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ABSTRACT
in the areaiof chemical engineerihg, two aspects are very
common. Firstly, %xpressing the behaviour of =a systém in a
mathematical form i { that is,model ) and éecondly the system
rerformance is 09£im12ed for its known variables. For both the
cases, one need ‘to have' optimizer which could minimize ox
maximize the function for these two aspects.

The object'of:tha preseﬂt study was to provide the FORTRAN
code of different opﬁimizérs {(mainly non-linear optimizers ) to
facilitate the departnment’s software facilities.

Three optimizers were selected namély, Complex
method, Intexriorxr pe#alty function method and non-linear least
sguare Marquardt }ethod. Two objective functions in the area of
chemical reactiqn ngineering field namely, parameter estimation
and sequential experimental deslign,were utilized to check their
functiéning and compare performance.

Marquardt wmethod showed superiority over Complex method for
parameter estimation problem. Also, Marguardi method showed that
it can utilize the worst starting point.

However, Complex method could be wused for design of
experiment 1in comparison to Interior.penalty function method.
Also; Complex method showed a tendency to reach in vicinity of
optimum solution in for fewer function evaluations. This behavior

could be utilized +to initiate the optimization and could be

ovtaken the superior optimizér to achieve the optimum sclution.
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NOMENCLATURE
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|
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CHAPTER 1
INTRODUCTION

Chemical engineerihg is  vast -field and its two areas
modelling and } system optimization proves to be very
vital. Modelliné is area where one expresses the behavior of the
system in matﬂemltical form. Sometimes these models are utilized.
T§-“;stiﬁ§te coﬂstan£s apbearing in a model ‘and in aystem
coptimization +to achlieve Dbetter system performance, one has to
have an optimizer which minimizes‘ or maximizes the function for
the both cases, |

During last two decade, the use of digital computer for reanl
time data processing has formed wide application,4 both in
research and industrial environment.The advent of high speed
digital computation has &alsoe ilncressed the application of
optimization technlques. The significance of optimization
techniques 1n this context lies in attempting to adjust some
system’s variables‘ to improve the performancé of that system,
- measured in some way.

There is no single techniqgue avalaible for solving all
optimiéétion problems efficiently. Hence & number.of optimization

.
technigques have, been developed for sgolving different type of

~optimization p?oblems. a voluminious btundie of mathematical
optimization teéhniques hag evol?ed to take advantage of immense
capablilities of q1gital computers. |
Models expgess}ng the behavior of gystem and the functlons
expressing the 5ystem performance are ,in general, non linear in

: |
nature. Non lilnear optimization technigues are ,therefore,



employed 1in such situations. Many nonlinear  optimization
algorithms have been suggested to solve these problems, but far
more algorithms have been proposed than have been successfully
applied. The range of applicability of existing non linear
optimizers 1s ,therefore, limited.

Az implled above , the alm of present study was to tes£ the
functioning and performance of few non linear optimizers, for one
or more, known objective functions.

Three non linear optimizers, namely Complex method ,
Interior penalty function methoé and non linear leagt aquare

| _
Marquqrdt method here }proposed to be studied in detail. These
optimizers are &iscussed with their algorithms in Chapter 3. The

functioning and§ prerformance of these optimizers were tes

two objective fuﬁctions dicussed in Chapter 4.
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CHAPTER - 2
NONLINEAR PROGRAMMING

2.1 IHTRQDUCTION

Non 1linear programming deals with the optimization of the
nonlinear function subject 1o linear or nonlinear constrgints.
The function to' be minimised or maximised is called objective
Tunction. Objectivei function represents cost, throughput or the
like. Methods (aigorithmé) of solviné’ nonlinear programming
problem are knownéas nonlinear optimizers.

Quite a lafge ‘number of algorithms have been proposed to
solve the gener#l nonlinear programming problem, mainly because

| . .

of, no one meth?d appears to be far superior to all the others.
‘ !

Nonlinear prograﬁming problems are divided into two categories,

'unconstrained‘ahd constrained problems.

2.2 UNCONSTRAINED NONLINEAR METHODS

Seveal methods are avallable for solving an unconstrailned
minimization problem. These methods can be classified into two
broad categories as direct search methods and descent methods.

These methods are shown in table 2.1;

L



| TABLE 2.1
UNCONSTRAINED MINIMIZATION METHODS

|

Direct search me&hods , ‘ - Descent meihods
(i) Randdm seaQCh {1) Steepest-descent ﬁethﬁd
(11) Univapiate'seareh : (i1) Conjugate gradient
(1iii) Pattern search method {1ii1) Newton’s method
(a) Powell’s method {iv) Variable metric method
(b) Hook and Jeevefs.method (Pavidon Fletcher-Powell)

{iv) Rosenbrock’s method of
rotating coordinate

(v) Simplex method

2.2.1 DIRECT SEARCH METHODS

The direct search methods reguire only objective function

evaluations andi do mnot use the partial derivatives of the

function in finding the minimum and hence are often called non
gradient methods. These methods are wmost suitable for simple

problem  involving a relatively small number of variables.Some of

the direct search method are being dliscussed here

2.2.1.1 RANDOM SEARCH METHODS

The . random search methods are based on thevuse of random
numbers in finding the minimum point, these methods can be used
gquite convenlently. Brief discussion of method is as follows:

Let the problem to find +the minimum of £(X) in n

dimensional space defined by

O N L O e T (2.1)



where li,; W are the' lower and upper bounds on the
variables xi. In +this method, sets of n random rnumbers
(r1,x2,r3..... m) are generated that are distributed between 0

and 1. Each of set of these number is used to find a point, X,

inside the spaceldefined by equation (2.1) as

x1 | Ih+rm (m - 11)
X = -§i | - lz¢+rz (w2 - l2)f......... (2.2)
Xn Intrn (un - 1n)

and the value of function 1is evaluated at this point X by

generating a large number 6f poihts and evaluated the value of

the objective funclion at each of these points,least value of the

f{X) is selected as desired optimum . These methods posses the

followlng advantages

- (1) These methods can be worth even if objective functlon 1s
‘discontinuous and non differentiable at some of points.

(2) These methods can be used to find the global miﬁimum when
the objective function posseses several local minima.

(3) These methods are applleable when the other methods fail due
to local difficulties such as sharply varying functions and
shallow regions.

{(4) Alﬁhough thgse.ﬁethods are not ver} efficient by themselves,

they can Qe used in the early stage of optimization to

detect thefregion when global‘minima is likely to be found.

Once this région is found, some of more efficient techniques

can be 'qséd 10 find the precise location of global minimum

point .

1
!
|
t
i



2.2.1.2 ONIVARIATE METHOD

In +this hethod only one variable is changed at a time, and
remaining points are best constant 50 that it can produce a
segquence of 1§proved approximations to¢ the minimum polints.
It takes the f%xed values of n-1 variables at a base point Xi in
the iin iterapi%n and vary the remaining'var%able. Since only one
variable ia ;changed the problem becomes one dimensional
minimization problem and any of one dimensional method can be
used to produce a new base- point Xi»1. The search is now
continued in a mnew direction. This mew direction is obtained by
changing any one of the n-1 variables that were fixed in previous
iteration. In fact, the search procedure is continued by taking
each coordinate direction in turn. After all the n directioﬁs
are searched sequentially, the first cycle 1s completed and hence
the entire process‘of sequential minimization is repeated. This
procédure is continued untill no further improvement is possible
in the oblective function in any of n directions of a cycle.

Theoreticallj this method can be applied to find the minimum
of any function thal possesses the continuous derivatives.
However, if the function has a steep valley , the method may not

even converge.
o
2.2.1.3 PATTERN SEARCH METHOD
Each 5tep'jof pattern search method comprises two kinds of
moves: e#plora?ory yand pattern. In univariate method only
exploratory moées are performed by changing only one variable at

a time, a procedure known +to be often very inefficient when

applied to opﬁimization problems. For +this reason Hook and
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|
Jeeves(1961) suggested that the exploratory moves be followed by
pattern moves ?nd direction of search is determined from result
of exploratory imove.' The search begins al an arbltrary chosen’
starting point | and with prescribed step length Ade > 0 in each
of the coordinaté directions xi , 1 = 1,2...... n

Two well known pattern search methods are Hook and Jeeves’s

(1961) method and Powell’s (1964) method.

2.2.1.4 SIMPLEX METHOD

The simplex method is based on +the comparison of the
objective function values at (n + 1) vertices of a simplex. A
set. of (n + 1) equidistant points in n-&iﬁensional space forms a
regular simplex} -This simplex moves towards the optimum point

(Nelder-Mead 1965). This movement 1is achleved by three basic

o ,
operations: reflfction, contraction and expansion.

REFLECTION

Initially and at times.during convergence, a new point is
generated that 1s a reflection of the worst point through the
'centroid of all other points. If the reflection point is better
than the current best point, it replaces the current worst point
apd an expansion step is tried. If the reflection point is worse
than the current best point, the expanslon i3 bypassed and
refilected polnt 1is compared with all other points except the
worst. If the reflection point is better, it replaces the worst

point.



The reflection of the worst point, Prn 1s denoted by P*, and

its coordinates are defined by relation
P* = (1 +a)P -aPn ..ooovirnnnnn.. (2.3)

where P is the centroid of 51l points excluding P and a
is a positive constant, the reflection coefficient . Thus Pt
lies on the line jolning Ph and P, but on the far side of new

simplex.

CONTRACTION

If the reflection 1s worse than all points except the
current worst point, a contraction is generated by selecting a
point between thQ'worst point and the centroid. This second trial

at a new point ?**'13 defined by,
1

PE* = BPn + (1 - B) Po...... [ (2.4)

where B the contraction coefficient lies between o and 1.

If the contracyion .fails 1o improve the situation the size of
| ;

sinplex is redqced by moving all the points half the distance

toward the best point.

EXPANSION

If the reflection point 1is better than the current best
point, an expansion step ls tried .This 1ls done by extending the
reflection point in +the direction between it and the centroid.
This expansion point Poo is defined by relation

Poo = P*' & (1 -7 ) P............ e (2.5)

where T 115 the expansion coefficient and is greater than



unity. 1f the iexpm;sj_on point 1is successful, it replaces the
reflection point, otherwise the reflection point remains in the
simplex. In elther instance the siﬁplex procedure is restarted.
- The programmed procedure 1s terminated when following
condition does satisfy. |
n

{ S (yi-¥)®/n}-5 < €
1=1 -

[}

vwhere € Preset value greater than zero

and ; =

iV
«
»
~ -
1~
”~~
N
o
o'

Nelder and Mead found that useful values for coefficients
a, 3 and T were I a = i, t =2, 8 =0.%

The simplex method has a wide application since it does not
make an& assumtions about the objective function except that the
function is co%tinuous . It may be useful when the locatlons of
minima are needed with a limited accuracy and {final rapid
- convergence 1s nét essential. Some dlisadvantages of method are:
{1) There 515 a- possibility that the simplex may collapée

into 4 subspace and will not findithe solutiqn in the

desiraﬁle space of all the variables..

(2) It caA' also shrink drastically in a steep valley and
stép the procedure prematurely.

(3) ’Computapional efficiency depends upon choice of
coefficient a,8 and T and on the size of the initial
simplex.

{4) No direct use is made of the information acguired in

previous steps.
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2.2.2 DESCENT METHODS

The descent techmiques require, in addition tb function to
evaluations, the evaluation of first and second derivaiives of
the objective function.' Since more informations about the
functioh being! minimized 18 wused,the descent methods are
generally more ;efficient - compared to direct search methods.The
descent methods; are also known as gradient methods. Sowme of the
descent methods? have been discussed in detaii in following
sections: I

i

2.2.2.1 STEEFEST - DESCENT METHOD

In this m%thod negative ofgradienf vector is used as a
direction for Qinimization. This idea was first introduced by
Cauchy (1847). In these methods a trial point (Xi) 1is selected
and optimum point 1is sought by the iterative procedure using

Tollowing equatipn.

k3
Xivr = Xi + ACSi...niieinnnenn. (2.7)
Si = —wfi L e e (2.8)
where Atis optlmum step lcngth along search dirction S i = -vfi.

It can be deterined using any one dimensional method of
minimization. | Process is terminated if the components of search
di;;ction are légs than rreset small guantity € > O.

The steepest descent techniqne is a simple technlque
inveolving relatively little computatioﬁal work per step. BEach

lteration is independent of the previous iteration, hence method

is relatively economical 1in computer storage. The method may



converge to a solution even from a poorv strating point.
Unfortunately method has several short comings. Very short satep
may be produced accompalned by sharp changes in the gradient
f(x). This is frequenily refered to as “zigzagging” and implies,
of course, slow convergence and low computational efficiency
iuspite of +the small amount of work‘per step. Furthermore
steepest descent techmnique depends on the variable scaling (to
scale the original variable used in method ).

In conclusion it is recommended that steepest descent method
be wused only as an auxiliary techunique in combination with othex

minimizatioh technique.

2.2.2.2 CQNJUGATE GRADIENT METHOD

The convergence characteristilc of the steepest descent
method can be greatly improved by modifying it in to =a
conjugate gradient method. It has shown that any minimlzation
method that makea'use of the conjugate direction is qQuadratically
convergent . This property of the quadratic conguence is very
useful because it ensures that the. method will minimize a
guadratic function in n steps or less. Since any general fun;tion
can be approximated reasonably well by a qQuadratic near the
optimum point, any quadratically convergeﬁt method is expected to
find +the optimum point in a fixed number of iterations. This
method was first suggested by Fletcher and Reeves (1964).

The conjugate gradient methods have the propertieé of first
ordér gradient combined with quadratic convergence due to its

conjugacy of the descent directions. They have overall good

convergence properties and the Fletcher-Reeves method has also’a

11
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relatively modest requlirement for computer storage. The
computer codes Eorresponding to the methods are simple. Normally,
more than one &ycle of n steps 13 required, and in resetting the
computation a1¥ information collected in previous iterations is
discarded. The | use of this mehod in preference to the variable
" metric teéhn?que (discussgd next subsectlion) is recommended only
itﬁtcomputér stqrage,eéonom& is more important than computational

efficiency. This method should be used however,in preference to

the first order gradient order method.

2.2.2.3. VARIABLE METRIC METHOD
A significant developement in area of descent techniques was
made by Daviden [1959] and extended by Fletcher - Powell {1963]

this work led to the so called " Variable metric " method of
minlmization. - | |
The vari#ble, metric +typically has the following algorithm
structure.
(;) Given xl.and poSitivé definit matrix I (Initially Ha =
I, n Jdimensional identity matrix) set k=1 and compute
gradient vector vf(xi)
(2) Calculpt thé vsearch direction Ok ﬁsing following
formufa
Sk = —i BT vf(Xx)....... e e (2.9)
- (3) Find tﬁe optimal step lenth jﬁ,in the direction Sk and
set | |
Xk+1 = Xk + XSk

(4) Test ﬁhe new point Xk+1 for optimality. If Xx+1 is
| 4
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Fig.2:1. Flow chart for variable metric method
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optimal terminate the procedure, otherwise go to step (5)
{(5) Update the H matrix as

Hesi = He + M - Nk

Where ' Sk 5xY

Mx =
SET Qx
(He@x ) (HxQe)T .
Nk =
=T Bk Ok
and & = VE(Xk+1) - VI(Xk)

(6) Set the new iteration number k = k+l and go to step (2)
The Fiow:chart_for the method is shown in figure 2.1
The #ariable meﬁric technigues have many of advantages
without having? some of thelr diaadvantages. The advantages
include fast éohvergence near a mnminimoum and fitness for a
qquadratic funciion. Due to symmetry of Hk, the methods are also
comparable in ftheir cbmputer sioragee requirements. Comparilson
with other quédratically convergent, methodsbshow that variable
meﬁric methéds rerform better for pgeneral non quadratic
functlions. Thus quadratic convergence alone dees not indicate the
full strength of a method. It is 1likely +that fast convergence
of the method when applied to a general nonquadratic function
due to fact that Hx épproximately satisfies Bk k-1 = Dxk-1
which is analogus to A-1 OQk-1 = AXk-1 for quadratic functions.
The variable metric methods avoid the computation of second

order derivatiés for the objective function. The methods are

basically stabl%. They generate directions of descent because the



matrix Hk is positive definite.

2.3 CONSTRAINED METHODS:

There are many techniques available for the solution of a
consrained mnonlinear programming problem. All these methods can
be claésified }into two broad categories, nanely direct methods

and indirect methods as shown in table 2.2.

|

-
TABLE 2.2

3

Constrained Optimization Techniques

!

Direct Mehods Indirect Mehods

(i) Heuristic search method (i) By the transformation of
The complex method variablesa
(11) Constraint approximation  (ii) Penalty function methods
The cutting plane method l
‘ - . , |
{iil) Methods of feasible ‘ Inteéior _ Exterior
' directions penalty penalty
function function
{(a) Zoutendljk’s method . method method

(b)) Gradient Projection method

2.3.1 DIRECT SEARCH METBODS

In the direct search methods, the constraints are handled in

explicit manner .Brief discussion of all three categories of

‘

i . ;
direct search méthpd is being discussed here.
i _
2.3.1.1 HEURISTIC OSEARCH METBODS
The heuri%tic search.methods are mostly intutive and do no

have much theortical support. Complex method is based on th

heuristic search. Detailed discription of the complex method ha
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been givenr in next chapter.

2.3.1.2 CONSTRAINT APPROXIMATION METHODS

In  these methods, the nonlinear objective function and the
constraints are liﬁearized about some point and approxiﬁating
1inear' programming problem is solved by using linear programming
technique (L P) (simplex method).

The resulting solution 1is then used to construct a new
linear approximation which will be solved by using LP techniques.
This procedure‘ is continued untlll the specified convergence
criterla is satisfied. There are two methods, namely the cutting
plane method and approximéte programming method which work on

I

this principle.

Methods havq followihg advantages and disadvantages.

ADVANTAGES:
| 1. Direct ?extension ot the simplex method (linear
programming) therefore efficlent for convex Pprograms
which ar% nearly linear. |
»2. Relativeiy little work ber step.
3. Simple.computer program.
4.vSome. problems with an infinite number of constraints can

be molved.

DISADVANTAGRS:
1. Methods can not be applied to concave problems.
2. Intermediate solutions are not feasible.

3. Rather s#ow convergence,. especially if the nminimom is not



T

4

in a vertex.

4. Linear subprograms will consist of near dependent.
constréins which could lead to serious roundihg-off
errors, especially if the minmnimum is not in a vertex.

5. Rather inefficient for problems with lihear ahd a

nonlinear possibly gquadratic, objective function.

2.3.1.3 METHODS OF FEASIBLEF DIRECTION

The methods of feasible directions aré those which produce
an improving successive of feasible vector xi, by moving in a
succession wusable feasible directions. A feasible direction is
one along which at least a small steép can be taken without
leaving the feasible domain.A wusable feasible direction 13 a
feasible direct;on_ along which the objective function value can
be reduced at least'byva small amount.

Each iteration consists . of two important steps in the
methods of feasible directibns. The ~fifsp step consists of
finding a usabie fe&sible direction at a specified point:and
second step consist of determining a proper step length along
usable feaSibl? direction found in the first step. The
Zoutendijk’s «meﬁhod of feasible directions and.Rogen’s gradient
projection method are considered as particular cases of general
method of feasible directiouns, .

Feasible directions methods‘  offer an efflcient way of
reducing the nonlinear programming problem to a seguence of
linear programming.prdbleﬁs (if a linear normalization is used).
From pratical polnt of view, they offer the additioﬁal advantages

of providing feasible intermediate approximations to the
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solution. The methods have been implemented to solve practicél
problems of considerable size and to scolve practiéal problems of
considgrable size,and -the methods proved to be successful. The .
following are idisadvantages of the methods.

(1) A rather cpmpiicatéd computer program.

(2) Inability ﬁo handle the equality constraints without special

|
devices.

(3) Detarmining of the step length needed, resulting in more

work per s}ep.

2.3.2 INDIRECT i<SEARCH METHODS

In indirect search method +the consirained problém is solved
as a séquence of unconstrained problem by incorporating
constraints into objective function. Different methods of this

category 1ls discussed below:

2.3.2.1 TRANSFORMATION OF VARIABLES

Some of the. constrained optimization problems have théir
constraints expréssed as simple and explicit functions of the °
decision varia£1es. In such a cases it may‘be possible to make a
change of: |va iables such that constrainst are autbmatically
satisfied. In,?some. other cases, it may be possible to know in
advance which cbnstraints will be active at the optimum solution.
In these cases, the »information that, paticular cohstraint
equation g (x)=0,can be used to eliminate some of the variables
from the problem. |

Use of tfansformation of variable is that the solution of

constrained problems 18 eased considerably by eliminating the
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cgggtraints. So thﬁt one of the more powerful metheds of for
unconstrained optimization, e.g. that of Powell (1864), may bé
employed. |

- The transformaiion have successfully been used again in
conjuction with fowell’s method for problems with up to  twenty
independent variables. These problems arose from a " design of
experiments” study . The aim in each case was t¢ minimise +the
size of confidence region of the estimates of parameters in the

assumed model.

2.3.2.2 PENALTY FUNCTION METHODS

Fiacco and McCormic (1968) have developed the penalty
function method for solving constrained optimization problems. In
this ,a'pproachr a penalty term reflecting +the constraints
violations muitivlied by - a scalar weight is augmented to- the
actual objectivé functioﬁ. If objective function is minimized for
a Sseqguence foi decreasing penalty weights, the solution’of'the
saccesstive unQonstrained problems approach the constrained
solution. i

There are éwo type of penalty_function methods the interior
penalty functioé method and the exterlior penalty function method.
In both type OfEQethods, the constrained problem is transformed
into a sequenée of unconstrained minimization problems such as
that cbpstrained minimum can be obtained by solving the. sequence
of unconstrained minimization problems.

In the interior penalty function methods, the sequence of

unconstrained minima lie 1in the feasible region such that it
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converges to constrained minima from the interior of feasible
region. In the exterior methods, the sequence of unconstrained
minima lie in the Iinfeasible region and converges to the desired
solution from the exterior of the feasible region.

Methods have followlng advantages and disadvantages.
) i . .
ADVARTAGES

(1) Applic;ble to the nonconvex problems including those
with nbnlinear constraints.

(2} Very éfficient for unconstrained problems as well as
fof %he problems with a few highly nonlinear
constrgints. |

(3) Good éonvergence can be expected if penalty parameter
(xk) ~are well choosen and an extrapolation device is
used.

(4) Intermediate solutions feasible.

(5) Relatively simple computer program.

DISADVANTAGES:

(1) A special structure of_the constraints are (linearity
or mear linearity or partical linearity) destroyed,
even Tonstraints like Xi20 are not dealt with in a

5pe?ia1 simple way.

~- (2) Much wgrk'per step.
-{3) Roundiﬁg off problems may somé times arises as penalty
parameter tends Lo zero aﬁd simaltaneously constraints

tends to infinity. Practical experiments are vary

promising in this respect, however.
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v

(4) No upper bound for +the value of objective function
available. '
(5) Problems with an infinite number of constraints can not

be sélved with the methods in their present form.

i
2.4 ONE DIMENSIONAL MINIMIZATION METHODS
The aim éf one dimensional methods is to find optimum step -
Jength in curfent4 SGarch direction in mualtivariables problem.

several one diménsional minimization methods are available, which
are given belowl |
(1) Dichot%mous (2) Fibonaccl method (B)Vﬁolden section
(4) Interpolation methods
Interp§lation methods divided into two categorieé srequiring
ne derivatives (Quadratic } and requiring derlvatives (Cubic ).
Interpolation methods - were originally developed as one
dimensional séarch within multivariable optimization technique,
and are generally more efficient compared +to Fibonucci type
approaches. For present study cublc interpolation method has been
selected. Iteraiive steps of method are glven below
{1) start with Ao and find a point)= B at which slope df/dA is
positive, where df/d\ =f’ = AL/AN(X+ AS)= ST v £(X+AS). The point
B_méan be can Bg takén as first value out of to, 2to, 4to..... at
wvhich f£° in ﬁonnegative , where to is a preassigned initial step
size. | |
{(2) Cubic equation h(A)= a + ﬁA + o) o+ dX 1is used io
approximate the function f(A) between A and B. find the value of

fa, fu, f’aA, f£'3 in order +to calculate a,b,c and d 1in above

equation.



Enter with X,S and
to

Set f,= £(0),£ (A)=f'(0)&A= 0

Set f$=f(to)and

£V (B)=f'(to)
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Fig.2.2 Flow chart for cubic interpolation method.
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b=( Bf’A + A% £'8 +2 A B Z1/(A-B)2

_ : |
¢ = - [ ( A*B )Z +B £°a + Af’» 1/(A-B)2
d= [ 232+ £ +£°3 1/3(A-B)2

where Z = -3( fa - fB)/ (B-A) + £’a + £’

{ 3) Calculatc ‘XF using following eqation.
N A+ (£°a + 2 2 Q )(B-AY/( £'a + £ + 2 Z)

where Q = (Z% -f’aAf’B)%
| .

——— |

{4 ) Check cbnvergence. Following convergence criteria can be

used.
(MY = LI/ | <@
Flow chart for implementing the method is shown in fig 2.2

2.5 METHODS FOR MINIMfZATIOﬂ OF SUM.” OF SQUARES

These are speclial methods for minimization of functions
having form of a sum of squares. Function of thls type arises in
a number of applications such as s0lving a system of nonlinear
equatlons, curves fitting or regrssion analysis. Brief discussion
of the method 15 given below.

The objective funtion defined as

MEX) = [2(X)IT £(X)

where fi (X), i=1,2, ....... m are honlinear functions of X, it

is assumed - that . m > n and ' problem of minimizing,



M(X)={£(X)]JT £(X) 1s reduced +to a linear problem by expzmdin.g
£(X) in a Taylor series about the current iteration point Xk and

ingnoring the nonlinear terms
f(Xk +8Xx) ~ £(Ak) + J{(Xx) A Xx
whexe J(Xx) 18 +the Jacoblan matrix with elements

2fi (Xx )
2X; |
The norma}l equations corresponding to this 1linearized

problem are

[J(X)IT [I(Kx)}OXx = ~[J(Xx)IT £(Xk)

and yield the c.:ol‘nnection vector & Xk
Iteration steps ?are givefx below: |
(1) Com‘puté J(Xx)
(2) Form'[J(Xk))T J(Xx) = T(Xx)
(3) Compute AXx from T(Xx) &Xkx = -[J(Xk)IT f(Xx}
(é) Set Xk+1 = Xx + 83k, k = k + 1 and repeat from step 1

1till convergence is achieved. This method is called Gauss methc

As [T(Xx)3-1 is positive definite, algorithm is
rotentially divergent. A new method called Descent have

been proposedj to overcome the dalfficulties of Gauss’s

|

The method (is decent - that is [ AXk T vf(Xk) € O

since Vl‘i(Xkl) :‘] ZEJ(Xx )T f(Xx)

method.



so that [AXk]T vM(k) = 20£()IT J(Xx) [T(Rx)]-1

= EJ(Xx )T £(Xx)

~and [4A(Xx)]T YM(Xx) < O

The modification requires va search along the correction
vector 2 Xk to find Xwin satisfying the min H(Xk‘+ AXk). NOw new

appfoximation'to the solution is (Xk+1 )=Xx+ Amin Xx.

This modification of Gauss method is undoubtley better than
the unmodified method. Still it has a serious weakness. ﬁumerical
experiments performed with the Gauss method 1indicated that
director S (Xx) giﬁes in step 3 frequently makes largest angle
(nearly 90°) with +the ateefest direction —vM = ~2[J(Xx)]T 1{Xx)
This result in  a high oscillatory path of iterations and very
slow convergence.| Levelberg (1944) and Marguardt (1963) éttempted

1o ovecome'thi? difficulty by Introducing a new parameter A> O.

2.6 DEFINITION OF OPTIMIZATION PROBLEM

A general statement of the - optimization prblems 1is as

fbllows.
x
_ X2
objective::: Minimlise f£(X) X =
Xn
subject to
equality constralnts :
gi (X)) =0 j3=31,2,..... mec
inequality constraints
£35(X)20 J = mec+r, ..... m

Problem of this +type is called nonlinear programming

prroblem.
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CHAPTER 3
METBODS STUDIED

Keeping 1in view the wide applicability and more advantagés
of methods two constrained nonlinear algoritims and one nonlinear
least square method have been studied in detailed.

Methods are : Complex method , Interior penalty function

|
method and Haréuardt_method.

3.1. COMPLEX WET'OD

—---The complexfmethod first introduced by Boxv(lﬁﬁﬁ).is'similar
to the simplex method ( in unconstrained nonlinear ﬁinimization),
is based on heurdisticsg search  and can handle the constrained
problems. The method searches for the mindmum value of the

objective fﬂnction f(x) in a feasible region defined by lower and

upper bounds (explicit constrailnts) bi £ x5 £ w, 1=1,2,...... n
and constraints function g (x) = o i=1,Z2,....m (implicit
constraints).

ITERATION STEPS
(1) This method uses a set of kK 2 n+l pointa of which one
point 1s supplied as a starting point satisfying all the

constraints. the remaining k-1 points are obtained by the use of
\

random numbers R in the relation

Xi = i + Ri (Wi -bi)
Ri is disfributed overinterval (0,1). These points satisfy

the lower and upper bounds constraints.



If some inmplicit constraints are violated then trial point '

is movéd half way toward the centroid of +the remailning already

accepted points. The centroid Xo 1is given by

- 1 8
Xo = e % D€ {3.1)
L s i=1
where Xl,? X2 .. .. ... Xs are avallable feasible points.

Shifting toward centroid is repeated . till a feasible point is
obtained énd by repeating this piocédure the regquisite number of
k-1 points in the feasible region can be>generated.

{2) The objective function f(x) is= evaluated at emch vertex
and the vertex Xn 1s defined as , at which function f(Xn)
‘mssumes the largest value out of the k values of f(x). Reflection

of Xn is taken_by computing Xr using following equation.
Kr = (146 ) Ko = o Xny @ 2 1 oo (3.2)

where Xo 18 centroid of remaining vertices and given as

1 k :
o = -— 2 < O {3.3)
k-1 J=1
; ~ Jxh
i - _ .
Box founq that a = 1.3 was a good choice of the

overreflection fcoefficient, but this choice is not critical. The
use of over ireflection coefficient a>l, compensategs Tor the

tendeancy of the complex to shrink, which 1s caused by moves

toward +the ceﬁtroid. Check the point for feasibllity.Evaluate
| : _
the function at;reflected point XRr. d
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(3) If £(X) < f£(Xn) =and Xr 1s feazible, the polint Xr
replaces Xn  and then return to step 2. If f£(Xr) = f{%Xn), the
overreflection ocefficient 'is reduced a: = a/2, and the'new Xr

- ,
is compu@ed'and_}ried. This is repeated (1f necessary) untill a <

1, where tziO'S% is =& satisfactory valuwe. If the relatién £{Xr)
¢ f{(Xn) does .not hold even for that Small‘value of a, then the
projected point Xr is replaced by original value_gf Xn-and the
second worst vertex is reflected instead. This process keeps the
complex moving toward +the minimum unless the centroid is very
close to it. If a reflected vertex is not feasible, then this
roint 1z moved half way toward the centroid untill it becomes

feaslble. The method will progress so long as the complex hazs not

collapsed into its centroid.

TERMIRATION CRITERIA AND CONVERGENCE
The process is terminated when the complex shrinks ﬁo an

acceptable small sgize or if -

- , 1/2

g 2
— Z I (Xe) - £(X5)] . <€ L., (3.4)
kovEr -
[ o
|
1 ok
Where X0 = —— 7 X3
i kK J=1
i .
where € > q is a predetermind small n@mbér.rlt ig important

for convergence that the complex retain its full dimensionality.
Box successfully applied X = 2n as the number of vertices of the

complex for the problems having n < 6.
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_The complex method is to some extent scale independent, -
since "in dnitial, complex is rougﬁly‘soaled tb the order of thé:
problem variables. Né. use 1is made of tﬁe first dexrivatives of
f{X) or g;(X), hence‘there is relatively little work per step;
The computer code 1is #ery simple and required only a moderate
amount of the storage.Flow diagraﬁ for méthod is shown in fig.3.1

The method becomes inefficient as the number of variables in
" crease: . Another disadvantage is that it is incapable of so0lving

rroblems with equality constraints.

3.2 INTERIOR PENALTY TUNCTION METHOD
Penalty methods solve the nonlinear programming problems by
solving a seguence of anconstrained problems by incorporating
the constraihts.

l

Let us consiéeria”geheral nonlinear programming problem.
mi‘nimize? TUX) e e (3.5)
subject ﬁo |
8 ()50, 3=1,2, ... Lm o (3.6)

This problém is converted in to an uncongtrained

minimization problem by constructing a function of the form
: I |
. m . S

g = (X, rx). = f(X) + rkjg’ Gj‘[gj(X)) ...... (3.7)

whnere G; 15 some function of the constraints g3, and rx is
a positive constant known as penalty parameter. The secohd term
on  the right side of the eguation (3.7) 18 called penaliy term.
If +the unconstrained minimization of the ¢ function is repeated

for a sequence of values of penalty parameter rk(k=1, 2, ...),



the solution may be brouht té converge to that of the original
'vpfoblém stated in equations (3.5 and 3.6) for rx = 0.
The penalty function formulation for inequality constrained

probliemns ganlbe divided into two categories, namely the interior
|

method and exterior"method; In the interior renalty method some

of popularly used forms of G; are given by

1 : L ‘
Gj = - e s a & & 2 (3-8)
‘ g5 (X) :
G =

log [-83(X)F .« e i e (3.9)

The penalty térm' is choosen such that its valﬁe will be
Small at the point away frém the cosntraints boundries and will
ténd to infinitf .as the constraint boundries are approached.
Hende the value of ¢ function also "blows up’ as the constraint
boundries are approached. Thus once the unconstrained
minimization of ¢(X, rk) is started from any‘feasible point X,
the subseguant points generated will always lie within feasible
region  since constraint boundries act ag bdbarrier during
mwinimization ﬁr%cess, This is the reason why the interior penalty
function methodfis also known as barrier method.

in 1nter%or method, +the  unconstrainted minima of ¢k
converge 1o tﬁe solution of eguation (3.5) as rk is varied in &
particular mannér.

: |
) The ¢- fun?tion-defined originally by Cassol (1961) is given
e ] | m 1 |

BX, Ti) = B(X) - Yk 5, e e (3.10)
: ' J=1 g (X)



it c?n be seen that the value of the function ¢ will alwgysjr
bé"“greater thgnf f(x) since gj (X) is neg&tive for 311 féa5ib1él-
points X. If ahy constréints g3 (X) is éatisfied criticaliy'thej
vlaﬁe of ¢ tends to infinity:'lt'is to be noted that the peha}ty.
term in equation (3.10) is not defined if X is not feasible.

This introduces serious short comings while using equaéioﬁ
(3.10). Since +this eqguation does not allow‘any‘constraintslté be
yiolated,. it reguires a feasible starting poiﬁt forlthe seaxch
toward the optimum point. To solve unconstrained problem.variable v
metric method (Davidon - Fletéher - Poﬁeli)t is used and to:'
determine the optimam sfep length in cufrént seérch dirgétion

cubic interpolation method (one dimensional method) is used.
Iteration procedure of this method 1s as follows.

ITERATION STEPS

| (1) Start }wiﬁh Aanlinitial feasible point X1 satisfying the
constrgints and stiict in eguality sign that is
gj(Ki}E < 0 for =1, 2, ..... ™ and an initial
value éf ¥a » O set k = 1.

(2) Hinimiﬁe $(X, rk) by using above mentioned unconstrained

and one dimensional minimization'methods and obtain the
soluti;n X¥x , -
{3) Testvwﬁether X*x is the optimum solution Qf the original
| problem. If X*x is found to be optimum terminaté the
rrocess, othexr wise go to next step.

(4) Find the value of the next penalty parameter

Yh+l, as




Fig.
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Find ry.q=cry |

| Take new startlxg
point as Xt = Xj?

[

Set k=k+1
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Thd = C Yk T P (3.11)

where ¢ < 1

() Set the new value of ¥ = k¥ + 1 ‘take the new starting as
X = X*x and go to step 2 -

The steps are shown in the form of flow chart in figure 3.2,

The interioy penalty method has been extensively studied and
successfully applied to a number of practical problems. It is
applicable to non convex problems and can handle nonliner
constraints. The method gives feasible intermediate solutions and
a final solution with desired accuracy, if a sufficiently small
penalty parameter is used. The disadvantages of method are:

(1) Any spe?ial strﬁctuie of constraints (e.8. lineérity) is

destroyéd.i"

(2) The ra?id change 1in the wvicinity of the boundary
oomplicées the one dimehsional optinaization problem
which h%s to be handled by special techniéues.

(3) Close t% voundries the term g;(X) are very large and at
the fiﬁal ﬁhase of minimizations,:rk = O, which cauazes
the fgnctionvf(X,rk) to be very sensitive to variable
chahgés:and introduceg round off errors.

In genéral this ‘method is considered sultable for solving
constrained optimization oproblems with few highly nonlinear
constréints. If; however, the cobjective function to be minimized
subJject to many linear é&nstraints, it\wopld be preferable to use

a method that handles the linear coastraints seperately.
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3.3 MARQUARD’ll’ METHOD

_Leagt: sdu§;e_ methods  have number of applications such asg
- | o -

that of -solving a system of nonlinear equations, curve <fitting

or regression analysis. Most of fhe algorithms of least square
estinmations of nénlinear parameters use the two .type of
approaches. In one approach, the model ;s expanded as a Taylor
_series and improves +the Bseveral par&meters calculated at each
iterapion on the assumption of local linearity. In other
abproaoh, various modification of thé method of steepest descent
have been used. Marquardt (1863), Levenberg (1944). Both methods
have certain disadvantages. Taylor series method because of
the divergence of successive iterations and the steepest descent
method because of slow convergence after the few iterations.

Marqguardt (1963) proposed a mew algorithms to overcome above
mentioned difficulties. . The method perform the optimum intexr
polation betweenéthe Taylor series method and gradient method.

o

STATEMERT OF PROBLEM

Let the modél to be fitted to the dzta, be

E(y) = £(X1, XZ, «..... xm; B1, Bz,..... Bk = (X, R) (3.12)
N v
where X1, X2, % ..... xm are independent variables.
B1, Bz,..... Bx are the values of k parameters and E(y) is

ﬁhe expected val@e of the depéndent variable Y,‘
Let data point be denoted by
(Yi , X1i, X2, ....... Xmi )
Least square function to be minimized is defined as

= (N - Yidr = |Y-Y)iE ..., (3.13)

= ME

(
-1



vhere Yi 1s the value of y predicted by equation at the ith
data point.

It is well.known that when £ is linear in 8 & the contours
of constant ¢ are ellipscids, when £ is nonlinear the conﬁours
are distored aécording to severity.of nonlinearity._Even with

the nonlinear |models, however, +the .contours are qaearly

4

elliptical in  the immediate vicinity of the minimum of ¢.

METHODS IN CURRENT USE

~The 'method”‘based_'upon expanding £ in Taylor series is as
follows
writing the Taylor series " and considering only firat

derivative through the linear terms.

: ® ofi .
Y (X3, B+#br) > = £f(Xi, b) + 2 (=) (Br)5 ....... (3.14)

J=1 9b;

in above eqguation B is replaced mnotationally by b, the

converged value of b, belng the least square estimate of 8.

“The vector bt is & small correction to » with subscript t used

to designate 8 as clculated by Taylor gseries method”. The
bracket <> i3 used to distinguish prediction based upon the
1inearised model form those based wupon the actual nonlinear

model. Thus, the value of o predicted by (3.14) is

1

: ng
<> = Y
i:;

- §Y1>jz‘ e . (3.15)

How, 6t appears linearly 1in eguation (3.14) and ¢can
| )

therefore be foun@ by the standard least sguare method of setting

d<p> f3b; = O | . 3. Thus &6¢ ig found by solving



;
i
i
} .
where Akxkl: P

Abt =

|
s ‘
Pnxk = : , =031, 2, ..., n, 3=1, 2, ..... k
: ' ' 2bj o ‘
and
n ofi ,
gkxl = Z (Y3 - fi) =--=- ) = PT (Y-fo) e e $3.17)

iz b

In practice it 1is found helpful to correct b by only a

fraction of ©6cx, otherwise vextrapolations may be beyond the

region where‘f can be adequaetly reperesented by (3.14) and would
cause divergence!l of lterates.

The giadient mnethods by contrast simply step off from the
] ~
current trial wvalue in the direction of negative gradient of ¢,

thus
09 op o :
Sg =l —— , ——, ..... e Y e (3.18)
I b2 bk
Various modified steepest descent methods have been employed
to compensate partially for the typlcally poor condition of the ¢
surface which leads to very slow convergence fo gradient method.

With these gradient method as with the Taylor series method it i«

necessary 10 control the step size carefully.

CONSTRUCTION OF ALGORITHM
In Marguardt method a new parameter A called
interpolation factor is introduced. Now modified equation at rxrth

iteration becomes;



(A%x 4+ 1) 6% = BXr, i i e e (3.19)
Where
ajk . ‘
A¥ = @ik T e L. (3.20)
faji X akk
&)
B T BX§ T e e et (3.21)
48353
| ,
%3 = B85 X FBIF e e (3.22)
where 3 = 1, 2, ..... K

This choicq of scale causes the A matrix to be transformed
| , .

T into matrix of simple correlation coefficients among the

étc'éfilabjf f

!

This choice of scale has in fact, been widely used in
‘ 1

. I H
linear least sguare problems  as a device of lmproving the
L
nunerical aspects of the computing procedure.

This equation is then solved for 6%r. Then (3.22) is used 1o

obtain &6r. Now new trial vector given is as:

Y

o P T o S i < O, (3.23)

¥will lead to a new sum of sguares @(r+l), gauation (3.12) and

(3.13). It is essential to select )y such that:
U gr ¥ L3 S e e (3.24)

: :
s :
It has %een proved that a sufficiently large ), always

can be found that equation (3.24) will be satisfied, unless br is

already at a minimam of ¢. Some form of trial and error is

required to find a value of Ny which will lead to satisfaction

3{*@ *v
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of (3.24) and v{‘zili'produoe 'i'apid convergence of the algorithm to
the least squaré values.

At each #teration one desire to minimise the ¢ in the
rﬁaximum neigh‘!%orhood over which function wilil give adeguate
rapresontation of the nonlinear functions. Accordingly, the
strategy for ci:hoos_ing Ay mast seek to use & small value of )y
when evexr oonolitions are such that the uwimodified Tayloxr series
method would oor;verge nicely. |

Strategy is as follows

Let V> 1

Let Awvidenot the valuvue of from +the previous iteration
Initially Let ), = 10“2,; say

IComputo B Awdand @A/ y )

(1) If 0w/ YIS pr, Lot Arz /Y
(11) 1if 'I‘()w-.}')l Yy > ¢r, and A1) = $r ].ef Av = Av-
{11i) 1t ‘¢()\7-|l)) ) > ¢r, and ¢ Ava) > ¢r, incroase ;
by i’sudcolsive maltiplication by untill for smallest w,
T ¢’(_)\Y-‘_v») <i¢r,

let Ar= )\7-1 v

By this algorithm:., always a feasible neighborhood Iis
obtained. The i‘cerétion is converged when |

JB3¢r) !
s € for all j.
t +jbir|
For some suitable smail value €>0, say 10-5 and sonme

suitable +t, for all J. The choiceY is arbitrary; ¥ = 10 has been

found in practice to be a good choice.



Start with mihal guess of
parameters and predict
- the model |

.

Set. r =1

|

= Calculate d&r
'J ﬁT:En[yl“(%)r‘lz

(yi)r can be calculated using
.predlcfed model

—_— e

Calculate A and ¢

A

Get the value of 6915} by
solving equa tion |

(Ar+ M) 67 = dF

1

Determine the value of &

br+]=br+6r

Select Nr such that
gr+l < dgr

Is
convergence
achived

YTl No

Yes

£19.33. Flow chart for the marquardt method
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MODIFICATION IN ALGORITHM |

T. Tabata abd R.Lto (1976) modified ﬁarquardt method taking
into account 'fg§e different values of V. In applying the
Marquardt’s aigorithm, the meﬁhod of choosing ‘the value of
parametef A which controls +the interplation of algorithm
between steepeSx descent method and Taylor series method has a
considerable effect on the rate of convergende for some classes
of problem. Rosen (1960), Ono (1971)

According to Marquardt’é method, A varies from one
iteration to ne;tvby maltiplying or dividing the previous by the
constant  facto 10, that is, +the choice 1s made withv &
logarithmidalpy constant step. To change the size of the step,
the— following “iive~afa¢tor3 are providedv 1n'vp1ace of single
factor 10 @ Vi= 1,33,  y,z1.78, V;=3.18, Y¢= 10 and Y-=100.
One of ihese factors Yi is seleéted for each lteration defiending
upon the history of minimizaﬁion. . The hilstory iy defined as &
sequence of results of comparing +the sum of the sguared
residuals $ with its least value so far obtained and consists of
the latest three resuits except at the earliest iterations. The
scheme used in present stud? to determine the value of ﬁubscript
i of the V-factor is givin in Table 3.1. |

TABLE 3.1

Scheme for determining the value of i'of theyfactor from
previous value 1o (D and I) stand for the decreazse and increanse
respectively, of o, and PI, for example means +that ¢ was

decreased and then increased at the latest two iterations.
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Conditions

History io ' i
At the start - , ‘ 4
DI, ID ’ — | fo-1
DI, IDI, TID 1051 fo-1
DDD |  d04H ‘ o +1
111 . o3 3

1
All the other

cases o

The algoriﬁhm dezcribved shares with the gradient methods,
their ability }to converge from an initial guess which may be
outside the r%gion- of convergence of the other methods. The
algorithm sharés with the Taylor series method the abllity to
cloge in on 'ihe converged values rapidly after vicinity of the
converged values has been reached. Thus the metﬂod combines the
best features of previous methods while avolding £heir most
serious ‘liﬁitations. Flow chart for Marquardt method is shown in
fig. 3.3 |

The listing of computer programs are availlable in Chemicai
engineering department of University of Roorkee,Roorkee. The

features of the [computer programs ave given in Appendix -A
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CHAPTRR 4

OBJECTIVE FUNCTIONS STUDIED

To checé Fhe reliability and functioning of the algorithms
were tested forﬁ different nori-linear function. These functions
were selected for +the regulirements in the practical area of

practical engineexring field.

4.1 TESTED OBJECTIVE FUCTIONS

As the‘ algorithm code were not developed but were adopﬂed
from the standard text book (Kuester and Mize (1973) and Rao
{1987)) These fortran codes wrer initially tested for the known

function with the given solution. These function are

(1) Minimixe f{x) = x12 - 6x12 + 11Ixy + x3 ..... (4.1)(1)
subject to
Cxa2 4+ X2z - %82
4 - x22 - xz? -~ x32 < O

This minimization problem was testéd using complex method
| :

and interior penalty function method.

|
|
(1) Parame#e M, Az and As were estimated for the model
. 1“ CLN

r
Y = A1 +Az exp(AsX)...........(4.1)(id)

- for the .kﬁown Y and X data points. Thus data points are

given in following table.



”~

' F 1#7 '; 151 ’ 379 i 421 } 460 " 426 ’

|

This problem was used to test the Marquardt method while

>

-5 | -3 -1

1 3
X

utilizing non-linear least squaie method.

Objective functions based on following area have been
selected for detailed study
1 Parameter estimation.

2 Seguential experimental design.

4.2 PARAMETER ESTIMATION

An important pioblem in chemical reaction engineering is the
estimation of the parameters of a kinetic model from experimental
data. |

In the @athematical - model, there are dependent and
independent variabies and also certaln Constanﬁs.'The congtants
are generally cailed paraheters.

In experim%nts the dgpendent‘ variables may- be measured

diretliy but the%parameters can not be. Approximate values of the

parameters are! calculated from dependent and independent

|

variables. Sinc? only approximate parameters values are found.

The parameter aré said to estimated.

4,2.1 FORMULATION OF TFUNCTIOR
The ethylene hydrogehation reaction system studied by Barton
(1876) was used for +the present study. The rate model for

reuction was

-



rezie = Ao exp (-E/RT) (Xczma)® (XMz)P  .............. (4.2)

Where rczns is the rate of formation of ethane and xcz2na and
xp2 are mole fractions of ethylene and hydrogen respectilvely.
The original parameter estimates refered to as *true’ values

were taken from Barton’s analysis and are shown in table 4.1.

Table 4.1 True values of Parameters

Paramet%r Value

Ao | 4.629 x 10° |

€ | | 11.6 k cal / mole
- a7 -  0.33

B | 1.0

The data from each set of experiments consist of one get
of independent variabls (mole fraction of ethylene‘and hydrogen
and reaction temp.) together with the dependent variébles
obtained by adding errors to the true values calculated from
equation {4.2).

The errors used were calculated from

% Errof = random number X nolse level

The random numbers were generated from a Gaissian normal
distribution ‘ﬁith zero mean and a constant standard deviation
of 0.5 using following formulﬁ.

?1 : 1 X~ P
f = e exp [ - ( )z ]

g4 2ZR 2 o]




0= mean

Q
H

standard deviation

10% and 30% nolse level were used to test the performance

of selected algorithms

The objective function for the parameter estimation}is a

non - linear: leasty square function and is defined as follows.

Minimise Ulestimation = Z {(Yu = Yu)2
—_— D - : =1

Wnere Yu 18 observed rate and is calculated as follows.

'

fu = Ytrue.- TrrueXerror/100

Ttrue was calcuted using +true values of parameters for

different experimental data points and ¥fu is the expected value

of rate given by Bguation 4.2

4.3 SEQUENTIAL EXPERIMERTAL DESIGH

Parameter estimation for a model of known form has been
discussed above. The estimates thus obtalned are likely 1to be
approximate, since experiments are probably poorly desgigned over
the desired experimental range. Box and Luca$ (1958) developed an
experimeﬂtal deSign procedure‘ for decreasing the amount of
uncertaiﬁity assoqiated with the estimates of parameters. It aims
at reducing the %olume of-thé joint confidence regién (JCR) with
the extimates. |

Box and Hdnter (1965) established a criterion for a

sequential experimental design, gemerally known as minimum volume

46



deslgn critaion (M ¥ D), where =all the available experimentnl
results are - anal?sed each time as an additional experiment is

performed and the current information is then used for design of

the next experiment; Some applications of this criterion to real

experimental studies in the field of chemical kinetics have been
e — . . -

reportéd by Meéaki {1969), PFroment and Mezaki (1870) and Graham

and Stevenson (1872).

4.3.1 DESIGN CRETERION FOR SEQUENTIAL EXPERIMENTAL DESIGN

Let us consider a rate model given by following equations
Yu = F{Xu,R) + €u ... ... SR {4.3)

where Yu is the measured reaction rate,

Aa = (X1wu, XZu, AB3u,.....Xmu) are m operating variables
for experimental run u, =1, 2, ....n and K = (k, Kz,....kp)T
are Pp parameters. If the random errors €u, u=l, 2, ....n . are

indepently and npnormally distributed with constant variance 2%,

then the varliance - covariance matrix of +the least square
estimateé |
— !
|
V= (DTD)"1e2 .......... e (4.4)

where D 15 an (nxp) matrix. An element of D duj 1is the

partial derivati%e with respect to the jth parameter evaluated

for uth experiAental condition of Xu at the least square

estimates K = K |
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Of (xu,k) 7 = - '
duj = [ : } QS - G (4.5)
o kj

The MVD creJerion for optimal experimental design i1.e.

Mini&iqe
. v -
Udesign = 1/] (DTD” ........... (4.6)
For the given model (Equation 4.2) the elements of the D

matrix are definedas follows. -

O(rczus)/ QA0 = exp(-E/RT) (XczHA)% (Xuz)P ....(4.7)
O(rczHB )/ OFE = ~rCzHB/RT. . v evr .. (4.8)
2({rcz2ne )/ 2da = rczBs In(Xc2HAa)............ (4.9)
o(rczue )/ O3 = rczhe In(XH2).............. (4.10)

The initial sets of independen variable to design'the Tth,
15th  and 25th experiment were used from the simulated studies of
Agarwal and Brishk (1985). The éontinuous operation reglon was

choosen on the independent variable and is defined as felliow

0.1 = Xc2n4s 0.4, ... il (4.11)

0.4{5 Knz - £ 0.8......... S (4.12)

313 s T S 363................ (4.13)
Consﬂéints i'frém the actual experiments were used to bound

|
| .

. the allowable space. Thus an upper limit of the reaction rate was
|

set at 1.5 =x 1@—4 kg /{kg catalyst)-s. Because higher reaction
rate gave run away condl tion (Barton 1870). The mole fractions

! _ :
were restricted ito Aczna +XHz <1.0 with nitrogen used as inert .

|
diluent when necessary
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CHAP'TER b
RESULTS AND DISCUSSION

This chaptér discribes the result obtained from testing the
three selected algorithms {complex, Interior penalty function and
Marquardt method) discusgses thelr performance and compares the
effectiveness for two different objective functions,

The computexr codes of the selected lalgorithms have been
adopted from the standard books {(Kuester and Mize (1871) and (Rao
{1937)). Computer programgs were xun on Unicomp PC- AT. f

Before implementing the actual objective function, selected
algorithms were tested for the test problems with known solution

to ensure their performance in solving the optimization problems.

Tablez 5.1 and Srz ghow the performance of selected algorithms.

i
i
1
i
{

Table 5_1 Solution of Tested problem 4.1 (1)
f

Methods Starting Final number of Actual
used function function - function - solution
value} value evaluations

Complex 3.041. 1.435 125
method o
1.414
Interior 3.041 1.426 2448
renalty
fuction
method




&y
<

Tablé 5%2 Solution of Tested problem 4.1 (ii)

U -

Methods Starting ‘Final number of Actual
used function fuanction function © golution
value value ' evaluations
Marquardt 7T.540E6 1.33986 81 1.339E6

method } :

It 1s evident from the Tables 5.1 and 5.2 that the optimum
solution are close to the known solution. This showed that all
coméﬁter codes adopted were working perfectly alright.

The different algorithms were, then applied to the following
two objective functions in area of |

(1) Parameter estimation.

(2) Qequential experimental design.

b1 PARAMETER ES?IMATION

Complex and?Maiéuardt methods were tested for the estimation
of kinetic pargmeters for the model described by equation 4.2
Thfee sets of d%ta rolnts were taken in order to cover the range
of the situaﬁio%.G, 14 and 24 data points were used. These data
points are’shown{in Table B-1 of Appendix B. |

The simulaﬁed rate data points were g§nerated based on two
noise level, 10%!and 30%. The 10% noise level covers the maximum
possible rangé in a laboratory experimental situation while, 30%
noise level approximates the industrial situation.

Table 5.3 and 5.4 compare the result obtained for lb% and 30%

noise level.
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Table 5.3 Comparison of Marquardt and Complex
method for 10% noise level

Mothods Starting Optimum Number of Fuanction Ratio of

used function function data evaluations optimum to

value valiue points starting valu
1.023E-8 2.69812E-12 6 87 2.63E~4

Marguardt

method B.BBTE—B 1.579E-11 14 : 76 4.06E-3
9,.813E-8 1.0T4E-10 24 66 1.09E-3
1.023E-8 2.423E-11 6 92 2.378-3

Complex . -

method 3.887E-8 . 4,960E-10 14 36 1.288-2
9.813ET8 1.096E-10 24 36 1.12E-2

i
i
|

Table 5.4 Comparlison of Marquardt and Complex

! method forxr 30% moise level

|
!

Methods Startﬁng' Optimum Nunber of Function Ratio of
used funotion function data ~evaluations optimum to
~value! value rolnts ' o gtarting value
| 7.616E-6 2.730E-11 6 79 3.63E-3
Marquardt ' .
method 2.7T96E-3 2.437E-10 14 43 8.89Ef3
| 6.925E-8 9.663E-10 24 47 1.4E-2
7.516E-8 &6£.193E-11 6 73 . 6.91K-3
Complex :
method 2.796E-8 5.036E-10 14 101 - 1.88E-2
6.925E-8 3.028E-3 . 24 133 4.37E-2

i v
It 1is evidént from the Tables 6.3 and 5.4 that Marquardt

nethod posseses |the superiority over the complex method in
minimizing thd ?um of squares. As 1t is also evident dfrom the
Tables 5.3 and 5.4 that the complex method could not achieve the

minima obtained by Marquardt method..
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The ratio, optimum value to starting function value a

- measure of reduction 1n the furiction value, Tables 6.3 and 5.4
show these values.

’ As expected 30% noise level showed a smaller ratio Qalues
as compared to 10% noise lével {Table 5.3 and 5.4). At the same
time 1t is also evident from Tables 5.3 &and 5.4 that the
Marquardt' methbd is superiorvto the complex method in both cases
10% and 30% noise level.

Complex method searches the minima in the direction'whiéh isg
reflection of worst point'in the feasible region 8o there could
be a possibility that complex methed could colléﬁse in to
subspace and unable to find the solution in the desirable gpace
of variables. Alﬁo it could shrink drastically in a steep valley
and terminate at Pndésirable optimum. |

Fig. 6.1 t% 5.6 show the behaviour of algorithms. The
values weré pio%ted Letween the function vaiue and number of
function evaluat?ons for different noise level. It is evident
from these figureé that both Marguardt and Complex method reached

1
|
|

neay to optimumf value rapidily in fey numbexry of function

evaluations. As they led in vicinity of the optimum , convergence
became rather slow and took larger function evaluations to reach

the. actual optimum.

5.1.1 EFFECT OF STARTING POINT SELECTION
The algorithms were also tested for different starting
points to check to whether the optimizers were able to find the

common optimam point. Different starting point were taken +to
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cover the ;rangL 0of the wparameters. This behaﬁiour waz tested

using 14 daﬂa prolnts of 10% noise level. Table 5.5 shows the

results. S

Table 5.9 Comparison of the methods different starting points

Methods Starting Points Starting Optimum Number of
used (Ao, E, a, B ) function function function

' o value value evaluations
Marguardt 3300,9500,.1,.2 1.207E-4 1.57E-11 153

method . :
- 5800,1.45E4,.95,1.8 9.903E-8 1.57E-11 123

3900,1.0E4,.2,.5 1.782E-% 1.57E-11 123
6000,1.3E56,.7,1.5 8.796E-8 1.57E-11 104

4000,1.2E56,.6,1.3 4 578E-8 1.57E-11 79

Complex ~-do—- -do- , 1.345E-9 65
method :

L

. 3645E-9 169

8.556E-10 938
| 1.076E-9 a1
; 3.148E-9 63
*14 data points &f 10% nolse level. .

| - A
'

It 1is eviéent Vfrom the Table 5.5 that Marquardt methed
reaches to samet optimum point even t&kingr the worst sta:ting
point. However, ?he complex fails to achleve the same,

The above r%sult.and discussion leads {o the conclusion that
Marquardt methoé~is undoubtedly better choice in minimizing the

- sum  of squares of residuals. Also Marguardt c¢ould be operated

_till worst starting points.
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5.2 SEQUENTIAL EXPERIMENTAL DESIGN
Complex method &and interior  panalty function method were
tested fo% ?eq entlial experimental design problem. As Marguardt
method can not be employed for this type of optimization problem,
three experimentL wereAdesigned, namely Tth, 15th and 25th. Table
B-1 of the Appendix B shows the different experimental pbints.
Table §.6 shows the result obtained using ~the +two

optimlzers.

Table $.6: Comparison of complerx and interior penalty
function method

Methods Starting Optimum Experiment Funection

used function function nunmber evaluations

value value desligned
365.674 - 1.337 7 63

Complex .

method 0.449 0.422 , 156 48
0.277 0.268 25 43
36.674 - 2.398 7 1936

Interior { :

penalty - 0.449 0.423 16 1776

function | . _

method 0}277 0.269 26 1666

It s evident from the Table 5.6 +that except Tth
experiment botﬁ method approach to same final function value.
For +the Tth exp?riment this could. be due to less number of data
Ppolnts and there#ore movement of optimizer ;5 confined in narrow
region. However:'as number of experiments Iincreased it became
rather easy to find the optimum point for the optimizers. It is

also evident  from Table 5.6 that complex method takes lesser
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number of function evaluations than interior penalty function
method. Complex wethoed is a gradient free algorithm. Theréfcre.
algorithm does not calculate the derivatives of the function and
-evaluétes the fﬁnction once at any iteration. On  the other hand
interior pénalty function method wutilized the variable metric
method of unéon;trained minimization. In variable metric method,
the fifstv de;ivatéé~vare required to establish +the search
directions, derivatives mayvlbe' deteimined analytically or
numerically. Numerical +technigue was wused to calculate the
dexrivatives for the present function és analytical derivatives
were not possible. Newton’s forward difference was used to

calculate the numerical derivatives. Newton’s forward difference

is given by equation

oy | £ (= +ax) - £ (%)

[}

AR ' aX

where 66X isg increment in variables.
To calculate +the derivatives using nunmerical technique
Tunction has to be evaluated n times (n number of variables). One

dimensional met?od is used to determine the optimum step size in

|

'3curren£ search Idiréétién. Here cubic inter polation method was
used 1o set the optimum step 1eng£h. In cubic interpolation
method two poinés A and B are locatéd in such a manner that at A
T°’A ¢ 0 and at:B, f‘ﬁ > 0 ﬁhere f’rand £’  are derivative at A

|
and B with respe#t to step length and are calculated as follows. .
‘ o ' !“

f/a = T (ofi )a S
L i=1
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f/8 = Z (vfi e S
' i=1
where 5i,  search direction for ith component.
In locating point B, many times derivatives were calculated
depending upon increase énd decrease in step lenéth.
Which, dinturn ,%as necesslitated due to increasing negative value

of the derivative in the directioh of deScent:and followed by an

Cextremly sharp| change in slope, in the proximity of the

constraints. It caused the function to behave in concave fashion

|
t

making it difficult to locate point B.Consequently it resulted in
increasing function evaluations.- It i3 apparent from the above
discussion that interior penalty method requires the higher
function evaluations in reaching to an optimum solution. On the
other hand cpmplex' method takes fewer function evaluations
(Table 5.6). |

Fig. (6.7-5.9) shows the pexrformance of these +two
algorithms. It 1s evident from +the figures that cémplex method
takes fewer function evaluationér to  reach in vicinity of the
‘optimum solution then takes longer time to converge.

Similiar behaviour was &also observed for +the parsmeter
estimation problem. Whereas except for design of Tth experiment,
interior penalty fungtibnvmethédvpérforme& slowly at the initial
stage and then rédu¢ed the function drastically.

Above resul{ and diséussion for the sequential experimental
design functioni leads to conclusion that complex method appears

1o be superior o#er interior penalty function method.

©
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CHAPTER ©
CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS |
| |

Three algorithms of non-linear optimizer , Complex, Marquardt

and Interior penalty, were used to study their'performance and

Co
effectiveness flor two known non-linear functions in the field of

reaction venginegring'namely, parameter esiimation and' sequential
expexrimental design.

Complex and Marquardt meﬁh&ds were utilized to estimate the
kinetic - parameters for ethylene hydrogenation reéction rate
model (power-law model). Marquardt method showed superiority over
Complex methed. Also, Marquardt method showed that it can utilize
the worst Btarting rointg in achieving the optimum solution.
‘However, complex failed to achieve the minima obtained by
Marguardt method.

Complex and Interior penalty function methods were used to
design the experimental variables for the ethylene hydrogenation
reaction. Both optimizers achieved the same optima but interior
penalty function took large number of function evaluations,

Ini&riqr genalty function methqd used along with variable
metric method %nd' cubic - interpolation method requires much
higher number bf ~function evalﬁations, due to two ©primary
|
|

reasong.Firstly,E calculation of derivative required in chooszsen

unconstrained Zmultivariable and single variasble method and
sécondly, in 100Lting the second bound for the location of minima

in one dimensional search.
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Complex method for both approached in the vicinity of the

optima with fewer function evaluations but took lorig time to

convexrge,

6.2 RECOMMENDATIONS

Ma¥qﬁardt method 1is reéommended to be utilized in the
estimation of pﬁrameters. Complex method could be recommended for
the sequeﬂtial experimental design problems. Also,Complex could be

utilized in ﬁohieving the region. of minima and there after a

betiervoptiﬁizexﬁcould be used to calculate the optimum solutlon.

To 7reduce Ithe humber of fnnption evaluations for interior
penalty funcfion method, the unconstrained optimization technigue
ve replaced by s gradient less technigue, such as Powell (1964)
-method and cuic ;nterpolation. method be replaced by Golden
section method or Fibonaccli method |

A large - variety of problems involving higher number of
variables and different’ type of objective functions and
constraints be used to compare the performance of non lineax

optimizers.
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APPERDIX A

Ai. COMPLEX METHOD
i

Al.1 PROGRAM Dazs;cmpmou

!
|
i

A 1.1.1 USAGE

The prqgram'conaistsof_main progoram ,four general subroutlnes

(consx; CHECK,’CENTR, RANDOM) and three user supplied‘subroutineg
(FﬁNC,  BOUND, CONST), initial guesses of independent variables,
solution parameters,dimension limit and printer code-désignation
are passed to the subroutines from the main program. ¥inal
functidn » independent variables values and function evaluations

are transfered to main program for print out. Subroutine CONSX is

the pPrimary ﬁubroutine and coordinates the special purpose

subroutines CHECK, CENTR, FUNC, CONST and RANDOM. Intermediates

print~outsfare provided in this subroutine, if the user desires.

Format. changes | may be required depending on the problem under

consideration.
A 1.1.2 SUBROUTINE REQUIRED

SUBROUTINED CONSX (N,M,K, NMAX, 1, IEV4Y, IT, ALPHA, BETA,
GAMMA, DELTA, FF, EPS1, X, XTEMP, F, G, H, IPRINT) called from

main program and coordinates all the specialhpurpose subroutine

(CHECK, CENTR, FONC, CONST, BOﬁND, RANDAM) .

| - SUBROUTINE CHECK (N,M,X,X,XC,I, KODE, G,H) checks all the

point against explicit and impliclt constraints and appiies

correction if violated. | |
SUBROUTINE CEﬂTR (N,M,K, IEVZ, I, XC, X, KI) calculates the

centroid of complex.
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SUBROUT INLE iFUNC NMK, X,F,1) Specifieé the objective
function (user s@pplied)'

SUBROUTINE | BOUND (N,M,K,X,G,H,1) specifies +the explicit
constraints with upprer and ;ower bounds
SUBROUTINE | CONS (N,M,K,X,6,H,T) specifies the implicit

constraints with upper and lower bounds

SUBROUTINE RANDOM (N,K,FF,R) generates the random nmumbers.

A 1.1.3 DESCRIPTION OF PARAMETERS

-

N Number of indebendent variables defined in main program
M Number of constraints defined in main program
X Numbar1 of poiﬁts in the complex defined in the main
progra# |
NMAX animuk number of iterations deflined in main program

ALPﬁA, Reflection factor defined in main program

EPSY A small guantity to compare with ALPHA-defined in malin
Program
BETA Convergence parameter:. defined.in maln program
GAMMA Convergence parameter . defined in main program

DELTA Explicit constraint violation correction defined in mailn
program |
IPRINT  IPRINT=1, PRINT FINAL RESULT
IPRINT=0, PRINT INTERMEDIATE RESULT, defined in main

Program

X Independent variable defined initial valués in main
Program

R Randam pumbers between‘ 0 and 1 defined in subroutine

RANDOM



vie)

¥ Objecfive function defined in subroutine FUNC
iT Iteration index - defimed in subroutine CONSX
iEVZ' Index of point with maximum function value defined in
subroutine CONSX |
IEV1  Index of point with minimum function value defined in
subroutine CONSX |
G Lower constraint defined in subroutine BOUND and CONST
‘ respecltively |
B Upper!constraint defined in subroutine BOUND and CONST
XC Cen}rdid defined.in‘subroutine CENTR
i _fointglndeg -defined in subroutine CONSX
KODE Key ﬁsed to determine if implicit cohstraints area
provided - defined in subroutine CONSX and CHECK
K1 Do loop limit defined in subroutine CONSX
FF 4 digit: number 1o generate random number defined in -
- main program. '
A 1.1.4 INPUT
- N,M,K, NMAX, IFRINT, ALPHA, BETA, GAMMA, and (X(J,1), J=1,N)

A 1.1.5 OUTPUT

The mailn program first prints out wvalues of all inpuat
. ]
paramclters.

Subroutine CONSX provides intermediate output on each
iteration provided the user specfies iprint=1, If Iprint=0, only

final result is printed.
¥hen the ?solution has convergéd to within the allowable
| ] |
range, or when maximum number of iterations has been exceeded:.

f



1%

the main program prints the finalvvlaue of the function, the X
vector and the total number of function evaluations and centroid

of complex. ;
A 1.1.6 SUMMARY QF USER REQUIREMENTS

(a) Determine T'I,he ‘value for N,M,K, NMAX, ALPHA, BETA, GAMMA,
DELTA, IPRINT. Guide_lines for sbecifying the parameters are

as follows

=z
-
e

K =
ALPHA = 1.3
BETA :‘36ﬁe small number, say magnitude of function time
10-4
GAMMA = 5
DELTA = Séme smali nunber, say magnitude of order X vector

" times 10-4

(b) Determine +the initial estimates for optimum values of
independentjvariables $
enter as éX(J,l), JZI{N)
{c) quplyé the value of FF (4 digit number) to gangrate the

|
randominémblrs

———— - e - o
(d) Adjust DIMENSION and FORMAT statement as necessary

(e) OSpecify objective function by writing SUBROUTINE FUNC

(f) Define H (upper bounds) and G ( lower bounds ) explicit

constraints in subroutine BOUND and implicit constraints in

subroutine CONST.
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A 2. MARQUARDT METHOD

A 2.1 PROGRAM DESCRIPTION

A 2.1.1 USAGE

. The program consists of a main program a general subroutine
BSOLVE, a gemeral fTunction subfrogram‘ ARCOS, and two user
supplied subroutinmes FUNC and DERIV. All input and output is
through the main program. Format changes méy be required

depending on the problem under consideration.

A 2.1.2 SUBROUTINES REQUIRED

SUBROUTINE BSOLVE (KX,B, NN, Z, Y, PM, ITER, FLA, TAU, EPS,
PQHIN, I, ICON, FV, DV, BV, BMIN, BMAX, P, FONC, DERIV, KD, A,
AC, GAMM) called from mnmain program - performs primary
calculation and goordinates other subroutines.

SUBROUTINE kKK;B, NN, ‘Z, PJ, FV, DV, J, JTEST) specifies
analytical deriv%ties 1f}used, omit if numerical derivative used.
(user supplied).{ ‘ |

SUBROUTINE %ﬁNC (XK, B, NN} Z, FV) specifies the model (user
supplies). i

FUNCTION ARFOS(Z) general - function 'subprogram internal to

BSOLVE. |
.

A 2.1.3 DESCRIPTION OF PARAMETERS

RN = Number of data points or number of equations
KK = Numbeflof unknoﬁns
B = Vector of»unknowns
BMIE = Yector of minimum values of B



BMAX = Vector of maximam values of B

X = VeclLor of independent variable data point

Y = Vector of dependent variables
PH = Least square objeétive function )

Z = Computed values of dependent variables
BY = Code vector set equal to 1 for numerical derivatives

|

-and;—i'fqr analytlcal derivatives

ITER = Iterations.
I .

i

A 2.1.4 DIMENSIONS REQUIREMENTS

76

The dimansion STATEMENT IN THE MAIN program and subroutines .

i

should be modi#ied according to reguirements of each particular

problem. | ' f

A 2.1.5 INPUTG
(B(J),d=1, BK}), (BMIN(J), J=1,KK) -
(BMAX(J), J=1,KK), (X(I),I=1,8N), (Y(I),T=1,RN)

A 2.1.6 OUTPUT

The main program prints out all input data the values of
unknowns, least sqQuare iunction value (PH), and function
evaluations at ;| each iteratlion, in addition to final values of

wnknowns. ‘

A2.1.7 SUM§AQY OF USER REQUIRMENTS

1._Determiné ihe value for NN, KK, B(J), BMIN(J), BMAX(J), X(I1),
Y(I). | | | | :

2. Adjust the dimension statements in main program and

subroutines.



3. Specify analytical derivative in DERIV, if used
4. Change the 1nput and output format statement as necessary.

5. Specify the mlodel in FUNC subroutine.

P
. 2
i

7



A 3. INTEé@R PENALTY FOUNRCTION METHOD
,A 3.1 PROGRAM DESCRIPTION
A 3.1.1 USAGE

Program consists of a main program and three gereal
subroutines UNCON, ONEDIM, .GRADT and two user’s supplied
subroutine ¥TN and CONST. All input and output is through the
main érogram, format may by changed depending upon the problem

under consideration.

A 3_1.2,SUBROUTI§ES REQUIRED
SUBROUTINE'E UNCON(N,M,R,EPS, EPSS, STEPO, X, XOPT, GRAD, F,
OBJ, IT, KT) 50§vebthe ﬁnconstrained minimization problem.
SUBROUTINE EONEDIM(N, M,R, EPSS, STEPO, SLAMDA, X, XN, $5,
F, FN, OBJ, thﬁD, GRADN) specifies the optimum step length in
current. sgarch d#rection.

SUBROUTINE !GRADT ( X, N, M, R, GRAD, FF) calculates the

derivatives nnmeLically using Newton’s for;ard'formula.

- SUBROUTINE {an (X, F, OBJ, N, M, R) specifies the function
(user’s supplied)
SUBROUTINE CONST (N, X, VAL, IN) specifies the cqnstralnts

(user’s supblied)

A 3.1.3 DESCRIPTION OF PARAMETERS

N = number of variables

M = number of constraints
MAXPI = maximu& number of é function to be minimized.
ITLIM = maximum number of iterations permitted in any one

P :
unconstrained minimization.

R
1
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MAXIN = maximuh number of cubic interpeolation permitted in any
one di@ensional search.

SLAMDA = optimuﬁ step length.

Ci = reductéon factor for the}penalty parameter.

R = initiaa value of penalty rarametej.
EpPS = donveréénce required in unconstrained‘minimization.
EPSS = coﬁvergeﬁce required in cubic interpo1ation.

STEFO = trial step length to dbe used in cubic interpolation.

X(1) = independent design variables.
OBJ = value of objective function.
F = value of ¢ function.
55(1) = component of scarch direction.
IT = 1teration number in unconstrained minimization.
KT - iterat&on pumber in main program.
GRAD = Qomponbnt of gradient vector.

o
A 3.1.4 DIMENSION REQUIREMENT

The DIMERSION statements in +the main the program and
subroutines  should be meodified according +to problem under

consideration.

‘A 3.1.5 INPOT

‘N, M, R, C1, (X(I), I=1,N), STEPO, MAXPI, ITLIM, MAXIN,
EPS, EPSS.
A 3.1.6 OUTRUT

The main .program prints out all input data and values of
main program iteration number starting vélues of $ function and

variables before starting the unconstralned mninimizatlon



86
optimum values of varlables after unconstrained lteration. The
value of obljective fTunctlion and ¢  function, fTunction:
evaluations at each maln program iteration and final values of
total function evaluation, fTinal values of variables and

objective function.

A 3.1.7 SUMMARN% OF USER’S REQUIREMENT

1. . Feed the values of all input data.

2 Adjust diménsion statements in main program and subroutines.
3. specify thé function in FTN subroutine.

4. specify thé_constraints ih CONST subroutine.

5 change theiinput and output format statement as necessary..
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APYERDIX B

SIMULATED EXPERIMENTAL DATA POINTS

TABLE - Bl

Temp. of Mole fraction Mole fraction

reactlion of ethyliene of hyd€ogen

{ K ‘
45.0 .35 .66
53.0 | .30 .70
6G.0 .28 .72
63.0 .33 .45
75.0 .25 .65
35.0 .15 .60
80.0 .10 . 40
45.380 .10 . 80
67.43 .10 .80 |
80.0 .10 .40
87.82 .10 .80
67.81 .10 . 80
90.00 .10 .40
32.09 . 40 .60
80,82 .20 .80
80.0 .40 .42
80.82 .20 .30
30.82 .20 . 80
890.0 .40 .42
85.380 .10 .80
32.09 .40 .60
65. 58" .40 .60
66.62 .40 .60
8C.. 382 ;20 .80
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