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RESUME 

The theoretical explanation of the phenomenon of 

superconductivity,based fundamentally on Cooper's idea 

of the formation of bound singlet pairs of electrons 

near the Fermi surface under the action of phonon inter-

action, demands the existence of a spatial correlation 

between electrons at a distance of order -4 cms, 

the coherence length) and of a superconducting order 

parameter governing the phase transition at the critical 

temperature. In an alloy, the electrons get scattered 

by impurities and since this scattering takes place at 

arbitrary angles, the correlation between electrons is 

very sensitive to the scattering process. Thus impurities 

must affect the properties of a metal in superconducting 

state. Different types of impurities, even when present 

in small concentration, have different effects on super-

conducting properties. 

PUrthermore, the order parameter governing the 

superconducting phase transition may have some thermal 

fluctuations in the region around the critical temperature. 

These thermal fluctuations cause in turn the Cooper 

pairs to fluctuate and thus drastically modify some of 

the superconducting properties. These fluctuations 

have been found to have a pronounced effect in dirty 

specimens of lower dimensions. 



The present thesis embodies some theoretical 

investigations on 'Impurity and Fluctuation Effects 

in Superconductors'. We have compared our results with 

experiments whenever the. experimental data is available. 

The thesis is divided into seven chapters. Chapters II-V 

deal with the impurity effects in superconductors while 

the fluctuation effects in superconductors have been 

discussed in the last two chapters. 

In the first chapter, a brief review of different 

theories of impurity and fluctuation effects in super-

conductors is presented, introducing basic facts and 

the mathematical techniques which have been used in the 

later six chapters. 

In the second chapter, effects of nonmagnetic 

impurities on electronic thermal conductivity of super-

conducting transition metals (like Nb) has been studied 

using the Suhl-Matthias-Walker (abbreviated as SMW) two 

band model. Calculations have been carried out in the 

strong intraband electron-phonon coupling limit. Both 

the interband and intraband impurity scattering have 

been taken into account. The interband impurity scatter- 

ing collision time T
sd is taken to be 	10-12  sec. 

Thermal conductivity is found to decrease with the 

increase in impurity concentration and has got a single 

slope when plotted with respect to temperature. The 

results are found to be in agreement qualitatively with 



the experimental results of Anderson et.al. This study 

provides a strong support for the validity of the SMW 

two band model'(1.e. two energy gaps in Niobium). 

The third chapter deals with the study of thermo-

magnetic effects in dirty transition metal superconductors 

(containing nonmagnetic impurities) in the vortex state 

near the upper critical field and in the temperature 

region Tes  < T < Tcd (=T). We find that there is an 

anomalous increase in d-band thermomagnetic effects, due 

to interband impurity scattering, just in the vicinity 

of upper critical field, when the temperature region is 

restricted to Tcs< T <To. These results are analogous 

to those of Chow on Hall Effect. The results obtained 

by Caroli et.al. for the one d-band superconductor 

become a particular case of our general study. 

The fourth chapter pertains to the study of the 

effects of paramagnetic impurities on Josephson current 

through SNS junctions. This study has been done both in 

the framework of Abrikosov-Gorkov theory (which treats 

the exchange interaction in lowest order Born approxima-

tion) and Shiba-Rusinov theory (which takes care of 

higher order scattering and deals with the classical spin 

case). This study'is more general; the the  

results obtained by Ishii for the pure case, follow 

in a natural manner from our results. In Abrikosov- 

Gor'kov model, the tunneling current is found to decrease 
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with the increase in impurity -concentration for C(1, 

but in the gapless region (w =0) when C;>1, the current 

is zero for C = 1 and then becomes negative for C)1. 

However, when the current is calculated using Shiba-

Rusinov model, the ratio of jimpure to  jpure is also  

found to depend on c o  (the position of localized state 

within the gap) in addition to C (a measure of impurity 

concentration). 

In Chapter V, we again study the Josephson current 

through SNS junction but now in the presence of localized 

nonmagnetic transition metal impurities. The calculations 

have been done in the framework of Machida-Shibata 

theory. The ratio of the barrier supercurrent of impure 

SNS junction to that of the pure one, is found to 

decrease with the increase in impurity concentration. This 

behaviour is entirely different from that of nonlocalized 

nonmagnetic impurities where this ratio is exactly equal 

to ene.At C = 0. (which is a measure of impurity concentra-

tion) Ishii's result for the pure case follows from our 

more general study. 

In the sixth chapter, using phenomenological 

Ginzburg-Landau theory, we have investigated the fluctua-

tion enhanced diamagnetic susceptibility of dirty super-

conducting thin films below the critical temperature. 

The fourth order term in the GL free energy functional 

is included using Masker et.al. model. The diamagnetic 
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CHAPTER-I 

INTRODUCTION 

A. IMPURITY EFFECTS IN SUPERCONDUCTORS 

(I) Statement and Importance of the Problem 

The past two decades have witnessed an enormous 

activity, both theoretically and experimentally, in 

studying the effects of impurities in different fields 

of Physics from different view points. Impurities give 

rise to new effects in the host lattice which are easy 

to investigate, and help us in obtaining a great deal of 

valuable information. They play a leading role in finding 

out various thermodynamic and transport properties of 

metals. The studies of impurity effects thus help us in 

understanding the various complexities of many body 

problems in solids. 

In the normal state, it is well known that these 

lattice defects i.e. impurities lead to the existence of 

residual resistance of metals. In the superconducting 

state (i.e. a state of infinite conductivity and perfect 

diamagnetism etc.), the impurities play an entirely diff-

erent and crucial role. This problem of impurity effects 

in superconductors has been extensively investigated, 

both theoretically (1-5) and experimentally (6-9). Based 

on Cooper's idea (10) about the formation of bound 

singlet pairs of electrons near the Fermi surface under 



susceptibility is found to increase sharply with the 

decrease of temperature below Te. 

Lastly, in Chapter VII, the problem of fluctuation 

effects in zero dimensional superconductors is investigated. 

We have studied the fluctuation enhanced diamagnetic 

susceptibility and electrical conductivity of zerc 

dimensional superconductor below Tc. Calculations have 

been carried out, using again the phenomenological 

Ginzburg-Landau theory. It is found that both the dia-

magnetic susceptibility and electrical conductivity, 

increase more sharply with decrease of temperature, in 

contrast for the samples of higher dimensions, These 

results are consistent with the experimental observat-

ions that fluctuations strongly affect superconducting 

properties in lower dimensions than in higher ones. 
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the action of phonon interaction, Bardeen, Cooper and 

Schrieffer (11) successfully derived the electrodynamics 

of superconductors. This theory yielded a non-local 

character of the connection between current and field 

for the majority of pure superconductors. This nonlocal 

connection demanded that the dimensions of the bound pairs 

cause an existence of a correlation between electrons at 

distances of the order of t-a10-4 cms. It thus follows 

that the interactions between the electrons in a super-

conductor cause a definite spatial correlation between 

them. Put differently, we can say that the dependence of 

the various Green's functions in the coordinate representa-

tion on their spatial• arguments at distances of order 

i.e. size of bound pair, undergoes an essential change 

when the metal makes a transition from the normal to 

superconducting state. In an alloy, the electrons are 

scattered by the impurities, and since this scattering 

takes place randomly, and as the scattered electrons 

have very small wavelengths, the correlation or coherence 

between the electrons is extremely sensitive to the 

scattering processes. This means that impurity scatter-

ing must decrease the spatial coherence between the 

electrons. 

The impurities have got a little effect when present 

in very low concentrations, but an increase in the concen-

tration lead6 to a decrease ,in the coherence distance of 

the electrons in the superconductor. At sufficiently 



high impurity concentrations the role of the coherence 

length 	is taken over by the mean free path of the 

electrons. At these high concentrations one might expect 

new properties in the superconductor to appear which 

should, of course, depend on the nature of impurities 

and the type of scattering processes involved. It is 

important to notice here that this new behaviour occurs 

for concentrations that are still quite low (,-,1V.). For 

large impurity concentrations, we are essentially dealing 

with a new substance, whose properties have nothing in 

common with the original superconductor. In particular, 

properties arising from electron-phonon interaction now 

change and so does the temperature at which the transition 

to superconducting phase occurs. These changes in the 

basic properties of the lattice can be neglected for 

sufficiently low concentrations. At the same time, it 

is interesting to note that the thermodynamic properties 

of the superconducting alloys are practically the same as 

those of the pure superconductor. The impurities are 

classified into the following three categories: 

(1) Nonmagnetic or spinless impurities, 

(2) Paramagnetic impurities, and 

(3) Localized nonmagnetic transition metal 

impurities. 

The effects of the impurities of the first type are 

simplest to deal with and were studied in earlier theories 

(3,4) successfully in analogy to the case of a normal 
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metal. This type of impurity has got little effect on 

superconducting properties in contrast to the strong 

effects of second and third types. The second and third 

types of impurities also lead to the interesting aspects 

of gap/eas behaviour and existence of bound state inside 

the energy gap. These facts lead to an important conclu-

sion that it is not the energy gap but the pairing 

correlation which is necessary for the existence of 

superconductivity. In this chapter, we give a brief 

review of the different theories in this. field and 

introduce the basic formulation and concepts which will 

be used in the following four chapters. We shall use 

quantum field theoretical techniques (12) and Matsubara's 

formulation for finite temperature Green's function (13). 

For the sake of completeness, we shall first 

discuss the case of normal metals containing spinless 

impurities. 

(II). NONMAGNETIC IMPURITIES  IN NORMAL METALS  

Consider a free electron gas as a model of a 

normal metal. We assume that there are Ni impurity sites 
4 

	

at the positions Ri 	R.,..... The Hamiltonian for the 
1\11 

impure system is 

	

H = Ho 	HI 
	 ... (1.1) 

where Ho is the Hamiltonian for noninteracting electrons 



and HI corresponding  to the interaction between the 

electrons and the impurity atoms, is of following  form 

N. 1 
H = E E u(2.--14 a  ) i a=1 	1  

N. 
1 r 

a=1 
N. 1 

= 2: E c: 	u(1) exp(-i-ciAt) 
a=1 g-cla  k+4,0. kt  cy  

11-(1-1a ) t(x) 

*41, * (1.2 

Here u is the impurity potential and is assumed to be 

spin-independent. 

The interaction Hamiltonian H destroys the translat-

ional invariance and as such the single particle Green 

function G(/,1' ;  C c) corresponding  to (1.1) is not simply 

a function of 1-PI . One recovers the translational 

invariance at a coarse level if the propagator correspond-

ing  to (1.1) is averaged over the impurity configurations. 

For a given distribution of impurities, we can expand the 

single particle Green's function in powers of the impurity 

potential u, using  siple perturbation theOry. The various 
-4 

terms contributing  to G(k,k', Cr) (the double fcurier 

transform of G(1,P;  C1)) are represented by diagrams 

given in Fig.l.l. The expansion represented by these 

diagrams is: 



d3k 
(27) 

k 

	 u(kii k 

1 
Co()27)36(Z IN 	,.. 1  --- U(14c) 171) 	1 G(k,k , 	 ) = crei, 

ki 

	U (11 -211 ) 	1  CI-EZtt 	k-el 
... (1.3) 

where U ia expressed as 
N. 

exp(-i.k) u(1) 
a=1 

... (1.4) 

Since the impurity atoms are randomly distributed 

throughout the metal, we have to average the expression 

over the position of each impurity atom. We use an 

important fact that the average distance between impurity 

atoms is much larger than the lattice spacing on account 

of low impurity concentration. Now we average the position 

of each impurity over the volume of the system .,so that, 

for example, 

expr- 	(k-k ' 
4 

Thus, 

<U(1?-1' 	= n.a_u(o) (vol.) 6 	(27)3n 	) u(o)6(k-k' 
k,k' ✓s. (1.6) 

where ni  (=NI/vol. ) is the density of impurities . Consider 

now the impurity average of two potentials. A 'distinction 

should now be made between second order scattering  by 

a single impurity and two scatterings by differing  impuri-

ties. The total contribution is 

=NM 

—4 -2— id 3  R exp 	) .1] = vol. 	 k .1' 
• (1.5) 
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This isna  . times the relaxation rate in Born Approx-

imation for scattering by a single impurity. Same is 

true for fig. (1.2c) also. Summing of all the diagrams-

for I with only one cross thus has the effect of replac- 

ing 	
4 

 the Born approximation matrix element u(k-k') in 

eq.(1.10) by the t-matrix element. The diagrams with 

more than one cross correspond to multiple scattering 

by more than one impurity. However it can be easily shown 

that contributions to Lfrom higher order diagrams 

will be very small. Because of weak dependence of E 

on k and w, we may make the replacement, 

(17, ci --IP to 	i 0) = A + if(kF, ) 

= ° 	 7. 	 ... (1.11) 

The energy shift A, being essentially a constant, 

can also be absorbed into a shift of chemical potential. 

Taking I to be purely imaginary, we get 

1 
G(2, W (1.12) 

W 	± 	I/2T 

Going over to the x- representation, we easily 

see that the entire change in G as compared to G(°)  

(pure Green's function) reduces to multiplication by 

an exponentially damped factor ie: 

-lx-x 1 1/4 	...'(1.13) 
G(x-x 1 ) = G°  (x-x' 

where t = vFx. 



1 
G (k,k 1 , C‘) _ cre.1,  3 -) 	1 

(2n) o(k k l ) + 	U(k k' 

	

d3ket 	1 
ci_67111 U(11'-211 ) 	 

	

7275 	 U(Z" 17) 1  
t-EZ 	

t-CII 

(1.3) 
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4  41   
exp[ -1 (1. -17' a ] --)• 	16 3R expEi(k-k ) . 	= vol. 

k.]e 
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Thus, 

niu(o) (vol.)8 _) 	(27)3ni u(o)6(17-T;') 
,k' (1.6) 

where 	 / ni(=. .NI  vol.) is the density of impurities. Consider 

now the impurity average of two potentials. A 'distinction 

should now be made between second order scattering by 

a single impurity and two scatteringsby differing impuri-

ties. The total contribution is 



(U(c7)U(cil ')›.  = ‹,1 u(c7):u(CP ) exp[i(t-4-11 ) .gc] 
a 

E 
al
u(a)u(a))exp(i/.11a  ) exp(iV.Ra 1) 

oc  

=(21.) niu 3  Wu )(Sca-Cii 

+ni(ni- vol.)(2n)6uZu(11)6(4)8(Elt) 
... (1.7) 

In the limit of large volume, the second term in 

eq.(1.7) is just the square of eq.(1.6). By averaging all 

terms of eq.(1.3) in this way one obtains a prescription 

for calculating the self energy part I corresponding to 

the averaged Green's function. These two quantities are 

related as below: 

<G01%111,c ,( X> 	(210 3,8(Z-E't)-611 — 	(gcc t) 	... (1.8) 

The terms in the expansion for can be represented 

diagrammatically by bringing together at a single cross 

all scatterings from same impurity, Some terms are shown 

in fig.(1.2). The contribution from the first order 

diagram is niu(o) (eq.(1.6)). The second order term is 

given 

2) E 	= d3kr  111.( _17,) 1 2 	1  

	

1 (270 	o 3 	Crea., 
k' (2) 

- 	I (c-u i)c) 
... (1.9) 

where, 
4 	2. f'd 	3k  Al-7-k t )1 8(w s ue) 

(2n) 
1 	(k,w) = 2 nn. 

	

1 	
' lu 1.10) 
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(III). NONMAGNETIC IMPURITIES IN SUPERCONDUCTORS 

We shall now generalize the discussion of. last 

section to superconductors for treating the effects of 

dilute concentration of nonmagnetic impurities(3,4). 

Here, one should remember that the superconductor is 

described by two propagators and the order parameter A 

obeys a self-consistency condition. Nambu(14) introduced 

an ingenious way of two component space spanned by the 
field operator 

Vt(2,t) 
V(It) 

#: ( / t 
... (1.14) 

in order to take into account the two propagators 

simultaneously. The corresponding 2x2 matrix Green's 

function is given by 

4'1  (t Zit') 	 > 

	

' 	 (1.15) 

.4_4- Average values of the form <ft> and <T V > are inter- 

preted as anomalous Green's functions i.e. F functions. 

Writing out the matrix eq.(1.15) explicitly, we get 

G(A,21t') 	F(Zt,l't') 

	

(1t, 	= 
P(It,l't') 

... (1.16) 

A spin-independent potential in second quantized form 

is represented as 

-4 4 	4- u(X -Ra) = Efd3x u(X-Ra)TTIIP (x)T3t(x).] + constt. ia 	a 	 ... (1.17) 
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Here ¶3 is third Pauli matrix. In the two component 

language, the equation of motion for the matrix Green's 

function, given by eq.(1.16), for the pure system can 

be written as(15) 

/ Crek -A 

-A3E (ek 

G (k , 	F(37, 

r(2,CL) 

( 1 0 

0 1 
... (1.18) 

In matrix notation, eq.(1.18) now becomes 

3 ) = 1 	 ... (1.19) 

In coordinate space one then has 
2 o .4 4 [ + (-- +p,)- -A -cIt-1 

r( 
X, X 4) = 8(3)(1- 1) 	... (1.20) 

We can now generalize eq.(1.20) in the presence 

of a fixed distribution of impurities and get the follow-

ing equation 

(1.21) 

After an average over the impurity configurations 

is performed <117(54(2)› will be independent of X. 
However, the average will introduce correlations between 

-A and 15  because both quantities are strongly modified 

near the impurity sites: For a low concentration of 

impurities one may overlook these correlations., Then 

A(2) in eq.(1.20) can be replaced by 7\--- the average value . 
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of the order parameter. Summing the diagrams as in 

previous section we get the following expression for 

self-energy: 

r  d3q 
(k,Ct) = ni 	u(s71.)3ET-31(-14,Ct)T31.1(1) ... (1.22) 

This equation can be solved by making the following 

ansatz: 

Z (k,Z) = Z-Z-(E411)T, 	

• 	

(1.23) 

where Z and A are unknown function of Z. Substituting 

this into the right hand side of eq.(1.22) and equating 

the coefficients of 1 and - on the left and right sides, 

we get, 

n. 
d3q 	/4\12 

Z  3111tclil 	,2 
(2n) 	Z -e 

2 	. 

k-q 
- A 

r  d q 3 	
4 2 	.z[u(q)1 ni j (270../ 	Z -e 

11-1 

... (1.24) 

• (1.25) 

Changing the 1 integral into energy integral and 

performing the c-integration, gives: 

= - 1- 2 T • (1.26) 

A  

 

• (1.27) 
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where ti is the normal-state life time. Equations (1.26) 

and (1.27) can be solved to give the following result 

z/7 =ILE' 	 ... (1.28) 

and with this equations (1.26) and (1.27) yield 

= Z + 2-r 	 
Z2 _-A 2  
2 —2 

T + 
6 ...] z2_y2 

and F is determined from the following self-consistency 

condition 

7 = v<113i(1)-01(Z) 

= _ r d3P j 
ci (211 )3  T:70 7.i2  

= Y. 
'Tif (2703  q 	6120  E2 

... (1.31) 

... (1.32) 

Thus we see that 7 obeys the same equation as the 

order parameter for pure superconductor. Hence a dilute 

concentration of spinless impurities does not change the 

transition temperature(16). The other interesting result 

is concerning the energy spectrum. The density of single 

particle states is 

N(w) = 	d3k
J (2703  7 IL' 

	
(k,w+in) 

(1.29) 

... (1.30) 
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... (1.33) 

Thus we get 

w 

Mcd  ... (1.34) 

This result is again the same as for a pure isotropic 

system. Other properties of impure system, however, get 

modified. 

(IV). MAGNETIC IMPURITIES IN SUPERCONDUCTORS  

(i ) 
	

Abrikosov-Gorkov Model  

Magnetic impurities have a pronounced effect on 

superconducting properties(17) and cause a rapid decrease 

of transition temperature in contrast to nonmagnetic 

impurities. The first monumental theory of magnetic 

impurities in superconductors was given by Abrikosov 

and Gorkov(18) (abbreviated as A.G.Theory). On the basis 

of experimental information Herring(19) proposed the 

following Hamiltonian describing the exchange interaction 

between impurity atoms and conduction electrons 

‘.T =U1/ 3  + U2  Sa (1.35 ) 

where to is the Pauli matrix which operates on the space 3 
composed of the electron and hole states. Here, the first 

term is the ordinary impurity scattering potential while 
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the second term is the so-called exchange interaction. 

S denotes the spin operator of the localized magnetic 

moments. The spin exchange interaction breaks the time 

reversal invariance and thus may inhibit the appearance 

of the superconducting correlations. A rigorous calculation 

was first given by Abrikosov and Gorkov(18) who were 

able to obtain the Green's function, describing equili-

brium as well as nonequilibrium properties of the system. 

In particular, they predicted an existence of gapless 

.region in which the excitation spectrum starts from 

zero energy. The following assumptions are made in the 

AG theory: 

(1) The correlations among the impurity spins 
are neglected. 

(2) Spatial variations of the order parameter in 
the vicinity of the impurities have .not been 
taken into account. 

(3) The exchange interaction is treated in Born 
approximation and the effect of the anomalous 
exchange scattering (Kondo effect (20)) has been 
neglected. 

Using the standard technique outlined in sections II 

and III, the Green's function is obtained by taking 

eq.(1.35) as the interaction between impurity atoms and 

the conduction electrons. After averaging over the random 

distribution of impurity atoms, the Green's function 

recovers the translational invariance. Hence, the re-

normalized Green's function which describes the electron 
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in, the environment of randomly distributed impurity of 

concentration n, is given by 

Gu)  (p) 	(iw- 	3  - A /010-2)-1  ... 

where w and A are the renormalized frequency and order 

(1.36) 

parameters respectively and are 

equation 

determined from the 

-1  
G-0;1(;) 	= 	[ Gu)(ff)..] - 7  () (1.37) 

Here 

Gwc)(P) 	= 	/o3  - A /0102) -1 	 ... (1.38) 

is the Green's function in the absence of impurities, and 

A has to be determined self-consistently as in sections II 

and III. In the Born approximation I (?) is given as 

= n r  d313'1111-(17)11')  Gw(iet ) t11 -T 	 (1.39) 

where 

041  ) (51 1:4.1  ) /03+112 (1741  ) Et 
	 ... (1.40) 

Using eq.(1.36) for the Green's function and performing 

the integration over j7' one can easily obtain 

1 3-w —6,P c' 2 	1 11"C-4-3'i:11(52 
(i3) = - 2T1 	 2T2 ,2 

 

... (1.41) 

 

where 

nN(o)ilu (P P')1 2  dC2 
1 



_11-u
2 

9"--)  = u(1-C 	1  	) ... (1.45) 

1 = nN(o 
'V2 

S S 1 
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f u2 ( - ') I ? dg ... (1.42) 

Substituting eq.(1.41) into eq.(1.37) and then comparing 

the coefficient of 1 and ipla2, one gets the following 

two equations: 

 w 
T1 T2 1-,2 2  

  

... (1.43) 
1 

 

Here T
2 
is the spin life time of electrons due to 

impurities. Introducing an auxiliary parameter u. defined 

by u = w A, Equation (1.43) then reduces to 

7  = u(1— 	1 	 (1.44) 
1-1-u 

• where C = 1 
T2A 

To study the energy spectrum of the superconductor 

containing magnetic impurities, we shall first write 

eq.(1.44) in terms of ordina'ry frequencies by doing an 

analytical continuation to real frequencies, i.e., 

Let us first consider the case for 41. If we 

plot the eq. (1.45) in uw.-plane, then we will see that 

the curve starts from origin and initially w increases 



This equation gives us 

u = (1-C2/3)1/2 o 
 

2/3\ 3/2  w = A(1-C 	) • • • 1.47) 
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as u increases. As u further increases, w goes through 

a maximum and then decreases. At u = 1, w is negative 

. and diverges. Maximum value of w in the region 0<u< 1 

is called as the energy gap wg  and is determined by 

the following condition: 

-3/2 1 dw 0 = 	du = 1-C(1-u2) ... (1.46 ) 

We can now make an expansion of eq.(1.45) around uo to 

obtain 

w-w 	, -2/3 	.1", 1/2 	2 - - 	C 	-)) 	(u-u0) ... (1.48) 

In the second case of C> 1, the asymptotic expression for u 

at small values of w is given by 

2 2 	-1 w 	 . 2 2 	 5/2 w 2 
u = 	(C -1) 	(7)+ 73-C (C -1) 	(--A) +. 

(1.49) 

The density of states in terms of the Green's function 
is given by 

s(w) = 	Imi d3  p3 TriGw(p) 
(27t) W=iW 

  

= N(o) Im( 	
1-u2  

= N(o)C-1  Im,u ... (1.50) 



-18- 

Let us first consider the case for C ? 1. Solving 

equation (1.48) for u and substituting into eq.(1.50), 

vie obtains 

0 for w 

Ns (w) = 
... (1.51) 

-23  / 	-1/4j w-w, for 

	

2/3\ 	 2  ----gl N(0)( 	(1-C 1 	5 A 

_Thus we see that w gives the threshold frequency for 

the density of states. Similarly for C) 1, we obtain 

1/2 	 -5/2 .1- 
N s  (w) = N(o)pl-C ) 	+ 7c (1—c ) 	(4)' 

u 
-2 	3 4 	-2 

Here we see that Ns(w) is finite at w = 0 i.e. the 

energy spectrum starts continuously from zero energy 

level. Here gap we  in the energy spectrum vanishes i.e. 

it is the gapless region. 	 =1 

For the special case of C=1 one gets 

r 2 1/3  1 2 5/31 
Ns(w) = N(o) —7 L (T1)-) 	 4(t4) 	j 	(1.53) 

(ii) Shiba-Rusinov Model 

Tunneling experiments of Reif and Woblf(21,22) 

confirmed somewhat later that there are some disagree-

ments in their experimental results and the predictions 

of AG(18) theory which was based on the assumption of 

weak interaction of conduction electrons with a magnetic 

.-.. (1.52) 
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impurity. In order to reach an agreement between theory 

and experiment, Shiba(23) and Rusinov(24) generalized 

the AG theory to the case when the conduction electron- 

magnetic impurity interaction is strong.. Their calcula-
tions lead to the appearance of local impurity levels 
inside the energygap. This can be traced to the app- 

earance of Kondo Anomaly(20) (quantum mechanical effect 

of spin) when we go beyond the Born approximation to 

treat the strong interaction. We write the interacting 

potential in the form 

= ... (1.54 ) 

In the AG theory, where Vi  is treated in Born 

Approximation, the final result actually does not depend 

on whether we regard the spin S as a classical vector or 

as an operator. In contrast to this the above result is 

no more valid at higher order approximations as a result 

of the well known Kondo effect (which essentially comes 

into the picture due to the noncommutativity of spin 

operators(25)). As such, inclusion of Kondo effect is 

a difficult problem and studies were restricted(23,24) 

to the classical spins in superconductors. By classical 

we mean that cl",..)o, S-iOD and t1.1 is finite. Actually this 

assumption is apparently allowed if the impurity spin 

is sufficiently large (i.e. S:7/-1). However, Maki(26,27), 

Fowler and Maki(28), Fowler(29), Zittartz and Muller - 

Hartmann(30,31) have also successfully investigated 

Kondo effect in superconductors and found the effect on 
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localized impurity levels. But it has been also shown 

(30,31) that in the pole approximation, Kondo effect 

can be incorporated in the Shiba-Rusinov model by assum- 
-1 y2E24.1,2s(64.1)11 ing that e2 	 where v=6(Tk/T) (eo is 

the position of bound state for isotropic scattering 

inside the gap and Tk  is the Kondo temperature of the 

alloy.) 

Therefore, it is convenient and simpler to work 

within the framework of Shiba(23)-Rusinov(24) model which 

apply to alloys in which conduction electron-impurity 

interaction is strong and also to superconducting 

Kondo alloys. Here we present a brief review of this 

theory. 

Let us assume that magnetic impurities are distri-

buted randomly in a superconductor and their concentra-

tion is low enough so that impurity-impurity interaction 

is negligible. Here again the calculations can be done 

as in previous sections except with the difference that 

we have to calculate the self-energy in higher order 

approximations. This has been done in detail by Shiba(23) 

and Russinov(24) and we will only quote their results. 

Rusinov Green's function of the superconducting alloy, 

averaged over the positions and the spin directions of 

the impurities is given as 

6(5' wn) 	F-67-Cri /°3-eP+i3n 	cs 
 -1 	

... (1.55 ) 
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With un = n-satisfying the following equations: 

wn 	OD 	 -1 	1/2 2 2 -11 7-677  un[l - 7= (2 (+1)Ecse(a,T] (14%) 	(un+ct) 

... (1.56) 

)-1 	)1 Cii2nN( -1(1-62,) 

Et 	= COS(64i - op 

wn 
	nT(2n+1) 

Here A(a,T) is the temperature dependent order 

parameter for impure superconductor, Tst the spin flip 

scattering life time, (5,( are the phase shifts describ-

ing the scattering of an electron by the impurity with 

orbital momentum X and spin projections +(1/2) in 

normal metal, N(o) = mpF/2712,and c‘ is the position of 

the bound state inside the gap brought about by treat-

ing the scattering of electrons by magnetic impurity in 

exact way. The different quantities can be calculated 

in a closed form if we deal with the physical situation 

of isotropic scattering (i.e. ,(.0) (as also done by 

Shiba(24)). Then eq.(1.56) reduces to 

ally) = un[-(a/A(a,T))(1+4) 	o un ) 	". 1.60) 
where, 

-1 
a  = (Tso)-1 = Ci PTar(o).] (1-c o2  

) 

o cos (60 - 6-) 

... (1.61) 

... (1.62) 



-22- 

According to Shiba (24) co  is given by 

so 
	

1(1-D 	2)/ )/ ( PSIIN(o)/2124 

... (1.63) 
and is independent of temperature and of the sign of J. 

It is found(23) that a localized excited state 

appears inside the energy gap if we deal with a single 

impurity problem. For finite concentration this state 

grows into an impurity band. The impurity band is found 

to be separated from the continuum for a low concentra-

tion of impurities(23) but for higher concentration, 

it is not possible to distinguish between the 'impurity 

band' and the continuum. 

(V). LOCALIZED NONMAGNETIC TRANSITION METAL 
IMPURITIES IN SUPERCONDUCTORS 

Transition metal impurities are categorised in 

two classes, nonmagnetic and magnetic (i.e. having no 

localized magnetic moment and finite localized magnetic 

moment, respectively). The possibility of the existence 

or nonexistence of localized magnetic moments on such 

impurities when dissolved in nonmagnetic metals was 

first explained by Friedel(32) and Anderson(33). There 

are two different approaches for treating the effects 

of these two types of impurities. The Abrikosov-Gorkov(18) 

theory based on the s-d exchange interaction (Kondo 

Hamiltonian) is usually applied to paramagnetic 

impurities (discussed in the Sec.III), while for 
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nonmagnetic impurities having no localized magnetic 

moment such as iron group elements (Fe,Co,Ni,Cr,Pin) 

in aluminium, the nonmagnetic resonance orbital model 

(34-38) is regarded to be most appropriate. Zuckermann 

(36,38) first studied the effect of nonmagnetic transi-

tion metal impurities on superconductivity using Anderson 

model with U=0 (U the Coulomb repulsion). The Coulomb 

repulsion was neglected for the sake of simplicity 

since it was found that its inclusion does not drasti-

cally influence the qualitative behaviour(34,35). These 

different theoretical investigations which were also 

confirmed experimentally (39,40,41,42) showed that 

there exists bound state in the energy gap which grows 

to a impurity band as impurity concentration increases. 

The appearance of these bound states is due to presence 

of resonance scattering of conduction electrons of the 

host metal with the localized d-electron of impurity 

ions. It is this resonance scattering which gives rise 

to relatively large changes in various properties of 

non-transition metals such as Cu,A1 or Zn when they 

are added with small amounts of transition metal impuri-

ties. 

(i) Single Impurity Case 

We first consider the single impurity. problem: 

The Hamiltonian of the system under consideration can 

be written as 
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7 e Ct  C + 7 V (0 d 
a 

)+E7 n, 
tra 	k'd rta a 	Oa a ac  

-A E(ct ct +c 	C ) r  11f —4 -11 14 
... (1.64) 

where ,6 is to be determined self-consistently from the 

following equation 

a = 1 gl 	<Ct ct > 
1-? 	rct 

... (1.65) 

For the sake of convenience, we shall work in 

Nambu space and define the double time Green's function 

as t >> <;c c 

kk 	
itt 	 ref . 	-21/ G 	(w) =( 

ct 	C  >> <<C .....+-1; 	t  

<<C ; C 

(1.66) 

Solving the equation of motion for Green's function one 

obtain.sthe following result(43) 

G
2 
 (w) = 4

"
777(G°(w)o 	

rc"' 2 
+ G°(w)t(w)G°  (w)) 	... (1.67) 

 1  

where, 
\ ) 	

k  
(w—e_j,-FA ) ... (1.68) 

and 
	t(w) ITLT3 (w-ET3-Vi2laT3F(w)T3 )-1T3 	... (1.69) 

with F(w) = 	G(2,,(w) 	 (1.70) 
1 if  

For we have 



2 r (Az 
w-CV2  (w+ 	) w + 2 

kd 17= 
-(E2+ 2 r- 

-1 
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with 

w-A 1.1  V2 F(w) 
kd 	j 	62_2 

V2f-  = 
kd 

... (1.71) 

... (1.72) 

where io is the density of states at the Fermi surface. 

It can be easily seen by the poles of eq.(1.69) 

that there always exists a bound state inside the energy 

gap(45)- 

(ii) Finite Impurity Concentration Problem 

Here we shall make use of the conventional approxi-

mation that the self energy part 7 (w) is connected to 

the t-matrix by the following equation: 

2(w) . Ct(w) 	 ... (1.73) 

where 7f(w) 	(w-Eta-V2 	 ... (1.74) 

with P (w ... (1.75) 

The above equations can be easily solved if we 

substitute: 

-1 	-1 
5 (w) 	(W-E T

3 
 +AT1  - 	(w)) = (-(AT.AmAT1) k 

• • • 

We then obtain the following self-consistent equations 

for wand A: 

1.76) 	. 
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2 r wca.' 	2 -1 
(E2+F.  )1 	.. (1.77) 57= 

If we define, u 	& and v = w/A, eq.(1.77) reduces 

t o 

v  = 114-C 2 	- v +2 r ow/ n:7)-0 .. (1.78) 

For small concentration (C<X1), the above equation can 

' be solved easily by iteration. The first iteration gives 

1 
v= u  (1 +C 	- u +2 (U 	- F .. (1.79) 

where, 
c = 2-2 v2 	r = 	i° A kd 

and 
	E2_(E/02+07,02 	 .. (1.80) 

It is found that this equation has qualitatively 

the same behaviour (43) as eq.(1.60) of Sec.IV(ii). 

The qualitative analysis of eq.(1.79) yields the follow-

ing form for density of states: 

Ns  (to) :=70 . 	(1.81) 
--I -7 -u 

B. FLUCTUATION EFFECTS IN SUPERCONDUCTORS 

Since a part of the work reported in this thesis 

concerns fluctuation effects in superconductors, we 

will now give a brief introduction to the phenomenon 
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of fluctuation effects in superconductors. Since the 

estimates of the effects of thermodynamic fluctuations 

by Pippard(44), Ginzburg(45) and Thouless(46), most of 

the solid state physicists held the view that flucatua-

tion effects in superconductors would be unobservable 

experimentally. However, in 1967 the experimental(47) 

and theoretical(48) studies revealed that superconduct- - 

ing thin films exhibit an excess conductivity in an 

observable magnitude due to the presence of Cooper 

pairs created by thermal fluctuations. Since then, many 

fluctuation effects in superconductors have been observed 

in a variety of properties. The study of fluctuation 

effects has provided much stimulus in the development 

or the theory of superconductivity. The extreme sharpness 

of the superconducting 	phase transition in the absence 

of a magnetic field was supposed to be an evidence that 

the superconducting state is an ordered state with a 

coherence length much larger than atomic dimensions, 

This exceedingly long coherence length of a superconductor, 

about 103r-104  A° makes the critical phenomenon in super-

conductors apparently different from those in other 

systems like superfluid helium or magnetic systems where 

it is only few angstroms. The coherence length, which is 

determined .by the range of spatial variations of fluctua-

tions, is a most fundamental parameter in the investiga-

tions of critical phenomenon. Ginzburg(45) discussed the 

fluctuation effects in materials showing the second order 

phase transition on the basis of Landau theory(49). 
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This theory takes the form of the Ginzburg-Landau(GL) 

theory(50) in the case of superconductors. In particular, 

superconductivity is the only phenomenon to which 

Landau's theory applies so well that deviations from 

it had not been observed and had been given also a firm 

support from the microscopic basis(51). An outline of 

the GL theory is given below: 

(i) Phenomenological Ginzburg-Landau Theory 

In the framework of the GL theory, a state of the 

specimen is represented by a superconducting order 

parameter t(r), W) being a complex function of the 
.4 space coordinate t. If A is the vector potential represent- 

ing the magnetic flux density H = .1 x A, the probabi- 

lity /oAD(ff) of the appearance of a state represented 

by t(il) and A(r) is supposed to be given by(52) 

exp -EArio)li Tr ... 	(1.82) 

whe.re FA  ETT-(}] 	is the GL free-energy functional: 

2 	4 	 2 
FA[01 = Id3rP61/MI 	Ic()1 	ilTal(-i-4-e*1)1(r)1 

+ H2/8;.] 	(1.83) 

Here, e*  is the unit of electric charge carried 

by the supercurrent, m is the mass of an electron, and 
arct(Tc-T)-I and p are the GL parameters. If the thermal 
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fluctuations are neglected, the equilibrium state is 

realized at one of the minima of the GL functional - 

PAM, so that 1(1) and I at equilibrium satisfy 

the following equations: 

1 ,...i-....e3r1, 1..ccit÷p 	1 2.1 = 0  
7E( 4  ) 

2 4 
g A = -47EJ 

ie ,,t 	e ( *) 2 	2-* 
2m  CR 4+04' '3  I-74C-  I A 

with the boundary condition 

ri.(-i41-en)t() = 0 ... (1.87) 

A n being a unit vector perpendicular to the boundary 

aurface. 

These equations have been justified by Gorkov(51). 

He finds, the parameters a,p and e3E  to be explicitly 

given by 

a = -EA 

a 	2  
NX1Ao,c ) 

and e* = 2e, e being the electronic charge. Here, 

... (1.88) 

... (1.89) 

• • • 
	1 .90 ) 

... (1.91) 

(1.92) 
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where N is number density, EF  is the Fermi energy, 

jot 	(2nToT)-1,T being mean free time of electrons 

due to normal impurity scattering, and V(Z) and C(Z) are 

di-gamma and the zeta functions, respectively. 

In the absence of magnetic field, the average 

order parameter to  is given by 

fia/PT T

c 1101 0 	T > Tc 
... (1.93) 

If F[ '0)] is used as a thermodynamic free energy, 

one obtains a c'assical second order phase transition. 

Deviations from such behaviour are presumably described 

by fluctuations about ILI. It is very difficult to 

calculate the effects of such fluctuations, but one 

might attempt to make an estimate of the temperature 

region in which they are large(45). Retaining terms 

quadratic in it—ko I one gets 

E T/k2+a , 
k 

T/k2-2a T 
k 	 ... (1.94) 

where k is the wave number of fluctuations and T is 

the temperature in energy. units. The criterion for small 

fluctuations, namely, that the fluctuations should 

explore regions of t space small compared to the region 

over which F varies quadratic ally, is 



1 	7 T  
volume it k2i.c(t)  

 

... (1.95) 

 

where we have now introduced a temperature dependent 

coherence length t(T) given by 

l/a 
2 	2 
(T) = 	(0)/e 

-1/2a 

9 

9 

T}Te  

T <T . 
(1.96) 

where, 	
E = IT-Te l/Te . 	p. 

It is known from the microscopic theory that t(o) 

depends upon the purity of the system. In the pure limit 

( 3<<i) (o) 	0,,,,,hvp/Tc, whereas in the dirty limit 

( 0)/i() (0) = (tot)1/29 

free path. 

A general concept in the theory of second order 

phase transition is that macroscopic-critical phenomenon 

are dominated by fluctuations with small wave number k, 

i.e. Iki smaller than a certain cut-off value. In fact, 

important contributions arise from the range IkIX 

Taking  all these considerations into account, it is 

easy to derive the formulae for the.transformation of 

sums over k into integrals, as follows: 

., 
1 	d3k  
to ', 3 

1 k//) 	Ikl<ke  

1- E = 	2  1 	i ca.2k volx 	; (2-0 
i 	Jki<ke 

1 	1 dk 

d = 3 

d = 2 

d = 1 

... (1.97) 

where is the electronic mean 
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where d is the dimensionality of a specimen; t is 

the thickness of a film specimen, and S is a cross 

sectional area of a whisker. Now, one can estimate 

< IV 2  > appearing in eq.(1.94), and compare with 1110 1 2  

and obtain the temperature region where Landau's 

theory offers a good approximationt, i.e.,IV0 1
2 
 >) 

cc 7 

and 

c 

1 
d=3 

d=2 

d=1 

d=3 

d=2 

d=1 

... 	(1.98) 

(0)=0) 
(pure limit) 

(1.99 ) 

[(0)::--( 0/)1/2  

(dirty limit) 

(1.100) 

4 

-1 -2 (kF0) 	(kFt) 

(kF&0)-4/3( 2)/S)213  

(kF0)-1(kF/)-3.  

(kFt)-1 	(kF/)-1  

(0/s2,14 )1/3  

<11H 2 ), as 

e 

where, 

From the above equations, one sees that'relatively 

large fluctuation effects are expected in dirty alloy 

specimen (/<:r,0). This was first pointed by Ferrel 

and Schmidt.(53).This speculation led Glover(47) to 

make the first experimental studies of superconducting 
critical phenomenon above.Tc . We can also ascertain from 

above equations that lower the dimensionality of speci-

men the larger are the fluctuation effects, which also 
follows from the microscopic Green's function theory 
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of Aslamazov and Larkin(48) of fluctuation effects 

above Tc . 

(ii) Behaviour of Fluctuations of  Superconducting  Order 
Parameter in different ranges of Temperature 

There are different temperature regions in which 

fluctuations have got different behaviour and corres-

pondingly different theories have been developed to deal 

with them. Broadly, there are three temperature regions 

known as 'classical' (above T), critical (around Tc) 
and 'below Tc ' regions. We had given a brief description 

of classical region in last section in order to under-

stand baAic concepts of the fluctuation phenomenon. In 

this region, the density of fluctuation modes is very 

low and they can be easily treated to- be independent. 

On the other hand, in the temperature region below Tc, 

the density of fluctuation modes becomes very high and 

they are no more independent. It then becomes necessary 

to include the fourth order term in GL free energy 

functional which describes the interaction between 

fluctuation modes below Tc. 
■■• 

A different type of success emerged in extending 

the studies of Aslamazov et al (48). This was the 

explanation by Marcelja(54) of the resistive transition 

of thin films in the temperature region lower than the 
one where - AL's (48) result agrees with observations. 

This temperature region is slightly below Tc  where the 
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excess conductivity is more than normal state conduct-

ivity. The essential point of Marcelja's idea is the 

linearization of the quartic term in the GI) free energy 

in the sense of Hartree approximation. The microscopic 

theory of this was given by Schmid (55) and experimental 

investigations were done by Masker, Marcelja and Parks 

(56,57). 

(C) PRESENT WORK 

The present thesis deals with the investigations 

of the impurity and fluctuation effects in super-

conductors. The effects of impurities on superconducting 

properties are studied in the following four chapters 

while remaining two chapters are devoted to the investi-

gations concerning the fluctuations phenomenon in super-

conductors. The plan of presentation chapterwise is 

described below. 

In Chapter II, effect of nonmagnetic impurities 

on electronic thermal conductivity of superconducting 

two band transition metals,has been discussed using 

Suhl,Matthias and Walker(SMW) model (58). The calcula-

tions have been done by applying Chow's theory(59) 

which is an extension of -one band theory presented in 

Section III of Chapter I.A. The existence of two energy 
gaps in Niobium is also critically analysed. 

In Chapter III, thermomagnetic effects in dirty 
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transition metals having nonmagnetic impurities have 

been investigated near the upper critical field and in 

the temperature region 	T<T cd. Here we have again 

made use of the Chow's theory for impure two band 

superconductors. An enhancement of thermomagnetic effects 

just below the upper critical field is found to occur 

and needs experimental verification. 

In Chapter IV, the effect of paramagnetic 

impurities on Josephson current through SNS junction 

is studied within the frameworks of both the Abrikosov-

Gorkov Model and of Shiba-Rusinov Model which have been 

described in Section IV (Chapter IA). 

Chapter V again deals with the study of the effect 

of localized nonmagnetic transition metal impurities 

on Josephson current through SNS junctions. The calcula-

tions. have now been done using Resonance scattering 

model discussed in Sec.V (Chapter IA). 

Chapters VI and VII are devoted to the study of 

effects of fluctuations of superconducting order para-

meter on superconducting properties. In Chap. VI, an 

expression has been derived for the fluctuation enhanced 

diamagnetic susceptibility below Tc  using phenomenological 

Ginzburg-Landau Theory, outlined in Section I-  (Chap.IB). 
The sharp increase in the diamagnetic susceptibility 

below Tc is discussed. 
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In the last chapter VII, we have studied the 

effect of fluctuations on the superconducting properties 

of zero dimensional superconductors below Tc, using 

again the phenomenological Ginzburg-Landau theory. The 

behaviour of both diamagnetic susceptibility and 

electrical conductivity in the presence of fluctuations 

is discussed and analysed. 
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CHAPTER II 

THERMAL CONDUCTIVITY IN TWO BAND MODEL OF SUPERCONDUCTING 
TRANSITION METALS CONTAINING NONMAGNETIC IMPURITIES 

• 
(I). INTRODUCTION 

Two band model was first proposed by Suhl,Matthias 

and Walker(58) (referred as SMW model). They showed 

that at low temperatures, both the s-band and d--band 

electrons in the transition metals can be in the super-

conducting phase. Some recent experimental investigations 

also show evidence for the existence of a second energy 

gap(60,61) and this has given rise to great interest 

in the study of this model(59,62,63). It has been found 

that this model quite successfully explains various 

physical properties of superconducting transition metals. 

Chow(62), for example, has recently studied the effect 

of nonmagnetic impurities on the specific heat of super-

conducting transition metals within the framework of the 

two band model, assuming a strong intraband-phonon-

coupling limit, and has been able td explain the effect 

of impurities and the two slope behaviour of the specific 

heat of Niobium, observed by Shen et al.(64). 

Guided by these successes, we extend the SMW(58) 

two-band model to study the thermal conductivity of 
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of superconducting transition metals containing non-

magnetic impurities as a function of temperature, using 

Green's-function formulation(65). Starting from the Kubo 

formula for thermal conductivity, we use the technique 

employed by Ambegaoker et.al(66). Calculations are 

carried out on the assumption of strong intraband-phonon-

coupling limit. We make use of the 4x4 matrix formulation 

of the Green's function, which becomes diagonal in the 

above coupling limit (59). As far as the effects of 

impurities are concerned, both the interband and intraband 

impurity scattering have been taken care of. 

In Section II we write the Hamiltonian of the impure 

two band superconductor and the other basic equations of 

two-band model(59). In Section III an expression for the 

thermal conductivity K has been derived using the matrix 

Green's functions given in Section II. This is followed 

by a discussion of the results of numerical computation 

and a comparison with the recent experiment of Anderson 

et al(67) on impure Niobium. 

II. BASIC TWO-BAND EQUATIONS IN THE STRONG 
INTRABAND-PHONON-COUPLING LIMIT 

The Hamiltonian of the system under consideration 

can be written as (59) 

H o + H 	+ H. sup. 	mp ... (2.1) 

where Ho is the free Hamiltonian, H sup. is the Hamiltonian 
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due to interactions giving rise to superconductivity, 

andHi  .mp  is the Hamiltonian due to interactions with 

nonmagnetic impurities. 

In the second quantised form these terms are given 

below: 

Ho 	2: Id3x VI0(2)( 

+ 7 fax a 111-  (1) ( • • • 

46 - - 	
d  

Hsup. 	gsfd3x1114(..)1104(t)V4(2)11Tst(?) 

f4i - d3x dtt  ( 	(Z) 	( Vd1,(1.  

-gsdid3x[v;-t. (1) 4Tis-i 	11/4 (1) 11  t (70 

+/lir  ()I) /4 (1)/4  (1)/dt (Z , 

Himp. 	7 rd3x vs (x1 a s 
+-7 7 fa3x vd (r-li.)11L(2)lJda(r) 
i 

+1 7  fd3x vsd (7-1C )  [is (1) Tda (Z)+1j  i a 
(Z4rs,(1)] 

where IVs(d)6(2) and  VI(d)a(X) are, respectively, the 

annihilation and creation operators for an electron in 

the s(d) band, of spin a( a=t or 1), at the position 5r. 

4 is the chemical potential and ms  and and  are, respectively, 

the effective masses of electrons in the s and d bands. 



-40- 

Vs and Vd are the intraband and Vsd is the interband 

impurity-scattering potentials. Similarly, gs, ga  

are the intraband and-sd  the interband electron 

phonon coupling constants. 

An exact treatment should take into account both 

the intraband and interband phonon couplings, but then 

it becomes tedious and the calculation is very much 

involved. However, the cases which are easily tractable 

are: 

(i) the strong intraband-phonon coupling limit (i.e.gs  

and gd  are nonzero and gsd=°)P  and 

(ii) the strong interband-phonon coupling limit (i.e., 

gsd  is nonzero and both gs  and gd  are equal to 

zero.). 

The approximation made in the first case is quite 

justified as the intraband phonon coupling constants 

are fairly: large and play an appreciably significant 

role in determining the physical properties of super-

conducting transition metals(59). Keeping this feature 

in mind, we shall restrict ourselves to the situation 

of strong intraband-phonon coupling limit. In this 

limit, the 4x4 matrix Green's function 	is rendered 

diagonal (59) and is expressed by 

= re Gs 	0 
Lj 

0 	G, 
... (2.2) 



Zdv 1+eduT3+AdvT1 Gd(V,Zv) = 
Zd v -cdp-11dv 

... (2.4) 
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Here Gs and Gd are 2x2 matrix Green's functions 

for s and d bands, respectively, and are given by (59) 

sv1-1-c spT3-4-a sv T1 
_e 2 4,2 

sv sp sv 
(2.3) 

The calculations of these Green's functions for a 

two band superconductor containing nonmagnetic impurities 

were first done by Chow(59) by simply extending the theory 

of one band superconductor containing nonmagnetic impuri-

ties, presented in Section III of Chapter I. 

The Ti's are the usual 2x2 Pauli spin matrices 

and 1 is the 2x2 unit matrix. Furthermore, we have 

Zv = iwv 
	i/p) (2v+1) 

sv = lwsv' Zdv 	Iwdv' 
	 (2.5) 

P = 1/k3T , 

where kB is the Boltzmann constant and v is any -we or 

-ve integer. 

Here the quantities 1sv  , A sv, Zclv  and Adv  are 

related to the corresponding ones for a-pure two-band 

superconductor through the following equations: 



w . w sv 	v 	2T 	.,2 ,2 1/2 + 2T 	777 	--,2 ,1/2 
s (wsv +"'sv ) 	sd 	kwdv -1- ,Adv ) 

... (2.6) ..., ,E, 

71' = E + 1 	sv 	
+ 1 
	dv  

sv 	3 	77—  -2 ---,' 177- 1  2T 	2 s (wsv  +7\ s̀v  ) . 	- -sd 1.x 	+.  -,,,-.2 \ 1 / 2 
‘wdv L'dv i.. (2.7) 

1 ci)dv • sv 	1 
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1 	wdv  

	

1 	S  C7J-' 	= W dv v 2T -2 	172 2T, 	 1/2 

	

(w v + Adv
) 	us kw 	+ A sv 	sv 

-...., 

	

- 	1 	Adv 	2j 

	

,. 1 	sv 	 ir . A + w•-- dv 	d 	GT- 	2 	,2---77 ' 2T 	-2 ...,2 )1/2 

	

a GSclv + -A dv ) 	ds (w -1=A ) sv sv ... (2.9) 

A;
3(0)

is the order parameter of the s(d) band of a pure 

two-band superconductor. The is are the impurity-scatter-

ing relaxation times and are given by the following 

equations: 

(2.8) 

1 	2 
= nniNs  (0) IVs ,o  9 

2 1 
2 	= nniNd (°) < I Vd () I  Td 

2 1 = 	 (0)  sd  

1 = nn.Ns  (o) ds  

2 

I Vsd ( ?)  I 

where ni  is the density of impurities, Ns(d)(o) is the 

density of states for the s(d) band at the Fermi surface, 

V s(d)(? ) is the fourier transform of the s(d) intraband 

impurity-scattering potential, Vsd(p) is similarly the 

Fourier transform of the interband impurity-scattering 
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potential and <.... )0  denotes the solid angle average. 

For a Niobium superconductor, the density of states 

Nd (o) is very large compared to Ns (o) and we assume. that 

all impurity-scattering potentials are of same strength. 

With this approximation, equations (2.6)-(2.9) reduce 

to the following equations: 

... (2.14) 
w, -.../ 	 1 	v W 	t"--  W

v 
+ 2T 	

a  
SV 	 -2 1/2 sd 	(*Z 2 dv +A dv ) 

--_ = 	1 	A dv 	 A 	A s + 2T 	
..., (2.15) sv 	 ,2 	,-2 ,l 2 sd (w, a +-Adv 	v  

wdv  1 w 	 ..'. (2.16) wdv 	V 
+ 

a 	,2 	-172 
sd (1;')dv 	ov 

, 	1 	Adv  = 7 ,- 2T 	2 	, 2 -1727 	... (2.17) 
sd 	(wdv + dv ) 

III. ANALYTICAL TREATMENT 

The Kubo formula for thermal conductivity is given 

as 

K 2 I[ dt 	d3xl[d3x2  <#(21,0)..0(Z2,t2)› 

(2.18) 

where V is the volume of the system, T is the temperature 

and the brackets denote an average over positions and 

spins of impurities as well as an average in the grand 

canonical ensemble. 

3VT 	• 2 2 

Here the heat current operator i (X) is 
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1100 r - E 	Eit(5() Via()-14 Vta(5 ) i0.646.1 
1,a i 

• • • 

where the dot over V denotes the time derivative and i 

denotes the band indices s and d. 

2.19) 

For the sake of simplicity, we redefine the creation 

(and annihilation) operator for the s and d bands as 

yLI(1) 	1112  a
(2) 

S}  

VI6(2)  = 7;1772 VIa(1)  • • • 

(2.20) 

2.21) 

In terms of the primed creation and annihilation 

operators, the heat-current operator ii(Z) takes the form 

itr(1)=-iz EfT.1(3 ) ) 13.10 (5)÷"ni16(Z) 140.(2)..] 

	

i, a 	 (2.22) 

In order to treat simultaneously the effect of 

the two interaction terms and two bands in eq.(2.1) it 

is convenient to work in a four-component space(59,68,69). 

I/TIT T  (X ) 

Im1 (1) 
iirLI (Z) 

14- (z) 

	

,d1. 	) 

't (1) 	(rt(X), tjt
t 
 X), 414(1), 	Vd1 

sf 
• • • 

2.23 ) 

2.24) 
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In this four-component space the heat current 

operator (eq..2.22) takes the form 

u(1) . 
11 =1 

(2.25) 

 

where we have denoted by 1 and l' the space-time 

points (Xt) and (11 ,t'), respectively. 

In order to evaluate the thermal conductivity, it 

is convenient to first introduce a correlation function(70) 

P(1,2) 7E <T[11(1).(2)> 	 ... (2.26) 

where 1,2 denote the space-time points, and T is 

Wick's time ordering operator. In the region Reti=Ret2=0, 

0 <Im t l, Imt2 <-13, the fourier transform of P(1,2) is 

defined by the expression 

d3  
P(1,2) =v1 	g 	pci v m 	(21-12 )-±v m(ta.--t 2 )  

(2n)' 1-)  m 	 (2.27) 

where v m  = 2nmi/p, m running over all integers, and 

13=(k T)-1. The thermal conductivity (2.18) is then 

related to the analytically continued fourier series 

coefficient P(tv m) by (66,71-73) 

P(3=o,v =w-Pi.04- )-P(Et=o,v m=co-i0+) ,, 	 K = rpr. ad_r_rn  

mid 

 

(2.28) 

The correlation function is now evaluated assuming 
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a -low concentration of impurities and neglecting the 

existence of any collective states(74,75)-  The scatter-

ing from independent, randomly distributed impurities 

is treated in Born approximation. Thus proceeding in a 

manner analogous to that of Ambegaoker(70), we get the 

following expression for the Fourier series coefficient 

P(1=0,v m)PIP(vm.)-.1 in our case: 

P(vm) = (--) 	etcier  d3k  .4 k(2 ,+v m) 1 13. 
(2n)3  

	

D T3x1) tjt 	,(-1-v ra)1"-k ' 	v m) 	at')1 

(2.29) 

- where F m ) is the vertex function satisfying the 

integral equation: 

Fic i ( V,vm) = 11(4evm)(T3x1)+nd--1-3-4 1V-1 (q-21 )1 
2 

j-  (2n)" 

x(T x ) 	 ( tx,vm ) 	(2',y(T3x1) 

... (2.30) 

,,f with 1,r(2,(-1-1)ni/p and i( being an integer. 4:,4  kk ty 

is the Fourier transform in space and imaginary time of 

the following Green's function; 

(1,2) = 	<T[iTi( )Iiit(2)1 	 (2 .31) 

To simplify the calculations, we shall take the 

first leading term of the right-hand side for the 

vertex function. Consequently we get for P(vm): 
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.,t0tfd3k 

—7 K 
„4 k,2, 	.12 e 	m' . (2n) 

x Tr [(1-3x1) 	(k, E,(+vm) ( 

  

  

 

2,32) 

Since in the strong-intraband-phonon-coupling 

limit, the 4x4 matrix Green's function is diagonal, 

as given by eq.(2.2) in section II, and the matrix (T3x1) 

is also a diagonal matrix, it is obvious that the 

resulting 4x4 matrix under the trace sign in eq.(2.32) 

is also diagonal. The correlation function P(v m) can 

thus be written as the sum of two correlation functions 

Fi(v m) and P2(vm) which involve the Green's functions 

G; and Gd, respectively, and given by: 

t 

P (vm 	7 e'(° I ca.3k 7.).>,, 
7 ic- l cE H-v im ) 

\ 2 

x 	 (210" 

x TrbGL(.17,Eri-v m) T3G;(2cEt)1, 	... 

P2(vm) = 7(7) z e 4 	d3k 
 21%x Z(2Eti-v m)2 1 i 	/01-1 A31, 	...1, 

r 1 	(210' 

x Tr [I T3GJ (;) Eti-v m)T3Gd (11, Et)] 

2.33) 

2.34) 

The primed Green's functions can now be changed 

into unprimed ones with the help of following evident 

relations: 

Gs 	Gs ms s s ... ( 2 .35) 

Gd = Gd/md 	 ... (2.36) 



form: 

1 	i 
1(vm)  = °,77--(7)  Qius  

1  (i) 
132(vm) = 8m2 'V 

/ e 

x 

e  

EOt ir 

-I 

nt 

- 

,g 31, 

TrE3Gs(1,tevm) 

' 	k(2v+vr  
' (27)- 

T3Gs(11 

3 
d 	k 	11)_(2v 	)2 

I (2703 	'" 	\)111I  

... (2.37) 
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and equations (2.33)and (2.34) reduce to following 

x TrF3Gd  (1Z, 	 d• • . (2.38) 

Gs and Gd are the 2x2 matrix Green's functions already 

introduced by equations (2.3) and (2.4). 

Further, Gs(Z) is analytic everywhere except for 

a branch cut on the'real axis and hence it can be 

expressed through the following well-known spectral 

representation: 

4  Gs(d)(k 

where, 

as(d)(w) 	. 

) - - 
a 	(w) dw as ... 	(2.39) 

2.40) Gs(d)(Z.w-i0t)-Gs(d)(Z=w+i0t) 

7-77 	Ei-w 

After- 	substituting the spectral representations 

for the two Green's functions in Equations (2.37) and 

(2.38), the 	sum is carried out (73). The thermal - 

conductivity is then calculated from the formula (2.28). 

K is thus found to be the sum of two terms, K1  and 
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K2 arising from the two correlation functions P1(Ni m) 

and P2 (v m ), respectively, and have the following form: 

1 
Kl 	2 

d3kdw  k2w2 sech2  (71pw)  48mskBT 	(2n) 

x TrE3as (k,w) -c3as  (k, (0;1 	 (2.41) 

and 
	 d3kdw k2w 2 sech k2pw) 
1 	 2 tin_ \ 

K2 - 	2 	2i (27°4  48mcikBT 

	

xTrEc3ad(k, w) T3ad  (11, co ) 	... (2.42) 

The integration over momentum variable k is 

performed with relative ease by converting it to an 

integral over the energy e (70); the expressions for 

K1 and K2 then become 

1 
ns  

2 - 	 dw 
emskBT Jr() 

1 \ W2 sech2 
 (7P5i ) 

2 	:2 
1;1 -1Asi 1+ 
1Z s  -ps i 

... (2.43) 
Irap.s2_12s )1/1 

nd 	
co 	w2sech2 1  (7[3w) 

K2 _ 8m k 2 	
dw 	  

Imt d  z -a) 1/2 ] 

 

1 + 	d  

1-4-41  

 

(2.44) 

where ns (d ) is the density of electrons in the s(d) band. 

Let us now define 

Zs  iws  
Us  = 	- a s 	3S (2.45) 



We can now rewrite equations 

terms of us and ud as: 

Zs = Z  77--  2 	1/2 sd (ud-1) 

1 
(7-\s = 	+ 2T 	2 sd (ud  -1)1/2 

Zd = Z + 2Tsd (u2 - 1)1/2 

i 	ud 

ud 

K2  
8mdkB

T2 
nd 

-507  

and Zd 	d u 	= d 
L'd 

"Id = 	
1 

 Ad usd (ud  -1) 

(2.46) 

(2.14) -(2.17) in 

• • • 2.47) 

... (2.48) 

... (2.49) 

... (2.50) 

Substituting equations (2.45), (2.46), (2.48) 

and (2.50) into equations (2.43) and (2.44), we have 

K1 8mskBT 
j- 

ns 
	CO 

o Im E 
dw 	 

f)1/2+ir 
L 

ES  (u2  s-1 ' 	
_
'
2
s ') 	

(ud- 

co2 sech (7P(0) 

1-( _1)1/2 

2/1 

lusl 2  -1 

jut
x 	1+ 	

-11 ) 
	(2.51) 

w2sech2 1 	2 (713w) 	ludi-1 
dw 
[d (u2_2.)  1/2+i  I- 	lu4-1j 

(2.52) 

where, 
1 

F =. 
	 ....(2.53) 

CENTRAL LIZaVY riY7.2SITY OF ROORKEE 
ROOkKEE 
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From equations (2.49) and (2.50) it is easy to see that 

iw ud = 	= 
- Ad A d 6 1d 

... (2.54) 

Similarly, the two equations (2.47) and (2.48) can now 

be combined to give 

iw  
s 2 -2 1/2 lei/  (1+  7 (w 2+72 \ 1/2 = 	(1 	(w +Ad ) 

	

"s 	"d/ 
... (2.55) 

Further, as argued by Chow(59), Td);As  and we can neglect 
ri-/G)2+E2 )1/21 the factor 1 + 	 in comparison to 

1  and can approximate equation 

(2.55) as 

iW/Ts  
us

- 
	 (2.56) 

fl 	(diEs 	
(

. 024Ed2 ) 1 /2 it 

Substituting for us  and ud  from equations ( 2 .54) 
and 

K1 

and 

K2 

(2.56), 	respectively, 	we finally get 

co 	w4sech2(13w) ns d w - 4mskB f o 

nd 	r 

2f 2 T 	w + 6, 

w 

r7 Nir- /(w 2.7-2,112  +ad ) 

4sech 2  (7  1 pw) 
= 	dw 4mdB ,o 2 	2 -2 [ 	2 -2 1/2 T (w +ad ) 	(w +Ad ) 	+ r] 

We can write the above equations also in the 

15/2  
... (2.57) 

(2.58) 



-52- 

following form: 

ns  K - 	I1 1 mSkB 

nd T  
= mdkB  -2 

... (2.59 ) 

... (2.60) 

where,c0 	 3/2 r-  = 	fuj4/T2(24.e pw+e-pw)p4:7 	d 
2 -2 1/2)1 J-1 	"" 0 	Li  

-A-s w +Ad) (2.61) 

OD 
1-111 -pw) (w2+Td.)  pw2 +Ad)1/2+  

... (2.62) 
As the integrals I1  and 12  can not be solved 

analytically, their values have been computed numerically, 

in the temperature range 0.04-0.90°K for various values 

of the parameter F (which is a measure of impurity 

concentration) ranging from 50x10-17 ergs to 60x10-17 ergs. 

The calculations have been done using the following BCS 

expressions for the two energy gaps As  and Ea: 

12 =dw w4  /12(2 e 

N = 3.1 kBTcs (1- TT1/2) cs 
• • • 2 .63) 

T Ed = 3.1 kB Tcd 	T (1- ---) 1/2 
cd 

( 2.64) 

The values of the critical temperatures T0s  and 

Tcd due to the s and d bands are taken to be 0.926 and 

9.26 °K, respectively, as we know that Tcd=Tc of 

Niobium and Tcs  - 10-1 Tcd (59,62) and Tc for Niobium 
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is 9.26 °K. Calculations have been done by taking units 

of energy in eV. 

One can make a qualitative estimate of K1  and K2  

in this model, if information about the parameters ns, 

nd' ms' and and is available. However, as no information 

seems to be available at present for the case of Niobium, 

we investigate the behaviour of 11(2)  vs temperature T. 

Since, ns (d) /  ms(d)kB is a constant factor, it will 

only scale the values of K1(2) and will not affect the 

behaviour of K1(2) vs temperature T. 

As a result of numerical computation, we find 

that 12  is about 10-7  times smaller than II. Furthermore, 

since ns  / mskB  is greater than na/makB  because ns>na  

and ms < md' the contribution of the K2 term will be far 

smaller than that of the K1 term and it can be neglected 

to a fairly good degree of approximation. Thus, thermal 

conductivity K will be equal to Kl. The quantity 

K/(ns/mskB) is plotted on log-log graph paper against 

temperature T for two values of parameter I-, as shown 

in Fig.2.l. 

IV DISCUSSION  

Working in the two-band model, we find that the 

thermal conductivity K is the sum of two parts Kl  and K2. 

The interesting feature is that while K2  depends only 

on the single energy gap parameter Ea,K1,  depends on 

both the energy gap parameters Es  and 	and and this 
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dependence manifests itself in a rather complicated 

manner- it seems impossible to further split K1  in 

terms of Ts  and Ed  separately. Further, since K2  -.167K1, 

the thermal conductivity K K1. A log-log plot of the 

quantity K/(ns/mskB) vs temperature T for two values 

of the parameter r (which is a measure of impurity 
concentration)is. shown in Fig.2.1. The general and 

broad features of this study are as follows: 

(a) For r = 31.25x10-5 eV, we find that for the 
temperature range 0.04-0.20°  K, the point lie on one 

straight line. The slope thereafter decreases slightly 

i.e., the thermal conductivity shows a mild decreases. 

(b) For r- = 37.50x10-5 eV, a similar behaviour is 
observed, but the change in slope now starts slightly 

earlier, viz., at around T = 0.16°  K. 

(c) The thermal conductivity is found to decrease 

with the increase in impurity concentration. This 

result is in agreement qualitatively wit# the experi-

ment (67). Moreover, the result is analogous to the 

case of one band BCS superconductor, where also the 

nonmagnetic impurities decreases slightly the thermal 

conductivity. Furthermore, we see that it is the inter-

band impurity scattering which affects the thermal 

conductivity in our calculations. 

(d) The thermal conductivity is found to vary with 

temperature as T3.1 or T3'2 
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While comparing our results with experiments 

we observe that two sets of experimental data are 

available on the thermal conductivity of superconduct-

ing Niobium. In the first, garlson and Satterthwaite (76) 

have observed anomalous increase in thermal conductivity 

below 0.6 °K, which they attribute to electrons associated 

with a second small energy gap. However, in the other 

experiment, reported recently by Anderson et al., (67) 

they find no such evidence for an anomalously large 

thermal conductivity near 0.5 °K. These authors, while 

offering an explanation (on the basis of their own 

unpublished data and of Rowell e s(77)) for the anomalcus 

behaviour observed by Carlson and Satterthwaite (76) 

as the effects of physical strains in the sample, interpret

the lack of an anomalous behaviour in their own experi-

ment to mean that there is no contribution to the thermal 

transport due to the second energy gap, concluding 

thereby that their experiment gives negative evidence 

against the SMW two-band model. 

It is obvious from our results plotted in Fig.2.l 

that a theory based on the two-band model of BMW does 

not predict any anomalous increase in the thermal conduct-

ivity, and as such the interpretation by Carlson and 

Satterthwaite (76) of the anomalous behaviour which they 

observed is not correct. Similarly, the inference drawn 

by Anderson et al (67), based on the absence of any large 

anomalous behaviour in thermal conductivity measurements, 
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that it provides a negative evidence against the two-

band model of SMW, is not at all substantiated by the 

theoretical predictions of this model. In this context, 

it is important to notice that the nature of the 

theoretical curves in Fig.2.1 in fact agrees with the 

ones reported by Anderson et al.(67). For example, the 

curve D, of Fig.1 of Ref.(67), is a straight line and 

shows a depression, though very slight, at around 0.2°K. 

To sum up, our calculations, based on the SMW 

two-band model, show that the thermal conductivity of 

superconducting Niobium decreases with the increase in 

impurity concentration and does depend on both the energy 

gap parameters in a rather peculiar manner; this is 

corroborated by experiments and thus gives a positive 

evidence in favour of this model. 
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CHAPTER III 

TBERMOMAGNETIC EFFECTS IN DIRTY TRANSITION METAL 

SUPERCONDUCTORS NEAR THE UPPER CRITICAL FIELD 

I INTRODUCTION 

In the preceding chapter we had extended the 

SMW two-band model (58) to study the thermal conducti-

vity of superconducting transition metals containing 

nonmagnetic impurities. Now we shall use this model to 

study the Thermomagnetic Effects in dirty (1.“0) 

transition metal superconductors containing nonmagnetic 

impurities near the upper critical field. It has been 

confirmed by previous investigations (78-80) that it is 

the pair-breaking mechanism due to the interband impurity 

scattering which is responsible for the anomalous 

changes in various physical properties of dirty transi-

tion metal superconductors near the critical temperature. 

Very recently, Chow (80) has investigated how the inter-

band impurity scattering would influence the Hall effect 

in the dirty type-II transition metal superconductors 
in a magnetic field immediately below the upper critical 

field He 2 (T)and in the temperature region T (°)<T(Tcd(=Tc) cs 
In this region the s-band electrons are in the normal 

phase and the d-band electrons are in the superconducting 

mixed phase. In the present chapter, we extend (81) this 
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study to investigate the influence of the interband 

impurity scattering on the thermomagnetic effects (such 

as the Ettingshausen, Nernst, and Peltier effects) of 

dirty type-II transition metal superconductors under 

similar conditions of magnetic field and temperature. 

Thermomagnetic effects in the mixed state of a super-

conductor arise from normal electron flow in the cores 

of the vortex lines (82) and to a much greater extent 

from the existence of localized excitations- and hence 

an entropy- in the cores of the vortex lines (83). The 

calculations have been done following closely the Caroli-

Maki theory (84) for the thermomagnetic effects of dirty 

one-band type-II superconductors. The. pinning effects 
on the motion of the order parameter may be completely 

disregarded which is a quite plausible assumption and 

is confirmed by experiments in the high field region 

(H_H02)• 

In the calculations presented here, we assume 

that the Fermi surface is spherical (which may be true 

for dirty Niobium). Further as in Chapter II the intra-

band BCS coupling constants, gs  and gd, are assumed to 

be non-zero and the interband coupling constant gsd 
is put equal to zero. Another important point which 

should be noticed is that the interband impurity scatter-

ing only slightly changes the upper critical field in 

the temperature region T(°)<T <Tc (85). In Section II, cs 
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a theoretical formulation of thermomagnetic effects 

in dirty transition metal superconductors is given. 

Results are summarized in Section III., and conclusions 

are drawn in Section IV. 

II THEORETICAL FORMULATION 

A Heat Current Density in Dirty Limit 

We adopt the procedure followed by Caroli and 

Maki(84) fcr calculating the heat current density in the 

dirty limit (A4 o). In the high field region and at the 

temperatures of interest, TT<Tc, there will be only 

a small percentage of the electrons in the s band, and 

so the heat current density (hence the thermomagnetic 

effects) of the two-band system should mainly be due to 

the d-band electrons. Therefore, we will be interested 

here in calculating the d-band heat current density. 

In these calculations, only the normal-phase Green's 

functions will be needed, as shown by Caroli and Maki 

(84). They can be easily obtained for our case (85) 

from eq.(2.3) and (2.4)  of Chapter II and are given as, 

, —1 G(°) (11;z v ) 	(s3-sv sp -c 	+e 	. A) 

G(do) 	v ) 	(Zdv  1 -Edp  4+ e Fd  . 2) -1  

... (3.1) 

(3.2) 

where Zv 	i(2v+1)nT, with v being an integer. Further, 

sv (.1(a'sv  and Zdvv) are given by 
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sv= wv + sgn v(1/2Ts+1/2Tsd) 
	... (3.3) 

wdv = wv+seri v(1/2Td+1/2Td  ) 
	... (3.4) 

where T and T
d 

are intraband-impurity-scattering 

relaxation tines and T
sd 

and T
ds 

are interband-impurity-

scattering relaxation times for the s-d and d-s processes 

respectively, and are given by equations (2.10)-(2.13) 

in Chapter II. It has been shown by Chow(85), that the 

inclusion of interband-impurity-scattering relaxation 

times Tds modifies the upper critical field equation 

log(T/Tco) -F*D- / 
r,dvFd/ 6nT) 	- V(i) = 0 

2 
... (3.5) 

to the following correct equation: 

Edo 	1 	
— VD] = 

log(T/Tco)+V 7  47T 47T-rds 0  
• • • 3.6) 

2 where edo = 2Dd c2(T) with Dd = 4Ttr,d Fd* 

Here T
trd 

is the d band intraband-transport ,  

relaxation time, t(x) is the digamma function, Hc2  (T) 

is the temperature dependent upper critical field, Dd  

is the d-band diffusion coefficient and vFd is the Fermi-

velocity of d-band electrons. 

The equations of motion governing the order para-

meter in a two-band superconductor, in the presence of 
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an external magnetic field and electric field, are 

given by (84): 

3E. (0+Ddq2  )Ad(C? C ni 	do .6.d  (7-  C .m  ) ... (3 .7 ) 

( +Dd  q 2  ) A d  (q, Cm = doAd(T'Cm) 
	... (3.8) 

where, in equation (3.7) , Q and ti>  are to be replaced as 

below 

Sa 	0m+2iero (P.) 

El? -4 a 	2e1(P) 

... (3.9) 

... (3.10 ) 

when operating on A: 

and in equation (3.8), 0 and q are to be replaced as 

below 

S) -D7 	- 2ie 0(?) 
	

( 3 . 11 ) 

at>  + 2e2(P) 	 ... (3.12) 

when operating on Ad. 

Here, 0(V) = -Ex and A = (O,Hx,O)and the d-band order 

parameter A:(1.,Cm) is given by 

d3q 
A3E-(t) - T 7 f 3 e 	

t A*(1,r  ) 
d ' 

	

	 ad■LJ. 
7,m  (210 

with Cm  = i0m  = 12nmt, m being an integer. 

We shall now calculate the d-band heat current 

density which is expressed (using the standard notation) 

...(3.13) 
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as (84) 

Z(it,t ) 	tl(y,t) 	t2(t,t) 	 ... (3.14) 

with 

dl
(r
4  
'
t) .-ieit  J

h 	dt'Id3r1 /17-411(.il
9 
 t) 	n

d  (
'I t 

Jd  

... (3.15) 

41 
 2(tt-t)=-[ dtlr dt 

[ d
d 3,( dm 

 
00 -co 

<[ M( ,t), pd (r,t1)1,Idt(at2 )1  
([ Elldl(i%-t),I-d (il,t2 ).1,yd (t,t1]>)4(7):t1)Ac,(4t2  

... (3.16) 

4h 
where jd (,t) is the d-band heat current density operator 

jd ( 	 ")+ 

t) 

= 	

1 
71-n 

7 5-1
V-  le 	

c) 	
i 

7)(  
d a I-2  (4-f +ieS6)] 

x 	(r'1 	1 )Vd c  (11, t) I 	

.t 

(3.17) 

do 	 t I   

and ;
d 

and Vt  are d-band pair annihilation and creation 
d 

operators: 

Td (P,t ) 	ydt ( c t) tc11 ( , t ) 	 ... (3.18) 

vd(it,t) J.(r, t)pett) 	 ... (3.19) 

Now lh
l 
 (t,t) is just the d-band heat current density 

d 

in the normal phase and we have (84) 

Jdlx 

h 	
STad (1+0

2 ) -1 
E, 	 ... (3.20) 
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dly 	
2 -nod  Ed / (i+qd E, ... (3.21) 

where ad = e2Ttr,dnd/md' the electrical conductivity 

of a one-d-band normal metal in zero magnetic field, 

ne ( 	/maC)H, and S(=Tc2T/2ep, for a spherical Fermi "tr,d 
Surface), the thermoelectric-power coefficient. 

jd2 ( ,t) defined in equation (3.16), is the contri-  
bution due to the motion of the vortex structure(i.e., 

that of the order parameter) which is of main interest 

here. It is calculated with the help of the standard 

temperature Green's function technique (86). We have 

kept here only the lowest order term in ti(lt,t), since 

we are interested in the region near the upper critical 

field. In order to evaluate the retarded product in eq. 

(3.16), we first calculate the corresponding thermal 

product, 

Td12( ,o -K2 2 ) = 1- (1-,1+ -0t)T I: 	Id3 ,0,3m 
md dt 	v=-co. 

< Gc(1°)  (?, 9  Ci-Zv  )Gc.°)  (It 	qi° )  (m, i1  ; 	2-zy  

x 	'61(739g1)4(1-2) 	 (3.22)119t=t, 

where C1=i01=i2mit and. C2=iO2=i2um2t, with ml  and m2  
being integers in the absence of external, fields. In 

the presence of external fields, 0(5'.) should be included 

in Q1 and 02 according to the convention given in 

equations (3.9) and(3.11). 	...›. represents the 
i 
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impurity-scattering vertex corrections. Now, with 

vanishing Ad  and Ad, the only vertex corrections 

to be included would be the intraband impurity-scatter-

ing vertex corrections, which have been treated in 

Ref.84. It should be emphasized here that the Green's 

functions in equation (3.22) are now given by eq.(3.2) 

with interband impurity scattering in self-energies 

included. 

Further, confining ourselves to the case 01, 

Q2> 0, as we are interested in the retarded product, 

we obtain 
, 2 0 +,,q, 	1 1 311 -A 	.,.0  \ = ndTtr, dr.). 7;>-)fiii( +  24A  4 + 

d2(49°1"'21 -77771—`g1-4-2'Y`2 
2 	. 

1  2,01+02+Ddq, 	 4 	

4nTTds) 

1  ‘ 
-V(7 + 4nT 
2 	- 	 1 02-Ddq1-1/Tds ri  ;_. + 201+.11cd:211T)dd 1  

+ 	 4nT °1-4-C2 2-7237722712  (- 

	

„ 2 	

4nT-cds) 

	

,. /1 _,_ C21-4-'d41 	11 + - k7 ' 4nT 	4n7E-d7j 
1 

	

P +D.q2+1/Tds 	[ 1 '2 d 1  
V(7 + 20 

+0 +D q2 2 1 d 1  + 	 + 	2 2 	4nT 	4nT ) Tde Q1+22+Dd(c11-c12)  
_L„ 2 

1 Q2''dq2  
4(7 	4nT 	-74771  ds 

(119Q1)4(-429°2 )  

Using equations (3.7) and (3.8) we get 

} 

... (3.23) 
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1 - 4 \f( 2-21)--do  Tds ncittr di> 111 	g +a,) = —7Lkql-q21 	2Q ud2"-' 1 e 	-"d 	1 

2Q1  1  
x [Ii4 +o + 7-7711 + 4nTTds  ) TIJG- +i° + 4nL 	ds] 

(Q2-21)+6do+ -777 	222 	1 4. 	.5,(1 , , + 

	

+ 	) 25-22 	'2 /- ' 4T ' 

A, 	
4nTTds 

- V(7 4-/° + 4nTlds 	)-_it 6'd ( l'°1)4(12' 22) 
... (3.24) 

EdoT 
 where 	4n  = --  2Da

' 	
Q /4nT. Now , and Q2  can be 

2 
treated as small quantities as we essentially make the 

analytical continuation i(01+Q 2 ) = C1+C 2  -“wl+w2)+10t.  

where w1  and w2  are real frequencies and then take the 

limit w1+w2 0. Also, at sufficiently high temperatures, 

to which we have restricted ourselves, 1/41ETTds  will be 

a small quantity for most dirty superconductors. Here in 

our case of 	 ) T>T (°, we would only require 1/A s(o)T cs 	 ds 

1/A s(o)Ts to be a small quantity. It is well known that 

for small x, we have the following  expansion: 

1 	(1) 1 	1 2 (2) 1 V(7  +io + x) = V(7 /o)+ xV 	(-7  + /0) + 7x V 	(7  +/o) 
... (3.25) 

where, 
op 

(1)  (a 	o 	("PC ±  'V)) = 	 1 	\ 2 
d 	1 	 ... (3.26) 1  

	

/or e 	— 
v=o (v+ 7  +i) 

	

474° = -2 	1  470)3  

t(2)(i 

	

	
a--2- +/co  =  

Using  Eq.(3.25), Jag can be approximated by, 
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dc1
lh a 
2(c141+q2'.21+Q2)  

n 
= 	 (0 0 lA (, n )A 3E  -"? P ) 81-Em,T 11-c122-"1/"d"-l'"1"d - -2"2 a 

x[(1)(  +/° 	4nTT7--)+(2; 	
8n1T  	)v(2) (1 

+/°+ as 	ds 	4-Tatdsii 1 

... (3.28) 

After doing the analytical continuation and taking 

the limit w1+w2 -40, we obtain 

h 	_IE1 T 

dd2 (r' t)  - 

nEL  

&gm
d

L 

 T (c11-42)(w2-wl)4d(1,t1)A3V t2 )1 d 2  

x41(1)( 4./0 + 	1 	)[÷(4° + 7=71-) 
47ff 	I  

'Cal  S 	 °n  ds 
*(2) 1 	1 

V 	(7  +/°+ 41-cT-cdsi 
x 	 (1)(i.  ± 4_ 	1T  	)--I 

ii, 4n  td. s ... (3.29) 
where.11,q2,wi  and w2  should now be understood as operators 

in the sense 

1 
-2a(1), 61'2  = 	12+2eZ(2) 

w1  = 	 i t 	) 	i 1 2e( „ w2  = IT
2 
+ 2eO(2) (3.30) 

Taking the space average (84), we have 

jh 
d2x 

0 ... (3.31) 
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h 	.-- . _ - nd Ttr1  t(1) 	
2 

	

(1 + 	+ 	1  	) <lad [ > eE Jd2y 4nmd T v 	n 
4TETTds 
(2) 1  

Y 	(7 +I°+ 47ETTd )1 

	

1 	 s  

	

xP+(/° + 4 T 	) 
n-Tds 	

ii) 1 
‘-'(2" 4-/o+ 4n1  T

ds 

1 
MdEP“ + 4nTTds  

which can be written as 

<42y>= MdEP-Z (t) (1+ 

where 

T1T(2)(  Z(t) 	-0 --73- 1  

$(2) (1 + -+ C-1  
) 

1 
47"--"ds - 

1 (1) 	
+ °+  

1 

(3.32) 

(3.33) 

(3.34) 

4nT Tds 
... 

... 

)  

) 

4-/°  4n -cds 

+/ 4nTTds  ) 

 I  
Edo Tds 

is always a positive quantity, as is evident from 

equations (3.26) and (3.27). Here Md  is the spatially 

averaged d-band magnetization of a very dirty type-II 

two band superconductor, and is given by the following 

expression 

eTtr dia_d(lAd1 2)  01)(1 

	

Md  = 	 1 
4nm T a 	47°4-  77777;4  

H (T)-H 
1 	c2 	- 
4n 	, 

	

= 	 H(H (T) 
[24(t)-1)1pA 	

c2 ... (3 .35 ) 

where K2(t) is the second Landau-Ginzburg parameter with 

t denoting T/Tc  and pA = 1.16. 

Using eq . (3.35) and including also the heat 
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current due to the magnetization current (=-HJd = 

-HMdR = -MdE) associated with Vortex motion (87) we 

finally get the following expression for heat current 

density; 

h 	EadDdHc244(0) 
d2y/ 	2 	

(1_ H 
R 	

[Z (1± 
(2K2(t)-1) R A 	c2 	

E T_ do ds 
• • (3.36) 

Here we have used the relation 
-1 

4 dDd ) 	= 4K1(0) 

where K (t) is the first Ginzburg-Landau parameter. 

B. Transport Equations in Resistive State 

The ratio of the heat and electric current (80) 

is given by 

/ Th \ 
"d2y/ 

`-' 	

_
DdHc- 	

2 	X(t)  d2x 	1 - 
EdoTds 

1-Z(t) (1-1- 	 1,,_ 	) 
Ed (37) 

This result suggests that a temperature gradient 

(perpendicular to the magnetic field) produces the 

reciprocal effect (i.e., a heat current parallel to the 

temperature gradient and an electric current perpendicular 

to it), so that the complete set of transport equations is 

jh = a E -. Kid IT) dy 	d 	sd 
	 ... (3.38) 

dxsdE4-p(T) 	 SOO (3.39) 
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with 2 DdHc24K1(o) 1  ad - 	(1- 1-4,--)D(t)(1+ 	)-31 
e[202 	"(t)-lipA  c2 	

CdoTds 
--- (3.40) 

and 
	

P = adiT  

Here, we have considered the normal value of ad  

to be negligible as suggested by Caroli and Maki(84). 

C Ettingshausen Effect and Delivered Entropy 

When an electric field is applied along the x 

direction, 	an 

finite temperature 

and are given 

Jdx = 

and 
(T)y  

as 	Jdy = 

Hence, we get 

4adDdHc24(o) 

electric current along 

gradient along 

by 

s d + ad/T K lE sd 	' 

= 	(ad /Keid)E 

0 

from Eqs.(3.40) 	and 

H 

the x 

the y axis 

(3.42) 

7r+Nri. [4-1 	/ k 	"T" 

axis and a 

are induced 

... 

... 

... 

1  

(3.41) 

(3.42) 

(3.43) 

(3.44) 
e K 	r2Kc  sa t._ 	j A 	

nc2 
EdoTds 

... 

This equation might be interpreted by saying that 

each vortex line carries an amount of entropy, given by 
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sd 	

(T). 

Sd 	eT 

K(o) 	741___)[(t)(1+e  lx  = 2 	 c2 	do ds e 2T 	P.K2(t)- 1.1PA 	
(3.45) 

It should be noted here that this entropy vanishes 

at H=Hc2 (as it should be at a second-order phase 

transition). 

D. Nernst Effect 

This is just the reciprocal of the Ettingshausen 

effect. When a finite temperature gradient is applied 

along the y-axis, a heat current along the y axis and 

a finite electric field in the x direction are induced. 

These are given by 

Jdy --` Psd 4.4/Tascij (-vT) 
y 

and 	E 	(ad/TcYsd)(T)y 

We can rewrite Eq.(3.47) as 

E 	DdHc2 (t)4Ki(o) 
	 (1- 1-11 )D(t)(1+ s 1  

= 	
x  )-1 

17-77) 	eT[21-4(t)-1]pA 	c2 	do ds 

... (3.46) 

... (3.47) 

... (3.48) 

E. Peltier Effect 

  

 

The Peltier coefficient is given by 
h 
dx 

"'d dx 
... (3.49) 

  

CENTRAL LT7'1,71' IN:177.25177 OF ROORKEE 
ROORKIE 
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... (3.53) 
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Neglecting higher-order terms in la, we obtain 

with the help of Equations (3.20) and (3.31), the 

following expression for Jax: 

Jhx  ad  EST d  
• • • 3.50) 

Hence equations (3.49) and (3.50) combined with 

the following expression of Maki(80) 

[1_H/Hc2 (T) X(t)  
)-1 Jdx = 6dE[1- 	‘EdoTds [2.4(t)-](3 A  

give the following expression for Peltier coefficient 

Av( Nt, 

d = ST 1+ 
41-1-„1\0/■_,- H/Hci 	X(t)  1)] 

Did (t) -]] 	
EdoTds 

where, X(t) = _ it(2)(+70)/t(1)(i_ 470) 

III RESULTS  

We can now apply the above results to Niobium for 

which Tc = 9°K. The temperature region in which 
we are 

interested corresponds. to 0.15Zt<:_0.45. At these tempera-

tures, the maximum values of both X(t) and Z(t) will 

always be less than unity. Furthermore, the quantity 

edoTds can be explicitly written as 
1  
77 .)Tdsttr,dvFd"

u 
 c2

(M) 
 

It has already been shown (85) that in the dirty limit, 

H (T) is independent of the density of impurities. 

... (3.51) 
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Further, one would expect that for a sufficiently 

dirty transition metal superconductor TdsEdo <1. 

Therefore, we note that as the magnetic field decreases 

from the upper critical field H (T), the correction He 
 

factor due to interband impurity scattering increases. 

This implies that the d-band thermomagnetic effects in 

dirty type-II transition metal superconductors show an 

anomalous increase, in the magnetic field region 

immediately below He 2(T)and in the temperature region 

Tecc)<T .(Tc. The validity of all these results is limited 

to the high field region, just as in the case of the 

one-band Caroli-Maki theory(84). 

IV CONCLUDING REMARKS  

We have shown that it is chiefly the interband 

impurity scattering (corresponding to interband 

impurity scattering relaxation time ids) which causes 

the anomalous increase in the thermomagnetic effects 

immediately below H, in dirty type-II Transition metal 
'2 

superconductors. It leads to the general conclusion that 

the influence of s-band electrons on the transport 

properties of the d-band electrons is through interband 

impurity scattering. 

We should like to emphasize that this behaviour in 

d-band thermomagnetic effects of dirty two-band transition 
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metal superconductors is quite similar in nature to 

the d--band Hall angle(80). -  Moreover, for dirty one-d-

band superconductor, our results exactly reduce to 

those of Caroli et al.(84). 

At present, no experimental information seems 

to be available on the measurements Of these effects 

in dirty two-band transition metal superconductors 

below H
c2 

and in the temperature region T(°s)<TO
c 

It is hoped that the experimental information would be 

forthcoming in the near future, to make it possible to 

check the results presented here. 
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CHAPTER IV 

EFFECT OF PARAMAGNETIC IMPURITIES ON JOSEPHSON 
CURRENT THROUGH A SUPERCONDUCTOR-NORMAL 

METAL,-SUPERCONDUCTOR JUNCTION 

INTRODUCTION  

Since the discovery of the famous Josephson 

effect (88), the suporcurrent due to Cooper pair 

tunneling through superconductor-insulator-super-

conductor (SIS) junctions has been widely studied both 

theoretically and experimentally. However, much of the 

theoretical and experimental work done in this direction 

pertains to junctions with insulating barriers, and 

there exist standard techniques, like the Green's 

function approach (89) and the tunneling Hamiltonian 

method (88,90), for theoretical study of these junctions. 

However, not much attention has been given to the 

theoretical study of the junctions with normal-metal 

barriers. In such junctions, the usual -technique of 

treating the tunneling Hamiltonian as a small perturbat-

ion can not be applied for the following reasons: 

(1) In the thin-barrier limit, the proximity 

effects play the dominant role which makes 

the effective tunneling matrix elements 

too large to be regarded as a small pertur-

bation. 
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(2) In the thick barrier limit, the normal 

barrier offers by itself a bulky region for 

the electronic motion, which cannot be 

described by the naive tunneling Hamiltonian. 
One must thus adopt the Green's-function technique 

Ishii(91) has recently applied this technique and deter-
mined tho-clike particle Greeris function for pure super- 

conductor-normal metal-superconductor (SNS) junctions 

in the thick-barrier limit. Choosing a simple model for 

the junction (92), he calculated the dc Josephson 

current at T = 0°K, using the Green's functions for the 

superconducting and normal regions. 

Ishii does not take into account the effect of 

impurity scattering in either barrier or superconducting 

regions. The object of the present study is to investigate 

the effect of paramagnetic impurities in the barrier and 

superconducting regions on Josephson current through 

junction with normal metal barriers, using both the 

Abrikosov-Gorkov model(18) and Shiba-Rusinov model(23,24). 

(An outline of these models has already been given in 

Sec .IV of Chapter I). For simplicity, we shall restrict 

ourselves to the case of zero temperature, since all 

fundamental properties of the Josephson effect are already 

included in this case. Furthermore, we shall consider 

the potential difference V between the superconductors 

to be zero, i.e. we are concerned only with the dc 

Josephson effect. Interest in the study of the effect 
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of paramagnetic impurities is linked with the circums-

tance (as shown by Abrikosov and Gorkov(18)) that while 

the energy gap wg  in the spectrum cf single-particle 

states vanishes in superconductors in such cases, the 

ordering parameter is nonzero, i.e., the metal still 

remains a superconductor. 

In - Section II an analytical treatment is given 

for the calculation of Josephson current through impure 

SNS junctions, taking the renormalized Green's function 

for both the barrier and superconducting region. In 

Section IIA and IIB, we have used the renormalized 

Green's functions given by Abrikosov-Gorkov(18) and 

Shiba-Rusinov(23,24), respectively, to treat the effect 

of paramagnetic impurities on Josephson current. This is 

followed by a discussion of results in Section III. 

II ANALYTICAL TREATMENT 

The supercurrent through the junction is calculated 

from the following expression derived by Josephson(89) 

2 
j = 2je 

-(Iillt7  ,fd  21- i  [ 	
1 dx,„ xle 	dx '-1 	dxf 	dx ' ) '11 ', _,..v 	1 

2L  1 	v2 	- xev2 	x evl  
, 

x T 1 Gat-1\  is 1 
 Tx.,xt) .)4N,

(2

w
i_
2) 

 (x,x1)L1*(x) 0(x')) 
wn 	n 	 n 	 ... (4.1) 

where the regions V1  and V2  simply stand for the two 

superconducting regions S and S' and L11  denotes the 
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linear dimensions of the junction in the y or z 

direction. 

The expressions, derived by Ishii(91) for the 

(1,1) component of G- -(x,x1) and the (2,2) component 

oft,N(x,x') , for the case of pure-SNS junction, are 

GR;
Pri

s(x,x , ) 	E 
 11 	Q

2.0J 	exp(iak I X—d. I +i0k a l  X -4-4) 
n,k11 

liss) 	d 	
iwn+lagn  exp(2iaKad)Xa(0)x {120 	

a=+ 
iwn,k11 S n iWn+iC2n 

... (4.2) 

where, 
7/1/2 

ka = sgnu 	Im 	o ›,e n [2m (P.Fx÷i-aQn 
- 1/2 

iQn = p 
)2 	_ (0  2] 

lw  
1/2 	+A  

Ka = sgn wn 	T Pm(u,x  +iaw 1 	, Im Kw  C 0 

m 

20nka 
cr 
S 

X606) = 
iw 4Iw Id n 	(  
iw +ig n 	

e717)  ._ v
Fx  

+ 

with 2d being  the thickness of the barrier, 0 the phase 

difference between the two superconductors, and 

, (2,2) 
CI 

	

	(x,x') = 
1, iwn  N exp(-iK-ix-x'1) ... (4.4) 

with 
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do 
	m N  = --- 

iKa  

Using the Green's functions given by eqs. (4.2) and 

(4.4), the final expression for the current through 

pure-SNS junction at absolute zero temperature is given 

by [911. 

pure SNS 	OD pure SNS(T=o) 
(95) = 	 j 	 23 	nO 

T=o 	n=1 	 (4.5) 

-where 	= vnA (vF is the Fermi velocity and A is the 

energy gap for a pure superconductor)and the coefficient 

in  (which is a function of the thickness of N layer scaled 

by the coherence length of the pure bulk S or S' metal) 

is given by 
2 	1 L11  tie 

	

	 2 I 	-impure SNS (coso)  -)(-4ik-w) d oose n j:
ure SNS

(-11  

... (4.6) 

0 is defined by vpx  = vp  cos0 and 

„pure SNS 
j 

	

	(cos0 
n 

2d w 1 
oo 

= 	
dw

r o„... w2-1-6 2 1/2
core 2\1 2 exP‘- 	T 0 	w ( to +P 
... (4.7) 

Now, in the presence of random distribution of 

impurity atoms, the Green's function gets renormalized 

(18,23,24) and the renormalized Green's functions(describing 

the electrons in the presence of randomly distributed 

impurities) are obtained in a simple manner by replacing 

w and A in Eqs.(4.2) and (4.4) by their renormalized values 
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i.e w and. 2', respectively. E The renormalized values 

w and A are different in different models and depend on 

the types of impurities as we shall see in this chapter 

ant later in the next chapter . We thus obtain 

(1,1)S'S 
Giw ,k 	(x,x') = L i exp(i 	x-dj +irka  

" 	
crk

n 
+d I ) 

--/a(S'S) 	"....• 	......1 3-C.0n +1 ciCd n 	..-. a 	-4.,  
G.,..... 	= d 2iQ .,,, 	exp(2iaK d)Xa(h) x iwn' k11 	s n iw +fir n n 	 ei t a = "" 

• . . (4.8) 

where la 	 , Qn' Ka  O. and Xa  	will be given by an 

equation similar to (4.3) on replacing w by w and A by A . 
4 

Similarly, 

1 	a = 

(2,) cr N 	(x,x \ = dN exp ( -iK I x-x I )/ 
' n 

4 * 4.9) 

with 

SIT 	
• `m1 

Thus, analogously, the supercurrent through the 

impure-SNS • junction is found to be given by 

2 
J 	 r-a) .impure SNS()  = , ) 	2ie 	2 L 	sin nO 

(2TEr 

impure SNS x .1 	tees()) n   

cos9 

... (4.10) 

where, 
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CD impure SLITS 	-4:42 1/2 

On 
 (cosh) =

o dw 	Z-4-0,31 +A ) 	
exP(- 	 core}":17777 c, A   

2d 7.4t°) 

fO, (4.11) 

(A) Abrikosov-Gorkov Model 

We shall first aplay the Lbrikosov-Gorkov model 

to treat the effect of paramagnetic impurities on 

Josephson current through SNS junctions(94). Abrikosov 

and Gorkov(18) assumed the interaction between conduction 

electrons and .magnetic impurities to be very weak and 

thus treated the exchange scattering in lowest order 

Born approximation. According to this theory (as shown 

in Section IV(i) of Chapter IA), in the presence of a 

random distribution of paramagnetic impurity atoms, the 

renormalized frequency '-c-o)  and order parameter A of the 

renormalized Green's function are given by the following 

equations: 

la l 	 
W  = W+  k--+ --)  T T 1 2 kw +A 

... (4.12) 
1 1 	l ) #3,, = A+ 7(71- 7-r7 (1242  1/  ) 2- 

where T
1 

and T2 are the two relaxation times corres- 

ponding to two types of scattering, without and with 

spin flip,- respectively and are given by expression(1.42) 

of Chapter I. It is convenient here to introduce a 

new auxiliary parameter u defined by u 	terms 
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of real frequencies , Eq.(4.12) then leads to (93) 

 

= u(1-( 	 
(1-u2) ) ... (4.13) 

where, 

  

 

.... (4.14) 

An important feature which follows from this 

relation is that w increases as u increases. At u = 1, 

w is negative and diverges. The maximum value of w is 

in the region 0 <u<1. 

In terms of the auxiliary parameter u, expression 

(4.11) now reduces to 

n
SNS 	= 	. fc:aw[:-+((il+u22  ))1/21/2   

(4.15) 

Putting u = sinh a, Eq.(4.15) reduces to 

impure SNS 
Jn 	(cose) 	(-)71 dw exp(-2na-n.--- 	 cosec 

 

O 
) 	(4.16) 

The integral over w can be transformed into an integral 

over a with the help of the following equation, 

sinha(1-( (1-sinh a) 
	... (4.17) 

Remembering that u2(.sinh2  a)<<11  the transformation 

equation (4.17) after a simple calculation gives 

dw = daDosha-((8-3  cosh3a+ -cosha 	(4.18) -8  
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Substituting Eq.(4.18) into Eq.(4.16) we have 
OD „impure SNS 

(cose) 	A(-)71 da[Cosha-C(4cosh 3a+ acosha)I 

x exp(-2na-n2d sinha  E cos() ' 

A(-) 	2&2n+1(n  
n 	

tclose‘ )4132n-1(n colse)..] 

3  FR 	2d 	2d 
""s'

r 
 TIL-2n+3' 

( 
n  cose)+B2n (n 	Ecose n 

r 5  Tin 	( 	2d )4.,.m. 	(n  2d cc] 
Tk2n+1‘n  Ecose' 4."2n-1 	Ecosel  

... 4.19) 

The function Bm(Z) given by 

Bm(Z) 
so 

da exp(-ma-Z sinha) 	... (4.20) 

is the associated Bessel function and has asymptotic 

form(95) 

Bm (Z) 	 • , 	I Z ) 	00 • 	6.. (4.21) 

Using this we find the following expression for 

7nimpure SNS (coca):  

2*_  )2 c0s2-0 (1-C) Impure SNS (cose)i-JA 	)cose -2(  Jia  

(4 .22) 

Finally the expression for the total supercurrent 

through the impure-SITS junction, is obtained with the 

help of Eq .(4.10) and we gets 
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.impure SNS 	 mkF r 1 K 	r 2 (0) = -(2evp) 	7(2',T)- 
2n - 

where, 
co 

S (0) = 2  7  (-) n+1 sin nO 
n=1 

1-0 s (0) 
... (4.23) 

... (4.24 

We recall that for pure SNS junction, Ishii (91) has 

derived the following expression: 

mk •  A pure re SNS(0) 	-(2ev,)(.)A
[iiT

)- ' 2n S(0) --- (4.25) 

Eqs.(4.23) and (4.25) combine to give finally 

the simple result 

.jimpure SNS(S)  

 

= 1-C 	... (4.26) .pure SNS
(0) 

which is valid for all values of C. 

B. Shiba-Rusinov Model 

In the preceding section, the effect of paramagnetic 

impurities was discussed within the framework of the 

Abrikosov-Gorkov model (18). We shall now study in 

this section the effect of paramagnetic impurities on 

Josephson current through SNS junction using the Shiba-

Rusinov model(96). Shiba (23) and Rusinov(24) have general-

ized the AG theory assuming that the interaction of 

the conduction electrons with the magnetic impurities 
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is strong and thus treated the exchange scattering 

beyond the Born approximation but in a simpler classical 

spin case. 

The Josephson current through impure SNS junction 

is to be calculated with the help of equations (4.15) 

and (4.10). The auxiliary parameter in this model(i.e. 

the ratio of renormalized frequency w and the re-

normalized order parameter 2') is now given by the 

following equation 

u[1- "
1-112 1/2  2 2 -17_1 (Eo-u ) a a • 4.27) -  

-1 
,riAa, C  .. 	__ 0.1-27EN(o)L] 	(1-E c2) ) and eo=cos(60-60  

(4.28) 
All other parameters are the same as defined in 
Chapter I. 

Putting again u = sinh a in equations (4.15) and 

(4.27), we get, 

"e 
a 
 impure SNS (,  cose) = (-)111 dw exp (-2na-n 2d sinha )  

cose (4.29) 
and 

= sinharl-C(1-sinh2a)1l2(E2-sinh2arli 
... (4.30) 

The integral over w in eq.(4.29) can be trans-

formed into an integral over a with the help of 
2 	2 	2 equation (4.30). Since u (=sinh a)<<1 and E04:1, the 
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transformation equation after a simple calculation 

gives 

dw = 41cosha-( 2  - 	4  - 	6) cosh 2a-(--7 	)cosh 4a 
c 	6 	2E' o 2  o 	8eo 	o 	4eo 

- -L- cosh 6a- -Lida 6 

	

8E0 	4e4 
... (4?31) 

Substituting eq. (4.30) into eq.(4.28), we have 

00 
-qimpure SNS(costa) °la 	1' da[Cosha- 	C 	C )cosh2a 

o Eo  BE
6 

-(--C-- - ; )cosh 4a- ;6 °s a- 	4 c h6 --C--1 
2E4o  4E6o 	Beo 	4E0  

■ x exp(-2na-n 2d sinha / cose 

= ( -i 
n 
 f7_
,  
2n+1' n  c

2d
o se

)„
' 2n-1(ni2o 

 d 
 ) 

lt 	_L 	) D 	( n 2d  ) - 7' 	2E4 	8e6 	2n+2 	cose 
c , 	o 
+B2n-2(11. tcose 

2d  

i(  4 - 6)D2n+4(  2Eo 4eo 

2d ) 
CoSe l  

, 	2d +B 	to 2n-4 	cose 

2d
(n 	

/
n 
 2d )1] 1752n+6 	co se )4-16, 	k 2n-6 	cose 

B (n 	2d  )1 
A,4 2n` oosel 
"r`o 

(4.32) 

Bm(Z) is again the associated Bessel function defined 
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by equation (4.19). Using the asymptotic expansion 

given by eq. (4.20) we get 

mpure SNS(cose) ) cose-2(2d)2cos2 1 

Eo 

41c4 - -41A 
• • • 4.33) 

From eq.(4.33) and eq.(4.10), we finally obtain 

the following expression for the total supercurrent 

through impure SNS junction: 

impure SNS 	
S

. 	(p) 	-2evF )L [ 	 4(47)1 
2it 

 

x [1 --C (-17 + 14 -- 	S(So) 
o 	‘+e0 	4e o 

where S(0) is given by eq.(4.24). 

Combining eq.(4.34) and eq.(4.25) for the pure 

SNS junction we get 

.impure SNS(0)  
r, 1 	1 

pure SNS uo) 	= LL-C ( 	Te-4 	
1 

co 	4E0 
... (4.35) 

III RESULTS AND DISCUSSION  

(A) Results in Abrikosov-Gorkbv Model 

The important features which emerge using Abrikosov-

. Gorkov Model, are the following 

*ea (4.34 ) 
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(1) It is obvious from eq.(4.26) that the 

barrier supercurrent through the impure-SNS 

junction is nonzero and positive for C< 1 

(low concentration of impurities) and 

decreases with the increase in impurity 

concentration. 

(ii) In the gapless region (w =0) when C;.,1, 

the current becomes zero at C = 1 and becomes 

negative as C is further increased. 

(iii) For C = 0, we get the result, derived by 

Ishii (91) for the pure-SNS junctions. 

(iv) For purely diamagnetic impurities, having no 

localized magnetic moments, there will be no 

spin-flip scattering of electrons by the 

impurities, i.e., T2=co. It then follows 

from eq.(4.13) that u = w/is, implying that 

the frequency and order parameter will not be 

renormalized. In other words, the Green's 

functions will be the same as in the absence 

of impurities. As a result, the diamagnetic 

impurities have no effect on the magnitude 

of Josephson currents through junctions with 

normal-metal barriers. 

We may here refer to a parallel work done by 

by Kulik(97) on the effects of paramagnetic impurities on 
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SIS junction supercurrents who obtained the follow-

ing relation: 

4 1- — C 	 C ̀ 1 37c 
.impure 
JSIS  
.pure 
JSIS 

    

... (4.36) - 

   

 

4 r 7e 1 3_, (I (, _,-2)3/2 7:7 	, 

 

C > 1 

  

;(1-c.2)1/2) '11 

 

      

- 2  tan-1(C2-1)1/2 
u 

It is interesting to note the similarity between 

our result LEq.(4.26)] and that of Kulik Piq.(4.36)], 

The only-difference is in the constant coefficient of C. 

Further, in the case of SIS junctions, the current 

becomes negative for C >f  3u/4. Thus, broadly speaking, 

the qualitative behaviour of the Josephson current 

through SNS and SIS junctions, in the presence of para-

magnetic impurities, is similar in character. 

(B). Results in Shiba-Rusinov Model 

We may 'now draw some important conclusions from 

the calculations in Shiba-Rusinov Model. 

It is evident from the Eq.(4.35) that when the 

conduction electron-magnetic impurity interaction is 
stronimpure SNS g j 	(iv) c4.  depends on two parameters co  and 
C; cc is the renormalized position of the bound state 

inside the energy gap and C is the measure of impurity 
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concentration. Compared to the AG model,Josephson 

current through SNS junction is strongly affected 

when the impurity scatterings are treated in Shiba-

Rusinov model. 

It is important to notice that for c o-)1 (i.e. 

when conduction electron-magnetic impurity interaction 
is weak) equation (4.35) reduces exactly to the 

result obtained in previous section in the 

framework of Abrikosov-Gorkov Model. 

For C . 0 this result (eq.4.35) again agrees 
exactly with that of Ishii (91) for pure case. The 

validity or otherwise of these studies has to await 

future experiments. 
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CHAPTER V 

EF.kECT OF LOCALIZED NONMAGNETIC TRANSITION 
METAL IMPURITIES ON JOSEPHSON CURRENT 

THROUGH SNS JUNCTION 

I. INTRODUCTION 

In the preceding chapter we had studied(94,96) 

the effect of paramagnetic impurities on dc Josephson 

current through SNS junction, using Abrikosov-Gorkov(18) 

and Shiba-Rusinov(23,24) theories. Very recently, Machida 

and Shibata (MS) (43) have studied the effect of 

resonance scattering due to localized nonmagnetic 

transition metal impurities on superconductivity, using 

Anderson model (33) in the superconductors with U=0 (as 

the inclusion of the Coulomb repulsion U does not affect 

the qualitative behaviour of final results (43)). A 

brief description of this theory has been given in 

Section V of Chapter IA. In this chapter we shall apply 

this theory to study the effect of resonance scattering 

due to localized nonmagnetic impurities on dc Josephson 

current through SNS junctions (98). The interest in the 

study of the effect of resonance scattering due to 

localized impurities arises from the fact that there 

appears a bound state inside the energy gap and the 

energy gap vanishes here too just as it does for the 
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paramagnetic impurities (18) 

In Section II, the ratio of zero bias Josephson 

current through the impure SNS junction, to that of 

pure SNS junction, is calculated using MS theory (43). 

This is followed by a discussion of results in Section III. 

II THEORETICAL ANALYSIS 

It has been shown in earlier chapters that in the 

presence of impurities, the Green's function gets renormal-

ized due to the renormalization of the frequency and the 

order parameter. The supercurrent through the impure 

SNS junction is to be calculated in a similar way using 

the expressions (4.15) and (4.10) of Chapter IV. As 

discussed in Section V of Chapter IA, Machida and Shibata 

have shown, that for a small concentration of localized 

nonmagnetic impurities (i.e., for C‹41 or C<‘1) the 

auxiliary parameter u ( = Tsa) appearing in equation (4.15) 

is.given by the following expression 

w 	
u +2 r- ( 	U2  ) 	:) = U +C  2  _ 

-37-7 

... (5.1) 

where all other parameters are the same as defined by 

eq.(1.80) in Chapter I. It is important to note here 

that w has got its maximum value only for values of u 

lying between 0 and 1 (43). 
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Putting u = sinh a , equations (4.15) and (5.1) 

simplify to the following: 

„impure SNS 	 OD 
 

	

(cose) 	(-)111 dw exp(-2na-n d sinha  
in 	 E cose ) 

'e. (5.2) 
and 

1.  
= sinh a (1+C 	 

2 	- sinh2a 	-2 sinh a+21- ( 	2  )_e2  
1-sinh a 

... (5.3) 
Now, the integral over w can be transformed into 

an integral over a with the help of equation (5.3). 

Remembering that u2 (.sinh2a)i<1, equation (5.3) after 
some straightforward and lengthy algebra gives 

dw = bilcosha(1- 	 6 C 	-.LT- 	- 	
r 

2E4 4E 
 

+ 166 r 2)  
_ 	21  L..... 	L r . 

	

+ cosh3a(- 	...-T_ + i . -.-6- - i . --if r" + 71:6 E6 I +  2 E6 I 	) 
e- 	c 	e 

1 	- 	 -2  
16 	1- +1 	r) 

-2 

+ cosh5a\-- T 6 _ 4 6 _ 
+ cosh7a(- 3 16 

  

cosh9a ( - 1 32 2)1 da • • • 5.4) 

Substituting eq.(5.4) into equation (5.2) and 
performing the integration over a, we get: 
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,,impure SNS 
in 	(cosp) A(-)Ti(1- 	+ 	- 	 + 2 	f Ee .2E4 	4E6 	4 E4 

- 2 
- IT 	I 	16 	F )1332n+1(z)+B2n-1(z)/ 

f= 

21 
i(- 	- 4 -4 ' 	IT e 

- 2 . 
F 

	11. 

	

)1 	+B2n-3 ( z )} e 
1 

1 + 7  I 	T E  

x fB2n4.5(Z)+B2n_5(Z)} 

+ '2" (- 	5-2* E 	3  ) f  B2n+7 (z)+332n-7 (414 

1 1 r 
2-(- 	76n[B2.+9 (z)-1-132n_9(z)} 

... (5.5) 

where Z = (n 2d/ cose) and Bm(Z) is the associated 

Bessel function defined by equation (4.19) of Chapter. IV, 

Using the asymptotic form of Bm (z) we get 

impure SNS , 2 
jn  . (cos()) Lizir1 d )cose- 	cos'

0  
id 2d 

2 - 
x[l 	+ + - 	_ 

.E 	e 
... (5.6) 

Substituting eq.(5.6) into eq.(4.10) of Chapter IV, 

we finally get the following expression for the total 

supercurrent through impure SNS junction 
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impure SNS 	 mk 	rl r 	r 
(93) = -(2evF) 	F  [2-(n)- 2  (n) 2 I  s(9) 

2-E 2  

... (5.7) 

where S(0) is the same as given by eq .(4.24) in 

Chapter IV. 

Thus, 

expression 

dividing  eq .(5.7) with 
pure SNS 

(4.24) for j 	(0) 

that of Ishii's 

we finally obtain: 

jimpure SNS(0) 	r, - 2 - 1 3  • 	 - 	+r+ 	- 1: 	1 - -21.] .... (5.8) 4 4 E  pure SNS(0)  

III INTERPRETATION OF RESULTS  

To interpret our results we note that for small 
GEM 

concentration of impurities, C,44,1 and f 1. Further, 
it can be shown that the value of e2  will be far greater 
than unity(43) as the bound state or impurity band will 

be much nearer to the gap edge. Hence, it follows from 

equation (5.8) that Josephson current through SNS 

junction decreases with the increase in concentration 

of localized nonmagnetic transition metal impurities 

(i.e. Resonance scattering). This in fact is an 

expected feature since the density of states decreases 

with the increase in concentration of localized non-
magnetic impurities. We wish to emphasize here that 

this behaviour is completely different from that of 

2 	-  x[i+41-6(1-  -4-i 	1) _ 
4 e-4  
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nonlocalized nonmagnetic impurities, where the barrier 

supercurrent through SNS junction remains unaffected 

by the impurities (94) as has been seen in Chapter IV. 

Further, in the limit C = 0 (i.e., pure case) our 

result agrees with Ishii (91) for pure SNS junctions. 

It shDuld be remarked here that due to very less 

solubility of transition metals in nontransition ones, 

there seems to be no experimental information available 

at the moment for the verification of our results. 
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CHAPTER VI 

FLUCTUATION ENHANCED DIAMAGNETIC SUSCEPTIBILITY 
OF DIRTY SUPERCONDUCTING THIN FILMS 

BELOW CRITICAL TEMPERATURE 

I INTRODUCTION 

The effect of thermodynamic fluctuations of 

superconducting order parameter on various physical 

properties of superconductors in different regions of 

temperature, has been the subject of active research in 

recent years (48,52,56,99-101). These fluctuations give 

divergent contributions to various properties like 

electrical c onductivity, ultrasonic attenuation and 

diamagnetic susceptibility for T )Tc. It is found that 

for T< Tc' the contribution of the fluctuation to 

electrical conductivity is again divergent. In the 

present chapter, we study the effect of fluctuations 

on diamagnetic susceptibility of dirty superconducting 

thin films below T0(102). The calculations have been 

done here within the framework of the phenomenological 

Ginzburg-Landau theory (discussed in Chapter IB), 

which not only yields the same results as the micro-

scopic theory (103-105) but has the advantage of being 

a direct and more general approach. We have chosen 

here a dirty superconducting thin film since fluctuat-

ions show a prominent effect in dirty samples of 

lower dimensions (as is already mentioned in Chap.IB). 



The fourth order term in GL free energy functional 

has been included following the Masker, Marceija and 

Parks model (56). 

Details of calculations for a dirty superconduct-

ing thin film are given in Section II. This is followed 

by a discussion of results in Section III. 

II THEORETICAL FORMULATION 

The phenomenological Ginzburg-Landau free energy 

functional is written as: 

, 4 1 4%:* 	n 
FGLD(}j 	d3rEcif(?)12+ 	f(?) 4- -gni caf — 	A-.)i(?)1 

2 
 

... (6.1) 

The fourth order term has been included here to take 

into account the inter-Action between fluctuation modes 

below Tc' which becomes important as the density of 

fluctuation modes increases. The phenomenological 

constants appearing in equation (6.1) are given by (56): 

t2 1 (T-Tc ) 
a = 

	

	 ; in 2T 
GL (°) 

• • 6.2) 

1 02 70  
= mnleff ... (6.2) 

with tGL(°) being GL coherence length of the dirty 

sample; N, the electron density; and Leff' the effective 

mean free path of the electrons. 
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If we now introduce 

t(r) =Eae 
ir. 	 ... (6.3) 

-b) 

then integration over r in Eq.(6.1), for the case of 

a homogenous magnetic field yields: 

FGL = 	[0.c+E(g;n+ 	a +  	at 	at 	a a 
E?' g 	 -4 .4 

n 	 vyee-,1 	k kA 

where, E(It,n+ i)is the energy of electron states, 

expressed as the sum of translational energy, together 

with the quantization energy of the cyclotron motion 

in the magnetic field, and is given by (106) 

Eolcn 	ty i_ 	=  
1  , ‘mc I 

B 
 

with, n = 0,1, 	 

• • • 6.5) 

In the language of second quantization, a+ 
2 

may be regarded as creation and annihilation operators 

for the fluctuation modes. Since it is impossible to 

calculate the exact partition function when the fourth 

... (6.4) 

order term is in its original form, we resort to the 

approximation scheme as suggested by Masker et al(56). 

For any general state 2described by the occupation number 

n (=at a ) the expectation value of the fourth order 
g 

term is (56): 

k 2  

• 

itzt  , 

= 18,  En 
k 

E 
.6 

+ aQ4  

n 
2 

+ n nee  .... 
1 K 2 

... (6.6) 
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Here, we have now to make a Hartree-like approxi- 

Illation and replace the sum over n .) by its average value; 
k 

thus 

Ln E n 	EL_ n = <j RI 2> n •-•• 7 k k' 	k 	k 	 17  
... (6.7) 

Equation (6.4) now gets simplified to the following 

form 

2 
= 	[a + E(k,n+ 4-) +p <ID >] nk  ...(6.8) 

If we write 

2 
nk  = C(q,k,n) ... 	(6.9) 

(1,1.1 

then C(q,k,n) are to be considered as the expansion 

coefficients of F(?-) with respect to the normalized 

eigen-functions of a particle in a magnetic field (106). 

Then eq. (6.8) takes the form: 

2 

	

FGL = I: 	IC(q,k,n)I [a+E(k' 	2 n+ 1) 

	

k 	
4-P 	

2.] 
> 	... (6.10) 

q, ,n 
 

Now, the Ginzburg-Landau free energy is (-kBT) times 

the logarithm of a restricted partition function in which 

the sumOover states is restricted to those states of 

the whole system in which the order parameter takes on 

the values of a prescribed function p(it). Therefore, 
in order to obtain the unrestricted partition function, 



-100- 

we have to sum up expLFGLABT] over all possible 

f(P), i.e., 

nk T 
Z= [Tr d2C(q,k,n) exp(- A 	

2 
O- TT 	B  

1 q,k,n 	 .k ,n. E(k,n-1)+a-FP <iff > 
The number of single particle states of energy E(k,n+i) 

is eB/iiiC times the cross-section of the sample per-

pendicular to the magnetic field (106). Thus we obtain 

the following expression of free energy 

F = -kBT log Z 
00 	nk BT m  2eB  r dk - 	g 	 = 	*he j  

" n=o 
lo  

 E (k, n4) +a-+13  
... (6.12) 

where V is the volume of the sample. Using Poisson's -

sum formula (106) we obtain the following expression 

for free energy: 

N v  kBTeB co 
F . F(°/  - 	 7- 	 dk ( 1) 

S =J_
8  ntIC 4-, 2n--  

x 
 j

as 

	

	 nkBT 

	

dx log 	cos 2nxs 
o 	E(k, x) + a + p C if1 2) 

(6.13) 

where F(0)  is the free energy in the absence of a 

magnetic field. The integration over x can be done 

by parts twice and in the limit of small magnetic field 

is approximately given by 
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co 

26tB 	1  I dx mC TK2t2+  a 	
1  

p c:1W>  (2n5)2  
(6.14) 

-o 

For a film of thickness d smaller than the coherence 

length and in a magnetic field 	to the surface of 

the film (where the integral [ dk/2n can be replaced 

by 1/d(k=0)) we finally get 

F = F(°)+V 	kBT  
48n2md 

2 

  

6.15) 

 

a+P <IC 2> 
• • • 

It can be easily seen following Masker et al 

(56) that for a dirty thin film in a magnetic field 

2412d  (a-E(0,0+ i)) 
a + p 	eitp(mkBT  )... (6.16) 

Substituting expression (6.16) in eq.(6.15) We get 

finally the expression 

0,0+ .-.) -a) 
F F(°)+V--17--( P-)2  exp(2412d 	 mkB 

	(6.17) 
P 48n -md 

for the free energy. 

The diamagnetic susceptibility is now easily 

calculated from the well known formula 

1 d2F 
?(' 	- TT dB 

and we get 
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1  E  2e2 4e2 2412d et 
= 	2 	

31k T mc 	
B) 

48n and C 	C
2 	.B 	p 

e2 2412d  AB 2 	2412d A + 2 (mimr- 073) "p (m377 117- B) BT  
2,,,t 2d 	t2 	(Tc-T) x exp (;"11, 	 T  B 	2mp 2 (o) 

, 	( 6 .17 ) 

The The above expression can be rewritten as 

exp[s.(Te-T)] 

where, 
2e2  4e2 	4-2, 	+ 

= 	12 	r- a7 	17 ( M'Tun  T a 	MICip B)  48n and 	C 	C 	KB 
e2  2fit2d AB 2- 	2 Ai 2d AB\ 

	

( 	)70-T)_  P ( mkBT mCp 

	

21ed 	 

	

mkBT 	2m13 2 ( o) 

and 

. . . (6.18) 

... (6.19) 

... (6.20) 

It is evident from eq . (6.2) , that both14,0  and X 

are positive and independent of ( Tc-T) , 

When the demagnetization effects, which are very 

important for a thin film in a perpendicular magnetic 

field (107),. are included, the susceptibility 1)(,' is 
-1 

given by )6= X' (1+40,' ) 	with X,  defined by eq . (6.18) . 

Thus, 

1 

  

6.21) 
1 exp [-X( Tc-T )1 + 47] 
Alo 

• • • 

1 

The factor expf-X(Tc-T) / % in the above equation 
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has been estimated for an aluminium film of thickness 

d = 170 A°  at T = 1.0°K and in a magnetic field of 

50 Gauss. Its value was found to be -7,"i4.3x10-12 

At T = 0°K, the diamagnetic susceptibility 7(,. 1 = 	43t  

while at T = Tc, it has got a finite value. 

III RESULTS AND DISCUSSION 

We .find that the fluctuation enhanced diamaglic 

susceptibilityV increases with the decrease of 

temperature approaching -1/4n at T = 0°K and remains 
finite at T = To . This behaviour of diamagnetic 

susceptibility (arising due to fluctuating Cooper 

pairs) is quite similar to the behaviour observed in 

fluctuation enhanced electrical conductivity of dirty 

superconducting thin films below To  (56). Hence we 

conclude that fluctuations of order parameter give an 

appreciable contribution to the various properties 

of superconducting thin film below To. 
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CHAPTER VII 

EFFECT OF FLUCTUATIONS ON DIAMAGNETIC SUSCEPTIBILITY 
AND ELECTRICAL CONDUCTIVITY OF ZERO DIMENSIONAL 

SUPERCONDUCTORS BELOW CRITICAL TEMPERATURE 

I. INTRODUCTION  

In the preceding chapter we had discussed the 

effect of fluctuations on diamagnetic susceptibility 

of a dirty superconducting thin film below Tc, using 

phenomenological Ginzburg Landau theory. In recent 

years, there has been great interest in studying the effect 

of fluctuation on various superconducting properties 

of very small dimensional superconductors both above 

and below Tc(108,109,110). For example, Parkinson(108) 

has calculated the specific heat of zero dimensional 

superconductors using Ginzburg Landau theory, and an 

exact thermal averaging procedure. In this chapter 

we extend this work and study the contribution of 

fluctuations to diamagnetic susceptibility(111) and 

electrical conductivity(112) of zero dimensional 

superconductors below critical temperature. Fluctuatiorl 

enhanced diamagnetic susceptibility of zero dimensional 

superconductor has also been studied earlier(109) but 

with an altogether different and tedious functional 

integral method. In this particular case, the two 

approaches yield an identical behaviour. Details of 
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calculations have been given in section II. The 

results are discussed in Section III. 

II. THEORETICAL FORMULATION 

(i) Fluctuation Enhanced Diamagnetic Susceptibility  - 

The usual Ginzburg-Landau free energy functional, 

in the presence of a magnetic field below Tc  is given 

by Eq .(6.1) in Chapter VI. Fourier transforming  eq . (6.1), 

one gets: 

FGL = E (a+B(Itn+ i))17402-+ 11112Vk34 1,n 

where 3'=p1r1  and E(2',n+ i), a and p are the same 

as given by Eqs. (6.5) and (6.2) in Chapter VI. Here, 

the prime on the summation implies that it142=VP3+1174. 

For a rectangular specimen of sides l'X2'f3 the 
-3) 	 211n 1 components k are given as, for example,kx= -7-"- where Ai  

n1 is any integer. Thus, for a zero dimensional sample 

(i.e., a sample of very small dimension), significant 

fluctuation effects will be prominent for k=0 states 

only. Further, we presume that only n=0 Landau level 

will contribute to free energy on account of very 

small size (comparable to E0- the coherence length of 
the superconductor). Keeping  all these facts in view, 
the expression (7.1) for Free Energy functional reduces 

... (7.1) 

to, 



where, 
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F(°
GL

)  - - (a+ 	B) x 	1  7 x13 ' 2 
	 ... (7.2) 

= ivo i 2 	 ... (7 .3) 

Now, the average value of free energy is given by 

65 
<>"11(°

GL 	 mC
)> = (a+ 	B) <x> + ip t  <x

2
> ... (7.4) 

The average value of x can be calculated from 

eq.(7.2) by weighting the fluctuations with the free 

energy associated with them in the following usual way: 

x > = T x exp f-FL,)/ kBTI dx o   

... (7.5) 
OD 

jr exp 	
GL 

-F(°)/ k
B

T 	dx 
.  

Substituting Eq.(7.2) into Eq.(7.5) we have 

oo 

x expg-(a+
mc 

 B)x - 1p ' 21 x 
<x> _ 	  

 

rexp[f-(a+ 	 i B)x- Vx21 / kBT] dx 

... (7.6) 

These integrals can be performed analytically very 

easily and in the limit of small magnetic field we 

	

(a+ B\ 	
expE 	 2612a- , 

B)/k T 

X> = 	MC   / 	KBT6, 	
mC 	 B 131 

13 1 	1— 	(a+ -"B) _1-27c FE 	1 	(a+ et 
13  --57BTP 	177 )1  

... (7.7) 

obtain 



BTU 	
Fr 	_(a+ 	B) 

-777'  
2 26h (a + 0-aB) 
	 + 11 

kB 
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‹x2> can similarly be calculated 

and we obtain 

<PGL)> 	k  

1, et.B\ expE fka2 2A  + —Eu  aB.)/kBTp 
mc / 

... (7 .8) 

where'F stands for normal probability function and we 

have assumed that the magnetic field is small so that 

the second order terms may be neglected. 

The total diamagnetic susceptibility is calculated 

from the formula 

Xtotal = 	= 

a2.7.„
C4-1.J
(0)., 

` j:  

aB2 ... (7.9) 

where V is the volume of the sample. 

Using equations (7.8) and (7.9), we finally obtain 

Itotal = 	
[8_ 
F D-ED 

c,2(a+ 	121Cc If 

2E 	
D2 	 exp[ (C '134- 	+EDD)] j  

F2 (-D-EB) Tc 

t 	ED +C x e  - (7- +C') (a+ EB) C ' 

E2 exp[=(C'D+D2+2EBDO 
T F3 ( 	

(a+ 
-D-EB) • 

---- Eu  

• • • 7.10) 
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+ 
kBT 

Irimtp _173.  
2 
j 

where, 

A = —1-- exp 
21217  

... (7.11) 

eta C 1  . 017717  • • • 7.12) 

D 

  

a 

 

... (7.13) 

... (7.14) 

    

 

k Tp,  

eti  
mOrTITT B 

We have estimated `total for an aluminium 

sample of volume 1.25x1016 cm3 for different values 

of temperature below Te (Tc=1.2°K for 40 and in a mag-

netic field of 0.2 Gauss. The phenomenological constants 

a and pt are taken to be the same as in Ref.(108). A 

semi log plot of litotai  versus (T-T0 ) is shown in 

figure (7.1). 

(ii) Fluctuation Enhanced Electrical Conductivit 

We shall now calculate the effect of fluctuations 

on electrical conductivity of zero dimensional super-

conductor below Tc following again the same exact 

averaging procedure of Parkinson(108),It is easily seen 

from eq. (7.2) that in the absence of magnetic field, 

the Free Energy functional for a zero dimensional super-

conductor is given by 
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(o 
FGL ) = alf 

2  
ol 	iP14-01 

4 
 ... (7.15) 

Using the exact averaging procedure (108), the 

average value of IVo
2 
is given by 

2. 

	

<Ivo' ›.= 	fT(1- th(q)) 	

▪ 	

(7.16) 

where, 	
exp(- 12  ) 

	

h(q) -  	

• 	

(7.17) 
177 F( -q) 

a 

TT' 

and F(-q) is the normal probability function. 

The fluctuation enhanced electrical conductivity 

a' of zero-dimensional superconductor is given by the 

expression 

e2 6 = n 0 M 0 0 .. (7.18) 

2 
where no = o I > and To is the relaxation time for 

the zero dimensional superconductor. 

In order to calculate To we write the time 

dependent Ginzburg-Landau equation for the order para-

meter Vo(X,t) as 



nt3  

16mkBT 	a+13 < Vol 2> 
1 ... (7.21) 
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"§"f Ilro(X,t) = (a+P I  <I/01 2> ) 1110(X,t) 	... (7.19) 

where, 

y 	lit2/16 mkBT 	o)] has been calculated 

in Ref.(114). 

Assuming the following functional form of Vo (x,t) 

V0(x,t)40 (x)e-ti'0 	 ... (7.20) 

we get for T
o' 

the expression 

Combining equations (7.16), (7.18) and (7.21) we obtain 

the desired expression for the fluctuation enhanced 

electrical conductivity of zero dimensional super-

conductor below T to be: 

aO = 	h 	2 	[- 

	

16m kB 	(o) 
2 

727 
 

qF(-q) exp(t)] 	(7.22) 

III RESULTS AND DISCUSSION 

The following interesting features emerge from 

the above two calculations: 
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(1) Diamagnetic Susceptibility  

In this calculation, firstly, the fluctuation 

enhanced diamagnetic susceptibility.24otal has a 

finite value at T=Tc and it increases exponentially 

as T decreases (as seen from Fig.7.1). This behviour 

is qualitatively in agreement with"the previous work 

of Takayama(109) who had obtained a similar behaviour 

using an altogether different technique viz. the 

functional integral method. A similar behaviour is 

also observed in both the bulk samples (115) and thin 

films(102). Secondly, it also seems that  'total does  
not increase so sharply in the region farther away 

from Tc  as it does in the vicinity of Tc. 

(ii) Electrical Conductivity 

Similar to the case of 'X'total' aO also increases 
sharply with the decrease of temperature below Tc  

A exponentially and is proportional to exp [ T(Tc-T)1 , 
where A is a ccnstt. (Note that this particular contri-
bution to a' dominates over the first contribution 

which is inversely proportional to T). This is remini-

scent of the physical observation that the fluctuation 

shows pronounced effects in the physical superconducting 

properties when the dimensionality of the superconductor 

is lowered. For example, in one- and two-dimensional 
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superconductors(56), a' have the following dependence 

on (Tc-T), namely, a'a -E
3 and a'a exp(-eT c/c T) 

[EC is a sample-dependent parameter andT-T /TI] c c 
respectively. 

We have to await future experiments to check 

the validity of these calculations. 



0 

- -1010  

-10-13 	 ______ 
- 0.10 	-C.08 -0.06 	- 0.04 	-0.02 0.00 

(T- TT) in °K 

FIG.7.1_  A Semi - log plot of Ztotal versus (T-Tc) for a small aluminium 
sample of volume 1.25x 1016  crn3. 
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The effect of fluctuating Cooper pairs on the diamagnetic susceptibility of dirty superconducting thin films is in- 
vestigated, for temperature T< Tc. The susceptibility decreases with the decrease in temperature, approaching —1/4ir 
at T = 0°K and remains finite at T = T. 

The effect of fluctuations of the order parameter 
on various physical properties of superconductors in 
different ranges of temperatures, has been the subject 
of active studies in recent years [1-6]. These fluctu-
ations give divergent contributions to electrical conduc-
tivity, ultrasonic attenuation and diamagnetic suscep-
tibility for T > Tc. For T < Tc , the contribution of the 
fluctuation to electrical conductivity is again divergent. 
The purpose of the present letter is to study theoreti-
cally the effect of fluctuations on the diamagnetic sus-
ceptibility below Tc, using the phenomenological ap-
proach as followed by Schmid [5]. 

The Ginzburg-Landau free energy functional is: 

FGL (0] = f d3r [a 4012  + -10 1*(614  

2e 
+2m  1

(h V — 	0121 

Here the fourth order term has been included to take 
into account the interaction between fluctuation modes 
below Tc  and the phenomenological constants a and i3 
are given by [6]: 

a=— 	 
2m 61.,  (0) 	Tc 	yr"' ieff 

h2 	1 	T— T 	IO2h2 	(2) 

with er  being GL coherence length;N the electron 
density and /eff  the effective mean free path of the elec-
trons. 

If we now introduce 

'Y(r) = E ak exp(ik"r) 
	

(3) 
k 

then integration over r in eq. (1), for the case of a ho-
mogeneous magnetic field yields: 

+ 1)] 	ak  + FGL=E (E  
k,n 

÷ 	+ 	+ ak +Q  akt_Q  ak  ak, 
k,k,Q 

(4) 

where, 
(h2 k2/21n)i- in  E (k,n + 	 k 	(2ehlmc)B 	(5) 

with n = 0, 1, . . . 
In the language of second quantization, a and ak  

may be regarded as creation and annihilation opera-
tions for the fluctuation modes. For any general state 
described by the occupation number nk  (= a ak) the 
expectation value of the fourth order term is [6]: 

=13 E nk  E nk, din Li nk,  = (3(h1;12) E nk. (6) 
k 	k' k 	 k 

Eq. (4) now gets simplified to the following form 

E [a 	(, n + f) + 1412)] n FGL = 	+ Ek 	3( k' 	( 7 ) 
k 

If we write 

nk  = E Ic(q, k, n) 12, 	 (8) 
q ,n 

then c (q, k, n) are to be considered as the expansion 
coefficients of xlf (r) with respect to the normalised 
eigen-functions of a particle in a magnetic field [7] 
and eq. (7) becomes 

FGL = E  lc (q, k, n)12  [a + E (k, n +-1-)+ 13( 412)] (9) 
q,k,n 

     

(1) 
(..nk2 nk1 

 

E 4+, Q  ak  ak, n n ..) k 1  .2 -.  
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The partition function is 

Z =in d2 (q, k, n) exp [—FGL  /kB  T] 
q,k,n 

77 k BT 
= 

E(k, n +1) + a + ( 4/12) • 	
(10) 

The number of single particle states of energy 
E(k, n + -D is eB17rhe times the cross section of the 
sample perpendicular to the magnetic field [7]. Using  
Poisson's sum formula [7] we now obtain the follow-
ing  expression for the free energy ;  

kBTeB 
F = —kBT in Z = F(0) V 	dk 

whe E — (-1Y J 27r s=i 

kB T cos 27 xs 
X 	dx In  	 (11) 

0 	E(k, x) + a + 13 ( 1x1f12) 
where F(0) is the free energy in the absence of a mag-
netic field. For a film of thickness d smaller than the 
coherence length and in a magnetic field perpendicular 
to the surface of the film, (where the integral f dk127r 
can be replaced by 1/c/ (k = 0)) we finally get 

B  T e  
F = F(0) + V  kB 
	

(12) 
487r2 and c 	a+ 13(1T12) 

Now, for the dirty film in a magnetic field [6] 

a + [3 (414 kBT expr 27rh2d a—E(0,  0 + 11(13) 
LinkB  T 

Using x  = —(1/V) 

1 
487r2 and 

X [ 2e2 + 4e2 2rrh2  ehB)+ e2 2702 ehB 2  
c2 	(.. -2 mkBT mcf3 J c2 mkBT meg 

	

27rh2 ehB 	27r 
X exp ( 

mkBT mc 
	 —} • exp 

	

f3 	

(  h 2 	h 2 	Tc— T 

mkBT 2Min2(0) Te  
(14) 
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It now follows from eqs. (2) and (14) that 

X = —x0  exp [X (Te —T)] 	 (15) 

where x0  and X are positive and independent of (Tc—T). 
When the demagnetisation effects, which are very 

important for a thin film in a perpendicular magnetic 
field [8] are included, the susceptibility x' is given by 
X= X' (1 + 470-1 with x  defined by eq. (15). Thus, 

—1 exp {—X (71_7) + 477} —1 (16) X0  

The factor exp {—X (Tc—T)} /x0  in above equation 
has been estimated for an aluminium film of thickness 
d= 170A at T = l.0°K and in a magnetic field of 50 
gauss and is 4.3 X 10-12. At T = 0°K, the diamag-
netic susceptibility x' = —1/477. 

Thus, the diamagnetic susceptibility x' decreases 
with the decrease in temperature, approaching  —1/47r 
at T = 0°K and remains finite at T = Tc. However, an 
experimental check of our calculations must -await 
future experiments as no such data is available at the 
moment. 

The author is thankful to Council of Scientific and 
Industrial Research, India, for the financial help and 
Dr. S.N. Gupta for a number of enlightening  discussions 
and suggestions. 
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The ratio of zerobias, zero temperature Josephson current through SNS (superconductor-normal metal-super-
conductor) junction containing  paramagnetic impurities with local states within the gap, to that of the pure-SNS 
junction, is studied and found to be 1 —i*[(1/4)+ (1/4 et) —(1/4 es)]  , where t' is a measure of impurity concen-
tration and eois the normalized position of a local state within the gap. 

In earlier paper [1] , a study was made to investigate the effect of paramagnetic impurities on zero bias 
Josephson current through junctions with normal metal barriers at T = 0°K, using  Ishii [2] and Abrikosov-Gorkov 
theory [3]. However, Abrikosov and Gorkov have assumed a weak interaction between the conduction electrons 
and the magnetic impurities and thus treated the exchange scattering  in the lowest order Born approximation. On 
the other hand, Shiba [4] and Risonov [5] have generalised the A-G theory assuming  that the interaction of the 
conduction electrons with the magnetic impurities is strong, and show that an exact calculation leads to the ap-
pearance of local states within the gap. The object of the present paper is to generalize the result obtained in ref. 
[1] and we calculate the ratio of the zero temp, zero bias Josephson current through impure SNS junction con-
taining  paramagnetic impurities with local states within the gap, to that of pure SNS junction, using  Shiba-Rusinov 
model. 

For isotropic scattering, Rusinov Green's function of the superconducting  alloy, averaged over the positions and 
spin directions of the impurities, is given by 

G (P,w)= [i (.7.) p3  -e + a pi  03]71 	 (1) 

where the renormalized frequency (.75 and the renormalized order parameter X for impure superconductor are re-
lated to that for the pure, through the following  equation 

co/1 = u [1 4(1 —u2) 1/2 (66 — u2)-1 	 (2) 

with u = 	=1/7 2  A =[27rN(0)0] (1—c) and e0  = cos (5+ — 5—)  0  
Here T2  is the time taken by an electron spin to flip during scattering, C1  is the concentration of the impurities, 

5± are the phase shifts describing  the scattering  of an electron by the impurity with orbital momentum 1=0 and 
spin projections ± z in normal metal,N(0)=mpF /21r2 (pF  is Fermi momentum) and e0  is the position of the bound 
state inside the gap arising  due to the strong  scattering  of electrons by the magnetic impurity [6]. 

Following  Ishii [2], it has been shown in ref. [I] that the total supercurrent through the impure SNS junction 
is given by 

2 	co 	1 	... 
,. impure SNS (0)  = tie 	( 44.)  E sin n0 f dcosOf 7 impure SNS (coo  , )&4) ' T=0 	

L 11 
 (2702 	n=1 	0 	0 

with 
T  impure SNS (coo)  f dco[u—(1+u2)1/2 

exp (— 2d  11 
u—(1+u2)1/2 	case 0 

where 4:), L 11  and have been defined in ref. [2]. 
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We shall now apply the Shiba-Rusinov model to calculate Josephson current through inpure SNS junction with 
the help of eqs. (3), (4) and (2). Putting u=sinh a, eqs. (2) and (4) reduce to the following: 

cla) exp (-2na—n impure SNS (cos° f 
' n 	

2d sinha) — • 

0 	 cos0 ) 

and cJJA = sinha [ 1 —q1 —sinh2a)1/2  (€13  —sinh2a)-1] 

The integral over w in eq. (5) can be transformed into an integral over a with the help of eq. (6). Since 
u2 (=sinh2a) -< 1 and e6 < 1, the transformation eq. after a simple calculation gives 

= A cosh a — 	 cosh 2a — 	= 	cosh 4a — --L.  cosh 6a da  4 o 	 4 6 	 6 	 4 
. E2 2e  ge  

	

0 0 0 	?c 4e 0 	0 	8e 0 	 0 

Substituting eq. (7) into eq. (5), we have 

1 n 

2 

impure 

1 ( 

1 	 2d  SNS(cose) = A( 
2[--'2n+le tcose) 	D 2n-1 

2d \ 
(n 	+ B2"-2  (rz  

2d 

I n 
c20ds  ) 

2d 
k2.n+2 

	

\ €2 	2E4 	ge6 	 cos 0) 

	

0 	0 	0 

	

1 	 2,d 

	

[ 	 + B   32n+6 (n  	( n  	2d   
)] cosO) 	cose   1 j 

cos8)] 	2 (2e4 	4e6)[B2n -1-4( 	)+B2n-4(n 	c206  cos(9 

	

0 	0 

  2d  \I.  
B2n (n 

0 )] 

(8) 2 SE6 	 2n—  6 
0 

  4e41:1)   	cos()) 

Bm  (Z), the associated Bessel function, has the well known asymptotic behaviour 

Bm  (Z) 	11Z — mIZ2  + ..., 	I Z.I --). c.) 
	

(9) 

Using eqs. (9), (8) and (3), we finally obtain the following expression for the total supercurrent through SNS 
junction 
jimpure SNS (co  , 2evF  (mp F  /27r2) A [ i  (i;/2d ) — s (V2d)2  ] [1 — (14 + I Met — 1 /41)] S (0) 

pure SNS(  where, S (0) = 2 E:1(-1)"+1  sin nP/n. Combining eqs. (10) and Ishii's expression for j 

j  impure SNS (01 j  pure SNS (0)  _ [1 	1/4e 	/41)1 	 (11) 

It is important to note here that when the conduction electron-magnetic impurity interaction is strong, 
impure SNS(0) depends on co — the renormalised position of the bound state inside the gap. For c -4. 1 (i.e. when 

conduction electron-magnetic impurity interaction is weak) eq. (11) reduces exactly to the result obtained in ref. 
[1], derived in the framework of A-G theory. Further, for =0 this result again agrees exactly with that of Ishii [2] 
for pure case. As has been pointed out earlier [1], there is no experimental data available at the moment for the 
verification of the aboven result. 

One of us (P.K.) wishes to thank the Council of Scientific and Industrial Research (India) for the financial help. 
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The effect of fluctuations of superconducting order parameter on the diamagnetic susceptibility x of a zero 
dimensional superconductor is studied below Tc, using the phenomenological Ginzburg—Landau theory. x is 
found to increase exponentially with the decrease of temperature below Tc  and has a finite value at the critical 
temperature. 

In the past few years, there has been great interest in studying the effect of fluctuations of superconducting 
order parameter on various superconducting properties of small dimensional superconductors both above and 
below Tc  [1-4] . Very recently, Parkinson [1] has calculated the specific heat of small dimensional superconduc-
tors using Ginsburg—Landau theory and exact thermal averaging procedure. We extend this work and study the 
effect of fluctuations on the diamagnetic susceptibility of zero dimensional superconductors below Tc, which has 
also been studied [2] earlier but with an altogether different and tedious functional integral method. In this 
particular case, the two approaches yield an identical behaviour. 

The usual Fourier tranformed Ginzburg—Landau free energy functional, in the presence of a magnetic field 
below Tc, is written as [1, 3] : 

, ni-1))1 4, 12  +Lf  FGL =E (a+ E(k 	k 2 	 k4 	 (1)  
k,n 

where 0' = OV-1  and the prime on the summation implies that k1  + k2  = k3  + k4  and 

E(k, n-1-) =h2k2,,, zm + (n +i) (2AI mc)B; n = 0, I, 2,... . 	 (2) 

For a zero dimensional sample (i.e. a sample of very small dimension), significant fluctuation effects will be 
prominent for k = 0 states only [1] . Further, we presume that only n = 0 Landau level will contribute to free 
energy on account of very small size (comparable to o, the coherence length of superconductor). Keeping these 
facts in view, the free energy reduces to 

FO) GL = (a+ehlilmc) x+4orx2 ; x 
I o' 

12 
• 	 (3) 

It is easy to show that the average value of free energy is given by 

(F t2,) = k B 
 T {(a+ eh Blmc) exp [4(a2+ 2eh aBlmc)I kB  TO'] 	a2  + 2eh 001 mc  4. 1 ] ,  (4) 

-V2r1cB T0' 	F [—(a+ eh Blmc)I -■147.13 	kB Tf31  

where F stands for normal probability function and we have assumed that the magnetic field is small so that second 
order terms may be neglected. 

The total diamagnetic susceptibility is defined as 

Xtotal= Xr 	
2a (pttiaB2 	 (5) 

where V is the colume of the sample. 
Using eqs. (4) and (5), we get 
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A 
exp  [—CB]  {c,2  ( 

eh B/ 
Xtotai 	L A—D—EB) 	mc  

X ell (ED _vc„ (01+  eh 
 jj

+E2 
me 2 \ MC 	 rr 

2eh 	exp [— (CB +D2/ 2 +EBD)] 
me 	\Fir 	F2(—D—EB) 

exp[—(C1B+D2+2BEN (.1+  eh  B)]; 
F3  (—D —EB) 

(6) 

A = exp [— a2/(21‘13  T13')] Pci3  T)/Ol I(2 \/27r) ; C'  = ehalmck13 	; D = al NAB TIT and E = ehlmcNIkBTOr  

We estimate xtotai for an aluminium sample of volume 1.25 X 10-16  cm3  for different values of temperature 
below Tc(Te  = 1.2°K for Al). The phenomenological constants a and 13' are taken to be the same as in ref. [1] . 

A semi log plot of xtotat versus (T— Te) is shown in fig. 1. We note few interesting features of the present cal-
culation. Firstly xtotai has a finite value at T = T c  and it increases exponentially as T decreases. This behaviour is 
qualitatively in agreement with the previous work of Takayama [2] . A similar behaviour is also observed in both 
the bulk samples [5] and thin films [3] . Secondly, it also seems that xtotai does not increase so sharply in the 
region farther away from Te  as it is in the vicinity of T. 

• 
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We are also thankful to Dr. S.N. Gupta for the fruitful discussion and critically reading the manuscript. 
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Fig. 1. A semi-log plot of xtoto  versus (T --TT ) for a small 
aluminium sample of volume 1.25 x 10-16  cm3. 
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