
FLOOD ESTIMATION AND FORECASTING IN
MAHANADI RIVER BASIN USING SOFT

COMPUTING TECHNIQUES

A THESIS

Submitted in partial fulfilment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

HYDROLOGY

ANIL KUMAR KAR

DEPARTMENT OF HYDROLOGY

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

AUGUST, 2011



©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE, 2011
ALL RIGHTS RESERVED



INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled

FLOOD ESTIMATION AND FORECASTING IN MAHANADI RIVER BASIN

USING SOFT COMPUTING TECHNIQUES in partial fulfillment of the requirements

for the award of the degree of Doctor of Philosophy and submitted in the Department of

Hydrology, Indian Institute of Technology, Roorkee is an authentic record of my work
carried out during a period from August, 2008 to August, 2011 under the supervision of
Dr. N. K. Goel, Professor, Department of Hydrology, Indian Institute of Technology
Roorkee and Dr. Anil Kumar Lohani, Scientist, National Institute ofHydrology, Roorkee.

The matter presented in this thesis has not been submitted by me for the award of
any other degree or diploma of this or any other Institute.

(ANIL KUMAR KAR)

This is to certify that the above statement made by the candidate is correct to the

best of our knowledge.

(N. K. GoefjT (A. K Lohani)
Supervisor Supervisor

Date: ^ &Ji* w

The Ph.D. Viva-voce examination of Mr. Anil Kumar Kar, Research Scholar,

has been held on &^JJ~!>) 'Lo fJ

., . - .jJ C Ckattitid
Signature/of Supervisors}-^ S p. Signature ofExternal

v I \ Examiner

Chairman SRC Professor & Hea



ABSTRACT

GENERAL ABOUT THE PROBLEM

Water is known as the most precious gift of nature for growth of civilization as well as a

destructive element causing mass devastation. Flood hazards have become ever

increasing natural disasters resulting in the highest economic damage among all kinds of

natural disasters around the world. The country India is full of rivers and rainfall patterns

are heavily influenced by monsoon. Thus occurrence of flood remains an inevitable

feature in most parts of the country. The large river systems like Ganga, Brahmaputra,

Godavari and Mahanadi influence the flood scenario of the country. Mahanadi is the 6l

largest river system in India. The river is also known for its huge water potential and

frequent flood devastations.

Chhatisgarh and Orissa states of India cover almost 99% of the catchment area of

Mahanadi basin. Currently a number of developmental projects are going on in these two

states. For these projects well defined flood estimate formulae are required. The lower

reach of Mahanadi basin is in the state of Orissa and flood is a permanent threat to this

reach. Hirakud reservoir is the only major flood controlling structure in the basin. The

downstream area of Hirakud is around 58000 km2. It remains uncontrolled and

experiences frequent floods. Flood damages can be reduced drastically by adopting

various non-structural measures such as flood frequency prediction and flood forecasting.

In the present study efforts have been made to develop regional flood formulae for

the entire Mahanadi basin using L-moment and prioritized variables based approach. For

the lower reach of Mahanadi basin (downstream of Hirakud dam) flood forecasting

models have been developed using soft computing techniques like ANN and Fuzzy logic.

The performance of soft computing models has been compared with conventional and

conceptual models.

BROAD OBJECTIVES

In the present study the flood problem of Mahanadi basin has been addressed by

developing regional flood formulae for the uncontrolled portion of the basin and by

developing a flood forecasting model using ANN and fuzzy logic for the lower reach. The

objectives are summarized as follows:

i. Development of regional flood formulae for Mahanadi basin.



ii. Development of a flood forecasting model for the reach downstream of Hirakud,

and

iii. Development of a key raingauge network for Kantamal sub-basin of lower

Mahanadi basin for flood forecasting.

DEVELOPMENT OF REGIONAL FLOOD FORMULAE FOR MAHANADI

BASIN

Mahanadi basin has been divided into homogeneous regions by applying different

clustering techniques, as the entire basin is not hydro-meteorologically homogeneous.

Principal component analysis (PCA) has been used to prioritise the site characteristics.

Clustering techniques like Hierarchical Clustering (HC), K-mean (KM), Fuzzy C-mean

(FCM), Kohonen Self Organization Map (SOM) and Andrews Plot (AP) are applied on

prioritised variables to verify the results of clustering. The entire basin is divided into two

homogeneous clusters based on the results of Fuzzy C-mean (FCM) technique. L-moment

based methods are used to test the homogeneity of the clusters and to identify a best

fitting underlying frequency distribution. The Generalised Pareto (GP) distribution holds

good for cluster-1 and it contains the areas which can contribute substantially towards

runoff generation due to high slope and drainage density characteristics. The cluster-2

contains areas with low runoff generation capacity as compared to cluster-1. Generalised

Extreme Value (GEV) is the robust distribution for this cluster.

DEVELOPMENT OF A FLOOD FORECASTING MODEL FOR THE REACH

DOWNSTREAM OF HIRAKUD

In this reach the discharge data are available at 3 hour interval during monsoon period.

However due to various reasons, sometimes only peak discharge data are available. Three

hourly and peak discharge data of three different gauge and discharge (G&D) stations

located downstream of Hirakud dam have been used to develop various flood forecasting

models based on soft computing methods like Multi Layered Feed Forward-Artificial

Neural Network (MLFF-ANN), Radial Basis Function-Artificial Neural Network (RBF-

ANN) and Takagi Sugeno (TS)-Fuzzy inference system. The forecasting results of these

models are compared with statistical and time lag methods exercised by the Department

of Water Resources, Government of Orissa. The TS-fuzzy models perform better than

other models for peak flood as well as 3-hour flood forecasting. The TS-fuzzy model

ii



gives an efficiency of 86.7% for a lead time of 42-hours. This is expected to improve the

existing operational flood forecasting system quite significantly.

DEVELOPMENT OF A KEY RAINGAUGE NETWORK FOR KANTAMAL SUB-

BASIN OF LOWER MAHANADI BASIN FOR FLOOD FORECASTING

Sometimes it becomes difficult to collect data from all the rain gauges either due to

instrumental disorder, difficulty in transmission, inability to take readings and many other

operational difficulties during flood times. Therefore, the network of key raingauge

stations is designed. The performance of key rain gauge network in flood forecasting is

discussed and demonstrated through a case study of Kantamal sub-catchment of

Mahanadi basin. This sub-catchment significantly contributes to the downstream floods at

Khairmal, Barmul and Mundali. The Fuzzy logic applied on the network developed

through AHP has shown the best result for flood forecasting at Kantamal gauge and

discharge site with efficiency of 82.74% and RMSE value of500.2 m3/s for 1-day lead
period forecast. Analytic Hierarchy Process (AHP) has been successfully introduced for

the first time in this study for establishing the key rain gauge network.

The contents of these have been presented in seven chapters namely (i)

Introduction, (ii) Description of study area and data used, (iii) Review of literature, (iv)

Regional flood frequency analysis of Mahanadi basin using prioritized variables, (v)

Development of flood forecasting model for downstream of Hirakud reservoir, (vi) Rain

gauge network design of Kantamal sub-basin of lower Mahanadi for flood forecasting,

and (vii) Conclusions and scope for further work.
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CHAPTER 1 INTRODUCTION

1.1 GENERAL ABOUT THEPROBLEM

Water is known as the most precious gift of nature for growth of civilization as well as a
destructive element causing mass devastation. Flood hazards have become ever
increasing natural disasters resulting in the highest economic damage among all kinds of
natural disasters around the world. The country India is full of rivers and rainfall patterns
are heavily influenced by monsoon. Thus occurrence of flood remains an inevitable
feature in most parts of the country. The large river systems like Ganga, Brahmaputra,
Godavari and Mahanadi influence the flood scenario of the country. Mahanadi is the 6
largest river system in India. The river is also known for its huge water potential and
frequent flood devastations.

Chhatisgarh and Orissa states of India cover almost 99% of the catehment area of
Mahanadi basin. Cnrrently anumber of developmental projects are going on in these two
sates For these projects well defined flood estimate formulae are required. The lower
reach of Mahanadi basin is in the state of Orissa and flood is apermanent threat to thrs
reach Hirakud reservoir is the only major flood controlling structure in the basm. The
area downstream of Hirakud is around 58000 km2. I. remains uncontrolled and
experiences frequent floods. Flood damages can be reduced drastically by adoptmg
various non-structural measures such as flood frequency prediction and flood forecastmg.

In the present study efforts have been made to develop regional flood formulae for
the entire Mahanadi basin using L-momen. and prioritized variables based approach. For
the lower reach of Mahanadi basin (downstream of Hirakud dam) flood forecasung
models have been developed using soft computing techniques like ANN and Fuzzy log*
The performance of soft computing models has been compared with convenbonal and
conceptual models.

1.2 BROAD OBJECTIVES

,„ the present study the flood problem of Mahanadi basin has been addressed by
developing regional flood formulae for the uncontrolled portion of the basin and by
developing aflood forecasting model using ANN and fuzzy logic for the lower reach. The
objectives are summarized as follows:

i Development of regional flood formulae for Mahanadi basin.
ii. Development of aflood forecasting model for the reach downstream of Hirakud,

and



iii. Development of a key raingauge network for Kantamal sub-basin of lower
Mahanadi basin for flood forecasting.

1.3 DEVELOPMENT OF REGIONAL FLOOD FORMULAE FOR MAHANADI
BASIN

Mahanadi basin has been divided into homogeneous regions by applying different
clustering techniques, as the entire basin is not hydro-meteorologically homogeneous.
Principal component analysis (PCA) has been used to prioritise the site characteristics.
Clustering techniques like Hierarchical Clustering (HC), K-mean (KM), Fuzzy C-mean
(FCM), Kohonen Self Organization Map (SOM) and Andrews Plot (AP) are applied on
prioritised variables to verify the results ofclustering. The entire basin is divided into two
homogeneous clusters based on the results of Fuzzy C-mean (FCM) technique. L-moment
based methods are used to test the homogeneity of the clusters and to identify a best
fitting underlying frequency distribution.

1.4 DEVELOPMENT OF A FLOOD FORECASTING MODEL FOR
DOWNSTREAM OF HIRAKUD

Three hourly and peak discharge data of three different gauge and discharge (G&D)
stations located downstream of Hirakud dam have been used to develop various flood
forecasting models based on soft computing methods like Multi Layered Feed Forward-
Artificial Neural Network (MLFF-ANN), Radial Basis Function-Artificial Neural
Network (RBF-ANN) and Takagi Sugeno (TS)-Fuzzy inference system. The forecasting
results of these models are compared with statistical and time lag methods exercised by
the Department of Water Resources, Government ofOrissa.

1.5 DEVELOPMENT OF A KEY RAINGAUGE NETWORK FOR
KANTAMAL SUB-BASIN OF LOWER MAHANADI BASIN FOR FLOOD
FORECASTING

Sometimes it becomes difficult to collect data from all the rain gauges either due to
instrumental disorder, difficulty in transmission, inability to take readings and many other
operational difficulties during flood times. Therefore, the network of key raingauge
stations is designed. The performance of key rain gauge network in flood forecasting is
discussed and demonstrated through a case study of Kantamal sub-catchment of
Mahanadi basin. This sub-catchment significantly contributes to the downstream floods at
Khairmal, Barmul and Mundali.



1.6 LAYOUT OF THE THESIS

The work has been organized in theform of seven chapters as follows:

Chapter 1 introduces the research work, its need and briefly describes the objectives of
the study. The details ofstudy area and data used in the study are presented in Chapter 2.

Chapter 3 presents a review of the flooding problems related to Mahanadi basin,
historical development of the flood control measures taken in the basin, hydrological

studies related to this basin, existing flood estimation formulae and flood forecasting

method. A brief review of hydrological application of soft computing techniques is also

presented in this chapter. Clustering techniques using prioritised variables to delineate
homogeneous regions are discussed in Chapter 4. The results ofregional flood frequency

analysis using L moments are also presented in this chapter. The details of flood
forecasting models using ANN and Fuzzy logic are given in Chapter 5. The results of
comparison with statistical and time lag methods are also given in this chapter. Multi-
criteria decision analysis and clustering methods to establish key raingauge network have

been discussed in Chapter 6. The application ofthe selected network inflood forecasting

has also been demonstrated in this chapter. Chapter 7 summarises the conclusions drawn

inthe present study and the scope for further work in the area.



CHAPTER 2 - DESCRIPTION OF STUDY AREA AND DATA USED

2.1 BACKGROUND

This chapter gives details of study area and data used in carrying out the study. As the

study comprises of flood prediction, flood forecasting and design of rain gauge network,

the collection of data varies in a wide range but all the data are confined to Mahanadi

basin only. The basin comprising a catchment area of 141569 km2 is the 6l largest basin

of India and situated at its eastern part. The basin lies within the geographical co

ordinates of 80°-30' to 86°-50' of East Longitude and 19°-20' to 23°-35' ofNorth Latitude

(Fig. 2.1). India is divided into 7 major zones, which are further subdivided into 26

hydro-meteorologically homogeneous sub zones. Mahanadi basin occupies a major part

of sub-zone 3(d). The chapter presents the description of Mahanadi river basin, and

details of hydro-meteorological data used in the study.

2.2 MAHANADI RIVER BASIN

The Mahanadi is a major east flowing river in peninsular river system. It originates near

Pharasiya village of Raipur district of Chhatisgarh state and covers 851 km. of length

before falling to Bay of Bengal at Orissa coast. It is an interstate river covering

Chhatisgarh, Orissa, Jharkhand, Madhya Pradesh and Maharastra. The basin is physically

bounded by Central Hills in the North, Eastern Ghat in the South, Maikala hill range in

the West and by Bay of Bengal in the East. The basin is largely divided into four parts

viz. Central table land, Northern plateau, Eastern ghats and Coastal plain.

The basin is comprised of very vast area and there is a large variation in

geographic and climatic conditions throughout the basin. The state wise coverage of

drainage area of the river Mahanadi is shown in table 2.1.
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Fig. 2.1 Location map of Mahanadi basin

(Source: http://Encarta.msn.com/map_701605802/Mahanadi_Basin.html.)

Table 2.1 State wise distribution of Mahanadi basin

SI. No. State Catchments Area

(km2)

1 Madhya Pradesh and Chhatisgarh 75,336

2 Orissa 65889

3 Maharastra 238

4 Jharkhand 126

Total 1,41,589

Percentage to

total basin

53.21

46.53

0.17

0.09

100

Fourteen major tributaries of river Mahanadi are Seonath, Hasdeo, Mand, Kelo, Birai, Pairi,

Jonk, Sukha, Kanki, Lialr, Lath, Ong, Tel and lb (NWDA, 2004). The water resource

potential of the basin is around 48732 million cubic meters (75% dependability). The river

Mahanadi shares major part of subzone-3(d). Total area covered under this zone is 1,95,256

km . Besides Mahanadi two other basins Brahmani and Baitarani are the parts of this zone.
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Figure 2.2 shows location of this subzone over all hydro-meteorological subzones. Table

2.2 shows the catchment areas of various rivers in subzone-3(d).
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Fig. 2.2 Hydro-meteorological sub-zones of India



Table 2.2 Basinwise details of subzone-3(d)

Basin name Catchment area (km ) Stream length (km)

Mahanadi 1,40,628 850

Brahmani 35,337 705

Baitarani 19,291 333

Total 1,95,256

Source: NIH (1997)

The salient characteristics of Mahanadi basin are described in the subsequent sections.

2.2.1 Basin shape

The basin is roughly circular in shape with a diameter of about 400 km. and exit passage is

60 km. wide and 160 km. long. The basin has a Horton form factor of 0.66.

2.2.2 Topography

The upper reach of the basin lies in a very undulating plateau with hillocks eroded moulds.

The southern part of the plateau is open but to the east and west there are a number of hill

ranges which have steep slopes resulting in water draining directly into the Mahanadi river.

The basin continuously slopes towards the main valley with no congestion.

2.2.3 Climate

The climate in the basin area is tropical monsoon type with distinct seasons viz. Summer

from March to May, the monsoon season from June to September and winter from October

to February. The hottest and coldest months of the year are May and December

respectively.

2.2.4 Rainfall

The basin receives about 90% of its rainfall during the monsoon season. Generally, the

southwest monsoon sets by the middle of the June over the entire basin and remains active

till the end of September. The spatial variation in rainfall is moderate in the basin. The

formation of depressions in the Bay of Bengal cause cyclones which bring about wide

spread heavy rains resulting in floods and destructions. The basin falls in the south-west

monsoon track thus receives heavy rainfall during monsoon periods.

2.2.5 Temperature

The coldest and hottest months in the sub-basin are December and May respectively. The

highest monthly mean maximum temperature is 42.1°C while lowest monthly mean



temperature is 8.2°C. The highest single point temperature is 47.7°C and lowest is 0°C.

The maximum temperature occurs at central table land whereas lowest temperature in

Eastern ghat is 8.7 °C.

For development of regional flood formulae entire Mahanadi basin has been

considered. For the flood prone lower reach of Mahanadi a flood forecasting system has

been developed. Key rain gauge network has been developed for Tel sub-catchment of the

lower Mahanadi. Further details of these study areas are given in individual chapters.

2.3 DATA USED IN THE STUDY

This study ranges from development of regional flood formulae, to development of flood

forecasting model and development of a key rain gauge network. Hence for these studies

different parts of Mahanadi have been used, as explained in chapter 1. The frequency and

length and other details of various data used in the study are shown in Table 2.3. Most of

these data were collected from DOWR, Govt, of Orissa and CWC, New Delhi. The

schematic diagram of Mahanadi basin is shown in Fig. 2.3.

Table 2.3 Inventory of data used in this study

SI.

No.

Station Data type Source Frequency Period

1 20 G&D sites of

Mahanadi basin

Discharge DOWR,
Orissa/

CWC,
New Delhi

Daily 1971-2007

(Varying between
9 to 37 years
among different
G&D sites)

2 Khairmal,
Barmul,
Mundali,

Discharge DOWR,
Orissa

03 hourly 1996-2010

3 14 Raingauge
sites of Kantamal

sub-basin

Rainfall DOWR,
Orissa

Daily 2000-2005

4 Dasapalla Evaporation DOWR,
Orissa

Daily 2000 - 2005

Derived data

SI.

No.

Area Data type Source

1 Mahanadi basin Catchment area, slope, drainage density,
longest stream length

90 m SRTM data

2 Mahanadi basin Normal rainfall, Maximum 1-day rainfall
for gauge and discharge sites

DOWR, Orissa

3 Kantamal sub-

basin

Daily average rainfall, Maximum 1-day
rainfall

DOWR, Orissa
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2.4 DATA PROCESSING

A number of operations as listed below were applied on the raw data, before these were

used for analysis.

• Screening of data series

• Scrutiny by multiple time series plots

• Scrutiny by tabulation of daily rainfall series of multiple stations

• Checking against the data limits

• Filling of missing values

• Removal of outliers

• Removal of inconsistencies

The Excel and MATLAB software were used for the processing of data.

Further details of the data used are given in the individual chapters i.e. chapters 4,

5 and 6.

2.5 DATA STATISTICS

The statistical parameters of annul maximum series (AMS) used for regional flood

frequency analysis are shown in Table 2.4. The peak flood data are derived from the

available 3-hourly discharge data. The statistical parameters of floods data at Khairmal,

Barmul and Mundali are shown in Table 2.5 and 2.6 per peaks and 3-hourly discharge

data respectively. The daily rainfall data (2000 - 2005) of 14 rain gauge stations of

Kantamal sub-basin were collected, and 29 isolated storms were identified from these

data. The statistical parameters of daily rainfall data of 14 rain gauge stations are

tabulated in Table 2.7 for calibration period (2000 - 2003) and validation period (2004 -

2005). For Kantamal sub-basin, the discharge data are observed at Kantamal G&D site

and evaporation data are observed at Dasapalla. The missing values are filled using

arithmetic mean method and outliers are checked using Grubb-Beck method. The

statistical parameters of discharge data and evaporation data are tabulated in Table 2.8

and 2.9 respectively.

11



Table 2.4 Statistical parameters ofAnnual Maximum Series (in m3/s) of20 G&D sites of

Mahanadi basin

Station Name Max. Min. Avg. St. dev. cv Cs ck

Sundergarh 10404 800.3 2393.8 2101.3 0.88 2.48 10.01

Kurubhata 2160 756 1459.9 450.1 0.31 -0.04 2.06

Ghatora 2281 137.2 788.5 530.9 0.67 1.38 5.58

Jondhra 12700 1600 5190.6 2497 0.48 1.28 5.64

Basantapur 33087.9 2441 13189.2 6534.2 0.5 1.03 4.75

Andhiyarkor 990 46.7 332.6 216.7 0.65 1.56 5.65

Bamanidhi 9583.1 758.9 3183 2129.1 0.67 1.02 3.9

Rampur 10958.4 90 1973.4 1867.6 0.95 3.26 17.93

Salebhata 14545 114 2505.4 2565.4 1.02 3.31 16.8

Baronda 6593.8 205.5 2199.1 2060.8 0.94 0.95 2.82

Rajim 8620.2 255.6 3793.8 2964.2 0.78 0.39 1.74

Kotni 5269 463.3 1777.4 1166.6 0.66 1.5 6.54

Simga 11332 858.3 4601.2 2625.1 0.57 0.99 4.24

Kantamal 17500 1180 8150.9 4782.4 0.59 0.16 2.08

Kesinga 5269 463.3 1777.4 1166.6 0.66 1.5 6.54

Kelo 1612.6 125.8 741.1 448.2 0.6 0.84 3.55

Mahendragarh 21192 600 6877.2 5237.7 0.76 1 3.91

Pandigaon 2088 97.5 464.8 491.6 1.06 2.73 11.37

Pathardih 4217 1211 2618.6 981.6 0.37 -0.02 4.19

Sukuma 2315 35 841.1 730 0.87 0.96 3.42

12
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Table 2.5 Statistical parameters of peak flow (m /s) at three stations

Calibration 1996-2003) Validation (2004 - 2010)

Khairmal Barmul Mundali Khairmal Barmul Mundali

Max. 36300.41 42223.60 39868.98 41035.00 41960 44742.30

Min. 2660.20 2992.73 2841.32 2760.20 3035.18 3062.06

Avg. 13267.61 14627.51 15061.74 11682.81 12126.52 14457.75

Stdev. 8694.41 10031.97 10190.82 7417.93 7593.20 8604.68

cv 0.66 0.69 0.68 0.63 0.63 0.60

cs 0.97 0.90 0.86 1.69 1.01 1.13

ck 0.53 0.19 0.04 4.64 1.01 2.14

Table 2.6 Statistical parameters of 3-hourIy flow (m /s) at three stations

Calibration (1996 - 2003) Validation (2004 - 2010)

Khairmal 1 Barmul Mundali Khairmal Barmul Mundali

Max. 36300.41 42223.60 39869.00 41035.00 41960.00 44742.30

Min. 266.00 346.70 291.50 464.10 624.00 707.50

Avg. 3748.98 4580.34 4476.47 4126.91 4474.96 5328.16

St.dev. 4805.48 5510.48 5800.18 4565.61 4864.91 5868.90

Cv 1.28 1.20 1.30 1.11 1.09 1.10

Cs 2.80 2.79 3.00 2.65 2.62 2.31

ck 9.75 9.07 10.35 10.38 8.76 6.94

13



Table 2.7 Statistical parameters of daily rainfall data (mm) of Kantamal sub-basin

Station

Id

RG station

name

KI8 Bhaskel

KI9 Kurumuli

M25 Sagada

M22 Magurbeda

M16 Goria

Ml Patora

M14 Baragaon

M19 Ichhapur

M15 Takala

M18 Chhatikud

M17A Burat

Ml 7 Tulaghat

M20 Surubali

R5 Pipalpankha

KI8 Bhaskel

KI9 Kurumuli

M25 Sagada

M22 Magurbeda

M16 Goria

Ml Patora

M14 Baragaon

M19 Ichhapur

M15 Takala

M18 Chhatikud

M17A Burat

Ml 7 Tulaghat

M20 Surubali

R5 Pipalpankha

Max. Min. Avg St. dev. Cv Ck

Calibration (2000 - 2003)

247.4 0 9.59 23.53 2.45 4.59 28.83

525 11.15 32.56 2.92 8.98 119.68

160 8.24 19.68 2.39 3.9 19.24

292.5 8.42 21.14 2.51 6.92 74.5

163 4.87 13.23 2.72 6.28 57.07

210 9.21 21.96 2.38 4.12 22.18

200 8.63 24.21 2.81 4.61 25.81

172 8.08 19.07 2.36 4.02 20.95

174.2 7.66 18.24 2.38 4.51 28.03

293 10.92 27.71 2.54 5.78 44.26

535.4 12.16 35.72 2.94 8.37 97.88

271 14.98 32.22 2.15 4.12 22.73

322.6 9.66 24.47 2.53 6.71 66.71

130.2 0 7.39 14.58 1.97 3.93 22.18

Validation (2004 - 2005)

185.4 0 5.22 16.15 3.1 6.98 63.67

304.6 12.6 33.43 2.65 5.54 38.4

89.4 3.55 10.58 2.98 5.04 30.82

132 6.45 15.5 2.4 4.58 26.08

138 5.19 14.62 2.82 5.33 37.93

281.6 8.79 24.04 2.74 6.35 58.45

266 6.68 21.73 3.25 7.22 71.66

126 4.83 14.27 2.95 5.56 37.36

132.8 8.1 18.73 2.31 3.22 11.57

267 8.56 23.03 2.69 6.24 56.17

342.2 9.77 27.64 2.83 7.33 73.78

169.2 11.91 25.32 2.13 3.45 13.53

172 10.36 19.76 1.91 3.57 18.39

115 7.9 17.24 2.18 3.47 14.76

14
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Table 2.8 Statistical parameters of discharge data (m /s] at Kantamal site

G&D site Max. Min. Avg. St. dev. Cv Cs ck

Calibration (2000-2003)

Kantamal 12915.07 20.19 830.9 1523.35 1.83 4.78 28.32

Validation (2004 - 2005)

Kantamal 11030.05 33.64 673.82 1196.79 1.78 5.43 35.6

Table 2.9 Statistical parameters ofevaporation data (mm) at Dasapalla station in
Kantamal sub-basin

Station name Max. Min. Avg. St. dev. Cv Cs Ck

Calibration (2000-2003)

Dasapalla 7.4 0 2.95 1.17 0.4 0.85 1.23

Validation (2004-2005)

Dasapalla 9.7 0 3.12 1.61 0.52 1.16 1.96

15
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CHAPTER 3 - REVIEW OF LITERATURE

3.1 BACKGROUND

This chapter presents a brief review of the measures taken for mitigation of floods in

Orrisa and flooding problem of Mahanadi basin. A brief review of hydrological

application of two soft computing methods namely Artificial Neural Network (ANN) and

Fuzzy logic is also presented in this chapter.

Review of literature specifically on regional flood frequency analysis, L-

moments, clustering methods, multi criteria decision methods and application of ANN

and Fuzzy logic in flood forecasting is presented in corresponding chapters.

3.2 MEASURES TAKEN FOR MITIGATION OF FLOODS IN ORISSA

Orrisa state is a riverine state with eleven river basins. Several times the

economy of the state has been crippled significantly by floods (Annexure-I). During the

last five decades, a number of structural and non-structural measures have been taken to

minimize the flood losses. As a part of structural measures, reservoirs namely Hirakud on

the Mahanadi River, Rengali on the Brahmani River, Upper Kolab on Kolab River and

Upper Indravati on Indravati River have been constructed. A total of 7138 kilometers of

protective embankments and 1952 spurs have been constructed in different basins

particularly in the deltaic areas to control the flood and salinity ingress (State Water Plan,

2007).

3.3 FLOODING PROBLEM OF MAHANADI

Mahanadi causes lot of devastation during flood time. During the period 1868 to

1946, the delta portion faced 63 floods with magnitude 1 million cusecs or more. The

highest flood was observed in 1834 carrying a discharge of 1.571 million cusecs. Hence

to mitigate the floods in deltaic portion, Hirakud dam was constructed in 1957. The

embankments have also been constructed in the lower reach of Mahanahi. The Mahanadi

embankment system in lower reach is safe for a flood discharge of 28300 m /s (1 million

ft3/s) (Khatua and Mahakul, 1999). Any discharge beyond 28300 m3/s can create a flood
like situation in delta. Duringthe post-Hirakud period (1958 to 2008) a total of 19 floods

have crossed the limit of 28300 m3/s (Table 3.1). Out of these 19 events, 6 are due to

Hirakud release and 13 are due to contribution of intercepted catchment.

17



Table 3.1 Flood peaks at Mundali and the corresponding contributions

SI.

No.

Year Date Peak flood

at Mundali

(m3/s)

Contribution towards peak at Mundali (m3/s) Flood

due toHirakud dam

release (D.R)

Intercepted catchment between

Hirakud and Mundali (l.C)

1 1958 19th July 33960.0 18593.1 15366.9 D.R

2 1959 14th Sept. 35516.5 14319.8 21196.7 I.C

3 1961 11'"July 36365.5 30875.3 5490.2 D.R

4 18th July 32601.6 16866.8 15734.8 D.R

5 8th Sept. 33054.4 11518.1 21536.3 I.C

6 16th Sept. 36931.5 17602.6 19328.9 I.C

7 1969 1st Aug. 29941.4 2377.2 27564.2 I.C

8 1980 22nd Sept. 35601.4 33365.7 2235.7 D.R

9 1982 31st Aug. 44827.2 254.7 44572.5 I.C

10 1991 14th Aug. 35969.3 3282.8 32686.5 I.C

11 1992 30th July 32092.2 679.2 31413.0 I.C

12 21st Aug. 31413.0 2971.5 28441.5 I.C

13 1994 13th July 28979.2 17263.0 11716.2 D.R

14 6th Sept. 30592.3 10612.5 19979.8 I.C

15 2001 17th July 39620.0 12933.1 26686.9 I.C

16 20th July 39846.4 24139.9 15706.5 D.R

17 2003 30th Aug. 38205.0 2377.2 35827.8 I.C

18 2006 23rd Aug. 37016.4 1584.8 35431.6 I.C

19 2008 20th Sept. 44742.3 11065.3 33677.0 I.C

(*D.F1= Dam ]lelease, I.C = Contributk)n of Intercentec1 Catchmenf)

Under the present circumstances, construction of further flood control reservoirs is not

possible due to large scale submergence and other environmental and ecological aspects.

Hence, efforts have been made by DOWR in other directions to minimise the losses due

to floods.

In 2007, a Flood Management Information System (FMIS) Cell was established in

Bhubaneswar. This cell provides real time information on early flood warning, possible flood

inundation and its impact by using Remote Sensing and Geographical Information System.

Three automated sensors at Belagaon, Boudh and Naraj to provide instant water levels of

Mahanadi have also been established. Since 2010, FMIS cell isproviding catchment weighted

rainfall and isohyetal maps on daily basis. From June24, 2011 mobile phone SMS service has

also been started for dissemination of flood information to all. Presently it is being operated

byMahanadi Barrage Division, Cuttack and providing the instant water levels at Naraj.
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3.3.1 Existing Flood Forecasting System for Downstream Reach of Hirakud Dam

The catchment of Hirakud downstream part is divided into 5 parts, namely Hirakud to

Khairmal, entire Tel catchment, Khairmal to Barmul, Barmul to Mundali and the deltaic

part (Fig. 3.1). Each part is again identified as per the Thiessen area associated with the

existing raingauges. A runoff coefficient is fixed for each Thiessen area which is updated

daily keeping in view the previous day rainfall and current day flow observations. The

product of runoff coefficient and daily rainfall gives discharge contributions for each

segment. Travel time from one segment to further downstream is computed based on past

flood data. Based on the daily rainfall and discharge released from Hirakud reservoir a

tabular chart is prepared for deciding the discharge to reach Khairmal, Barmul and

Mundali.

Hirakud Reservoir

Fig. 3.1 Schematic downstream of Hirakud reservoir

The present forecasting system can be improved further by introducing the soft

computing techniques based on ANN and Fuzzy logic. These techniques are briefly

reviewed in the subsequent section.

3.4 SOFT COMPUTING TECHNIQUES

Soft computing refers to a collection of computational techniques in computer science,

artificial intelligence, machine learning and some engineering disciplines which attempt to

study, model and analyses very complex phenomena, for which conventional methods do

not yield low cost, analytical and complete solution.

The guiding principle of soft computing as per Zadeh (1965) is "Exploit the

tolerance for imprecision, uncertainty, partial truth and approximation to achieve
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tractability, robustness and low solution cost". The neural and genetic computing in soft

computing came at a later stage in 1980. In the present study neural networks and fuzzy

logic based methods have been used. These are briefly described in subsequent sections.

3.4.1 Neural Networks

ANNs have been developed as a generalization of mathematical models of neural

biology and are based on following rules:

(i) Information processing occurs at many single elements called nodes, also

referred to as units of neurons.

(ii) Signals are passed between nodes through connection links.

(iii) Each connection link has an associated weight that represents its

connection strength

(iv) Each node typically applies a nonlinear transformation called activation

function to its net input to determine its output signal.

ANNs are massively parallel systems composed of many processing elements connected

by links of variable weights. The network consists of layers of neurons, with each layer

being fully connected to the preceding layer by interconnection of strengths or weights

(w). Figure 3.2 illustrates a three layer neural network consisting of input layer (Lj),

hidden layer (Lh) and output layer (L0) with the inter connection of weights Wjh and Who

between layers of neurons. In multi-layered perception, hidden layer means second layer

of processing elements or units in between the input and output layers that increases

computational power. In principle, the hidden layer can be more than one layer. In

practice, the number of neurons in this layer is evaluated by trial and error.

Input £. Output

Fig. 3.2 Configuration of three-layer neural network

History of ANN stems from the work of Warren McCulloch and Walter Pitts who

outlined a model of a simple neural network with electronic circuits in 1943.

20

f

*



*

*

The hierarchical background and review of application of artificial neural network in

hydrology has been nicely documented by ASCE task committee in ASCE (2000 a, b).

Further work in this area has been reviewed and documented in section 3.6.

3.4.2 Fuzzy Logic

Fuzzy logic is another area of soft computing that has been applied in different

engineering fields. These concepts were introduced by Lotfi A. Zadeh (Zadeh, 1965).

Fuzzy logic is a superset of conventional Boolean logic that has been extended to handle

imprecise data and the concept of partial truth. A brief description of fuzzy logic theory

and concept is given in the subsequent paragraph for the sake of completeness of the

work and easy understanding of the readers.

In crisp logic, the values acquired by proposition are two valued namely True

and False, which may be treated numerically equivalent to (0, 1). However, in fuzzy

logic, true valued are multi-valued such as absolutely true, partly true, absolutely false,

very true and so on are numerically equivalent to 0-1. The fuzzy set theory is also an

effective tool to handle the problems of uncertainty.

In fuzzy logic, variables are fuzzified using different membership functions that

define the membership degree to fuzzy sets. These variables are called linguistic

variables. Fuzzy algorithms are formed by the union of fuzzy rules using operators. The

important operators IF, THEN, AND, OR have significant impact on model performance.

Fuzzy systems are defined by a number of fuzzy rules, a number of membership functions

and mechanisms to apply logical operators. The outputs are defuzzified to get the crisp

values (Lohani et al., 2007a).

Knowledge Base

Rule Base Data Base

1 '

t <

' '

Fuzzification

Interface

Defuzzification

Interface

\ r

i i

5 «-""••

Fig. 3.3 Schematic representation of Fuzzy Inference System

There are numerous successful applications of fuzzy systems in control and

modeling. They are suitable for situations where an exact model of a process is either

impractical or very costly to build, but an imprecise model based on existing human
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expertise can do the job. In such situations, fuzzy systems are considered the best

alternatives. Fuzzy sets are an aid in providing information in a more human

comprehensible or natural form and can handle uncertainties at various levels. Fuzzy

logic has made much progress since Zadeh (1965) initiated it. The further developments

are as follows,

Zadeh (1973) introduced the concept of a linguistic variable, that is, a variable

whose values are words rather than numbers. The concept of a linguistic variable has

played and is continuing to play a pivotal role in the development of fuzzy logic and its

applications.

Mamdani and Asssilian (1975) proposed a fuzzy inference system popularly

known as Mamdani fuzzy inference system. The Mamdani fuzzy inference system was

the first attempt to control a steam engine and boiler combination by a set of linguistic

control rules obtained from experienced human operators. In Mamdani's application, two

fuzzy inference systems were used as two controllers to generate the heat input to the

boiler and throttle opening of the engine cylinder, respectively to regulate the stream

pressure in the boiler and the speed of the engine. Since the plant takes only crisp values

as inputs, therefore a defuzzifier was used to convert the fuzzy set into a crisp value.

Tsukamoto (1979) proposed a fiizzy model in which the consequent of each fuzzy

if then rule is represented by a fuzzy set with a monotonical membership function. As a

result the inferred output of each rule is defined as a crisp value induced by the rule's

firing strength. Since each rule infers a crisp output, the Tsukamoto fuzzy model

aggregate each rule's output by the method of weighted average and thus avoids the time

consuming process of defuzzification. The Tsukamoto fuzzy model is not used often

since it is not as transparent as either the Mamdani or Sugeno fuzzy models.

Pedrycz (1984) presented the identification algorithm in fuzzy relational model.

Fuzzy relational models, which can be regarded as generalization of the linguistic model,

encode associations between linguistic terms defined in the system's input and output

domains by using fiizzy relations.

Takagi and Sugeno (1985) developed a model where the consequence is a crisp

function of the antecedent variables rather than a fuzzy proposition. It can be seen as a

combination of linguistic and mathematical regression modelling in the sense that the

antecedents describe fuzzy regions in the input space in which the consequent functions

are valid.

Jang (1993) proposed a class of adaptive networks that are functionally equivalent

to fuzzy inference systems. The proposed architecture is referred to as ANFIS which
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stands for Adaptive Network based Fuzzy Inference System or semantically equivalently,

Adaptive Neuro Fuzzy Inference System. The proposed scheme also described how to

decompose the parameter setto facilitate the hybrid learning rule for ANFIS architectures

representing both the Sugeno and Tsukamoto fuzzy models. It was also demonstrated that

under certain minor constraints, the radial basis function network (RBFN) is functionally

equivalent to theANFIS architecture for the Sugeno fuzzy model.

Chiu (1994) presented an efficient method for estimating cluster centers of

numerical data. This method can be used to determine the number of clusters and their

initial values for initializing iterative optimization-based clustering algorithm. When

combined with linear least squares estimation, it provides an extremely fast and accurate

method for indentifying fuzzy models. Further, Mathworks (1994) introduced" The Fuzzy

Logic Toolbox" for MATLAB as an add-on component to MATLAB.

Jang and Mizutani (1996) presented the results of applying the Levenberg-

Marquardt method, a popular nonlinear least squares method, to the ANFIS architecture.

Through empirical studies, they discussed the strength and weakness of using such an

efficient nonlinear regression techniques for neuro-fuzzy modelling and explained the

trade-offs between mapping precision and membership function interpretability.

Nauck and Kruse (1997) mention that neuro-fuzzy systems have recently gained

a lot of interest in research and application. Neuro-fuzzy models are fuzzy systems that

use local learning strategies to learn fuzzy sets and fuzzy rules. Neuro-fuzzy techniques

have been developed to support the development of e.g. fuzzy controllers and fuzzy

classifiers. The authors discuss a learning method for fuzzy classification rules.

Zadeh (1998) mentions that the status of fuzzy logic in 1998 is vastly different

from what it was in 1978. He further states that the mathematical foundations of fuzzy

logic are well established; the basic theory is in place; the impact of fuzzy logic on the

basic sources and especially on mathematics, physics and chemistry is growing in

visibility and importance; and fuzzy logic based applications are extending in a wide

variety ofdirections. Dubois etal. (1998) state that the real power offuzzy logic lies in its

ability to combine modeling (constructing a function that accurately mimics the given

data) and abstracting (articulating knowledge from the data).

Chen et al. (2000) proposed a new scheme to estimate the membership values for

fuzzy set. The scheme takes input from empirical experimental data which reflects the

expert's knowledge on the relative degree belonging to the members. First, they suggested

an alternative (indirect) index for the expert(s) to submit. The index reflects the expert's

assessment on the comparison of the degree belonging of each pair of elements. Second,
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based on the raw data which is generated via the use of the index, they proposed an
optimization framework for calibration.

Shi and Mizumoto (2001) improved a neuro-fuzzy learning algorithm based

on the fuzzy clustering method. In this approach, before learning fuzzy rules typical

data were extracted from training data by using fuzzy c-means clustering algorithm, in

order to remove redundant data and resolve conflicts in data, and make them as

practical training data.

Abonyi et al. (2002) introduced a new clustering algorithm, that can be easily

represented by an interpretable Takagi Sugeno fuzzy model. Similar to other fuzzy

clustering algorithms, "modified Gath-Gevea algorithm" was employed in search of
clusters.

Angelov (2004) developed and tested a recursive approach for adaptation of fuzzy

rule-based model. Cluster centers calculated using on-line clustering of the input-output

data with a recursively calculated spatial proximity measure are then used as prototypes
of the centres of the fuzzy rules.

Rajsekharan and Pai (2004) mention that fuzzy set theory is an excellent

mathematical tool to handle the uncertainty arising due to vagueness. Fuzziness means

'vagueness'. The fuzzy systems approximate functions. They are universal approximators

if they use enough fuzzy rules. In this sense fuzzy systems can model any continuous
function or system.

Aqil et al. (2006) mention that traditionally, the multiple linear regression

technique has been one of the most widely used models in simulating hydrological time

series. However, when the nonlinear phenomenon is significant, the multiple linear will

fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have

gained much popularity for calibrating the nonlinear relationships. The authors evaluated

the potential of a neuro-fuzzy system as an alternative to the traditional statistical

regression technique for the purpose of predicting flow from a local source in a river

basin.

The applications ofsoft computing techniques in regional flood frequency analysis
and flood forecasting are briefly reviewed in next section.

3.5 APPLICATION OF SOFT COMPUTING TECHNIQUES IN REGIONAL

FLOOD FREQUENCY ANALYSIS AND FLOOD FORECASTING

The principal constituents of soft computing include fuzzy logic, neural network, and

genetic algorithm. There are numerous applications of these constituents (both
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individually and combination of two or more) in the area of water resources and

environmental systems. These range from development of data driven models to optimal

control strategies to assist in more informed and intelligent decision making process.

Availability of data is critical to such applications and having scarce data may lead to

models that do not represent the response function over the entire domain. Applications of

soft computing techniques in regional flood frequency analysis and flood forecasting are

reviewed in subsequent sections.

3.5.1 Regional Flood Frequency Analysis

Delineation of hydrological homogeneous regions is one of the prime requirements of

regional flood frequency analysis. Soft computing techniques are being used recently for

delineating homogeneous regions. Earlier Thandeveswara and Sajjikumar (2000), Shi

(2002), Bhatt (2003), Lim and Lye (2003), Jingyi and Hall (2004), Chavoshi and

Soleiman (2009) and Dikbas et al. (2011) used soft computing techniques for delineations

of homogeneous regions.

Thandeveswara and Sajjikumar (2000) have used ART-II technique in Artificial

Neural Network in classification of river basin for finding homogeneous regions. They

suggested that if Cv of Cv of a cluster is greater than 0.4 the region is highly

heterogeneous. They suggested for overall objective of clustering as

i) to have statistically acceptable homogeneity and

ii) to have sufficient data in each cluster for further hydrologic studies.

Shi (2002) has applied clustering technique by using Fuzzy clustering technique

and neural network.

Bhatt (2003) in his study has made critical evaluation of conventional techniques

such as Ward's method and K-mean method and modern techniques like Fuzzy C-mean

and Kohonen (ANN based) method. Lim and Lye (2003) used Hierarchical clustering

(average linkage method) in order to delineate homogeneous sub-regions in Sarawak,

Malaysia. They have also done appropriate scaling of catchment characteristics to ensure

that these factors fell between zero and unity.

Jingyi and Hall (2004) have compared the result of K-mean, Fuzzy C-mean,

Hierarchical clustering and Kohonen Self Organising Feature Map for getting the

homogeneous region in Gan-Ming river basin of China. They have also utilized the

suitability of Kohonen map for finding the number of clusters as well as sites allotted.

Chavoshi and Soleiman (2009) have applied conventional cluster analysis as well

as Fuzzy Logic theory on regionalization of 70 catchments in north of Iran.
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Regionalization along with clustering approach is also applied in low flow and rainfall

analysis.

Dikbas et al. (2011) have recommended fuzzy C- mean (FCM) cluster method for

classifying the precipitation series and for identifying the hydrologically homogeneous

regions in a Turkish basin. They also focused on choice of appropriate cluster method and

variables of the basin.

Besides those the soft computing techniques have also been applied by Shu and

Burn (2004) to derive homogeneous region on similarity measure using Fuzzy Expert

Systems (FES). Shu and Ouarda (2008) used Adaptive Neuro-Fuzzy Inference Systems

(ANFIS) as a mechanism for identifying the hydrological regions by generating

knowledge from hydrometric station network in southern Quebec. Ouarda and Shu (2009)

introduced Artifical Neural Networks (ANNs) to obtain improved regional low-flow

estimates at ungauged sites in the province of Quebec, Canada. Kumar (2009) applied

ANN and Fuzzy logic for finding the growth factors in regional flood frequency analysis

of sub-zones of India and compared with that obtained from L-moment analysis.

3.5.2 Flood Forecasting

Halff et al. (1993) applied a 3 layer NN model to portray the hydrographs recorded by the

USGS at Bellvue, Washington. They used observed rainfall hyetographs as input. Since

then several studies for rainfall-runoff modeling using NN models have been carried out.

Zealand et al. (1999) investigated the utility of ANN for short term forecasting of

streamflow in a portion of the Winnipeg river system in North West Ontario, Canada of

catchment 20000 sq km. using quarter monthly time interval. Explores the capability of

ANNs and compares performance of this tool to conventional approaches used to forecast

streamflow.

Coulibaly et al. (2000) used MLFFNN for real time reservoir inflow forecasting.

The proposed method by the authors take advantage of both Levenberg- Marquardt BP

and cross validation technique to avoid underfitting or overfitting and enhances

generalization performance. Some of the recent applications of ANNs in hydrology

include comparison of ANNs and empirical approaches for predicting runoff (Anmala et

al. 2000)

Dawson and Wilby (2001) compared ANN methods with more conventional

statistical models. Research on extraction of hydrological rules from ANN weights and on

the development of standard performance measures that penalize unnecessary model

complexity.
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Rajurkar et al. (2002) used a linear multiple-input-single-output (MISO) model

coupled with ANN for developing rainfall-runoff relationship for river Narmada, India.

The model provided a systematic approach for runoff estimation.

Jain and Indurthy (2003) made comparative analysis of event based rainfall runoff

modeling techniques, deterministic, statistical and artificial neural networks.

Xiong et al. (2004) recommended the ANN model with back propagation method

which updates the weights of ANN at each time step according to the latest forecast error

for use in real time flow forecasting. Lekkas et al. (2004) utilizes various types of ANNs

in an attempt to assess the relative performance of existing models. Ali Efenti, a sub-

catchment of the river Pinios (Greece), is examined and the results support the hypothesis

that ANNs can produce qualitative forecasts. A 7-hour ahead forecast in particular proves

to be of fairly high precision, especially when an error prediction technique is introduced

to the ANN models. Nayak et al. (2004) applied ANFIS for time series modeling of river

flow in Baitarani basin.

Wu et al. (2005) demonstrated an application of ANNs for watershed runoff and

stream flow forecasts.

Teschl and Randeu (2006) applied statistical analysis to reduce amount of data

and find an appropriate input vector for an ANN model using raingauge and weather

radar data to predict the runoff of a small Alpine catchment in Austria. Bardosy (2006)

has found the suitability of fuzzy logic as an alternative to statistical methods and to

quantify uncertainties in modeling natural systems. Raghuwanshi et al. (2006) mention

that accurate estimation of both runoff and sediment yield is required for proper

watershed management. The ANN models were developed, to predict both runoff and

sediment yield on a daily and weekly basis, for a small agricultural watershed.

Bhattacharya et al. (2007) developed a simulation methodology using a trained

ANN model to approximate the three dimensional density dependent flow and transport

processes in a coastal aquifer. Nor et al. (2007) applied RBF-ANN for rainfall-runoff

modeling of a Malayasian catchment and predicted the streamflow hydrograph better than

HEC-HMS model. Nayak et al. (2007) explored the potential of integrating two different

artificial intelligence techniques, namely neural network and fuzzy logic, effectively to

model the rainfall-runoff process from rainfall and runoff information. The integration is

achieved through representing fuzzy system computations in a generic ANN architecture,

which is functionally equivalent to a fuzzy inference system. The model is initialized by a

hyper-ellipsoidal fuzzy clustering (HEC) procedure, which identifies suitable numbers of

fuzzy if-then rules through proper partition of the input space.
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Kisi (2008) demonstrated the application of different artificial neural network (ANN)

techniques for the estimation of monthly streamflows. Different ANN techniques,

namely, feed forward neural networks (FFNN), generalized regression neural networks

(GRNN) and radial basis ANN (RBF) were used in one-month ahead streamflow

forecasting and the results were evaluated. Based on the results, the GRNN was found to

be better than the other ANN techniques in monthly flow forecasting. Firat and Gungors

(2008) investigated the applicability of an ANFIS model to the forecasting of flow time

series in a Turkish river.

Kisi (2009) proposed the application of neural network and wavelet conjuction

model for flood forecasting of daily intermittent streamflow for Thrace region of Turkey.

Hong and White (2009) introduced the dynamic neuro-fuzzy local modeling system

(DNFLMS) that is based on a dynamic Takagi Sugeno (TS) type fuzzy inference system

with on-line and local learning algorithm for complex dynamic hydrological modeling

tasks. The proposed DNFLMS was applied to develop a model to forecast the flow of

Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the

influence of the operation of the 32 Megawatt Cobb hydropower station on spring flow.

Nandalal and Ratanayake (2011) tested that how effectively the risk with respect

to flood can be assessed using fuzzy approach on the study area Kalu-Ganga river basin

of Srilanka. They have taken flood extent and mean flood depth as hazard indicators

while density and dependency ratio as vulnerability indicators. A methodology was

proposed and applied to asses risk assuming the above indicators as fuzzy variables.

Kar et al. (2010) has applied ANN on peak floods at lower reach of Mahandi

basin for predicting floods at Mundali. The results are compared with statistical methods

and ANN results are found suitable and efficient.

Lohani et al. (2005a, b) developed a real time fuzzy based model at Mandla site

of Narmada river using discharge and rainfall data. Lohani et al. (2006, 2007a, b)

developed a fuzzy based stage-discharge relationship for Jamatara gauging site. Lohani et

al. (2011) compared the performance of ANN, fuzzy logic and linear transfer function for

rainfall-runoff modeling. They have also investigated the potential of Takagi Sugeno

fuzzy model and impact of soil moisture condition in the performance of the daily

rainfall-runoff model.

Mukerji et al. (2009) have applied ANN, Adaptive Neuro Fuzzy Inference

System (ANFIS) and Adaptive Neuro-GA Integrated System (ANGIS) model for flood
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forecasting in Ajay river basin. The ANGIS and ANFIS models have given a better

performance over ANN models. Tiwari and Chatterjee (2010) investigated the uncertainty

associated with hourly flood forecasting using bootstrap based ANN and found these

models with confidence bounds can improve their reliability for flood forecasting.

Apart from frequency analysis and flood forecasting the soft computing

techniques have been applied in other fields of hydrology also e.g. Awchi (2008) for

prediction of reference crop evapotranspiration, Kisi (2010) has investigated the

application of fuzzy genetic approach in modeling of reference evapotranspiration (ET0),

Haghizadeh et al. (2010) for prediction of sediment yield in Sorkhab river and

Mayilvaganan and Naidu (2011) for prediction of ground water levels.

3.6 CONCLUSIONS

The review of literature clearly indicates that the flood related problems of Mahanadi

basin require high attention. The non-structural measures like flood frequency prediction

and flood forecasting are the two best alternatives in the present scenario. There is strong

need to improve the existing regional flood formulae in Mahanadi basin. Also the existing

flood forecasting system for lower reach of Mahanadi basin needs improvement by

introducing the soft computing based methods.

The details of the studies undertaken for the same are presented in the subsequent

chapters.
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CHAPTER 4 - REGIONAL FLOOD FREQUENCY ANALYSIS OF

MAHANADI BASIN USING PRIORITISED VARIABLES

4.1 BACKGROUND

Selection of suitable site characteristics and number of clusters play an important role for

finding homogeneous regions in regional flood frequency analysis. Present study

investigates the partition of Mahanadi basin into homogeneous regions by applying

different clustering techniques using less but influential variables. As such the entire

basin is not hydro-meteorologically homogeneous. Principal component analysis (PCA)

has been initiated in finding appropriate site characteristics (variables) as per priority. Out

of seven variables four variables are selected on priority. Possible numbers of cluster are

found by applying Kohonen self organization map and Andrews plot (AP). Other

clustering techniques like Hierarchical clustering (HC), Fuzzy C-mean (FCM) and K-

mean (KMean) are applied on prioritised variables to verify the result of clustering. The

inter-comparison of clustering techniques gives the optimum number of sites to be placed

in a particular cluster. The sites clustered as per FCM give better result as far as

homogeneity is concerned. The entire basin is divided into two homogeneous clusters.

The regional L-moment algorithm is used to test the homogeneity and to identify an

appropriate underlying frequency distribution. An index flood is also stated relating to

catchment characteristics using multiple linear regression approach. The results are

compared with the earlier studies of flood frequency on this basin. The study faces the

limitation of lesser data availability in order to predict longer return period values (Qr).

Research findings of this chapter have been accepted by ASCE, Journal of

Hydrologic Engineering entitled as "Application ofclustering techniques usingprioritized

variables in regionalfloodfrequency analysis- a case study ofMahanadi basin, India" on

April 15, 2011 with doi:10.1061/(ASCE)HE.1943-5584.0000417. A brief review of

literature has been provided here besides Chapter-3 and then methodology and overview

of the data used in the study are provided. This is followed by interpretation of results and

conclusions.

4.2 INTRODUCTION

Regional flood frequency analysis typically begins with a "region" that comprises a group

of sites from which extreme flow events can be combined for improving the estimation of

extreme flows at any site in the region. The requirements that a region should posses to

ensure effective information transfer (Burn and Goel, 2000) are:
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(i) The region should be hydrological homogeneous. This requirement arises from

the need to ensure that extreme flow that is transferred to the target site is similar

to the extreme flow information of that site,

(ii) The region should be identifiable which implies that a regional home can be

readily determined for a new catchment, whichmay be un-gauged.

(iii)The region should be sufficiently large. Larger regions imply that more extreme

flow information is incorporated into estimation of extreme flow quantiles.

As the size of the region is to be increased, there is a tendency for homogeneity of a

region to be decreased. So there is a trade-off between first and third requirement.

Application of L-moment along with cluster analysis is best utilized for delineating

homogeneous regions.

L-moment approach: The estimation of a flood magnitude associated with a given

return period is a crucial task for designing variety of engineering works and hydraulic

structures. The research on flood frequency analysis has taken up with a varying intensity

over a couple of decades. During seventies and eighties much effort was directed on

developing efficient at site flood frequency procedure. Research on nineties was largely

dominated by L-moments. The L-moments of a random variable were first introduced by

Hosking (1986).They are analogous to conventional moments, but are estimated as linear

combination of order statistics. The L-moments are defined as linear combinations of

probability weighted moments (Hosking, 1986, 1990). In a wide range of hydrologic

applications, L-moments provide simple and reasonably efficient estimators of

characteristics of hydrologic data and of distributions parameters (Stedinger et al., 1992).

Hosking and Wallis (1997) state that L-moments are an alternative system of describing

the shapes of probability distribution. They are robust to outliers and virtually unbiased

for small samples, making them suitable for flood frequency analysis including

identification of distribution and parameter estimation. Applications of L-moment are

largely found in the field of hydrology. The work of Kumar et al. (1999, 2003), Kumar

and Chatterjee (2005), Borujeni et al. (2009), Sarkar et al. (2010) are some of the

noteworthy works in this regard.

Clustering approach: The search for homogeneous region using cluster analysis earlier

was done by DeCoursey (1973), DeCoursey and Deal (1974), Mosley (1981), Tasker

(1982), Acreman and Sinclair (1986), Burn (1989), Nathan and McMohan (1990), Lim

and Lye (2003). Jingyi and Hall (2004) had compared the result of K-mean, Fuzzy C-

mean, Hierarchical clustering and Kohonen Self Organising Feature Map for getting the

homogeneous region in Gan-Ming river basin of China. They have also utilized the
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suitability of Kohonen map for finding the number of clusters as well as sites allotted.

Chavoshi and Soleiman (2009) applied conventional cluster analysis as well as Fuzzy

Logic theory on regionalisation of 70 catchments in north of Iran. Regionalisation along

with clustering approach is also applied in low flow and rainfall analysis. Fovell and

Fovell (1993) used hierarchical clustering (HC) in combination with Principal component

analysis (PCA) for identifying climatic regions of the United States based on monthly

rainfall and temperature data. For obtaining extreme rainfall values L-moment approach

has been applied by Eslamian and Feizi (2007) in Zayandehrood basin of Iran. Eslamian

and Biabanaki (F2008) have applied cluster analysis and Andrews plot in Kharkeh basin

for regionalization of low flow. Stambuk et al. (2007) have investigated possible

application of the Kohonen Self Organizing Maps (SOM) to the social sciences data

clustering, and compare the results of the procedure to the Principal Component Analysis

(PCA) and Hierarchical clustering methods. Beaulieu et al. (2009) has compared two new

Bayesian change point techniques with eight other techniques to detect in-homogeneities

in climatic series.

4.3 STUDY AREA

The study areaMahanadi basin is a major east flowing river in peninsular river system of

India. It originates near Pharasiya village of Raipur district of Chhatisgarh state. The total

drainage area of river basin is 141589 sq. km. The basin is en-compassed within the

geographical co-ordinate of 80°-30' to 86°-50' of East Longitude and 19°-20' to 23°-35' of
North Latitude. The basin is physically bounded by Central Hills in the North, Eastern

Ghat in the South, Maikala hill range in the West and by Bay of Bengal in the East. The

basin is largely divided into four parts such as Central table land, Northern plateau,

Eastern ghats and Coastal plain. A lot of geographic and climatic variation is seen in the

basin due to its large size. A large reservoir named Hirakud is situated at center of the

catchment draining 83000 sq km. into it. The study area is shown in Fig.4.1 mentioning

the G&D (gauge and discharge) sites and location of major reservoir Hirakud. The flood

frequency analysis is not done in the regulated partof the catchment.
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Fig. 4.1 Study area with gauge and discharge site of Mahanadi basin

4.4 DATA AVAILABILITY

In the present study, annual maximum flood series (AFS) data of 20 gauging stations

(Table 4.1) spread over entire basin are collected. The study area with gauge and

discharge sites has been shown in Figure 4.1. The details like station identification

number (Station Id), station name, station years, latitude, longitude, maximum observed

discharge at the station (Qmax), normal rainfall (NR) and maximum one day rainfall (ID)

are collected from stategovernment office. The catchment descriptors likecatchment area

(CA), station elevation above mean sea level (SH), average slope of watershed (SL),

drainage density (DD) and longest stream length (RL) are derived from digital elevation

model (DEM) of study area. Either station id or station names are used in further

applications.
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Table 4.1 Location of gauge and discharge (G and D) stations with their Id number

Station Id Station name Latitude

(deg-min-sec)

Longitude

(deg-min-sec)

1 Sundergarh 22-06-55 84-00-40

2 Kurubhatta 21-59-15 83-12-15

3 Ghatora 22-02-04 82-13-34

4 Jondhra 21-43-00 82-20-34

5 Basantapur 21-43-18 82-47-27

6 Andhiyarkore 21-47-00 81-36-30

7 Bamanidhi 21-53-55 82-32-37

8 Rampur 21-39-00 82-31-00

9 Salebhatta 20-59-00 82-42-29

10 Baronda 20-55-06 81-52-56

11 Rajim 20-58-00 81-52-30

12 Kotni 21-13-02 81-14-19

13 Simga 21-37-33 81-41-36

14 Kantamal 20-38-49 83-43-55

15 Kesinga 20-11-51 83-13-30

16 Kelo 21-53-19 83-24-10

17 Mahendragarh 23-12-10 82-12-54

18 Pandigaon 20-05-35 83-05-00

19 Pathardihi 21-20-28 81-35-48

20 Sukuma 20-48-30 84-30-00

4.5 METHODOLOGY

The methodology consisted of following major steps:

(a) Checking the homogeneity of the entire basin.

(b) Selection of prioritised variables.

(c) Application of clustering methods.

(d) Selection of regional distribution.

4.5.1 Checking Homogeneity of the Entire Basin

4.5.1.1 Statistical measures of L-moment

Three statistical measures discordancy measure, heterogeneity measure and goodness of

fit measure as per L-moment approach are used in regional studies. These measures are

explained by Hosking and Wallis (1997). Here only the heterogeneity measure is

discussed.
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4.5.1.2 Heterogeneity measures

It is used to estimate the degree of heterogeneity and to assess whether they might

reasonably be treated as homogeneous. Specifically, the heterogeneity measure compares

between site variations in sample L-moments for the group of sites with that expected for

a group of region. Hosking's Heterogeneity test fits 4 parameter Kappa distributions. A

series of 500 simulations (Nsim) done and L-statistics of actual region is compared with

a simulated series. The //-statistics are defined as,

H^iV-^l^ (4.1)

For each simulated region, the measures of variability Vi (where Vi is any of

three measures V{, V2 and V3 ) are calculated. From the simulated data the mean //v and

standard deviation <tv of theNsim values of Vt are determined.

The critical //statistics for a region to be homogeneous is as mentioned below

H < 1 homogeneous (4.2)

1< H < 2 possiblyheterogeneous (4.3)

H>2 definitely heterogeneous (4.4)

Hosking and Wallis (1991) observed that statistics //2and H2 based on measure of

V2 and V3 lack the power to discriminate between homogeneous and heterogeneous

regions but //, based on Vx has much better discriminating power. So //, is treated as a

much better indicator of heterogeneity measure. Also, //,was found to be a better

indicator of heterogeneity in large regions, but has a tendency to give false indication of

homogeneity for small regions (Rao and Hamed, 2000).

The measure H2 indicates whether at-site and regional estimates will be close to

each other. A large value of H2 indicates whether or not the at-site and regional estimates

will be in agreement, whereas a large value of //3 indicates a large deviation between at-

site estimates and observed data.

4.5.2 Selection of Prioritised Variables

4.5.2.1 Deriving the variables

For application of clustering methods each site should be presented with its individual

characteristics (variables). Some common attributes under physical, hydrological and

meteorological categories given by Parida (2004) are listed in Table-4.2.
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Table 4.2 Some commonly used variables

SI.

No.

Variable

category
Name of the Variables

1 Physical Basin area, Average slope of basin, Elevation of
gauging site, Length of main channel, General soil
characteristics of the basin.

2 Hydrological Annual average flows, Coefficient of variation and
Coefficient of skewness of annual peak floods

3 Meteorological Annual average rainfall, Other critical rainfall
values (say 50 year-3 hour) rainfall or some such
identified characteristics.

The variables should be selected in such a way that it should be more common

and easily available to the practicing hydrologists and field engineers as well as it should

represent both the statistical and physical importance towards runoff generation. The

hydro-meteorological data used in this study are ID and NR of the corresponding site.

For obtaining physical variables DEM of the study area has been downloaded from freely

available 90m SRTM data. The desired DEM is processed using the ARCGIS. The CA,

SL, DD, RL, SH are derived for individual catchment using ARCGIS toolbox.

4.5.2.2 Discussion on variable selection

As the variables collected have different measuring units, are to be normalized between

zero and unity. In order to determine which variables are more predominant, PCA has

been applied initially. Number of principal components and its corresponding variances to

be achieved depends upon the nature of study. Any PC having variance less than 1

contains less information than one of the original variables so can be dropped. The rule is

regarded as Kaiser's rule (Kaiser, 1960) and retains those PCs whose variances exceed 1.

The variables influencing these PCs are to be recorded as prioritized variable. However

while prioritizing both statistical as well as physical importance of the variable should

also be considered.

The statistical importance of the variables will come from the loadings of the PCs.

The physical importance of individual variables is also discussed here. The CA as a

variable speaks the size of the site and the smaller the size the chances are there it will

have less contribution of runoff. SL is an important characteristic of a catchment as it

gives an indication of the kinetic energy available for water to move towards the basin

outlet, and it has been found to be related to total runoff and base flows (Bullock, 1988;

Vogel and Kroll, 1992). DD is derived by dividing the sum of total stream length within
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a catchment by the catchment area, and is regarded as an important landscape

characteristic. It is a measure of how dissected a basin is, and it is expected that DD

affects the transformation of rainfall into runoff (Pitlick, 1994; Berger and Entekhabi,

2001). Fast flow will occur with area of high DD and steep SL. The RL represents the

shape of the catchment for generating runoff. The ID remains responsible for formation

of flood peaks. A higher 1D can generate a peaky runoff rather than an average rainfall

spread over longer time duration. The NR of a watershed speaks the usual rainfall

receiving characteristics. A high NR getting watershed if receives a heavy ID can

generate a high flood. Usually the high normal rainfall areas get the maximum daily

rainfalls. However SH has very less influence on runoff generation.

Hall and Minns (1999) applied fuzzy c mean algorithm for regionalisation by

applying in two regions identified by United Kingdom Flood Studies Report (NERC,

1975). They have considered catchment area, main stream length, main stream slope,

mean annual rainfall and soil index as features for analysis. Malekinezhad et al. (2010) in

their study on Namak lake basin of Iran have taken 4 independent variables like water

way length, mean annual precipitation, compactness (Gravelious) coefficient and mean

annual temperature out of 14 independent variables.

4.5.2.3 Selecting suitable number of variable out of prioritized list

When the number of variable selected is large, a small but effective group of variable is to

be considered for further analysis instead of using all variables. In this regard multiple

regressions can be more appropriate towards choosing exact number of variables. The

independent variables should again be selected keeping in view the underlying physical

process as well as a good correlation with the dependent variable. It will be better if

number of variable selected is same or somewhat more than the number of PCs with a

reasonable correlation value. In the process relatively small loss of information may

happen after dropping some of the less influencing variables.

4.5.3 Clustering Techniques

4.5.3.1 Application of clustering methods

The overall objectives of clustering (Thandeveswara and Sajikumar, 2000) are

(1) to have statistically acceptable homogeneity, and

(2) to have sufficient data in each cluster for further hydrologic studies.

In this study the number of clusters to which the basin should be optimally divided

is decided on following factors,
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- the result of Kohonen Self organizing map and Andrews plot, supported by other

clustering methods.

- there should be at least seven sites in a group (Robson and Reed, 1999)

- total station years in a pooling group as per 5T guideline in order to get a

reasonable return period.

The performance of different clustering techniques has been evaluated on the

basis of L-moments based statistical measures (Hosking and Wallis, 1993, 1997).

In application of clustering methods, it is first to decide what are the variables to be

incorporated. In this study 7 variables are collected / calculated for each of the stations.

But for clustering purpose onlythe top prioritized variables are considered instead of all.

For identification of homogeneous regions from clustering techniques namely

Kohonen Self organization map, Hierarchical clustering (Ward's method), K-mean,

Fuzzy C-mean and Andrews plot methods have been used. The discussions on these

techniques are given in Annexure-II.

4.5.3.2 Selection of Regional Distribution

Theregional distribution has beenadjudged on the basisof Z-statistics as follows:

Z-statistics

It indicates suitability of a candidate distribution to a data series and is appropriate for

evaluating and comparing a distribution. The Z -statistics for the goodness of fit measure

as defined by Hosking is

ZDIST=(Z?IST-Z4+B4)/a4 (4.5)

DIST =a particular distribution, Z4IST = L-kurtosis for fitted distribution, Z4 =pooled L-

kurtosis, B4 = bias correction, a4 = estimate of sample variability of L-kurtosis. The

ZDIST value should be close to zero. However a value between -1.64 and 1.64 is

considered to be suitable for a fitting distribution at 10 % significance level. While a

number of distributions may qualify the goodness-of-fit criteria, the most potential will be

one that has minimum

4.6 RESULTS AND DISCUSSIONS

4.6.1 Heterogeneity Measure

By applying the L-moment algorithm of Hosking and Wallis the Heterogeneity measures

i.e. //,, //2and //3for the entire Mahanadi basin are 2.70, 2.12 and 2.05 respectively.

Generalised Extreme Value (GEV), Generalized Normal (GN) and Person Type-Ill (PT-

39

7 DIST
value.



Ill) are the derived suitable distributions. However it clearly indicates that all

heterogeneity measures such as//,, //2and H3indicate the basin as heterogeneous as the

values obtained are above 2. Hence none of the distribution can be taken as granted. So

now the task remains to form homogeneous sub-regions out of non-homogeneous region.

Different techniques applied step by step are discussed below.

4.6.2 Cluster Formation

4.6.2.1 Standardization of variables

Before any application of the clustering methods the catchment characteristics (variables)

is normalized (details in Annexure II). In our study 7 variables like catchment area (CA),

station elevation (SH), normal rainfall (NR), maximum 1-day precipitation (ID), longest

stream length (RL), average slope of each catchment (SL), drainage density (DD) of

individual sites are used.

4.6.2.2 Selection of optimum variables

By applying PCA to 7 variables we get the variances with respect to Principal

Components (PC) as mentioned in Table 4.3. Selecting only top 3 PCs with eigen values

more than 1, which are giving nearly 75 percentage of the variance explained, there

loadings are considered for finding the influence of the variable. The loadings of

individual PCs are shown in Fig. 4.2 (a) to 4.2 (c) and their values are recorded in Table

4.4.

Table 4.3 Result of Principal Component Analysis

Principal

Components

Eigen

Value

Variance

(percentage)

Cumulative

variance

1 2.17 30.93 30.93

2 1.73 24.70 55.63

3 1.35 19.34 74.97

4 0.74 10.57 85.54

5 0.45 6.47 92.01

6 0.35 4.96 96.97

7
0.21 3.03 100.00
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Fig. 4.2(a) Loading of different variables of PC-1

O 8.

0.6-

0 4-

0 2

3 °
0 2-

-0 4-

-0.6-

-0 8-

3 «j "s 5—r

Fig. 4.2(b) Loading of different variables of PC-2
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Fig. 4.2(c) Loading of different variables of PC-3
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Table 4.4 Loading values of first 3 PCs

Variables PCI PC 2 PC 3

CA 0.437 -0.0758 0.5829

SL 0.2583 -0.01108 -0.6391

DD 0.4224 -0.07696 -0.3063

RL 0.5501 -0.1168 0.2926

NR 0.0408 0.6801 0.0744

SH -0.5091 -0.2216 0.2403

ID -0.01991 0.6804 0.09483

From the selected 3 PCs the influential variables are chosen keeping both statistical and

physical importance to the catchment. From Table 4.4 it is revealed that RL, SH, CA and

dominate the loading of PCI, ID and NR dominate the PC2 and PC3 by SL and CA. As

per the loading values ID, NR, SL, CA are the top 4 variables according to their

individual loadings. Between RL and DD, the physical importance of DD and RL are

very close in nature. Rather DD will be more representative towards representing the

characters of a watershed. Again DD represents both area and river network whereas RL

confined to longest stream. Similarly DD is also important than SH as latter has very little

influence in runoff generation. So the final sequence as per importance of variables is as

such ID, NR, SL, CA, DD, RL and SH.

In order to reduce the number of variables from prioritized list and to create an

effective variable list, the independent variables are put into multiple regressions with

dependent variable (average Qmax). On regressing with 7 variables the R2 value comes as

0.906 and dropping one inferior variable gradually from prioritized list the R2 is reduced.

By using 4 variables (ID, NR, SL, CA) the R2 comes as 0.872 and using 5 variables (ID,

NR, SL, CA, DD) the R2 comes as 0.892. The variable CA is also a major indicator of

R2. As the numbers of PCs selected are 3 the number of possible variables selected may

be somewhat more than 3. Even using 4 variables the information lost is very less. So for

further analysis only 4 variables (ID, NR, SL, CA) are used instead of 7.

Existence of possible number of clusters: After getting the prioritized variables

investigation is started for number of clusters. SOM is applied starting from all 7

variables and then reducing one by one. The same exercise is also done using AP. It is

found that in all cases of SOM existence of two clusters are verified. Whereas AP does

not give a recognizable plot with more variable. Stations which have similar properties
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would produce a band of similarly shaped curves. If a curve falls outside some margin,

the given site can be assigned to a different group. The result of AP plots showing that

there exists one uniform group whereas others are deflected from that group. The

deflected parts are arranged into one group. However using 4 or 5 prioritised variable it

has shown a good plot to identify the corresponding sites (Fig. 4.3).

Fig. 4.3 Andrews plot with 4 prioritised variables for all 20 stations

The possible number of clusters and site allotments as Kohonen self organizing map plot

is shown in Fig.4.4.
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o

♦ ♦

o
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o

Fig. 4.4 Kohonen SOM plot with 4 prioritised variables for all 20 stations
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This has been done using NNClust software. From SOM and deflection of Andrews plot

maximum 2 clusters have been decided. Trying for more number of clusters for finding

homogeneous region would have been resulted in drawbacks like less number of sites in a

cluster, less station years and formation of small clusters with little identity. For

verification two clusters are tried with 4 to 7 variables using all the clustering methods

discussed.

4.6.2.3 Results of different clustering methods with heterogeneity measure

All discussed 5 clustering methods are applied on 4 to 7 variables. The corresponding

results are noted in Table 4.5. It is observed from Table 4.5 that the sites allotted to each

cluster and its corresponding heterogeneity measures. The HC result does not remain

consistent with change in variables. With application of 4, 5 and 7 variables only

//2results of cluster-1 remain as 0.75, 0.8 and 0.75 i.e. within homogeneous range. But

other values of cluster 1 and 2 remain in possibly heterogeneous range. The dendrogram

made with 4 variables is shown in Fig. 4.5.

Sites

Fig. 4.5 Result of Hierarchical clustering using 4 variables (Dendrogram)
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Table 4.5 Results of different clustering methods with heterogeneity measureas per

prioritized variables (4-7)

Clustering
method

Variable 4 5 6 7

HC Cluster-1 3,4,5,6,7,8,9,
10,11,13,14,
16,17

3,4,5,6,7,8,9,
10,11,13,
14,15,16,17

3,5,6,7,8,10,
11,14,16

3,5,6,7,8,10,
11,14,16,17

Hi,H2,H3 1.93,0.75,1.35 1.62,0.8,1.38 1.82,1.43,2.7 1.93,0.75,1.35

Cluster-2 1,2,12,15,18,
19,20

1,2,12,18,
19,20

1,2,4,9,12,13,15,
17,18,19,20

1,2,4,9,12,13,
15,18,19,20

Hi,H2,H3 1.09,2.18,1.01 1.14,2.48,1.4 0.24,0.5,0.23 1.18,2.01,0.96

KMean Cluster-1 3,5,6,7,8,10,
11,13,14,16

3,5,6,7,8,10,
11,14,16

3,5,6,7,8,10,
11,14,16

3,5,6,7,8,10,
11,13,16,17

Hi,H2,H3 1.69,1.45,2.4 1.82,1.43,2.1 1.82,1.43,2.1 1.85,0.13,0.64

Cluster-2 1,2,4,9,12,15,17,
18,19,20

1,2,4,9,12,

13,15,17,18,
19,20

1,2,4,9,12,13,
15,17,18,19,20

1,2,4,9,12,14,
15,18,19,20

Hi,H2,H3 0.47,0.86,0.12 0.24,0.5,0.23 0.24,0.5,0.23 0.8,2.12,1.86

FCM Cluster-1 3,5,6,7,8,10,
11,14,16

3,5,6,7,8,10,
11,14,16

3,5,6,7,8,10,
11,13,14,16

3,5,6,7,8,10,
11,13,14,16

Hi,H2,H3 1.82,1.43,2.1 1.82,1.43,2.1 1.69,1.45,2.4 1.69,1.45,2.4

Cluster-2 1,2,4,9,12,13,15,
17,18,19,20

1,2,4,9,12,
13,15,17,18,
19,20

1,2,4,9,12,15,
17,18,19,20

1,2,4,9,12,15,1
7,18,19,20

Hi,H2,H3 0.24,0.5,0.23 0.24,0.5,0.23 0.47,0.86,0.12 0.47,0.86,0.12

SOM Cluster-1 6,7,8,11,16 7,11,13,16 5,7,9,12,13 3,4,5,6,7,8,9,

10,11,13,14,
16,17

Hi,H2,H3 0.65,0.2,2.02 1.94,0.44,1.4 0.02,-0.6,-0.62 2.01,0.8,1.35

Cluster-2 1,2,3,4,5,9,10,
12,13,14,15,17,
18,19,20

1,2,3,4,5,6,
8,9,10,12,
14,15,17,18,
19,20

1,2,3,4,6,8,10,
11,14,15,16,17,
18,19,20

1,2,12,15,18,
19,20

Hi,H2,H3 0.74,1.15,0.61 0.94,1.6,1.05 2.77,2.94,2.82 1.09,2.18,1.01

AP Cluster-1 4,5,12,13,19 5,7,9,12,13 Not well

distinguished
Not well

distinguished

Hi,H2,H3 -0.43,-0.96,-1.31 0.2,-0.6,-0.62

Cluster-2 1,2,3,6,7,8,9,10,1
1,14,15,16,17,18,
20

1,2,3,4,6,8,10
,11,14,15,16,
17,18,19,20

Not well

distinguished
Not well

distinguished

Hi,H2,H} 2.0,1.87,2.34 2.94,3.0,2.87

Applying KMean in 4 to 6 variables in cluster1 the result of //, and H2 remains in

possibly heterogeneous range while H3 shows heterogeneity. With application of 7

variables //, value remains in possible heterogeneous range while other values remain
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homogeneous. Almost all cluster-2 values are in homogeneous range except H3 value

when 7 variables are applied.

The FCM result is quite uniform. It shows only heterogeneity for H3 of cluster-1

under all variables but the cluster-2 remains complete homogeneous.

SOM shows somewhat acceptable homogeneity with 4 and 5 variables. But the

number of sites allotted to cluster-1 is very less so less station year will be

accommodated, which will make difficult to predict for long return period. So existence

of less sites makes the cluster-1 meaningless.

Again AP shows homogeneity for cluster-1 with 4 and 5 variables but the result of

cluster-2 is not acceptable on homogeneity ground. The sites allotted to cluster-1 is again

very less. The AP plot remains undistinguishable in case of 6 and 7 variables, so not

considered for the analysis here. It also found that some sites remain very common to at

least more than one clustering methods under different variables. The sites like 6, 7, 8, 10,

11, 14 andl6 remains common sites of cluster-1. Like 1, 2, 4, 9, 18, 19, 20 remains for

cluster-2.

The results of FCM and KMean are almost similar. But as such the values of

heterogeneity measures show that with application of 4 to 7 variables FCM has given

consistency as well as acceptable homogeneity. HC method although shown the good

demarcation of sites under different variables, but with increase in variables results did

not remain consistent. SOM is a bit inferior to other methods but better than AP. As in

this study instead of all variables prioritized variables are getting used stepwise, the

attempt is made to get well demarcated clusters and good homogeneous sub-regions with

as much as fewer variables utilized. So the FCM method with application of minimum 4

prioritised variables (1D,NR,SL,CA) are accepted as robust clustering method as well as

optimum variables needed for clustering analysis. Very less change are seen with increase

in variables as most of the variability is achieved with top 4 prioritised variables. . Recent

studies have shown that a soft membership function is essential for finding high-quality

clustering. Hardening the results obtained by fuzzy c-means algorithm produces better

hard clustering solutions than those obtained by using the K-means algorithm (Hamerly

and Elkan, 2002). Most catchments partly resemble to the properties of other catchments

in the same cluster. The fuzzy cluster algorithm allows a catchment to have partial or

distributed memberships in all the regions (Rao and Srinivas, 2006).

Again it is visualized that SH as a variable does not improve the clustering process

in none of the methods. It is found that removing 2 or 3 stations from cluster-1 and
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cluster-2, homogeneous regions can be formed by all the methods but that will make

clusters meaningless.

The clustering has been done successfully with at least minimum seven sites in a

group. The final allocation of different sites to both the clusters with homogeneity

measures is shown in Table 4.6. As finalized the FCM method with 4 variables result is

accepted for final clusters. So cluster-1 with station ids 3, 5, 6, 7, 8, 10, 11, 14, 16 and

cluster-2 with ids 1, 2, 4, 9, 12, 13, 15, 17, 18, 19, 20 are finally kept for further analysis.

The calculation of growth period has been decided basing on 5T rule depending on the

station year available in a particular cluster. Here cluster-1 has station year of 267and that

of cluster-2 is 253. So dividing these values by 5, the present distribution can provide a

better result up to 53 and 50 years return period for cluster 1 and 2. However a maximum

of 50 year return period has been shown for comparison. The allotment of different sites

under both cluster are shown in Fig. 4.6.

80°0TTE

24°0XrN-

22°0tTN-

20°0O"N-

SffWE

82°0XJ"E
1

82°0TTE

WOTTE
I

I

84°0T)"E

86°CH)"E

Legend

Mahanadi basin

Gauge and Discharge Site

Hirakud_Reservor

2H3Free_Area
Cluster-1

vvl Cluster-2

86°0TTE

•24°0t)"N

22°0TTN

20°0TTN

Fig. 4.6 Mahanadi basin divided to two clusters

For further analysis radar plot of all sites corresponding to 4 prioritised variables are

given (Fig.4.7 (a) to 4.7 (d)). The radar plots show the distribution of variables to each

site. It is revealed from radar plots that the sites 13, 1, 4, 9, 15 received maximum daily

rainfalls during the years of study but the sites 12, 15, 18, 19, 20, 1, 2 are some of the
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sites with a bit high normal rainfall. The slopes of 14, 15, 18, 2, 7 are high to medium and

the catchment area of 4, 5 and 14 are generally large than that of rest.
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From the box plot of both the clusters has been drawn in Figure 4.8(a) and 4.8(b). It has

been concluded that the cluster-1 comprised of watersheds with low ID, low NR, high to

moderate SL, a low catchment area average with some big catchment as outlier. Cluster-

2 represents high ID, high NR, moderate to low slope and moderate catchment area

average with outliers. The normalized average ID, NR, SL and CA for cluster-1 is

0.2355, 0.1683, 0.5713 and 0.1888. The corresponding average values of cluster-2 as

0.7605, 0.7337, 0.4644 and 0.1239. The DD and average maximum discharge (Qm) are

calculated separately for cluster-1 are found as 0.4048, 0.2713 and that of cluster-2 as

0.3219, 0.1848 respectively. So it becomes obvious that although cluster-1 has low

rainfall characteristics, it has a high runoff generation capacity due to its slope and

drainage density with respect to cluster-2.
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4.6.3 Development of Regional Flood Frequency Formulae for the Region

The development of regional flood frequency formulae requires following two

relationships

(i) relationship between (-^-) and return period T

(ii) relationship between mean annual flood and catchment characteristics.

4.6.3.1 Relationship between (-^-) and return period T

The goodness of fit measure is considered on the basis of Z-statistics. The Z-statistics are

shown in Table 4.6. which depicts that distributions like Pearson type-III(PT-III) and

Generalised Pareto (GP) are suitable for cluster-1 and Generalised logistics

(GL),Generalised extreme value (GEV), Generalised Normal (GN) and PT-III for cluster-

2 as Z-values of these distributions are within -1.64 to + 1.64 .

Table 4.6 Final features of two clusters

Goodness of fit Distribution Cluster-1 Cluster-2

GL 4.13 1.08

Z-statistics GEV 2.59 -0.30

GN 2.14 -0.53

PT-III 1.25 -1.07

GP -1.01 -3.37

Considering the minimum Z-statistics it is observed that GP distribution is robust for

cluster-1 and GEV for cluster-2. The regional parameters as observed from L-moment

algorithm for the robust distribution are noted in Table 4.7.
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Table 4.7 Regional parameters of different clusters

Regional parameters Cluster-1 Cluster-2

Distribution GP GEV

* 0.157 0.744

a 1.089 0.429

K 0.293 -0.021

4.6.3.2 Relationship between index flood and catchment characteristics

The regression relationships can be used for estimating index flood at ungauged sites

(Brath et al. 2001). The index flood will act for both gauged and ungauged sites of the

basin. For gauged sites mean or median values of annual peak series is taken as index

flood and for ungauged sites in a hydrological homogeneous region, it is the multiple

regression between mean or median annual flood and other independent catchment

characteristics (eq.4.6 and 4.8). As there are 4 variables are selected as per PCA for

clustering, the regression has been done keeping these variables only for finding a better

index flood. It is found that the independent variable CA was deemed appropriate for

either cluster as there was no significant development in R was visible after adding more

variables. Also for ready reckoner catchment area can be derived more easily. So the

relationship between mean annual flood and catchment area is given (eq. 4.7 and 4.9) for

two clusters using data of gauged catchments.

The mean discharge in m3/s for both clusters inpower form is as follows.
0.8876 -yr.r0.2166 w-r|0.927SQmX =(589.33)X1£T0197XV7?

(/?2 =0.863)

QmX=(lA02)XCA0877

(/?2 = 0.808)

Qm2= (3.8111X10-7)XWL72XI

(R2 =0.785)

Qm2 = (2.9S3)XCA°76!

(/?2 =0.741)

Where,

QmX =mean flood for cluster^1, Qm2 = mean flood for cluster-2, CA= catchment area and

all the values are in their respective Units,

Mji

<0.7047
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The results so obtained are compared with the earlier studies made on Mahanadi basin.

The Technical Report of National Institute of Hydrology, Roorkee, (1997-98) on sub-

zone-3(d) regarding computation of growth factor on L-moment approach is compared

with the growth factors obtained in this study. The comparative results are shown in

Table-4.8. The subzone-3(d) covers 3 basins namely Mahanadi, Brahmani and Baitarani

with a total catchment of around 193000 sq. km. The result of cluster-1 remains close to

that of sub-zone-3(d) whereas cluster-2 growth factors remain less. So a justification has

been made between sites to take a reasonable design flood without taking the result of

sub-zone-3(d) as a gross.

Table 4.8 Growth factors for the two clusters compared to sub-zone-3(d)

Return period Cluster-1 Cluster-2

GEV

NIH Report

Sub-Zone-3(d)GP

2 0.841 0.901 0.828

10 1.982 1.731 1.878

20 2.331 2.057 2.367

50 2.965 2.486 3.086

In another study (Singh and Seth, 1985) on Kelo bridge site Wakeby distribution has been

applied for flood frequency analysis by using the available discharge series of

(Gupta,1980) The same site (CA=1150 km2) is also a site inthis study (CA=1266 km2) at

Id No. 16 although the position of both sites are different marginally. The Id No. 16 falls

into cluster-1 in this study. The growth factors obtained from observed values and that of

Wakeby distribution has been compared with regional growth factor of cluster-1 in Table

4.9 and results shown are satisfactory. The observed values are quite close to result of GP

distribution.

Table 4.9 Comparative growth factor for Kelo (Site Id No-16, Cluster-1)

Return period This study GUPTA

(observed values)

WAKEBY

distributionGP

2 0.841 0.851 0.877

10 1.982 2.026 2.100

20 2.331 2.457 2.612

50 2.965 2.992 3.293

51



Chowdhary (2005) has derived the equation for finding flood of return period 20 year

(Q20) and 50 year (Q50) in his study on Mahanadi basin using index flood and multiple

regression approach. The outcome of the study for 20 and 50 year return period index

flood are as per eq.4.10 and 4.11.

e20 = i.94xer (4-10)

(4.11)

The index flood (Q1F) is derived from the relationship with catchment area. The results

are also compared with the result of this study (Fig. 4.9(a) and 4.9(b)). The results of the

studies are plotted around 45° diagonal lines. It is found that the results of this study are

more close to diagonal.
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Fig. 4.9(a) Comparison of 50 year design flood in cluster-1
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In comparison to previous studies on Mahanadi basin in this study the large basin is

clustered into two homogeneous regions and the regional distributions and growth factors

are fitted according to the sub-region. Earlier studies have taken Mahanadi or subzone-

3(d) as one region to fit the regional equations or growth factors. The variable selections

also represent the sub regions physically and hydro-meteorologically. In the process of

clustering the physical and hydro-meteorological variables are considered. The results of

clustering are also cross checked using number of methods and changing the variables.

4.7 CONCLUSIONS

The study describes the division of Mahanadi basin into two homogeneous clusters for

making flood frequency analysis using optimum number of prioritized variables. The

study also displays how the prioritized variables influence the clustering process. During

prioritization of variables using PCA both statistical and physical importance of the

variables towards runoff generation are considered. The following conclusions have been

drawn from this study:

(i) FCM clustering method was found to be robust.

(ii) The SOM and AP are helpful in deciding the number of clusters.

(iii) Reducing the dimensionality of variables by using 4 variables out of 7 available

have not put any significant impact on homogeneity and cluster formation,

(iv) The Generalised Pareto (GP) distribution holds good for cluster-1 and it contains

the areas which can contribute substantially towards runoff generation due to high

slope and drainage density characteristics.
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(v) The cluster-2 contains areas with low runoff generation capacity as compared to

cluster-1. Generalised Extreme Value (GEV) is the robust distribution for this

cluster.

4.8 SCOPE FOR FURTHER WORK

The study has a wide scope for further work in the area. The possible directions in which

further work can be undertaken are listed below:

i) Theregional flood frequency analysis has been carried out based on the prioritized

variables and clustering methods. In the present study only few variables have

been considered. The other variables influencing runoff may be considered in

future studies,

ii) The result of regional flood frequency analysis may be improved further by

including data of more number of stations analysis more length of data,

iii) The regional flood frequency may be extended using partial duration series

approach.
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CHAPTER 5 - DEVELOPMENT OF FLOOD FORECASTING

MODEL FOR DOWNSTREAM OF HIRAKUD RESERVOIR

5.1 BACKGROUND

Flood forecasting system should meet the requirements of accuracy, reliability, and

timeliness. In recent years soft computing approaches such as artificial neural network,

and fuzzy logic have been used in hydrological modeling and flood forecasting. In the

present study soft computing techniques have been used for flood forecasting in Lower

Mahanadi basin.

Presently, time lag method is being used by Department of Water Resources,

Government of Orissa for forecasting the floods at different forecasting stations in the

Mahanadi river system. In the present study the Mahanadi system downstream of Hirakud

is modeled using traditional regression method, MLFF-ANN, RBF-ANN and TS-Fuzzy

methods using the data of peak as well as 3-hourly discharge data of Khairmal, Barmul

and Mundali sites. The results of applications have been inter-compared. The findings of

this study may be applied in the field for strengthening the existing flood forecasting

system.

5.2 INTRODUCTION

During the past few decades, a great deal of research has been devoted to the modeling

and forecasting of river flow dynamics. Such efforts have led to the formulation of a wide

variety of approaches and the development of large number of models. The existing

models for river flow forecasting may broadly be grouped under two main categories

namely, physically based models and black-box models. In between these two broad

categories of models there is a wide variety of models e.g. deterministic and stochastic,

lumped and distributed, event driven and continuous or their combinations.

The physical based models working on the principle of rainfall-runoff model

require further information on evaporation, soil moisture, temperature and dam release

etc. Sometimes all such information are not available on real time basis. It makes the

application of physical based models for real time flood forecasting slightly difficult. In

this context black box or data-driven models, which can discover relationships from

input-output data without having the complete physical understanding of the system, may

be preferable. While such models do not provide any information on the physics of the

hydrologic processes, they are in particular, very useful for river flood forecasting where

55



the main concern is accurate predictions of a flood level or discharge at specific river

location.

In recent years, soft computing techniques, basically artificial neural networks and

fiizzy logic approaches have been used in solving flood forecasting and other

hydrological problems. A brief review of the applications of these techniques in flood

forecasting is given in next section.

5.3 REVIEW OF LITERATURE ON APPLICATION OF SOFT COMPUTING

TCHNIQUES IN FLOOD FORECASTING

5.3.1 Artificial Neural Network (ANN)

ANNs are basically data driven approaches and are considered as black box models

(Bishop, 1994) in hydrological context. These models are capable of adopting the non

linear relationship (Flood and Kartam, 1994) between rainfall and runoff as compared to

conventional techniques, which assume a linear relationship between rainfall and runoff.

ANNs have strong generalization ability, which means that once they have been properly

trained, they are able to provide accurate results even for cases they have never

experienced before (Imrie et al., 2000).

Over the last decades, Artificial Neural Networks (ANNs) have been increasingly

used in hydrological forecasting (Maier and Dandy, 2000). Previous studies have shown

that ANNs are capable of reproducing unknown rainfall-runoff relationship adequately

(ASCE 2000a, ASCE, 2000b). ANN is also a powerful tool in solving complex nonlinear

river flow forecasting problems (Hsu et al., 1995, 2002; Thirumalaiah and Deo, 1998;

Atiya et al., 1999; Uvo et al., 2000; Birkundavyi et al., 2002) and in particular when the

time required generating a forecast is very short.

Jayawardena et al. (1996) compared the performance of both MLP and RBF

networks for an experimental drainage basin at China to predict water levels. The RBF

models resulted in better performance and took less time for model development than

MLP as no repetition is required to reach the optimum model parameter. Minns and Hall

(1996) applied for rainfall-runoff modeling. They have applied ANN for both one and

two hidden layers and found that the results improved with two hidden layer but the extra

computational effort does not seem justified.

Dawson and Wilby (1998) discussed the application of ANNs to flow forecasting

in two flood-prone catchments in England using hourly hydrometric data.

Zealand et al. (1999) explores the capabilities of ANNs and compares the

performance of this tool to conventional approaches used to forecast streamflow. Several
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issues associated with the use of an ANN are examined including the type of input data

and the number, and the size of hidden layer(s) to be included in the network. Campolo

et al. (1999) developed the NN model to forecast the water level using the distributed

rainfall.

Liong et al. (2000) achieved to get a high degree of accuracy with ANNs for river

stage forecasting in Bangladesh. Coulibaly et al. (2000) applied MLFF network for

reservoir inflow forecasting with Levenberg-Marquardt back propagation (LMBP) and

cross-validation technique to avoid underfitting or overfitting on FNN training and

enhances generalization performance. Imrie et al. (2000) applied cascade correlation

learning architecture for river flow prediction.

Chang et al. (2001) developed a rainfall-runoff model for 3-hour ahead flood

forecasting using a two stage unsupervised and supervised learning. They recommended

that the RBFNN can be considered as a suitable technique for flood flow.

Rajurkar et al. (2002) used a linear multiple-input-single-output (MISO) model coupled

with ANN for developing rainfall-runoff relationship for river Narmada, India. The model

provided a systematic approach for runoff estimation.

Ni and Xue (2003) established an ANN model based on Radial-Basis-Function

(RBF) for flood risk ranking at five safety polders in Yangtze River, China. The authors

developed site-specific and multi-site-specific RBFNN model to provide useful tools for

rapid prediction of flood routing process. It also shows much promise for rapid feedback

of the site-specific risk and real-time diversion process control. Suitability of some

deterministic and statistical techniques along with an ANN to model an event based

rainfall-runoff process have been investigated by Jain and Indurthy (2003).

Lekkas et al. (2004) utilizes various types of ANNs in an attempt to assess the

relative performance of existing models. Ali Efenti, a sub-catchment of the river Pinios

(Greece), is examined and the results support the hypothesis that ANNs can produce

qualitative forecasts. A 7-hour ahead forecast in particular proves to be of fairly high

precision, especially when an error prediction technique is introduced to the ANN

models. Solomatine and Xue (2004) presented an approach to building modular rainfall-

runoff models where, based on expert judgment encapsulated in simple rules, input data

was partitioned into several subsets, and separate ANN or M5 tree models were built for

each subset. Kisi (2004) demonstrated the application of ANNs in predicting mean

monthly streamflow. The estimation of flow is very important for reservoir operation

policy; therefore, in this study, based on the monthly flow data obtained from the Turkey

State of Water Works, ANNs have been used to predict river flow. Autoregressive (AR)
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models have also been applied to the same data. The performance of the neural network is

compared with that of the statistical method.

Senthil Kumar et al. (2005) compared rainfall-runoff modeling skills of two

ANN configurations MLP and RBF networks. The results of their study indicate that the

generalization properties of RBF networks are poor compared with those of MLPs in

rainfall-runoff modelling. Bhattacharya and Solomatine (2005) built water level-

discharge relationship models with an ANN and a M5 model tree on the river Bhagirathi

in India. Based on casual meteorological parameters, Ahmad and Simonovic (2005)

applied ANNs for predicting the peak flow, timing and shape of runoff hydrograph for the

Red River in Manitoba, Canada.

Chau (2006) adopted a particle swarm optimization model to train an ANN

model to predict water levels in Shing Mun River of Hong Kong with different lead times

on the basis of upstream gauging stations. Tareghian and Kashefipour (2006) developed

an ANN model to forecast daily runoff for Karoon River in Iran. Dawson et al. (2006)

used ANNs to predict T-year flood events and the index flood for 850 catchments across

the UK. Wu and Chau (2006) employed a genetic algorithm based Artificial Neural

Network (ANN-GA) for flood forecasting in a channel reach of the Yangtze River in

China. Sahoo and Ray (2006) demonstrated that the ANN can outperform rating curves

for discharge forecasting.

Kisi (2007) presented a comparison of different artificial neural networks

(ANNs) algorithms for short term daily streamflow forecasting. Four different ANN

algorithms, namely, backpropagation, conjugate gradient, cascade correlation, and

Levenberg-Marquardt are applied to continuous streamflow data of the North Platte

River in the United States. The models are verified with untrained data. The results from

the different algorithms are compared with each other. The correlation analysis was used

in the study and found to be useful for determining appropriate input vectors to the

ANNs. Pang et al. (2007) developed a Nonlinear Perturbation Model (NLPM) based on

ANN, defined as NLPM-ANN, for the purpose of improving the rainfall-runoff

forecasting efficiency and accuracy. Chang et al. (2007) presented a systematic

investigation of the three common types of ANNs for Multi-Step-Ahead (MSA) flood

forecasting for two watersheds in Taiwan. Kisi and Cigizoglu (2007) explored the use of

MLP ANNs, radial basis ANNs, and GRNNs for forecasting intermittent flow series.

Turan and Yurdusev (2008) applied FFBPNN and GRNN along with Mamdani

Fuzzy logic and regression models on four runoff gauging stations on Birs river basin of

Switzerland for flow prediction at downstream location.
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Mukerji et al. (2009) compared relative performance of ANN, ANFIS and adaptive

neuro-GA integrated system (ANGIS) models in flood forecasting. They used various

performance measures to evaluate and compare the performances of different models.

They concluded that the performance of ANGIS model is better than ANN model in most

cases.

Wu et al. (2010) proposed modular artificial neural network (MANN) model for

daily and monthly rainfall forecasting. MANN model was developed by portioning the

training data into 3 clusters by the FCM technique and then each subset was

approximated by a single NN model. The final output of the model resulted directly from

the output of the three local models. MANN was compared with three benchmark models

viz. NN, K-nearest-neighbours (K-NN) and linear regression (LR). Results of models

without preprocessed inputs indicated that MANN model performed the best among all

four models.

Tiwari and Chatterjee (2010) developed a hybrid wavelet-bootstrap-ANN

(WBANN) model to explore the potential of wavelet and bootstrapping techniques to

develop an accurate and reliable ANN model for hourly flood forecasting. The wavelet

technique decomposes the time series data into different components capturing useful

information at various resolutions. The model is applied in Mahanadi basin and the results

are compared with 3 different ANN models viz. traditional ANNs, wavelet based ANNs

(WANNs) and bootstrap based ANNs (BANNs). The overall performance of WBANN

model is accurate and reliable than other 3 models.

Deshmukh and Ghatol (2010) applied static neural approach by applying RBF to

rainfall-runoff modeling for the upper area of Wardha river in India. They recommended

the Levenberg-Marquardt learning rule and Tanh activation function is a more versatile

combination for RBF network.

5.3.2 Fuzzy Logic

Fuzzy logic, another soft computing method, has emerged as a convincing alternative to

traditional procedures in the analysis and prediction of various real world phenomena. It

has also opened up new avenues to hydrological modeling and it comes only after Zadeh

(1965) explored it first.

Since Zadeh (1965) publication regarding an extension of the classical fuzzy set

theory, the fuzzy method has been widely used in many fields of applications, such as

pattern recognition, data analysis, system control, etc. (Kruse et al., 1994; Theodoridis

and Koutroumbas, 1999).
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Seeand Openshaw (1999) indicated that the fuzzy logic can be used in combination with

other soft computing techniques to create sophisticated river level monitoring and

forecasting system.

Hundecha et al. (2001) demonstrated that a Fuzzy Logic (FL) approach could be

used to simulate actual component hydrologic processes in areas where sufficient data

were not available to model these processes physically. Ozelkan and Duckstein (2001)

proposed a fuzzy conceptual rainfall-runoff framework to deal with parameter

uncertainties of conceptual rainfall-runoff models.

Cheng et al. (2002) combined a fuzzy optimal model with a genetic algorithm to

solve multi-objective rainfall-runoff Xinanjiang model calibration in the Shuangpai

reservoir.

Luchetta and Manetti (2003) used a fuzzy clustering approach to forecast a real

time hydrological model in the Padule di Fucecchio basin in middle-north of Italy.

Mahabir et al. (2003) applied FL to forecast seasonal runoff for the Lodge and Middle

Creek basins, Canada.

Blazkova and Beven (2004) used FL to estimate flood frequency by continuous

simulation of sub-catchments rainfalls and discharges for a dam site in a large catchment

in the Czech Republic.

Vernieuwe et al. (2005) described the catchment's response to rainfall input

through fuzzy relationships for Zwalm River in Belgium.

Rao and Srinivas (2006) tested a fuzzy clustering for regionalization of

watersheds with 245 gauging stations data in Indiana. Jacquin and Shamseldin (2006)

developed TS fuzzy model and applied to six catchment of diverse climatic characteristics

and reported that fuzzy model is better than simple liner model, linear perturbation model,

and nearest neighbor perturbation model. They reported that fuzzy inference systems are

suitable alternative to the traditional methods for modeling nonlinear relationship between

rainfall and runoff processes.

Nayak (2010) developed a popular fuzzy rule-based model for river flow

forecasting for Anandapur gauging station of the Baitarani basin in India. The developed

model is used to forecast up to 12 hour in advance. It is observed that the developed

model follows the trend of the input membership grade in antecedent part of the fuzzy

model.

Lohani et al. (2011) developed daily rainfall runoff models using artificial neural

network (ANN), fuzzy logic (FL) and linear transfer function (LTF)-based approaches for

upper Narmada basin, India. They compared these models with different input data
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vectors. This study further investigates the impact of antecedent soil moisture conditions

in the performance of the daily rainfall-runoff models. The results show that the fuzzy

modelling approach is uniformly outperforming the LTF and also always superior to the

ANN-based models. Gogoi and Joshi (2011) applied a simple form of fuzzy logic based

modeling, based on the theory of fiizzy sets is implemented to forecast flood in Jiadhal

river basin of Assam.

In Mahanadi basin the discharge data are available at 3 hour interval during the

monsoon period. However, sometimes due to various reasons only peak discharge data

are available at base and / or forecasting stations. Therefore, in order to provide reliable

flood forecasts to the flood managers and district administration the following two types

of input data vectors have been used:

(i) peak discharge, and

(ii) 3-hourly discharge

This chapter deals with development of flood forecasting models using both

continuous (3- hourly) and discrete (peak floods) discharges at different G&D stations at

downstream of Hirakud. The following models have been attempted,

i) Statistical model,

ii) ANN model based on MLFF and RBF network

iii) Fuzzy logic model based on Takagi-Sugeno principle

5.4 STUDY AREA

In this study flood forecasting is confined to the downstream of Hirakud reservoir. The

base station Khairmal is about 115 km. downstream of Hirakud. The schematic diagram

of downstream Mahanadi basin is shown in Fig. 2.3 (Chapter 2). The release from

Hirakud reservoir along with the contribution of intercepted, catchment between dam and

Khairmal remains the prime input for the model. The intermediate station is at Barmul.

The forecasting station Mundali is just before the starting of delta region. The location of

these stations is shown in Fig.5.1.

♦
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Fig. 5.1 Mahanadi basin map showing the base, intermediate and forecasting station

5.5 DATA AVAILABILITY

The discharge data at 3-hourly interval is available from 1996-2010 for the stations at

Khairmal, Barmul and Mundali. For peak discharge a total of 101 peak values are

selected and out of this 51 peaks are selected for calibration and remaining 50 are used for

validation. The peak values and then corresponding travel times are derived from the past

historical data.

Total 13080 values of 3-hourly discharges have been collected. The discharge

from 1996-2003 (6666 values) are used for calibration and data from 2004-2010 (6414

values) are used for validation.

5.6 METHODOLOGY

5.6.1 Statistical Model

In statistical model correlation (either simple regression or multiple regressions) between

stage or discharges of upstream and downstream gauging stations are established. It is one

of the simplest methods to forecast the flood at downstream sites. This method gives

better results when the contribution of tributaries joining the main stream in between the
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base station an forecast station is not significant and the catchment is not receiving heavy

rainfall.

5.6.1.1 Linear Transfer Function (LTF)

The general representation of statistical model (multiple linear regression) is given by

*,=!«,+* (5.1)
j=0

With xn =1• Here, Xg is the independent variable for the i'h observation (various

discharge values in the present study), y; is the dependent variable for the i'h observation,

fij is unknown coefficients to be estimate, kis the number ofcoefficient (to be estimated)

in the model, and s is the error in the determination of j, which is generally assumed as

having zero mean and constant standard deviation a. The unknown coefficients (/J ) are

estimated by least square method.

5.6.2 ANN Model

Artificial neural networks (ANN) are simplified models of the biological neuron system

and as such they share some advantages that biological organisms have over standard

computational systems. A typical ANN model consists of number of layers and nodes that

are organized to a particular structure (Mehrotra et al., 1997).

There are various ways to classify a neural network. Neurons are usually arranged

in several layers and this arrangement is referred to as the architecture of a neural net.

Networks with several layers are called multi layer networks as opposed to single layer

networks that only have one layer. The classification of neural networks is done by the

number of layers, the direction of information flow, the non-linear equation used to get

the outputs from the nodes and the method of determining the weights between nodes of

different layers. Within and among the layers the neurons can be connected in two basic

ways:

(1) Feedforward networks in which the neurons are arranged in several layers.

Information flows only in one direction, from the input layer to output layer, and

(2) Recurrent networks in which neurons are arranged in one or more layers and feedback

is introduced either internally in the neurons to other neurons in the same layer or to

neurons in preceding layers.

The commonly used neural network is three-layered feed forward network due to

its general applicability to a variety of different problems (Hsu et al.1995)
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5.6.2.1 Multiple Layered Feed Forward Network (MLFF or MLP)

Feed forward ANN comprises of a system of units analogous to neurons, which are

arranged in layers. Between the input and output layers there may be one or more hidden

layers. The units in each layer are connected to the units in the subsequent layer by a

connection weight w , which is adjusted during training. A data pattern comprising of the

values x. present in the input layer i is propagated forward through the network towards

the first hidden layer; . Each hidden unit receives the weighted outputs from the units of

the previous layer. These are summed to produce a net value, which is then transformed

to an output value using an activation function. Fig. 5.2 represents the components of

ANN architecture along with its processing unit. ANN models should be trained properly

before using it for testing. Generally, training data patterns are fed sequentially into the

input layer and this information is propagated through the network. The resulting outputs

y(t) are compared with the corresponding desired or actual output, dj(t). The mean

squared error at anytime t(E(t)) is calculated over the entire data set using Eq. (5.2). The

intermediate weights are adjusted using an appropriate learning rule until E{t) has

decayed to a suitable level.

E(t) =̂ *}Z(yJ(t)-dJ(t))2 (5-2)
Numerous algorithms have been developed for training of ANN models to attain optimum

model performance by ensuring good generalization and computational efficiency. For

feed forward ANN, the back propagation algorithm is frequently used for ANN training.

Training of ANN using error back propagation algorithm proceeds as follows. The

weights, w„ are adjusted during training using the following equation:

wv (t +1) =wp (/) +AWj, (t +\) +M&Wji (0 (5-3)
where, ju is the momentum constant. The weight increment favJt may be found using the

gradient descent method.

dEAw. =J] —
* dw

(5-4)

where, tj is the learning rate. The gradient descent method makes the changes to the

weights in the direction of the steepest descent down the error surface by reducing the

likelihood that the network will stabilize at a local rather than a global error minimum.

The momentum term in Eq. (5.4) adds inertia to the training procedure. With an increase

in the learning rate, the error gradient gets smaller and thereby helps to avoid the

entrapment in local minima.
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Input layer Hidden layer Target layer

Fig. 5.2 ANN model structure

5.6.2.2 Radial Basis Function (RBF)

Although the MLP can produce accurate forecasts, it does have a number of drawbacks.

For instance, training an appropriate MLP can take a long time and it has number of

parameters that to be determined by the user. On the other hand, the RBF has been used

in a limited number of studies (Mason et al., 1996; Fernando and Jayawardena, 1998;

Dawson and Wilby, 2001), it can be trained in a fraction of the time, has fewer

parameters to be determined, and, in certain cases, predicts river flow more accurately

than the MLP (Fernando and Jayawardena, 1998; Sudheer et al., 2002b)

An alternative to the MLP is the Radial Basis Function (RBF) network (Bianchini

et al., 1995; Chen et al, 1991) which has linear parameters and has found applications in

other areas such as electrical and electronic engineering. Park & Sandberg (1991) proved

theoretically that the RBF type ANNs are capable of universal approximations and

learning without local minima, thereby guaranteeing convergence to globally optimum

parameters. For hypothetical situations, Moody & Darken (1989) demonstrated that the

RBF type networks learn faster than MLP networks. This study attempts to apply the

RBF approach to real situations of flood water level predictions and to compare the model

performances with those of MLP network models.

The Radial Basis Function Neural networks have a very strong mathematical

foundation rooted in regularization theory for solving ill-conditioned problems. An RBF

network is a three-layer feed-forward type network in which the input is transformed by

the basic functions at the hidden layer. At the output layer, linear combinations of the

hidden layer node responses are added to form the output. The mapping function radial
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basis function network is built up of Gaussians rather than sigmoids as in MLP networks.

Learning in RBF network is carried out in two phases: first for the hidden layer, and then

for the output layer. The hidden layer is self-organising and its parameters depend on the

distribution of the inputs, not on the mapping from the input to the output. The name RBF

comes from the fact that the basic functions in the hidden layer nodes are radially

symmetric. The output layer, on the other hand, uses supervised learning (gradient or

linear regression) to set its parameters.

Chen et al. (1991) reported that the choice of the basis function is not crucial to

the performance of the network. The most common choice however, is the Gaussian

function which can be defined by a mean and a standard deviation. Figure 6.3 shows a

schematic diagram of an RBF network with input (N), hidden (L) and output layer (M)

nodes for the general transformation of ND points of X(X X XND)'u\ the input

space to points Y(t F FND) in the output space. The parameters of an RBF type

neural network are the centers and the spreads of the basis functions at the hidden layer

nodes and the synaptic weights w^ of the output layer nodes. The RBF centers are also

points in the input space. The basis function response for an input depends on the distance

between the point representing the input (X) and the RBF centre (U').

For an input X', the /"' hidden node produces a response h} given by,

hj = exp
X -u

2oJ
(5.5)

Where, X'-U, represents the distance between input X' and centre of j* hidden node

measured by Euclidean distance method.

L

The output is represented by Yik =z^h,wb
7=1

(5-6)

5.6.3 Fuzzy Inference System (FIS)

Fuzzy inference is the process of mapping a given set of inputs to an output using fuzzy

logic defined by the fuzzy 'If-Then' rule database. The mapping provides a basis for

computing the decisions. There are two types of FIS that can be implemented.

• Mamdani type

• Sugeno type
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Fig. 5.3 Schematic diagram of RBF Network

In the rule bases described hitherto with the IF-THEN rules fuzzy sets both in the

premises and in the conclusions are used. This kind of inference is called Mamdani

inference. A modified inference scheme, developed by Takagi and Sugeno, represents the

conclusions by functions. Recently Takagi Sugeno fuzzy approach is gaining popularity

for solving non-linear problems. A rule of this form will be IF X] is Ar] AND x2 is

42THEN K= /rOc„*2 xm) (5-7)

The structure of the premises is the same as for the Mamdani inference. However, in the

conclusion all linguistic terms Br are substituted by the functions fr, and therefore it is

not necessary to define a priori linguistic terms Br(u) for the conclusions.

The function fr represents a direct mapping from the input space

(X]*jc2* xn) with the inputvalues xltx2 xn to the output space u.

u = fr(xl,x2 x„) (5.8)

The connective operation in a rule is in this case performed via the degree of

relevance Hr of the premise of the rule Rr and the function fr in the conclusion. The final

output is determined as a weighted mean value over all R rules according to

V HBf„(x..x, x)u=jLuR %p ' 2 (5.9)

The effort of performing a defuzzification is saved, as the crisp value u'is directly

determined by the inference operation and this makes this method attractive.

The Takagi Sugeno fuzzy system builds an overall combination of functions fr, which

are valid in some range. If the membership functions of the fuzzy sets in the premises are
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overlapping, the transition between the functions is always continuous. For the special

n

case of linear functions fr(xx,x2 x„) = V crv xv (5.10)
v=l

the coefficients crv can be determined by some identification procedure.

5.6.3.1 Architecture of FIS

Consider that the FIS has two inputs x , y and one output z . Fig. 5.4 and 5.5 illustrate a

TS fuzzy inference system. For a first-order Takagi Sugeno (TS) model, a common rule

set with two fuzzy if-then rules can be written as follows:

Rule 1, if x is a, and y is b, , then /; = P]X + qxy +r,, and

(5.11)

Rule 2, if x is a2 and y is g,, then f% = PlX +q2y + r2 (5.12)

Where the "if statement is the antecedent, the "then" statement is the consequent, x and

y are linguistic variables and A],A2,Bi,B2 are corresponding fuzzy sets, and px,qx,

rx and p2, q2, r2 are linear parameters.

f\ = PyX + q^ + r, fi = p2x + iiy + r2

Fig. 5.4 FIS membership functions (MFs) and rule generation
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Fig. 5.5 FIS network

5.6.3.2 Fuzzy structure identification

Data driven fuzzy identification is an effective tool for the approximation of uncertain

non-linear systems (Hellendoorn and Driankov, 1997). The core of the fuzzy structure

identification method is in the clustering and the projection. First, the output space is

partitioned using a fuzzy clustering algorithm. Second, the partitions (clusters) are

projected onto the space of the input variables. The output partition and its corresponding

input partitions are the consequents and antecedents, respectively. Then by projecting

each cluster onto each input variable, temporary clusters in the input space are obtained.

This may be implemented by using the subtractive clustering method that automatically

determines the number of cluster. The subtractive clustering method uses the following

formula to express the potential as a sum of contribution of Euclidean distance between a

given point and all other data points (Chiu, 1994):

N

a - 4/

d0 - e

(5.13)

z= l,2 N (5.14)

where d, is the potential of the data point Xj to be a cluster centre, dtj denotes the

contribution of every single distance, N is the number of training data samples and

when r is the cluster radii.

The clustering algorithms are used extensively not only to organize and categorize

data, but are also useful for data compression and model construction. Clustering

partitions a data set into several groups such that the similarity within a group is larger
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than that among groups. The clustering techniques are validated on the basis of the two

assumptions viz.

(i) similar inputs to the target system to be modelled should produce similar ouputs,

and

(ii) These similar input-output pairs are bundled into clusters in the training data set.

The subtractive clustering method assumes that each data point is a potential cluster

center and calculates a measure of the likelihood that each data point would define the

cluster center, based on the density of surrounding data points. The subtractive clustering

algorithm performs the following tasks

(i) selects the data point with the highest potential to be the first cluster centre,

(ii) removes all data points in the vicinity of the first cluster centre (as determined by

radii), in order to determine the next data cluster and its centre location and

(iii) iterates on this process until all of the data is within radii of cluster centre.

5.6.4 Model Development

The flood forecasting models have been developed on peak as well as 3-hourly discharge

values of base station (B.S) and intermediate station (I.S). Therefore, initially the peak

values of B.S. and its corresponding peaks at downstream intermediate and forecasting

stations (F.S) are derived from the time series data of river discharge. These peak values

are used as inputs and target outputs for the ANN, Fuzzy as well as statistical model. The

travel times of various flood peaks have been computed and grouped in different clusters

by using fuzzy c-means, k-means techniques. The average travel times are fixed for

average discharge of each cluster.

For continuous discharges a possible number of alternative inputs are proposed to

be tested in all networks of ANN and fuzzy. The input vectors are selected generally by

trial and error method (Maier and Dandy, 2000). Determinations of number of discharge

values involve computation of lags of discharge values that have significance influence

on forecasted flow. These influencing values corresponding to different lags can be

identified through statistical analysis of the data series by avoiding the trial and error

procedure.

Determining the number of flow values involves the computation of lags of flow

values of different time interval that have significance influence on forecasted discharge.

In this study, the number of parameters corresponding to different antecedents was

determined by two statistical methods, i.e. autocorrelation function (ACF) and partial

autocorrelation function (PACF) between the variables. The ACF and PACF are generally
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used to gather information about the autoregressive process of the data series (Sudheer et

al., 2002). The number of antecedent river flow values that should be included in the

input variables is usually determined by placing a 95% confidence interval on the

autocorrelation and partial autocorrelation plots. The base station flows have significant

relation with the flow of forecasting station. The statistical parameters such as auto

correlation function (ACF), partial auto correlation function (PACF) and cross correlation

function (CCF) can be used for this purpose.

The cross-correlation is a measure of similarity of two signals. It is a function of

the relative time between the signals. The cross correlation coefficient between rainfall

and runoff, which was calculated by normalizing the cross-correlation of the two signals,

has been used to identify the time lag (offset) where the similarity is highest (Teschl and

Randeu, 2006).

Therefore on the basis of PACF and CCF of the data series, the input vectors have

been selected for the flood forecasting model in the present study.

5.6.5 Performance Criteria

One major problem in assessing ANN models is the use of global statistics (RMSE,

Coefficient of correlation, Efficiency, etc.) in calibration. When this approach is

employed for modeling studies, the solution will, in most cases, produce a higher or near

perfect 'goodness of fit' statistic. The statistical indices considered are the root mean

square error (RMSE), coefficient of correlation (R) and the model efficiency, which are

defined as follows:

5.6.5.1 Coefficient of correlation (R)/ Coefficient of determination (R )

Coefficient of correlation (R) is used in the context of statistical models whose main

purpose is the prediction of future outcomes on the basis of other related information. It

provides a measure of how well future outcomes are likely to be predicted by the model.

J2(Qo-Qo)(QP-QP)
Coefficient of correlation (R) = , '=1

JzZ(Qo-Qo)2zZ(QP-QPy
Vw w (5.15)

Coefficient of correlation is a statistic that will give some information about the goodness

of fit of a model. In regression, the Coefficient of correlation is a statistical measure of

how well the regression line approximates the real data points. R value of 1.0 indicates

that the regression line perfectly fits the data.

71



5.6.6 Model parsimony

As far as model inputs are concerned the parsimony ofthe models should be observed by
using optimum number ofinputs. The performance ofcalibration and validation is highly
dependent on the structure ofthe model. Amodel having large structure have difficulty in
converging during training or may over fit whereas a model having less parameters may

not represent the underlying physical processes perfectly.

Anders and Korn (1999) proposed the use of information criteria to compare

different ANN models. The idea behind the use of information criteria is to find an

optimal trade-off between an unbiased approximation of the underlying model and the
loss of accuracy caused by estimating a number of parameters. A variety of different

criteria can be found in the literature (Sudheer, 2000). The most prominent, and still

widely used, criterion is the Akaike Information Criterion (AIC), proposed by Akaike
(1974). Shibata (1976) showed that a consistent estimator is not found using the Akaike
Information Criteria (AIC) and modifications to this criterion have been proposed, such

as the Bayesian Information Criteria (BIC).

According to Shumway (1988), the BIC leads most often to a correct model

structure and has the smallest prediction error. Senthil Kumar et al. (2005) have

successfully applied AIC and BIC in their rainfall-runoff model to select the best model.
In the current analysis, both these criteria have been used for comparing the performance

of ANN and fuzzy models. According to Hsu et al. (1995) the AIC and BIC can be

computed using the following equations:

AIC =m\n(RMSE) +2n (5-18)

BIC = m\n(RMSE) + n\n(m) (5.19)

Where, m is the number of input-output patterns used for training, n is the number of
parameters to be identified and RMSE is the root-mean-square error between the network
output and target. The performance measures generally improves as more parameters are

added to the model, but the AIC and BIC statistics penalize the model for having more

parameters and, therefore, tend to result in more parsimonious models.

5.6.7 Uncertainty in Model Output

The predictive uncertainty of the models is evaluated by an index called the 'noise-to-
signal ratio'. It is usually compared with the standard deviation of the observed values.
The ratio of Standard Error of Estimate (SEE) to Standard Deviation of observed values,

called the noise-to-signal ratio, indicates the degree to which noise hides the information.

The unbiased SEE isa measure ofthe unexplained variance (Tokar and Johnson, 1999). If
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the SEE is significantly smaller than the standard deviation, then the model can provide

accurate predictions. On the contrary, if the ratio is greater than or equal to unity, then the

model predictions will not be accurate (McCuen, 1993).

(15

SEE = (5.20)

where Qo, Qc are the observed and computed values of flow N is the total number of

observations, and v is the degrees of freedom and is equal to the number of observations

in the training set minus the number of parameters.

5.6.8 Optimal Model Parameter

The structure of either model is to be decided after taking a lot of hit and trial on deciding

optimal parameters. In case of MLP models the influence on performances has been

tested by varying the number of neurons to get a maximum performance. The parameter

'spread' is varied in case of RBF model and cluster 'radius' is varied in case of TS model.

5.7 RESULTS AND DISCUSSION

The DOWR is presently using time lag method in making the forecast. A standard time

difference is being observed when a discharge passes from Khairmal to Barmul and

Mundali. The locations between these stations and the travel time of discharges are given

in Fig.5.6. A maximum of 24-32 hour is required by a flood peak to reach from Khairmal

to Mundali.

Hirakud

Reservoir

Khainnal (BS)

—o-

Barmul (IS) Mundali (FS)

ll«Km-

12-18 hr

~2:.106 Km tU— 95Km

12-16 hr 12-16 hr 8 Km

Flood

affected

delta

Fig. 5.6 Schematic diagram of B.S, I.S. and F.S with distance and travel time

The flood forecasting has been carried out considering the peak as well as 3-hour

discharges as input vectors in the respective models. The results are given in following

sections:

5.7.1 Forecasting based on peak discharges

3-hourly discharge data for a period from 1996-2010 at Khairmal, Barmul and Mundali

have been collected from Department of Water Resources, Government of Orissa. The

peak discharges at each station were derived from this data. For each G&D site 101 flood
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peaks of different magnitudes are obtained and out of these initial 50 peaks are considered

for calibration of the all models and rest 51 for validation. The corresponding travel times

of each peak is derived from the time series data of discharges of base and forecasting

stations.

Statistical approach (LTF), MLFF-ANN, RBF-ANN and TS-fuzzy models are

applied and compared using various model performance measuring criteria. During the

flood time sometimes data of all the gauging sites are not available due to various

reasons. Therefore, there may arise 3 cases during flood time for forecasting the discharge

at Mundali (M). The tentative model combinations formed out of these cases are:

Case-I, When data of Khairmal (K) and Barmul (B) are available, relationship between

KBM is developed.

KBM=> f(QM) = f(QK,QB) (5.21)

Case-II, When data of only Khairmal is available, one relation KM is developed and

another relationship is developed to compute Mundali flow Khairmal and Bamul

computed flows (Be) for prediction at Mundali (KBcM).

KM=> f(QM) = f(QK) (5.22)

KBcM => f(QM) = f{QK,QBC) (5.23)

Case-Ill, When data of only Barmul is available relationship BM is developed.

BM=> /(&,) = /(&) (5.24)

By using statistical approach following relationships are developed (Table 5.1).

Simultaneously, two ANN and Fuzzy approaches are also applied on peak floods of

above stations.

Table 5.1 Relationship between discharges using simple statistical method (peak to peak)

Combinations Statistical relationships R

Calibration Validation

KB QB = \A\%QK -206.78 0.902 0.899

BM QM =1.050,+382.19 0.915 0.912

KM QM= 1.134^+11.507 0.906 0.914

KBM 1M =O.8340fl+ 0.201£^ +184.03 0.930 0.915

KBcM QM=0393QK.+0M5QK+34.2 0.836 0.702
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Where, QM = peak discharge at Mundali (Forecasting Station), QB = peak discharge at

Barmul (Intermediate Station), QK = peak discharge at Khairmal (Base Station) and QBC =

computed peak discharge at Barmul.

The same input vectors are again put into MLFF-ANN architecture using

MATLAB codes. The trial has been taken with a 3-layered feed forward network.

Different combinations of feed forward network have been attempted by changing

transfer function, varying neurons from 1 to 7 and epochs from 50 to 300 at an increment

of 25. The model performances of different feed forward network are noted. In all cases

the hyperbolic tangent sigmoid transfer function 'tansig' are used in first layer, the linear

transfer function 'purelin' in second layer and Bayesian regularization backpropagation

'trainbr' remains the network training function. Both 'tansig' and 'purelin' are better

compatible with feed forward networks. The 'trainbr' training function updates the weight

and bias values according to Levenberg-Marquardt optimization and Bayesian

regularization process to produce a better response. The details of the optimal network

structures applied for different combinations are shown in Table 5.2.

In the same way the combinations with the peak values are also put in RBF

network. The parameter spread varied from 0.5-1.5 (Table 5.2). The RBF model almost

gave a standard result at around 100 epochs.

For TS models, subtractive cluster radii varied from 0.1 to 0.8 with an increment

of 0.05 in each trial. The fuzzy rules varied from 5 to 3 to get the optimal performance

(Table 5.2).

Table 5.2 Optimal model parameters (peak flood)

Between

stations

ANN Fuzzy

MLFF RBF TS

Structure Structure Spread Radius Rules

KB 1-2-1 1-2-1 1.0 0.6 3

KBM 2-3-1 2-3-1 1.2 0.35 5

KM 1-2-1 1-2-1 0.8 0.65 3

BM 1-2-1 1-2-1 1.0 0.65 3

KBcM 2-3-1 2-3-1 1.2 0.35 5

The optimal model parameters are derived after lot of hit and trials. The influence of

variation of neurons in the performance of individual MLFF models is tested. For

convenience, variation of RMSE and Efficiency with number of neurons is shown in Fig.
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5.7(a) to Fig. 5.8(d). It is clearly seen that the KM, BM combinations show minimum

value at 2 neurons whereas KBM and KBcM model uses 3 neurons to achieve minimum

RMSE. The same performance is also repeated in case of efficiency. Further, adding of

neurons reduces the performances instead of improving it. Thus the optimal model

structure for KM and BM is 1-2-1 and for KBM and KBcM, it is 2-3-1. The optimal

model parameters for RBF model is also finalized by varying the spread parameter. It was

varied from 0.5 to 1.5 with an increment of 0.1 to achieve the best performance. The

variation of RMSE and Efficiency with spread is shown in Fig. 5.9(a) to 5.10(d). The

optimal neuron structure as obtained from RBF is 1-2-1 for KM, BM and KB

combination and 2-3-1 for KBM and KBcM. By varying the cluster radius in case of TS

model the changes have been observed in model performances. The radius was varied

with an increment of 0.05 in each attempt. The number of rules gets varied with varying

cluster radius. The variations in RMSE and Efficiency with cluster radius are shown in

Fig. 5.11(a) to 5.12(d).
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The performance of all models for all four combinations like KBM, KM, BM and

KBcM are given in Table 5.3. The KBcM combination is formed with peak discharge at

Khairmal and computed value of Barmul (from KB combination) to derive the peak

discharge at Mundali. It is revealed from Table 5.3 that in all cases the TS model has

shown better performance as compared to RBF, MLP and LTF models. RBF has also

shown better performance as compared to MLP and LTF. The LTF model has shown

poor performance than other models in all cases. In combination wise the KBM

combination shows better performance than KM and BM. But it requires information of

two stations; in that case KM may be a better option as it saves very important warning

time with a little loss of performance. The performance of BM although better than KM,

for that hardly a little time (say 12 hours) will be left for taking relief initiatives. But the

KBcM combination utilizing the computed value at Barmul from KB combination would

have been a better option if its performance excels that of KM. But only an efficiency of

89.67% and RMSE of 2842.6 m3/s in validation is achieved in case of TS model. Results

of other models for this combination are still poorer than this. Thus, it can be concluded

that performance wise KBM combination is better but KM combination with a little

sacrifice in performance saves precious warning time.
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Table 5.3 Performance criteria of all models (peak flood)

TS RBF MLP LTF

Calibration Validation Calibration Validation Calibration Validation Calibration Validation

KBM R 0.9809 0.9782 0.9775 0.9684 0.9742 0.9674 0.93 0.915

RMSE(m3/s) 2054.5 2224.6 2091.3 2251.3 2128.1 2300.4 2399.3 2516.2

Eff. 0.942 0.9318 0.9351 0.9244 0.9185 0.9151 0.911 0.901

KM R 0.9712 0.9623 0.9702 0.9653 0.9705 0.9651 0.906 0.914

RMSE(m3/s) 2403.2 2486.4 2446.1 2539.5 2272.1 2582.6 3562.4 3043.1

Eff. 0.9333 0.9228 0.9212 0.9203 0.9119 0.9091 0.885 0.862

BM R 0.98 0.9792 0.9773 0.9654 0.9753 0.9652 0.915 0.912

RMSE(m3/s) 2123.9 2346.8 2141.6 2407.8 2192 2430.7 3156.78 3050.1

Eff. 0.9381 0.9275 0.9367 0.9233 0.9166 0.9131 0.901 0.87

KBcM R 0.9624 0.9538 0.9605 0.9451 0.951 0.9444 0.836 0.702

RMSE(m3/s) 2598.8 2842.6 2633.1 2926.6 2683.5 2981.9 3992.9 4651.75

Eff. 0.9182 0.8967 0.9119 0.8828 0.8808 0.8629 0.801 0.69

The scatter plot is made for the four combinations KBM, KM, BM and KBcM for all

models. It is seen that statistical models gave under value for almost all combinations but

the KBcM values are mostly erratic (Fig. 5.13(a)). Low and medium peaks gave

somewhat better values for all combination but the high peaks are very poorly modeled in

all combinations.

In the scatter plot of TS model (Fig. 5.13(b)) the KM, KBM models show good

results for medium and high peaks although the low peaks remain somewhat under-

predicted. The KBcM model unable to predict medium and low peaks closely and in most

cases it remains under predicted. Similarly results are also obtained from RBF and MLP

scatter plot performances. RBF model remains over predicted for high peaks and MLP

shows under prediction. However, result of TS scatter plot is more uniform than that of

RBF and MLP (Fig. 5.13(c) and 5.13(d)).
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5.7.1.1 Computation of Travel Times

For travel time the corresponding discharge and travel times between the stations are

trialed with the same calibration and testing data range applying both statistical, ANN and

fuzzy architectures. But none of the case has shown a better efficiency. So to decide

travel times, clustering methods are adopted for the discharge value at base station and its

corresponding travel time for the calibration dataset. At least 5 clusters are attempted

applying K-mean and Fuzzy c-mean method using the MATLAB code. The datasets are

divided into 5 clusters and their varying ranges are recorded. For each range the average

travel time has been calculated along with average peak values at Khairmal. Basing on

these average values a plot between peak discharge and corresponding travel times are

drawn. Similarly the travel times also plotted for Barmul to Mundali discharge (Fig. 5.14

(a)). While using peak flood forecasting this plot may be used as a reference for finding

the corresponding travel time of the forecasted peak.
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Fig. 5.14(a) Travel times against the peaks
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5.7.1.2 Discussion on Peak Flood Forecasting

Statistical, ANN and Fuzzy methods are applied for downstream Hirakud catchment

between stations Khairmal, Barmul and Mundali. As per the model performance criteria

TS-fuzzy method has shown a better performance than MLFF-ANN, RBF-ANN and LTF

methods (Table 5.3). Whereas,performance of RBF has a little improvement over MLFF.

The statistical method (LTF) has not performed satisfactorily.

For selection of best combination of stations, here 3 combinations directly (KM,

BM, KBM) and one derived combination (KBcM) was attempted. It was realized that the

KBM combination gives the better results followed by BM and KM. The performance of

derived combination KBcM has been observed as poorer to KM and therefore it is not

recommended. The performance wise although KBM is better but simultaneously KM

combination can also be recommended as it saves precious lead time. The RMSE and

efficiency of TS model for KBM combination is 2224.6, 0.9318 and that of KM is

2486.4, 0.9228 in validation. The average travel time of flood from Khairmal to Barmul is

about 12 hours. So, for a high peak at least 12 hour is saved if KM combination is used

instead of KBM. The BM combination may be used if KM information is not available or

may be used as a cross check. Table 5.4 provides the best models for forecasting the

floods at Mundali. For a quick reference of predicted peaks (on the result of TS method)

at Mundali with inputs of observed peaks at either Khairmal or Barmul is shown in Fig.

5.14(b). On the basis of the availability of the data the users can directly select a suitable

model with optimal parameter to ascertain the defined efficiency.

Table 5.4 Best Flood forecasting models at Mundali gauging site

Model

combination

Data available Forecast at Mundali using TS Model

Khairmal Barmul Efficiency

Case-I Yes Yes KBM=> f(QM) = f(QK,QB) 0.9318

Case-II Yes No KM=> f(QM) = f(QK)

KBcM=> f(QM) = f(QK,QBC)

0.9228

0.8967

Case-Ill No Yes BM=> f(QM) = f(QB) 0.9275
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Fig. 5.14(b) Forecasted discharge at Mundali against the Observed peaks of either Khairmal

or Barmul (TS method)

5.7.2 FORECASTING BASED ON 3-HOURLY DISCHARGES

The 3-hourly discharges as collected from base station at Khairmal, intermediate station

at Barmul and Forecasting station at Mundali for the period of 1996-2010 are used for the

forecasting. The statistical method based on linear transfer function (LTF), ANN methods

based on MLFF and RBF network and fuzzy method based on Takagi Sugeno (TS)

approach have been applied in this study. Different models with separate combination of

inputs were selected and intercompared.

5.7.2.1 Model development

One of the most important steps in establishment of model is the determination of

significant input vectors. The statistical parameters such as auto correlation function

(ACF), partial auto correlation function (PACF) and cross correlation function (CCF) are

used for this purpose. The pictorial representation of cross correlation between Khairmal

with Mundali and Barmul with Mundali is given in Fig. 5.15(a) and 5.15(b), from where

the maximum lags are derived. The ACF series of Khairmal and Barmul G&D stations

reveals that the individual stages are autoregressive (Fig. 5.16(a) and 5.16(b)). The

respective PACF values of the flow with 95% confidence level gives potential antecedent

flow values that have influence on the flow value at the current period. When comparing

with the flow data of forecasting station (Mundali), the base station Khairmal show a

higher CCF at Lag 9 and station Barmul at Lag 5 (Fig.5.17). In all cases one lag is

equivalent to 3 hours as frequency of the discharge data is 3 hours.
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From PACF figures (Fig. 5.16(a) and 5.16(b)) it is observed that a lag upto 9 may be

included in Khairmal and upto 5 lags for Barmul. Therefore, on the basis of PACF and

CCF of the data series, the input vectors have been selected for flood forecasting models

in the present study.

t

Lags
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Fig. 5.16(a) Auto-correlation and partial auto-correlation of Khairmal discharge
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Fig. 5.17 Cross correlation of discharge at Mundali with discharge at Khairmal and Barmul

The formation of the possible models is decided on the basis of best lag instead of starting

trial with QK(I_X) and so on. Khairmal discharge had shown a good correlation with

discharge of Mundali at 9th lag. So the first model combination is kept

asQuu) =AQkv-9)))- Keeping the 9th lag at center, other inputs like QK(l_W),QK^%) are

added to first combination and subsequent combinations are formed gradually. In this

way 9 combinations are formed taking QKU_U) toQK{l_5) using the information of

Khairmal only. Similarly, using the flow information of Barmul only and keeping the

maximum lag of Barmul QB,,_S) at center five more combinations are formed and trialed.
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The combine model combination is planned to be formed by joining both the best

combinations with Khairmal and Barmul data respectively. On the basis of various input

vectors a number of combinations have been formed as shown in Table 5.5 to be put on

different models for testing their performances.

Table 5.5 Formation of forecasting models with different input vector combinations

Case I: Input vector combinations with flow data of Khairmal only

KM-1 »A/(.) —/vt5|T(»-9)J

KM-2 iiid(t) = J V*y^(,-9)'̂ s:(.-8))

KM-3 *lM(t) ~ J \^KU-W)'^K(t-9)'iCK(t-S))

KM-4 iiM(t) = J y^K(t-\0)^K(t-9)->^K(t-&)->QK(t-l))

KM-5 >CM(t) ~ J \^K(t-ll)'^K(t-W)'iJK(t-9)-'iiK(t-S)'i^K^-7))

KM-6 X?M(t) ~ J \^K(t-l\)'i^K(t-\0)'^K(t-9)^K(l-8)'yK(l-7)'iiK(t-6))

KM-7 ^M(t) ~ J y^Kd-Xl) >̂ K(t-\ 1)' «JT(/-10)' iiAT(/-9)' KJC(/-8)' &K(t-7)' Qk{1-6) )

KM-8 i^M(I) = J^K(l-U)^K(t-U)'iJK(I-W)>yK(l-9)'iiK(l-8)'i2K(t-7)'CiK(I-6)'8K(t-5))

KM-9 i£M(t) ~ J V^(.-B) >ilK(t-n)' &K(t-\ 1)' Qk(i~\0) >Qk(1-9) ' Qk(1-%) ' Qk(I-7) ' QtC{t-6)' Qk(1-5) )

Case II: Input vector combinations with flow data of Barmul only

BM-1 xlM(t) ~ J\iiB(t-5))

BM-2 ^M(t) = J \icB(t-5)^B{t-A))

BM-3 ^M(t) ~ J \*iB(t-6)> 2iB(.-5)> iiz3(.-4))

BM-4 »M{I) ~ J VtiS(.-6)» izB(t-5)' ^B(I-A)' iiB(.-3))

BM-5 ziM(t) ~ J \icB(:-7)' X?B{t-6) ' iiB(.-5)' Hb(I-A) ' 8b(1-3) )

Case III: Input vector combinations with flow data of Khairmal and Barmul combined

KBM Combination of best model of Khairmal and Barmul

Forecasting at Barmul using Khairmal information and then using this computed

discharge for forecasting at Mundali has given a poor performance than the Khairmal-

Mundali combination. The similar results have also been found while forecasting the peak

discharge at Mundali using computed discharge of Barmul. So, to avoid complexity the

combination (KBcM) is not considered in further study.
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5.7.2.2 LTF model

Different linear transfer functions models have been developed using the various

combinations of three different cases given in Table 5.5. In Case-I, the model efficiency

varies from 0.8825 to 0.8939 during calibration and from 0.8531 to 0.8717 during

validation (Table 5.6). The root mean square value varies from 1700.20 tol884.36 m /s

during calibration and from 1939.10 to 2178.14m3/s during validation. Similarly, the

coefficient of correlation varies from 0.9235 to 0.9331 during calibration and 0.8905 to

0.9081 during validation. In Case-II, the model efficiency varies from 0.8935 to 0.9010

during calibration and from 0.868 to 0.8791 during validation. The root mean square

value varies from 1683.00 to 1761.00m3/s during calibration and from 1906.00 to

1959.00m3/s during validation. Similarly, thecoefficient of correlation varies from 0.9240

to 0.9292 during calibration and 0.8820 to 0.8891 during validation.

5.7.2.3 ANN model

The flood forecasting models have also been developed through Multi-layered feed

forward and RBF networks as per the input vectors of Table 5.5.

(A) MLP Model

The feed forward hierarchical architecture is the most commonly used neural network

structure (Maier and Dandy, 2000). The inputs are tried with 1 to 12 neurons in hidden

layer. The epochs are taken from 50 to 500 with 25 increments in each iteration. The

'trainbr' function updates the weight and bias values as per Levenberg-Marquardt

optimization. Other parameters are kept same as for discrete values. The performance

criteria of each network remains fixed as R, RMSE and Efficiency.

The MLP models developed using nine different input vectors in Case-I indicate

that the model efficiency varies from 0.9084 to 0.9217 during calibration and from 0.8998

to 0.9116 during validation (Table 5.6). The root mean square value varies from 1438.70

to 1376.80 m3/s during calibration and from 1506.30 to 1721.10 m3/s during validation.

Similarly, the coefficient of correlation varies from 0.9518 to 0.9629 during calibration

and 0.9325 to 0.9439 during validation. In Case-II, the MLP model efficiency varies from

0.9266 to 0.9316 during calibration and from 0.9094 to 0.9147 during validation. The root

mean square value varies from 1358.50 to 1416.10 m3/s during calibration and from

1486.10 to 1566.20 m3/s during validation. Similarly, the coefficient of correlation varies

from 0.9563 to 0.9671 during calibration and 0.9503 to 0.9611 during validation.

(B) RBF Model

Once the input vector is decided, the OLS algorithm optimizes the RBF network

architecture; however, for an MLP, an arbitrarily large amount of network with varying
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hidden units needs to be constructed and a best-fit network is decided based on

performance criteria. The radial basis network is designed considering the goal and

spread. Since the hidden neurons of the RBF networks are fixed by the OLS algorithm,

the usual trial-and-error procedure for identifying the appropriate network structure is

eliminated. In this study, the goal varied from 0.5 to 1.2 and spread varied from 1.0 to 2.2.

Very small incremental change has been initiated in each trial. Very minute change has

been observed by changing the goals but a significant change has been visualized by

varying the spread of the RBF architecture.

The RBF model efficiency for the 9 different models of Case-I varies from

0.9151 to 0.9262 during calibration and from 0.9010 to 0.9139 during validation (Table

5.6). The root mean square value varies from 1369.30 to 1416.60 m3/s during calibration

and from 1496.30 to 1687.80 m3/s during validation. Similarly, the coefficient of

correlation varies from 0.9547 to 0.9630 during calibration and 0.9350 to 0.9495 during

validation. In Case-II, the RBF model efficiency varies from 0.9186 to 0.9320 during

calibration and from 0.9098 to 0.9169 during validation. The root mean square value

varies from 1357.20 to 1437.20 m3/s during calibration and from 1473.00 to 1552.5.00

m3/s during validation. Similarly, the coefficient of correlation varies from 0.9578 to

0.9687 during calibration and 0.9574 to 0.9610 during validation.

5.7.2.4 Fuzzy (TS) model

In this study, the fuzzy membership functions and rules have been developed in such a

way that the RMSE and other performance criteria between the observed and the

predicted set of values are minimized. The adjustment of the membership functions and

rules is accomplished by using the subtractive clustering analysis. The fuzzy logic based

flood forecasting model has been developed in two steps:

(i) In this study the subtractive cluster radius varies from 0.1 to 0.7 with an

increment of 0.05 in each trial. For each set of inputs different number of

fuzzy rules are attempted depending on the subtractive radius fixed, and

(ii) optimization based on linear least square estimation

In Case-I, The TS model efficiency varies from 0.9214 to 0.9347 during calibration and

from 0.9086 to 0.9230 during validation. The root mean square value varies from 1334.90

to 1405.20 m3/s during calibration and from 1402.50 to 1560.10m3/s during validation

(Table 5.6). Similarly, the coefficient of correlation varies from 0.9682 to 0.9769 during

calibration and 0.9567 to 0.9645 during validation. In Case-II, the TS model efficiency

varies from 0.9334 to 0.9366 during calibration and from 0.9230 to 0.9283 during
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validation. The root mean square value varies from 1319.00 to 1407.00m3/s during

calibration and from 1371.00 to 1429.10m3/s during validation. Similarly, the coefficient

of correlation varies from 0.9586 to 0.9685 during calibration and 0.9621 to 0.9660

during validation.

Table 5.6 Performance of models with either Khairmal or Barmul flows only

Forecasting at Mundali with information of Khairmal

Model KM-1 iSM(r) J\iiK(l-9))

Performanc

measures

e MLFF RBF TS LTF

Calibration Validation Calibration Validation Calibration Validation Calibration Validation

R 0.9518 0.9325 0.9547 0.935 0.9682 0.9567 0.9235 0.8905

RMSE 1438.7 1721.1 1416.6 1687.8 1405.2 1560.1 1884.36 2178.14

Efficiency 0.9084 0.8998 0.9151 0.901 0.9214 0.9086 0.8825 0.8531

KM-2 *iM(t) ~ J y\2K(t-9)>QK(t-%)))
R 0.956 0.936 0.9572 0.9391 0.9716 0.9602 0.9270 0.8930

RMSE 1482.9 1680.8 1471.8 1629.6 1472.3 1518.9 1837.57 2104.17

Efficiency 0.9112 0.9021 0.9169 0.9038 0.9241 0.912 0.8866 0.8564

KM-3 ^M(I) ~ J l«it(l-10)' *£K(t-9)' z?K(t-8))
R 0.9582 0.939 0.9591 0.9432 0.9729 0.9606 0.9298 0.8945

RMSE 1454.8 1647.3 1442.5 1595.6 1441 1509.1 1798.04 2052.32

Efficiency 0.9129 0.9042 0.9186 0.9052 0.9276 0.9139 0.8891 0.8594

KM-4 »M(t) ~ J ^K(l-lO)^yK(t-9)'^CK(t-S)'^K(t-7))
R 0.9602 0.9399 0.961 0.944 0.9746 0.9634 0.9309 0.8958

RMSE 1428.7 1582.4 1420 1567.6 1398.6 1448.5 1766.82 2012.97

Efficiency 0.9148 0.9061 0.9212 0.9081 0.9309 0.9161 0.8903 0.8615

KM-5 SW(/) ~~ J yJ-K(t-\ 1)' icK(l-W)' tJAT(/-9)' *4f(l-8) JK*</-7))
R 0.961 0.9408 0.9617 0.9447 0.9756 0.9637 0.9316 0.9068

RMSE 1411.9 1556.5 1405.6 1532.2 1374.9 1441.2 1737.9 1974.0

Efficiency 0.9168 0.9085 0.9227 0.9096 0.9317 0.9197 0.8918 0.8638

KM-6 *£m(i) =J \&K(i-l 1)'̂ K(l-lO)^K(t-9)'feie(/-8)»QlC{t-l)iQK{t-i))
R 0.9621 0.942 0.9624 0.9473 0.9765 0.9642 0.9322 0.9075

RMSE 1394.2 1535.6 1371 1503.7 1351.5 1406.9 1716.8 1952.0

Efficiency 0.9204 0.91 0.9249 0.9109 0.9335 0.9225 0.8931 0.8685

KM-7 \£l4(l) - J U4r(f-12)' )£K{t-\ 1)' &K(t-W)' Qk(I-9) ' QlC(t-S)' Qk(I-7) •> Qk(1-6) )
R 0.9626 0.9435 0.9628 0.9493 0.9768 0.9644 0.9329 0.9080

RMSE 1377.4 1507.1 1370.1 1497 1336.4 1403.4 1702.9 1941

Efficiency 0.9215 0.9114 0.9260 0.9136 0.9346 0.9228 0.8936 0.8716

KM-8 «4f(0 = J *&£K{t-U)' *4t(f-l 1)' »JT(M0)' iJA:(/-9)' Qk(i-&)' Qk{i-7) ' Qk{1-6) ' 0f(/-5))
R 0.9628 0.9438 0.9629 0.9494 0.9769 0.9645 0.9330 0.9081

RMSE 1377.1 1506.8 1369.8 1496.7 1335.8 1403.2 1701.0 1940.2

Efficiency 0.9216 0.9114 0.9261 0.9138 0.9347 0.9229 0.8938 0.8717

KM-9 i4r(0 = / (t6r(/-i3)' Qic{t-n) >tj/r(r-i i) >Ci:(/-io)» Qk(i-9) >Qk(i-s) >Qk{i-i) >6r(/-6)»fijr(»-j))
R. 0.9629 0.9439 0.9630 0.9495 0.9769 0.9645 0.9331 0.9081

RMSE 1376.8 1506.3 1369.3 1496.3 1334.9 1402.5 1700.2 1939.1
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+

Efficiency 0.9217 0.9116 0.9262 0.9139 0.9347 0.9230 0.8939 0.8717

Forecasting at Mundali with information of Barmul and Khairmal
BM-1 \£M(t) J \Hb(i-5))
R 0.9563 0.9503 0.9578 0.9574 0.9586 0.9621 0.9240 0.8820

RMSE 1416.8 1566.2 1437.2 1552.5 1407 1429.1 1761 1959

Efficiency 0.9266 0.9094 0.9186 0.9098 0.9334 0.9230 0.8935 0.8680

BM-2 \£M(t) = J \izB(l-5)>*iB(t-4))
R 0.9596 0.9535 0.964 0.9607 0.9679 0.9651 0.9288 0.8870

RMSE 1384.8 1525.6 1379.7 1495.1 1359.9 1399.5 1704 1916

Efficiency 0.9293 0.9125 0.925 0.9136 0.9359 0.9274 0.8999 0.8736

BM-3 iCM(l) = J vy»(«-6)>i&S(/-5)»lsB(»-4)J
R 0.9665 0.9606 0.9686 0.9609 0.9681 0.9655 0.9291 0.8890

RMSE 1362.4 1486.5 1360.2 1473.5 1321.3 1371.6 1686.0 1909.0

Efficiency 0.9314 0.9145 0.9320 0.9167 0.9364 0.9283 0.9010 0.8790

BM-4 \CM(t) ~ J \izB(l-6)>z£B(t-5)>iCB(l-4)->i£B(t-3))
R 0.9667 0.9609 0.9687 0.9610 0.9684 0.9657 0.9292 0.8890

RMSE 1360.2 1486.3 1358.1 1473.2 1320.3 1371.3 1684.0 1907.0

Efficiency 0.9315 0.9146 0.9320 0.9168 0.9365 0.9282 0.9010 0.8791

BM-5 xZM(t) ~ J ViiB(r-7)'iii;(^6)'iiB((-5)'V?B((-4)'iiB(/-3)^

R 0.9671 0.9611 0.9687 0.9610 0.9685 0.9660 0.9292 0.8891

RMSE 1358.5 1486.1 1357.2 1473.0 1319.0 1371.0 1683.0 1906.0

Efficiency 0.9316 0.9147 0.9320 0.9168 0.9366 0.9283 0.9010 0.8791

A combine model is also considered by combining any of the KM model (KM-1 to KM-

9) with that of any of BM model (BM-1 to BM-5). It is seen that the combination KM-7

and BM-3 has given a improved performance than other combinations. So another input

vector set KBM is formed which is the combination of KM-7 and BM-3. The

performance of this KBM is also better than either of KM-7 and BM-3. The performance

of KBM is kept as the base performance to find the parsimony of other input

combinations which is discussed in next section.

5.7.2.5 Comparison of different models during calibration and validation

The performance of each combination as per Table 5.5 is recorded in Table 5.6. In

general, a R value greater than 0.9 (R>0.948) indicates a very satisfactory model

performance, while a R value in the range 0.8-0.9 (R=0.948 to 0.894) signifies a good

performance and values less than 0.8 (R<0.894) indicate an unsatisfactory model

performance (Coulibaly and Baldwin, 2005).

As far as these performances are concerned, it is seen that for Case-I, under MLP

all models show the very satisfactory performance as the R values are greater than 0.948

in calibration where as in validation none of the values attain this range. In RBF all R

values are above 0.948 in calibration but in validation the satisfactory result comes after

91



KM-7. All TS model values in calibration and validation show R value greater than

0.948. In LTF model the R value remain in satisfactory (R=0.894 to 0.948) range in all

cases in calibration and in validation it begins from KM-3.

In Case-II, in all cases of MLP, RBF and TS the performance of R is satisfactory

both in calibration and validation range. But in LTF the range remains in satisfactory

level in calibration and validation.

In all Case I and II, RMSE value is around 3 to 5% of the maximum peak

occurred in 2008 (44742m3/s). Efficiency achieved in all cases is above 0.9 other than

LTF. Therefore, in general all the models are providing the flood forecast in a very close

range and can be considered independently depending on the availability of the input data

and its suitability for use.

This becomes possible due to the input selection based on maximum lags as in

case of starting with Qk^1) an efficiency of 0.81 and 0.78 is only achieved in calibration

and validation.

In all cases the TS model extracts a better performance than MLFF, RBF or LTF

models. The LTF models provide an inferior performance in comparison to others. The

KM-9 model shows a high performance in all cases of MLFF, RBF, TS and LTF

approaches when only Khairmal information is available. The performance of KM

models starts increasing with addition of one more flow value on each attempt. The

additional flow values are taken alternatively from both sides of lag 9 i.e (t-9). After

reaching at KM-7 the performance increase becomes extremely slow. Although there is a

very negligible increase in the performance, for that one more extra parameter gets added

to the model combination. This addition of extra parameter might hamper the model

parsimony. Thus all the models are tested for model parsimony in order to find the

appropriateness of number of input vectors for producing the best performance.

Proceeding in the same way for Barmul the BM-5 model performed best in all networks

when only Barmul information is available. However, on the basis of AIC and BIC values

it is confirmed that the model KM-7 and BM-3 and their combination model KBM show

the parsimonious model. This KBM gives the most efficient performance as it covers all

information of upstream and middle part of the river segment as depicted from Table 5.7.
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Table 5.7 Performance of combine model

Forecasting at Mundali with KM-7 and BM-3

Performance

measures

MLFF RBF TS LTF
Calibration Validation Calibration Validation Calibration Validation Calibration Validation

^CM(t) ~ J \X?K(t-l2)' y£K(t- U)> \CK(t-W)' x£k(i-9) ' zZK{t-S)' xiK(t-7) ' *JAT(r-6) ' d\cB(t-6)' *dg(t -5)'tJB(r-4))

^ 0.955 0.952 0.963 0.957 0.9779 0.976 0.938 0.905

RMSE 1337.5 1363.3 1303.8 1357.3 1270 1283.1 1655.5 1891.5

Efficiency 0.9348 0.9319 0.9381 0.9351 0.9441 0.9436 0.905 0.8806

Combination of best model of Khairmal (KM-7) and Barmul (BM-3) provides a best

combination model (Case-Ill) for forecasting the flood at Mundali. The model

performance statistics of this combined model is presented in Table 5.7. This combined

model has been developed using LTF, MLP, RBF and TS fuzzy inference system. The

LTF model efficiency is obtained as 0.905 during calibration and 0.8806 during

validation (Table 5.7). The root mean square value is obtained as 1655.5 m /s during

calibration and 1891.50 m3/s during validation. Similarly, the coefficient of correlation is

observed as 0.938 during calibration and 0.905 during validation.

In case of combined MLP model, the NS efficiency is obtained as 0.9348 during

calibration and 0.9319 during validation. The root mean square value is obtained as

1337.5 m3/s during calibration and 1363.30 m3/s during validation. Similarly, the

coefficient of correlation is observed as 0.955 during calibration and 0.952 during

validation. The RBF model efficiency is obtained as 0.9381 during calibration and 0.9351

during validation. The root mean square value is obtained as 1303.8 m /s during

calibration and 1357.30 m3/s during validation. Similarly, the coefficient of correlation is

observed as 0.963 during calibration and 0.957 during validation. Similarly, the TS model

efficiency is obtained as 0.9441 during calibration and 0.9436 during validation. The root

mean square value is obtained as 1270.0 m /s during calibration and 1283.10 m /s during

validation. Similarly, the coefficient of correlation is observed as 0.9779 during

calibration and 0.976 during validation.

In Case-Ill, the performance of MLP, RBF and TS is better than LTF. However

the performance of LTF is also satisfactory. Also the RMSE values vary within 3 to 4%

of the maximum peak value of 2008.

5.7.2.6 Model parsimony

The adequacy of inputs is tested by calculating the AIC and BIC statistics of the used 14

model combinations. The calculations are made as per the eq". 5.18 and 5.19, and

recorded in Table 5.8. Generally, models having their AIC within 1 to 2 times of the

minimum have substantial support and should receive consideration in making inferences.
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AIC value within 4 to 7 times of the minimum have considerably less support, while

models with their AIC > 10 times above the minimum have either essentially no support

and might be omitted from further consideration or at least fail to explain some

substantial structure variation in the data. It is revealed from the analysis that the KM-7

model which has given a better performance also has given very less AIC and BIC values

in comparison to other models with only Khairmal flow data and similarly BM-3 model

has minimum AIC and BIC value under its category. In all cases TS model provides the

lowest AIC and BIC values.

Table 5.8 AIC and BIC values (normalised) of all models

Cases

Model

AIC BIC

MLFF RBF TS MLFF RBF TS

Only Khairmal

discharge

KM-1 1.041 1.038 1.027 1.041 1.038 1.027

KM-2 1.037 1.033 1.023 1.038 1.033 1.024

KM-3 1.035 1.030 1.022 1.035 1.031 1.023

KM-4 1.029 1.028 1.017 1.030 1.028 1.017

KM-5 1.027 1.025 1.016 1.028 1.025 1.017

KM-6 1.025 1.022 1.013 1.026 1.023 1.014

KM-7 1.018 1.017 1.01 1.021 1.020 1.012

KM-8 1.022 1.021 1.012 1.024 1.023 1.014

KM-9 1.022 1.021 1.012 1.024 1.023 1.014

Only Barmul

discharge

BM-1 1.027 1.026 1.015 1.028 1.026 1.015

BM-2 1.024 1.022 1.012 1.024 1.022 1.012

BM-3 1.016 1.015 1.008 1.021 1.019 1.009

BM-4 1.020 1.019 1.009 1.021 1.020 1.010

BM-5 1.020 1.019 1.009 1.021 1.020 1.010

Khairma] and

Barmul discharge KBM 1.008 1.008 1.000 1.010 1.009 1.001

5.7.2.7 Uncertainty in model output

The above said models are further checked for predictive uncertainty using 'noise to

signal ratio' statistics. The statistics are presented in calibration and validation range in

Fig. 5.18. It is revealed that in all cases the statistics are well within 1. As per LTF

analysis the difference between calibration and validation is wider, which shows the data

used are noisy and LTF is unable to handle it very perfectly. The same data bears a good

performance in TS. The differences in all KM models are more than BM models. The

KBM combination shows a very less difference between calibration and validation. The

KM-7, BM-3 and KBM combinations under TS analysis shows very less difference

between calibration and validation. Thus these model combinations show TS models can

handle the noisy data better than MLP and RBF models.
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5.7.2.8 Optimal model parameters for best model

The applied model combinations deliver their best performance after the optimal model

parameters are fixed. As discussed earlier the performances of the ANN models are tested for

addition of neurons. Besides other parameters, neurons are varied in this study from 1 to 12. The

KBM combination gets stabilized at 7 neurons, KM-7 at 5 and BM-3 at 3 neurons. The optimal

network structure for KBM is 10-7-1, for KM-7 is 7-5-1 and for BM-3 is 5-3-1. The RBF model

is tested with variation of goal from 0.5 to 1.2 and spread from 1 to 2.2. Very minute changes

have been observed with changes in goal whereas by changing spread significant variations are

felt in model performances. So variation of Efficiency and RMSE with respect to spread is

shown in figure. In TS model the cluster radius is kept varied from 0.2 to 0.8 to achieve the

optimal model radius. It is seen that the KM-7 attains maximum performance at radius 0.4, BM-3

at 0.5 and KBM at 0.35, and after that no increase in performance occurs and the plot remains

straight throughout. Optimal parameters used for the best models like KM-7, BM-3 and KBM

are shown in (Fig. 5.19(a) to 5.21(b)).
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5.7.2.9 Comparison of peak floods forecasted by different models

The performances of these models are further checked with respect to their behavior during peak

floods as well as total volume accumulated. For this 22 peak flood values were selected from the

available 3 hourly discharge data from year 1996 to 2001 of Mundali G&D site. The forecasted

discharges from 3 selected models (KM-7, BM-3 and KBM) are compared with the observed

discharge and presented in Table 5.9, 5.10 and 5.11. It is seen that the performance of KBM is

better than KM-7 and BM-3. As KM-7 is based on the information of 200 km. away and

comparatively less catchment information is incorporated in it, so the results are bit inferior. The

BM-3 model performances better than the KM-7 in peak flood prediction as in the case of BM-3

the forecasting is made basing on further downstream information. In KBM all information of
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upstream and intermediate stations are considered, so the result remains better than other

combinations. In all cases, TS models show better result than ANN, RBF and LTF models. The

results of these models are also compared with the time lag method which is presently used by

DOWR, Orissa for flood forecasting. As the travel time of peaks considered by DOWR is 12-16

hours between Khairmal to Barmul and Barmul to Mundali all the predicted values are compared

with the 12 hour and 15 hour peaks (as per DOWR norms) for models KM-7 and BM-3 and 24

and 30 hour peaks for model KBM. Performance of the model KM-7 indicates that the forecasted

peak difference (in %) varies from -16.7 to 6.6, -11.0 to 5.3, -12.5 to 6.7, -43.2 to 15.6, -40.3 to

11.6 and -48.7 to 18.8 for MLP, RBF, TS, LTF, DOWR-24 and DOWR-30, respectively.

Performance of the model BM-3 indicates that the forecasted peak difference (in %)

varies from 10.4 to -7.0, 9.2 to -8.6, 11.3 to -5.4, 12.4 to -43.1, 17.3 to -20.3 and 16.8 to -22.0

for MLP, RBF, TS, LTF, DOWR-12 and DOWR-15, respectively. Similarly, performance of the

model KBM model indicates that the forecasted peak difference (in %) varies from 9.9 to 7.6,

9.5 to -8.6, 5.0 to -5.6, 9 to -66.5, 25.8 to -53.4,16.8 to -27.6,11.6 to -40.3 and 18.8 to -48.7 for

MLP, RBF, TS, LTF, DOWR-12, DOWR-15, DOWR-24 and DOWR-30, respectively.

DOWR method (in BM-3 DOWR-12 ) is able to model only one peak of 2001 with less

than 1% of difference between observed and computed discharge (flood peak of 2001 are next to

2008). However, other DOWR models are not able to forecast the 2001 peak flood more

accurately. The 2001 peaks are comparatively better modeled by TS method in all cases. The

2008 peaks are also better modeled by TS method (in all) than DOWR method (in all). ANN and

RBF methods also show much better result than DOWR method in all the three cases i.e. KM-7,

BM-3 and KBM. However, the LTF method shows a comparatively very inferior result. Further,

the TS models found very capable of modeling high or medium peaks rather than low peaks. The

commonly used criterion for evaluating river flow forecasts in India considers ±20% variation

between predicted and observed discharge values as reasonably accurate (CWC, 1989)
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Table 5.9 Year wise peak differences between observed and modeled outputs for model KM-7

Year

Observed

discharge
(m3/s)

Computed discharge (m3/s) Forecasted peak difference in %
DOWR(From
Khairmal)

DOWR(From
Khairmall

MLP RBF TS 111 24 hr. 30 hr. MLP RBF IS LTF 24 hr. 30 hr.
1996 12514.4 12966 12252 12622 12239.3 12678.4 12678.4 3.6 -2.1 0.9 -2.2 1.3 1.3

1997 24279 24978 24598 24969 20452.3 18961 13867 2.9 1.3 2.8 -15.8 -21.9 -42.9

1998 23229.9 24590 24461 24273 20582.9 21225 22357 5.9 5.3 4.5 -11.4 -8.6 -3.8

1999 18043.7 18827 18587 18580 19520.8 16293.4 17376.2 4.3 3.0 3.0 8.2 -9.7 -3.7

2000 4717.4 3931.1 4222 4127 3809.9 5263.8 5603.4 -16.7 -10.5 -12.5 -19.2 11.6 18.8

2001

39154 37906 36493 38582 36051.4 35941 34809 -3.2 -6.8 -1.5 -7.9 -8.2 -11.1

39869 37214 38543 38231 34005.9 36119.3 34809 -6.7 -3.3 -4.1 -14.7 -9.4 -12.7

39630.6 37320 37827 38504 32487.5 32658.2 35941 -5.8 -4.6 -2.8 -18.0 -17.6 -9.3

2002 16229.3 17305 17024 16985 18760.8 14036.8 14716 6.6 4.9 4.7 15.6 -13.5 -9.3

2003 38200.6 37395 36542 38276 35285.9 34809 35714.6 -2.1 -4.3 0.2 -7.6 -8.9 -6.5

2004 21681.7 22818 22774 22184 18804.9 19866.6 19187.4 5.2 5.0 2.3 -13.3 -8.4 -11.5

2005 25362.4 23632 24082 25067 19461.5 19866.6 19187.4 -6.8 -5.4 3.2 -23.5 -28.2 -31.1

2006 36318.5 33312 33912 36610 24296.4 32912.9 31130 -8.3 -6.6 0.8 -33.1 -9.4 -14.3

2007 20683.8 18070 18411 18725 14919.9 12338.8 10612.5 -12.6 -11.0 -9.5 -27.9 -40.3 -48.7

2008

44742.3 41352 41418 47754 34330.21 41035 39620 -7.6 -7.4 6.7 -23.3 -8.3 -11.4

44742.3 41826 41466 46870 37975.96 41035 39620 -6.5 -7.3 4.8 -15.1 -8.3 -11.4

44742.3 41795 40553 46101 43117.95 40695.4 41035 -6.6 -9.4 3.0 -3.6 -9.0 -8.3

44487.6 40977 40500 43945 45196.53 40695.4 41035 -7.9 -9.7 -1.3 1.6 -8.4 -8.5

44232.9 40770 40217 43081 46172.37 39337.0 40695.4 -7.8 -9.1 -2.6 4.4 -11.1 -8.0

44006.5 40216 40222 42853 47702.72 37978.6 40695.4 -8.6 -8.6 -2.6 8.4 -13.7 -7.5

2009 24253.1 22017 22273 23232 16274.7 20998.6 17829 -9.2 -8.2 -4.2 -32.9 -13.4 -26.5

2010 19527.0 17414 17975 18245 11092.3 14716.0 13867 -10.8 -7.9 -6.6 -43.2 -24.6 -29.0
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Table 5.10 Year wise peak differences between observed and modeled outputs for model BM-3

Year

Observed

discharge
(m3/s)

Computed discharge (m3/s) Forecasted peak difference in %

DOWR

(From Barmul)

DOWR

(From Barmul)

MLP RBF TS LIT 12 hr. 15 hr. MLP RBF IS LTF 12 hr. 15 hr.

1996 12514.4 13817 13660 12275 13326.32 12819.9 13980.2 10.4 9.2 -1.9 6.5 2.4 11.7

1997 24279 25995 25163 24777 27300.1 28469.8 28356.6 7.1 3.6 2.1 12.4 17.3 16.8

1998 23229.9 25146 24305 24082 23306.3 20683.6 18734.6 8.2 4.6 3.7 0.3 -11.0 -19.4

1999 18043.7 19275 19095 19089 18769.7 18456.8 18678 6.8 5.8 5.8 4.0 2.3 3.5

2000 4717.4 4982.8 5001.2 5249.5 5138.96 5306.3 5377 5.6 6.0 11.3 8.9 12.5 14.0

2001

39154 38266 38490 38795 42138.38 41671.8 42223.6 -2.3 -1.7 -0.9 7.6 6.4 7.8

39869 41858 39013 40154 40986.6 40242.6 41671.8 5.0 -2.1 0.7 2.8 0.9 4.5

39630.6 40849 38453 40802 40652.95 38884.2 40242.6 3.1 -3.0 3.0 2.6 -1.9 1.5

2002 16229.3 15096 14930 15427 15170.4 14984.4 15175.9 -7.0 -8.6 -5.4 -6.9 -8.2 -7.0

2003 38200.6 36483 36960 37141 35641.5 34490.6 34490.6 -4.5 -3.2 -2.8 -6.7 -9.7 -9.7

2004 21681.7 20912 20635 21001 17142.6 21324.1 21401.9 -3.5 -4.8 -3.1 -20.9 -1.6 -1.3

2005 25362.4 23817 24276 24517 16448 23559.8 23347.5 -6.1 -4.3 -3.3 -35.1 -7.1 -7.9

2006 36318.5 34519 34678 35440 27831.5 34313.8 33252.5 -5.0 -4.5 -2.4 -23.4 -5.5 -8.4

2007 20683.8 20065.9 19934.5 20967 14963 17036.6 17036.6 -3.0 -3.6 1.4 -27.7 -17.6 -17.6

2008

44742.3 42352 42754 43818 34330.21 36960 35960 -5.3 -4.4 -2.1 -23.3 -17.4 -19.6

44742.3 42326 42870 43366 31975.96 39960.0 36960.0 -5.4 -4.2 -3.1 -28.5 -10.7 -17.4

44742.3 42995 43301 45853 33117.95 38960 39960 -3.9 -3.2 2.5 -26.0 -12.9 -10.7

44487.6 42277 42945 43200 35196.53 40960 38960 -5.0 -3.5 -2.9 -20.9 -7.9 -12.4

44232.9 41970 42081 43117 36172.37 41960 40960 -5.1 -4.9 -2.5 -18.2 -5.1 -7.4

44006.5 41116 42153 43022 37702.72 38592.1 41960 -6.6 -4.2 -2.2 -14.3 -12.3 -4.7

2009 24253.1 22910 23699 24627 13796.3 23687.1 23036.2 -5.5 -2.3 1.5 -43.1 -2.3 -5.0

2010 19527.0 21067 20871 20603 12655.2 15557.9 15239.6 7.9 6.9 5.5 -35.2 -20.3 -22.0
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Table 5.11 Year wise peak differences between observed and modeled outputs for model KBM

Year

Observed

discharge
(m3/s)

Computed discharge (m3/s) Forecasted peak difference in %

DOWR

(From Barmul)

DOWR

(From Khairmal)
DOWR

(From Barmul)

DOWR

(From Khairmal)

MLP RBF TS LTF 12 hr. 15 hr. 24hr. 30hr. MLP RBF TS LIT 12 hr. 15 hr. 24hr. 30hr.

1996 12514.4 12994 13019 12578 13637 12819.9 13980.2 12678 12678.4 3.8 4.0 0.5 9.0 2.4 11.7 1.3 1.3

1997 24279 22869 23292 24424 15000 28469.8 28356.6 18961 13867 -5.8 -4.1 0.6 -38.2 17.3 16.8 -21.9 -42.9

1998 23229.9 21942 21875 23243 19159 20683.6 18734.6 21225 22357 -5.5 -5.8 0.1 -17.5 -11.0 -19.4 -8.6 -3.8

1999 18043.7 18785 18664 18480 19115 18456.8 18678 16293 17376.2 4.1 3.4 2.4 5.9 2.3 3.5 -9.7 -3.7

2000 4717.4 5182.5 5165 4951.1 4524 5306.3 5377 5263.8 5603.4 9.9 9.5 5.0 -4.1 12.5 14.0 11.6 18.8

2001

39154 40506 40456 40132 31413 41671.8 42223.6 35941 34809 3.5 3.3 2.5 -19.8 6.4 7.8 -8.2 -11.1

39869 39305 39397 40048 31203 40242.6 41671.8 36119 34809 -1.4 -1.2 0.4 -21.7 0.9 4.5 -9.4 -12.7

39630.6 38251 38687 39382 30899 38884.2 40242.6 32658 35941 -3.5 1.1 1.8 -21.5 25.8 3.5 -18.8 10.1

2002 16229.3 14994 14942 15388 14306 14984.4 15175.9 14037 14716 -7.6 -8.6 -5.6 -12.5 -8.7 -7.0 -14.4 -10.8

2003 38200.6 36580 37002 39699 28650 34490.6 34490.6 34809 35714.6 -4.2 -3.1 3.9 -25.0 -9.7 -9.7 -8.9 -6.5

2004 21681.7 21405 21370 21853 16131 21324.1 21401.9 19867 19187.4 -1.3 -1.4 0.8 -25.6 -1.6 -1.3 -8.4 -11.5

2005 25362.4 24161 24421 24875 18416 23559.8 23347.5 19867 19187.4 -4.7 -3.7 -1.9 -27.4 -7.1 -7.9 -21.7 -24.3

2006 36318.5 34813 35691 36815 16809 34313.8 33252.5 32913 31130 -4.1 -1.7 1.4 -53.7 -5.5 -8.4 -9.4 -14.3

2007 20683.8 20294 20187 20901 18163 17036.6 17036.6 12338.8 10612.5 -1.9 -2.4 1.1 -12.2 -17.6 -17.6 -40.3 -48.7

2008

44742.3 41952 43754 45418 34330 36960 35960 41035 39620 -6.2 -2.2 1.5 -23.3 -17.4 -19.6 -8.3 -11.4

44742.3 42026 43870 45466 37976 39960.0 36960.0 41035 39620 -6.1 -1.9 1.6 -15.1 -10.7 -17.4 -8.3 -11.4

44742.3 41795 43301 45553 33118 38960 39960 40695.4 41035 -6.6 -3.2 1.8 -26.0 -12.9 -10.7 -9.0 -8.3

44487.6 42007 42945 45500 35197 40960 38960 40695.4 41035 -5.6 -3.7 2.4 -20.4 -10.0 -13.5 -9.7 -8.5

44232.9 41770 42081 45217 36172 41960 40960 39337.0 40695.4 -5.6 -4.9 2.2 -18.2 -5.1 -7.4 -11.1 -8.0

44006.5 41816 42853 44222 37703 38592.1 41960 37978.6 40695.4 -5.0 -2.8 0.5 -14.3 -14.4 -5.3 -14.4 -8.7

2009 24253.1 23513 23929 23789 8442 23687.1 23036.2 20998.6 17829 -3.1 -1.4 -1.9 -66.5 -6.7 -5.1 -14.1 -30.6

2010 19527.0 18468 18423 19920 7433 15557.9 15239.6 14716.0 13867 -5.4 -6.0 2.1 -60.7 -53.4 -27.6 -31.6 -38.5
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5.7.2.10 Comparison of 6-day flood hydrograph of 2008 forecasted by different models

Testing the performance of each model depends on how it behaves for predicting the peaks. To

check instant behavior of peak hydrographs and response of models towards this 6 day observed

and modeled hydrographs are drawn on a trial basis again for the highest recorded flood event of

2008. The highest recorded flood at Mundali is 44742 m3/s on of 21st September 2008. So a

hydrograph starting from 18th September to 23rd September is drawn for all KM-7, BM-3 and

KBM models (Fig. 5.22 (a) to Fig. 5.22(c)). It is again revealed that the TS model of KBM

combination perfectly forecasts the observed hydrograph at Mundali. The KBM-MLP and KBM-

RBF are a little under predicted whereas LTF shows a poor performance. Simultaneously, the

existence of KM-7 and BM-3 models also give very influential results and can also be referred in

absence of KBM or as best alternatives.
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Fig. 5.22(a) Comparison between observed and computed 6-day flood hydrograph of 2008 at

Mundali for KM-7 combination
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5.7.2.11 Volumetric check of 2008 flood

Generally checking of runoffvolumes are done on yearly basis for rainfall-runoff models. In this

study, the volume of total yearly runoff is also checked for cross-checking the performance of

each model. Instead of testing it for all years in this study it is checked for only year 2008 as this

year has seen the heaviest flood in the history so far after that of 1982. The total runoff volume in

million cubic meter (mem) accumulated in the year 2008 is 57916.4. When this is modeled by

KM-7, BM-3 and KBM, the accumulated volumes through TS approach has given a close
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♦

answer upto 96% of observed value in KBM, 95.9% in BM-3 and 90.0% in KM-7 approach

(Table 5.12). The RBF and MLP models go very close to each other. The result of KM-7 model

is a bit inferior to BM-3 and KBM and also the result of LTF is poor in comparison to MLP,

RBF and TS.

The accumulation of runoffs is plotted in Fig. 5.23 (a) to 5.23 (c) of all 3 models for the

flood of 2008. It is revealed from the Table 5.12 that although the accumulated volumes are very

close to observed volumes the plots in Fig. 5.23 (a) to 5.23 (c) showing a identifiable difference

at the end but are very close when sudden rise occurs during high floods. The reason could be the

peaks are getting modeled perfectly than medium and low peaks. In the TS approach peak

modeling has been perfectly done in KBM model combination. The same is also supported from

the result of Table 5.11 of KBM.

Table 5.12 Accumulated runoff volume for 3 best model combinations for the year 2008

Model Observed

volume

(mem)

MLP RBF TS LTF

Total vol.

(mem)

% of

total

vol.

Total vol.

(mem)

% of

total

vol.

Total vol.

(mem)

% of

total

vol.

Total vol.

(mem)

% of

total

vol.

KM-7 57916.4 51791.3 89.4 51454.7 89.0 52110.3 90.0 46504.9 80.0

BM-3 53615.2 92.6 53698.5 93.0 55486.6 95.9 51216.5 88.0

KBM 53979.9 93.2 54195.3 94.0 55548.1 96.0 52652.9 91.0
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So considering all the factors and result analysis the KBM model combination with TS approach

is considered as best among all. However, the BM-3 and KM-7 are next alternatives that will be

workable as per the availability of the information.

5.7.2.12 Performance with lead times

Thus KBM model has been recommended for flood forecasting in this study as it gives very

good performance. But simultaneously KM-7 has also the advantage of predicting a bit earlier so

can be carried out without waiting for Barmul information or when it is not available. BM-3 also

can be favoured when Khairmal information is not available. Thus, all 3 models are selected and

will be applied as per the requirement and availability of information. So the performance of all

3 models under different lead times are tested through MLP, RBF and TS approach and recoded

in Table 5.13(a) to 5.13(c). The forecasting has been provided up to a 48 hour lead time. No

further lead times are considered as efficiency and other performances fall drastically beyond 48

hour lead time.
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For TS method in KBM the forecasting efficiency varies from 94.36 % to 86.7% for 21 to

48 hour in advance during validation. For the same time frame MLP and RBF results vary from

93.51% to 85.39% and 93.39% to 84.17%.

Table 5.13(a) Performance of KM-7 model under different lead times

Lead

Time

(hours)

Perfor

mance

MLP RBF TS

Calibration Validation Calibration Validation Calibration Validation

21 R 0.9626 0.9435 0.9628 0.9493 0.9768 0.9644

RMSE 1377.4 1507.1 1370.1 1497 1336.4 1403.4

Eff. 0.9215 0.9114 0.926 0.9136 0.9346 0.9228

24 R 0.9563 0.9371 0.9607 0.9436 0.9755 0.9623

RMSE 1428.5 1568.7 1420.2 1529.9 1366.8 1435.8

Eff. 0.9172 0.9064 0.9217 0.9093 0.9307 0.9201

27 R 0.9489 0.9298 0.9587 0.9413 0.9728 0.9555

RMSE 1483.1 1612 1454.3 1567.6 1395.6 1500.5

Eff. 0.9122 0.9007 0.9168 0.9043 0.9271 0.9139

30 R 0.9426 0.9243 0.956 0.9383 0.9701 0.945

RMSE 1553.7 1696.9 1523.7 1644.3 1444.7 1584.7

Eff. 0.9045 0.8926 0.9105 0.8979 0.9227 0.9071

33 R 0.9336 0.915 0.9526 0.9324 0.9677 0.94

RMSE 1665.6 1834.5 1613.8 1800.6 1542.1 1738.5

Eff. 0.8959 0.8816 0.9025 0.8877 0.9169 0.8972

36 R1 0.9282 0.9018 0.9486 0.9279 0.9631 0.9333

RMSE 1787.3 2002 1738.7 1941.3 1627.3 1889.7

Eff. 0.8869 0.8687 0.8939 0.8738 0.9089 0.8855

39 R2 0.9237 0.889 0.9435 0.9205 0.9589 0.9266

RMSE 1963.7 2232.3 1883.2 2157.9 1776.8 2095

Eff. 0.8757 0.8447 0.8828 0.8542 0.8987 0.8684

42 R 0.9173 0.8723 0.9377 0.9103 0.9516 0.9162

RMSE 2181.5 2437.1 2070.6 2394.9 1981.1 2344.5

Eff. 0.8497 0.8232 0.8667 0.8297 0.8867 0.8403

45 R 0.9025 0.8572 0.9242 0.8943 0.9397 0.902

RMSE 2444.2 2631.3 2326 2605.1 2247.6 2573.5

Eff. 0.8292 0.7912 0.8405 0.7974 0.8614 0.8075

48 R 0.8854 0.8419 0.9094 0.8709 0.9285 0.8767

RMSE 2723.2 2894.3 2561.5 2823.8 2465.6 2782.5

Eff. 0.8013 0.7537 0.822 | 0.7639 0.8473 0.7751
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For TS method in BM-3 the forecasting efficiency varies from 92.83 % to 80.62% for 15 to 42

hour in advance during validation. For the same time frame MLP and RBF results vary from

91.45% to 77.57% and 91.67% to 78.69%.

Table 5.13(b)Performance of BM-3 model under different lead times

Lead

Time

(hours)

Perfor

mance

MLP RBF TS

Calibration Validation Calibration Validation Calibration Validation

15 R 0.9665 0.9606 0.9686 0.9609 0.9681 0.9655

RMSE 1362.4 1486.5 1360.2 1473.5 1321.3 1371.6

Eff. 0.9314 0.9145 0.932 0.9167 0.9364 0.9283

18 R 0.9631 0.9571 0.9657 0.9526 0.9665 0.9629

RMSE 1412.5 1531.2 1393.2 1503.9 1347.8 1415.8

Eff. 0.9262 0.9124 0.9287 0.9167 0.9327 0.9241

21 R 0.9589 0.9498 0.963 0.9483 0.9628 0.9592

RMSE 1468.1 1592 1444.3 1551.6 1385.6 1460.5

Eff. 0.9212 0.9087 0.9248 0.9127 0.9291 0.9218

24 R 0.9526 0.9408 0.961 0.9453 0.9601 0.955

RMSE 1526.7 1666.9 1503.7 1614.3 1424.7 1524.7

Eff. 0.9185 0.9052 0.9205 0.9099 0.9257 0.9149

27 R 0.9488 0.9335 0.957 0.9324 0.9577 0.951

RMSE 1605.6 1754.5 1559.8 1695.6 1509.1 1608.5

Eff. 0.9149 0.8966 0.9175 0.9017 0.9219 0.9082

30 R1 0.9432 0.9248 0.953 0.9219 0.9531 0.9412

RMSE 1744.3 1862 1633.7 1781.3 1587.3 1703.7

Eff. 0.9069 0.8767 0.9109 0.8898 0.9139 0.8955

33 R 0.9382 0.9155 0.948 0.9165 0.9509 0.9346

RMSE 1863.7 1992.3 1753.2 1907.9 1696.8 1825

Eff. 0.8927 0.8497 0.9028 0.8662 0.9077 0.8764

36 R2 0.9283 0.9023 0.941 0.9003 0.9456 0.9222

RMSE 2051.5 2157.1 1860.6 2024.9 1781.1 1944.5

Eff. 0.8787 0.8312 0.8867 0.8417 0.8967 0.8523

39 R 0.9156 0.8872 0.9282 0.8863 0.9347 0.9115

RMSE 2241.2 2371.3 2016 2205.1 1917.6 2093.5

Eff. 0.8562 0.8062 0.8655 0.8174 0.8773 0.8335

42 R 0.894 0.8603 0.9144 0.8609 0.9235 0.8857

RMSE 2433.2 2644.8 2207.5 2423.8 2100.6 2282.5

Eff. 0.8313 0.7757 0.844 0.7869 0.8584 0.8062

108



For TS method in KBM the forecasting efficiency varies from 94.36 % to 86.7% for 15 to 42

hour in advance during validation. For the same time frame MLP and RBF results vary from

93.51% to 85.39% and 93.39% to 84.17%.

Table 5.13(c) Performance of KBM model under different lead times

Lead

Time

(hours)

Perfor

mance

MLP RBF TS

Calibration Validation Calibration Validation Calibration Validation

15 R 0.955 0.952 0.963 0.957 0.9769 0.976

RMSE 1337.5 1363.3 1303.8 1357.3 1270 1283.1

Eff. 0.9348 0.9339 0.9381 0.9351 0.9441 0.9436

18 R 0.9539 0.9501 0.9617 0.9536 0.9745 0.9736

RMSE 1372.5 1408.7 1343.2 1389.9 1306.8 1318.3

Eff. 0.9302 0.9304 0.9347 0.9317 0.9417 0.9405

21 R 0.9529 0.9481 0.9587 0.9513 0.9718 0.9705

RMSE 1418.1 1440 1384.3 1427.6 1315.6 1360.5

Eff. 0.9292 0.9267 0.9318 0.9283 0.9381 0.9379

24 R 0.9536 0.9463 0.9561 0.9484 0.9661 0.964

RMSE 1446.7 1486.9 1413.7 1464.3 1334.7 1384.7

Eff. 0.9265 0.9206 0.9285 0.923 0.9347 0.9331

27 R 0.9508 0.9429 0.953 0.9414 0.9617 0.9581

RMSE 1500.6 1550.5 1459.8 1535.6 1362.1 1417.6

Eff. 0.924 0.9126 0.9258 0.9177 0.9299 0.9287

30 R2 0.9462 0.9368 0.9456 0.9339 0.9531 0.9462

RMSE 1564.3 1642 1508.7 1611.3 1397.3 1469.7

Eff. 0.9199 0.9017 0.9219 0.911 0.9249 0.9245

33 R 0.9401 0.931 0.9385 0.9245 0.9409 0.9336

RMSE 1603.7 1722.3 1543.2 1677.9 1436.8 1525

Eff. 0.9137 0.8927 0.9158 0.9032 0.9187 0.9184

36 R 0.9323 0.9203 0.9277 0.9133 0.9306 0.9193

RMSE 1675 1871.1 1610.6 1804.9 1501.1 1596.4

Eff. 0.907 0.8752 0.9087 0.8927 0.9117 0.906

39 R 0.9178 0.9032 0.9142 0.8963 0.9187 0.9075

RMSE 1755 2011.3 1696 1905.1 1547.6 1673.5

Eff. 0.89 0.8612 0.898 0.8754 0.9034 0.8875

42 R 0.8962 0.8719 0.8984 0.8739 0.9005 0.8909

RMSE 1863 2261.3 1797.5 2123.8 1595.6 1781.6

Eff. 0.8663 0.8417 0.8736 0.8539 0.8893 0.867
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The variations of RMSE and efficiency at different lead time for the 3 model combinations are

provided in Fig. 5.24(a) and 5.25(c). It is evident from these figures that RMSE increases in lead

time and efficiency decreases with it.
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5.7.2.13 Discussion on application of soft computing models

A flood forecasting system basically depends on extensive and timely data collection, its

transmission and application of inputs to a workable model and then finally dissemination of the

output to authorities and to end user. In case of Mahanadi basin no doubt the data collection

network and transmission procedures are improving in present days, IMD is also providing a lot

of support for acquiring short interval data the short fall remains in development of a workable

model. In that context existing model of DOWR which works on the daily rainfall information

and Hirakud dam release has many disadvantages like

i) the existing method does not provide much accuracy

ii) it depends upon the rainfall information from different gauges

iii) does not provide lead time of forecast

In contrast to the above model, the developed soft computing models only require the discharge

information at base station. Simultaneously it provides a good lead time.

5.8 CONCLUSIONS

In a flood prone basin like Mahanadi controlling floods through structural measures is a difficult

and costly task. The non-structural measures like flood forecasting is a better solution towards

sufferings of eight coastal districts of Orissa. The Hirakud dam controls only 83000 km

catchment and nearly 58000 km2 downstream area remains uncontrolled. Existing flood

forecasting system is based on time lag approach. Thus development of a flood forecasting

model using soft computing technique is expected to improve the existing forecast quite

significantly. In this study both peak discharge as well as 3-hourly discharges at Mundali have

been forecasted. The following conclusions are drawn from this study:

i) Statistical, ANN and Fuzzy logic models are applied for forecasting of flows at Barmul

and Mundali. The performance of TS-fuzzy method is better than MLFF-ANN, RBF-

ANN and statistical methods,

ii) The studies indicate that RBF performs better than MLP in forecasting of flood flows in

lower reach of Mahanadi basin,

iii) For forecasting of peak flows 3 models viz. Khairmal-Mundali (KM), Barmul-Mundali

(BM) and Khairmal-Barmul-Mundali (KBM) have been developed. Performance wise

KBM is better than BM and BM is better than KM. However, lead time is maximum in

case of KM and performance of KM is also satisfactory.
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iv) For forecasting of 3-hourly flow data, three recommended models are KM-7, BM-3 and

KBM. Although, KBM is the best model out of all 15 model combinations, KM-7 and

BM-3 can be used as alternate models,

v) The lead time is maximum case of KM-7 model. Hence, Model KM-7 is recommended

for the situations where lead time of 24-32 is required, even though its performance is

slightly inferior to BM-3 and KBM models.

5.9 SCOPE FOR FURTHER IMPROVEMENT

The study has a wide scope for further work in the area. The possible directions in which further

work can be undertaken are listed below:

i) The flood forecasting is done in the downstream catchment using 3-hourly discharge data

of 3 downstream stations of Hirakud reservoir. Non-availability of similar duration of

rainfall, discharge of other tributaries and information of Hirakud release restricted the

study to use the discharge data of 3 stations only. Further, flood forecasting studies may

be taken up with the help of the forecasted rainfall to achieve a better lead time.

ii) A hydro-meteorological data observation network should be established in the Mahanadi

basin in order to develop a flood forecasting model for the entire Mahanadi basin for the

better management of floods.

iii) There is always a conflict of superiority between RBF-ANN and MLFF-ANN network.

Although in our study RBF has given a better performance, it requires further extensive

testing in different watersheds.
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CHAPTER 6 - RAINGAUGE NETWORK DESIGN OF KANTAMAL

SUBBASIN OF LOWER MAHANADI FOR FLOOD FORECASTING

6.1 BACKGROUND

Timely collection and transmission of the hydrological information from the gauging site to the

flood forecasting station is a very important task for the successful operation of real time flood

forecasting models. Sometimes it becomes difficult to collect information from all raingauges

(RG) either due to instrumental disorder, difficulty in communication, inability to take readings

or many other reasons during flood times. Therefore, it is important to find out key RG networks

capable of forecasting the flood without compromising much with the forecasting accuracy. In

this chapter a procedure for the design of the key rain gauge network particularly important for

the flood forecasting is discussed and demonstrated through a case study.

6.2 INTRODUCTION

Information of rainfall is the primary requirement of all flood forecasting models. It is always not

possible to gather information from all RGs. The reasons could be many. In particular, during

flood time there may be chances of failure, breaking, non-recording of RGs, difficulty in

transmission of information etc. In large catchments these uncertainties are more prominent.

The research for establishing key RG network is always in the hunt. Earlier Kagan (1966)

had suggested a procedure to compute the error in estimation of aerial.rainfall which could be

used in estimation of key network density of RGs. Hall (1972) suggested a rational method for

determination of key station network. Morin et al. (1979) advocated the use of principal

component analysis in conjunction with optimal interpolation for RG network design.

Sreedharan and James (1983) used the spatial correlation technique proposed by Kagan for

design of RG network.

The real world problem is always complex but it requires decision. Saaty (1980) has

introduced Analytic Hierarchy Process (AHP) for solving the complex decision oriented

problems. It can make decisions involving much kind of concerns including planning, setting

priorities, selecting the best among number of alternatives and allocating resources. An AHP can

effectively deal with both qualitative and quantitative factors in multiple criteria decision

environments. It is an important decision tool because of its ability to synthesize multi-attributed
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scenarios and provide diagnostic information, which enables decision makers to better

understand the behavioral processes underlying choices. From its inception, and arising from its

concise mathematics and easily obtained input data, the AHP has been of great interest to

researchers of many difficult fields (Triantaphyllou and Mann, 1995). Raju et al. (2006) searched

for the best compromise irrigation planning strategy for case study of Jayakwadi irrigation

project of Mahahrastra, India. To rank the strategies linear programming, non-dominated

irrigation planning strategies, Kohonen neural network, and multi-criteria analysis namely

compromise programming have been applied. Anane et al. (2008) have located and ranked

suitable sites for soil aquifer treatment in Jerba Island by integrating a single-objective AHP

method into a GIS model. Sinha et al. (2008) have done a multi-parametric approach using AHP

and integrates geo-morphological, land cover, topographic and social (population density)

parameters to propose a Flood Risk Index for Kosi river. Kevin et al. (2009) has initiated AHP

for finding of best management practices in selection and design of storm water. Park (2010) has

compared the hydrological characteristics in several river basins and methodologies by using a

GIS based distributed runoff model and AHP for the analysis of river basins based on their

regional hydrological characteristics and considering their temporally and spatially-distributed

physical properties. Tsiko and Haile (2011) integrated fuzzy logic and AHP to find the candidate

water reservoir site of a Eritrean district. Machhiwal et al. (2011) have delineated ground water

potential zones using integrated remote sensing, GIS, AHP and Multi Criterion Decision Making

(MCDM) techniques in Udaipur district of Rajasthan, India.

The conceptual NAM model is also very popular in rainfall-runoff modeling and thereby

very useful for setting the flood forecasting models. Dharmasena (1997) successfully applied

MIKE-11 package to simulate one-dimensional unsteady flow. He also found conceptual models

giving better results especially for rivers subjected to prolonged droughts. Tingsanchali and

Gautam (2000) compared two lumped conceptual hydrologic models like tank and NAM with a

neural network model applied in two river basins in Thailand. The works of Rabuffetti and

Barbero (2005) also showed the application of NAM model. Keskin (2008) has applied MIKE-

11 hydrological model coupled with two different numerical Weather Prediction Models to

simulate runoff from precipitation in a semi-distributed manner in Filyos basin of Turkey. Bao et

al. (2011) have applied NAM model for simulating a rainfall-runoff model within Kaidu river

basin of China after estimating the areal rainfall through self- similarity topography method.
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In this study different possible key RG networks have been designed from the available

RG network in the Tel sub-catchment, Mahanadi, India using Hall method, Analytical Hierarchy

Process (AHP), Hierarchical Clustering (HC) and Self Organisation Map (SOM). Efficiency of

the key networks is tested by ANN, Fuzzy and NAM and the best network has been used for

flood forecasting. Further, flood forecasting has been carried out with the key RG networks.

Although, the best RG network has shown highest efficiency, simultaneously other networks

were also tested with certain designated efficiency in order to use them at the time of failure of

the best RG network.

6.3 STUDY AREA

A key raingauge network has been designed for Tel catchment upto Kantamal (Catchment

area=19600 sq Km.). The downstream part below Hirakud having a catchment of around 48,500

sq. km. contributes substantially to flood at delta (9500 km2) and is devoid of a sound flood
forecasting system. This part has three main tributaries like Jeera, Ong and Tel with catchments

2383, 5128 and 22000 sq. km. respectively. Therefore, the contribution from the Tel catchment

always remains predominant. Even the flood of 2008 is mainly due to the contribution of this

tributary. It has produced a peak discharge of 33762 cumecs during 2008. Keeping this in view,

establishment of a flood forecasting model at Kantamal upstream of Patharla is attempted in this

study. The river Tel joins at Patharla to the main river Mahanadi at downstream of Hirakud

reservoir. The location of Mahanadi basin with Kantamal sub-basin is shown in Fig.6.1.
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Fig. 6.1 Location of Mahanadi basin with Kantamal sub-basin

6.4 DATA USED

The daily rainfall data of 14 RGs of the study area have been collected for 6 years (2000-2005).

The individual RGs have their designated IDs as fixed by concerned department (Department of

Water Resources, Government of Orissa, India) shown in Table 6.1. The corresponding daily

discharge at Kantamal and daily evaporation data of nearby station at Dasapalla are also

collected. The available data are divided into calibration period (2000-2003) and validation

period (2004 - 2005) and only monsoon period (June to October) is considered for the purpose.

The physical characteristics of individual Thiessen polygon areas are derived from freely

downloadable SRTM data of 90m resolution by using ARCGIS 9.3 software. The hydro-

meteorological variables are collected from Department of Water Resources, Government of

116



Orissa. All the data and RG characteristics are normalized to 0 to 1 scale in order to have

uniformity.

Table 6.1 Location of RG stations of Kantamal sub-basin with station IDs

Station

ID Location Latitude(deg) Longitude(deg)

KI8 Bhaskel 19.70833 82.13333

KI9 Kurumuli 19.25556 82.82667

M25 Sagada 20.64639 84.00056

M22 Magurbeda 20.78194 83.35833

M16 Goria 20.60556 83.57389

Ml Patora 20.66750 82.44111

M14 Baragaon 20.41111 83.21944

M19 Ichhapur 20.59583 82.59361

M15 Takala 20.25139 82.85222

M18 Chhatikud 19.97222 83.30278

M17A Burat 20.18694 83.50722

M17 Tulaghat 20.27389 83.57389

M20 Surubali 20.17167 83.77944

R5 Pipalpankha 19.82667 84.33194

6.5 METHODOLOGY

In this study our basic aim is to find out key network of RGs (instead of taking information from

all) that can be used for making reasonably accurate flood forecasts particularly during the time

of distress (when the rainfall data of all the stations are not available due to various regions). The

methodology is basically divided into five parts as:-

i) Derivation of storms in different RGs for applying Hall's method.

ii) Derivation of attributes (variables) for application into clustering methods and AHP.

iii) Process to find important (key) gauge networks using prioritizing methods Hall and AHP.

iv) Investigation of possible clusters influencing the model most, using HC and SOM.

v) Test the efficiency of key networks using ANN, Fuzzy and NAM model.

vi) Flood forecasting based on efficient network using ANN and Fuzzy.

The step of methodology is shown in Fig. 6.2.
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Fig. 6.2 Flow chart of methodology adopted in this study

The flow generation characteristic of each RG is different from each other. The property

of each Thiessen area is represented through the physical and hydro-meteorological variables.

The variables should be carefully selected and derived as these will be applied for finding key

RG networks. In the process to find key RGs two prioritizing methods like Hall, AHP and two

clustering methods SOM and HC are adopted. The Hall method forms the network of key RGs
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considering the storm characteristics only. Whereas, other methods like AHP, SOM, HC are

dependent upon the characteristics of the Thiessen area occupied by each RG. The SOM is an
unsupervised clustering technique, which is helpful in getting the possible number of divisions.

The dendrogram generated by HC method also gives a justification to the decision of SOM. But

AHP in this regard makes a ranking of RGs depending upon the influential characteristics of

each Thiessen area. Thus key network decision is taken in a multifaceted way and efficiency of

each is tested with both soft computing models (ANN, Fuzzy) and conceptual base model

(NAM). The details ofvarious steps ofthe methodology are given as follows:

6.5.1 Derivation of Storms

The isolated continuous rainfalls recorded at different RGs are selected as storms over a

particular area. These storms are collected over a period, to study the potential RGs susceptible

tohigh rainfall. Prioritization of RGs is made by applying Hall's method.

6.5.2 Derivation of Attributes (Variables)

The catchment is divided into Thiessen polygons corresponding to the existing RGs and each

Thiessen polygon area is considered as one unit. The discharge produced by each Thiessen is

dependent upon its hydro-meteorological and physical characteristics. Normally those

characteristics are to be considered which can be very influential and achievable with less effort.

In this study daily average precipitation (AP) and maximum 1-day rainfall (ID) are used

as hydro-meteorological variables. Physical attributes like Thiessen weight (TW), longest stream

of Thiessen area (LS), average slope (SL) and drainage density (DD) are used for identification

ofkey network. The average slope ofthe watershed has been derived from the DEM ofthe study

area. Drainage density (DD) is derived by dividing the sum of total stream length within a

catchment by the catchment area.

6.5.3 Procedures to Find Key RG network

6.5.3.1 Hall method

Hall (1972) suggested a rational method for determination of key station network using the

equation

Pav = C+ AXP, + A2P2 + A3P3 + A4P4 + AnPn (6.1)

Where,
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Pavis the rainfall to be estimated from observed recorded rainfall at selected stations

p p p' 1 ' 1 2 ' * 3

A1,A2, A3 An. are regression coefficients, C being a constant known intercept.

In order to establish key station network correlation coefficients between average of the

storm rainfall and individual station rainfall are computed. The correlation coefficients thus

obtained are arranged in a descending order and the highest correlation coefficient station is the

first key station and its data is removed from the set. The next set is chosen in the same way and

highest correlation coefficient bearer being the second key station and the process continues.

A key station network is investigated by computing the multiple correlations co-efficient

ofindividual stations with that ofaverage storm ofthe group. The stations are added one by one
to the key station network and the total amount of variance at that stage is determined. With the

addition of a RG to a network the multiple correlation coefficient increases and sum of the

squares of deviation decreases till a stage is reached when improvement in either the multiple

correlation coefficient or reduction in the sum ofthe squares ofdeviation will be negligible. The

corresponding number ofRGs at this stage is taken as the representative network for the purpose
of determining aerial estimate of rainfall.

6.5.3.2 AHP

The Analytic Hierarchy Process (AHP) is a theory of measurement through pairwise

comparisons and relies on the judgment of the expert to derive priority scales (Saaty, 2008). In
AHP a goal is achieved in following four steps,

Pairwise comparison of alternatives

- Extraction ofpriority vectors

- Finding consistency of pairwisejudgments

Ranking the priority alternatives

Pairwise comparison of alternatives

A matrix is framed containing the criteria/alternative with different choices. These alternatives

are pre-selected for testing for a particular type of problem. This matrix remains the basis for

evaluating different alternatives for achieving various selection criteria. In our study, matrix

between RGs and property of Thiessen area is to be framed. Through this matrix both different

choices of RGs as well as choices of different criteria/alternative properties of Thiessen area are

compared. This comparison ofmatrices is dynamic and can be adjusted on separate applications.
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A pairwise comparison matrix 'A' has to be formed, where the number in r row and j

column gives the relative importance of Oj (objective) as compared with 0J (objective). The

AHP conditional rules are shown in Table 6.2.

Table 6.2 AHP rules

a, (conditional numbers)= Conditional rules

1 Two objectives are equal in importance.

3 If 0; is moderatelymore important than 0, .

5 If Ot is strongly more important than 0. .

7 If 0, is very strongly more important than O .

9 If Ot is extremely more important than 0. .

1.1 to 1.9 If Oj and 0. are very close.

2,4,6,8 Intermediate judgment values

Reciprocals like 1/3,1/5 O is moderately more important than Ot and so on for other

reciprocals.

Extraction of priority vectors

The right eigen vector is decided for both choices (RGs) and alternatives (properties of Thiessen

area). It is a collection of RGs ranking vectors (one for each alternative) and a single vector that

ranks the alternatives.

Finding consistency of pairwise judgments

In order to prove the strength of the assumption consistency checks are applied. Whatever

assumptions are taken for alternatives initially that must hold good for all choices otherwise it

should be modified. The Consistency Index (CI) is as per following equations.

cr-a«-»V(»-D (6-2>

Where, 2 is the principal eigen value and n is the total number of activities. The consistency

ratio (CR) is the ratio of Consistency Index to Random Index (RI) as follows:

CR = CI I RI (6.3)

The value of RI is dependent on the size of matrix (Table 6.3). The value of CR should be

within 0.1 for allowing the assumptions.
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Table 6.3 Random Index (RI) values for different n

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59

Ranking the priority alternatives

In this two level decision matrix, the priority vector for criteria is decided. The priority vectors

are arranged in the matrix shown below. Simultaneously, the choices are again to be put in the

same process of selection and priority vectors of choices are to be made against each criterion.

Therefore, again a matrix of priority of vectors of choices is made as shown in eq. 6.4. For final

evaluation of each choice the matrix multiplication of transposed matrix of priority vector of

criteria are done with priority vector of choices (eq. 6.5). In our study, there are 6 criteria

(alternatives) and each criterion has 14 choices (eq. 6.6). The final ranking of choices is

presented in equations 6.7-6.9.

T

[A,A2, A6]

«1.1«2,1-

KAy

•a, 14,1

.«14.1

Rank of choice, ax =Axaxx + A2a2X + yl67a141

Rank ofchoice, bx = A[bxx +A2Tb2x +A\bx4x

Rank of choice, nx = A[ nx, +A\ n2, +AlnX4X

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

The overall consistency of the process can also be checked by using the eq. 6.10 with permissible

value ofCR > 0.1. The overall consistency (CR) \s

CR =X>v,C/,/Z^/,
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6.5.4 Application of Clustering Methods

Both Kohonen Self Organisation Map (SOM) and Hierachical Clustering are applied to the

characteristics of each Thiessen occupied area in order to classify it. The details of these

clustering methods are presented in Annexure-II.

6.5.5 Testing the Efficiency of Key Networks

6.5.5.1 ANN model

A 3-layered ANN model is selected to test the output of different models using MATLAB. The

multi layered feed forward network is used with back propagation error modeling. The inputs are

daily rainfall data of different RGs and evaporation data of a nearby site. The data are

normalized to 0-1 scale. The optimum number of neurons in the hidden layer was identified

using a trial and error procedure by varying the number of neurons in the hidden layer. The

weights and biases of the networks were adjusted using gradient descent with momentum weight

and bias learning function.

6.5.5.2 Fuzzy model

The TS fuzzy model using the subtractive clustering analysis has been attempted in the study.

The data driven approach based on subtractive clustering has shown promising results in various

hydrological modeling application (Lohani et al., 2005a, b). The purpose of subtractive

clustering is to identify natural grouping of the data from a large dataset and finally to produce a

concise representation of a system behavior (Lohani et al., 2006, 2007a).

The fuzzy model based on the assumption that the cluster estimation method when

applied to a cluster of input and output data produces cluster centers where each cluster center

represents a characteristic behavior of the system. Hence, each cluster center can be used as the

basis of a rule that illustrates the system behavior. Thus the major parameter that needs to be

identified in FIS model is the cluster radius. A smaller cluster radius will yield more clusters in a

data and hence a greater number of rules. Simultaneously, it increases the model complexity and

decreases the parsimony. The MATLAB software has been applied for solving this problem.

6.5.5.3 NAM

NAM is the abbreviation of the Danish "Nedb0r-Afstr0mnings-Model", meaning precipitation-

runoff model, part of the rainfall-runoff (RR) module of the MIKE 11 river modeling system.
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This model was originally developed by the Department of Hydrodynamics and Water Resources

at the Technical University of Denmark. It is a deterministic, lumped and conceptual rainfall-

runoff model which simulates the rainfall-runoff processes occurring at the catchment scale. This

model is well adopted in different climatic zones of the world. A total of nine parameters being

used as shown in Table 6.4.

Table 6.4 Parameters of NAM

SI. No. Parameters Meaning

1 Umax Maximum water content in surface storage

2 Lmax Maximum water content in lower zone/root storage

3 CQOF Overland flow coefficient

4 CKIF Interflow drainage constant

5 TOF Overland flow threshold

6 TIF Interflow threshold

7 TG Groundwater recharge threshold

8 CK1,CK2 Timing constant for overland flow, Timing constant for interflow

9 CKBF Timing constant for base flow

NAM also uses auto calibration optimizing all 9 parameters automatically. The four different

objectives like water balance, overall hydrograph shape, peak flows and low flows are used for

auto calibration.

6.6 RESULTS AND DISCUSSIONS

The study area has 14 RGs and the corresponding discharge is measured at Kantamal G&D site.

The evaporation data of nearby site named Dasapalla are used in the study. For the selection of

key network stations Hall, AHP, SOM and HC methods have been applied. The results of these

methods are discussed below:

6.6.1 Hall method

From the daily rainfall data of five years, total 29 storms are identified. The correlation

coefficient between average of the storm rainfall and individual station rainfall are computed and

arranged in a descending order (Table 6.5). The multiple correlation coefficients are shown in

Table 6.6.
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Table 6.5 Key RGs as per priority (Hall Method)

Normal sequence Prioritized Stations Correlations

R5 Ml 0.901

KI8 M17A 0.876

K19 M22 0.884

M25 M15 0.872

M22 M18 0.865

M16 M17 0.872

Ml M20 0.818

M14 M16 0.806

M19 M25 0.791

M15 M14 0.782

M18 M19 0.791

M17A KI8 0.802

M17 KI9 0.882

M20 R5 0.491

A plot of MCC and RGs is shown in Fig. 6.3a. It is depicted from Fig. 6.3(a) that, the MCC is

rising significantly upto addition of Ml7 but after the addition of M20 the MCC drops and then

again it increases with the addition of M16. So M20 is a wrong fit here and after removing it the

graph shows continuous growth (Fig.6.3b). The growth is not substantial after addition of M16.

Thus a key network with 7 stations (Ml, M17A, M22, Ml5, Ml8, Ml7 and Ml6) is finalized

with MCC of 0.996 (Network HM).
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Table 6.6 Multiple correlation coefficients of individual RGs with average storms of the sub-basin

Ml M17A M22 M15 M18 M17 M20 M16 M25 M14 M19 KI8 KI9 R5 Intercept MCC

1 0.843 37.34 0.949

2 0.492 0.286 32.85 0.971

3 0.226 0.256 0.392 25.91 0.985

4 0.104 0.212 0.383 0.223 24.48 0.988

5 0.077 0.163 0.301 0.226 0.162 17.52 0.992

6 0.437 0.119 0.259 0.174 0.186 0.085 17.63 0.994

7 0.043 0.122 0.271 0.177 0.184 0.084 -0.015 17.90 0.993

8 0.137 0.098 0.353 0.076 0.077 0.063 -0.073 0.347 15.01 0.998

9 0.127 0.116 0.224 0.131 0.092 0.059 -0.075 0.236 0.135 15.40 0.998

10 0.171 0.117 0.191 0.079 0.045 0.068 -0.053 0.192 0.114 0.078 15.40 0.998

11 0.163 0.120 0.183 0.077 0.044 0.066 0.050 0.180 0.119 0.081 0.017 15.74 0.998

12 0.087 0.019 0.134 0.104 0.083 0.096 0.077 0.154 0.087 0.069 -0.015 0.122 6.00 0.999

13 0.065 0.064 0.112 0.077 0.059 0.077 0.049 0.139 0.069 0.065 0.071 0.091 0.059 5.72 0.999

14 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0 1.00
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Fig.6.3(b) Increase in MCC for formation of key RGs network (after removing M20)

6.6.2 Analytic Hierarchy Process (AHP)

AHP has been applied according to Fig. 6.4. In order to form a key network of RGs, the first

level (Criteria level) is to be carefully selected. Here, in first level 6 criteria viz. drainage density

(DD), daily maximum rainfall (ID), daily average precipitation (AP), average slope of each

Thiessen area (SL), Thiessen weight of each raingauge influenced area (TW) and longest stream

of Thiessen area (LS) have been considered. In the second level there are choices of 14 RGs for

each criterion.
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Fig. 6.4 AHP diagram of our study

For the application of this method the DEM of the study area was prepared from the freely

available SRTM data. Thiessen areas of all 14 RGs were computed from the Thiessen polygon

map of the study area (Fig.6.5). The hydro-meteorological characteristics like ID and AP have

been derived from the daily rainfall data. The physical characteristics like DD, SL, TW, LS have

been obtained using ARCGIS. Further, on the basis of the characteristics of individual RGs

AHP has been applied.
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Fig. 6.5 Thiessen polygons of 14 stations of study area
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In order to further strengthen the judgment, a principal component analysis has been

applied over the six available criteria. It is seen from Table 6.7 that considering 3 PCs more than

90% variance is restored. The loadings of the first 3 PCs (having eigen value more than 1) in

Table 6.8 say the first PC is governed by DD and RL, second by AP and ID and third by SL.

Based on principal component analysis and physical importance of various characteristics a

judgment matrix on a scale of 1-9 was proposed. The same is given in (Table 6.9) keeping in the

view of AHP rules of Table 6.2.

Table 6.7 Result of PCA

Principal

Components

Eigen

value

Percentage

variance

1 2.587 43.121

2 1.602 26.692

3 1.264 21.070

4 0.266 4.431

5 0.188 3.140

6 0.093 1.546

Table 6.8 Loadings of first 3 PCs

Choice PCI PC2 PC3

SL -0.300 0.3482 -0.6244

ID 0.3516 0.5635 0.2085

DD 0.5192 -0.0948 0.3757

AP 0.2363 0.6701 -0.0991

TW 0.4447 -0.2859 -0.4915

LS 0.5128 -0.1471 -0.4173
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Table 6.9 Judgment matrix for criteria

Choice LS TW SL ID DD AP

LS 1.0 0.333 0.2 0.2 0.11 0.2

TW 3.0 1.0 0.333 0.333 0.20 0.5

SL 4.0 3.0 1.0 0.333 0.333 0.5

ID 5.0 3.0 3.0 1.0 0.5 2.0

DD 9.0 5.0 3.0 2.0 1.0 2.0

Al' 5.0 2.0 2.0 0.5 0.5 1.0

Sum 27.00 14.33 9.53 4.36 2.64 6.2 Total=64.07

The judgment matrix in Table 6.9 is then normalized by dividing each value with sum of that

column and the principal eigen vector (priority vector) is obtained by adding the normalized

values along each row (Table 6.10). Physical influence of each variable towards runoff

generation is given importance for establishing the comparison matrix. From Table 6.10,Column

9, it is seen that DD has given maximum value of 34.33 followed by 1D=22.63, AP=T7.17,

SL=14.31, TW=8.37 and LS=3.19, which show that DD is highly influential criterion, followed

by ID, AP, SL, TW and LS.

Table 6.10 Normalized judgment matrix

Choice LS TW SL ID DD AP Sum

Priority
vector (%)

LS
1.561 0.520 0.312 0.312 0.173 0.312 3.191 3.19

TW
4.682 1.561 0.520 0.520 0.312 0.780 8.375 8.37

SL
6.242 4.682 1.561 0.520 0.520 0.780 14.306 14.31

ID
7.803 4.682 4.682 1.561 0.780 3.121 22.629 22.63

DD
14.045 7.803 4.682 3.121 1.561 3.121 34.333 34.33

AP
7.803 3.121 3.121 0.780 0.780 1.561 17.167 17.17

Sum
42.136 22.369 14.878 6.815 4.127 9.676 100.000 100.000

The pairwise comparison of initial assumptions of the physical and hydro-meteorological criteria

has been checked for its consistency. The principal eigen value Amax which is the sum of the
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product of sum of each column of judgment matrix and its corresponding priority vector comes

as 6.386 and CI= 0.077. So CR= 0.077/1.24, which comes as 0.062 < 0.1. So the assumptions

are consistent. The value of RI is obtained as 1.24 for n = 6 from Table 6.3.

The same steps again continued for second level of hierarchy. Here there are 14 choices

(RG) against 6 criteria (DD, ID, AP, SL, TW and LS). So ranking of choices of each RG are

done against each criterion. For putting 14 RGs in a 1-9 scale we grouped them in to 10 classes

and judge each of them as per their rank with respect to individual criterion like DD, ID, AP, SL,

TW and LS. Thus 6 such priority vectors according to first level of hierarchy are made available

for individual choices. Then the final priority vectors for finding best RGs are obtained by

multiplying the value of each choice with corresponding weights of criteria obtained from Table

6.11.

Table 6.11 Overall ranking of choices

DD ID AP SL TW LS
Priority

vector (%)• Choices
0.3433 0.2263 0.1717 0.1431 0.0837 0.0319

R5 1.77 1.77 2.19 20.38 2.06 2.19 4.54

K18 14.19 2.69 4.39 3.11 11.15 8.54 7.89

KI9 11.10 17.04 17.09 3.11 6.21 4.38 11.70

M25 1.76 2.17 1.78 14.08 1.78 1.77 3.62

M22 4.36 8.54 3.10 1.79 2.19 2.19 4.47

M16 20.16 2.19 1.78 2.20 3.36 3.09 8.42

Ml 3.07 6.20 6.22 4.41 1.78 1.77 4.36

M14 6.18 4.38 4.39 1.87 8.28 13.98 5.27

M19 2.05 2.19 2.19 4.41 4.38 4.38 2.71

M15 8.51 3.09 3.09 2.20 20.25 20.24 6.81

M18 3.34 11.14 11.17 11.22 17.06 6.20 8.82

M17A 16.97 20.24 14.02 6.24 4.38 11.14 14.43

M17 2.18 4.38 20.02 7.80 3.13 3.09 6.65

M20 4.36 13.98 8.57 17.16 13.99 17.04 10.30

Thus each RG is ranked as per the characteristic it bear with respect to six criteria fixed for each

RG. An overall consistency is again checked for justifying all the assumptions made earlier. The
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CR value obtained using the equation 6.10 is 0.0569 which is < 0.1. On the basis of the final

priority vector ranking of individual RGs has been made and shown in Table 6.12 against thatof

Hall method.

Table 6.12 Prioritisation of RGs as per Hall's method and AHP

SI. No. Station name

(normal sequence)
Prioritized Stations

Hall method AHP

1 R5 Ml M17A

2 KI8 M17A KI9

3 KI9 M22 M20

4 M25 M15 M18

5 M22 M18 M16

6 M16 M17 KI8

7 Ml M20 M15

8 M14 M16 M17

9 M19 M25 M14

10 M15 M14 R5

11 M18 M19 M22

12 M17A KI8 Ml

13 M17 KI9 M25

14 M20 R5 M19

6.6.3 Self Organization Map (SOM)

Further another unsupervised method Kohonen Self Organization Map is trialed with same

datasets in order to find the possible number of groups and RGs constituting each group. The

NNclust software (http://www.geocities.com/adotsaha/NNSOMinEXCEL.html.) has been used in

this regard. Several combination of learning parameter, sigma for Gaussian neighborhood and

training cycles are considered. The network gave consistent result at learning parameter 0.35 to

0.1, Gaussian neighborhood 30% to 1% and training cycle of 200. The results (Fig.6.6) illustrates

that there are two possible clusters separating 14 RGs into two groups of 7 RGs in each.
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Fig. 6.6 RGs distributed in two clusters through Kohonen Self Organization Map

Allotments of RGs in two different clusters are shown in Table 6.13. Taking each group as a

possible network, two possible networks have been obtained with KI8, KI9, Ml4, Ml5, Ml8,

M17A, M20 as SOM1 and R5, M25, M22, M16, Ml, M19, M17 as SOM2.

Table 6.13 Cluster assignment as per Kohonen Self Organization Map

Observation

ID R5 KI8 KI9 M25 M22 M16 Ml M14 M19 M15 M18 M17A M17 M20

Cluster ID 2 1 1 2 2 2 2 1 2 1 1 1 2 1

6.6.4 Hierarchical Clustering

The same variables of 14 RGs have been considered for hierarchical clustering. Dendogram was

obtained using software PAST (version 1.62). It is depicted from the dendrogram (Fig.6.7) that

all the available 14 RGs can be separated into 2 clusters. Further each cluster has been taken as

one model (HC1, HC2) in our study. The results of SOM and HC are same.
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Fig. 6.7 The dendrogram of HC dividing 14 RGs in two groups

6.6.5 Performance Measure of Key RG Networks

Two prioritising methods (Hall and AHP) and two clustering methods (HC and SOM) have been

applied in this study. The key RG networks from AHP and Hall methods are tested using ANN

and Fuzzy techniques. The performance criteria are fixed as R2 (coefficient of determination),

efficiency (Nash-Sutcliffe criterion) and RMSE (m3/s) are tested for both networks adding one

station each time. It is observed that a major portion of performance is achieved with 7 RGs in

AHP network. The R2, RMSE and efficiency of AHP network with 7 RGs are 0.9319, 441.107

and 0.8618 and that of Hall method with same 7 RGs is 0.9021, 521.8355 and 0.8123 during

validation. The result of AHP network shows better result than Hall network. The fuzzy logic

applied performance measures remain higher than that of ANN results.

The two clustering methods HC and SOM also show presence of 7 RGs in each cluster.

So for comparative study 7 best RGs are chosen from two network models and 2 each from

clustering methods. Thus a total 6 best key network models (1 from Hall method, 1 from AHP,

and 2 each from SOM and HC) have been considered and tested for their efficiency and are

presented in Table 6.14.
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Table 6.14 Key rain gauge networks by all four methods

Priority
Methods

Networks Network

name

Rain gauge names

Hall 1 HM M1,M17A,M22,M15,M18,M17,M16

AHP 1 AHP M17A,KI9,M20,M 18,M 16,KI8,M15

SOM 1 SOM1 KI8,KI9,M 14,M 15,M 18,M 17A,M20

2 SOM2 R5,M25,M22,M 16,M 1,M 19,M 17

HC 1 HC1 KI9, M17A, M18, M20,M15, KI8,M14

2 HC2 R5,M25, Ml6, M19, M22, Ml, M17

The models so chosen are tested for rainfall-runoff modeling using ANN, Fuzzy logic and

conceptual NAM model. The input data contains 6 years daily rainfall, evaporation and

discharge data divided into calibration and validation periods. The same performance criteria are

fixed as applied earlier for ANN, Fuzzy and NAM models.

First of all a MLFF ANN network has been attempted with varying number of hidden

layers, hidden neurons and iterations. Only one hidden layer has been fixed for all models in

order to avoid the model complexity. For different models it has been observed that the hidden

neurons vary from 1 to 10 in numbers, learning rate from 0.4 to 0.6, momentum constant from

0.7 to 0.9 and epochs from 50 to 150 with increment of 20. The best performance measures for

different models are collected and shown in Table 6.15. For Fuzzy logic approach the Takagi-

Sugeno algorithm (Lohani et al., 2007a) has been applied. The subtractive cluster radius has been

varied from 0.1 to 0.7 with an increment of 0.05 in each trial. The performance measures are put

in Table 6.15.
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Table 6.15 Performance measure of different networks

ANN model

•d
o
M

s

2

Coeff. of determination^ ) RMSE (m7s) Efficiency

RG

Network

Calibration Validation Calibration Validation Calibration Validation

Hall 1 0.925 0.883 528.069 571.716 0.8556 0.774

AHP 1 0.946 0.893 486.983 570.617 0.844 0.774

HC 1 0.9251 0.862 567.534 615.797 0.856 0.738

2 0.892 0.693 675.819 875.795 0.795 0.471

SOM 1 0.9251 0.862 567.534 615.797 0.856 0.738

2 0.8920 0.6931 675.819 875.795 0.795 0.471

Fuz zy model

Hall 1 0.903 0.902 539.944 521.835 0.816 0.812

AHP 1 0.9243 0.9319 470.461 441.107 0.8544 0.8618

HC 1 0.904 0.9054 537.938 511.780 0.8174 0.819

2 0.841 0.7396 808.815 815.188 0.7073 0.542

SOM 1 0.904 0.905 537.938 511.780 0.8174 0.819

2 0.841 0.739 808.815 815.188 0.7073 0.542

NAM

Hall 1 0.753 0.611 884.135 893.195 0.650 0.541

AHP 1 0.830 0.602 616.477 754.757 0.830 0.601

HC 1 0.744 0.441 756.87 892.64 0.744 0.442

2 0.614 0.546 928.06 835.95 0.615 0.511

SOM 1 0.744 0.441 756.87 892.64 0.744 0.442

2 0.614 0.546 928.06 835.95 0.615 0.511

Similarly in case of NAM model the initial parameters have been derived by auto-calibration.

Further, these parameters have been fine tuned using the available basin information. The

parameters derived for best calibration results have been used for the validation series. Finally,

the performance measures have been derived in the same way as in the case of ANN and Fuzzy

approach and presented in Table 6.15.
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It is revealed from the analysis that RG networks established by AHP perform better for

all the models derived using ANN, Fuzzy and NAM. However the RG network established by

Hall method also performs better but remains inferior to AHP. When comparing the results

obtained from all the models (Table 6.13), the AHP network with Fuzzy R-R model has been

observed as the best model with 86.18% efficiency in validation. Similarly, the same AHP

network provides the lowest RMSE of 441.107m3/s.

6.6.6 Best Networks

The best combination has been obtained as AHP which gives coefficient of determination R2 in

calibration and validation as 0.946 and 0.893, RMSE 486.983, 570.6169 and efficiency as

0.8439, 0.7743 as per ANN. While, the AHP derived fuzzy R-R model gives coefficient of

determination R2 0.9243, 0.9319, RMSE 470.461, 441.107, efficiency 0.8544, 0.8618 and the

NAM model gives coefficient of determination R2 0.830, 0.602, RMSE 616.4774, 754.7571 and

efficiency as 0.830 and 0.601. Comparing the performance criteria of other models the SOMl or

HC1 model is the second best and HM is the third best network model. So in absence of the first

network second and third can be attempted to make a reasonable forecast. As per the

performance criteria 3 best networks are detailed in Table 6.16.

Table 6.16 Best RGs networks

Network Rank RGs involved

AHP Best M17A,KI9,M20,M 18,M 16,KI8,M 15

SOMl ORHC1 Second KI8.KI9.M14.M15.M18.MI7A.M20

HM Third M1,M17A,M22,M15,M18,M17,M16

It is revealed from the Table 6.14 that the stations M17A, Ml8, Ml5 are common in 3 top

networks whereas KI8, KI9, M20 are common to AHP and SOM1/HC1 network and M16 is

common to HM and AHP network. Again AHP and SOM network has six and AHP and HM

have 4 RGs common between them. Addition of M16 to the network of AHP makes it more

efficient. The basic difference here between cluster methods and prioritizing methods is that

cluster methods are limited to the number of sites contained in a cluster and it is difficult to find

which one is most influential. But in prioritizing methods a sequence with priority is achieved. In

this study both the clustering methods dividing the 14 RGs equally. The stations M17A, KI9,
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M20 are highly responsive as per storm and physiographic characteristics. The RGs selected

according to AHP network establish a good rainfall-runoff model.

6.6.7 Flood Forecasting with Best RG Network

After finding the best 3 RG networks flood forecasting has been attempted at Kantamal gauge

and discharge site using Fuzzy logic and ANN models. Taking these networks the inputs are

fixed as discharge at Kantamal (Qt) as per equation 6.14-6.16.

Qkahp) = f{M17A(t.,),M 17A(t),K19(t-3),KI9(t.2),M20(t., ),M20(t),M 18(t.2),M 18(t., },M 18(t),KI8(t_3),

M15(t-i),M15(t),M16(t),Evaporation(t)} (6.14)

Qt(SOMi) = f{KI8(t.3),KI9(t.3),M14(t.i),M14(t)M15(t.1)M15(t),M18(t.2),M18(,.1),M18(t),M17A(t.1),

M17(t), M20(t.1)M20(,),Evaporation(t)} (6.15)

Qkhm) f{Ml(t.,), M17A(t), M22(t.,), M15(t.,), M18(t.2), M18(t.,), M18(t), M17(t.,), M16(t),

Evaporation^)} (6.16)

The inputs are put into a 3 layered feed forward network starting from with 1 neuron in hidden

layer to 10 and one output neuron. The attempt is made for flood forecasting at one and two day

lead periods. Same way the Takagi Sugeno fuzzy model is also applied over same inputs with

initial cluster radius of 0.1 goes upto 0.7. The results of the both models are shown in Table 6.17.

Table 6.17 Performance measures of models for 1-day lead period flood forecasting

Network Model Correlations (R2) RMSE(m7s) Efficiency

Calibration Validation Calibration Validation Calibration Validation

AHP ANN 0.9504 0.8775 465.1316 590.3663 0.9032 0.7595

Fuzzy 0.9195 0.9105 587.6704 500.2123 0.8455 0.8274

SOMl ANN 0.9478 0.8587 476.6766 620.5795 0.8984 0.7343

Fuzzy 0.9116 0.8984 614.7763 530.0090 0.8309 0.8062

HM ANN 0.9221 0.8471 578.3719 649.6842 0.8503 0.7090

Fuzzy 0.8739 0.8582 726.7806 625.8077 0.7637 0.7300

However, the one day lead period results are shown here, because the two day lead period results

are with poor efficiency, so eliminated from the study. The Fig. 6.8-6.10 shows the results of

ANN and Fuzzy models over the observed floods. It is again verified that a Fuzzy logic based

flood forecasting model gives higher efficiency than ANN model.
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Fig. 6.8 Flood forecasting at Kantamal with 1-day lead time (AHP)
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Fig. 6.9 Flood forecasting at Kantamal with 1-day lead time (SOM)
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Fig. 6.10 Flood forecasting at Kantamal with 1-day lead time (HM)
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6.7 CONCLUSIONS

Selection of key RG network is an important task in any reliable flood forecasting system. In this

study, a procedure for the design of key RG network for flood forecasting is developed and

demonstrated through a case study using the data of Kantamal sub-basin of lower Mahanadi.

Two prioritization methods viz. Hall method and Analytic Hierarchy Process and two clustering

methods like Self Organization Map and Hierachical Clustering are applied to form the key RG

network. Prioritization of RGs as per Hall method is based on the storm characteristics, whereas

AHP, HC, SOM give importance to both physical and hydro-meteorological characteristics. The

following conclusions are drawn from this study:

1) Prioritisation methods are better than clustering methods as clustering methods may end up

with unequal number of raingauge stations (one containing very high and other containing

very less number of stations) in two groups. AHP method is better than other methods in

finding the best RG network because it takes care of the merits of the each characteristic of

RG occupied Thiessen areas.

2) Flood forecasting is possible to a reasonable efficiency, using the best key network

consisting of only seven defined RGs instead of 14 established stations.

3) The Fuzzy logic based method is better as compared to ANN and NAM model, in rainfall-

runoff modeling as well as flood forecasting.

6.8 SCOPE FOR FURTHER WORK

The study has a wide scope for further work in the area. The possible directions in which further

work can be undertaken are listed below:

i) In this study the prioritized raingauge network has been established by using Analytic

Hierarchy Process (AHP). The study may be carried out with more number of variables.

The methodology may also be tested in other basins,

ii) The methodology of raingauge network design and its application in flood forecasting

may be applied and tested in other basins located in different hydro-meteorological zones

of the world.
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± CHAPTER 7 - CONCLUSIONS & SCOPE FOR FURTHER WORK

7.1 CONCLUSIONS

In the present study efforts have been made to develop regional flood formulae for the entire

Mahanadi basin using L-moment and prioritized variables based approach. For the lower reach

of Mahanadi basin (downstream of Hirakud dam) flood forecasting models have been developed

using soft computing techniques like ANN and Fuzzy logic. The performance of soft computing

-4 models has been compared with conventional and conceptual models. Also by raingauge

network has been developed for Kantamal sub-basin of lower Mahanadi basin and its

performance in flood forecasting has been evaluated.

The conclusions drawn from this study are summarized in following sections:

7.1.1 Development of Regional Flood Formulae for Mahanadi basin

The study describes the division of Mahanadi basin into two homogeneous clusters for making

flood frequency analysis using optimum number of prioritized variables. The study also displays

how the prioritized variables influence the clustering process. During prioritization of variables

using PCA both statistical and physical importance of the variables towards runoff generation are

considered. The following conclusions have been drawn from this study:

(i) FCM clustering method was found to be robust.

(ii) The SOM and AP are helpful in deciding the number of clusters.

(iii) Reducing the dimensionality of variables by using 4 variables out of 7 available have not

put any significant impact on homogeneity and cluster formation.
0-

(iv) The Generalised Pareto (GP) distribution holds good for cluster-1 and it contains the

areas which can contribute substantially towards runoff generation due to high slope and

drainage density characteristics.

(v) The cluster-2 contains areas with low runoff generation capacity as compared to cluster-

1. Generalised Extreme Value (GEV) is the robust distribution for this cluster.

7.1.2 Development of a flood forecasting model in the reach downstream of Hirakud

^ In a flood prone basin like Mahanadi controlling floods through structural measures is a difficult

and costly task. The non-structural measures like flood forecasting is a better solution towards

sufferings of eight coastal districts of Orissa. The Hirakud dam controls only 83000 km2
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catchment and nearly 58000 km2 downstream area remains uncontrolled. Existing flood

forecasting system is based on time lag approach. Thus development of a flood forecasting

model using soft computing technique is expected to improve the existing forecast quite

significantly. In this study both peak discharge as well as 3-hourly discharges at Mundali have

been forecasted. The following conclusions are drawn from this study:

i) Statistical, ANN and Fuzzy logic models are applied for forecasting of flows at Barmul

and Mundali. The performance of TS-fuzzy method is better than MLFF-ANN, RBF-

ANN and statistical methods,

ii) The studies indicate that RBF performs better than MLP in forecasting of flood flows in

lower reach of Mahanadi basin,

iii) For forecasting of peak flows 3 models viz. Khairmal-Mundali (KM), Barmul-Mundali

(BM) and Khairmal-Barmul-Mundali (KBM) have been developed. Performance wise

KBM is better than BM and BM is better than KM. However, lead time is maximum in

case of KM and performance of KM is also satisfactory,

iv) For forecasting of 3-hourly flow data, three recommended models are KM-7, BM-3 and

KBM. Although, KBM is the best model out of all 15 model combinations, KM-7 and

BM-3 can be used as alternate models,

v) The lead time is maximum case of KM-7 model. Hence, Model KM-7 is recommended

for the situations where lead time of 24-32 is required, even though its performance is

slightly inferior to BM-3 and KBM models.

7.1.3 Development of a raingauge network for Kantamal sub-basin of lower Mahanadi

basin for flood forecasting

Selection of key RG network is an important task in any reliable flood forecasting system. In this

study, a procedure for the design of key RG network for flood forecasting is developed and

demonstrated through a case study using the data of Kantamal sub-basin of lower Mahanadi.

Two prioritization methods viz. Hall method and Analytic Hierarchy Process and two clustering

methods like Self Organization Map and Hierachical Clustering are applied to form the key RG

network. Prioritization of RGs as per Hall method is based on the storm characteristics, whereas

AHP, HC, SOM give importance to both physical and hydro-meteorological characteristics. The

following conclusions are drawn from this study:
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i) Prioritisation methods are better than clustering methods as clustering methods may end

up with unequal number of raingauge stations (one containing very high and other

containing very less number of stations) in two groups. AHP method is better than other

methods in finding the best RG network because it takes care of the merits of the each

characteristic of RG occupied Thiessen areas.

ii) Flood forecasting is possible to a reasonable efficiency, using the best key network

consisting of only seven defined RGs instead of 14 established stations.

iii) The Fuzzy logic based method is better as compared to ANN and NAM model, in rainfall-

runoff modeling as well as flood forecasting.

7.2 SCOPE FOR FURTHER WORK

The study has a wide scope for further work in the area. The possible directions in which further

work can be undertaken are listed below:

i) The regional flood frequency analysis has been carried out based on the prioritized

variables and clustering methods. In the present study only few variables have been

a* considered. The other variables influencing runoff may be considered in future studies.

ii) The result of regional flood frequency analysis may be improved further by including

data of more number of stations analysis more length of data,

iii) The regional flood frequency may be extended using partial duration series approach,

iv) The flood forecasting is done in the downstream catchment using 3-hourly discharge data

of 3 downstream stations of Hirakud reservoir. Non-availability of similar duration of

rainfall, discharge of other tributaries and information of Hirakud release restricted the

^ study to use the discharge data of 3 stations only. Further, flood forecasting studies may

be taken up with the help of the forecasted rainfall to achieve a better lead time,

v) A hydro-meteorological data observation network should be established in the Mahanadi

basin in order to develop a flood forecasting model for the entire Mahanadi basin for the

better management of floods,

vi) There is always a conflict of superiority between RBF-ANN and MLFF-ANN network.

Although in our study RBF has given a better performance, it requires further extensive

v testing in different watersheds.
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vii) In this study the prioritized raingauge network has been established by using Analytic

Hierarchy Process (AHP). The study may be carried out with more number of variables.

The methodology may also be tested in other basins,

viii) The methodology of raingauge network design and its application in flood forecasting

may be applied and tested in other basins located in different hydro-meteorological zones

of the world.
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ANNEXURE- I

Losses incurred during floods at Orissa (1960-2008)
SI.

No

Year Month

of

occurrence

Rivers Affected District / Area Loss/Damage Reported
Human Live Stock Public Utility

1 1960 Aug. Mahanadi,
Brahmnai,
Baitarani,
Burhabalanga &
Subarnarekha

Cuttack, Puri, Dhenkanal, Balasore,
Mayurbhanj & Keonjhar - 6districts.

Not

Available

Not

Available
18.65 lakh Ac. of

cropped area damaged
and loss of Rs. 11.70

crores.

2 1961 July-
Sep

Mahanadi,
Brahmnai,
Baitarani,
Burhabalanga &
Subarnarekha

Cuttack, Puri, Dhenkanal, Balasore,
Mayurbhanj & Keonjhar - fidistricts.

Not

Available

Not

Available
1.429 lakhs Ac. of

cropped area damaged
with a loss of Rs.2.54

crores.

3 1964 July-
Aug

Mahanadi,
Brahmani,
Baitarani &

Rushikulya

Cuttack, Puri, Bolangir, Dhenkanal,
Balasore, Sambalpur, Ganjam,
Phulbani & Keonjhar - 9districts.

Not

Available

Not

Available
4.08 lakh Ac. of cropped
area damaged.

4 1971 July-
Oct

Mahanadi,
Brahmnai,
Baitarani &

Subarnarekha

Cuttack, Balasore, Puri,Mayurbhanj,
Bolangir, Sundergarh& Keonjhar - 7
districts.

26 265 11.719 lakh Ac. of

cropped area damaged.
95043 no. of

houses damaged. Total
loss of Rs.31.71 crores.

5 1974 Aug Mahanadi,
Brahmnai,
Baitarani,
Burhabalanga &
Subarnarekha

Cuttack, Balasore, Puri, Dhenkanal
& Keonjhar - Sdistricts.

Not

Available

Not

Available
5.40 lakh Ha. of

cropped
area damaged.

6 1980 Sept Mahanadi,
Brahmnai,
Baitarani &

Vamsadhara

Balasore, Bolangir, Cuttack,
Dhenkanal, Ganjam, Kalahandi,
Koraput, Phulbani, Puri, Sambalpur
-10 districts.

82 16669 3.19 lakh Ha. of

cropped
area damaged.
Rs.65.00

crores of PU damaged.
7 1982 Aug

Sept.
Mahanadi,
Rushikulya

Cuttack, Puri, Bolangir, Phulbani,
Ganjam, Sambalpur, Dhenkanal &
Kalahandi - 8 districts.

126 26359 12.00 lakh Ha. of

cropped area damaged.
Rs.616.00croreofPU

damaged.
8 1984 Jun-

Sept.
Subarnarekha,
Brahmani,
Baitarani,
Mahanadi,
Vamsadhara,
Indrabati

Cuttack, Balasore, Puri, Phulbani,
Koraput, Ganjam, Dhenkanal,
Keonjhar - 8 districts.

27 3.92 lakh Ha. of

cropped
area damaged.

9 1985 Aug -
Sept.

Mahanadi,
Rushikulya,
Baitarani,
Brahmani,
Subarnarekha,

Balasore, Bolangir, Cuttack,
Ganjam, Puri, Phulbaani, Keonjhar,
Kalahandi, Sambalpur - 9districts

22 5281 3.10 lakh Ha. of

cropped
area damaged.

10 1986 Mahanadi,
Subarnarekha,
Indravati

Balasore, Bolangir, Cuttack, Dhenkanal,
Koraput, Mayurbhanj, Puri, Phulbaani,
Sambalpur- 9 districts.

24 337 1.08 lakh Ha. of

croppedarea damaged.
Rs.55.31croreofPU

damaged.
11 1991 July-

Aug.
Mahanadi,
Brahmani,
Baitarani,
Subarnarekha,
Vamsadhara

Cuttack, Puri, Balasore, Ganjam,
Phulbani, Dhenkanal, Sambalpur,
Kalahandi, Koraput, Keonjhar- 10
districts.

52 1145 6.62 lakh Ha. of

cropped
area damaged.

12 1992 Jun-

Aug.
Mahanadi, Cuttack, Puri, Bolangir, Balasore, 43 1397 4.17 lakh Ha. of
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13 1994 July-
Sept.

14 1995 May-
Nov.

15 1997 Jun-

Aug.

16 1999 July-
Aug.

17 2001

18 2003

19 2006

20 2007

21 2008

July-
Aug.

July-
Oct.

July
Aug.

Jul-Aug.
Sept.
Jun-

Sept.

Subarnarekha,
Vamsadhara

Mahanadi,
Brahmani,
Subarnarekha,
Vamsadhara

Mahanadi,
Subarnarekha,
Vamsadhara,
Rushikulya

Mahanadi

Mahanadi,
Brahmani,
Baitarani,
Subarnarekha,
Rushikulya
Mahanadi,
Brahmani,
Baitarani,
Subarnarekha,
Burhabalanga,
Vamsadhara,
Rushikulya,
Indravati

Baitarani,
Mahanadi,
Rushkulya,
Vamsadhara,
Burhabalanga,
Indrabati

Mahanadi,
Brahmani,
Baitarani,
Subarnarekha,
Burhabalanga,
Vamsadhara,
Rushikulya

Subarnarekha,
Burhabalang,
Baitarani,
Mahanadi,
Rushikulya,
Vansadhara

Ganjam, Koraput, Phulbani,
Samabalpur, Kalahandi, Dhenkanal,
Sundergarh-11 districts

Angul, Balasore, Bhadrak, Boudh,
Cuttack, Jagatsinghpur, Jajpur,
Jharsuguda, Khurda, Kendrapara,
Kalahandi,Koraput, Malkanagiri,
Nayagarh, Nowrangpur, Puri,
Sambalpur, Sundergarh, Sonepur- 20
districts.

Angul, Balasore, Bhadrak, Boudh,
Cuttack, Dhenkanal, Ganjam, Gajapati,
Jagatsinghpur, Jajpur, Khurda, Koraput,
Kalahandi,Kendrapara, Keonjhar,
Kandhamal,MaIkangiri, Nawarangpur,
Nayagarh, Puri, Rayagada, Sambalpur,
Sonepur - 23districts.
Balasore, Bhadrak, Cuttack, Denkanal,
Jagatsinghpur, Jajpur, Khurda,
Kalahandi, Kendrapara, Kandhamal,
Keonjhar, Mayurbhanj, Nuapara,
Nawarangpur, Nayagarh, Puri,
Sundergarh, Sambalpur- 18 districts.
Cuttack, Jagatsinghpur, Kendrapara,
Jajpur, Bhadrak, Balasore, Mayurbhanj-
7 districts.

Angul, Balasore, Bhadrak, Boudh,
Bolangir, Baragarh, Cuttack, Dhenkanal,
Deogarh,Jagatsinghpur, Jajpur,
Jharsuguda, Khurda, Koraput,
Kalahandi, Kendrapara, Nuapara,
Nawarangpur, Nayagarh, Puri,
Rayagada, Sundergarh, Sambalpur,
Sonepur- 24 districts
Angul, Balasore, Bhadrak, Boudh,
Bolangir, Baragarh, Cuttack, Deogarh,
Ganjam, Gajapati, Jagatsinghpur, Jajpur,
Jharsuguda, Khurda, Koraput,
Kalahandi, Keonjhar, Kendrapara,
Malkangiri, Nuapara, Nawarangpur,
Nayagarh, Puri, Rayagada,Sambalpur,
Sonepur - 26districts.

50

76

29

102

92

Angul, Balasore, Bargarh, Bhadrak,
Bolangir, Boudh, Cuttack, Dhenkanal,
Gajapati, Ganjam, Jagatsinghpur, Jajpur,
Kalahandi, Kandhamal, Kendrapara,
Keonjhar, Khurda, Koraput, Malkangiri,
Mayurbhanj, Nawarangpur, Nayagarh,
Nuapara, Puri, Raygada, Sambalpur,
Sonepur-27 districts.

90

27, 12, 15 districts respectively

Angul, Balasore, Bhadrak, Boudh,
Bolangir, Bargarh, Cuttack, Gajpati,
Jagatsinghpur, Jajpur, Kendrapara,
Khurda, Kalahandi,Keonjhar,
Mayurbhanj, Nuapara, Nayagarh, Puri,
Rayagada, Sambalpur, Sonepur
21 districts
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no

16.09 lakh Ha. of

cropped area damaged.
Rs.l 12.42 crore of PU

damaged.

52

18149

2956

1656

50163

cropped
area damaged.
Rs. 184.48

crore of PU damaged.
10.17 lakh Ha. of

cropped damaged.

5.27 lakh Ha. of

cropped
area damaged.

1.49 lakh Ha. of

cropped
area damaged. Rs.54.00
crores ofPU damaged.

7.99 lakh Ha of

cropped
area damaged.
Rs.883.42

crores of PU damaged.

5.03 lakh Ha. of

cropped
area damaged. More
than

Rs.l000.00 crores of

PU

damaged.

3.104 Lakh Ha. crop
damaged, 0.27 lakh Ha.
Sand cast, house
damaged 120446 nos,
LossofP.U-Rs.2043.00|
crores

258155 houses

damaged,4.45 lakh Ha.
cropped area, 0.14 th Ha
sand cast, 651 breaches
in rivers, 1276 breaches
in canals.



ANNEXURE-II

Standardization of the data

The variables for consideration in clustering are derived by transformation of site characteristics

that are measured at different scales. Appropriate transformation by scaling is necessary to

ensure that these factors fall between zero and unity (Lim and Lye,2003). Before applying the

data in any of the clustering methods the catchments characteristics (variables/attributes of each

site) are to be rescaled by the following formula in order to make all values dimensionless

(Jingyi and Hall, 2004).

Xkn =

Y -Ykn n(max)

Y -Y/7(max) rt(min)

(A2.1)

Where, l^is the rih feature at site k, yn(max)and Fn(min) are the maximum and minimum of the

n'h feature within the data set. The process is also known as normalization ofdata.

Hierarchical clustering (HC)

Hierarchical clustering creates a hierarchy of clusters which may be represented in a tree

structure called a dendrogram. The root of the tree consists of a single cluster containing all

observations, and the leaves correspond to individual observations. The dendrogram obtained as

an identification of individual sites are tried for different number of clusters. A straight line has

been drawn against the similarity measures to show at what similarity measure maximum how

manyclusterscan be formed with how many numberof sites.

K-mean method (KM)

This method was developed by MacQueen (1967). It is best described as a partitioning method.

It partitions the data into K mutually exclusive clusters and returns a vector of indices indicating

to which of the AT-clusters it has assigned each observation. The algorithm to clusters N objects

based on attributes into K partitions where K <N. The objective function is

r-iZiXi-M? <A2'2)
;=1 Xj£S,

It tries to achieve minimum intra cluster variance or the squared error function. Where

there are Kclusters S, =1,2 Xand Vi is the centroid ormean point ofall the points xjsSi.



>
Fuzzy C-mean (FCM)

Fuzzy c-means (FCM) is a data clustering technique where in each data point belongs to a cluster

to some degree that is specified by a membership grade. This technique was originally

introduced by Bezdek (1981) as an improvement on earlier clustering methods. It provides a

method that shows how to group data points that populate some multidimensional space into a

specific number ofdifferent clusters (Fuzzy logic toolbox, MATLAB).

The objective function

n c

'.•IK
f-1 y=i

Xf-C. ,l<m<™ (A2.3)

Where, m= any real number, wiy degree of membership of xt in clustery, x.= i'h of d-

dimensional measured data, Cj = d-dimension center of cluster.

Kohonen self organizing feature map (SOM)

Kohonen neural network also known as the self-organizing feature map is a realistic, although

very simplified, model of the human brain (Kohonen, 1997). The purpose of the SOM is to

capture the topology and probability distribution of input data. Hall and Minns (1999) indicated

the feasibility of employing a Kohonen neural network for the classification of hydrological

homogeneous regions.

The learning procedure in a Kohonen Map is unsupervised competitive learning. Only the

winning node and its neighbors are updated during the learning. Weights wtj are updated using

following formula:

wtj (new) =wtj (old) +aYxi - wtj (old)] (A2.4)

Where, Xt is the i'h input signal, w. is the weight of the connection from node i to node j and

a is the learning rate. The winning node is determined by a similarity measure, which can be

Euclidean distance measure or the dot product of two vectors. The Euclidean distance (Z);) that

is mostly used for similarity measure is calculated as:

DJ=&(Xi-Wij)2 (A2-5)y-
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Where the Kohonen map based data- clustering technique is applied to show how multi

dimensional datasets can be reduced to 2-D (feature) maps, manifesting clusters of similar data

items (Kiang et al., 1997).

Principal component analysis (PCA)

PCA was invented in 1901 by Karl Pearson. It involves a mathematical procedure that

transforms a number of possibly correlated variables into a smaller number of uncorrelated

variables called principal components. The first principal component accounts for as much of the

variability in the data as possible, and each succeeding component accounts for as much of the

remaining variability as possible.

Andrews plot

Andrews (1972) suggested a simple graphical technique to represent a multi-dimensional data by

a two-dimensional curve. It provides a good method of viewing patterns of similarity or

dissimilarity across multiple dimensions. A point in multi-dimensional space is represented by a

curve described by the function:

/(/) =4L.+ x2Sin(t) +x3Cos(t) +x4Sin(2t) +x5Cos(2t) (A2.6)
v2

Where, xx,x2 are the variables used to characterize a particular site. The function is

plottedover the range -n to +n. Curves representing points which are located near one another in

multi-dimensional space will look similar, whereas points which are distant will produce

different looking curves. Result will depend on the order in which the variables are labeled. The

first few variables tend to dominate. So it is a good idea to put the most important variables first.
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