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ABSTRLCT

In this thesis, an analytical formulation of the
modal loss factor has been done for the case of simply
supported rectangular plate subjected to a point harmonié
force of constant freguency.in attempt has been made to
seeka generalisation for the internal damping of the
plate for which the material damping constants J and N
are known. Effects of changes in aspect ratio, thickness,
material damping constants, and point force location on
the modal damping for both fhe constant force and the
cénstant amplitude excitations have been studied.The
higher order modal damping ha§ ?een corrglated'withffhe‘
fundamental mode value in each case. Loss féctors when
the plate vibra@es under complex resonance condition(more
than one mode under simultaneous resonance) have also been
evaluated. Thus the dependence of modal damping values

on the different point excitations has béen quantified.

Fundamental mode losg factors have been evaluated
for the plates with different combinations of simply supp-

orted and clamped edge conditions.

Damping of a simply supported plate with thickness
variation in one direction has been obtained with the
- help of Galerkin's method. Thickness variationsof linear
and parabolic type have been considered and the loss factor
in each case has been correlated with that of uniform

thickness case.
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Number of practical simplified expressions have
been evolved which would be useful in design type estimates
of the loss factors for such plates vibrating in the funda-

mental as well as higher complex resonant modes.

Radiation efficiency and radiated sound power have
been defined and analytically obtgined for a simply support-
ed plate whenlit vibrates uhder complex resonance and non-
resonance conditions. This has been done by formulating
Rayleigh's integral for the far-field sound pressure and
giving due care to the modal phase shift while performing

the modal superposition of the preSSurés.
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CHAPTER-1,

INTRODUCTION

The study of vibration and accompanying sound
radiation from a vibrating plate is of considerable
interest to acoustical and mechanical engiheers. For the
case of untreated plate with n& external connections; the
energy input is partly dissipated in the form of internal
losses and the remainder in the form of acoustical
radiation. Therefore, thé knowledge of internal and acousti-
cal losses in a vibrating plate is of fundamental import-
ance in order to predict and control the resonant résponse
and the sound radiation.

As far as the internal damping of a material is
concerned , one of the earliest studies was made by
Robertson and Yorgiadis[Ei]. They siudied experimentaliy
the effect of different parameters on the damping capacity
and gave an expression for equivalent stress which was
in terms of maXimum shear stress only. This was based
on their proposition that the damping depends on distOré
tion strain energy only. Marin and Stulen[L7]ldeveloped
a useful criterion for the design of resonance members
which took into consideration not only the fatigue
strength but the damping property as well. This was prob-
ably one of the earliest attempts to include damping

property in design aspect. It was shown by ﬁazan and

-]
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pemer [33] that material damping may be sufficiently large

to be highly significant as a limiter of resonance vibrationsy
even when significant structural and aerodynamic dampiﬁg

are present. Myklestad[?i]gaﬂe the concept of complex damp-
ing which helped in the development of mathematical models
for internal friction. An impoftant contribution was made

by Lazan[34]s when he visualized the importance of the
inherent damping of materials in limiting the resonant ampli-
tude of the vibrating structures. He developéd the longi-
tudinal stress-distribution factor, the material factor

and the cross-sectional stress distribution factor and
studied the effect of damping constants on these factors.
With the help of these factors damping studies for struct-

ural members could be undertaken. He lateron built up the

< - P
" ey, R et
B s e v

normalized energy integrals and correlated them with these

factors.

' Yorgiadisﬂéi] has obtained the expreséions for the
resonance stresses in non-uniformly as well as uniformly
stressed members. Cochard?t Ei] has obtained certain
functions which are similar to the factors as obtained
by Lazan [341.‘With the help of the stress distribution
function - which depends on material only- Cochardt could
obtain the internal damping of machine members. He also
studied in a particular case, whether the low or high

stress damping is more effective.
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Mentel and Fu[91] have indicated that in many
cases the panel material itself provides the main source
of damping energy dissipation, though in some cases the
panel supports contribute significantly to the total
damping. They have computed the damping of a square
plate by using t he maximum shear criterion a choice .
for which sufficient justification was not given.
Lazan[39] has discussed the various energy dissipating
mechanisms in structures which contribute to the material
damping under different conditions. He also formulated
the normalized damping energy integral and the normalized
strain energy integral and made use of them in evaluating
the damping of a member. It was conjectured by Mentel [Eé]
that in the case of plate vibrations - wherein dilatational
"straining generally accounts for a much larger‘share of
the total straining action - it mighﬁ also be found to be
significant in material damping production. He proposéd
the inclusion of dilatational strain by means of a
parameter in the equivalent stress expression whichy till
then, contained terms proportional to distortional strain

only.

Whittier [81, 82] calculated the loss factor for a
symmetrical circular plate and obtained & spread of 7 to
1 between the two bounding curves based on dilatational

energy criterion and on distortional energy criterion for
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the multi~axial stress system; considering the maximum
bending stress to be same in both the cases. He observed
the actual test data for the panel to lie within the
bounding regions and suggested an expression for the
equivalent stress which depends on both the effective
dilatational and distortional stfesses. He proposed a
qualitative argument in support of the independence of
the energy dissipations based on dilatational and
distortional effects and thence proposed an idea of
limiting bounds in damping values due to these effects.
The manner in which these two effects combine is not
known. Considering the damped flexﬁral vibrations in
beams and plates, Ungar (/1] has obtained expressions for
maximum stresses at resonance. Heckl [?4] has given a
method of estimating damping of plates~ having beams
'attached to it or having treatments~ by formulating
absorption coefficients on the basis of architectural

acoustics.

It has been conjectured by Mentel and Chi[53]
that damping effecfs due to dilatational straining, small
enough to be masked by experimental scétter in the
usual test set-upy ﬁight be signficantwunder.conditions
of pronounced dilatational straining suchvas can occur
in plate vibration. With the help of detailed experimenta~-

tion they have thained a small but definite contribution

to the material damping by dilatational straining action.
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As a consequence, a modified formula for equivalent

stress has been suggested by them.

Lazan[37] has discussed a modified theory for
multiaxial stress systems for obtaining the equivalent
stress. This is based on the stress-strain hysteretic
behaviour of the materials. However, the expressions
obtained do not degenefate to conventional expressions
for simple combination of biaxlal stresses as the derivat-

ion involves certain unjustified assumptions.

Hooker [29] has reviewed the work of different
investigators [52,53,82,83] who gave different expressiqns
for the equivalent stress which represents material
damping in combined stress. He has polnted out that diff-
erent investigators define the proportional factor,; for
taking into consideration the distortional and dilatational
effects, in different ways. He also considered the two |
~effects to be independent for want of limited experimental
evidence, He compared the various expressions of the
equivalent stresses as suggested by different investigators.
After formulating general rules for such expressions, he
proposed a simple expressions for the equivalent stress
based on distortional and dilatational strain energies and

on shear and dilatational stresses.

The average loss factor of a structure in a

frequency band containing a number of resonant modes; has



been discussed in [10,13,14].

Hamme [22] has discussed the different material and
techniques for damping vibrating panels. King [31] has
described the general causes and remedies of vibration

and noise as they occur in mechanisms and machines.

A general criterion in terms of massy stiffness and
damping for considering the effectiveness of a damping
treatment was developed by MeadU}995Q]. He has also dealt
with fhe various kinds of excitations and discussed the
advantages gained by adding damping treatments in different
cases. He has shown that at higher frequencies damping may

not have any effect on the sound radiation.

The normal mode shapes of a vibrating plate have beén
studied by Wbller[?7?78]~ She has discussed the possibility
of occurrence of 'combined! or !compounded!? nofmal vibrat-
ion patterns and of degenerate modes which are mathematiéally
possible. The natural frequencies of a rectangular plate
with different boundary conditions are available in the
classical work of Warburton [79]. Appl and Byers[1_] have
computed the natural frequencies of a linearly varying
thickness plate for different combinations of the aspect
ratio and the taper parameter. Jain and Soni[?z] have
evaluated the natural frequencies of a rectangular plate

having a parabolic thickness variation in one direction.



larger than the sound wavelength in air. In this case,
whenever the dimensions of the plate exceed bending
wavelength, neither the internal damping nor the dimensions
of the plate have any influence on the sound radiations.
However, these parameters do have importance in the fre-
quency reglon where bending wavelength is smaller than
sound wavelength in air, Cremer and Schwantke [8_] have
studied the radiation of a plate when it forms a bounding

surface of an enclosure into which the plate is radiating.

Skudrzyk[§3564,6§] made an important contribution by
his studies of vibration, sound radiation and of noise
and vibration insulation of systems with finite or an
'inkinite nunber of resonances. He gave expressions for
‘sound pressure at different frequency ranges for vibrators
with-zero nodal lines and with many nodal lines. He also
studied the sound radiation of a finite plate with nodal
lines in the range of acoustic short circuit and obtained
expressions for sound pressure generated by force? vibration
of modes with low nodal lines. Berapek[:i] has dealt with
the problem of acoustic transmission through walls and
panels in the audio-frequency range. He has also explained
the phenomenon of wave coincidence and the occurrence of
eritical frequency. Kurtze and Bolt[32]have studied the
effect of loading due to a medium of finite or infinite

extent on the flexural wave speed in a plate. Heckl[23lhas



~ shown that if an infinite plate is excited at a point,
then the exponentially decaying flexural wave near
field gives a small finite radiation. He has further
shown that the same relation holds for damped plates of

finite size, provided the damping is not small.

Lyamshev[39] observed-on the basis of reciprocity
principles~ that the sound pressure at a point in the
fluid due to the motion of a structure subjected to
distribution of mechanical forces can be determined from
a knowledge of the acouctic pressure on the flexible
structure due to a point source placed at the observation
point in the presence of the flexible structure. Greene[20]
experimentally studied the sound radiation froma freely
supported rectangular plate. He obtained the sound
pressure at different ffequencies and observed that the
sound field of a vibrating flat plate at the higher
frequencies seems to result primarily from the forced
vibration of the lower-order modes. The effect of plate
damping on the sound level radiated at different frequencies

was also considered.

Lyon and Maidanik[4Q] calculated the radiation
resistance for some cof the normal modes of a supported
beam by considering the power flow between structural

mode. and a reverberant acoustic field. The response to
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been discussed in EiOng,l&].

Hamme [22] has discussed the different material and
techniques for damping vibrating panels. King [31] has
described the general causes and remedies of vibration

and noise as they occur in mechanisms and machines.

A general criterion in terms of mass, stif fness and
damping for considering the effectiveness of a damping
treatment was developed by Mead[9,5Q]. He has also dealt
with fhe various kinds of excitations and discussed the
advantages galned by adding damping treatments in different
cases. He has shown that at higher frequencies damping may

not have any effect on the sound radiation.

The normal mode shapes of a vikrating plate have beén
studied by\ﬁaller[??;?S]. She has discussed the possibility
of occurrence of 'combined! or tcompounded! normal vibrat-
ion patterns and of degenerate modes which are mathematically
possible. The natural frequencies of a rectangular plate
with different boundary conditions are available in the
classical work of Warburton [79]. Appl and Byers[ 1] have
computed the natural frequencies of a linearly varying
thickness plate for different combinations of the aspect
ratio and the taper parameter. Jain and Soni[27] have
evaluated the natural frequencies of a rectangular plate

having a parabolic thickness variation in one direction.



larger than the sound wavelength in air. In this casey
whenever the dimensions of the plate exceed bending
wavelength, neither the internal damping nor the dimensions
of the plate have any influence on the sound radiations.
However, these parameters do have importance in the fre-
quency region where bending wavelength is smaller than
sound wavelength in air. Cremer and Schwantke [8_] have
studied the radiation of a plate whgn it forms a bounding

surface of an enclosure into which the plate is radiating.

Skudrzyk [63,64,69] made an important contribution by
his studies of vibration,; sound radiation'and of noise
and vitration insulation of systems with finite or an
Iin%inite nunter of resonances. He gave expressions for
sound pressure at different frequency ranges for vibrators
with'zero nodal lines and with many nodal lines. He also
studied the sound radiation of a finite plate with nodal
lines in the range of acoustic short circuit and obtained
expressions for sound pressure generated by force? vibration
of modes with low nodal lines, Bergnd&[}] has dealt with
the problem of acoustic transmission through walls and
panels in the audio-frequency range. He has also explained
the phenomenon of wave coincidence and the occurrence of
critical frequency. Kurtze and Bolt[32]have studied the
effect of loading due to a medium of finite or infinite

extent on the flexural wave speed in a plate. Heckl[23lhas



 shown that if an infinite plate is excited at a point,
then the exponentially decaying flexural wave near
field gives a small finite radiation. He has further
shown that the same relation holds for damped plates of

finite size, provided the damping is not small.

Lyamshev[39] observed-on the basis of reciprocity
principles- that the sound pressure at a point in the
fluid due to the motion of a structure subjected to
distribution of mechanical forces can be determined from
a knowledge of the acoustic pressure on the flexible
structure due to a point source placed at the observatioﬂy
point in the presence of the flexible structure. Greene[2Q]
experimentally studied the sound radiation froma freely
gupported rectaqgular plate. He obtained the sound
pressure at different frequencies and observed that the
sound field of a vibrating flat plate at the higher
frequencies seems to result primarily from the forced
vibration of the lower-order modes. The effect of plate
damping on the sound level radiated at different frequencies

was also considered.

Lyon and Maidanik[4Q] calculated the radiation
resistance for some of the normal modes of a supported
beam by considering the power flow between structural

mode- and a reverberant acoustic field. The response to
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sound and consequent sound radiation for one linear
resonant mode of a part of a larger structure were analysed
by Smith Jr.[66]. He also established a modal reciprocity
relationvbetween the modal radiation resistance and the
transfer function which relates incident sound pressure

to modal force in the absence of motion. He has shown that
the response is governed by internal damping and radiation

resistance and gave a qualitative analysis.

Maidanik [43] made an important contribution by
his studies on the response of ribbed panels to rever-
terant acoustic fields. Following a statistical method;
it was shown by him, that the acceleration spectrum of the
vibrational field is related to the pressure spectrum by
a coupling factor which is a simple function of the
radiation and mechanical resistances of the structure.
Therefore, to predict the response of structure one
reduires the values of both these resistances which consti-
‘tute the total resistance. Maidanik considefed the modal
resonant vibrations and the radiation resistance was
determined by calculating the power radiated by a vikbrat-
ing panel by means of transform method. He also gave a
physical picture and concept of the corner, edge and

surface modes of radiation.

Lyon[41] computed the radiated sound power and the
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radiation resistance of the gcoustically slow waves in a
plate which are sc;ttered by a beam. Nikiforov 58:] used
integral transforms to calculate the energy radiated by

o plate of finite dimensions with arbitrary boundary
conditions as a function of the impedances loading the
plate edges. Coupling of panel vibration and sound waves
velow critical frequency has been studied by Smith Jr.[67]-
He has obtained the sound power and ﬁhe radiation effi-
ciency from clamped edges and from other boundaries as
well., Manning and Maidanik[&@] have shown that the radiation
efficiencies of cylindrical shells and of plate could

be adequately estimated from simple physical arguments
based on considerations of the shape of typical modal
patterns. They determined the radiation efficiencies on
the basis of piston, strips and surface modes of panel
vibrations. They also developed the overall radiation
efficiency of the panel in a frequency band containing
several resonant modes bty means of éimple averages and

sus.

Gutin[2I] has studied the sound radiation from an
infinite plate excited by a normal point force but at
low frequencies only. Maidanik and Kerwin Jr}[gjj have
considered the influence of fluid loading on the radiation
from infinite plate driven by a normal point and by

o normal line force, below the critical frequency.Feit[ié]
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has obtained the acoustic pressure‘radiated by an infinit
elastic plate excited by a harmonic point force or by a
moment for low as well as high frequency ranges. He has
made use of Timoshenko-Mindlin thick plate theory for
the case of frequencies above the coincidence frequency.
Maidanik (3] has studied the influence of fluid loading
on the radiation from orthotropic plates. He has distin-~
guished between the fluid loading due to the subsonic
wave motion - appearing as an additional mass- and super-
sonic wave motion - occuring as an acoustic damping. While
investigating the latter part he has critically discussed
the !'free-field?! and the 'forced field!. The effect of
internal and acoustic damping on propagating free radiat-
ing waves and non-propagating forced waves have also been
'studied. Near sound field of an infinite plate driven by

a point force has been studied by Plakhov [59].

The problem of acoustic radiation from an infinite
plate with a baffle normal to its surface has been studied
by Mazzola [48]. Rao, et al.]:écﬂ experimentally studied
the near field sound pressures and vikrations from a
clamped plate and fixed~free beam. It was shown that these
measurements match well with the approximate theoretical
evaluations and the modal patterns and the resonant fre-
quencies could be predicted. Advantages associated with
acoustical measurement in regard to the prediction of
mode shape and frequency was pointed out. Sound pressures

from the thin, infinite plate excited by a point s, line
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and moment source have Eeen studied by Ivanov and
Romanov [26] and by Gomperts [17]. Bailey and Fahy[2_]
have studied the radiation frdm cylindrical beams which

are excited by sound waves.

Radiation resistances of a baffled beam and of
a simply supported rectangular panel have been theoretic-
ally determined by Wallace [79,7&]. These have been
obtained for single modes from the total energy radiated
to the far field. Asymptotic solutions for'the low frequency
region have been derived and curves covering the entire
'frequency range for various mode shapes and aspect ratios
have been obtained through numerical integration. Approxi-
mate matching of his results with those obtained by

Maidanik has been indicated.

Chan and Anderton [ 4] have obtained a simple relation-
ship between the radiated noise and the mean square surface
averaged vibration level of cast machine structures.

Donato [11] and Dyu[12] have obtained the radiation resis-
tance of a rectangular panel by direct application of

Rayleigh's radiation f ormula.

Mangirotty [49| explained the importance of the
internal damping which is due to hysteresis losses in the
material and the acoustic damping which results from the
reaction forces of the surrounding fluid on the radiating
surfaces of a structure. The acoustic damping of a single

flexible panel forming part of an otherwise rigid plane



-1l

baffle was predicted theoretically and measured experi-

mentally by three different methods.

Johnston and Barr [28] conducted theoretical and
experimental studies for the determination of damping
at different frequencies for the case of freely supported
beam specimens. Internal and acoustic damping were obtained
by conducting tests in air and in vacuum and they showed
- that above a certain frequency the acoustic dgmping is
responsible for a considerable frequency depquency of
the overall loss factor. Crocker and Price [Pj].have
studied the problem of sound transmission by using stat-
istical energy analysis. They have brought out the import-
ance of resonant and non-resonant transmission which
depends upon the variation of internal and radiation
resistance with frequency. They have shown; that, at low
frequencies where the radiation resistance is small; the
resistance of the panel is mostly due to the internal
resistance. At the critical frequency the resistance
is mostly due to the radiation resistance; but well above
coincidence the total resistance again normally becomes
dominated by the internal resistance. The acoustically
slov and fast modes of a vibrating panel have been well

explained.

Crandall([6_] has shown the general importance and
applications of the internal dissipation and acoustic

radiation damping. Fahy [15] has dealt in detail the
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subject of structural-acoustic interaction. The effect

of fluid loading, the acoustic and mechanical excitation
of flat plates and cylindrical shells ﬁave been discussed
by him. It has been pointed out that it is necessary to
assess the relative importance of flexural near~field
sound radiation and free-wave radiation because this
factor decides the appropriate choice of methods of radia-
tion reduction from mechanically excited structures. The
most important paramefer in this respect is the ratio of
radiation resiétance to0 the internal resistance.

A survey of the literature explicitly indicates

the significant role of the internal and radiation
resistance in the control of the resonant response and
the soﬁnd radiation from a vibrating structure. Therefore,
it becomes imperative for one to know the values of the '
snternal loss factors and the radiation efficiencies at
different excitation frequencies. A further look into
the review indicates that no mathematical relationships
xist giving the modal loss factors for rectangular plates
of different types and sizes under meéhanical excitation
coﬁditions. Although it 1is obvious (in view of the
dependence of energy dissipation on the stress amplitude)
that the modal damping values depend on the excitation
distributiony no work is available which quantifies this
dependence. No investigator has attempted to evaluate the
internal loss factor for plates vibrating under complex

resonance conditions. There is almost no literature on the
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evaluation of internal loss féctors for rectangular plates
of variable thicknesses. Though the radiation efficiencies
of a recfangular plate simply éupported in a vaffle-for
single mode resonant and non-resonant excitatvions-have been
obtained by different inVestigators but these efficiencies for
the case of complex mode excitations under resonant and non-
resonant conditions are not available. The present dissertation
ig in the direction of fulfilling these requirements.

A simply supported; thin, rectangular plate of homo-
geneous and isotropic material subject to a central point
harmonic force has been.considered. Starting from the known
damping constants J and N of the material, the modal loss
factors for the plate have been evaluated under constant
force and constant amplitude excitation conditions. A simpli-
fied relationship between loss factors of fundamental and
(m,n)th mode has been obtained. The material dampings for
complex resonance conditions (those excitation frequencies
where more than one mode is under resonance) have also been
evaluated. A simple relationship between the total loss
factor under this complex resonance condition and individual
loss factors has been derived. Effects of changes in thickness,
aspect ratio, material damping constants and position of the
point force; on the internal loss factor have been studied
quantitatively. Simple relations have been derived which
correlate the loss factor values with the corresponding values
of a known plate.

Tffect of clamping the edges of a simply supported
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platey on the fundamental mode loss factors has also been
studied. The fundamental mode loss factors for the

variable thickness plate whose thickness varies in one
direction accofdhg to linear and parabolic laws have alsc
been obtained by Galerkin's method. A relationship has been
established between these values and the damping of plates
of uniform thickness.

The average radiation efficiencies under complex
resonant and non-resonant excitation conditions of a constant
thickness rectangular plate; simply supported in a baffle,
have been obtained by calculating the energy radiated to the
far field. This has been done by performing the modal super-
position of the far-field acoustic pressures. The effect of
superposition of any number of modes on the radiation efficiency
and radiated sound power have been studied. The variations
in average radiation efficiency and sound povwer with the
excitation frequency below the critical frequency, have also
teen studied.

The objectives of the investigation reported here
have been four-fold. First, to study quantitatively the
.dependence of the modal damping of rectangular plates on
the excitation distribution and the effect of various para-
meters including the thickness variation on the modal loss
factors. Seconds to obtain practical simplified expressions
relating higher mode damping to the fundamental value under
different COnditioné. Third,; to obtain the loss factors and
radiation efficienciles when the plate vibrates under complex
' resonahce conditions. Fourthy; to evaluate the radiation
efficiencies for the plate vibtrating under complex non-
resonance excitation conditions.



CHAPTER-2

BASIC THEORY

2,1 EQUATION OF MOTION OF SIMPLY SUPPORTED
RECT/ANGULAR_PL/TE OF UNIFORM THICKNESS

The classical equation of transverse motion of
thin, elastic plates of constant thickness and of iso-

tropic and homogeneous material, is given by [38,74]

o 2 2m '
B<Y"W + ph -—-2 P(x,y,t) . vee (2.1.1)

ot

Fbr'harmonic excitation of the plate, one may write

wt

P(x,7,%) = P(x,y) e .. (2.1.2)

Further, assuming a harmonic résponse, the deflection

is given by

W(X9Y9t) = W(XQ’) elwt goo_(2ol'3)

Damping is taken into consideration by allowing the
flexural rigidity to take complex form [68,7i].Substi-
tuting Egqs.(2.1.2) and (2.1.3) in equation (2.1.1), one

gets

B(1+in)<74w(x,y)—9hw2W(x,y) = P(x,y) e (2.1.4)

It can be shown, that, an eigen function wmn(x,y)

exists for each eigen value Wrn satisfying
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B-v4wmn-phwinmmn = 0 eeo (2.1.5)

where the eigen functions and eigen values for various
sets of boundary conditions of rectangular plates are

obtained from ETQJ.

One could write the load distribution, as

@ _ _
P(X9y) = z | P m 0.00 (2.1.6)
mon=0 mn ‘mn
and the plate deflection, as

00

W(x,j) = I eee (2.2.7)

Because of orthogonality of the eigen functioms,

one gets the expression for P 2s

) [[P(x,y) Uy 0xdy

. e (2.1.8)
[ 2 ax &y

Combining Egs.(2.1.4), (2.1.6) and (2.1.7) one obtains

4
P .
mn NP Y Ymn 2
L p— B(1+ln) -T— - Phw : ° o0 (20109)
- Umn " Ymn ;

From Egs.(2.1.5) and (2.1.9) one gets

P

mn _ . 2 2
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FIG. 2:1 CO-ORDINATE SYSTEM OF RECTANGULAR PLATE
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further analysis, since the remainder_term in the

right hand side gives the amplitude of the displacement
at different points, and the amplitude stresses depend
upon the amplitude displacement. Also 1/i indicates the
90° phase between the resonaht response and the excitat-

ion and is dropped hence onwards in the snalysis.

Now, the stresses at a point in the plate which depend
upon the displacement of the corresponding points can

be obtained from

0x oy
3 2 2
AW W
-lZchw[V;;c?wLay]
3 2
h 3w
575 Txy (1-v) S0 7 eee (2.1.27)

and are as follows

2 2.2
48PZe [:(m tve™n”) mnx . ONY
N .6 = sin (===2) sin (=)
2 2
(vin“+e“n )~
_ 48Pze [ -l .‘.Z
N 6. = sm(———) sm( )
m-y 1[2h3 (m +e n2)2
8PZe (l—v)[ ] mnx nn
N1 = cos (== ) cos (REL.)
mn Xy T h3 (m +e b

ee. (2.1.18)

The principal stresses can be obtained from
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o | +|m 2

..Imnw: mz (l‘nyllqmnl
- . 4 (T - 2]1/2
‘mn Xy

Thus , the stress distribution in terms of n times

principal stresses are obtained when the plate 1s vikrating
th

... (2.1.19)

under (m,n)"" resonance mode.

2.2 CRITERIA FOR EQUIVALENT UNIAXTAL STRESS

The damping of a member subjected to a multi-axial
stress system can be obtained from the damping properties
of the material of which the member is made of 3 by
incorporating an equivalent uniaxial stress Oé. This stress
is conceptually considered to represent a state of multi-
axial stress provided the damping energy dissipation is

same in both the cases; such that

p(0)) = D(o;‘119 0“5‘12) eee (2.2.0)
Numbef of ‘theories or criteria for determining O; have been
developed by different investigators [52,53,82,83]. Lazan[37]
hrs reviewed these in detail and Hooker [fzi] has critically
examined them and proposed the following relationship which
is based on contributions by distoritional and'dilatational
strain energies.

- N :
oV = -y o+ [ o ... (2.2.2)
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In this expression [ = 0 indicates damping dependent on
distortional strain energy only and | = 1 indicates the
damping dependent on dilatationdl strain energy only. For -
a particular problem; Hooker has suggested that r— is to be
estimated experimentally. Whittier [37] argued that the
dilatational and distortional effects are independent- a
fact which was supported by Hooker [29] for want of proper
xperimental evidence against it. Under this circumstances
(= 1and [ =0 Wwould lead to upper and lower bounds for the

loss factory respectively.

In the case of rectangular platess shear effects are
known to be small and as such dilstational strain energy
criterion for obtaining the equivalent uniaxial stress is

made use of in the present work.

[ . ; - . ) . .
The expressions for the equivalent uniaxial stress

based on distortional strain enmergy is given by [37]

| 5 1/2
a, = Oal(l - & +E£°) : ... (2.2.3)

and based on dilatational strain energy is given by

0, = O“al (1 +¢) Lo (2020
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2.3 MODAL LOSS FACTOR FOR A RESONANT MOD®

Once the equivalent uniaxial stress at every point

on the plate is known, the problem of evaluating the
modal resonant loss factor of the damped plate which is
subjected to multiaxial stress system; reduces to one
which is subjected to equivalent uniaxial stress system.
The internal damping of the plate can then be evaluated

as follows(37]:

The total strain and damping energies of the plate

are given by

and D =3 J0

where O;T the effective stress from total strain energy
view point is given by

. 1/2
0= 0 (l-2vE+£9) eeo (2.3.1)

eT aq
provided the plate is imagined to be constituted of a
very large number of small rectangular elements, each of
volume dv, and having an equivalent stress 0; at the

center of each e lement.
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The loss factor is given by

N =g | ... (2.3.2)

Observing that Egs.(2.2.3) or (2.2.4) would give a stress

distribution in terms of 71 0;, one gets

: 1
. I 6T
- (ﬂ)(lﬁ-l)[ 2 (o)
T
3 oopp°

which for the case of equivalent stress based on dilatational

strain energy dissipation becomes

1
_ (-1
eeo (2.3.3)

=3
t

S N N ]
.(JE)(N—I)[ 2 (n 0y 7 (1)

T (n 0, )2(1-2v¢ +82)—
21

The loss factor can also be determined by evaluating the
integrals a« and B. For thisy polynomial curve fittings of
(V/Vb) vs. (0,/0_ ) ~ for evaluating o - and of (V/Vb) vs.

(OéT/OéTm) - for evaluating P - are to be made.

Thus

N
. JE ar
nE EHE —o coe (20300
eTm
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Here, O;ﬁ is the maximum value of 0g and Ong is the

maximum value® of O;T in the stress distribution of the

plate. Above equation modiries as

1
T v _ (W1
- o am
L (NG, ) 2+
n_eTm

.. (2.3.9)

2.4 CHOICE OF EIEMENTS

In order to make use of the equations derived
in the previous section,; one should know the distribufion
of the equiValent uniaxial stress throughout the plate
volume. For this purpose the plate is conceptually thought
to be divided into a large number of small rectangular
elements. The choice of the elements is diétated by the
fact that the waveform of the plate vibrating in any mode
(m,n) would be symmetrical about the central lines.
Since the stress distritution along the thickness of the

plate is trisngular about the mid-neutral;plane, 1t is
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FIG. 2:2 VIBRATION AMPLITUDE WAVE FORMS
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must have the same sign in each mode. Hence, the express-
ions, within the summation sign, are to be multiplied by

+1 or -1 as required to ensure correct phases.

The principal stresses and thence the equivalent
uniaxial stress c, are obtained as before. The loss factor

Np under complex resonant mode is now computed from

Z O’N
» JE i e \
T]T = (_T[ ) _——T—Z ce‘ . e w (2‘5'2)

As regards the selection of element in this case,
it would be observed from Fig.2.2b, that, due to super-
position of two or more different modal waves, the stress
values are to be calculated upto a/2 and b/2. However,
the overall symmetry in the stress distribution pattern
sould still exist about the central lines of the plate.
The element size would be governed by the largest values
of m and n within the group of (m,n) order mbdes whose
superposition effect is to be studied. For this analysis
two elements were chosen in a quarter of the wave corres-
ponding to the highest order m i.e. D oox and to the highest

order n i.e. nmax,_giving the element size
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2.6 E_QUATION OF NMOTION OF SIMPLY SUPPORTED RECTANGULAR
PLATE OF VARIABLE THICKNESS

The differential equation of a free, undamped
motion of a rectangular plate of isotropic, homogeneous
material with no inplane forces and having a variable.

thickness is given by[}]:

-
Ao 8B 2., 08B8 2. 2. 2 -
B W2 2= =W 5y 37 ¥ "V Bv W-(1~-v) (;x—g ay
2 2 2 2 2
2 8B 22X L8B3 MendY o o ee. (2.6.1)
0y o8x 0t :

0X3y 0x%X0y

If thickness varies only in one direction, say X, Fig.2.3,
then the plate wquation for forced vibration with g

forcing function P(x,y,t) reduces to

2 2 - 2
4., dBo_ 2. a°B[ a°w W 9y
BY W42 == f— W+ =5 + v == [+h == = P(x,y,t)
dx 9% ax g g 3y 342

Considering the excitation to be harmonic, postulating
the motion W to be of similar type and introducing the
daﬁping by pérmitting rigidity to take complex value, as

was done in section 2.1, one gets

(o
=

(1411) [Bwtisz 22 g..

J

2 2
(g_g + v ):I pthW = P(x,y)
09X y
"o (20603)

"“J
no
s2)
@

Let the thickness variation in X-direction be given by



~-32-

vo . '
/. —_— R e L x

/7
t 77 |
ho :/‘/—~_'_"‘—~ ~~~~~~~~~~~ / |
—— ‘ / h=ho G(x)
— |
- | a ___,_/ G(x) =1+ &(3)
g (a)
o 2 .,
/‘/‘r--______‘_______________"_ s
L
// '
/7
(77 ,
ho Z—/7/ / h:ho. G(x) ,
RV b st
: Pa— —— —‘ﬁ—,(
\ . |
Y y (b) ‘

FIG. 223 RECTANGUL AR PLATE-THICKNESS VARIATION
IN X~ DIRECTION.




-3%-

h = hOG(X) o0 (20604)
where, fof linear thickness variation
G(x) = 1+5(§) ‘ ees (2.6.5)

and, for parabolic thickness variation

o2
6(x) = 1-p(%) oo (2.6.6)
a .

Also, the rigidity term is given by

B = sc[e(x)]? - (2.6;7)

Consider the case of the above plate having all the four
edges as simply supported, then the response and the

load term are written as,

-m ' o B
e . (ITX .y
Wix,y) = -%:1 A Sln(f;—zJ Sin (%) eeo (2.6.8)
CP(x,y) = -f P Sin(é"ﬁv- Sin (££) » (2.6.9)
,y) = R 5 /| Sin(g” ... (2.6.

gince the thickness variation is in X-direction only.
For the central point harmonic force of amplitﬁde P,one

observes, that

P =

ml for m

1l

odd V i see (2.6110) .
form = even

(@) ml-p
o'itd

—
-

Let the plate vibrate in its fundamental resonant
mode. Using the Galerkin's Method, one obtains approximate

one term and two term solutions as,
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W

. Sin(Z%)sin () | eer (2.6.11)

and Ww!

[Ai S:Ln(nx)+ A2131n( )] suxmy-) ees (2.6.12)

Load term in both the cases is assumed as ﬁi Sln( X) 31n(—x)

which is supposed to excite fundamental mode under resonance
condition, After evaluating the Galerkin's coefficients

A A'l and A}, the one term and two term responses are

11’ 71 21
obtained, The ‘loss factor is then evaluated by following

the steps as laid down in previous sections.

I S — T S 4 < e e et WSO, SR s

The sound power radigted by a vibrating plate depends
on the details of surface velocity distribution and the
value of the radiation efficiency at that frequency of
vibration. These values are available in literature when
the platé is vibrating in a single mode whether resonant -
or non-resonant. For the complex modes of vibration -
both resonant and non-resonant - these quantities are to
be evaluated by superposing the individual modal contri-

butions after giving due consideration to their phases.

If the plate vibrates in a £1luid medium then the
fluid exerts a radiation load on the plate which would
normally modify the distributed loading and introduce a
'feed-back' fluid-structure coupling. When the fluid medium
happens to be the atmosphere, the radiation loading is

generally small enough to have a negligible effect on the
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structural vib}ations, because of the low density of

air as coﬁpared to structural materials [29]. Thus, in
such situations, the dynamic response of a §tructure in
the atmosphere, excited by prescribed driving forces,
can be determined as though the structure were vibrating
in vacuum. Therefore, the eigen shape functions and the
corresponding natural frequencies of the in-vacuo modes
of plate vibration do not get modified when the plate

vibrates in air.

The surface velocity distribution over a rectangular

plate, simply supported in an infinite baffle is given by

Y
v, (x,¥) =m’§=o V¥ (,3) o e (272D

The modal velocity coefficients are related to modal dis-

placement coefficients by the following simple relation

an = iUJUmn . ¢ o0 (20702)

Combining Egs.(2.1.12), (2.1.15) and (2.7.2) one gets,
for a central point force excitation of a resonant mode,

h =
when w Wn?

- 4P \ ve. (2.7.3)

abPh nmnwmn

v
mn

From Egs.(2.1.10), (2.1.15) and (2.7.2) one obtains for

a non-resonant mode (damping being low)

4Pw
2
abph(wmn-w

V! =i

i 2) | eoe (2.7.4)
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Now, temporal and spatial average of the square of the

surface velocity is given by
2 b a 2
1 1
o0

For a single mode under resonance,

_ . mnx s (ATY '
v o= Vﬁn Sln(~—§ ) Sin( T ) cea (2.7.6)
and, therefore, one .obtains

2 _
1 T
GABEE R4 SONCERS

For complex resonance excitation condition, one has

o]

Il
_ . mux ‘o (ATY
V(.L) = y 1 an Sln( "'é"") Sln( b ) LI (2.7.8)

h:l n

[

1

and therefore, one gets after neglecting the effect of

the cross coupling between the modal damping

v 1%y - T2 % v | oo (2.7.9)

When the effect of large number of non-resonant modes

is to be considered, then,
= t i EE 1 m
v, 2y Vi, Sin(=52) Sin(Sp%)

2

5. 8 8, |
and, <l Vw‘ >= Z:]_ nil B ,Vﬂ,lnl : oo (207010)
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Finglly, for the case of superposition of resonant and
non-resonant modes, the velocity distribution is given by,

vo=T Z[&mn Sin (F2E) Sin(g%x)+v&n Sin (22Z) Sin(g%xi]

and, {|V,|%=5 ¥ 27 4V |?) ee (2.7.11)

Defining the average radiation resistance r, ., s

R - e (2.7.12)
Ty
w
where T is the total average acoustic power radiated
from one side of the‘panel‘vibrating under complex~reso;
nance or non-resonance condition and the temporal and
" spatial overage of the square of the surface velocity would
fbe given by Egs.(2.7.9) or (2.7.10) or (2.7.11) depending
- upon the nature of modes under consideration, one obtains
the average radiation efficiency, sav’ as |
T
oy = PPN vee (2.7.13) |

_ The far-field acoustic pressure radiated by a baffled
plate can be obtained from Rayleigh's integral[29] and is
given by -

ikR
_ e b a - a.x BV
pw = —-1kpoc T 'o[}[) Vw(x,y) expEl(—-—a ) =i ( 5 )]dxdy

st e (2.7014)
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where V&(x,y) is as given in Eq.(2.7.8) and the plate
coordinate system is shown in Fig.2.4. It is to be noted
that while making use of the abo;e equation, the modal
pressure contributions are to be summed up after giving
due congiderations to their individual phases. In this
connection,it would be easily obgerved, that,-for the
combined case of resonant and non-resonant modes it is
the square of the modal pressures which are to be added
Up. Howevér,-for the case of superposition of resonant |
modes or for non-resonant modes only, the modal pressures
can be algebfaically added up. This would be evident, if one

remenbers, that,

2 2.2 .
P =‘Pl+P2+2PlP2‘30397

where g is the phase angle between the two superimposing
modes.

| Starting from p  one obbains the far-field acoustic
intensity I and then the sound power TT. Thus the average
radiation efficiency and the total average acoustic power
radiated by a plate vibrating under complex modeé is obtair
and effect of superposition of any number of modes on then,

can be studied.
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FIG. 2-4 PLATE CO-ORDINATE SYSTEM
FOR SOUND RADIATION.

B Y




CHAPTER-

LOSS FACTOR FOR SIMPLY SUPPORTED
RECTANGULAR PLATE

3.1 MODAL L0SS FACTOR FOR A SINGLE RESONANT
MODE,_UNDER CONSTANT FORCE EXCITATION

The method discussed in the previous chapter makes
it possible to evaluate the loss factor for the plate
for any resonant mode (myn). A factor 'K! has been obtained
which relates the modal damping of any higher order
resonant mode with that of the fundamental mode. With
the help of this factor the higher order mode damping is
obtained direcfly without going into the cumbersome
computations everytime; once the fundamental mode loss

factor has been computed.

. : . . e o N — 2
m 1Kt . KN
This fa?tor K' is defined as the ratio of (n0_)"/(n0_n )
for the (m,n)Ch mode to that of fundamental mcde. It is
easily scen from Egs.(2.1.18), (2.1.19) and (2.2.4), that,
for a mode, the maximum value of the proportional stress

(no7 ) in the plate would be either equal to (n 0}) . or

(n0§)max depending on which one is larger. Further, it

can be noted from &q.(2.1.18), that,

— 2
B 2 2 2 2, 22,7
nn%%) max a{fm +v e“n®) / (m“+e“n) ]

(1

and

W
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(n O')méx o [Ev m2+vezn2) / (m®+ 92n2)2j]

nn-y

Combining above equations with Egs.(2.2.4) and (2.3.1) one

obtains
K=K Ky Ky v (3.1.1)
whefe,
~ {(m2+\) 62n2) or €v m2+62n2)K.f (1+ e2)2 (N-2)
K = L ]
' (n? 2) (v +¢e9)

m+ e n
’ -_-o (301'2>

where; within the braces { } the larger term is to be
taken.
In the above e331.0. In case e {1.0, the term (v + e2) is

to be replaced by (1+ e2v)

, .
~1~2v £t & R
.. I 151 w; R G PO A b
—1-2v F’mn-l- E’mn a |
~lte N
_——_— mn _] |
Ky = | T4 E o
where, (vm.z e o202 . el 2406202, (
E.\ = ) ir) \ N e s e 3°l'5>
mn 24 62 wn?+en® |

whichever is less than or equal to 1.0

(l‘!’ez\)

yte? . | Lo
5—) for e{ory 1.0 eoo (3.1.6]

Hores By = (1462v) . v e
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Neglecting the modal variation in (B/a), as shown in

Table 7.1, one obtains from Eg.(2.3.5)

7
_mn - g (N-1) | vl (3.1.7)
"
o °
The above relationship correlates the modal loss factor

with the fundamental modal value.

For modes m = n, one gets from Egs. (3.1.2) to (3.1.4),

K2=K3=1.o and
- (N=-2)

K =K =[ L _J

1 ‘ (mxn)

Now, let a;particular plate of known material and
size‘beconsidered and let its modal damping be represented
as nj;n. Let the load be changed to P! such that Pt = ki.P
and loss factor change to ”&n’ then it is observed from

Eqs.(2.1.12) and (2.1.16), that

Ut pH -
mn mn :
— = k [ J g . e (3.1.8)

wheres henceforth, the prime represents a changed para-

meter. Going through BEgs.(2.1.18) and (2.3.9) one obtains

(ﬁig)
1 .
_T_)__I“ﬂ_]::_l = (K 3\ N. 1
X 1’

Yimn

(3.1.9)

This equation gives the effect of change in the amplitude

of constant force excitation on the modal damping of
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the plate.

3.2 MODAL 10SS FACTOR FOR A SINGLE RESONANT ODE
TNDER CONSTANT AMPLITUDS EXCLTALLON

Maximum deflection for any mode (m,n) is obtained
from Bq.(2.1.16) as

- 4a2 e | P

W_) = :
mn’ max e -J(m2+e2n2)2 "

- veo (3.2.1)
mn
In order that the maximum amplitude of vibration under
any mode (m,n) remains same as that of fundamental mode,
ioeo bl
W_)

mn = (wll)

max max

such that condition of congtant maximum amplitvude excitation
is satisfied for all the modés7 one can visualize that the
load has now to change to say P'.~Tﬁis would lead to a new

value of loss factor nﬁng such thats

et 1, P M n2+e2n° ]2 C(aas
' T)' —l - l 2 ® s w 3;2&2/
= ‘mn -— 1+e .

4
11
Substituting this equation in Eq.(2.1.18) and then combin-
ing with BEgs.(2.2.4) and (2.3.1) one obtains a factor Kj
which is similar to K (Eq.(3.1.1)).

Here,

KO = KOIKOQK—03 .o (3. 2. 3)

“‘{(m24v ezn2§ or (vm2+62n2)}“"(N—2)

wherey, K., =
Ol - (v+e?)

depending on which one is greater. Also in the above e 1.0.-



e
. , ? . 2
When e< 1.0, (v + ef) is to be replaced by (1+e“v).

K02 = K2 and h03 =IK3

Further, making use of Eq.(2.3.4) one gets
Nnn |
- K R (3020)-}-)
® 0
11
This equation correlates the higher mode damping with the
fundamental mode value under constant amplitude excitation.

Let the maximum constant amplitude of vibration for the

mode (m,n) change from W, toW! such that
!
Win - Unn =
Yan  Yan 2

One obtains the relation between the load ratio kl and

the amplitude ratio k, from Egs.(3.1.9) and (3.2.1) as
Ly

N-1 _
ky = ky | s (302.5)

Hence, from Eq.(3.1.9)'and the above equation one gets

nt )
mn - kéN" 2) - .o (3 . 2. 6)
ni‘: : : .

mn
This equationgives the effect of change in the constant

maximum amplitude of vibration on the modal damping of the

plate.

3.3 SIMPLIFIED RELATIONSHIP BETWEEN THE TOTAL L0SS I'ACTOR
UNDLER COMPLEX RESONANT MODKS AND INDIVIDUAL LOSS FACTORS

The evaluation of the internal loss factor for the

plate vibrating under complex resonances (when more than
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one mode have identical natural frequencies) has been
dealt with in Section 2.5. A simplified approximate
relationship between the individual modal loss factors and
the total loss factor under complex resonant modes 1is

derived below:

Let, there be two modes having identical natural
frequencies which are represented by suffix !1t and t2!
and let them vibrate under resonance condition. Let
suffic !T! represent the total values under such excitation.
Neglecting the effect of cross-coupling between the modal
damping and applying the principle of modal superposition,

the stress relationship can te written as

0. =0 +0 eeo (3.3.1)
eT el 92

Further, the maxima of Gy's can 2lsd BE written 43

_Og—'—lmT = o;,ml + O;-mg e.. (3.3.2)

provided one ensures that phases at the centre of the
vibrating modes are same. Also, one may write the following

aprroximate relationship in terms of‘O;T as

= O;Tm + Géng cev (3.3.3)

J
eTmT 1

Going through BEgs.(2.3.4) and (3.3.2) and neglecting the
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variations in integral ratios one getls,

- or - 2
L oo 32 /N L (0 3T (1AW
( 2 - 1%Tm L4 2
T]‘I'O“e‘l‘m ) - T J 7 7
T ’]_ . 2 _
o v e (3 . 3 . 5)
Hence; OéTml and Gng2 can be obtained through Egs.(2:3.1),

(3.1.9) and observing that

=~ v +e n ve2n2
0. o L ] or L ]qnd
& - me+en )2 (m + o2 )2

OéT is given by Eq.(3.3.3).

One can then estimate the loss factor for the plate
vibrating under complex resonance condition from the above
equation thereby avoiding the detailed computational

procedure as given'in Section 2.9.

In the atove analysis, a constant force excitation
has been assumed for the complex and as well as individual
modal excitations. It is further verified that Zq.(3.1.9)
holds good with the suffix !T! i.e. for the total loss

factor values for the complex mode as well.



47~

A similar analysis is made fof the case‘when
the maximum amplitude of each individual mode of the
complex resonance case is ‘same as that of the fundamental
mode under a load P, and an expression similar to equat-
ion (3.3.5) is derived wherein n, and nz;then are the
indi&idual loss factors under cohstant maximum amplitude
excitation, It is also observed that Eq.(3.2.6) holds
good for the total loss factor values as well.

Now, instead of maximum amplitude of each 1nu1v1-'
dual mode being equal to the fundamental mode value, one
may come across a case when the maximum amplitude under
"complex resonance condition is equal to the fundamental
~mode value. In such situations, assuming the individual
logss factors of the modes under complex resonance to
be equal, one can observe that stresses will be reduced N
to a factor of (1/3) times the value under previous case,
where j is the number of modes under a complex resonance.
It can be seen then that the loss factor will be [1/j7] (=2)

times the previous value,

3.4 BFFECT OF CHANGES IN PLATE THICKNESS
AND ASPECT RATIO ON THE NODAL DAMPING

hY

Let,Athe constant thickness of the plate change'
from h to h' and the aspect.ratio change from e to e',’
such that the new loss factor for the fundamental mode.
be n{;. Let, the exciﬁaﬁion force remain constant. The

variation in B/a is very small as shown in Table 7.8 and
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is therefore neglected. Combining Bgs.(2.1.18); (2.2.4),
(2.3.1) and (2.3.5) one obtains the relationship between
nil and ”Tl the loss factor value corresponding to t hick~

ness h and aspect ratio ey asy

T)’ (—N%Ni) :
[—];L——i] = C so (3-’-}-.1)
X o
11
where, C_ = ChaC.iC ;.. (3.4.2)

@ 01702 03
Here,

2:£<v+e'2) or (1+912v)}_(N-2)

2
co. o= (&) dy2ddes y2 & -
01 [‘ Y 14a1? -L(v*ez) or (1+e2v)}

where the larger term within the braces i1s to be taken.

l 2 3 + g

Cop = ¢ E N R
J=2y ﬁli*‘ﬁ

C.. = (1ﬁl%N

03 l*ill

It is noteds thats for Q = ety 002 = C03 =1

h_y2(N-2)
0 =

Equation (3.4.1) gives the ratio of fundamental mode loss
factors between two plates'of,different sizes subjected
to constant force excitation. Howevers; the value of the

fundamental modal frequency itself changes as h or e changes.
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Let us now consider a case when the two plates
of different sizes are vibrating with same maximum
amplitude. Then to attain this condition; the force has

to change to P! and one gets from Eq.(3.2.1)

2
(W = (ke[ P |- - (hale? [;
| 2=2
. P! _P_ (e (ht3[ 14t
trees 57 = F (59 ) el oo (3.4.3)
1

Substituting this equation in Eq.(2,1.18) and making use of
Egs. (2.2.4) and (2.3.4) one obtains after neglecting the

variation in (B/«) once again,

[: L= o NRNERR

(R A
=X - Mo SN ;
where CO COlC02C03 |
Also, -
ht {_(l+ve’2) or @v*e’z)}“ (- 2)
- 2y 2
| {4 or (1+ve )}
%2 = Coo
C63 = C03

It is seens that, for e = et

(-2
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Equation (3.4.4) gives the ratio of fundamental mode
‘loss factors between two plates of different aspect
ratios and thicknesses btut of same lengthg subjected

to constant maximum amplitude excitations.

3.5 EFFECT OF DAMPING CONSTANTS ON THE LOSS FACTOR

Let nil be the loss factor corresponding to the
damping constants of J!' and N! of the material, the elastf
ic properties remaining same. Observing; that, £11= Eil and
nTlOéK = nilo“é one obtains with the hélp,ofvKSa(2.l.l8)7‘

(2.2.4), (2.3.1) and (2.3.5)

@l -2y e LD
1 - . a( N"‘2 I\I!*l Nl_,l *:L
T]ll (T}l].) _ . Ro . (Nt-—2 T eee (3.5.1)
o N-2 Nt
T
WHERE , L @ )
4 R = R N--2 Nt.d/ R Nro5 oD
: - . (3.5.2)
- 2
Ry = (L-2v 11+ £
and ROZ.: (1 + le)
= JE 'p‘gml' : _ I g wt ]
r = [ﬂ .B“@mirl- L - "B7J

The loss factor for any plate material for which the
damping relation D = J 0 ¥ is assumed to hold goods; can bLe

evaluated from the above equation provided the integral

/022 7/ N
CENTRAL LIZRARY UNIWERSY OF ROCTEE @*@‘f”‘* 'ﬂ)

ROO™Y A \ {rooT= 2}
R t
: \ : 'é"';“ ’

NG m\ﬁf/
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ratios (a/B) and (a'/B') are known. The variation in
the Poissoﬁ’s ratio is taken care of in the term R0 and

the variation in E is to be accounted for in r and Tye

3.6 MODAL DAMPING UNDER ECCENTRIC POINT FORCE

So far in the analysis, a central point harmonic
force has been considered to act on the plate which |
excites only odd-oqd mode, Let the force now act at aﬁ
~ eccentric point (x,,y;) instead of at (3, ¥). Then it is

known [7Q]that the response term in Eq.(2.1.16) for
mnxl n'nyl

).

Hence, going through the steps as laid down in Sections 2.1,

odd-odd mode will be multiplied by Sin( Ysin(

2.2y and 2.3, one observes that

( .N"“ )

mmx, nny Nwl .

“mﬂ“‘* []Sln(““— ) 51n( L ‘3l vir (316.1)
nmn ' ‘

where 7! is the loss factor for a mode (myn) when the

force is eccentric and nin is the modal loss factor for

central point force.

For additional even order modes which are excited
when the force is eccentric, one may obtain ﬂén(M5ﬂ = even or
0dd) from an equation of the type (3.1.7) where the factor
K, of Eg.(3.1.2) modifies to |

. [: {(m2+v eénz) or (my + &2 )}~ 14e2 2
! {(1+ve2) or (v + e? } w4+ ezng) ‘
| mux niy,
sin( ) sinl(— -)_#NAZ)

Ty, ~ (3.6.2)

B

TX
sinl= Lysin(



CHAPTER-4

FUNDAMENT AL MODE LOSS FACTOR FOR
CLAMPED PLATE

-~

The modal loss factor for a rectangular plate of
which éll the four edges are simply supported has been
dealt with in the previous chapters. The eigen shape func-
tlons and the natural frequencies for such plate are given
in Egs.(2.1.13) and (2.1.14), respectively. The effect of
clamping in turn of the edges is to change the boundary
conditions of the plate. The shape functions and the
natural freguencies for different sets of boundary condi-
tions as derived by Warburton are given in Appendix-l. The
loss factor for the fundamental resonant mode for four
different plate boundary conditions, Fig.4.1, will now be
determined and effect of in-turn clamping of the edges
on the modal damping of a simply supported rectangular

plate will be studied.

4.1 ONE EDGE CLAMPED-CASE 1

The shape function for the plate having the edge
= 0 as clamped and the remaining edges as simply supported

is obtained by combining Eqs.(4.1.2) and (4£.1.5) as

‘ sin(0.5y,)
Wmn(x’y) = EinYZ(lZcE ."5) sinh (0,5, yesinhy, (~ - 7)] sin n_{)rl
oo (4.1,1)

&lso, from Bq.(4.1.8) and Table 4.1.1 one gets the funda—

mental mode frequency parameter as
| -53-
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FIG. 4-1 RECTANGULAR PLATE-DIFFERENT BOUNDARY

CONDITIONS ON THE EDGES.
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hy = 14[(1.25) Mset4262(1.25)21- £ cer (4.0.2)

Since the orthogonality of eigen functions holds good
for clamped and simply supported conditions, one gets

the modal loading coefficient from'Eq;(2.l.8).

It is seen from Eq.(4.1.1), that,

. 2 .
b a b[é _ sin (0.5 v,) ) 2 8in v, :] .

2 a
US ax dy = 22 (4.1.%)
11 Vg 4 sinh?(0.5 v,) Yo |

Further, one obtains with the help of the procedure given
in [70]

ba cos(0, 257 )
l I P(ny) W (x, y) dx dy Plsin(0. 25Y2){W2—§T7 - lﬂ

o 0

fOI‘ n = Odd ¢ o0 (4.1.4)

Substituting Eqs (4.1.3) and (4.1.4) into Eq.(2.1.8) one
gets for central point force, the value of modal loading

coefficient Pll as

where, ,coé(O.ZSYZ)

Sin(o°2572){cosETO.25y2) -l}

F, = : J eee (4.1.5)
1 sin® (0.5 Y,) sin v,
1~

sinhz(O.SYZ) : Y2

The response when the plate is vibrating in its fundamental
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resonant mode is now obtained as in Section 2.1 and is

given by
: ) 4Pa29F (x l) sin(0.5 Y, )
Wix,y) = = [:31n Y 5)- .
> in BN 2 2’7 sinh (0.5 y2)

.sxnhyz 2a ~-w{]31n Ly
. (4.1.6)
Stresses are obtained by making use of Bq.(2.1.17). Foll-
owing the procedure as given in Chapter 2 and using Egs.(2.2,4)
and (2.3.5), the modal loss factor for the fundamental

resonant mode is evaluated.

4,2 TWO OPPOSITE EDGES CLAMPED-CASE -2

For -the case of a plate with edges x = 0 and x = a
as simply supported and edges y =0 and y = b as

clamped, the shape function is obtained from Egs.(A.1.2)

and (A.1,3) as : ' : JEEE ~
sin(0.5 v,)
- y.1 1 -2 mrx
Hlmn(x,y) - [cos Yl(b 2) SIRR (0.5 Y y-cosh Yl ):Ism
fOI‘ n = Odd - LI Y (40201)

The modal frequency parameter for the fundamental mode is
obtained from Eq.(4.1.8) and Table A.1.1 , as

Ap =t 1+(1.506) e4+292x1;24%] cee (4.2.2)

It is seen from Eq.(4.2.1), that
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1l

.2
. sin“ (0.5 vy, )
| me dx dy 3—2 EL+ 5 L :’ cee (4.2.3)

Also, for a central point force one obtains [70],
sin(0.5 Y, )
gg Px,v) U (x,9) ax ay - Ao ammosay | e (420

Substituting Bqs.(4.2.3) and (4.2.4) in Bq.(2.1.8) one

gets the modal loading coefficient, as

_ 4P

P11 = a5 %>
— s1n(O.5Yl)
1 +
- 31nhTO.5Yl):l

Where F2 = ) v e (4.205)

- sin” (0.5 v4) -
1+ ]

sinh°(0.5 Y1)

The fundamental resonant mode response for the plate,

therefore, becomes

) E
" 4Pa“eF y sin(0.5y, )

W(x,y) = —2— | cos v (g - %) + 1
inllBAll sinh(O.Syl)

.cosh vy ( %— - %) sin gz .

- LI (4.2.6)
Having obtained the response,the fundamental mode loss
factor is once again obtained by following the procedure

as given in previous section.
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4.3 THREE CLAMPED EDGES-CASE 3

‘In this case the edge x = a of the plate is simply
supported whereas all the remaining three edges are clamped.
The shape function is obtained with the help of Egs. (A 1.3)
and (A.1.5) and is given by
~ 1 s:Ln(O.5Yl) )] .

. 1
. m' (X’y)-_:_- coS Y (I - _.)+ S ————————— COSh Y (I- -
mn N 1'% 2 sinh (0. 571) 1'% 2

- . 1 sin (0. 5Y2)
';fln Yol5g - ?)_ STRE(0S 5y2) q1nh72 .. 5{]

eo. (4.3.1)

The fundamental mode frequency parameter %ll is obtained

from Eg.(A.1.8) and Table A.1.1 as

- n4[}1.25)4+(1.506)4 ef+2e%1.248(1.25)% (1~ &= E}
| oo (4.3.2)
One gets from Eq. (4.3%.1)

.2 .

b sin“(0.5v,) 2 sin vy

2 - b 2 2 .
[ ] dxdy—%-[l— - - ]
0 o sinh (O.5y2) 2
2 -
sin“ (0.5, )
. [; + 5 1 :] eee (4.3.3)

sinh (O.Syl)

Also, for a central point force one gets [70]

b a '
o | cos (0.25y,)
[ [B(x,3) Uy (,9)ax ay = 2[sin(0.257,){ 55710, 75,7 1 1}

O o
sin(0.5yl)
.EL-I- Sinh(O.SYl) ] e e o (4-304)
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Substituting Egs.(4.3.3) and (4.3.4) in Eq.(2.1.8) one

gets,

4P :
Pll = 'a""g.Fl.F2 o0 o (4-305)

where F; and F, are given by Egs.(4.1.5) and (4.2.5),

respectively,

’

The fundamental resonant mode response for the plate,

therefore, becomes

4Pa eF. F - : sin(0.5y. )
A . 1 2 Yy _ 1y, 2 1 y_1
Wix,y) 1lBAll _?Os Yl(b 2)+ sinh(ﬁ??yl)‘COShYl(b 2{].

. x 1, Sin(0.5v,) 1
- s vu(5E - 3)- 5Ink(0.57,) " sinhy, (35 -3)

s 00 (4.3.6)

The fundamental mode loss factor is now evaluated ag .

indicated in previous sections.

4.4 ALL THE FOUR EDGES CLAMPED - CASE 4

The shape function for the rectangular plate of which
all the edges are clamped is obtained by combining Bgs.(4,1.3)
for X(x) and for Y(y) and is found to be

s8in(0.5y,) ' 1
T (x,y) = [?os v, (& - £)+ - L cosh v, (& - —).]
mn t® 27 sinn(0.5v,) ta 2
Sln(O SY )
Slnh(O 5 l)

eee (4.4,1)
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The fundamental mode frequency parameter is obtained from

Bq.(4.1.8) and Table 4.1.1 as
Ay = n4[(l.506)4+e4(1.506)4+2e2x1.248}(1.248] cer (4.4,2)

One obtains from Eq. (4.4.1)

£ gw;n dx dy = %2 1+

sin®(0.5y1) ]2

(4.4.,3)
sinh2(0.5yl)

For a central point force one gets [27]

(0 5
S 0-5vy) ] oo (4.4.4)

b a )
{foP(ng) Tﬂmn(x,y)dx dy = P[l STRETO- 571)

Substituting Egs.(4.4.3) and (4.4.4) in Bq.(2.1.8) one
obtains the modal loading coefficient for the fundamental

mode as

Pll = "g':% F2 o0 (40405)

where F, is given by Eg.(4.2.5)

Therefore, the fundamental mode response for the plate

is obtained as

4Pa2eF§ sin(0.5y ) 1
W(x,y) = ﬁ;;ﬁizl[;os yl(— - ) IR0 By 5¥: ) coshyl(— - 52].

1, sin(o. 571) 1
. [09871(% -3+ sm"_f COShYl(b - ")]

(4.4.6)
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Having obtained the resonant response, the loss factor

for the fundamental mode is obtained as indicated before.

In all the above cases the values of Y, and Y, are

to be used. These are known from litersture [30} as

0.5y = 4.7300
O.5y2' 7.853%2

Thus the fundamental mode loss factors for diff-
erent sets of boundary conditions and for different plate
aspect ratios are computed and effect of inturn clamping

of the edges on fundamental mode loss factor studied.



CHAPTER 5

ANALYSIS OF VARIABLE THICKNESS PLATES

The equation of motion of 2 simply supported
rectangular plate having a thickness variation in X-
direction has been given in Eq.(2.6.3). When the plate
vibrates in one of its reéonant mode the approximate
one term and two term solutions can be obtained with
the help of Galerkin's Method[3(] and the fundamental
mode responses are given by'Eqé.(2.6.ll) and (2.6,12)
wherein the Galerkin's coefficienfs All’ Ail and Aél
are to be evaluated..After determining the response, the
modal damping can then be obtained. The follo%ing two
cases of variation in thicknesses are considered.

l. Linegr variation in thickness, and
2. Parabolic variation in thickness,

5.1 PUNDAMENTAL MODE RESPONSE FOR THE PLATE
WITH LINEAR THICKNESS VARTATION —

The approximate expression for the response is
obtained by considering one term or two terms in the

Galérkin solution. Both of these will now be discussed.

5.1.1 One Term Solution

Substituting Egs.(2.6.4), (2.6.7), (2.6.9), (2.6.10)

and (2.6.,11) in Eq.(2.6.3) and performing the necessary.
. -62~
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differentiations one obtains

‘ 3
(1+iﬂll)[%0[§(x):] . Allsin(gz) sin(ﬁ%){iz + %5}2

- égz AliBOEG(x)]z G'(X){ig + %2} )

- cos (ZX) sin(%l)-sﬂzAlisin(gﬁ)sin(%i) 1
'(ig + ig){2G(X)(G'(X))Z;(G(X))Z G"(x)i]
- Phy 6(x) wi,4);sin(EE)sin (B)

- g%- sin(-g-)-{-) Sil’l(%l) = L(W) . e ’(5-.1.1.1.)

where prime in G(x) represents differentiation with

respect to x.

Hence, onwards, the suffixes in 7 shall be dropped and
it would be considered to represent the fundamental mode

value of the loss factor.

Now, the linear thickness variation is given by

Eq.(2.6.5) such that

G(x) = 1+8(),
'G'(X)’-’ g ’

Gi(x)z 0 .

The application of Galerkin's method leads to the solution

of the following integral equation
b a

Jo [o LON) 8in(E®) sin(®) ax ay = 0 ... (5.1.1.2)



64—

The coefficient A;; of Bq.(2.6.11) is then obtained

from the above equation.

Substituting Eq.(5.1.1.1) in Eq.(5.1.1.2) and solving

the resulting integral expression, one obtains

5 4p | ‘
I (I,+ = I2)- 3= 1.1 =0
o111 I3 {Ix+ 3 I3)- o5 L1, vee (5.1.1.3)

where the integrals I's arec given in Appendix 2.

After substituting the values of the integrals and simpli-

fying, one gets the coefficient All a®

P

ee. (5.1.1.4)

by =7 —3
(l+1n)BoCl-phowllC2

where,

4 ‘ 3
0 = [:-E§ (1+6%)2{141.56+6% (1- i;§)+'% (1- ig)}

45 e v
2
+1.5 lt—%(l-v)62(1+0.56):] . eeo (5.1.1.5)
a .
and > - '
_ a_ ' (5.1.1.6)
02 = 4e(l+0.56) coe olols
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Substitution of Eq.(5.1.1.4) in Eq.(2.6.11) leads to a
complex response expression. However, it is known from the
resonant response behaviour, that, the prhase of the
response under resonance condition has to be one of 90°-
lag with the excitation(as in Eq.(2.1.,16)). Therecfore,
eéquating the real part of the denominator of the coeff-
icient All to zero in order to bring the phase of thg
resonant response in conformity with known behaviour,

one gets the frequency equation as

My = Gat/c

42 eee (5.1.1.7)
where, All = Phoa wll/Bo

and response equation as

P sin(gz) sin(%l)
W = - - - o o0 (5.1:1.8)
ln,BoCl

The term 1/i can be dropped once again as was done in
constant thickness plate analysis, since it indicates the
phase only. Eq.(5.1.1.7) gives the one term approximation

to the fundamental mode frequency parameter Aqe

5.1.2 Two_Term Solution

Substituting Egs.(2.6.4), (2.6.7), (2.6.9),
(2.6.10) and (2.6.12) in Eq.(2.6.3) and performing the

neceseary differentiations one obtains.
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2
2 1 .
(1+in) [ E}(X) j Tt { + —2-) S:Ln( )+(—2 +; ) A21’

.31n(— )}31n -X) 6B [?(XXI2G'(X)—-{

c"!i—-’

+ ).

QJ

.Ailcos(nx)+(—z _?) 2 A21.cos(~—~)} sin(%x). .

~3B,1°{2G (x) (G (x) )2 +(6(x))° G"(x)} sin ()

I 2

,{(-§ + EE)Ailsin(§£)+(§§ + ﬁﬁ)Aél.sin(ggé)i]
—oh G(X)wll{AlISln(~§)+A 15in(88%) }oin (LX)
- .;}.% sj_n( sJ_n(BX L(w) o (5-1-201)

Galerkin's method is applied for obtaining the coefficients
Ail and A21 and the following two integral equations are

to be solved.

j r L(W) sin(®) sin(F)ax dy = 0 ... (5.1.2.2)
f f L(W) 31n( £LX) 81n(%z)dx dy = 0 eoe (5.1.2.3)

where L(W) is given by Eq.(S;l;Z.l).

Solving these integral expressions one obtains

2 2 3
. [a 11 5 . 5 5
> 2
1 5
%5+ b2) 1(Tg+ 25 Tjo* <5 Ty 3 I12)}
3 5 . 52
-6 f‘ 3 I {(‘2 '?)A11(16+ It 2 Ig)



e i’Z)Z'Az'l(Iw* 28 I14*55' I5)} ‘>..-.(5.1.2.4)
~3122 f; Il{(i? + i?)Ail(IZ+ §IB)+
+(g§ Ay (g 21, )}]
-Ph wll l{(12+ 2ls) A 11+(Ig+ 6 )Aél}
-H LI, =o }

and,

Bo(l+1n)[%411{(§2 + %2)2Ail(19+ £§110+ Eg 19+ é-3'112)
+(;2’22 ¥ %?)ZAZfl‘(I16+ 2° 10+ 25 Ligt 5'119)}
-6 2 §E L{g + i’Z)Al'l(Izo‘” 21y :; L30)
*2(52?: + %?)Az'l(lﬁ” z Log* f;:zs)} =3n"2 % I.

22 v

119 = O 0. (5010205)

where the integrals I's are givem in Appendix 2.

Substitution of these integrals into the above equatlons

and S1mp11f1cat10n leads to the following two 31multaneous

equations:

- . . p
AilEf‘l+1nBl]+A21[F4+lT)sz = Bo | eoe (5.1.2.6)

and, h
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Ail[F3+inA]]+A2’l[F2+inA2] ;o eee (5.1.2.7)
where, ‘ _
F, = (Bl-+G6), F, = (A2+H6), F3=(A1+H8),
Fa = (BorGe) oo (5.1.2,8)
A = (H1+H3+H7), Ay = (H2+H4+H5)
B, = (G1+G3+G5), By = (G2+G4+G7) .

Here, Gl to G8 and Hl to Hg are the taper coefficients for

linear thickness variation and are given in Appendix 3.

Solving simultaneouSIy, the Eqs.(5.1.2.6) and(5.1.2.7) one

obtains,

' 'P/BO[ Fy+ind, 7] | |

&7 = : s (5.1.2.9)

: EF5+1nF6]
and, N :‘P/BOEF3+10A1:] . ;

l 21 - = - . . o o & 5.1. .lo)

where,

Fy = (F;Fy-F,F,)-n%(B,A,-4 B,) eo. (5.1.2.11)

5 172 "37°4 172 7172

2)

It was found that A2 and F2 are ofseame order since H6

is usually small.Therefore, for low damping, the imaginary
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term in the numerator of Ail would contribute a very
small phase and hence can be dropped. Similarly, the
imaginary term}in the numerator of Aél can also be dropped.
Now, in order to bring the phase of resonant responsein
conformity with  known behaviour, one has to equate the
real part of the denominator of Ail and Aél i.e. F5 to
zero. This would bring the phase of the resonant response
to 900—1ag with the excitation. Therefore, one obtains
the frequency equation as

F5 = 0
or, F1F2-F3F4 = 0 after neglectihg n2 term

which is very small.
This leads to a quadratic equation in terms of the fre-

quency parameter All’ as

2 |
A [ GéHé-HéGé J+, [ GgAy+HEB) ) - (HEB,+G LA, ) ] |
+(B1A2"A1B2) = O ¢ o0 (5.1.2.13)

Lower root of this equation is the two term approximation

i

to the fundamental frequency parameter kll‘

The Galerkin's coefficients reduce to

F 3
P 2
Al) = o= x ==
11 inB, F6
d eee (5.1.2.14)
P F
and Al = e et 3
21 11)Bo F6 ]

Thus, the two term response Eq.(2.6.12) becomes

W' = m%6 [Fzsin(-:-—x) -F3sin(-2-£-)5) ]sin(%x) eee (5.1.2.15)
, 0
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The phase term 1/i can once again be dropped hence on

wards.

2«2 FUNDAMENTAL MODE RESPONSE FOR THE PLATE WITH
PARABOLIC THICKNESS VARIATION

The approximate response expression with one term

and two terms in the Galerkin's solution are obtained below.

5.2.1 One Term Solution

The parabolic thickness variation is given by Eq. (2.6.6)

such that
x 2
G(x) = l"“("a") ’
G'(x)= - gﬁ%‘ ’
a
and, G" (x)= - 2_5;

a

Substituting Eq.(5.1.1.1) in Eq.(5.1.1.2) and using the
above expressions for G(x), G'(x) and G" (x) one obtains

after solving the resulting expression,

2 2 3
. 11
A (1+in)B [%4( t o) 1 {I- B+ 31 L
11 0 a? b2 1{ 2 o 4 a4 26 o 27}
6n0,1 .1 2 2u . L opf 2,1 .y
- = + ) (- & YI.{1..- T4+ K I -3 + )
R it
21 2 2 2p 'yl
R RN R A S TG SO TR S i ]
1 2 47 2 Te6’T T2 Mo 52 4 a4 26 } |
2 4P '
~Phgwyy Ay Ty {T,- §2 Lb-shi=0 ... G2

where the integrals I's are given in Appendix 2.

After substituting the values of the integrals and simpli-

fying, one gets the coefficient All as

CENTtL LIBRARY UNIVIRSITY OF 2000XEF
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_ p
Ay = — = 5
(1+1n) B, Cy P w?, O,

which is same as Eq.(5.1.1.4),2and wherein

4 2 2
¢ = Ex=(14e%) {1-u(1- 32)s Hio Iy 4 Lag)
4a”e T T )
3 .
n F
2 B
282 (1-v)p{1-201- 2wl 5 + LB} L (5.2.1.2)
a I T T
2
6, = &= 1- £(1- ?5-)] .. (5.2.1.%)

With the help of similar arguments as put forward in the
previous section, one observes, that, Egs.(5.1.1.7) and
(5.1.,1.8) for the frequency and response hold good in.this

case as well.

5.2.2 Two Term Solution

Substituting Eq.(5.1.2.1) into Eq.(5.1.2.2) and solv-
ing the resulting integral expression, after making use of
G(x), G'(x) and G"(x) for parabolic thickness variation,

one gets
(1+in) B, | n*1 {A" (25 + ;-—)2(1. - 25‘-1 + 2“—2-1 s Iy7)
M Eoim 111841 22 27 24T L4267 B 21

2 2 3
2 1.2 3 -
+A). (55 + =) (1= 2%1 Sl I24)
21 ;E ;? 97 27117 430 2a6 31 }

3 '
6 2 1 1 2 K
+ “gh(;%)ll{kil(;? * ;?)(17‘ ;% Irg* 34129)
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2 2
22 1 2
HHE (S + ) (Lyym F It S 1))

T i

a
£y
L a

- )A’ I
+(;? + b? 11~ i? 30 )}
| 2
+3n2(§%)11{311(§g + §§)CI - 35 I+ ﬁz I56)

2
“*él(ii +o2) (g %t E4 I3o)}]

a
-Ph w2 I f_' (I,- H§ I,)+ (I J (5.2.2.1)
o11t1ftn o= 77 T+ 43, 211_]
4P
~ap il =0

Substitution of Eq.(5.1.2.1) into Bq.(5.1.2.3) and solut-
ion of the resulting integral expression, leads to the

following expression

L2 3
41 @ 412 |
(1+in)B [: Il« A1, (Tg- 2% 11 f% I30= iz I53)
2 ;L2 3
2 2 4 3
+H= + 2 ) (Il6 2 Ligt 2% 15~ 55 1500}
a a a
3 2
+6(24) 1 (s + 2y (1, - BT+ B 1)
2 & 2{ 2 T2t %% 367 7 I37

&
+ 2(33 + &yl (1, ,- 2& I+ Eg;l )}
| 2 ;2 21'724 2 ~38 24 739



Phowll:l[ 1(Ig- E?Ill +h)o (T - -H?Il8{]

4P _
~ 35 I1Ig =0

where, the integrals I's are given in Appendix 2,

Substitution of these integrals into Egs.(5.2.2.1) and

(5.2.2.2) and simplification leads to the simultaneous

equations of the type (5.1.2.6) and (5.1.2.7).

It would be

noted that Eq.(5.1.2.8) to Eg.(5.1.2.15) holg good in this

case as well, where the taper coefficients G to G8 and

1

H, to Hg are given in Appendix 4.

5.3 LOSS FACTOR EVALUATION

The one term solution for the response of the plate

is given by Eq.(5.1.1.8) as

n W= _—U" 31n(~—) 81n(-z)

eee (5.3.1)

where the coefficient Cl for linear thickness variation is

given by Eq.(5.1.1.5) and for parabolic thickness variation

by Eq.(5.2.1.2). Now making use of Bgs.(2.1.17) and putting

;B _ Bof(x)
16 T 16
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One gets the stress expressions as

2
o = 2-? Qi—l—(l+ve ) 51n( )szn(gz)

X neC
| 0.75%°p G(x) -
o, = — 3 > (v+e2)sin(£z) sin(ﬂx)
v hoCl
Nt = Q. janpG(X)(l V) e cos(——) cos (—X) cos (5.3.2f
y hCl
0

The stress distribution can be obtained by making use of
Bgs.(5.3.2), (2.1.19) and (2.2.4).

As regards the =lement size, the following points
of differences are to be noted, rest df the considerations

remaining same.

(1) In the case of constant thickness blates the element
sige dv remains same at all the points (x,y) and therefore
it does not appear in Eq.(2.3.3). For the case of variable
thickness plate, the element size will depend on its

location.

Therefore, Eq.(2.3.3) modifies to

(5.3.3)

gy 0 L 00y ovy ey
T ) (noe% dv

(2) Since the tiickness variation is in X-direction, there
is no symmetry of modal wave form and hence of stress
patterns about the line X = a/2. Therefore, the stress
distribution is to be considered for half the plate sige

from x = 0 to x = a and from y =01ty = g.
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(3) Quite a bit of economy is obtained in computer programme
formulation for the determination of stress distribution
from Eq.(5.3.2) by considering the periodicity of the

trigonometric functions and taking due care of the.G(x) term.

The two term solution for the response is given by

Bq. (5.1.2.15) as

W = Ei%z_gzsincgﬁ) - F3sin(f2§§~i]sin(%y) i (5301

The loss factor once again is computed by following the

steps as indicated before,

5.4 RELATIONSHIP BETWEEN THE L0SS FACIORS OF CONSTANT
AND VARTIABIE THICKNESS

One observes from Bgs.(5.3.2), (2,1.19) and (2.2.4)

that O;m the maximum value of stress Og s would occur
’ y

when 7 = % and § = T = % and would be given by
6Pnz[§(x)—7 {(1+ve?) or (w+e2)}
’ ) ~x=g/2" t ‘ .
T Oam - hz 2C . (l‘FC:) |
o & ™ e (54.1)

Neglecting the variation in the ratio /B for uniform
thickness and variagble thickness plates and observing that
& would be same for both the plates; one obtains through
Eqs.(5;4ul)y (2.3.1) and (2.3.5), the following approximate

equation



N- 2
™. = N-1
L?Jgj = [e) .
lC
wheres Cl
&€= [:G(X)—X=a/2‘ Ce—=1
lV

Further, one gets

[6(x) 7). = (1 +2) for linear thickness
x=a/2 2" Variation
= (1 - ¥y for parabolic thickness
L/ variation :
L g 2
¢, =—>5—(1 + e?)
¢ La“e
and C; is given by Eq.(5.1.1.5) or by Eq.(5.2.1.2).
v

Thus; one can estimate the loss factor for a variable

(5.4.2)

thickness plate with the help of the approximate relationshij

given in BEg.(5.4.2).



CHAPTER-6

RADIATION BFFICIENCY AND SOUND POWER

E

RADTATED_ FOR_COMPLEX NODE EXCITATION

o a—

The far-field acoustic pressure radiated by a
baffled plate can be obtained from Rayleigh's integral
and is given by Eq.(2.7.14). The far-field acoustic
intensity I is obtained as

2
. _In,|

eee (6.1)
poc

For a single odd-odd mode, it becomes [76],

4 p
vV ¥ ab 2 cos(Eg) cos(—%) 2
I=20c ~£‘9--'--——-:’ {-—- }
°© 'n;BRm n

@ B
(GHMHE51Y 7 (6.0

Also, the average acoustic power radiated from one side
of the panel is given by

2n m/2 5 A
TT=[ ] I R°sing dp a¢f cee (6.3)
0 (o]

Substituting Egs.(6.2) in (6.3) and usinz Bqs.(2.7.7) and
(2.7.13) oné gets [76], .

. 6
64 k°ab /2 m/2 cos(gg) cos(gg) 2
s = | sing do d¢
mn 6 2n§ jo Io [ ]
T-m

a B '
(G HEE ) (6.

It would be seen from the above equation that; the velocity

term does not appear in radiation efficiency expression for
-77~
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a single mode. However, when complex mode excitation
is considered, the velocity terms do appear in the
expression for Sav and hence modal velocity coefficients

for a type of loading are of importance.

Substituting Eq.(2.7.8) into Eq.(2.7.14) one gets the
sound power radiated under complex resonance ex01tatlon

condltlon, as

2 2
80 cka 2 /2
T = > % ’.TD/ fﬁ 0032(3__) cos (..9.)[2 5

T 0] 0
2

]:’ siﬁe do af ... (6.5)

mn[( 0)2 l][( °) -1

From Egs.(2.7.13) and (6.5) one gets

cos ( 2) cos gg)

. érk2_hi /2 /2
- % IO IO 5— T 2 [Zz
L2 Vﬁn '

V

2
] sing dg 4¢

| un (52)2-1] [(£2 -1] .. (6.6)

where the summation in the gbove two equations include

all the resonance modes at a particular exciting frequency;
When the radiation efficiency and sound power radiated
under a number of non-resonsnt modes are to be evaluated
then Vﬁn in the above expressions is to be replaced by

[V&nl which is given by Eq.(2.7.4).
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A careful look into the bracket squared part of
the integral of Eq.(6.6) would indicate that there are two
types of terms present in the expansion. lhe first type are

the 'single' terms like

2 0 042
L<mn> A [
and the second type are the 'product' terms like

2V .V
n m2

2 st g e
SN {300 | g

where (ml’nl) and (mz,nz) are the two modes which aré

superimposed.

Vhen the effect of superpoéition 6f K number of
modes is to be studied, then, there would be K number of
'single' terms and K02 number of 'product' terms in the
expansion. The concept of 'single'and 'product! terms has
been incorporated only to facilitate the progrémme formulat-
ion,

For the case when the superposition of g non—resoﬁant
and a resonant mode is to be studied, it would bé seen that
the integral of Eq.(6.6) would consist of only 'single' terms,
This is because of the fact, that, under . such situations%

it is the pressure squared or sound intensity which is to
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be added up instead of addition of sound pressures.
However, it can be verified - as shown below - that
under such conditions the radiation efficiency and the
sound power radiated would be equal to the corresponding
values for the resonant mode, due to the fact that the
velocity term for the resonant mode is very much larger

than the corresponding non-resonant mode value,

Let, (ml,nl) be an odd-odd resonant mode and
(m,yn,) be an odd-odd non-resonant mode. The ‘super-
222
position of these two modes would give the resultant

far-field acoustic pressure to be

2 2. 2
)Y = p1+p2

and Fgs One gets,

“From Eq. (6.2) for small values of a,

ikR ~ia, /2 ~ .
o = {1050 & '5‘-33<-2e 102 s (52)) (-267H00/2,
» 2nk i
Villnl —_
ming{ -—-> -1} {< -1}
2
V.
> 2m2n2 2] e (6.7)
momp { (g 21y’ {5 o —0-)2_1}

With the help of Eq.(6.5) one gets, the sound power radiated

as
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2,.2,2

, /2 n/2 80 _ck“a‘b
= [ —f c0s?(52) cos? EQ)
(o] (o] 4N
) [ Vr%l ny
{( o B {( ) -1}
L |
+ 2.2 . ] sing de a¢
2 2¢, % 2 42, B, 2 2
m2n2{_ (E‘;}E) —l} {'(-n—Z—E) —l} ... (6.8)

Using Bq.(2.7.13) one obtains, from the above equation,

2 V2
, Vo, n m,n
Ses Ll g oy v (6.9)
171 z V2 272 V2 :
mn mn
where, J Vin = (Vilnl * Viznz)
Since, Vi n)‘}V2 o * One can see, that
1777 MRfp
E: Ve ~ V2
mn m 0
2
Vm,n
272 ~ 0
L Von
2
)
m,n
"'%2"’1’\'1.0 .
L Vi
Therefore, Eq.(6.9) reduces to
S: S e & 0 (6010)
myng * N
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with the similar arguments for the case of sound
X . . . 2
power radiated which is proportional to Esav‘ 1v,1>7]

one sees that

T = an ... (6.11)

mq 1y
Although above approximations have been derived for

odd-odd modes, but, these are found to hold good for any

mode.

The integrals of Bq.(6.6) are integrated by means

of two-dimensional Gauss type quadrature formula [67].

Thus, the radiation efficiency (from Eq.(6.6)) and
the sound power radiated (from Eq.(2.7.13)) from a rect-
angular plate, simply supported in an infinite baffle,
and, excited by a central point force, are evaluated and
effect of superposition of any number of resonant and
non-resonant modes on these two quantities studied.
Having obtained these, the effect of excitation frequency

on these two quantities is also studied.



CHAPTER -7

RESULTS s DISCUSSIONS AND CONCLUSIONS

7.1 RESULTS AND DISCUSSIONS

For the purpose of amnalysis a rectangular plate of

SAE 1020 steel of following dimension was considered?

59.06%(1.5m)% e

a = = 2.0% v = 0.3% h = 0.098y2n
~ (0.002%n)
B = 30.0x10° psiy P = L60 1bs/cft.(7.6x10° kg/md)

(20.682x10-9 N/m?)

The damping constants J and N as obtained from Ref. [37]
were chosen asjy

Tz 2.626x10° 13y n =z 2,286

A central point harmonic force of amplitude P = 0.2248 1b

(1 Newton) was assumed to act on the plate.

The modal damping for the above reference plate has been

classified as “ﬁn in the text.

7.1.1 The Upper and Lower Bounds for Fundamental
Mode Damping

The ratio of loss factors dependent on dilatational
energy dissipation (E .(2.2.4)) to that dependent on dis-
tortional energy dissipation (Eq.(2e2.3)) were computed for
different values of aspect—- ratios and damping indices. These
ccmputations were done for both the constant force and
constant maximum amplitude excitations. Figure 7.1 gives

the variation of this ratio with the aspect ratio of the plates
-83~
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whereass; the variation with respect to the damping index

is indicated in Fig.7.2.

It is seen from these plots that the ratio of
upper and lower bounds for the fundamental mode loss
factors is maximum for the square plate and decreases with
the increase of aspect ratio. This practically becomes

constant for the values of aspect ratios beyond 5.0

For the case of constant force excitation the ratio
of loss factors decreases with the increase of damping
index and becomes constant as N increases beyond 3.0. But,
for the case of constant maximum amplitude excitations this
ratio increases with the increase of damping index. This is
in conformity to the behaviour shown by uniform uniaxial

. .. N
stress case where this ratio is 2.

It is known that both the dilatational and distort~
ional effects should be taken into consideration for
calculating the modal damping. This requires an experi-
mental determination of the factor | in expression (2.2.2).
It is noted that an approximate estimate of the fundamental
mode loss factor can be obtained for the case of constant
force excitation particularly so, for large aspect ratio
plates and for large indicesy by making use of either of
the Bgs. (2.2.3) or (2.2.4). This is tased on the concept
that actual damping would be a value in between the two

bounded values as observed by Whittier. The large value of
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this ratio obtained for the constant maximum amplitude
excitation compares favourably with the ratio of 7 as

obtained by Whittier for circular plates.

7.1.2 Modal Damping Under Constant Force Excitation

The normalized damping energy integrals « and
normalized strain energy integrals B were computed for
various resonant modes by obtaining the stress distribution

throughout the plate volume and writing a polynomigl of

the form
0. 4 . 3 (T
(L = a (=) + 4, (=2 ) +a<—-—>2+a<—-—-> + 3
Vﬁ 1 Oém e oém am G‘ 5
0o L - |
and () = a (=L 4 g e 57, g( ( L) +ad
b O;Tm eTm eTm G;Tm

The coefficients aq to ag and af to ag¢ were obtained through

curve fitting and the integrals could then be simplified to

Table 7.1 indicates the modal (B/a) values along with the
nodal aspect ratios. It is seen that there 1s a negligible
variation in B/a from mode to mode. This therefore Justifies
the assumption made in the derivation of the simplified
expression-for the loss factor given in Eq.(3.1.7).

The modal loss factors for number of resonant modes
were computed with the help of Eq.(2.3.3), These were
‘checked with the evaluations madec with Eq.(2.3;5). These
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are alsc indicated in Table 7.1 and the values are found

to matceh well.

The simplified relationship (3.1.7) which has been
obtained in the preéent work, was alsc verified. This
equation correlates the highcr mode danping with the
fundanental mode valuc. The factor K, as given in Eq.(3.1.1)
were evaluated. Table 7.2, gives the values of this factor
K for certain resonant modes and slsc compares the loss
faptor values as obtained from Eq.(3.1.7) with the computed
values, It is seen that the approximate expressioh glives
“the nodal demping within 3%. of the actual valuc.Therefore,
use of this relationship would obviate the necd of repeat-
ing cunberscme computatiéhs every time for estimating

the modal damping for higher nodes,

Figure 7.3 gives the plot of modal damping under
constant force excitation, It is observed that tho nodal
. damping decreases with the increase of modal frequency.
Now,*if the magnitude 0f the constant force changes then
the effect of this change on the danping of a mode can.
be obtained with the help of Eq.(3.1.9). Figure 7.4 shows
the effect of lcad ratioc kl on the damping of any mode.
This is a straight line with a slope of (%E%) and indicates
an increase in damping with the increase in force. The
effect of change in force on the damping fron modé‘to
mode,is also shown in Fig,7.3 where the parallcl shift il

has been obtained from Fig.7.4.
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T.1.3 Modal Damping under Constant Anplitude
Excitation

The factor K, as given by Eq.(3.2.3) was cvaluated
for nunber of rescnant modes. Table 7.3 gives the value
of this factor for several modes and compares the computed
loss factor values with the values obtained from the
simplified expressi~n (3.2.4). This equaticn corrclates
the higher mode damping with the fundamental mode value.
This is subject to the condition that in each case
excitation force is adjusted such that the maximum ampli-
tude of vibration is brought equal to the fundamental
mode valuc corresponding to the force P. It is secn that
the simplified cquation gives 'a sufficiently accurate

result,

- Figure 7.3 also shows the modal damping vs.. modal
frequency under constant maximum amplitude excitation.
The damping increases with the increase of modal frequency
in such case. Eg.(3.2.6) for a mode is plotted in Fig.7.4
and is a straight line with a slope of (N-2). This gives
the ¢ffect of amplitude ratio on the modal damping. It is
seen thét for the same ratio of increase . in constant
anplitude excitation and ccnstant force excitation (klz
ks, >1.0), the increase in loss factor for a mode is larger
in the former case. Figure 7.3 also indicates tho effect
of amplitude ratio on the damping from mode tc mode, the

parallel shift i, having been obtained from Fig.7.4.
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7.1.4 Loss Factor under Complex Resonance Condition

Loss factors for the plafe ﬁhen it is vibrating
under complex resonance condition,; were evaluated by
performing the modal superposition and using Eq.(2.5.2).
The loss factors under such complex resoﬁance condition
were also computed from the simplified expression (3.3.%)

which has been obtalned in the present work.

The loss factor computations for certain complex
resonance modes and for three values of damping index N
are shown in Table 7.4%. It is noted that the approximate
relationship gives a satisfactory value for two cases
of complex modes but the error is rather large in the
other two cases. This is probably due to unfavourable
combinations of nodal aspect ratios of the constituent
resonant modes., It is further seen that the errors are
quite large when N increases. A possible cause for this
behaviour might be that the approximations incorporated in
the derivation of the simplified expression are not holding
good to that extent.

It is observed that the total loss factor, in general,
is larger than each of the individual values contributing
to the complex resonance condition. Therefore, i1t is
imperative to calculate this, rather than using any sort
of average value.

Table 7.5 shows the computed values of my for certain
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complex resonance conditions when the constant force
excitation is 2P. These values are compared with Tip
values as obtained from Eq.(3.1.9) and it is seen that
one can make use of Eqg.(3.1.9) to study the effect of
force ratio on the total loss factor under complex
resonance excitation. It is noted, that, as force incre-

asesy; damping also increases.,

Table 7.6 gives the computed values of the total
loss factor and as obtained from Eg.(3.3.5) when a constant‘
amplitude excitation is considered. Similar observation
as in Table 7.4 as regards the error is made in this case
as well. Table 7.7 indicates the effect of amplitude
ratio on the total loss factor and verifies the Eq.(3.2.6).
It is seen that the damping under such situation increases
as the constant amplitude excitation increases. As a matter
of fact the plot of Fig.7.4 which gives the effect of
force and amplitude ratio on the modal damping is true
for the‘case of total damping under complex resonance

condition as well.

7.1.5 Effect of Aspect Rat101,lthkn8883 Damping Constants
and Fccentric Force on the Fundamental Mode Damping

The ratio (B/a) was calculated for plates of diff-
erent aspect ratios and thicknesses and is shown in
Table 7.8. A negligible variation was observed in the
values of (B/w) thus justifying the approximation made in

deriving Eq.(3.4.1). This table also gives the values of
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computed N1 and as obtained with the help of the
propoged simplified Eq.(3.4.1). The errcr in such compu-
tation is nct large indicating that Bq. (3.4.1) can be
used to study the offect of changes.in aspect ratios

and thicknesses on the modal damping. It is also seen
that the loss factor is independent of the absolube
dimensicns of the plate and depends only cn thickness

and aspect ratio.

Figures 7.5 and 7.6 give the effect of aspcct -
ratio and thickness on the fundamental mode damping,
respectively, for the constant force and constant maxi-
nun amplitude excitations. The demping is maximum for a
square plate and decreases as the aspect ratio increases
for the cunstant force excitation. Damping increases with
the increase in aspcct ratio for the constant maximun
amplitude excitation. It is further seen that the'damp-

ing increases with the increase of thickness for cons-
| tant amplitude excitation and deereases with the increase
of thickness for constant force excitaticn. It would
be noted that the fundamental mode damping has been
evaluated in the above cases, however, the value of the

natural frequency is different in each case.

To study the cffeet of damping index N on the
. modal damping, five different stecl materials were
considered[37] . The integral ratio (8/a) was conputed

in each case. The loss factors were computed and were
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also evaluated from the proposed simplified expression
(3.5.1). These two sets of values are shown to match well
in Table 7.9. It is seen from this table that the damping
increases with index N in the range N » 2. Figure 7.7
gives the (B/a) variation with the index N. This ratio

is seen to lncrease with the damping index.

The effect of the change in location of the point
force was studied by considering various excitation posi-
tions. The Eq.(3.6.1) was verified with the computed values
for odd-odd mode., Values for a few modes and for certain
Vexcitation positions are given in Table 7.10. The loss
factors for additional even-even,; even-odd and odd-even
modés which are excited under eccentric point force were
also computed. These were compared with the calculat@ons
done with the help of the proposed Eq.(3.6.2) and were found
to match well as shown for certain modes in Table 7.11. For
the case of complex resonance excitation under eccentric
point force; the computations for the loss factors were
made and checked with the values as obtained from-Eq.(3.3.5).
Table 7.12 shows this Comparison‘for a few cases and indicates
that the simplified relation holds good in two cases as
observed in Takle 7.4, and 7.6.

It would be observed that the modal loading coeff-
icient is no more a constant and indépendent of mode numbers

but now depends on the force position and the mode numbers.
mmx
1

Thus, it decreases by a factor sin ).sin(nnyl/b)‘when

a
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the force is eccentric. Maximum damping is obtained when
the force is central and it decreases gradually according
to a sine law when the force position shifts tovards the
edges. Evidently system does not vibrate when the force
acts on edges. The vafiation in modal damping with respect
to force position is symmetrical throughout in mirror image

formation about the lines x = % and y =~%.

7.1.6 Fundamental Mode Damping of Plates with
. Clamped Edges

The fundamental mode frequency parameters hll for
different aspect ratios were computed for all the four
caées of clamped and simply supported boundary conditions
(Fig.4.1) with the help of Egqs.(4.1.2), (4.2.2), (4.3.2) and
(4.%.2). These values along with the Ny, for all edges
simply supported case (Eq.(2.1.14)) are given in Table 7.13.
The frequency increases with the increase in aspect ratio
for all the cases. It is minimum for all the edges simply

supported case and is maximum for all clamped edge case.

The fundamental mode loss factors were computed for
various cases. The effect of aspect ratio on these is shown
in Fig.7.8. As expected the loss factor values are symmetrical
about the square plate (e = 1.0) for the cases when all
the four edges are either'simply supported or clamped.

The latter case provides a larger damping for all the values

of aspect ratios,; though the difference is small for low
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and high aspect ratios.

The single edge clamped case (Case 1) provides
the largest damping for all values of aspect ratios,
while opposite edges clamped case (Case 2) provides
the minimum damping for all values of aspect ratios
greater than 0.8. For aspect ratios iowg? than 0.8, the
minimum damping is provided by a plate with all its
edges simply supported. Case 3- a combination of 3 edges
clamped and one edge simply supported gives a damping
which is lower than that of a plate with one edge
clamped and 3 edges simply supported for all aspect
ratios,; buty; these provide dampings which are larger
than that provided by the other three cases of plate bound-
ary conditions. For Jow aspect ratios; case 2 which amounts
to two opposite short edges clamped has got damping values
which is greater than that of plates having all edges either

clamped or simply-supported.

Thus, it 1s observed that the da&ping of plates

would depend on the boundary conditions of the edges.
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Above ie the effect which is purely contributed by the

change in the boundary conditions of the plate,

T.1.7 Fundamental Modce Loss Factor for Plates
of Variaoble Thickness

The fundamental mode frequcncy paramefer»hll was
calculated for linearly varying thickness plate., One
term approximation (Eq.(5.1.1.7)) and two term approxi=-
nation (Bgq.(5.1.2.13)) werc evalusted for diffcrent
combinations of aspect ratiocs 'e' and tapervparameters
'6'.The range of ‘¢! considered was from 0.25 to 2.0
and for '8' .was from O.1 .to 0.8. Table 7.l4 gives
these valueé and compares them with kmean of Appl and
Byers[ 1] . It is noted that the two term Galerkin's
solution gives a fast convergency to the frequency
parameter and the values thus obtained are of suffigient-

accuracy. The maximum error which occurs at high taper

values is below 1°%. for the cases studied.

The loss factors for the fundamental resonant
mode were.éValuated for different taper and aspoet ratio
combinations. Computations were made corresponding to
both cne term and two-term responses. The loss factors
were also computed with the help 0f the proposed simplified
relationship given in Bg.(5.4.2). In each case the normal-
ized retio (nv/nc) was obtained. It was found that
this ratio depends on the taper paramgter and is evidently

indepéndent of the nspect ratio. Its plot with respect to
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5 is indicated in Fig.7.9. It is noted that the loss
factor for the lincnrly varying thickness plafe decreases
with the increase of taper parameter. This is because

of the fact that a larger taper parameter corresponds

to é larger thickness of an equivalent constant thickness
plate (Fig.2.3(a)). This would result in a lower value

of damping as is evidenced by Fig.7.6.

Since the two term solution gives a fairly accurate

- value of the natural frequency, it is inferred that the

loss factors calculated at these values of the resonant
frequencies would not be far-off from the actuél values.

It is further observed that the proposed simplified Eq.(5.4.2)
gives a loss factor value which is within 5Y. of the two

term approximation. Hence, thié could be used for obtéin—

ing an oétimate 0f the fundamental mode internal loss.

factor of the plate.

The frequency parameters for the parabolically
varying thickness plate were computed for different combi-
nations of aspect ratios and taper parameters p.The aspect
ratios considered were 0.25, 0.50, 0.75 and 1.00 and the -
‘taper parameters were 0.1, 0.3, 0.5 and 0.7. Both the one
term and the two term aApproximations were evaluated.

Table 7.15 gives thcse values.and compares them with those
obtained by Jain and Soni[27]. It is noted that two term
approximation gives frequency parameters of sﬁfficieht

accuracy for low taper values. The error is rather large
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at higher taper values.

The fundemental mode loss factors werc also
evaluated for different cases and the roetios (nv/nc)
were obtained. The cffect of aspecct ratic on this ratio
was once again found‘to‘be negligible. Figure 7.10
gives the plét of (nv/nc) vs. taper parameter p. It is
observed that the loss factor increases with the
increase of the taper parameter. This is due to the
fact that a larger taper parameter corresponds to a
smaller thickness of an equivalent constant thicknesses
plate (Fig.2.3(b)). This would result in a higher value
of damping as is indicated by Fig.7.6. |

1t is seen that Eq.(5.4.2) which isAobtained in e or less

the present work gives loss factor values’within a fey tdenhical fo
one teym

percent of the two term approximation value for low aPanamahgﬂ

taper cases.Since the two torm frequency perameter for
low taper values is reasonably accurate it is inferred
that the damping crlculated at these resonant frequencies
would not be far-off frcm the actual velue.Thus it

is concluded that Eq.(5.4.2) would give a fairly good
estimate of the fundamental mcde damping at low taper

values only,

Figures 7.9 and 7.10 also show that the loss
factors as obtained with two term soluticn arc greater
than those obtained with one ternm approximation. The

reason for this cbscivation is a8 follows:®
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A look intc tables 7.14 and 7.15 indicetes
that for any combination of the aspeet ratio and taper
parameter, the two term frequency parameter is greater
than the actual value. Further, cne term value is
greater than the corresponding value of the two term
frequency parameter., This observaticn is expectcd and
is in conformity with the Rayleigh's concept relating
the mode shape with the natural frequency. Now, 2 lower
frequency would correspond toc a smaller thickness and a
higher frequency to a larger thickness of an equivélent
constant thickness plate. Since thin plate has larger
damping and thick plate has smaller damping (Fig.7.6) it
is éasily_understood that the two term damping values
would be greater than one term damping valueé, The acc~
uracy of the computations would obviously depend upon
the error in the frecquency parameter i.e. on the fact
that how near tc thg actual frequency value one is work-

ing.

7T.1.8 Radiation Efficiency and Sound Power Radiated
under Complex Mode of Vibration

The radiaticn cfficicney for single rescnant node
of vibration were ccmputed with the help ¢f Eqg.(6.4). It
was found.that 5 point Gauss quadrature for nunericeal
integration gives results of sufficient accuracy. Values

of radiation efficiencies and sound power radiated for
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the corner modes (k§X2>k2;»kiy§>k2), X~-cdge mcdes

L2
(k>k 5 k2 k) and Y-edge modes (k> K

occuring upto 2000.0 Hz are given in Tables 7.16, 7.17

2
D> K)

and 7.18 respectively. It is seen that edge modes are
better sound radiators than the corner mcdes, as has

been observed by other workers as well.

For studying the superposition effect of nunber
of non-resonant modes, the-average'radiation officienc—-
ies at differcnt excitation frequencies were computed
with the help of Eq.(6.6).The sound power radiated under
such conditions were evaluated from Eq.(2.7.13). These
values are shown in Table 7.19. The number of modes super-
imposed aléng with the number of modes which are having |
natural frequencies less than the exciting frequencies
are also indicated in the table. It is cobserved that Both
the radiaticn efficiency and soundkpower radiasted increase

with the excitaticn frequencies for large values of W e

The gradual cffect of superposition of non-resonant
nodes on the radiation efficiency and the sound power
radiated are shown in Figs.7.11 énd 7.12, respectively.
The abscissa for each of these graphs represcnts the
frequencies belcw which the ccntributicn cof all the vib-
rating mcdes has bgen chsidered. Thus, each point on
these graphs indicates the effect of summation of all the
modal contributions upto and including the mode corres-

ponding to that point. Thus, with the help of these curves,
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one could study the effect of summation of each suecc-

essive mode.

A sort of waviness is cbserved around Sav=l‘0 in
Fig,7.11 upto the node order where they enter acoustic
short circuit (i.e. all modes whose k o<k at that
exiciting frequency). This is observed at higher values
of excitation frequencies. Then there is 2 sudden fall
in the value as further modal contributicns, till the
excitation frequency, are considered. Beycnd this only

few modes cocntribute and Sav becomes constant,

The radiated sound power (Fig.7.12) incremses with
the increase in modal contribution, reaching a peak near
the excitation frequency. Beyond this peak, it settles
down to & constant value. These effects are more pro-

nounced in case of large exc1tatlon frequencles.

Skudrzyk[@{l and Greene[20] have observed that
the sound pressure at any exciting frequency ean be
cbtained by summing up the contributions of low order
modes. Skudrzyk has further observed that modes upto
acoustic short circuit contribute. The results of the
present analytical analysis for the radiation efficiency
and the sound power radiated indicate that ﬁot only the
modes upto acoustic short circuit but also the modes
beyond this region and upto the excitation frequency
contribute. When the excitation frequencies are near to

the coincidence frequency these observations match with
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those of Skudrzyk.

The effect of excitation frequency on the radia-
tion efficiency is shown in Fig.7.13. The freguency
variation upto 500.0 Hz oniy, is shown. The points
joined by dashed -1line indicate the resonant mode values
as obtained from Tables 7.16, 7.17 and 7.18. For
excitation frequencies not coinciding with any of the
‘natural frequencies, the effect of superposition of
large number of non-resonant mddes was considered, as
was done in Fig.7.11. The final constant value thus
obtained from this type of plot was then plotted in
Fig.7.13. | |

A number of computations were made for large
number of exciting frequencies. This indicates a varia-
tion in radiation efficiency which is highly dependent
on excitation freguency. The plot shows a trend which
indicates an occurrence of a peak}and of a trough in
between any two consecutive resonant frequencies. Thus
it appears, that, the location of-the excitation frequency
on the frequency spectrum base ﬁith regard tc the modal
resonant frequencies, plays an important role in sound.

radiation problem.

Figure 7.14 shows a similar study for the.variation
of sound power radiated with the excitation frequency

upto 500.0 Hz. In this plot also the final constant value
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from the plot of thc type as given in Fig.7.12 are
plotted. It is observed; that, these are also highly
dependent on the excitation frequencies showing a very
low trough in ketween any two consecutive resonant

large values.,

The effect of superposition of two resonant
modes having same natural frequencies are indicated in
Figs.7.19 and 7.16. All the complex resonances occur-
ing upto 4000.0 Hz are indicated. It is observed that
the average radiation efficiency lies in botween the
individual contributions of the corner and the edge
modes; the major share bteing of the edge mode. The
sound power radiated under complex resonance case 1is larger
than that radiated by either mode. Therefore, in order
to estimate the sound radiation under such condition,
it would be necessary to evaluate it by resorting to
the modal superpoéitlon7 since uiils valus iz ncither
équal to nor is the average of the contributing modal

values.

7.2 CONCLUSIONS

7.2.1 Modal Loss Factor of Simply Supported Rectangular
Plate of Uniform Thickness

(i) For the case of constant force excitation, the
ratio of fundamental mode damping based on

dissipation dependent on dilatational and
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(vi)
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distortional energies, decreases with the increase

in both the aspect ratio and the damping index. For

‘the case of constant maximum amplitude excitation,

this ratio decreases with the increase of aspect

ratio and increases with the increase in N.

In the case of constant force excitation,; an approxi-
mate value of the loss factor of the plate can be

estimated with either of the criteria, particularly

" so for large aspect ratio plates and for large values

of damping indices.

The variation of integral ratio (B/x) from mode to

mode is negligible as shown in Table 7.1.

Resonant mode damping under constant force excitation
decreases with the increase of modal frequency. If . &4
the force increases kl times thens; the modal damping

(N=-2/N-1)
increases kl times.

One can estimate the higher mode order damping from
the fundamental mode value with the help of the
proposed simplified expression (3.1.7)9.when-a

constant force excitation is considered.

Resonant mode damping under constant maximum ampli-

tude excitation increases with the increase in modal

/
rd

frequency. If the maximum amplitude increases k2

times the modal damping increases kéN;2> times.
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are about 1%. in linear case and about 4Y.

in parabolic case.

(ii) The loss factor ratio (nv/nc) was found to be
independent of aspect ratio but was dependent

on the taper parameter.

(iii) The damping of linearly varying thickness
plate decreases with the increase of taper
parameter & whereas of the parabolically varying
thickness plate was found to increase with the

taper parameter u.

(iv) The loss factor for plate of variable thickness
can be estimated from the corresponding value
of the constant thickness plate with the help
of the proposed equation (5.4.2), within a
reasonable accuracy. This equation gives values
within 5%. in case of linear thickness varisgtion
for the taper range considered but is useful
for only low taper values in case of parabolic

thickness variation.

7T.2.4 Radiation Efficiency and Sound Power Radisted
under Complex lode of Vibration

(i) The gradual effect of superposition of large
number of non-resonant modes on the radiation
efficiency and sound power radiated were studied

at various excitation frequencies. It is observed
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that all the modes upto exciting frequency
contribute towards the sound radiation.

These two guantities.become constgnt as
further modal contributions beyond the exci-
tation frequency are considered. These
effects are more pronounced at higher excita-

tion frequencies.

Both radiation efficiency and sound power

 radiated are found to be highly dependent

(iii)

on the excitation frequency. The.location of
the excitation frequency on the frequency spec-
trum base with regard to the modal resonant
frequencies, plays an important role in sound
radiation. In between any two consecutive
modal resonant.frequencies, the plot of radia-
tion efficiency shows a peak and a trough and
the plot of radiated sound power shows a

low trough.

The average radiation efficiency under complex
resonance excitation condition lies in between
the individual contributing modal values.
Since this value is neither equal to nor is
the average of the contributing values, it
becomes imperative to resort‘to the modal
superposition in order to estimate the sound

radiation. The sound power radiated under such
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condition is larger than that radiated by

either modes.

Thus, in this work repbrted here, the dependence
of the modal damping of rectangular plates on the excita-
tion distribution has been quantified. The affects of
various parameters including thickness variation on the
modal loss factors have been quantitatively studied.
Number of simplified practical relationships correlating
the modal loss factors with the fundamental value under
different conditions have been derived. The loss factors
and radiation efficiencies for the plate vibrzting under
complex resonance conditions have been obtained. The
radiation efficiencies of the plate vibrating under

complex non~resonance conditions have also besn evaluated.
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PLATE WITH _DIFFERENT BOUNDARY CO
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ATPENDIX 1

Ul

GECY PARAMBTERS OF RECTANGUL
“‘““"‘"“"‘Tﬁﬁﬁﬁ?ﬁﬁff§§f%%1”‘ﬁﬁ

There are 21 possible combinations of the boundary

conditions (clamped-C; simple support-SS; Free-F). For

obtaining the mode shapes Warburton used the Rayleigh method

with deflection functions as the product of beam functions

i.e.

W(x,y) = X(X).Y(y)

ees (A.1,1)

where, X(x) and Y(y) are the fundamental mode shapes of

beams having the boundary conditions of the plate.

The required sets (as in Chapter 4)

tions along the edges X

following mode shapes:

5.5,
(a) (x=0, x=a)

(v) C
(x=0, x=2a)

..; X(x)

ceos X(x)

X(x)

]

)

0O and x = a are

¢}
o
w
-~
}—J
!
[

of boundary condi-

satisfied by the

m = 2,3,4...-
eee (Ad1.2)
sin(y,/2)

)+ sinhZYl72)’

: coshy1(§ - %)

m = 2,4,600.
) o (Aolo})
sin(y,/2)

Sinh(YZ/z) *
- x_ 1
s:.nhyZ(a - 2)

m = 3!59700-
eeo (A.1.4)
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(¢c) ¢ atx=0, . sin(y,/2)
' s x _1 2
S.5. at x = a., - XX =sinv (57 - 3) - sinh(y,/2) °

.SinhY2(%~%) m= 2,3,4....

eeo (A.1.5)

Note: (i) For obtaining function Y(y) replace x Dby ¥y, a by

b, and m by n,

(ii) m, n are number of nodal lines in X- and Y-
directions including the boundaries as nodal lines
and not. the number of half waves which represent
modal numbers.

The natural frequency w , is obtained from

. |
Wiy = -’-‘Tf-—h [Gi + @ 2@ (v B ¥ (1-V)Jny}]
ad
LI (Aalo6)
. 4 [L4 4 4 2 ¢
1.e.xmn = 7 GX + Gye + 2e {v HxHy + (1-\))JXJy }:’

_ ee e (A.l.7)
The coefficients Gx’ Hx’ and JX for conditions at x = 0 and

X = a are given in the following table:

Table Aolol

B.C.ot | m G Ho Ix
a | |
32 2,3,4e (w-1) (m-1)2 (n-1)°
& 2 1.506 1.248 , L 1.248
b ' 2 . 1y2f, 2
C 3,4 ,5.. (m- 1/2) (m= 1/2) [-(m_ ]?) TE] (m‘ 2) [l (m- %) ‘E]

D e D —— - 321 — |
5.8.0 21304 (w-g) (- ) E (m- 4)1:] (m- ) E (- %) s
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For obtaining C-y, I-Iy and Jy replace x by y and m by n.

It is seen that Hx = JX; Hy = Jy when there is no free-

edgeshence Eq.(A.1.7) reduces to

4T, 4nb >
Agp = ‘:Gx+egy+2e Jny] ...‘(A.l.8)_
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APPENDIX_ 2
INTEGRALS_USED IN T LYSIS OF VARIABLE THICKNESS PLATES
1 - j: Siﬂz(ﬁg)dy = 2
I, - fi sinz(%f)dx =5
'13 - inx sihz(%f)dx = 2;

a
- T x° sin® ( IX)ax

14 : o = %g[é - i%i:]

.
- f x° sin ( IX) g%

4
- 217 _
Is o = Ea[é ;%’:]
a
Ip - fo~81n( IX) cos( Xyax = 0
a a2
7 - Jo x sin(ZX ) cos( IXVax= - T
. a 3
Ig - Jo x° 51n( ) cos(ﬂz)dx = -'%ﬁ
- fa 31n( X) sin(znx)dx =0
2 o
a 882
I - X sin(nx) 31n( IX)ax = - =2
w0 - o
I - fa x° 31n( Ix) 31n(gﬂz)dx..- ga”
n -, =

4
12 - f x3_ s:Ln(—) s:.n(znx)dx--‘@-z-[% l]
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2 nx

cos ( ) sin(ZX )dx = -

i

X cos( X ) 51n( )dx = - &

3
x° cos(znx) s:.n( X) dx g_[ 2 . 1]
9

31l gq
sin2( )dX | = %
2
. 2 (27X _ a_
X sin (-5—-)d = 3
2 2 27X adT 1.57]
X% sin®( = )dx = 1- =
-~ 4~
X sin? 2IX) 4y = g’-i‘-ml 3
sin® (%5 = F|1- Z;?-J
4a
cos (&2 )S1n( Zyjx = %=
2

X cos(-’{f) sin(-‘?‘-g-}s)dx = %-

3 -~
x° cos( =) 81n( Eydx = 39--[1 - =28

cos(g—:-x-) sin(-%g?-{-)dx = 0

X cos( ) 51n( =5y qx

2

x“ cos( an

3
) s:Ln( )dx:— T

<% sin (--)dx = i—[l -

:L:.
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7 .
.2 (MX _a 10.5 2., _ 18.
sin (a Jdx = EL - ___..nz + i_§m4 . néi]

-

sin(—?)- cos(%x-)dx = - %Tt 1 - .l-:.g]
- T

N

6  d
sin(E) cos(HE)ax = - &= |1 - 4+ L :\
5
sin(E) sin(2Z)gx = - 16a°f _ _20
ax -.? L 3nl
7
2nx 8a 200 640
Sln(—) gin(&==)dx = = ._...[1 4 2 ]
3752 -9-? 27'n4
271X A 26
cos (5= ==) s1n( X)dx = - -1 - =5
— ‘ ,31[
cos(2Z%) gin(ZE)ax = - a61 _ 260 4840
2 & 3l 9%2 2711:
5
sin? (BLE)ax = %5[1 _ By 4 A5
47 32n
sin?(2%%)ax = a7[1 - 33, 4 A3 525
a Iz 161[2 64—114 512“6
sin (3%E) cos (EX)ax = -ggﬁ[l 14
a a T 3n - 2
' . 3n
sin(22E) cos (E)ax = 2-%-6-[1; 140, 2440
? o 97 277%
27X 2NX a4 3
sin( o ) cos(—ja—-)dx = - &1 - - 2:'
n
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APPENDIX 3

TAPER _COEFFICIENTS FOR PLATES OF LINEAR THICKNESS VARIATION

2

Gl.__(1+e)—-2-_1+156+6(1-15)+-—-(1-%)]
4a”" e 7‘5 _

6, = -(22+2)2 T Ba(146) + 62 (1= 42 )]

2 4a28 3 ;?

2
65 = (1+e%) —%- 66% (140.56)

4g e
Gy = (22+ &%) 86[2(1+6) ¥ 62(1 - 27):]
: 4a e
6 = —(1+ve®) I L 662(1+O 55)
4ae
Gg = "2 (140.58) = A G}
da"e
G, = (22+e2\)) —7—1 22 63
1 4a°e
A 168
G = -——?—— = A G!
8 4a” e 5;2 8
2:2 _n°_ 88 40
H = -(1+e“) — 3 2(1+6) + 6 (1~ )]
4a”e n
B, - (224092 E. +1.56 + 6°(1-122) + & e ):]
2 4a°e Am 4 An
2. 1f 2,0 28 T
By = -(14e®) L= s8[2(140) + 6°(1- 2]
. 4a"e 91

2
H, = (22+¢°) Z;g; 662 (140.56)



it

i

-(22+v e

2)

~Tt_-

2
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66° (140.58)
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APPENDIX 4

TAPER COEFFICIENTS FOR PLATES OF PARABOLIC THICKNESS VARIATION

4 2 -
6 = ) Zrfi- 12 + Boe 2y 4 )
T T )"

4a"e

3
- b(- 223 4 2255 78’%5)]
T 1

2

2 2.2 gq 16 20 2 200

Gy, = (27+e7)° —m _.5&[1_2“(1_ =) + 47 (1- - J
2 4a e 37 n 27 n

Gz = -2u (1- -——g) + p. (1.. Z_.g)]

2
G, = -(2°+e°) I l5u[1-2u(l— ____) ru2(1- 2689 4840)]
4 4a2e 37; ;,? 27“4

2 13
e
=1

2
Gy = (1+ve®) ié_e 6u[l -2u (1~ 1—;%) +p2(1- u% + L2

Ge = [- (1- )] = A G}
6 4a e % _—g
G, = (2%+ ye?) 64;12[1- (1- 0_)]
T 4a2e 5 ,,[2
A 16
Gg = - =~ = A G
8 4a"e 9n 8
2 2
= (1+ef) B 13 [1_2u(1_ 20y 4 u2(1- 200 . 2640)]
Hl 4a”e _59 —3-1? . 5? 27n
o
_ (02,2 3 1
H = (2 +e) El.—u(l- )+06u (1~ + )
° 4a2e 5 -8? -j-z 327
%—(l- 2 + 4 5256:’
16m 64 5127
4a e ) Tt 27n



1

4a°e 4w~ 327
2
- 1-%(1~- )] = N H}
4a-e % g};z 6
' 20
(1+v e2) 1 64u2[1- (1 - —--)]
’ 4a2€ gﬁ 37t2
oA lep By ,
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10

200
700

30
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APPENDIX 5.1
COMPUTER PROGRAMME FOR THE EVALUATION OF

DIMENSION SIA(10)sCCA(10)
QUTPUT FORMAT
FORMAT(E20.654F8.35F1005)
INPUT FORMAT

FORMAT {3F4e143FB80633s2F10e5s2E1203)
PI=3,14159265

X=1o/32s

X1=1e/715s

DO 2N0 I=1,.8

Pla=PI*X

SIA(I)I=SIN(PIX)
COA(INY=COS(PIX)

X=X+X1

READ 10sPMsPNsPNUsASBsSNyPsHsEsSJ
CK=lo+3o0*%SN+56%¥SN+T o ¥%SN
CF=SJU*E/ (84.%P1)

CFF=CK*CF

SN?=1e /(SN=15)

SNE=1e/SN
SNT7=(SN=2.) /5N
CMA=PM®EPM/{AXA)

CNB=PN¥PN/ (B*¥B)

CMp =CMA+CNB

C=3 %P/ (PI#PI#HEHXA%XIRCMN*CMN)
CMMN1I=CMA+PNU*CNB

CMMN2 =CMA*¥PNU+CNB
CMN3=CMN1*C

MM 4=CMN2*C

CMNS5=0, THPMEPN*C/ (A¥3)
D'—'-(Jo

US=0,

J=1

K=1

MODAL

LOSS

FACTOR -



«l57=

9 CXY=STA(J)*STIA(K)
CT=COA{J)*CCA(KY
SX=CXY*CMN3
SY=CXY*CMN&4
ST=CT*CMNS5
Cl=065%( SX+3SY)
C2=065%( SX=SY)
C3=SQRT(C2*C2+ST*ST)
SP11=C14C3
Sp22=C1-=C3
SP1=ABS(SP11)
SP2=ABS(SP2Zz)

. IF(SP1~SP2}40s603560
60 RP=SP2/SP1
SED=SP1*{1.+2P)
SEDL SPl*SPlé(lﬁ“ZoWPNU*RP+RP*RP)

. GO TO 75

40 RP=SP1/SP2
SED=SP2%(1,+RP)
SEDD=SP2#SP2%(1, “Zo“PNU*RP+RP*RP)

75 IF(J=K) 30094004300

400 DED=SED*#*SN
Usb=SEDD
GO TO 500

300 DED=2."{SED*#SN}
UsD=2,%#SEDD

500 D=D+DED
UsS=US+USD
J=J+1
IF(U=81Y9359,521

21 K=K+1 :
J=K
IF(I ©8)9+9+23

23 ETA=CFF#D/US
ETAF=ETA*%SN1
PRIMT B50sETA?sPMsPNosAsBsH
GO TO 700
STOf
END
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APPENDIX 52

COMPUTER PROGRAMME FOR THE EVALUATION OF FUNDAMENTAL MODE
_L0SS FACTOR FOR A LINEARLY VARYING THICKNESS PLATE -—-

ONE TERM GALERKIN SCLUTION

DIMENSION STA(10)sCUA(10)sALPX(20)
QUTPUT FORMATS

55 FORMAT(2E164692F853)

- 95 FORMAT (2F10,432E16.652F12.4)
INPUT FORMATS

20 FORMAT(F502sF1505)

30 FORMATI(F10,5sE1606}

50 FORMAT(F40193F10592E1263)
READ 50sPNUsSNsPsHsEsSJ
/«\_=59e06
P1=3,14159265
SN1=SN"20
SNZ2=1o/(SN=1¢)

SN6=1,/SN
SN7=5N1/SN
CK=1o+30¥ESN+5, ¥ SNHT ¥%SN
CFaSJU*E/ (84, %P1)
CFF=CK*CF
PI12=PI*PI
Pla=pI12%P12
Ag=pA¥ X 4o
ABLk=1o/ (A¥A])
X=1s/320
X1=1e¢/16¢
DO 200 1=1.8
PIX=PI#®X
SIA(IV=SIN(PIX)
COAL L) =COS(PIX)
X=2X+X1

200 CONTINUE
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10 NEAD 30sARSETAC
BE=A/AR
AB2=1, /(B¥B)
NB=AB1+AB2
ABSQ=AB*AB
AB11=AB1I+PNU*AB2
AB22=PNU*AB1+AB2
JJd=1

700 READ Z20sALPH,LFP
ALPH2=ALPH*ALPH
ALPH3=ALPH*ALPH2
C1l=1lo+1o5*ALPH+ALPH2%(1le=1e5/P12)+0.25%ALPH3%(1e~3e/P12)
Cl12=P14%0425%A%B*ABSQ*C11
C13=1,5%PI2#%ALPH2*AB¥* (1,+0.5%ALPH) /AR
CC2=0o25%A%B* (1o +ALPH*0.5)
Cla=6e%PI2%ABL1#ALPH2*CC2*ARB1
CCl1=Cl2+4C13=Cl4
FPN=CC1#A4/CC2
ERROR=100e3% (FPN=FF}/FP
PRINT 95 +sALPHsARCC15CC25FPNSERROR
X=1s/32s v
X1=10/16¢
DO 900 I=1+16
ALPX(I)=1e+ALPHK®X
A=X+X1
900 CONTINUE

CMN3=0,T75%P#P12/ {(H¥H*xCC1)
CMN4=0, 7T*CMN3/ (A%*E)
CMN5=CMN3%¥AB11
CMN6=CMN3%AB22
D=V
US=0.
J=1
K=1

9 CXY=ALPX(JY*¥SIA(J)*STA(K)
CT=ALPX(J)*COA(J)*COA(K)
SX=CMNS#*#CXY
S5Y=CMN6#CXY
ST=CMN4*CT
G120 5% (SX+SY)
C2=0e 5* (SX=SY)
C3=SQRT(C2%C2+ST*ET)



40

75
400

300

500

21

23
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SP11=C1+C3

SP22=C1~C3

SP1=ABS(SP11)

SP2=ABS(SP22}y:

IF(SP1=SP2)40560+60

RP=SP2/SP1

SED#SP1%*(1o+RP)

SEDI =SP1#SP13%(1,%2,%PNU*%RP+RP%RP)

GO 70 75

RP=8SP1/SP2

SED#SP2¥ (14+RP)

SFED[ =SP2%SP2#({1,=2o*PNU*RP+RP#*RP)

IF(J=K) 3005400,300

M=1% =y
Z1=ALPX(JY+AGPX(MY* ( (ALPX(M) ZALPX(J) ) %#%SN)
Z2=ALPX () +ACPX (M) #* ( (ALPX (MY /ALPX (J) ) %%2, )
DED=(SED*#SN)%*21q

USD=SEDD*Z2

Go %2 500

M=1%=J

N=17=K ,
Z3=ALPX (U + ( (ALPXIK)Y /ALPX (J) ) %% EN) *ALPX (K )

24=((ALPX(M)/ALPX(J))**SN)*ALPX(M)+((ALPX(N)/ALPX(J))**SN)*

Z5=ALPX(J)+( {ALPX(K) /ALPX(J) )%%2. ) *ALPX (K)

Z6=((ALPX(M)/ALPX(J))**20)*ALDX(M)+((ALPX(N)/ALPX(J))**Zo)

DED=(SED**SN)*(73+24)
USD=SEND* (25 #26)
D=D+DED _
US=UsS+uUSsSD

J=J+1
IF{J=8)959523
K=K+1

J=K

IF(K=8) 949,23
ETA=CFF#D/US
ETAP=ETA*%*SN2

RATIO=ETAP/ETAC

PRINT 554ETAPsRATIOSALPH4AR
Jd=JJ+1 :
IF(JJ~8)T005700,10

END

ALPX (M)

*ALPX (1)
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APPENDIX 503

COMPUTER PROGRAMME FOR TVE. EVALUATION OF FUNDAMENTAL MODE
L0OSS FACTOR FOR A LINEARLY VARYING THICKNESS PLATE=-=-

TWO TERM GALERKIN SOLUTION

DIMENSION SIA(10)sCOA(10)sALPX(20)+SIB(10)sCOB(10)
QUTPUT FORMATS ‘

1 FORMAT(6E13.5)

2 FORMAT(5E16.6)

3 FORMAT(2F86332E1666)

4 FORMAT(2E164692F1062)
INPUT FORMATS.

20 FORMAT(F5629F1565)

30 FORMAT(F1l0s54E16a6)

50 FORMAT(F40193F10.592E12.3)
READ 50sPNUsSNsPsHsEsSJ
PI1=3,14159265
A=59906
SN1=SN‘20
SN2=10/(SN=1,)

SN3=GN+1o,
SN6=1e /SN
SN7=8N1/SN
CK=1le+3o0X¥SN+5,%¥*¥SN+Te¥%¥SN
CF=SJU*E/ (84%P1)
CFF=CK*CF
PI2=PI*PI
Pra=pI2%¥P12
AbG=A%% 4,
ABl=1la/(A%*A)
BO=E* (H*%3,)/10692
CMN1=0, 75%#BO*P 12/ (H¥*H)
PII=1e5/PI2
PI1J=2.*PI1
X=1a/326
X].:lo/lée
DO 200 I=1,8
PIX=PI%*X
SIA(I)=SIN(PIX)
COA(1)=COS(PIX)
PIXX=2o%PIX
SIB(I)=SINI(PIXX)
COB(T)=COS(PIXX)
X=X +5%

200 CONTINUE
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READ 30sARSETAC
B=A/AR

ABETLAA1RBRYxa2

AB22=PNU*AB1+AB2
AB33=4,*AB1+PNU*AB2

ABLL=4 o % PNU*ABL1+AB2

CMN2=CMN 13007/ (A*B)

Z1=1./ {A¥XA*AR)

228 0,25%71

ARS=AR#*AR

Z3=1,+ARS

24=4,4+ARS

2B5=73%723#P14%22
LO6=74L%24%P2%*712
27=23%Z21%P12%165
78==8o%PI2%22%24

LO==6 o ¥PI2%722% (1o+063%*ARS,
Z11=23%23%722%P12/3,
Z12224%724%P14%Z2
L13==73%72%P12%8,
L14=24%22%P]2%6,

L15==b o ¥PI2%* (404+063%*¥ARSI*Z2
216=32%22% (40+063%ARS) /30
L17=32c%22%(1o+0e3%¥ARS) /30
JJ=1

READ 20sALPHFP

X=1 0/320

X1=16/160

DO 900 I=1,16
ALPX( I )=1o+ALPH®X

X=X+X1

CONTINUE

ALPH2=ALPH*ALPH
ALPH3=ALPHXALPHZ
ALFC=1.+0,5%ALPH
AL=ALPC*ALPH2

AlLL=1.+ALPH
G1l=25%(1o+1oB%ALPH+ALPHZ¥ (1o~PII)4+0625%ALPH3%*(1e=PI1J))
GR2=26%(~16e ¥ALL¥ALPR/3o+ALPH3%(3206/(9:%P12)-86)/35)
G3=AIL*%Z7

G4=728% (ALPH #(520/(9e%P1 )=1c)=2.%ALL}*ALPH
G5=AL*Z29 '
Goé==ALPC*Z2

GT7=716%ALPH3

G8=Z2%ALPH*166/(94%FP12) )

Hi1=Z11%( ALPH3%*(3200/(9o#P12) ™80 )=16*%ALPH*ALL)
M2=Z12%(1o+1o5%ALPH+ALPH2¥ (1 ,=PII/4e)+0e25%ALPH3¥* (16-P1J/4s)})
H3eZ13%¥ALPH® (2 #ALL+ALPH2*(10.=28./(9%P12)))

He=AL*Z14

HE=AL#*Z215

H6=G6

H7=Z217%ALPH3

H8=G8
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Al=H1+H3+H7

A2=H2+H&+HS

B1=G1l+G3+G5

B2=G2+G4+G7 -

B4=P /B0

F1=B1+H54

F2=A2+H6

F3=A1+H8

F4=B2+H8

XFl=H6%*HE6~HB#HS

XF2=H6*( A2+B1)1=H8% (ALl+B
XF3=B1*A2~A1%B2
XF4==XF2/{2.%XF1)
XFS=XF2%¥XF2eb . #XF1%#XFZ
XF6=ABS(XF5)
XE7=SQRTIXF6)/(2.%XF1)
FPl=AF4+XF7

FR2=XF4=~XF7

F1=Bl1+H6*FP2

F2=A2+HE#FP2

F3=A1+HB*FP2

F4=82+H8%Fp2 :
FO=AR*FLl+B1l*¥F2apl*F4—[.2%F3
All=R4*F2/F6
A21=wuB4*F3/Fg

ERROR=100.% (FP2=FP)/FP
PRINT 1sA1sA25B1sB2sA115A21
PRINT 29F1sF23F3sF4sF¢
PRINT 35sARALPHsFP2ERRCR
D=0,

US=0,

J=1

K=1

NN=1

MM=1
CXYI&ALI*STIA{J)*SIA(K)
CXY2=A21%SIB(J)*STA(K)
CT1=A11%COA(J)*COA(K)
CT2=2:%A21%CCR(J)*COA (K)
CT=CT1+CT2
5X=ALPX(J)*(CXYI*A811+CXYZ*A533)*CMNI
SY=ALPX(J)*(CXYl*ABZZ*CXYZ*ABQ4)*CMNI
5T=ALPX(J)*CMN2*CT
Cl=0,5%(SX+SY)
C2=U045%(SX=SY)
C3=SQRT(C2%C24+ST*ST)
SP11=C1+C3

SP22=C1-C3
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SP1=ABS(SP11)

SP2=ABS(SP22)

IF(SP1=SP2)40550960

RP=SP2/5P1

SED=SP1#(1.+RP) .
SEDD=SP1%SP1% (1,920 ¥PNUXRP+RP*RF)
GO TO 75

RP=5SP1/SP2

SED=SP2%# (1. +RP)
SEDD=SP2%SP 2% (1,%20¥PNU¥RP+RP*RF)
DED=ALPX (J)*{SEn**SN)
USD=SEDD*ALPA(J)Y

D=D+DED

Us=us+UshD :

IF(J=K)300,400,300

NN=NN+1

TF(NN=2)15512515

J=17=J

CXY2==CXY2

CTil==~CT1

GO TO 11

MM=MM+1

IF{MM=2)17516917

DED=DEU* ( (ALPX(K)/ALPX{J))**¥SN3)
USD=USD*({ {ALPX{K) /ALPX{J))¥%25)
D=D+DED -
Us=US+USD

J=1%5=J

CXYo==CXY2

CT1==CT1

GO TO 11

N=1%=K

DED+IED® ( (ALIX(N) /ALPX(J) ) ¥*¥SN3)
USDhUSD*((ALPX(N)/ALPX(J))**?o)
D=D%DED

Us=us+USD

J=17=J

J=J+1

MM="1

IF(v=83959521

K=K+1

J=K

NN=1

IF(K=8) 999,23

ETA=CFF*D/US
ETAP=ETA%*%SN2
RATIO=CTAP/ETAC

PRINT 4sETAF ,RATIO»ALPHSAR
JJ=JJ+1

IF(JJ=81T005700,10

END
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APPENDIX 54

COMPUTER PROGRAMME FOR THE EVALUATION OF RADIATION
EFFICIENCY FOR THE PLATE VIBRATING UNDER COMPLEX .

NON-RESONANCE CONDITIOM (SUPERPOSITION OF 175 MQDES)

DIMENSION U(5)sR(5)

DIMENSION PM(175)sPN(175) sFRQ(175)sUMN(175)sRFS(175)sGP(175)
DIMENSION AMP(175925) sDELT(175525)+sBNP(175525)sGAM(175525)

OUTPUT FORMATS .

FORMAT({ /6HEXFRQ=F86292X s4HFRQ=FB8c 292X s4HVEL=E16:43s2Xs5HVELT=EL644)
FORMAT (3HPM=F40051Xs3HPN=F4e0s1Xs4HRFS=E1264s4HRJU=EL12 455X 4HSPR=
Eléoq') )

FORMAT (2HI=13+2X s4HRE1=E124 352X 94HRE2=E126492Xs3HRE=E12:452Xs5HTSP
R=E1504) :

INPUT FORMATS

FORMAT(2F10.393F1N,69F10e2915)

FORMAT (F10,2)

FORMAT(IB)

FORMAT (2F5,0520X9F20,10,30X)

PI=3,14159265

PII=pI*0.25

PIJ=Pl*¥*4,

PIK=PI*0.5

PIL=2,%PI

GAUSS 5-POINT INTEGRATION COEFFICIENTS

Utly=,

U(2)=).26923465

U(3)1=-0,26923465

U(4)=0.45308992

U{5)==0,45308992

R{1)=64,/225,

R({2)1=0,23931433

R({3)=04232931433

Ri4)=)e11846344

R(5)1=3N611846344
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READ 103sAsBsRHOSPsH»(sNG
C2=2 %P/ (PI*A*B®RHO*} )
READ 30sMODE

READ 405 (PM(I)sPN(I)sFRQ(I)sI=1,MODE)

READ 20,EXFRQ
WNK=PIL*®¥EXFRGQ/C
WA=WNK*A

WB=WNK*B
Cl=16*WA*WB/PI1J "
PROD=EXFRQ*¥EXFRQ
SIGMA=0,

I=1

RU=0,

I1=1

JJd=1

RV=0,
PMS=PM (T )%*PM(I)
PNS=PN(I)*PN(I)
TERM=FRQ({I)*FRG(T)
CMN=EXFRQ/ ( TERM~PROD)
UMN{T)=C2*CMN
USQ=UMN (T )*UMNI(I)
VEL®USQ/ 8,
SIGMA=SIGMA+USQ
VELT=SIGMA/8,

PRINT 100sEXFRQsFRQ(i)sVELSVELT
PMP=PM(1)%P1
PNP=PN(I)*PI

N=JdJ+1

DO 95 M=I1,JJ
GP{M)=Cos

G5=0.

JK=1

NUMERICAL INTEGRATICN BY GAUSS
DO 50 J=1sNGC
TiI=SIN(PIK*U(J)+PII)
DO 50 K=1sNG
T2=PIK*U(K)+PII
Al=WA*T1%*COS(T2)
Bl=\B#*T1%¥SIN(T2)

GUADRATURE

METHOD
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65
50
55

25

15

85

15

80

v =167~

AC=COS(0.5%A1)

BC=CO0S(0.5%B1)

T3=ACHACH*BCHRC*T1

AMP (T JK)Y=A1/PMP
DELT(IsJK)Y=AMP (I s JKIEAMP(IsJK) =10
BNP(I5,JK)=B1/PNP
GAM (T s JKI=BNP (I s JKYRLNP (I
GAUS=T3/(DELT(IsJK)®[ ELTI
GUU=GAUS*¥R (J)*¥R(K)
GS=GS5+GUU
IF(I=1)505504+60

DO 65 M=11.JJ

GAUP= T3/(DELT(M;JK)WCELT(NsJK)‘GAM(M;JK)*GAM(N,JK))
GVV=GAUPXR (J) %R (K)

GP{M)=GP (M)+GVV

JK=JK+1

CONTINUE

RFS(I1)=C1%#GS/(PMS®PNS)

SPR&RFS{I)*VEL

RUU=RFS(1)#USQ

RU=RUU+RU

PRINT 200 sPM{I)sPN(I)sRFSII)eRUUsSPR
IF{I=1)15+15525

DO 75 M=11,JJ

C3=2 ¥UMN (M) *UMN (N)

C4=PM{M)*¥PM{NI*¥PN(M)+PN(N)

RFPeCI1*C3%GP (M) /C4

RV=RgV+RFP

CONTINUE

RE1=RU/SIGMA

RE2=RV/SIGMA

RE=PE1+RE2

TSPR=RE*VELT

PRINT 4005IsRE1sRE2sRESsTSPR

Jd=JJd+1

[=1+1

IF({1~ MODE)70;70$80

GO 70 90

STOP

END

) GAMIT s JK)*GAM(T s JK))

s J
(1s
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