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ABSTRACT 

In the areal' of chemical engineering, two aspects are very 

common. Firstly, expressing the behaviour of a system in a 

mathematical form 	( that is, model ) and secondly 'the system 

performance is. optimized for its known variables. For both 'the 

cases, one need to have optimizer which could minimize or 

maximize the function for these two aspects. 

The object of the present study was to provide the FORTRAN 

code of different optimizers (mainly non-linear optimizers ) to 

facilitate the department's software facilities. 

Three optimizers were selected namely, Complex 

method, Interior penalty function method and non-linear least 
! 

square Marquardt lethod. Two objective functions in the area of 

chemical reaction ‘ngineering field namely, parameter estimation 

and sequential experimental design,were utilized to check their 

functioning and compare performance. 

Marquardt method showed superiority over Complex method for 

parameter estimation problem. Also, Marquardt method showed that 

it can utilize the worst starting point. 

However, Complex method could be used for design of 

experiment in comparison to Interior penalty function method. 

Also, Complex method showed a tendency to reach in vicinity of 

optimum solution in for fewer function evaluations. This behavior 

could be utilized to initiate the optimization and could be 

ovtakeri the superior optimizer to achieve the optimum solution, 
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CHAPTER I 

INTRODUCTION 

Chemical engineering is 	vast 	field 	and its two areas 

modelling 	and system optimization 	proves to be very 

vital. Modelling is area where one expresses the behavior of the 

system in mathem tical form. Sometimes these models are utilized. 

To estimate constants appearing in a model and in system 

optimization to achieve better system performance, one has to 

have an optimizer which minimizes or maximizes the function for 

the both cases. 

During last two decade, the use of digital computer for real 

time data processing has formed wide application, both in 

research and industrial environment.The advent of high speed 

digital computation has also increased the application of 

optimization techniques. The significance of optimization 

techniques in this context lies in attempting to adjust some 

system's variables to improve the performance of that system, 

measured in some way. 

There is no single technique avalaible for solving all 

optimization problems efficiently. Hence a number of optimization 

techniques have been developed for solving different type of 

optimization problems. a voluminious bundle of mathematical 

optimization techniques has evolved to take advantage of immense 

capabilities of digital computers. 

Models expressing the behavior of system and the functions 

expressing the system performance are , in general, non linear in 

nature. Non linear optimization techniques are ,therefore, 



employed in such situations. Many nonlinear optimization 

algorithms have been suggested to solve these problems, but far 

more algorithms have been proposed than have been successfully 

applied. The range of applicability of existing non linear 

optimizers is ,therefore, limited. 

As implied above , the aim of present study was to test the 

functioning and performance of few non linear optimizers, for one 

or more, known objective functions. 

Three non linear optimizers, namely Complex method , 

Interior penalty function method and non linear least square 

Marquqrdt method were proposed to be studied in detail. These 

optimizers are Idiscussed with their algorithms in Chapter 3. The 

functioning and performance of these optimizers were tes- 

two objective functions dicussed in Chapter 4. 
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CHAPTER - 2 

NONLINEAR PROGRAMMING 

2.1 INTRODUCTION 

Non linear programming deals with the optimization of the 

nonlinear function subject to linear or nonlinear constraints. 
• 

The function to be minimised or maximised is called objective 

function. Objective function represents cost, throughput or the 

like. Methods (algorithms) of solving nonlinear programming 

problem are known ' as nonlinear optimizers. 

Quite a large number of algorithms have been proposed to 

solve the general nonlinear programming problem, mainly because 
1 

of, no one methed appears to be far superior to all the others. 

Nonlinear programming problems are divided into two categories, 

unconstrained and constrained problems. 

2.2 UNCONSTRAINED NONLINEAR METHODS 

Seveai methods are available for solving an unconstrained 

minimization problem. These methods can be classified into two 

broad categories as direct search methods and descent methods. 

These methods are shown in table 2.1. 

3 



TABLE 2.1 

UNCONSTRAINED MINIMIZATION METHODS 

I 
Direct search methods 

(i) Random search 

(ii) Univariate search 

(iii) Pattern search method 

(a) Powell's method 

(b) Book and Jeeve's method 

(iv) Rosenbrock's method of 
rotating coordinate 

(v) Simplex method 

IDescent me hods 

(i) Steepest-descent method 

(ii) Conjugate gradient 

(iii) Newton's method 

(iv) Variable metric method 

(Davidon Fletcher-Powell) 

2.2.1 DIRECT SEARCH METHODS 

The direct search methods require only objective function 

evaluations and do not use the partial derivatives of the 

function in finding the minimum and hence are often called non 

gradient methods. These methods are most suitable for simple 

problem involving a relatively small number of variabies.Some of 

the direct search method are being discussed here 

2.2.1.1 RANDOM SEARCH METHODS 

The random search methods are based on the use of random 

numbers in finding the minimum point, these methods can be used 

quite conveniently. Brief discussion of method is as follows: 

Let the problem to find the minimum of f(X) in 

dimensional space defined by 

11 s xi 	ui 	1.2 ....n 	 (2 . 1) 



X 

ii +ri Cul - 11 ) 

124-r2 (An 7 12) 	 (2.2) , 	• . 	. 
in) 

where li, In are the lower and upper bounds on the 

variables xi 	 In this method, sets of n random numbers 

(r1,r2,r3 	rn) are generated that are distributed between 0 

and 1. Each of set of these number is used to find a point, X, 

inside the spaceidefined by equation (2.1) as 

and the valUe of function is evaluated at this point X by 

generating a large number of points and evaluated 'the value of 

the objective function at each of these points, least value of the 

f(X) is selected as desired optimum . These methods posses the 

following advantages . 

(1) These methods can be worth even if objective function is 

discontinuous and non differentiable at some of points. 

(2) These methods can be used to find the global minimum When 

the objective function posseses several local minima. 

(3) These methods are applicable when the other methods fail due 

to local difficulties such as sharply varying functions and 

shallow regions. 

(4) Although these methods are not very efficient by themselves, 

they can be used in the early stage of optimization to 

detect the region when global minima is likely to be found. 

Once this region is found, some of more efficient techniques 

can be used to find the precise location of global minimum 

point. 
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2.2.1.2 UNIVARIATE METHOD 

In this method only one variable is changed at a time, and 

remaining points are best constant so that it can produce a 

sequence of improved approximations to the minimum points. 

It takes the f Ixed values of n-i variables at a base point Y1 in 

the iih iteraition and vary the remaining variable. Since only one 

variable is -changed the problem becomes one dimensional 

minimization problem and any of one dimensional method can be 

used to produce a new base point Xi41. The search is now 

continued in a new direction. This new direction is obtained by 

changing any one of the n-i variables that were fixed in previous 

iteration. In fact, the search procedure is continued by taking 

each coordinate direction in turn. After all the n directions 

are searched sequentially, the first cycle is completed and hence 

the entire process of sequential minimization is repeated. This 

procedure is continued untill no further improvement is possible -

in the objective function in any of n directions of a cycle. 

Theoretically this method can be applied to find the minimum 

of any function that possesses the continuous derivatives. 

However, if the function has a steep valley , the method may not 

even converge. 

2.2.1.3 PATTERN SEARCH METHOD 

Each step. :  of pattern search method comprises two kinds of 

moves: exploratory and pattern. In univariate method only 

exploratory moves are performed by changing only one variable at 

a time, a procedure known to be often very inefficient when 

applied to optimization problems. For this reason Hook and 
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Jeeves(1961) suggested that the exploratory moves be followed by 

pattern moves and direction of search is determined from result 

of exploratory move. The search begins at an arbitrary chosen 

starting point ,and with prescribed step length 	> 0 in each 

of the coordinate directions xi , i = 1,2 	 

Two well known pattern search methods are Hook and Jeeves's 

(1961) method and Powell's (1964) method. 

2.2.1.4 SIMPLEX METHOD 

The simplex method is based on the comparison of the 

objective function values at (n + 1) vertices of a simplex. A 

set of (n + 1) equidistant points-in n-diMensional space forms a 

regular simplex' This simplex moves towards the optimum point 

(Molder-Mead 1965). This movement is achieved by three basic 

operations: reflection, contraction and expansion. 
I 

REFLECTION 

Initially and at times during convergence, a new point is 

generated that is a reflection of the worst point through the 

centroid of all other points. If the reflection point is better 

than the current best point, it replaces the current worst point 

and an expansion step is tried. If the reflection point is worse 

than the current best point, the expansion is bypassed and 

reflected point is compared with all other points except the 

worst. If the reflection point is better, it replaces the worst 

point. 
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The reflection of the worst point, Ph is denoted by P*, and 

its coordinates are defined by relation 

P* 	( 1 + a ) P 	- a Pn 	 (2.3) 

where P is the centroid of all points excluding Ph and a 

is a positive constant, the reflection coefficient Thus P* 

lies on the line joining Ph and P, but on the far side of new 

simplex. 

CONTRACTION 

If the reflection is worse than all points except the 

current worst point, a contraction is generated by selecting a 

point between the worst point and the centroid. This second trial 

at a new point P** is defined by, 

pit* = 	+. (1 - 	P 	  (2.4) 

where 3 the contraction coefficient lies between o and 1. 

If the contraction fails to improve the situation the size of 

simplex is reduced by moving all the points half the distance 

toward the best point. 

EXPANSION 

If the reflection point is better than the current best 

point, an expansion step is tried This is done by extending the 

reflection point in the direction between it and the centroid. 

This expansion point Poo is defined by relation 

Poo = po"! + ( 1 - E ) P 	 (2.5) 
where T 	its the expansion coefficient and is greater than 



unity. If the 'expansion point is successful, it replaces the 

reflection point, otherwise the reflection point remains in the .  

simplex. In either instance the simplex procedure is restarted. 

The programmed procedure is terminated when following 

condition does satisfy. 

(Yi -Yr "1- s c E 
1=1 
where E = Preset value greater than zero 

and y = 2 yi in 	  (2.6) 
i=71 

Helder and Mead found that useful values for coefficients 

a,0 and T were : a = I, z = 2, 0 = 0.5 

The simplex method has a wide application since it does not 

make any assumtions about the objective function except that the 

function is continuous . it may be useful when the locations of 

minima are needed with a limited accuracy and final rapid 

convergence is not essential. Some disadvantages of method are: 

(1) There Is a possibility that the simplex may collapse 

into 	subspace and will not find the solution in the 

desirable space of all the variables. 

(2) It can also shrink drastically in a steep valley and 

stop the procedure prematurely. 

(3) Computational efficiency depends upon choice of 

coefficient a,3 and z and on the size of the initial 

simplex. 

(4) No direct use is made of the information acquired in 

previous steps. 

9 
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2.2.2 DESCENT METHODS 

The descent techniques require, in addition to function to 

evaluations, the evaluation of first and second derivatives of 

the objective function. Since more informations about the 

function being, minimized is used,the descent methods are 

generally more efficient compared to direct search methods.The 

descent methods are also known as gradient methods. Some of the 

descent methods have been discussed in detail in following 

sections: 

2.2.2.1 STEEPEST - DESCENT METHOD 

In this method negative of gradient vector is used as a 

direction for minimization. This idea was first introduced by 

Cauchy (1847). In these methods a trial point (Xi) is selected 

and optimum point is sought by the iterative procedure using 

following equation. 

Xi +1 	+ 	Si 	 (2.7) 

Si = - v fi 	(2.8) 

where Ails optimum step length along search diration Si = 

It can be detLmined using any one dimensional method of 

minimization. Process is terminated if the components of search 

direction are less than preset small quantity E > 0. 

The steepest descent technique is a simple technique 

involving relatively little computational work per step. Each 

iteration is independent of the previous iteration, hence method 

is relatively economical in computer storage. The method may 



converge to a solution even from a poor strating point. 

Unfortunately method has several short comings. Very short step 

may be produced accompainod by sharp changes in the gradient 

f(x). This is frequently refered to as -zigzagging-  and implies, 

of course, slow convergence and low computational efficiency 

inspite of the small amount of work per step. Furthermore 

steepest descent technique depends on the variable scaling (to 

scale the original variable used in method ). 

In conclusion it is recommended that steepest descent method 

be used only as an auxiliary technique in combination with other 

minimization technique. 

2.2.2.2 CONJUGATE GRADIENT METHOD 

The convergence characteristic of the steepest descent 

method can be greatly improved by modifying it in to a 

conjugate gradient method. It has shown that any minimization 

method that makes use of the conjugate direction is quadratically 

convergent. This property of the quadratic conguence is very 

useful because it ensures that the method will minimize a 

quadratic function in n steps or less. Since any general function 

can be approximated reasonably well by a quadratic near the 

optimum point, any quadratically convergent method is expected to 

find the optimum point in a fixed number of iterations. This 

method was first suggested by Fletcher and Reeves (1964). 

The conjugate gradient methods have the properties of first 

order gradient combined with quadratic convergence due to its 

conjugacy of the descent directions. They have overall good 

convergence properties and the Fletcher-'Reeves method has also'a 



relatively modest requirement for computer storage. The 

computer codes corresponding to the'methods are simple. Normally, 

more than one cycle of n steps is required, and in resetting the 

computation all information collected in previous iterations is 

discarded. The use of this mehod in preference to the variable 

  

metric technque (discussed next subsection} is recommended only 

if computer storage economy is more important than computational 

efficiency. This method should be used however,in preference to 

the first order gradient order method. 

2.2.2.3. VARIABLE METRIC METHOD 

A significant developement in area of descent techniques was 

made by Daviden [1959] and extended by Fletcher - Powell [1963] 

this work led to the so called - Variable metric " method of 

minimization. 

The variable metric typically has the following algorithm 

structure. 

(1) Given xi and positive definit matrix Hi (Initially Hi = 

I, n dimensional identity matrix) set k=1 and compute 

gradient vectorNif(xl) 

(2) Calculat the search direction Sk using following 

formula 

Sk = H HkT vf(100 	 (2.9) 

(3) Find the optimal step tenth 4in the direction Sk and 

set 

)61+i =j Xk 4-A5k 

(4) Test the new point Xic+1 for optimality. If Xic+i is 



, compute 
Vt ( 	) 

and place Ho =I 

1 
Determ ine 	by 
minimizing 

Xk )- XYq-lk vf (X4 
by a unichmensional .40  
search with respect to 

1  
4Xk= - ›‘*Hk vfXk 

Xk +1 =Xk 4 AXk and 
compute of ('Xk+1) 

= k+1 

NO 

yes 

top)1  

Fig.2.1. Flow chart for variable metric method 



optimal terminate the procedure, otherwise go to step (5) 

(5) Update the H matrix as 

lik*1 = ilk + Mk - Nk 

Where 	Sk Skt 
Mk 

(Mk Qk ) (MkQk 
Nk 

QkT Ilk Qk 

and 	= Vf(Xk+1) - Vf(Xk) 

(6) Set the new iteration number k = k+I and go to step (2) 

The Flow_chart for the method is shown in figure 2.1 
1 

The variable metric techniques have many of advantages 

without having some of their disadvantages. The advantages 

include fast convergence near a minimum and fitness for a 

quadratic function. Due to symmetry of Hic, the methods are also 

comparable in their computer storagee requirements. Comparison 

with other quadratically convergent methods show that variable 

metric methods perform better for general non quadratic 

functions. Thus quadratic convergence alone does not indicate the 

full strength of a method. It is likely that fast convergence 

of the method when applied to a general nonquadratic function 

due to fact that Fb approximately satisfies Ilk Qtic-1 	= AX1c-1 

which is analogus to A71  Qk-1 =AU-1 for quadratic functions. 

The variable metric methods avoid the- computation of second 

order derivaties for the objective function. The methods are 

basically stablL They generate directions of descent because the 



matrix Mc is positive definite. 

2.3 CONSTRAINED METHODS= 

There are many techniques available for the solution of a 

consrained nonlinear programming problem. All these methods can 

be classified into two broad categories, namely direct methods 

and indirect methods as shown in table 2.2. 

TABLE 2.2 

Constrained Optimization Techniques 

1 
Direct Mehods 

(i) Heuristic search method 
The complex method 

(ii) Constraint approximation 
The cutting plane method 

Indirect Mehods 
(1) By the transformation of 

variables 

(ii) Penalty function methods 

(iii) Methods of feasible 
directions 

(a) Zoutendijk's method 

(b) Gradient Projection method 

Interior 	Exterior 
penalty 	Penalty 
function 	function 
method 	method 

2.3.1 DIRECT SEARCH METHODS 

In the direct search methods, the constraints are handled in 

explicit manner .Brief discussion of all three categories of 

direct search method is being discussed here. 

2.3.1.1 HEURISTIC SEARCH METHODS 

The heuriStic search methods are mostly intutive and do no 

have much theortical support. Complex method is based on th 

heuristic search. Detailed discription of the complex method ha 



been given in next chapter. 

2.3.1.2 CONSTRAINT APPROXIMATION METHODS 

In these methods, the nonlinear objective function and the 

constraints are linearized about some point and approximating 

linear programming problem is solved by using linear programming 

technique (L P) (simplex method). 

The resulting solution is then used to construct a new 

linear approximation which will be solved by using LP techniques. 

This procedure is continued um-till the specified convergence 

criteria is satisfied. There are two methods, namely the cutting 

plane method and approximate programming method which work on 

this principle. 

Methods have following advantages and disadvantages. 

ADVANTAGES: 

1. Direct extension of the simplex method (linear 

programming) therefore efficient for convex programs 

which are nearly linear. 

2. Relatively little work per step. 

3. Simple computer program. 

4. Some problems with an infinite number of constraints can 

be solved. 

DISADVANTAGES: 

1. Methods can not be applied to concave problems. 

2. Intermediate solutions are not feasible. 

3. Rather slow convergence, especially if the minimum is not 

16 



in a vertex. 

4. Linear subprograms will consist of near dependent 

constrains which could lead to serious rounding-off 

errors, especially if the MiTtraliMUM is not in a vertex. 

5. Rather inefficient for problems with linear and a 

nonlinear possibly quadratic, objective function. 

2.3.1.3 METHODS OF FEASIBLE DIRECTION 

The methods of feasible directions are those which produce 

an improving successive of feasible vector xi, by moving in a 

succession usable feasible directions. A feasible direction is 

one along which at least a small step can be taken without 

leaving the feasible domain.A usable feasible direction is a 

feasible direction along which the objective function value can 

be reduced at least by a small amount. 

Each iteration consists of two important steps in the 

methods of feasible directions. The first step consists of 

finding a usable feasible direction at a specified point and 

second step consist of determining a proper step length along 

usable feasible direction found in the first step. The 

Zoutendijk's method of feasible directions and Rogen's gradient 

projection method are considered as particular cases of general 

method of feasible directions. 

Feasible directions methods offer an efficient way of 

reducing the nonlinear programming problem to a sequence of 

linear programming problems (if a linear normalization is used). 

From pratical point of view, they offer the additional advantages 

of providing feasible intermediate approximations to the 



solution. The methods have been implemented to solve practical 

problems of considerable size and to solve practical problems of 

considerable size,and the methods proved to be successful. The , 

following are disadvantages of the methods. 

(1) A rather complicated computels program. 

(2) Inability to handle the equality constraints without special 

devices. 

(3) Determining of the step length needed, resulting in more 

work per step. 

2.3.2 INDIRECT SEARCH METHODS 

In indirect search method the constrained problem is solved 

as a sequence of unconstrained problem by incorporating 

constraints into objective function. Different methods of this 

category is discussed below: 

2.'3.2.1 TRANSFORMATION OF VARIABLES 

Some of the constrained optimization problems have their 

constraints expressed as simple and explicit functions of the 

decision variables. In such a cases it may be possible to make a 

change of .vakiables such that constrainst are automatically 

satisfied. In some other cases, it may be possible to know in 

advance which constraints will be active at the optimum solution. 

In these cases,the information that, paticular constraint 

equation gi(x)=0,can be used to eliminate some of the variables, 

from the problem. 

Use of transformation of variable is that the solution of 

constrained problems is eased considerably by eliminating the 



constraints. So that one of the more powerful methods of for 

unconstrained optimization, e.g. that of Powell (1964), may be 

employed. 

The transformation have successfully been used again in 

conjuction with Powell's method for problems with up to twenty 

independent variables. These problems arose from a " design of 

experiments" study . The aim in each ease was to minimise the 

size of confidence region of the estimates of parameters in the 

assumed model. 

2.3.2.2, PENALTY FUNCTION METHODS 

Fiacco and McCormic (1968) have developed the penalty 

function method for solving constrained optimization problems. In 

this approach a penalty term reflecting the constraints 
F 

violations multiplied by a scalar weight is augmented to the 

actual objective function. If objective function is minimized for 

a sequence fo decreasing penalty weights, the solution of the 

successive unconstrained problems approach the constrained 

solution. 

There are two type of penalty function methods the interior 

penalty function method and the exterior penalty function method. 

In both type of methods, the constrained problem is transformed 

into a sequence of unconstrained minimization problems such as 

that constrained minimum can be obtained by solving the sequence 

of unconstrained minimization problems. 

In the interior penalty function methods, the sequence of 

unconstrained minima lie in the feasible region such that it 
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converges 'to constrained minima from the interior of feasible 

region. In the exterior methods, the sequence of unconstrained 

minima lie in the infeasible region and converges to the desired 

solution from the exterior of the feasible region. 

Methods have following advantages and disadvantages. 

ADVANTAGES 

(1) Applicable to the nonconvex problems including those 

with nonlinear constraints. 

(2) Very efficient for unconstrained problems as well as 

for the problems with a few highly nonlinear 

constraints. 

(3) Good convergence can be expected if penalty parameter 

(rk) are well choosen and an extrapolation device is 

used. 

(4) Intermediate solutions feasible. 

(6) Relatively simple computer program. 

DISADVANTAGES: 

(1) A special structure of the constraints are (linearity 

or near linearity or partical linearity) destroyed, 

even 7onstraints like Xi.?:0 are not dealt with in a 

speial simple way. 

(2) Much work per step. 

(3) Rounding off problems may some times arises as penalty 

parameter tends to zero and simultaneously constraints 

tends to infinity. Practical experiments are very 

promising in this respect, however. 
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(4) No upper bound for the value of objective function 

available. 

(5) Problems with an infinite number of constraints can not 

be solved with the methods in their present form. 
1 

2.4 ONE DIMENSIONAL MINIMIZATION METHODS 

The aim of one dimensional methods is to find optimum step 

length in current search direction in multivariabies problem. 

several one dimensional minimization methods are available, which 

are given belowJ 

(1) Dichotomous (2) Fibonacci method (3) Golden section 

(4) Interpolation methods 

Interpolation methods divided into two categories ,requiring 

no derivatives (Quadratic ) and requiring derivatives (Cubic ). 

Interpolation methods were originally developed as one 

dimensional search within multivariable optimization technique, 

and are generally more efficient compared to Fibonacci type 

approaches_ For present study cubic interpolation method has been 

selected. Iterative steps of method are given below 

(1) start with Ao and find a point A= B at which slopedf/W% is 

positive, wheere dfidA =f' = df/dN(X+ )\S)= ST vf(X+AS). The point 

B can be can be taken as first value out of to, 2to, 4to 	 at 

which f' in nonnegative , where to is a preassigned initial step 

size. 

(2) Cubic equation h( )= a+bA +c 	+ (0 is used to 

approximate the function f(A) between A and B. find the value of 

fa, fa, l'a, f'n in order to calculate a,b,c and d in above 

equation. 
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Fig.2.2 Flow chart for cubic interpolation method. 



	

b = 	A27 f'a +2 A B Z]/(A-B)2 

	

= 	( A+B )Z 4B f'a + Af'a j/(A-B12 

d = L 2 Z + f'a +f'B ]/3(A-B)2 

where Z = -3( fa - fp )/ (B-A) + f'a + 

( 3) Calculate ,\ using using following eqation. 

A= A + (f'a + Z ± Q )(B-A)/( f'a + 	+ 2 1) 

where Q = (Z2 -VAVB)k 

  

(4 ) Check convergence. Following convergence criteria can be 

used. 

(h(3■*) 	f()))/f()*) 	< El 

Flow chart for implementing the method is shown in fig 2.2 

2.5 METHODS FOR MINIMIZATION OF SUW OF SQUARES 

These are special methods for minimization of functions 

having form of a sum of squares. Function of this type arises in 

a number of applications such as solving a system of nonlinear 

equations, curves fitting or regrssion analysis. Brief discussion 

of the method is given below. 

The objective funtion defined as 

M(X) = Ef(X))T f(X) 

where fi(X), i=1,2, 	m are nonlinear functions of X, it 

is assumed 	that 	m > n and ' problem of minimizing, 



M(X)=[f(X)]T f(X) is reduced to a linear problem by expanding 

f(X) in a Taylor series about the current iteration point Xk and 

ingnoring the nonlinear terms 

f(Xk  4- 6  Xk ) 	f(Xk) 	( XI% ) LXic 

where J(Xk) is the Jacobian matrix with elements 

afi(Xk) 

?Xj 

The normal equations corresponding to this linearized 

problem are 

[J(Xk)]T [J(Xk)]&Xk = -[J(Xk)]T f(Xk) 

and yield the connection vector AXk 

Iteration steps are given below: 

(I) Compute J(Xk) 

(2) Form [J(Xk) ]T J(Xk) = T(Xk) 

(3) Compute A Xk from T(Xk) AXk = -[J(Xk )]T f (Xk J 

(4) Set Xk +i = Xk 	,61(k, k = k + 1 and repeat from step 1 

till convergence is achieved. This method is called Gauss methc 

As [T(Xk)]-1 is positive definite, algorithm is 

potentially divergent. A new method 'called Descent have 

been proposed 1 to overcome the difficulties of Gauss's 

method. 

The method is decent - that is LINXkiTNff(Xk) < 0 

since V M(Xkl) = 2[J(Xk)]T f(Xk) 



so that 	&Xi( Tr ,v M(Ck) = 2Ef(X.k )11' J(X.) 	LT(Xk )1-1 

= [J(Xk)]T f(Xk) 

and [ A (Xk )]r 	 < 

The modification requires a search along the correction 

vector aXk to find Xmin satisfying the min M(Xk AXk). Now new 

approximation to the solution is (X1(41")=Xk+)\min Xk. 

This modification of Gauss method is undoubtley better than 

the unmodified method. Still it has a serious weakness. Numerical 

experiments performed with the Gauss method indicated that 

director A (Xk) gives in step 3 frequently makes largest angle 

(nearly 900) with the steepest direction -via = -2[J(Xk)1T .010 

This result in a high oscillatory path of iterations and very 

slow convergence. Levelberg (1944) and Marquardt (1963) attempted 

  

to ovecome thin difficulty by introducing a new parameter X> 0. 

2.6 DEFINITION OF OPTIMIZATION PROBLEM 

A general statement of the optimization prblems is as 

follows. 

objective::: x4  
X2 

Minimise f(X) 	X =  

Xn 
subject to 

equality constraints 

gj (X) = 0 j=1,2, 	Bine 

inequality constraints 

gi(X)?_-.0 j =• Moc+1, 	 

Problem of this type is called nonlinear programming 

problem. 
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CHAPTER 3 

METHODS STUDIED 

Keeping in view the wide applicability and more advantages 

of methods two constrained nonlinear algorithms and one nonlinear 

least square method have been studied in detailed. 

Methods are 1 Complex method , Interior penalty function 

method and Marquardt. method. 

3.1. COMPLEX IIIET OD 

---The complex method first introduced by Box (1065) AB similar 

to the simpleX method ( in unconstrained nonlinear minimization), 

is based on heuristics search .and can handle the constrained 

problems. The method searches for the minimum value of the 

objective function f(x) in a feasible region defined by lower and 

upper bounds (explicit constraints) bi 	xi < ui, i=1,2, 	 

and 	constraints function gi (x) 	o i=1,2,....m (implicit 

constraints). 

ITERATION STEPS 

(1) This method uses a set of k ni-1 points of which one 

point is supplied as a starting point satisfying all the 

constraints. the remaining k-1 points are obtained by the use of 

random numbers Ri in the relation 

Xi = bi 	FII (ui -bi ) 

1 
Ri is distributed ..0YtYinterval (0,1). These points satisfy 

the lower and upper bounds constraints. 

2G 



If some implicit constraints are violated then trial point 

is moved half way toward the centroid of the remaining already 

accepted points. The centroid Xo is given by 

I 
Xo = (3.1) 

s 	1=1 

	

where Xi,   Xs are available feasible points. 

Shifting toward centroid is repeated till a feasible point is 

obtained and by 'repeating this procedure the requisite number of 

k-1 points in the feasible region can be generated. 

(2).  The objective function f(x) is evaluated at each vertex 

and the vertex Xh is defined as , at which function f(Xh) 

assumes the largest value out of the k values of f(x). Reflection 

of Xh is taken by computing Xr using following equation. 

Xr = (1+a ) Xo - a Xh, a % 1   (3.2) 

where X0,is centroid of remaining vertices and given as 

I k 
Xo = 

	

	Xj 
k-1 j=1 

j±h 

 

(3.3) 

 

Box found that . a = 1.3 was a good choice of the 

overreflection coefficient, but this choice is not critical. The 

use of over "reflection coefficient a>1, compensates for the 

tendency of the complex to shrink, which is caused by moves 

toward the centroid. 	Check the point for feasibility .Evaluate 

the function at reflected point L.-. 
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(3) If f(Xi) C f(Xh) and Xr is feasible )  the point' Xr 

replaces Xh an then return to step 2. If f(Xr) 	f(Xh), the 

  

overreflection coefficient is reduced a: = a/2, and the new Xr 

is computed and tried. This is repeated (if necessary) untill a s 

t, where t=10-6 is a satisfactory value. If the relation f(Xr) 

< f(Xh) does not hold even for that small'value of a, then the 

projected point Xr is replaced by original value. of Xh and the 

second worst vertex is reflected instead. This process keeps the 

complex moving toward the minimum unless the centroid is very 

close to it. If a reflected vertex is not feasible, then this 

point is moved half way toward the centroid until! it becomes 

feasible. The method will progress so long as the complex has not 

collapsed into its centroid. 

TERMINATION CRITERIA AND CONVERGENCE 

The process is terminated when the complex shrinks to an 

acceptable small size or if 

1/2 
k 	2 

-4--L Ef (X0- f(Xj)] 	< E 	 (3.4) 

Where Xo 
1 k 
— 2 Xj 
k j=1 

  

   

where E > 0 is a predetermind small number. It is important 

for convergence that the complex retain its full dimensionality. 

Box successfully applied k = 2n as the number of vertices of the 

complex for the problems having n s 5. 



DISCUSSION 

The complex method is to some extent scale independent', 

since in initial, complex is roughly scaled to the order of the 

problem variables. No use is made of the first derivatives of 

f(X) or gj(X), hence there is relatively little work per step. 

The computer code is very simple and required only a moderate 

amount of the storage .Flow diagram for method is shown in fig.3.1 

The method becomes inefficient as the number of variables in 

crease. . Another disadvantage is that it is incapable of solving 

problems with equality constraints. 

3.2 INTERIOR PENALTY TUNCTION METHOD 

Penalty methods solve the nonlinear programming problems by 

solving a sequence of unconstrained problems by incorporating 

the constraints. 

Let us consider.a - general nonlinear programming problem. 

	

minimize ,  f(X)   (3 5) 

subject to 

	

ga (X) s 0, 	j = 1, 2, 	m (3.6) 

This problem is converted in to an unconstrained 

minimization problem by constructing a function of the form 

m 

	

0k = 0(X,rk)H= f(X) 	rk 2 Gj tki(X)) 	 (3.7) 
J=+ 

where Gj is some function of the constraints gj , and rk is 

a positive constant known as penalty parameter. The second term 

on the right side of the equation (3.7) is called penalty term. 

If the unconstrained minimization of the 0 function is repeated 

for a sequence of values of penalty parameter rk(k=1, 2, ...), 

TO 



the solution may be brouht to converge to that of the original 

problem stated in equations (3.5 and 3.6) for rk = 0. 

The penal ,y function formulation for inequality constrained 

problems can, b divided into two categories, namely the interior 
' 

method and exterior.-.method: In -the interior penalty method some 

of popularly used forms of Gj are given by 

1 
Gj =   (3.8) 

gi(X) 

Gj = log [-gj(X)3 	 (3.9) 

The penalty term is chooser such that its value will be 

small at the point away from the cosntraints boundries and will 

tend to infinity as the constraint boundries are approached. 

Hence the value of 0 function also 'blows up' as the constraint 

boundries are approached. 	Thus once the unconstrained 

minimization of O(X, rk) is started from any feasible point X, 

the subsequant points generated will always lie within feasible 

region since constraint bOundries act as barrier during 

minimization proceSs. This is the reason why the interior penalty 

function method his also known as barrier method. 

In interior method, the unconstrainted minima of Ok 

converge to the solution of equation (3.5) as rk is varied in a 

particular manner. 
1 

The 0- function •defined originally by Cassol (1961) is given 
as, 

0(X, rk 
m 1 

= f(X) - rk Ea    (3.10) 
j=1 gj(X) 



it can ibe seen that the value of the function 0 will always 

  

be-- greater than f(x) since gi (X) is negative for all feasible 

points X. if any constraints gi(X) is satisfied critically the 

vlaue of 0 tends to infinity. It is to be noted that the penalty 

term in equation (3.10) is not defined if X is not feasible. 

This introduces serious short comings while using equation 

(3.10). Since this equation does not allow any constraints to be 

violated, it requires a feasible starting point for the search 

toward the optimum point. To solve unconstrained problem variable 

metric method (Davidon - Fletcher - Powell) is used and to 

determine the optimum step length in current search direction 

cubic interpolation method (one dimensional method) is used. 

Iteration, procedure of this method is as follows. 

ITERATION STEPS. 

(1) Start !with -an initial feasible ppint'Xi satisfying the 

constraints and strict in equality sign that is 

gj 	) 	< 0 	for 	j=1, 2, 	m 	and an initial 

value of ri > 0 set k = 1. 

(2) Minimize 0(X, rk) by usimg above mentioned unconstrained 

and one dimensional minimization methods and obtain the 

solution X*k. 

(3) Tett whether X*Is is the optimum solution of the original 

problem. if X*k is found to be optimum terminate the 

process, other wise go to next step. 

(4) Find the value of the next penalty parameter 

rk4i, as 



I Set k 

oi  Construct gh(X,r 
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Fig. 3.2 . Flow chart for the interior 
penalty lunction method 
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riva = c rk   (3.11) 

where c < 1 

(5) Set the new value of k = k 1 take the new starting as 

Xi = X*k and go to step 2 

The steps are shown in the form of flow chart in figure 3.2. 

The interior penalty method has been extensively studied and 

successfully applied to a number of practical problems. It is 

applicable to non convex problems and can handle nonliner 

constraints. The method gives feasible intermediate solutions and 

a final solution with desired accuracy, if a sufficiently small 

penalty parameter is used. The disadvantages of method are: 

(1) Any special structure of constraints (e.g. linearity) is 

destroyed. 

(2) The rapid change in the vicinity of the boundary 

complictes the one dimensional optimaization problem 

which has to be handled by special techniques. 

(3) Close tO boundries the term gj(X) are very large and at 
1 

the final phase of minimizations,,rk 	0, which causes 

the function f(X,rk) to be very sensitive to variable 

changes and introduces round off errors. 

In general this method is considered suitable for solving 

constrained optimiZation problems with few highly nonlinear 

constraints. If, however, the objective function to be minimized 

subject to many linear constraints, it would be preferable to use 

a method that handles the linear constraints seperately. 



3.3 MARQUARDT METHOD 

Least square methods have number of applications such as 

that of -solving a system of nonlinear equations, curve fitting 

or regression analysis. Most of the algorithms of least square 

estimations of nonlinear •parameters use the two type of 

approaches. In one approach, the model is expanded as a Taylor 

series and improves the several parameters calculated at each 

iteration • on the assumption of local linearity. in other 

approach, various modification of the method of steepest descent 

have been used. Marquardt (1963), Levenberg (1944). Both methods 

have certain disadvantages.. Taylor series method because of 

the divergence of successive iterations and the steepest descent 

method because of slow convergence after the few iterations. 

Marquardt (1963) proposed a new algorithms to overcome above 

mentioned difficulties.: The method perform the optimum inter 

polatio'n betweenI the Taylor series method and gradient method. 

STATEMENT OF PROBLEM 

Let the modl to be fitted to the data, be 

E(Y) = f(xl, X2, 	xm; Pa, P2, 	 Ok = f(X,13) (3.12) 

where Xi, X2, 	Xm are independent variables. 

01, 	132,... 

the expected value of the dependent variable y, 

Let data point be denoted by 

(Yi , X1i, X2, 	Xmi) 

Least square function to be ndnimized is defined as 

0 = E 	-•)(i)2  
1-1 •7- H 	 (3.13) 

. Ok are the values- of k parameters and E(y) is 



where Yi is the value of y predicted by. equation at the ith 

data point. 

It is well known that when f is linear in 0 & the contours 

of constant 0 are ellipsoids, when f is nonlinear the contours 

are distored according to severity of nonlinearity. Even with 

the nonlinear models, 	however, the .contours are nearly 

elliptical in the immediate vicinity of the minimum of 0. 

METHODS IPJ qURRENT USE 

–The method–  based upon expanding f in Taylor series is as 

follows 

writing the Taylor series and considering only first 

derivative through the linear terms. 

k afi 
< Y (Xi , 134-6t ) > = f (Xi , b) + 2 (—) (6t   (3.14) 

j=1 3bi 

In above equation 0 is replaced notationally by b, the 

converged value of b, being the least square estimate of 0. 

"The vector 6t is a small correction to b with subscript t used 

to designate 6 as ciculated by Taylor series method". The 

bracket <> is used to distinguish predicticft based upon the 

linearised model form those based upon the actual nonlinear 

model. Thus, the value of 0 predicted by (3.14) is 

! 

<0> = 2 	<Yi>)2   (3.15) 
i=1 

Now, 6t appears linearly in equation (3.14) and can 

therefore be found by the standard least square method of setting 

a‹0› /36; = 0 	. j. Thus (it is found by solving 



Abt 	g   (3.16) 

where Akxk = PTP 

Pnlk = 	 , 1-  1, 2, 	n, 3=1, 2, 	 
21 bi 

and 
afi 

gkx1 = 2 (Yi - fi) 	) = PT (Y-fo)   (3.17) 
i=1 	abi 

In practice it is found helpful to correct b by only a 

fraction of 6t, otherwise extrapolations may be beyond the 

region where f can be adequaetly reperesented by (3.14) and would 

cause divergence of iterates. 

  

The gradient methods by contrast simply step off from the 

current trial value in the direction of negative gradient of 0, 

thus 

	

ZO 	90 
6"g,  =-( 	,  

	

Obi 	,3b2  
 3.18 

abk 

Various modified steepest descent methods have been employed 

to compensate partially for the typically poor condition• of the 0 

surface which leads to very slow convergence fo gradient method. 

With these gradient method as with the Taylor series method it is 

necessary to control the step size carefully. 

CONSTRUCTION OF ALGORITHM 

In Marguardt method a new parameter X called 

interpolation factor is introduced. Now modified equation at rth 

iteration becomes; 



(A*r Jr. 	1) 6*r = g*r ,   (3.19) 

Where 

ajk 
A* = a*jk =   (3.20) 

4E0 j x akk 

gj 
g* = g* =   (3.21) 

4ajj 

	

6*j = 6j x 4ajj   (3.22) 

where j = 1,i 2, 

This choice of scale causes the A matrix to be transformed 

into matrix of simple correlation coefficients among the 

aid obi! 

This choice of scale has in fact, been widely used in 

linear least square problems as a device of improving the 

numerical aspeCtS of the computing procedure. 

This equation is then solved for 6*r. Then (3.22) is used to 

obtain 6r. Now new trial vector given is as: 

br 	= br 	6r 	  (3.23) 

will lead to a new sum of squares 0(r+1). Equation (3.12) and 

(3.13). It is essential to select Ay such that: 

+1 	< Stir   (3.24) 

It has r.)e 
I
n proved that a sufficiently large Ar  always 

can be found that equation (3.24) will be _satisfied, unless br is 

already at a minimum of 0.' Some form of trial and error is 

required to find a value of )\). which will :lead to satisfaction 
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1 , 
of (3.24) and will produce rapid convergence of the algorithm to 

the least square values. 

At each iteration one desire to minimise the 0 in the 

maximum neighborhood over which function will give adequate 

representation of the nonlinear functions. Accordingly, the 

  

strategy for choosing Ay  =St seek to use a small value of kr  

when ever conditions are such that the unmodified Taylor series 

method would converge nicely. 

Strategy is as follows 

Let V > 1 .  

Let \7-Idenot • the value of 	from the previous iteration 

Initially Let 	-= 10- 21 ., say 

Compute 0( )\y_i  ) and 0(Ay-1/ ) 

(i) If 	0()%y- t/' y )5 	, let 	%-t- 	)r-I/V 

(ii) If 	(j0,1)' y  ) > 	, and 0( 1-- ) 	r , let X Y 	I 

(iii) If 	(Ar-i% 	) > ybr , and ib( Ay., ) > sbr , increase 
1 

by 'Budee sive multiplication by until! for smallest w, 

( 	• 	) 	Sbr 

let AY = XT.-1 V 

By this algorithm„ always a feasible neighborhood is 

obtained. The iteration is converged when 

16,5(r)) 	
< E 
	

for all j. 
t bj I 

E>0, say 10-5  and some 

arbitrary; y = 10 has been 

For some suitable small value 

suitable t, for all j. The choice P is 

found in practice to be a good choice. 
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Fig. 3-3 Flow chart for the marquardt method 



MODIFICATION IN ALGORITHM 

T. Tabata and 11.Lto (1976) modified Marquardt method taking 

into account .five different values of V . In applying the 

Marquardt's' algorithm, the method of choosing the value of 

parameter A which controls the interplation of algorithm 

between steepeSt descent method and Taylor series method has a 

considerable effect on the rate of convergence for some classes 

of problem. Rosen (1960), Ono (1971) 

According to Marquardt's method, 	N varies from one 

iteration to next by multiplying or dividing the previous by the 

constant facto r 10, that is, the choice is made with a 

logarithmicalp constant step. To change the size of the step, 

the----  following -five- factors are provided in place of single 

factor 10 : 	91= 1.'33, 	1)1=1.75, 	v.3 7-3.16, 	114= 10 and )4=100. 

One of these factors Yi is selected for each iteration defiending 

upon the history of minimization. The history is defined as a 

sequence of results of comparing the sum of the squared 

residuals 0 with its least value so far obtained and consists of 

the latest three results except at the earliest iterations. The 

scheme used in present study to determine the value of subscript 

i of the 11- factor is givin in Table 3.1. 

TABLE 3.1 

Scheme for determining the value of i of theY.factor from 

previous value io (D and I) stand for the decrease and increase 

respectively, of 0, and DI, for example means that 0 was 

decreased and then increased at the latest two iterations. 



Conditions 

History 	 lo 

At the start 
	 4 

DI, ID 
	 10-1 

DDI, IDI, IID 
	

ioil 	io-I 

DDD 
	

104:5 	.i0+1 
1 

III 
	

io<3 	3 

All the other 
cases 

	

	 10 

1 
1 
i 	• 

The algorithm described shares with the gradient methods, 

their ability to converge from an initial guess which may be 

outside the region of convergence of the other methods. The 

algorithm shares with the Taylor series method the ability to 

close in on the converged values rapidly after vicinity of the 

converged values has been reached. Thus the method combines the 

best features of previous methods while avoiding their most 

serious limitations. Flow chart for Marquardt method is shown in 

fig. 3.3 

The listing of computer programs are available in Chemical 

engineering department of University of Roorkee,Roorkee. The 

features of the computer programs are given in Appendix -A 
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CHAPTER 4 

OBJECTIVE FUNCTIONS STUDIED 

I 
To check the reliability and functioning of the algorithms 

were tested for' different non-linear function. These functions 

were selected for the requirements in the practical area of 

practical engineering field. 

4.1 TESTED OBJECTIVE FUCTIONS 

As the algorithm code were not developed but were adopted 

from the standard text book (Kuester and Mize (1973) and Rao 

(1987)) These fortran codes carer initially tested for the known 

function with the given solution. These function are 

(i) Minimixe f(x) = xl2 - 8x1 2  + 11x1 + xa 

subject to 

z + X2 	X2 2  

4 - X2 2 	- X2 2  - X3 2  ..5-2 0 

x11% 

- xi I : 0 	i• = 1, 2, 3 

 

(4.1)(i) 

 

This minimization problem was tested using complex method 

and interior penalty function method. 

(ii) Parameter Ai , A2 and A3 were estimated for the model 

Y = Al +A2 exp(A2X) 

for the known Y and X data points. Thus data points are 

given in following table. 

4 3 

	 (4.1)(4 



Y I 	1  157 
I 

151 379 421 460 426 	' 

.. 

X 
-5 -3 -1 1 3 c 0 

This problem was used to test the Marquardt method while 

utilizing non-linear least square method. 

Objective functions based on following area have been 

selected for detailed study 

1 Parameter estimation. 

2 Sequential experimental design. 

4.2 PARAMETER ESTIMATION 

An important problem in chemical reaction engineering is the 

estimation of the parameters of a kinetic model from experimental 

data. 

In.  the mathematical , model, there are dependent and 

independent variables and also certain constants. The constants 

are generally called parameters. 

In experiments the dependent variables may be measured 

diretly but the parameters can not be. Approximate values of the 

parameters are calculated from dependent and independent 

variables. Since only approximate parameters values are found. 

The parameter ar+ said to estimated. 

4.2.1 FORMULATION OF FUNCTION 

The ethylene hydrogenation reaction system studied by Barton 

(1976) was used for the present study. The rate Model for 

reaction was 



Parameter 

Ao 

E 

13 

Value 

4.629 x 10?, 	1 

11.6 k cal / mole 

0.33 

re2ne = Ao exp (-E/RT) (Xc2H4)a (X-112)0 

 

(4.2) 

 

Where rc2ns is the rate of formation of ethane and XC2H4 and 

X132 are mole fractions of ethylene and hydrogen respectilvely. 

The original parameter estimates refered to as 'true' values 

were - taken from Barton's-analysis and are shown in table 4.1. 

Table 4.1 True values of Parameters 

The data from each set of experiments consist of one set 

of independent variabls (mole fraction of ethylene and hydrogen 

and "reaction temp.) together with the dependent variables 

obtained by adding errors to the true values calculated from 

equation (4.2). 

The errors used were calculated from 

% Error = random number- x noise level 

The random numbers were generated from a Gaissian normal 

distribution with zero mean and a constant standard deviation 

of 0.5 using following formula. 

1 . 	 1 	x A 
exp - 	1 

C4 21 	2 	a 



= mean 

a = standard deviation 

10% and 30% noise level were used to test the performance 

of selected algorithms 

The objective function for the parameter estimation is a 

non - linear least square function and is defined as follows. 

Minimise U
1
est imation = (Yu - Yu)2  

u=1 

   

Where Yu is observed rate and is calculated as follows. 

Yu = Ytrue - Ytruexerror/100 

'!true was calcuted using true values of parameters for 

different experimental data points and Yu is the expected value 

of rate given by Equation 4.2 

4.3 SEQUENTIAL EXPERIMENTAL DESIGN 

Parameter estimation for a model of known form has been 

discussed above. The estimates thus obtained are likely to be 

approximate, since experiments are probably poorly designed over 

the desired experimental range. Box and Lucas (1959) developed an 

. experimental design procedure for decreasing the amount of 

uncertainity associated with the estimates of parameters. It aims 

at reducing the VolUme of the Joint confidence region (JCR) with 

the extimates. 

Box and 'hinter (1965) established a criterion for a 

sequential experimental design, generally known as minimum volume 

0' 



design critaion (M V D), where all the available experimental 

results are analysed each time as an additional experiment is 

performed and the current information is then used for design of 

the next experiment.' Some applications of this criterion to real 

experimental studies in the field of chemical kinetics have been 

reported by Mezaki (1969), Froment and Mezaki (1970) and Graham 

and Stevenson (1972). 

4.3.1 DESIGN CRETERION FOR SEQUENTIAL EXPERIMENTAL DESIGN 

Let us consider a rate model given by following equations 

Yu = f(xu,k) 	Eu 	  (4.3) 

where Yu is the measured reaction rate, 

Xu = (X1u, 	X2u, xsu,....,xmu) are m operating variables 

for experimental run u, u =1, 2, ....n 	and K = (kl, K2,....kp)T 

are p parameters. If the random errors Eu, u=1, 2, ....n .are 

indepently and normally distributed with constant variance art, 

then the variance 	covariance matrix of the least square 

estimates 

K is 
1 

V = (DTD)-1 .2 
	

(4.4) 

where D is an (nxp) matrix. An element of D duj is the 

partial derivative with respect to the jth parameter evaluated 

for uth experiental condition of Xu at the least square 

estimates-  K = K 



af(xu,k) 
dui = 	 K = K 

,D1J 
(4.5) 
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The MVD creterion for optimal experimental design i.e. 

Minimise 

Udesign 	1/1(DTD)1 	 (4.6) 

For the given model (Equation 4.2) the elements of the D 

matrix are definedas follows. 

a(re2lis)/ a.A0 = exp(-E/RT) (Xe2114)a ,(X112)0 ....(4.7) 

a(rC2H8)/aE = -rents/RT 	  (4.8) 

a(re21-113)/ as = renie ln(Xc2H4) 	 (4.9) 

p(re2ms)/ 213 = rczia ln(Xm2) 	  (4.10) 

The initial sets of independen variable to design the 7th, 

15th and 25th experiment were used from the simulated studies of 

Agarwal and Brishk (1985). The continuous operation region was 

choosen on the independent variable and is defined as fellow 

0.1 5 X C2H4 4-  0.4 	  (4.11) 

0.4 5 XII2 • 5 0..8 	 (4.12) 
! 	- 

3131, s 	.T 	s 363 	  (4.13) 

Constints from the actual experiments were used to bound 

the allowable space. Thus an upper limit of the reaction rate was 

set at 1.5 x 10-4  kg /(kg catalyst)-s. Because higher reaction 

rate gave run away condi tion (Barton 1970). The mole fractions 

were restricted to XC2H4 +Xli2. <1.0 with nitrogen used as inert 

diluent when necessary 
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CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter discribes the result obtained from testing the 

three selected algorithms (complex, Interior penalty function and 

Marquardt method) discusses their performance and compares the 

effectiveness for two different objective functions. 

The computer codes of the selected algorithms have been 

adopted from the standard books (Kuester and Mize (1971) and (Rao 

(193)). Computer programs were run on Unicomp PC- AT. 

Before implementing the actual objective function, selected 

algorithms were tested for the test problems with known solution 

to ensure their performance in solving the optimization problems. 

Tables 5.1 and 5
H 2 show the'performance of selected algorithms. 

Table 5.1 solution of Tested problem 4.1 (1) 

Methods 	Starting 	Final 	number of 	Actual 
used 	function 	function 	function • 	solution 

value 	value 	evaluations 

Complex 
method 

3.041 1.435 125 

1.414 

Interior 
penalty 
fuction 
method 

3.041 1.426 2448 

4 9 



Tabl€ 512 Solution of Tested problem 4.1 (ii) 

Methods 
used 	' 

Starting 
function 
value 

Final 
function 
value 

number of 
function 
evaluations 

Actual 
solution 

Marquardt 
method 

7.546E6 1.339E6 81 1.339E6 

It is evident from the Tables 5.1 and 5.2 that the optimum 

solution are close to the known solution. This showed that all 

computer codes adopted were working perfectly alright. 

The different algorithms were, then applied to the following 

two objective functions in area of 

(1) Parameter estimation. 

(2) Sequential experimental design. 

5.1 PARAMETER ESTIMATION 

Complex and'Marquardt methods were tested for the estimation 

of kinetic parameters for the model described by equation 4.2 

Three sets of data points were taken in order to cover the range 

of the situation.6,. 14 and 24 data points were used. These data 

points are shownlin Table B-1 of Appendix B. 

The simulated rate data points were generated based on two 

noise level, 10% and 30%. The 10% noise level covers the maximum 

possible range in a laboratory experimental situation while, 30% 

noise level approximates the industrial situation. 

Table 5.3 and 5.4 compare the result obtained for 1.0% and 30% 

noise level. 
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Table 5.3 Comparison of, Marquardt and Complex 
method for 10% noise level 

1:4 

Methods 
used 

•••■■•••*... 

Starting 
function 
value 

Optimum 
function 
value. 

Number 
data 
points 

of 	Function 	Ratio of 
evaluations optimum to 

starting valu 

1.023E-8 2.6912E-12 6 87 2.63E-4 
Marquardt 
method 3.887E-8 1.579E-11 14 76 4.06E-3 

9.813E-8 1.074E-10 24 66 1.09E-3 

1.023E-8 2.423E-11 6  92 2.37E-3 
Complex 
method 3.887E-8 •4.960E-10 14 86 1.28E-2 

9.813E78 1.096E-10 24 86 1.12E-2 

Table 5 1.4 Comparison of Marquardt and Complex 
method for 30% noise level 

Methods Starting Optimum 
used 	function function 

• value l 	value 

Number_ of Function 	Ratio of 
data • 	evaluations optimum to 
points 	starting valu( 

7.516ELS 2.730E-11 6 79 
Marquardt 
method 2.796E-8 2. 487E-10 14 48 

6.925E-6 9.663E-10 24 47 

•••■■■••••*.e. 

7.516E-9 5.193E-11 6 78 
Complex 
method 2.796E-8 5.036E-10 14 101 

6.925E-8 3,028E-9 24 133 

3.63E-3 

8.89E-3 

1.4E-2 

6,91E-3 

1.8E-2 

4.37E-2 

It is evid6nt from the Tables 5.3 and 5.4 that Marquardt 

method posseses the superiority over the complex method in 

  

minimizing th6 sum of squares. As it is also evident from the 

TabI6s 5.3 and 5.4 that the complex method could not achieve the 

minima obtained by Marquardt method_ 
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The ratio, optimum value to starting function value a 

measure of reduction in the function value, Tables 5.3 and 5.4 

show these values. 

As expected 30% noise level showed a smaller ratio values 

as compared to 10% noise level (Table 5.3 and 5.4). At the same 

time it is also evident from Tables 5.3 and 5.4 that the 

Marquardt method is superior to the complex method in both cases 

10% and 30% noise level. 

Complex method searches the minima in the direction which is 

reflection of worst point in the feasible region so there could 

be a possibility that complex method could collapse in to 

subspace and unable to find the solution in the desirable space 

of variables. Aliso it could shrink drastically in a steep valley 

and terminate at Undesirable optimum. 

Fig. 5.1 to 5.6 show the behaviour of algorithms. The 

values were plotted between the function value and number of 

function evaluations for different noise level. It is evident 

from these figures that both Marquardt and Complex method reached 

near to optimum value rapidily in 	few number of function 

evaluations. As they led in vicinity of the eptiMum , convergence 

became rather slow and took larger function evaluations to reach 

the. actual optimum. 

5.1.1 EFFECT OF STARTING POINT SELECTION 

The algorithms were also tested for different starting 

points to check to whether the optimizers were able to find the 

common optimum point: Different starting point were taken to 



'arameter estimation 
qoise level = 10 
:xperimental data point = 6 1x107  

1x10 8  

 

 

1x10 - -11 	 Corn p lex method 

-2 	 s 	0 	-0Marquardt method 
lx10  0 	20 40 60 80 100 

Funct ion evaluations 
Fig. 5 .1 . Variation of function with 

function evaluation 



lx 0-6 
Parameter estimation 
Noise level z 10% 
Experimental data point ---14 

54 

	-0  Complex method 

	,Marquardt method 
20 40 60 80 100 

Function evaluations 
Fig.52 .Function variations with function 

evaluation 

- 
1x10

10 
 

1x1011 	 
0 



55 

1 x107 

1 x108 

g 1 x1o9  
c 0 

- 
21 x1010  
U- 

1 xl011  
0 

arquardt method 

20 40 60 80 100 
Function evaluation 

Fog 5 *Function variations with function 
evaluation 

• 

Parameter estimation 
Noise level = 10% 
Experimental data point r- 

Complex method 



1x107 

Parameter estimation 
Noise level = 30% 
v:,xperimental data po int = 6 

5 6 

	°Complex -method 

1x 1
-011 	, 	t 	 I 
	iMarquard method , 	 1 

0 20 40 60 80 100 
Function evaluation 

Fig.5.4.Function variation with function 
cvaluations 



1x107 

Parameter estimation 
Noise level 	30 44, 
Experimental data point =14 

 

  

Complex method 
	°Marquardt method 

20 40 60 80 100 
Function evaluation 

5. Function variation with function 
evaluation 



Parameter estimate 
Noise level = 30 
Experimental data point = 24 

lx10 

Complex method 
	• 

Marquardt method 

20 40 60 80 100 
Function evaluations 

Fig. 5.6. Functi on variation with function 
evaluation 



53 

cover the rang of the parameters. This behaviour was tested 

using 14 data points of 10% noise level. Table 5.5 shows the 

results. 

Table 5.5: Comparison of the methods different starting points 

Methods Starting Points Starting Optimum Number of 
used (Ao, 	E, 	a, 	13 	) function function function 

value value evaluations 

Marquardt 
method 

3304,9500,.1,.2 1.207E-4 1.57E-11 15.3 

5800,1.45E4,.95,1.8 9.908E-8 1.57E-11 123 

3900,1.0E4,.2,.5 1.782E-5 1.57E-11 123 

5000,1.3E5,.7,1.5 8.796E-8 1.57E-11 104 

4000,1.2E5,.5,1.3 4.578E-8 1.57E-11 79 

Complex 	-do- 	-do- 	1.345E-9 65 
method 

3.364E-9 165 

9.555E-10 98 

1.075E-9 81 

3.148E-9 63 

*14 data points of 10% noise level. 

It is evident from the •Table 5.5 that I•Iarquardt method 

reaches to same optimum point even taking the worst starting 

point. However, the complex fails to achieve the same. 

The above result and discussion leads to the conclusion that 

Marquardt method is undoubtedly better choice in minimizing the 

sum of squares of residuals. Also Marquardt could be operated 

till worst starting points. 



5.2 SEQUENTIAL EXPERIMENTAL DESIGN 

Complex method and interior ,panalty function method were 

tested for sequential experimental design problem. As. Marquardt 

method can not be employed for this type of optimization problem, 

three experiments were designed, namely 7th, 15th and 25th. Table 

B-1 of the Appendix B shows the different experimental points. 

Table 5.6 shows the result obtained using the two 

optimizers. 

Table 5.6: Comparison of complex and interior penalty 
function method 

Methods Starting Optimum Experiment Function 
used function function number 	evaluations 

value 	value 	designed 

	

35.674 	1.337 	7 	 63 
Complex 
method 	0.449 	0.422 	15 	46 

	

0.277 	0.266 	25 	41 

	

35.674 	2.398 	7 	 1936 
Interior 
penalty 	0.449 

	0.423 	15 
	

1776 
function 
method 
	

0.277 
	

0.269 	25 
	 1656 

It is evident from the Table 5.6 that except 7th 

experiment both method approach to same final function value. 

For the 7th experiment this could be due to less number of data 

points and therefore movement of optimizer is confined in narrow 

region. However as number of experiments increased it became 

rather easy to find the optimum point for the optimizers. it is 

also evident from Table 5.6 that complex method takes lesser 

.6% 
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number of function evaluations than interior penalty function 

method. Complex method is a gradient free algorithm. Therefore 

algorithm does not calculate the derivatives of the function and 
■ 

evaluates the function once at any iteration. On the other hand 

interior penalty function method utilized the variable metric 

method of unLnstrained minimization. In variable metric method, 

the first derivates are required to establish the search 

directions, derivatives may be determined analytically or 

numerically. Numerical technique was used to calculate the 

derivatives for the present function as analytical derivatives 

were not possible. 	Newton's forward difference was used to 

calculate the numerical derivatives. Newton's forward difference 

is given by equation 

of 	f (x + Ax) - f (x) 

ox 	 .AX 

where ax is increment in variables. 

To calculate. the derivatives using numerical technique 

function has to be evaluated n times (n number of variables). One 

dimensiOnal method is used to determine the optimum step size in 

current search direction. Here cubic inter potation method was 

used to set the optimum step length. In cubic interpolation 

method two points A and B are located in such a manner that at A 

f'A < 0 and at, B, 	> 0 where f'Aand 	are derivative at A 

and B with respet to step length and are calculated as follows.. 

71 . 
f/A = 2 (vfi )A Si 

1=1 
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fits = 2, (vfi )B Si 
1=1 

where Si,- search direction for ith component. 

In locating point B, many times derivatives were calculated 

depending upon increase and decrease in step length. 

Which, inturn ,was necessitated due to increasing negative value 

t6 

of the derivati 

extremly Sh,rp 

e in the direction of descent and followed by an 

change in slope, in the proximity of the 

constraints. It- cansed the function to behave in concave fashion 

making it difficult to locate point B. Consequently it resulted in 

increasing function evaluations. It is apparent from the above 

discussion that interior penalty method requires the higher 

function evaluations in reaching to an optimum solution. On the 

other hand complex method takes fewer function evaluations 

(Table 5.6). 

Fig. (5.7-5.9) 	shows the 	performance of these two 

algorithms. It is evident from the figures that complex method 

takes fewer function evaluations to reach in vicinity of the 

optimum solution then takes longer time to converge. 

Similiar behaviour was also observed for the parameter 

estimation problem. Whereas except for design of 7th experiment, 

interior penalty function method performed slowly at the initial 

stage and then reduced the function drastically. 

Above result, and discussion for the sequential experimental 

design function; leads to conclusion that complex method appears 

to be superior over interior penalty function method. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS] 

Three•algorithms of non-linear optimizer , Complex, Marquardt' 

and Interior penalty, were used to study their performance and 

effectiveness for two known non-linear functions in the field of 

reaction engineering namely, parameter estimation and sequential 

experimental design. 

Complex and Marquardt methods were utilized to estimate the 

kinetic parameters for ethylene hydrogenation reaction rate 

model (power-law model). Marquardt method showed superiority over 

Complex method. Also, Marquardt method showed that it can utilize 

the worst starting points in achieving the optimum solution. 

However, complex failed to achieve the minima obtained by 

Marquardt method. 

Complex and Interior penalty function methods were used to 

design the experimental variables for the ethylene hydrogenation 

reaction. Both optimizers achieved the same optima but interior 

penalty function took large number of function evaluations. 

Interior penalty function method used along with variable 

metric method and cubic - interpolation method requires much 

higher number of function evaluations, due to two primary 

reasons.Firstly,li calculation of derivative required in choosen 

unconstrained multivariable a-nd single variable method and 

secondly, in locating the second bound for the location of minima 

in one dimensional search. 



Complex method for both approached in the vicinity of the 

optima with fewer function evaluations but took long time to 

converge. 

6.2 RECOMMENDATIONS 

Marquardt method is recommended to. be utilized An the 

estimation of parameters. Complex method could be recommended for 

the sequential experimental design problems. Also,Complex could be 

utilized in Itch eying the region. of minima and there after a 

  

better. optimizer could be used to calculate the optimum solution-. 

To reduce the number of function evaluations for interior 

penalty function method, the unconstrained optimization technique 

be replaced by. a gradient less technique, such as Powell (1964) 

method and cuic interpolation method be replaced by Golden 

Section method or Fibonacci.method 

A large-variety of problems involving higher number of 

variables and different type of objective functions and 

constraints be used to compare the performance of non linear 

optimizers. 



REFERENCES 



REFERENCES 

1. Agarwal, A.K.,"PhD thesis", University of Sydney, Sydney. 

(1984) 

2. Agarwal, A.K., Brisk, L.M., "Sequential experimental Design 

for precise.parameter estimation", Ind. Eng. process Des. & 

Dev., Vol. 24, pp. (203-207), (1985). 

3. Betts,, J.T. "An improved Penalty Function Method For 

Cosntrainled Parameter Optimization Problems" 	J. of 

  

--Optimization Theory and Application , Volume 6, No. 1/2, 

page 1-24, (1975). 

4. Box, M.J. " A -  comarison of several current optimization 

methods and the use of transformations in constrained 

problems", Computer Journal, vol.9, page 67-77, (1966). 

Box, M.J. " A new method of constrained optimization and a 

comparison with other methods", The computer Journal, vol.8, 

p-42, (1965). 

6. Conn,, R, Andrew, "An algorithm for least squares estimation 

of Nonlinear parameters" J. Soc. Ind. Appl. Math, volume -

4, No. 2, (1963). 

7. Davidon, W.C., "Variable metric method of minimization" 

,Argonne National Laboratory Report No. ANL-5990, (1959). 

8. Dixon, "Nonlinear optimization", The English University 

Press Limited. 



9. Fiacco, A.V., McCormic, G.P.,"Nonlinear programming: 

Sequential unconstrained minimization technique",Willey, New 

York, (1968). 

10. Fletcher, RJ "A new approach to variable metric method", The 

Computer Journal, Volume 13, pp. 317-322 (1970). 

11. Fletcher, R., Powell, M.J.D. "A rapidly condvergent method 

for minimization", The Computer Journal, volume 6, No. 2, 

pp. 163-168, (1963). 

12. Himmelbau, ,D.M., "Applied Nonlinear programming", McGraw 

Hill Book'Company. 

13. Lasdon, L.S.S., Kowalc, J.S., Pizzo, J.T.,"Iterative methods 

for Nonlinear optimization problems", Prentice Hall Inc. 

14. Lasdon, L.S." Survey of Nonlinear programming applications", 

Operation Research, Volume 28, No.5, pp. 1029-1039, (1980). 

15. Mahoney, J.F. , - Comments on sufficiency conditions for 

constrained extrema", AIChe Journal, volume 25, No.2, pp. 

370-373, (1 79). 

16_,_ Marquardt, 	.,. "An algorithm for least squares estimateion 

of nonlinear parameters", J. Soc. Ind. Appl. Math, vol.4, 

No.2, (1963). 

17. Meyer. G.L., "An Efficient method of feasible directions", 

SIAM. J. Control and optimization, volume 21, No. 1, (.1983). 

t6 9 



119 

18. Mottl, di," .Description of a program for nonlinear 

programming., The Computer JOurnal, vol. 22, No. 3, pp. 

256-261, (1977). 

19. fielder, J.A., Mead, R., "A simplex method for function 

minimization", The Computer Journal, vol. 4, pp. 441,(1962). 

20. Osborne, M.R., Ryan, D.H., " On penalty function methods for 

nonlinear programming problems", vol. 31,pp. 559-578,(1970). 

21. Rao, S.S., "Optimization theory andapplications", Willey 

Eastern Limited. 

22. Rozenbrcich, H.H., " An efficient method for finding the 

_ greatest- _._‹.)r least value of a function", The Computer 

Journal, vol.3, pp. 175-184, (1960). 

23. Umeda, T., " A modified complex method for optimization", 

Ind. Eng. Chem. Process Dev. & Des. ,volume 10, No. 2, pp. 

229-236, (1971). 

24. Tabata. . T., " Effective treatment of the interpolation 

factor in Marquardt's nonlinear least square fit algorithm", 

The computer Journal, Vol. 18, No.3, pp. 250-251, (1973). 

25. Zoutendijk, G., "Nonlinear programming: A numerical survey", 

J. SIAM. Control, vol. 4, No. 1, pp. 194 - 210, (1966). 



APPENDIX A 

Al. COMPLEX METHOD 

A1.1 PROGRAM DESCRIPTION 

A 1.1.1 USAGE 

The program consistsof main progoram ,four general subroutines 

(CONSX, CHECK, GENTR, RANDOM) and three user supplied subroutines 

(FUNC, BOUND, CONST), initial guesses of independent variables, 

solution parameters dimension limit and printer code designation 

are passed to the subroutines from the main program. Final 

function , independent variables values and function evaluations 

are transfered to main program for print out. Subroutine CONSX is 

the primary subroutine and coordinates the special purpose 

subroutines CHECK, CENTR, FUNC, CONST and RANDOM. Intermediates 

print-outs are provided in this subroutine, if the user desires. 

Format changes may be required depending on'the problem under 

consideration. 

A 1.1.2 SUBROUTINE REQUIRED 

SUBROUTINED CONSX (N,M,K, NMAX, I, lEVI, IT, ALPHA, BETA, 

GAMMA, DELTA, FF, EPS1, X, XTEMP, F, G, H, IPRINT) called from 

main program and coordinates all the special purpose subroutine 

(CHECK, CENTR, FONC, CONST, BOUND, RAND AM). 

SUBROUTINE CHECK (N,M,K,X,XC,I, KODE, G,H) checks all the 

point against explicit and implicit constraints and applies 

correction if violated. 

SUBROUTINE CENTR (N,M,K, IEV2, I, XC, X, KI) calculates the 

centroid of complex. 
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SUBROUTINE 'Ft= (11,14,K, X, F, I) Specifies the objective 

function (user supplied) 

SUBROUTINE BOUND (N,M,K,X,G,H,I) specifies the explicit 

constraints with upper and lower bounds 

SUBROUTINE ICONSI (N,M,K,X,G,H,I) specifies the implicit 

constraints with upper and lower bounds 

SUBROUTINE RANDOM (N,K,FF,R) generates the random numbers. 

A 1.1.3 DESCRIPTION OF PARAMETERS 

	

N 	Number of independent variables defined in main program 

	

11 	Number of constraints defined in main prograth 

Number of points in the complex defined in the main 

prograM 

	

NMAX 	Maximum number of iterations defined in main program 

	

ALPHA 	Refleclion factor defined in main program 

	

-EPS1 	A small quantity to compare with ALPHA-defined in main 
program 

	

BETA 	Convergence parameter defined in main program 

	

GAMMA 	Convergence parameter defined in main program 

	

DELTA 	Explicit constraint violation correction defined in main 

program 

	

IPRINT 	IPRINT=l, PRINT FINAL RESULT 

IPRINT=O, PRINT INTERMEDIATE RESULT, defined in main 

program 

	

X 	Independent variable defined initial values in main 

program 

	

R 	Randam numbers between 0 and 1 defined in subroutine 

RANDOM 

7 



Objective function defined in subroutine FUNC 

	

IT 	Iteration index - defined in subroutine CONSX 

	

IEV2 	Index of point with maximum function value defined in 

subroutine CONSX 

	

IEV1 	Index of point with minimum function value defined in 

subroutine CONSX 

 

G  Lower constraint defined in subroutine BOUND and CONST 

respectively 

constraint defined in subroutine BOUND and CONST Upper 

xc 

  I 

RODE 

Kl 

FF 

Centroid defined in subroutine CENTR 

Point Index -defined in subroutine CONSX 

Key used to determine if implicit constraints are 

provided - defined in subroutine CONSX and CHECK 

Do loop limit defined in subroutine COMA 

4 digit- number to generate random number defined in 
main program. 

A 1.1.4 INPUT 

N,M,K, NMAX, MINT, ALPHA, BETA, GAMMA, and (X(.3,1), 4=1,N) 

A 1.1.5 OUTPUT 

The main program first prints out values of all input 

parameters. 

Subroutine CONSX provides intermediate output on each 

iteration provided the user specfies iprint=1, If Iprint=0, only 

final result is printed. 

When the solution has converged to within the allowable 

range, or when maximum number of iterations has been exceed 4. 
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the main program prints 'the final vlaue of the function, the X 

vector and the total number of function evaluations and centroid 

of complex. 

A 1.1.6 SUMMARY OF USER REQUIREMENTS 

(a) Determine the value for N,M,K, NMAX, ALPHA, BETA, GAMMA, 

DELTA, IPRINT. Guide lines for specifying the parameters are 

as follows 

K = N 1 + 1 

ALPHA = 13 

BETA .='some small number, say magnitude of function time 

10-4 

GAMMA = 

DELTA = Some small number, say magnitude of order X vector 

times 1074 

(b) Determine the initial estimates for optimum values of 

independent variables 

enter as iX(J,1), J=1,N) 

(c) lulinay. the value of FF (4 digit number) to generate the 
1 

randomi numb rs 

(d) Adjust DIMENSION and FORMAT statement as necessary 

(e) Specify objective function by writing SUBROUTINE FUNC 

(f) Define U (upper bounds) and G ( lower bounds ) explicit 

constraintsLinsubroutine BOUND and implicit constraints in 

subroutine CONST. 



A 2. IIARQUARDT METHOD 

A 2.1 PROGRAM DESCRIPTION 

A 2.1.1 USAGE 

The program consists of a main program a general subroutine 

BSOLVE, a general function subprogram ARCOS, and two user 

supplied subroutines FUNC and DERIV. All input and output is 

through the main program. Foimat changes may be required 

depending on the problem under consideration. 

A 2.1.2 SUBROUTINES REQUIRED 

SUBROUTINE BSOLVE (KK,B, NM, Z, Y, PM, ITER, FLA; TAU, EPS, 

PHMIN, I, ICON, FV, DV, BV, BMIN, BMAX, P, FUNC, DERIV, KD, A, 

AC, GAMM) called from main program - 	performs primary 

calculation and coordinates other subroutines. 

SUBROUTINE i(KK,B, NN, Z, P3, FV, DV, 3, JTEST) specifies 

analytical derivaties if used, omit if numerical derivative used. 

(user supplied).; 

SUBROUTINE FUNC (KK, B, NN, Z, FV) specifies the model (user 

supplies). 

FUNCTION ARCOS(Z) general function subprogram internal to 

BSOLVE.' 

A 2.1.3 DESCRIPTION OF PARAMETERS 

NN = Number of data points or number of equations 

KK = Number of unknowns 

B = Vector of unknowns 

BMIN = Vector of minimum values of B 

V.5 



BHAX = Vector of maximum values of B 

X = Vector of independent variable data point 

Y = Vector of dependent variables 

PH = Least square objective function 

Z = Computed values of dependent variables 

BY = Code vector met equal to 1 for numerical derivatives 

and, 1 -1 for analytical derivatives 

ITER = Iterations. 

A 2.1.4 DIMENSIONS REQUIREMENTS 

• The dimension STATEMENT IN THE MAIN program and subroutines 

should be modified according to requirements of each particular 

problem. 

A 2.1.5 INPUTS 

(B(J),J=1, KK), (BMIN(J), J=1,KK) 

(EMAX(J), J=1,KK), (X(I),I=1,NN), (Y(I),t=1,NN) 

A 2.1.6 OUTPUT ' 

The main program prints out all input data the values of 

unknowns, least square function value (PH), and function 

evaluations at each iteration, in addition to final values of 

unknowns. 

A 2.1.7 SUMMAliY OF USER REQUIRMENTS 

1—Determine the value for NN, KK, B(J), BMIN(J), DMAX(J), X(I), 

Y(I). 

2. Adjust the dimension statements in main program and 

subroutines. 



3. Specify analytical derivative in DERIV, if used 

4. Change the input and output format statement as necessary. 

5. Specify the model in FUNC subroutine. 



I  
A 3. INTERpR PENALTY FUNCTION METHOD 

A 3.1 PUOGRAM DESCRIPT1ON 

A 3.1.1 USAGE 

Program consists of a main program and three gcreal 

subroutines UNCON, ONEDItI, GRADT and two user's supplied 

subroutine FTN and CONST. All input and output is through the 

main program, format may by changed depending upon the problem 

under consideration. 

A 3.1.2. SUBROUTINES REQUIRED 

SUBROUTINE UNCON(N,M,R,EPS, EMS, STEPO, X, XOPT, GRAD, F, 

OBJ, IT, KT) s4vepthe unconstrained minimization problem. 

SUBROUTINE ONEDIM(N, M,R, EPSS, STEPO, SLAMDA, X, XN, SS, 

F, FN, OBJ, GRAD, GRADN) specifies the optimum step length in 

current search direction. 

SUBROUTINE GRADT ( X, N, M, R, GRAD, FF) calculates the 

derivatives numerically using Newton's forward formula. 

SUBROUTINE FTN (X, F, OBJ, N, M, R) specifies the function 

(user's supplied) 

SUBROUTINE CONST (N, X, VAL, IN) specifies the constraints 

(user's supplied) 

A 3.1.3 DESCRIPTION OF PARAMETERS 

N = number of variables 

M = number: of constraints 

MAXPI = maximum number of it,  function to be minimized. 

ITLIM = maximum number of iterations permitted in any one 

unconstrained minimization. 
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MAXIN = maximum number of cubic interpolation permitted in any 

one ditensional search. 

SLAMDA = optimum step length. 

Cl = reduction factor for the penalty parameter. 

R = initial value of penalty parameter. 

EPS = convergence required in unconstrained minimization. 

EPSS = convergence required in cubic interpolation. 

STEPO = trial step length to be used in cubic interpolation. 

X(i) = independent design variables. 

0133 = value of objective function. 

F = value of 0 function. 

SS(I) = component of search direction. 

IT = iteration number in unconstrained minimization. 

KT = iteration number in main program.. 

GRAD = Component of gradient vector. 

A 3.1.4 DIMENSION REQUIREMENT 

The DIMENSION statements in the main the program and 

subroutines should be modified according to problem under 

consideration. 

A 3.1.5 INPUT 

N, M, R, Cl, 	I=1,N), STEPO, MAXPI, ITL1M, MAXIM, 

EPS, EPSS. 

A 3.1.6 OUTPUT 

The main program prints out all input data and values of 

main program iteration number starting values of 0 function and 

variables before starting the unconstrained minimization 



optimum values of - variables after unconstrained iteration. The 

value of 	objective function-  and 0 function, function 

evaluations at each main program iteration and final values of 

total function evaluation, final values of variables and 

objective function. 

A 3.1.7 SUMMARLYI OF USER'S REQUIREMENT 

1. Feed the values of all input data. 

2. Adjust dimension statements in main program and subroutines. 

3. specify the function in FTN subroutine. 

4. specify the constraints in CONST subroutine. 

5. change the input and output format statement as necessary.. 

  



APPENDIX - B 

EXPERIME:TAL DATA PO :TS 



APPENDIX B 

SIMULATED EXPERIMENTAL DATA POINTS 

TABLE - BI 

Temp. of 
reaction 
( 	K 	) 

Mole fraction 
of ethylene 

, 

Mole fraction 
of hydtogen 

45.0. .35 .65 
53.01 .30 .70 
60.0' .28 .72 
66.0 .38 .45 
75.0 .25 r  . 0,)c  

85.0 .15 .60 
90.0 .10 .40 
85.80 .10 .80 
67.43 .10 .80 
90.0 .10 .40 
67.82 .10 .80 
67.81 .10 .80 
90.00 .10 .40 
82.09 .40 .60 
80.82 .20 .80 
90.0 .40 .42 
30.82 .20 .80 
80.82 .20 .80 
90.0 .40 .42 
85.80 .10 .80 
82.09 .40 .60 
65.58' .40 .60 
65.62 .40 .60 
80..82 .20 .80 

81 
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