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RESUME

| The work reported in this thesis is authort!s attempt
to study the collision processes,at high and intermediate ener-
giesyin which a beam of éharged particles (e.g. electrons)
is bombérded onto an atomic or ionic target. Throughout this
works the eikonal or the Glauber.approximation (the latter is
an special case of the former) has been the main tool of

investigation.

In the first'chapter,»various quantaly classical and
semi-classical approaches for the study of these collision
processes have been briefly reviewed.'The eikonal multiple .-
scabtering expansion and its relationship with the Born series
have also been discussed. The second chapter ié devoted to
the details of the Glauber approximation. This chapter
basically describes (i) the underlying assumptions and the
expected range of validity of the approximatlon and (11) its
alternative forms for the scattering wavefunction and
amplitude., In the third chapter, a method for the Glauber
'predicted scattering amplitudes in a one-dimensional integral
form for e-H(1ls) scattering has beén-proposed to study the
excitation of atbmic hydrogen to highly excited states from
a low lying étate. Earlier expressions (B.K. Thomas snd E.
Gerjuoy, J.Maths. Phys. 12, 1567(1971) ] were a bit cumbersome
due to the. appearance of an increasing number of hypergeometric
functions depending on the principal quantum number cf the

excited state. In the fourth chapter the Glauber approximation
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has been applied to the study of elastic and inelastic
scaftering of electrons by lithium atom by.expliéitly

treating all the three electrons by suitably adapting Franco's
procedure [Phys. Rev. Lett. 26, 1088(1971) ]. The pércentage
polarization of the resulting resonance line (2p - 2s) emitted
from 6Li and 7Li following electron excitation has also been
obtained. The fifth chapter is devoted to the study of elastic
scattering of electrons by helium like ions (such as H and
11" using the optical model approach in eikonal approximation.
In the sixth chapter an attempt has been made in a very simple
way to improve upon the Glauber (straight-line) approximation
at large scattering angles. It has been used to study e-H(1s)
elastic scattering and the results have been compared with
'other approaches and the redent experimehtal data. The seventh
chapter summarizes the work reported in earlier chapters and |

contains some comments, pointing out the drawbacks and the

suggestions for their elimination.

A numerical procedure to exactly take into account the
wiggles of the Bessel functions in integrals of the type

IF(X)’JV(aX) dx is presented in Appendix Al.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL REMARKS

The analvsis of collision pheromena plays a central
role in almost all invéstigations irto the_structure.of
matter. For example, electrons of high energy are particularly
well suited to probe the charge distribution in nuclei.
El~ntrons and heavier projectiles of low energy are scatter-
ed from atoms to obtain.data which can serve as an input
information for calculation of kinetic processes in gases
where 1pw energy electrons predominate., In fact, most of our
detailed information about the forces and interactions between
atoms or between electrons and atoms are learned through
scattering experiments in which a well defined beam of charged
particles 1s allowed to interact with the atoms of a targeﬁ.
In such a scattering experiment there are many possibilities
through which a reaction can take place. For instances the
target ard the projectile may contain respectively the same
particles before and after the collis;on or some particles
are transferred between the colliding systems durirg the
reaction. The first is just the scattering and the second a
rearrangement collision. Each of these arrangements open
further possibilities. For example; in the case of scattering
the projectile beam of charged ﬁarticles may be scattered by
the target without the target being excited (elastic scatter-
ing) or by leaving the target in some excited state (inelasti-

scattering or excitation). Each different initial or final
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state of the colliding system defines a reaction chanrel.

For example, the reactions

e + H(ls) - ¢ + H(1ls) (2)
= ¢ + H(2s) (b)
- e + H(2p) ()

define three different channels. A particular chamnel is
topen! if the total energy E of the system is sufficient

to inject the system‘into that channel’ otherwise the

chanrel is said to be *closed! for the reaction. In a
rearrangement coliision there are, thus, many possible open
channels carrying out reactions such as charge exchange,
charge transfer etc. However, it should be noted that not all
reactions afe possible between a given.sét of particles; ever
if sufficient énergy is available, because the appropriate
quantum numbers (argular momentum, parity etc.) must be
conserved. Such atomic and molecular collision processes

are of common occurrence in many fields such as chepical
kinematics, astrophysics; plasma physics, atmospheric physics
etce In most of the atomic and ionic collision processes
occurring in %he universe; the projectile entities arc
generally elementary particles (e.g. electrons, protons

or photons). For this reason,we have carried'out.our investi-
gations using eiectrons as ircident particle. These can

similarly bte carried out for protons as well.,

In atomic and ionic collision processes as in all
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other collisions the most important thing to study from
theoretical as well as experimental point of view is the
cross section which correlates the observed intensities

to the theoretical probabilities calculated from the assumed

or known wavefurctions and interactions.

In an idealized scattering experiment, a single fixed
scattering centre is bombarded by particles incident along
the chosen z-axis. After scattering, the particles are
detected at a large distance from the scattering centre. if
?(f,@,ﬁ) are the coordinates of the scattered particles \
relative to the scattering centre, IO is the incident current
&ensity (i.e. number of particles incident per unit area
per unit time) and Id2 the number of these scattered into
the solid angle dg subtended by the détéctor at the scattering

centrey then we define the differential cross section as

%C » -L—:l@—I % , ) L 2R I (1.1)
0 :

i.e. as the number of particles scattered into the detector

per unit solid angle per urit time per scattering centre per
unit incident current density. The width of the beam is
determined by slits,; which, although quite narrow from an
experimental point of view; are nevertheless very wide compared
with the spatial extension of the interaction region. We can,
therefore, assume that the.particles in the beam; represented

by very long and very broad wavepackets at distances far from
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the target scattering centre, can be des¢ribed approximately
by plane waves eikz; £K is the momertum of the incident
beam of particles. During scattering, the incidert wave gets
distorted by the scatterer. Therefore, at large distance r
from the interaction region, the scattering wavefurction U
must be represented as a superposition of the incident plane
wave and an outgoing spherical wave, with amplitude f(_lg' ,I?) =
£, (8,8), i.e.; we must have
_large r ikz | o i .

L) —L@-&——%(—Zﬂ%m o LR - L (w2
where HK and fﬁ?’ are the centre of mass (CM) momenta of the
incident and scattered particles. The differential cross
section is then related to the elastic scattering amplitude

by the relation

~ 2 |
S e DI e (1.3)

The description preserted abowe for the elastic scattering
can be easily extended to the inelastic case. The Egs.(1.1)
and (1.3) correlate the-experimentally measured and theoreti-

cally calculated entities.

1.2 REVIEW OF THE THEQRETIICAL METHODS
Theoretically, any physicalzsystem at not too high aneheq§/

can be described using the principles of quantum mechanics
through the application of the non-relativistic Schroedinger

equation. An exact quanitum mechanical solution is, however,
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possible only for a two—bbdy problem., Moreover, the wave
functions of the target comtaining only one electron (such
as hydrogen atom or hydrogenic ion) are kﬁown exactly. Even,
if the wavefunctions of the targets are known exactly, the
exact quartum mechanical formulation of the electron-atom
scattering is a formidable task because even the simplest
e-H atom scattering problem is a many-body (three-body)
problem. Obviously, one has to resort to the appropriate
approximate methods to solve, quantum mechanically, the
problem of electron-atom or electron.ion scattering., The
only way to assess the accuracy of the approximate methods
is by comparing them with each other and with the experi-
mental data. In the following, in order to defime the scope
of the present work; we make a brief survey of some approximate
methods applicable to the study of elastic and inelastic |
scattering of electrons by atoms and ions involving a few

electrons.

In order to describe a physical system involving a beam
of charged particles interacting with an atomic target,
we start with the stationary state description of the scatter-
ing problem and use the time-independent Schroedinger

equation

(5 - BYY, = 0, | cee (1.1)

where E is the total energy of the complete system and is

given by
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f?

where p is the reduced mass of the system, w; and We are
the target internal energies in the inltial and final channels

respectively, H is the total Hamiltonian given by
= H’b '*‘?i“' Vv 9 ' :o:o.o (105b>

 is fhe kinetic energy operator of the incident particle,

V is the total interaction potential between the projectile
and the atomic nucleus and electrons and Hy is the Hamiltonian
of the target, This stationary state description of the scatt-
ering situation iss in principle, quite adequate if we assume
that the energy of the incident particles, represented by a
very long and very broad wave packeé or approximately by a
plane wave, is well defined for very long but finité times in
the remote past and the far future, Obviously the transition
probability per unit time can be related to the scattering

element defined by

. , « S o
8pq = <f‘S|ij;;= (21;)3_<§f . w§-+)>= (2.,[)3{\‘]& )Jﬁ?f ,

1

from which the scattering amplitude and the crossvgection can
be obtained directly. Here W§_+) and Wg') are respectively
the outgoing and the ingoing solutions of the Schroedinger
Eqe (1e4). Various approximations needed involve the evaluation

m

of the wavefunction ¥ of the complete system.



1.2.1 QUANTAL APPROXIMATIONS
(1) The Atcomic Figenfunction Expapsion Method

Here one expands the properly antisymmetrized total

wavefunction ﬁ(?,ﬁ) of the complete system, the incident
particle plus the target atom, in the complete set of un-

perturbed atomic eigenfunctions Qj:

UGEH = A7 xjmd)j(s‘o, | oo (1.7
3 4
where Xj represents the scattering wavefunction of the projectilc
particleyd is an antisymmetrizing operator{?’denotes collective™;
all the particle coordinates of the target atom and ? the .

coordinate of the projectile particle relative to the target
centre of mass. This expansion gives the exact wavefunction
for the complete system. The symbol z_ in.Eée§1.7) involves

the summation over all the discrete gtates and integration over
the continuum states of the target. More eiplicitly, Eqe (1.7)

!‘{—2 J :. - J )

where the plus and minus sign stands for singlet (antiparallel

spin) and triplet (parallel spin) states, respectively.

The eigenfunction expansion mefhod, in principle,
requires retention of all the terms in the summation which,
in turn, leads to an infinite set of integrodifferential

ecuations as can be easily seen by combining Eqs.(1.4)



and (1.8)%

e
(v2 +k2)X (B) = ;j EIJJ.u)A (?)+ l‘*" (r&)x (baﬁ]
He:ce 1/2 es s (la‘;’)
i kJ = E"\"-(\E‘Wj) / hzj
z & Si=f ve. (1.10)

b
%ik ‘j"i“v

is the wavenumber of the scattered particle and Wy is the
eigen energy of'the target in an intermédiatehChanwel J ands
Ujjg énd{?uj, are respectively the direct interaction
potential and the exchange ¥ernel defined by

Ly, 6 = 2& I«p (%) vE 26, Badxs  eee (1.11)
and
T @l w2 ; (b HLETH - HT,E) . . @)
If the ipncoming particle interacts with the target atom in its
+,
ground state i, the asymptotic conditionhs satisfied by ngs

are
+ o aR? | ik,]r
™ lar_g_e rs 1 - e
X)) , (;;)-'375 e 831 Ji(?wﬁ)

| T (1.13)\
The interaction poténtial V(??ﬁ) for electr@nﬁétom scattering

18 of the form



where e 1is the electronic charge and Z is the atomic

number¢

Eqg. {(1.9) is exact if all the terms in the
expansiong Eqs(1.8) ; are taken into account., In its present
form it is not practically solvable. One needs an approxima-

tion to simplify the infinite set.

(ii) The Close Coupling Avproximation

This approximationl retains the first few states in the

infinite summation in Eq.(1.8) and neglects the effect of

the rest. The order of thé'approximation depends on the

number of atomic states which are retained out of the infinite
summation. This method has been successful in predicting
resonances but less successful in treating excitation processes
showing a lack of convergence with respect to the addition

of more atomic states intc the trial wavefunction expansion2’3.
Improvement to this method has been suggested by Smith2 and
Burke3. The truncated summation leads to the neglect of the
coupling with the higher discrete states and with the'conti—
nuums this, in turn, leads to the partial neglect of adia-
batic and non~adiabatic polarization )7 of the target. These
long range polarization effects arise due to the interaction
between the electric field of the incident electron and the
induced multipole moments in the target. The adiabatic
approximation assumes that the incident electron is moving

so slowly that its kinetic energy operator can be neglected.



The adisbatic polarlzation potential* (v 1p) effective at
large separation v is attractlve in naturg and using the
perturbation theory it,comés out to be of second order in
the interaction energy. The perturbation induced in the
target orbital by = moving charge is reduced as compared to
that due to a stationary charge at the same distance because
of the decreasing time of interaction, This velocity depend-
ence of the target orbital gives rise to a !dynamic! or
'non-adiabatic! polarization potential which is constructed
by applying the kinetic energy operator of the incoming
particle on the static polarized wavefunction of the target.
The non-adiabatic potential (“fl/Té) being repulsive in
nature reduces the effect of the adiabatic part. TheseAlong
range effects can not bz negleched at intermediate (roughly
two times ths threshold to twenty times the threshold) and
low electron impact cnzrgies. It is found that about 18.6%.
of.the‘dipole polaxizability (induced dipole moment per unit
electric field) of the hydrogen atom and about 54.6%. of

that of the helium atom comes from the continuum states
onlyl’7.‘0bviously, an adequate description of the scatterirg
process needs propeé allowance of these continuum states which
in turn,; leads to the polarization effects. An alternative
abproach, the so~called pseudb—state approximation7 accounts
for the higher states and the continuum of the target by
replacing thém by pseudostates. These pseudostates»are chosen
to be orthogonal to each other and to the first few atomic

eigenstates included in the eligenfunction expansions such that



they give the axact polarizability of the atom.

The approaches discussed above require knowledge of a
number of atomic eigenstates of the target included in the
elgevTunction expansion. These eigenfunctions of the target
are usuclly debermined by Hartree~Fock self-consistent field
(sCMH) method8?9. It is thus evident that these approaches
involve a lot of computational labour even if a few eigenstates
in the infinite summatidn are employed in order to account for

the polarization of the target.

{ii1) Method of the Polarized Orbitals , _
This method, developed by Temkinlo and Temkin and Lamkin®
takes account of the polarization of the target by just addirg
a 'perturbing part! represernting the polarization of the target
to the unperturbed wavefunction. The first order perturbation
theory is employed to calculate this part of the wavefunction
and the infinite set; Eq.(1.9) ; is reduced to just one integro-
differenvial equation..The computational labour is thus reduced
considerably, but at the cost that all channels other than
the initial one are taken to be closed. The method of polari-
5od nrbita}; is only applicable to very low energy (less than

the first excitation threshold of the target)elastic scattering.

(iv) Comments
There are other approximate methods, such as variational
approximationl2’l3, the second order potential method of

Bransden et aluL and so on, which can alsoc be used to solve
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~the integro-differential equations. All these methods employ,
in one way or the other, the partial-wave gnalysis. The number
of significant partial waves in the partial wave expansion
incrcases with increasing energy. Obviouslys at intermediate
and high energies this number will become quite large.

15

LaBahn and Callaway~” have considered in the forward direct-
ion as many as 10,051 partial waves for e-He elastic scatter-

ing in the 100-500 eV energy range.

All these quantal methods thus seem quite impracticable
to study scattering processes at high electron impaét energies
where'large number of channels are open for scattering. In
order to tackle the scattering problems in the said energy
reglon we, therefore; seek an alternative approach which does
not involvé partial wave analysis. Such an approach is obtaingc
by expiessing the Schroedinger equation; instead of integro-.

differential form,; in an inhomogeneous integral form!

iR, ?' s
k (?) (‘2-;)37— e 3 +§ J ies ,(? 7! )UJJ,(r ).l\. REDTE

+Z rék (3 ? ) :} I‘ 3X') X— (%‘)d3r' d3X'

e s (1.15)
\

\

where'é;j is the free Green's function for energy k? and is

given by | -
ikjlz-?'l

e

. eo0 (lolé')

L,y = o L
ﬁgkj SR 12 - 21|

+ _
Ths solution Xj s Bgs.(1.19) ; when compared with its asymptotic
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forms Eq.(1.13); yields expressions for the direct and the

= .
exchange scattering amplitudes represented by Ffi(k', §5 ard
gfi(ﬁ', B) respectively.

+ : v

Fo BB = P BB + g, R, B ~ oo (1217
— -ig'.?' i

Fog (R1R) = - %73)3[ ¢ UNCOP ACDLE LN I

. +
8oy (R 0) %I e-,lk'.?" %, B3 X @adrrad.

eee (1,19

"S I"‘

The expressions (1.18) and (1.9) are formal in the sense that

they involve summation over infinite set of target elgenstates
which 4 in turn, lead to infinite coupled integral equations.
Thus, to obtain a practical solution of these equations we

seek approximate methods, quantal as well as semi-classical, which
ever suit better according to the physical conditions (such as

energy) .

(V) Born Series Approximations

At high energies the exchange effects can be neglected
because of a small interaction time, The inhomogeneous integral
Eq.(1.15) then reduces to the standard Lippmann- Schwinger
equation |

iﬁ. ? ? =~ ? ? % 3
kj(r) = ?;;%372 e 831 +‘§!‘]ﬁ%£ (F,21) U, J,( )A ,(r:)d rt.
e (1e20)

3



-1l-

The iterative solution of this equation give rise to an
infinite perturbation series for the perturbed wavefunctlon,

Xj, of the system and is known as Born series.

First Born approximation is obtained when the unperturbed
wavefunction [ first term in Bq.(1.20) ] is stbstituted for

the perturbed wavefunction Xj yielding the scatterng amplitude:

~iRr, 2 iR.?
Eﬁé(ﬁ’,ﬁ) - - %%_f e ®§(§) U(?,§5¢i(§) e d3rax

ee. (1.21)

= - %E I 187 U, (D) & eos (1,20)

It clearly implies that FBA ignores the distortion of the .
incident particle wavefunction as well as the polarization

of the target and this explains why FBA, even with the inclusion
of exchange, does not provide sétisfactory agreement with the

experimental differential cross section data.

The distortions of the target are taken into account
partially by the second Born approximation (8BA). The SBA
scattering amplitude can be easily obtained by substituting
the first iterative solution of Eq.(1.20) for X; and then
comparing it with the asymptotic behaviour, Eq.(1.13):

F?j?(ﬁ' :E) = - %ﬁ % [ ei(ﬁ,})l—ﬁi?) ij (?9%’)

XU U, @) @dr @, | ver (1,23)

It is clear from Eq.(1.23) that SBA involves an infinite

summation over the intermediate discrete and the continuum
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states of the targe®. This makes it very difficult to
evaluate it exactly. However, it can be simplified by sett-
ing kj = k for all j16, where k is independent of j. The
summation in BEq.(1.23) can then be performed by using the

closure method

Z ¢?(§) ¢j(§t) = 5(3? Lad %') ' oo (1024)
J
Moiseiwitsch;7 has pointed out that ‘this closure -

approximation corresponds to taking infinite value for the

- polarizability of the atom and results in a logarithmic
divergence in the imaginary part of the forwardscattering
amplitude. The logarithmic divergence can be removed easily
by introducing non-zero average excitation energy of the
target. Using closure methods SBA can still be obtained in a

~ relatively simple wayl8“25

. The simplified SBA is betters; in
the intermediate and high enefgy region, than the partial wave
analysis“but it still involves considerable labour due %o

the inclusion of a large number of terms which are to be
evaluated exactlyzo"zs.

(vi) Plane Wave Approximation (PWA)

This approximation takes into account the distortion of
the target in the form of local potentials but completely
neglects the distortion of the incident particle. The local
distortion potential is taken to be the sum of the adiabatic

and non-adiabatic polarization potentials”’s. This approach

deals with the infinite sum of SBA in terms of the well krown
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properties of the target such as dipole and quadrupole
polarizibilities etc. The exchange contribution can also-
be included directly. This approach has been used by Khare and

to study e-He elastic scattering cross sectiorm.

(vii) Distorted Waves Approximation (DWA)

The SBA makes partial allowance for the effect of dis-
tortion. A better account of fhe distortion of the incident
and scattered waves can be achieved in a two state approx1matlon
involving just the 1n1t1al state (say; the ground state) and
another coupled state f( which is chosen to be the»f1nallyexcit~
ed state in case of excitation). The coupling to all other
states except these two states, gi&ing.rise to polarizations
is neglected. This simplifies the infinite set of coupled
integrodifferent;al equations into a pair of coupled equations
which are solved by the distorted waves approximation28 based-
upon the assumption that the back coupling of the final state
f to the initial state i is small, The solution of the result-
ing equations requires the partial wave analysis to obtain the
crdss sections. The method is,; therefore, not practicable at

high energies.

(viii) Exchange Approximations |
In the above descripfion‘we have not includeéd exchange

offects assuming that the impact energies are high enocugh

to ncglect them, At intermediate energies they can not

'.;o,ﬁ e s mead

nczlected, They can be easily included to the
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non-exchange (Born) amplitudes discussed above through the
relation (1.17). We discuss bclow some of the simplest

exchange approximations in order to evaluate Eq.(1.19).

(a) BornéOppenheimer Approximation (BOA)

Since we are interested in electron exchange phenomenon,
the projéctile particle is an e1e¢tron. The recoil effects
of the target are then negligible as compared with the motion
of the projectile electron and the CM sysfem coincides ﬁith
the labdratory system. The earlier results are true even in
the laboratory system with the modifications that the CM wave ru
bers k and klare replaced by the corresponding laboratory
quantities Ei and ﬁf,and = E-R' is replaced by’a'= ﬁi-ﬁf.
Here Ei-and-ﬁf are now the initial and final momenta of the

. projectile electron,

The exchange amplitude for e-atom scatiering in BOA can
be obtained from Eq.(1.19) by substituting, for the perturbed
.wavefunction Xj,the unperturbed wavefunction |

I 1
o

.
A.(Q = lks? .
3 (3?2 ° 0

Ji ‘77 :oo‘o (lo 25)

yielding BOA amplitude in the lab. systen as
S 2 >
~jiK,..1! ik.x
£ ¢¥(§)[%(?,§)-E ¢i(?')e Ai a3r'adx,

e e e (lo 26)

BO/> 2. 1 o2m
goy(Kpiky) = -z % | e

Eg.(1.26) can further be simplified if we assume that each

target electron contributes ennally to the exchange scattering.
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The situation is then identical to the e-H atom exchange

scattering. Eq.(1.26) can now be readily shown to yield

R}
G v b, (b
ik, ®
R e 1 d3I' d3X7 ¢ o0 (lc :7)

| -1
= _ L1
gpiKpr B = - e z [ e

where X now corresponds to single target-electron coordinate and
U'(%,%) is the e-H atom interaction potential in prior form}
’ 2 2

2p | |
U!(?sg) = ;1'5-(- }e-c" + ‘?f%l ), soe (1.28)

whereas Eq.(L1y) denotes the post-form of interaction potential.
BEqe(1.27) can also be obtained from the direct (Born) scatter-
ing amplitude,; Eq.(1.21a);, simply by interchanging the incident
and target electron coordinates in the incident wavefunction

as well as in the interaction potential. The BOA scattering
amplitude suffers from the undesirable feature that the addition
of a constant tc the interaction potential U leaves unaltered
the exchange scattering amplitude owing to the lack of ortho-
gonality between the approximate igitial and final state wave-

functions of the system20

. This, in turn, leads to very large
values for the exchange cross section which, very often,; exceeA
conservation limits especially near threshold.BOA also leads

to the post-prior discrepancy in the exchange scattering amplitude.

(b) Ochkur Approximation
Ochkur29 suggested that better results can be obtained
if, instead of using the full BOA expression for the scattering

amplitude, one retains only the leading term in the expansion
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of BOA amplitude in powers of kj . Writing Bq.(1.27) as

gos (B B 2 gl 4gl?, cor (1,29
where iR, . %
| 2 iR, 7 ¢x(x) e T
gé%) = %%‘~Jd3r¢i(?)e ot Id3 X 3 wee (1030}
and *..?
X .
gfi) - L‘.‘ﬂ d3r¢ I‘)e J d3 Il? 2‘ 9 see ' (1031)

and using appropriate target elgenfunction, one can easily
see that g§%), which corresponds to the electron-proton
contributién, behaves as l/ké. Using the peaking approximation30

in the second integral of Eq.(1.31), yields

-~ ’ -._? '? ‘?..-}
gi‘z) = . i-é J d3I‘ q)i(.l.?)e 1 £ ‘bif(—(.r..)el . 3
L1 : .

%
- ﬁgﬂfid3r elq'? ¢§(?)¢i(?3

1.
2
- . Z__g H /2 : ~\
kz Ffi(kfj Izi) 9 eo 0 (103
1

wlrlerc_a.Ffi denotes the direct scattering amplitude for e-H
scatteriﬁg,

Since g§1) decays much faster than g§f), the first term in

Eq‘(l.29) is neglected. Thus the exchange scattering amplitude

in Ochkur approximation29 takes the form

i L
g Frylips B). cor (1330

k2
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for an -unpolarized incident beam the relative probability
in the singlet and tfiplet states is 1¢3 so the mean differen-

tial cross--section is

a0 .kt L 3y, Rpap | |
~ 2 2
=K' Lip . p,.-
- K B Llefi-i- gfil + )_‘_IFfi gfii ] ’
[ 2 \

le.2.3 CLASSICAL APPROXIMATIONS

Classical approaches in the study of.scattering phenomenon
have received attention because of the following reasons. The
galn in accuracy by the use of quantum theory is lost to some
extent in making the.various approximations. Further for a
complex atomic or molecular system the task of solving the
quantum mechanical scattéring equations lgads'to great many
analytical and computational difficulties. On the other hand,
the cross- sections obtained from the classical calculations
Ly Gryzinski3l and Stabler32 have éimple analytic form and
may be evaluated conveniently. In all the classical approaches
the collision 1s treated as a binary electron-electron encounter,
The transfer of energy from the incident to the bound electron
'during a collision is computed as if the two electrons were free.
The energy transfer must, therefore, be large compared to the
tinding energy of the atomic electron. Hence the methods are
best suited for ionizing collisions. However, for excitation

also,approximate results can be obtained. In a more refined



classical approach, proper allowance for the velocity of
atomic electrons is made by averaging over the velocity
distributions of the bound electrons in various ways to obtain
cross section for the process of interest3l. The results
suggest that these procedures may be reasonable if only order
of magnitude estimates are required. Another drawback is that
they predict a gl decay of the cross sections which is a
more rapid fall than the predicted E-11pE.falt by the quantum
theory. In order to obtain a correct high energy behaviour
Burgess33 has tried to combine the binary encounter theory
with the impact parameter method. He has used classical
approach at low energies and.semi-classical impact parameter

approach at high energies.

(1) Comments

A1l the methods discussed so far are either mathematically
complex because of involving enormous computational labour
(quantal case) or unable to provide correct energy dependence
of cross sections and are reasonable only if order of magnitude
crbss sections are required (classical case). We, therefore,
seek to attempt sone semi~-classical approaches to get physically
reasonable and mathematically simple and tractable czpressions

for the scattering amplitudes.

1.2.3 SEMI-CLASSICAL APPROXIMATIONS

From the theory of -optics it is well known that vhen

the wavelength of light is small compared with the distance
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over which the refractive index changes appreclably, the

rays which follow the laws of geometrical optics can be
defined. In the same way, if the wavelength (X = 1/k) of a
particle is sufficiently short compared with the distance
over which the potential changes appreciably, it is possible

. to define particle trajectories which obey the laws of class~.
ical mechanics, If the potential V is of range a, the short

wavelength condition (classical optics) requires

kax»l, oo (1.39)

When the classical condition holds, the angle of scatter ng

@ must be well defined, that is, the uncertainty 66 in the
anéle of scattering must be small compared with ©. The
uncertainty 8k in the transverse momentum imparted to the
scattered particle is, by Heisenbergt!s uncertainty principle,
of order (fi/a). The corresponding uncertainty in the angle of

Bg ( ). [ 3N BN 3 (1 36\
) ka ¢ ’

If | V] is the magnitude of the potential within the range
0< r <a, the momentum transfer in the transverse direction,

ﬁZ s 1s of order

ha= | Fat ~ Tt oo (1.37)

where the magnitude of the force, F, is given by

e Lol
a

and the time taken in crossing the potential is given by _
t = [ dt~a/v | oo (1.39)

y sen (1438)
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From this,; it can be easily seen that the angle of scattering

for small angles scattering is approximately given by

n g
o

©
2
I

N%’ e (10-{-0?

where v is the speed of the particle in potential scattering.

For classical condition to apply, we must have

G>> 86 ) (I.L(-la)
ioeo m-a;'»l " L (loL}-lb)

Hv
Born approximation, as pointed out earlier, is also a

high energy approximation but it applies to angles of scatter-

V .
ing within the cone G(‘El 5 whereas the classical scattering
condition applies when @) 1/ka, and the two regions do not

overlap.

In order to fill up the gap between the two regions we;,
therefore; seek a semi-~classical approximation which is inter-
mediate in character between a full classical and a full

quantal treatment; so that it may be valid for arbitrary

v
‘ﬁ‘a which combines the short wave-
: v
length condition (ka» 1) and high energy approximation

values of the parameter

(]v]/E<<1). One such approximation is the eikonal or ray
approximation. In order to understand the underlying assumpt-
ions let -us briefly present the derivation of the eikonai

approximationy following Gerjuoy and Thomas34.
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Iat us consider potential scattering. The wavefunction
B(#)is written as
U=ae¥ oo (147

where A(2) and S(3) are chosen to be real. Using Eq.(L.42),
the real and'imaginary parts of the Schroedinger Eq.(1l..)
yield respectively

72h - A2 + (x2-U)A

= 0 9 s (1043&1)
oVa. ¥ +4A¥S =0, ven (1.430)
WheI'e )
. k2 = —2;!1%_ see (1 . L[-'% x:\
U(?) = ﬁ%‘ V(?) 9 :oloo (lol!'lfb\."

and m is the mass of the incident particle.

- Eq.{1.43b) can be rewritten as

V(457 9) = 0, e (L9)

and o~vrmegses the flux conservation as

| SOFET-IT™) = 477 . ... (L.ye)
" So far no approximation has been made except that V(?) has

been considered to be real. Equation (1l.43a) can not be solved,
in general, without approximation., The fundamental eikonal
approximation is the assumption

A fZA‘/\/kQ b] 'voo (loL}A?)
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in which case (1.43a) simplifies to

_ (Ts)2 = k-1, v (1.15)

The solution of this equation is
A 1/2 -
s(}-8(3) = fdi?r.z;['_‘kz-m?r)j , Voo (149
a .

where 3(¥) is some initial point on the ray path through

¥, and at each point #' = ?o on the ray‘;ath the unit vector
8(?0) is perpendicular to the surface of constant S.

Eq. {1.48) may be identified as the classical Hamilton-
Jacobl equation, if S(?) is identified with Hamilton's
characteristic function. In optics this equation, which
determines the rays, is called the eikonal equation and S(?)g
the eikonal function. The integral form (1.49) of this
equétion determines the orbits, which are just those given
by the more elementary theory of classical mechanics. Using
Eqo(1.49) 5 A®) can be evaluated, in principle at least;
from (1.45) and hence the wavefunction ¥ in (1.42) can be

found out,

~ Equation (1.47) may be regarded as a high energy app-
roximation because k° is proportional to E. In the comtext
of the wave theory,writing k = 1/X, it is better thoughtof as a

short wavelength approximation and may be written as

X2V <« A, | ... (1.50)

This equation holds only if, in a Taylor series expansion of

AR about any point 307 the non-linear terms are megligible
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for distances |¥ - ?Oléﬁx. A more explicit high energy
approximation to the eikonal S(¥) is obtained by making the
Binomial cxpansion of the square root in Eq.(1.49) and taking

the leading term, giving

S(’i?) bt 8(3) = -[ d?'tctk - ']2&;[&?{‘-).—35 L Y (-~?i.-i.\
3
which is valid when
U << k2
or V(?) (< B '3 a0 (-‘-653
As is obvious, the integration path is still supposed
to be along the actual rays perpendicular to the surfaces
of constant S(). However, if curvature of the ray paths is
neglected, using cylindrical coordinates (T = ?}z)g one gets
Z .
2 > : N
5(Byz) - 8(ya) = k(z-a,) "ﬁ%_ji 4z V(Byzt) ,  wve (1,53
Z

where the z-direction now has been chosen to coincide with the
assumzd every where constant ray direction C in (1.51), so
that the point ¥ has component (g, az) when T has components
(g,z), In the scattering problem, the most obvious choice of
z-dircction and straight line (ray) integration path in (1.53)
is the incident direction'ﬁg in which case neglect of ray
curvature amounts to a small angle approximation.The incident
wavefronts,; as pointed out earliers are piane and uniformly

spaced particularly at points far from the interaciion region
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where a, = -, one can write

S(?g a,) =k a,.

Thuss with the approximations made and with the plane wave
r N 4} o
incident along z = ky  Ta.{(1.53) tekes the form

(after letting a, = =)

. Z
S(g,z) = kz - %; J dsz(g,z‘). wee (1e54)
) o

Moreover, if all ray paths are supposed to be parallel to Qa

the spreading of the rays can be neglected., The conservation

of fiux row implies that A® is constant. Therefore; using the
approximate form (1,54) with A supposed to be constant and

the z-direction along Qi Eq.(l.42) finally yields,

z .
(D) ¢'$E(?) = eXp(iﬁ.?ﬁ exp(—.%; f dz'V(ﬁgz')). eo. (1.59)
vE(?) is known as the eikonal wavefunction in potential

scattering. Its use in the expression for the scattering

ampll'tllde (Ref0357 po(?OZ)
£ (R R = - & 2<@flvlw(+)>
Lm 32 Id3r e -ikE V() 111(+) () voe (1.56)

forms the basis of the eikonal or ray approximation, yielding

in cylindrical coordinates

2

f(&x ) = - 1;-1-5%1-—2— rdgb dz e:LA (B+icz) V(¥,2) exp(- -"f dz! V(b 32)) ,
-0
ees (1,57



-28-

The momentum transfer vector K can be assumed nearly
: A
perpendicular to the incident direction k for small angles

of scattering o,

P&z = k(1-cos8)z ~=1-92kz. | ee (1.58)

This is not an additional approximation as the eikonal
approximation is only reliable at small angles; becausé of
the assumption of straight-line (ray)trajectories. The maximum
value .of z of importance in the integration is ~a, where

a 1s the range of the potential, so that the term exp(iﬁ)ﬁz)
may be replaced by ﬁnity for angles such that

0%a << 1. oo (1.59)

The z-integration in Eq.(1.57) can now be easily performed to

give the eikonal scattering amplitude
. X
fE(-l?t 3?) = - -Jé-% szb elA.bEely/(a - :Dj ere (1060}
where the eikonalphase function X is

7}"’) Z - f dz'V(b,z'). vee (1.61)
-0

For central potentials, the integrétion.in Eq.(1.60) over

the azimuthal angle ¢b-can also be berformed to yield -
e / ‘
- fE(.l?‘ )E = ‘-ik:. Io db b JO(Ab) EeiX(b) - ]:-] . o e (1. \44 /

Various other forms of the eikonal approximation and
its improved versions have been proposed. Their details are

) . 7
given in papers by Moliere36, Malenﬁg,Schiff38, Saxon and
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SChiff395 Glaubergog Biankenbecler and Goldberger4l,

Feshbachqz, Willets and Wéllace43g Sugar and Blankenbeclerqq,
Levy and Sucher45, Abarbanel and ItZYkSOH&ég Moore47p Wallace487
Lebedeffg?,Bakerso, ObuSl and SwiftSQ. Glauber'ts approach&o
deserves special attention because of the fact that it

clarifies the underlying assumptions and the ranges of appli-
cability of the approximation in an éxpiicit way. His approach
originally applied to problems in nuclear physics has, at |
present, wide applications in atomic collisions. We shall

discuss his approach in detail in the next chapter.

In order to assess the accuracy of the eikonal approxi-
mation we briefly analyse; in the next section, the eikonal
scattering amplitude; Eq.(1.62), and compare it with the

Born series,

1;3 THE EIKONAL MULTIPLE SCATTERING EXPANSION
AND THE BORN SERIES

- The exact scattering amplitude f has an expansion in

powers of the interaction potential, namely, the Born series

any e e (lo 633«)

]—-4)
1l
Mg

1

0

where

}.an ~21-C2<(Qf‘U(Gé+) U)n_ll ¢l>' | . e on (1.63b)

In the above expression the potential U( = -g% V) appears
n times and the free Green's function Gg+)(nrl) times. In

analogy to Eqe.(l.63a); we define the eikonal multiple
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scattering series expansion:

\48

f] b - }.‘- 9 | LR (106)-}'3)
E =1 En

where

.n 0 ' n '
=y . 1l ] : C1N
fgp = -1k 7 _(E ab b I (b)) LX) To  .ve (1aCyb

We also define fp, and fp , respectively,as the sum of the

first n terms of Egs.(1.63a) and (1.642). Thus,

£ = 3 F e (1.65)
Bn sl Bj |

and - _ - .
fEn" j?l ijO ee s (1.66)

Obviously as n » an = f and fEn-»:fE. We note from
Bq.(1.64b) that for real potential the objects Ty, are
alternately real and imaginary. We now investigate term by
term the eikonal and Born series in the semi-classical

limit ka>> 1, First of all it is easy to see that
fEl = fBl soe (1067>

for all energies and all momentum transfersqo. We emphasize
that the result (1.67) is valid for all angles only when the
z-axis used in evaluating the eikonal phase shift function
X(b) [Eq. (1.61) ] is chosen along a direction perpendicular
to B,

Relationships between the higher terms of the eikonal
and Borns series have been investigated recent1y47’48’52"54-

Byron et al54 have made a detailed analysis
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of this problem for a variety of real central potentials.

For Yukawa-type potentials and for ka1, they have got

the Born and eikonal series expansions in the formsée

£= T5,(0) + [-L)- —L)J [—i—)ﬂ—g—)] ceer  ee. (1.69)

VT : Mg
Ty, : T3
and o ‘
L= . B(A) G(a :
fE - f.Bl(A) + 1 .k + k2 + s s 0 LI (1.69}
L—-.......-v.—-_—_l \_,—-__\/...___J
f5o fr3

It is evident, by comparing Eqs.(1.68) and (1.69), that
neither fg, nor fy, are correct to order k‘g.,Howevér, since
the coefficient A(A) is proportional to Uﬁ while C(A) is
proportional to t%,‘where U, is the maximum value of Uy it
is c¢lear that in the weak coupling situation

v IU la
'fnl]a - gk .<<17 . s (1‘ 70}

the second Born amplitude should be more accurate than the
eikonal amplitude. As the coupling increases in such a way
that |V]|aAv ~ 1 but |V]/E <1, the eikonal method should
improve steadily. Even for strong coupling‘situationg for
which |Vlaav>1 and |V|/E >1, Byron et al O argué that the
eikonal approximation is still accurate at small angles if
k a>>1 is satlsfled This implles that the traditlonal
criteria, Egs. (1. 35) and (1.52), are only sufflclent condit-

ions which are often unnecessarily rigid.
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A similar comparison of the two series has also been

24555 556

made recently by Byron and Jogphain for- collisions
involving composite bodies, On the'basis of this comparison
Byron and Joacha:’LngL’L propose that in electron-atom scattering
the direct (non-exchange) scattering amplitude (through térms

of orders k'z) be computed from the relation
- B2 3 B2
F=F'Bl 4+ Re F +F3 +iImF +ooo7 e (1071)
where Fldenotes the generalized form of the direct scCattering
amplitudeiﬁqfor collisions involvihg composite bodies (say,
electron~atom scattering). This treatment is referred to as
the eikonal-Born series (EBS) approximation. Byron and

pn 955*57

Joachain have followed this treatment to study the
elastic scattering and Byron and Latour58 have extended it

to study excitations of hydrogen and helium atoms by electron
and position impact. In order to be consistent through terms
~ k'gg they have alsolincluded exchange effects through

Ochkur approximationzg.

1.} PLAN OF THE THESIS

This thesis contains the work we did to study the
scattering of charged particles by atomic and ionic targets
at high and intermediate energies, It may be argued on the
basis of foregoing discussion that a semi-classical ggpggxima—
tion is better suited at these energies. In all the proéléms‘*ﬁ
investigated here we have used eikonal approximatinn or '

Glauber approximation (which is a special case of the former).,
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We, therefore, completely devote the next chapter to a

review of the Glauber approximation in order to understand

the underlying assumptions and the ranges of applicability.

An explicit expression of the wavefunction, the result (1.59),
and hence the expression for the scaftering amplitude is

giveny; following Glauber“o and Gerjuoy and Thomas343 in both
the potential scattering and the collisions involving

composite bodies. in the case of collisions involving composite
bodies, the lmportance of a proper choice of the z~(quantiza-

tion) axis is emphasized.

In Chapter 3, we point out the inefficiency of the
closed form expr6551ons of the Glauber scattering amplitude
for e-H atom scattering obtained by Thomas and Gerguoysj to
study excitation to highly excited states from a low lying state.
This arises because of the increasing number of hypergeometric
functions depending on the pr1nc1pal quantum numbex of the
exc1ted stqte. We have overcome thls shortcoming by comblnlng

the techniques of Francoéo and Golden and WcGulreél and

treating the Laguerre polynomials appearing in hydrogen aton
wavefunctions strailghtaway rather than breaking them into

b o™ VX, The usefulnéss of the

a series of terms of the form x
one~d1mens10ﬁal Glauber scattering amplltudes thus obtained
is commented upon in the study of the excitations of hydrogen

aton,

In'Chapter L we discuss the complications involved in
the Glauber scattering amplitude when we study scattering

from targets more complicated than the hydrogen atom. These were
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usually handled in frozen core Glauber approximation. The
calculations of Mathur et al®? ard Walters®d fall under this
class. Franco60 gave an analytical procedure of'converting
the (3Z+2)~dimensional integral appearing in the Glauber
scattering amplitude for scattering of charged particles
from a Z-electron atom into a one-dimensional integral., We
have looked at the numerical tractability of Franco's
reduction procedure by applying his final expression to the
elastic scattering and the 2s - 2p excitation of Li by
electron impact. To avoid the encounter with divergent(lF2)
hypergeometric functions appearing in Francols final
expressiony; an alternative is suggested. This alternative
puts our final expression in a two~dimensional integral form.
The results obtained are compared with those of Walters63
and the experimental data of Leep and Gallagher64. This
procedure is'also used to estimate the percentage polarization

6 7

of the 2p = 2s resonance line emitted from "Li and "Li by

electron impact.

The study of the charged particle scattering from
ionic targets presents complications because of the involve-
ment of a pure Coulomb (long—range) interaction between the
projectile and the target ion. In Chapter 9, we consider such
a problem, The puré Coulomb part is separated out from the
total interaction and its contribution is taken into account
exactl&. The remaining interaction is then treated in
eikonal-optical mode165-68. The total scattering amplitude
is then obtained bv 2dding coherently the two parts. We

apply this procedure to study scattering from helium like
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ionss; such as H and 1i¥, There is mo experimental data with
which these results could be compared. To get some feeling
on the procedure adopted here, we have compared our ‘results
with those of lcDowel1®?, ’

In_Chapter 65 we attempt to improve the behaviour of
the Glauber approximation at large scattering angles. The
poor performance of the Glauber approximation compared to
even the first Born approximation is due to the improper
semi~classical treatment of the electrOnratom‘interaction7o.
We resolve this shortcoming by proposiﬁg a two potential
Glauber-distorted Born approximation. We apply it to the
elastic e-~H(1s) scattering. The exchange effects, significant
in the energy range of'interest, are included through
Ochkur approximation29. The results are compared with those
obtained by two-potential eikonal approach7o and the eikonal-
2L

Born series analysis
71

and with the recent experimental‘data of

72

Teubner et al and Williams73. The main

s Lloyd et al
feature of this procedure is the simplicity of calculations}
it is hardly any more difficult than the ordinary Glauber

40

approximation.



CHAPTER 2

THE GLAUBER APPROXIMATION

2,1 INTRODUCTION

The Glauber approximation belongs to the class of
so called eikonal approximations and is just one example
of the many possible quantum mechanical approiimations in
this class. This point, as pointed out by Gerjuoy and
' Phomas3* is not clear from the derivation of Glaubert®,
but is appérent from the'strubture of the Glauber formula for
the scattering amplitude. The Glauber version has the
distinction of being one of the simplest eikonal approxima-
tions. This feature is not too significant in the potential
scattering case, but is extremely important in the evaluétion
of eikonal scattering amplitudés for more complicated |
collisions. In the next section we derive the Glauber
approximation, describe its basic underlying assumptions and
discuss its limitations in energy and scattering angle;An altern:
tive derivation of the Glauber approximation; using linearized
" Green's propagato:, will also be outlined in order to
understand the underlying assumptions of the:apbroximation.
Sece 203 deals with the derivation of the Glauber formula

for collisions involving composite bodies.

2.2 POTENTIAL SCATTERING .

We proceed to derive the Glauber formulago for
potential scattering. We assume that the interaction potent-

ial is short-range i.e. non-Coulombic. Otherwise, as Glauber
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pointed out, the eikohal path integral diverges and theoreti-
cal development is meaningless. Nevertheless, use of the
Glauber approximation even for Coulombic potentials in atomic‘
collisions is not unreasonable; this extension will also be

discusséd below,

2.2.,1 GLAUBER!'S DERIVATION
For an incident wave @ﬁ = ~l~¥§/2 exp(ik.2), the out-
going scattering solution m§+)(?) to the Schroedinger

equation;,
2
(- %5 V2+V(?)—E)IU§L+)(?) = 0, - eo. (2.1)

satisfies the Lippmann-Schwinger integral equation

. . -;_?,t _
() 3 - Loz (3, o (+) 2,
7@ %mexp(iﬁ.?) vl TN v F
vee (2.2)
whichy via the asymptotic condition
Y iktr '
i@ 2o (12@3/2 AEE L@ B & ] oo (2.3)
yields the scattering amplitude
£, = - %ﬁ% Tegs oo (2.42)
where _ |
P
T, = (om)3/2 [q3r o iK'.T V(?Wéﬂ (?) vo. (2.14D)

- * - . ) - - A - - )\
for scattering from initial direction k into final direction k!.

+) . . . .
Here Wé ) is an outgoing scattering eigenstate of H correspondinrg
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to an incident plane wave of momentum hﬁ. Following GlauberLfO

we write

ﬁ\+) 3 = AR T o(3).

eo. (2.9)
(2ﬂ)3
where p(?) is a correction or modulating factor to the incident
plane wavey its deviation from unity measures the scattering
effects of the potential. Making the change of variable

M o= ?—?ﬂ, Eq.(2.2) becomes

P(F) = 1 - &= & fgdpr T AR E Py p(F-2uy,
L"n’ﬁ r" )
. Py (2.6)
The integral Eq.(2.6) for p(?) is exact. Glauber now makes the

following assumptions

(i) ka>>1,  (classical)  eee (2073)

(i1) ‘lvl/E«1, (quantum). ' eee (2.70)
These conditions amount to requiring ,
that V and P vary slowly within a particle wavelength (%= %D.

The detailed explanation of these conditions has already

been given in Chapter 1. Glaubefmfurther assumes that The
product VP also varies slowly within a particle wavelength

so that negligibly small .contribution to the integral on the
right in Eq.(2.6) comes from regions in which the exponential
oscillates rapidly. If we consider points ? which lie within
the volume occupied by the potentials the largest contribution
to the integral will come from the values bf ?“'lying close

in direction to Eg since for these the exponential is nearly

- stationary. The quantitative expression under this approximation



is obtained by carrying out the angular integration over
Funder the asymptotic approximation r - @. Writing the

differential element dor"as

3.n
d-r = r d dud
where . r bdg,

b= cos(ic,™)

and # is the azimuthal angle, the integration over p is
carried out by parts. If we suppose that the product VP -
varies apprecilably only within a disténce d which is taken
here to be much larger than X, we get for the integral |
Eq.(2.6) , the value |

1kr (1 w) w=+1

W r-?'*) o( r-?‘ﬂ

p(d) = 1 + - |aMag
22 Jat s

+OC 9. - L (2.9)

The terms neglected by the asymptotic approximation; are

as indicated; of relative order 1/kd. Now the limit p = -1
corresponds to T antiparallel to k. Since the exponential
varies rapidlv ir *his case, the contribution of the p =-1

term is of order 1/kd and is,therefore; negligibly smalle. The
Ed.(2.8) corresponding to points of stationary phase,(?"“§3 |

becomes
o) = 1 - 2= [ vE-Rmp(R-21 ar", e (24
T v Dl?ﬂlﬁ T | N

In’Cartesian coordinatess with the z-direction along Qa



Z
P(xsys2) = 1 -.%V.J dz! V(x5 521) P(xy521) ooe (2,10)

-®
after.returning to our original coordinates ? and 2! in
Eq.(2.2) via z'= z-z!', The solution to Eq.(2,10) is immediately

seen to be
. _ . ] Z . ,
p(P) = P(xyy.2) = exp[z %; f dz’V(x,y,z'i] . eee (2.11)
-0 ’

The appropriate wavefunction $§+) in Glauber approximation

is, thereforey

; . &
ﬂlg_ﬂ (1) » ﬂ)E(Xs.Vsz) = -é—)-m ’expE.kz - %—;}- j dz‘V(x,y,z')]
T

-0
ee. (2.12)

This expression is missing a good many things one looks for
in a three-dimensional scattering wavefunctions €.ge.s a
spherical outgoing wave. But wé must remember that the
arguments from which it is derived are only intended to
hold within the volume occupied by the potential. Therefore,
expression (2,12) need not represent the wavefunction well
elsewhere. This incorrect behaviour of wE(?) for largev?_
cannot be argued on the basis of eikonal appfoximation
derivation described in the previous chapter. Moreover, it
is worth mentioning that Glauber's derivation of Eq.(2.12)
shows that there is no need to assume V() to be purely

real as we did in the eikonel approximation of Chapter 1.
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2+2.2 DIRIVATION USING THE LINEARIZED PROPAGATOR
Let us comsidcr the Fourier integral representation

of the three-dimensional free Green's propagétor

| =
VALY W U N d%Klelx;ﬁ G 13)
¢ I3 T e R e e | 3 soe . /
Y 12 (omy3 X2 - 1Ko~ 1c

where the limiting process € 3 o+ is always implied.

Now the situation,; we are attempting to describe (ka 3> 15
|v|] / E<¢1), is one in which the scattering is heavily
concentrated at small angles. It is, in fact, very unlikely
that at high energies in traversing the potential the
particle will be defliected greatly from its initial direct-
lon Q. In momentum space we could, therefore,; secure an

- approximation to the wavefunction by expanding its momentum
dependence about the initial momentum ¥ In an equivalent
procedure74 the momentum space dependence of Green's function
can be expanded about 'fg, where only the values of T near T«:;
in the integranmd of Eq.(2,13) will be important. Making the

substitution

P ) ‘> B
R=E+7, eoe (2.15)

. . >
and carrying out the expansion about k, we have

. ‘ Y -
’f//«('{") .ﬁ :_“gm elk:’ﬁ J- d3T elT.R
, 1k ﬁ2(2’n)3 12+27r.fg - ie
.72 L -1
o ell\.,ﬁ © a3 el'v.:f? [l . 2 7]
#°(om) (2% K-ic) 23 RB-ie -
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(1) ~2) (3) B |
24 (R’)+‘3§k @D+G, @D+, e (2,16)
where ik R’ V
h y AR

-(;(l)(ﬁ) = - &S 3 { d3 - 7 ver (2.17)
'k H (ZE)R ' (21:.k:-1€) :
| 7 |

Qi?) ® = +-2-% 9-—1---——- &g, Tzel:gf ees (2.18)

" £2 (om)3 (2%.B-1¢) |

and so on. For small scattering angles; we can approximate

4, (®) by @k ®:

[ ) .. [ X ] 2.
@k ﬁ?- (21r)3 (ZT.E-J.E)

éak(§5 represented by expression (2.19) is known as the
linearized Green's propagator and can now be solved w1thout
further approximation. Using cylindrical coordinates

(R = ﬁa+ﬁz1) with z-axis for Z-integration along ks the integ-
ration over tbl in Eq.(2.19) yields a two-dimensional 6-function.
The integration over Tzl yields a non-vanishing result only

when the contour is closed at infinity in the upper half plane

(because the linearization leaves us with a single pole lying

always on the posit:ivo imaginary axis). Thus (2.19) reduces to

,-‘(”") | i i
J\%{( (?_?‘) - _ _l:i_.gll_g elk(z-z')é('g_gg)@(z_z!) » eee (2.20)

where t)is a Heavyside step function defined by

bl {aoo (2021)

’ Al if !
@(Z‘,‘Z’) = { Wz

~O if z {z?

, 3 o}
and the vectors b and B! are the components, perpendicular to
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e
k, of ¥ and P1, Using Eq.(z.ZOL the Lippmann-~-Schwinger Eq.(2.2)
yields

(4 ikz . A o (4
b, @ = -(-2-%5-)-3—72 e EL - 2= | aze ™ (T, 21, (B’,zr] :
| 2 o :

wee (2,223
With the definition

ikz o

(+) . .
¢

the Eq.(2.22) simplifies oncemore to the form (2.11). Basic
content of this approximation is that the significant propa-
gation oécurs only in the forward direction at values, of

W 3 which are unmodified by the interaction V(?)} in other
words the linearization approximation explains in a more
elaborate way that the approximate wavefunction, Eq.(2.22),
is only adequate for the treatment pf small scattering angles
and does nbt contain a correct estimate of the Fourler ampli-~

tudes corresponding to large momentum transfer. Quantitatively,

the limitation on scattering angle © may be given roughly By O

6%d << 1. | oo (2024)

2.2.3 EXPRESSION FOR THE SCATTERING AMPLITUDE |
Using cylindrical coordinates with positive z-axis

along ﬁ, the vector ¥ is
F=b+kz, oo (2.29)

and the expression (2.12) for the approximate wavefunction
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v(*?

i is

. (+) -3 E <> l . i z -
Iﬁ. (by2) - Ihi(b‘)Z) =-(—2-—T[-)—372- exp[lk; - ¥ _[ V(b,z*)dz':].

i -0 |
[ BN 4 (20{’)6}'

4

If the potential V is centred at the origin, the distance

b = |B| has the interpretation of an impact parameter.

Using Eq.(2.26) for the approximate wavefunction in the

expression (2.4) for the scattering amplitude; we have

. % A AT
fE(E’! Sﬁ) :_1'-- -ZQJ d2b dz ei(ﬁ"?‘)o(b"’kZ) V(ggz)el/\(b’z) »

Hmop2 ves (2.272)
where
Z o
AEBaz) = - = ¥B,ztaat, oo (2.270)
-@®

and d% = bdbdﬁb denotes integration over the plane of impact

>
parameter vector b.

Let us consider the case of elastic scattering. Then
energy conservation requires |F| = |K'| = k so that for small
scattéring angles the momentum transfer hE E‘ﬁ(ﬁ-ﬁ') is nearly
perpendicular to ﬁ. In fact the error of approximating The

exponential
ei(?{“ﬁt ) of{Z
by unity»is only of order

(1-cos6) kd :%_ngd. ven (2.28)

Condition (2.28) along with (2.24) indicates that the neglect



of longitudinal component of momentum transfer imposes no
further restriction on the scattering amplitude bul leads to
simplification of Eq.(2.27a) to a two-dimensional integration

over the plane of impact parameters:

A N
(Y -
£ (B1,E) = - 25 [a% it bfdz( m)-a-— R V\b’zf)dzj
_ ymh®
: i ® -
v d -y V(bs2)dz
= 21[1 ldzb elA.bE flV[-'OO 7_ ]
= (a2 i2. bE o %(b)] vor (2.298)

where the phase function ¥(B) is given by

¥Y(B) = - %—; Jm V(E,z')dat. eos (2.29D)
-00

Eq.(2.29a) is the final form of the scattering amplitude
for elastic scattering in Glauber approximation. The result
may be thought of as corresponding to a picture in which
each portion of the incident wave passes through the potential
along a straight line path and suffers a shift of phase
characteristic of that path. |

For spherically symmetric potentials, the expression

(2,29) is further reduced to a one-dimensional integral over be

'fE(fg 3 = mfdb b J (Ab)l'_fl ix(b)], ,' eee (2.30)

where we have used the relation (Ref.75, p.620):
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2T . '

I ax glheosd . oy (Ao oo (2.31)
o

0

Here Jo(x) is the cylindrical Bessel function of zeroth order.

Following the small angle approximation {Eq.(2.28):], Eq. (2,30)

further reduces to

- e o) . .
(1,8 = ik] ab b I (o) 1 - A oo (2.32)
; .

2¢ 2.4 SIGNIFICANCE OF THE DISTANCE 4!

We have assumed that d is the distance over which the
product VP varies appreciably. The potential V varies ovér a
distance 'a', and according to Eq,(Z.lljg o () varies appreciably

over a distance~hv/|V|. Evidently the distance 'd! is,

in order of magnitude, the smaller of theses; l.e.; for

| v]a
—= {1
hv
we have
dna
and for ‘\}'!q 51
hv
we have ‘
d ~ hav/|v|.

2.2,5 ANGULAR RANGE OF THE APPROXIMATION

Let us recall Eq.(2.24),
6%kd << 1y

which limits *ha angnlar range of the approximation. For the
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case.
| v]a <]— 3
v ! ~a
we have
ol —-—7— for lvi.a( 1, - veo (2.332)
N (ka)t hv :
Similarly 1/2 : ' l
< .L..L f T — l. ce e (2033b/
0 ) or > |

Both of these; according to the assumptions Eq.(2.7), are small
angles. However, it is arguedq that nearly all of the scattered
intensity is concentrated , in both the cases; at angles which
are still smaller i.e. in the Born approximation the average

»
angle of scattering is

Via o '
ongs s ( ‘ﬁf] 1) - wee (2.3ha)
and in the W.K.B. method we have

|V| ‘V|a

O >1) . oo (2.34D)

In both extremes the typical scattering angles are well within

the angular range of the approximation.

2.26 EXTENSION TO WIDER SCATTERING ANGLES
The expression; Eq.(2.30); could be obtained by the
impact parameter method. This method clearly implies that the
‘Fourier-Bessel representation, Eq.(2,30), is exact at all
energies and all scattering angles as far as the eikonal phase

X(f) is exact76‘79. The Glauber small angle approximation
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restricts ¥ to Eq.(2.29b) by choosing the integration path
along z' parallel to E. An important advantage of the Glauber
scattering amplitude; Eq.(2.29a) , is its comparative simplicity
and the resultant ease of calculation. For scattering into
winder angles one can modify the form (2.29b) by replacing the
integral from -oco to +malong z! by an integral along the

actual curved path80

3 or by an integral along the two semi-
infinite straight lines3°’37, the first parallel to K from

~o0 to ¥ and the second parallel to k' from ¥ to 0. However ,
such a procedure would not lead to a convenient form like
(2.29b)§ unless the path integral in the exponent of Eq.(2.27b)

Y2
is along a single straight line allowing replacement of gt T

by eiziﬁzAit is not strictly possible to reduce (2.27a) to a
form like (2.29a). Nevertheless; integration of the exponent
in (2.29b) along two semi-infinite straight lines has been
used in the Glauber angle approximation8l’82; these semi-

infinite straight lines at each impact parameter b are

asymptotic to the classical path.

Glauber ¥ has proposed that (2.29a) could be extended,‘
to wider scattering angles; without any loss of simplicity or
calculational ease; by choosing the path integral over z along
a single straight line parallel to the average momentum
direction (§+§')/lﬁ+g’lglfrom ~ocoto +oe This choice of.é
(and z!') direction in (2.27b) immediately yields (2.29a) from
(2.27a) ‘without any need to assume that X is perpendicular
to the z-direction. This extension of Eq.(2.29a) is known as

the wide angle Glauber formula for §§f', ﬁ) in potential
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scattering. For short ranged spherically symmetric potentials

it reduces_to the form

S = 0 . '
fE(k! sK) = ik J’ db b Jo(2k b sin 6/2) El - elX'(b) ]’. son (2.35)«
5 :

Here 4.7 is replaced by its exact value because; as long as
energy is conserved i.e. |'1?" = I'L?I, exp_(ig.% is exactly
equal to exp(iz.ﬁ3 and,@oes'not involve any small angle
approximation. The above change in angular range; i.e. the
replacement of © by 2 sin /2, ié hardly a great one; but

it must be remembered that the angular distribution of the
scattering with which we are dealing is peaked in the forward
direction and consequently decayg rapidly with angle. Therefore,
even so slight a shift of angular scale at small angles may

be of significance in improving the angular range over which
the app:oximation holds, Though the wide angle formula suffers
from the defect that it approximates all rays by a single
straight line parallel to ?+§', irrespective of their point

of origin onvthe incident wavefront; it has a number of
desirable properties for all potentials, including ease of
calculation; velocity reversibility and unitarity. Moreover,

the wide angle Glauber formula for the Coulomb potential

is exact at all angles and all energies except for a phase

40

factor™ and 1T is a major reason that the composite collision

version of (2.29) has been so successful in atomic collisions.
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2.3 COLLISION OF COMPOSITE BODIES

2.3.1 EXPRESSION FOR THE SCATTERING AMPLITUDE

In atomic collisions between a pair of neutral bodies,
or between an ion and a neutral body, the net interaction
'V! between the colliding bodies decreases more rapidly
than.% at large distances. For such collisions, therefores
the path integral for the net interaction converges in
Eq.(2.29b) 3 even though the path integral would diverge for

the individual pairwise Coulomb potentials comprising the

net interaction.

In order to avoid complications associated with the net
long range Coulombic interactions in the initial and/or final
channels we confine our present considerations to direct

collisions of two bodies A and B.:

A+B — 4+ B(FYH, - ees (2.306)

in which atleast one of the bodies As; B is neutral. Here

B* denotes an excited state. We follow the approach of Gerjuoy
and Thomas3” for the generéliéation_of the potential scatter-
ing formulay Eq.(2.24) for collisions of the typé (2.36). Let

us consider the centre of mass Lippmann-Sclwinger equation

()2 = - _1 ik ¥ 20 (43,143
V7GR = =7, e 0D - ;Efl'gld x1a r!

exp(ikj I?—?' D)
|32 |

xR

0, G V@ I D 33,
cer (2.37)

4
J

/098 9&
{ UNIVERSHY OF ROBRKEE

EEUYRAL LIBRAR
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Here ¥ is the displacement of the centre of mass of A
relative to Bj % denotes the collection of internal coordi-
nates specifying the positions of the particles in 4 and

B} 0,( is the product of the initial bound states of A and
B; the sum over ] extends over the complete set of ihternal
states,; both discrete and continuous,; of A and Bj and the
total energy of the composite system (A,B) is

2.2
1% 222, h%r?
2u i 2p i~ 2n

+ g = E_, . (2.38)

where wj is the sum of bound state energies in the intermediate
channel j$ k = puv/h and k' = pv'/A are respectively the initial
and final wavenumbers, and v and Vv' the respective speeds in the

CM system’ p is the reduced mass of A;B.

Eq. (2.37) , which is exact; is now solved approximatelr.
Gerjuoy and ‘.l?horrlas?’Lf suggest that the incident particle energies
are sufficiently large to assume kj=: k for all j in Eq.(2.37).

The sum over j then reduces to the closure relation

*32 b, 33 = 5331, ves (2.39)

thereby immediately simplifying (2.,37) to

>
1 =, elﬁ;r¢i(2)

2n)

BP @ =

J‘3 ' elklr -7

|2-21 | v ’Sz'wi(ﬁ(?' .. (2,40

Qﬁh

The approximate integral Eq.(2.40) for $§4?(?,§3
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-involves the internal coordinates X of the incident
composites only parametrically$ moreover the 3 dependence

of ¢§+3(?,§) is determined only by the initial bound state
¢i and the interaction potential V. Hence, we m2y now write,

without further approximation,

W(+) (?:3) W(r,?)(b (%), : e (2,41)

which yields an even simpler integral equation for m(?,x g

namely
. ik|T-Fr | A
¥2,3 = ( ;)372 AR Jader & VEE VLR

4ﬁh |7=71 |
. ’ P (20'-(-2>
Except for its parametric dependence on ?}’Eq,(2.42) for
A
U(%,%) is identical to the potential scattering case, Eq.(2.2),
'Eq. (2.42) can 5 therefore, be solved in a similar way
by using the method of stationary phase. It yields precisely
the approximate solution for m§49(§9§):
(+> 'iré.'f’
X exp(- = ﬁ; !a)dz'V(Egzﬁf)bi(i).
LI (201{-3)

The centre of mass collision amplitude (Ref.35, p.802 and 86¢;

Ref.83) for the reaction (2.36) is given by

o
r

Ffi(ﬁl,ﬁb = - —- fa3rd3x o ik* é P (T X)W }7(?,A y

eee (2.44).
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which, by using, Bq.(2.43) for B\ " simplifies, to

ng(ﬁ'! B = - %f‘—-fh der d3x elA rd)x(x) V(r,';{’)

. Z >
"exp(" %—V I dZ’ V(bgzs.y}-z) éi(-}?) se e (20)‘}5’)
-0

and by making the small angle approximation (choosing the

z-direction along ﬁb reduces to

. > = 3 o |
P30 D = EaB o [k D T - P Ty,
s (2046&)
where,
. | :
YB = -k avEad. cre (2.46D)
-0 :

The expression (2.46) is known as the Glauber!s formula for

composite collisions.

To be more specific, let us consider a direct collision
in which a fast, charged; 'elementary' particle A is
incid?nt on a composite target B (such as an atom) which
contains Z-scatterers. If we assume that the incident particle
interacts with the target scatterers via two-body spin-
independent interactions, the expression (2.46) is further

simplified and can be written, more explicitly, as

F, (Bt = $E[a? oi8e b[d3 Lo BT 50 MZ)

xr(bsSlaoo.gsZ)d)l(leq-. 2} ) e 0 (2 L{-?'i/



where "o
D838y = 1 - eimb’sl’m’s,z), e (2,47
X(B,E?l,.?.g'é’z) = ;:1 %j(’ﬁ-?j) ) eee (20472)
B2 = - i I:dz'V('l?,z'B?j)g 24T
z ) |
and v('ﬁsz*;:*c’j) = 2, _33 ke . ' e (2,470

|2-%, |

- d
Here Zie is the total charge on the incident charged particle
and X. are the coordinates oflthe target electrons (rglative

J
to the target centre of mass):

?. :g. +l/{\: Z:oe e e (2.L{-€>

The assumption that the internal motion of target partiéles

is slow compared.with the relative motion of A and B is
implicitly involved in: the expression (2.47). The crucial
property of the phase-.shift additivity; expressed by Eq.(2.47c)
is clearly a direct consequence of various approximatidns, such
asy the one-dimensional nature of relative motion and the
neglect of three-body forces, target scatterer motions sand

the longitudinal component of momentum transfer.

For high energy small angle scattering, the formula (2.47)

is valid in the laboratory system as well as in the centre
of mass systemS#. If we neglect recoil effécts, which are
small for scattering near the forward direction, the only

- . - ->
modifications are that the centre of mass wave vectors k and
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g' must now be replaced by the corresponding quantities E&
and ﬁf while E>E K-kt is replaced by 3 2 Ki - ﬁf. Neglecting
recoii effects, we may thus write the Glauber scattering ampli-

tude in the laboratory systenm as

G ,» = 'LI t b-’-;

Ffi(kf’lgi) - { ld b el?l ld3 1).-0 d de) ( ,Qoo )XZ)
KP(B)S]_)O..7gz)¢i(?{17-i6322)9 - L (2049\

where hﬁ‘E hﬁi—ﬁﬁf is now the laboratory momentum transfer,

and we have denoted the initial and final laboratory wave

vectors by Ei and Ef respectively.

The differential and integrated cross sections are
obtained from the scattering amplitude; Eqe(2.49), in the usual

way. The differential cross section is given by

a0 (q)

i~

L
® kg

-
-

G ¢ ~ R
]Ff <ok )I ees (2,50
and the integrated cross section by

ke 52 ﬂ
o ) = Hae 17 G ED L, (25l
kK |

A '
wher~ integration is over all directions kf of the scattered

electron. Using the relation

q2 = kj2_ + k:fz had 2k kaOSg b ¢ e e (2‘5’2&’
where
6 = cos™h(k;.k

Kioke) s oo (2520

Eg. (2.51) becomes
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2% [ki+kf G 2 2 2 i
0 (k) = "l dg qlFg; (kpokd | eee (2.53)

i "7t

For elastic scattering (kf = ki), we have

2L 1 G 2.2 |
where -
q = 2k,;sine/2. | Coeee (20541

The superscript G in,FG"will honceforth be dropped for
convenience,
2¢3.2 CHOICE OF z=AXIX

While making a proper choice of "a quantization (z-)axis
when (2.45) is used for scattering into wide .angles not obeying

(2.33), the following points should be noted:

(1) As k - o ; the z-direction must become perpendicular to K if
(2.46) is to reduce rigorously to the Born approximation in this
limit,

(ii) If K is not perpendicular to zy it is not permissible to

R D LD Ty
iA.71 iA.b.

replace e in (2.45) by e y the integrand in (2.45), includ-

ing the path integral % , must be independent of z.

The second point might be defended on the grocunds that
it is less erroneous to replace exp(i?.?) t;y exp(i?.?) after
choosing the path integral along a physically reasonable
direction than to perform the eikonal path integral along
a physically unreasonable direction strictly perpendicular

to R. Following these arguments, an adequate choice for the
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z-direction in (2.46) , which always lies in the scattering
plane (the plane containing k and E'), is along the direction

_(ﬁ+§') perpendicular to

K' - k——l:’ = k(f{-k\.')o ve o (2.55)

For elastic scattering, k = k' at all énergies and Zf
of (2.99) is automatically ldentical with TR - By foi‘
elastic scattering, it is, therefore, generally agreed that
the z~direction in evaluating the path integral in (2.46b)
is to be chosen along a straight line (ﬁ+ﬁ') perpéndicular
to Zi For inelastic scattering choosing z-direction perpendicular
to I is quite inadequate. However, the direction (k+k!) seems
particularly attractive in excitations near threshold, where
the direction perpendicular to K’is,always nearly perpendicular
to ﬁ; even for small angle scattering. Nevertheless, specially
in inelastic scattering at low energies, one cannot rule out the
possibility that it would te more accurate, though more arduous;
to coﬁpute collision amplitudes directly from (2.44) as

85

Byron~’ does; evaluating the path integral along some physically

reasonable direction not necessarily perpendicular to K.

"It is important to note that the choice of z-axis dées
not effect the calculations involving differential cross
sections summed over all final magnetic quantum numbers M s but
it may effect whenever such a summation is not involved. Ger juoy
et al86 have emphasized this point in estimating the percentage

polarization (which depends on me) of Lyman-o radiation emitted
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from  hydrogen atom following electron excitation to the

87

2p state.‘The incorrect prediction, by Tai et al, of the

percentage polarization of Lyman~o radiation was due to an

86

incorrect choice of the z-axis~ .

Remembering that the Glauber approximation is an
special case of the eikonal approximations and that in the
_case of potential scattering Glauber!s derivation ieads to
the same expression for the scattering amplitude [Eq.(2,29) ]
as obtained using the eikonal wavefunction EEq.(l.55)t19 we
will henceforth call Eq.(2.29) as the eikonal scattering
amplitude derived from the eikonal approximation; The composite
collision version of Eq.(2.29) which is, according to our
present terminology, the many body generalization of the
eikonal scattering amplitude will be termed as the Glauber
scattering amplitude and will be expressed by Eq.(2.47). Now
the Glauber result (2.47) may aléo be viewed as an eikohal

88

approximation to a model proposed by Chase 4y in which the

65

target particles are frozen in a given configuration ~.



CHAPTER-3

- nfm - nf*m' GLAUBER TRANSITION AMPLITUDES
IN CHARGED PARTICLE~HYDROGEN ATOM COLLISIONS

3.1 INTRODUCTION

In this chapter we concentrate on inelastic scattering
of charged particles by atomic hydrdgen in Glauber approxima-
tion. The Glauber scattering amplitudes for excitation to
n' = 2 and 3 levels from the ground state (n = 1) of atomic

89, Ghosh et 31905

hydrogen have been calculated by Ghosh and Sil
Tai et ai’l, Tai et a1%7, Bhadra and Ghosh?2, and Franco and
Thdma393. In these calculations the five-dimensional integral
amplitude was reduced'without any further approximation into
a one~dimensional integrai form by methods similar to those

employed by Franco9# for e-H(1ls) elastic scattering.

Thomas and Gerjuoy59 have obtained these amplitudes in
a closed form; These expressions, besides being readily calculable
are useful in studying the limiting behaviour of the Glauber
scattering~amplitudes for (say) the high energy or small momentum
transfer. For the sake of completeness, we reproduce. these

expressions from Ref.59:

= . "‘3/2 n"_'_'_l .
Fls—n’s(ki‘?‘kai) - iki(i;)s %(n‘) | j'-%o Ocj(n')(-l)a"'l
T I

x(g—X) IO(KQQ)

i. N
h=(1/a) (141/n1) 5 ve. (3.12)
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where ) Lo
(') = C(-nt+1)./(2) . J ](--2?-")3 weo (3,10
Otj n - - j J J\l n'ao 9 tee . P
I (hsq) = ~kinlT (L) (1~ 27280 =292
gy (1-11, 1-10315-3%/99), e (320
(a)j = r’(a+j)/f"(a) Yy d coo (3.1d)
R S - E
Fls_ngpo(kfgki) - 03 . : e (3.2)
and |
1/2 )y g s 1/2
AR IEY 1,2, _.;!-__[Ln._'tlli _
Fomnipy, BB = 253/2) " B = (n‘-2),¥{
FHE -2 i . o |
e 9L B () (-DITED I ()
| jFo 9 »=(1/a)
)
:o.o'o (3-38.)
where _ .
;ﬁkﬂ)=ldP(Lﬁer24m(ﬁszeﬂ](}&M)
X {;231(2-in, 1-11515-22/42)
H14n) Fp (2-1n,1-1m525-0/g%) } 5 ... (3.3b)
By(n1) = C(-nr+2) /310 ;T (2/m' a) oo (3.30)

" Here a, is the Bohr radius and 7 = e?/hv. The quantization

. direction (i.e. z-axis) has been chosen perpendicular to the
"~ momentum transfer Vector 3. It is obvious that these express-
ions [3.1 to 3.3] are quite useful for studying excitation
to relatively low lying states from the ground state in

e - H atom collisions. The simplicity of these expressions is,



-61-

however, lost if n' becomes large because of the increasing
number of hypergeometric functions appearing in the express-
ion, Similar is the problem with the Glauber scattering

amplitudes obtained recently by Thomas and Franc095 for the

scattering by ionic targets.

We have obtained fsimple! expression in the Glauber
approximation for the general transition nfm = nt¢ mt in

e~H atom scattering by combining the techniques of Franco60

61

and Goldenand McGuire ™™ and using the Laguerre polynomials

appearing in hydrogen atom wavefunctions straight away rather
than breaking them into a series of terms of the form xMe™ X,

Our final expression involves only a one-dimensional integral
over the impact parameter b and is particularly suited to
study excitation to highly excited states. It involves only
a few hypergeométric functions if n is not too large. There

is no restriction on n'.

In Sec. 3.2 we present the derivation of these
expressions which are commented upon in Sec.3.3. Rydberg
atomic units (h= e =,02 , m = 1) will henceforth be used -

throughout.

3.2 DERIVATION

The Glauber scattering amblitude, in the»case of
electron~hydrogen atom collisions, for the transition from
an initial state i with wavefunction ¢i = ¢n{m to some final

state £ with wavefunction Qf z ¢nﬁl'm'is given by
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: 5 s
Ffi(E}, Eﬁ) = %;3 Jé?Qi[é - (lB%EL——)Qin:}eia’ﬁdgb d3x,... (3.4
in which a = (Ei—Kf) is the momentum transfer, in the laboratory
systems which the incidént electron imparts to the target. The
vector § is assumed to 1ie in the plane of b. The -ontribution

to Eq.(3.4) from the term equal to unity in the square bracket

is proportional to the two-dimensional delta funcﬁion 5 (s

. °
ahd therefore vanishes for inelastic transitions.

The normalized wavefunchion Qnﬁm is given by

wr fo Y, o '
by = 12 ol L @dgem. ... G5

where l_kl(z“) is the associated Laguerre polynomial (Ref.96,
Pe 240) and
["'l “'['i /2 ' \
an = ['Z‘E-’;T-" | P (3. 5"3.-’
al - (2[ + 1) g - ¢s e (305C>
and kl = (n‘["l)o L (3'5(1)

The pfoduct 5}@1 in Eq.(3.4) may be written60 as
* grr “Cnn' X g4t M1 2%,
d)f(bi B Ann‘ € X Lki )LK (

)%
:KY%(Q,@ YI;‘ (6,0)
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Vo= ;.X
Agﬁ« L Ll 2X>Lk (2x
k1

21 1AL exp( imd) PL(cose)

tt

{4 ,X
‘!Zf (7+f Ll'(EX) Lkl(Qx)

( L_—_M) /2
sz BrAp exp(ind) sin Mg > D%M COSEPQ, e (3.6)
p: 0 .

where

.
n = gl
%nn' %ﬁ%& ’
m =mn and M= |mf,

B, = (LM /(LD ,
e 1/2
ap = L e GO (201) (1Y /(L ]
'XC(fﬂfl 215050) C(L,£" ;L5mg-mt) 4 )
e

| exp(imm) , m 0
& =y
|

1 ) <0

| pH( LA /2, - .. '
B oY (LHI+2p-1))! . e (3.7

LM (2p) | (L-M-2p)!!

(I~M) 1is an even positive integer énd Cts are the Clebsch-~
Gordan coefficients. For odd positive integral values of (L-M),

- the integration over polar angle € vanishes. Eq.(3.4) now



- blim
reduces to

, X
Ffi(ﬁf?ﬁi) = - 2n a4 fé nn Z+Zt+zt- (QA)L- (2X
tb-"’\)m ALE ei”t(gs“W
(L=M) /2

e ~p 2p
xYLBLAL p,;o Diy cos“*@ b db dffy dx deefS;
see (308}

The angular integration'over ﬁs and ﬁb can readily be

performed (Ref.96,p.559 Ref.97,p.952):

H

2 2 2n Im(d-0) | 2 o
‘2n(ib' l) elm' 5~ ag J n(1+z2-2zcosﬁ)ln elm?dﬂ

o b 0
* (Mei 1
- MG(Z) Y e (319&}
M7 (-in)
whefe
7 - %:‘. X‘—'—-""-S%'ng 3 see (34913:
LM e ene 2
| 2 gibmnmanﬂqz), z<1
G(z) = {
... +91 -
M+ein P, (-0 Hednghilse”®) 221 e (3.90)
T . in (@, -4 ) . ‘
a.nd I ela'—b) e b q dﬁb = 275 iM JM(qb)e eo e (3010)
0 ‘

Using Bqs.(3.9) and (3.10), Eq.(3.8) reduces to the form
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Coein g 0
1T (-in) Fon

M

2 TN .
Ffi(kf,hi) S, k

— (L:M)/z -0 X 714
T Bty 3 Dfy e ™ xfH 2
p=0
ai 2% 1M1 2
‘l.ki(}fﬁi”kl(ﬁ“)G(XsinQ/b)JM(qb)

M+l

xb sin te cos?Po db dx do. . (301D

Making the transformation b » b sin® we have

. . )
T (Mqn)  img 4
RN [7 (-4 q

5 2
Fos(Kagk:) = - e e \
fi f, 1 L M!l-(_in> ﬂﬂl
(L=M) /2

-0, X !
"{' e ’!’
[e nn Xf {42

l_l'( l(ﬁg)G(X/b) Jy{qt sing)

xb sin' 3@ cosPe db dx a0 . . (3.12)

*Replacing now a factor of sin°o by 1-c0s 0, Eq.(3.12) trans-

forms to
m (L-M) /2 b )
Ffl(kf’k ) E gt LiBriy §§o Dylefy - efa)s wer (317
where |
o ’
- =0 ;X f-l'f +2 (0 . o
gy = fo m'" Lklc‘l(g“%‘—ki(ix")

%G(x/b) Tylqb sin) sin'Lg

~xcos?Pe b db dr 4o , coe (370



and
B e —on 1M AM' N M) Y cer (3.15)
' (05 72 nn' L NI (=an) |

The integration over 6 may now be performed (Ref.S7,p.740):

.27

| JM(qb sing)sin 1
0 .

6 cos*Pe a0 = 2(2p-1)11 (g0) P3 y(aP)

[Be(2p)> -1, M>-17,
oo (3.16)

yielding spherical Bessel functions jp+M which can be expanded

in inverse powers of gb (Ref.97;p.966):

A
’JM a »
P pHM [eiqb + (- 1)p—iM~)x- -1qu9

p'["\’i, q ) I)qb )\mO (qb)
¢ s e (3017?)

: whe_re '
a = . s & 4 3& l?b;
PR (patny) 2

Finally meking the tz_'ansfor-mation bsbx/q, the integral for

glﬁm takes the form.

(op-1)!! b @
p < A -p=A
g1y = ;l'g""“'——“ 7\:0 251 { db b G(g/b)

)\f dx % f"‘f"‘ﬁ-P- ng( )Lk (1%3.’»)

0

Lol =ib)x M‘*‘p—?»—l -(a__, Hb)x
s e o + (=1) ¢ o ]
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(2p~1Hi p+M

or gEM - “"“"‘"2"""""_' ap'l'l‘l J’ db b—p- G’(q/b) Ip(.b) ? e s (3018:
q
where
Py S |Cax ~B4% a-1 %1 2 RyE: ]
G=1 1 1
i € _,=ib st =1
By = |
t o )t =2 vee (3.202)
| ro1 =1 -
£y = Metp-A-1 ee. (3.2C1
(1) b= 2
énd '
d = {+{1+44-p-\ . | voo (3.200)

Final reduction of the scattering amplitude to a one-
dimensional integral is done by expressing associated Laguerre
polynomials in terms of_confluent hypergeometric functlons anc

integrating over x (Ref.98,p.54) , yielding

: 5 -,
Iﬁ(b) = gﬁi z €t [ ax e ¢ x4t
51
p . 2x - . . 2%
 Fp (ki jad 1y 59, F, (< Sag #1005 09)
v
N O S T (~kq) () (2/n)
= nn!t t~l€tBt d) Z: N ‘ -
= | v=0 (aq l)v v Bt .
Fl("kiﬁd+V‘g a]'_+l.‘) 2/Btnt)§ Y (3 6.)
where
0 (nt0){ (nt +A)]

B . . ... (3.210
(2f+) (24 v+ (n-f-1)! (nt=£*-1)]
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3.3 COMMENTS

The infinite sum over v in Eq.(3.2la) is really a series
terminating at v = kl = (n-f-1), i.e., the number of terms in
the infinite series depends upon the values of n and f. If
n= 1, the infinite series, Eq.(3.21la), terminates after the
firét term. In general, this series will have (n-{) hyper-
geometric functions. It is important to note that the
termination of the series does not depend on n'. The
number of hypergeometric functions appearing in the expression
for scattering amplitude, therefore,; does not depend upon the
final excited state. Furthermore, the hypergeometric functions
in Eq.(3.21a) are términating in themselves. Thus much
computational effort is not needed to evaluate the Glauber
scattering amplitudes even for excitations to highly excited
states. Our expression is particularly useful for transitions
to highly excited states from a low lying state and is simple
to compute than the earlier expressionssg. It may not prove
to bé'of much value when n is large because of the occurrence

of 1arge number of hypergeometric functions.

In the following we give explicit expressions for the
transitions 1s - n's and 1s - n'p. Egs. (3d3) and (3.1Y)
together with Eqs.(3.18) and (3.21) reduce to



., A SN . 1 0 1
Pls—n's(kf pixi) = =21k, WQ(goo- goo)
——————/-EkfL @b Glam) £t
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o LoeBy ™ (nt 02y 55)
+2:L<ctﬁt)"32F1(-nt+1',3‘,2; ’Bfﬁ‘wb

(58" F (014152523 B’fﬁ’)/bgj oo (3.22)
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1/2
2 2L 2‘RMK:‘L L(nt-2)1 ] H 4,0 1
Fls_nlpil(‘kfﬂki) - (ni)?) t(n,+l)fjl/2 e ngll—gllj
2Bty 1M g
T3 L) ] -;-5 e "9 |db G(q/b)
x)% C.tDActBtY-‘S?Fl(—nwz,s;m =)
t=1 : By
$21(C B, T (-0t 42,4545 7=,) /b
tht) o1 TR ey g
-3 v 2 2
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-L(LB TR (ot 2,255 =2k e,
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eor (3023)
where
Ct = —(-1)t0 ! e (3.24)

nd

o

The hypergeometric functions appearing in Egs.(3.22)

(3+423) can be cxpressed in simple closed formé. Eq.(3.22)4 for
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example, can be written as
' 21{
Fuooors(Bpofy) )3/2 fdb G(q/b) Z s

nt~1

cr g2 2 2

2100673 (1e ey P =21, Ly, L
~2(8y8y) (1 B—%,)n"?’({(l- 52;)(1- %—t-)—z}
- 'B""‘t'(l“ "— _IF B ntg)] see (3025’\

large n! 2k, 20 2 -2/8
i t
g(n')y? Ldb G(q/b)t‘élét e
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CHAPTER L.

STUDY OF ELASTIC AND INELASTIC SCATTERING
CF ELECTRONS BY LITHIUM
4,1.1 INTRODUCTION
In the last chapter we have studied the tractability

: s . . . - 87980"91}59\
and usefulness of the one-dimensional integral forms

59

and the closed form expressions ’of the Glauber tranéition
amplitudes in e-H atom scattering. To obtain closed form
expressions for atomié systems containing more than one electron
even with the simplest approximate wavefunction is vcry unﬂikeliéo
The Glauber amplitude expression (2.49) for the scattering

of charged particle by a Z-electron atom involves a (3Z2+2)-
dimensional [_(3Z+2)D | integral. In order to appreciate the
difficulties in actual calculation and to be more specific

let us consider the next simplest [_i.e. next to e-H(1s) . | atomic

collisiony namely, enﬂe(lsg)c

" 4.1.2 SCATTERING BY HELIUM

The Glauber scattering amplitude for e-He(lsg} requires
an 8D integral EQD integration over the impact parameter'f and.
3D integrations over each of the bound electron coordinates
ﬁl and §2Z]~ For this case, the Glauber phase function X of
Eq. (2.47¢) reduces. to

>

j{/} (-gf%lz-%g) =y/l+ %2’ .o e e (’P‘f'mla.)
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where -

L. =21 fn (L——il | oo (4,18)

A

o

In Eq.(4.1%)y the 2D vector S. is the projection of X. onto

J J
the plane (containing impact parameter vector fb perpendicular

(S

to the integration direction 2( 1 33 in Eq.(2,47d) 4 and
N o= l/l«:1 ; as in e-H(1s). Inspite of this simple form for
% 3 the profile function

<A 10K 44,
lﬂ;‘l"elx’zl"e /Cl V2 s e s (bo-i,
is quite complicated than either .
‘—i E l - eiXJl ' e e (Ll-oja

or [;';

'
[
H
(o)

“

cee (L',_'}'b\

" and this is why the 8D analogue of e-H(1ls) Glauber amplitude
expression (3.4) can not be reduced to as simpie a form even
with factorable helium bound state eigenfunctions. FrancolOl
using his Ref.94 procedures could only reduce the e-He(lsg)
elastic scattering amplitude to a 3D integral which was evaluat
ed numeriéally. A further reduétion to more easily calculable
2D representation for elastic and ineléstic scattering has

been proposed by Yates and Tenneyloo

102 103

« Still more recently,

Franco ~“y Thomas and Chan

105

s Chan and Cheniog, and Chan
and Chang have shown that Glauber scattering amplitudes
both for e-He(ls?) elastic and inclastic transitions can be

reduced to 1D form Without making any further approximation.
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These reductions to 1D integrals are readily generallzable

to collisions with target atoms involving more than two

102

bound electrons. Franco basically uses the procedures

outlined by him earlier[:Ref.édj. The method of Thomas and

Chan 03 also leads to a 1D form [different that of Franco o° ]

involving modified Lommel functions;liu’v y Thomas and Chaﬁ;03
break up the profile function r’ into single and double

scattering terms.

iy 1Y +4,)
[MTz1-e =1-c¢ 7} 2 " , ,
| i i i 1Y,
=(l-e By +-e A-@-¢ Hia-e
z D@2 + @3, - @R LG,
. o (Bohe)
where
i%(?,i?j)
l=1-e ; | vor (kD)

J

with %ﬁ given by Eq.(4.1b). 'Single scattering! contributions
[1 and f; have been evaluated in closed form. It should be
noted that the 'single scattering' contribution f7 is not from
a single fundamental particley, but from a hydrogenic atom,
at the wuleus sihe 1-r,vwnmmf Z=1
composed of electron 1 and a charge Z = 1 Acharge together
with electron 2y forms the another hydrogenic aton whose
'single scattering! contribution is associated with f;. We

now consider the next complicated system i.e. e - Li scattering.

\

Lhele3 SCATTERING BY LITHIUM WITH 'FROZEN CORE! APPROXIMATION
It has been pointed out earlier that the Glauber

transition amplitude describing the scattering of a charged



/.

particle by a Z-electron atom involves a (3Z+2)D integral.

2 2sl) collision amplitudes,

Thus in order to compute e ~ Li(ls
an 11D integral has to be performed. Obviously this cannot be
handled as it is. Simplifications can be made by either makirc
certain analytic reductions or by.introducing some simplifying
approximations. One such approximation is to treat the alkali
atom leffectively! as a one-electron (hydrogen-like) systenm}
the core of the atoms consisting of (Z-1) non-valence

elecctrons in the inner orbits and (Z-1) protons at the nucleus,
is assumed to be frozen and is ignored. This approximation,

the so-called ifrozen core! approximations thus involves only.
the active (valence) electron and a nucleus of charge unity

and ignorcs the effects of core electrons. If one looks at the
electronic configuration of an alkall atoms one finds that

the (Z-1) non~valence electrons forming a closed shell
structure are chemically inactive and only thé valence electron
in the outermoét orbit is the active onéo One might argue
purely on this ground that the 'frozen core! approximation
should be quite good. This approximation reduces the full
(3Z+2)D Glauber integral (2.49) for a Z-electron target (alkali)
atom to a 5D integral, as it is in the case of e-H(1ls) scatter-~
ing. Mathur et a1%? apd Tripathi et a11%® have followed this

approach..

The effect of core electrons can be taken in%o account
approximately by including a core potential'vCRr) vhich is
obtained by replacing the actual pairwise Coulomb interactions

between the incident electron and the (Z-1) non-valence
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-electrons, together with the balancing ~(Z—l)eg/r interaction
between the incident electron and (Z-1) nuclear protons with
an effective purely central potential. Such an approach has
been followed by Waltersé3. Thé interaction potential for
electron-alkali atom scattering in !'frozen core! approximation

is given by

V2,3 = PLV® - 2+ —2—T] ¢ e (452
N ‘I’- ll
=PLVgp( + W) TPy wee (4a5B)

where Ei is the spatial coordinate (relative to the nucleus
of the valence target electron. In Eq.(4.5)s the projection

operator P ig given by

N .
Po=1-3 0SGED O

ED s ver (4.6)
3= !

and the core potential V (r) ig of the form

V(D) = 2? Jadx, ¢C (x)(-———-—-——‘- EBLHERPRIPNNCN )
where (2N+1) = Z (atomic number) and ® (normalized) denotes the
spatial wavefunction of the jth core electron.of the alkali
atom. The core orbitals ®§ are taken to be orthogonal to
the valence state ®§. The Glauber scattering amplitude
Ffi(ﬁfpﬁi), Eq.(2.49) s corresponding to a transition (i=f)
in the target from an initial stéte i with valence wavefunction

¢X to some final state f with valence wavefunction @g is

given by63
geimen I'&WY UNIVE!S‘YW OF ROORKEE
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where
RO gy
l (b,.ﬁ hd l - g H VCR '/
iy i
= (1 - oMy 4o H(y - g XCR) o (4 92)
i
E rI:[ + e I{ ]-'CRQ LI (L[- 91.1\
. (e8] |
-§
. 00 ' :
) = . & 2 : ,
for = =oic. ! Vop(Byz)da. oo (4.108)
i~
'Waltersé3 sets P equal to unity to get
'9
ik .b ¥ Vs
(kf,k ) = —w~ d b e \ fd3xl¢v(xl)fé¢i(xl)
> 3 % iX
A2 1d.B(.3, AV H o gve
e Jd b e Id ¢f($l)e [ER¢i(xl)
. H HC
where {% '?[
b - g, ]2in
f& =1 - ( "“”E”“J“Q ’
S
le =5 + zlk )
=S
Sl.ki- 0 3
n = l/ki L4 LK I <Lfol.2)
H SHC
" and T can now .be handled ea31ly by methods used for

e- H(Ts) scattering.



4.1l.4 SCATTERING BY LITHIUM WITHOUT
'FROZEN CORE!' APPROXIMATION

In the foregoing discussiony the application of the
Glauber approximation has been restricted to the scattering
by atoms having one or two 'effective! electrons. Obviously
these procedures fail if the target atoms have more than two
teffective? electrons or if one wishes to consider all the
target electrons explicitly. The difficulties are removed
automatically if one follows analytical procedures which
first reduce the (3Z+2)D integral sufficiently before attempt-
ing any numerical calculation. Such a procedure has been
given by Francoéo. We have adopted this procedure in our
e-L1i atom scattering calculations. In the following we present

its details.

This procedure reduces the (3Z42)D integral to a 1D
integral for the elastic and inelastic scattering of charged
particles by arbitrary neutral atoms. It is based (i) on the
assumption that the product of the initial ¢; and the final ¢,

wavefunctions of the target can bewritten in the form

. N Z noo. =0 .Xs
05b; = 2 (% gl{‘“’jk"] o 1 Y-fjmj(gj’gj”f?mg(gj’ﬁj) It
e (4o13)
where ij Gj, Qj are the spherical polar coordinates of the jth
electron and Yfm are the spherical harmonics and (ii) on carry-

ing out the integrations over the coordimtes of the target

electrons without involving the impact parameter b. This
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procedure differs from the one followed in Refs. 100 and

101 for e-He scattering. There the impact parameter is

mixed with the coordinates §i(?i,zl) and ?é(gz,zz) of the
target electrons to generate a new set of variables R,

and U in place of by sy and s,. This mixing is not feasible
.for more than two electrons in the target. The assumptioﬁ
regarding the form, Eq.(4.13), of @;@i is really no restric-
tion as the wavefunctions usually employed_in describing the
atoms can always be put in that form. The result is that

the final expression involves just a 1D integral over D.

The only problems with this method are the evaluation of
_the infegrand which involves the calculation of the diff-
erences between strongly divergent functions and the numerical
calculation éf the §-function whenever elastic scattering is

consideredlo3

+ Thomas and Chanlo3 have modified this procedure
to eliminate these difficulties by using the properties of
modified Lommel functions and have reported calculations of
the elastic and inclastic e-~He scattering as pointed out
earlier. This has also been used more recently by Chan and

Chang107

to study elastic e-Li scattering. The main attribute
of these methods is that the contribution of the inner
electrons is explicitly taken into account and can be analysed

in contraest to the 'frozen core! approximation.

In the present work we have avoided the encounter with
s . . . ] ) G0
the divergent functions appearing in Francols final expressior
by stopping a step earlier (Sec.4.?), The concealed §-function

. o .
in the momentum transfer ¢ presents no numerical problem. The
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price to be paid for this simplification is tThat our final
expression is a 2D integral, irrespective of the atomic
number of the target, against Franco!s 1D integral. Thomas
and Chan 103 nave also pointed out this p0351b111uy but did
not pursue it. We illustrate this procedure by con31der1ng
the elastic and inelastic scattering of electrons by

lithium atoms.

In Sec.L.2 we discuss the case of the elastic
e-LW(ls 25 ) scatteringy wherein we outline the method,
give the details of the calculation and discuss the results
of these calculations. Sec.4.3 is devoted to the inelastic
(2s-2p) e-Li scattering. Polarization calculations of 2p=2s

7

resonance line of 6Li and 'Li following electron impact

will be presented in Sec.l.l.

+

BELASTIC SCAETERING
144 2,1 METHOD |
Recalling Egs.(2.49) 5 the Glauber scattering amplitude
( P 7. ;) of a charged particle with momentum k by a
Z~electron target atom which undergoes a transition from

an initial state i with wavefunction ¢ to some final state

f with wavefunction bf is given byt0? 60
> il - |
1—\fi(l{f ,l{i) = ‘(b (Xl" Ty QAz) r-’ (b l Qo .o 9-1?2.)
ig T.?
x @i(xl,...,xz)e d 2, d3xl.,.d3ng oo (B,14Q)
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and the profile function [ is given by

cxdiiers =2 mllardrd | >
l_?(b’_}?;l)oua ?Xz) -._-. i (ngl?a.. 7SZ>

1 - exp[iX(ﬁagisoo-agz):]

z 16331 2in
l - l ( - m__\} ' cee (‘Lf-olll‘-b:
j=1

Combining Egs.(l4.14ka) and (4.14b), the scattering amplitude
F., (. E)) takes the form
"‘} _} - iki 2 ia‘ -1?‘.“ \ 3 l ‘ 3 *
Ffi(kfﬂki = o J& b e~ {l*Jd AlQODd Xz¢f¢i
2 Bl 2

LT (=== J}. . voo (4.15)

J?‘ﬂl

The contribution of the first term in cdrly bfackets
in Eq,(4.15) 5 though proportional ?o the 2D delta function
S (éb; can not be ignored for otherwise thé integrand over
ﬁ would not tend to zeroy as it should, for large values of

the impact parameter b and would create numericagl difficulties.

For the product 6;@1, we prefer the form
* 7 ﬁj 1y j -0y ij . ,
T : ’ ?
by gll(kil LI )ijmj(gj’gj)yfﬁmﬁ(gj:¢j):

vee (“-{- o]é)

which can be obtained by regrouping the terms in Eq.(4.13).
For elastic gcattering by lithium atoms only s states are

.involved, i,e., £, = f5 =m, = m5 = 0 for'all j. Thus
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.*5 3 '|3 fﬂ J KeJ™3 ]
¢-¢‘ = (Lf"ﬂ;) I ( ? c 3 e ? ) soe (Lrol{a)
Y1 -:1 el ey i*
a3 ! -, ~X_;
3 Tﬁ, K’ l'mk,j A l+nk,j o kalTI
= Lo O 3 (-1) (aa _ ) - .
j=1 k=1 ! kaej

eer (4,17D)

Using Eq.(4.17b) in Eq.(4.15Ysand carrying out the

integration over ¢b, yields

)

N
F. (. 5.) = ik [ db J (qb)b[i (ym)™3 13T "5 (=1 5
it ri o j=1k=1 % 5]
1 .
x(%r_ﬂ) -‘—nk:"] I((xk '3b)]§ s o (4018)
k J 2J
?
where
- -
’ ( o angXJ !b - Sjl 2in 3 | .
I(“k,j’b) = % (_ = ) 7% cee (4.19)

It is worth mentioning here that the 1limit b & wof the
second term in Eq.(4.18) is unity. The integral in Bq.(4.19)

can be performed by introducing cylindrical coordinates g},zj

for g} and following the methods of Franc060 and Thomas and
Gerjuoy59 to give
. N 2Too [,oo 24,2 -1/2
ey 3 ) = Jo dsjsj~o dz (s J)
;
< expl-a o -]j p1r = - eosh)

‘n

1

5 0 on 5
b ds sK_(a .bs)J d@(1+s“=2scosd)
o 0 k,;] O
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20 Slpin I (1Hm) o .
= 2b°(-m 2 7 (ioim )i ds s Ko(ak,jbs)
m . '
X KX "2171 Q_, 3
;i as t dt[Jo(t)Jo(st) ]
Ree o @ , -
o0%(n) [ at " %:C-(Jo(t) [ as s K (ay bs)J (st))
0] ’ (@]
© . Jalt)
= oblE(m | at 720 de( 2 o) s ver (4. 20a)
0 t o+ (ak,jb)
where
: (1+in) e
E(n) = -z 2’.“_23‘Tl r’ eoo (4.20B)

7 (1-in)

Francobo insegrates Eq.(L4.20) by parts, to get (Ref.1083p.43%)

@ -2in-1 J (t
Iy o0) = hinpZs(m [ ap ST
2 0 (£ + a5 b9
Ky
-l i . . 2
= Linb E(n) [[By (n) CRS 2-21n F. (—51 gock,jbz/#)
() F,(192+in, 2+ny o b2/ ] (4. 21)
2\1] 1h oMLY iNy N Kgj t 9s 08 \Hecody
where
E () = [ (i) [T (1+in) /2 _ eee (4 22)
and '
B (n) = [ (-1-1n) / (23" (24im)). e (4. 23)

The hypergeometric functions appearing in Eq.(4.21) are them-
selves divergent functions of ak,jb although their combination
as appearing in Eq.(4,21) is convergent. This can be clearly
seen Dy carrying out the differentiation indicated in

Eqe(4e 202) 5



2,2 .2
@ Lo Ji () +2td (8) /(5540 sb ) -
yb) = ~2b%E(m) [ at t N[ L 52 £a] ]

I( I
2 2
0 (t+ qk,jb )

Yy
ves (La24)
The integral in Bq.(4.24) can be easily evaluated numerically.
We nave used this form to avoid the problems associated with
the calculation of the differences between strongly divergent

functions appearing in Francol!s expression EEq.(q.zl)[].

The differentiations of I with respect to ak,j in

Eq.(4.18) can be done analytically.

L4.2.,2 CALCULATION

Foy elastic scattering by lithium atoms we need only
¢i where the electrons are in (15)2(23)1 configuration, We
have taken these orbitals of the form given by Clementi109,
and ®i 1s obtained by taking their antisymmetric combination.

This leads to

N 2
God; = (/30 laet(OS,, 105, 107 ) |
2
- c v
= 107, (1) 07,2 §3.(3)]
. 2 . » , |
-105 0 1055203 (245 ()5 (3). R

The orbitals (°?V are of the form (Ref.109):

§°7CH = RN, _(0,0). oo (4. 269)
with
‘ 2, -tx 6 -E X
R(x = >"Me 4 4 Y Axe 9. e (L, 26b)
=1 =3 |

Both the terms in Eq.(4,25) for ®§¢i, with §°?V1s of the
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form (L4.26) lead to the expression (4.17a) with

The values of the constants cksj and “k,j are obtalined from

the values of the parameters Ai and Ei given by Clementilo9

and are tabulated in Table 4.1.

The integrals in Eqs.(4.18) and (4.24) were done by

the Filon's methodllo

o The wiggles of the Bessel functions
were accurately taken into account by combining the Simpson!s

rule with the standard Bessel function htegrals (4ppendix Al).

The differential and integrated cross.-sections for
elastic scattering are obtained from the scattering amplitude
expression (4,18) in the usual way. Recalling Eqs.(2.50) and

(2.54a) y these are given by

do” ., (q) 2
el - iy . . 2 oo
T - |Ffi(kf ’ki) | in unlts Of a.oj LI (Ll'a x—b,:‘
o ¢ S
O—el(ki) = —-_2' i dq q‘Ffi(Kn’ki) l L] (lf-c 29\
L

in units of nag.

4+2.3 RESULTS AND DISCUSSION
In Fig.4.2 we have plotted the differential cross-section

against the scattering angle 6 upto 80° at electron laboratory
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g
Coefficients k5 and;eXponentsﬁaksj~for the prclucts

of the type lbi
in e-Li scattering.

2 v 42 . )
gl-y |®QS| and @Zg Di& appearing

. o il
k| dsals | 2sx2s | lsxds s
1 49.19403076  1.27017689 ~7,90L.78706 L, 9606
2 9.07708359 - 0.10466754 = -0,72890657 9142
3 131.60772705 0,72923636 ~4.,80836201 7,187y
L ~0.00007043  -0,00038102 0.00119128 2.8303
5 . 0.00624801 -0.90173423 . . 2,80539989 3.1403
6 - =0,02332481 - -0,23625112  0,73701036 3.4803
7 0.601789%95 - 0.92508828 -2,9269218L L2193
8  ~0.00002262  -0.00010938 0.00038248 540571
9 0.00200702  -0,29885248 0.90118235 5.3671
10 ~0,00749251 - -0,06781840 0.2366822L 547071
11 . 7 0,19331002  0.26555651 0, 93854916 6,442l
12 . .0.,00000000 ‘*“@,00000003 0, 00000000 06999
13 ¢ 0,00000020 = 0,16004151 0.00017819 1.3200
1L - 70,00000276 0,01098560 -0.00017428 2,0000
15 0,00184042  0.16843867 -0, 01760677 3:4.700
16 ~0,00000000_ . .. 0,00013525 =0, 00000193 1.0100
17 ~* 77 0,00000002  0,0000354% -0. 00000081 1.3500
18 -0.00000043  -0,00013875 0, 00000931 2.0850
19 -0,00000148  0,08386087 -0, 00061851 1.6600
20 0,00003822  -0,3283728Y" 0, 01697948 2,3950
21 -0,00014267 -0,08603231 0, 00517890 2.7350

*See Eq.(4.16).



energy of 54.38 eV’(k=2a;l). The curves a and b correspond

to the calculations(~--) in the !'frozen core! Glauber
approximation without and with core potential, respectively.

These are similar to those in Refs.62 and 63; The curve c

corresponds to the present calculation ( )« Clementi
wavefunctions have been used in all the calculations. All
the curves.show almost identical variation indicatigg that
the inner'electrons (those in the 1ls state) are not very
active. A more quantitative picture is given in Table L.2.
The slight increase in cross section,when the core poteﬁtial
is included,is in agreement with the findings of waltersé3.
The differential cross sections with the present calculation
differ 1little from those in the !frozen core! approximation,
Similar ie the case with the total cross section for |

energies upto 200 eV;EFg.4eJ_

In order to assess the accuracy of our theoretlcal
differentlal cross sectlons we have compared, in rlg L, 1,'»
our results (curve c) at 20 eV'w1th the recent eyoerlmental
data (Q) of Willlams et allll. It 1s evident from the figure
and as expocted the Glauber approx1mat10n undercstlmates the
dlfferentlal cross sectlons at ‘such a low energy over the
entlre angular range. Our total cross sectlons, plotted in
Flg 4 3, are also qulte low as compared w1th the experimental
datalll (¢) even at 1ntermed1ate energles (upto 60 o).

. To summarlze it appears that nothing much 1s galned by

1nc1ud1nb eXbllCltLy the inner electrons and the xzrozen core!
Glauber. calculation is good enough. ’ |



TABLE L,2
Elastic e-Li differential cross sections
in units of ag at ky = Za;l.
S?Sﬁgfging i Glauizgzzggigiimation
in degrees) ,
l Without with Present
| _core potential core potential calculation
10 27.11 27.06 26,90
20 5.59 5.52 5,01
30 1.58 1.57 1.37
40 0.61 0.63 0.5Y
50 0.29 0.3%L 0.27
60 0.16 0.18 0,16
70 0.10 0.12 0.10

80 0.06 0.08 0.06
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L. 3 INELASTIC SCATTERING

4,3.1 METHOD
Since we are concerned here with the electron impact

resonance transition (ls f(Zs)l - (ls)2(2p)l in lithium

atoms s we have

fl=f2=f3=ml=m2=m3=0,
| fi = fé =l =mn}=0
and Z§ = 1, mé = 0y % 1. eeo (4.30)

In the present case Eq.(4.16) simplifies to

. ~ ) . . =0 .X. ’
Y = < : KsJ kai™J] .
Gy = T a3 o mpd o8 e
= ﬁ P‘ 2 ‘e e e (4031b>
=1 Y |
where
a = a, = 1/(ym) vor (4310)
and - '
3.3 = Ylmé(g3, g3) / v\ﬁl—‘?r o Y (l{'o 31(3.)

Using Eqgs.(4.31) in Eq.(4.14a) gives

. e M - .
N ik; ., 1B 3 |B-<5 ], 2 3
- o e—— ——.-—-Jo—— 2
Ffi(,]n_f, ki) 275 fd b e j=l°[Pj( _b ) d Xj... (403&/

The terms Pl and P, also appear in the case of elastic

scattering and have been evaluated in Egs.(4.20a) and (L4.24)%

- 1B-351 2in 5 14, SET
P.(———)  a&x, = & (- N IR LS (A
By x5 = i kgi ey, 5(~1) (6mk,j> CH
1
E i‘ﬁ Tj(b) 9 J = 1,2 LI (}1-033)
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where

, £, (6) 289 (8) /(8% 2 b®) ]
(o, .3b) = ~2b%E(n) | at L 2
L o (% af b3
& oo (1.30)
and E(n) is given by Eq.(4.,20b). We now calculate the contri-
bution to Eq.(4.32) from the factor P,e

3.
i dBsl fn 5 (N3 Thy3 "%, 33 D53 124
. P3 > ) d Xy = I“;—% ) kz:l ck’3a3 b

* 3
X Y1m§(g3 ,ﬁ_?)) d x3

- 3(L-ni) :]1/2( )m’ I f( ﬂ/
= 1 -1
L7 (l +m§)? k )3 S
« (52+22) L2 7 z
k,3'537%3 l~ ' B
- ) P m'( 2,2 1/°)
3 (s3+z3)- “
—im§¢3 ,
xe s3ds3d¢3dz3. eoo (4.39)

For mé = 0, the associated Laguerre polynomial le, is an
odd function of z3 and therefore, the integral over z3 vanishes.

For mé = 41y BEq.(4+39) can be written as

l" ‘*3| 3, (57 N3
2in -~
+, |5 i :
3(lEn_ﬁdg ( 1) k:B(g_,-> :3[

k3 0 “3
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(-1 9303 1o by, s (136
: :

where - _,, ,
e E

| 2im
Hoy,3b) = 2f sy 58 (o 58 3)[ a, B e L T
0

Eq. (4.37) can now be solved by procedures |Ref.60, Egs. (11)-(21)}%
Ref.112s Eqs.(9) and (12)]used in Eq.(4.19), to yield

+if, @ :
b : - 21 d 2 N
I(ey 30b) = e Eb%:(r;)_(l) at ¢ (J (t)J ds s I(o(ock’3bs}n!1\stﬂ
Fig - [o0) . ot J, (%)
= e gb 9b3E('ﬂ)[ dt t-21'ﬂ %‘_E( 5 ]é 5 )]
e ® . J1 ()
= e Plaimg(mb] at ¢ ——ms ?]. e (138
- 0 (t°+ cck’3b )°

Using Eq.(4.38) in Eq.(4.30) gives

+:L¢ |
fr, l 31)2171 3, L blihnE(n)b3

b *3 2( )
N .
T Mea3en oy Pies3
Il 3 H(ak}?),b)]
+ JZ ﬂgb o | " 10AYN
' oym © 'T3(b>3 | eoe (o398

where

‘° . | L 2Qh)
H(ak,3jb) 2 dto ¢t e s (f" ng/

We have evaluated the integrals in Egs.(4e34) end (4.395) nomeri-

cally rather than expressing them as a difference of two diverging
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hypérgeometric functions (Eq.22)of Ref.60) as we do in the

112

case of the elastic scattering™". The integrands in these

integrals [Bgs.(4.34%) and (4.39b) _], except for the factor
t—2in’ need be evaluated only once at mesh points and can be

stored.

The scattering amplitude can now be obtained by putting
together the contributions Py, P2 and P3 EEqs. (4.33) and
(4.39) 1 in Eq.(4.32). Integrating it with respect to %, gives

5 3 K ki i oo ‘
Fo.(Koy Bo4mt = 41) = ~—3—¢ 9] gb bJ, (qb) T.(b).
1 1 2(ym)° o SRR S

e oo (L4.40)

4+3.2 CALCULATION

The ground-state wavefunction @i of a lithium atom with
electronic‘configuration 152251 has beeh obtained by taking
the antisymmetric combination of the lsy 1s and 2s orbitalsy
of the form given by Clementilog. Similarly the final-state

wavefunction ®f is the antisymmetric combination of the ls,

1s and 2p orbitals., This leads to

i

o K
(1/31) det(®fsf’ ®§s¢’ ¢§p2J

h l?et(misT; ¢§s¢"®gsi]
1620 12[105,(2) |2 0%(3)03.(3)

- (285, (2473147 (3) . coo ()

‘@

570,

The 1s and 2s orbitals of Clementit®? arc of the form
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d)gs,v(z) " Rns(X)YOo(Qyma n= 1,2 | eoe (La2a)
with
2 -6, X -g.x
- = in in ~
R (Z) = , A4 _c + z: A eos (Lol
ns 557 in =3 in® :

The 2p orbital has becn taken to be of the form given by

Stoncll3,

03, = By (x) Yy (0,8 cer (1430)
with

~£X

Rgp(X) = Axe 9 e v (’-f-.‘+3..‘,\
where

A = Oo 2282053 e (11-0113'\’;)

E = 3d4)

0.5227. eee (Ll

Both the torms in EquChail) for 0y 0, with §¢?"'s of the
form (4. 42) and (4.43) load to the expression (4.31a): with
N and Iy 5 given by Eq.(4.27) for the products of the

type I¢ES|2 and 030, and

{19 1<kg?
N, = 6, My ) oo (Loll)
[2, 2¢<kg6

for ®2p¢ls ® ¢?s‘ The valucs of the constants e, 5 and

appearing in Eq.(4.31a) are obtained from the value
109

%k 43

of the parameters Ain and ain given by Clementi and the

values of A and & given in Egs.(4.43¢) and (4.43d). They have
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becen tabulated in Table 4.1 for the products of the type
|®C 12 and ®?s 74 and in Table 4.3 for the products of the
¥
type ©2p¢ls and ®2p 25"
The differcential and the integrated total cross

scctions arc given by

d0%,._opla) f 3 2
2Sd ; [_Fflckf, pmy = D +IF (Bpy By my =-1] :]
5 ,

= . . , v
= Ef‘Ffi(kf’gi)i in units of ag, voe (Bol9)
and i_..ki'”“f Yoy 2 | o
2S gp(k ) - yzjk k ‘Ffi(kfgki)l q dq . L (4046)

i5i0r

in units of “nag.
4.3.3 RESULTS AND DiscuUssioN

In Fig.4.4 we have plotted the différential Cross
section against the momentum transfer g upto 1.6&51 at an
electron laboratory energy of 5L.38 eV (k = 2a;l)‘ The curve
a corresponds to the calculation (--=) in !'frozen core!?
Glauber approximation. This is similar to the one by Waltersé3.
The curve c¢ corresponds to the present calculation (—). Same
wavefunctions have been used in both the calculations. Both
the curves show almost identical variation indicating that

the inner electrons (those in the 1s state) are rather inert

in agreement with our earlier findings in the case of e-Li

112 1

elastic scattering . In the forward direction, qﬁfO;#»a;
the two curves overlap as expected., This region is dominated

by the contributions for large b and the incoming particle



Coefficients Ck,j and exponents «
the products of the type Z; J(fs

TABLE 4.3

.3 see Eq. (4.16) Jfor
and @g;@gs appearing

in inelastic (2s-2p)e-Li scattering.

| %k vi N | Iy

= 1s+2s 25:2p
1 ~1.59950750 0.25701719 3.0031
2 -0.51385103 0.07377956 7. 2298
3 0.00000228 -0,00003950 0.8727
L ~0.00010198 -0,09123183 1.1827
5 0.00037886 ~0,0239024;2 1.5227
6 -0.00968662 0.09359463

2.2577
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docs not scc much of inner electrons. Fig.l4.5 shows the total
2s=2p cross sections in units of na§ for electron energies

upto 250 eV, The'results for both the !frozen core! Glauber

and the present calculations again show similar variations.

Qur results are always smaller than the 'frozen corc!}Glauber
results and approach to them as the energy increases. This is
because the inner‘electrons are more tightly bound and their
involvement decreases the calculated cross section. This
difference in binding energies is naturally reflected more at
lower energies. The results for both the !'frozen core' Glauker
and the present calculafions are in very good agreement above
15 eV with the recent experimental data (—=--—- —) of Leep

and Gallagher6#. However, at lower energies, they appear to
fail badly and give a cross section peak at too high an
energy.‘We have also plotted in the figure the recent experi-
mental data ($) of William eta1tl, A more quantitative picture
is provided by Table L.4. It appears that,y for any further
improvement in the Glauber scattering amplitudes, one should
look for corrections for including the exchange effect,
polarization of the target and the next term in the eikonal

expansion.

On the procedural side our ealculations have further
confirmed that Franco's procedure presents no numerical
problems even when spherically asymmetric states (7p state

in lithium) are involved.
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TABLE L.b

Comparison of the 2s-2p total cross sections at different
energies. Opc and 0 are the total cross sections.in units
of ma¢ in the frozen core Glauber approximation and present
calcufation, respectivelyy and O are the experimental
results of Leep and Gallagher®4 corrected for cascade, The
number in parentheses gives the uncertainty in the last
place (s) of the preceding number.

Energy (eV) 3 OE ; QEC 6_‘*~_
2,10(1) . 14.8 1.77 141
3.10(2) 37.1 10,57 9.15
5.00(3) LE.7 28.93 26,85

10.81(12) L3 43,12 41,67

15.64(12) L0, 2 41,43 40,41

23.78(12) 34.9 35.99 35.40

38,60(12) 26.93 ‘ 28.15 27.83

63.56(12) o 19.79 20.55 20,40

99.15(15) 14.51 15.00 14, 9%

149.4 (2) 10,67 10499 10.98

249.9(2) 7.089 731 7.30
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L.} POLARISATION OF THE RESONANCE RADIATION
FOLLOWING ELECTRON EJiCITATION

4el.1 INTRODUCTION

If an clectron beam passes through a gas with energy
sufficient to produce excitation of the gas (or vapour),
whe polarization of the light emitted in a particular direct-
ion due to transitions from states so excited will depénd
on the relative probability of excitation of the magnetic
sublevels of the upper states concerned. It is usual, in
measuring the percentage polarization of.impact radiation
following transition, to observe light emitted at 90° to the
beam. Toking reference axes with Oz along the beam and Ox
as the direction of observation, letII” and IL be the
respective intensities of emitted 1light with electric vector

along Oz’ 0., respectively. The polarization fraction is then

v
defined as

. Iy - I
' = -—U-:—i'—L— PR (Ll-oll-r?&)
ot
and the percentage polarization as
= B i[_H - I_L
=2 100 = 100 A= - ooo (Goit7D)
I“ + ;L

The study of the polarization fraction,f’, of the elcctron-
impact induced lines emitted from hydrogen and alkalies have
been of considerable inferest both for experimentalists and
theoreticians. Gerjuoy et al86 have recently applicd Glauber

40

approximation® for the study of the polarization of Lyman-c

line resulting from c-H(1ls) collision and found a good agreement
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with fhe:experimental results of 0tt et alll# even at low
cnergics (above *~18 eV). They remark that close agreement
at low energies where the total and differential cross
sections are not so close comes about because the polariza-
tion fraction depends on the ratio of certain integrals
involvihg differential cross sections. The success of these
Giauber predicted values of f3particularly at moderate
energiles between 30jeV and 200 eV has tempted as to extend

them to e-Li system.

We now proceed to calculate the polarization fraction
of the 2p+2s resonance lines of 6Li and 7Li following electron
excitation to the 2p state in Glauber appﬁoximationgo. Ve
compare our values of the polarization fraction # with (i) those
obtained from the !'frozen core! Glauber approximation.without
core potential and (ii) the‘experimental data of Leep and

Gallagher6lf for energies upto 250 eV, Tripathi et a1115

have
done similar polarization calculations for the 2p » 2s resorance
line of lithium and 3p = 3s resonance line of sodium following
electron excitation in'frozen core! Glauber calculation.Their

63

calculations are, however, in error ~.

The details of the method and the results of the

calculation are discussed in the following sections.

Lol 2 METHOD
The percentage polarization of the 2p = 2s resonance

line of lithium in a direction of right angles to the collision



-99-.

axis is given by the following expressionll6

=~ 300(9a-2) (§_-Qq)
‘(! s see (L}-O lf-8>
129, +249; +(%-2) (4,-4) -

where Qo and Ql are the total .2s-2p excitation cross se¢tions

with the component my of the orbital angular momentum equal to

0 and 1 respectively. The value of o depends upon the hyperfine
structure and natural lifetime of the 2p level and is 0.413

7

r 11 and 0.326 for Li (Ref.116).

The total cross sections Q, and Ql appearing in Eq.(4.48)

for(} are evaluated from the scattering amplitudes
ép)es(kf’kiBm[) quantized along the incident electron momentunm

ki’ However, the correct 2s-2p Glauber amplitudes are conven-

iently cdledlated, for a given initial and final momenta K,

and E}, by quantizing along a direction 8 perpendicular to 3;

The-transformétion required to obtain the desired amplitudes

p(i) > \ (C> el ’”\ = o N
F in terms of F' 7 quantized along C have bcen discussed

€
by Gerjuoy et alg and are given by

T“\(l) _ﬂ(c _5 -5 iy -‘
°p QS(kf?kl3m[ = 0) =~i?2 cosQq 2p>25(Kf’ki) voo (4 103)
pSCONNL I T - T Yeing pLO) (R
2p,2s(kf’kf’mf'ji). = +i exp(*iﬁq)s1n9q}2p ?s(kf’11)‘

Tinally the total cross sectichs QO and Ql are obtalned from

Eqgs. (4. 44) in the usual way

+k
Q = & Ikl fd Jg dﬁ |F(l> (f £ %n)lz (
) - i . olf . ee. LI,
& ki Ki'kf 14 0 2pg2s TLITLITQ ; 1<50)
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(%) | 117

The amplitudes F are obtained from our calculations™

reported in Sec.4. 3.

L.4e3 RESULTS AND DISCUSSION

Fig.4.6 shows the general trend of.how §'varies with

6

energy for “Li, The full curve represents the present

calculations. Also indicated in the figure are the experi-
mental data (—'—) of Leep and'Gallagher64, data points )

of Hafner and Kleinpoppen;lB, the results of the close

119

coupling caleulations (—A—) of Burke and Taylor~—~", the

modified close~coupling calculations («~-) of Feautrierl20

incorporating the dipole polarizability of atomic states,

the results of the variational calculations (— 0 —) of

121

McCavert and Rudge and the ’frozen core? Glauber calculations

(== == —) of Tripathi et'alll5

. The 'close-coupling!
results in the energy range 2-5 eV’are certainly better, as
one would expect.'In Fig.4.7 we have shown the variation of

7

# for 7Li‘ An experimental curve for ‘Li has been obtained
from the values of P,for 6Li using the relation given by

Leep and Gallagheréql

03(7Li) 9cc(7Li)-2 | ) ( 3 -43(71,1)
P(CLi) 9¢(°L1)-2 -3 -49(6L1>

). eoe (4o51)

We find that our calculated values of ﬁrare always
higher than the experimental values of Leep énd GalLe:gher6L’r
and converge towards them as the energy increases. lor

encrgies above 60 ev, agreement is within 2%.,Fven in the
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low~energy rcgion (2-10 eV) where the total cross sections
for the'25-2p transition in the Glauber approximation differ
quite noticeably from the experimental data, the differences
in §3 are not as pronounced. We have also calculated 53 in the
'frozen core! approximation and find little difference from
our results. This is in agreement with the observation made
by Walter563 that the core eleétrons have little effect

on the 2s-2p transition. Table 4.5 gives a quantitative

picture.



TABLE L.

Percentage polarization of the 2p-=2s resonance line
enitted frombLi following electron impact,

: (o | Experimental ' Present | Frozen core
hnergj(eV§ 5 valued | calculation | ?%auber calcula-
1 ! - tion
2,10(1) 28, 2(6) 33.00 33.10
3.10(2) 22.1(4) 27,62 27.29
5.00(3) 12.7(3) 19.91 19,57
10.81(12) 4.8(2) 8.57 8.31
15, 64(12) 1.85(20) 4. 20 3.98
23.78(12) - =1.19(16) 0,13 ~0,02
38.60(12) -k, 02(1Y) -3.51 ~3,60
63,56(12) -6, 46(1Y) -6,27 ~6,33
99.15(15) -8.22(1Y4) -8.09. ~8.17
149.4(2) -9.56(21) -9.42 ~9.51
249,9(2) ~10,93(29) -10, 8y

-10,77

places of the preceding number,

.“*Number in parenthesis gives the uncertainty in the last
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CHAPTER.

INTSRHEDIATE ENBERGY CHARGED PARTICLE-ION ELASTIC SCATTERING IN
THE BIKONAL OPTICAL HODEL-THE CASES OF e-H™ LMD e-Li” COLLISIOLS.

5.1 INTRODUCTION

The‘prbblem“of,charged particle-ion collision has

recently received considerable attention because of its importance
in astrophysics and plasma physics. The excitation of positive.
ions by electron impact is responsible.for most of the line spectra

emnitted by laboratory and astrophysical-plasma.‘

In this Chaptér we shall study the scatteriﬁg of electrons
by ionic targets at intermediate enérgiés. An éikonal.optical
model of iniermediate energy elecﬁronratom-scattering; Proposéd
by Mitﬁléméané5 and Joachain and 1 \'Ilttleman66 has béen found to
be quite useful for the study of the scatterlng of electrons
by helium, purtlcularly, 1n.the reglon where the energy is
large enough for the close-coupllng method to be prohibitively .
dlfflcult due to large number of open channels, and yet small
enough for “the Born approx1matlon to be 1naccurate. The basic
1ngradlen+ of the model is the calculatlon of an 'optical!
potentlal In Sec.,5.2 we sketch out the basmc features. of the‘
toptical potential!. Sec.5.3 brlefly outllnes “the Underlying
assumptions and the main features of the elﬁonal optical model.
Its applications to e-H  and e;Li+ eiastic scattering will be

des’cribed in Sec.b.l.
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5.2 THE OPTICAL POTENTIAL o

The optical potential®’?08:122

attemnpts to convert the
elastic scattering problem involving a many-body target to

a one-body prokblem. Ve thﬁs seek a one-body potential operatO?”V;
which may be non locals such that the scattering given by %hé

solution of the equivalent one-body Schroedinger equation

> . ] |
(k2 -T-V)0;= 0. ... (5.1)

is the same as the actual elastic scattering for the same
initial wavevector Ei in the many~body case. Here ki 1s the
energy of the incident electron,lj is its kinetic energy
operator and $i is the scattering wavefunction corresponding
to an incident electron with wavéveCtor E;, The equivzlent one-
body potential operator ”/\is usually referred to as a !pseudo!
potential or an 'optical' potential. It, thus, replaces the
actual interaction potential betweeh the incident particle and
the many-body target atom by an effective one-body potential

‘in which the incident particle moves.

The determination of an optical potential is a formidable
task, It is only in some special circumstances that it can be
derived from first principles. Various attempts made in this

- : . il 23
context have been recently reviewed by Joachain and Quigg .

Following Refs.67 and 68, an explicit expression for the

optical potential is given by

~
V= Vig <j¢i‘VG'QV|®i/“; eer (5.2
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where @ is a projection operator which projects onto the
target states (Qj) other than the ground state (@i)., V is
the actual interaction and, fdr electron-atom scattering,
has the form

.Z
VAR = - 2423 ~—l———-T . ies (5.3)

G" is the Green's function for the partial potential QV

o 1 | ,
G = E ~ HO ~ QV + iE _‘ o0 (5.‘—{-3)
- t: | o e 0 0) \]
G, + G QVGY s (54 4D)
Vii— \\u‘!i‘vibif. Y ' f.. (50;‘)

The second term in Eq.(5.2) is the contribution due to
virtual transitions which occur during the collision. In
generaly it ﬁill be complex, The physical‘interpretation of
the imaginary part of V is given as follows. Not all the
particles colliding with the actual target atom undergo
elastic scattering. Those which undergo inelastic collisions
must be absent ffém the purely elastic scattering described
by the optical potential. The optical pétential describes
.theirﬁrémovél in terms of an effective ébsorptionl Obviously,
below the inelastic threshold it will be real. Apart from
being complex above the excitation'threshold-it icy in general,

non-local as pointed out above.
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Various orders to optical potential can be obtained

by substituting the explicit form of Gt in Eqi(5:2): We can

write :
«/ﬁé'yil) +~W}2) +'V£3) + ivees s;. (5.6)
where,
YO = ol vlhS vie (547
RERE ALK wid (5.8)

and so on. We can further simplify the second and higher

order terms in/. Bq.(5.8), for example, can be written as

0317, 105> <0,1Qloy >

%«\
D

n
W |
/\

B e
<} !vl<b3><<b;,lvwl,
E

2 , [ 2N 2 J (5.9)
ki i—j'e Wj+ ig -

where

H_ =7+ Hye ee. (5.20)

The target Hamiltonian Ht satisfies the eigenvalue equation

eoe (5,110

FHere Wi and wj represent the internal target energies res-

pectively in the initial state i and the intermediate state

S
e
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The optical poétential approach has been successfully

developed in the last few yearss by using the eikonal

g
approximation to obtain the scattering amplitudeé7’66’124,

56,125-128

More recently, methods have also been proposed to

obtaln an approximate local second-order optical potential,
The non-local exchange kernel in electron-atom scattering
can also be represented.by an equivalent local potential.
A comparative numerical study of such equivalent exchange

126,

potentials 129-134 has been made very recently by

Bransden et all35. In our present work, described in
next sectigns, we follow the approach proposed in Refs.65,

66 and 124.

5.3 THE EIKONAL OPTICAL MODEL

Joachain and Mittleman66 solve the equivalent one-body
Schroedinger Eq.(5.1) for e-atom scattering under the
approximations of (i) neglecting the Pauli-principle between
the incident and target electrons and (ii) evaluating the
optical poténtialfvmupto second order. The first order
optical potential, Eq.(5.7), referred to as the static

potential of the target atom, can be written in configuration

space as

| | 2 .
"\f(l)m =<0 1 vig; >= f|¢>i(3?> I vEad . ... (5.19)

The second~order part~yx2) can be simplified by making a
further approximation, viz.s by replacing the difference

'w-w; ' by an average 'W! of the excitation energies of the
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2 s
targay.. Thy expression (5.8) for‘v{ ) then simplifies

e |
NCN <O 1Vl Coy1vle; >
']?l ka_ -.\n;'-rj'i-ig
. 2
- <o 17210~ 10,1710 | e
J#i k:!Lz"j"' ie 3 ees (O
e -w e (51

In configuration space it can be represented in the form

[of. Appendix A2]:

<?|W/(2)l-f>‘ 2= @k,(r,r') AT, e (5.19)

where é%k* is the free Green's function describing the free
‘propagatlon of the 1nc1dent particle in some average 1nter—
mediate state w1th energy k{g and is given by

? (—-)- -a»x
a3y el¥elr-rt)

o =
7 a e (/016)
K1® - %%+ ie

L (Tyrr) = =L

éki | (2m)3 J
and the function A(F,7') is given by .
LEE) = [ VED 6EFY - «b.G?) 37 )

* V(T X b, (X ')d3xd3x' oo (3.17)

The equivalent one-body Schroedinger Eq.(5.l), using
Egs.(5.12) and (5.15), takes the form
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Ckd- U V‘(‘U(r)] b. (D
i (T,T) A(r,r‘)lll (Hadrt = o, eeo (5.18)

k

Eq.(5.18) in its present form is still very complica:’c@d

because of the structure of A(r,r‘). Joachaln and Mlttlemun oG
solve it in the eikonal approximation. By changing the
variable of integration “E- L?:‘L +_—7? and neglecting the

term 7> in the denominator of Eq.(5.16)y the free Green's

propagator Ek‘ transforms to the linearized formii:‘qs (2.13)-
(2.20) 1 ¢
, 11?‘:(?—?‘) .
3 > > i =
1

where @ is a step function defined in the usual way. The
wave vector 1?! is taken in the direction of the incident

moment um k , z(z!) is the component of T(T!) along | 5 and

c-i\L W>

the vector b(b’) is perpendicular to it. The vector can be

interpreted as the momentum transfer during the intermediate.

state, The neglect of % term in (5.16) 3 therefore, restricts

the validity of expression (5.18) to small momentuin

transfers. Now , using the eikonal form of the wavefunction
1 i?i.?-ri AN(T,2)

U' ooov (LJ‘.Z?O
L (275)3/2 | 2 / )

A |

and substituting Eq.(5.19) for g into Eq.(5.18), we
Ty
obtaln +
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El{f*’vz- '\/(l) (7) ] exp(il?i-l?-fi/\(g,'z)) + -Q-lj-;-i jexp(iﬁi.(?—?’))
“ 5(?-5')!) @(z-—z’)A(B,z',g' 421) exp(iﬁi§’+i/\(€‘ 321))

xd2pt gzt = 0,
which, by simple manipulation, yields

—2135?/\- \,ﬁl) (D) = (FAY2+199A

. 4 ' |
topr [ exp QRN -B) (2-21)) 4By 298,21)
7

X exp(i]:/\(-‘t?,z')- INGHYS) :Ddz' = 0. eee (5.21)

The eikonal approximation in the above expression takes the
function A to be slowly varying on the scale of the de Broglic
wavelength A (5 l/kj_) of the incident particle. Therefore,

the higher order terms (3/\)2 and (V‘?/\) may be neglected

and we are left with the following expression for A%

i}r’\( E-/’ Z) d";\\ g l) - i/\(-.b?’ Z )
-2kiev =V (byz) e
i 1B (22t o INE,D
- 57 f dz! e A(Y 92305z )e
1 -0 .
eee (5.22)
z TS 7
oxr _@_[_\. el —l‘—,v‘l)(-'g )+ fdz l(ki-ki>(z—zx>
dz 2y ? Lk, K 6
. RSN > |
AByziByan) fDEEN-AG T (g o

Since Nis a slowly varying function, we may also take the

difference [_A(Tyz!)- A(Fyz) ] to be equal to zero. The
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expression retained in first order for /\ is then readily.

integrable to yield

/\(b,z) = —— fz dz"vx )& %)

. zt .
. "2 ‘ - ot . .
+"|'k;k{ [ dng dzt é_iﬂ(z' Z >A(E>,z",g,zn) .
-0 -0 . i
| (5.24)
where | | “
LR k- aWag. ver (5.25)

The scattéring amplitude for elastic scattering is now given

Fos(Rooky) = --i-ﬁ<'zn>3<f Mwi)f, e G
| 1k s - | |
- %E j f Wﬁl)(r)S(r- N

1K, T HAEY 521

(r r')A(f,r‘)'] e d3rd3r’.

Thls expr0531on, by substituting the explicit form for
‘#k! from bq.(5 19)y can be further simplified to the form:

1q.(b+k z) 1)

Poy(Epily) = < Ex fa2 dale @ z)elf(b’z)

Z

i 1k1(z-2!) 1G.B 1ky(zt-zc0s0)
~~§E?\f dzt e e e
L -00

i ) S X : L
where O is the scattering angle,

Finally,>making the Glauber approximation of neglecting the
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longitudinal component of momentum transfer in the exponents

the above expression for the scattering amplitude becomes

o o iA(E, 2)
P, (B,

1 .b
? ( dz E'\[l)(b,z)e

i

—L%-—jdbe

z 1 (kd-k,) (z- |
L fdz el 1-ky) Comeh) l/\(b"z)A(b z% ,z’)j

1
!

Id belq‘b f dz -*2]& e

00 dz
ik. D D e
_ if.2. id.B d - iA(D
= - é’qf‘fd b e d 2z L 12) ]
"OD
(B
= - (d b elqj‘[" o1, eee (5.28)

where the eikonal optical phase function xopt is given by

0 o ~ig (z=2t) o
(.EB = - J (l) (b Z‘) dz + ‘dZ‘ UZ € A(b,z',b}z‘}.
Opt l —O})/ L"klk::!.-a) ~ 0

eee (5.29)
The first term in Eq.(5.46) is simply the result one would

expect from the static charge-cloud and can be written as

_ AN - |
/“st(m = - °--~ f( (bgz)dz . | i eeo (5.30)

l*-OO

The second term is more inéefegtihé', it is of order l/l::i’
relative to the first term and has both a real and an
imaginary part, The imaginary part represents the leading
contribution from the open channels. Joachain and 1~'Ii‘ttleman66

write this term as



. .00 7 I
% (ES = =34 | dz | dz' cost(z-z') A(Byz%0,2!)
abs Lk.k! :
. i"i - - 00
; © .00 i 1 . R '
= 8k1k! [Caz | az 0220 4@28,2n), L. Gl
J ~-00 -00

where the fact that A is symmetric has been used (cf. Appendix A3},
This multiple integral (recall that a multi-dimensional integra-
tion is concealed in A) can be reduced to a one-dimensional
integral for any case in which the wavefunction of the target
ground state can be represented as a sum of the products of

single particle orbitals 12&

It is expected124 that'xabs(gs should contribute sigﬁi~
ficantly at small angles where the amplitudes for transitions
into optically allowed channels are very 1arge.lAt wide angles;
the amplitudes for these transitions diminish rapidly, as do
2ll other amplitudes except the elastic amplitude’ thus‘%@t
which represents the effect of the ground state (or the
elastic channel), is expected to dominate in all orders of

perturbation theory at 1arge angles.

Now let us consider the real part of the second term

in Eq.6.29)%

i @ L0 o -
7, 1(33 = ZET%T'"‘ f dz | da! sing(z-z') A(D,230,z!).
11 -0 =00 ve. (5

124

It corresponds to the polarization of the target "%, This effect

can easily be included phenomenologically by adding directly to
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Xbpt(€5 a term corresponding to a polarization potential (say)

of the Buckingham‘forml36:

V(I‘) =____(_X__________, e s (5033,
F (r2+ d2)2
waere
ta G nrls, e (5,338

7

Here o is the polarizability of the target of atomic number Z
and d is a phenomenological parameter. The complete eikonal

optical phase can thus be written as

Voot = Yot * Yaps * Yoor® cor (5.39)

opt p

5.} APPLICATIONS OF THE EIKONAL OPTICAL MODBL
TO ELECTRON-ION SCATTERING

The problem of the elastic scattering of charged
particles by ionic targets requires special attention because
of the fact that the overall interaction between the target
and the charged particle now involves a long-range Coulomb
interaction. A simple procedure to deal with such a problen
is to separate out the Coulomb term from the overall inter-
action and consider its contribution exactly. The total
elastic scattering ampiitude can then be obtained by adding
the contribution from the remaining part of the optical
potential to that from the Coulomb potential of a point
targety i.e.y we write

.J

T 2 5 ‘ -
Ffi(kf,ki) (k ,k ) +F (kf,ki)- ees (5,30
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Here the superscript C denotes the Coulomb part and T the
total scattering amplitude. We use this procedure to apply
the eikonal optical fheory to the elastic scattering of
electrons by helium like ioric targets (H and Li+3. This
problem is simple in the serse that both the target electrors
can be easily treated explicitly and no correction need be
made for any core. The elastic scattering of electrons by H
and Li+ ions was earlier treated by McDowellég in variational
approximétibn using two-parameter trial wavefunctions and

accounting for the exchange, and diple and quadrupole polari-

zatlon potentials.

Sehel e~H ELASTIC SCATTERING

In the present work we proceed to calculate the e~H~
elastic séattering crods sections at 0.5 and 1.0 Rydbergs. We
have selected these energies just to compare our results with
the variational calculations of McDowe1169. To our knowledge
there 1s no other theoretical calculation. Experimental
results are still unavailable on e-H elastic scattering.
Although the eikonalsoptical model can only be successfully
applicable to intermediate energies (from two times of the
threshold to twenty times of the threshold), our main aim is
(i) to know how far one can use this method, which is
comparatively very simple, to study collisions such as e-H~
elastic scattering even at low energies, and (ii) to anaiyse
the contributions of the second order terms.of the optical

potential. In the case of e-He elastic scattering these have
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been found to make substantial contributions at small momentum
transfers. In the next subsections we outline the procedure

giving details of the calculation and discuss the results.,

(1) Procedure
In the case of e-H elastic scattering, the inter-
action potential V is of the form
1 1

l ,
V= 2(- =+ - + ), eee (9230

N

We have used hydrogen-like form (Ref.137, p.240) for the ground

state target wavefunction-

_ | \ 3 oz tx,)
A o N > - - o 1 2 - : -1
Qi(x) = ®i(xl, xg) (%~Qe s « = 0,688 a,

...? (5037)_
This wavefunction is similar to the one considered by Ref,b.
‘The first order interaction potentialry(l)(r) given by Eq.(5.12)

now simplifigs to

(1)(1") = D) = 2led/m? B

(-l 41 - Lyadx a3
REETNEE I
= - (4/r) (14T exp(-2ar)+-§. .;. (5.38)

The last factor in Eq.(5.38) is a pure Coulomb interaction
due to the net (point)charge on the target, It is dropped
in the main calculatlion and is treated separately. The Coulomb

scattering amplitude corresponding to this factor can easily
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be obtained exactly and is of the form

\

1, Bk = (2769 explilE + 25 - (1) #n(sin® 0/2) T},
voe (5.329a)
where
60 = arg F(l"’i/k-)c ton (5’0391))

The scattering angle @, is related to the momentum transfer
}f via the relation

Ygi = iE}~2}' = 2k,;sin(6/2). | sie (5.40)

We evaluate the second part Ffi(?f’ ?i) in Eq.(5.35) by

using the eikonal optical mo'del of Joachain and I'Littlemanéé.
We use their results di‘regtly to simplify the eikonal

optical phase 'Xopt’ Eq.(5.29):

Yopt® = =1/ Ty B) + w (B ] + Efi_f{{ WBY 5 eei (5.41)

where
@ N
U-l(a = '12-‘[ ”\b‘(l) (b’,z)dz
- 00 '
| fm . ~ox (2472172
- ‘2_00((]52,‘_r 2172 Ta) e az
- V—#EKO(Zab) +ochl(2ocb)] ’ eee (5.42)
| ~D - | - 3/2 ‘
w® = 30 v@Ena e adEnead T L G
o = 203,0 for H, ' eoe (5,432)
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and £ ( " : .
- Q0 -1, \2-2Z
W(a = 1]: j dz J dz! e A(-b;,z.,?jzt) b tece (50)‘}L('>
-0 -0

whichy by using the definition of A, Eq.(5.34) s is written

as

W(p) = Wi(b) - W,y(b) _ ee. (5.45)
where p)
oo 00 -it (z-2t) - 3 l@ (€3l
wy(p) = 2] dz | azte Ja°x _§_$
=00 =00 -ﬂ
00 v J (%b sinh V)
= 16] av —2— . yeve (5.46)
j; 1 + (¢siph vAa)2]° ’
and
© 10, (-)H 12
W (0= 2f | o5 2 [434
2 ~_a) J‘ lr - gﬂ j
2
='8K (¢b) - K(&M —(Qab/QK (ab)
es s (5 Li-//
2 5 1/2 _
a = (E.v +LI-OL) ? [ (/-48>

JO is an ordinary Bessel function, and Ko'and Kl are
modified Bessel functions. We have taken the average

excitation energy W of the target in Eq.(5.42) to be 0.05 Ryd
following the crude estimate procedure of Joachain and

Mittlemané6 that it is of the order of the ionization

energy. The results, however, are not very seﬁsitive to its
value. The reason is that the values of W(b) for different
»values of w differ only for large by which contribute

little to the scattering amplitudel38 .

It is evident from the Eqs.(5.42) to (5.47) that the
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eikonal optical phase xépt no longer depends on the direct-
ions of B, The ﬂb—integration in Eq.(9.38) can thus be

éasily performed to yield -

1%, 4 (0)
P (B K = ik, L) ab b, (p)(1-e P8 Ty, L (5.9)

The differential crosé section is now obtained in the

usual way and is given by

407 ()

dQ

= 1(0,kD) = [, (R oK) 4, (Kol )I . .. (5.50)

We compare it with that due to the pure Coulomb field
Com 2 = nC (2 Dy ,
I (@,kg -~IFfi<kf,ki>,\ : : o (5.51)
Another convenient quantity to be examlned is the ratio
R(@,k ) of the calculated differential cross section I(G,k )
C _
to I (@,ki),

(11) B,ems.lal,icﬁ .. Di:s.;@ﬁs:;.s_-:l&_n
'FigSQSQl and 5.2 show the calculated values of the
differential cross section at 0.5 Ryd and 1.0 Ryd respectively.

These vaiues are quite large at small angles due to the

associated Coulomb contribution. The deviations from the
Coulomb cross section are of interest. Our calculations -
without the polarization potential and absorption effects

(=—>=——) show a suppression over the Coulomb cross

section upto Qf“800, in agreement with the results of
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McDowell (— — —). The overall shape of these curves is,
however, different although this improves -considerably
when the.polarization potential and the absorption effects
are taken into account (—=w——), This change is mainly
brought about by the absorptibn effectsy the inclusion of
the polarization potential makes only a small change. For

| large 084 our results are ﬁery different from those of

McDowell,-
In Figs.(5.3) and (5.4) we have shown the ratio
R(0;kD) of 1(0,kD) to I%(e,kd) for kP = 0.5 amd 1.0 Ryd

respectively. These figures display the main features of

the calculated cross sections more prominently. The
calculated R(O,ki)(*—~*'*~'-——§ curve shows oscillations

in fair agreement with the results of McDowe1169'(—'-?§
except for large 6. The position of the first minimum moves _
towards smaller.angles as the energy increases just as in
McDowellt's case. The main difference is the enhancement
(R(ng§)> 1) in the backward direction. Our calculations
without the absorption efiects do indicate the enharcement,

but they can not be relied upon at large angles.

In conclusion, we have shown that the main features
of the results of MgDowell69 can be reproduced, at least
qualitatively, by this method, which is comparatively very

simple.
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5elye2 INTERMEDIATE ENERGY e-Li" ELASTIC SCATTERING

We have calculated e--Li+ clastic scattering cross
sections in the energy range ~300 eV, At low energies (less
than 3 Ryd) 3 it has been treated earlier by McDowe1169.
The eikonal optical model has the flexibility of accurately
taking into account the contribution of any particular
inelastic channel to the optical potential. In the present
calculation we have exploited this feature to include
accurately the contribution from the first excited state.
The effect of the polarization of the target has also been
taken into accountr In the next subsections we outline the

procedure giving details of calculations and then discuss

the results.

(i) Brocedure

If the contribution of any particular excited state
(sayy the first one) in the summation of Eq.(5.13) is to
be taken accurately, the approximation made in respect to

it in Eq.(5.13) can be easily corrected for, to get

o IRl 1<k b 12
‘v - 2 |
k}© - J

.2 ’
+ I<®ll\[|®l> l (l?-l ~ - N ]é — ) 3 ¢ (5'52J
l - :J
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In configuration space, Eq.(5.52) takes the form .

|x, |r >={dk (r,?')fx(r,r')-f('q{ (r,r‘) -Lﬁk{(r r‘))B(r,r‘),
eee (56HL)

where A(?,?‘) is defined by Eq.(5.17) and

B(T,7 ’) N) 1) V(TR by (D adx j(b (X')V(r' X0, (R adxt,
'K (5 /5)
Here d) (X) is the wavefunction for the first excited state of

the targe?t and ﬁk is the free Greents function corresponding

)
-$
to a wave vector 1 Kq.

This form of the optical potential leads, in eikonal
approximation, to the expression (5.28) for the elastic
scattering amplitude, where the eikonal optical phase %X, opt

is now given by

Yopt®) = =(1/k) Ly (0) + u (b) J4(1/2k k) WbYa/2k,) y(b).

L (5.5‘0)

Here
y(b) = ‘LJ' dzf dz! [:l/kl)exp( it (z-z')
-0 -~
-(1/k}) -exp(-1it (z-21)) 1B(byz3bszt)y ve. (557
where
5y " ky=ky o (wl-wi) /2% | eee (5:78)

The other parameters are defined in the usual way. The target

polarizibility @ for Li” in Eq.(5.60) is equal to 0.19[Ref.6d].
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The interaction potential V for e-Li+ elastié

scattering is given by

V= 2( —L = l‘*l - D, oo (5.59)
r

We have used the following hydrogenlike wavefunctionsl39
for the ground state and the first excited state (excitation

energy Wy-W; = 4.47 Ryd) of Li*

(bi(:—c)) = (bi(;i’?z) = (p3cc3/n) exp(-»uoc(xl+x2));.. (5,60)

-1/2

1/
0 (D = 0 (%) = 2 (prdard/my”

1/2

2
(7 /3nm) {éxp(-u'a‘xl)

x [xgexp(-u'xz)-(3M/u')exp(-u‘6*x2) ]

+ exp(—pfoc!x2) Eclexp(-u'xl)—(3M/p!)

x exp('—u’B’xl) ]] ) eee (5.612)

where

'uoc = 2,60

prat = 3,00

pigt = 2,17

out = 2,19

3, N

Moo= (e4p) 2 /(1 +ut)
and 2,3 4 S . _

N o= 1+(3M7/B1)-48M/(148 1), oo (5.0611)

The first order interaction potential n\if(l) (r) in Eq.(5.12)
with ¢i(§i,§2) of the form (5,60) and V of the form (5.59)

simplifies to the form
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\f(l)(r) = %}l)(b,z) = -(4/7) (1Huer)exp(-2uar) - %ﬂ... (5.62)

The last factor in (5.62) is due to the net charge on
ionic target Li+. We drop 1t in the main calculation as
pointed out earlier. As is evident that the form (5.61) of
b. (,1, Xz) is similar to the one considered by Joachaln and
M:Lttlemané6

to (5.47) for W(b) with

and Kumar et allqo, we directly use Eqs (5e45)

1/2 '
a =z (£2Hu%® . | e (5.63)
We have taken w = 5.5 Ryd. As pointed out earlier in the
case of e-H elastic scattering, the results for e-1i " are

also not very sensitive to its value (see Fig.5.9).

The calculation of y(b), though lengthy, is simple.

The matrix element

<¢ilv1¢i> = J¢ (Al,xg)( d3 d3

lr ~ Xll ir i l)®l(31942)

21/2(02[ %... (ocl+ %—) exp(-Zalr) ]

| *Cl{ ;g]}_; E;} - (ZBfr 4By ;}) exp(-28,1) ]

u?;“lrl "(Yl’{" %‘) OXp(-—2'Y11‘) j}) . ‘ :o‘on (5. 64)
in BEq.(5.55) and the integrations indicated in Eq.(5.57)
give'

y(b) = yi(b) - yg(b), eoe (5.69)
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2
20 b
7, (o) = & "Cg[Ko(ilb) S K (nb) - —l—nl & () ]
1 88,0
+ 0y (= 2 {3, (64 ~ K (n ) - 5,1 (nP)
s“b 26:b
&(nb)+K(nf}]+-—mK(nbﬂ
n2 ~ My
2
275 b 2
EK (¢ 1P - Ko(n3b)- -J—--Kl(n3b) J)l
m n
! 3 ver (5.€6)
1/2 | |
T = (% ml)l/? = [af+(ua+u'a’)2] ) eee (0.7
1/2
Ny = (£1+h81)1/2 = {:£1+(Ma+v') ] eee (5.C
ny = @2ad) = | ede Geen? | oo (5690
3,3, 1k
e gt} (3 1/2
c, = 3 (gN) ... (5.70)
1
and
S N 18 .
C, = 2 C(== - - ). ee. (5,70
2- 21 Bi M,Y%

yg(b) is given by an expression similar to (5.66) with kg

for kl and £ for &l.

The total scattering amplitude for e—-Li+ elastic
scattering is. now given by expression (5.359) where'ng
is the Coulomb contribution corresponding to the second

factor in Eq.(5.62) and is given by
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ry (Bpikp = (2/99) exp{1 [E+25 +(2/k;)1n(s110/2) ] } g eer (5.72)

arg rT(lui/ki)3

60

and F; (kf,k ) is obtained from (5, 49) using'X/pt(b) given
by Eq.(5.56). The differential cross section I(Q,k ) and
1%0,k2) yand the ratio R(8,kD) of I(8,kD) to I°(0,kD) are
now obtained from (5.50) and (5.51) with the new values

of FC and F

fi f£i*

(ii) Results and Discussion |
Figs.(5.6f and (5.7) show the calculated values

of the differential cross section along with the correspond-
ing Coulomb cross section for the point target at 200 eV
and 500 eV respectively. The values are, as expecteds; quite
large at small angles due to the associated Coulomb contri-
bution. Our calculations without the absorption effects

(i.e. without the second-order term in the optical potential)

and the polarization potential ( -— ) show a suppression

) but this is off-set

over the Coulomb cross section (
when the absorption effects (— —'——) and" the absorption
effects and the polarization potential together (— - —-—)

’

are included.
All these features are very prominently displayed
by Figs.(5.8) and (5.9) where we have plotted the ratio

R(G,ki} of I(@,ki) to IC(Q,kf) for 200 and 500 eV respect-

ively. It is found that the inclusion of the absorption
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effects reduces the suppression over Coulomb cross section
for O upto about 80°., This range decreases as the energy
increésesq When the polarization potential is also included
the suppression is reduced further over almost the whole
rangoe excepi for small angles. Actually the cross section
in this case shows enhancement (R(G,kf)) 1) over Coulomb
cross section for large‘angles (0>130° at 200 eVy 0 >55°
at 500 V).

Another feature, in agreement with the findings
of McDowell69, éxhibited by these curves is the occurrence
of a minimum in B(G,kf). This minimum becomes sharper
and moves to smaller angles for all curves as the energy
increases. The inclusion of the absorption and polarization
effects shifts the position‘of this minimum (absorption

effects towards larger angles and polarization towards smaller)

and makes the curve shallower.

y(b) in Eq.(5.96) is found to be of almost no
cons~quence. Its values are much too small compared to
W(b) indicating thereby that the coupling to the first

excited state (2s) in this case is very weak.
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CHAPTER 6
e-H ELASTIC SCATTERING IN GLAUBER-BORN APPROXIMATION

6.1 INTRODUCTION

In the preceding chapters we have discussed the Glzube.
approximation and its applications to study the elastic and
inelastic scattering of charged particles from atoms and
ions at intermediate and high energies. The range of validity
of the Glauber 'straight-line! approximation (GSA) with angle
and energy have been discussed in Chapter 2, It is well known
that in the limit of high energies the Glauber amplitude
‘approaches the first Born amplitude, At intermediate and
low energies it is expected to contain more infbrmation than
the first Born approximation (FBA), But the recent measﬁrements
of the differential cross section for e-H elastic scatteriZé-73
have indicated that GSA underestimates the cross section andv
gives a value lower than even FBA at large scattering angles
in the intermediate and the low energy region. For small
scattering angles anyway the Glauber amplitude diverges as'
1ng in the limit q » 0, q being the momentum transfer .

Various attempts have been made to improve upon GSA and to
extend the range of its applicability to lower energies. In

the angle Glauber approximation81’82

a correction to the
straight-line classical trajectory has been made by replacing

1T by two semi-infinite straight lines. The eikonal optical



~129~

noqe165-68; 124-128

includes the second order optical
potentialviﬁ the evaluation of eikonal phase and also
removes the logarithmic divergence in the forward direction
by introducing an average excitatioh energy of the target.

2L 455-58

The eikonal-Born series approach combiness in the
spirit of exact scattering amplitude expansion, the Born
series and the Glauber series. We have already touched upon .
these procedures in our earlier discussion. Birman and

Rosendo‘rffl"*l

have recently proposed a procedure to eliminate
the small anéle divergénee, within the framework of the
Glauber approximation, by incorporating a non-zero average.
excitation energy of the target. All these procedures make

a distinct improvement over GSA but are quite a bit tedious
70

to apply in actual calculations. Ishihara and Chen'~ have
recently pointed out that the poor performance of GSA (even
relative to FBA) is primarily due to the improper semiclassical
treatment of the electron-atom interaction V(#,%). This
interaction behaves like -Z/r as the incideht electron
coordinate r + o. Ishihara and Chen have attempted to eliminate
this shortcoming of GSA by separating out, from V, a central-
force potential V (r) for which semiclassical approx1mat10n is
not valid. They treat 1t quantum mechanically taking few
partial waves and the rest of the interaction Vé(r,%) =

V(2,3 - V;(r)y which satisfies the semi-classical conditions,

in the Glauber approximation.

In the present work our motivation is to obtain a ‘simple’
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expression giving results considerably better than GSA yet
with no additional effort. In order to achieve’it, we use
the standard two potential approach and treat Vb in GSA and
Vi in the Glauber-distorted Born approximation. We have
applied this procedure to elastic e-H scattering. The
exchange effects have been taken into account in the well
known Ochkur approximation29. A similar approach treating
the primary interaction responsible for the transition to
first order and the initial- and final-state interactions

in eikonal approximation has been followed by Chen, Joachain

142

and Watson for the study of 1s-2s and 1ls-2p excitations of

hydrogen atom.

In the next section we give an explicit expression for
the two-potential form of the scatteringlamplitude in
Aistorted wave Born approximation (DWBA). Sec. 6.3 outlines
our procedure, The details of the calculation are preseﬁted

in Sec.b.4 and the results are discussed in Sec.6.5.

6.2 TWO POTENTIAL FORM OF THE SCATTERING AMPLITUDE-
THE DISTORTED WAVE BORN APPROXIMATION (DWBA)

Let us consider the scattering of an electron by a
Z-electron target atom, The complete Hamiltonian of the
system is given by
H - HO + V ’ [ 2 I (6.].)

where the unperturbed Hamiltonian HO is given by

HO = 3“*' Ht’ | seo (6025)
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and the interaction potential, V, has the form

Z
24 iy )
V: - i 4 2 \ et o e o (602b>
L = IR E I

In Egs.(6.1) and (6.2) 7J is, as usual, the kinetic energy
operator of the incident electron,'gfs are the coordinates

of the target electrons and Hy is the target (neutral atom)

Homiltonian
zZ 5 | |
Ht"' ““.E_. Vj +V_t, see (6.3)
j=1
where 7 . 7 .
V=22 (=29 + 2 — . vl (601
j=1 J j>i=1 I?-xj

All the positions coordinates have been taken, as usual,

relative to the target nucleus, In Eq.(6.4), 1 denotes the
ground sta%e of the target.
The transition matrix element corresponding to a

transition of the target atom from an initial state 1 to

some final state f is given by

1o = (2m3 DDy = 3 vig >, ..l (6.5

where m§+) and $§") denote the scattering wave functionSOf

the whole .system described by the Hamiltonian H and satisfy

respectively the following Lippmann-Schwinger equution

€+} = . + _———__1'.-_.. g+) ) (6 6
II]1 Ql B+ ic le ) .6)
m:g_) = @f +E..._;1H - i& V*m_g"') . . (6. ,7)

0 .
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Here @j is the unperturbed wavefunction and satisfies the

Schroedinger equation

95 = E 0y, . (6.8)
where 5 5
ki kf
E = -2""' + Wi = "é"" +wf. o0 (609)
and 1s given by
3 -
iK.r
- 1 3 >
é' - e ¢'(X) ) e (6010)
J (2,.‘)372 R

ignoring the (spin) exchange effects. W is the internal

target energy of the target in the state J with wavefunction

-
¢j(.¢\) [
We now write the interaction potential V as the sum’
of two parts

=V ool (6011

If qiis scattering wavefunction of the system in the presence

of the potential Vb aloney 1t satisfies the Lippman-Schwinger

equation :
() - 1 + L
hi B @i * E - HO'I" ig Vohi toe (6.14)
1
(") - (") . .
llf - @f + E - HO - i& Vohf L) (6013)

Substituting for §; from Eq.(6.13), the transition matrix
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element Tois BEg.(6.6)y takes the form

U ORIE . A

-3
(2m) Tfi E-H-o-l-ie ol

H

U7 1 1y %+ 07 1 g™ >

(- 1 ()
- /wf )‘Vo* V1l E-HO+ ie Vohi '
= Uy - T g v In{ Y D
0
+(Tb( M lh1+7\ . o o (61)

Using the operator identity (AB? B I , it becomes

(2.“)-3% /115(”) m( -) m___ V’(]V ih(*)\.,_ w( >iV ‘h(‘*)

_ (Qflv lh(+).\+<m( )lV lh:(L+)> eos (6,152)

Similarlys proceeding with the alternate form of T, in Eq.(6, 5) 4

it can be readily shown that

(2073 1y = <Gl v In{™D> G 9> vr (6.150)

The distorted wave Born approximation (DWBA) corresponds to

approximating W( ) in the second term in Egs.(6.1) by h(+)

T4 = (2m) 3B, 1, IS DY+ (al) g n{ DY ... (6.162)
. (1) (2) | -
- fl + Tfl . o0 (6.16b)
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6.3 PROCEDURE -
If the potential V) is smooth enough and IVOl/E(<1 for
all values of ?, the distorted wave.hgiﬁ described by the

Hamiltonian Ho-i-VO can be obtained in the Glauber approximatior.

héﬂ - héﬂg 23‘2—15—3-/2 exp{iﬁi.? + 1 /\i('lg',z‘,'}) }dt'i(;) oo (6.172)

hg-) - h§.~)G

L, exp{ D T - 1 ALByZ5D 0Dy el (6.17)

(2m)
where .
/\i(g’25% = - -élli-: I VO(B,Z‘;%dZ‘ . ee e (6018&)
. . i - ‘ .
. @
z .
? = -g + CZ ., o : . : ¢ o (6019)

A
the unit vector € 1s taken along the incident direction, Tzi
and _l?f ares as usual, the initial and final momenta and "5 is
the impact parameter. Using these distorted waves in Eqs.(6.16),

the first term can be written as

oD @7 NGBz %y aa s a5
fi =1 e e (bf(x) V (73%) §; () d"bdz d°x
= -2ix, (a% 0T 43y bp (AT B3 «b#(% ; eee (6.20)
: w}here
F@H =1 - (LX) oo (6.21)
A @0 = - %iifi v (B2 dz. cer (6.22)
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In the abovey we have made the usual Glauber approximation

of negiecting the longitudinal component of momentum transfer.

Let us now consider the second term, T§§), of Eqgs.(6.16).
With the present choice of hgjﬁ,”it is given by
(2) = (43, 43, .id.T * 3
T’ = Jﬁ r d°x e Vi(r)®f(x)
~xexp{i|:/§i(-g,z3?c) + /\f(?,z‘,?c) ]} ¢i(§)

./ + -,
- Rl

, n(n fadx oe 0, ... (6.23)

for elastic scattering.

6ol CALCULATION
In this section we apply the expressions obtained above
to elastic e-H scattering. For hydrogen (Z = 1), the inter-

action potential V is given by

2

+I? zl ] L (6-?4}

X
"
t
o

The arbitrary potential Vl is chosen to be equal to the

static potential of the hydrogen atom in the ground state.

We thus have

- - 1, -~2r
vi(r) = Ve = ~2(1 + D e oo (6.29)
and
_21:
VED = ey = -2 +F’%’T + 21 +De ... (6.26)
=X

This choice of Vl makes V0 quite smooth.
Writing ;() =3+ Zqy 9 Eq.(6.22) gives
Y n
XByD) = AED) = % (B53) #£(b) cer (6.27)
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where
oD -
)("O(b’?) - l ;r ( l?.."l)dz
= 21 1n( Eﬁ) ) n= l/ki eve (6.28)

is the usual Glauber phase function for e-H scattering and

- 2r

£(o) = -2 f 2(1 +-—) dz
i -
2, 2 5, 2
- o =-2{b"+z -2lb"tz
= - f— {7 e /»!b2+22)dz
i 0
= -om[K (2b) +DbK () ] 4 | eo. (6.29)

Ko and Kl are the modified Bessel functions of zeroth and
first order respectively. Using Eqgs.(6.27) to (6.29) and
the ground state (normalized) wavefunction of the hydrogen

atom, Eq.(6.20) reduces, for elastic scattering, to the form

gs.)ls '23;1{1 fdzoeig'gﬁ_ - "lT"(dzs_]_‘: dzle_a s2+zf
ABEL 20 o) ]
b
= - 24k, f:odb b_{jﬂ a8, ei—‘;'g E i ?:2' :Lf(b)I 0 K oo
x f2nd¢( l'E? s| )2in] . | S

0

Following Franco% and Tai et al91 Qis- and be - integration
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can be easily performeds

5| = 5@ | a-yeosn)
° | ' O 2in+
: +1 , ‘
T b 2 B <
Y b~ + s=
= Io(b’s;n), PICRS (60313.)
2bs ,
= ) ocee (6.31b)
| (b%+s?)
21 L~y =) .
b -
%n- l . dgb elq = J.O(qb) ¢ s e (6.32)

5
Using Eqs.(6.31) and (6.,32), the transition matrix element,

Eq.(6.30),'simplifies to a two-dimensional integral form

oD« i6ikn | b b I (gb)
ls-1s iv - 0o 4

0

* [i" - elf(b) ( ds S2Kl(25) Io(bpsiﬂ]. ‘o-- (6-33>
0

Let us now consider Eq.(6.23) for the contribution from V.

Writing

~> -3 .
' q-I‘ = ab‘g + qz Z, P (6.34)

where IE%I = q cos(8/2) and q, = =4 sin(8/2) are respectively
the components of a‘in the plane of B and along the z-axis,
and using the explicit form of ¥; from Eq.(6.25), Eq. (6. 23)
simplifies to



-138-

1g,.5 1B(b) ~2’ 24n 2 b=g| 2in
(ébls = g Iﬁ b e qb fd sj dz, l Sl
'21b2+zz

© 19,2
*[Tdze Z(L+ L ) e
-® 4b2¥z2

R = SN
81’ 2 lqbob lf(b)

2b
- idb e E{O(bjz DL, qzﬂKl(b'qu‘*%]
z
. (LT
*Jd2s s Kq(2s)( 6 - 5] ) .

The 1ongitudinallcomponent q, of the momentum transfer has = -

been retained here as T(z)

is expected to contribute significantly
for large scattering angles, The integrations over the azimuthal

angles ﬁs and ﬁb can be performed as before to yield

2b
T§§313 -32om j db b J (qbb)ﬁ% (b J q)i- +-4 hl(b :}
qZ

Xeif(b) st szKl(2s)Io(b,sin). ees (6.3

\Jy

)

The s-integration in Eq.(6.35) is identical to that in Eq.(6.33).
The direct contribution to the scattering amplitude for the
élastic séa@tériﬁgqéf électfons'by Bydrogen atom in Glauber-

"distorted Born approximation is now given by

2 (1) (?)
So far the exchange effects, which are important at intermediate
and low energies, have been ignored. We have included them in

Ochkur approximation rather than following the procedure of
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70

Ishihara and Chen ™ in order to keep the calculations simple
which is the prime motivation behind the present work. The
Glauber approximation for the exchange contribution cannot
be used because of the indeterminate phase factor appearing

143

therein ",

The differential and total cross- sections are obtained

in the usual way.

a0 () ) ,
-5&55_—_-'= IF1< + |gl© - Re(F g™ eee (6.37)
oel (ki) = ;2' o dq a dQ 9 s e (6. 38)
i

where g is the Ochkur exchange amplitude.

6.5_RESULTS AID DISCUSSION

We have shown our calculated differential cross sections
at low energies (20 eV and 30 eV) in Figs.6.1 and 6;23 and
at intermediate energies (50 eV and 100 eV in Figs.6.3 and 6f;.
They are compared with (i) the usual Glauber (GSA) results
including exchange in Ochkur approximation?gg (ii) the two-
‘potential eikonal calculations of Ishihara and Chen70,
(iii) the eikonal-Born seriss cglculationé of Byron and
Joachain®t (Figs.6.3 and 6.4) and (iv) the recent experimental

measurements of Tenbner et al71, Lloyd et a172 and.Williams73.
Also plotted are the cross sections in FBA, In the low energy

region our results exhibit considerable improvement over the
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FIG 6.1~ DIFFERENTIAL CROSS SECTION FOR e-H ELASTIC SCATTERING AT ki2=202V‘ s
PRESENT CALCULATION; — — —, BORN CALCULATION§ . — 5 GLAUBER CALCULATION INCLUDING
- EXCHANGE IN OCHKUR APPROXIMATIONz_..__._,TWO-POTENTIAL EIKONAL CALCULATION
OF [ISHIHARA AND CHENﬂ;)@, EXPERIMENTAL DATA OF WILLIAMSZ:,’O,RELA’HVE ANGULAR
DISTRIBUTION DATA OF TEUBNER et ul7!
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FIG.6.2— SAME AS FI6.6.1 BUT AT 30eV. OPEN CIRCLES(®) CORRESPOND TO THE

72
EXPER'MENTAL DATA OF LLOYD et al
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usual Glauber results at large scattering angles (8)50°).
At 20.eV present results compare very favourably with those

of Ishihara and Chen70

and are in very good agreement with
the experimental data. At 30 eV, though we are better than
FBA, the agreement with experimental data is not so good.

As the energy increases (Figs.6.3 and 6.4) our results begin
to underestimate the cross- sections even with respect to
FBA. They continue to remain better, though not very signi-

ficantlys than GSA.

The overall concluéion is ‘that though the present
calculations do not have as good a fit to the experimental

data as obtained by Ishihara and Chen’°

s they provide a

simple anhd reasohably accurate alternative fér elastic scatfer;
ing studies a% low and intermediate energies. The loss of
accuracy is compensated by considerable saving in computational

labour,
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FI6.6.3 ~ SAME AS FIG 6.2 BUT A? S50eV. THE EIKONAL
OF BYRON ANL JOACHAtNuARE ALSO INDICATED.
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CHAPTER 7

SUMMARY, CONCLUSIONS AND COMMENTS

Throughout the work reported, the Glauber approxima-
tion has been used as the basic tool to study the problems
of aﬁomic collisions. The underlying assumptions, the
limitations and the range of applicability of this approxima-
tion with respect to the scattering angle and the incident
energy, and its relationship with the Born approximation have

been reviewed.

In.the present work following problems were investigated:

(1)  We have obtained a 'simple! expression for the

Glauber scattering amplitude in a one-dimensional integral
form for the gemeral transition nfm - n!f*m? in e-H(1ls)
scattering by combining the techniques of_Franco6Oand Golden

61

and McGuire™™ and using the Laguerre polynomials appéafing

in hydrogen atom wavefunctions straightaway rather than

- vX

breaking them into the form e . Our expression is parti-

cularly suited to study excitations to highly excited states
59

from a low lying state- Barlier expressions”’, although
in closed forms, become a bit complicated because of the
increasing number of hypergeometric functions depending on

the value of n'[_Chapter 3y Publication No.é].

(ii)  We have studied the elastic scattering and the
2s=2p excitation of lithium following electron impact by

modifying Franco!ls procedureéo of explicitly involving all
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the three electrons of lithium atom. Earlier Glauber
calculations of e-Li elastic and inelastic scattering
were made in 'frozeﬁ core! approximation Without62’63 and
with63 the core potential. Our main conclusion is that the
involvement of inner electrons (those in the 1ls state) in
lithium causes very little change over the !frozen core!
‘Glauber results and the latter are good enough for studying

e~-L1 scattering. As a side excercise we have also obtained

‘the percentage polarization of the 2p~2s resonance line

7

emitted from °Li and il

Li following e€lectron excitation.
_The agreement with the experimental data of Leep and
Gallagher&f is excellent for energies above 60 eV. Even for
lower energies the differences are not as pronounced as in
the case of total cross sections [Chapter Ly Publication

Nos. 2,4 and 5].

(iii) We have considered e-H and e-1i" elastic scattering

by extending the eikonal optical model of M’ittlemané5 and

Joachain and Mittleman66 for e-atom scattering. We have i
treated separately the pure Coulomb interaction between

the projectile electron and the ionic target and taken its
contribution into accodnt exactly. The total scattering
amplitude has been obtained by adding coherently the
contribution due to the pure Coulomb interaction to that

due to the remaining interaction treated in eikomnal optical

modelég’66

. The main aim of the present work was (a) to
investigate how far one can use the eikonal optical method,

which is comparatively very simple, to study e-ion elastic
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scattering at intermediate and low energies and (b) to
analyse the contributions of second order terms of the
optical potential in the.evaluation of the eikonal phase.
The main drawback of the method is the neglect of the
interference of the Coulomb interaction with the remaining

interaction.'Recently Narumi and CI.’sujilLfs

95

s Ishihara and
Chenl“é, and Thomas and Franco”” have suggested a procedure
to study charged particle-ion scatteringin-Glauber approxima-
tion. No resulté have yet been reported, to our knowledge,
using this procedﬁre for charged particle-ion elastic

scattering [Chapter 5, Publication Nos.l and 3].

(iv) A simple procedure based on two potential Glauber-
distorted Born approximation has been proposed to improve
the behaviour of the Glauber approximation for large scatter-
ing angles and used to study e-H(1s) elastic scattéring. The
main feature of the present method is the simplicity of )
calculationsy it is hardly any more difficult than the
ordinary Glauber-approximation. Electron-hydrogen atom
scattering has always been an attractive testing ground: for
investigating various approximations and calculational proced-
ures. Recently good experimental data on e-H(1ls) scattering
has become available7l"73; It is found that the Glauber
approximation underestimates the cross section even with
respect to FBA at large scattering angles. Various attempts
have been made to improve the fesults. These are +he
tunrestricted! (without the approximation of negl cting the

longitudinal component of momentum transfer) Glauber
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approximation 65-68,122428,

s the eikonal optical model
2’-}-,55"58

the eikonal-Born series

7

and the two-potential eikonal
0.'0ur worklsl is a step in the same direction.

[Chapter 6, Publication No.7].

approach

(v) A numerical technique has been developed in the spirit
of Filon!s method in order to take into account accurately
the wiggles of the cylindrical Bessel functions in the
integrals of the type ’

jF(x)Jv(ax)dx.

Such integrals are of common appearance in Glauber calcula-

tions. [Appendix Al, Publication No.I].

Inspite of all the developments, present use of the
Glauber approximation still has many weak points. These

ares,

(1) For elastic scattering, the Glauber amplitude diverges
logarithmically in the forward direction. This divergence,
in turny leads to the violation of optical theorem and is,
therefore, worth special mention. It is found to occur in

2.6 ,152 ,lS'_b
the imaginary part of the second-order scattering amplitude,
It has been shown by Moisewitsch and Williamsl®?

f153 and Joachain and Mittleman66

s Birman

and Rosendorf within the

framework of the eikonal approximation and by Birman and

141

Rosendorff in the case of Glauber approximation that the.

logarithmic divergence can be easily removed by introducing
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an average target excitation energy in the intermediate

states.

(ii) It is difficult to handle the exchange contribution

to the scattering amplitude in Glauber approximation. Although
Ochkur like reduction of the Glauber exchange amplitude has
recently been proposed154’143, the method suffers from an
undesirable feature in the form of an indeterminate phase
factor which restricts its application to only optically

forbidden exchange allowed transitions.

(1ii) The leading contribution from the polarization of the
target is missing from the Glauber scattering amplitudes.The
need for introducing polarization effect has long becn

recognised. In the present day Glauber calculations,this

155

has to be added from outside. For example, Mathur has

considered, in e-H elastic scattering 4 the perturbation of
the target eigenfunction (by the static field of the incoming

charged particle) by including a polarization part as given

by Temkinlo.

On the problem of charged particle-ion scattering, we

feel that looking at the success of the two potential :;

70

approach of Ishihara and Chen'~, best results within the

framework of the Glauber approximation could be clhtained by

70

combining the approach of Ishihara and Chen'™ with that

of Narumi and Tsujil45, Ishihara and,Chenl46 and Thomas and

95

Franco’’. The ‘total interaction potential should e broken
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up into three partsy the pure Coulomb potential, the
static potential due to the remaining neutral target
and the remaining potential. For exampley in et scatter-

ing

17 - ¥

®i(23 is'the ground state wavefunction of He+. If

=“}2'H"1'?'+|-£;I - Vsp) T Vs
2 Vg + U+ Vs | (7.13
where :
T () = JO D (- 2+ =20, D e (2.2)

JER I T oo (7.3)

is the phase shift in any partial wave, its contribution to

the scattering amplitude can be written as

A 218 2i&  2i 21(8¢+d ) 218
(e20.1) 2 (¢ C- 1) +e EC(e _ 1) +e © e ig—l) .
Now the three terms can be handled sy the first two hy follow-

ing the procedures of Refs.99;145 and 146 and third by the proced-
ure of Ref.70. This method will have thc merit of treating the
singular part of the interaction in a way better than the
Glaubar approximation.

The problem of electron‘impact ionization has not been

undertaken in this study. The main difficulty comes about
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due to the appearance of the Coulomb continuum wavefunction.

Expressions in the form of an infinite seriesl%’157 or a

1158'160 have been obtained. But the procedure

1D integra
is still quite involved and is restricted to include the
contributions of only a few particl waves. 4 suggestion

has been made thet by working in hyperbolic coordinates

moy avoid the expansion in partial waves and save computation

timeléo. To our knowledge this suggestion has not yet been
followed.,
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APPENDIX Al

EVALUATION OF AN INTEGRAL INVOLVING ORDINARY
BESSEL FUNCTIONS

The‘integrals involving ordinary Bessel function JV
of order v frequently occur in our calculations. The
difficulty in their evaluétion arises because of Jv
whose oscillations must be properly taken into account.
We give below a numerical technique to evaluate them, We
divide the total range into a suitable number of subintervals
énd approximate, in each subinterval, the remaining part of

the integrand by a parabola

[ F 3 (mdij ;o:)LJ, C(li" N C(z)x )

X

n-1 n-1

x Jv(ax) dx ... (AL.2)

The constants Cr(lﬂ are obtained from the values of the

function F(x) at x_;s X, and x ... ‘.'.L'hel right-hand side can

now be exactly evaluated using the equation (Ref.161,p.480).

S 2 E%(v‘*uﬂ‘l) il

I M (K)dx = =
o VY I E%( v-ptl) ]
o (vrop+) [T ;Lé-( v-pHL) #p
x 2 T T yrop+1 (2)
p=o [T [3(vhut3)4p ]
= z%8(p,v) §?Y(u,v,p)Jv+2p+l(z) .o (A1.2)

p=o0
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to give

X .

rn+l 2 :
I F(X)JV(aX)dX ::% Y C;‘_L%_ Bluyv) %7(%\):13)
kg u=0 p=o

x[:xg +1 Jv+2p+1(a xn+l)" XgrlJv+2p+1(a X
oo (ALL3)

The sUmﬁation over p isy in practice, finite Eecause the
Bessel function‘Jp(x) >0 as plela>. This method is reasonably
fast because the constants in Eq.(Al.2) need be calculated
only once and the Bessel functions are needed only at half
.the number of mesh points. No special effort is needed o °
calculate the Bessel functions of different orders as they
are all generated in the standard 'Bessel subroutine! based

on recurrence relations.



-150-

APPENDIX A2

CONFIGURATION REPRESENTATION OF THE SECOND ORDER
NON-LOCAL OPTICAL POTENTIAL

The second order term V(g) of the optical potential
in Eq.(5.,13) is written in. the form

\[12) =3 <¢i'v‘¢)j><¢jlvl¢i>

i ki 4 de

se e (Agol)

V.. V..,
jgi Yogs Jae A

where

Vo -_<¢)Blvlcba> ) v, (A2.2)

If the interaction potential V is localy it can be writhen

in the form:

N
524
<
=y
N
1

MEHEEED!

f%(?) V(Z,9) cb“(% d3x%. ee. (42.3)

Let us write ~\/(2) in coﬂfiguration space of the incident

- >
particle coordinatesr,rt.

<?M/£2)‘ §<?iv v T > (82.4)

1] k’ "T+1e 3t
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- Vs ﬁ. 2\ X =1
. J_gi,( \r|Vij|rl><. 7 IRMER) T ED)

where the kinetic energy operator 7] satisfies the Schroedinger
equation |
' ' -
TIR D= 'JQ%C) . oo (A2,6)

Using the relations

ix, . |
TR = z;ﬂl‘;m e RN OT R
CRIRD = @R B | vo. (42,8)

and Eq.(A2,3)y Eq.(A2.9) simplifies to

\} iX.F 1 —"?.f}'
CHV 17 5 Jus @ T T e TR
(215) ki;-x, +l€ (275)
* 7, (@ady
i, (r—r’)
= Y V. (D, (P —L—[a3ke
j;i 1N o3 f k:2 S K+ e
= \9} (r,r’) A(T:I")a oo (A2.9)
Ky |
where IR
iv, (r-rt)
@y = a3 =2 ... (A2.0)
"\;k r,r) (21:)3‘ [ X ki?'-%z+ ie
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-
1
vij(?) Med

AT = 3
JEL ©

= 3. DO IV 10,46 [ 20 10, @0
JEi

= {0, 10 V&) 10, D>
- <by G 1V 10, G0, R0 VG 30 9, () >

= Jer D VEHVE Do, Dadx

~J*¢§(3?) V(?;?) ¢i(5<’) 4)9;(3?') V(?'.,S?') (bi(:\?‘) a3x adxt
eeo (A2,112)

= [ v E@-?’)"‘,"i@ 0, G2 ):{

XTI 0, (M adx adxr ves (A2,115)
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the shaded area of the square figure. The same area can also
be spanned if we first vary z' from a to b and then vary z
from z' to b (horizontal arrows) for every value of z!'. Thus,

we should have

bz b b |
[(dz] dzt £(zyat) = [ dz' [ dz f£lzy2?) | .. (43.3)
a a T a z' .

Interchanging the variables on fthe right hand side and using

(43.2) 3 it becomes

b z b
[az [ azt £(zy21) = [ dz Ibdz' flzyzt) | eor (A3.1)
a a a gz "

Combining‘Eqs.(A3.l) and'(AS.q) Wwe can now write

AN b b
I= -“5[[ dzf dz! f(z,z!)+ [ dzf dz! f(Z,Z‘)]
a a a 2z

b Z b '
1
= = | dz(] dz'+ | dzt)f(z,2!)
2[51 £ Iz ’ o ]

b b ,
j dz | dz! £(z,z!). eo. (A3.9)
a a

no -

This is the required expression.in which the variablec upper
limit of the integral is transformed to the fixed value k.
The integral gets further simplified if the function f(z,z?)

is separable.
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