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(1)

RE S UME

The theoretical explanation of the phenomenon of
superconductivity, based fundamentally on Cooper's idea
of the formation of bound singlet-pairs of electrons
near the Fermi surface under the action of phonon inter-
action, demands the existence of a spatial correlation
between electrons at a distance of order EO(A410_4 cms,
the coherence length) and of a superconducting order
parameter governing the phasé transition at the critical
temperature. In an alloy, the electrons get scafterq@
by impurities and since‘this scattering takes place at
arbitrary angles, the correlation between electrons is
very sensitive to the scattering process.'Thus impurities
must affect the properties of o metal in superconducting
state. Different types of impurities, even when present
in small concentration, have different effects on super-

conducting properties.

Furthermore, the order parameter governing the
superconducting phase transition may have some thermal
fluctuations in the region around the critical temperature.
These thermal fluctuations cause in turn the Cooper .
pairs to fluctuate and thus drastically modify some of
the superconducting properties. These fluctuations
have been found to have a pronoﬁnoed effect in dirty

specimens of lower dimensions.
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The present thesis embodies some theoretical
infestigations on 'Impurity and Fluctuation Effects
in Superconductors'. We have compared our results with
experiments whenever the~experimeptal data is available.
The thesis is divided intc seven chapters. Chapters II-V
deal with the‘impurity effects in superconductors while
the fluctuation effects in superconductors have been

discussed in the last two chapters.

In the first chapter, a brief review of different
~theories of impurity and fluctuation effects in super-
conductocrs is presented, introducing basic facts and

the mathematical techniques which have been used in the

later six chapters.

In the seccond chapter, effects of nonﬁagnetic
impurities on electronic thermal ccenductivity of super-
conducting transition metals (1ike Nb) has been studied
using the Suhl-Matthias-Walker (abbreviated as SMW) two
band model. Calculations have been carried out in the
strong intraband electron-phonon coupling limit. Both
the interband and intraband impurity scattering have
been taken intc account. The interband impurity scatter-
ing collision time Tyq S taken to be 2 10712 sec.
Thermal conductivity is found to decrease with the
increase in impurity concentration and has got a single
slope when plofted with respect to temperature. The

results are found to be in agreemeanqualitatively with
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the experimental results of Anderson et.al. This study

provides a strcng support for the validity of the SMW

two band model (i.e. twc energy gaps in Niobium).

The third chapter deals with the study of thermo-—
magnetic éffects in dirty transition metal superconductors
(containing nonmagnetic impurities) in the vortex state
near the upper critical field and in the temperature
region Tcé<"T<fTCd (:TC). We find that there is an
anomalous increase in d-band thermomagnetic effects, due
to interband impurity scattering, just in the vicinity
of upper critical field, when the temperature region is
restricted to Tcs< Tﬂch. These results are analogous
to those of Chow on Hall Effect. The results cbtained
by Caroli et.al. for the one d-band superconductor

become a particular case of our general study.

The fourth chapter pertains to the study of the
effects of paramagnetic impurities on Josephson current
through SNS junctions. This study has been done both in
the framework of Abrikosov-Gorkov theory (which treats
the eichange interaction in lowest order Born épproxima—
tion) and Shiba-Rusinov theory (which takes éare of
higher order scattering and deals with the classical spin
case). This study'is more generalg the theoretical
results obtained by Ishii for the pure case, follow
in a natural manner frcm ocur results. In Abrikosov-

Gor'kov model, the tunneling current is found to decrease
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the experimental results of Anderson et.al. This study

provides a strong eupport for the validity of the SMW

two band model (i.e. two energy gaps in Niobium).

The third chapter deals with the study of thermo-
magnetic éffects in dirty transition metal superconductors
(containing nonmagnetic impurities) in the vortex state
near the upper critical field and in the temperature
region Tcé<”T<chd (:Tc). We find that there is an
ancmalous increase in d-band thermomagnetic effects, due
to interband impurity scattering, just in the vicinity
of upper critical field, when the temperature regioﬁ is
restricted to Tcs< T<TTC. These results are analogous
to those of Chow on Hall Effect. The results obtained
by Caroli et.al. for the one d-band superccnductor

become a particular case of our general study.

The fourth chapter pertains to the study of the
effects of paramagnetic impurities on Josephson current
through SNS junctions. This study has been done both in
the framework of_Abrikosov—Gorkdv theofy (which treats
the eichange interaction in lowest order Born épproxima—
tion) and Shiba-Rusinov theory (which takes éare of
higher order scattering and deals with the classical spin
case). This study is more general; the theoretical
results cbtained by Ishii for the pure case, follow
in a natﬁral manner from cur results. In Abrikosov-

Gor'kov model,the tunneling current is found to decrease
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with the increase in impurity .concentration for T 1,
but in the gapless regicn (wg=0) when > 1, the current
is zero for { = 1 and then becomes negative for {y1.
However, when the current is calculated using Shiba-~

impure 4., sPUTre ;o 340

Rusinov model, the ratio of J
found to depend on e_ (the position of localized state
within the gap) in addition to £ (a measure of impurity

concentration).

In Chapter V, we again study the Josephson currenf
through SNS junction but now in the presence of localized
nonmagnetic transition metal impurities. The calculations
have been done in the framework of Machida-Shibata
theory. The ratio cf the barrier supercurrent of impure
SNS junction to that of the pure one, is found to
decrease with the inbfoase in impurity concentration. This
behavidur is entirely different from that of nonlocalized
nonmagnetic impurities where this ratioc is exactly equal
to cne. At £ = 0O (which is a measure of impurity concentra-
tion) Ishii's result for the pure case follows from our

more general study.

In-the sixth chapter, using phencmenoclogical
Ginzburg-Landau theory, we have investigated the fluctua-
tion enhanced diamagnetic susceptibility of dirty super-
conducting thin films below the critical temperature.

The fcurth order term in the GL free energy functional

is included using Masker et.al. model. The diamagnetic
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CHAPTER-I

INTRODUCTION

A. IMPURITY EFFECTS IN SUPERCONDUCTORS

(I) Statement and Importance of the Problem

The past two decades have witnessed an enormous
activity, both theoretically and experimentally, in

 studying the effects of impurities in different fields

of Physics from different view points. Impurities give
rise to new effects in the host lattice which are easy

to investigate, and help us in obtaining a great deal of
valuable information. They play a leading role in finding
Qut various thermodynamic and transport properties of

"metals. The studies of impurity éffects thus help us in

understanding the various complexities of many body

problems in solids.

In the normal state, it is well known that these
lattice defects i.e. impurities lead to the existence of
residual resistanée of metals. In the superconducting
state (i.e. a state of infinite conductivity and perfect
diamagnetism etc.), the impurities play an entifely diff-—-
erent andbcrucial role. This problem of impurity effects
in superconductors has been extensively investigated,
both theoretically (1-5) and experimentally (6-9). Based
on Cooper's idea (10) about the formation of bound

singlet pairs of electrons near the Fermi surface under
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susceptibility is found to increase sharply with the

decrease of temperature below Tc.

Lastly, in Chapter VII, the problem of fluctuation
effects in zero dimensional superccnductors is dinvestigated.
We have studied the fluctuation enhanced diamagnetic
susceptibility and electrical conductivity of zerc
dimensicnal superconductor below T,. Calculations have
been carried ocut, using again the phencmenological
Ginzburg-Landau thecry. It is found that both the dia-
magﬁetic susceptibility and electrical conductivity,
increase more sharply with decrease of temperature, in
contrast for the samples'of higher dimensions, These
results are ccnsistent with the experimental observat-
ions that fluctuations strongly affect superccnducting

prcpexrties in lower dimensions than in higher ones.
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the action of phonon interaction, Bardeen, Cooper and
Schrieffer (11) successfully derived the electrodynamics
of superconductors. This theory yielded a non-local
character of the connection between current and field
for the majority of pure superconductofs. This nonlocal
connection demanded that the dimensions of the bound pairs
cause an existence of a correlation between electrons at
distances of the order of £d~10°4 cms. It thus follows
that the interactions between the electrons in a super~
conductor cause a definite spatial correlation between
them. Put differently, we can say fhat the dependence of
the various Green's functions in the coordinate representa~
tion on their spatial  arguments at distances of order o
i.e. size of bound pair, undergces an essential change
when the metal mskes a transition from the normal to
superconducting state. In an allcoy, the electrcns are
scattered by the impurities, an& since this scattering
takes place randonly, énd as the scattered eleétrons
have very small wavelengths, the correlation or coherence
between the electrons is extremely sensitive toc the
scattering processes. This means that impurity scatter-
ing must decrease the spatial coherence between the

electrons.

The impurities have got a little effect when present
in very low concentrations, but an increase in the concen-
tration leads to a decrease ,in the ccherence distance of

thé electrons in the superconductor. At sufficiently
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high impurity concentrations the rocle of the coherence
length £ is taken over by the mean free path of the
electrcns. At these high concentrations cne might expect
new properties in the superconductor tc appear which
should, of course, depend én the nature cf impurities
~and the type of scattering pfocesses involved. It is
impprtant tc notice here that this new béhaviour cceurs
for concentrations -that are still gquite low (~1%.). For
large impurity concentratidns, we are essentially dealing
with a new substance, whose propertieé have nothing in
comrmen with the original superconductor. In particular,
properties arising from electron-phonon interaction now
change and so does the temperature at which the transition
to superconducting phase occurs. These changes in the
basic properties of thé lattice canAbe neglected for
sufficiently 1ow ccencentrations. At the éame time, it

is interesting to note that the thermodynamic properties
of the superconducting alloys are practiéally.the same as
those of the pure superconductor. The.impurities are

classified into the following three categories.

(1) Nonmagnetic or spinless impurities,
(2) Paramagnetic impurities, and |

(3) Localized nonmagnetic transiticn metal
impurities. '

The effects of the impurities of the first type are
simplest to deal with anh were studied in earlier theories

(3,4) successfully in analogy tc the case of a normal
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metal. This type of impurity has got 1ittle effect on
superconducting properties in contrast to the strong
effects of second and third types. The second and third
types of impurities also lead to the interesting aspects
of gapless behaviour and existence of bound state inside
the energy gap. These facts lead to an important conclu-
sion that it is not the energy gap but the pairing
Acorrelatién which is necessary for the existence of
superconductivity. In this chapter, we give a brief
review of the different theories in this field and
introduce the basic formulation and concepts which will
be used in the fcllowing four chapters, We shall use
quantum field theoretical technigues (12) and Matsubara's

formulation for finite temperature Green's function (13).

For the sake of completeness, we shall first
discuss the case of normal metals containing spinleés

impurities,

(II). NONMAGNETIC IMPURITIES IN NORMAL METALS

Consider a free electron gas as a model of a
normal metal. We assume that there are Ni impurity sites
. - a é ! . -
| at the positions Rl - RNi’ The Hamiltonian for the

impure system is
H = HO + HI | . e (1.1)

where Ho is the Hamiltonian for'noninteracting electrons
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and HI corresponding to the interaction between the

electrons and the impurity atoms, is of following form

N,
1 - -
= X, -R
i1 ? %1 %
N,
1 < <
=5 | ax P (x) w(X-R) ¥(x)
a=1 :
. .

i ’ - »
=2 Y ct, ¢y w@ exp(-ig.R) ... (1.2)
@=1 g3 k+q,0 "k, 0 -

Here u is the impurity potential and is assumed to be

spin-independent.

The interaction Hamlltonian H; destroys the translat-
ional invariance and as such thé single particle Green
function G(Z,%'; Cf> corresponding to (1.1) is not simply
a function of ii;f’[. One recovers the translational
invariance at a coarse level if the propagator correspond-
ing to (1.1) is averaged over the impufity configurations.
For a given distribution of impurities, we can expand the
single ﬁarticle Green's function iﬁ powers of the impurity
potential u, usiﬁg sizple perturbation theory. The various
terms contributing to G(ﬁ,g', C[) (the double fourier
transform of G(f,f'; Cl)) are represented by diagrams
given in Fig.l.l. The expansicn represented by these

diagrams is:



> 2 3.2 2 3 > 1

G(k,X', §/) = (2n) 78 (K-K') + 7= U(k-k')
( £ C[—el? C‘(‘-E‘.? C(— 81-?'

3 1
a’ k" > 02 1 2, D 1
+ U(k"-k) U(k'-K")
.[ (2’11:)3 'C'(—El? CK—EE’" o C(—SE'
) LI (1-3)
where U is expressed as
‘ Ni _
v@ =T exp(-12.R ) u(d) cen (1.4)
a= )

Since the impurity atoms are randomly distributed
throughout the metal, we have to average the expression
over the position of each-impurity atom. We use an
importaﬁ% fact that the average distancevbetween impurity
atoms is much larger than the lattice spacing on accoun£
of low impurity concentration. Now we average the position
of each impurity over the volume of the system,so that,

for examnple,

k.X!

expl--i(l-{)—l?').ﬁa | "—)x'r%_fdeR expE—i(g-l?“).ﬁ] =8, 4
| .. (1.3)

Thus,

<b(§LE'»' = niu(o)(vol.)éﬁ_¢-+ (2n)3niu(o)6(;1§3)
K, k! | eee (1.6)
where ni(=Ni/vol.) is the density of impurities. Consider
now the-impurity average of tﬁo~potentiéls. A distinction
should now be made between second order scattering by
a gingle impurity and two scatteringsby:differing impuri-

ties. The total contributicn is
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This is n; times the relaxation rate in Born Approx-
imation for scattering by a single impurity. Same is
true for fig.(l.2c) alsn. Summing of all the diagraﬁs
for i with only one cross thus has the effect of replac-
ing the Born approximation matrix element u(z—?') in
eq.(1.10) by the t-matrix element. The diagrams with
more than one cross c&rrespond to multiple scattering
by more than one impurity. However it can be easily shown
that contributions to iirom'higher order diagramsA
will be very small. Because of weak dependence of [

on k and w, we may make the replacement,
YR, ¢; —w ¥F1i0) = A _’::-L'L_(k sl )
£ 2 \°F
i
'.:.Ai'z_:-f . a0 . (1-11)

The energy shift A, being essentially a constant,
can also be absorbed into a shift of chemical potential,

Taking } to be purely imaginary, we get

1

G(B,w) = —— T coo (1.12)
k -
Going over to the - representation, we easily
see that the entire change in G as compared to G(O)
(pure Green's function) reduces to multiplication by
an exponentially damped factor ie:
-lx-x'l/zl e ® » (1113)

G(x=-x') = Go(x-x')e

where [ = VpT-
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i 2 —— ) -)_éj —— 9-’)' __];___
G2 e = g (GmIsERY 4 g TEED e
3 1
+ | Sk U (" -R) U@ -R")
J (2m)7 ¢ p-e eR e
. eee (1.3)
where U is expressed as
. N. _ »
U@ - L exp(-1.E) u@ e (1.4)
= .

Oince the impurity atoms are randomly distributed
throughout the metal, we have to average the expression
over the position o0f each impurity atom. We use an
importaﬁ% fact that the average distancevbetween impurity
atoms is much larger than the lattice spacing on accoun£
of low impurity concentration. Now we average the position
of each impurity over the volume of the system,so that,

for example,

9 -
eXPl:—i(E~Q').ﬁa] """’{}%TId3R expl}i(g-—k').ﬁ] = &,
Thus,

—4-(2n)3niu(o)6(£i§3)
ees (1.6)

<U(?—§')> = niu(o) (vol.)d, 5
k,kf

where ni(éNi/vol.) is the density of impurities. Consider

now the impurity average of two~potentials. A distinction

should now be made between second order scatterlng by

a single impurity and two scattering by differing impuri-

ties. The total contribution is



o .
@U@ =(F v@u@) ex[1@AN.A]>
4.;—_; 'ufﬁ)u(a’)eip(i;.ﬁa) exp(id'.R_))
- aFEx .

=(2n)°nu (@)u (1) 6(3+)

sy (0= =) (2m) Cu@u @) (D 6(3") .
ees (1.7

In the 1limit of large volume, the second term in
eq.(1.7) is just the square of eq.{(l.6). By averaging all
.terms of eq.(1.3) iﬁ this way one obtains a prescription
for calculating the sélf energy part fﬁccrresponding to
the averaged Green's function. These two quantitiés are

related as below:
: . ' - -1
(o@D = (27[)35(12_@)@(_51?- I ®ep] e s

_The terms in the expansion for i_can be represented -
diagrammatically by bringing together at a single cross
all scatterings from same impurity, Some terms are shown’
in fig.(l;Z). The contribution frﬁm the first order

diagram is niu(o) (eq.(1.6)). The second order term is

given
"(2) d3kr 5 = 2 1
= n. Pk
2 nlj (2m)° l‘:) =1 L5,
- gy L C;(Sf”w) cee (1.9)
where,
- {(2) & a4 %! :
l (K,w) = J(g 3 lu (K-K1) | S(w—eg)- ev. (1.10)
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This is n, times the relaxation rate in Born Approx-
imation fqr scattering by a single impurity. Same is
true for fig.{(l.2c) alsn. Summing of all the diagrams
fer i with only one cross thus has the effect of replac-
ing the Born approximation matrix element u(E—?') in
eq.(1.10) by the t-matrix element. The diagrams with
more than one cross cérreSpond to multiple scattering
by more than oné impurity. However it can be easily shown
that contributions to ifrom higher order diagrams'
will be very small. Because of weak depéndence of [

on'k and w, we may make the replacement,
Y (K, CK'—~?w +10) = A + %IXKF,u)

ee. (1.11)

™

The energy shift A, being essentially a constant,
can also be absorbed into a shift of chemical potential.

Taking E to be purely imaginary, we get

2,0 n |
G‘( ’w) = o - €-+ i j_/2’c o e o (1.12)
k -
Going over to the X~ representation, we easily
see that the entire change in G as compared to G(O)
‘(pure Green's function) reduces to multiplication by
an exponentially damped factor ie:
“Ix—x' 1/21 o o o (la13)

G(x-x') = Go(x-x')e

where [ = VpT.
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(II1). NONMAGNETIC IMPURITIES IN SUPERCONDUCTORS"

We shall now generalize the discussion of- last
section to superqonductors for treating the effects of
dilute concentration of nonmagnetic impurities(3,4).
Here, one should remember that the superccnductor is
described by two propagators and the order parameter A
obeys a self-consistency condition. Nambu(l4) introduced

an ingenious way of two component gspace spanned by the
field operator

I N &Y
@ = ( !

) ee. (1.14)
. 11;1’(2 ) S

in order to take into acccunt the two propagators
simultaneously. The corresponding 2x2 matrix Green's
function is given by

‘%j(ft, z?'t") = -i(T[wi(?ct)qJ;f(}?*t'.)] > ... (1.15)

Average values of the form< P> and <(¢+$+>- are inter--
preted as anomalous Green's functions i.e. F functions.
Writing out the matrix eq.(l.15) explicitly, we get
-
| ¢(Xt, ') F(Xt,X't)
- > >
SdE, 2 = (s, |
' | F(Xt,2't') -a(X't1,%t)

y c.. (1.16)

-

A spin-independent potential in second quantized form

is represented as

-

o S =<3 2 2 ¥
%a u(Xi-Ra) = éId X u(X—Ra)ﬂr[:v (X)TBW(Xz] + con???.(i‘l7)
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Here 7z is third Pauli matrix. In the two component
language, the equation of motion for the matrix.Green‘s
function, given by eq.(1.16), for the pure system can

be written as(15)

> = '
Vs CK—EK -A. ~ .(_/ G(k,C’() F(k,C'() > ~ ( 1 O >
S oa® gre,” N PRy -6(-K, -t R
' ... (1.18)
In matrix notation, eq.(1.18) now becones
\ P
(Cf—sl-g%'ml) Lﬂl(k,c() = 1 ee. (1.19)

In coordinate space one then has

2 o o
[ cp o+ B mrwgang | G@E5 cp = 6@ ... .20)

We can now generalize eq.(1.20) in. the presence‘

of a fixed distribution of impurities and get the follow-

ing equation

2 . - - : .
{C(-F(%I'} W)TB—[EH(}-E—ECI?] T34A (58) Tlil»'ﬁ’}(x,ﬁ',cl) = 6(3) (}?—)-g')
eee (1.21)

After an average over the impurity configurations
is performed <¢(§)W(§)} will be independent of . ' -
However, the average will introduce correlations between
A and f;because both quéntities are strongly modified
near thé impurity sites. For a low concentration of
impurities one may overlook these correlations. Then

A(i) in eq.(1.20) can be replaced by A~ the average value .
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of the order parameter. Summing the diagrams as in

previous section we get the following expression for

self-energy.

T - a%q S\ 3% 5 3

Y (k,C‘) = ny { YE“) u(q) 73€}(k-q,C()13d(q) ve. (1.22)
J T

This equation can be solved by making the fcllowing

ansatz.
T (%,2) = 2-Z-(E-D) 1y C . (1.23)

where Z and A are unknown function of Z. Substituting
this into the right hand side of eq.(1.22) and equating

the coefficients of 1 and %, on the left and right sides,

1
we get,
~ ] d3q 2 Z '
4 (27w) -EE s~ A L
-q
3
-— rd q - e ,[KJ
A=A = n. ———?lu(q)l = — . .o (1.25)
T4 (2n) 72 2 i° | |

Changing the 3 integral intc energy integral and

Performing the e-integration, gives:

y i 7
Z"‘Z = e -2-? _ ‘s e (1026)
7537
A"A = - ?‘,E .00 (1.27)
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where T is the normal-state life time. Equations (1.26)

and (1.27) can be solved to give the following result

2/k = 72/K - ... (1.28)

and with this equations (1.26) and (1.27) yield

= i 2 '
Z = Z <+ 5 - e s (1‘29)
. 27t — :
12°-72 -
~ - i A
e cee (1.30)
427 -A

and A is determined from the following self-consistency

condition

5= vy )

3 o

V — d’p A
—ar - L_ oy — ‘s e @ (1-31)
| g C( (2m)° CXT i - &8

3 -—

vV A
= “'y : >0 e (1.32)

B E}([(Zn)B cg - €5 - &

Thus, wé see that A obeys the same equation as the
order parameter for bure superconductor. Hence a dilute
concentration of spinless impurities does not change the
transition temperature (16). The other interesting result
is concerning the engrgy.speotrum. The density of single
particle stafes is

3
N(w) = ff ?2k)3 7 Gy (k,0%in)



”.(133)

Thus we get
o) 0<Cwd{h

N{w . :
‘W%%** @J?FE? S E .. (134)

This result is again the same as for a pure isotropic
system. Other properties of impure system, however, get

modified.

(IV). MAGNETIC IMPURITIES IN SUPERC ONDUCTORS

(1) Abrikosov-Gorkov Model

Magnetic impurities have a pronounced effect on
superconducting properties(1l7) and cause a raﬁid decrease
of transition temperature in contrast to nonmagnetic
impurities., The first monumental theory of magnetic -
impurities in superconductors was given by Abrikosov
and Gorkov(l8) (abbreviated as A.G.Theory). On-the basis
of e;perimental information Herring(19) proposed the
following Hamiltonian describing the exchange interaction
befween impurity atoms and conduction electrons

>

A - .
U = Ul/03 + Uzs.(x s v e (1035)

where/o is the Pauli matrix which operates on the space

3 ,
composed of the electron and hole states. Here, the first

term is the ordinary impurity scattering potential while
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the second term ié the so-called exchange interaction.

§ denotes the spin operator of the localized magnetic
noments. The spin exchange interaction breaks the time
reveréal invariance and thus may inhibit the appearance
of the superconducting correlations. 4 rigorous calculation
was first given by Abrikosov and Gorkov(1l8) who were

able to obtain the Green's function, describing equili-
brium as well as nonequilibrium properties of the-System.
In particular, they predicted an existance of gapless
.reglon in which the excitation spectrum starts from

ZEero energy. The following assumptions are made in the

AG theory: ’

(1) The correlations among the impurity spins
are neglected.

(2) Spatial variations of the order parameter in
the vicinity of the impurities have not been
taken into account. ‘

(3) The exchange interaction is trezted in Born

approximation and the effect of the anomalous

exchange scattering (Kondo effect (20)) has been
neglected.

Using the standard technique outlined in sections II
and III, the Green's function is obtained by taking
eq.(1.35) as the iﬁteraction between impurity atoms and
the conduction electrons. After averaging over the random
distribution of impurity atoms, the Green's function |
recovers the translational invariance. Hence, the re-

normalized Green's function which describes the electron
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in the environment of randomly distributed impurity of

concentration n, is given by
¢ (p TRy T -1 ~ 1.36
w(P) = (Hw-gog - 4 0q03) ... (1.36)

where ® and & are the renormalized frequency and order

parameters respectively and are determined from the

eguation
> -1 |
t® =[] - @ | e (137)
Here, _
63(B) " = (w-t pg - 4 pyop) cer (1.38)

" is the Green's function in the absence of impurities, and
A has to be determined self-congistently as in sections II

and III. In the Born approximation § (B) is given as

W
< _ r._d.Bp' B i ' 2 1
L@ = | (5}7’9”-”“’ B 6,(B) vP-3 ] e a39)
where |
TB-B1) = U (B-8") joz+U, (B-B1)5.2 ... (1.40)

Using eq.{(1.36) for the Green's function and performing

the integration ever P' one can easily obtain

Z (5) _ 1 1w-A04 05 2 ‘iw+A/0102 1.41)
- 21'_ 21_: - - o ¢ @ -

@ S T et

where

% - nN(o)[[ul(ﬁ;gv)Iz aq
1 J .
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L - nN(o)sgsu)f{uZ(g_g')yzdsa L (a2)

Substituting eq.(1.41) into eq.(1.37) and then comparing
the coefficient of 1 and/plcz, one gets the focllowing

two eguations:

. ~7
'5’='w +_l(l 4 1 ) W
11 To —5
6+
~ 1,1 1 A
P A + E(:E - -:L:.- A S S i e..'(lo4’3)
1 2 FJ_HY .

Here T, is the spin life time of electrons due to
impurities. Introducing an auxiliary parameter u defined

by w = %/4, BEgquation (1.43) then reduces to

(-A)'l — u(l;‘: —-—l’—-.——) . s (1044)
1+u
l .
Where C = e
Tol

To study the energy spectrum of the superconductor
containing magnetic impurities, we shall first write
eg.(1.44) in terms of ordinary fregquencies by doing an

analytical continuation to real frequencies, i.e.,

2= u(l-g _—) ‘ oo, (2.45)
. 1-u .

Let us first consider the case for Cé;l. If we
plot the eq.(1.45) in uw-plane, then we will see that

the curve starts from origin and initially w increases



~17-
as u increases. As u further increases, w goes through
a maximum and then decreases. At uw = 1, w is negative
and diverges. Maximum value of w in the region O0<{u<l
is called as the energy gap wg and is determined by

the following condition:

_3/2
_ 10w _ 2,77
0 = T u s 1-¢(1-u") oo (1.46)
This equation gives us
‘ 1/2
u, = (1-¢2/3)
2/3,3/2 -
W = A(1=g ) ee. (1.47)
We can now make an expansion of eq.{(1.45) around u, to
obtain '
w-w,, -2/3% 1/2
TEJg = - % g (1-;2/3) (u~u0)2 ... (1.48)

In the second case of {» 1, the asymptotic expression for u

at small values of w is given by

| 721 2,.2 .\-1, 2,2 . -5/2
u = ij°-1 + ¢°(¢°-1) l(“A-‘i)+ %lc (¢==-1) 5/ (%)2+...
voe. (1.49)
The density of states in terms of the Green's function

is given by

: Ns(w) = %75 Imj?i—i-r)% Tr[Gw(p)]

w=iw

u
= N(o) Im(e—=)

i
=
—~
o
~—
e

I

Im,u .. (1.50)
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Iet us first consider the case for [ % 1. Solving
equation (1.48) for u and substituting into eq.(1.50),

qune obtains

' fo {
0 rww,

w)= 1 ... (1.51)

(
S
o/ -1/4 W-w _
| w0 P a3 '% —E—for wlu,

\

. Thus we see that wg gives the threshold frequency for
the density of states. Similarly for ¢33 1, we obtain

1/2 ., =5/2
" %;4(1_5-2) (i".)ﬂ ceo (1.52)

-2
Ng (@) = N(o)[ (1-¢?)
Here we see that Ns(w) is finite at w = 0 i.e. the
energy spectrum starts continuously from zero energy
- level. Here gap W in the energy spectrum vanishes i.e.

it is the gapless region. ' =1

For the special case of {=1 one gets

| 3 1/3 5/3
N, (w) = N(o)'g [(%9 - %—4-( ) ] ... (1.53)

D'rg\)

(ii) Shiba-Rusinov_Model

Tunneling experiments of Reif and Woolf (21,22)
confirmed somewhat later that there are some disagree-
ments in their experimental'results and the predictions
of AG(18) theory which was based on the assumption of

weak interaction of conduction electrons with a magnetic

-~
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impurity. In order to reach an agreement between theory

(24) generalized

and experiment, Shiba(23) and Rusinov
the AG theory to the case when the conduction electron-

magnetic impurity interaction is strong.-. Theilr calcula-
tions lead to the appearance of local impurity levels
inside the energy gap. This can be traced to the app-
earance of Kondo Anocmaly(20) (quantum mechanical effect

of spin) when we go beyond the Born approximation to
treat the strong interaction. We write the interacting

potential in the form
v, = U(B-2)+& 8 J(2-P) ... (1.54)

In the AG theory, where Vi is treated in Born
Approximation, the final result actually does not depend
on whether we regard the spin § as a classical vector or
as an operator. In contrast to this the above result is
ﬁo more valid at higher order approximations as a result
of the well known Kondo effect (which essentially comes
into the picture due to the noncommutativity.of spin
Operators(ES)).rAs such, inclusion of Kondo effect is
& difficult problem and studies were restricted (23, 24)

" to the classical.spins in superconductors. By classical
we mean that Jso, Se§03 and 3;? is finite. Actually this
assumption is apparently allowed if the impurity épin

is sufficiently large (i.e. g:&l). However, Maki(26,27),
Fowler and Maki(28), Fowlef(29), Zittartz and Muller -
Hartmann (30, 31) have also successfully investigated

Kondo effect in superconductors and found the effect on
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localized impurity levels. But it has been also shown
(30,31) that in the pole approximation, Kondo effect

can be incorporated in the Shiba-Rusinov model by assum-
ing that ei = v2[§2+n28(3+1{]_1 where v=(n(Tk/T)(eé is
the position of bougd state for isotropic scattering
inside the gap and Tk is the Kondo temperaturc of the

alloy.)

Therefore,it is convenient and simpler to work
within the framework of Shiba(23)-Rusinov(24) model which
apély to alloys in which conduction electron-—-impurity

interaction is strong and alsc to superconducting

Kondo alloys. Here we present a brief review of this

theory.

Let us assume that magnetic impurities are distri-
butéd randomly in a superconductor and their concentra-
-tion is low enough so that impurity-impurity interaction
is neg}igible. Here again the calculations can be done
as in previoﬁs sections except with the difference that
we have to calculate the self-enérgy in higher order
approximations. This has been done in detail by Shiba(23)
and Russinov(24) and we will only gquote their fesults.
Rusinov Green's function of the superconducting alloy,
averaged over the positions and the spin directions of

the impurities is given as

L)

. 'w - -1
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With u, = & /& -satisfying the following equations:

| -1
KT%TTT - un[; = ;;o(zl+l)[}slﬂ(a’T{] (1+ui)l/2(u§+€§)—l

e.. (1.56)

-1
(vg )7t = Ci]:ZnN(o)] (1-€9) e (1.57)
= = COS(af - &) ... (1.58)
w, = nT(2n+1) - ... (1.59)

Here A(a,T) is the temperature dependent order
parameter for impure superconductor, TS( the spin flip
scattering life time, 6% are the phase shifts describ-
ing the scattering of an electron dby the impurity with
orbital ﬁomenﬁum K and spin projections i(1/2) in
normal metal, N(o) = mpF/2n2'and Ef is the position of
the bound state inside the gap brought about by treat-
ing the scattering of electrons by magnetic impurity in
‘exact way. The different guantities can be calculated
in a closed form if we deal with the physical situation

of isotropic scettering (i.e. (=0) (as also done by

Shiba(24)). Then eq.(1.56) reduces to

X 2?T) = un[}-(a/a(a,T))(l+ui)l/2(e§+ui)-f] ... (1.60)

where,

-1 :
o = >(Tso)’l ='Ci[2nN(o):I (l-—si) co. {(1.61)
'eo = cos (6: - 6;) co. (1.62)
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According to Shiba(24) e  is given by

-

{(1-[§SnN(o)/%]2)/ (1+[}SnN(o)/é]2)}
\ -  ee. (1.63)

and is indepcndent of temperature and of the sign of J.

Eo'—"

It is found(23) that a‘iocalized excifed state
appears inside the energy gap if we deal with a single
impurity problem. For finite concentration this state
grows into an impurity band. The impurity band is found
to be separated from the continuum for a low concentra-
tion of impurities(23) but for higher concentration,
it is not possible to distinguish between the 'impurity

band'!' and the continuun.

(V). LOCALIZED NONMAGNETIC TRANSITION METAL
IMPURITIES IN SUPERCONDUCTORS

Transition.metal_impuritieé are categorised in
two classes, nonmagnetic and magnetic. (i.e. having no
localized magnetic moment and finite localized magnetic
moment, respectively). The possibility of the existence
or>nonexisfence of localized magnetic moments on such
impurities when dissolved in nonmagnetic metals was
first explained by Friedel(32) and Anderson(33). There
are two different approaches for treating the effects
of these two types of impurities. The Abrikosov~Gorkov(18)
theory based on the s-d exchange interaction {(Kondo
Hamiltonian) is usually applied *to paramagnetic

impurities (discussed in the Sec.III), while for
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’

nonmagnetic impurities having no localized magnetic
moment such as iron group elements (Fe,Co,Ni,Cr,IMn)

in aluminium, the nofmagnetio resonance orbital model
(34-38) is regarded to be méét appropriate. Zuckermann
(36,38) first studied the effect of nonmagnetic tfansi—
tion metal impurities on superconductivity using Anderéon
model with U=0 (U the Coulomb repulsioh). The Coulomb
repuision was neglected for the sake of simpliéity

' since it was found that its inclusion does not drasti-
cally influence the qualitative behaviour(34,35)."These
different theoretical investigations which were also
confirmed experimentally (39, 40,41,42) showed that
there exists bound state in the energy gap which grows
to a impurity band as impurity concentration increases.
- The appearance of ﬁhese bound states is due to presence
of resonance scattering of conduction electrons of the
host metal with the localized d-electron of impurity
ions. It is this resonance scattering which gives rise
to relatively large changes in various properties of
non-transition metals such as Cu, Al or Zn when fhej

are added with small amounts of transition metal impﬁri-

ties.

(i) Single Impurity Case

We first consider the single impurity problem:
The Hamiltonian of the system under consideration can

be written as
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+ 'f' mN
H = Y & L0, +2V, (C d_+d.C, J+EY n
I?c ¥ Bo 2o Ka Ro ° ®o s 9°
- L (¢t ¢t ¢ ¢ ) ‘ ... (1.64)

1

5 B} R} k| B}

where A is to be determined self-consistently from the

following equation

.1.
8l % <CE’-1~C-E¢',.> | ve. (1.65)
> _

For the sake of convenience, we shall work in

Nambu space and define the double time Green's function

as e ; ct » Lc, 7 ]
G, (w) =< ‘ B R < 2% -21,7 )
RE ! (cht CJr » et , ¢ » |
Rt : -E|, -} e.. (1.66)

Solving the equation of motion for Green's function one

obtainsthe following result(43)

Copy () = TR(EIE, ka)t(w)er (@)) ... (1.67)
where, : Ve
‘Gg(w) = (w—sg¢3+§11)_l, : eo. (1.68)
2 2 -1 .
and t = V -8 —V kO eees (1.69
n (w) kd 3(w 73 kd 3 (W)TS) T3 ( )
-with Flw) = Y Gg(w) ' ... (1.70)-
= K _
k
|w]

For = - l we have
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v Flw) = =[] ——— eee (1.71)
Ra 22,
2
wi.th rz 1T v s e e (l|72)
. /° Ra | |

where/o is the density of states at the Permi surface.

It can be easily seen by the poles of eqg.(1.69)

that there always exists a bound state inside the energy

gap(45).

(ii) Finite Impurity Concentration Problem

.Here we shall make use of the conventional approxi-
mation that the self energy part )} (w) is connected to

the t-matrix by the following equation:

T(w) = C¥(w) eee (1.73)
where T(w) = (w-E 3—V2 ﬁ(w)f3)'l , ee. (1.74)
- Ra
with .F(w) =Y gqﬂ(w) eee (1.75)
ﬁ kk

The above equations can be easily solved if we
substitute:
o ~ -1
L) = (w—EﬁT3+AT -5 (w)) = (w4eqw3+Arl)
k k e (1.76)

We then obtain the following self-consistent equations

kk

for wand A:

W - 27 we’ 2 -1
W = w—CVi (w+ — ){w2+ ——— e —(E2+r' )L
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r > AT {‘2 2["

A = [_\—CV%

A

If we define, u =‘$/K and v = m/A, eq.(1.77) reduces

5 -1
- §E2+r.)} co (1.77)

to
v

v (/[T -E

Vv o= u+l .. (1.78)

For small concentrafion (c<<1), the above equation can

be éolved easily by iteration. The first iteration gives

1 |
~> ) ..o (1.79)

=u (1 +¢C —
v . u2+2f' (1.12/ 1-u ) - €

where, c o =
= - v ’ =
- 2 Ra F=T
and 52=(E/A)2+{T/A)2 | .. (1.80)

It is found that this equation has qualitatively
~the same behaviour (43) as eq.(1.60) of Sec.IV(ii).
The gualitative analysis of eqg.(1.79) yields the follow-

ing form for density of states.

N (w) = o In L ee. (1.81)

i

B. FLUCTUATION EFFECTS IN SUPERCONDUCTORS

Since 2 part of the work reported in this thesis
concerns fluctuation effects in superconductors, we

will now give a brief introduction to the phenomenon
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of fluctuation effects‘in superconductors. Since the
estimates of the effects of thermodynamic fluctuations

by Pippard (44), Ginzbufg(45) and Thouless(46), most of
the solid state physicists held the view that flucatua-
tion effects in superconductors would be unobservable
experimentally. However, in 1967 the experimental (47)

and theoretical(48) studies revealed that superconduct-
ing thin films exhibit an excess conductivity in an
observable magnitude due to the presence of Cooper

pairs created by thermal fluctuations. Since then, many
fluctuation effects in superconductors have been observed
in a variety of properties. The study of fluctuation
effects has provided much stimulus in the development

or the theory of superconductivity. The extreme sharpness
of the supercbnducting phase transition in the absence
of a magnetic field was supposed to be an evidence that
the superconducting state is an ordered state with a
coherence length much larger than atomic dimensions,

This exXceedingly long coherence length of a superconductor,

about 10° 4

~- 10" A° makes the critical phenomenon in super-
conductors apparently different from those in other
systems like superfluid helium or magnetic systems-where
it is only few angstroms. The coherence length, which is
determined .by the range of spatial variations of fluctua-
tions, is a most fundamental parameter in the investiga-
tions of critical phenomenon. Ginzburg(45) discussed the
fluctuation effects in materials showing the second order

phase transition on the basis of Landau theory(49).
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This theory takes the form of the Ginzburg-Landau(GL)

" theory(50) in the case of superconductors. In particular,
superconductivity is the only phenomenon to which
Landau's theory applies so well that deviations from

it had not been observed and had been given also a firm
support from the microscopié basis(51). An outline of

the GL theory is given below:

(i) Phenomenological Ginzburg-Landau Theory

In the framework of the GL theory, a state of the
specimen is represented by a superconducting order
parameter ﬁ(?); ﬁ(?) being a complex function of the
space coordinate 2. If K is the vector potential represent-
ing the magnetic flux density ﬁ = 3 X K, the probabi-
lity /OA[i(?) of the appearance of a.state represented
by ﬁ(?) and A(?) is supposed to be given by(52)

/OAEﬁ(?)] = exp {—FA—?(?)I/ T} o ce. (1.82)

where FA[:ﬁ(?i] is the GL free-energy functional:

-

| 2 4 ‘ 2
FJE®] = [Prcat® 1+ 818 s Bl cid-e i@ |
+ H2/8%] ce. (1.8%3)

Here, e® is the unit of electric charge carried
by the supercurrent, m is the mass of an electron, and

a[}(TC-T;] and B are the GL parameters. If the thermal
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fluctuations are neg;ected, the equilibrium state is
realized at one of the minima of the GL functional -
FA{ﬁ(?{]’ so that f(?) and 1 at equilibrium satisfy

the following equations:

3-(~13-™%) *G-af+8|F|°F = 0 ... (1.84)
o2 = 4 - co. (1.85)

-9
J

. * - x, 2 '
- e ({§rta-Pofh- - |BI1° ... (1.86)
with the boundary condition
A (-i3-*H)T(® =0, oo (1.87)

ﬁ being a unit vector perpendicular to the boundary

surface.

These equations have been justified by Gorkov(51).

He iinds, the parameters a,R and eX to be explicitly

given by
o = —E‘/kT' ceo (1.88)
B=N;\72( ) e.. (1.89)
‘ t'?ot

and ¥ = 2e, e being the electronic charge. Here,
£ = T-TC/TC LI IR ) (1090)

¢ (3) Bk (0. ) '
A= E {Og ee. (1.91)
12x Tc .

T T

Fio,) = 78%’37/'5_ { §2+ zﬁ_ﬁj(%)-w(éﬁ;ﬂ} Cees (2.92)
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where N is number density, Ep is the Fermi energy,
fr = (2nTcT)'1,1 being mean free time of electrons
due to normal impurity scattering, and V(2) and ¢(Z) are

di-gammsa and the zeta functions, respectively.

In the absence of magnetic field, the average

order parameter Yo is given by

y [a/B T:CTC i
1Tl = |

X 0 T > TC

ee. (1.93)

If F[@(?i] is used as a thermodynamic free energy,
one obtains a cTassical second order phase'transitioh.
Deviations from such behaviour are presumably described
by fluctaations about |§_|. It is very difficult to
calculate the effects of suchh fluctuations, but one
might attempt to make an estimate of fhe temperature
region in which they are large(45). Retaining terms

quadratic in Iﬁ"@ol one gets

-

7 |2> _ Jméﬁexp[—'_ﬁ‘/ﬂllﬁklz . 1{( /%% +a , | T>TC y
4Lk = ) g '
~(5Ee’?p["F/ﬂ Y T/k°-2q T <1,
| Lk ce. (1.94)

where k is the wave number of fluctuations and T is

the temperature in energy units. The criterion for small
fluctuations, namely that the fluctuations should
explore regions of ﬁ space small compared to the region

over which F wvaries quadratically, is
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T laf -

voiume ; k2+£-2(1) & B | e (1.95)
where we have now introduced a temperature dependent
coherence length £ (T) given by .

4 1/ , 0 TOT,

£2(1) = (o) /e = e.. (1.96)

\-—1/2(1 . T<TC .

where, - _

g = [T-TCI/TC. \
It is known from the microscbpic theory that & (o)
depends upon the purity of the sysfem. In the pure limit
(go(<[) E{0) = aon»th/Tc, whereas in the dirty limit
(gog,l) £(o) = (EO()1/2, where [ is the electronic mean

free path.

A general'concept in the theory of second order
"phase transition is that maoroscopic'critical phenomenon
are dominated by fluctuations with small wave number k,
i.e. |k| smaller than a certain cut-off value. In fact,
important contributions arise from the range Ik[{ l/aT.
Taking all these considerations into account, it is |
easy to derive the formulae for the transformetion of

sums over k into integrals, as follows:

e ™
i

e " i =3
B
;—7%-1 Z = "; -;;?t de d = 2 ¢ e (1-97)
T K | e

oEm | dk a=1
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where @ is the dimensiocnality of a specimen, t is
the thickness of a film specimen, and S is a cross

sectional area of a whisker. Now, one can estimate

{IWIZZXappeariﬁg in eq.(1.94), and compare with |IIIO[2
and obtain the temperature region where Landau's
theory offers a good approximationt, i.e.,|UO|2>>
2
<I¢l > s as |
E>€C e s @ (1098)
where,
; 1
fe (£ ()=t )
e, = % (kpry)”%(kpt) d=2  (pure limit)
—4/3,.2,602/3 o
{ (kFﬁo) (Eo/b) -a=1 eo. (1.99)
’ -1 -3 |
(kpt )~ (kpd) a=3 5
e (2 ()=(c, 07 ]
and €, = % (KFt) (kFK> d=2 (dirty limit)
| 2 4N1/3
| [ —

..; (1.100)

From the above equations, one seces that relatively
large fluctuation effects are expécted in dirty alloy
specimen ((({EO). This was first pointed by Ferrel
and Schmidt.(53). This speculation led Glover(47) to

make the first experimental studies of superconducting
critical phenomenon above.Tc. We can also ascertain~from
above equations that lower the dimensionality of specci-
men the larger are the fluctuation effects, which also

follows from the microscopic Green's function theory



of Aslamazov and Larkin(48) of fluctuation effects

. -~
above o

(ii) Behaviour of Fluctuations of Superconducting Order
Parameter in different ranges of Temperature

There are different temperature regions in which
fluctuations have got different behaviour and corres-
pondingiy different theories have been developed to deal
with them. Broadly, there are three femperature regions
known as 'classical' (above Tc), critical (around TC)
and 'below Tc' regions. We had given a brief description
of classical region in last section in order to under-
stand basic concepts of the fluctuation phenomeron. In
this region, the density of fluctuation moées is wvery
low and they. can be easily treated to be independent.

On the other hand, in the temperature region below TC,
the density ofvfluctuatibn modes becomes very high and
they are no more independent. It then bacomes necessary
to include the fourth order term in GL free energy
functional which describes the interaction betwesn

fluctuation modes below TC. -

A different type of success emerged in'extending
the studies of Aslamazov et al (48). This was the
explanation by Marcelja(54) of the resistive transition
of thin films in the temperature region lower than the
one where AL's (48) result agrees with observations.

This tenmperature region is slightly below TC where the
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excess conductivity is more than normal state conduct-
ivity. The essential point of Marcelja's idea is the
linearization of the quartic term in the GIL free energy
in the sense of Hartrese abproximation. The microscopic
theory of this was given by Schmid (55) and experimental

investigations were done by Masker, Marcelja and Parks

(56,57) .

(C) PRESENT WORK

The present thesis deals with the investigations
of the impurity and fluctuation effects in super-
conductors. The effects of impurities on superconducting
properties are studied in the following four chapters
while remaining two chapters are devoted to the investi-
gations concerning the fluctuations phenomenon in super-
conductors. The plan of presentation chapterwise is

described below.

In Chapter II, effect of nonmagnetic impurities
on electronic thermal conductivity of superconducting
two band transifion metals, has been discussed using
Suhl, Matthias and Walker(SMW) model (58). The calcula-
tions have been done by applying Chow's theory(sg)
which is an extension of one band theory preséntéd in
Section III of Chapter IA. The existence of two energy

gaps in Niobium is also critically analysed.

In Chapter I1I, thermomagnetic effects in dirty
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transition metals having nonmagnetic impurities have
been investigated near the upper critical field and in
the temperaturé region Tcs<~T'<$cd‘ Here we have again
made use of the Chow's theory for impure two band
superconducforsﬂ An enhancement of thermomagnetic effects

just below the upper critical field is found to occur

and needs experimental verification.

In Chapter IV, the effect of paramagnetic
impurities on Josephson current through SNS junction
is studied within the frameworks of both the Abrikosov-

Gorkov Model and of Shiba-Rusinov Model which have been

deseribed in Section IV (Chapter IA).

Chépter V again deals with the study of the effect
of localized nonmaénetic transition metal impurities
on Josephson current through SNS junctions. The calcula-
tions. have now been done using Resonance scattering

model discussed in Sec.V (Chapter IA).

Chapters VI and VII are devoted to the study of
effeéts of fluctuations of superconducting order para-—
meter on superconducting pro@erties. In Chzp. VI, an
expression has been derived for the fluctuation enhanced
diamagnetic susceptibility below TC using phenomenological
Ginzburg-Landau Theory, outlined in Section I° (Chap.IB).
The shafp increase in the diamaghetic susceptibility

below TC is discussed.
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In the last chapter VII, we have studied the
effect of fluctuations on the superconducting properties
of zerco dimensional superconductors below Tc, using
again the phenomenological Ginzburg—Landau theory. The
behaviour of both diamagnetic susceptibility and
electrical conductivity in the presence of fluctuations

is discussed and analysed.
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CHAPTER IX

-

THERMAL CONDUCTIVITY IN TwC BAND MODEL OF SUPERCONDUCTING
TRANSITION METALS CONTAINING NONMAGNETIC IMPURITIES

(I). INTRODUCTION

Two band model was first proposed by Suhl,Matthias
and Walker(58) (referred as SMW model). They showed
that at low temperatures, both the s-band and d~band
electrons in the transition metals can be in the super-
conducting phase. Some recent experimental investigations
also show evidence for the existence of a second energy
gap(60,61) and this has given rise to great interest
in the study of this model(59,62,63). It has been found
that this model guite successfully explains various
rhysical properties of supercbnducting transition metals.
Chow(62); for example, has recently studied the effect
of nohmagnetio impﬁrities on the specific heat of super-
conducting'transition metals within the-framework-of‘the
two band model, assuming a2 strong intraband-phonon-—
co@pling 1limit, and has been able to explain.thé effect
of impurities and the two slope behaviour of the specific

heat of Niobium, observced by Shen et al.(64).

Guided by these successes; we extend the SMW(58)

two-band model to study the thermal conductivity of



38~
of superconducting transition metals containing non-
magnetic inpurities as a function of temperature, using
Green's-function formulation(65). Starting from the Kubo
formula for thermal conductivity, we use the technique
employed by iAmbegaoker et.al(66). Calculations are
carried out on the assumption of strong intraband-phonon-
coupling limit. We make use of the 4x4 matrix formulation
of the Green's function, which becomes diagonal in the
above coupling limit (59). As far as the effects of
impurities are concerned, both the interband and intraband

impurity scattering have been taken care of.

In Section II we write the Hamiltonian of the impure
two band Superconductor and the other basic equations of
two—band‘model(59). In Section III an expression for the
thermal conductivity K has Been derived using the matrix
Green's functions given in Section II. This is followed
by a discussion of the results of numerical computation
and a compérison with the recent expériment»of Anderson

et al(67) on impure Niobium.

II. BASIC TWO-BAND EQUATIONS IN THE STRONG
INTRABAND—PHONON~COUPLING LIMIT

The Hamiltonian of the system under consideration

can be written as (59)

H=Hh_ +H + H ee. {(2.1)

o] sup. imp.

where HO je the free Hamiltonian, Hﬁup is the Hamiltonian
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due to interactions giving rise to superconductivity,
and Himp is the Hamiltonian due to interactions with
nonmagne tic impurities.

In the second'guantised form these terms are given

belows

x vt @) (- B- v, D

s

H

H, = g
+ T [% g1, - & v, D
G - d .
gy, = - g7 VL Dy DD
AL Reslaes bo, DU D
-8a) = [ DUED 1, Dy D
At Dl v, Dy @]

r

, > . >
a3x- Vs(X"RiW;c(}?Wsc(X)

m
|

imp. ©

(0% v (BB T (P, (D

RIS b
atvl af+1

+
e
akA

(0% Vo (18 [07 @00 D+ D0, D]

re gt 2 ;
where Ws(d)G(Z) and Ws(d)d(k) are, respectively, the
annihilation and creation operators for an electron in
the s(d) band, of spin o(o:T ar L), at the position fﬁ
W is the chemical potential and Mg and my are, respectively,

the effective masses of electrons in the s and d bands.
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VS and Vd are the intraband and Vsd is the interband
impurity-~scattering potentials. Similarly, Bgs B3

are the intraband and g the interband electron

sd
phonon coupling constants.

An exact treatment should take into account both
the intraband and interband phonon couplings, but then
it becomes tedious and the calculation is wvery much
involved. However, the cases which are easily tractable

are:

(i) the strong intraband-phonon coupling. limit (i.e,gs

and &4 arc nonzero and gsd;o), and

(i1) the strong interband-phonon coupling limit (i.e.,
Eaa is nonzero and both 8q and gy are equal to

.

Zero. ) .

The approximation rade in the first case is quite
justified as the intraband phonon coupling constants
are fairly large and play an appreciably significant
rble in determining the physical properties of super-
conducting transition metals(59). Keeping this feature
in mind, we shall restrict ourselves to the situation
of strong intraband-phonon coupling limit. In this
limit, the 4x4 matrix Green's function*ﬁ)is rendered

diagonal (59) and is expressed by

0
t?} = C S ) a0 (2.2)



—41—

"Here Gs and Gd are 2x2 matrix Green's functions

for s and d bands, respectively, and are given by (59)

VA l+€SpTB+ASVTl

Gs(?’zv) = E\é 2 ~2 > o0 (2.3)
: st-esp-Asv
. l4e . Tx+h, T ‘
_ “dv dp '3 “dv 1 _
Gd(B,Zv) = =5t . ee. (2.4)

Z3y~€ap~lav

The ealculations of these Green's functions for a
two band superconductor containing nonmagnetic impurities
were first done by Chow(59) by simply extending the theory
of one band superconductor containing nonmagnetic impuri-

ties, presented in Section III of Chapter I.

The Ti's are the usual 2x2 Pauli spin matrices

and 1 is the 2x2 unit matrix. Furthermore, we have

Z2, = iw, = (mi/B) (2v+1)
ZS\) = iwsv, Zd\) = iwdvg s e o (2I5)
B = 1/kgT

where kB is the Boltzmann constant and v is any +ve or

-ve integer,

- ~ -~ a—~
er ities W a
Here the quantities Wayr Bgyr Way nd bg, Bare

related to the corresponding ones for a pure two-band .

superconductor through the following cquations:
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t

S B 17z + 1 “’dv- —7s
sv T TV 27 VIR 1 21 —~ 1
s (wS\)+ASV) sd ( d\) + Ad\J) .
-E-' ,.\, » e (206)
N -5 + 1 SV + 1 dv
sv g éTS (ajz .+:~A\'2 )1/2 21: sd ( 4-/2 )1/2
sv “sv’ dv .. (2.7)
T - w 4+ 1 Yay 1 Wey
dv v Zmd (wd -+-K2 )172 2Tds 032 +'32')172
v SV
— — LI (2-8)
A . A
~ = 1 av 1 SV
A = A, + + -
dv a ZTd (mdv +rA§v)l/2 ths (62 ~2 )l/?

SV ... (2.9)

Es(d)is the order parameter of the s(d) band of a pure
two-band superconductor. The 1's are the impurity-~scatter-
ing relaxation times and are given By the following

equationss

. 2
e ORI ... (2.10)
S
= = N.( N A 2.11)
2Td - nni d. 0 /Q ’ _. v e ( .l
1 ) 2
T-_-Tsd = nnlNd(O)<, [VSd(B)l ﬁ ’ 4 vee (2'12)
1 . ‘ 2
?———Tds = ‘Itnle(O) <'Vsd(?)| >Qy .. (2.13)

where ng is the don81ty of impurities, N (d)(o) is the
density of states for the s{d) band at the Fermi surface,
Vs(d)(ﬁ) is the fourier transform of the s(d) intraband
impurity-scattering potenfial, Vsd(ﬁ) is similarly the

Fourier transform of the interband impurity-scattering
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potential and (.... >, denotes the solid angle average.

For a Niobium supere¢onductor, the density of

states

Nd(o) is very large compared to Ns(o) and we assume- that

all impurity-scattering potentials are of same strength.

With this approximation, eqguations (2.6)-(2.9) reduce

to the following equations:

~ 1 av
w = W +
SV v 21 2 w2 \1/2
sd (mdv+ﬂdv)
- N
~ - 1 dv
Doy = bg ¥ Toq (G2 4 22172
av dv’ -
(ry
—~ _ 1 dv
Way = W, ¥ o7 7 @2 152,172
S av av
y
~ - 1 Y
“ dv av

ITI. ANALYTICAL TREATMENT

The Kubec formula for thermal conductivity is

as

: O

.o (2.14)
ver (2.15)
... (2.16)
ce. (2.27)
given

K = 5on Im[ at, t, [ aox [d3X2 @EL0) A ,)>

2
VT L
-0 -

.o (2.18)

“where V is the volume of the system, T is the temperature

.and the brackets denote an average over positions and

spins of impurities as well as an average in the grand

canonical ensemble.

Here the heat current operator 3%?3 is
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i [1,R% 1, D+ vE Db, D]

(2.19)

B - 1

12(2) = - 2-2_-

where the dot over U denotes the time derivative and i
denotes the band indices s and 4

For the sake of simplicity, we redefine the creation

(and annihilation) operator for the s and 4 bands as
(2.20)

* @

WD - e e
. (ms).
W@ = —~—72 ot (@) | e, (2.21)

creation and annihilation

In terms of the prime
operators, the heat-current operator u(§5 takes the form

3I T vy DT o @) tlrw(m]
. (2.22)

2D =

In order to treat simultaneously the effect of

a

the two interaction terms and two bands in eq.(2.1) it
four-component space(59,68,69)

is convenient to work in

;/ ST(X) .?"‘.,
| @ | |
7@ i 2@ (, ... (223)
\veJ,(% /
ee. (2.24)

P = (D, g (D), b, 13, ® )
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In this four-component space the heat current

operator (eq.2.22) takes the form

ol
~~
p—

i

/
DY
Q

Ty 11=1

(39— T3 + %‘{ INT AN (rzx1) P (1)
) e o e (2025)
where we have denoted by 1 and 1' the space-~time

points (iit) and (z’,t'), respectively.

In order to evaluate the thermal conductivity, it

is convenient to first introduce a correlation function(7o),
p(1,2) = f\’T[{f(l).E‘(z)] > ... (2.26)

where 1,2 denote the space-time points, and T is
Wick's time ordering operator. In the region Retl=Ret2=O,
0 <{Im ty, Imt2t:-B, the fourier transform of P(1,2) is

defined by the expression

' d7q . L= 2 2 .
P(1,2) =V [ 5 % 5 P(d,v,) AT (X -X5) —iv_ (£4-%5)
I (2
(2m) . ... (2.27)
"
where v = 2mmi/B, m running over all integers,and

B=(kBT)—l. The thermal conductivity (2.18) is then
related to the analytically continued fourier series

coefficient P(a,vm)_by (66,71-73)

P(3=0, v =w+0")-P(g=0,v =w-10")

K = Lim
6T w90 w
: .. (2.28)

The correlation function is8 now evaluated assuming
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a low concentration of impurities and neglecting the
existence of any collective states(74,75). The scatter-
ing from independent, randomly distribﬁted impurities
is treated in Born approximation. Thus proceeding in a
manner analogous to that of Ambegéoker(?O), we get the
following expression for the Fourier series coefficient

P(@;O,vm)_EP(vmil in our case:
+
i r,lo_[* ok o
(ﬁ) g} e ?5;;3 k(2£(+vm)

x Tr[ (egx1) € Be v ) () € @e ]
ce. (2.29)

Q|+

P(vm)

]
- where (¢ /5v._) is the vertex function satisfying the
k ( m

integral equation:

. 2
Mo (V) = B(2E ptv) (35x1) +n; Jz‘—‘g |7y (BB ")

x(t xl)% (k! ’51““" ) [ (al,v )éj (B ,a()(r x1)
... (2.30)

!
with E£=(21+l)ﬂi/ﬁ and { being an integer.néé(f;gl)
is the Fourier transform in space and imaginary time of

the following Green's function;
' . / 'f' - ‘
23 5(1,2) = -1 [ OFT@] > e (2.31)

To simplify the calculations, we shall take the
first leading term of the right-hand side for the

vertex function. Consequently we get for P{v):
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. - £40 3
P(vm) = %(%) zl o 4 .J%Ei) E(2£(+vm)2
x T [ (vpx1) 8 (g v ) (353x0)G " (@, e )]
oo (2.32)

Since in the strong-intraband-phonon-coupling
limit, the 4x4 matrix Green's function is diagonal,
as given by eq.(2.2) in section II, and the matrix (13X1)
is also a diagonal matrix, it is obvious that the
resulting 4x4 matrix under the trace sign 1in eq.(2.32)
is also diagonal. The correlation fugction P(vm) can
thus be written as the sum of two correlation functions
Pl(vm) and P2(vm) which involve the Green's‘functions

Gé and G&, respectively, and given by:

| _ 1y v E(OJdBK_-)z 2
By (vy) = 5(3) %,( © 1 an)? k(2e v )
X Tr[}BGé(g’£(+vm) TBGé(?,EKE], ce. (2.33)
. |
1,4y v O 2%k = 2
Py(v_) 5(%)%/( o 4 J (21:){ k(2£(+\)m)

x Tr[TBGé(E‘;’ gl+vm)'c3(}é(l-c>,£1):[ C eee (2‘.34)

The primed Green's functions can now be changed
into unprimed ones with the help of following evident

relations:

GS’ = GS/mS | _ : c... (2.35)

G(j'. = Gd/md A . L) (2-36)
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and equations (2.33)and (2.34) reduce to following
form: |

ot
1 iy v B0 adk = 2
1) = 82 ® ‘??x ) [ (2m3 FER)

X Tr[}3Gs(ﬁ,gl+vm) rBGs(E’EK{]
o ce. (2.37)

1t .
_ (i Ok p 2
Po(vy) = g;g“(g) g‘ e J(Zn)3 k(2El+vm)
x Tr[}BGd(E,g(+vm)T3Gd(2,g(£]... (2.38)

GS and Gd are the 2x2 matrix Green's functions already

introduced by equations (2.3%) and (2.4).

Further, GS(Z) is analytic everywhere except for
a branch cut on the real axis and hence it can be

expresset through the following well-known spectral

representation: _
S 2 dw asgdg(w) . oy
Gs(a)ErBg) =1 3 g oo (2039)
' e S .
where,
- o ioTY o —ninT , '
as(d)(w) = Gs(d)(z_w iof) Gs(d)(Z—w+10 ) c.. (2.40)
After substituting the spe?tral representations

for the two Green's functions in equations (2.37) and
(2.38), the gl sum is carried out (73). The thermal-
conductivity is then calculated from the formula (2.28).

K is thus found to be the sum of two terms, Kl and
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K, arising from the two correlation functions Pl(vm)

and P2(vm), regpectively, and have the following form:

1 3
K, = 2 [ & kdz 10202 sech2(%§w)
48m kT (2%)
-9
x Tr[TBaS(E,w)TBaS(k,w):I ees (2.41)
and
1 PP 22 2,1
= ——— d kdw x<,“ gech (zBw)
48m - kBT%i (2n)3 o
T @, Z,w) 2.42
xTr TBad(k,w)TBad( , W eee (2.42)
& -

The integration over momentum variable k is
prerformed with relative ease by converting it to an
integral over the energy € (70); the expressiohs for

K, and K, then become

© ~ 2 (~ 2
_— ng [ w? sech? (§5m) ¢ 1s |2, -{agl >
B ——- - =T
ee. (2.43)
~ D
K a food w“seon” (360) 'Zdtz"mzl )
TRRL If 2) 125571

‘e e @ (2~44)
where Ng(a) is the density of electrons in the s{d) band.
Let us now define

2. W
5y =g = ... (2.45)
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a 7
an y lw
ud = ;:d; = A—T;"('i' e s (2 046)
g Bg

We can now rewrite equations (2.14)-(2.17) in

terms of u. and Uy as:

s
7 - b (2.47)
Z. =7 “« o .
S ZTSd (u§~l)1/2
_ i 1 : ( )
N = A . e a e 2.48
S S ZTSd (U«g _1)1/2
7. =7 : *d (2.49)
= + . . e -
a *Tsa (w5 - 1/° .
-~ —_ 1 1 '
A = A + . e (2050)
d. d 2’Esd (ug—l)l/z .
Substituting equations (2.45), (2.46), (2.48)
and (2.50) into equations (2.43) and (2.44), we have
w2 sechg(%ﬁw)
Kl = j‘aw ‘ . —
gk {Ks(u§-1)1/2+ir [(ug-l)lm/(ug-l)l/‘?_”r
T | A
< Iusl -l N
X gl+ _—'é'——_,) ... (2.51)
Ty
x And \a; w2sech2(%6w) - Iugf—l
> = > 0 > 1/2 Q_ + —'——‘—-————2 >
BmykgT™. o m[Kd (ug=1) +i[ :I lug=1] |
ee. (2.52)
where,
+ /0§ 202
M= = . | «...(2.53)

CENTRAL LIZRA™Y UTIVIRSIY OF ROCRIEE
' ROORKEE
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From equations (2.49) and (2.50) it is easy to see that

-8 _ _ 2 _ _iw ‘ (2.54)

ud— hd - ) - . & o

Similarly, the two equations (2.47) and (2.48) can now

be combined to give

-

r Aq
‘— (1 + )1/2 )] / (1+ _-E-- (w2+‘52)l/2 )

(2_.'55)

Further, as argued by Chow(59), Kﬁ})ﬁé and we can neglect
the factor 1 + fk3/(m2+K§)l/2:] in comparison to

i+ (Kd/Es)[T-/(Q2+E§)l/2:] and can approximate equation
(2.55) as '

iw/A
u. = = ees (2.56)

IR AR08 A 2,52) )+2 7}

Substituting for ugy and u, from equations (2.54)

R

and (2.56), respectively, we finally get
. ) 2 -
ng @ w4sech (%Bw)
K, = S dw ——
1 4m k ( _ _ . _ 2 1372
7B o Tz{w2+A2[}+(Ad/AS)(r_/(w2+A§)l/?] F
| ... (2.57)

ny ~0 w4sech2(%Bw)

= dw ... (2.58)
4mg kg Jo T2(w2+K§)[:( 2+A% /e, r]

We can’write the above equations also in the
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following form:

nS
K, = mni I, | ... (2.60)
' d B
Whére,a) _ _ 3/2
- 4 /me Bw_, —Fw -2 -d -] }
I, = d { (2 1
1 _JO 1w \w/ (2+eP P +e )w-m <+E (w +A )1/2>
ve. (2.61)
© . | ' .
I, = J dw {w4/T2(2+eBw+e°ﬁw)(w2+5§)[} +A§ 1/2+ri}}
" © ‘ | ... (2.62)

As the integrals,ll and 12 can not be solved
analytically, their values have been computed numerically,
in the temperatufe'range 0.04-0.90°K for various values
of the parameter [ (which is a measure of impurity

concentration) ranging from 503:10'17

ergs to 60x10™ 11 ergs.
The calculations have been done using the following BCS

expressions for the two energy gaps Ks and Kd:

= 3.1 kT, (1= ) Y/? .. (2.63)
. Ccs .
_— | . D\ 1/2

The wvalues of the critical temperatures Tés and

T,3 due to the s and d bands are taken to be 0.926 and

9.26 °K, respectively, as we know that T
1

CdzTC of

Niobium‘and T, 22 107" T4 (59,62) and T_ for Niobium
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is 9.26 °k. Calculations have been done by taking units

of energy in eV.

One can make a qualitative estimate of Kl and K,
in fhis model,if information about the parameters N,
Ngs Mg and md is available. However, as no_information
seems to be available at present for the case of Niobium,
we investigate the behaviour of 11(2) vs temperature T.
Since, ns(d) / ms(d)kB is a constant factor, it will
only scale the wvalues of K1(2) and will not affeot the

behaviour of Kl(2) vs temperature T.

As a result of numerical computation, we find
that I, is about 10”7 times smaller than I;. Furthermore,
since ng / m <kp 1s greater than nd/mdkB because ns>fnd
and ms<fmd, the contribution of the K, term will be far

smaller than that of the K, term and it can be neglected

1
to a fairly good degree of approximation. Thus, thermal
conductivity K will be equal to K- Tﬁe guantity
K/(ns/mSkB) is plotted on log-log graph paper against
temperature T for two values of parameter | , as shown

in Fig.2.1l.

Iv DISCUSSION

Working in the two-band model, we find that the
thermal conductivity X is the sum of two parts Kl and K,.
The interesting feature is that while K2 depends only

on the single energy gap parameter Ad’Kl depends on

Poth the energy gap parameters A and Ad’ and this
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dependehce manifests itself in a rather complicated
manner-— it seems impossible to further split Kl in
terms of A and Kd separately. Further, since K, glﬁqu,
the thermal conductivity K Kl' A log=log plot of the
quantity K/(ns/mskB) vs temperature T for two values

of the parameter [ (which is a measure of impurity
concentration)is. shown in Ffig.2.1l. The general -and

broad features of this study are as follows:

(a) For [ = 51.25x10"5 eV, we find that for the
temperature range 0.04-0.20° K, the point lie on one
straight line. The slope thereafter decreases slightly

i.e., the thermal conductivity shows a mild decreases.

(v) For [ = 37.5Ox10'5 eV, a similar behaviour is
observed, but the change in slope now starts slightly

earlier, viz., at around T = 0.16° K.

(c) The thermal conductivity is found to decrease
with the increase in impurity concentration. This
result is in agreement qualitati#ely with the experié
ment (67). Moreover, the result is analogous to the
case of one band BCS superconductor, where also the
nonmagnetic impurities decreases slightly the thermal
Conductivity. Furthermore, we see that it is the inter-
bénd impurity scattering which affects the thermal

conductivity in our calculations.

(a) The thermal conductivity is found to vary with

T3.l T3.2.

temperature as or
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While éomparing our results with experiments
we observe that two sets of experimental data are
availablé on the thermal conductivity of superconduct-
ing Niobium. In the first, €arlson and Satterthwaite(76)
haﬁe observed anomalous increase in thermal conductivity
below 0.6 °K, which they attribute to electrons associated
with a second small energy gap. However, in the other
experiment, reported recently by Anderson et al., (67)
they find no such evidence for an anomalously large
thermal conductivity near 0.5 °K. ihese authors, while
'offering'an explanation (on thé basis of their own
unpublished data and of Rowell's(77)) for the anomalcus
behaviour observed by Carlson and Satterthwaite (76)
as the effects of physical strains in the sample,interpfet
the lack of an anomalous behaviour in their own experi-
ment to mean that there is no contribution to the thermal
transport due to the second energy gap, concluding
thereby that their experiment gives negative evideﬁce

against the SMW two-band model.

It is obvious from our results plotted in Fig.2.1
that a2 theory based on the two-band model of SMW does
not predict any anomalquSAinorease in the thermal conduct-
ivity, and as such the interpretation b& Carlson and
Satterthwaite (76) of the anomalous behaviour which they
observed is not correct. Similarly, the inference drawn
by Anderson et al (67), based on the absence of any large

anomalous behaviour in thermal conductivity measurements,
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that it provides a negative evidence against the two-
band model of SMW, is not at all substantiated By the
theoretical predictions of this model. In this context,
it is important to notice that the nature of the
theoretical curves in Fig.Z.l in fact agrees with the
ones reported by Anderson et al.(67). For example, the
curve D, of Fig.l of Ref.(67), is a straight 1ine and

shows a depression, though very slight, at around O.ZOK._

To sum up; our calculations, based.on the SMW
two-band model, show %hat the thermal conductivity of
‘superconducting Niobium decreases with the increase in
impurity concentration and does depend on both the energy
g€ap parameters in a rather peculiar manner; this is

-

corroborgted by'experiménfk and thus gives a positive

-

evidence in favour of this model.
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CHAPTER III

THERMOMAGNETIC EFFECTS IN DIRTY TRANSITION METAL
SUPERCONDUCTORS NEAR THE UPPER CRITICAL FIELD

I INTRCDUCTION

In the preceding chapter we had extended the-

SMW- two-band model (58) to study the thermal conducti-
vity of superconducting transition metals containing ‘
nonmagnetic impurities; Now we shall use this model to
study the Thermomagnetic Effects in dirty (K<(go)
-transition metal superconductors containing nonmagnetic
impurities near the upper critical field. It has been
confirmed by previous ihvestigations (78-80) that it is
the pair-brezking mechanism due to the interband impurity
scattering which is responsible for the anomalous

changes in various physical properties of dirty transi-
tion metal superconductors near the critical temperature.
Very recently, Chow (80) has investigated how the inter-
band impurity scattering would influence the Hall effect
in the dirty type-II transition metal superconductorsl

in a magnetic field immediately below the upper critical
field HCZ(T) and ih the temperature region Tég)<T<Tcd(=Tc)'
In this region the s-band electrons are in the normal
phase and the d-band electrons are in the superconducting

'mixed phase. In the present chapter, we extend (81) this
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study to investigate the influence of the interband
impurity scattering on the thermomagnetic effects (such
as the Bttingshausen, Nernst, and Peltier effects) of
dirty type-I1 transition metal superconductors under
similar conditions of magnetic field and temperaturé;
The rmomagnetic effects in the mixed state of a super-
conductor arise from normal electron flow in the cores
of the vortex lines (82) and to a much greater extent
from the existence of localized excitations- and hence
an entropy- in the cbres of the vortex lines (83). The
calculations have been done following closely the Caroli-
Maki fheory (84) for the thermomagnetic effects of dirty
one-band type-~II superconductors. The pinning effects
on the motion of the order parameter may be completely
disregarded which is a quite plausible assumption and

is confirmed by experiments in the high field region

(H~H_ ).

In the calculations presented here, we assume
that the Fermi surface is spherical (which may be true
for dirty Niobium). Purther as in Chapter II the intra-
Band BCS coupling constants, &g and 8yqr are assumed to
be non-zero and the interband coupling.constant €4a
is put equal to zero. Another important point Which
should be noticed is that the inferband impurity scatter-~
ing only slightly changes the upper critical field in
the temperature region Tég><T'(Tc (85). In Section II,
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a theoretical formulation cf thermomagnetic effects
in dirty transition metal superccnductors is given.
Results are summarized in Section III., and conclusions

‘are drawn in Section IV.

IT THEORETICAL FORMULATION

A Heat Current Density in Dirty Limit

We adopt the procedure followed by Carocli and
Maki (84) for caiculating the heat current density in the
dirty limit ({ <&,)- In the high field region and at i-he
temperatures of interest, Tég)<f<iTC, there will be only
a small percentage of the electrons in the s band, aﬁd
so the heat current density (hence the thermomagnefic
effects) of the twec-band systen should mainly be due to
the d-band electrcns. Therefore, we will be interested

here in calculating the d-band heat current density.

In these calculations, cnly the normal-phase Green's
functions will be needed, as shown by Caroli and Maki
(84). They can be easily obtained for ocur case (85)

from eg.(2.3) and (2.4) of Chapter II and are given as,

-1 ,
(o) _ (> 2
(o) T > a5 —1 |
63" (B,2,) = (Bg,~eqz+ e Vpq.4) ce. (3.2)
where 2 = i(2v+1)nT, with v being an integer. Further,

st (=lwsv) and Zdv(=imdv) are given by
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Eév = w, + sgn v(l/ZTS+1/ZTSd) ees (3.3)
'Bév = w, +sgn V(l/2T +l/2¢ ) ees (3.4)

where Ty and Ta are intraband-impurity-scattering

relaxation tines and T,y 2nd Ty are interband-impurity-

ds
scattering relaxation times for the s-d and d-s processes
respectively, and are given by equations (2.10)-(2.13)
in Chapter II. It has been shown by Chow(85), that the
inclusion of interband-impurity-scattering relaxation
times Tq

g modifies the upper critical field equation

log(T/Tco)+¢E% f(Tfr’dvgd/6nT) eH02:] - W(%) = 0

e o o (305)
to the fcllowing correct equation:
Log co)ﬂi}[? B E X N :’ - 4’]_—'2]
. & . (3-6)
_ oD en - _1l. .2
where €30 = ZDdehce(T) with Dd = BTtr,dde'

Here Ter. a is the d band intraband-transport

9

relaxation time, P(x) is the digamma function, H, (T)
2

is the temperature dependent upper critical field, Dd

is the d-band diffusion coefficient and Vea is the Fermi-

velocity of d-band electrons.

The eguations of motion governing the order para-

meter in a two-band superconductor, in the presence of
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an external magnetic field and electric field, are

given by (84):

(@4D4a%) 0% (D0, = eq b5 (Trcy) cee (3.T)

(2+D,a%)a, (D¢ ) = g4.04 (TrCy) coo (3.8)
where, in equation (3{7), £ and g'are to be replaced as
below

@ =>  +2ief(?) ee. (3.9)

? = 3 - 2eA(R) ee. (3.10)

when operating on A§

and in equation (3.8), @ and J are to be replaced as

below |
Q@ > e, - 2ie@(P) , ee.(3.11)
T >3 + 2E(D) .. (3.12)

when operating on Ad.

> ‘ 1
Here, @B(¥) = -Ex and A = (O,Hx,0)and the d-band order

parameter Ag(@,cm) is given by

3 .
d"q s T
AE(F L) =T 3 T SNt ... {(3.13)
d 3 d m
Cm (2m) .
with Cp = iR = i2nmt, m being an integer.

We shall how calculate the d-band heat current

density which is expressed (using the standard notation) -
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as (84)
'j(lil(?,t) := '%ll(?’t) + 3-32(?,1;) e (3.14)
with

t - 3 . < .
Jdl(r,t) —~1e{ a}dt'Jd3r'( _§3<?,t>, nd(?',t'i],>¢(?

... (3.15)
t

[# dtlf_ dtszB( aom
{([ 82,00, BTy | Ba (@] >

([ BaE a0 B @ e | B (T PR apag @,
.o (3.16)

J
St
o
ct

|
R

whe re Jd(? t) is the d-band heat current density operator

33(?,t) = - %ﬁ [}V—leA)(dtr - ief) +(F1+ieD) (2 3T +ie¢i]

+ ?I v 1y 2 .
R FLE 0], e 5D

and ﬁd and @g are d-band pair annihilation and creation

operators: |

Ba(Tt) = g Bt) B Ber) L Gas

VI = 1 B0 W () | | ve. (3.19)
Now 3§l(?;t) is just the d-band heat current density

in the normal phase and we have (84)

h

Ja1x

- STcd(l+n§)'l B, | | ... (3.20)
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2 : . o mss
where g3 = € Ttr,dnd/md’ the electrical conductivity
of a one-d-band normal metal in zero magnetic field,
nd=(ertr'd/de)H, and S(:ﬁ2T/2eu for a spherical Fermi

?

Surface), the thermoelectric-power coefficient.

322(?,t), defined in equation (3.16), is the contri-
bution due to the motion of the vortex structure(i.e.,
that of the order parameter) which is of main interest
here. It is calculated with the help of the stan&ard
temperature Green's function technique (86). We have
kept here only the lowest order term in A(¥,t), since
we are interested in the region near the upper critical
field. In order to evaluate the retarded product in eq.
(3.16), we first calculate the corresponding thermal

product,

. - C & 3
Bo@ageey) = 2@ Ginr L [4edn

where ClziﬂlziEnmlt and.C2=192=i2nm2t, with m, and m,
being integers in the absence of external fields. In

the presence of external fields, @(%) should be inclucded
in Ql and R, according to the convention given in

~equations (3.9) and(3.11). {owoody répresents»the
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impufity—scattering vertex corrections. Now, with
vanishing Qé anc Ag, the only vertex cofrections
to be included would be the~intraband impurity-scatter-
ing vertex coirections, which have been treated in
Ref.84. It should be emphasized here that the Greeh'é
functions in equation (3.22) are now given by eg.(3.2)
with interband impurity scattering in seif-energies
included.

Further, confining ourselves to the case Ql,
92> 0, as we are interested in the retarded product,

we obtain

2
D 1
“h = _ 23%r,a e 8o+Dq45
: \
29 +R,+D . q
1 32 TPg490 1
”W(Z + AT * 4nTTds
1*“2‘D1(q1“q2) A 4nT " e
2
vk + 9140347
TYA\Z 4T
2
92+qul+l/1 292+11+qul 1 ,
+ Uz + T * TR
Q. +2,+D4 (ql-q2) de
2
@~+D.q
1 27a%2 1
-z + 4wT T InT )]}
ds
x 0 (31,97)05 (35,95) ee. (3.23)

Using equations (3.7) and (3.8) we get
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J?g:z (q’ 91+Q2) =

65—

1

ndttr,d(-y ez){(QZ'gl)"edo Tas

4md 291

2Q 1

x [@(% LT n% * AnTry )-W(% A ZE%?EQZ]

+

where d =
L = Iat T

(R —Ql)+5 292

1

Tas
20, [§(2 L T IET Ot

41Tt

ds

G+ o+ Z—,mg;—-)]} by (@1,2))8% (@00 9,)

2Dd eH, /4nT Now Q4 and Q, can be

treated as small quantltles as we essentially meke the

(3.24)

o N _ 1ot
analytical continuation i(Q,40,) = L+, = (wqtw,) +107

‘where w4 and w5, are real frequencies and then take the

limit wl+w2ﬁ O. Also, at sufficiently‘high temperatures,

to which we have restricted ourselves, l/4nT1ds will be

a small gquantity for most dirty superconductors. Here in

our case of T >

T(0)

, we would only reguire 1/A (o)

Tas &

1/a (o)t  to be a small quantity. It is well known that

for small x, we

w(% +/o + x)

where,

w(l)(%

have the following expansion:

=1G + e (D G+ o)+ 322902 G

co) = LG ap) - 1 ” 0
/f° a/o 2R ( % 2

(2) (1 _ 8% 4 .2 1
VG +/°)’;/;?W2 Wl 2%’:’0 (\:-«-l+/<:»)3

Using Eq.(3.25),

2 can be approximated by,



66—

38, (@=3, 25,2, 40,)

Nyt
~ _dtr,d /3 > - x>
- “§EE§T(31‘Q2)(Qz“gl)ﬂd(ql’gl)Ad(qe’Qz)

XB](D (% AVAR 475]1:T,_~')+(4 + m%ﬁ__m(‘?) (% +/°+£T7?T?- ]
| - ° .. (3.28)
A After doing the analytical continuation and taking
the limit'wl+w2 -> 0, we obtain

h - n
Jia@ ) = L (@), (wpma)ag (B, 1) (R 2)}

X]U(l) (% +/O + Z—‘)_ITTj ) l-i—(-é + %TTd )

(2) 1 -
v (2' Tt 4nmtdsj
m(l)( +/p+ ZnTT )
.. (3, 29)

where _Eil,c'fz,wl and Wo should now be understood as operators

in the sense

T, = T F-2eKQ1), T = 3 Tp+2e4(2)

wy =i 5:?;-1 ~2ef (1), w, = 1 '5%*2- + 2eff(2) ... (330)

Taking the space average (84), we have

(a8, » =0 con (3.31)
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n.,T 2
h _ a tr,d (1) ,1 1 _
Jd2y -7 4nmyT L (5 +/: + 4nTTdS ) <Mdl > eB

) 9 G+ pr 47tlT’fds)
X[2+(/O + 47?111:6_8 )w(l) (:QL-

e (3 L

1
+P+ZMT%

LS

1 + ot _415'_’1‘1:(3"—_\’
s
T las GG et Z;ﬁ;g;ﬁ")
cee (3.32)
which can.be written as
g S =M E[%-Z(t)(l+ 1 {] | . .. (3.33)
< d2y / d €io Tas
where (2) 1
_ 1
) PTG e AnTT, ) : )
L{t) = - “ee 334
(1) /1 1
r ¥ (5 oot 4RTTd;_)

is always a positive quantity, as is evident from
equations (3.26) and (3.27). Here My is the spatially
averaged d-band magnetization of a very dirty type-II

two band superconductor, and is given by the following

expression
et n .
My = - e (a2 8 G+ or gt
H, (T)~H -
- _%.ﬁ 2 , HCH, (1) e (3.35)
2 2
25 (t)-1)[ 8,

where K,(t) is the second Landau-Ginzburg parameter with
t denoting T/Tc and B, = 1.16.

Using eq.(3.35) and including also the heat
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e
current due to the magnetization current (=—HJ§ =

-HM&E = —MaE) associated with Vortex motion (87) we
finally get the following expression for heat current
density;
Bo.D.H 4K2(o)
d7d"c2 "1 H

h - 7(t) (1 1 -1
<’Jd2y/ (ZK%(t)-—l)BA (1 Hc2) (t) (1 Edotds) :]

Here we have used the relation

1

s - 2
(4nodDd) = 4K1(o)

where Kl(t) is the first Ginzburg-Landau parameter.

B. Transport BEguations in Registive State

The ratio of the heat and electric current (80)

is given by

fJgé 5 1-2(t) (1+ E_lr ) o ,
(daox > 2 1 - X(t) '
€aolds

This result suggests that a temperéture gradient
(perpendicular to the magnetic field) produces the
recipreecal effect (i.e., 2 heat current parallel to the
temperature gradient and an electric current perpendicular
to it), so that the complete set of transport equations is

Tay = agB - K@M, | cer (3.38)
Jax oSdE+5(§T)y | eo. (3.39)

i
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with
24K (o)

H 1
aq = (- By [z06) @+ g2 -]
2K (t) -1 aoTa
[ ( jBA “2 | T (3.40)

and g = ad/T

Here, we have considered the normal value of 04

to be negligible as suggested by Caroli and Maki(84).

- C Bttingshausen Bffect and Delivered Entropy

When an electric field is applied along the x
direction, an electric current along the x axis and =
finite temperature gradient along the y axis are induced

and are given'by

Jag = [;sd + « /T Ksé]b., cee (3.41)
and- |

(F1), = (ag/Kgq)B , e (3.42)
as ng = 0 ‘ eeo (3.43)

Hence, we get from Egs.(3.40) and (3.42)

5 .

(1- =) |2(6) 1+ =) 1]

= st[?Kg(t)-{]gA c, dotds
, ... (3.44)

This equation might be interpreted by saying that

each vortex line carries an amount of entropy, given by
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S = nst (3T)1_
a - - el B

I3

DaHgo 4n X5 (o) (1- g )[?(t)(l+
21 EHGEIE ve
2 A

1 ) ]
-1
€ao0'as

ce. (3.45)

It should be noted here that this entropy vanishes

at H=H, (as it should be at a. second-order phase
2

transition).

D. Nernst BEffect

-

This is just the reciprocal of the Ettingshausen

effect. When a finite temperature gradient is applied

along the y-axis, a heat current along the y axis and

a finite electric field in the x direction are induced.

These are given by

h ' 2

de = [%Sd+ad/To§é](-vT)y
and E = (ad/'l‘csd)(v'l‘)y
We can rewrite Bq.(3.47) as

B, DyHe,(t)4KS (o)

E. Peltier Bffect

do as

The Peltier coefficient is given by

h
de

T =
d de

CENTRAL LIZ7A

Y URIERSIY OF ROGRKEE
ROORKEE

SRl e Py (1~ ﬁ—c?[z(t)m ——)1]

.

L]

*

.

-

(3.46)

(3.47)

(3.49)
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Neglecting higher-order terms in Ng» we obtain
with the help of Equations (3.20) and (3.31), the

following expression for ng:

h _ ‘ .
Jig = Oy BST , .o (3.50)

Hence equations (3.49) and (3.50) combined with

the following expression of Maki(80)

o 4K§(o) [1-H/Hc2(fr)1( X(t)
édx = GdE[; [%Kg(t)-:]BA €a0%ds

—1)] vo. (3.51)

give the following expression for Peltier coefficient

- 4K§(o)(1- H/He o)

2 do ‘ds
[21&2(13)"] BA
where, X(t) = -/Ow(z)(%+/0)/w(l)(%»+/0) ee. (3.53)

IIT RESULTS

We can now apply the above results to Nicbium for
which T, = 9°K. The temperature region iﬁ which we are
interested corresponde to 0.15 <t <£0.45. At these tempera-
tures, the maximum values of both X(t) and Z(%t) will
always be less than unity. Furthermore, the quantity
€30%qg Can be explicitly written as %Tdsttr,dvgdHCZ(T)'

It has already been shown (8%) that in the dirty limit,

HCZ(T) is independent of the density of impurities.
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Further, one would expect that for a sufficiently

dirty transition metal superconductor T4.€4.,K1.
Therefore, we note that as the magnetic field decreases
from the upper critical field ch(T), the correction
factor due to interband impurity scattering increases.
This implies that the d-band thermomagnetic effects in
dirty type-~I1I transition metal superconductors show an
anomalous increase, in the magnetic field region
immediately below Hcg(T) and in the temperature region
Tég)<T-(Tc. The validity of all these results is limited
to the high field region, Jjust as in the case of the

one-band Caroli-Maki theory(84).

IV CONCLUDING REMARKS

We have shown that it is chiefly the interband
impurity scattering {corresponding to interband
impurity scattering relaxation time Tds) which causes
the anomalous increase in the thermomagnetic effects
immediately below ch in dirty type-II Transition metal
superconductors., It leads to the general conclusion that
the influence of s-band electrons on the transport

properties of the d-band electrons is through interband

impurity scattering.

We should like to emphasize that this behaviocur in

d-band thermomagnetic effects of dirty two-band transition

-
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metal superconductors is quite similar in nature to
the d-band Hall angle (80). Moreover, for dirty one-d-
band superconductor, our results exactly reduce to

those of Caroli et al.(84).

At present, no experimental information seems
to be available on the measurements Of these effects
in dirty two-band transition metal superconductors

. s 5 . (o)
below ch and in the temperature region T _ <T<CTC.
It is hoped that the experimental information would be

forthcoming in the near future, to make it possible to

check the results pregsented herc.
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CHAPTER IV

EFFECT OF PARAMAGNETIC IMPURITIES ON JOSEPHSON
CURRENT THROUGH A SUPERCONDUCTOR-NORMAL
METAL-SUPERCCNDUCTOR JUNCTION

T INTRODUCTION

Since the discovery of the famous Josephson
effect (88), the supercurrent dué to Cooper pair
tunneling through superconductor-insulator-super—
conductor (SIS) jﬁﬁctions has been widely studied both
theoretically and experimentally. However, much of the
theorétical and experimental work done in this direction
pértains to junctions with insulating barriers, and
there exist standard techniques, like the Greén's
function approach (89) and the tunneling Hamiltonian
method (88,90), for theoretical study of these junctions.
However, not much attention has been given to‘the
theoretical study of the junctions with normal-metal
barriers. In such junctions, the usual “technique of
treating the tunneling Hamiltonian as =2 small perturbat-

ion can not be applied for the following reasons:

(1) In the thin-barrier limit, the proximity
effects play the dominant role which makes
the effective tunnaling matrix elements
too large to be regarded as g smail pertur-

batiocn.
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(2) In the thick barrier linit, the normal
barrier offers by itself a bulky region.for
the electronic motion, which cannot be

described by the naive tunneling Hamiltonian.
One must thus adopt the Green's-function technique

Ishii(91) has recently applied this techniqgue and deter-
mined the~ oeme particle Greens function for pure super-

conductor-normal metal-superconductor (SNS) junctions
in the thick—barrier limit. Chcosing a simple model for
the juncticn (92), he calculated the dc Josephson
current at T = OOK, using the Green's functions for the

superceonducting and normal regions.

Ishii does not take into account the effect of
impurity scattefing in either barrier or superconducting
regions. The object of the present study is to investiéate
the. effect of paramagnetic impurities in the barrier and
superconducting regicns on Josephson current through
junction with normal metal barriers, using both the
Ab:ikosov~Gorkov model(18) and Shiba-Rusinov médel(23,24).
(An outline of these models has already been given in |
Sec.IV of Chapter I). For simplicity, we shall restrict
ourselves to the casce of zero temperature, since all
fundanental properties of the Josephson effect are already
included in tﬁis case. Furthermore, we shall consider
the potential difference V between the superconductors
to be zero, i.e. we are concerﬁed only with the dc

Josephson effeect. Interest in the study of the effect
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of paramagnetic impurities is linked with the circums-
tance {(as shown by Abrikosov and Gorkov(1l8)) that while

the energy gap w_ in the spectrum cf single-particle

g
states vanishes in superconductors in such cases, the

ordering paraneter is nonzero, i.e., the metal still

remains a superconductor.

In-Sectiocn II an analytical treatment is given
for the calculation of Josephson current through impure
SNS junctions, taking thc renormalized Green's function
for both the barrier and superconducting region. In
Secticn IIA and IIB, we have used the renormalized
Green's functions given by Abrikosov-Gorkov(18) and
ShibaéRusinov(23,24), respectively, to treat the effect
- of paramagnetic impurities on Josephson current. This is

followed by a discussion of results in Section III.

IT ANATYTICAL TREATMENT

The supercurrent through the junction is calculated

from the following expression derived by Josephson(89):

2

. b N Y- o 1
j = 2ie __——2:Jé kll(f dx' dx'—l d%f dx')
C(2m)° 4 XEV, VX'eEV, Y XEV, x'svl' .

) L, (2,2)
x T 7 ¢f{1,1)s x,x)E . .

iw . AN, iw (x,x")a®(x) a(x")
w n n

n | e (4.1)

~where the regions Vl and V, simply stand for the two

[

superconducting regions 8§ and S' and L,q denotes the
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linear dimensions of the junction in the y or 2z
direcfion.

The expressions, derived by Ishii(91) for the
!
(1,1) conponent of ¢° ®(x,x') and the (2,2) component

oft;N(x,x') , for the case of pure-SNS junction, are

a1, l)” s(x X ) = Z'ﬁg ekp(iokcix;d{+ick6[x' )
iw, kll S lwn’kll _ﬂ#’

, ' ioQ (1 0=+
ﬂc(s',s) _ . i . ,O- ’
Giwn’kll = 4,2iQ EG;?E@;‘ exp{2iokK d)XG(ﬁ)x ezé e

LR 3 (4.2)
where,
e} VR +
k° = sgn wnEZm(u +ioQ )] , Im k=%0
1/2 |
iQ, = [(:uu )2-—(A)2_J
o 1/2 Xy
J— 2 3 T
K~ = sgn wn[Lm(u?X+lcwnﬂ y Im K %20
. ol
a = -
8 c
7 Zan
‘ iw, =iR, 4w |a - =1
Xo(é) = [:~ Ea-;zﬁm-exp(- = L R, 1o¢i] s ees (4.3)
n n Fx

with 2d being the thickness of the barrier, $ the phase

difference between the two superconductors, and

¢ (2,2) = | -
] ! =d -1 . ' s s @ °
7y, 1wn(x x') = dy exp(-1K |x-x'[) (4.4)

with



~78~

o1 jul
deo =
N ix©
Using the Green's functions given by egs.(4.2) and
(4.4), the final expréssion for the current through

pure-SNS junction at absolute zero tenperature is given

by [91] .

pure SNS @® pure SNS(T=0) ,,
3 @) =Y iy (88)sin ng
T:O n:l s e @ (4’.5)

where ¢ = vF/nA (vp is the Fermi velocity and 4 is the

energy &gap for a pure superconluctor)and the ccefficient
(which is o function of the thickness of N layer scaled

by the coherence length of the pure bdbulk 5 or 3' netal)

is given by

pure SNS 5, IS, o ure SNS,
j (£=2) = 2ie q(-4ikF)[ d cose Jp (cosp)
n € 2w)° Y ( )
. s & 4‘06
6 is defined by Vpx = V@ cosH and
. n
~pure SNS( ) = [ g [ e=(o +z32)1/2 (- 2c1 w _1 )]
J cosB w exp =
n L w+(w 442y 172 A cosi )
eee (4.7

Now, in tho rresence of randcm distribution of
impqrity atons, the Green g function gets renormalized
(18,23,24) and the renormalized Green'sfunetioms (describing
the electrons in the presence of randémly distributed
impurities),are,obtéined in a»simple nanner by replacing

w and Ao in Bge.(4.2) and (4.4) by their renormalized values
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i.e., @ and X, respectively. [ The renormalized values
% and X are different in different models and depend on
the types of impuyities as we shall see in this chapter

and later in the next chapter | . We thus obtain

] . R .
Eﬁ;’?és S; (x,x') = Ztggéﬁfg) exp(idk®|x-a| +ik%] x'+a}),
n’ 11l : g - n*"11i _ )
- =zo{S'8) ~ i$;+id§;‘ G 1 ' o=+
iaan,.kll = (;SZ:LQn m’“@ltp(?lo'lf d)Xc(E}) X{ei‘é oo
.. (4.8)

where &°, Qn,’ﬁc, ﬁ;, and Xg(ﬁ) will be given by an

equation similar to (4.3) on replacing w by ® and A by'Z2

4

Similarly,
~ N
~€7 (2,2) NG_ e ) . . )
;jN;imz(x,X') = af exp(-ikK™[x-x'[), .. (4.9)
. “n .
with
/5:1?]' = n/i /I}:G

Thus, analogously, the supercurrent through the

impure~SNS. junction is found to be given by

L2 ® . AL
© - S . . - . o
jimpure Ns(ﬁ) — Dig—id 2(-41k§) 2 sin ng@ d cosh
2“) n:l <+ O

Eimpure ON S

: (cose) .. (4.10)

where,
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impure SNS @® v 2 2\1/2 v N
T W om0y = [ aw [BEE T oxp(- 2 E L]
n Yo W+ W+ ) g
L. (4a11)

(&) Abrikoéov-&orkov Model

We shall first apply the Abrikosov-Gorkov nodel
fo treat the effqpﬁ of paramagnetic inpurities. on
Josephson current through SNS junctions(94). Abrikosov
and Gorkov(1l8) assumed'the‘interaction between conduction
electrons and magnetic iﬁpurities to be very weak and
thus treated the exchange scattering in lowest order
" Born approximation, According tq'this theory (as shown
“in Section IV(i) of Chapter IA), in the presence of a
ranQOm distribution of paramagnetic impurity atoms, the
renormnalized frequency‘a'and crder parameter’zl of the -

renormalized Green's function are given by the following

equations:
~ 1,1 1 D :
W = wt $(=+ =) L
2 T (@Rl |
. PR (4012)
- —~
~ 1,1 1 A
.x\m.A = A"'I‘ ("“ - )

where T, and T, arc the two relaxatioﬁ fimes corres—
ﬁonding to two types of scattgring,.without and with
spin flip,fréspectively and are given'by expression(l.42)
of Chapter I. It is convenient here to introduce a

new auxiliary parameter u defined by u = ¥/R.In terms
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of real frequencies , Bg.(4.12) then lecads to (93)

w 1 ,
where,
r = - (4.14)
TEA ‘ 4 ® & @ L] g

in important feature which follows from this
relation is that w increases as u increases. At u = 1,
w is negative and diverges. The maximun value of w is

in the region O{u(l.

In terms of the auxiliary paramecter u, expression
(4.11) now reduces to
~inpure SNS

o
J (cosg) = f Aw
n J o

_(14u2)1/2 sa uw
Dz P £ i)
(4.15)

Putting u = sinh «, Bg.(4.15) reduces to

Ampure SN S

{cose) = (=) f dw exp(-2noa- n2d §52££) eee (4.16)

In e

The integral over w can be transformed into an integral

over o with the help of the following eguation,

1
(1~ Slﬁh a

= ginha(l-C

A )1/2) | eeo (4.17)

Remembering that u2(=sinh2d)(<l, the transformation
equation (4.17) after a simple calculation gives

dw = du[}osha—c(g cosh3a+ %coshai] ‘ eee (4.18)
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Substituting Bg.(4.18) into Eqg.(4.16) we have

_impure SNS
I (cose)

1t

w .
n
A(-).f da[%osha-g(%cosh 3a+ gcoshai]
o 4

x exp(-2na- n2d §&£h§_)

£ cosg
u 24
=00 { [B2n+l(n £o550) *P2n-1 acose)]

24 -
-G ‘E Bop43 (B gcose) +By, 3 (n acose)

5 | 24 24
-G ig[%2n+l( gcose)+32n l(n Ecose) :
) s & (4.19)
The function Bm(Z) given by
Koo
Bm(Z) = da exp(-ma-Z sinha) oo (4.20)
40 .

is the associated Bessel function and has asymptotic

form(95)

B (2) w ¥ - ot eeeeeen 2 2w Ll (gi2))

Using this we find the following expression for

ﬁimpure SNS’(cose):

. - n
’jf:.]mpure bNS(COSG)NA !;2 [(‘?(%‘)0086“2 (_Z.é_)z C-Osze (1"'(:)

-

ce. (4.22)

Finally the expression for the total supercurrent
through the impure-SNS junction, is obtained with the

help of Eq .{4.10) and we get:
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- mk —
J.:unpure SNS(ﬁ) _ —(2evF)(E—g)Al %(53)’ %(55)2:] (1-¢)S(8)
n —
L I 3 (4'23)

~ where,

s(g) = 2 § (-)n*t sin nd . ae20)

n=1

We recall that for pure SNS junction, Ishii (91) has

derived the following expression:

nk ' |

Eqs.(4.23) and (4.25) combine to give finally
- the simple result

i SIS
J1mpure N (8)

jpure SNS(é) = 1-C oo (4.26)

which is valid for all values of (.

B. Shiba-Rusinov Model

In the precedihg section, the effect of paramagnetic
impurities was discussed within the framework of the
Abrikosov-Gorkov model (18). We shall now study in
this section the effect of paranagnetic impurities on
Josephson current through SNS junction using the Shiba-
Rusinov model(96). Shiba (23) and Rusinov(24) have general-
ized the AG theory assuming that the interaction of |

the conduction electrons with the magnetic impurities
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is strong and thus treated the exchange scattering

beyond the Born approximation but in a simpler classical

spin case.

‘ The Josephson current through impure SNS junction
is to be calculated with the help of equations (4.15)
and (4.10). The auxiliary parameter in this model(@.e.
the ratio of renormalized frequency“m'and the re-
normalized order parameter 33 is now given by the

following equation

1/2
. uI—l—C(l—uZ) T (e2u?) Tt ce. (4.27)
with ¢ = %ZK = Ci(énN(o)é] (l-;i) and ao=cos(6;-6;)
es. (4.28)

A1l other parameters are the same as defined in

Chapter I.

Putting again u = sinh a in equations (4.15) and
(4.27), we get,
- .
3;mpure SNS(cose) = (—)ﬁ{tdw exp(-2na-n gg %%%%g)
. O . . * 8 & (4.29)
and

= sinhafi—c(l—sinh2a)l/z(agesinhza)“l
- | ... (4.30)

W
A

The integral over w in eq.(4.29) can be trans-—
formed into an integral over a with the help of

equation (4.30). Since uz(:sinhza)<(l and ngzl’ the
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transformation equation after a simple calculation

gives'
Aw = A[:cosha—(gg - C4 - C6) cosh 2a-( C4 - z;g)'cosh doa
Eg 280 8e 250 be g
. —Q— cosh 6a— _Q_
830
(4 31)

Substituting eq.(4.30) into eq.(4.28), we have

) - o0 .
~jimpure SNS (cosg) = A(?)ﬁj da[§08ha-(gg - Cg - C6)C°Sh2a
n d O € 2¢ 8¢

- ( C4 - C6)cosh bdo- _Qg cosh6a- —;Z
280 430 880 : 3
24 sinha)

X exp(-2na—n ¥ Goso

24
A(')n { L?2n+l(n gccse) BZn l(n to0sh i]
1
- Z(g? _Q_ - _QE)[§2n+2(n gcose)
24
+'13211-2(n £C oSO ﬂ

1 ' 24
— (—Q— )Ea (n =22 )
> 28 4€S 2n+4 ‘" Ecosh

. 23 |
*Bon-a (2 g5 ose)]

24
- [é2n+6(n gcose ) By 60 Ecose{]

480

Bm(Z) is again the associated Bessel function defined
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by equation (4.19). Using the asymptotic expansion

given by eq.(4.20) we get

. S, =27
:S%mpure_SN (cose) ~ o iﬁl [}%a) ccse—2(%a)20082€]

X EL"'C (l.? + 14 - 16):]
€5 460 4€O |
e (4.33)

From eq.(4.33) and eq.(4.10), we finally obtain

the following expression for the total supercurrent

through impure &SNS junction:

. N mk
jimpure SNE(g) —2evF(-2-;§-)A[%<%)— %‘@ﬁ)ﬂ
x[1-t (5 . 462)] (#)

€ 4
© ce. (4.34)

where S(@) is given by eq.(4.24).
Combining eq.(4.34) and eq.(4.25) for the pure

- SNS junction we get

impure SNS ' '

J (8) 1 (l 1 1 ) ( )
= - = -C -+ - - , . oo 4.35

jpure QNS(m) l Ez | 4€g 452 l

IIT RESULTS AND DISCUSSION

(A) Results im  Abrikosov-Gorkov Model

The important features which emerge using Abrikosov-

_Gorkov Mcdel, are the following
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(1) It.is obvious from eq.(4.26) that the
barrier supercurrent through'the impure-SNS
junction is nonzero and positive for ¢ 1
(Low concentration of impurities) and
decreases with the increase in impurity

concentration.

(ii) In the gapless region (wg:@) when ¢ 3 1,
the current becomes zero at { = 1 and becomes

negative as { is further increased.

(iii) For ¢ = 0O, we get the result, derived by

Ishii(9l) for the pure-SNS junctiomns.

(iv) For purely diamagnetic impurities, having no
localized magnetic moments, there will be no
spin-flip séattéring of electrons by the
impurities, i.e., T,=CO . ItAthen feollows
fron eq.(4.13) that u = w/a, implying that
the frequency and order parameter will not be
renormalized. In other words, the Green's
functions will be the same as in the absence
of impurities. As a result, the diamagnetié
impﬁrities have no effect on the magnitude
of Josephson currents throﬁgh junctions with

normal-metal barriers.

’

We may here refer to a parallel work dcne by

by Kulik(97) on the effects of paramagnetic impurities on
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SIS~junction supercurrents who obtained the follow-

ing relation?

1- 3= ¢ RS !
jimpure
‘%I{%’ = 4 | 2 3/2 oo (4.36)
J SR N e
SIS 1- %= - 530 (5(1-¢77) £y 1
- 37313 ’
- 2 tan~t(c2-1)1/2

It is interesting to note the similarity between
our result E:q.(ﬂ,.26)] and that of Kulik Eﬂq.(4.36)],
The only-difference is in the constant coefficient of .
Further, in the case c¢f SIS junctions, the current
becomes negative for C;;Bn/4. Thus, broadly speaking,
the qualitative behaviour of the Josephson current
.through SNS and SIS junctions, in the presence of para-—

magnetic impurities, is similar in character.

(B). Results in Shiba-Rusinov Mcdel

We may now draw some important conclusions from

the calculations in- Shiba-Rusinocv Model.

It is evident from the Eq.(4.35) that when the

conduction electron-magnetic impurity interaction is

strong, jlmpure SNS(25) depends on two parameters & _and

O

Cs so’is the renormalized position of the bound state

inside the energy gap and ¢ is the measure of impurity
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concentration. Compared to the AG model,Josephson
current through SNS junction is strongly affected.
when the impurity scatterings are treated in Shiba-

Rusinov model.

It is important to notice that for e»1 (i.e.
when conduction electron~magnetic impurity interaction
is weak) equation (4.35) reduces exactly to the
result obtained in previous section in the

framework of Abrikcsov-Gorkov Model.

For £ = O this result (eq.4.35) again agrees
exactly with that of Ishii (91) for pure case. The
validity or otherwise of these studies has to await

future experiments.
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CHAPTER V

EFFECT OF LOCALIZED NONMAGNETIC TRANSITION
METAL IMPURITIES ON JOSEPHSON CURRENT
THROUGH SNS JUNCTION

I. INTRODUCTION

In the preceding chapter we had studied(94,96)
the effect of paramagnetic impurities on de¢ Josephson
cufrent through SNS junction, using Abrikosov-qukov(lB)
and Shiba-Ruéinov(23,24) theories. Very recently, Machida
and Shibata (MS) (43) have studied the effect of
resonance.scattering due to localized nonmagnetic
transition metal impurities on superoonduétivity, using
Anderson model (33) in the superconductors with U=0 (as
the inciusion of the Cculomb repulsicn U does not affect
the qualitative behaviour of final results (43)). A
brief description of this theory has been given in
'Secticn V of Chapter IA. In this chapter we shall apply
this theory to study the effect of rescnance scattering
due to localized nonmagnetic impurities on dc Josephsoh
current . through SNS junctions (98). The interest in the
study of the effect of resonance scattefing duerto
localized impurities arises from the fact that there
appears a bound state ;nside the enérgy gap and the -

energy gap vanishes here too just as it does for the
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paramagnetic impurities (18)

In Section II, the ratio of zero bias Josephson
\ . .

current through the impure SNS junction, to that of

pure SNS junction, is calculated using MS theory (43).

This is followed by a discussion of results in Secticn III.

ITI THEORETICAL ANALYSIS

It has been shown in earlier chapters that in the
bresence'of impurities, the Green's function gets renocrmal-
ized due to the renormalization of the frequency and the
order parameter. The supercurrent through the impure
SNS junction is to be calculated in a similar way using
the expressions (4.15) and (4.10)‘of_0hapter IV. As
discussed in Section V of Chapter IA, Machida and Shibata
have shown, that for a small concentration of localized
nonmagnetic impuritiss (i.e., for C¥1 or {<1l) the
auxiliary parémetér u ( =‘Uff) appearing in equation (4.15)
is;given'by the fcollowing expression

'(’3)— = u<3:+c‘; u2+2l'=( 22 )_Jg> : e (5‘.1-)
—-[1—'112

where all other parameters are the same as defined by
eq.(1.80) in Chapter I. It is important to note here
that w has got its maximum value only for values of u

lying between O and 1 (43).
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Putting u = sinh a , equations (4.15) and (5.1)
simplify to the following:

~impure SNS

00 : A
3y (cosp) = (_)nj dw exp(-2na=-n %-(-i- -53—-]-‘9-11—"‘-—4-)
o) v

CcoS89o
..“- (5-2) .

and
1.

DlE
]

sinh « Q_+2; -
sinhza )-52>
l=sinh «

e (5.3)

Now, the integral over w can be transformed into

sinh2cx+2r (

an integral over a with the help of equation (5.3).
Remembering that u2 (=sinh2a)<<l; &Gguation (5.3) after

some straightforward and lengthy algebra gives'

-
-

dw=AE:osha(l~§§+'§z-%r+%%f;I%%J:
= S

262 4e €
1 S )

L L _se FeBELiL [
_+COSh3a(~?§Z+Z-§€_Z§Zr RE6 256 )
‘ - - =2
+C<OSh5a("%§g-%§Z‘r'%6§3r+%g )
+gbsh7a(-']3jg§gf—%g, ]:2)

£ . £
+cosh9a(-%—-2-g—6 f2):] da .. (5.4)
= |

Substituting eq.(5.4) into equation (5.2) and

performing the integration over a, we get:
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,Jimpure SNS _ N
€ e

- 15 ézf““ 16 QZF ) an+1(2)+32n 1( Z)}‘

c.. (5.5)

where Z = (n 2d/¢ cose) and B_(2) is the associated
Bessel function defined by equation (4.19) . of Chapter IV.

Using the asymptotic form of Bm(z) we get

.impure SNS

Iy : (cose) éiﬁli [}%‘)cose— z(é—)20082é}
x[lH;{'E]‘g(r +l_+l)‘ €L4 -}] |
... (5.6)

Substituting eq.(5.6) into eq.(4.10) of Chapter IV,
we finally get the following expression for the total

supercurrent through impure SNS junction
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5T @) = —eevy) (B [BGp- 6 ° s
. T
-2 - hy
1 1,3 _1 ]
1 | ). 2 -
[efi ol b~ s = (5.7)

where S(@) is the same as given by eqg.(4.24) in

Chapter IV,

Thus, dividing eq.(5.7) with that of Ishii's

pure SNS
expression (4.24) for j () we finally obtain:
.impure SNS - |
J (2) [: i1, = 2 = 1 3 L; 1
— = l+C{_ (T ++ )= 5 =5 - :2} «ee (5.8)
) 0 2T E g T 2

IIT INTERPRETATION OF RESULTS

To interpret our results we note that for small
concentration of impurities, (L1 and fg 1. Further,
it can be shown that the value of £° will be far greater
than unity(43) as the bound state or impurit& band will‘
be much nearer to thc gap edge. Hence, it follows from
equation (5.8) that Josephson current through SNS
junction~decreases with the increase in éoncentration
of localized nonmagnetic transition metal impurities
(i.e. ReSonance'scattering). This in fact is an
expected feature.since the density of states decreases
with the increase in concentration of localized non-
magnetic impurities. We wish to emphasize here that

- this behaviour is completely different from that of
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nonlocalized nonnagnetic impurities, where the barrier‘
supercurrent through SNS junction remains unaffected
by the impurities (94) as has been seen in.Chapter Iv,
Further, in the limit ¢ = O (i.e., pure case) our
result agrees with Ishii (91) for pure SNS junctions.
It should be remarked here that due to véry less
solubility of transition'metals’in nontransition ones,
there seems to be no experimental information available

at the moment for the verification of our results.
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CHAPTER VI

FLUCTUATION ENHANCED DIAMAGNETIC SUSCEPTIBILITY
OF DIRTY SUPERCONDUCTING THIN FILMS
BELOW CRITICAL TEMPERATURE

I INTRODUCTION

The effect of thermodynamic_fluctuations of
superconducting order parameter on various physical
properties of superconductors in. different regions of
temperature, has been the subject of active research in
recent years (48,52,56,99-101). These fluctuations give
divérgent ccntributions to various properties like
electrical counductivity, ultrascnic attenuatiocon and
diamagnetic susceptibility for T‘)Tc. It is fbund that
for Te(Tc, the contribution of the fluctuation to
electrical conductivity is again divergent. In the
present chapter, we study the effect of fluctuations
on diamagnetic susceptibiiity of dirty superconducting
thin films below Tc(lO2). The calculations have been
done here within the framework of the phencmenological
Ginzburg-Landau theory (discussed in Chapter IB),
which not only yields the same results as the micro-
scopic theory (103-105) but has the advantagé 6f being
a direct and more general approach. We have chosen
here a dirty superconducting thin film since fluctuat-
ions show a prominent effect in dirty samples of

lower dimensions (as is already mentioned in Chap.IB).
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The fourth order term in GL free energy functional
has been included follcwing the Masker, Marcelja and

Parks model (56).

Details of calculaticns for a dirty superconduct-
ing thin film are given in Section II. This is followed

by a discussion of results in Section III.

II THEORETICAL FORMULATION

The phenomenological Ginzburg-Landau free energy

functicnal is written as:

rop[T®] = [ Zefai@ (% 1T s Ao B - 22 Z@(?nz]
) . . (6.1)

The fourth order term has beeén included here to take

into account the interacticn between fluctuation modes

below TC,‘which becomes important as the density of

fluctuation modes increases. The phendmenological

constants appearing in equation (6.1) are given by (56):

£2 1 (T-1,) ,
x = - ; . o (6.2)
mysi(0) e '
_1.02 %
B = Eﬁzggg“* ’ : ‘ ve. (6.2)

with gGL(o) being GL coherence length of the dirty

samples N, the electron density; and [ the effective

eff’
mean free path of the electrons.
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If we now introduce

ik.?
() =Y ae cee (6.3)

then integraticn over F in Eq.(6.1), for the case of

a homogencus magnetic field yields:

vl t > + +

F.. = a+EB (K, n+ ﬂa a_ + a a a_a
or " 3 Dlpe T 2 g 2. 3 Bl B-d BE
k’n k’k 'Q

where, E(Ein&»%)is the energy of electron states,
expressed as the sun of translaticnal energy, together
with the quantiiation energy of the eyclotrom motion

in the magnetic field, and is given by (106)

. 2, 2 ’
B(F, n+ %) = E§%-.+ (n+ %)(%%E) B ce. (6.5)

with, n = 0,1, .....

In the lanéuagelof'sécond quanfization, a:, afa
may be regarded as creation and annihilation dpgrators
for the fluctuation modes. Since it is impossible to
calculate the exact partition function when the fourth
order term is.in itg original form, we ?esort té the
approximation scheme as suggested by Masker et al(56).
For any geheral state ;described by the occupation number
n?(=a;,az)3the expectatioﬁ value of the fourth order
term is (56): -

< .e..on_n lg 2 a® a’ a_a U TR
N - -t ")"5'
fgvki E:E',a _E+3 ?'«Q ¥ k' | Eﬁ ?2 //
= * @ @ 6.6
Bénﬁ, % o, (6.6)
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Here, we have now to make a Hartree-like approxi-

nmation and replace the sum over ni)by its average values

thus
— 2. -
° r~ = o (6-7)
1%:- 2 %: P né‘ ® JE >§->n1? .

Bquation (6.4) now gets simplified to the following

fornm
Far =kz La + E(k,n+ 5)+8 <31 >] n, ... (6.8)

It we write

5 | .

n, =L lC(q,k,n)‘ ve. (6.9)
d,n ,

then C(g,k,n) are tc be considered as the expansion

coefficients of ﬁ(?) with respect to the normalized

eigen-functions of a particle in a magnetic field (106).

Then eq. (6.8) takes the form:

‘ : ' 2 '

1 - 2.

For = »_ |C(q,k,n)| |a+E(k,n+ —)+B<i[@| > ... (6.10)

GL 2
g,k,n :
Now, the Ginzburg-Landau free energy is (—kBT) times

the logarithm of a restricted partition function in which

the sun®over states is restricted to those states of

the whole system in which the order parameter takes on

the values of a prescribed function ﬁ(?ﬁ. Therefore,

in order to cobtain the unrestricted partition function,
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we have to sum up exp[}FGL/kBi} over all possible
J(B), i.e.,

kT

, P

- 2 G B

2= [TT a2ota,k,m) exe(- 220 1T : —

Jg,k,n B™ .kn E(k,n+5)+a+g <] F[“ >

The number of single particle states of energy E(k,n+%)
is eB/7nhC times the cross-section of the sample per-

pendicular to the magnetic field ( 106). Thus we obtain

the following expression of free energy

F = —kBT log 2
co
~ . kT
2eB J dk "B
= ~Vk,T 5= > 1log 2
BT e T 5o E (i, n+5) +a+p ] 1>

.o (6.12)

where V is the volume of the sample. Using Poisson's -
sum formula (106) we obtain the following expression
for free energy: |

o) s
F=ploly B 5 | 8K
s=1
@ ﬂkBT v
X J‘ dx log —5— COos 2TXS
o E(k, x) +a + B[P

co. (6.13)
where F(O) is the free energy in the absence of'a -
magnetic field. The integration over x can be done
by parts twice and in the limit of small magnetic field

is approximately given by
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aD
f 3 2¢hB 1 1
X..O.
O

= "nC 2 2 . 2
B e v gty @

oo (6.14)
For a film of thickness d smaller than the coherence
length and in a magnetic field | to the surface of
the film (where the integral [ dkx/27n can be replaced

by 1/d(k=0)) we finally get-

(o) kBT eB, 2 1 -
F=F "4V ——(=3) .. (6.15)
487°ma  © a+g <|P| 2 :

It can be easily seen follow1ng Masker et al

(56) that for a dirty thin film in a magnetic field

' 2. (a=E(0, O+ ))
a + g <[P >akpt eXp(;gde g 222 )... (6.16)

Substituting expression (6.16) in eq.{6.15) we get
finally the expression
211:?12@. (E(O O+ z') CY,)

1
F = pl0)4y (9§)2 exp(
A8m2ma © mic T 8

oo (6.17)

for the free energy.

The diamagnetic susceptibility is now easily

calculated from the well known formuls

and we get



262 4e° Zﬁﬁ 3 eh
b= - 48n§mi[ * 2 kaT me B)
2. ehB 2 2 .
+ -;(——T—m w5 oG o o)

The above expression can be rewritten as

A= % exp[;(Tc—T{] | ... (6.18)
where,  2 N |
%o = Zgi”““ %+ %% (égimd 2i§5 B)
" 1.(2’*l d ;%}g)ﬂexp(zﬁ:e% ;%g) co (6419)
- 2352% b . (6.20)

B"  2mpr® (o)

It is evident from eq.(6.2), that both'Xb and A

are positive and independent of (TC—T),

When the demagnetization effects, which are very.
important fqr a‘thin film in a perpendicular magnetic
field (107), are included, the susceptibility A is
given by ¥ = l'(l+4n%‘)_l with ¥ defined by eq.(6.18).
Thus, | '

L= - i L (6.21)

[%; exp {-}\(TC-T)} + 415!

The factor exp{—k(Tc-T)} / ﬁb in the above equation
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has been estimated for an aluminium film of thickness
a =170 A® at T = 1.0°K a2nd in a magnetic field of
50 Gauss. Its value was found to be tﬁ4.3xlo—12.

At T = 0°K, the diamagnetic susceptibility A'= - %E

while at T = T, it has &ot a finite value.

ITI RESULTS AND DISCUSSION

We find that the Tluctuation enhanced dliamagnetic
éusceptibility %! increases with the decrease of
temperature approaching —1/4m at T - 0°K and remains
finite at T = TC. This behaviour of diamagnetic
susceptibility (arising due to fluctuating Cooper
paiqs) is quite similar to the behaviour observed in
fluctuation enhanced electrical conductivity of dirty
superconducting thin films below T (56). Hence we
conclude that flﬁctuations of order parameter give an

appreciable contribution to the various properties

of superconducting thin film beldw TC.
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CHAPTER VII

EFFECT OF FLUCTUATIONS ON DIAMAGNETIC SUSCEPTIBILITY
AND ELECTRICAL CONDUCTIVITY OF ZERO DIMENSIONAL
SUPERCONDUCTORS BELOW CRITICAL TEMPERATURE

I. INTRODUCTION

In the preceding chapter we had discussed the
effect of fluctuations on diamagnetic susceptibiiity
of a dirty superconducting thin film belowlTC, using
phenomenological Ginzburg Landau theory. In recent
years, there has been great interest in studying the effect
of fluctuation on various superconducting properties
of very small dimensional superconductors both above
and below Tc(108,109,110). For example, Parkinson (108)
has calculated the specific heat of zéro dimensional
_sﬁperconductors using Ginzburg Landau theory, and an
exact thermal averaging procedure. in’this chapter
ﬁe extend this work and study the confribution of
fluctuations to diamagnetic susceptibility(11l) and
electrical conductivity(11l2) of zero dimensional |
superconductors below critical temperature. Fluctuation
enhanced diamagnetic susceptibility of zero dimensional
superconductor has also been studied earlier(109) but
with an altogether different and tedious functional
integral method., In this particular case, the two |

approaches yield an identical behaviour. Details of
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calculations have been given in section II. The

results are discussed in Section III.

ITI. THEORETICAL FORMULATION

(i) Fluctuation Enhanced Diamagnetic Susceptibility -

The usual Ginzburg-ILandau free energy functional,
in the presence of a magnetic field below T is glven
by Bq.(6.1) in Chapter VI, Fourier transforming eq. (6 1),

one gets:

S
FGL = ) (a+B(k,n+ %-))Wk ‘% Z ﬂlk UX Ib'k ee. (7.1
E,n
V=t . 1
where B'=pV and E(Eﬁn+-z), x and B are the same
as given by Egqs. (6.5) and (6.2) in Chapter VI. Here,

the prime on the summation implies that +Eé—k3+k’

For a rectangular specimen of sides 11"2’13 the
components E are given as, for example,k = —%El where
- nq is any integer. Thus, for a zero dimensional sample
(i.e., a sample of very small dimension), significant
fluctuation effects will be prominent for E;O states
only. Furthér, we presume that only n=0 Landau level
will contribute to free energy on accoﬁnt of wvery
small size (comparable to £~ the coherence length of
the superconductor). Keeping all these facts in view,

the expression (7.1) for Free Energy functional reduces

to,
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Fég) = (a+ éﬁ B) x + ?B x oo (7.2)

where,

= (¥, 1? cee (7.3)

Now, the average value of free energy is given by

QF(O)> (a+ %ﬁ B)<fx>- + gﬁ’ ’X2> eee (T.4)

The average value of X can be calculated from
eq.(7.2) by weighting the fluctuations with the free

energy associated with them in the following usual way.

@
( X eXp { F(O)/ K T} dx
x> = L2 ' oo (7-5)

QO
_a(o)
J; exp {“FGL / kBT dx
‘Substituting Eq.(7.2) into Bq.(7.5) we have

- eh 1 2
X exp[—(a*a@ B)x - Q—B'x } / kB’.ﬂdx
40 . : i ‘

~CO . ) .
exp[:f(a+ %% B)x- %B'xz} / kxT|dx
e

(x> =

-

ce. (7.6)

These integrals can be performed analytically very
easily ahd in the limit of small magnetic field we
obtain . :
| (a+ S8 e‘ﬁ B) J—-E;i,—, exp[—- —23=(a2+ I‘%g-ﬁocB)/kBTﬁzl
> - B ~ ]

B (a+ SBB) 2% F[ _ _1 (44 SB g
m A [ EW(G‘F el (;]7)
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<x2> can similarly be calculated

and we obtain

1, 2. 26h
= el B/k Ta'!
29y - <+mc>exp[ A Rl
) Tk TB’ e"lfi B)

F
[ = TB'(a+ =z

(o 24 gghaB) 1
- + 1 eee (7.8)
koTR! J

where F stands for normal probability function and we
have assumed that the magnetic field is small sc that

the second order terms may be neglected.

The total diamagnetic susceptibility is calculated

from the fornula

where V is the volume of the sample.

Using equations (7.8) and (7.9), we finally obtain

Xfl:otal = —A[%%%%E%%%){C'z(a+ éﬁB)- ighc }

Da
T F° (~D-EB

x {gh - B2 +on) (ar Fo}
, .
R 22 exp[_(c'mb +2EBD)] &

- (a+
K F° (-D-EB)

me DY
eee (7.10)
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where,

2 kT
= l - a B ‘. e e L]
A = = exp[ Z;-};I-\E-,-] '—-B*r (7.11)

c! =56%§%§T e (7.12)

a

D = eee (7.13)

IkBTB'

g ok

= - ee. (7.14)

'mq_kBTB'

Ve have estimated X%otal for an aluminium
sample of volunme 1.25X10'l6 cm3 for different values
0f temperature below TC(TC:1.2OK for A{) and in a mag-
netic field of 0.2 Gauss. The phenomenoclogical constants
a and B' are taken to be the same as in Ref.(108). A
semi log plot of %total versus (T-T_) is shown in -

figure (7.1).

(ii) Fluctuation Enhanced Electrical Conductivity

We shall now calculate the effect of fluctuations
on electrical conductivity of zero dimensional super-
conductor below Tc following again the same exact
averaging procedure of Parkinson(108).It is easily seen

from eq.(7.2) that in the absence of magnetic field,

the Free Energy functional for a zero dimensional super-

conductor is given by
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(o) 2 3 4 ‘ -
Fop, = alWol + 36"V, ceo (7.15)

Using the exact averaging procedure (108), the

average value of IWOIZ is given by
2. a 1
Pl >= - 7= 5h(a)) vao (7.16)

whére, 1 2)
h(q) = oo (7.17)

and F(-q) is the normal probability function.

PR MM M SIS D et S e e - -y ees

The fluctuation enhanced electrical conductivity
aé of zero-dimensional superconductor is given by the

expression

Oé = 'I-ed-’ n T e - (7.18)

5 |
where n, = {|{¥_| > and 7  is the relaxation time for

the zero dimensional superconductor.

In order to calculate T, We write the time

dependent Ginzburg-ILandau equation for the order para-

meter UO(X,t) as
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By Lo U (K1) = (arg <IU5>) B (K, 0) ... (7.19)

where, _
Y [% ﬁ52/16 kaTéz(oi] has been calculated
in Ref.(114).

Assuming the following functional form of Uo(x,t)
-t '
b, (X, £)=p, (K)o ce. (7.20)

we get for T,» the expression

- L (7.21)
T = - ¢ a6 .
° 6mkgTe (o) a+ < [Vl %)

Combining equations (7.16), (7.18) and (7.21) we obtain
the desired expression for the fluctuation enhanced
electrical conductivity of zero dimensional Super-

conductor below TC t0 be:

2h3
Taz(O)

ol = e
© l6m2k

2
1- [27 qF(-q) exp(%*{] cee (7.22)
B

III RESULTS AND DISCUSSION

The following interesting features emerge from

the above two calculations:
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(i) Diamagnetic Susceptibility

In this calculation, firstly, the fluctuation

enhanced diamagnetic susceptibility % has a
) total

finite wvalue at T:Tc and it increases exponentially
as T decrecases (as seen from Fig.7.1). This behaviour
is gualitatively in agrecment with the previous work
of Takayama(l09) who had obtained 2 similar behaviour
using an altogether different technigue viz. the
functional integral method. A similar behaviour is
also observed in both the bulk samples (115) =nd thin
.films(102). Secondly, it also seems that Atotal does
not increase so sharply in the region farther away

from Tc as it does in the vicinity of TC.

(ii) Electrical Conductivity .

Similar to the case of X%otal’ cé also increases
sharply with the decrease of temperature below TC
exponentially and is proportioconal to exp[:%(TC—T)%],
where A is a constt. (Note that this particular contri-
bution to 05 dominates over the first contribution
which is inversely proportibnal-to T). This is remini-
scent of the physical observation that the fluctuation
shows pronounced effects in the physical superconducting
prroperties when the dimensionality of the superconductor .

is lowered. ¥or example, in one- and, two-dimensional
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superccnductors(56), o' have the following dependence
on (TC—T), namely, oc'a —53 and oc'a exp(-eTc/ecT)
[%C is a sample-dependent parameter and €=T-TC/T;}

respectively.

We ﬁave to await future experiments to check

the wvalidity of these calculations.
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The effect of fluctuating Cooper pairs on the diamagnetic susceptibility of dirty superconducting thin films is in-
vestigated, for temperature T < T, The susceptibility decreases with the decrease in temperature, approaching —1/4n

at T = 0°K and remains finite at 7= 7.

The effect of fluctuations of the order parameter
on various physical properties of superconductors in
different ranges of temperatures, has been the subject
of active studies in recent years [1—6]. These fluctu-
ations give divergent contributions to electrical conduc-
tivity, ultrasonic attenuation and diamagnetic suscep-
tibility for 7> T,. For T < T, the contribution of the
fluctuation to electrical conductivity is again divergent.
The purpose of the present letter is to study theoreti-
cally the effect of fluctuations on the diamagnetic sus-
ceptibility below T, using the phenomenological ap-
proach as followed by Schmid [5].

The Ginzburg-Landau free energy functional is:

For [¥ (0] =fd3r [czl\lf(r)l2 +381 ()14
+% '(h—iv - %‘3 A) \y(r)|2] 1)

Here the fourth order term has been included to take
into account the interaction between fluctuation modes
below T, and the phenomenological constants & and
are given by [6]:

w2 1 T-T.  (02m2

a=o- y VT (2)
m o) T, MN lyge

with g being GL coherence length; N the electron
density and /¢ the effective mean free path of the elec-
trons.

If we now introduce

V()= 2 ay, explik?) (3)
k

then integration over r in eq. (1), for the case of a ho-
mogeneous magnetic field yields:

Fg = E [a+Ek,n +;—)] aI a +
k,n

¥ %Z—},’Q %o g 2 B “®
where,
E(k,n+3)y=@2k2/2m)+ (n +3) 2en/mc) B (5)
withn=0,1,...

In the language of second quantization, a;; and a;
may be regarded as creation and annihilation opera-
tions for the fluctuation modes. For any general state
described by the occupation number ny, (= a}; a ) the
expectation value of the fourth order term is [6]:

Ess
2k

a;;,rQ a};,_Q A A | M Mg, - 2

(“"kznkl 0

=62nk2nktzﬁn Enk-=ﬁ(hl»'12)2nk. 6)
k K k k

Eq. (4) now gets simplified to the following form

Fo =2 [a+E(n+3)+B0WR)] n,. (N
k .
If we write
ng = 2 le(q, k,m) R ®
q,n .

then ¢ (g, k, n) are to be considered as the expansion
coefficients of ¥ (r) with respect to the normalised
eigen-functions of a particle in a magnetic field [7]
and eq. (7) becomes

Fg =§ le (g, k,n)12 [ +E (k,n +3)+ BT (9)
q,k.,n
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The partition function is

z=fT1 a2c(q k n)exp [~Fo kTl
q.k,n
T( kBT

aden Bl n+3) o+ BCIE2) ’

(10)

The number of single particle states of energy
E(k,n + %) is eB/mhc times the cross section of the
sample perpendicular to the magnetic field [7]. Using
Poisson’s sum formula [7] we now obtain the follow-
ing expression for the free energy;

k B TeB

- - FO) _
F=—kgTlnZ =FO -y —

=[Sy

X f dx In
0 E(k, x)+a+8{|W¥[2)
where F(0) is the free energy in the absence of a mag-
netic field. For a film of thickness d smaller than the
coherence length and in a magnetic field perpendicular
to the surface of the film, (where the integral [ dk/2n
can be replaced by 1/d (k = 0)) we finally get

mkgT cos 2m xs

(11

2
F=FO +yp _ Bt (@) 1 . (12)
4872md \C¢ 1 a+p(IWi2)

Now, for the dirty film in a magnetic field [6]

2 _ 1
a+6<!qf|2>~kBTexp[2"h d a E(0’0+2)](13)

kaT B
Using x = —(1/V) 32F[3B2, we get
- 1
48n2 md
X[g_ngr 4e2 | 2mn2 enB)| . €2 [ 2nn2 eh_B}2]
¢z 2 \mkgT chJ c? \mkgT mcp
{ 2mh? ehB} wh? B2 T-T
X exp —— ) ' exp
mhkyT mcB mkyT 2mBE2(0) T,

(14)
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It now follows from egs. (2) and (14) that
X=—Xo exp [A(T.—T)] (15)

where Xg and A are positive and independent of (T.—T).
When the demagnetisation effects, which are very

important for a thin film in a perpendicular magnetic

field [8] are included, the susceptibility X' is given by

x=x (1 +4mx")~1 with x defined by eq. (15). Thus,

X = oo (AT ram (16)

The factor exp {~A(T,—T)}/x in above equation
has been estimated for an aluminium film of thickness
d=1704 at T = 1.0°K and in a magnetic field of 50
gauss and is & 4.3 X 10~12, At 7= 0°K, the diamag-
netic susceptibility x' = —1/4x,

Thus, the diamagnetic susceptibility x' decreases
with the decrease in temperature, approaching —1/47
at T'= 0°K and remains finite at T'= T, However, an
experimental check of our calculations must await
future experiments as no such data is available at the
moment.

~
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JOSEPHSON CURRENT THROUGH S-N-S JUNCTION CONTAINING PARAMAGNETIC
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The ratio of zero bias, zero temperature Josephson current through SNS (superconductor-normal metal-super-
conductor) junction containing paramagnetic 1mpuntles thh local states within the gap, to that of the pure-SNS
junction, is studied and found to be 1-¢ [(1/60) +(1/4 eo) —(1/4 60)] where ¢ is a measure of impurity concen-
tration and egis the normalized position of a local state within the gap.

In earlier paper [1], a study was made to investigate the effect of paramagnetic impurities on zero bias
Josephson current through junctions with normal metal batriers at 7= 0°K, using Ishii [2] and Abrikosov-Gorkov
theory [3]. However, Abrikosov and Gorkov have assumed a weak interaction between the conduction electrons
and the magnetic impurities and thus treated the exchange scattering in the lowest order Born approximation. On
the other hand, Shiba [4] and Risonov [5] have generalised the A-G theory assuming that the interaction of the
conduction electrons with the magnetic impurities is strong, and show that an exact calculation leads to the ap-
pearance of local states within the gap. The object of the present paper is to generalize the result obtained in ref.
[1] and we calculate the ratio of the zero temp, zero bias Josephson current through impure SNS junction con-
taining paramagnetic impurities with local states within the gap, to that of pure SNS junction, using Shiba-Rusinov
mode].

For isotropic scattering, Rusinov Green’s function of the superconducting alloy, averaged over the positions and
spin directions of the impurities, is given by

G(P,w)=[i&p3 —€, +ild pyoz]~! (1)

where the renormalized frequency & and the renormalized order parameter A for impure superconductor are re-
- lated to that for the pure, through the following equation

w/A =uf1-¢(1-u?) V2 (e§ ~ u?)~1] )

withu =3/, ¢=l/rA= G [2aN(0)A] -1 (l-eo) and €g = cos (65— 8)-

Here 7, is the time taken by an electron spin to flip during scattermg, C; is the concentration of the impurities,
6 are the phase shlfts describing the scattering of an electron by the impurity with orbital momentum /=0 and
spm projections * 5 in normal metal, N(0)=mpg [2n? (pg is Fermi momentum) and ¢ is the position of the bound
state inside the gap arising due to the strong scattering of electrons by the magnetic impurity [6].

Following Ishii [2], it has been shown in ref. [1] that the total supercurrent through the impure SNS junction
is given by

2

Lj
]T_Pufe SNS (4) = 2ie (——) (~4ip?) Z}sm né f dcosf f 7 mpure SNS (4660 )dew (3)
with 12 .
o N 1
~impure SNS = u—(1+u2) _z_q _u
J (cosd) {dw[u_(“uz)l/z exp | = o 0) )

where ¢, L and { have been defined in ref. [2].
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We shall now apply the Shiba-Rusinov model to calculate Josephson current through inpure SNS junction with
the help of eqs. (3), (4) and (2). Putting u=sinh a, eqs. (2) and (4) reduce to the following:

~ impure SNS - ; 2d sinho
I (cos) Ofdw exp (-2na-n W) (5)
and w/A = sinha [1-¢(1 —sin.hzoz)l"2 (6(2) —sinh2a)~1]. (6)

The integral over w in eq. (5) can be transformed into an integral over a with the help of eq. (6). Since
u2(=sinh2a) < 1 and 6(2) < 1, the transformation eq. after a simple calculation gives

%2~ I:COSha —(wfm — —§— — { )cosh 20— —§ = -i cosh4a —i cosh 6a — —E—:I . (7)
o et 2} 8§ 2¢f 48 8eg 4}

Substituting eq. (7) into eq. (5), we have

2d 2d
[32n+1( £ 053) +BZn—l (n m)]

1{§ ¢ § { 2d 2d (¢ ¢ 2d 2d
2((—:_2_?* SEG)E};M”( Ecos@)+B2”‘2(n Ecos@)]_f(z?g_azg)[lgznﬂ( Ecos@) By 4( Scos@)]

] ~Fimpure SNS(COSB) A(—)"

0
L [ ( 2 ) 2 ¢ 2d
-5 ——|8 — |+ 7 ) - = =
2 868 Z2n+6 |1 £cosf Byn-6 (n ¢cosf )] 468 Ban (n Ecosﬂ) ‘ ©)
B,, (Z), the associated Bessel function, has the well known asymptotic behaviour
B, (Z)~1Z-mfZ: + .., |21 > o0 9)

Using egs. (9), (8) and (3), we finally obtain the following expression for the total supercurrent through SNS
junction

jmeure SNS () = —devp (mpp/2n2) &[5 (4/2d) — T (¢/2d)2] [1=5(1/e] + 1/4eh — 1/4€§)] S (4) (10)
where, S(@)=22 7 (- 1Y"*Lsin ng/n. Combining egs. (10) and Ishii’s expression for jPUr SNS(¢)

jimre SES (g PUre SNS gy = [1-¢ (1/€3 + 1/4ef — 1/4€§)]. (11)

[t is important to note here that when the conduction electron-magnetic impurity interaction is strong,
jimpure SNS 4y denends on €, — the renormalised position of the bound state inside the gap. For e, ~> 1 (i.e. when
conductlon electron-magnetic impurity interaction is weak) eq. (11) reduces exactly to the result obtained in ref.
[1], derived in the framework of A-G theory. Further, for { =0 this result again agrees exactly with that of Ishii [2]
for pure case. As has been pointed out earlier [1], there is no experimental data available at the moment for the
verification of the aboven result.
One of us (P.K.) wishes to thank the Council of Scientific and Industrial Research (India) for the financial help.
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The effect of fluctuations of superconducting order parameter on the diamagnetic susceptibility x of a zero
dimensional superconductor is studied below T, using the phenomenological Ginzburg—Landau theory. x is
found to increase exponentially with the decrease of temperature below T and has a finite value at the critical
temperature.

In the past few years, there has been great interest in studying the effect of fluctuations of superconducting
order parameter on various superconducting properties of small dimensional superconductors both above and
below T, [1—4]. Very recently, Parkinson [1] has calculated the specific heat of small dimensional superconduc-
tors using Ginsburg—Landau theory and exact thermal averaging procedure. We extend this work and study the
effect of fluctuations on the diamagnetic susceptibility of zero dimensional superconductors below T, which has
also been studied [2] earlier but with an altogether different and tedious functional integral method. In this

particular case, the two approaches yield an identical behaviour.
The usual Fourier tranformed Ginzburg—Landau free energy functional, in the presence of a magnetic field

below T, is written as [1,3]:
_ 2 B, L ’ : v
Fg "E (atE(k, n+1)) |, +5E‘I’£,‘I’Zz‘1’k3‘1’k4’ | (1)

where §' = V=1 and the prime on the summation implies that k| +k, = k4 +k, and
E(k, n+3) =12k 2m+(n+3) Qehifme)B; n=0,1,2,.. . (2)

For a zero dimensional sample (i.e. a sample of very small dimension), significant fluctuation effects will be
prominent for k = 0 states only [1]. Further, we presume that only » = 0 Landau level will contribute to free
energy on account of very small size (comparable to £,, the coherence length of superconductor). Keeping these
facts in view, the free energy réduces to

FQ) = (a+enBime) x +48x%; x=1¥ |2, (3)

It is easy to show that the average value of free energy is given by

4

(a+ehi Blmc) exp [—4(a®+2eh aB/mc) kg TB'] o2+ 2ehaBme 1]
— + ,
V2nk, T8 F[—(a+eh B/me)VkpTB] kg TG

where F stands for normal probability function and we have assumed that the magnetic field is small so that second
order terms may be neglected.
The total diamagnetic susceptibility is defined as

Xeota = XV = 3% F 0B )

where V is the colume of the sample.
Using eqs. (4) and (5), we get

(F&h =4k, T [
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Xtotﬂ:_A[ exp [-C'B] {C ( +_eEB> 2eh C} \/ﬁexp[—(C'B+02/2+EBD)]

RA~D—EB) me Jr FX—D-EB)
i) ooy e )

A= exp[-o(2k, TV (g DIB(2V2m) ;  C'=ehajmeky T8 ; D =afy/kgTB and E = chfmer/k TB .

We estimate X, for an aluminium sample of volume 1.25 X 10-16 ¢m3 for different values of temperature
below T (T, = 1.2°K for Al). The phenomenological constants & and B are taken to be the same as in ref. [1].

A semi log plot of ;o Versus (T—T,) is shown in fig. 1. We note few interesting features of the present cal-
culation. Firstly X, has a finite value at 7= T and it increases exponentially as T decreases. This behaviour is
qualitatively in agreement with the previous work of Takayama [2]. A similar behaviour is also observed in both
the bulk samples [5] and thin films [3]. Secondly, it also seems that x;,,; does not increase so sharply in the
region farther away from T as it is in the vicinity of T ..

One of us (PK) wishes to thank the Council of Scientific and Industrial Research, India, for financial support.
We are also thankful to Dr. S.N. Gupta for the fruitful discussion and critically reading the manuscript.
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Fig. 1. A semi-log plot of x4qq) Versus (T—T,) for a small
aluminium sample of volume 1.25 X 10716 cm3,
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