=20) and P

the width of Latin Hypercube sampling (P=10).

The OAT-LH sampling index statistics (maximum, mean, median and minimum) are

derived from sensitivity analysis model run for each model parameter and the degree of

sensitivity is evaluated. The mean sensitivity index is utilized to rank the parameters. Among

20 model parameters affecting runoff, 13 parameters at Bilate basin and 10 parameters at

Hare basin were found more sensitive based on the mean sensitivity index of the OAT-LH

sampling (Fig. 4.14 and Fig. 4.15). These are deep aquifer percolation fraction

(RCHRGDP.gw), threshold water depth in the shallow aquifer for flow (GWQMN.gw),

groundwater 'revap' coefficient (GW_REVAP.gw), baseflow alpha factor

(ALPHABF.gw), initial SCS curve number for average moisture condition (CN2.mgt), soil

evaporation compensation factor (ESCO.hru), threshold water depth in the shallow aquifer

for re-evaporation (REVAPMN.gw), maximum potential leaf area index (BLAI.crop.dat),

maximum canopy storage (CANMX.hru), available water holding capacity

(SOLAWC.sol), soil depth (SOLZ.sol), saturated hydraulic conductivity (SOL_K.sol) and

average slope steepness (SLOP.hru). Finally, the identified sensitive parameters are used for

model calibration using Sequential Uncertainty Fitting Version 2 (SUFI-2) of SWAT

Calibration and Uncertainty Prediction (SWATCUP) algorithm (Abbaspour, 2009).

SWATCUP has capability to optimize model output against observed values by adjusting

sensitive parameters using combined Latin Hypercube and One-factor-at-A-Time (LH-OAT)

sampling algorithms. Default initial model parameter ranges (Table 4.5) prescribed in

SWAT model are used for initial model run using SUFI-2 calibration and uncertainty

analysis module.
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4.9.3 Model Calibration and Validation

The initial model simulation is carried out using default simulation parameter values

introduced during data preparation. Manual calibration is followed by automated calibration

option of SUFI-2 algorithm of SWAT-calibration and uncertainty program. Manual

calibration reduced uncertainties in the input parameters slightly and permissible limits for

automated calibration are identified.

Model "warm up" period of 2-4 years is used to train initial model simulation period.

Successive iterations are conducted using SUFI-2 by renewing the parameter values for the

next iteration until it converges. The calibrated model parameters are used to simulate runoff

for validation period of non-overlapping time span. Model calibration period from 1992-

1996 at Bilate basin and 1995-2000 at Hare basin are selected to account for model training

phase, presence of wet and dry years during the calibration period and availability of reliable

observed stream flow data for calibration. Similarly, a validation period of 1998-2002 and

2003-2006 is utilized at Bilate and Hare watershed respectively.

It is observed that SWAT model simulates runoff at both basins with sufficiently

acceptable model efficiency in the watersheds. The Nash-Sutcliffe Efficiency (NSE) and

Coefficient of determination (R2) indices computed for monthly series are greater than 85%

for calibration period in both watersheds. The percent bias (PBIAS) during calibration period

is equivalent to 9% at both watersheds. The RMSE-standard deviation ratio (RSR) is close to

zero in all cases. 82% and 80% of measured data is bracketed by the 95 percent prediction

uncertainty (95PPU) at Bilate and Hare watersheds respectively. Model efficiency indices

also show modestly good performance for daily simulated and observed series at both

watersheds. The NSE ranges from 0.68 to 0.88 and R2 lies between 0.70 and 0.89. The

overall model performance indices during calibration period are at reasonably good

concordance to their calibration counterparts at both watersheds.

The results of model calibration and validation are presented as plots of monthly and

daily series. The monthly plots account for entire period of model calibration and validation

phases whereas partial plots of calibration and validation phases for daily series are

portrayed. (Fig. 4.16 to Fig. 4.23). Model efficiency and uncertainty magnitudes during

calibration and validation period are summarized in Tables 4.6 and 4.7. After calibration and

subsequent validation is arrived at acceptable level, final model parameter values are
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*

estimated following three mode of variation i.e., adding the new value to the initial model

run, replacing the original value or multiplying the original value by a relative change. This

model parameter values are specific to particular sub-basin utilized during simulation. The

optimal model parameter values estimated after calibration period at Bilate and Hare

watersheds are presented in Table 4.8 and 4.9 respectively.
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Table 4.5 Initial model parameter ranges used for default simulation and mode of variation

S.No. Lower Upper Parameter HRUs Parameters Parameter Description

bound Bound change option Coverage

1 0 1 1 2001 Alpha_Bf Baseflow alpha-factor [days]

2

3

4

0

0

0

1 1 2001 Blai Maximum potential leaf area index [-]

10 1 2001 Canmx Maximum canopy storage [mm]

150 1 2001 Ch K2 Channel effective hydraulic conductivity [mm/hr]

5 0 1 1 2001 Ch N2 Manning's n-value for main channel [-]

6 -25 25 3 2001 Cn2 Initial SCS CN for average soil moisture condition [-]

7

8

9

0

0

1 1 2001 Epco Plant uptake compensation factor [- ]

1 1 2001 Esco Soil evaporation Compensation factor [-]

-10 10 2 2001 Gw_Delay Groundwater delay [days]

10 -0.036 0.036 2 2001 Gw_Revap Groundwater 'revap' coefficient [-]

11 1000 1000 2 2001 Gwqmn Threshold water depth in the shallow aquifer for flow [mm]

12 -100 100 2 2001 Revapmn Threshold water depth in the shallow aquifer for 'revap [mm]

13 -25 25 3 2001 Slope Average slope steepness [m/m]

14 -25 25 3 2001 Slsubbsn Average slope length [m]

15 -25 25 3 2001 Sol Alb Moist soil Albedo [-]

16 -25 25 3 2001 Sol_Awc Available water capacity (mm H2o/mm soil]

17 -25 25 3 2001 Sol K Saturated hydraulic conductivity [mm/hr]

18 -25 25 3 2001 Sol Z soil depth [mm]

19 0 10 1 0 Surlag** Surface runoff lag time [days]

20 0 1 1 2001 Rchrg Dp Deep acquifer percolation fraction [-]

* 1 = repl ace by valu

is a basin p

i , 2 =add

arametr wh

/alues , 3 = multiply by a relative change

ereas all others in the list are sub-basin pa ram

2001 implies parameter value change is meant for all HRUs

**Surlag eters
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Table 4.6 Model efficiency and uncertainty indices during calibration and validation period

Model efficiency

indices

Bilate basin Hare-t>asin

Calibration Validation Calibration Validation

(2003-2006)(1995-2000) (2003-2006) ( 1994-2000)

R2 0.92 0.82 0.88 0.81

bR2 0.89 0.78 0.71 0.86

NSE 0.91 0.79 0.87 0.96

RSR 0.09 0.21 0.19 0.32

p-factor 0.82 0.78 0.81 0.78

r-factor 0.72 0.88 1.40 1.80

Model performance is also evaluated for each year's simulation during calibration and

validation period. The NSE value varies from 0.45 to 0.94 whereas R2 ranges from 0.48 to

0.96. Percent bias value is in the range of 0±25 percent with significantly low (0.0 - 1.0) RSR

index value during calibration and validation period in both watersheds.

Table 4.7 Annual model performance indices during calibration and validation period

Basin Model Run Year R2 bR2 NSE PBIAS RSR

Calibration 1995 0.94 0.90 0.94 0.52 0.06

1996 0.94 0.90 0.93 3.86 0.07

1997 0.86 0.67 0.85 2.71 0.15

1998 0.51 0.34 0.46 1.54 0.54

1999 0.88 0.81 0.82 -16.10 0.18

Hare 2000 0.94 0.97 0.85 14.75 0.15

Validation 2003 0.48 0.35 0.45 1.25 1.08

2004 0.96 0.88 0.73 26.58

11.98

2.99

0.27

0.68

0.50

2005

2006

0.66

0.75

0.65

0.86

0.30

0.50

Calibration 1992 0.82

0.84

0.87

0.92

0.97

0.81

0.76

25.12

-0.33

0.19

0.241993

Bilate

1994 0.97 0.92 22.69 0.08

1995

1996

0.87

0.96

0.65

0.87

0.78 22.93 0.22

0.96 5.81 0.04

Validation 1998

1999

0.57 0.42 0.50 13.83 0.50

0.80 0.71 0.75 -12.75 0.25

0.322000

2001

0.73 0.65 0.68 13.96

0.84 0.75

0.67

0.82 -11.10 0.07

0.242002 0.77 0.76 -3.44
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Table 4.8 Optimal model values after calibration at Bilate watershed

Parameter Name

v_RCHRG_DP.gw [-]

a GWQMN.gw [mm]

r__CN2.mgt [-]

v_ESCO.hru [-]

a REVAPMN.gw [mm]
v_BLAKlj.crop.dat [-]

v_CANMX.hru [mm]
r_SOL_AWC(l).sol [mm/mm]
r_SOL_K(l).sol [mm/hr]
r_SOL_z(l).sol [mm]
a_GW_REVAP.gw [mm]

Fitted Value

(SUFI2 output)

Corresponding Actual

Parameter Value

0.33 0.33

367.73 368.27

-14.56 48 to 61

0.82 0.82

-10.82 -9.82

0.53 0.53

0.50 0.5

34.07 0.2

-55.40 10.3

1.50 505

0.03 0.1

v = replace by value , a = add values , r=multiply by a relative change

Table 4.9 Optimal model values after calibration at Hare watershed

Parameter Name Fitted Value Corresponding Actual

(SUFI2 output) Parameter Value

a GWQMN.gw [mm] 809.00 809

r SOL K().sol [mm/hr] -21.12 3.95

r SLOPE().hru [m/m] 8.55 0.28

v ALPHA BF.gw [days] 0.11 0.109

r SOL AWC().sol [mm/mm] 1.12 0.202

r CN2.mgt[-] -3.72 44 to 68

v CANMX.hru [mm] 3.59 3.59

v ESCO.hru [-] 0.05 0.05

v BLAI{4}.crop.dat [-] 0.25 0.25

a REVAPMN.gw [mm] -74.07 0.00

r SOL ZQ.sol [mm]

a GW REVAP.gw [mm]

10.88 554.4

-0.02 0.02

v = replace by value , a=addvalues , r =multiply b / a relative change

4.9.4 Groundwater (Baseflow) Contribution

The amount of water entering the sub-soil layer through infiltration, percolation and due to

lateral and vertical movement of water from surface water bodies primarily fills the

underground reservoir. Portion of such groundwater storage is joining the stream flow as

baseflow. Uninterrupted flow in perennial streams is maintained through baseflow

contribution. During dry periods, the surface runoff contribution to stream flow is negligible

and appreciable amount of water is coming from the baseflow contribution. Observed from

calibrated and validated model output, 70-87 % percent of annual water yield is dependent on
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baseflow contribution. Figs. 4.24 and 4.25 show the relative contribution of groundwater to the

total water yield at Bilate and Hare basins.

4.9.5 Simulated Total Water Yield of the Watersheds

Total water yield is estimated by deducting the transmission losses in the conveyance system

from a sum of Surface flow (SUR Q), lateral soil flow (LAT Q) and shallowgroundwater flow

(GW Q). The simulated total water yield for each basin is compared against observed volume

of flow in the basin to further examine the validity of model simulation. Average simulated

annual water yield of 425Mm3 against 411 Mm3 of observed volume at Bilate basin near Alaba

Kulito during the calibration period is observed. In relatively small watershed of Hare, the

simulated average annual water yield is 47.8Mm3 whereas its corresponding observed average

volume is 49.7 Mm . The residual error between simulated and observed water yields is less

than ±3.4% during the calibration period at both basins. The monthly evapotranspiration

amount exceeds rainfall during the driest months of November to March at Bilate and January

to March at Hare watersheds during the calibration period. However, the total monthly rainfall

exceeds evapotranspiration in the rest of the months. Average monthly basin values of water

balance components for the study watersheds are presented in Table 4.10 and 4.11.

Fig. 4.24 Baseflow contribution as percentage of annual total water yield at Bilate

watershed during calibration (a) and validation (b) period
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Fig. 4.25 Baseflow contribution as percentage of annual total water yield at Hare watershed

during calibration (a) and validation (b) period

Table 4.10 Average monthly (1992-1996) basin values during calibration period at Bilate

watershed

WATER

MONTH RAIN SURFQ LATQ GWQ YIELD ET PET

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

JAN 45.5 0.0 0.2 1.6 1.9 40.3 84.9

FEB 62.2 0.1 0.4 1.2 1.7 45.6 88.6

MAR 106.6 0.4 0.6 2.4 3.4 62.1 100.0

APR

MAY

147.8 1.2 1.0 7.3 9.5 64.0 82.7

130.6 1.5 1.4 18.0 20.8 60.6 79.3

JUN 128.3 0.7 1.4 26.6 28.8 46.2 71.8

JUL 96.3 0.4 1.1 31.0 32.5 43.5 75.1

AUG 121.4 1.3 1.3 31.0 33.5 45.7 77.4

SEP 68.0 0.0 0.9 27.3 28.2 42.0 76.2

OCT 77.5 3.0 1.0 22.2 26.2 35.6 74.2

NOV 28.3 0.0 0.5 15.5 16.0 26.5 77.6

DEC 7.2 0.0 0.2 7.2 7.5 18.1 68.1

Total 1019.7 8.7 10.0 191.3 210.0 530.0 955.8
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Table 4.11 Average monthly (1994-2000) basin values during calibration period at Hare basin

WATER

MONTH RAIN SURFQ LATQ GWQ YIELD ET PET

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

JAN 26.7 0.0 2.2 16.6 18.81 40.2 67.1

FEB 26.8 0.0 1.2 5.3 6.44 32.7 66.3

80.7MAR 59.1 0.0 1.0 1.5 2.47 50.9

APR 203.1 6.9 2.0 11.5 20.37 66.1 72.6

MAY 117.7 0.5 3.4 32.5 36.47 69.8 74.9

JUN 61.2 0.0 2.6 24.8 27.36 55.8 63.4

JUL 59.9 0.0 1.8 12.2 14.01 51.1 64.5

AUG 125.2 0.6 2.1 14.7 17.39 62.4 70.5

SEP 153.8 1.4 2.7 22.1 26.20 60.7 70.2

OCT 136.9 1.6 4.2 41.2 46.97 59.5 69.3

NOV 110.4 0.5 3.7 34.2 38.37 53.9 66.5

DEC 78.6 0.3 3.2 28.8 32.27 44.5 63.5

Total 1159.4 11.7 30.1 245.4 287.1 647.7 829.5

4.9.6 Manual Input-Output Sensitivity Analysis

SWAT model parameter sensitivity is associated to a range of climatic and hydrologic

characteristics of watershed (Cibin et al., 2010). The relative influence of individual parameter

on water yield is evaluated applying One-At-a-Time manual sensitivity analysis. Sensitive

parameter value is either increased or decreased by prescribed amount within permissible

parameter range maintaining all other parameters constant and corresponding change in water

yield is estimated. Initial SCS curve number II (CN2.mgt), deep aquifer percolation fraction

(RCHRGDP.gw), threshold water depth in the shallow aquifer for flow (GWQMN.gw) and

available water holding capacity (SOLAWC.sol) have resulted in significant change in the

water yield. The response of total water yield to change in baseflow alpha factor

(ALPHABF.gw), groundwater delay (GWDELAY.gw), saturated hydraulic conductivity

(SOLK.sol) and maximum canopy storage (CANMX.hru) is minimal. Percentage change in

water yield is evaluated with reference to the calibration period. Relative increase in water

yield as a function of change in input parameters for selected model parameters is summarized

in Figs. 4.26 and 4.27.
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Fig. 4.26 Manual input-output sensitivity analysis result at Bilate watershed
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Fig. 4.27 Manual input-output sensitivity analysis result at Hare watershed

4.10 CONCLUSIONS

Watershed physiographic elements are extracted from 90m SRTM and 30m ASTER DEM data

using ArcHydro and TOPAZ watershed delineation algorithms. It has been observed that 30m

ASTER DEM resulted in spurious flow accumulation path that subsequently reduced the

watershed area by 29% and affected other basin parameters at Hare watershed. However, 90m
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DEM generated well patterned flow accumulation path conforming to existing watershed area

and Landsat image derived flow paths. ArcHydro and TOPAZ watershed delineation

algorithms failed to capture the actual flow path accurately in flat terrain of Bilate watershed.

The main stream flow path deviates from surrogate Landsat (acquired for the year 2000) and

Google Earth (2005/2006 image) extracted stream path by an average distance of 7.5 km in

west-east direction for a total stream length of 30km at the lower foot.

SWAT model is calibrated and validated in two snow free agricultural watersheds in

the Rift Valley lakes basin of Ethiopia. The impact of topographical, weather and catchment

input parameters on runoffgeneration is investigated. In view of this, initial curve number for

average soil moisture condition, deep aquifer fraction, minimum water depth in the shallow

aquifer for flow and available soil water holding capacity parameters found to either attenuate

or accentuate the resulting runoff more significantly than others in the watersheds. Model

performance indices have shown that runoff at desired outlet is simulated at acceptable range

of closeness to observations. The overall Nash-Sutcliffe and R2 model performance indices

range between 0.79 and 0.96 during calibration and validation period at both watersheds.

Approximately 80% of measured data is bracketed by the 95 percent prediction uncertainty at

both watersheds. It has been estimated that the simulated average annual water yield is 425

Mm3 and 47.8 Mm3 at Bilate and Hare gauge sites respectively. The simulated annual water

yield is within ±3.4% error to the observed annual stream flow volume at the same outlet.

Potential monthly evapotranspiration magnitude exceeds the total rainfall during critical soil

moisture season (November - March) of the year.
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CHAPTER 5

DOWNSCALING GLOBAL CLIMATE MODEL OUTPUTS

AND ASSESSMENT OF CLIMATE CHANGE IMPACTS ON

RUNOFF GENERATION

5.1 GENERAL

The occurrence of frequent extreme precipitation and temperature events during last two

decades signals key climate variability in Ethiopia and warns a future course of adaptive

measures. Annual minimum and maximum temperature over the second half of twentieth

century over the country shows an average increase of 0.4°/decade and 0.2°/decade

respectively (Conway et al., 2004). However, precipitation does not exhibit a palpable increase

over entire Ethiopia. The western, northern, southern and central part of the country are

characterized by declining annual (1.5 - 9.9 mm/year) and seasonal rainfall trend over the

second half of twentieth century (Cheung et al., 2008).

Region specific knowledge of the vulnerability associated to climate variability and

possible adaptive measures to reduce the exacerbated impacts are an urgent course of actions to

cope with such lingering condition. Ethiopian economy, which depends mostly on agriculture,

is undoubtedly becoming a victim of this global challenge (Dercon, 2004; Conway and

Schipper, 2011). More than 45 percent of the country's gross domestic product and 85 percent

of the export revenue is directly linked to agricultural sector (MoFED, 2006; Byerlee et al.,

2007; Yesuf et al., 2008; You and Ringler, 2010). The sector also employs 80 percent of the

labourforce and serves as a major source of subsistence and household income for the majority

of rural population. Well motivated by the diverse impact of climate variability on water

resources of a region, an attempt has been made to explore the impact of large-scale present

and future climatic variables under different greenhouse gas forcings on local climate at Rift

Valley lakes basin of Ethiopia.

To achieve the intended goals, this chapter is subdivided into the following major

endeavours. Firstly, global and regional perspectives of climate change and hydrologic

modeling in pursuit of changing climate condition are reviewed. Secondly, downscaling daily

temperature and precipitation variables from large-scale atmospheric variables for current and
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two future climate (AIB and A2) scenarios obtained from two GCMs is carried out. Thirdly,

statistical behavior of downscaled and observed weather variables for current climate condition

is explored and subsequent precipitation bias correction is undertaken. Fourthly, Soil and

Water Assessment Tool (SWAT) hydrologic model is applied to simulate runoff at desired

locations using bias corrected precipitation and temperature in two snow free, agricultural

watersheds in the basin. Finally, on the premises of GCM outputs and predicted runoff, the

likely future climate implications are discussed.

5.2 OVERVIEW OF GLOBAL CLIMATE CHANGE

Natural climate variability on daily, seasonal and inter-annual scale is perceived by human

beings. Recently, this variability is becoming greater than the long term average magnitudes

that were observed in decadal or centennial scale during the past. Global average sea and land

surface temperature has increased by 0.6 ± 0.2 °C from 1860 to 2000 with much of the change

occurring since 1976 (IPCC, 2001). IPCC's Fourth Assessment Report (IPCC, 2007a) further

argues that the mean land and sea surface temperature change during 1906-2005 increased by a

greater amount (0.74°C ± 0.18°C) than it was in the second half of ninetieth century. The

greatest temperature changes are observed in the mid and high latitudes of Northern

Hemisphere. Increased precipitation in terms of frequency and intensity in the mid to high

latitudes is discernible with palpable effects on the natural and human ecosystem (Karl and

Night, 1998; Walther et al., 2002). If the increase in greenhouse gas concentration remains

unabated, the predicted (1990-2100) global temperature would likely to rise between 1.4 and

5.8 °C (IPCC, 2001).

The tropical rainforest region of the globe is manifested by strong warming at a mean

rate of 0.21-0.31°C with contrasting decline of precipitation at the rate of 0.2-1.8 percent per

decade since 1970s (Malhi and Wright , 2004; Conway et al., 2004; Kruger and Shongwe,

2004). The African continent is the most vulnerable region to climate change and arguably

with least scientific research appraisals to cope with such adverse effects (Tadross et al., 2005;

You and Ringler, 2010). The sub-Saharan region of Africa, in particular, has been challenged

by natural and man-made stresses extending from flood and prolonged drought that put

millions of lives at risk to poor economic and institutional developments. Currently, one-fourth

of the population of Africa is facing high water stress and this magnitude is expected to

increase two to three-fold in the next forty years (Boko et al., 2007). IPCC's Fourth
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Assessment Report asserted that the adaptation mechanisms developed by African farmers are

not sufficientenough to cope with current and future climate variability (IPCC, 2007b).

Global Climate Models (GCMs) are being applied in many parts of the world to study

present and future climate variability and ensuing risks in agriculture (Yano et al., 2007;

Kumar et al., 2010; Huda et al., 2010), water supply, hydropower (Harrison and Whittington,

2002; Schaefli et al., 2007) and overall livelihoods of the nation worldwide. However, these

endeavours are very limited in developing countries like Ethiopia. Precipitation and runoff

simulated from multiple GCMs realizations over Blue Nile basin of Ethiopia show significant

variability across GCMs (Elshamy et al., 2009; Setegn et al., 2011; Block and Goddard, 2012).

Notwithstanding the HadAM3 model could likely captures annual and seasonal rainfall

variability over Ethiopia, it is associated with significant biases (Diro et al., 2011).

> 5.3 HISTORICAL EVIDENCES OF CLIMATE VARIABILITY OVER

ETHIOPIA

Even though the scientific documentation of climate variability and ensuing impacts in

Ethiopia is scarce till to-date, there were rich veins of historical evidences that give an aura of

confidence to support the post-industrial era warming. Prolonged drought devoured crops and

livestock as a consequence of which catastrophic famine and ecological disorder had become

inevitable facets of the late ninetieth century.

Pankhurst (1966) discussed the 1888-1892 of Ethiopian Great Famine that resulted in

complete sense of social, biological, economical and political disarray. Its ripple-effect over

diverse environmental spectrum magnified the years in Ethiopian history and these events are

locally known as iKifu Kerf - the 'evil days' or 'harsh days'. The ultimate cause for such doom

and gloom was natural calamity - prolonged drought that devoured harvest and cattle.

Extended civil war feuding among the then rivalries for supremacy aggravated the situation.

Wood (1977) documented the major lean years in Ethiopian history between 1066 and

1975. The drought events were organized from royal chronicles, adventures nobles, societal

a repercussions and hydrological implications of declining water levels. These destructive

drought events, occurred since 1066, were seemed to be influenced by solar cyclic activity.

The absolute departure from sunspot minima is highly correlated to the drought episodes. The

closet years to the sunspot minima were characterizedby frequent drought events.
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Degefu (1987) summarized the major historical drought events occurred in Ethiopia.

The natural climate change in terms of prolonged drought in Ethiopia dated back to 250 BC.

Since then, recurrent drought events of various magnitudes were inferred from the chronology

of water levels records of river Nile and lake Rudolf. Some of these major droughts were

culminated with famine in the second half of thirteenth and mid fifteenth century. However,

the drought episodes became more frequent in the post-industrial era, particularly in the

ninetieth and twentieth centuries, in Ethiopia.

The United Nations Environmental Programme and International Centre for Research

in Agroforestry (UNEP and ICRAF, 2006) report provides a comprehensive overview of the

Sahel drought. The Sahel region of Western Africa (10-20°N and 18°W-20°E), located at the

southern edge of Sahara desert, is characterized by strong climatic variations. Rain-fed

agriculture, livestock herding and fishing are among the mainstays of the population in the

region. The region is affected by droughts of various degree of severity nearly in two out of

five years. Three major drought episodes that overwhelmed the region during the 20th century

are: 1910-1916; 1941-1945 and the desiccation period of 1970s and 1980s. The decreasing

trend of Sahel rainfall is attributed to sustained climate change in the region manifested by a

decline in boreal summer rainfall. The drought shock of 1970s and 80s in the Sahel region

extended further to Eastern parts of Africa lying adjacent to the Sahel boundaries. The 1972-

1973 and 1984-1985 droughts of Ethiopia were contemporary with Sahel region drought. The

mid 1980s droughts were the second major natural disaster in Ethiopian history following the

late ninetieth century drought-driven famine.

The beginning of the 21st century is marked by severe drought that have led to an utter

bereft of hope in the Eastern Africa; namely Somalia, Djibouti, Kenya and Ethiopia. Prominent

magazines and media outlets like Telegraph, The Washington Post, BBC, and CNN aired the

recent protracted drought of the year 2010-2011 that jeopardized millions of lives in the

Eastern Africa and judged as "the worst drought over the last 60 years in the Horn of Africa".

The United Nations (UN) described it as a "humanitarian emergency" or equivalently a "pre-

famine" ordeal which is little less than the catastrophe.

Many of the early historical evidences of climate variability in Ethiopia are entirely

founded on adverse environmental and societal implications. Little scientific appraisal has
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been made to reinforce the accompanying variability and its direct and indirect causes.

Scientific views based on historical hydro-climatic observations during the late twentieth

century attempted to provide a wide picture of the calamities yet most of the studies

culminated with regional scale assessments.

Notwithstanding the above limitations, it would be remiss of the author not to mention

key contributions to African climate variability with the emphasis of GCMs applications.

Hulme et al. (2001) used multiple GCMs simulations and demonstrated the present and future

temperature and precipitation variability over African continents accounting country specific

examples from Ethiopia, Senegal, Tunisia and Zimbabwe. It has been argued that the current

climate of Africa is warmer than it was a century ago. This warming will remain more

enhanced in the future and the warming could rise between 2 and 6 °C among different

scenarios in the next 100 years. However, the magnitude and direction of future rainfall events

remain variable and more uncertain. This is likely due to poor representation of ENSO-induced

climate variability, dynamic land cover-atmospheric feedback and atmospheric aerosols in

current GCMs. Similarly, couples of region specific studies such as Conway et al. (1996) in

Egypt, Joubert et al. (1996), and Hewitson and Joubert (1998) in South Africa and Sun et al.

(1999) in East Africa have applied the knowledge of GCMs to assess regional climate

variability.

5.4 WATERSHED MODELLING IN PURSUIT OF CHANGING

CLIMATE AND CATCHMENT CONDITIONS

Hydrologic models used to simulate the physical processes occurring in the catchment are very

diverse. Singh and Frevert (2006) provided a comprehensive review of some of the popular

hydrologic models being in use worldwide. It extends from an earlier empirical form of

Rational Method (Mulvany, 1851) to process oriented physical models like Systeme

Hydrologique Europeen (SHE) (Abbott et al., 1986a, b). A plethora of conceptual and process

oriented hydrologic models have emerged since the establishment of Stanford Watershed

Model (SWM) that could virtually model the entire hydrologic cycle occurring in the

watershed (Crawford and Linsley, 1966).

With concise understanding of the retrospective and present climate and catchment

pattern, prognoses of future hydrologic condition can be reached. Hydrologic responses to

climate and catchment dynamics could be analyzed using physics based distributed models,
133



lumped conceptual approaches or employing empirical relationship where output is correlated

to input through transfer function or statistical regression model.

Distributed hydrologic models become advantageous over lumped models as the later

fail to adequately capture the spatial variability of various hydrologic responses under complex

catchments where there are significant slope, land use and soil variability. Even though

plethora of hydrologic models are being in use to estimate the response of catchment with

respect to changing climate and catchment conditions, lack of direct relationship among the

mathematical models involved and physical process occurring in the catchment, uncertainties

generated due to the inherent behavior of models and use of point measurements to represent

catchment scale behavior while deriving relationship remain challenges in quantifying the

runoff process.

The response of land use/land cover dynamics and climate change could be evaluated

using hydrologic modeling whereas statistical time series models are employed to assess the

short and long-term time dependence of hydro-climatic variables (Refsgaard et al., 1989).

The top-bottom approach where the outputs from GCMs are used to address impact of

climate change on global and regional water resources using hydrologic models is commonly

applied approach in recent years. Some of such attempts over the recent decade are discussed

herein.

Menzel and Burger (2002) applied a semi-distributed, conceptual hydrologic model

(HBV-D) to simulate discharge in the Mulde catchment of Germany using GCM outputs from

ECHAM4/OPYC3. An increase in simulated future temperature accompanied by decreased

precipitation magnitude subsequently reduced mean future discharge in the basin.

Arnell (2003) assessed the implication of future climate change on runoff through

multiple GCMs across the globe. He simulated streamflow at spatial scale of 0.5°x0.5° based

on emission scenario for about 1200 catchments using catchment scale hydrologic model. The

climate models produced increased runoff at high latitudes, East Africa, South and East Asia,

and decreased runoff in parts of Europe, North, Centeral and Southern Africa, the Middle East,

and most parts of North and South America. However, this study is based on global scale and

local climate variability might influence the future runoff.
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Andersson et al. (2006) investigated impact of climate change and development

scenario on flow patterns in the Okavango River of Southern African regions. The sensitivity

of hydrologic model to GCMs being a major constraint, the simulated mean flow for 2050-

2080 and 2070-2099 time slices shows decrease in magnitude compared to the present

condition.

Fujihara et al. (2008) used dynamical downscaling method to reduce large scale

atmospheric variables into local level and explored the potential impacts of climate change on

the hydrology and water resources of the Seyhan River Basin in Turkey. Bias corrected GCMs

simulated the hydrology of the basin effectively and resulted in increased projected

temperature, and decreased future rainfall, evapotranspiration and runoff.

Guo et al. (2008) examined the effects of climate and land-use and land-cover on

hydrology and streamflow in the Xinjiang River basin of the Poyang Lake using SWAT model.

Climate effect is dominant on annual streamflow whereas land use changes strongly affects

seasonal streamflow variability and alters the annual hydrograph.

Li et al. (2009) assessed the impact of land use change and climate variability on

hydrologic components of a watershed in Loess Plateau of China using SWAT model. It has

been argued that the combined effect of land use change and climate variability in the

catchment reduced the runoff, soil water and evaporation magnitude.

Tu (2009) analyzed the combined effect of land use and climate change on streamflow

and water quality in Eastern Massachusetts, USA through GIS based watershed simulation

approach. The impact was more profound on seasonal distribution of streamflow and nutrient

load than average annual amounts.

Ficklin et al. (2009) modeled hydrological response to variations of atmospheric C02,

temperature and precipitation based on IPCC climate change projections at agricultural San

Joaquin watershed in California using SWAT model. Increasing C02 concentration and

temperature decreased basin-wise average evapotranspiration that ultimately resulted in

increased water yield and streamflow compared to the present- day climate.

Moradkhani et al. (2010) applied SWAT model to simulate streamflow for future

climate scenario using daily downscaled precipitation and temperature input data over the

Lower Tualatin basin in the Pacific Northwest US. The projected 50-year recurrence interval
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streamflow will decrease for low and middle emission scenario whereas it will increase for

high emission scenario condition.

Boyer et al. (2010) used multiple GCMs under two emission scenario (A2 and B2)

conditions to examine climate change impacts on hydrology of the St. Lawrence tributaries in

Canada. The study showed that most of the future hydrological simulations are characterized

by increased winter and decreased spring discharges.

Taye et al. (2011) assessed climate change impacts on hydrological extremes of Nile

river basin using multiple GCMs outputs. Future runoff simulated using conceptual hydrologic

models for A1B and B2 emission scenario shows increased mean and extreme runoff at

Nyando catchment of Kenya, however, impalpable pattern is detected at lake Tana catchment

of Ethiopia despite better definition of hydrologic regime in the later case. Couples of climate

change impacts assessment endeavours (Elshamy et al., 2009; Diro et al., 2011; Setegn et al.,

2011) on hydrological regime of Ethiopian catchments are carried out during the beginning of

2010s.

5.5 DOWNSCALING GCM OUTPUTS

Information on local climate can be derived from GCM outputs through either statistical

(Frost et al., 2008) or dynamical (McGregor, 1997) downscaling. The later involves nesting a

higher resolution regional climate models on coarse resolution GCMs to reduce large-scale

atmospheric variables into local (regional) level. Statistical downscaling model (SDSM)

develops a statistical relationship between large-scale atmospheric variables and observed

climatology so that the resulting relationship is further extended to extract future climatic

variables from GCMs (Wilby et al., 2001). SDSM is public domain software available for

rapid assessment of localized climate change impacts. It has an advantage over other methods

in resolving large-scale atmospheric variables into localized (station) weather information with

finer temporal (daily and sub-daily) resolution. Stochastic weather generators, transfer

functions and weather typing are the broad classes where many of statistical downscaling

techniques fall under.

Recent studies support the use of SDSM tool as an alternative approach to reduce large-

scale atmospheric variables into localized weather variables. In the study conducted in the
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northern part of China, Chen et al. (2010) asserted that SDSM performs better than the support

vector machine based regression and multivariate analysis. Harpham and Wilby (2005)

exhaustively examined the relative merit of SDSM to that of artificial neural network (ANN)

based precipitation outputs and argued that SDSM simulated daily precipitation magnitudes

show stronger inter-site correlations, however ANN method is more skilful in modelling the

occurrence of certain attributes at individual sites. The fully deterministic forcing of amounts

in ANN method attributed to the overestimated inter-site correlations. In contrast, the

stochastic nature of SDSM contributed to heterogeneous response surfaces that ultimately

resulted in realistic inter-site correlations. Khan et al. (2006) assessed uncertainty generated in

downscaled daily precipitation, maximum and minimum temperature using SDSM, Long

Ashton Research Station Weather Generator (LARS-WGEN) and ANN models and concluded

that SDSM is the most capable of reproducing statistical characteristics of observed data in the

corresponding downscaled variables.

The use of various forms of statistical downscaling approach to study the impact of

global climate change on regional or watershed hydrology is growing in recent years. Mehrotra

and Sharma (2008) assessed climate change impacts through non-parametric stochastic

downscaling framework that combines atmospheric circulation and time-lagged wetness

indicators. Daily rainfall is simulated for multiple sites to study catchment scale climate

impacts. Fistikoglu and Okkan (2011) used large-scale atmospheric variables such as surface

temperature and geopotential height at different pressure levels and sea level pressure to

downscale monthly precipitation in Tahtali River Basin of Turkey. Statistical regression

analysis is employed to develop statistical relationship between these large-scale explanatory

variables (predictors) and station precipitation (predictand) magnitudes. Eum et al. (2010)

applied the K-nearest neighbor weather generator models combined with the outputs of GCMs

(CSIRO-MK3.0 and MIROC3) to provide future weather pattern in Nakdong river basin of

Korea. The generated meteorological datasets are further used to simulate streamflow using

rainfall-runoff models.
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5.6 STUDY AREA AND CLIMATE DATASETS

5.6.1 The Study Area

The present study concentrates on Bilate and Hare watersheds of the Rift Valley lakes basin

described in section 4.6.

5.6.2 Climate Datasets

The impact of global climate change on local or basin wise water resources is diverse and

requires multitudes of datasets to adequately address the interactions. The raw datasets and

subsequent methodologies utilized to extract the relevant information are presented in the

subsequent sections.

Three major categories of climate datasets are used. These include observed daily

precipitation and temperature data from 1980-2009, daily Global Climate Models (GCMs)

output for current climate (1971-1999) and daily GCM output for future climate condition

(2081-2090) for A1B and A2 scenarios. Observed station data from 5-stations (Alaba Kulito,

Bilate Farm, Hawassa, Chencha and Arba Minch Farm) at central and southern Rift Valley

lakes basin is obtained from regional and national meteorological agencies. The location of

respective meteorological stations is shown in Fig. 4.2 of previous chapter. Observed

streamflow at Alaba Kulito of Bilate and near Arba Minch of Hare watersheds are used for

subsequent analysis. Observed data is checked for quality in terms of inter-site comparison for

consistency as described previously.

Daily GCM outputs for current and future climate conditions are obtained from World

Climate Research Program's (WCRP's) Coupled Model Intercomparison Project phase-3

(CMIP3) multi-model dataset (https://esgcet.llnl.gov:8443/index.jsp). CMIP3 datasets have

recently got growing demands by scientific community to study global climatology and

regional or local climate change impact assessment (Kim et al., 2008; Karpechko et al., 2009;

Straub et al., 2010; Kim et al., 2011). IPCC, Fourth Assessment Report (IPCC, FAR) approved

climate models with respective atmospheric and oceanic resolutions are listed in Table 5.1 for

easy references.
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The climate experiments selected for present analysis includes current climate

condition where experiment runs with greenhouse gases increasing as observed through

twentieth-century and two future climate scenario experiments (AIB and A2). A1B scenario

experiment is a medium forcing case where CO2 concentration of about 720 ppm by the year

2100 is assumed whereas the A2 scenario is characterized by high forcing with C02

concentration of 820 ppm by 2100 (Meehl et al., 2007). The current and future climate scenario

time span is selected based on the following limiting criteria. (1) Availability of observed data

for the study area (2) availability and accessibility of refined large-scale current climate

predictors and (3) accounting a future climate experiment that is sufficiently long enough to

reflect the cumulative past and present climate signal. The impacts of large-scale current and

future atmospheric-oceanic perturbations could modestly be captured from far long climate

experiments. This is because large-scale future climate impacts are better resolved in the span

of two to three climate periods in which each timeline preferably assumed to be a length of

thirty years.

According to Special Report on Emisson Scenario (SRES), the four major emission

scenario storylines (Al , A2, Bl, B2) are subdivided into six scenario families (A1F1, AIT,

A1B, A2, Bl and B2) (Meehl et al., 2007). This classification is primarily based on

demographic change, social, economical and broad technological developments that the earth-

atmosphere-oceanic environment faces. However, the present analysis is limited to the current

climate, A1B and A2 scenarios. The A1B scenario family describes a future world of very

rapid economic growth, global population that peaks in mid-century and declines thereafter

with rapid introduction of new and efficient technologies symbolized by a convergent world.

The technological change in energy system is balanced across all forms of energy sources. The

A2 scenario is characterized by a heterogeneous world with continuously increasing

population, regionally oriented economic developments and more fragmented technological

changes. Thus, here it has been emphasized to explore how the medium (A1B) and high (A2)

emission scenario conditions affect the future water resources management. The medium

emission scenario provides an average future climate situation whereas the high emission

scenario helps us to examine the future climate condition as a result of worst combination of

demographic, technological and environmental aspects that might affect the future

environment conspicuously.

Prior to downscaling, preliminary model evaluation is required to identify a GCM that

could probably reproduce the synoptic scale climatic behavior of a region of interest. The
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available meteorological observatories are very sparse, in most cases, and accompanying

spatial correlation between GCM grid points and station data could not be adequately

established. Therefore, reanalysis climatic dataset available at regular intervals are useful to

establish such statistical relationships for preliminary model evaluation. Furthermore, the

reanalysis datasets are extracted from in-situ historical observations and real-time satellite

captured climatologies and hence reflects most of the physical processes involved in the

GCMs.

Gridded monthly temperature data covering the entire Ethiopia is accessed from

Japanese 25-year reanalysis (JRA-25) data archive (http://jra.kishou.go.jp/JRA-

25/index_en.html). JRA-25 temperature dataset extends from 1979-2004 and has horizontal

resolution of approximately 1.2° (Onogi et al., 2007). Improved quality of gauge

measurements and access to sparse ocean areas through satellite data have contributed to

consistent reanalysis data since 1979. Gridded monthly precipitation data (Adler et al., 2003)

for the same geographical coverage is extracted from Global Precipitation Climatology Project

Version 2.2 (GPCPV2.2) data archive (http://www.esrl.noaa.gov/psd) that extends from 1979

to present time.

Spatial correlation coefficient (Scorr) and root mean square error (RMSE) between

reanalysis and GCM simulated temperature and precipitation is computed. The spatial

correlation provides a measure of variance as a function of distance between data points.

Monthly reanalysis temperature and precipitation datasets during June to August are used to

develop statistical relationship to corresponding model outputs.

Daily temperature is characterized by modestly good spatial correlation with RMSE

ranging from 1.1-2.5 °C. However, precipitation variables are characterized by RMSE values

varying approximately between 1.5mm/day to 2.5mm/day. Fig. 5.1 presents a plot of model

indices between reanalysis and model output temperature and precipitation variables analyzed

for 1981-2000. Among IPCC- FAR approved GCMs listed in Table 1, model No. 3, 5, 10, 11,

19, 21 and 24 have showed relatively better spatial correlation and less RMSE value for

temperature and precipitation (Fig. 5.1) variables. The model evaluation indices are based on

June-July-August season climate dataset. However, subsequent statistical downscaling

approach and runoff simulations are limited to model No. 3 and 5 for their relatively better

correlation and availability of time coinciding GCMs outputs for present and future climate

conditions.
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Table 5.1 IPCC Forth Assessment Report (IPCC-FAR) approved climate models and respective atmospheric

and oceanic resolutions

Model Model Acronym

No.

3

4

MPI-ECHAM5

CSIRO-MK3.5

BCCR-BCM2.0

INGV-ECHAM4

CSIRO-MK3.0

UKMO-HADCM3

Model Origin

Max Plank Institute for Meteorology, Germany

Commonwealth Scientific and Industrial Research

Organization, Australia

Bjerknes Center for Climate Research, Norway

Max Plank Institute for Meteorology, Germany

Commonwealth Scientific and Industrial Research

Organization, Australia

Hadley Centre for Climate Prediction and Research/

Meteorological Office, UK

Atmospheric

Resolution

Oceanic

Resolution

1.9°xl.9° (L31) 1.5°xl.5° (L40)

1.9°xl.9° (L18) 0.8°xl.9° (L31)

1.9°xl.9° (L31) 0.5°-1.5oxl.5° (L35)

2.8°x2.8°(L19) 0.5°-2°xl.5° (L19)

1.9°xl.9° (L18) 0.9°xl.9° (L31)

2.5x3.75° (L19) 1.25°xl.25° (L20)

7

8

9

CCCMA-CGCM3.1-T47 Canadian Centre for Climate Modelling and Analysis, Canada

CCCMA-CGCM3.1-T63 Canadian Centre for Climate Modellingand Analysis, Canada

2.8°x2.8° (L31)
1.9°xl.9° (L31)

1.9°xl.9° (L45)

2.0°x2.5° (L24)

2.0°x2.5°(L24)

3°x4° (L12)

4°x5° (L20)

4°x5° (L20)

2.8°x2.8°(L26)

1.9°xl.9° (L29)
0.9°xl.4° (L29)

0.5°-2°x2° (L31)

0.3°-1.0°x 1.0°

0.3°-1.0°x 1.0°

3°x4° (L16)

2°x 2° (L16)

4°x5° (L13)

l°xl° (L16)

10

11

12

13

14

15

CNRM-CM3

GFDL-CM2.0

GFDL-CM2.1

GISS-AOM

GISS-MODEL-EH

GISS-MODEL-ER

IAP-FGOALS1.0-G

16 INM-CM3.0

17 IPSL-CM4

18 MIROC3.2-HIRES

Centre National de Recherches Meteorologiques, France

NOAA/Geophysical Fluid Dynamics Laboratory, USA

NOAA/Geophysical Fluid Dynamics Laboratory, USA

NASA/Goddard Institute for Space Studies, USA

NASA/Goddard Institute for Space Studies, USA

NASA/Goddard Institute for Space Studies, USA

National Key laboratory of Numerical Modeling for

Atmosphericc Sciences and Geophysical Fluid Dynamics

(LASG)/lnstitute of Atmospheric. Physics, China

Institute for Numerical Mathematics, Russia

Insttitut Pierre Simon Laplace, France

Center for Climate System Research, National Institute for

Environmental Studies and Frontier Research Center for

Global Change Japan

19 MIROC3.2-MEDRES Center for Climate System Research, National Institute for
Environmental Studies and Frontier Research Center for

Global Change Japan

Meteorological Institute of the University of Bonn, Meteor

ological Research Institute of the Korea Meteorological

Adminstration and Model and Data Group, Germany/Korea

Meteorological Research Institute, Japan

National Centre for Atmospheric Research , USA

National Centre for Atmospheric Research , USA

20 MIUB-ECHO-G

21

22

23

24

MRI-CGCM2.3.2a

NCAR-CCSM3.0

NCAR-PCM1

UKMO-HADGEM1 Hadley Centre for Climate Prediction and Research /

Meteorological Office, UK
L(.) indicates number of vertcal levels and resolutions are given as latitude by longitude.
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4°x5°(L21) 2.0°x 2.5° (L33)

2.5°x3.75° (L19) 2°x2° (L31)

l.l°xl.l°(L56) 0.2°x0.3°(L47)

2.8°x 2.8° (L20) 0.5°-1.4°xl.4° (L43)

3.9°x 3.9° (L19) 0.5°-2.8°xl.4° (L20)

2.8°x 2.8° (L30) 0.5°-2.0°x2.5° (L23)

1.4°x 1.4° (L26) 0.3°-1.0°xl.0° (L40)

2.8°x 2.8° (L26) 0.5°-0.7°xl.l° (L40)

1.3°x 1.9° (L38) 0.3°-1.0°xl.0° (L40)



The current and future climate scenario predictors are accessed from Bjerknes Center

for Climate Research Version 2.0 (herein after, BCM2.0) of Norway and Commonwealth

Scientific and Industrial Research Organization of Australia (herein after, MK3.0). The

BCM2.0 model has an atmospheric resolution of T63 (1.9°xl.9°) and oceanic resolution of

0.5°-1.5° x 1.5°. The model is initiated from the climate of twentieth century experiment with

varying forcing agents like carbon dioxide, methane, nitrogen oxide, chlorofluorocarbons and

sulphate aerosols. Solar irradiance (1368 w/m2), black carbon, sea salt and desert dust are

assumed to be fixed in the model experiment. In this model the pressure at the top of the

atmosphere is fixed at 10 hPa and no adjustment for surface momentum, volcanic aerosols,

heat or freshwater fluxes (Deque et al., 1994 ; Bleck et al., 1992 ; Furvevik et al., 2003) is

made. The MK3.0 GCM output has the same atmospheric spectral resolution to that of

BCM2.0 but with oceanic resolution of 0.9°xl .9° (Gordon et al, 2002).

5.7 METHODS USED

Statistical downscaling method has the capability to develop statistical relationships in terms of

correlation matrix between large-scale predictors and local or station level predictands.

Regression analysis, simple quantile plots, quantile-quantile plot , scatter plot and analysis of

above and below threshold magnitude of precipitation and temperature are some of major

statistical components in SDSM tool to evaluate the stochastic behavior of observed and

downscaled weather variables. The observed daily precipitation, maximum and minimum

temperature values covering recent 30 years (1980-2009) are used to develop statistical

relationship with predictor variables. Downscaling phase is calibrated for the year 1980-1989

and validated for 1990-1999. The closeness of simulated present and future weather variables

to observed values are also examined in terms of regression coefficient. Quantile-quantile plot

of observed and downscaled datasets is used to evaluate whether the two dataset stem from the

same type of probability distribution. If the variables stem from the same distribution, such as

normal distribution, the quantile-quantile plot reasonably fit into a straight line.

The f-quantile, q(fj), indicates that the data value below which approximately a

decimal fraction f of the data is found. Let the time series x, of length n be sorted from

smallest to largest values such that the sorted values have rank, i =1, 2, ..., n, then the f; for

each observation is computed following Cleveland (1994) as:

f|=lzM (5.1)
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The corresponding data value of f quantile, q(fj) is given as:

(i-0.5)"
q[f,] = q (5.2)

5.7.1 Temperature Downscaling

Weather variables, such as precipitation and temperature used for future climate impact

assessment, can be extracted from large-scale atmospheric-oceanic variables, known as

predictors, through appropriate bias correction. In the present study, the predictor variables

used for statistical downscaling are specific humidity (Snurn), zonal wind velocity (Ux),

meridonal wind velocity (Vx), geo-potential height at 500 hPa (Z50o) and 850 hPa (Z850)

pressure level and mean sea level pressure (Psi). Among others Ux, Vx, Shum and Ps| variables

become better predictors of temperature and precipitation variables for the region under

consideration.

Statistically downscaled daily temperature for current climate exhibits strong

agreement to observed series. Fig. 5.2 presents the association of simulated maximum

temperature of current and future climate scenario for BCM2.0 model to observed series. The

coefficient ofdetermination (R2) is strong for current climate condition and modest enough for

future scenarios. Similar level of association is also observed for MK3.0 model, yet not

demonstrated here graphically. Quantile and quantile-quantile plots of observed and simulated

temperature dataset fit well into straight line (Fig. 5.3 and Fig. 5.4). The quantile plots in Fig

5.3 are S-shaped and are characteristic example of bell-shaped distribution. This phenomenon

is attributed to the characteristic property of simulated series for current and future climate

condition stem from similar probability distribution to that of observed series.

Extreme daily temperature events from both GCM realizations exceed that of observed

series for future climate events. It could be well inferred from the plot of probability of non-

exceedance (quantile plot) in Fig. 5.3 that daily temperature magnitude below 30°C accounts

large proportion of observed series. However, the same magnitude is characterized by lesser

fractions of future scenario daily temperature events in both models.

144



-1 1 1 1 1 1 1-

18 20 22 24 26 28 30 32 34

Observed (1990-1999) [ °C ]

-i 1 1 1 1 1 r

18 20 22 24 26 28 30 32 34

Observed (1990-1999) [°C ]

34

32

30

28

26

24

22

20

18

-i 1 1 1 1 1 1-

18 20 22 24 26 28 30 32 34

Observed (1990-1999) f°Cl

R2 = 0.89
0 «J •&£ 0

••FT1'

mm^aamW
^mW-Xw* ™ •

mam ^ur
ttMrnrntmrnXm mtW^ ^

kijftfS W^F**"

^MW-

—1 1

18 20 22 24 26 28 30 32 34

A1B (2081-2090) [°C]

Fig. 5.2 Observed versus downscaled maximum temperature for BCM2.0 model at Alaba
Kulito station

34

32 H

— 30
u
a

28

26

24

22

20

X
<

A1B Scenario

- Observed

- MK3.0

- BCM2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Quantiles

34

32 H

a30
i

x28
< 26

"- 24

22

20

Current Climate

— Observed

MK3.0

BCM2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Quantiles

Observed

MK3.0

BCM2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Quantiles
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Fig. 5.4 Quantile-Quantile plot of observed (at Alaba Kulito station) and raw GCMs outputs of

maximum temperature for current (1990-1999) and future (2081-2090) climate scenarios

5.7.2 Precipitation Downscaling and Bias Correction

Precipitation downscaled from GCM outputs or disaggregated from reanalysis results usually

carry certain level of biases that ultimately alters its frequency and amount. The variability in

daily precipitation amount is more significant compared to temperature and its subsequent bias

correction technique requires an in-depth skill of time evolution of such variables. Some of the

commonly employed precipitation bias correction methods include linear scaling, power

146



'

transformation (Shabalova et al., 2003; Leander and Buishand, 2007), gamma-gamma

transformation (Ines and Hansen, 2006), delta change approach (Hay et al., 2000), multiple

linear regression (Hay and Clark, 2003), analogue method (von Storch and Navarra , 1999;

Moron et al., 2008), local intensity scaling (Widmann et al., 2003; Schmidli et al., 2007) and

quantile mapping (Panofsky and Brier, 1968).

In the present study, both linear and non-linear precipitation bias correction methods

are used to correct statistically downscaled daily precipitation values. The linear correction

applies a scaling factor to transform raw precipitationto corrected precipitationmagnitude. It is

a linear transformation of state variable (precipitation) in such a way that both the mean and

standard deviation are re-scaled by the same factor as to the individual daily records. Leander

and Buishamd, 2007 used the ratio between average observed and GCM output precipitation

for every 5-days interval of the year including 30-days before and after the 5-daysrun to obtain

the scaling factor. Using this 5-days ratio, the raw daily precipitation is rescaled. In linear

correction method, the mean value of the variable is adjusted while the coefficient of variation

remains unaffected as both the mean and standard deviation are rescaled by the same factor.

The non-linear correction follows a power transformation rule between raw and

observed precipitation series.

Pc=aP0b (5.3)

where Pc is bias corrected daily precipitation; P0 is original or uncorrected daily precipitation ;

a and b are parameters. The parameters a and b are estimated using either of the following

two approaches. In the first approach, the parameter b is estimated by identifying a point

where the coefficient of variation of corrected daily precipitation matches to that of observed

precipitation whereas parameter a is determined by obtaining a point where the mean of the

transformed daily precipitation corresponds to that of observed daily records. This approach

compares linearly rescaled series to that of the observed series to obtain the power

transformation parameters a and b. In the second method, the parameters a and b can easily be

estimated from logarithmic transformation using two matching quantile estimates of observed

and uncorrected GCM scenario output precipitations.

P,,R=aP,,ob (5-4)

P,R=aP2,ob (5-5)
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Where Pir and P2,r are raw precipitation values at two different quantiles 1 and 2 ; Pio and

P2,o are observed precipitation values at corresponding quantiles. Applying logarithmic

transformation and solving eqns. (5.4) and (5.5) simultaneously b can be estimated as:

log

b =

2,0,

i,oy

logl P^
(5.6)

i,r;

Finally, a is estimated from eqn. (5.4) or (5.5) by simple substitution. However, there are

multiples of matching quantile estimates that yield to different a and b values. To fix the

parameters, logarithmic regression is applied to matching quantile estimates where the slope

and intercept of best fit line are associated to the parameters b and a respectively.

Statistically downscaled daily precipitation is corrected applying both linear and power

transformation methods for current (1990-1999) and two future (AIB and A2) climate

scenarios running from 2081-2090.

5.8 SIMULATION OF RUNOFF FOR CURRENT AND FUTURE

CLIMATE

ArcGIS supported Soil and Water Assessment Tool (ArcSWAT 2009) described previously is

utilized to simulate runoff at Bilate and Hare watersheds using downscaled and bias corrected

daily precipitation and temperature variables as weather input parameters to the model. SWAT

has the capability to twin up multiples of weather and spatial input variables into numerical

hydrologic modelling so that runoff is generated at desired locations on daily or sub-daily basis

(Arnold et al., 1998). Spatial and temporal datasets required to run SWAT model, model

calibration and validation phases are briefly presented with explanatory details in Chapter 4.

In this section, bias corrected daily precipitation and temperature datasets for current and future

climate conditions are used to simulate runoff.

5.9 RESULTS AND DISCUSSION

5.9.1 Statistical Downscaling Model

Large-scale atmospheric variables called predictors are used to downscale precipitation and

temperature variables using observed station precipitation and temperature variables at Bilate

and Hare watersheds. Surface humidity (Shum), zonal wind velocity (Ux), meridonal wind
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velocity (Vx), geo-potential height at 500 hPa (Z50o) and 800 hPa (Z85o) pressure level and

mean sea level pressure (Psi) are large-scale atmospheric predictors used in statistical

downscaling. Ux, Vx, Shum and Psi variables become better predictors of temperature and

precipitation variables for region under consideration. Significant amount of variability is

observed in downscaled precipitation for current climate condition when compared to the

observed series while the associated variability for temperature is very less.

5.9.2 Precipitation Bias Correction

Atmospheric-Oceanic General Circulation Models (AOGCMs) are less accurate and

characterized by significant spatial variability for monthly or daily precipitation magnitudes at

regional level. The spatial variability of precipitation is more significant in tropical regions

where precipitation varies greatly over small range of latitude and longitude (Covey et al.,

2003). AOGCMs without flux adjustments are susceptible to such variability (Dai, 2006) and

associated to certain level of biases. Sharma et al. (2011) argues that even regional climate

models are susceptible for bias and need further correction in order to provide consistent

prediction in timings and magnitude of prevailing climate change. Due to such deriving forces,

examination of downscaled precipitation variable for possible biases and applying artificial

correction to maintain the parent population distribution pattern is vital.

Daily precipitation, downscaled from large-scale variables for future climate scenario,

is significantly higher than the corresponding observed mean monthly records. It is noticed

that during the rainy seasons (March-April-May and July-August-September), the variability

becomes more profound (Fig. 5.5). Higher precipitation events in terms of frequency and

amount dominated the future climate scenario as a consequence of increased future extreme

temperature events. The quantile plot in Fig. 5.3 shows that large fraction of extreme

temperature (>30°C) events are eminent for future climate scenarios. This Increased future

temperature causes higher evapotranspiration rate that may ultimately enhances the rate of near

atmospheric condensation process. The mean and coefficient of variation (CV) of uncorrected

daily precipitation for current climate is in close agreement to its corresponding historical

observation while the variability in mean and CV for future climate conditions (AIB and A2

scenarios) is significant. Bias correction employed to daily precipitation of the control period

significantly reduced the CV.
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The non-linear (power transformed) bias correction parameters a and b are estimated

using arbitrarily selected matching quantile estimates of daily precipitation. The values of 'a'

and 'b' are fixed through logarithmic regression for arbitrarily selected matching quantiles. In

view of this, logarithmically fitted parameter (a, b) values for BCM2.0 model are (0.56, 1.14)

and (0.35, 1.3) for A1B and A2 scenario respectively. The A1B and A2 scenarios parameter

values of (1.7, 0.82) and (1.8, 0.8) removed most of the extreme biases in MK3.0 model. The

uncorrected precipitation values for two future emission scenarios exhibit higher extreme

events than the observed ones (Fig. 5.5). However, the bias correction improved both the mean

and CV to a reasonable degree. Downscaled and subsequently bias corrected precipitation is

aggregated to mean monthly values for easy examination of the variability for two GCM

realizations under different scenarios (Fig. 5.6 to Fig. 5.8).
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Fig. 5.8 Linear and power transformed precipitation bias corrections for A2 greenhouse gas emission

scenario for two GCMs realizations

Probability of exceedance plot of daily precipitation for current and future climate

conditions is further investigated to compare respective percentile magnitudes. It has been

noticed that linearly rescaled precipitation resulted in better agreement than that of power

transformation for most dataset except for the extreme higher tails that experience deviation

from the observed values (Fig. 5.9). The extreme values in the right tails of the exceedance

probability curves are as a result of extreme observed rainfall records in the years 1993 and

1998. An attempt has been made to explore the variability between single and multiple run

(ensemble) mean daily precipitation. Ensemble mean of 20 runs ultimately produced

unrealistic simulations in such a way that all days of the year are characterized by rainy days.

The onset and cessation of precipitation days vary among ensembles. These lags in important

precipitation events resulted in extended rainy days (almost all days of the year become wet-

days) when averaged out through the ensembles on daily basis. Thus, in precipitation analysis

where number of rainy/dry days is of interest, the ensemble mean produces an artifact of the

reality. Such extended rainy days over the analysis period, resulted in sufficient antecedent

moisture condition in the soil layers and subsequently yielded higher runoff.

152

-H



140 -

120 -

D

a Linear Corrected (Current Climate) a
120

"e Observed 100

E 100 -

1 80 -
ro

;f 60 -
•
i
a. 40 -

^0Kt-r

80

60

40

>

S 20 "

0 <̂ ^ '

20

0

120

„100

E
E, 80

I 60
ro

300

"£250
E

^200
o

S 150

0.1 0.01 0.001

° Uncorrected (AlB) B
x Linear corrected (AlB)

• Power transformed (AlB) «»*

Observed jf ,,?-&—

0.001

x Linear corrected (A2)
1 Power transformed (A2) »

• Observed

0.0001

0.0001

120

100

80

60

40

20

0

120

100

80

60

40

20

0

0.1 0.01 0.001 0.0001

Exceedance probability

° Linear Corrected (Current Climate)

Observed

0.1 0.01 0.001 0.0001

n Uncorrected (AlB)

* Linear corrected (AlB)

♦ Power transformed (AlB)

Observed JWT-T]

0.1 0.01 0.001

Linear corrected (A2)

Power transformed (A2)

Observed

0.1 0.01 0.001

Exceedance probability

0.0001

0.0001

Fig. 5.9 Probability of exceedance of daily precipitation for current and future climate

conditions for BCM2.0 (left panels) and MK3.0 (right panels) GCMs

5.9.3 Dry-AVet-Spell Analysis

Increased extreme precipitation and temperature events prevail for future scenarios. Average

dry-spell length found to increase between October and February whereas it remains stable

from March-September months for both emission scenarios. The wet-spell length shows an
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increase during the critical wet seasons of the year (July-September) for future scenarios (Fig.

5.10). The average length of wet and dry spells examined for future climate does not vary

significantly between the GCMs, however, AlB scenario of MK3.0 model shows relatively

less number of average monthly wet and dry days.
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Fig. 5.10 Dry- and wet-spell lengths for future scenario precipitation predicted during 2081-

2090 analysis period

5.9.4 Extreme Temperature and Precipitation Events

The magnitude and frequency of occurrence of extreme events is essential to assess the impact

of present and future climate on basin's water resources management. Design of various water

storage structures, flood management of coastal and susceptible inland regions and future

water requirement is based on sufficient knowledge of future extreme events. Winter season

(December-January-February) temperature exceeding 25°C, examined for current and future

climate, shows increasing peaks over threshold events for both AlB and A2 scenarios with

relatively higher number of events for AlB scenario. Observed from BCM2.0 model, the

average monthly above threshold events lies between 27.7 and 29.9 days per month for

observed series while the same event varies from 27.7 to 30.9 for future scenarios during

winter months. Above threshold (>25°C) temperature days increased by 11.6 (10.5) and 8.8

(6.7) percents in December and January months for AlB (A2) scenario respectively when

compared against observed events. However, the total number of extreme temperature events

assessed for MK3.0 events shows less variability. In comparison to BCM2.0, above threshold

MK3.0 future temperature events are better approximated to the current climate events. Bias

corrected current and future daily precipitations are characterized by few extreme events. The

extreme events, in the present context, are defined arbitrarily as daily precipitation magnitude
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exceeding 50mm. Linear bias corrected A2 scenario precipitation produced very few extreme

rainfall events while AlB scenario is characterized by higher number of extreme daily

precipitation. The percentage increase in extreme precipitation events of BCM2.0 model,

relative to the observed series during the same analysis window, is 2.5 and 7 percent for A2

and AlB scenario simulated precipitation respectively (Fig. 5.9). Such extreme events are

associated to the main rainy seasons, particularly April and September months. Therefore, it is

imperative to deduce from such extreme events that the predictor variables reproduced

significant number of extreme future precipitation. There is no well-defined pattern of changes

in predicted future annual precipitation.

5.9.5 Runoff Generated

Before attempting to simulate runoff for future scenarios at desired locations, the SWAT

model is intended to be calibrated and validated using observed streamflow data at both

watersheds. Streamflow, land use management, soil and groundwater parameters governing the

runoff process are calibrated for the years 1992-1996 and 1995-2000 at Bilate and Hare

watersheds respectively. Respective validation phases run from 1998-2002 and 2003-2006 at

both watersheds. Details in model sensitivity analysis, model calibration and validation are

covered in section 4.9. The catchment condition is under dynamic state and respective

hydrologic model parameters also vary over time. However, it is difficult to forecast such

model parameters for future climate condition. Therefore, it has been assumed that SWAT

model parameters calibrated and subsequently validated for current climate condition remain

valid for future climate condition.

Current and future climate based weather input data series is used to simulate daily

runoff at two independent watersheds debouching into terminal Lake, Abaya. Runoff is

simulated at outlets where observed streamflow data is available. This helps in exploring the

relative variability of streamflow under present and future climate conditions to observed

series. Daily runoff is further reduced to monthly magnitudes for ease of comparison.

Simulated monthly runoff for current climate condition (1990-1999) using downscaled and

bias corrected precipitation and temperature variables modestly reproduced effects similar to

that of observed values in both watersheds (Fig. 5.11). The average simulated annual water

yieldfor current climate is characterized by a positive deviation from the observed counterpart

at both watersheds. It varies from 8-10 % at Hare and 4-12% at Bilate basins between the two
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GCMs utilized for present analysis (Table 5.2). This variability might be attributed to local

weather influences and highly sensitive catchment behavior in response to precipitation.

Simulated average annual water yield shows slight variation between GCMs. It lies within

±10 % at Bilate basin and ranges from -17% to 12% at Hare basin. Fig. 5.12 presents

simulated monthly runoff based on MK3.0 and BCM2.0 GCMs output for two future climate

scenarios at Bilate and Hare watersheds. Future climate scenarios are characterized by highly

extreme runoff events. The AlB scenario weather variables predicted higher runoff for

MK3.0 model than BCM2.0 at both watersheds. The BCM2.0 model is characterized by

relatively higher extreme runoff events for A2 emission scenario.

Average simulated monthly runoff for current and future climate condition during

analysis period is summarized in Fig. 5.13. The plot compares observed streamflow against

model predicted runoff magnitudes. The main rainy seasons i.e., April and May of the first

rainy season and July to September of the summer rainy seasons are marked by highly

variable runoff magnitudes during the analysis period. The difference in minimum and

maximum runoff simulated during the ten years analysis period is significant during such wet

seasons. The variability is much lower for other driest and limited rainfall seasons.

The gross annual water yield simulated for current and future climate scenarios for two

climate scenarios is further compared to the average observed runoff in the respective

watersheds. It has been noted that the simulated runoff varies from -3.5% to 18 % at Hare

watershed and is within the range of -4 % and 14 % at Bilate watershed. The simulated

current and future runoff is featured with higher number of extreme events. Figs. 5.14 and

5.15 present percentile magnitudes of simulated monthly runoff at Bilate and Hare watersheds

for future scenarios from two GCM realizations. The box plot illustrates a linear scale of the

lowest, upper most and the intermediate (25%, 50%, and 75%) percentile runoff values. It is

noticed from the plot that Inter-monthly runoff variability is significant during the wet

seasons. The range of monthly runoff magnitude is sufficiently large enough during rainy

seasons of March-May and July-September. However, the variability is modest over the other

months of the year. A polynomial fitted to the average monthly runoff for future scenarios

during the analysis period shows that significant portion of the runoff volume is exhibited

during the summer rainy season (Figs. 5.14 and 5.15 ). Excessive peaks in the percentile plots

are associated to extreme daily runoffevents simulated during the rainy seasons.
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Table 5.2 simulated average runoff depths for different climate scenarios and corresponding

percentage change with respect to observed series

Climate Scenarios

Runoff depth (mm) at Hare Basin Runoff depth (mm) at Bilate Basin

Observed (1990-1999) = 288 Observed (1990-1999) = 203

Simulated % change* Simulated % change*

CSIRO-MK3.0_Current 315 9.4 211 3.9

CSIROMk3.0_AlB 314 9.0 221 8.9

CSIROMK3.0_A2 290 0.7 210 3.4

BCM2.0_Current 312 8.3 228 12.3

BCM2.0_A1B 278 -3.5 195 -3.9

BCM2.0_A2 340 18.1 231 13.8

* percentage change is relative to the average observed runoff depth over 1990-1999in respective watersheds

5.10 CONCLUSIONS

Potential impacts of climate change on runoffgeneration from two watersheds of Rift Valley

lakes basin of Ethiopia are discussed. Statistically downscaled and subsequently bias

corrected precipitation and temperature variables from two GCMs scenarios are used to

simulate daily runoff. Statistical downscaling, followed by bias correction, effectively

reproduced the current weather variables. Its effectiveness is evaluated using statistical

comparison of downscaled variables and observed series.

Bias corrected current and future daily precipitations are characterized by few extreme

events. Such extreme events are associated to the main rainy seasons, particularly April and

September months. Winter and summer seasons are characterized by longer dry and wet days

for future scenarios. There is no well-defined pattern of changes in predicted future annual

precipitation.

The runoff simulated at both watersheds indicates potential variability of future

climate. Simulated future scenario runoff at both watersheds is marked by increased daily

extreme events that ultimately results in increase in the gross annual water yield of the basins.

The simulated runoff varies from -4% to 18 % at Hare watershed and is within the range of-4

% and 14 % at Bilate watershed. Future water resources planning and management could

likely be affected by such variability and hence existing design methods could expand their

scope to account for these extreme events.

162



•

Further noticed is that there is obvious inter-annual variability in runoff magnitude

during the analysis period. Simulated average annual water yield shows slight variation

between GCMs. It lies within ±10 % at Bilate basin and ranges from -17% to 12% at Hare

basin. The use of multiple GCMs while predicting future climate condition and ensuing

impacts could help to capture key climate features that are not well explained by one of the

models. Hence, future attempts for the region could rely on realizations from multi-models.
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CHAPTER 6

IMPACT OF CATCHMENT DYNAMICS ON RUNOFF

GENERATION

6.1 GENERAL

The response of a catchment is time and space variant and influenced by anthropogenic and

climatic factors. A drop of water falling in the form of precipitation usually traverses long path

until it reaches the main stream. This long journey is dominantly accelerated or decelerated by

land cover, soil, rainfall intensity and catchment geomorphologic parameters (Tiwari et al.,

2006).

This chapter deals with review of catchment dynamics on runoff generation; extraction

of land use/land cover and other spatial input data for hydrologic modeling; watershed

modelling of varied land use /land cover conditions and statistical analysis of streamflow

trends. Finally, based on the results obtained from subsequent analysis and discussion,

conclusions are drawn.

6.2 OVERVIEW OF IMPACT OF CATCHMENT DYNAMICS ON

TOTAL WATER YIELD OF A WATERSHED

In most parts of the globe, significant areas of pristine ecosystems with lush vegetation have

been converted to other forms of land use practices. Conversion of forest cover and dense

naturally vegetated area to arable land and cattle grazing field has modified bulk water yield

from the watersheds (Angelsen, 1999; Barbier, 2004). Land use change has been strongest in

tropical regions and its contribution to global runoff outweighs that of climate change (Piao et

al., 2007). The world's largest natural tropical rain forest of Amazon is currently experiencing

a large-scale deforestation due to increasing number of cattle herds in the region that ultimately

requires substantial pasturelands (Chaves et al., 2008).

The scientific understanding of the influence of forest cover and land use changes on

water yield of the basin dates back to the early 20th Century during which advanced
computational power to handle spatial data was almost none-existent. In 1911, the Wagon

Wheel Gap experimental watershed in central Colorado and the Priest river experimental forest
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in northern Idaho of USA were established to study forest associated influences on streamflow

and erosion. Similar attempts were further extended to Europe (Hegg et al., 2006), Southern

and Eastern parts of Africa (Wight, 1940; 1943; Dagg and Blackie, 1965) during later years.

Field experiments and catchment studies conducted in multiple watersheds across the globe

show that forest reduction increases water yield (Hibbert, 1967; Edwards and Blackie, 1981;

Bosch and Hewlett, 1982; Fohrer et al., 2001; Hundecha and Bardossy, 2004; Yu et al., 2008)

and sediment load (Alansi et al., 2009) from the catchment.

Effect of land use /land cover on runoff and sediment yield from the catchment is

investigated following different approaches worldwide. The classical hydrologic models of a

pair catchment consideration i.e., control and treatments (Bates, 1921; Bates and Henry, 1928;

Nemec et al., 1967) are in vogue to simulate the effect of land cover on watersheds. However,

the areal extent of a control watershed is usually very small (Troendle and King, 1987;

Hessling, 1999; Iroume et al., 2005; Hegg et al., 2006) and hence the physical relationship

developed between the two watersheds is usually influenced by the watershed geo-

morphological parameters.

Mati et al. (2008) investigated the response of land cover changes at Mara Basin of

Eastern Africa and observed significant increase in runoff over less than a couple of decade

time span. Forest cover is reduced by approximately 70% over the years 1971-2000 in the

Upper Gilgel Abbay catchment of the Blue Nile basin of Ethiopia (Rientjes et al. 2011).

Reduced forest cover induced contrastingly variable streamflow trend in two neighbouring

catchments of Blue Nile basin. Increased deforestation and intensified cultivation due to

burgeoning population accelerated soil degradation rate and increased surface runoff at

Ethiopian highlands (Hurni et al., 2005).

Study of catchment response with respect to vegetation cover and land use management

are documented in many literatures (Dunford and Fletcher, 1947; Bari and Smettem, 2004; Shi

et al., 2007; Yang and Tian, 2009; Li et al., 2010; Seibert and McDonnell, 2010; Greenwood et

al, 2011). Many streamflow variability analyses in literature rely on independent treatment of

statistical time series analysis and watershed modelling. However, urban and rural watersheds

are under temporally varying vegetation cover condition and hence time series models alone

can not capture runoff variability as a consequence of diminishing or expanding plantation.

Refsgaard et al. (1989) provides a comprehensive guide to distinguish between man-

induced influences and natural climate variability on hydrological regimes of catchments. It is
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suggested that joint application of statistical tests and watershed modelling approach to detect

the prevailing variability in the catchment. Even though the scientific merits of the methods

suggested by Refsgaard et al. (1989) are appealing, studies reported based on similar notions

(Lorup et al., 1998; Li et al., 2012) are scanty. Couples of studies attempted to explore the

impacts of altered land use/land cover condition on hydrological regimes of Ethiopian

watersheds (Zeleke and Hurni, 2001; Legesse et al., 2003; Gebresamuel et al., 2010).

Computational advancements coupled with availability of satellite data to extract

valuable spatial information provide an aura of confidence to analyze watershed hydrologic

processes critically; however, limited spatial and temporal datasets available to characterize the

watershed processes besetting the endeavor of scientific communities in the developing

countries. The Rift Valley lakes basin of Ethiopia is one among which access to real-time

hydro-meteorological data and spatial information is scarce.

The present study concentrates on examining the response of a catchment to runoff for

temporally varied land use/land cover conditions using physically based distributed hydrologic

modelling. The catchment response is investigated by simulating runoff for temporally varied

land use/land cover conditions over the last quarter of twentieth century. Finally, statistical

analysis (trends, double mass curve and flow duration curves) of observed streamflow and

rainfall is carried out to investigate the behavior of associated time-trend with respect to the

prevailing land use/land cover conditions.

6.3 THE STUDY AREA

The impact of land use dynamics is investigated in two rural watersheds (Bilate and Hare) in

the Rift Valley lakes basin of Ethiopia. Detailed description of study watersheds is given in

section 4.6.

6.4 DATA USED AND METHODOLOGY

6.4.1 Data Used

The datasets utilized to investigate the impact of land use/land cover changes on runoff

generation at agricultural watersheds include time variant landsat imageries, DEMs, soil and

hydro-meteorological dataset. Table 6.1 provides details of orthorectified four band Multi-

Spectral Scanner (MSS) LandSat-4, Thematic Mapper (TM) and seven band Enhanced
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Thematic Mapper Plus (ETM+) land cover imageries acquired from Global Land Cover

Facility archives (http://glcf.umiacs.umd.edu/data/landsat) for the present study.

Table 6.1 Orthorectified landsat images used for land use/land cover classification

Landsat Image Sensor Date Acquired Path/Row Producer watershed

ID Type Associated

029-736 MSS Jan. 31, 1973 181/055 Earthsat Bilate

044-075 MSS Jan. 25, 1976 181/056 Earthsat Hare

012-383 TM Nov. 22, 1984 169/055 Earthsat Bilate

012-382 TM Nov. 22, 1984 169/054 Earthsat Bilate

012-371 TM Jan. 21, 1986 168/055 Earthsat Bilate

012-384 TM Jan. 28, 1986 169/056 Earthsat Hare

037-658 ETM+ Nov. 26, 2000 169/055 Earthsat Bilate

037-883 ETM+ Feb. 05,2000 168/055 Earthsat Bilate

037-659 ETM+ Jan. 27, 2000 169/056 Earthsat Hare

Enhanced 90 m x 90 m longitudinal resolution processed Shuttle Radar Topographic

Mission DEM data version 4.1 (Jarvis et al., 2008) was accessed from International Centre for

Tropical Agriculture (CIAT) online source (http://srtm.csi.cgiar.org). Soil feature classes and

respective physical properties for the study watersheds are customized from World Food and

Agricultural Organization (FAO) soil map. Required weather data to run hydrologic model

were obtained : from regional and national meteorological offices. Daily rainfall,

maximum and minimum temperature, wind speed, sun shine hours and relative humidity for

five nearby stations for a record lengthbetween 1980 and 2009 were collected for subsequent

analysis. Table 6.2 describes details of weather input data available for analysis. Daily

streamflow records are collected from Ministry of Water Resources (MoWR) hydrological

data archives of Ethiopia. Standard preliminary data analysis for consistency is conducted.

Spatial and temporal datasets used to run SWAT model are briefly described in section 4.7.

Temporal land use/land cover dataset and respective classes are discussed in the following

section.
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Table 6.2 Details of hydro-meteorological dataset used for analysis

Hydrometeorological Data/Stations Alaba Kulito Hawassa Bilate Farm Arba Minch Farm Chencha

Daily weather data

Rainfall V V V V V

Max. and Min. Temperature V V V V V

Wind Speed V V V

Sunshine Hours V V V

Relative Humidity V V V

Record Length 1980-2009 1980-2009 1980-2009 1980-2009 1970-2006

Daily streamflow

Bilate at Alaba Kulito (1971-2006) V

Hare near Arba Minch (1980-2006) V

6.4.2 Temporal Land Use/Land Cover Conditions

Temporal landsat images (1973/76, 1984/86 and 2000) acquired from Global Land Cover

Facility archives have been further processed to extract required land use information. The

temporal scales are sufficiently long enough to observe the expected land use changes and

respective catchment responses. Geometrically corrected landsat images are processed using

ERDAS Imagine image analysis facilities. Supervised and unsupervised image classification is

applied to enjoy the benefit of both approaches and further assimilated based on land use class

similarity. Classified land use map units are also verified against coarser resolution land use

maps developed by the Ministry of Water Resources (MoWR) of Ethiopia. The present

classification is based on small spatial scale and hence more land use classes than the existing

broad classification were identified. The land use management classes for the study area were

defined as per Anderson et al. (2001) land use/land cover classification as follows.

Agricultural lands: These include diverse class of cultivated land, plots covered by food and

commercial crops (croplands) and land units covered by residuals after immediate harvest.

Forest lands: Forest lands have usually tree-crown areal density capable of modulating the

micro climate and water holding capacity of watershed. It ranges from densely populated tall

trees of tropical rain forest used for timbering to moderately grown green forest. This could be

evergreen, deciduous or mixed forest land.
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Range lands: These are land cover units typical to arid and semi-arid regions characterized by

xerophytic vegetation and transition zones from forest land to sparse woodlands.

Grass lands: These are land units where the potential natural vegetation is predominantly

grasses and grass like plants. It is dominated by naturally occurring grasses as well as those

areas of actual rangeland that have been modified to include grasses.

Water and marshy land: Area that remains water logged and swampy throughout the year, and

rivers are categorized into this class.

Barren land: Land of limited ability to support life and in which less than one-third of the area

has vegetation or other cover. It is an area of thin soil, sand or rocks and the areal coverage of

available vegetation is much less than that of range land.

The major land use/land cover units identified for the study watersheds are dense forest,

woodland, shrub land, pasture, green vegetation, cultivated land, settlements and water body.

6.4.3 Watershed Modelling Under Changing Land Use/Land Cover Conditions

Physically based distributed hydrologic models have the ability to synthesize various spatial

information and weather data to predict catchment responses. SWAT model (Arnold et al.,

1993; 1998) has got growing demand among watershed modelers due to its capability to model

the watershed responses at very small spatial scale characterized by unique land use, soil and

slope attributes called hydrologic response units (HRUs). It is a physically based distributed

hydrologic model developed to predict the impact of land use management practices on water,

sediment, agricultural chemical yields from large and complex watersheds with varying degree

of spatial information over long period of time.

In the present study, SWAT model is used to analyze the impact of change in land

use/land cover on runoff generation in study basins. The ArcHydro module of the ArcSWAT

model delineates the watershed boundary and generates prevailing stream network from

available digital elevation model with assigned draining area threshold magnitude. The smaller

the draining area threshold the denser the stream network. This helps in capturing the spatial

variability of a channel network at very small areal extent. Runoff is generated from individual

HRUs and routed to form the main channel flow.
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Land use/land cover information separated by moderately sufficient time events

(1976/1986/2000) are used as input dataset to the watershed modelling. Other spatial input

parameters such as soil, slope and weather information are organized to suit SWAT modelling.

Runoff simulation in the watersheds is carried out on daily basis. The model is calibrated using

the year 2000 land use/land cover information for both watersheds. The model parameters are

further utilized to simulate runoff at desired temporal and spatial scale for the years 1976 and

1986. In SWAT model, the bulk simulated water yield is comprised of surface runoff (SUR

Q), lateral flow (LAT Q) and groundwater flow (GW Q). The model has the capability to

separate each component independently so that the relative response of catchment to individual

components can easily be evaluated. Catchment morphometric parameters and spatial variables

such as soil and land covers affect the partition of liquid mass flow into the corresponding

components. Attempted here is that, being all other factors held constant, how the land

use/land cover has either enhanced or retarded the quick surface flow component.

6.4.4 Land Use/Land Cover Change and Streamflow Trend

To enhance the justification from watershed modelling, the behavior of observed streamflow

and rainfall in the study watersheds is examined. Detection of monotonic trends and abrupt

changes are assessed using statistical trend analysis and rainfall-runoff double mass curve

analysis. The behaviour of historical streamflow is further examined from flow duration curve

analysis for time-segmented series.

Climate change and anthropogenic disturbances have been influencing the hydrologic

regime of rivers. Man-induced disturbances (land use/ land cover changes, river regulation

mechanisms, water abstraction for various purposes, continuous groundwater recharging or

discharging) alter the watershed behavior significantly. Possible monotonic and stepchanges in

annual and daily extreme streamflow magnitude are examined applying the commonly used

Mann-Kendall (MK) (Maim, 1945; Kendall, 1975) and Mann-Whiteny-Pettitt's (MWP)

(Pettitt, 1979; Zhang and Lu, 2006) change detection approaches. The MK test statistic is

explained in section 2.5.2.3 and hence a concise statistical background of MWP is presented in

this section.

The MWP change detection method is a non-parametric test that can be used to analyze

data from two independent groups when measurement is ordinal. It analyzes the degree of

separation or overlap between the two groups. For a sequence of random variables Xi, X2, ...,
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Xy which have a change point at x(Xt) for t = 1,2,...,t have a common distribution function

Fl(x) and Xt for t=x+l, ... T have a common distribution function F2(x) where Fl(x) ^ F2(x)

(Pettitt, 1979). The null hypothesis (Ho) assumes that the two set of scores are samples from

the same population (no change) and the alternative hypothesis (HI) is that the two sets of

scores differ systematically (there is change).

The test statistic is:

KT = max,<tsT UtT = max(KT+,KT )

t T

where Ut;T = £ J>gn(X,-X^
i=i j=t+i

and sgn(0) =

1 if 9 > 0

0 if 9 = 0

-1 if 6<0

(6.1)

(6.2)

(6.3)

For changes in onedirection i.e, for downward (KT+) or upward shift (Kj), Kt is given as:

KT+= maxlstsT UtT and KT = -min,<t<TUt

The significance level associated to KT is estimated by:

p = exp
—6KT

T3+T2

(6.4)

(6.5)

If the magnitude of p is smaller than the specific significance level (for example a =0.05) the

null hypothesis is rejected. The time t when Kr occurs is the change point time.

6.5 RESULTS AND DISCUSSION

6.5.1 Land Use/Land Cover Dynamics in the Study Watersheds During 1973-2000

The ever growing demand for food crops, eventually emerging market for commercial crops,

timbering and local energy consumption largely transformed the natural forest cover over

Ethiopia. The 1985 official document of Ethiopian Relief and Rehabilitation Commission

asserts that the country's forest cover was 44% in 1885, 16% in 1950 and 4% in 1985

(McCann, 1997).
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The Rift valley lakes basin has also undergone similar level of forest cover decline over

the last century. Dense forest and riparian woodlands of the Rift Valley lakes basin eventually

converted to open woodland and rangelands. Major fraction of riparian forest that cover in the

fertile delta region underwent clearcutting for cultivation. Temporal land use/land cover map

developed from satellite imageries for three different time spans (1973/76, 1986 and 2000)

shows major transformation of land cover and land use management over the last quarter of

twentieth century.

A phenomenal increase in cultivated land and settlement area over the analysis period

is observed at both watersheds. Forest cover decreased by 34.5% and 50.7% during 1976/86

and 1986/2000 time period respectively at Bilate watershed (Fig. 6.1). The total area covered

by cultivated land, settlement area and barren land increased by 30.9% and 23.4 % for

corresponding period. Range and shrubland show alternating trends over the years in such a

way that an increase in any one of them result in decrease in the other land cover unit.

However, on aggregate the rangelands increased by 26.7% whereas the pasture land units

decreased by 43.8%. The decrease in pasture land might be the result of the growing demand

of arable land for crop cultivation in most parts of the watershed. Land units that lost its fertile

top soil formation due to excessive erosion and weathering activities are commonly located as

small patches in the middle and lower Bilate basin.
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Fig. 6.1 Reclassified land use/land cover classes for use in hydrologic modelling at Bilate

watershed

Land Use 1976

Legend
Cultivated area and

settlement

Forest

Open bush & woodland

Grassland and

green vegetation

Land Use 1986 Land Use 2000

Fig. 6.2 Reclassified land use/land cover classes for use in hydrologic modelling at Hare

watershed
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The land use/land cover condition at Hare basin follows similar temporal trend to that

of Bilate basin. An aggregate increment of 60% in cultivated land and rural settlement whereas

40% decrement in forest cover is identified during 1976-2000 analysis period (Fig. 6.2). Area

under pasture and rangeland found to decrease during the same period. Table 6.3 provides

major land use /land cover conditions and respective percentage changes over the time period

1976/1986/2000 at Bilate and Hare watersheds of the Rift Valley lakes basin of Ethiopia. The

major fraction of land use/land cover is occupied by cultivation, settlement and forest cover

during 1970s, however, the forest cover eventually reduced during the last two decades of

twentieth century (Fig. 6.3). The upstream riverine course of Hare watershed is commonly

growing an evergreen bamboo plantation. Its dense and fibrous roots have soil gripping

capability hence minimizes erosion of top soil layers. Studies report that bamboo grass is

capable to sequester more CO2 and generate sufficiently larger fraction of oxygen compared to

other young forests.

Table 6.3 Areal coverage of reclassified land use /land cover condition for study watersheds

Percentage land use/land cover Percentage cha nge

Land use/land cover class 1976 1986 2000 1976-1986 1986-2000 1976-2000

Bilate Watershed

Cultivation and Settlement 36.1 47.2 58.3 30.9 23.4 61.6

Forest-mixed 26.5 17.4 8.6 -34.5 -50.7 -67.7

Range and shrubland 17.2 24.8 21.8 44.0 -12.0 26.7

Pasture 20.2 10.6 11.4 -47.4 6.7 -43.8

Hare watershed

Cultivation and Settlement 29.65 36.38 47.4 22.7 30.3 59.9

Forest-mixed 30.23 25.32 18.2 -16.2 -28.1 -39.8

Rangeland 24.26 27.2 24.2 12.1 -11.0 -0.2

Pasture 15.86 11.1 10.2 -30.0 -8.1 -35.7
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El • III 1QRfi

rain •jnnn

^
Cultivation & Forest-mixed Range &
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Pasture Cultivation & Forest-mixed Rangeland

Settlement

Fig. 6.3 Temporal variation of dominant land use/land cover proportion in the study

watersheds
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6.5.2 Land Use/Land Cover Dynamics and Hydrologic Modelling

Land use/land cover affects runoff in the form of initial abstraction due to canopy cover and

enhanced or reduced infiltration rate (Jinno et al, 2009) due to surface cover that subsequently

affects lateral flow. The surface runoff component is separated from the total water yield of a

catchment to assess its variability due to altered land use/land cover conditions. SWAT model

is calibrated for the year 2000 land use condition and subsequently utilized to predict runofffor

1976 and 1986 land use conditions. SWAT model calibration and validation is covered widely

in previous works for the study watersheds. Other input variables such as weather, soil and

catchment morphologic parameters remain constant for each simulation. This enables us to

identify the catchment response uniquely to land use changes.

SWAT model disaggregates the output into surface runoff component, lateral flow and

shallow aquifer flow. The response of a catchment as a result of land use change is evaluated in

terms of simulated surface runoff component. It is observed that the surface runoff component

increases progressively since mid 1970s at both watersheds. The rate of change of runoff with

respect to the base period (1976) is more significant during wet years. This is due to high

intensity and extended duration of rainfall events that are more likely to produce runoff

immediately with minimal travel time. Moreover, availability of sufficient antecedent moisture

condition in the soil retards infiltration rate and accelerates overland flow.

Catchment geomorphologic factors also attributed to varying rate of change of surface

runoff magnitude. In steep and smaller size Hare watershed the rate of change is more

profound. The catchment response is significant during wet years of the analysis period. The

land use condition in the year 2000 increased annual surface runoff by 10-23 % at Bilate

watershed with respect to 1976 reference line. The rate of change is higher at smaller size Hare

watershed. The increment extends from 16% to more than 100% during the very wet years.

Fig. 6.4 presents the relative proportion of simulated surface runoff component for three

different land use conditions at two watersheds maintaining all other factors constant

throughout the three simulations.
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Fig. 6.4 Simulated surface runoff component for different land use/land cover condition during

the analysis period

Average monthly predicted surface runoff is compared against respective rainfall in the

watersheds during the analysis period. The surface runoff component shows better agreement
•y

to respective rainfall for all simulations. The coefficient of determination (R ) ranges from 0.85

to 0.96. A better correlation (R2 = 0.91-0.96) is observed at Hare watershed where the

statistical relationship follows an exponential law (Fig. 6.5). Intercomparison of simulated

annual surface runoff to corresponding annual rainfall clearly shows increasing runoff

magnitude since 1976 land use condition at both watersheds. Simulations for specific land use

conditions are approximated by a lower order polynomial and exponential curves where

simulations for recent land use conditions are modestly lying above the early ones (Fig. 6.6).

Summer monsoon season rainfall dominates at Bilate watershed and subsequently

yielded substantial amount of total water yield during June-October months. However, bimodal

rainfall pattern at Hare watershed produced alternating raised hydrograph limbs during the
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rainy seasons. The major rainfall season at Hare extends from mid of March to the first decade

of June and produced higher peaks during April-May heavy rainfall. The average monthly total

runoff found to increase since the 1976 land use condition. During the dry months the

variability in simulated total runoff is insignificant (Fig. 6.7).
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6.5.3 Streamflow Trend Analysis

Statistical trend analysis to detect possible monotonic trends and step changes is conducted for

annual and extreme daily streamflow events at Bilate (1971-2005) and Hare (1970-2007)

watersheds. We further examined the historical variability of observed streamflow at Alaba

Kulito using flow duration curve (FDC). Mann-Kendall (MK) trend analysis is conducted both

for original and prewhitened series to account for the effect of significant serial correlation

while detecting possible trends. MK-trend analysis for original and prewhitened series reveals

that annual streamflow shows insignificant monotonic trend at both watersheds. However,
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daily extreme (daily maximum and minimum) streamflow events at Bilate basin are

characterized by increasing trends at 5% significance level. No statistically significant

streamflow trend is detected at Hare watershed for annual and extreme daily events. The

prewhitened series of daily minimum streamflow of Hare is characterized by increasing trend

at 10% significance level (Table 6.4).

Mann-Whiteny-Pettitti's method employed for step change detection shows couple of

statistically weaker change points at both watersheds. The years 1999 and 1992 are estimated

to be with statistically significant yet weak change points at Bilate basin whereas the years

1990 and 1986 are detected as possible change points at Hare watershed. The change points

detected at two neighbouring watersheds show that the magnitude and temporal location of

change points vary slightly. The change points are noticeable in the mid of 1980s and 1990s.

These change points are associated to low annual rainfall years. Minor seasonal water

abstraction and other unspecified catchment condition that are not quantified in the present

context might have attributed to this recurrent and statistically weak change points. The

observed land use changes in the watersheds are not dramatic but they have been developed

gradually over the years.

Cumulative mass analysis of rainfall and runoff provides statistical information

regarding the underlying input-output relationship. When there is no significant alteration in

rainfall and runoff pattern due to various circumstances, the data points in the double mass

curve fit into a straight line with uniform slope. However, sudden break in slope line of the

mass curve is eminent when either or both of the variables undergo localized or long term

deviations from the preceding values.

Double mass curve analysis of observed annual streamflow and rainfall conducted in

the study watershed shows slight deviation in slope line of the double mass curve around the

year 1992 (Fig. 6.8). Even though the change in slope after the break point is small (0.005

MCM/mm at Bilate and 0.012 MCM/mm at Hare watersheds), yet it is indicative of increased

runoff in recent years.

Contrary to insignificant annual rainfall in the study watersheds, the maximum daily

streamflow at Alaba Kulito of Bilate basin follows statistically increasing trend since 1980.

However, average annual streamflow at both watersheds does not reveal statistically significant
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trends. Altered land use/cover condition enhanced quick storm responses with less attenuated

hydrograph. The increasing trend of maximum daily streamflow at Bilate is a characteristic

example of such less diffused streamflow in time and space.
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Table 6.4 Trend Analysis of annual and extreme daily streamflow series for the study

watersheds

Trend test statistics

Streamflow series Mann-Kendall origina series Mann-Kenda II prewhitened series

S Z Trend S Z Trend

Bilate Streamflow

Annual series 49 0.676 NS 47 0.648 NS

Daily maximum series 186 2.612 + 227 3.291 +

Daily minimum series 197 2.807 + 213 3.090 +

Hare streamflow

Annual series 27 0.536 NS 35 0.701 NS

Daily maximum series -41 0.826 NS -57 1.175 NS

Daily minimum series 68 1.398 NS 94 1.943 +

NS = No statistically significant trend + = Increasing trend
Critical Z-value is 1.96 and 1.645 at 5% and 10% confidence levels

The percentage of time a given flow magnitude equaled or exceeded over an

observation period, described as flow duration curve (FDC), explains the prevailing

relationship between the magnitude and frequency of streamflow. The behavior of historical

streamflow variability could be studied from the plot of discharge versus corresponding

probability of exceedance. It should be noted that the underlying relationship is dependent up
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on the total record length (n-values) utilized for FDC construction. Average monthly

streamflow records are divided into segments of preferably ten years and FDCs are constructed

for each segment. The intent of sub-segmented FDC is to study the relative variability in the

behavior of streamflow over three decades; namely, 1970s, 1980s and 1990s. Our analysis of

FDC is limited to Bilate streamflow with relatively long and uninterrupted flow records. The

corresponding average monthly streamflow at Bilate in the 1990s are positioned at higher level

than that of 1970s and 1980s for the same level of exceedance probability. The transition

segment i.e. 1980s is characterized by slightly wiggling FDCs (higher quantile estimates

during the high flow period and lower estimates during the low flow period) that lies between

the 1970s and 1990s (Fig. 6.9). The decadal variability in streamflow could be inferred from

such short segmented FDCs which otherwise could not be captured from long term time-trend

analysis.
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Fig. 6.9 Flow Duration Curves (FDCs) for various segments of average monthly streamflow

records of Bilate river at Alaba Kulito station

Results from twin consideration of watershed modeling for temporally varied land

use/land cover condition and statistical time series analysis of streamflow are in close

agreement to each other. The annual runoff simulated for recent land use/land cover

conditions, maintaining all other factors constant, are greater than the preceding cases. The

effect of climate variables on streamflow variability that is not explained by watershed

modeling is captured through streamflow time-trend, double mass curve and FDC analysis.
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The results obtained from these multiple statistical analysis approve the modestly increasing

trend of streamflow at Bilate watershed. It has been discussed in chapter 3 that despite annual

and monthly rainfall remain without significant trend during the analysis period, the

streamflow and lake levels in the watersheds investigated show increasing trend. Such

attribution is likely associated to the land use/land cover dynamics in the watersheds.

6.6 CONCLUSIONS

The study watersheds are under intensive catchment modification since the 1970s. Substantial

fraction of riparian forest and pristine vegetation coverwere converted to agricultural land and

grazing field. Compared to its 1976 reference period, the percentage of forest cover declined

by 68% and 40% at Bilate and Hare watersheds respectively. Meanwhile, the gross area of

agricultural land, permanent settlements and barren land were collectively expanded by

approximately 60 % of its baseline proportion at both watersheds during the same period.

The response of a catchment as a result of changing land use/land cover condition is

modeled using SWAT for three different (1976/1986/2000) temporal land use conditions. The

SWAT model separates overland flow component from total catchment water yield. The

simulated surface runoff component increases progressively since 1970s. Percentage annual

surface runoff varies from 10 to 23% at Bilate, and 16% to over twofold at Hare watersheds.

Statistical time-trend analysis reveals that annual streamflow do not show significant

monotonic trend, however, extreme daily streamflow at Alaba Kulito of Bilate catchment is

characterized by increasing trend during the analysis period. Recurrent yet statistically weaker

step change points are observed in the years 1986, 1990, 1992 and 1999 in the watersheds. The

change point years are independent of each other in two watersheds and hence they are

governed by land use attributes unique to respective watersheds that influence overland flow.

Slightly rising slope of rainfall-runoff double mass curve during post-1992 and 1994 period at

Bilate and Hare watersheds respectively supports the subtle increasing trend of streamflow that

is not fully explained by time-trend analysis. Time-segmented FDCs of monthly streamflow at

Bilate shows increased quantile estimates of high flows for similar level of exceedance

probability for recent years.

The attribution of land use/land cover to inter-annual streamflow variability is clearly

demonstrated in the present analysis. The increasing trend of observed daily maximum flow at

Alaba Kulito and slightly raised slope of rainfall-runoffdouble mass curve since 1992 supports
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the attribution of climate induced changes at Bilate catchment. There are an obfuscated time-

trend responses for other variables such as average annual and daily minimum flow at both

catchments, but not justified statistically. Annual rainfall time-trend analysis in the study

watersheds is marked by statistically insignificant trends. This has been covered by previous

studies of the authors. Therefore, joint application of statistical methods and watershed

modelling has an advantage to distinguish the underlying variability between climate change

and catchment dynamics. The effect of catchment dynamics is modeled by watershed model

and accompanying long term climate variability, if any, is explained by statistical tests. This

avoids the propensity to associate the resulting variability to either of the two (natural climate

variability and land use changes).
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CHAPTER 7

CONCLUSIONS AND SCOPE FOR FURTHER WORK

7.1 GENERAL

In the present study, an attempt has been made to explore the impact of climate change and

catchment dynamics on runoff generation at Rift Valley lakes basin of Ethiopia. Joint

application of statistical time-trend analysis in hydro-climatic variables and process oriented

watershed modeling to characterize the prevailing climate and catchment dynamics in the

watersheds is carried out. The natural fluctuation in hydro-climatic variables caused by

climatic and catchment conditions is detected by hydrologic models and the remaining

unexplained variability is manipulated through statistical time series analysis.

Time series analysis of rainfall, streamflow and lake level is investigated through

statistical models pertinent to short-term and long-term persistence. Process oriented Soil and

Water Assessment Tool is applied to explore the impact of weather and catchment parameters

on runoff at Bilate (5330 km2) and Hare (166.5 km2) watersheds. The impact of large-scale

atmospheric variables on runoff generation in the watersheds is explored using outputs from

Global Climate Models (GCMs). Downscaled and bias corrected daily precipitation and

temperature variables are used to simulate runoff for present and future climate conditions for

two greenhouse gas emission scenarios. Finally, the impacts of temporal land use/land cover

dynamics on runoff generation in thewatersheds is investigated through watershed modeling.

7.2 MAJOR FINDINGS OF THE STUDY

The major findings of the study are summarized under the following five categories.

i) Spatila and Temporal Variability of Annual and Seasonal Rainfall Over Ethiopia

The main summer season and annual rainfall exhibit significant decreasing trend in northern,

north-western and western part of Ethiopia. In most other parts of the country (approximately

77% of geographical coverage), the annual rainfall series remained without significant trend
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for the second half of 20th century. Based on the Moran's spatial analysis, annual rainfall for

the total sampling points (381 grid stations) is divided into four zones of annual rainfall spatial

similarity. Regions with high annual and seasonal rainfall distribution exhibit high indices of

temporal (rl and r2) and spatial (Moran index) autocorrelation coefficients. Atlantic

Multidecadal Oscillation and annual rainfall indices over the last half century reveal modestly

good correlation in the northern region whereas the association is weakly developed in other

parts of the country.

ii) Short and Long-Term Time Dependence of Hydro-climatic Variables

Despite less statistically significant trends in seasonal and annual rainfall events and

number of rainy days within the catchment, streamflow and lake levels have showed

significant increasing trends for more than 75 percent of events investigated. This observed

non-stationarity is variable across hydro-climatic elements that could likely be attributed to

the combined effect of global climatic variability on local climate and altered catchment

condition over the years. The estimated Hurst's coefficient (H) is greater than 0.5 for all

events of streamflow and lake level, which suggests a likely evidence of long term persistence

in hydrologic variables. The average stations total rainfall is better correlated to summer

season (June-September) nearby Indian Ocean SST whereas the association becomes weak for

annual average SST.

iii) Application SWAT model to Investigate the Impacts of Weather and Catchment

Input Parameters on Runoff Generation

The impact of topographical (30m ASTER and 90m SRTM DEM), weather and catchment

input parameters on runoff generation are investigated. Contrary to 90m SRTM DEM, the 30m

ASTER DEM resulted in spurious flow accumulation path that subsequently reduced the

watershed area by 29% and affected other basin parameters at Hare watershed. Soil and Water

Assessment Tool effectively captured the underlying hydrologic processes in the watershed

while simulating runoff at both watersheds. The simulated annual water yield is within ±3.4%

error to the observed series. Initial curve number for average soil moisture condition, deep

aquifer fraction, minimum water depth in the shallow aquifer for flow and available soil water

holding capacity parameters are found to either attenuate or accentuate the resulting runoff

more significantly than other parameters in the watersheds.
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iv) Impact of Large-scale Atmospheric Variables (GCM Outputs) on Present and

Future Runoff

Statistically downscaled and subsequently bias corrected precipitation and temperature

variables from BCCR-BCM2.0 of Norway and CSIRO-MK3.0 GCMs of Australia are used to

simulate daily runoff at Bilate and Hare watersheds. Runoff is predicted for present and two

future (AlB and A2) greenhouse gas emission scenarios. Since GCMs are operating at coarser

scales, the statistical downscaling model (SDSM) is employed to reduce large-scale

atmospheric variables to local level weather condition. SDSM, followed by bias correction,

effectively reproduced the current climate (1990-1999) conditions. Simulated future runoff

events are characterized by increased extreme events that ultimately resulted in increase in the

gross annual runoff volume from the watersheds. The simulated runoff varies from -4% to 18

% at Hare watershed and is within the range of -4 % and 14 % at Bilate watershed. Bias

corrected current and future daily precipitations are characterized by few extreme events. Such

extreme events are associated to the main rainy seasons, particularly April and September

months. There is no well defined future precipitation pattern is observed from both GCM

outputs. Future water resources planning and management could likely be affected by such

variability and hence existing design methods could expand their scope to account for these

extreme events.

v) Impact of Catchment Dynamics on Runoff

Joint analysis of watershed modeling for temporally varying land use/land cover information

and statistical time-trend analysis of streamflow is undertaken to explore the impact of altered

land use/land cover condition on runoff generation at two watersheds. The method detected the

underlying variability efficiently. The percentage of forest cover declined substantially at

Bilate and Hare watersheds during 1976/2000 analysis period. The simulated surface runoff

component increases progressively since 1970s. Percentage annual surface runoff varies from

10 to 23% at Bilate, and 16% to over twofold at Hare watersheds. The increasing trend of

observed daily maximum flow at Alaba Kulito and slightly raised slope of rainfall-runoff

double mass curve since 1992 supports the attribution of climate induced changes at Bilate

catchment.
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7.3 LIMITATIONS OF THE STUDY AND SCOPE FOR FURTHER

WORK

The present study has the following limitations.

• Spatio-temporal analysis of annual and seasonal rainfall pattern covers entire Ethiopia

whereas other parts of present study is limited to Bilate and Hare watersheds at Rift

Valley lakes basin of Ethiopia.

• Time series analysis is better resolved when available data for analysis is sufficiently

long enough. However, limited length data, in present case, constrains the

investigations and conclusions drawn might result in biases if extrapolated for

extended time period.

• The Rift Valley lakes basin embraces many perennial and ephemeral streams other than

Bilate and Hare which otherwise are not accounted during this study.

• Predicted future runoff is based on the assumption that the present catchment

conditions and respective hydrologic model parameters remain valid in future too.

However, the catchment condition may vary and model parameters would also be

affected accordingly.

No scientific study is ever complete, so is true for this case as well. Therefore, the future

studies should be undertaken to overcome the limitations of the present study.
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