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LBSTRLOT 

In this thesis, an analytical formulation of the 

modal loss factor has been done for the case of simply 

supported rectangular plate subjected to a point harmonic 

force of constant frequency.An attempt has been made to 

seeka generalisation for the internal damping of the 

plate for which the material damping constants J and N 

are known. Effects of changes in aspect ratio, thickness, 

material damping constants, and point force location on 

the modal damping for both the constant force and the 

constant amplitude excitations have been studied.The 

higher order modal damping has been correlated. with. the 

fundamental mode value in each case. Loss factors when 

the plate vibrates under complex resonance condition (more 

than one mode under simultaneous resonance) have also been 

evaluated. Thus the dependence of modal damping values 

on the different point excitations has been quantified. 

Fundamental mode loss factors have been evaluated 

for the plates with different combinations of simply supp-

orted and clamped edge conditions. 

Damping of a simply supported plate with thickness 

variation in one direction has been obtained with the 

help of Galerkin's method. Thickness variatiornof linear 

and parabolic type have been considered and the loss factor 

in each case has been correlated with that of uniform 

thickness ease. 
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Number of practical simplified expressions have 

been evolved which would be useful in design type estimates 

of the loss factors for such plates vibrating in the funda-

mental as well as higher complex resonant modes. 

Radiation efficiency and radiated sound power have 

been defined and analytically obtained for a simply support-

ed plate when it vibrates under complex resonance and non-

resonance conditions. This has been done by formulating 

Rayleigh's integral for the far-field sound pressure and 

giving due care to the modal phase shift while performing 

the modal superposition of the pressures. 
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- mass density of acoustic medium i.e. air 
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CHAPTER-1 

I N T R O D U C T I O N 

The study of vibration and accompanying sound 

radiation from a vibrating plate is of considerable 

interest to acoustical and mechanical engineers. For the 

case of untreated plate with no external connections the 

energy input is partly dissipated in the form of internal 

losses and the remainder in the form of acoustical 

radiation. Therefore, the knowledge of internal and acousti- 

cal losses in a vibrating plate is of fundamental import-

ance in order to predict and control the resonant response 

and the sound radiation. 

As far as the internal damping of a material is 

concerned, one of the earliest studies was made by 

Robertson and Yorgiadisgil. They studied experimentally 

the effect pf different parameters on the damping capacity 

and gave an expression for equivalent stress which was 

in terms of maximum shear stress only This was based 

on their proposition that the damping depends on distor-

tion strain energy only. Narin and StulenI.2]developed 

a useful criterion for the design of resonance members 

which took into consideration not only the fatigue 

strength but the damping property as well. This was prob-

ably one of the earliest attempts to include damping 

property in design aspect. It was shown by Lazan and 

-1- 
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Demer[M] that material damping may be sufficiently large 

to be highly significant as a limiter of resonance vibrations, 

even when significant structural and aerodynamic damping 

are present. Myklestadf5Ogave the concept of complex damp-

ing which helped in the development of mathematical models 

for internal friction. An important contribution was made 

by LazanD41, when he visualized the importance. of the 

inherent damping of materials in limiting the resonant ampli-

tude of the vibrating structures. He developed the longi-

tudinal stress-distribution factor, the material factor 

and the cross-sectional stress distribution factor and 

studied the effect of damping constants on these factors. 

With the help of these factors damping studies for struct-

ural members could be undertaken. he lateron built up the 

normalized energy integrals and correlated them with these 

factors. 

Yorgiadis[M] has obtained the expressions for the 

resonance stresses in non-uniformly as well as uniformly 

stressed members. Cochardt EJ has obtained certain 

functions which are similar to the factors as obtained 

by Lazan 0 . With the help of the stress distribution 

function - which depends on material only- Cochardt could 

obtain the internal damping of machine members. He also 

studied in a particular case, whether the low or high 

stress damping is more effective. 
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Mental and Fu[5l] have indicated that in many 

cases the panel material itself provides the main source 

of damping energy dissipation, though in some cases the 

panel supports contribute significantly to the total 

damping. They have computed the damping of a square 

plate by using the maximum shear criterion a choice . 

for which sufficient justification was not given. 

LazanD5] has discussed the various energy dissipating 

mechanisms in structures which contribute to the material 

damping under different conditions. He also formulated 

the normalized damping energy integral and the normalized 

strain energy integral and made use of them in evaluating 

the damping of a member. It was conjectured by Mentel ei21 

that in the case of plate vibrations - wherein dilatational 

straining generally accounts for a much larger share of 

the total straining action - it might also be found to be 

significant in material damping production. He proposed 

the inclusion of dilatational strain by means of a 

parameter in the equivalent stress expression which, till 

then, contained terms proportional to distortional strain 

only. 

Whittier f81, 80 calculated the loss factor for a 

symmetrical circular plate and obtained a spread of 7 to 

1 between the two bounding curves based on dilatational 

energy criterion and on distortional energy criterion for 
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the multi-axial stress system, considering the maximum 

bending stress to be same in both the cases. He observed 

the actual test data for the panel to lie within the 

bounding regions and suggested an expression for the 

equivalent stress which depends on both the effective 

dilatational and distortional stresses. He proposed a 

qualitative argument in support of the independence of 

the energy dissipations based on dilatational and 

distortional effects and thence proposed an idea of 

limiting bounds in damping values due to these effects.  

The manner in which these two effects combine is not 

known. Considering the damped flexural vibrations in 

beams and plates, Ungar E-72 has obtained expressions for 

maximum stresses at resonance. Hecki [.,210 has given a 

method of estimating damping of plates- having beams 

attached to it or having treatments- by formulating 

absorption coefficients on the basis of architectural 

acoustics. 

It has been conjectured by Mentel and Chi: 

that damping effects due to dilatational straining, small 

enough to be masked by experimental scatter in the 

usual test set-up, might be signficant under conditions 

of pronounced dilatational straining such as can occur 

in plate vibration. With the help of detailed experimenta-

tion they have obtained a small but definite contribution 

to the material damping by dilatational straining action. 



As a consequence, a modified formula for equivalent 

stress has been suggested by them. 

LazanBZ[ has discussed a modified theory for 

multiaxial stress systems for obtaining the equivalent 

stress. This is based on the stress-strain hysteretic 

behaviour of the materials. However, the expressions 

obtained do not degenerate to conventional expressions 

for simple combination of biaxial stresses as the derivat- 

ion involves certain unjustified assumptions. 

HookerD5.1 has reviewed the work of different 

investigators D2,53,82,8E who gave different expressions 

for the equivalent stress which represents material 

damping in combined stress. He has pointed out that diff-

erent investigators define the proportional factor, for 

taking into consideration the distortional and dilatational 

effects, in different ways. He also considered the two 

effects to be independent for want of limited experimental 

evidence. He compared the various expressions of the 

equivalent stresses as suggested by different investigators. 

After formulating general rules for such expressions, he 

proposed a simple expressions for the equivalent stress 

based on distortional and dilatational strain energies and 

on shear and dilatational stresses. 

The average loss factor of a structure in a 

frequency band containing a number of resonant modes, has 



been discussed in D.0213214: • 

HammeDO has discussed the different material and 

techniques for damping vibrating panels. KingDil has 

described the general causes and remedies of vibration 

and noise as they occur in mechanisms and machines. 

A general criterion in terms of mass, stiffness and 

damping for considering the effectiveness of a damping 

treatment was developed by Mead19,50. He has also dealt 

with the various kinds of excitations and discussed the 

advantages gained by adding damping treatments in different 

cases. He has shown that at higher frequencies damping may 

not have any effect on the sound radiation. 

The normal mode shapes of a vibrating plate have been 

studied by Faller E77 y78J. She has discussed the possibility 

of occurrence of !combined' or 'compounded! normal vibrat-

ion patterns and of degenerate modes which are mathematically 

possible. The natural frequencies of a rectangular plate 

with different boundary conditions are available in the 

classical work of Warburton [7z. Appl and Byers El] have 
computed the natural frequencies of a linearly varying 

thickness plate for different combinations of the aspect 

ratio and the taper parameter. Jain and SoniD2] have 

evaluated the natural frequencies of a rectangular plate 

having a parabolic thickness variation in one direction. 



larger than the sound wavelength in air. In this case, 

whenever the dimensions of the plate exceed bending 

wavelength, neither the internal damping nor the dimensions 

of the plate have any influence on the sound radiations. 

However, these parameters do have importance in the fre-

quency region where bending wavelength is smaller than 

sound wavelength in air. Cremer and Sc.hwantke[8] have - 

studied the radiation of a plate when it forms a bounding 

surface of an enclosure into which the plate is radiating. 

SkudrzykE)3 61145-  made an important contribution by 

his studies of vibration, sound radiation and of noise 

and vibration insulation of systems with finite or an 

infinite number of resonances. He gave expressions for 

sound pressure at different frequency ranges for vibrators 

with zero nodal lines and with many nodal lines. He also 

studied the sound radiation of a finite plate with nodal 

lines in the range of acoustic short circuit and obtained 

expressions for sound pressure generated by forced vibration 

of modes with low nodal lines. Beranek [3] has dealt with 

the problem of acoustic transmission through walls and 

panels in the audio-frequency range. He has also explained 

the phenomenon of wave coincidence and the occurrence of 

critical frequency. Kurtze and BoltD0have studied the 

effect of loading due to a medium of finite or infinite 

extent on the flexural wave speed in a plate. HecklL2Ihas 
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shown that if an infinite plate is excited at a point, 

then the exponentially decaying flexural wave near 

field gives a small finite radiation. He has further 

shown that the same relation holds for damped plates of 

finite size 9  provided the damping is not small. 

Lyamshevplp observed-on the basis of reciprocity 

principles- that the sound pressure at a point in the 

fluid due to the motion of a structure subjected to 

distribution of mechanical forces can be determined from 

a knowledge of the acoustic pressure on the flexible 

structure due to a point source placed at the observation 

point in the presence of the flexible structure. Greene [20] 

experimentally studied the sound radiation froma freely 

supported rectangular plate. He obtained the sound 

pressure at different frequencies and observed that the 

sound field of a vibrating flat plate at the higher 

frequencies seems to result primarily from the forced 

vibration of the lower-order modes. The effect of plate 

damping on the sound level radiated at different frequencies 

was also considered. 

Lyon and NaidanikY] calculated the radiation 

resistance for some of the normal modes of a supported 

beam by considering the power flow between structural 

mode.and a reverberant acoustic field. The response to 



been discussed in [10,13,14]. 

HammeD0 has discussed the different material and 

techniques for damping vibrating panels. Kingpil has 

described the general causes and remedies of vibration 

and noise as they occur in mechanisms and machines. 

A general criterion in terms of mass, stiffness and 

damping for considering the effectiveness of a damping 

treatment was developed by Mead5.9,50. He has also dealt 

with the various kinds of excitations and discussed the 

advantages gained by adding damping treatments in different 

cases. He has shown that at higher frequencies damping may 

not have any effect on the sound radiation. 

The normal mode shapes of a vibrating plate have been 

studied by Aller[77970. She has discussed the possibility 

of occurrence of !combined! or !compounded! normal vibrat-

ion patterns and of degenerate modes which are mathematically 

possible. The natural frequencies of a rectangular plate 

with different boundary conditions are available in the 

classical work of Warburton [79]. Appl and Byers [1] have 

computed the natural frequencies of a linearly varying 

thickness plate for different combinations of the aspect 

ratio and the taper parameter. Jain and SoniD] have 

evaluated the natural frequencies of a rectangular plate 

having a parabolic thickness variation in one direction. 



larger than the sound wavelength in air. In this case, 

whenever the dimensions of the plate exceed bending 

wavelength, neither the internal damping nor the dimensions 

of the plate have any influence on the sound radiations. 

However, these parameters do have importance in the fre-

quency region where bending wavelength is smaller than 

sound wavelength in air. Cremer and Schwantke[8] have 

studied the radiation of a plate when it forms a bounding 

surface of an enclosure into which the plate is radiating. 

SkudrzykE)3)64565-  made an important contribution by 

his studies of vibration, sound radiation and of noise 

and vibration insulation of systems with finite or an 

infinite number of resonances. He gave expressions for 

sound pressure at different frequency ranges for vibrators 

with zero nodal lines and with many nodal lines. He also 

studied the sound radiation of a finite plate with nodal 

lines in the range of acoustic short circuit and obtained 

expressions for sound pressure generated by forced vibration 

of modes with low nodal lines. Beranek [3] has dealt with 

the problem of acoustic transmission through walls and 

panels in the audio-frequency range. He has also explained 

the phenomenon of wave coincidence and the occurrence of 

critical frequency. Kurtze and Boltp0have studied the 

effect of loading due to a medium of finite or infinite 

extent on the flexural wave speed in a plate. HecklIff_has 
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shown that if an infinite plate is excited at a point, 

then the exponentially decaying flexural wave near 

field gives a small finite radiation. He has further 

shown that the same relation holds for damped plates of 

finite size )  provided the damping is not small. 

Lyamshev[M] observed-on the basis of reciprocity 

principles- that the sound pressure at a point in the 

fluid due to the motion of a structure subjected to 

distribution of mechanical forces can be determined from 

a knowledge of the acoustic pressure on the flexible 

structure due to a point source placed at the observation 

point in the presence of the flexible structure. Greene [20] 

experimentally studied the sound radiation froma freely 

supported rectangular plate. He obtained the sound 

pressure at different frequencies and observed that the 

sound field of a vibrating flat plate at the higher 

frequencies seems to result primarily from the forced 

vibration of the lower-order modes. The effect of plate 

damping on the sound level radiated at different frequencies 

was also considered. 

Lyon and MaidanikI0 calculated the radiation 

resistance for some of the normal modes of a supported 

beam by considering the power flow between structural 

mode-and a reverberant acoustic field. The response to 
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sound and consequent sound radiation for one linear 

resonant mode of a part of a larger structure were analysed 

by Smith Jr.166]. He also established a modal reciprocity 

relation between the modal radiation resistance and the 

transfer function which relates incident sound pressure 

to modal force in the absence of motion. He has shown that 

the response is governed by internal damping and radiation 

resistance and gave a qualitative analysis. 

HaidaniktO made an important contribution by 

his studies on the response of ribbed panels to rever-

berant acoustic fields. Following a statistical method )  

it was shown by him )  that the acceleration spectrum of the 

vibrational field is related to the pressure spectrum by 

a coupling factor which is a simple function of the 

radiation and mechanical resistances of the structure. 

Therefore, to predict the response of structure one 

requires the values of both these resistances which consti-

.tute the total resistance. Maidanik considered the modal 

resonant vibrations and the radiation resistance was 

determined by calculating the power radiated by a vibrat-

ing panel by means of transform method. He also gave a 

physical picture and concept of the corner 9  edge and 

surface modes of radiation. 

Lyonli] computed the radiated sound power and the 



radiation resistance of the acoustically' slow waves in a 

plate which are scattered by a beam. Nikiforovale used 

integral transforms to calculate the energy radiated by 

a plate of finite dimensions with arbitrary boundary 

conditions as a function of the impedances loading the 

plate edges. Coupling of panel vibration and sound waves 

below critical frequency has been studied by Smith Jr.[0]. 

He has obtained the sound power and the radiation.effi- 

ciency from clamped edges and from other boundaries as 

well. Manning and Maidanik 5.41 have shown that the radiation 

efficiencies of cylindrical shells and of plate could 

be adequately estimated from simple physical arguments 

based on considerations of the shape of typical modal 

Patterns. They determined the radiation efficiencies on 

the basis of piston, strips and surface modes of panel 

vibrations. They also developed the overall radiation 

efficiency of the panel in a frequency band containing 

several resonant modes by means of simple averages and 

sums. 

GutinE21] has studied the sound radiation from an 

infinite plate excited by a normal point force but at 

low frequencies only. Maidanik and Kerwin Jr. E.E have 

considered the influence of fluid loading on the radiation 

from infinite plate driven by a normal point and by 

a normal line force, below the critical frequency,Feit[16] 
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has obtained the acoustic pressure radiated by an infinit 

elastic plate excited by a harmonic point force or by a 

moment for low as well as high frequency ranges. He has 

made use of Timoshenko-Mindlin thick plate theory for 

the case of frequencies above the coincidence frequency. 

Maidanik[;4: has studied the influence of fluid loading 

on the radiation from orthotropic plates. He has distin-

guished between the fluid loading due to the subsonic 

wave motion - appearing as an additional mass- and super-

sonic wave motion - occuring as an acoustic damping. While 

investigating the latter part he has critically discussed 

the 'free-field' and the 'forced field'. The effect of 

internal and acoustic damping on propagating free radiat-

ing waves and non-propagating forced waves have also been 

'studied. Near sound field of an infinite plate driven by 

a point force has been studied by Plakhov EN]. 

The problem of acoustic radiation from an infinite 

plate with a baffle normal to its surface has been studied 

by Mazzola 18]. Rao, et al.E0i] experimentally studied 

the near field sound pressures and vibrations from a 

clamped plate and fixed-free beam. It was shown that these 

measurements match well with the approximate theoretical 

evaluations and the modal patterns and the resonant fre-

quencies could be predicted. Advantages associated with 

acoustical measurement in regard to the prediction of 

mode shape and frequency was pointed out. Sound pressures 
from the thin, infinite plate excited by a point, line 
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and moment source have been studied by Ivanov and 

Romanov DE] and by Gomperts ri71. Bailey and Fahy[2-1 

have studied the radiation from cylindrical beams which 

are excited by sound waves. 

Radiation resistances of a baffled beam and of 

a simply supported rectangular panel have been theoretic-

ally determined by Wallace D5y76]. These have been 

obtained for single modes from the total energy radiated 

to the far field. Asymptotic solutions for the low frequency 

region have been derived and curves covering the entire 

frequency range for various mode shapes and aspect ratios 

have been obtained through numerical integration. Approxi-

mate matching of his results with those obtained by 

Maidanik has been indicated. 

Chan and Anderton R] have obtained a simple relation-

ship between the radiated noise and the mean square surface 

averaged vibration level of cast machine structures. 

Donato 111:1 and DymTh] have obtained the radiation resis-

tance of a rectangular panel by direct application of 

Rayleigh's radiation f ormula.  

Mangirotty E.51 explained the importance of the 

internal damping which is due to hysteresis losses in the 

material and the acoustic damping which results from the 

reaction forces of the surrounding fluid on the radiating 

surfaces of a structure. The acoustic damping of a single 

flexible panel forming part of an otherwise rigid plane 
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baffle was predicted theoretically and measured experi-

mentally by three different methods. 

Johnston and Barr [28] conducted theoretical and 

experimental studies for the determination of damping 

at different frequencies for the case of freely supported 

beam specimens. Internal and acoustic damping were obtained 

by conducting tests in air and in vacuum and they showed 

that above a certain frequency the acoustic damping is 

responsible for a considerable frequency dependency of 

the overall loss factor. Crocker and Price E9D have 

studied the problem of sound transmission by using stat-

istical energy analysis. They have brought out the import-

ance of resonant and non-resonant transmission which 

depends upon the variation of internal and radiation 

resistance with frequency. They have shown, that, at low 

frequencies, where the radiation resistance is small, the 

resistance of the panel is mostly due to the internal 

resistance. At the critical frequency the resistance 

is mostly due to the radiation resistance, but well above 

coincidence the total resistance again normally becomes 

dominated by the internal resistance. The acoustically 

slow and fast modes of a vibrating panel have been well 

explained. 

Crandall EC has shown the general importance and 

applications of the internal dissipation and acoustic 

radiation damping. Fahy [110 has dealt in detail the 



Subject of structural-acoustic interaction. The effect 

of fluid loading, the acoustic and mechanical excitation 

of flat plates and cylindrical shells have been discussed 

by him. It has been pointed out that it is necessary to 

assess the relative importance of flexural near-field 

sound radiation and free-wave radiation because this 

factor decides the appropriate choice of methods of radia-

tion reduction from mechanically excited structures. The 

most important parameter in this respect is the ratio of 

radiation resistance to the internal resistance. 

A survey of the literature explicitly indicates 

the significant role of the internal and radiation 

resistance in the control of the resonant response and 

the sound radiation from a vibrating structure. Therefore, 

it becomes imperative for one to know the values of the 

internal loss factors and the radiation efficiencies at 

different excitation frequencies. A further look into 

the review indicates that no mathematical relationships 

exist giving the modal loss factors for rectangular plates 

of diff,erent types and sizes under mechanical excitation 

conditions. Although it is obvious (in view of the 

dependence of energy dissipation on the stress amplitude) 

that the modal damping values depend on the excitation 

distribution, no work is available which quantifies this 

dependence No investigator has attempted to evaluate the 

internal loss factorfor plates vibrating under complex 

resonance conditions. There is almost no literature on the 
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evaluation of internal loss factors for rectangular plates 

of variable thicknesses. Though the radiation. efficiencies 

of a rectangular plate simply supported in a baffle-for 

single mode resonant and non-resonant excitations-have been 

obtained by different investigators but these efficiencies for 

the case of complex mode excitations under resonant and non-

resonant conditions are not available. The present dissertation 

is in the direction of fulfilling these requirements. 

A simply supported, thin, rectangular plate of homo- 

geneous and isotropic material subject to a central point 

harmonic force has been considered. Starting from the known_ 

damping constants J and N of the material, the modal loss 

factors for the plate have been evaluated under constant 

force and constant amplitude excitation conditions. A simpli-

fied relationship between loss factors of fundamental and 

(m,n)th mode has been obtained. The material dampings for 

complex resonance conditions (those excitation frequencies 

where more than one mode is under resonance) have also been 

evaluated. A simple relationship between the total loss 

factor under this complex resonance condition and individual 

loss factors has been derived. Effects of changes in thickness 2  

aspect ratio2  material damping constants and position of the 

point force2  on the internal loss factor have been studied 

quantitatively. Simple relations have been derived which 

correlate the loss factor values with the corresponding values 

of a known plate. 

Effect of clamping the edges of a simply supported 
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plate on the fundamental mode loss factors has also been 

studied. The fundamental mode loss factors for the 

variable thickness plate whose thickness varies in one 

direction according to linear and parabolic laws have also 

been obtained by Galerkin's method. A relationship has been 

established between these, values and the damping of plates 

of uniform thickness. 

The average radiation efficiencies under complex 

resonant and non-resonant excitation conditions of a constant 

thickness rectangular plate;  simply supported in a baffle) 

have been obtained by calculating the energy radiated to the 

far field. This has been done by performing the modal super-

position of the far-field acoustic pressures. The effect of 
superposition of any number of modes on the radiation efficiency 

and radiated sound power have been studied. The variations 
in average radiation efficiency and sound power with the 
excitation frequency below the critical frequency, have also 

been studied. 

The objectives of the investigation reported here 

haVe been four-fold. First, to study quantitatively the 

dependence of the modal damping of rectangular plates on 

the excitation distribution and the effect of various para-

meters including the thickness variation on the modal loss 

factors. Second, to obtain practical simplified expressions 

relating higher mode damping to the fundamental value under 

different conditions. Third, to obtain the loss factors and 

radiation efficiencies when the plate vibrates under complex 

resonance conditions. Fourth, to evaluate the radiation 

efficiencies for the plate vibrating under complex non-

resonance excitation conditions. 



CHAPTER-2 

BASIC THEORY 

2.1 EgligIoN OF MOTION OF SIMPLY SUPPORTED 
RECT.LNGUIAR PIIITE OF UNIFORM THICKNESS 

The classical equation of transverse motion of 

thin, elastic plates of constant thickness and of iso-

tropic and homogeneous material, is given by D8,74] 

2, v4 W  + Ph —7 
a 	

= P(x,y,t) 	... (2.1.1) 
t 

For harmonic excitation of the plate, one may write 

P(x,y,t) = P(x,y) eiwt 	... (2.1.2) 

Further, assuming a harmonic response, the deflection 
is given by 

W(x,y,t) 	W(x,y) eiwt . • • 2.1.3) 

Damping is taken into consideration by allowing the 
flexural rigidity to take complex form a8,71O.Substi-

tuting Eqs.(2.1.2) and (2.1.3) in equation (2.1.1), one 

gets 

B(l+in)s74W(x.Y)-Phw2W(x,y) = P(x,y) 	(2.1.4) 

It can be shown, that, an eigen function Vm (x,y) 

exists for each eigen value w satisfying 
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2 B v4111 -Phw mntrmn  = 0 (2.1.5 ) 

where the eigen functions and eigen values for various 

sets of boundary conditions of rectangular plates are 

obtained from E70. 

One could write the . load distribution, as 

co 
P(x,y) = I Vmn 	... (2.1.6) 

m,n=o 

and the plate deflection, as 

oo 
W(x,y) = 	Umnmn m,n=o 

(2.1.7) 

Because of orthogonality of the eigen functions, 

one gets the expression for Pmn  as 

ffP(x,y) 	dxdymn  Pmn = — 

if 	dx dy 

Combining Eqs. 2.1.4),  (2 .1. 6) and (2 .1.7 ) one obtain s 

P 4* 
mn 	V wrian = B(i+il) 	- Phw2 

U 	 mn mn 

From Eqs.(2.1.5) and (2.1.9) one gets 

u  
Pmn 2  = PhL(l+in) w -w2  mn mn 

... (2.1.8) 	• 
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FIG. 21 CO-ORDINATE SYSTEM OF RECTANGULAR PLATE 
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TrZT3 Txy= 	bxby  (2.1.17) 
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further analysis, since the remainder term in the 

right hand side gives the amplitude of the displaCement 

at different points, and the amplitude stresses depend 

upon the amplitude displacement. Ilso 1/i indicates the 

900  phase between the resonant response and the excitat-

ion and is dropped hence onwards in the analysis. 

Now, the stresses at a point in the plate which depend 

upon the displacement of the corresponding points can 

be obtained from 

h3-• 	= 
12ZB x  

3 
- 12ZB c/y = 

	

2 	a 2w-i [ a -w 

	

ax 	ay 

2 
v at +  0 2 
Lax 	ay -I 

and are as follows 

(m2+ve2n2 ) 
= 	

( 
48PZe ['  

n h, 	(m24.e2;77  

48PZe  
(vm2+e2n2)  .... 

_ 
2 	

-  

n h 	(m +e n ) 

48PZe2 (1-v 	mn 
lmnTxy = -7h3 .  [ 2 2 2 2 loos (19 z) coscos(2121I-) 

(m +e n ) 
... (2.1.18) 

mnY.  

sin(12-a) sin( LIE1  ) a 

sin (114 E) sin ( ma ) (max ) sin 

The principal stresses can be obtained from 
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0"-  
mn a1  2a2  

I llmn°1+111mn 'y I  4. [-r_ 	mn 
2 	

1-tr) Cr I 2 mn  

1/2 2  7 

... (2.1.19) 
Thus, the stress distribution in terms of T)rlin  times 

principal stresses are obtained when the plate is vibrating 

under (m“")th  resonance mode, 

2.2 CRTTEaTA. A.LENT UNIAXIIV,,STRESS 

The damping of a member subjected to a multi-axial 

stress system can be obtained from the damping properties 

of the material of which the member is made of, by 

incorporating an equivalent uniaxial stress Q. This stress 

is conceptually considered to represent a state of multi-

axial stress provided the damping energy dissipation is 

same in both the cases such that 

D(Ge) = D(CY.  5  0-  ) 	 0.. (2.2.1) 
D(6 a2 

Number of theories or criteria for determining 0; have been 

developed by different investigators 07225539828E. LazanDTI 

has reviewed these in detail and Hooker C:25.7 has critically 

examined them and proposed the following relationship which 

is based on contributions by distoritional and dilatational 

strain energies: 

O-N  = (1-1- ) O-N  + ed 	rev 
... (2. 2. 2) 
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In this expression Fr. 0 indicates damping dependent on 

distortional strain energy only and 1- = 1 indicates the 

damping dependent on dilatational strain energy only. For 

a particular problem s  Hooker has suggested that E is to be 

estimated experimentally. Whittier an argued that the 

dilatational and distortional effects are independent- a 

fact which was supported by Hooker 	for want of proper 

experimental evidence against it. Under this circumstances 

F-= 1 and 1-= 0 would lead to upper and lower bounds for the 

loss factor, respectively. 

In the case of rectangular plates shear effects are 

known to be small and as suchdiltational strain energy 

criterion for obtaining the equivalent unia-glal stress is 

made use of in the present work. 

thr6 expressions for the equivalent uniaxial stress 

based on distortional strain energy is given by DT 

1/2 
c- al  (2.2.3) 

and based on dilatational strain energy is given by 

0-a (1 + 
1 

(2. 2./1-) 



2.3 MODAL LOS FACTOR FOR A RESONANT MODE 

Once the equivalent uniaxial stress at every point 

on the plate is known, the problem of evaluating the 

modal resonant loss factor of the damped plate which is 

subjected to multiaxial stress system, reduces to one 

which is subjected to equivalent uniaxial stress system. 

The internal damping of the plate can then be evaluated 

as follows f'7 

The total strain and damping energies of the plate 

are given by 

0 2 

" 
eT u 	

2 	
ply 

p 	1i1  

and 
	

D = IJ0 N.dv 

where 0-eT  the effective stress from total strain energy 

view point is given by 

, 1/2 
0-m  = 0 (1-2 vE+ Oa  ... (2.3.1) 

provided the plate is imagined to be constituted of a 

very large number of small rectangular elements, each of 

volume dv 2  and having an equivalent stress 0; at the 

center of each e lement, 
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The loss factor is given by 

D 
11 -27E7 ... (2.3.2) 

Observing that Eqs.(2.2.3) or (2.2.4) would give a stress 

distribution in terms of I') G; )  one gets 

1 	N  CN71) 
(7-71) — 5 (r) 	. 

7 I 
en 0e  — )

2 
T 

which for the case of equivalent stress based on dilatational 

strain energy dissipation:becomes 

1 	. 	1 

T) = CIE) (N-1)  II- 	(11  ;Id) N(14°  N 	
(N-1) 

7
. . . (2.3.3) 

T. (11 (5a1)2(1.,..2y + 

The loss factor can also be determined by evaluating the 

integrals a and p. For this, polynomial curve fittings of 

(V/Up} vs. (0-e/Oam  ) - for evaluating a - and of (V/V ) vs. 

(0eTe Tm ) - for evaluating p - are to 
be made. 

Thus 2 

N 
am 

P' 	2 
eTm 

(2.3.4) 

TI = 
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Here y 0--a:rn  is the maximum value of 0-e-  and 6eIm  is the 

maximum value' of Cr' T 
 in the stress distribution of the 

e 

plate. Above equation modifies as 

1 
(7-71-) [ 

 

p 	
am 

(no- )2 j 
eTm 

... (2.3.5) 

2.4 CHOICE OF ELEMENTS _  

In order to make use of the equations derived 

in the previous section, one should know the distribution 

of the equivalent uniaxial stress throughout the plate 

volume.. For this purpose the plate is conceptually thought 

to be divided into a large number of small rectangular 

elements. The choice of the elements is dictated by the 

fact that the waveform of the plate vibrating in any mode 

(m,n) would be symmetrical about the central lines. 

Since the stress distribution along the thickness of the 

plate is triangular about the mid-neutral,plane, it is 



a 
2x3 

rn=3 

(a) 

2xI 

(b) 

rn=I AND 5 
(SUPERIMPOSED) 

FIG. 2.2 VIBRATION AMPLITUDE WAVE FORMS 
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must have the same sign in each mode. Hence, the express-

ions, within the summation sign, are to be multiplied by 

+1 or -1 as required to ensure correct phases. 

The principal stresses and thence the equivalent 

uniaxial stress ce  are obtained as before. The loss factor 

T 
under complex resonant mode is now computed from 

rE  
1-7 7  cf eT 

(2.5.2) 

As regards the selection of element in this case, 

it would be observed from Fig.2.2b, that, due to super-

position of two or more different mortal waves, the stress 

values are to be calculated upto a/2 and b/2. However, 

the overall symmetry in the stress distribution pattern 

could still exist about the central lines of the plate. 

The element size would be governed by the largest values 

of m and n within the group of (m,h) order modes whose 

superposition effect is to be studied. For this analysis 

two elements were chosen in a quarter of the wave corres-

ponding to the highest order m i.e. mmax  and to the highest 

order n i.e. nmax, giving the element size 

dv = ------x ---h---- x 
4 m 	4n 	8 

max 	max 
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2.6 EQUATION OF MOTION OF SIMPLY SUPPORTED RECTANGULAR.  
PLATE OF VARIABTR THICKNESS 

The differential equation of a free, undamped 

motion of a rectangular plate of isotropic, homogeneous 

material with no inplane forces and having a variable 

thickness is given by[X]: 

B v4  W+2 E3. a v2 /,.7+2  11.3 	,v2 W+ v2B v2/1._ 
ax ax 	ay 6y 

2 	w 	2 L2 a 	 W)  h  62W = 
Oxay oxdy 	8y 8x 	8t 

1-v) (81 B 2 
1-v W — ••••2 

x 6y 

(2.6.1) 

If thickness varies only in one direction, say X, Fig.2.3, 
then the plate equation for forced vibration with a 

forcing function P(x,y,t) reduces to 

-D., 4, n  dB a 	2, d2BE 2 a w 	a 2wi 	a  2 111  
DI 	W 	 W + •-•••"" 	•"-""-2 + V 	+Ph 	= P(x,y,t) dx ax 	dx ax ax 	aY 	at 

... (2.6.2) 

Considering the excitation'to be harmonic, postulating 

the motion W to be of similar type and introducing the 

damping by permitting rigidity to take complex value, as 

was done in section 2.1, one gets 

dB 1_,,2, d2BO 2W 	2 
(1+in) [BV.44+2 	 a W 

dx ax v "7- 	---2 	v 	-Phw 2 W P(x,y) 
dx 8x 	Oy 

... (2.6.3) 

Let the thickness variation in X-direction be given by 



(a) 

FIG. 2.3 RECTANGULAR PLATE-THICKNESS VARIATION 
IN X- DIRECTION. 
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h = ho 

where, for linear thickness 

G(x) 

and, for parabolic thickness 

G(x) 	= 

Also, the rigidity term 

B = Bo[ 

G(x) 

2 
1-11(.17) 

is given 

G(x) 

variation 

variation 

by 

3 

... 	(2.6.4) 

(2.6.5) 

(2.6.6) 

(2.6.7) 

Consider the case of the above plate having all the four 

edges as simply supported, then the response and the 

load term are written as, 

W(x,Y) 

P(x,y) 

- 

r-- 
it 

... 	(2.6.8) 

... 	(2.6.9) 

Szn~max~~ Sin(112 
m.1 ml 

r I_ 	P- Sinea
a 
-tx 

) 

Sin(la-) 
-m1 "  

since the thickness variation is in X-direction only. 

For the central point harmonic force of amplitude P,one 

observes, that 

D 
'ml ab 

= 0 

for m . odd 

form = even 

(2.6.10) 

Let the plate vibimte in its fundamental resonant 

mode. Using the Galerkin's Method, one obtains approximate 

one term and two term solutions as, 
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and 

W  = All Sin ( 	)Sin (b) 

W' 	All Sin(F+ Sin(La a 'l  sin(by) 

(2.6.11).  

... 	(2.6.12) 

Load term in both the cases is assumed as ti Sin(y-) sin(ii) 
which is supposed to excite fundamental mode under resonance 

condition. After evaluating the Galerkin's coefficients 

A
11' All 

' 	
2 

and A'
1  the one term and two term responses are 

obtained. The .loss factor is then evaluated by following 

the steps as laid down in previous sections. 

2.7 SOUND RADIATION UNDER COMPLEX MODES 

The sound power radiated by a vibrating plate depends 

on the details of surface velocity distribution and the 

value of the radiation efficiency at that frequency of 

vibration. These values are available in literature when 

the plate is vibrating in a single mode whether resonant 

or non-resonant. For the complex modes of vibration -

both resonant and non-resonant - these quantities are to 

be evaluated by superposing the individual modal contri-

butions after giving due consideration to their phases. 

If the plate vibrates in a fluid medium then the 

fluid exerts a radiation load on the plate which would 

normally modify the distributed loading and introduce a 

'feed-back' fluid-structure coupling. When the fluid medium 

happens to be the atmosphere, the radiation loading is 

generally small enough to have a negligible effect on the 
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structural vibrations, because of the low density of 

air as compared to structural materials po. Thus, in 
such situations, the dynamic response of a structure in 

the atmosphere, excited by prescribed driving forces, 

can be determined as though the structure were vibrating 

in vacuum. Therefore, the eigen shape functions and the 

corresponding natural frequencies of the in-vacuo modes 

of plate vibration do not get modified when the plate 

vibrates in air. 

The surface velocity distribution over a rectangular 

plate, simply supported in an infinite baffle is given by 

co 
Vw(x,y) = 7 VmnImn(x,y) 

m,n.o 
... (2.7.1) 

The modal velocity coefficients are related to modal dis-

placement coefficients by the following simple relation 

Vmn . iwUmn 	 (2.7.2) 

Combining Eqs.(2.1.12),'(2.1.15) and (2.7.2) one gets, 

for a central point force excitation of a resonant mode, 

when w = wmn, 

17- 	= 
mn abPh nnanwmn  

 

... (2.7.3) 

 

• 

From Eqs.(2.1.10), (2.1.15) and (2.7.2) one obtains for 

a non-resonant mode (damping being low) 

vl = 	
abPh(wmn-w 2  ) 
	(2.7.4) 
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Now, temporal and spatial average of the square of the 

surface velocity is given by 

2 
	

2 

< I vw  I >= 	0 0 
Orul l dx dy 	(2.7.5) 

For a single mode under resonance, 

Vw  = Vmn 	maw Sin(12Y—) 	... (2.7.6) 

and, therefore, one -obtains 

<117w1 >= 	v3lin  
2 ... (2.7.7) 

For complex resonance excitation condition, one has 

m n 
V = 7 7 Vim sin( ElE2E) sin(aa.) a n--,71 n=1 	 n  

... (2.7.8) 

and therefore, one gets after neglecting the effect of 

the cross coupling between the modal damping 

( Vw  1 2> = _2 	1/2 8 mn m=1 n=1 
... (2.7.9 ) 

When the effect of large number of non-resonant modes 

is to be considered, then, 

V = 	Vmn Sin (Ellaa ) Sin (I---a) 

2 m  
>= 	vIn  2  

m=1 n=1 	m  
and, ... (2.7.10) 
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Finally, for the case of superposition of resonant and 

non-resonant modes, the velocity distribution is given by, 

	

17(.0 = mn Sinn(925-21) Sin(1221Y)+V' Sin(EILI) 	tniq 
a 	 mn 	a 	"' b 

and, <I Vw ( 2)=E 	ii-( 1/2ran+1 1732111 2 ) 	

• 	

(2.7.11) 

Defining the average radiation resistance ray  as 

iT 
rav = 	 

< vto1 > 
• (2.7.12) 

where TT is the total average acoustic power radiated 

from one side of the panel vibrating under complex reso-

nance or non-resonance condition, and the temporal and 

spatial overage of the square of the surface velocity would 

be given by Eqs.(2.7.9) or (2.7.10) or (2.7.11) depending 

upon the nature of modes under consideration, one obtains 

the average radiation efficiency,  3av' as  

Bay 
iT • (2.7.13) 

Poe a b <IVj2> 

The far-field acoustic pressure radiated by a baffled 

plate can be obtained from Rayleigh's integral [29] and is 

given by 

e
ikR b a 	 anx 	Roy 

= -ikpoe 	I 	 (x,  y) expP"a  -)-i(-2--)]dxdy2
o o 

• (2.7.14) 
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where V (x,y) is as given in Eq.(2.7.8) and the plate 
coordinate system is shown in Fig.2.4. It is to be noted 

that while making use of the above equation, the modal 

pressure contributions are to be summed up after giving 

due considerations to their individual phases. In this 

connection,it would be easily observed, that, for the 

combined case of resonant and non-resonant modes it is 

the square of the modal pressures which are to be added 

up. However,• for the case of superposition of resonant 

modes or for non-resonant modes only, the modal pressures 

can be algebraically added up. Thib would be evident, if one 

remembers, that, 

2 2 2 p = pl+p2+2p,p2COSO, 

where e is the phase angle between the two superimposing 

modes. 

Starting from pw  one obtains the far-field acoustic 

intensity I and then the sound power TT. Thus the average 
radiation efficiency and the total average acoustic power 

radiated by a plate vibrating under complex modes is obtain 

and effect of superposition of any number of modes on them, 

can be studied. 



Z 

FIG. 2.4 PLATE CO-ORDINATE SYSTEM 
FOR SOUND RADIATION. 



CHAPTER- 3 

LOSS FACTOR FOR SIMPLY SUPPORTED 
RECTANGULAR PLATE 

3.1 MODAL LOSS FACTOR FOR A SINGLE RESONANT 
MODE UNDER CONSTANT FORCE EXCITATION 

The method discussed in the previous chapter makes 

.it possible to evaluate the loss factor for the plate 

for any resonant mode (m,n). A factor IKt has been obtained 

which relates the modal damping of any higher order 

resonant mode with that of the fundamental mode. With 

the help of this factor the higher order mode damping is 

obtained directly without going into the cumbersome 

computations everytime, once the fundamental mode loss 

factor has been computed. 

This factor 'Kt is defined as the ratio of NO-  )N/NO;Tm)
2 

am 

for the (m 9n) - mode to that of fundamental mode. It is 

easily seen from Eqs.(2.1.18)2  (2.1.19) and (2.2.4), that, 

for a mode, the maximum value of the proportional stress 

NO—  ) in the plate would be either equal to (11 0-x) max  or am  
(rNO-)max depending on which one is larger. Further, it  
can be noted from Eq.(2.1.18), that 

(11mn0X)max am 	e2n2) / 2 +e2 n2 ) 

and 

-1+0- 



r 2 2 1(m +v e n2  ) or G m2+e2n2)1 (1+ e2) 2(N-2)  
2 	2 2 2 + e2) 

:] 

(m-+ e n ) 
... (3.1.2) 

K 2 -1-2v + mn mn 

2 -1-2v 11+  11 	1 
2 	1 

(3,1.3) 

K
3 

 -11 
—1+ llui 	N 

(3.1.4) 
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01 	a mn0-  y max 
m2+ e2n2)  / (m2+ e2n2) 21 

Combining above equations with Eqs.(2.2.4) and (2.3.1) one 

obtains 

K= K1 K2 K3 
	 ... (3.1.1) 

where 

where within the braces -1.  t the larger term is to be 

taken. 

In the above 	In case eK,1.0, the term (v + e2) is 

to be replaced by (1+ e2 v) 

where 
maL2+ e2n2 

mn v 
 ( 2 	2 2 ) m + ve n 

2, ve  2 2 -r or 1. 
m2+e2n2' v  

... (3.1.5) 

whichever is less than or equal to 1.0 

2 
Here , X11 (--1I

-) or 
(1+e2v ) for el or'; 1.0 

1+e v 	v +e  
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Neglecting the modal variation in (P/a)5 as shown in 

Table 7.15 one obtains from Eq.(2.3.5) 

1 
nmn r  K(N-1) 
1111 

... (3.1.7) 

The above relationship correlates the modal loss factor 

with the fundamental modal value. 

For modes m = n5  one gets from Eqs. (3.1.2) to (3,1.4)5 

K2 = K3 = 1.0 and --(N-2) 

K = Kl  = 

Now let a particular plate of known material and 

size be considered and let its modal damping be represented 

as 11K 	Let the load be mn* 

and loss factor change to 

Eqs.(2.1.12) 	and 	(2.1.16)5 

Ur 

changed to Pt such that Pt = ki.P 

0n 5  then it is observed from 
m 

that 

... . 	(3.1.8) 
mn 

prime represents a changed para- 

and (2.3,5) one obtains 

( N-1)  
(3.1.9) 

Umn 	k. 1Lnt 

where 	henceforth, the 

meter. 	Going through Eqs.(2.1.18) 

mn (k1
) 

li'lmn 
This equation gives the effect of change in the amplitude 

of constant force excitation on the modal damping of 



the plate. 

3.2 MODAL LOSS FACTOR FOR A SINGLE RESONANT MODE 
UNDER CONSTANT AMPLITUDE EXCITATION 

Maximum deflection for any mode (m )n) is obtained 

from Eq.(2.1.16) as 

(wmn)max zcB (m2+e2n2) 2  119(  mn 
In order that the maximum amplitude of vibration under 

any mode (m;n) remains same as that of fundamental mode ;  

i.e.; 

(Wmn)max zi (W11) 
111 

such that condition of constant maximum amplitude excitation 

is satisfied for all the modes ;  one can visualize that the 

load has now to change to say Pt. This would lead to a new 

value of loss factor rqn;  such that ;  

r m2  +e2n2 -1 2  rPt 	P 
-- = 11 L 1 +e2  

Substituting this equation in Eq. (2.1.18) and then combin-

ing with Eqs. (2.2.4) and (2.3.1) one obtains a factor K 

which is similar to K (Eq. (3.1.1)) 

Here ;  

... (3.2.1) 

... (3.2.2, 

K = K K -K 01 Oe 03 

where ;  K01  
en or (vm2+e2n2) 

) 

(N-2) 

J 

• • • (3.2.3) 

depending on which one is greater. Also in the above 	• 



When e< 1.09 (v + e) is to be replaced by (1+e2v). 

KO2 = K 2  and K03  = K3  

Further, making use of Eq.(2.3.4) one gets 

-Ma = K o 7)11 
This equation correlates the higher mode damping with the 

fundamental mode value under constant amplitude excitation. 

Let the maximum constant amplitude of vibration for the 

mode (m,n) change from Nmn  to Nritm  such that 

WI 	Ut ran mn I, 

W n "2 ran 

One obtains the relation between the load ratio k1 and 

the amplitude ratio k2  from Eqs.(3.1.9) and (3.2.-1) as 
1 ( 	\ 

'N-1' 
= ki  

Hence, from Eq.(3.1.9) and the above equation one gets 

 ran 	(N-2) 
4; 	2 
'mn 

... (3 . 2. 6) 

This equation gives the effect of change in the constant 

maximum amplitude of vibration on the modal damping of the 

plate. 

3.3 SIMPLIFIED  RELATIONSHIP BETWEEN ThE  TOTAL LOSS  FACTOR 
UNDER  COUPLE): RESONANT  MODES  AND INDIVIDUAL LOSS FACTORS 

The evaluation of the internal loss factor for the 

plate vibrating under complex resonances (when more than 

(3.2.4) 

... 
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one mode have identical natural frequencies) has been 

dealt with in Section 2.5. A. simplified approximate 

relationship between the individual modal loss factors and 

the total loss factor under complex resonant modes is 

derived below: 

Let, there be two modes having identical natural 

frequencies which axe represented by suffix Il! and 121  

and let them vibrate under resonance condition. Let 

suffic IT! represent the total values under such excitation. 

Neglecting the effect of cross-coupling between the modal 

damping and applying the principle of modal superposition, 

the stress relationship can be written as 

(3.3.1) C7' 	= C5- 	+ Ci- el 	e2 

Further the maxima of Vs Can iaiS6 b'6 'Writ 	a!th 

= 
'111 

+ 0— m 
a, 	am2 1 

... (3.3.2) 

provided one ensures that phases at the centre of the 

vibrating modes are same. Also one may write the following 

aprroximate relationship in terms of'Crel  as 

e TraT 
= 	+ eTm 	eTra2 
	 ... (3.3.3) 

Going through Eqs.(2.3.4) and (3.3.2) and neglecting the 
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variations in integral ratios one gets, 

n 	)11N 	n 	1 1/1T  4 	0- 	) 1/N  
(11T-eTmT' 	(11-eTmli 	-12-eTm21  

511-3 2----t 2 1/N tri 0-g )2 ,l/N 	eTm 
(n 0- 2  

)2 1/N or 

T eTmT 	ri1 	 1 2 	... (3.3.5) 

Hence, Term].  and IIT Tm2  can be obtained through Eqs.(2.3.1)) 

(3.1.5) and observing that 

... (3.3.4) 

i) 0-  a al.  • 
W vm2+e2n2 

(m2+e2n2)  2 j or C 
2 2 

m2+ ve 

(m2+  e2n2) _land 

0-eTm, is given by Eq.(3.3.3). 
1 

One can then estimate the loss factor for the plate 

vibrating under complex resonance condition from the above 

equation thereby avoiding the detailed computational 

procedure as given' in Section 2.5. 

In the above analysis, a constant force excitation 

has been assumed for the complex and as well as individual 

modal excitations. It is further verified that Eq.(3.1.9) 

holds good with the suffix !Ti i.e. for the total loss 

factor values for the complex mode as well. 
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A similar analysis is made for the case-when 

the maximum amplitude of each individual mode of the 

complex resonance case is 'same as that of the fundamental 

mode under a load P, and an expression similar to equat-

ion (3.3.5) is derived wherein Ill  and 12  then are the 

individual loss factors under constant maximum amplitude 

excitation. It is also observed that Eq.(3.2.6) holds 

good for the total loss factor values as well. 

Now, instead of maximum amplitude of each indivi-

dual mode being equal to the fundamental mode value, one 

may come across a case when the maximum amplitude under 

complex resonance condition is equal to the fundamental 

mode value. In such situations, assuming the individual 

loss factors of the modes under complex resonance to 

be equal, one can observe that stresses will be reduced 

to a factor of (1/j) times the vslue under previous case, 

where j is the number of modes under a complex resonance: 

It can be seen then that the loss factor will be [l/j] (N-2) 

times the previous value. 

3.4 EFFECT OF CHANGES IN PLATE THICKNESS 
AND ASPECT RATIO ON THE MODAL DAMPING 

Let, the constant thickness of the plate change . 

from h toll' and the aspect ratio change from e to e'l.  

such that the new loss factor for the fundamental mode 

be 1111. Let, the excitation force remain constant. The 

variation in Oa is very small as shown in Table 7.8 and 
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is therefore neglected. Combining Eqs. (2.1.18) 5 (2.2.4) 

(2.3.1) and (2.3.5) one obtains the relationship between 

n111 and n11 
the loss factor value corresponding to t hick-

ness h and aspect ratio e, as, 

C 
(N-1) 	 ... (3.4.1) 
0 

where , 	C
o 

= C
O1CO2C

O3 
	 ... (3.4.2) 

Here, 

C01 = e 	2 t
) (I 

h 2,1+e 
2 re   {( +e t 2) or (1+0 2v) 1, (N-2)  

4,( \+e2) or (1+e2  v) 

where the larger term within the braces is to be taken. 

( 1-2v r,11+ 11  CO2 =  
1.-= \') 	it.1* t 

1-it 11,  N 
CO3 	( 1.1. 1  1)  

It is noted, that, for e = e t CO2 7- CO3 = 1 

	

and CO = C01 	(h....\  2(N-2) 
' 	01 	'hi' 

Equation (3.4.1) gives the ratio of fundamental mode loss 

factors between two plates of different sizes subjected 

to constant force excitation. However 9  the value of the 

fundamental modal frequency itself changes as h or e changes. 
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Let us now consider a case when the two plates 

of different sizes are vibrating with same maximum 

amplitude. Then to attain this condition, the force has 

to change to PI and one gets from Eq. (3.2.1) 

2 r 

2  

	

(W11)  max 	(..a 	
P 

	

) 

13714 	L (1.fe ) 2 11 ( 	B r714.  11 
-12 4 6. 	Pt = P 	0_0  411\  3 [1.4 2 .! 

11 
i.e.., 	 i+e  1111 

e ' h ' 
 

PI  

.414s = 2) 2111.1  

... (3.4.3) 

Substituting this equation in Eq.(2.1.18) and making use of 
Eqs.(2.2.4) and (2.3.4) one obtains after neglecting the 
variation in (p/a) once again 

"Ight-r e 'o C01 0200 0-
t  

C
= C, 

L ri X 
11 

( 3.4.4) 

Also, 
t(l+vet2) or  ( v4.02)  

CI of Ch 
I(  v+e2) 	or (l +ve2) — 

c 	c 2 - 02 

1.4- 2) 

c03 
= c03 

It 	

- 03 

It is seen, that, for e 	et 

Ct = Ct 	( h111  (N-2)  0 	01 	) 



Equation (3.144) gives the ratio of fundamental mode 

loss factors between two plates of different aspect 

ratios and thicknesses but of same length, subjected 

to constant maximum amplitude excitations. 

3.5 EFFECT OF DAMPING CONSTANTS ON THE LOSS FACTOR 

Let 1111 be the loss factor corresponding to the 

damping constants of Jr and NI of the material, the elast- 

ic properties remaining same 

VI
11
0a 	TO 0' I one obtains 

1 11 a1 
(2.2.4), (2.3.1) and (2.3.5) 

. Observing, that 	and 

with the help of Eqs.(2.1.18), 

Ill 

(Ni'- Nt-2,\ 
'N-2 NI- 11. 

ANt-1) NE -2 
NI-1 	-1 

o 	(N1-2 1 
'N-2 *NI-1) 

... (3.5.1) 

WHERE, 
1  

' 	
(Nt 

N- 2 	Nt -2' 	NT -2 	N- 2' R01 • 02 

R
01 = (1-2y+ 

2 
11 11' 

(3.5.2) 

and 1102 = (1 	11) 

JE cc  r E— 
7C 	13 1andr 1 

jtE 
L 

a t  
° 

The loss factor for any plate material for which the 

damping relation D = J 0-1S is assumed to hold good can be 

evaluated from the above equation provided the integral 

/09'37/ 
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ratios (a/p) and (a l/Pt) are known. The variation in 

the Poissonls ratio is taken care of in the term R
o and 

the variation in E is to be accounted for in r and r1. 

3.6 MODAL DAMPING UNDER ECCENTRIC POINT FORCE 

So far in the analysis, a central point harmonic 

force has been considered to act on the plate which 

excites only odd-odd mode. Let the force now act at an 

eccentric point (xial) instead of at (2, 2). Then it is 

known Xthat the response term in Eq.(2.1.16) for 
m7x1 	(n"1 odd-odd mode will be multiplied by Sin.( -7--)sinv-E--). 

Hence, going through the steps as laid down in Sections 2.1, 

2.2 and 2.3, one observes that 

y14( 	a 	r b 	• 
	L it (316.1) 

where T)?mn is the loss factor for a mode (m 2n) when the 

force is eccentric and ,)
mn is the modal loss factor for 

central point force. 

For additional even order modes which are excited 

when the force is eccentric one may obtain q(m,n = even or 

odd) from an equation of the type (3.1.7) where the factor 

1 of Eq. (3.1.2) modifies to 

F  /(m2+v e2n2) or (m2v 
1.4 	(  1-1-e2 ,,...N 2 

4. e2n2) 

L (1+ve ) 	or (v + ) 1 	" 'm2+ e2n2' ' 
mirxi 	mcyl  

sin(— a 	b )sin(—) (N-2) 

 

(3. 6. 2) nxi  ltyl 
 s  • 



CHAPTg2=A 

FUNDAMENTAL MODE LOSS FACTOR FOR 
CLAMPED PLATE 

The modal loss factor for a rectangular plate of 

which all the four edges are simply supported has been 

dealt with in the previous chapters. The eigen shape func-

tions and the natural frequencies for such plate are given 

in Eqs.(2.1.13) and (2.1.14), respectively. The effect of 

clamping in turn of the edges is to change the boundary 

conditions of the plate. The shape functions and the 

natural frequencies for different sets of boundary condi-

tions as derived by Warburton are given in Appendix 1. The 

loss factor for the fundamental resonant mode for four 

different plate boundary conditions, Fig.4.1, will now be 
determined and effect of in-turn clamping of the edges 

on the modal damping of a simply supported rectangular 

plate will be studied. 

4.1 ONE EDGE CLAMPED-CASE 1 

The shape function for the plate having the edge 

x = 0 as clamped and the remaining edges as simply supported 

is obtained by combining Eqs.(A.1.2) and (A.1.5) as 

villn(x,y)  . 	in.y2,xa....1‘  sin(0.5y2) 
	 Binh.. tic._ _ 1- 7)  sinh(0.5y2 )* 	'2\a 7 sin --Un't  b 

ag  Also, from Eq.(A.1.8) and Table A.1.1 one gets the 

(1.1) 

funda- 

mental

4  

 mode frequency parameter as 
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FIG. 4.1 RECTANGULAR PLATE-DIFFERENT BOUNDARY 
CONDITIONS ON THE EDGES. 



x 	= 114B1,25)4--fe4+2e2 (1.25)2[1- A--i] 1 	 5n 	(4.1.2) 

Since the orthogonality of eigen functions holds good 

for clamped and simply supported conditions, one gets 

the modal loading coefficient from. Eq.(2.1.8). 

It is seen from Eq.(4.1.1), that, 

b a2 	ab 	sin2(0.5 y2 ) 	2 Sin y2  .  I I 	dx dy = 7-11 - 	 ... (4.1.3) 
o o 	sinh2(0.5 y2) 	'2 

Further, one obtains with the help of the procedure given 
in tyg 

b a 	 005(0.2512 ) 
f 2(x,y) Imn (x,y) dx dy 	P[Sin(0.25y2 ) f'77175727777 1  o o 

for n = odd 	... (4.1.4) 

Substituting Eqs.(4.1.3) and (4.1.4) into Eq. (2.1.8) one 

gets for central point force, the value of modal loading 

coefficient P11 as 

where, 

4P -5, p = 11 ac 1 

cos (0.2512) 
sin(0. 25Y2){co-S-70.2577 

F = 

	

sin (0.5 Y2, 	sin y2  
1- 	 - 2 

	

sinh2(0.5Y2) 	Y2 

 

... (4.1.5) 

  

The response when the plate is vibrating in its fundamental 
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resonant mode is now obtained as in Section 2.1 and is 
given by 

4Pa2eF
1 	sin (0.5 y2 ) W(x,y) in BX 	( '2'32ca 	U1117.5 yi).  • 11 11 

.sinhy2(fg- 	sin Li 
(4.1.6) 

Stresses are obtained by making use of Eq.(2.1.17). 
F0111 

owing the procedure as given in Chapter 2 and using Eqs.(2.2.4) 
and (2.3.5), the modal loss factor for the fundamental 

resonant mode is evaluated. 

4.2 TWO OPPOSITE EDGES CLAMPED-CASE - 2 

For tale -case of a plate with edges x = 0 and x = a 

as simply supported and edges y = 0 and y = b as 

clamped, the shape function is obtained from Eqs.(A.1.2) 
and (A.1.3) as 

sin(0.5 yl) $mn(x9Y) = [cos Y1(f - 7)  + miET.5:5 yiT.cosh yi(f3  - 1 sin1121txa  

for n . odd ... (4.2.1) 
The modal frequency parameter for the fundamental mode is 
obtained from Eq.(A.1.8) and Table A.1.1 , as 

X11 = R4F+(1.506)4e4+2e2x1.248 	 es. (4.2.2) 

It is seen from Eq.(4.2.1), that 
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2 F_1_  sing  (0.5 	yi) 
ron dx dy 	4 ab  

sinh2 (0 . 5 y1) —1  

Also, for a central point force one obtains cm, 

b a 

0 .• • (4.2.3) 

rbJa 
P  o o 

sin(0.5 yl) -1 x,y) Vnan(x,y) dx dy= P 
 77170.5 Y1)1 ... (4.2.4) 

Substituting Eqs.(4.2.3) and (4.2.4) in Eq.(2.1.8) one 

gets the modal loading coe'fficient, as 

413 -pi 

P1 	ab*-2 

C
l 

sin(0.5y1) 
-jinh70.5y1)_j 

where F2  

[l_ 
sin (0,5 y1  ) i] 

sinh(0.5 Yl) 

... (4.2.5) •■••■■••••••■■•■=111www.■•■ 

The fundamental resonant mode response for the plate, 
therefore, becomes 

W(x,y) 
4Pa2eF2 _ 	---- 
inl1BX11 

Y  
sin(0.5y1) 

t 

Yl 1/47 - sinh(0.5y1) • 

.cosh yl ( b  Y_  - Tisin nx  a 
• • (4.2.6) 

Having obtained the response,the fundamental mode loss 

factor is once again obtained by following the procedure 
as given in previous section. 
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4.3 THREE CLAMPED EDGES-CASE 3  

In this case the edge x = a of the plate is simply 

supported whereas all the remaining three edges are clamped. 
The shape function is obtained with the help of Eqs.(A.1.3) 
and (A.1.5) and is given by 

mn(x'Y [cos Y1 2
) 

sin(0.5y1) 
(1 	cosh 	- 

sinh(0.5y1) 

sin(0.5y2) 
• [sin Y2(f-g 	sinETU.5y2) .sinhy2& 

The fundamental mode frequency parameter X.11  is obtained 
from Eq.(A.1.8) and Table A.1.1 as 

X= u4[1(1.25)4+(1.506)4  e4+2e 21.248(1.25)2 (1- 4_ 11 	 5n 
(4.3.2) 

One gets from Eq.(4.3.1) 

b a 
f I 12  dx 0 0  mn dy 

sin2(0.5y2 ) 	2 sin ab , 	 e r[L- 
sinh2 (0.5y2 ) 	Y2 

2 sin (0.5y1) • 
sinh2(0.5y1) 

... (4.3.3) 

Also, for a central point force one gets Do 
b a 

 cos (0.25y2) 
 nn(xa)dx dy P[iin(0.25y2)r cosh 2570 w 

sin (0.5Y1) 
.LL+ sinh(0.5i7-7] 	... (4.3.4) 
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Substituting Eqs.(4.3.3) and (4.3.4) in Eq.(2.1.8) one 
gets, 

4P 
P11 - 	F 11 	al' 1' F2 ... (4.3.5) 

where F1  and F2  are given by Eqs.(4.1.5) and (4.2.5), 
respectively. 

The fundamental resonant mode response for the plate, 
therefore, becomes 

4Pa2eFP2 W(x,y) = 	- 	--ICos 
i7111"11  

sin(0.5Y ) 1 Yi 	sinh7.7y1) . c °shy, (fo  2fl 

sin(0.5y2 ) 
  • sinhy2(32-C1 

1) . [Sin 	( 7- - siTIETCUT;) 2-32ca 

(4.3.6) 
The fundamental mode loss factor is now evaluated as 
indicated in previous sections. 

4.4 ALL THE FOUR EDGES CLAMPED - CASE 4 

The shape function for the rectangular plate of which 
all the edges are clamped is obtained by combining Eqs.(A.1.3) 
for X(x) and for Y(y) and is found to be 

sin(0.5y1) Imn(x,y) . Dos 	- -)+ 	Y1 Ca!' - 2 
sinh(0.5y1) 

• 

Sin(0 .5Y1) ) 

sinh (0 5y1) 
Coshyi (i-1] 

• •• • (4.4.1) 
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The fundamental mode frequency parameter is obtained from 

Eq.(A.1.8) and Table A.1.1 as 

= it4B1.506)4+e4(1.506)4+2e2X 1,248X1.248] 
• • • (4.4.2) 

One obtains from Eq.(4.4.1) 

b a 
fe dx dy 

o o 
rD. 2in2(0.5y1) -12 

sinh2(0.5y1) 
... (4.4.3) 

For a central point force one gets C2] 

b a . 	 sin(0.5y 1 2  f P(x,y) tnan(x,y)dx dy = P[1+=7.1757171-7_1  o o ... (4.4.4) 

Substituting Eqs.(4.4.3) and (4.4.4) in Eq.(2.1.8) one 

obtains the modal loading coefficient for the fundamental 
mode as 

P 
	4P 112 

11 ab 2 

where F2 is given by Eq.(4. 2 .5) 

(4.4.5) 

Therefore, the fundamental mode response for the plate 

is obtained as 

4Pa2eF 	
1 sin("5/(1)  141(3c,3) 	 11(i 	 coshyl(! 7111All 	7' ' si1770.5y1)

1 sin(0.5y1) y [ °sYl (f) -)+ _33757577.coshyl(b - 1)".] 

.. (4.4.6) 
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Having obtained the resonant response, the loss factor 

for the fundamental mode is obtained as indicated before. 

In all the above cases the values of 	and y2  are 

to be used. These are known from literature C30) as 

0.5y1  = 4.7300 

0.5y2  = 7.8532 

Thus the fundamental mode loss factors for diff-

erent sets of boundary conditions and for different plate 

aspect ratios are computed and effect of inturn clamping 

of the edges on fundamental mode loss factor studied. 



CHAPTER  5 

ANALYSIS OF VARIABLE THICKNESS PLATES.  

The equation of motion of a simply supported 

rectangular plate having a thickness variation in X-

direction has been given in Eq.(2.6.3). When the plate 

vibrates in one of its resonant mode the approximate 

one term and two term solutions can be obtained with 

the help of Galerkin's Method[N] and the fundamental 
mode responses are given by- Eqs.(2.6.11) and (2.6.12) 

wherein the Galerkin's coefficients Ali, All  and All  
are to be evaluated. After determining the response, the 

modal damping can then be obtained. The following two 

cases of variation in thicknesses are considered. 

1. Linear variation in thickness, and 
2. Parabolic variation in thickness. 

5.1 FUNDAMENTAL MODE RESPONSE FOR THE PLATE 
WITH LINEAR TRICXNESS VARIATION -- 

The approximate expression for the response is 

obtained by considering one term or two terms in the 

Galorkin solution. Both of these will now be discussed. 

5.1.1 One Term Solution . 

Substituting Eqs.(2.6.4), (2.6.7), (2.6.9),( 2.6.10)  

and (2.6.11) in Eq. (2.6.3) and performing the necessary. 
-62- 
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differentiations one obtains 

3 
(141.111)  Po 	a EG(x)] 7411 A sin(7.12) sin (t){ 	+ 1 12 - t 

673 	2 
- 7.- Ai  Bo[G(x5:1 G' (x){ 	+ 1  -2} . 

.cos(11-1) sin( a 3n2 	sin (-= ny =) sin (7-1Y-) B 11 	a 	b 	o 

• (4,7  + t7){2G(x)(G'(x))2+(G(x))2 G" (x)}] 

Pho  G(x) w11  A11 	a sin(II)sin(2Z) 

- .111  sin(IA) sin(21I) 	= L(W) 	(5.1.1.1.) ab a • b 

where prime in G(x) represents differentiation with 
respect to x. 

Hence, onwards, the suffixes in i shall be dropped and 
it would be considered to represent the fundamental mode 
value of the loss factor. 

Now, the linear thickness variation is given by 

Eq.(2.6.5) such that 

G(x) = 1+6(.E), 

G'(x). 

G" (x)= 0 . 

The application of Galerkin's method leads to the solution 
of the following integral equation 

b a 
J0  10  L(W) Sin(F-) sin(i.1) dx dy = 0 	... (5.1.1.2) 
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The coefficient All  of Eq. (2.6.11) is then obtained 
from the above equation. 

Substituting Eq.(5.1.1.1) in Eq.(5.1.1.2) and solving 

the resulting integral expression, one obtains 

All(l+in) E4,1_ 1_.2 

	

, 11{12+ ILI 	" 0L.:•‘ a2 	b2 	a 	3 a2 	 14 

63 	60 6 1 +7.151 --67.a7--.(2-1. 
a 	 a 	6 

+ 	18 	- 3n2(12- + 27) 
a 	a b 

2 
.{ 26 --2- .11(12+ 

a 

- -Ph U.)  A- o 11 11 1(1 2+ a  3) ab I112 = 
... (5.1.1.3) 

where the integrals I's are given in Appendix 2. 

After substituting the values of the integrals and simpli-
fying, one gets the coefficient All  as 

P 
Al - (1+ill)BoC1-Phow1102 
	... (5.1.1.4) 

where, 

	

n4 	 3 0 = [— (1+e2 )2(1+1.56+62 
1 	2 	(1- 	4 	2 (1- 1--)1 

4a e 

+1.5 9(1-v)62 (1+0.56) 
a ... (5.1.1.5) 

and 2 
C2 	4 = =--- 	• e (1+0 56) ... (5.1.1.6) 
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Substitution of Eq.(5.1.1.4) in Eq.(2.6.11) leads to a 
complex response expression. However, it is known from the 
resonant response behaviour, that, the phase of the 
response under resonance condition has to be one of 900_ 
lag with the excitation (as in Eq.(2.1.16)). Therefore, 

equating the real part of the denominator of the coeff-
icient Ali  to zero in order to bring the phase of the 
resonant response in conformity with known behaviour, 
one gets the frequency equation as 

'1l Cla4/C2 

where, 	X = Ph a4w 2 /B 11 	o 1 o 

and response equation as 

P sin( ) sin(2.1) w = 
in B 1 

... (5.1.1.7) 

(5.1.1.8) 

The term 1/i can be dropped once again as was done in 

constant thickness plate analysis, since it indicates the 
phase only. Eq.(5.1.1.7) gives the one term approximation 

to the fundamental mode frequency parameter Xii. 

5.1.2 Two Term solution 

Substituting Eqs.(2.6.4), (2.6.7), (2.6.9), 
(2.6.10) and (2.6.12) in Eq.(2.6.3) and performing the 
necessary differentiations one obtains 
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(1+10 
2 3_4r/1 1 2 	TEX 22 1 cp-(x) 	n U-7 	Alisln(a )4-7 4-  2) AL.  a b 	 a b 

22  1 .Ailcos(i4)+(-7 + -7) 2 AL.cos(4/I)1 sin a b 

-3B07E2{2G(x)(G' (x) ) 2+(G(x) )2GH  (x)} .sin(by) 
2 .{ (17  + 2.7)Al_sinca.a)+(.27 +.1_))A1,.sin(22a-12i)jj 

a b -Y• 	a b 2-1-  
-PhoG( X)41fAlisin(,712c- )+Ahsin(Zi7tx)Isin) 

- -14 sin(F) sin(F) = L(14,7) 	 • . . (5.1.2.1) 

Galerkin's method is applied for obtaining the coefficients 

A' and A21 and the following two integral equations are 
to be solved. 

b a 

o 
L(w) sin (2i) sin (a) dx dy = 0  o 

b a 
f I L(W) sin(4IN  ) sin (iI)dx dy = 0 o o 

• (5.1.2.2) 

(5.1.2.3) 

where L(W) is given by Eq.(5.1.2.1). 

Solving these integral expressions one obtains 

.sin(ien 	(F)-6B0  [G(x)] 2G ( x)e-I (L. g  
a b 

Bo (l+in)P.I1  1.(1  + ±-)
2 
 A' (I + 	I a7 b2 1 2 a 3 

02 	2 	 2 +(7 + ) Ah(19+ 	ilo a b  

2 	3 	\ 14+ -3 15 / 

63  + 

2 
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2 26 +5 + it)2.Ah(I13+ --a- 114+ 	1101 
x2 	1 -311'2 :702. ili(:7 	1202  )A 11(I2+ 1:13 )-1-3  

4.(422. L2)41(1,4_11 '10  
a b " 7  

-Phoq1I11(12+ à13) A11+(19+ 	)A' ) 

a. b - I1I2 
	. 0.  

and, 
2 

	?I 0 Bo  (1+ii) Er4I f(17 -I-  -.It)  All(19+ & + -7—I ) 1  a 	b 	a 1 a3 12 
2 	2 	12 	63 4-7 + -7) A21(/16+ a 117+ 	118+  -v.I ,$)1 • a 	b 	a 18  a) 1J  

-6 
 a
6 n3 

	

	 2 
3--  ilf (17 + 1  )Al ti + ..L.I 	.4. ....2. T 	‘ 

a 	b 1  11' 20 a 21 a  '22/ 
22  1 	26- 	62 	2 62  +2(-7  + 1-7)AL(123+ g-I2A+ 71,01 -37c22 7  II. 

a ' a 
f ( 7  + -11.7)A;-, (In+ 1:110)+( 24 + .-7)11,',1  (116+ i 117)i) a b -1.'" 	a b ' 

2 

	

-Ph w1  I t( 	6 	)2  o 1 1 19+  - I10 ' i a 	1+(/16+  a - I17) 	1 17 '21 
42 - 	1119  = 0 

where the integrals I's are given in Appendix 2.. 

( 5.1.2.5) 

Substitution of these integrals into the above equations 

and simplification leads to the following two simultaneous 
equations: 

AL[Fi+inBa.  +A F in TR [ 4+- 	4153-  'o (5.1.2.6) 

and, 



All = 
P/B0 CP2+111 A2 3  
•••• 

[F5+i-oF6 

and, -P/Boa3+ii-}A1  
A' 	_W
21 - 	[F5+in F6 

where, 

F5  = (F1F2-F3F4)-12(B1A2-A1B2) 

F6  = (F1A2+BiF2)-(F3B2+A1F4) 

... (5.1.2.9 ) 

... (5.1.2.10) 

... (5.1.2.11) 

... (5.1.2.12 ) 
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+inA3] +A21[F2+inA2  = 0 	... (5.1.2.7) 

where, 

  

 

F1  = (B1+G6), F2  = (A2+H6), F3=(A1+H8), 

F4 =. (B2+G8) 

Al 	(111+1134417)' A2 = (H2+114+H5)  
B1  = (G1+G3+G5), B2  = (G2+G4+G7) 

(5.1.2.8) 

  

Here, Gi  to G8  and H1  to H8  are the taper coefficients for 

linear thickness variation and are given in Appendix 3. 

Solving simultaneously, the Eqs.(5.1.2.6) and(5.1.2.7) one 

obtains, 

All 

It was found that A
2 and F2 are of same order since H6 

is usually small.Therefore, for low damping, the imaginary 



-69- 

term in the numerator of11 would contribute a very 

small phase and hence can be dropped. Similarly, the 

imaginary term in the numerator of All  can also be dropped. 

Now, in order to bring the phase of resonant responsein 

conformity with known behaviour, one has to equate the 

real part of the denominator of All  and Ah i.e. F5  to 

zero. This would bring the phase of the resonant response 

to 90°-lag with the excitation. Therefore, one obtains 

the frequency equation as 

F
5 
 = 0 

or, 	F1F2-F3F4  = 0 after neglecting 112 term 

which is very small. 

This leads to a quadratic equation in terms of the fre-

quency parameter X
11, as 

X11 r nli6-HAG8  ' 3  +xiir- jGgA2+HgBi )-(Hp32+GAA1) 3 
+(B1A2-A1B2) = 0 	... (5.1.2.13) 

Lower root of this equation is the two term approximation 

to the fundamental frequency parameter Nal. 

The Galerkin's coefficients 

All 

and 	A 21 

Thus, the two term 

= 	--- 

2 
T3-  o x  

F 
-2 	x i1130 	6  

response 

sin(7-a)-F 2 	a 

reduce to 

Eq.(2.6.12) becomes 

... 

... 	(5.1.2.14) 

(5.1.2.15) i lBoF6 3 	a sin(22a/sin(iI) 



-70- 

The phase term 1/i can once again be dropped hence on 
wards. 

5.2 FUNDAMENTAL MODE RESPONSE FOR THE PLATE WITH 
PARABOLIC THICKNESS VARIATION 

The approximate response expression with one term 

and two terms in the Galerkin's solution are obtained below. 

5.2.1 One Term Solution 

The parabolic thickness variation is given by Eq.(2.6.6) 
such that 

and, 

Substituting Eq.(5.1.1.1) in Eq.(5.1.1.2) and using the 

above expressions for G(x), G'(x) and G"(x) one obtains 

after solving the resulting expression, 

A11(1+in Bo  [it4 1 (-7  + 12)  211 {12- 	4. IL_ 
a 	b 	 271 a4 1 - 26 

- a (-7 + 	( 	{17- 	128+ 	91-3.1'2(1/2 +22').  a b 	a 	a 	a b 
. Ilt2(- g.)2(I4- L2 	)_ 	( 	

u2 

a 	a 26 a2 / - 2-  a2- 14+  a4 126)i.] 2 
-Phowl1A11/JI2-  2 	42 al7 I112 = 0 2 	(5.2.1.1) 

where the integrals I's are given in Appendix 2. 

After substituting the values of the integrals and simpli-
fying, one gets the coefficient All  as 

GEM. LIBRARY LIIP/L-RSITY OF :ZONIXEE 

67c3 a. 	2 
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All = --- 	
P 
	 2 (1+in)B0C1  -Phow 11c  2 

which is same as Eq.(5.1.1.4),and wherein 

4  
Cl 	

, 2 

	

-- 1---(1+e2 )
2 
 f1-4(1- 42)+ 1- 	

71 	It
(1- 	+ 241) 4a2e  

3 11 10.5  A 52 .5 78.71 --T 	/r 

2 
-144-e (1-N7441-211.(1 11)+42  (1-  a- 

cD. 
"" 

(1.. 	 2)  
-2 = a 

E 
2 	nc 

... (5.2.1.2) 

(5.2.1.3) 

With the lelp of similar arguments as put forward in the 
previous section, one observes, that, Eqs.(5.1.1.7) and 

(5.1.1.8) for the frequency and response hold good in this 
case as well. 

5.2.2 Two Term Solution 

Substituting Eq.(5.1.2.1) into Eq.(5.1.2.2) and solv-

ing the resulting integral expression, after making use of 

G(x), G'(x) and G"(x) for parabolic thickness variation, 
one gets 

(1 	) Bo  [ic4I, 	(ly +)2  ( I 2- 
a b 

22  1 2 +A 1( -7  + -7 ) (I 
a b 1 

	

6 3  2 	1 	1 + -7( - )I1(.1111( -7 + -7)(17- 

	

a 	a b 



2 
+ 	I a4 3 

3  2 	113 
a * -4 134-7 135)4 

(1+iii)B 	e + 1-)2  A' (19 a 1 	b2 	11 9 

,22 	1 \2 +k-7 + 7) 
a b 
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2 	2 

+A21  (2)(-2. + 12)(I14  - a 32 	33 a 
4  381 	+ k- 	) 1 

... (5.2.2.1) 

2 
-3n2(2) 	Il IA11 (17 	 7)(14- a2- 126)   a b  

( 2  +-2- + 

+3112  (4)Iii:A 1  (17 4.2.7) (I2  - a  
22  v 

+A21(-7 -7)(19 - a b 

-PhowLI111111(I2- 

- -11-) 1112  - 0 ab  
Substitution of Eq.(5.1.2.1) 

ion of the resulting integral expression, leads to the 

following expression 

a 

7)41(I,1- 7  
a b 	a 130)4 

2 
4 I.+ .V-2- 4  a4  

2 
-t In+ 4 t30))]  2u 
a 	a 

4)+ (19- a 111 

126)  

into 4.(5.1.2.3) and solut- 

2 	i..3 +6(.4) -I1{( 7  
a 	a 

+ 27)All (121- 	136+ 4 
a 	a 

137 ) 

4. 2(2 	1 )11., (1 	
_ 2 2 ' -7 21 24 a a b 

)1 

-3n2(2)( 
b 	a 

IAA11(a7 + 7)(111- L7 130) 
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2 +A' 	(2 
21 —2- a 

v  
I34)) + -7 ) (118- b a 

2 	. 2 
	+ 7)(19 	+ ' re - 4 Ill 30 7 b  +3n 2

Za )I fA 1 (1  1 a 	 a 	a I  
+(22-77  + v —7)AL(I_,— 

a 
_y I + 

D o 2 -18' a 4 134)1) a 	b  

-PhowilIlEAL(19- a7I,,)+AL(I16- 	c.,1 
-"L  

2 

a 
4P -119 9 = 0 (5.2.2.2) 

where, the integrals I's are given in Appendix 2. 

Substitution of these integrals into Eqs.(5.2.2.1) and 

(5.2.2.2) and simplification leads to the simultaneous 

equations of the type (5.1.2.6) and (5.1.2.7). It would be 

noted that Eq.(5.1.2.8) to Eq.(5.1.2.15) hold good in this 
case as well, where the taper coefficients G1  to G8 and 
H1 to H8 are given in Appendix 4. 

5.3 LOSS FACTOR EVALUATION 

The one term solution for the response of the plate 
is given by Eq. (5.1.1.8) as 

W - P  1:77- sin( 1) sin(la) 
o 1 	b (5.3.1) 

where the coefficient Cl  for linear thickness variation is 
given by Eq.(5.1.1.5) and for parabolic thickness variation 

by Eq.(5.2.1.2). Now making use of Eqs.(2.1.17) and putting 

Z 
h_  hoG(x) 
16 - 16 



-74- 

One gets the stress expressions as 

710
x = 

0.7
i

pg(xl-(1+ve2) sin (211) sin () a a hoC1 

0.75n2P G(x) 
la 	2 2 	( v+e2  ) sin ill) sin (iI) Y ahC ho  C1  

17xY= 
-7- n 15-712PLI(1-v) e coss(-a

x-) cos(2,71) a2ho  
2C.  1 

(5.3.2) 

The stress distribution can be obtained by making use of 

Eqs.(5.3.2), (2.1.19) and (2.2.4). 

As regards the ,:lement size, the following points 

of differences are to be noted, rest of the considerations 

remaining same. 

(1) In the case of constant thickness plates the element 

size dv remains same at all the points (x,y) and theiefore 
it does not appear in Eq.(2.3.3). For the case of variable 
thickness plate, the element size will depend on its 

location. 

Therefore, Eq.(2.3.3) modifies to 

(fla e)N 	Ti7r)  

LI (no-42  dv1  

(2) Since the thickness variation is in X-direction, there 

is no symmetry of modal wave form and hence of stress 

patterns about the line X = a/2. Therefore, the stress 

distribution is to be considered for half the plate size 

from x = 0 to x = a and from y = 0 to y = 7. 

P 
/(N-1) 

1 = () ... (5.3.3) 
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(3) Quite a bit of economy is obtained in computer programme 

formulation for the determination of stress distribution 

from Eq.(5.3.2) by considering the periodicity of the 

trigonometric functions and taking due care of the.G(x) term. 

The two term solution for the response is given by 

Eq,(5.1.2.15) as 

riW t =B  	2 sin(-   - 3s in( 
p
a 

 
) sin( 2) 

o 6   • • C (5.3.4) 

The loss factor once again is computed by following the 

steps as indicated before. 

5.4 RELATIONSHIP BETWEEN THE LOSS FACTORS OF CONSTANT-
AND VARIABLE THICKNESS 

One observes from Eqs.(5.3.2), (2.1.19) and (2.2.4) 9  
that, cm  the maximum value of stress 0 9 would occur 

Y  1 when Z = 	and = E  = - 2- and would be given by 

6P7c2D(x)-1x=a/2. {(1+ve2) or (v+e2) (. 
ri 0am  = 

h2 a2C o 1 
(3. 

(5.4.i  
Neglecting the variation in the ratio a/p for uniform 

thickness and variable thickness plates and observing that 

would be same for both the plates, one obtains through 

Eqs.(5.-4.1)9 (2.3.1) and (2.3.5), the following approximate 
equation 
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N-2 

T1 

c = E 
N-1 	

... (5.4. 2 ) 

where 	 Cl  
e 	(x)  x=a/2' r Cl v 

Further one gets 

1(x).]x=a/2 = (1 -1-i-) for linear thickness 
variation 

= (1 	for parabolic thickness 
4 variation 

, 	2 
Cl 	- 	(1 	e'

, 
 ) 

c 4a e 

and Cl is given by Eq.(5.1.1.5) or by Eq.(5.2.1.2). 
v 

 

Thus, one can estimate the loss factor for a variable 

thickness plate with the help of the approximate relationshii 
given in Eq.(5.4.2). 
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RADIATION EFFICIENCY AND SOUND POWER 
DPORCONPIJIOPLEX MODE EXCITATION 

The far-field acoustic pressure radiated by a 

baffled plate can be obtained from Rayleigh's integral 

and is gdven by Eq. (2.7.14). The far-field acoustic 

intensity I is obtained as 

... (6.1) 

For a single odd-odd mode, it becomes De, 

V k ab 	2.cos (7-o  ) cos (I) 
I = 2Poc -In  n 3R 	f a 

RE977)2-111(1)i)2-11  ... (6.2) 

Also, the average acoustic power radiated from one side 
of the panel is given by 

21t n/2 	2  TT - 	I R sine de d' 	... (6.3) 
o o 

Substituting Eas.(6.2) in (6.3) and usinrz Eqs.(2.7.7) and 

(2.7.13) on gets PC, 
a 	Po 	2 64 k2ab t/2 n/2 r-cos(-2-2-) cos(7) 

smn - 6 2 2 	 J 	L a 	P 	sine de clV 
nmn oo 

It would be seen from the above equation that, the velocity 

term does not appear in radiation efficiency expression for 
-77- 

I = - 
P oo 

(ITE) 2-1}{ (7191-  ) 	/ (6.4) 
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a single mode. However, when complex mode excitation 

is considered, the velocity terms do appear in the 

expression for Sav  and hence modal velocity coefficients 

for a type of loading are of importance. 

Substituting Eq.(2.7.8) into Eq. (2.7.14) one gets the 

sound power radiated "under complex resonance excitation 

condition, as 

8P ck2 a2 b2  
TT  

IL 

/A/2 n/2 	a f cos'(22) 
0 	0 

2,4D\  cos k--) 

V 
 

mn 
ao 2 

  

2 

sine de dl' 	(6.5) 

 

From Eqs. (2.7.13) and (6.5) one gets 

n/2 /2 cos2(;2) cost  
f I 	[ 0 0 r vfan  

V ran 
sine de dV 

... (6.6) 
mn  cm4jt)  2_3

] 
C(  

wherewhere the summation in the above two equations include 

all the resonance modes at a particular exciting frequency. 

When the radiation efficiency and sound power radiated 

under a number of non-resonant modes are to be evaluated 

then ymn  in the above expressions is to be replaced by 

IVmn  I which is given by Eq.(2.7.4). 

Sav 
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A careful look into the bracket squared part of 

the integral of Eq.(6.6) would indicate that there are two 

types of terms present in the expansion. The first type are 

the 'single' terms like 

V2  mn 
m2n2[ (75  2_11 [nn )2_12  

L.nn 

and the second type are the 'product' terms like 

2V
'mini 

V
m2n2 

12 -Co 2 
ao 

mlnlm2n2B7. -1 	
ao 2 - (3o 2 

1 	2- 	[I n2n n n 	L. 	,) 

where (ml,n1) and (m 2,n2) are the two modes which are 
superimposed. 	. 

When the effect of superposition of K number of 

modes is to be studied, then, there would be K number of 

'single' terms and Kc2 number of 'product' terms in the 

expansion. The concept of 'single'and 'product' terms has 

been incorporated only to facilitate the programme formulat-

ion. 

For the case when the superposition of a non-resonant 

and a resonant mode is to be studied, it would be seen that 

the integral of Eq.(6.6) would consist of only 'single' terms. 

This is because of the fact, that, under such situations,. 

it is the pressure squared or sound intensity which is to 
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be added up instead of addition of sound pressures. 

However, it can be verified - as shown below - that 

under such conditions the radiation efficiency and the 

sound power radiated would be equal to the corresponding 

values for the resonant mode, due to the fact that the 

velocity term for the resonant mode is very much larger 

than the corresponding non-resonant mode value. 

Let, (m1,111) be an odd-odd resonant mode and 
(m2,n2) be an odd-odd non-resonant mode. The-super-
position of these two modes would give the resultant 

far-field acoustic pressure to be 

2 2 2 
P = Pl+P2 

From Eq.(6.2) for small values of ao  and 1:40 , one gets, 

p2 = {_ikp 	ab 	-ia0/2 	a ikR 
-7(-2e 	.Cos (20-))  

2nR n 

Vminl  
[ 2 2, ao 2 -77-2— 2  411n1t(UT7) -11 f(E n) 

2 V m2n2___ 

1241.1 i(m0_)2_1121(po )2_33.21 

t  2n 	I  / n271  

... (6.7 ) 

With the help of Eq. (6.5) one gets, the sound power radiated 

p 	2 
cos(e-)1 

as 



2 V2 

_ 

	

Vm n 	m2n2 
m n 	

s 
m2n2 7 v2 

	

mn 	Mn 

S = 
1 1 R- V 

... (6.9) 

TT = 
11/2r/2 8P ock2a2b2 	2 an 

6-----  cos (r) cos"(22) 

V2  mina. 
2 2 ao 2 	2 P 	2  
mlnit(I7n) -1) CE)2 -1/ 

VL211
2n2 

2 a 2 	p_ 2 2 
m2n22 1 (tc) -11 ((t ) -11 

 

1.  sine de dV 
... (6.8) 

 

Using Eq.(2.7.13) one obtains, from the above equation, 

where, V1212  = (17,211 
 1-1 

+ V1212 	) 
2n2 

Since, V2m1n1 
V2m
2n2 

, one can see, that 

E 112  V2 
r`)  mn - m1n1 

"2 vm2n2 	0 
7 V2  - mn  

Vm
2
n 

- "' 1.0 . 
mn 

Therefore, Eq.(6.9) reduces to 

S = S 	 ... (6.10) 
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-with the similar arguments for the case of sound 

power radiated which is proportional to Cs „ < 1 v„ 1 2  > 
one sees that 

=..2 (T1-)naln1 	 ... (6.11) 

Although above approximations have been derived for 

odd-odd modes, but, these are found to hold good for any 
mode. 

The integrals of Eq.(6.6) are integrated by means 

of two-dimensional Gauss type quadrature formula m. 
Thus, the radiation efficiency (from Eq.(6.6)) and 

the sound power radiated (from Eq.(2.7.13)) from a rect-
angular plate, simply supported in an infinite baffle, 

and, excited by a central point force, are evaluated and 

effect of superposition of any number of resonant and 

non-resonant modes on these two quantities studied. 

Having obtained these, the effect of excitation frequency 

on these two quantities is also studied. 



CHAPTER -7 

RESULTS DISCUSSIONS AND CONCLUSIONS 

7.1 RESULTS AND DISCUSSIONS 

For the purpose of analysis a rectangular plate of 

SAE 1020 steel of following dimension was considered: 

a= 59.061(1.5m); e= 2.0; v = 0.3; h =.0842" 
(0
0
.0
9
025m) 

E = 30.0x106  psi 	= 460 lbs/cft.(7.6x103  kg/m3) 

(20.682x1010  N/m2) 

The damping constants J and N as obtained from Ref. D7] 

were chosen as, 

J = 2.626x10-13; N = 2.286 

A central point harmonic force of amplitude P = 0.2248 lb 

(1 Newton) was assumed to act on the plate. 

The modal damping for the above reference plate has been 

classified as In  in the text. 

7.1.1 The Upper and Lower  Bounds for Fundamental 
Mode Damping 

The ratio of loss factors dependent on dilatational 

energy dissipation (E .(2.2.4)) to that dependent on dis-

tortional energy dissipation (Eq.(2.2.3)) were computed for 

different values of aspect- ratios and damping indices. These 

computations were done for both the constant force and 

constant maximum amplitude excitations. Figure 7.1 gives 

the variation of this ratio with the aspect ratio of the plate 

-83- 
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whereas, the variation with respect to the damping index 

is indicated in Fig.7.2, 

It is seen from these plots that the ratio of 

upper and lower bounds for the fundamental mode loss 

factors is maximum for the square plate and decreases with 

the increase of aspect ratio. This practically becomes 

constant for the values of aspect ratios beyond 5.0 

For the case of constant force excitation the ratio 

of loss factors decreases with the increase of damping 

index and becomes constant as N increases beyond 3.0. But,  

for the case of constant maximum amplitude excitations this 

ratio increases with the increase of damping index. This is 

in conformity to the behaviour shown by uniform uniaxial 

stress case where this ratio is 2N. 

It is known that both the dilatational and distort-

ional effects should be taken into consideration for 

calculating the modal damping. This requires an experi-

mental determination of the factor Fin expression (2.2.2). 

It is noted that an approximate estimate of the fundamental 

mode loss factor can be obtained for the case of constant 

force excitation particularly soy for large aspect ratio 

plates and for large indices y by making use of either of 

the Eqs. (2.2.3) or (2.2.4). This is based on the concept 

that actual damping would be a value in between the two 

bounded values as observed by Whittier. The large value of 
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this ratio obtained for the constant maximum amplitude 

excitation compares favourably with the ratio of 7 as 

obtained by Whittier for circular plates. 

7.1.2 J'IQAD1 1:20LRiaLE1142rglagI01221219gaclIgI12n 

The normalized damping energy integrals a and 

normalized strain energy integrals f3 were computed for 

various resonant modes by obtaining the stress distribution 

throughout the plate volume and writing a polynomial of 

the form 
0-  4 

( ) = p am 

0-- 	3 
a (----- ) 	+ 2 0-  

Cre 
a3 Cr 2 +a (---c4 ) +

a5 
 

am 
am 

and 

The 

(1..)  = al(eT )4  

p 
V  0-  eTm 

coefficients a1 to 

Ulm 
+ 	ul )

3 
 + 

0-e  

a5 and al to 

) 	)+q cr 	4  
eTm 	0- eTm 

q,  were obtained through 

curve fitting and the integrals could then be simplified to 

4al  3a2 
	a4 

 

2alt 	al+ f,L - 3 	5 	2 3 

Table 7.1 indicates the modal (p/a) values along with the 
nodal aspect ratios. It is seen that there is a negligible 
variation in P/a from mode to mode. This therefore justifies 

the assumption made in the derivation of the simplified 

expression for the loss factor given in Eq.(3.1.7). 

The modal loss factors for number of resonant modes 

were computed with the help of Eq.(2.3.3). These were 

checked with the evaluations made with Eq.(2.3.5). These 

a =N44 	N+3 4-N+2 11T-1-1 - 
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are also indicated in Table 7.1 and the values are found 

to match well. 

The simplified relationship (3.1.7) which has been 

obtained in the present work, was also verified. This 

equation correlates the higher mode damping with the 

fundamental mode value. The factor K, as given in Eq. 

were evaluated. Table 7.2, gives the values of this f=1)  

K for certain resonant modes and also compares the loss 

factor values as obtained from Eq. (3.1.7) with the computed 

values. It is seen that the approximate expression gives 

'the modal damping within 3)c of the actual valuo.Therefore, 

use of this relationship would obviate the need of repeat-

ing cumbersome computations every time for estimating 

the modal damping for higher modes. 

Figure 7.3 gives the plot of modal damping under 

constant force excitation. It is observed that the modal 

damping decreases with the increase of modal frequency. 

Now, if the magnitude of the constant force changes then 

the effect of this change on the damping of a mode can 

be obtained with the help of Eq.(3.1.9). Figure 7.4 shows 

the effect of load ratio k1 on the damping of any mode. 

This is a straight line with a slope of (N) and indicates 

an increase in damping with the increase in force. The 

effect of change in force on the damping from node to 

mode is also shown in Fig.7.3 where the parallel shift it  

has been obtained from Fig.7.4. 
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7.1.3 Mddalpariapin ,  under CzataniAmplitude 
Excitation 

The factor Ko  as given by Eq.(3.2.3) was evaluated 

for number of resonant modes. Table 7.3 gives the value 

of this factor for several modes and compares the computed 

loss factor values with the values obtained from the 

simplified expression (3.2.4). This equation correlates 

the higher mode damping with the fundamental mode value. 

This is subject to the condition that in each case 

excitation force is adjusted such that the maximum ampli-

tude of vibration is brought equal to the fundamental 

mode value corresponding to the force P. It is seen that 

the simplified equation gives 'a sufficiently accurate 

result. 

Figure 7.3 also shows the modal damping vs.. modal 

frequency under constant maximum amplitude excitation. 

The damping increases with the increase of modal frequency 

in such case. Eq.(3.2.6) for a mode is plotted in Fig.7.4 

and is a straight line with a slope of (N-2). This gives 

the -effect of amplitude ratio on the modal damping. It is 

seen that for the same ratio of increase in constant 

amplitude excitation and constant force excitation (k1= 

k2, > 1.0), the increase in loss factor for a mode is larger 

in the former case. Figure 7.3 also indicates the effect 

of amplitude ratio on the damping from mode to mode, the 

parallel shift i2  having been obtained from Fig.7.4.. 
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7.1.4 Lo s F 	•r under Com ex Re 	 ce Condition 

Loss factors for the plate when it is vibrating 

under complex resonance condition) were evaluated by 

performing the modal superposition and using Eq.(2.5.2). 

The loss factors under such complex resonance condition 

were also computed from the simplified expression (3.3.5) 

which has been obtained in the present work. 

The loss factor computations for certain complex 

resonance modes and for three values of damping index N 

are shown in Table 7.4. It is noted that the approximate 

relationship gives a satisfactory value for two cases 

of complex modes but the error is rather large in the 

other two cases. This is probably due to unfavourable 

combinations of nodal aspect ratios of the constituent 

resonant modes. It is further seen that the errors are 

quite large when N increases. A possible cause for this 

behaviour might be that the approximations incorporated in 

the derivation of the simplified expression are not holding 

good to that extent. 

It is observed that the total loss factor )  in 'general) 

is larger than each of the individual values contributing 

to the complex resonance condition. Therefore )  it is 

imperative to calculate this rather than using any sort 

of average value. 

Table 7.5 shows the computed values of r)m  for certain 
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complex resonance conditions when the constant force 

excitation is 2P. These values are compared with nT  

values as obtained from Eq.(3.1.9) and it is seen that 

one can make use of Eq. (3.1.9) to study the effect of 

force ratio on the total loss factor under complex 

resonance excitation. It is noted, that, as force incre-

ases, damping also increases. 

Table 7.6 gives the computed values of the total 
loss factor and as obtained from Eq.(3.3.5) when a constant 

amplitude excitation is considered. Similar observation 

as in Table 7.4 as regards the error is made in this case 
as well. Table 7.7 indicates the effect of amplitude 

ratio on the total loss factor and verifies the Eq.(3.2.6). 

It is seen that the damping under such situation increases 

as the constant amplitude excitation increases. As a matter 

of fact the plot of Fig.7.4 which gives the effect of 

force and amplitude ratio on the modal damping is true 

for the case of total damping under complex resonance 

condition as well. 

7.1.5 Effect of As ect Ratio Thickness Damping Constants 
and Eccentric Force on the FundamentalLadt]DaluinE 

The ratio (p/a) was calculated for plates of diff-

erent aspect ratios and thicknesses and is shown in 

Table 7.8. A negligible variation was observed in the 

values of (P/a) thus justifying the approximation made in 

deriving Eq.(3.4.1). This table also gives the values of 
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computed 111  and as obtained with the help of the 

proposed simplified Eq.(3.4.1). The error in such compu-

tation is nct large indicating that Eq.(3.4.1) can be 

used to study the effect of changes in aspect ratios 

and thicknesses on the modal damping. It is also seen 

that the loss factor is independent of the absolute 

dimensions of the plate and depends only cn thickness 

and aspect ratio. 

Figures 7.5 and 7.6 give the effect of aspect 
ratio and thickness on the fundamental mode damping, 

respectively, for the constant force and constant maxi-

mum amplitude excitations. The damping is maximum for a 

square plate and decreases as the aspect ratio increases 

for the constant force excitation. Damping increases with 

the increase in aspect ratio for the constant maximum 

amplitude excitation. It is further seen that the damp-

ing increases with the increase of thickness for cons-

tant amplitude excitation and decreases with the increase 

of thickness for constant force excitation. It would 

be noted that the fundamental mode damping has been 

evaluated in the above cases, however, the value of the 

natural frequency is different in each case. 

To study the effect of damping index N on the 

. modal damping, five different stool materials were 
consideredDll. The integral ratio ((3/a) was computed 

in each case. The loss factors were computed and were 
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also evaluated from the proposed simplified expression 

(3.5.1). These two sets of values are shown to match well 

in Table 7.9. It is seen from this table that the damping 

increases with index N in the range N>2. Figure 7.7 

gives the (P/a) variation with the index N. This ratio 

is seen to increase with the damping index. 

The effect of the change in location of the point 

force was studied by considering various excitation posi-

tions. The Eq.(3.6.l) was verified with the compUted values 

for odd-odd mode. Values for a few modes and for certain 

excitation positions are given in Table 7.10. The loss 

factors for additional even-even, even-odd and odd-even 

modes which are excited under eccentric point force were 

also computed. These were compared with the calculations 

done with the help of the proposed Eq.(3.6.2) and were found 

to match well as shown for certain modes in Table 7.11. For 

the case of complex resonance excitation under eccentric 

point force, the computations for the loss factors were 

made and checked with the values as obtained from. Eq.(3.3.5). 

Table 7.12 shows this comparison for a few cases and indicates 

that the simplified relation holds good in two cases as 

observed in Table 7.4, and 7.6. 

It would be observed that the modal loading coeff-

icient is no more a constant and independent of mode numbers 

but now depends on the force position and the mode numbers. 

xl Thus, it decreases by a factor sin(------).sin(nnyi/b) when a 
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the force is eccentric. Maximum damping is obtained when 

the force is central and it decreases gradually according 

to a sine law when the force position shifts towards the 

edges. Evidently system does not vibrate when the force 

acts on edges. The variation in modal damping with respect 

to force position is symmetrical throughout in mirror image 

formation about the lines x = and y = 

7.1.6 Fu=g&exg,t1LQdel)svap4g__Lg_§iofPtewith 
aaMP11=.9.1 
The fundamental mode frequency parameters Xii  for 

different aspect ratios were computed for all the four 

cases of clamped and simply supported boundary conditions 

(Fig.4.1) with the help of Eqs.(4.1.2), (4.2.2)2 (4.3.2) and 

(4.4.2). These values along with the %11  for all edges 

simply supported case (Eq.(2.1.14)) are given in Table 7.13. 

The frequency increases with the increase in aspect ratio 

for all the cases. It is minimum for all the edges simply 

supported case and is maximum for all clamped edge case. 

The fundamental mode loss factors were computed for 
various cases. The effect of aspect ratio on these is shown 

in Fig.7.8. As expected the loss factor values are symmetrical 

about the square plate (e = 1.0) for the cases when all 

the four edges are either simply supported or clamped. 

The latter case provides a larger damping for all the values 

of aspect ratios, though the difference is small for low 
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and high aspect ratios. 

The single edge clamped case (Case 1) provides 

the .largest damping for all values of aspect ratios, 

while opposite edges clamped case (Case 2) provides 

the minimum damping for all values of aspect ratios 

greater than 0.8. For aspect ratios lower than 0.8, the 

minimum damping is provided by a plate with all its 

edges simply supported. Case 3- a combination of 3 edges 
clamped and one edge simply supported gives a damping 

which is lower than that of a plate with one edge 

clamped and 3 edges simply supported for all aspect 

ratios, but, these provide dampings which are larger 

than that provided by the other three cases of plate bound- 

ary conditions. For low aspect ratios, case 2 which amounts 

to two opposite short edges clamped has got damping values 

which is greater than that of plates having all edges either 

clamped or simply-supported. 

Thus, it is observed that the damping of plates 

would depend on the boundary conditions of the edges. 
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Above is the effect which is purely contributed by the 

change in the boundary conditions of the plate, 

74.7 Fundamental Mode  Loss  Factor for Plates 
771.7717-TECCIness 

The fundamental mode frequency parameter XII  was 

calculated for linearly varying thickness plate. One 

term approximation (Eq. (5.1.1.7)) and two term approxi-

mation (Eq.(5.1.?.13)) were evaluated for different_ 

combinations of aspect ratios Te' and taper parameters 

W.The range of 'c' censidered was from 0.25 to 2.0 

and for '6' .Was from 0.1 .to 0.8. Table 7.14 gives 

these values and compares them with Xmean  of Appl and 

Byers[i] . It is noted that the two term Galerkin's 

solution gives a fast convergency to the frequency 

parameter and the values thus obtained are of sufficient 

accuracy. The maximum error which occurs at high taper 

values is below 17. for the cases studied. 

The loss factors for the fundamental resonant 

mode were evaluated for different taper and aspect ratio 

combinations. Computations were made corresponding to 

both one term and two-term responses. The loss factors 

were also computed with the help of the proposed simplified 

relationship given in Eq.(5.4.2). In each case the normal-

ized ratio (iv/lc ) was obtained. It was found that 

this ratio depends on the taper parameter and is evidently 

independent of the aspect ratio. Its plot with respect to 
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6 is indicated in Fi.7.9. It is noted that the loss 

factor for the linearly varying thickness plate decreases 

with the increase of taper parameter. This is because 

of the fact that a larger taper parameter corresponds 

to a larger thickness of an equivalent constant thickness 

plate (Fig.2.3(a)). This would result in a lower value 

of damping as is evidenced by Fig.7.6. 

Since the two term solution gives a fairly accurate 

value of the natural frequency, it is inferred that the 

loss factors calculated at these values of the resonant 

frequencies would not be far-off from the actual values. 

It is further observed that the 

gives a loss factor value which 

term approximation. Hence, this 

proposed simplified Eq.(5.4.2) 

is within 5*/. of the two 

could be used for obtain- 

ing an estimate of the fundamental mode internal loss 

factor of the plate. 

The frequency parameters for the parabolically 

varying thickness 

nations of aspect 

ratios considered 

taper parameters 

term and the two 

Table 7.15 gives 

obtained by Jain 

plate were computed for different combi-

ratios and taper parameters ti.The aspect 

were 0.25, 0. 50, 0.75 and 1.00 and the • 

were 0.1, 0.3, 0.5 and 0.7. Both the one 

term approximations were evaluated. 

those values and compares them with those 

and SoniD7]. It is noted that two term 

approximation gives frequency parameters of sufficient 

accuracy for low taper values. The error is rather large 
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at higher taper values. 

The fundamental mode loss factors were also 

evaluated for different cases and the ratios (111711c) 

were obtained. The effect of aspect ratio on this ratio 
was once again found 4 tobe negligible. Figure 7.10 
gives the plot of (iv/lc) vs. taper parameter p. It is 
observed that the loss factor increases with the 
increase of the taper parameter. This is due to the 
fact that a larger taper parameter corresponds to a 

smaller thickness of an equivalent constant thicknesses 

plate (Fig.2.3(b)). This would result in a higher value 

of damping as is indicated by Fig.7.6. 

It is seen that Eq.(5.4.2) which is 
the present work gives loss factor values within a few 

obtained in 
Wune etritt&% 

Leti to 

taper cases.Since the two term 

low taper values is reasonably 

that the damping calculated at 

cy/n e, t.e-T7Y1 
di) 1)1-0)6 

frequency parameter for 

accurate it is inferred 

these resonant frequencies 

percent of the two term approximation value for low 

would not be far-off from the actual value.Thus it 
is concluded that Eq. (5.4.2) would give a fairly good 
estimate of the fundamental mode damping at low taper 
values only. 

Figures 7.9 and 7.10 also show that the loss 
factors as obtained with two term solution are greater 
than those obtained with one term approximation. The 
reason for this obsolvation is as follows: 
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A look into tables 7.14 and 7.15 indicates 

that for any combination of the aspect ratio and taper 

parameter, the two term frequency parameter is greater 

than the actual value. Further, one term value is 

greater than the corresponding value of the two term 

frequency parameter. This observation is expected and 

is in conformity with the Rayleigh's concept relating 

the mode shape with the natural frequency. Now, a lower 

frequency would correspond to a smaller thickness and a 

higher frequency to a larger thickness of an equivalent 

constant thickness plate. Since thin plate has larger 

damping and thick plate has smaller damping (Fig.7.6) it 

is easily understood that the two term damping values 

would be greater than one term damping values. The acc-

uracy of the computations would obviously depend upon 

the error in the frequency parameter i,e. on the fact 

that how near to the actual frequency value one is work-

ing. 

7.1.8 Radiation Efficiency  and Sound Power Radiated 
undOUomplex Mode of Vibration  

The radiation efficiency for single resonant mode 

of vibration were computed with the help of Eq.(6.4). It 

was found that 5 point Gauss quadrature for numerical 

integration gives results of sufficient accuracy. Values 

of radiation efficiencies and sound power radiated for 
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. the corner modes (km

2
x$>k2, -kn

2 
y 	2 ), X-edge 

(k>krax; ki2ly›,>k2) and Y-edgo modes (k> Icly; 

modes 

k2 >> k2) mx 

occuring upto 2000.0 Hz are given in Tables 7.16, 7.17 

and 7.18 respectively. It is seen that edge modes are 

better sound radiators than the corner modes, as has 

been observed by other workers as well. 

For studying the superposition effect of number 

of non-resonant modes, the average radiation efficienc-

ies at different excitation frequencies were computed 

with the help of Eq.(6.6).The sound power radiated under 

such conditions wore evaluated from Eq.(2.7.13). These  

values are shown in Table 7.19. The number of modes super-

imposed along with the number of modes which are having 

natural frequencies less than the exciting frequencies 

are also indicated in the table. It is observed that both 

the radiation efficiency and sound power radiated increase 

with the excitation frequencies for large values of wex. 

The gradual effect of superposition of non-resonant 

modes on the radiation efficiency and the sound power 

radiated are shown in Figs.7.11 and 7.12, respectively. 

The abscissa for each of these graphs represents the 

frequencies below which the contribution of all the vib-

rating modes has been considered. Thus, each point on 

these graphs indicates the effect of summation of all the 

modal contributions upto and including the mode corres-

ponding to that point. Thus; with the help of these curves, 
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one could study the effect of summation of each succ-

essive mode. 

A sort of waviness is observed around S =1.0 in av 
Fig.7.11 upto the mode order where they enter acoustic 

short circuit (i.e. all modes whose kmn <lc at that 

exiciting frequency). This is observed at higher values 

of excitation frequencies. Then there is a sudden fall 

in the value as further modal contributions, till the 

excitation frequency, are considered. Beyond this only 

few modes contribute and S
av becomes constant. 

The radiated sound power (Fig.7.12) increases with 

the increase in modal contribution, reaching a peak near 

the excitation frequency. Beyond this peak, it settles 

down to a constant value. These effects are more pro-

nounced in case of large excitation frequencies. 

Skudrzyk[64] and Greene[20] have observed that 

the sound pressure at any exciting frequency aan be 

obtained by summing up the contributions of low order 

modes. Skudrzyk has further observed that modes upto 

acoustic short circuit contribute. The results of the 

present analytical analysis for the radiation efficiency 

and the sound power radiated indicate that not only the 

modes upto acoustic short circuit but also the modes 

beyond this region and upto the excitation frequency 

contribute. When the excitation frequencies are near to 

the coincidence frequency these observations match with 
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those of Skudrzyk. 

The effect of excitation frequency on the radia-

tion efficiency is shown in Fig.7.13. The 'requency 

variation upto 500.0 Hz only, is shown: The points 

joined by dashed aine indicate the resonant mode values 

as obtained from Tables 7.16, 7.17 and 7.18. For 

excitation frequencies not coinciding with any of the 

natural frequencies, the- effect of superposition of 

large number of non-resonant modes was considered, as 

was done in Fig.7.11. The final constant value thus 

obtained from this type of plot was then plotted in 

Fig.7.13. 

A number of computations were made for large 

number of exciting frequencies. This indicates a varia-

tion in radiation efficiency which is highly dependent 

on excitation frequency. The plot shows a trend which 

indicates an occurrence of a peak and of a trough in 

between any two consecutive resonant frequencies. Thus 

it appears, that, the location of-the excitation frequency 

on the frequency spectrum base with regard to the modal 

resonant frequencies, plays an important role in sound 

radiation problem. 

Figure 7.14 shows a similar study for the variation 

of sound power radiated with the excitation frequency 

upto 500.0 Hz. In this plot also the final constant value 



-101- 

from the plot of the type as given in Fig.7.12 are 

plotted. It is observed, that 2  these are also highly 

dependent on the excitation frequencies showing a very 

low trough in between any two consecutive resonant 

large values. 

The effect of superposition of two resonant 

modes having same natural frequencies are indicated in 

Figs.7.15 and 7.16. All the complex resonances occur- 

ing upto 4000.0 Hz are indicated. It is observed that 

the average radiation efficiency lies in between the 

individual contributions of the corner and the edge - 

modes, the major share being of the edge mode. The 

sound power radiated under complex resonance case is larger 

than that radiated by either mode. Therefore, in order 

to estimate the sound radiation under such condition, 

it would be necessary to evaluate it by resorting to 

the modal superposition, since Liii6 vale is nothcl' 

equal to nor is the average of the contributing modal 

values. 

7.2 CONCLUSIONS 

7.2.1 Modal Loss Factor of Simol Supported  Rectan ular 
Plate of Uniform Thickness 

(i) For the case of constant force excitation, the 

ratio of fundamental mode damping based on 

dissipation dependent on dilatational and 



-102- 

distortional energies, decreases with the increase 

in both the aspect ratio and the damping index. For 

the case of constant maximum amplitude excitation, 

this ratio decreases with the increase of aspect 

ratio and increases with the increase in N. 

(ii) In the case of constant force excitation, an approxi-

mate value of the loss factor of the plate can be 

estimated with either of the criteria, particularly 

so for large aspect ratio plates and for large values 

of damping indices. 

(iii) The variation of integral ratio ((3/a) from mode to 

mode is negligible as shown in Table 7.1. 

(iv) Resonant mode damping under constant force excitation 

decreases with the increase of modal frequency. If ntt 

the force increases kl  times then, the modal damping 
(N-2/N-1) 

increases k
1 	times. 

(v) One can estimate the higher mode order damping from 

the fundamental mode value with the help of the 

proposed simplified expression (3.1.7), when a 

constant force excitation is considered. 

(vi) Resonant mode damping under constant maximum ampli-

tude excitation increases with the increase in modal 

frequency. If the maximum amplitude increases k2  

times the modal damping increases 14N-2)  times. 
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are about 1,/, in linear case and about 4.1. 
in parabolic case. 

(ii) The loss factor ratio (qv/roc) was found to be 

independent of aspect ratio but was dependent 

on the taper parameter. 

(iii) The damping of linearly varying thickness 

plate decreases with the increase of taper 

parameter ó whereas of the parabolically varying 

thickness plate was found to increase with the 

taper parameter 4. 

(iv) The loss factor for plate of variable thickness 

can be estimated from the corresponding value 

of the constant thickness plate with the help 

of the proposed equation (5.4.2), within a 

reasonable accuracy. This equation gives values 

within 53/4, in case of linear thickness variation 

for the taper range considered but is useful 

for only low taper values in case of parabolic 

thickness variation. 

7.2.4 Radiation Efficiency  and Sound Power Radiated 
under Complex Mode of  Vibration  

(i) The gradual effect of superposition of large 

number of non-resonant modes on the radiation 

efficiency and sound power radiated were studied 

at various excitation frequencies. It is observed 
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that all the modes upto exciting frequency 

contribute towards the sound radiation. 

These two quantities.become constEint as 

further modal contributions beyond the exci-

tation frequency are considered. These 

effects are more pronounced at higher excita-

tion frequencies. 

(ii) Both radiation efficiency and sound power 

radiated are found to be highly dependent 

on the excitation frequency. The location of 

the excitation frequency on the frequency spec-

trum base with regard to the modal resonant 

frequencies, plays an important role in sound 

radiation. In between any two consecutive 

modal resonant frequencies, the plot of radia-

tion efficiency shows a peak and a trough and 

the plot of radiated sound power shows a 

low trough. 

(iii) The average radiation efficiency under complex 

resonance excitation condition lies in between 

the individual contributing modal values. 

Since this value is neither equal to nor is 

the average of the contributing values, it 

becomes imperative to resort to the modal 

superposition in order to estimate the sound 

radiation. The sound power radiated under such 
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condition is larger than that radiated by 

either modes. 

Thus, in this work reported here, the dependence 

of the modal damping of rectangular plates on the excita-

tion distribution has been quantified. The affects of 

various parameters. including thickness variation on the 

modal loss factors have been quantitatively studied. 

Number of simplified practical relationships correlating 

the modal loss factors with the fundamental value under 

different conditions have been derived. The loss factors 

and radiation efficiencies for the plate vibrating under 

complex resonance conditions have been obtained. The 

radiation efficiencies of the plate vibrating under 

complex non-resonance conditions have also ben evaluated. 



-109— 

0 

H 
ec 0 

co 

c o
w
;
 

T  
A
N

T
 M

A
X
I M

U
M

 
A
M

P
L

I T
 U

O
L 

L
X

C
IT

A
T
IO

N
 

H 

9 
N- 

O
_ 

0 
cfl 0 

U.J 
0 	CL 

U 	(I)  0 
w 
U) w 

<X 0 
cr 	—1 0 

CL co 

o 	O w 

0 
U 

0 0 	Li_ Z 
c■i 

N
=

2
2
8
6
 

1  
u_ 

C\J 

— 'A. 7110 



0 2 3 4 5 6 

CONSTANT MAXIMUM 
AMPLITUDE EXCITATION 

24 

20 

16 

vi 
0 

12 

8 

4 

0 • 

DAMPING INDEX N 

FIG. 7.2 EFFECT OF DAMPING INDEX N ON THE RATIO OF 
UPPER AND LOWER BOUNDS OF 'lit 



L 
CONSTANT FORCE 
EXCITATION 

CONSTANT MAXIMUM 
AMPLITUDE EXCITATION 

I 	I 	1 	1 	1 	1 	1 	1 	 I 	I 	I 
10 2  10 

MODAL FREQUENCY IN HZ -0- 

FIG. 7.3 EFFECT OF CONSTANT FORCE AND CONSTANT AMPLITUDE 

EXCITATION ON THE MODAL LOSS-FACTORS. 

I03  

I0 



0.1 1.0 10.0 

DAMPING INDEX, N=2.286 
AMPLITUDE RATIO 	 
LOAD RATIO 

LOAD RATIO ki  OR AMPLITUDE RATIO k a  --JP— 

FIG. 7.4 EFFECT OF FORCE AND AMPLITUDE RATIOS ON 
THE MODAL LOSS FACTOR. 



^40EX = 2.286 

-r-4CKNESS = 0 09842" 

10.1'  tm■ 
	 EDGES = SIMPLY SUPPORTED 

I 	4 

CONS1":04T MAXIMUM 
'-L,DE EXCITATION 

RE= e= 2 0) 3C CI- 

200F 

CONSTANT FORCE 
EXCITATION 

500 

4C0i- 

4 5 6 7 8 9 10 

ASPECT RATIO e 

7;--1-P.ICT OF ASPECT RATIO ON THE 
.'—‘,.:"..,"AMENTAL MODE DAMPING. 



10.0 

0•I 1.0 

[h'/h]  

L 	1 	1 	1 	1 	I 	I 	I 	1 	tilt 0•I 

1.0 

FIG. 7.6 EFFECT OF PLATE THICKNESS ON THE FUNDAMENTAL 
MODE DAMPING. 

10.0 

ASPECT RATIO = CONSTANT 
DAMPING INDEX,N= 2.286 
CONSTANT FORCE EXCITATION 	 
CONSTANT MAXIMUM AMPLITUDE 
EXCITATION 

- 1-  -- --T- --1-  -F---  - r -1-  T • T ] 

-1 



0 2 3 4 5 6 

N ••••■•■1;1111. 

-115- 

5 

4 

3 

2 

0 

FIG. 7.7 INTEGRAL RATIO vs DAMPING INDEX FOR SIMPLY 
SUPPORTED RECTANGULAR PLATE. 



—II 6 — 

0 	0 	0 
rf) 

11 901 	1 8010VA SSO-I 

>— 
CC 

0 
CO 
H 
z 
LIJ 
CC 

LL 
0 
LL 
0 

_J 
CL 
CC 
0 
LL 

0 

0 
LQL 

(f) 
U) 
O 

Lv 
0 
0 
2 

z 

z 
0 co 
cr 
_J 
cct 	' cn 
z z 
w 0 
‹ 
0 0 
z Z 

0 
Li_ 
CO 

c9  
LL 

00 	to 

a) 

0 
o czt 

a. 

0 
z 

U) 
) 

1 

cr 
CO 
rn 
0 
o 

TH
IC

KN
ES

S 



-117- 

0.80 
01 0.2 0.3 0.4 0:5 0.6 07 0.8 0.9 1.0 

LINEAR TAPER PARAMETER S 

FIG. 7.9 EFFECT OF TAPER ON THE FUNDAMENTAL 
MODE LOSS FACTOR. 



-118- 

1.40 

ASPECT RATIO= CONSTANT 	/ 

1.35 

1-30 

1.25 

TWO TERM APPROX. 

1-20 7-T 

'70  

115- 

  

 

ONE TERM APPROX. 

1.00 	I 	i 	I 	I 	i 	I 	i 	I  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I0 

PARABOLIC TAPER PARAMETERJ4 

FIG. 7.10 EFFECT OF TAPER ON THE FUNDAMENTAL 
MODE LOSS FACTOR. 



3.0 

2.0 
r.. 

N 
- - ----- 

- 	-=-. 
1.0 

R
AD

IA
T

IO
N

  E
F

FI
CI

E
N

C
Y

 

I0 

LEGENDS  

EXCITATION 
FREQUENCY 

200.0 HZ 
400.0 H Z 
600.0 H Z 
8000 H Z 

2000.0 H Z 
3000.0 H Z 

-2 
I0 	  

10 2000 3000 5000 

RADIATION FIG.7.11 EFFECT OF SUPER 
EFFICIENCY AT VARIOUS E 



-4 

-5 
10 

-120-- 

LEGENDS  
EXCITATION 
FREQUENCY 

200.0 HZ 
400.0 HZ 
600.0 H Z 
800.0 H Z 

2000.0 H Z 
3000.0 H Z 

10 

10 
	

I  
(00 	koo • 	2000 3000 

FREQUENC 
 

FIG. 7.12 EFFECT OF SUPERPOSITION OF NON-R HE SOUND POWER 
RADIATED AT VARIOUS EXCITATION rPrni IF' ty  

10 6000 



z 
W 
O 
O t 
• cl) 0 
1— a-z ce 
• LU 
Z 0- 
0 D 
Cf) (i)  

ce 
uj 

I 	_ 

ZL" 0 z- 
0 o  

R
E

S O
N

A
N

T 
M

O
D

E 

FI
G

. 7
.1

3
  E

F
F
E
C

T
  O

F
 E

X
C
IT

A
T
IO

N
 F
R
E
Q

U
E

N
C
IE

S
 O
N

 T
H

E
  R

A
D

I A
T
IO

N
 E
F
F
I C

I E
N

C
IE

S
.  

[901 X ( ADN313I333 NOLLVIGV8)] 901 

   

   

   

   

   

   

 

0 

EX
CI

TA
T
IO

N
 F

R
E

Q
U

E
N

C
Y

 I
N

 H
Z

  -
-
c
, -

-  

-o 

  

  

   

    

    

 

0 
U) 0 0 

rh 

0 0 -o 

	0 0 	0- 
N 6 

-121- 



EX
C

IT
AT

IO
N

 F
R

EQ
U

E
N

CY
  I

N  
H

Z  

	

o 	
cr 	  

0 
O 

0 	  

• 

	 o--43  

0— 	 crocrT)—: 
	 O'Cr  0- 

FI
G

.7
.1
4

 E
F
F
E

C
T
 O
F
 E
X

C
IT

A
T
IO

N
 F

R
E

Q
U

E
N

C
IE
S

 O
N

 T
H

E
  

R
A

D
IA

T
E

D
 S

O
U

N
D

 P
O

W
ER

 

• 

x(q110 21/ a nviavii 83/A0d amos)] 901 

Gm= 	

	

0 	 

0 	rn 	CO 	ti 	to 14) 

-122— 



-123- 

I I 	I 	I 	I 	I 	i ll 

i 

LEGENDS 
t CORNER MODE 
2 EDGE MODE 
3 AVERAGE VALUE-SUPERPOSITION 

OF 1 AND 2 

// \` %  
 % 	I / / 	et, 	/ 

/ 	-. 	/ / 	-..., 	/ , 

1 
103  

EXCITATION FREQUENCY IN HZ --r:=.- 

FIG. 7.15 RADIATION EFFICIENCY FOR COMPLEX RESONANT 
MODES 



150 1 

`3 10.0 

-124 - 

LEGENDS  
I. CORNER MODE 
2. EDGE MODE 
3. TOTAL AVERAGE 

VALUE-SUPERPOSITION 
OF 1 AND 2 

0•I 102 I  

104 

EXCITATION FREQUENCY IN HZ 

FIG. 7•I6 SOUND POWER RADIATED FOR COMPLEX RESONANT 
MODES 



•••••••••••••■••••■• 

awaimayera•••••••••• 

-125- 

m. 

N- 
0 

• 
0 

N- 
CO 

• 
0 

9 

0\ 
u-  

• 
OP 
''r 

—I 
F-1 
CU 
N 

0 N 
1-1 ; a 

0 	0-\ 
CV \O 

• • 
Cv 0 + + 

0 
(r) 
. 

? 

■0 
\O 

• 
r--1 
I 

o N \O CV N H 4. rn 0 

• • 	a 	• 	• 	• 	a 	• 	• 

0 ON C-- N 00 

	

N CO ON 	OD L"-- Ir■ 1.11 
H 

;--1 re) H N N N 0-• H 

	

16 	• 	• 	• 	• 	• 	• 

	

C•••• et^ 	0 0 Lt1 H CC) Cr 
4. N CO ON CO CO N- Lc1 teN 
r-I 

L"-CV OCN-HHN-ON H 

	

00 	 " 

	

N N 
ON 	

N 
CO 	,0 CO re) CO 

N 	N 	N 
• 1 	.• 	• 	'• 	• 	• 

H r-1 r-I 1-1 H H r--I r-I r-i 

0 N- 0 0 0\ %0 0 N: 0 
0 \.0 0 0 CV CO 0 •.0 CO 

• • 	• 	• 	. 	'• 	• 	• 

	

C\1 0 	N 0 0 N 	N 

Co 

11 

as • 
4-1 

CO 
4-  CV 
• 

\ 0 
m. 

cH 0 

O 

• 

CV 
ri 

CC3 
.1-1 0 
t 8 

it 

0 •• tft 
X 0 

(NI 
11 
C) 

0 
0....+■0 0.4-00 OCO 

	

N 	 • 	• 	• 	'• 	• 	• 
•‘0 rr) %.0 CO CO 0  

F-4 	 H 	0 N .4- 	
CO 

rn 
rr-i 	 H H H N cr.) It"\ \Co 

4,•-■ 

	

••-■. •••••■ e•-■ 	e•-■ 

	

" 	 Cr) tr\ C'"- 
O 	

" Jn •IN as " 7 n a " 

H 	?-1 M N- 	re) Ir. 

0 

• , 	 • 	's 	• 

	

CI) 	H N M .4-• tr. \r, 	CO O■ 



Ta
b

le
  7

,2
 

-126— 

F-I 
0 	 0 
F-1_ • 	 re) 	\O \c, 0\3 0 0 
1-4 	 • 	F..4 	• 	• 	F.-I 	F-1 	1.4 

tq N 	0 cr) 4- CD 	CO CO 
+ IN I tN iNN 

	

\O 	• 0 H 

	

r 	 H H \(;) c-- N 4- 0 O 4- 0 4-  

	

\O 	rsl „....... 
• i 	• 	4 	• 	a 	• 	• 	*a 	• 

	

00 	El • 	 L... CO Cr 0 N. 0 \ H In H In 

	

N 	R." 01 	.4.- N C-- 0. C---- CO N-  In \O In 
. pra 	,--1 r-i 

cv 

11 

In H CO 1-.1 1t1 

	

9 1- 	fa4N 4- N 	a. CO CO C-- In \O In 
-i--) 	C \ I 	gl ■•••• 	H H 

	

En N 	g o • 

	

 
• 	.1 	 104  

O o 	R 
Q 
 rml C.) 

0 
ii F-1  

o o fa. 
H .1-1 
" CL

• 

i MO 	 0 H ...t. CY.) CO .../. CO tr. 0■ 4- .4..) .. 	 0 -I- tr re) re) C\J CT CO N CO 
••■ •r-I N 	g 	0 CO 44- tr. 4- In en N rr) (NI 

c.)  
cgCA pi 	 H 0 0 0 0 0 0 0 0 0 
0 
F-1 F7-1 ON 

0 -P 0 • c..) 0 0 cl F-.1 rzi 0 II 
cn 

ri-, 
Cl) 
O r. 
4 0 	0 g• 

O N 	0 4- \O 0 4- 0 0 0 0 0 lb 	.. 	... 	'a 	', 	• 	'a 	'a 	• 	• A, 	"' 	
(1) 

rd 	ii 	V= 	4- \0 en '`.0 CO CO 0 4- \O -1-  
R. 	 0 	H re) 0 N ..t. rY1 In C--- CO en 
,..-4 	0 	F-I 	 H H H N cr) In \O H 

H 
0•••••■■•■•••■••■•••■■••• 

	

(L) e•-■ 	 ,■-• e"-.. e-s. •-••• e-s. e•-■ ,---. e".. e--. ,---.. 

	

rd 0 	H H 01 re) HI cr) IN N- C--. CT'. 
O q2, Jr .1 '4, " " " 4.• " " " 

	

}tea  Sq 	H rn H rn LN.' N- l Y\ (Y) LN- a'. 

	

......• 	...... ..... ....,, ..... ...... ....-. .... .... ..... ..... 

0 

• • 	0 	• 	• 	• 	• 	• 	a 	• 	. 

	

U1 	r-1 N rr1--.1-  IrN \O C-- CO CN 0 
HI 

.. . 
.1a 	.r) 	rai re) 
H 	CJ a) • 

-P 	H -P cc) 

....01.1.1•40111111.0. 

0 . 	C--- In 0 0 

	

r--I re) 	N N 
• 6 	• 	• 

N 0\ H 
• • 



fo
r  

co
n

s t
a n

t 

4-1 
p 0 

C) 
N 

ru 

Mo
da

l 
L

o
ss

  
Fa

ct
o
rs

  a
n d

 F
a c

to
r  

0 

27 

F-1 
0 
F-4 • 
N 

0 	0 
F—f CV.  \-0 	Cr) H 0 0 0 • . 	. • 	FA- 	• 	F...r  
N T.) \ 	N 	 cl> 

I I-  N s N 

N 

II 

0' 

co 
0o o 0 N 	 -• • • • • . 4 4 • CO '4 	 \O CO CO 0 4-  \O F-I 	 rn 0 CV 	l(\ N- CO FT-4 	 H r—I 

0 
rcl 	 /1 /1 •—■ 
0 	 (Y.) Cr) H Cr) IN LN- , O. Cl OS 0% ON it. CM ON 

Cr') H re) C"..- N IrN cr) 

• 
0 
• • 	• 	• 	• 	• 	4 	• 	4 	• 

	

Cr) 	 H N Cr) 	•Lr■ \ Cs... a) 0. 

••• 	0 

H N N N_ 0  
R-  0 

h 	
0.

  0
9  

	

H CD 	 H CO N L".... 

	

a 	 • 	• 	• 	di 

	

N Z 	LN- \O• IN IN 

	

al 	__./. O. CV C.-- 

Cr)  re) Cr) IN N 
a • 4. Y. 

0 C0' CY\ C\l' C.,- \O \O, \.0 N- .-± N on r(") cr.) .-t• 

1-1 •' 
a\ .....t. 
N 

CO. . 
0 
ON 
rr) 

re") . 	• , 
ON 
\O 
Cr') 

H . 
0 
trl 
Cr) 

N- • 
C'.- 
-.1- 
--i- 

...V.O. 	 CM 	 f 

C\I —I- 	co 

r-4 
it 

N 

r-i• <> . 	... 0 . L"-. . • 
C"-- Cr) 0 tri ......÷ H H C"-- 
H N N N 

al 	....... 

O 

I I 

0 

al 

CO 

II 

IN t•-- GO 
• 

en N ON If\ 
• • 

1--1 
r-1 
• 

H CO Cr) 
crI 4- 

 0 
• 

O N t- 
0 IN CV 

ip 	• 	• 
HHHHHNC\INcr) 



0 
F-1 • 

0 
11 H \ 

4 

M N  E--1 
17r4 

O N 
H • ,>4 	('4 

y--4 	• 
CV 

1 °-  

-.128.. 

1r\ 
\.o cY 
0 • 

	

H (Y.) 	00 tr. 
1r, 	• 

F-1 
0 
N 

o -/- IN CO 
--; 	C',  . - ■0 Cr) • • 
cr) H H ro 

co N c-  rn 

H 0 0 cNI 
.. 

\o H V 

N N 

	

0 liN 	rn 0\ \0 	-+ 

	

'....2i H 4 	 • 	 • 	• 

	

N C\J 	 C%- Cr) H 

	

Ei • 	co N 0 CT\ 

	

R V 	H H r--1 
Pq ..--....—... 

• ,a 
crire4 

- }-4 

• 

N ON 0\ C•.- trNtr\ • • 	• • 	• • 	• 
tr\f".: HVN 0Nrn Cf\q> HO 0\c0 \OC- \DC,- 
HH 

\0 	rn 

-4" 1 

• 
re

S 
	(\J co 

1.r■ 	0 	ItN 
121 	

• 	a)  
a) 	 \c) 

N CO a\4 c04- 	H • • 	• • 	0 	• • 
tr■O H4 a) Cr) cr■ 
CO t•• 	 trN•0  

0 0 0 a) • .4. 	. 
co d 	co 
rr, 	tr, 	C.,... 	H 
N 	M 	11"N 	\C1 

r•se. rn 1-1 trN " 	 NACN 
J■ 	 040.0 	0.0 

C•-• 	IN H Cr) 	H H H 

• H 	 rY--) 
• • 



-128- A 

F-1 
0 -.1. 2) 	 \.o 	tr. 	H F-1 • - 	rn 	. 	

cv 
• 

frl 41 	IN 	.....1-  

_zt• O 
r-1 	 rr) 

E-1 	Cv 	r-1 
g=-: 

(-4 

• 

• 4 

	

H N"...# 	CD 	r-I 	0\ 	L'-- ... ri 	0 	-.1-. 	rn 	ON 	CO 

	

E-I pi 	H 	r-i ,c--- 	r=1 

re) 
• 

	

0 cr) 	r-4 r■I 00 .4- CV CV cOLN H 	• 	• . • 	. lb 	• * 	• .1 

	

Cr) 	 " 	 H  

	

-1. 	
;-.4 .... 	0 0\ C"-- C,- IN1" 14-NUN 
PP 84  

	

01 	 H 
• rn 	13-1 

II 

ON 	co 

›.% C.) 
Z a) 

 alN 0 0 0 CO 
0 = 	co 0 

	

. 	....4.. 
06 

T-4 	 v. 	c•-• 	H 4 	rn 4 	cv 	re) 	IN 	%..0 

re) o. 4.0  
(r) rn LCD r-1 r-4 	H 



-129- 



A
m
p
l
i
t
ud
e
  
o
f
 
e
a c
h
 

a 
ci) 

O 

Co
n
d
it
i
o n
-
 

O 0 

-13 o--. 

F-1 
O 
F-1 F-1 

...--. 
tr\ 

	

0 • 	CO 
H Cr) 

• CO 

	

1x41 rn 	CO 

	

....... 	cr) 
E-1 4 

N's  

. IrN lc\ . 
1.1-\ •,0 1--1 H N- cr) 
-I-  .....t Ix\ 

-1-.) 	
•

-1--) •r-I •H •r-I 	ti' C \*I 	0\ 	\O 	C\61 	 4'

- 4 

 
• • 

C..) 0 N 	 4- 	H 	CO 	N 
N M ci3 	EA - 	cr) 	-4- 	4- 	-..i- 

P .4-. 6 C,1 P 	I H 1..C\ 1 	0 	Cr) 	IC\ 	Cr) ,-.1 

0 0 0 	 '.. 0 j . 
F1 	

c‘  ----- 
0 
rd 	ii 	›. 

0 U 
0 

	

.,, 	g.  

	

\c, 	Cr 

	

CO 	0 N 

	

N . 	F-1 Fr. la:,, 

• • 
00 0 \O 0\ rylc\J 

* 	• 
rn 0 \O N 
Cr) re) 

• • 
N N. 
N H cyl_i- 

• • 
4-\O 
0 CO 
...1"  .4"  

o o O. co • • • ' 	• 
CO 0 - "' CO rn N trN Cr) r. H \O 

).N H 	e-NIN 

	

J. Q. N- Cr) 	" 
tr-N r--I 	,t• 

H Cr) Cr) It \ %d 

L
o
s
s
  
F
ac
t
or
  

H cl 	N P.1 
Pi -P 4 	0 • U) 	 0 
O 
g „ 	EI 0 

it 

E-I 0 	111 	 efl-t Cr)  re) Is■ -4- CO N 

C\41 



-131-- 

tr\ 	tr. • • 

• 

C) 

(-3 
H 

• 

kl co 
H Pi. 
0 O 1 \0 ,--, 	1.1-\ 	'13 	CV 	.4- 

	

0 \D 	 . 	. 
1rN F.  

o N C\I 	0 	CO 	LN-. 
rcl 	 N - 	4- 1.c\ tr\ IN 
9 r1El.-- 

-:-• 	- b.o 	\-..0 	r3' • CO 	1171 -H 	CV 
P. 	. 

C\.I 
(-3 - rci 	B6 
0 

.... -1-) Li 
O 	 \O Cv 
•r-I 	0 

O -P 0 	I-1 tr. 	Ir■ 	H 	H 	OD 

	

-,-1. 	 . 	. 	. 
rd 	l',1 CV. 	CV 	1.1-■ 	1.r■ 	1.r\ -0 	 C\I 	0 	CO 	C,... 

-P 0 ill 	H - 	4- 	trN 	Ir. 	11-N 
14 	t\I 	ill co .. 
0 o 
rd 0 cr.; 
-i-) 	- 
-H 0 0 r-I u) 	6 	>a  

If 0 
ci-t 	0 	04  N 
O Nom', 	0 	0 	0 	o0 P . 	. 	• 
4-) 	 fil 	co 	0 	co 
o r 	11-\ 	c---- 	H C) 	 0.1 	rr) 	11-1 	-.0 

e-s rr1H Lc\ H 	cc C"--It• " 	• 
ON lc\ H crirn tr. H 

rC.5 0 

0 



o
f
 
d
i f
f
e
r
e
nt
  

Cn 

4-)  
c-J 

P-4 

F-1 
0 

4--t 

rd  
q- 

O 
•r-1 

r21 
O F-1 

4-1 	1 
U 4p 
cd 

CL)  
Pi 

• ci 0 
0 

1-1 

II  

0 

Cu 
4-)  

111 

— 13 2— 

O 0 	0 0 c- c--- H H 
FA 	 F...4 cY1 FA P.4 • • o • 
$.4 	 CD 	• 0 0 C\I Q .4- I—I 

r=1 	 N H N N 1 -1- ! 
+ 

	

ol N r--1 	v0 CV CV 
•• 	• 	is 	• 	• 	• 

• 0 \C) 0 CO H N -1- 1"-  
H Cs' 	0 CY \ 0 0 \O CO H \O 

rx1 	 1-1 1-1 

rd cc)  
0 (1) • 

	

r-4 4..) cc) 	 CV H N.  H 00 0 H 0 

	

. 	 • 	• 	• 	. 	• 	4 	• 	3 
'13 	N Pit"\J 	 0 IN 0 QC) CV CV ON ON 
CO 	H E • 	 0 ON. 0 0 \C) CO H \O 
CV 	H 0 0 	 CV 	CV H 	H H 

CV —....— .......----. 
11 
z 

C-- 0 CN- 1."N- 0 0 rel 0 
 co CO CO CO co CN- \O 

.H 

• 

zn ,u 	\ cv cV cv iv cv cv Cv cv 
-:--) 

 
U) H 	(n... 	 • • . • . • 4 a 

C7-3 CI) 	 H H H H i--1 H r-i H 

tIO 	
0 

-P 0 	 ° 0000000 
CD 	 0000000 

4-) rd !! 	 0 
• ---11  

\cy 0 0 ■D 0 vp \0 • 0 0 0 0 0 0 0 0 LI; 	 • 	• 	b 	• 	• 	• 	• 
rI 	 ON 0 C.) ON 0 ON Ch  

IsN NO CO Is\ \O 11 ILN trN 

H 	 0 0 CV CV 
CV CO CV 

H 
 00 0 0 4-  4-  

CY\ \O 	\O 0 0 CO CO 
_4- 0\ 4- 0\ 0 0 ON 0\ 
0 H 0 H tr, IrN 0 0 

• • 	a 	is 	I 	. 	• 
0 0 0 0 0 0 0 0 

• 
• 

tr) 
• • • • • 1 • • 
H N  in _4- 	\.0 	CO 

  

Hi czi P.1 
 • • • • • . • . 

CV rfl CV ("V rn 1--1 _I- f---1 

re) 0 0 rf") 0 \0 \O 
111 0 0 IrN 0 0 0 

• • . • • . -• 
ON• 0 0 0\ 0 ON .4. oN 
(V (NI (\i 1r H tN 



II •—■ 

0 	 •••,, 
CD- 

F-r 
0 

4-)  0 
O C) 

0.).  

10 
Cf2 

la° CI) CO 
•• 0 

•r .1 

• 0 
cti 

0 	12 

4) 
0 

J••■ 

4-1 0 
• 

II 

(i) 

f▪ u 
El 

m
a
t
e
r
i
a
l
 

=
 
S
t
e
e
l
  

13 3- - 

M 0 CO 1-1 0.1 
• FLI • • • 

1 N 
H 
 + 

• 
Ir. 

P4 . C\I 1--1 C.-- N ___I-• 4-) re-) • • • . 	• r—I H .....0 rn N- C--- CO 	re) 
H . ....,1-  _I-  C's-  01 0 CO :.-.—  V en 1-1 cr) --1-  IfN 

N 
N 

F---.q 	0\ 

	

0 	_ .__. _ 
O 

--c-1 	0 
-P 

CO 

r-1 0 
N 

4_, 
CO 

• 
r-1 
• 

0 
• 

Pi N- C's H 
H 0 er) H rn 

R.  0 

N- C. 	r--1 
CO 00 If\ rr) 1r\ CO N '■0 r—I CO 
• • • • • 
0 H 	(N.I 

N 	It\ cr.) 0 
0 CO \ 	\Q 

(Y) 
• • • • • 

CV CV (Y-) 1.r\ 

0 re) 
1..t■ 	(N1 

I 	1 	1-1 	1 0 0 1 0 0 
H 0 r-1 r-1 

H 
co .s.c) 
1r\ N 

\O rel H N 
• • 	• 	• 	• 

re") 0-1  IrN C\-1  H 

• is 	• 
r-1 

• 

C\1 M 	1rN 



134- 

	

\O 	tr\ 	0 0\ H 

	

. 	• 	• 	• 	• 	• 	 • 
c\J re) CV r--I H CV 	H 

• 0 	• 
H 	 O'N 	ls\ 0.• H N N- IrN C H 

re-) \O 	 CO \O 1.r\ N-  111 

0 
F-c 
Ga 

EI 

ti 

E
c
c
e n

tr
i
c
  

• 0 rd 
0 

CO 
ON 
0 

F-t 	• 

0 0 
rd (a 

0 01 
0 4 

ri) 

Ord ,L) 
rd H 

• 0 
cl 0 . Co 	Hi 

1,4) 
C\J 

(a 0 CV 
U) 
O B 0 

1-1 
0-) 0 

O O 
O 0 

	

\O 	 C\J tr. IrN 
do 	e. 	4 	• 	

• 	

. 	• 
0 0 CO 0 Ir\ 1 r1 0 ON 0 le\ 

\.0 	 CO \O 

rr) re") cr) cr) MHHHHH 
0 0 0 0 0 0 0 0 0 0 

T
a
bl
e  

7.
1
0
 

rr) rr) t-Y-) M rr) H H H H H 
o 4 	4 	• 	

▪ 	

. 	• 	• 

(t 	0 0 0 0 0 0 0 0 0 0 

	

e"--■ 	••-•• ■—• 	•-■ 	e•—• 

	

rn rr) 	H or) cr) Ir. EN- 

	

1-1 H 	Le■ 	H 	111 
•••/- v ••••• 

• i 	. 	4 	• 	4 	• 	• 	. 	• 

	

H 	M tr■ \O 	CO oN 0 

O 

• o 

4-)  0 
:)4 

0 
U) 



0\ v.. 
6 	6 	4 	4 

rr) 

+ 

41••••■•■4 

\,0 
0 ■- 
r--1 

• 

-135. 

Ta
b
le

  7
.1

1 

N \O 	t"-- re) Is■ Ir■ 1r1 
• ... 	• 	• 	4 	4 

	

rn 	 CO o \CO \O C\I 

	

gl S•440 	 .0 •0 0 Ir■ 11-N 

	

\O 	R • 	 H 

	

CO 	o-4  
O CV 	FT1 

-1-1 	. 
F-4 	Cv 
4-) Cl) 

0  II 
O 	,--" c.) 
O 0 Z 
0 , 71 
ill 	 rd FA 	,... 	I 	0 
F-1 C) 	o 	 4.3 	r--1 4-  o ',.0 N 
O rd .0 	N 

	

rd F-1 r-I 	P4 	0 N 4..  N- 1---1 
• 0 	 cl E 	

N- Cs-- 0 IC\ LCD 

	

co 	5.:, 0 	 H 

	

c1 4- 	i----  0 
Cfl 0 EJ 
F-I • CV 
O W-1 	. 	_................ 
+) 0 
O H 
cri a5 li 
w 

O Pi 
U) •r-1 
(I) -P 	.., 

... i-4 

	

	 0 0 0 0 0 0- 
O rd 

 
..0 

	

rd C\J 
• rd 

4 -- 	
>
r-
a 1 

rd 00 
O 1 0' \ 

O 0 
O • 

	

-1-3  F.-■ 0 	- 
• 0 

O 4 

Cr) res) () re) re) 

0 0 0 0 0 
• Cs 

444.41.1...4•444.4444.44 

e"'",  I-,  P.'s 	e"••• 
N 

".1.7;• 

CV CV 

-40 	 .4 	• 

H C■1 re) 	111 

O 
C\I 

O 

0 

• 

• 0 
Cf) 



Fa
ct

or
  u

nd
er

  

0 

0 
Pr-4 
0 

F-I 
CO 

CJ C \.1 
o o 
ra 

o 
•t--1 	„LI 
-P 

4--) CO 
•r-I 
o N 

frY1 
0 

0 

0 11 

o 

C\I 

PS CO 
0' 

H 0 

0 
0 
U 1; 

U) 

0 

Ta
b

le
  
7.

12
 

-136. 

CO tr■ c0 
.0 

H 0\ CO 111 

rn 	\.0 

'4O 	9j 
0 0 

	

H 4-) 	 H rn 	 H 

	

. 	r 	 . 	 . 

	

N Cal 	 CT\ CO CO CO 

	

Ei 	Ir. 	L\- 	rr) 	'UN 
E-1  0 

0 

0\ \I) —is \Co H 0\ 
• • • • . 	. • 

111■0 	cr) M 4\4 

e•-■ rte. ■••-■ 	e."-• 
rr") H 111 H 	rr) N-111 

	

a a 	 as a 

C'-  \ ir‘ 	 (1") tr. vv H vH vH 

0 
H 

0 
=4 

H  

Ca 

0 



—137— 

f-tnnct-1/4000t-n000 
Od-z1-NNO(COUNmr...00  
• • • • • • • • • • • • • 

d-NN00L(NOOnlINHCOO 1/40  

Hn1/400NI-ONOnHnin  
uts"Nis monN-(10  

HHmnne-1 

k 
O 

a) 
HO 
Ho 

P -rf 
o ft, 

+3  0 
0 0 
gEi 
td 

cad $.4 
P-1 d 

U 
_• OP 

O PP 

0 
c54 -1-2  
CD 0 
$4 0 

rX4 

O CI-1 

o •-4 

r-i 

0 
a) 

5 ala) 
rd -P 

te% 

0) 

0 

.c.o inNmc-.-c\i '403000 MnMm1/40 C0 (\i mO wNpoo .  
• . • • • • • • • • • • • 

aNNL(No ttno.INKN nQD 

-4- q)mnOmNmNODN -4-00  
c\INc\itn.cr-t■oc-0nno -4-  

HaInn0 
d- nN 

H(n 

(.1 

:Irt.c■HWintiHmcl ocp 
01nHuNCOWNH00":4- 00 
• • • • • • , . • • • • . 

c-nmcnm1/4.0mnHL-Ncvin 
OcNid- 00 -4- ninc\i vtc .  
HHHHNn.1-t000000c\in 

MNNM 
.:tvNtH 
Hn 

tnNHNNOONOHH000 
00q) 1 /4oHnMnHmm r-r- 
* • • • • • • • • • • • • 

Na11/400NNo.inNt 0 

'1"Int-Ont--(\iWk.00q)0
m 

NN(Nincem LANHODC--  
N 0 CO ,.0 

HC\JID 

U) 	rCi 
a) 0 
40 4.)  

N H 0 
01 04 

H 04 

02 to 

-a) • 
-p0 't 
ct3 • / 
P' 

N/ 
a) •4 

0 z 
Cf; 

H 
a) 
tD cci 
0 

k0nNONAJDO nr-i00  
Mt-ONHNmHoNmNn 
• . . • 	. • • • • • . • 

LninHNO■.oHmaOnOHW 
0,4v'1 tr1mr-H0On.4tn-zt 
HHHHHNNnnt- HCO 

c\iocoin 
N`da 

Nn.ctn‘.0NCOM00000 
• • • • • • • • • • • • • 

00000000Hc\ind- uN  

Hc\inLn1/4.0r.--
1  r-I r-I r-I r-i 



-138- 

	

r-I 	CO LC\ H Cr) N t<1 	•zt N N N Ir1/4 tIl •: LC\ N N r-I N N 
•t-  O  d-  Ol N- Irl H HONN K.\ r-I cr, tn Cs- 1/40 01 CO te,100 

H Lo 	N-N 0 H Cr■ H Cc1 t--- ‘zi-  0 0 H 	GO 01 \..0 C. 
0000H CV t`C\ Ln 00 0OHNceNin 0000r-4 tr\ 
• • • • • • • • 	• • • • • . • • • •41111 

00000000 00 000000 00000000 •r1 

O 

-q'0nNd-000 
Mic\NNt 
Od-OmHkod- Ln 
. . . • • • • • 

HNd-LnWorc■■0 
Nrc.cztn■DCOm0 
HHHHHHHN 

Nn0N-Lod-mo 
nc-nLONOW.d." 
N000000n0 
•• •• • • • • 

0OHNd- u-NNM 

00N0000Nn 
.00nmoONLnN 

00(nd- InHn 
• •• •• • • • 

Nt(-)0q3.4-NHO 
,,0000Ht(v.nNm 
HHNNNNNN 

1/40t-.4v4L01/40 00H 
nk.pmN n0■0 0 
No0N-00Nt—Na) 
• • • • • • • • 

0OHN.:1- Lnt- 00  

Hd-NNWt---q)W 
.=;t0HHM000 OHNNHNN,,;- 

• • • • • • • • 

NNnOCONNOC) 
Joci0,-1.4.vDmNin NNnm\nn-d. 

00HMON 1/40n 
Na)N—CDNNNaD 

• • • • • • • • 

0OHN -4nNia) 

TA
BL
E

 7
.1

4 oNHmNnr-it--- 
Nmno co 
ninLo.:tHm0 
• • • • • • • • 

HnQp0uN0q) Nn.4-vpc-m0N 
HHHHHHNN 

moCC)reHC-- 
Wnq,k000-1

l-
NO 

• • . . • . • • 
HNnLr■N-0Nt.c. 

tAd-tSlgD CO 
HHHHHHHN 

HNn-tin■ot-00 
• • • • I • • • 

00000000  

nnorronN 
L.nt--HtrNNN(n 
OHnNHre■N- 
• • • • • • • • 

00 tnnn.4-q0 m.‹1- 
L0M0Nd-k.0MH 
HHNNNNNteN 

NHNNInd-Mvp 
uNCION, COH%4- KN00 
q)Lno-NoNmHN 

• • • * •.••• 

NnmN71-H000 
spOpaNHnint.-- 00 
HHHNNNNN 

HNn.td- Ln.ONM 
• • • • • • •• 

00000000  

noNHMOId  nHOHnm■ouN 
0L0C--Mc\ic\jm 
• • • • • • • • 

Na1Mmn00vpin 
g000Hszl- 03HtnM NNnteltc 

N- 	isr) 0 vD no0 Nsd-nts-Ntn■ocr‘H 
ORg-40■IDOirk00 

• • • • • • • I 

■DMH',tA.OmNn NNnnnn.4-4 

HNn.4. in■oNCID 
• • • • • • • • 
00000000 

N • 
0 

0 

0 

N 



-140- 

cr\ 

Ei 	• 
P•H 
wH• Hon 
O P4 • 

H=44FTI
0-1 

O 
Fa • 

1=4 

	

q)M000mnn 	covDocOo(in.st 

	

0-4 00 	nnnc\o.ont--(Ni 
Hnnc\Ind-NO 

	

000Hcvd-wvD 	000Hcroo 

	

. • • • • • • • 	• • • • • • • • 
00000000 0000000H 

Hncm00400m Hcmnd- k0ON 

	

cOcer0OHok.pm 	cO.st-m0nHmn 
■cid- Hr-10.---4. 	ncOd.c\it- OH 
• • • • • • • • 	• . . • • • • • 

	

OCOHOINNODH 	r-Inc\J00HM-z1' 
NnHcOt--n∎D. Wn0\nnH00 

	

NCT■HNd-k0000 	q)mi-id-C-Otrp 
Hr-INNNNNn NNMMMdd 

NNCONcOct-NH 	■ocp0N40(\loo 
'cfaiNd-Hinnn 	feNHWY1Mtrv,4- 
(vmmc\INnon NO0d- Oko 
........ 	........ 
OOHMd 	0HNnt"A0C0H0 

NinC-010aNNH 
d'MC-WnmaNN 
Nin■Ovd- ONN0 

• • • • • • • • 

nqpHOM010\teN 
c.--nnOcOH■on 
N 01HnncOon 
HHNNNNnt(1 

q)r-Ht'r■H■.000 CON-mttr-IHno0 
. • • • • • • • 

00c\I 1/40HkOH%.°H 
CO■DnNovonn 
k•OmNL.nmNwo 
NNnnn.:t.<71-n 

	

0\nq2)-4- nn0100 	Hmm(\icr% 

	

vpc---d-n-:toc0 	.std-r-ic000N0 

	

CO If10\ M LO 00 0101 	nr-4<tnr---HriN 
• • • • • • • • 	• • • • • • • • 

	

Ot-mlO1/4000N 	NreNON003 
NnocOnct- -4-  cOnmnHmt-n 
C*-7-  

	

.OHNd-000 	qDMI-Isztc-mNin 
HHNNNNNn Nc\Innnnv4-4.  

HNnszt-Lnk.ONOO 
• • • . • • • • 
00000000 

LIN 
N 

• 0 

r-ANN OD 
• • • • • • • • 

00000000 

O O 

CO 



-141- 

F4 	ts- 'd-  01 Lf1 	czt 0 Crl 1/40 	tr\ re■ c \I N 	otn CO CO to 
O ONHM HMK■N HWON 000 ,4tm 
• , Hol.nw Honin HONN HONG 
$.1%. ONHn ONHn ONHH ONHH 
M 	. • . • 	• • • • 	. • • • 	• • • • 

00H,4 00r-1d' 00Hd-  OOH 

t.S 
0 • teN 

H 
di N 

H • waNNH NOOn Hn-tw :f-LnNo 
• oinWoo HriLnin kom-:rN Nnopt- 

W n NONWO zt"(1/41t-trN OnHN 
1-4 ,11- NO mH(Ni eNcooDM oNnH • • • • • 	• • • • 	• • • • 	• • • • 

O o oa,WW HH001 sl*nNH 
• M H 	HHH 	HHHH HHHH 

NHNO 004-H0 ws:00 Nmoo 
ztinOc\J nttf■ww 

HIsw\c-- HLONO H1.00n HnMM • • • • 	• • • • 	• • • • 	• • • • 
orAnte-N oHnre■ OHnN OH•ztri 

N 

g. • InNHM 
• er-1 
o N• WNV■0 
HOn HLoHN• . • • • 
O r:24• 00■mo0 
0 
O oa,  P 	H 
4:4M 

KNOL.C10 sta)Nln 
t--0Dcn wn.4-N Wo0w ,:t 
nc-

0
00H N-4.1-4Ln mtnNH 

	

MC1/41400.1 	motcNt,.. 	0 • • • • 	• • • • 	• • • • 

	

HHOO 	 aNNL-w 
HHHH HHHH HHHH 

• 
cr) z 

Mo■cOLn :1- 00tno nWnrrN 
cnt-alH %1- 0Nal 0w00 

	

nmind- 	
0
NWHW MOHO mcOwn owNw. • • • • 	• • • • 	• . • • 

HHOm %tre■NH mt-ko,j 
HHH HHHH HHHH 

Hnint- Hnnt- HnIoN • • • • 	• • • • 	• • • • 	• • • • 
0000 0000 0000 0000 

In 	0 	to 	0 NIn 	1*-- 	0 • • 	• 	• 
0 	0 	0 	H 

H. 	N 	K1 	cr.!' 

tnnWN 
mwoOM 
wr-AoLn 
H-1-wW 

• • • • 

0 al CO N 

Ta
b
le

  7
.2
1
t  



• 

Oi 

E-1 

O 

C) 

C\J 

0 

cu 

.1\ 

rd 

CLIC 

F-40 

aO 

	

(1.1 

0 
ci 

9 
	0 

00  N 
MI 

rH(cfl)) 
Ord 
0 

C.) 

C) 

4-) 

0 

r 

ci 
0 

-p 

cu 

N chi 

0 
ci 
O 

N 
0-41; O 

••••••••••••• • 

N
rnCOHH0000000 

N 

N\0\.ON\OC OIr. 
1I1NH..t\00\0 0N-0 
C,(r)CYNNIr\NrOrr o 
. • • • • • • . . • • • • • 

00 10000MOln(nMNMNNN\O 
HHH\OH\0\0\011-\\OVArNInC0 
nre)rnmnm000p ro■tr, 
HHHHHHHHNHNNN-d-.  
HHHOH00000OMCOCO 
000HOHHHNHNNNIC\ 
4/410041, 41000. 0•441.4 

00000000000000 

0\000 ,--.1N-Nr-iNcy■C\I 
M\OM\O--/ler)--t0•- 
co_1 ,q\ornHr-Irn 
Ntr-Nolr.coc ooNoN0J n oo 

0000HOHC\JHolN014-  
46,00 ****0000'041 

00000000000000 

N4\00\00nN 
4-COHON\0\0 
C\J- Nr-.4 

000000H 
0000000 
• a • • • • 
0000000 

04'NO4-MO\ON\DMCON\O 
_rt.Or-k0C0000 0C0(11N HrelCON_I-N.enNI-4 010 1-11r\00 

/■I'■/■ 
f-41--41-1011-1 01 (nrrAIN(n -■1PAINN- 
" " " a* al 	" " Q.• 41.1 	" " 

rnIrN Cr) CsAn, 	\ H r-ler) H 

a • •a*. 0••0 	••••• • 

Hc\Jrn_1-1/N o\or-iNn_I- 
HHHHH 

NHH\Orn-J.'H 

Orr).-.1"H(\)COH 
MC'sH1.11NH0\ 
C\Jrn--1-1X\WN\O 
00000HH 
. • • • 0 a 

0000000 



-143- 

c-3 r  00 	N r--NO N-r \00 N C`--ON \OCV ON rn CV H 
0`• N-0"-)0\ cr)000N C \10001..cNIr\ \.0.../-C- 
• • • • • 0 • • • 4 • • • 4 4 

N..\Cols\rncHNHHOHOH 

N 0 	,----, 
4) 	 H -I' 

• 
O 	 'el \C) 	crY\C ONMEN-H\0000 

	

s.." 	_I-N,---ICOON.N OCOVN 
o 	 • 	0\000(110-0()■N.00H (0 	 :El 01 	S•b• • • a a +.'• a y . a 

O tfa r-T1 N.±(nN/-InC\INNHO\HO 
Pc■ 	 .______ 	 H 
0 
H 
'OLD 

H 
m 	 >a 	Ntr\li`Ar 0000M(nrr) 

cr)-1. 1INIr 00 
Fr 	..- 	11\N-C HHHHM

0000
(nrn 

0 
q-, 	 00000000HHHHHHH 
rd 
0 
4-) 
O 

.r-1 

Ord N 	 inrn0..orr)O\ON(110\0Nrr)0\173 
P40 ...-1 	N 	VNIcN IDN-11-  

rd 	 E; 	0OHNOHNMOHN010,---IN 
CDQ 	 .. 

O 0 CV 

rd 
rdW 

1  N 
O 1-1\0\ON.NN OONc00.(S 
ci)'4 __ 	 re1rN\000NMIC1CON-1-000 

HNC\JN-t-t 00000 
rdl 000000000000000 
O W 
0 

O 0 0 

000000000000000 

F
re

q
ue

n
cy

  

00\00000-1-N-J-0-1- 000 

N NH-I-WONCCOOIC\NNWN 
001.C\N-HHME"--1-11-NO 

HHHHHHHH 

tr\N-N0 HHHHHHH 

••-••• •••••••• 	 •-•••, 	%WS/ 

4.0. 00.04e • 0 
CO Z 	HNre)-1 000',OHN01.4-11\ 

HHHHHH 



OOLN-HINOHNMC,-I11H0\  
NrrArNNIs cINOC-,-.IncO

•  Seae•aoas'o'•0••00 

L---Ic1olNHHH000H00000 

(-1-Y\O 
N- 

H H H H H 

0-\ _J-CON -351 
0\NIrNONCO cov■--1-0 0 
HNHNNN 

0._.J-HoOv) 

Olc.\\DOO 
• • • • • 

NHHN-1-  

\0\3\0\0\ 101.0N0N■00 
00000HOHOrnH0rr)HOH 
HHHHH(Hcr)HIsHIrNrnHin 

0000000000000000 

Cr IN N 
00 CN 0 0 H 

	

\c..) 	0 
• • 	• 	• 

660000H 

HL----H rr)00 
HHHHNHNrnm 
OHOHNHN(nrq 
••••00'0e0 

HHHHHHHHH 

H■ONo',CX)NCN-HHONOrYIHtcN 
HHNNre .r. -COCCI 
a.. • • • • 0 • 	 • • • • • 

0000000000000000 

004-0.14-00\0000MON00 

0004-HOONH■001r1N_4-NHO 
rrAr.c0_1-NHNH ONHCO\-014-N 

M-4'1111x1 L` 
HHHHHHHHHH 

e•-■ e•-■ 	 •—•• 
r-ir-ir-" Hrnr-itr\rrlr'itr\Cnr-irn 

crsHintr\C,--C--0■0"HCYNHrOHrnIritsN 
%---,HHHHHHHNHNNNNNN 

a' • •- 	• o . a'S •'0• • ••• • • • • 

HN. C-000-\OHNnl_I-11-vs3 
H H H H H H H 

Ta
ble 
 7.
18 

• 

O 
r--I 
ta.0 

O 

7:5 
o N 
4-,  
Cu 

TiO 
YY 

Fti 

(Ord 
fr; 	N 

O W 
p'3").0  
O rd 
04111 

cif 
.73rn 
O 0 

0 

O 
4-, 	• 

>cr3 

O cr) 

O(4 

4-1 
4-I 

0 

cd 
4-1 
Cd 

14 



-145- 

u, 
0 

I-4 

O rd 
-P 

•CS Cif 
1-3 'Id 0 

0 
1-q a. O 

ao .d. 00\ 00 00 00 
H 0'1 CO '441- tt 1.11 E.11 0 0 

H 01 	1/4.0 111 k.0 01 01 0 0 
01 N N N N W 111 ‘,C1 0 1.11 

• • • • • 0 • • . • 

0 0 1-1 0 I-I I-I 	K r 1/40 
c\I 
H 

Ta
b l

e  
7
.1

9 

TS 	 Cr) K\ 1/40 CV d- d- d- H ,zI- 0 a> g 	 co N O Cl ts- g-i t.r) 0 N CO .p 0 	 d- cV (-1/4i CU RI •.0 N 01 U3 N 
-P 

CI -1--1 	 0000000Hr- 0 
r4 	 W 	 . • • • . • . • • • 
'CI -r1 	ra 	 000000000K\ 
'I') 
P4 

I-4 F-1 
0 0 	0 I 
* P4 	0 ol  
O ,c1 a) C12 
P4 0 	0 F-I GO 

I 	-4' (I-I co 	64 
rd al 	H 0 	N d- H co o ko k0 Cr\ 0 KS 
• 0 • 4--I 40 	3 	 ri (NI (NI t*-- CO 0 (V d- ‘0 

	

9-I U) O g 	H  0 0 0 	•rf 0 Z 
Ca 0 rd 	• 	g c15 

sz 0 	o 03 0 ...1 
'd 	fEI Z 4 4-) 
g acr;43 	rn rci 

rd ca O g o o 
WOW i ..1  Pi 
W 0 W 	tai 

-r4 .r.1 (I) (I-4 -r-I 	 0 0 0 0 LA Ir. LIN tr1 tr. tr. 
0 -P -I 0 $4 	 n n n 1/40 E----. N. N  N. N. E....- 

1-1 H H ri 1--1 ri • Cd I 	0 
4-3 	• Gti 

(4-4 o 0 rx1 g 01 
t•4 

g W ci-i 
O 0 
H CO 
+3  4 
al 0 a> 

H r0 

40 o 
O 0 

-1-4 a) 	104 
-I.' 	0 N1 
•ri 3 it i 
• a) 

r4 

• o 

0 0 0 0 0 0 0 0 0 0 
• • 	• 	• 	• 	• 	• 	• 	.• 	• 

0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *vi" ■0 CO 0 LC\ 0 LS1 0 t-
C\I N M M Nt "z,f 

H N M c• tt■ 1/40 N CO 0-N  0 



"' (A.1.2) 

i) 

sin(y1/2) 

sinh(y1/2)-4  

: coshyl(i 	i) 

m = 2,4,6... 

• • • • 

)nx X(x) = sin (m-1 	• m = 2,3,4....a  

000 0 X(x) fx  = cosylka 

AlITFDIX 1 

MODE SHAPES AND FREQUENCY PARAMETERS OF RECTANGULAR 
PLATE WITH DIFFERENT BOUNDARY CONDPTIONS138,791 

There are 21 possible combinations of the boundary 

conditions (clamped-C; simple support-SS; Free-F). For 

obtaining the mode shapes Warburton used the Rayleigh method 

with deflection functions as the product of beam functions 

i.e. 

W(x,y) = X(x).Y(y) 
	

0 0, (A.1.1) 

where, X(x) and Y(y) are the fundamental mode shapes of 

beams having the boundary conditions of the plate. 

The required sets (as in Chapter 4) of boundary condi-

tions along the edges x = 0 and x = a are satisfied by the 

followinE mode shapes: 

(a) S.S. 
(x=0,x=a) 

(b)  
(x=0,x=a) 

A.1.3) 

X(x) = siny2(k 
sin(y2/2) 

sinh(y2/2) 

sinhy2(.! - i) 

m = 3,5,7... 
... (A.1.4) 
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(c) C 	at x = 0,... 
	 1\ 	sin(y2/2) 
1(x) = siny2 ( 

	

S.S. at x = a. 	 2a - 7 	sinh(y2/2) • 

.sinhy2(ia i) 

Note: (i) For obtaining function Y(y) replace x by y, a by 
b, and m by n. 

(ii) m, n are number of nodal lines in X- and Y-
directions including the boundaries as nodal lines 
and not the number of half waves which represent 
modal numbers. 

The natural frequency wmn  is obtained from 

2 	n4B r44 	G402,14 	( 	fy HxHy  + (1-v )Jx Jy.}1 
wmn = 707 L x 

... (A.1.6) 

i.e.  x
n 
 = u4 re Ge4 2e2 fv 

-x 
 H 
y m 	

+ (1-v )Jx  Jy  11 L x 	Y  ... (A.1.7) 
The coefficients Gx, Hx, and Jx  for conditions at x = 0 and 

x = a are given in the following table: 

Table A.1.1 

B.C.at 	m 

S'S a ss:b • 2,3,4.. (m-1) 	 (m-1)2 ip   (m-1)2  

 

Ca 	2 	1.506 	1.248 	 1.248 

	

2 	 1 
Cb 

	

3,4,5.. (m- 1/2) (m- 1/2)2D. 	(m- .2) 2  [1- 	21  

	

(m- 	 (m- 	It 

Ga  
s .s . 2,3,4.. (m- (m- i)2[ .. 	1  I 	(m..  2)2[1 	1  

4 
( M."  2  ) n 4 	(m- 24) nj  

a 
"""4  x = 0 p 
	 x = a 
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For obtaining Gy, Hy  and try  replace x by y and m by n. 

It is seen that Hx  = Jx; Hy = J'y when there is no free-

edge:hence Eq.(A.1.7) reduces to 

-tun = 
714 rG4

x 	y 
e4G4 2e2 	j  1 

x yj A.1.8) 



a 	. ,2nx, 110 	x sin (7-9-1) sink---)dx = a 	a 
8a2 

410 

9112 
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APPENDIX 2 

INT EGRAILS,  USED IN THE ANALYSIS OF VARIABLE THICKNESS EWES  

sin2  (14) dy 

a 	2 nx I2 - r sin (—) dx = a 	- 2 
0 

a 	- 2 nx
a 	

a2 13 	

- 	

x sin (.--) dx = 4 0  

fa x2 	2 nx 	
= a

3 	1. 14 	sin 	dx a 
o It 

a 	 4 
= 	- 4:1  15 	- 	.z sin2  (12S) dx 

o n 

a 
16 	- I sin(II) cos (22)dx = 0 a 	a 

a 
To x sin(—nx  ) cos (—nx  )dx= a 

a 	a 
2 

a , fnx\,, 	a  
- f x' sin (II) cosk--jux = a 	a 	4n 

fa  sin si,fLZAx  - CZ) " UN 
a 	a ' = 0 

a n  

1 x2  sin (212-ca ) sin (ZI--ux) dx = - 11 	0 
	8a a  97t 

a 
112 f x3 sin (--) sin (zix ) dx = 	40 

a 	31;2 97 
0 

 



a 3  I18 - fo
2 ie 2nx x. sn ---)d. 2 

a 	17 

119  - f x3  sin22nx  (.---)dx a4 
a 

a 	g- 
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a 
113 - f cost2na

x ) sin(a)dx = ` 	a - 

1
14 

- 
a 

J o 
a2  x cos(2nx---

• 

) sinPa)dx = a 	- 37 

1
15 

- 
a 

fo 
/■ x2 cosk---2nx  / a sin (22i)dx a 

3 
= - 1 arn[ 52-29n 	- 1 

116 - 
a 

0 
sin2(qa)dx a 

2 

1
17 

 
a 

0 
f . 2,1x 	a2 x sin (----)dx 4 

a 
saal sin 2'x  dx 120 - co I 	a 	a 

4a 
3n 

a f - f x cosk--nx  sin.  k ---/ux - - 2a
2 

I21 a 	a 	37-  o 

a , 
22, 

9n2 
8  122 - f x' cos(M

• 

-) sin(4)dx = 37; 4:  1. 23 
0 

a 
123 - f cos (La) sin(111)dx a 	a 

a 
124 - 	x cos(la) sin(EaME)dx 	a2 

0 a 	8n 

a ^  
T 

	
x2 cos ( 2 -nx 	2.nx 	 a3 

+ 25 	 a ) sin(--)dx= - 

2 v,nx\ 	a5 sin r)dx 	[1 = 10 

0 

7. 
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a 
7  127 - I x6  sin2(12a )dx 14 1 - 0 

10.5 4. 52.5 _ 78T-1 
n
2 n4 	n 

a, 	4 
128 - I x3  sin (1).  cos (ii) dx 	[1 - 1-241 

129  - la  x5  sin (11) cos (117c) dx = - 	[1 - 	+ 141 
It 

a 	 16a5  E._ 20 130 - f x4  sin(M) 	 (EM 	--7, - )dx 

	

sin 
 a 	7 L 3./r2 o 

a , , 2nx \ 	8a7  [ 	200 2i49.1 131 - f e sin(ZZ) sink---;dx - - ---2- 1 - --7 + 	A  a 	a o 3n 9n 27n' 
a 

132  - 1  x3  cos (21.12EN 

	

a  / sin (M)dx 	- 	-
26 

	

a 	77  
0 	 3n 

6 a 	
= i 	3)44) + 2774840 1

33 	
f x-   cos(-)211. 

	

k  a 	a sin (ac)dx 

a 134 - so x, sin2 (2:x) ax  = 	- 	4. 15 I 
4n 37 

ra x6 . 2,2nx. 	a7  [-... 	35 	175 	525  
• 135  - j x sin k---)ux = Tz 1 - 	2  + a o 16n 	64n 	512n6  

	

- fa 3 . 2 nx 	2a4[ 	14 ] 136 	x-  sin (---) cos 1., ) dx = Tr- 1 - 
0 

	

	 3n a o 

I 
	- .1 	

5 . 2nx 	= 2a6 	140  140 _,_ 2440 
37 	x sin (---) cos (7-a)dx 

	

a 	a 	3n 	- ;Tr ' 27 n4  o 

4 
138 - fa x

3 sin (2nx --) cos (21 ) ax = 	141 - 
0

a 	a 8n 

6r 
1
39 	

a 
- f x5  sin(LBE 	2nx x- 81 1_ ) cos()d 	- a  0 32 n‘ 



 
H 

4ae 

= 	(22+62) 	71 	662 (1+0.56) 

= (22+e2)2 	7•=--9 1-1 + 1.56 + 62(1- 	) 

	

2 	2 	 2 	28 
= -(1+e ) -.22,- 8,5[2(1+6) + 6 (1- —7)1 

	

4a 	e 	 49-rc 

4a e 

H2 

H3 

4 

+ 2 	3 1  (1-  -7. )_i 4 4n 
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APPENDIX 3  

TAPER COEFFICIENTS FOR PLATES OF LINEAR THICKNESS VARIATION 

n4 	- G, = (1 + e2 2 ) 	1 + 1.56 + 62 (1 - 
4a e 

15) 2 	4 

n2 	86 = ... (22+e2 ) 2 0 	-r[2 (1+6) + 62 (1- 40 ......2. 
4ae ' 	 9n 

2 	n2 662  = (1+e ) ---- 66 (1+0.56) 
4a e 

2 2 n2  = (2 + e ) 	.86[2(1+6) + 62(1-27)] 
4a.'e 

G5 = -(1+v e2 ) /12 662 (1+0.56) 
4a2e 

G6 =- ` 	
= X 

4ae 

G7  = (22+e2v) a 63 
7.7"; 3  

G8 	2  
X 166 

7 = X G8 4a2 e 9n 

	

2 2 n2 86 	2 	4 ] 0 \ = - (1+6 ) 	—[2 (1+6) + 6 (1- —7 1 	 4a2e  3 9n 
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2 
H5 

= -(22-1.v e2)-21;— 682(1+0.56) 
4a 'e 

H6 = G6  - X H' - 	6 

= (l+v e2)-1-- IL 3 
4a2e 3 6  

H8 = G
8  = X H1  8 



n4 
1 = (1+e2 ) 2  ) =5.-4 (1- 

4a e 
, 2 

) 	(1- 5.7 z=4) 5 	
IC 

78.76,5i1  
TC 

+ 42 (1_ 200 + 1640 
3 	97c 	27 7E4  

1 
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APPENDIX  4 

TAPER COEFFICIENTS FOR PLATES OF PARABOLIC THICKNESS VARIATION 

2  G2 = (22  +e2  ) 2  
4a e 

2 G3 = (1+e2 ) /-1.— 41 5._ 2 p, (1- 	) 4a2e  

= -(22+e2 ) —it2 164[1-24 	+ P. 	+ 	A] 
26\  2, 260 4840N 

4a e 	 37t 	.9it" 	277('' 

2 2 = (1+ve ) ;re- 

 

) - 	112 ( + 2.4T1 
314  ".-1  

 

G6 = - X2 1-1- (1- 	)] = 	6 G' 
4a e 1- - it 

G7 = (2 2+ ve2)644211- 	(1- --2/J L 3 4a2e 	
20_71 
37t 

G8 
 

- _ 
	Ly X G' 

	

47,2; 971 - 
_ 	

8 

,, 2 	2 Ha.  = (1 +e`) ----5. 

	

4ae 	
[1-2p, (1- gip)  ) + p. 2 (1_ 200 + ,640. )  

37c , 	9n 27n4  
Ts 	= ( 22 4.e2 )2 n 	 15  ) H2 	 11 - p. (1- —37) + 0.6112 (1- ' 4a2e l= 	8n 	 32n4  

- 3  
- (1- 5  + 175 	A  

16n 	' 64 n ' 512n 

H3 = (1+e2 ) 16p,5_ - 24(1- 14 	+ 2 /I lig. 2440  —7/ 	4  -L'" 97c +  27.21. 4a2e 	 3 7C 

4. 42 (1..  57  4. 1.:i)]' 

TC 



H7  = (1+v e2 ) 64p.2  1 - 12  
4a e 

2o&  
31E 
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5  + 2 n2 
-(22  +e ) 	6a.-211 (1- -2 ) + 4 2 (1- -5  + 4 = 	 "2 	4 4a2e 	 4n 32n 

H5  = 2 	2 	7C2  -7) 
87E 

+112 (1- +--175 )1 6p.C1 	24(1- (2+ve) —2— 	- 
4a e 327c4 -.1  

X H6 = - 
4a e 

= X Hi 6 

X 16a H8= 
	e 9it 
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APPENDIX 501 

COMPUTER PROGRAMrE FOR THE EVALUATION OF MODAL LOSS FACTOR' 

DIMENSION SIA(10)9CCA(10) 

OUTPUT FORMAT 
50 FORMAT(E200694F8.39F10.5) 

INPUT FORMAT 
10 FORMAT(3F4.193F8.392F10.592E12.3) 

PI=3014159265 
X=10/32. 
X1=1./15. 

DO 200 1=198 
PI=PI*X 
SIA(I)=SIN(PIX) 
COA(I)=COS(PIX) 

200 X=X+X1 
700 READ 109PM9PN9PNU9A9B9SNeP9H9E9SJ 

CK=10+30**SN+5.**SN4 70**5N 
CF=SJ*E/f84,;*PI) 

CFF=CK*CF 
SW=1./(SN-10) 
SNC=101SN 

SN7=(SN-2e)/SN 
CMA=PM*PM/(A*A) 
CNB=PN*PN/(B*B) 
Cf4=CMA+CNB 
C=30*P/(PI*PI*H*H*Mf3*CMN*Cf) 
CMr1=CMA+PNU*CNB 
CM02=CMA*PNU+CNB 
CMN3=CMN1*C 
CMF4=CMN2*C 
CMN5=0.7*PM*PN*C/(A*73) 

30 D=00 
US= 00 
J=1 
K=1 
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9 CXY=SIA(J)*5IA(K) 
CT=COA(J)*CO\(K) 
SX=CXY*CMN3 
SY=CXY*CMN4 
ST=CT*CMN5 
C1=005*(5X+SY) 
C2=005*(SX.6.SY) 
C3=SORT(C2*C2+ST*ST) 
SP11=C1+C3 
SP22=C 1-C3 
SP1=ABS(SP11) 
SP2=ABS(SP22) 
IF(SP1-4SP2)40960960 

60 RP=SP2/SP1 
SED=SP1*(10+;;P) 
SEDL=SP1*SP1*(1,-20*PNU*RP+RP*RP) 

. GO TO 75 
40 RP=SP1/SP2 

SED=SPP_*(10+RP) 
SEDD=SP2*SP2*(1 0 '420*PNU*RP+RP*RP) 

75 IF(J..K) 300,400,300 
400 DED=SED**SN 

USD=SEDD 
GO TO 500 

300 DED=20(SED**SN) 
USD=20*SEDD 

500 D=D+DED 
US=US+USD 
J=J+1 
IF(J,-8)999,21 

21 K=K+1 
J=K 
IF(I 448)999923 

23 ETA=CFF*D/US 
ETAP=ETA**SN1 
PRItT 509ETA'9Pm9PN9A9B9H 
GO TO 700 
STOP 
END 
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APPENDIX 5.2 

COMPUTER PROGRAM1E FOR THE EVALUATION )F FUNDAMENTAL MODE 

BOSS FACTOR FOR A LINEARLY VARYING THICKNESS PLATE --

ONE TERM GALERKIN SOLUTION 

DIMENSION SIA(10)9CJA(10)9ALPX (20)  

C 	OUTPUT FORMATS 
55 FORMAT(2E16.692F8o3) 
95 FORMAT(2F10,492E16.6 92F12.4)  

C 	INPUT FORMATS 
23 FORMAT(F5.29F15o5) 
30 FORMAT(F10o59E16o 6 ) 
50 FORMAT(F4o193F10.592E12 0 3 ) 

READ 509PNU9SN,P9H,E9SJ 
A=59.06 
PI=3014159265 
SN1=SN-2. 
SN2=10/(511—.1o) 
SN6=1o/SN 
SN7=SN1/SN 
CK=1.4-3o**SNI-5a**SN+7Q**SN 
CF:ISJ*E/(84.*PI) 
CFF=CK*CF 
PI2=PI*PI 
P14=P12*PI2 
A4=A**4. 
AB1=10/(A*A) 
X=lo/32o 
X1=1o/16c 
DO 200 1=1,8 
PIX=PI*X 
SIA(I)=SIN(PIX) 
COA(I)=COS(PIX) 
X=X+Xl 

200 CONTINUE 
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10 I:EAD 30,AR,ETAC 
B=A /AR 

A82=lo/(B*B) 
AB=AB14-AB2 
ABSQ=AB*AB 
AB11=ABl+RNU*AB2 
AB22=PNU*ABl+AB2 

JJ=1 
700 READ 20,ALPH,FP 

ALPH2=ALPH*ALPH 
ALPH3=ALPH*ALPH2 
C11=lo +105*ALRH+ALPH2*(1e—lo5/PI2)+0025*ALPH3*( 1 0-341/PI2)  

C12=PI4*0.25*A*B*ABSO*C11 
C13=105*RI2*ALPH2*AB*(104-005*ALPH)/AR 

CC2=0025*A*B*(1o+ALPH*0.5) 
C14=6e*PI2*AB11*ALPH2*CC2*A81 

C.C1=C12-1-C13'-<14 
FPN=CC1*A4/CC2 
ERROR=100o*(FRN.—Fj)/FP 
PRINT 95,ALPH,AR,CC1,CC2,FPN,ERROR 

X=10/320 
Xl=lo/16o 
DO 900 1=1,16 
ALPX(I)=10-1-ALPH*X 
X=X+Xl 

900 CONTINUE 
CMN3=0075*P*PI2/(H*H*CC1) 
CMN4=007*CMN3/(A*b) 
CMN5=CMN3*AB11 
CMN6=CMN3*A822 
D=00 
US=00 
J=1 
K=1 

9 CXY=ALPX(J)*SIA(J)*SIA(K) 
CT=ALPX(J)*COA(J)*COA(K) 
SX=CMN5*CXY 
SY=CMN6*CXY 
ST=CMN4*CT 
C1=0o5*(5X+SY) 
C2=0.5*(5X•.5Y) 
C3=SORT(C2*C2+5T*FT) 
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SP11=C1+C3 
SP22=C1--C3 
S71=ABS(SP11) 
SP2=ABS(SP22) 
IF(SP1*SP2)40960960 

60 RP=SP2/SP1 

SENISP1*(1o+RP) 
SEDI=SP1*SP1*(1 0 20*PNU*RP+RP*RP) 
GO '70 75 

40 RP=SP1/SP2 
SEDL"SP2*(10+RP) 
SP_DI=SP2*SP2 4'(le"'2o*PNU*RP+RP*RP) 

75 IF(*.;•.K) 3009400,300 
400 M=1';*J 

Z1 =ALPX ( J)+A:4PX(M)*((ALPX(M)/ALPX(J))**SN) 
Z2=ALPX ( J)+AL.PX(M)*((ALPX(M)/ALPX(J))**2o ) 
DED=(SED**-S(')*Z1 
USD=SEDD*Z2 
GO 1'0 500 

300 M=1i—J 
N=17—K 
Z3=ALPX ( J)+((ALPX(K)/ALPX(J))**N)*ALPX(K) 
Z4=(( ALPX ( M ) /ALPX ( J) ) **SN)*ALPX(M)+((ALPX(N)/ALPX(J))**SN)*ALPX(N) 
Z5=ALPX ( J)+NALPX(K)/ALPX(J))**2‘)*ALPX(K) 
Z6=H ALPX(M) /ALPX ( J))**20)*ALPX(M)+NALPX(N)/ALPX(J))**2o)*ALPX(N) 
DED=(SED**SN)*(Z3+Z4) 
USD=SEr)D*(ZEf•Z6) 

500 D=D+DED 
US=US+USD 
J=J+1 
IF(J*8)999921 

21 K=K+1 
J=K 
IF(K*8) 999923 

23 ETA=CFF*D/US 
ETAP=ETA**SN2 
.R4TIO=ETAP/ETAC 
PRINT 559ETAP9RATIO9ALPF9AR 
JJ=JJ+1 
IF(JJ-8)7009700 9 10 
END 
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APPENDIX 563 

COMPUTER PROGRAMME FOR WE EVALUATION OF FUNDAMENTAL MODE 

LOSS FACTOR FOR A LINEARLY VARYING THICKNESS PLATE 

TWO TERM GALERKIN SOLUTION 

DIMENSION SIA(10),COA(10),ALPX(20 I,SIB (10 ) ,COB(10) 
C 	OUTPUT FORMATS 

1 FORMAT(6E13.5) 
2 FORMAT(5E1606) 
3 FORMAT(2F863,2E16o6) 
4 FORMAT(2E166692F1062) 

C 	INPUT FORMATS. 
20 FORMAT(F562,F15e5) 
30 FORMAT(F1065/E1666) 
50 FORMAT(F401,3F10.592E1263) 

READ 509PNU9SN,P,H9E/;-_,J 
PI=3614159265 
A=59606 
SN1=SN—.26 
SN2=16/(SN—lo) 
SN3=57,N4-16 
SN6=16/SN 
SN7=SN1/SN 
CK=1e+36**SN+50**SN+76**SN 
CF=SJ*E/(846*PI) 
CFF=CK*CF 
PI2=PI*PI 
P14=P12*PI2 
A4=A**4, 
AB1=16/(A*A) 
BO=E*(H**36)/10692 
CMN1=0675*BO*PI2/(H*H) 
PII=165/P12 
PIJ=2)*PII 
X=1./326 
X1=16/16. 
DO 200 1=118 
PIX=PI*X 
SIA(I)=SIN(PIX) 
COA(I)=COS(PIX) 
PIXX=2.*PIX 
SIB(I)=SIN(PIXX) 
COB(T)=COS(PIXX) 
X=X+gl 

200 CONTINUE 
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10 READ 30,AR,ETAC 

B=A/AR 

HfilA 6ME*AB2 
AB22=PNU*ABl+AB2 
AB33=40*ABl+PNU*AB2 
AB44=40*PNU*ABl+AB2 

CMN2=CMN1*007/(A*B) 
Z1=10/(A*A*AR) 

Z2 - 3 25*Z1 
ARS=AR*AR 
Z3=1,+ARS 
Z4=40+ARS 
Z5=Z3*Z3*PI4*Z2 

Z6=Z4*Z4*PI2*Z2 
Z7=Z3*Z1*PI2*105 
Z8=....80*PI2*Z2*Z4 
Z9=•60*PI2*Z2*(101-003*ARS, 
Z11=Z3*Z3*Z2*PI2/30 
Z12=Z4*Z4*PI4*Z2 

Z13=+Z3*Z2*P12*80 
Z14=Z4*Z2*P12*60 

Z15=....60*PI2*(40+003*ARS)*Z2 
Z16=320*Z2*(40+003*ARS)/30 
Z17=320*Z2*(10+003*ARS)/30 
JJ=1 

700 READ 20,ALRHIFP 
X=10/32. 

X1=10/160 
DO 900 1=1,16 
ALPX(I)=10+ALPH*X 
X=X+X1 

900 CONTINUE 

ALPH2=ALPH*ALPH 

ALP93=ALPH*ALPH2 
ALPC=10+005*ALPH 
AL=ALPC*ALPH2 
ALL=10+ALPH 

G1=Z5*(10+105*ALPH+PL.PH2*(10-PII)+0025*ALPH3*(10-PIJ)) 
G2=Z6*(+160*ALL*ALPH/3.+ALPH3*(3200/(90*PI2)+80)/30) 

G3=AL*Z7 
G4=Z8*(ALPH *(520/(90*P1 )+10)+20*ALL)*ALPH 

G5=AL*Z9 
G6=...ALPC*Z2 
G7=Z16*ALPH3 
G8=Z2*ALPH*160/(90*PI2) 
H1=Z11*(ALPH3*(3200/(9.*PI2)*.80)+160*ALPH*ALL) 

H2=Z12*(10+1 0 5*ALPH+ALPH2*(10PII/40)+0025*ALPH3*(10+PIJ/40)) 

H3r713*ALPH*(20*ALL+ALPH2*(10°280/(90*PI2))) 

H4=AL*Z14 
H5=AL*Z15 
H6=G6 
H7=Z17*ALPH3 
H8=G8 
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Al=H1+H3+H7 
A2=H2+H4+H5 

B1=G1+G3+G5 
B2=G2+G4+G7 

B4=P/B0 
F1=81+1-16 
F2=A2+H6 
F3=Al+H8 
F4=B2+H8 
XF1=H6*H6-H8*H8 
XF2=H6*(A2+B1)-.H8*(A1+B 
XF3=B1*A2-Al*B2 
XF4=-XF2/(20*XF1) 
XF5=XF2*XF2•-4,.*XF1*XF 
XF6=ABS(XF5) 
XF7=SQRT(XF6)/(2.*XF1) 
FP1=XF4+XF7 
FP2=XF4-..XF7 
F1=B1+H6*FP2 
F2=A2+H6*FP2 
F3=A1+H8*FP2 
F4=82+H8*FP2 
F6=A2*F1 +81*F2°A1*F4-L2*F3 
All=04*F2/F6 
A21=64B4*F3/F6 
ERROR=1000*(FP2°hFP)/FP 
PRINT 1,A1,A2,B1,82,A119A21 
PRINT 29F19F2,F39F49F6 
PRINT 3TAR,ALPH,FP29ERROR 
D=00 
US=00 
J=1 
K=1 
NN=1 
MM=1 

9 CXYltAll*SIA(J)*SIA(K) 
CXY2=A 21*SIB(J)*SIA(K) 
CT1 =All*COA(J)*COA(K) 
CT2=20*A21*COB(J)*COA(K) 

11 CT=CT1+CT2 
SX=ALPX ( J)*(CXYl*AB11+CXY2*AB33)*CMN1 
SY=ALP X ( J)*(CXY1*AB22.!.CXY2*AB44)*CMN1 
ST=ALPX(J)*CMN2*CT 
C1=0.5*(SX+SY) 
C2=0,5*(SX*SY) 
C3=SORT(C2*C2+ST*ST) 
SP11=C1+C3 
SP22=C1-C3 
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SP1=ABS(SP11) 
SP2=ABS(SP22) 
IF(SP1—SP2)40450960 

60 RP=SP2/SP1 
SED=SP1*(10+RP) 
SEDD=S°1*SP1*(1 0 a20*PNU*RP+RP*RP) 
GO TO 75 

40 RP=SP1/SP2 
SED=SP2*(10+RP) 
SEDD=SP2*SP2*(1 0*.20*PNU*RP+RP*RP) 

75 DED=ALPX(J)*tSEn**SN) 
USD=SEDD*ALPX(J) 
D=D+DED 
US=US+USD 
IF(J—K1300,400,300 

400 NN=NN+1 
IF(NNA.2)15112915 

12 J=17—J 
CXY2=—CXY2 
CT1=—CT1 
GO TO 11 

300 MM=MM+1 
1F(MM-2)17916,17 

16 CED=DE0*((ALPX(10/ALPX(J))**5N3)  
USD=USD*(IALPX(10/ALPX(J))**20) 
D=D+DED 
US=(!5A-USD 
J=117-.J 
CXYL=..CXY2 
CT1=—CT1 
GO TO 11 

17 N=17-.K 
DEDt)Er)*((AL?X(N)/ALPX(J))**SN3 ) 

U3D*--JSD*MALPX(N)/ALPX(J))**20) 
D=D4vDED 
US=US+USD 

15 J=17*J 
J=J+1 
MM=7. 
IF(4.:+3)999921 

21 K=K+1 
J=K 
NN=1 
4F(K.-8) 9,9923 

23 ETA=CFF*D/US 
ETAP=ETA**SN2 
RATIO=ETAP/ETAC 
PRINT 49ETAP,RATIO9ALPH9AR 
JJ=JJ+1 
IF(JJ-8)700,700910 
END 
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APPENDIX 504 

COMPUTER PROGRAMME FOR THE EVALUATION OF RADIATION 

EFFICIENCY FOR THE PLATE VIBRATING UNDER COMPLEX. 

NON—RESONANCE CONDITION (SUPERPOSITION OF 175 MODES) 

DIMENSION U(5),R(5) 
DIMENSION PM(175),PN(175),FRO(175),UMN(175),RFS(175),GP(175) 
DIMENSION AMP(175,25),DELT(175,25),BNP(175,25),GAM(175,25) 

C 	OUTPUT FORMATS 
100 FORMAT(/6HEXFRO=F802.2X,4HFRO=F8.2.2X94HVEL=E1604,2X95HVELT=E16.4) 
200 FORMAT(3HPM=F400,1X,3HPN=F400,1X94HRFS=E12.494HR')U=E12.4,5X,4HSPR= 

1E16o4) 
400 FORMAT(2HI=1392X94HRE1=E12.492X94HRE2=E120412X/3HRE=E120492X05HTSP 

2R=E15o4) 
C 	INPUT FORMATS 

10 FORMAT(2F100393F1n.6.F10029I5) 
20 FORMAT(F1002) 
30 FORMAT(I5) 
40 FORMAT(2F500920X9F20010030X) 

PI=3014159265 
PII=PI*0025 
PIJ=PI**4. 
PIK=PI*005 
PIL=2. PI 

C 	GAUSS 5—POINT INTEGRATION COEFFICIENTS 
U(1)=00 
U(2)=)o26923465 
U(3)=0026923465 
U(4)=0045308992 
U(5)=-'10045308992 
R(1)=640/225. 
R(2)=0.23931433 
R(3)=0.23931433 
R(4)=).11846344 
R(5)=0011846344 
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READ 109A9B9RHO9P9H9C9NG 
C2=20*P/(PI*A*B*RHO*F) 
READ 30,MODE 
READ 409(PM(I)9PN(I),FRQ(I)9I=19MODE) 

90 READ 209EXFRO 
WNK=P I L*EXFRQ/C 
WA=WNK*A 
WB=WNK*B 
C1=16o*WA*WB/PIJ .  
PROD=EXFRQ*EXFRQ 
SIGMA=Oo 
I=1 
RU=Oo 
II=1 
JJ=1 
RV=Oo 

70 PMS=PM(I)*PM(I) 
PNS=PN(I)*PN(I) 
TERM=FRO(I)*FRO(I) 
CMN=EXPRQ/(TERM—PROD) 
UMNCI)=C2*CMN 
USQ=UMN(I)*UMN(I) 
VELIIUSQ/8o 
SIGMA=SIGMA+USQ 
VELT=SIGMA/80 
PRINT 1009EXFRO9FRQ(1)9VEL9VELT 
PMP=PM(I)*PI 
PNP=PN(I)*PI 
N=JJ+1 
DO 95 M=1I9JJ 

95 GP(M)=0n 
GS=Oe 
JK=1 

C 	NUMERICAL INTEGRATICN BY GAUSS QUADRATURE METHOD 
DO 50 J=19NG 
T1=5IN(PIK*U(J)+PII) 
DO 50 K=19NG 
T2=PIK*U(K)+PII 
Al=WA*T1*COS(T2) 
B1=UB*T1*SIN(T2) 



-167- 

AC=COS(0.5*A1) 

BC=COS(0.5*B1) 
T3=AC*AC*BC*BC*T1 
AMP(19JK)=Al/PMP 
DELT(19JK)=AMP(19JK)47\MP(I,JK)....1 0 
BNP(19JK)=B1/PNP 
GAM(I,JK)=BNP(I,JK)*LNP(I,JK)-10 
GAUS=T3/(DELT(19JK)*(ELT(IjK)*GAM(IJK)*GAM( I ,JK ))  

GUU=GAUS*R(J)*R(K) 
GS=GS+GUU 
IF(I4a1)50950,60 

60 DO 65 M=II,JJ 
GAUP=T3/(DELT(M,JK)KC.ELT(NIJK)*GAM(M,JK)*GAM( N,JK))  

GVV=GAUP*R(J)*R(K) 
65 GP(M)=0P(M)+GVV 
50 JK=JK+1 
55 CONTINUE 

RFS(I)=Cl*GS/(PMS*PNS) 
SPRA,RFS(I)*VEL 
RUU=RFS(I)*USQ 
RU=RUU+RU 
PRINT 200IPM(I),PN(1),RFS(I),RUU,SPR 
IF(I-1)15,15,25 

25 DO 75 M=II,JJ 
C3=20*UMN(M)*UMN(N) 
C4=PM(M)*PM(N)*PN(M)i- PN(N) 
RFPeC1*C3*GP(M)/C4 

75 RV=RV+RFP 
85 CONTINUE 

RE1=RU/SIGMA 
RE2=RV/SIGMA 
RE=f;E1+RE2 
TSPR=RE*VELT 
PRINT 400,I9RE1,RE2IRE,TSPR 
JJ=JJ+1 

15 I=I+1 
IF(I—MODE)70,70,80 

80 GO TO 90 
STOP 
END 
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