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RESUME 

The work reported in this thesis is author=s attempt 

to study the collision processes,at high and intermediate ener-

gieslin which a beam of charged particles (e.g. electrons) 

is bombarded onto an atomic or ionic target. Throughout this 

work, the eikonal or the Glauber approximation (the latter is 

an special case of the former) has been the main tool of 

investigation. 

In the first chapter, various quantal, classical and 

semi-classical approaches for the study of these collision 

processes have been briefly reviewed. The eikonal multiple 

scattering expansion and its relationship with the Born series 

have also been discussed. The second chapter is devoted to 

the details of the Glauber approximation. This chapter 

basically describes (i) the underlying assumptions and the 

expected range of validity of the approximation and (ii) its 

alternative forms for the scattering wavefunction and 

amplitude. In the third chapter, a method for the Glauber 

predicted scattering amplitudes in a one-dimensional integral 

form for e-H(ls) scattering has been proposed to study the 

excitation of atomic hydrogen to highly excited states from 

a low lying state. Earlier expressions C.K. Thomas and E. 

Gerjuoy, J.Maths. Phys. 12, 1567(1971).1  were a bit cumbersome 

due to the appearance of an increasing number of hypergeometric 

functions depending on the principal quantum number cf the 

excited state. In the fourth chapter the Glauber approximation 
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has been applied to the study of elastic and inelastic 

scattering of electrons by lithium atom by explicitly 

treating all the three electrons by suitably adapting Francois 

procedure [Phys. Rev. Lett. 26, 1088(1971)]. The percentage 

polarization of the resulting resonance line (2p 2s) emitted 

from °Li and 7Li following electron excitation has also been 

obtained. The fifth chapter is devoted to the study of elastic 

scattering of electrons by helium like ions (such as Er and 

Li
+ 
 ) using the optical model approach in eikonal approximation. 

In the sixth chapter an attempt has been made in a very simple 

way to improve upon the Glauber (straight-line) approximation 

at large scattering angles. It has been used to study e-H(ls) 

elastic scattering and the results have been compared with 

other approaches and the recent experimental data. The seventh 

chapter summarizes the work reported in earlier chapters and 

contains some comments, pointing out the drawbacks and the 

suggestions for their elimination. 

A numerical procedure to exactly take into account the 

wiggles of the Bessel functions in integrals of the type 

IF(x). Jv(ax) dx is presented in Appendix Al. 
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CHAPTERl 

INTRODUCTION 

1.i r-EFIERAL REMARKS 

The analysis of collision phenomena plays a central • 

role in almost all investigations into the structure of 

matter. For example, electrons of high energy are particularly 

well suited to probe the charge distribution in nuclei. 

E1-2,.!trons and heavier projectiles of low energy are scatter-

ed from atoms to obtain data which can serve as an input 

information for calculation of kinetic processes in gases 

where low energy electrons predominate. In fact, most of our 

detailed information about the forces and interactions between 

atoms or between electrons and atoms are learned through 

scattering experiments in which a well defined beam of charged 

particles is allowed to interact with the atoms of a target. 

In such a scattering experiment there are many possibilities 

through which a reaction can take place. For instance, the 

target and the projectile may contain respectively the same 

particles before and after the collision or some particles 

are transferred between the colliding systems during the 

reaction. The first is just the scattering and the second a 

rearrangement collision. Each of these arrangements open 

further possibilities. For example, in the case of scattering 

the projectile beam of charged particles may be scattered by 

the target without the target being excited (elastic scatter-

ing) or.  ly leaving the target in some excited state (inelasti-

scattering or excitation). Each different initial or final 



state of the colliding system defines a reaction channel. 

For example, the reactions 

	

e + H(ls) — e + H(ls) 	 (a) 

4 0 	H(2s) 	 (b) 

	

e + H(2p) 	(c) 

define three different channels. A particular channel is 

!opent if the total energy E of the system is sufficient 

to inject the system into that channel; otherwise the 

charnel is said to be tclosedt for the reaction. In a 

rearrangement collision there are, thus, many possible open 

channels carrying out reactions such as charge exchange, 

charge transfer etc. However, it should be noted that not all 

reactions are possible between a given set of particles )  ever 

if sufficient energy is available, because the appropriate 

quantum numbers (angular momentum, parity etc.) must be 

conserved. Such atomic and molecular collision processes 

are of common occurrence in many fields such as chelpical 

kinematics )  astrophysics) plasma physics)  atmospheric physics 

etc. In most of the atomic and ionic collision processes 

occ,:irring in the universe )  the projectile entities arc 

generally elementary particles (e.g. electrons ) .protons 

or photons). For this reason)we have carried out our investi-

gations using electrons as incident particle. These can 

similarly be carried out for protons as well. 

In atomic and ionic collision processes as in all 
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other collisions the most important thing to study from 

theoretical as well as experimental point of view is the 

cross section which correlates the observed intensities 

to the theoretical probabilities calculated from the assumed 

or known wavefunctions and interactions. 

In an idealized scattering experiment, a single fixed 

scattering centre is bombarded by particles incident along 

the chosen z-axis. After scattering, the particles are 

detected at a large distance from the scattering centre. If 

ru70,0) are the coordinates of the scattered particles 

relative to the scattering centre) Io  is the incident current 

density (i.e. number or particles incident per unit area 

per unit time) and IM the number of these scattered into 

the solid angle dQ subtended by the detector at the scattering 

centre:  then we define the differential cross section as 

Asu 	Icsg)  
dS2 	I

o  
000 (101) 

i.e. as the number of particles scattered into the detector 

per unit solid angle per unit time per scattering centre per 

unit incident current density. The width of the beam is 

determined by slits, which, although quite narrow from an 

experimental point of view, are nevertheless very wide comparai 

with the spatial extension of the interaction region. We can 

therefore assume that the particles in the beam, represented 

by very long and very broad wavepackets at distances far from 



the target scattering centre, can be described approximately 

by plane waves eikz;1ik is the momentum of the incident 

beam of particles. During scattering, the incident wave gets 

distorted by the scatterer. Therefore, at large distance r 

from the iyteraction regions  the scattering wavefurction 

must be represented as a superposition of the incident plane 

wave and an outgoing spherical wave )  with amplitude f(k,V) 

fk(9 0), i.e., we must have 

t (1) .144UUL4 
ikr 

eikz f(k
t  -o- r ' ... (1.2) 

-44 where ilk and tk are the centre of mass (CM) momenta of the 

incident and scattered particles. The differential cross 

section is then related to the elastic scattering amplitude 

by the relation 

d0- 	2 
if (k )10 I • ... (1.3) 

The description presented above for the elastic sc:2,ttcring 

can be easily extended to the inelastic case.. The Eqs.(1.1) 

and (1.3) correlate the experimentally measured and theoreti-

cally calculated entities. 

1. 2 TiBLV HETIZORALICAL 11420a4 

Theoretically )  any physical system at not too high an energy 

can be described using the principles of quantum mechanics 

through the application of the non-relativistic Schroedinger 

equation. An exact quantum mechanical solution is however, 



possible only for a two-body problem. Moreover) the wave 

functions of the target containing only one electron (such 

as hydrogen atom or hydrogenic ion) are known exactly. Even;  

if the wavefunctions of the targets are known exactly;  the 

exact quantum mechanical formulation of the electron-atom 

scattering is a formidable task because even the simplest 

e-H atom scattering problem is a many-body (three-body) 

problem. Obviously, one has to resort to the appropriate 

approximate methods to solve, quantum mechanically, the 

problem of electron-atom or electron-ion scattering. The 

only way to assess the accuracy of the approximate methods 

is by comparing them with each other and with the experi-

mental data. In the following)  in order to define the scope 

of the present work )  we make a brief survey of some approximate 

methods applicable to the study of elastic and inelastic 

scattering of electrons by atoms and ions involving a few 

electrons. 

In order to describe a physical system involving a beam 

of charged particles interacting with an atomic target, 

we start with the stationary state description of the scatter-

ing problem and use the time-independent Schroedinger 

equation 

(H E) ti  = 0, 	 (1.4) 

where E is the total energy of the complete system and is 

given by 



1.2 24.2
11.  
),12 

E 	 w. = 	
p. 	W f 2  211 	3. 	2 • • • ( 1 • 5 

where p. is the reduced mass of the system, wi  and wf, are 

the target internal energies in the initial and final channels 

respectively, H is the total Hamiltonian given by 

H= fit +1+ V • • • l.5b) 

7:j is the kinetic energy operator of the incident particle, 

V is the total interaction potential between the projectile 

and the atomic nucleus and electrons and Ht  is the Hamiltonian 

of the target. This stationary state description of the scatt-

ering situation is )  in principle )  quite adequate if we assume 

that the energy of the incident particles, represented by a 

very long and very broad wave packet or approximately by a 

plane wave, is well defined for very long but finite times in 

the remote past and the far future. Obviously the transition 

probability per unit time can be related to the scattering 

element defined by 

Sfi = ;(fl 1 1\.== ( )3  if  : y1-0,)x= (0)3- 2 f‘ 

from which the scattering amplitude and the cross -section can 

be obtained directly. Here 1114.)  and 4-)  are respectively 

the outgoing and the ingoing solutions of the Schroedinger 

Eq.(1.4). Various approximations needed involve the evaluation 

of the wavef unction 1 of the complete system. 



1.2.1 QUANTn APPROXIMATIONS 

(i) The Atonlien-ametionEximjisiorkliethod  

Here one expands the properly antisymmetrized total 

wavefunction t(t,Z of the complete system, the incident 

p.art:cle plus the target atom, in the complete set of un-

perturbed atomic eigenf unctions 

Cr ,51) = A 	X, Cr) ti) .61) y 	... (1.7) 
j  

where X.
3 
 represents the scattering wavefunction of the projectile; 

parti'cle,A is an antisymmetrizing operator,x denotes collective-1: 

all the particle coordinates of the target atom and t the 

coordinate of the projectile particle relative to the target 

centre of mass. This expansion gives the exact wavefunction 

for Vde complete system. The symbol I in Eq.(1.?) involves 

the summation over all the discrete states and integration over 

the continuum states of the, target. More explicitly, Eq.(1.7) 

can be written as 

21) 	(1) cct 	c(5b4)j(l)] 
j 	j  

where the plus and minus sign stands for singlet (antiparallel 

spin) and triplet (parallel spin) states, respectively. 

The eigenfunction expansion method, in principle, 

requires retention of all the terms in the summation which, 

in turn, leads to an infinite set of integrodifferential 

emriPtvnq P9 r.an be easily seen by combining Eqs.(1.4) 



Z e 2 	2 e 

and (1.8): 

_ r- 	. 
(17-2 	k)x7a.) = 	(-T))7 	+ 	CIP. 	d3.11, 

0 	'7'1 	3j 	 ja t 	jt  
3 

Here 	1/2 . 
k. = DIL(E-w.

3
) / 	:I 

... (1.10) 

is the wavenumber of the scattered particle and w is the 

eigen energy of the target in an intermediate_Channel j andl 

U.. and (7. ,s  are respectively the direct interaction JO' 
potential and the exchange :!erne/ defined by 

11-(1) 2413 	2 4 .1e(1)V(1,1)()-(1)d3x, 	(1.11) 2 	112 	t, 

and 

11; z 	r- 
- 2 i L h ` 

(791) - E)140.1  (f)) . 	... (1.12) 

If the incoming particle interacts with the target atom in its 

ground state i4  the asymptotic conditiont satisfied by XT's 

are 

laup 	 e 	• 
(210 	°a 

ik.r 
■•• •••••■•••••••*It 

1,46, (1613) 

The interaction potential V(#,) for electron -atom scattering 

is of the form 

1.10 

• • ( 1 
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where e is the electronic charge and Z is the atomic 

number 

Eq. (1.9) 	is exact if all the terms in the 

expansion, Eq.(1.8), are taken into account. In its present 

form it is not practically solvable. One needs an approxima-

tion to simplify the infinite set. 

(ii) The C).ose Coul4,ing Annroximation  

This approximationI retains the first few .Mates in the 

infinite summation in Eq. (1.8) and neglects the effect of 

the rest. The order of the approximation depends on the 

number of atomic states which are retained out of the infinite 

summation. This method has been successful in predicting 

resonances but less successful in treating excitation processes 

showing a lack of convergence with respect to the addition 

of more atomic states into the trial wavefunction expansion2'3. 

Improvement to this method has been suggested by Smith2  and 

Burke3. The truncated summation leads to the neglect of the 

coupling with the higher discrete states and with the conti-

nuum; this, in turn, leads to the partial neglect of adia-

batic and non-adiabatic polarization '5  of the target. These 

long range polarization effects arise due to the interaction 

between the electric field of the incident electron and the 

induced multipole moments in the target. The adiabatic 

approximation assumes that the incident electron is moving 

so slowly that its kinetic energy operator can be neglected. 



The adiabatic polarization potential 	1T7) effective at 

large separation r is attractive in nature and using the 

perturbation theory it comes out to be of second order in 

the interaction energy° The perturbation induced in the 

target orbital by a moving charge is reduced as compared to 

that due to a stationary charge at the same distance because 

of the decreasing time of interaction, This velocity depend-

ence of the target orbital gives rise to a idynamict or 

'non-adiabatic! polarization potential which is constructed 

by applying the kinetic energy operator of the incoming 

particle on the static polarized wavefunction of the target. 

The non-adiabatic potential 	6 ) being repulsive in 

nature reduces the effect of 	adiabatic part. These long 

range effects can not be neglected at intermediate (roughly 

two times the thresiJold to twenty times the threshold) and 

low electron impact onc:rgies It is found that about 18.0: 

of-the dipole polart7ability (induced dipole moment per unit 

electric field) of the hydrogen atom and about 54.0: of 

that of the helium atom comes from the continuum states 

only1,7. Obviously, an adequate description of the scattering 

process needs proper allowance of these continuum states which 

in turn, leads to the polarization effects. An alternative 

approach, the so-called pseudo-state approximation?  accounts 

for the higher states and the continuum of the target by 

replacing them by pseudostates0 These peeudostates are chosen 

to be orthogonal to each other and to the first few atomic 

eigenstates included in the eigenfunction expansion, such that 



they give the exact polarizability of the atom. 

The approaches discussed above require knowledge of a 

number of atomic eigenstates of the target included in the 

cige7!'uncticn expansion. These eigenfunctions of the target 

usually determined by Hartree-Fock self-consistent field 

(SCF) method8'9. It is thus evident that these approaches 

involve a lot of computational labour even if a few eigenstates 

in the infinite summation are employed in order to account for 

the polarization of the target. 

ati) Method of the Polarized Orbitals  

This method, developed by Temkin10  and Temkin and Lamkirl-

takes account of the polarization of the target by just adding 

a *perturbing part* representing the polarization of the target 

to the unperturbed wavefunction. The first order perturbaton 

theory is employed to calculate this part of the wavefunction 

and the infinite set, Eq.(1.9), is reduced to just one integro-

differential equation. The computational labour is thus reduced 

concir'_erably, but at the cost that all channels other than 

the iritial one are taken to be closed. The method of polari-

Lo -.rbitals is only applicable to very low energy (less than 

the first exci÷:ation threshold of the target)elastic scattering. 

(iv) Cornets_ 

There are other approximate methods, such as 'variational 

app: oximation12,13 the second order potential method of 

Bransder et al14 and so on, which can also be used to solve 



(1 )7?! ■=1•1 
110111 
1 

ik.
J
1-ttl 

e 
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the integro-differential equations. All these methods employ )  

in ono way or the other )  the partial-wave analysis. The number 

of significant partial waves in the partial wave expansion 

increases with increasing energy. Obviously )  at intermediate 

and high energies this number will become quite large. 

LaBahn and Callaway15 have considered in the forward direct-

ion as many as 10)051 partial waves for e--He elastic scatter-

ing in the 100-500 eV energy range. 

All these quantal methods thus seem quite impracticable 

to study scattering processes at high electron impact energies 

where large number of channels are open for scattering. In 

order to tackle the scattering problems in the said energy 

region we )  therefore )  seek an alternative approach which does 

not involve partial wave analysis. Such an approach is obtained 

by expressing the Schroedinger equation)  instead of integro-. 

differential form )  in an inhomogeneous integral form: 

+ + 
X
3
(F) _(2 

 
1-7771  e 	8., + 	j kj (f)ff')Ujii(I')ct(f1)d2V 
)3/ 	j a— 

(1) 1) 	'II) 4:1  (t') 	' 	7 
;I 	JJ 

... (1.15) 

74' 	 2 where 	is the free Green's function for energy kj  and is 3 

given by 

J !  

Tho solution. 	) Eqs.(1.15), when compared with its asymptotic 3 
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form, Eq.(1.13), yields expressions for the direct and the 

exchange scattering amplitudes represented by Ffi(10, Tc!) and 

gri(10, k) respectively, 

Ff i  (2',  ') - = F .( 	>_ gfi(2'y 2) 
	

(1.a7) 

r  
(1.140 F (10 IQ 	 e 	U ( 1  ) ;C( 6  )d3r fi 2 	4n 	f 3 

gfi(t t  )) = - 111.7,!, I, f 	71,j(tt 211) 4(t5d3r1 d3x/. 

... (1.19) 

The expressions (1.18) and (149) are formal in the sense that 

they involve summation over infinite set of target eigenstates 

which in turn, lead to infinite coupled integral equations. 

Thus, to obtain a practical solution of these equations we 

seek approximate methods, quantal as well as semi-classical, which 

ever suit better according to the physical conditions (such as 

energy). 

00 Born Serk%IAELEILDIgl= 

At high energies the exchange effects can-be neglected 

because of a small interaction time. The inhamogeneous integral 

Eq.(1.15) then reduces to the standard Lippmann- Schwirger 

equation 

it./ 
.(r) = 	1-)in e 	8.. 	77 X0 	

2.5)  ji 	01 	4 jt 
1,/t)Urij1(?)Xit (IA )d3r1 .. 

(1.20) 
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The iterative solution of this equation give rise to an 

infinite perturbation series for the perturbed wavefunction, 

Xj  .1 of the system and is known as Born series. 

First Born approximation is obtained when the unperturbed 

wavefunction [first term in Eq. (1.20) 1 is substituted for 

theperturbedwavefunction. Xj  yielding the scattetrg amplitude: 

1. (Iti 13.  -- 	e  
... (1.21) 

- 1-%  I 	ufi(t) d3r 
	

(1.22) 

It clearly implies that FBA ignores the distortion of the 

incident particle wavefunction as well as the polarization 

of the target and this explains why FBA, even with the inclusion 

of exchange, does not provide satisfactory agreement with the 

experimental differential cross section data. 

The distortions of the target are taken into account 

partially by the second Born approximation (SBA). The SBA 

scattering amplitude can be easily obtained by substituting 

the first iterative solution of Eq.(1.20) for Xj  and then 

comparing it with the asymptotic behaviour, Eq.(1.13): 

FB2(ftr,t) 	_ 	f ei(2.t1 -M) 	( 1)  
fi 	4-7c t 	Kj 

:sU
fjji () U.(1t) d3r d3r'. 	 ... (1.23) 

it. 
(I) U(1,1) 4). (1) e 	d3rd3x 

It is clear from Eq.(1.23) that SBA involves an infinite 

summation over the intermediate discrete and the continuum 
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states of the target. This makes it very difficult to 

evaluate it exactly. However, it can be simplified by sett- 

ing inP k 	j16 = k for all 	2  where k is independent of j. The 

summation in Eq. (1.23) can then be performed by using the 

closure method 

:E (1)xl) C(11)2 8(1-11), 
3 	3 

(1.24) 

Moiseiwitsch17  has pointed out that this closure:-  

approximation corresponds to taking infinite value for the 

polarizability of the atom and results in a logarithmic 

divergence in the imaginary part of the forward scattoring 

amplitude. The logarithmic divergence can be removed easily 

by introducing non-zero average excitation energy of the 

target. Using closure methods SBA can still be obtained in a 

relatively simple way18-25.  The simplified SBA is better, in 

the intermediate and high energy region, than the partial wave 

analysis but it still involves considerable labour due to 

the inclusion of a large number of terms which are to be 

evaluated exactly20-23. 

(vi) PlangEassApproximatio,nPWA) 

This approximation takes into account the distortion of 

the target in the form of local potentials but completely 

neglects the distortion of the incident particle. The local 

distortion potential is taken to be the sum of the adiabatic 

and non-adiabatic polarization potentials" 5. This approach 

deals with the infinite sum of SBA in terms of the well known 
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Properties of the target such as dipole and quadrupole 

polarizibilities etc. The exchange contribution can also• 

be included directly. This approach has been used by Khare and 

Shobha26 27to study e-He elastic scattering cross sections. 

(vii) Distorted  Waved 	(DWA) 

The SBA makes partial allowance for the effect of dis-

tortion. A better account of the distortion of the incident 

and scattered waves can be achieved in a two state approximation 

involving just the initial state (say, the ground state) and 

another coupled state f( which is chosen to be the finallyexcit-

ed state in case of excitation). The coupling to all other 

states except these two states, giving, rise to polarization, 

is neglected. This simplifies the infinite set of coupled 

integrodifferential equations into a pair of coupled equations 

which are solved by the distorted waves approximation28  based 

upon the assumption that the back coupling of the final state 

f to the initial state i is small. The solution of the result-

ing equations requires the partial wave analysis to obtain the 

cross sections. The method is, therefore, not practicable at 

high energies. 

(vitt)Exchange Approximations 

In the above description we have not included exchange 

:fects assuming that the impact energies are high enough 

to n:,glect them. At intermediate energies they can not 

be 	cted, They can be easily included to the 
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non-exchange (Born) amplitudes discussed above through the 

relation (1.17). We discuss bclow some of the simplest 

exchange approximations in order to evaluate Eq0(1.19). 

(a) Born-Oppenheimer Approximation (BOA) 

Since we are interested in electron exchange phenomenon 

the projectile particle is an electron. The recoil effects 

of the target are then negligible as compared with the motion 

of the projectile electron and the CM system coincides with 

the laboratory system. The earlier results are true even in 

the laboratory system with the modifications that the CM wave Lv. 

bers k and ktare replaced by the corresponding laboratory 

quantities ki  and kfland L = Mf is replaced by q = 

i 	
4 

Here k and L. are now the initial and final momenta of the 

projectile electron. 

The exchange amplitude for e-atom scattering in BOA can 

be obtained from Eq.(1.19) by substituting:  for the perturbed 

wavefunctionXjyt he unperturbed wavefunction 

2-(1) 	
1 

(2703/2 C

itt 

yielding BOA amplitude in the lab. system as 

B0,4 	1_ 2m 	.2f .44 , -1 .rt 
g 	2k.) = 	

Er I f(x)  fi f 1 	4% 10,1)-d(1)i(Ne 1  d3rt  

 

... (1.26) 

Eq.(1.26) can further be simplified if we assume that each 

target electron contributes ennally to the exchange scattering. 

... (1.2'5) 
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The situation is then identical to the e-H atom exchange 

scattering. Eq.(1.26) can now be readily shown to yield 

gglf, 	= - 	Z e f.  4/(R)U1(1,Ni(t) 
irci2 3 3  

xe 	drd x, 	... (1.27) 

where 1 now corresponds to single target-electron coordinate and 

Ut(1,/) is the e-H atom interaction potential in prior form: 

2 	2 	2 
... (1.28) 

whereas Eq. (1.14) denotes the post-form of interaction potential. 

Eq.(1.27) can also be obtained from the direct (Born) scatter-

ing amplitude, Eq.(1.21a), simply by interchanging the incident 

and target electron coordinates in the incident wavefunction 

as well as in the interaction potential. The BOA scattering 

amplitudesuffers from the undesirable feature that the addition 

of a constant to the interaction potential U leaves unaltered 

the exchange scattering amplitude owing to the lack of ortho-

gonality between the approximate initial and final state wave-

functions of the system20. This, in turn, leads to very large 

values for the exchange cross section which, very often, exceed 

conservation limits especially near threshold.BOA'also leads 

to the post-prior discrepancy in the exchange scattering amplitude. 

(b) Ochkur Approximation 

Ochkur29 suggested that better results can be obtained 

if, instead of using the full BOA expression for the scattering 

amplitude, one retains only the leading term in the expansion 



of BOA amplitude in powers of k711. Writing Eq.(1.27) as 

-1 

g 7 , 
6 

) ,( 2) 
2  ki' 	fi ' 6fi • (1.29; 

where 	 121.1
-ik(1) 	Ze 2  1d314. (1) e f 	d3x 	3 (1) e 

and 	 g 
gfi 	4% - 	1  

5fi - - lin ) 	.11,.,., 	
117  - 	1 

,(2) - 	_q.., f 3,4 (t),-  r f dx..... 	1  ... (1.31) 
iit 	0)*(1)  e 

11  

X 	4  .., 
ki. 
	

• 	

(1.30; 

and using appropriate target eigenfunction, one can easily 
(1) see that gpi 2 which corresponds to the electron-proton 

contribution, behaves as 1/k6. Using the peaking approximation3°  

in the second integral of Eq.(1.31), yields 

- ,r44.11  
g(2) 	j d3r 01()e 	 )e 

	

fi 	ki  

f d3r 	g(t)(0i.(t 

7 2 m  
I, 

- 2 fi
(
'f' ... (1.3' 

where FH
i  denotes the direct scattering amplitude for e-.H f 

scattering. 

(1) Six= gsi  decays much faster than gsi (2) 
2 the first term in 

44*(1.29) is neglected. Thus the exchange scattering amplitude 

in Ochkar approximation29  takes the form 

# 
fdre 	(1) 	(?). 171 

... (1.3K; 
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for an .unpolarized incident beam the relative probability 

in the singlet and triplet states is 1:3 so the mean differen-

tial cross-section is 

= 	IF4422i 
0  

) 1 2  + 711.1F-fi  Citf 22i) 1 2-1 

- hIll 10 4 gfi l 
k 4 

2  
+IF .-g 12-1  Li. 	fi 

1

- 

5. 11F fi124.1g .12-Re(Ffi4i)]. F  (1.34 

1.2.3 CLASSICAL APPROXIMATIONS 

Classical approaches in the study of scattering phenomenon 

have received attention because of the following reasons. The 

gain in accuracy by the use of quantum theory is lost to some 

extent in making the various approximations. Further for a 

complex atomic or molecular system the task of solving the 

quantum mechanical scattering equations leads to great many 

analytical and computational difficulties. On the other hand)  

the cross.sections obtained from the classical calculations 

by Gryzinski31  and Stabler
32 

have simple analytic form and 

may be evaluated conveniently. In all the classical approaches )  

the collision is treated as a binary electron-electron encounter. 

The transfer of energy from the incident to the bound electron 

during a collision is computed as if the two electrons were free. 

The energy transfer must)  therefore )  be large compared to the 

binding energy of the atomic electron. Hence the methods are 

best suited for ionizing collisions. However )  for excitation 

also approximate results can be obtained. In a more refined 
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classical approach, proper allowance for the velocity of 

atomic electrons is made by averaging over the velocity 

distributions of the bound electrons in various ways to obtain 

cross section for the process of interest
31. The results 

suggest that these procedures may be reasonable if only order 

of magnitude estimates are required. Another drawback is that 

they predict a E-1  decay of the cross sections which is a 

more rapid fall than the predicted E
-1

1nE fall by the quantum 

theory. In order to obtain a correct high energy behaviour 

urgess33  has tried to combine the binary encounter theory 

with the impact parameter method. He has used classical 

approach at low energies and semi-classical impact parameter 

approach at high energies. 

(1) Comments  

All the methods discussed so far are either mathematically 

complex because of involving enormous computational labour 

(quantal case) or unable to provide correct energy dependence 

of cross sections and are reasonable only if order of magnitude 

cross sections are required (classical case). We, therefore, 

seek to attempt some semi-classical approaches to get physically 

reasonable and mathematically simple and tractable expressions 

for the scattering amplitudes. 

1.2.3 SEMI-CLASSICAL APPROXIMATIONS 

From the theory of•optics it is well known that 7:hen 

the wavelength of light is small compared with the uistance 
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over which the refractive index changes appreciably, the 

rays which follow the laws of geometrical optics can be 

defined. In the same way, if the wavelength ('X. = l/k) of a 

particle is sufficiently short compared with the distance 

over which the potential changes appreciably, it is possible 

to define particle trajectories which obey the laws of class-

ical mechanics. If the potential V is of range a, the short 

wavelength conditidn (classical optics) requires 

k a >> 1 . 	 (1.35 

When the classical condition holds, the angle of scattering 

must be well defined, that is, the uncertainty 60 in the 

angle of scattering must be small compared with O. The 

uncertainty "qk in the transverse momentum imparted to the 

scattered particle is, by Heisenberg's uncertainty principle, 

of order (n/a). The corresponding uncertainty in the angle of 

scattering is 

6k 
8A =( 	). k 	ka ... (1.36; 

If I VI is the magnitude of the potential within the range 

0< r K a, the momentum transfer in the transverse direction, 

is of order 

= 	Fdt 	Ft 	... (1.37) 

where the magnitude of the force, F, is given by 

„, I VI 	
... (1.35) 

a 

and the time taken in crossing the potential is given by 

t 	f dtr,i a/v 	... (1.39) 
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From this) it can be easily seen that the angle of scattering 

for small angles scattering is approximately given by 

Tilt 

I VIlifi nakv -1s)  E 

where v is the speed of the particle in potential scattering. 

For classical condition to apply, we must have 

i.e. 

• (1.41a) 

• (1.41b) 

Born approximation, as pointed out earlier, is also a 

high energy approximation but it applies to angles of scatter-

ing within the cone 0<--E—
I 
 — whereas the classical scattering 

condition applies when 8> 1/ka, and the two regions do not 
overlap. 

In order to fill up the gap between the two regions we, 

therefore, seek a semi-classical approximation which is inter-

mediate in character between a full classical and a full 

quantal treatment, so that it may be valid for arbitrary 

values of the parameter 1 
VI a 

-----. which combines the short wave-
iv 

length condition (ka>1) and high energy approximation 

( IVO <c: 1). One such approximation is the eikonal or ray 
approximation. In order to understand the underlying assumpt-

ions let .us briefly present the derivation of the eikonal 

approximation, following Gerjuoy and Thomas34. 
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1.3t us consider potential scattering. The wavef unction 

tO)is written as 

V= A eiS 
	

(1. 

wherJ A(2.) and S(2) are chosen to be real. Using Eq, (1.42) , 

the real and imaginary parts of the Schroedinger Eq.(1.4) 

yield respectively 

V2A A(1.$)  2 +  (k2_u) A  = 0 2  

2?.A . dS ÷ AV2S = 0 2  

where 	
k2 
	

112 

= 22-11  1/(?) 

and m is the mass of the incident particle. 

Eq.(1.43b) can be rewritten as 

f.(A2, S) 	0, 

an0 —7-esses the flux conservation as 

2i (q-11W) = A2  S . 

I.. (1.43a) 

... (1.43o) 

• (1.45) 

• (1.4b) 
So far no approximation has been made except that V(t) has 

bcen considered to be real. Equation (1.43a) can not be solved, 

in general, without approximation. The fundamental eikonai 

approximation is the assumption 

V2A „k.2 
A ... (1.47) 
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in which case (1.43a) simplifies to 

(1S)2  = k2-U. 	 ... (1.1, S) 

The solution of this equation is 

SO)-St = 	dlt.eEk2-U(!) 3
1/2 
	... (1,49) 

where 1(?) is some initial point on the ray path through 
.114. 

111 2 and at each point 11  = o  on the ray path the unit vector 

1(7, ) is perpendicular to the surface of constant S. • 

Eq. (1.48) may be identified as the classical Hamilton-

Jacobi equation)  if S( ) is identified with Hamiltonls 

characteristic function. In optics this equation )  which 

determines the rays, is called the eikonal equation and SO), 

the eikonal function. The integral form (1.49) of this 

equation determines the orbits, which are just those given 

by the more elementary theory of classical mechanics. Using 

Eq.(1.49), A() can be evaluated, in principle at least, 

from (1.45) and hence the wavefunction liT in (1.42) can be 

found out. 

Equation (1.4?) may be regarded as a high energy app-

roximation because k2  is proportional to E. In the context 

of the wave theorylwriting k = 1/X, it is better thought of as a 

short wavelength approximation and may be written as 

X2V2A <‹. A. 	 ... (1.50) 

This equation holds only if )  in a Taylor series expansion of 

A(1) about any point i>o)  the non-linear terms are negligible 
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for distances 1 	1,7%.. A more explicit high energy 

approximaton to the eikonal s(1) is obtained by making the 

Binomial expansion of the square root in Eq.(1.49) and taking 

the loading term, giving 

s(?) 	SCP m f cgt.c 
9 a 

k - 2 k 
(1 ..7"—\ , 

**to 

which is valid when 

U(t)<<k2  

or 	V() (< E 	 • • • ( 

As is obvious, the integration path is stil2 supposed 

to be along the actual rays perpendicular to the surfaces 

of constant s(1). However, if curvature of the ray paths is 

neglected, using cylindrical coordinates IS t2z), one gets 

S('it,z) 	S(i:,az) = k(z-az) 	dzIV(h,zt), 	... (1.53; 
az 

where the z-direction now has been chosen to coincide vith the 

assumed every where constant ray direction ( in (1.51), so 

that the point 2 has component (b, az) when r has components 
(11,z), In the scattering problem, the most obvious choice of 

z-diroction and straight line (ray) integration path in (1.53) 
A 

is the incident direction k, in which case neglect of ray 

curvature amounts to a small angle approximation.The incident 

wavef2onts, as pointed out earlier, are plane and uniformly 

spaced particularly at points far from the interacion region 



where az  -,, -ap, one can write 

S(b, az) 	k az. 

Thus with the approximations made and with the plane wave 

inident along z 	2, ,7r;,(1.53) takes the :Corn 

(after letting  az  --oo) 

4 

S(t',Z) = kz - 	J dzivth,zo. 	... (1.54) 
.702 

Moreover, if all ray paths are supposed to be parallel to k, 

the spreading  of the rays can be neglected. The conservation 

of flux now implies that A2 is constant. Therefore, using  the 

approximate form (1.54) with A supposed to be constant and 

the z-direction along  11C‘5 Eq.(1.42) finally yields 

tcp, 	= exp(i11.1) exp(- V  f dzilT(11,z1)) 
	... (1.55) 

^ OD 

'OEM is known as the eikonal wavefunction in potential 

scattering. Its use in the expression for the scattering  

amplitude (Ref.35, P.R02) 

f ab sK1 = - 	 2 Of V  0> 

	

4.7c 2-11  Jd3r 	V(r) ti+)  (?) 
	

• 0 • 	.56) 

forms the basis of the eikonal or ray approximation, yielding  

in cylindrical coordinates 

tOtt 	= 	2-4-1  Id% dz e 
• . 	A 

	

i A .(Te+kz) v(g2z) 	I 

	

tv 	" IL 	2 	4.7C 4-2 
-co 

... (1.57) 

z 
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The momentum transfer vector can be assumed nearly 

perpendicular to the incident direction a for small angles 
of scattering 8, 

-11,̂  	1_2 A.kz = k(1-cos0) z 	2 kz. ... (1.58) 

This is not an additional approximation as the eikonal 

approximation is only reliable at small angles, because of 

the assumption of straight-line (ray)trajectories. The maximum 

value of z of importance in the integration isp,a, where 

a is the range of the potential, so that the term exp(d.2z) 

may be replaced by unity for angles such that 

	

2ka <<1. 	 ... (1.59) 
The z--integration in Eq.(1.57) can now be easily performed to 

give the eikonal scattering amplitude 

	

f (2i  ) - 	id2b ei0.l Eei)(   (1.60) 

where the eikonalphase function X is 

,co ykil) 	- 	j az= vo.),zo tiv -co 
... (1.61) 

For central potentials, the integration in Eq. (1.60) over 

the azimuthal angle Ob can also be performed to yield 

fE(16A = 	 db b Jo(Ab)5"13)  - 

Various other forms of the eikonal approximation and 

its improved versions have been proposed. Their details are 
37 

given in papers by Meliere36 Malenka,Schiff38 Saxon and 
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Schiff39 Glauber40  5 Blankenbecler and Goldberger41 

Feshbach42) Willets and Wallace43) Sugar and Blankenbecler")  

Levy and Sucher45)  Abarbarel and Itzykson46 Moore47) Wallace48, 

Lebedeff49.,Baker5°) Obu51  and Swift52. Glauber's approach4°  

deserves special attention because of the fact that it 

clarifies the underlying assumptions and the ranges of appli-

cability of the approximation in an explicit way. His approach 

originally applied to problems in nuclear physics has, at 

present)  wide applications in atomic collisions. We shall 

discuss his approach in detail in the next chapter. 

In order to assess the accuracy of the eikonal approxi-

mation we briefly analyse) in the next section)  the eikonal 

scattering amplitude, Eq.(1.62), and compare it with the 

Born series. 

1.3 THE E1KONAL MULTIPLE SCATTERING EXPANSION 
AND THE BORN SERIES  

The exact scattering amplitude f has an expansion in 

powers of the interaction potential, namely, the Born series 

co _ 
= n= fB' 1 	-n  

... (1.634 

where 

Bn =-2112/4 ju(G(+) 
m n-11I Ti \ 

\ 	o 	• 

In the above expression the potential U( = 
	

V) appears 

n times and the free Green's function Go
(+)  (nr1) times. In 

analogy to Eq.(1.63a), we define the eikonal multiple 

(1.63b) 
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scattering series expansion: 

co _ 
f = 	f E 	En j=1 

where 

... (1.64a) 

4! J 
n 	_. co 	n 

TEn = 	-ik -4* n— 	db b Jo(Ab)E4(b) 	. 	(1.C4Y, 
o 

We also define fBn and fEn  respectively, as the sum of the 

first n terms of Eqs.(1.63a) and (1.64a). Thus, 

f 

	

Bn = 	 13j j=1 

	

f = 	..En 	Ej j=1 

Obviously as n 4 a% fBn  -) f and fEn-)fE. We note from 

Eq. (1.64b) that for real potential the objects 	are 

alternately real and imaginary. We now investigate term by 

term the eikonal and Born series in the semi-classical 

limit ka>> 1. First of all it is easy to see that 

fEl = fBl 
	 ... (1.67) 

for all energies and all momentum transfers4°. We emphasize 

that the result (1.67) is valid for all angles only when the 

z-axis used in evaluating the eikonal phase shift function 

X(b)Mq.(1.61) 	is chosen along a direction perpendicular 

to A. 

Relationships between the higher terms of the eikonal 

and Borns series have been investigated recently47248,52-54 

Byron et a154 have made a detailed analysis 

and 

1.65) 

(1.66) 
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of this problem for a variety of real central potentials. 

For Yukawa-type potentials and for ka>>1, they have got 

the Born and eikonal series expansions in the forms: 

[ALAI + i 
k3 k2 k2 

B2 	B3 

and 

f B1 k
(6) 	BCA)  
 • • 

k 
  (1.6.9\ 

 

T 
TE2 	E3  

It is evident, by comparing Eqs.(1.68) and (1.69), that 

neither fB2 nor  fE2  are correct to order k
-2 However, since 

the coefficient A(A) is proportional to U2 while C(6) is 

proportional to UO3, where Tjo  is the maximum value of Up it 

is clear that in the weak coupling situation 

IVIa 	luola  
Div - 2.k <<1,  

the second Born amplitude should be more accurate than the 

eikonal amplitude. As the coupling increases in such a way 

that IVIa/fiv 61 but IVI/E < 1, the eikonal method should 

improve steadily. Even for strong coupling situation, for 

which IVIalrav) 1 and I VI/E >1.5 Byron et al 54  argue that the 

eikonal approximation is still accurate at small angles if 

k a >>1 is satisfied. This implies that the traditional 

criteria, Eqs.(1.35) and (1.52), are only sufficient condit-

ions which are often unnecessarily rigid. 

(1.7o 
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A similar comparison of the two-series has also been 

made recently by Byron and Joachain24,55,56 for collisions 

involving composite bodies. On the basis of this comparison.  

Byron and Joachain24 propose that in electron-atom scattering 

the direct (non-exchange) scattering amplitude (through terms 

of orders k-2) be computed from the relation 

F = -01  + Re 
B2 

 + F 3  4- 	F' 2+ ...2 	(1.71) 

where FNdenotes the generalized form of the direct scattering 

ampliudefrfor collisions involving composite bodies (say, 

electron-atom scattering). This treatment is referred to as 

the eikonal-Born series (EBS) approximation. Byron and 

24,55-47 Joachain 	have followed this treatment to study the 

elastic scattering and Byron and Latour58 have extended it 

to study excitations of hydrogen and helium atoms by electron 

and position impact. In order to be consistent through terms 

k-2, they have also included exchange effects through 

Ochkur approximation29. 

1.4 PLAJ.OF THE THESIS  

This thesis contains the work we did to study the 

scattering of charged particles by atomic and ionic targets 

at high and intermediate energies. It may be argued on the 

basis of foregoing discussion that a semi-classical approxima-

tion is better suited at these energies. In all the problems 

investigated here we have used eikonal approximati.on or 

Glauber approximation (which is a special case of the former). 
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We, therefore, completely devote the next chapter to a 

review of the Glauber approximation in order to understand 

the underlying assumptions and the ranges of applicability. 

An explicit expression of the wavefunction2  the result (1.55)5 

and hence the expression for the scattering amplitude is 

given, following Glauber4°  and Gerjuoy and Thamas342 in both 

the potential scattering and the collisions involving 

composite bodies. In the case of collisions involving composite 

bodies, the importance of a proper choice of the z-(quantiza-

tion) axis is emphasized. 

In Chapter 3, we point out the inefficiency of the 

closed form expressions of the Glauber scattering amplitude 

9 for e-H atom scattering obtained by Thomas and Gerjuoy5 to 

study excitation to highly excited states from a low lying state. 

This arises because of the increasing number of hypergeometric 

functions depending on the principal quantum number of the 

excited state. We have overcome this shortcoming by combining 

the techniques of Franco6o and Golden and McGuire
61 

and 

treating the Laguerre polynomials appearing in hydrogen atom 

wavefunctions straightaway rather than breaking them into 

a series of terms of the form x4  e-vx. The usefulress of the 

one-dimensional Glauber scattering amplitudes thus obtained 

is commented upon in the study of the excitations of hydrogen 

atom. 

In Chapter 4 we discuss the complications involved in 

the Glauber scattering amplitude when we study scattering 

from targets mere complicated than the hydrogen atom. These were 



usually handled in frozen core Glauber approximation. The 

calculations of Mathur et al
62 

and Walters
63 

fall under this 

class. Franco
6o 

gave an analytical procedure of converting 

the (32+2)-dimensional integral appearing in the Glauber 

scattering amplitude for scattering of charged particles 

from a 2-electron atom into a one-dimensional integral. We 

have looked at the numerical tractability of Francois 

reduction procedure by applying his final expression to the 

elastic scattering and the 2s - 2p excitation of Li by 

electron impact. To avoid the encounter with divergent(1F2) 

hypergeometric functions appearing in Francois final 

expression)  an alternative is suggested. This alternative 

puts our final expression in a two-dimensional integral form. 

The results obtained are Compared with those of Walters63 

and the experimental data of Leep and Gallagher64. This 

procedure is also used to estimate the percentage polarization 

of the 2p 2s resonance line emitted from 6Li and 7Li by 

electron impact. 

The study of the charged particle scattering from 

ionic targets presents complications because of the involve-

ment of a pure Coulomb (long-range) interaction between the 

projectile and the target ion. In Chapter 5, we consider such 

a problem. The pure Coulomb part is separated out from the 

total interaction and its contribution is taken into account 

exactly. The remaining interaction is then treated in 

eikonal-optical model6568. The total scattering amplitude 

is then obtained hv Priding,  Pnherently the two parts. We 

apply this procedure to study scattering from helium like 
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ions, such as H and Li+. There is no experimental data with 

which these results could be compared. To get some feeling 

on the procedure adopted here, In have compared our 'results 

with those of McDowel1
69
. 

In Chapter 6, we attempt to improve the behaviour of 

the Glauber approximation at large scattering angles. The 

poor performance of the Glauber approximation compared to 

even the first Born approximation is due to the improper 

semi-classical treatment of the electron-atom interaction70 

We resolve this shortcoming by proposing a two potential 

Glauber-distorted Born approximation. We apply it to the 

elastic e-H(ls) scattering. The exchange effects, significant 

in the energy range of interest, are included through 

Ochkur approximation29. The results are compared with those 

obtained by two-potential eikonal approach70 and the eikonal-

Born series analysis
24 

and with the recent experimental data of 

Teubner et a171 Lloyd et a1
72 

and Williams
73. The main 

feature of this procedure is the simplicity of calculations', 

it is hardly any more difficult than the ordinary Glauber 

approximation.4 
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CHAPTER 2 

THE GLAUBER APPROXIMATION 

2.1 INTRODUCTION 

The Glauber approximation belongs to the class of 

so called eikonal approximations and is just one example 

of the many possible quantum mechanical approximations in 

this class. This point) as pointed out by Gerjuoy and 

Thomas34 is not clear from the derivation of Glauber409  

but is apparent from the structure of the Glauber formula for 

the scattering amplitude. The Glauber version has the 

distinction of being one of the simplest eikonal approxima- 

tions. This feature is not too significant in the potential 

scattering case )  but is extremely important in the evaluation 

of eikonal scattering amplitudes for more complicated 

collisions. In the next section we derive the Glauber 

approximation, describe its basic underlying assumptions and 

discuss its limitations in energy and scattering Eingle.Ma altern 

tive derivation of the Glauber approximation, using linearized 

Green's propagator, will also be outlined in order to 

understand the underlying assumptions of the approximation. 

Sec. 2.3 deals with the derivation of the Glauber formula 

for collisions involving composite bodies. 

2.2  Zal11TaTJUOMEL21 
We proceed to derive the Glauber formulaW  for 

potential scattering. We assume that the interaction potent-

ial is short-range i.e. non-Coulombic. Otherwise, as Glauber 
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pointed out, the eikonal path integral diverges and theoreti-

cal development is meaningless. Nevertheless, use of the 

Glauber approximation even for Coulombic potentials in atomic 

collisions is not unreasonable; this extension will also be 

discussed below. 

2.2.1 GLAUBERtS DERIVATION 

For an incident wave 

1g going scattering solution Yi -I-)  

equation, 

(21t)3/2  
exp(i2.?), the out-

(t) to the Schroedinger 

(_ t! 72+v(t)-E)44+)(?) = 0) 2m ... (2.1) 

satisfies the LippmannSchwinger integral equation 

ti+)(1) 	exp(itM 	2111  f 3r eik"11  ,1),(60c4")d'tN 
• -I 	

) 

• • • (2.2) 

which, via the asymptotic condition 

(4)(1) 	1 	e + It 22) 9"--  L (2703/2 
2.3) 

yields the scattering amplitude 

f 	417E  1121-121  Tfi2 	 ... (2.4a) 

where 

Tfi  - (2703/2 
 Jd3r e-1111 *?' V()W)(1) 
	

(2„ib) 

A 	 A 
for scattering from initial direction k into final direction 10. 

Here . 1"F)  is an outgoing scattering eigenstate of H corresponding 41 
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to an incident plane wave of momentum tk. Following GlaUber4°  

we write 

t:4)(1.) = 77— eit' Q(?).  
t7  2. 5) 

where P(#) is a correction or modulating factor to the incident 

plane wave, its deviation from unity measures the scattering 

effects of the potential. Making the change of variable 

#t= #-#0, Eq.(2.2) becomes 

p(t)  = 1 	2,
I  4%2 

eikr 	itttt 
Jrn 	e 	

V(t-#tt) P (-fit) . 
r 11 

#4. (2.6) 
The integral Eq.(2.6) for P(1) is exact. Glauber now makes the 

following assumptions 

(1) ka>>l 	( classical) 	 ... (2.7a) 

(ii) 1 VI <.< 11  ( quantum) . 	 ... ( 2. 7b) 

These conditions amount to requiring 

that V and P vary slowly within a particle wavelength (7■.= 

The detailed explanation of these conditions has already 

been given in Chapter 1. GlauberA 
D 
 further assumes that the 

product VP also varies slowly within a particle wavelength 

so that negligibly small. contribution to the integral on the 

right in Eq.(2.6) comes from regions in which the exponential 

oscillates rapidly. If we consider points t which lie within 

the volume occupied by the potential, the largest contribution 

to the integral will come from the values of #1t lying close 

in direction to 2, since for these the exponential is nearly 

stationary, The quantitative expression under this approximation 
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is obtained 

-It r under the 

differential 

by carrying out the angular integration over 

asymptotic approximation r a aa. Writing the 

element d3rnas 

where. 
3 	2 " d r = r dr 440, 

= cos(2,2") 

and 0 is the azimuthal angle, the integration over u is 

carried out by parts. If we suppose that the product VP 

varies appreciably only within a distance d which is taken 

here to be much larger than X, we get for the integral 

Eq.(2.6), the value 

P(t) =1+ ..2.11_i ft 
, dr d 

Leikri(1-0 	11m41 
0 

41ut 	
ik 	1T(1-P ) P ci-] 

11=-1 

+0(-1-') kd ... (2.8) 

The terms neglected by the asymptotic approximation, are 

as indicated, of relative order l/kd. Now the limit u = -1 

corresponddto rantiparallel to k. Since the exponential 

varies rapidly it 	case]  the contribution of the u =-1 

term is of order 1/kd and is,therefore, negligibly small. The 

Eq. (2.8) corresponding to points of stationary phase (rlit 

becomes 

p (t) 	- 	5°°  V(ii)-?tr) P (1-1") n rt  drat. 	00* (2.9) 

In Cartesiar coordinates, with the z-direction along k, 
Eq. (2.9) is 



z 
P(x,y,z) = 1 - t-;  J dztv(x2y,zt)p(.,y2z!)., 

_co 
... (2.10) 

after returning to our original coordinates t and ti in 

Eq.(2.2) via zit = z-zi. The solution to Eq.(2.10) is immediately 

seen to be 

P ( 	P(x,y,z) = expE -v J dzilr(x,y,z1 )1 . 
co 

(2.11) 

4, The appropriate wavefunction . (+) in Glauber approximation 
is, therefore 2 

W)()123r2z ) - (270 	3/2  expEkz - 	j dzi V(x,y,z! 
- co 

... (2.12) 

This expression is missing a good many things one looks for 

in a three-dimensional scattering wavefunction, e.g., a 

spherical outgoing wave. But we must remember that the 

arguments from which it is derived are only intended to 

hold within the volume occupied by the potential. Therefore , 

expression (2.12) need not represent the wavefunction well 

elsewhere. This incorrect behaviour of 11TE(t for large 

cannot be argued on the basis of eikonal approximation 

derivation described in the previous chapter. Moreover, it 

is worth mentioning that Glauberls derivation of Eq. (2.12) 

shows that there is no need to assume V(i'.) to be purely 

real as we did in the eikonel approximation of Chapter 1. 



	[i  2 

= 	t2( 27E) 3 	( 21. g= ie) 	24.2- is 
2m eii~a 	d3 	i  

( 2e 15, 

2.2.2 DERIVATION USING THE LINEARIZED PROPAGATOR 

Let us considor the Fourier integral representation 

of the three-dimensional free Green's propagator 

.21Z1 1 	d J\- e 
112 (211)3 J k2- ic 

... (2.13) 

where the limiting process c 4 0
+ 
is always implied. 

Now the situaion, we are attempting to describe (ka >> l 

1 V I / E (: 1) , is one in which the scattering is heavily 

concentrated at small angles e It is in fact, very unlikely 

that at high energies in traversing the potential the 

particle will be deflected greatly from its initial direct- 
A 

ion k. In momentum space we could, therefore, secure an 

approximation to the wavef unction by expanding its momentum 

dependence about the initial momentum 	In an equivalent 

procedure74 the momentum space dependence of Green's function 

can be expanded about k, where only the values of 7near 

in the integrand of Eq,(2.13) will be important. Making the 

substitution 

... (2.14) 

and carrying out the expansion about 	we have 

,e'#-(+) -4 	-2m ei 	r 
(R) = 	l" 	

4 -4 

k 	.t12( 21t) 3 	2 -4 	. 
T +2 T. 	l - e 



... (2.16) 2 ok “) k 

2111   ( 2/c) 3  
( (g) 	+ 2m e  

kit  ( 2n) 3  

(1) 	

e 
	d33 e" 7 	 ( 2.17) 

... (2.18) 

(2t.lt-is) 
2 i4S 

UTTe 

(2T.11.-is)2  
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where 

and so on. For
(1)

small scattering angles, we can approximate 

(Z by -elk  (. 

(1) .t (pi) 	2m el  	d3T ei  
k 	/12  ( 211)3  	(2t.t-ie) 2  

(11) represented by expression (2.19) is known as the 

linearized Greents propagator and can now be solved without 

further approximation. Using cylindrical coordinates 

(g= g14Pz1  ) with z-axis for tintegration along k, the integ- 
ration over T1, in Eq.(2.19) yields a two-dimensional 8-function. 

'1 
The integration over T yields a non-vanishing result only 

zl 
when the contour is closed at infinity in the upper half plane 

(because the linearization leaves us with a single pole lying 

always on the posit:—_) imaginary axis). Thus (2.19) reduces to 

( 4) 	= 	la eik(z-zt)8(ttl)  e( z- z ) 	... ( 2. 20) 

where L,} is a Heavyside step function defined by 

6)(z -zt 

 

1 	if z> zt  

0 	if z (z t 
... (2.21) 

 

 

   

... (2.19) 

4 
and e. 70cto 	and bt are the components)  perpendicular to 
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k, of x and ?1. Using Eq. (2. 20))  the Lippmann-Schwinger Eq. (2.2) 

yields 

(4. 
ti ) 
	

= ikz e- ikz 
( 27) 372  e 	

dz 
-co 

With the definition 

(4-) 
ziAL (t2z;]. 

(2,22 

4.(+) 
Ti (i') 	

ikz 
(270 3/2 e' P(li,z)2 ••• 2.23) 

the Eq.(2.22) simplifies once more to the form. (2.11). Basic 

content of this approximation is that the significant propa-

gation occurs only in the forward direction at values, of 

x l  which are unmodified by the interaction V(4); in other 

words the linearization approximation explains in a more 

elaborate way that the approximate wavefunctiorh Eq.(2.22), 

is only adequate for the treatment of small scattering angles 

and does not contain a correct estimate of the Fourier ampli-

tudes corresponding to large momentum transfer. Quantitatively,  

the limitation on scattering angle 0 may be given roughly by40  

2kd ‹< 1. 	 ... (2.24) 

2.2.3 EXPRESSION FOR THE SCATTERING AMPLITUDE 

Using cylindrical coordinates with positive z-axis 

along 12 2  the vector r is 

13), 	Z , 	 ( 2. 25) 

and the expression (2.12) for the approximate wavefunction 



144')  is 

( 4) 

i 
(biz) 

E 1 
z 

11:ri(bz) =-3-721 	exp.kz 
(27) 

- 7v j  
-00 

If the potential V is centred at the origin, the distance 

b = It1 has the interpretation of an impact parameter. 

Using Eq.(2.26) for the approximate wavefunction in the 

expression (2.1+) for the scattering amplitude, we have 

P  CIO IT) = 	2111 j  d2b 	ei" ) • (114-1z)  VOL z) 'E 	47c 2 	 ... (2.27a) 

where 
z 

/\(b,z) 	 v(b,z2)cizt, 	 (2.27b) 

- and d2 = b  bdbd010  denotes integration over the plane of impact 

parameter vector b. 

Let us consider the case of elastic scattering. Then 

energy conservation requires 10 = 	= k so that for small 

scattering angles the momentum transfer 1.2 F.-EU!) is nearly 

perpendicular to k. In fact the error of approximating the 

exponential 

ei(it-k!).1\cz 

by unity is only of order 

(l-cos9)kd -,i92kd. 	 ... (2.28) 

Condition (2.28) along with (2.24) indicates that the neglect 
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of longitudinal component of momentum transfer imposes no 

further restriction on the scattering amplitude but leads to 

simplification of Eq.(2.27a) to a two-dimensional integration 

over the plane of impact parameter: 

4Tch 	
az 	

V(b lz t)dz 
fE(10 1k) 	- 2m2 -id 2b e it 17r dz(- 	_co  

2 	1"-{c°  -co 11  
21.ci Id b e • e  Tilt 	 o 	2z) dz 

4 -a 
[i_eix(b) 1] 

= 2n 	
eiA•b  

where the phase function XX13) is given by 

)(,(t)- Div ..co V("bizt)dzt 
-co 

• (2. 29b) 

Eq.(2. 29a) is the final form of the scattering amplitude 

for elastic scattering in Glauber approximation. The result 

may be thought of as corresponding to a picture in which 

each portion of the incident wave passes through the potential 

along a straight line path and suffers a shift of phase 

characteristic of that path. 

For spherically symmetric potentials 2  the expression 

(2.29) is further reduced to a one-dimensional integral over b: 

E(10 2k) = ikfdb b Jo(Ab) a _ ei)((b): 	 ... (2.30) 

where we have used the relation (Ref.752 P.  620): 

• ( 2. 29a) 



,27c 1 6j  eaAcos0 	21/J
o ('") 
' .. (2.31) 

Here J
o
(X) is the cylindrical Bessel function of zeroth order. 

Following thn small angle approximation Ch.(2.28)11, Eq.(2.30) 

further reduces to 

• I f E(t  ) = ik, db b Jo(kb8) 	ei2((b)  :]. 
0 

( 2.3 2) 

2.2.4 SIGNIFICANCE OF THE DISTANCE Id' 

We have assumed that d is the distance over which the 

product VP varies appreciably. The potential V varies over a 

distance tat,  and according to Eq.(2.11), P(t) varies appreciably 

over a distance--liv/IVI. Evidently the distance !cif is, 

in order of magnitude, the smaller of these, i.e., for 

Iv' a 

hv 

we have 

and for 

we have 

cl. A, a 

1 ; 1 
by 

2.2.5 ANGULAR RANGE OF THE APPROXIMATION 

Let us recall Eq.(2.24), 

19 2kd (<1, 

which limits tl-,n argillar range of the approximation, For the 
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case. 

1 Via  

-iv 	
<1, d, a 

we have 

Q.  1 	for 141  ( 1; 
( ka) 1 /2  

• (2.33a) 

Similarly Li 1/2 	1 via 
E  ) 	for —> 1. 
 Div 

• (2.33b) 

Both of these) according to the assumptions Eq.(2.7), are small 

angles. However) it is argued4°  that nearly all of the scattered 

intensity is concentrated ) in both the cases )  at angles which 

are still smaller i.e. in the'Born approximation the average 

angle of scattering is 

fa x\  1 	Mac 1)ka 	liv 

and in the W.K.B. method we have 

IV' 	hrla 
<0(v— 	( 

	
>1) . E 	tv 

• (2.346) 

• (2.34b) 

In both extremes the typical scattering angles are well within 

the angular range of the approximation. 

2.24 EXTENSION TO WIDER SCATTERING ANGLES 

The expression, Eq.(2.30), could be obtained by the 

impact parameter method. This method clearly implies that the 

Fourier-Bessel representation, Eq.(2.30), is exact at all 

energies and all scattering angles as far as the eikonal phase 

Vii) is exact76-79. The Glauber small angle approximation 



restricts 'X, to Eq.(2.29b) by choosing the integration path 

along z' parallel to k. An important advantage of the Glauber 

scattering amplitude, Eq.(2.29a) 5 is its comparative simplicity 

and the resultant ease of calculation. For scattering into 

winder angles one can modify the form (2.29b) by replacing the 

integral from -oo to +co along zt by an integral along the 

actual curved path80 or by an integral along the two semi-

infinite straight lines3839 the first parallel to k's from 

-oo to # and the second parallel to 11 from ?' to oo. However, 

such a procedure would not lead to a convenient form like 

(2.29b); unless the path integral in the exponent of Eq.(2.27b) 

is along a single straight line allowing replacement of ei  • 

by eiA.b,  it is not strictly possible to reduce (2.27a) to a 
form like (2.29a). Nevertheless, integration of the exponent 

in (2.29b) along two semi-infinite straight lines has been 

used in the Glauber angle approximation81 82.  these semi-

infinite straight lines at each impact parameter b are 

asymptotic to the classical path. 

Glauber40 has proposed that (2.29a) could be extended 

to wider scattering angles, without any loss of simplicity or 

calculational ease, by choosing the path integral over z along 

a single straight line parallel to the average momentum 

direction (.114Kt)/1k41 1, from -ooto ioo This choice of z 

(and zt) direction in (2.27b) immediately yields (2.29a) from 

(2.27a) without any need to assume that A is perpendicular 

to the z-direction. This extension of Eq.(2.29a) is known as 

the wide angle Glauber formula for lit', 11) in potential 
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scattering. For short ranged spherically symmetric potentials 

it reduces to the form 

 
21c) 	ik 

rC°
db b Jo( 2k b sin 8/2) El - eigb)  ]. ... (2.35) 

0 

Here LI is replaced by its exact value because, as long as 

1-4 
energy is conserved, i.e. 1kt 	al exp(iP) is exactly 

4 4 
equal to expaA.b) and does not involve any small angle 

approximation. The above change in angular range, i.e. the 

replacement of Q by 2 sin Q/2 is hardly a great one, but 

it must be remembered that the angular distribution of the 

scattering with which we are dealing is peaked in the forward 

direction and consequently decays rapidly with angle. Therefore, 

even so slight a shift of angular scale at small angles may 

be of significance in improving the angular range over which 

the approximation holds. Though the wide angle formula suffers 

from the defect that it approximates all rays by a single 

straight line parallel to Nit', irrespective of their point 

of origin on the incident wavefront, it has a number of 

desirable properties for all potentials, including ease of 

calculation, velocity reversibility and unitarity. Moreover, 

the wide angle Glauber formula for the Coulomb potential 

is exact at all angles and all energies except for a phase 

factor
40 

and it is a major reason that the composite collision 

version of (2.29) has been so successful in atomic collisions. 
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2.3 COLLISION OF COMPOSITE BODIES 

2.3.1 EXPRESSION FOR THE SCATTERING AMPLITUDE  

In atomic collisions between a pair of neutral bodies, 

or between an ion and a neutral body)  the net interaction 

IV! between the colliding bodies decreases more rapidly 

than rat large distances. For such collisions, therefore, 

the path integral for the net interaction converges in 

Eq.(2.29b), even though the path integral would diverge for 

the individual pairwise Coulomb potentials comprising the 

net interaction. 

In order to avoid complications associated with the net 

long range Coulombic interactions in the initial and/or final 

channels we confine our present considerations to direct 

collisions of two bodies A and B: 

A + B 	A + B(e) 	 (2.36) 

in which atleast one of the bodies A, B is neutral. Here 

BN  denotes an excited state. We follow the approach of Gerjuoy 

and Thomas34  for the generalization of the potential scatter-

ing formula, Eq.(2.24) for collisions of the type (2.36). Let 

us consider the centre of mass Lippmann-Schwinger equation 

1  

(27c)3/2 	1)1()  - -2.5 
47th' 

31,1  

A 
7 exP(ikill -511) 

(1)i 	e(11) V(1! 	1-) 

/0 
	("1 

(--r----;tp,  
eja, Liz 	

) 	(rr  ,2t) 

lA 	
"" (2.37) 

( 
ROORKT.E )  

ORAL 	ourmkswf of itegitial 
/./ OF 11,, 

I 



Here 1 is the displacement of the centre of mass of A 

relative to B; 5t denotes the collection of internal coordi-

nates specifying the positions of the particles in A and 

B; 4)1.0) is the product of the initial bound states of A and 

B; the sum over j extends over the complete set of internal 

states, both discrete and continuous, of A and B; and the 

total energy of the composite system (A,B) is 

ti2kE 	-112k2+w = 1E12102 + w
f E, 211 	-j = 2p 	i 	2p (2.38) 

whEme. is the sum of bound state energies in the intermediate wj  

channel j; k = pv/h and kt = pv,/t are respectively the initial 

and final wavenumbers, and v and V the respective speeds in the 

CM system; p is the reduced mass of A,B. 

Eq. (2.37) , 	which is exact, is now solved approximatel:-. 

Gerjuoy and Thomas34 suggest that the incident particle energies 

are sufficiently large to assume kj  = k for all j in Eq.(2.32). 

The sum over j then reduces to the closure relation 

L 1).(1) OGN = 45(Mt) 2 	(2.39) j  

thereby immediately simplifying '(2.37) to 

irc+)rd,) L. 	1  	e 2...41 
( 27  yi  .4.- 	0  3/2

i 
 

24 	,ikril-t1 
---7 d rf 	 V( t ,T1 )11i +) ( 1 1-1).; .. (2.40) 
4%/1 	It-Y 1  I 

The approximate integral Eq.(2.40) for (+) (r: 
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involves the internal coordinates of of the incident 

composites only parametrically; moreover the .3'c dependence 

of 1i+) (r,1) is determined only by the initial bound state 

i 
and the interaction potential V. Hence, we me-j~ now write, 

without further approximations 

ti+) (1,2) =(121) 0)1.M 	 ... (2.41) 

which yields an even simpler integral equation for 0,Z, 

namely. 

7 	
211 F 

u
AT 1 	• - 	2 J "-( 2072 

eit 
	Lotn 

e 
A 

) 	1,1) 

e 	( 2 • LI 2) 

 

Except for its parametric dependence on 	Eq, (2^42) for 
A  
'0

4. 
(11)2) is identical to the potential scattering case, Eq. (2.2) 

Eq. (2.42) can 	therefore, be solved in a similar way 

by using the method of stationary phase. It yields precisely 

the approximate solution for 44)(22): 

IIJC +) ( 22) 	tG( 71) 3/2 - 

e.xp(- 	j dzt V(t=,,z1;1) Div .I- OD 
... (2.43) 

The centre of mass collision amplitude (Ref.35, p.802 and 866; 

Ref.83) for the reaction (2.36) is given by 

F att 	= 	 _. a sid ,3 	- ''r 	4,1 ra e 	va,X) fi 	4ic 112 1 (t3b 7 

(2.44) 
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which, by using, Eq.(2.43) for t14)  simplifies, to 

11,G rtt 	= - 1 2a ia3r 	ej---L7r( 72)vq. 2Z f ‘" 2"i 	47E 

z  exp ( - Div fdzt  V(11 2 t .2-1) 
-CO 

and by making the small angle approximation (choosing the 

z-direction along V) reduces to 

ot t  11?\ 	as,1 2/., eiA.b 	3x  efim 	_ eix(t 751) 
'fi"" 	270" ' 

where:  

4 4  
W 	

Div 
J IDIX) = - 	j dZt V(b2Z1.254). EV -C 

1 ) 2 

• 6 	( 2. 2+6 a) 

• (2.46b) 

The expression (2.46) is known as the Glauberts formula for 

composite collisions. 

To be more specific, let us consider a direct collision 

in which a fast, charged, telementaryt particle A is 

incident on a composite target B (such as an atom) which 

contains Z-scatterers. If we assume that the incident particle 

interacts with the target scatterers via two-body spin-

independent interactions, the expression (2.46) is further 

simplified and can be written, more explicitly, as 

;4 , 
G (kt 	, 	j 	3 lacf.4). Ffi 	- 2nja o e 	id x 	dY y tx 'Z f 12""xZ" 

AN )47  I-)  S 41) • ,b2SZ ./W 	X" 2 tif • 4, 	.) 2 1  
• • 0 ( 2 4 I+ 17 (.1) 



(2.4.7b) 

where 
W 
( 	SI 2 • • • 2g,7) 

Fla 	
.1.1);

2141.02tz) n 1 	e 	A, 2  

2'??? 9*6" ) = 2 x.(114.) 
J j=1 

Iap  
bij 	by dzilf(b,z,q ) 2 

2 Z4  e 4 
1100  9Z1 	 ( 2. 47e 0 	

Zi r 
  

HereZie is the total charge on the incident charged particle 
4 

and. . are the coordinates of the target electrons (relative 

to the target centre of mass): 

1.
J 
 = t.

J  + 
	zj. 	 090 (20 11.  

The assumption that the internal motion of target particles 

is slow compared with the relative motion of A and B is 

implicitly involved in the expression (2.47). The crucial 

property of the phase-shift additivity, expressed by Eq.(2.4.7c) 

is clearly a direct consequence of various approximations, such 

as) the one-dimensional nature of relative motion and the 

neglect of three-body forces, target scatterer motions,and 

the longitudinal component of momentum transfer. 

For high energy small angle scattering, the formula. (2.47) 
is valid in the laboratory system as well as in the centre 

of mass system84. If we neglect recoil effects, which are 

small for scattering near the forward direction, the only 

modifications are that the centre of mass wave vectors k and 

and 
-Co 2 
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4 
10 must now be replaced by the corresponding quantities 

and It while s k--k4  is replaced by q=ki  - kf . Neglecting 

recoil effects, we may thus write the Glauber scattering ampli-

tude in the laboratory system as 

F 	k. 
G - 	d2b 	(1) ( fi f' 	2n - 	Z f 1"°°7xZ)  l'"' 

x 	(t)?3. 	)tz)(13li(la.)-.. )4.z) 2 	- 

	

( 

where 	is nor the laboratory momentum transfer 

and we have denoted the initial and final laboratory wave 

vectors by 	and -1f  respectively. 

The differential and integrated cross sections are 

obtained from the scattering amplitude 9 Eq.(2.49),in the usual 

way. The differential cross section is given by 

d0-(q) kf 2 

k. 14i( f9Ki)1  2  do 

and the integrated cross section by 

k, 	G -> 2 
a- (k1) = - k4dQ IFfi

(kf ' k.)1 2 

A 

whe-- integration is over all directions kf  of the scattered 

electron. Using the relation 

q2 	2 
q = k. + k 	i 2kkf  cos() if  

where 

0 = cos
-1  

ki. f  

Eq, (2.51) becomes 

1,44 (2052a: 

... (2.521: 
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k.+k f G 4 4  2  0-  (ki) = 	r 	dq q IF 	(k k.) I 
2 - 	fi f' k. k.-k f 

(2.53) 

' For elastic scattering (kf  = ki) 2 we have 

2k1,, 4  2 
(ki  ) = 21-c  f dq q IFG(k 2 	fi f k  2 i)  I , 

ki . o 

q = 2kisinG/2. 
The superscript G . .,G will  honceforth be dropped for 
convenience. 
2.3.2 CHOICE OF z;-AXIX 

where 

. . . ( 2. 5Li.a) 

... (2.54 

While making a proper choice of a quantization (z-)axis 

when (2.45) is used for scattering into wide angles not obeying 

(2.33) the following points should be noted: 

(1) As k co ; the z--direction must become perpendicular to t if 

(2.4.6) is to reduce rigorously to the Born approximation in this 

limit. 

(ii) If A is not perpendicular to z, it is not permissible to 
.4  

replace elA.r  in (2.1+5) by eiAb., the integrand in (2.4.5); incluc- - 

ing the path integral )1, , must be independent of z. 

The second point might be defended on the grounds that 

it is less erroneous to replace exp(i.Lr) by exp(i7.) after 

choosing the path integral along a physically reasonable 

direction than to perform the eikonal path integral along 

a physically unreasonable direction strictly perpendicular 

to -g. Following these arguments, an adequate choice for the 
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z-direction in (2.46), which always lies in the scattering 

plane (the plane containing t and Itt), is along the direction 

(k4kl) perpendicular to 

= 	= k(k-ki). 	 (2.55 

For elastic scattering, k = k' a t all energies and 

of (2.55) is automatically identical with Tt 	v.v., for 
elastic scattering, it is, therefore, generally agreed that 

the z-direction in evaluating the path integral in (2.46b) 
is to be chosen along a straight line (11Z4t) perpendicular 

to t. For inelastic scattering choosing z-direction perpendicular 
to tis quite inadequate. However, the direction (14 1) seems 

particularly attractive in excitations near threshold, where 

the direction perpendicular to r is always nearly perpendicular 

to k, even for small angle scattering. Nevertheless, specially 

in inelastic scattering at low energies, one cannot rule out the 

possibility that it would be more accurate, though more arduous, 

to compute collision amplitudes directly from (2.44) as 
Byron85 does, evaluating the path integral along some physically 

reasonable direction tot necessarily perpendicular to 1. 

It is important to note that the choice of z-axis does 

not effect the calculations involving differential cross 

sections summed over all final magnetic quantqm numbers mf, but 

it may effect whenever such a summation is not involved. Gerjuoy 

et a186 have emphasized this point in estimating the percentage 

polarization (which depends on mi.) of Lyman-o: radiation emitted 
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from hydrogen atom following electron excitation to the 

2p state. The incorrect prediction, by Tai et 87 of the 

percentage polarization of Lyman-o: radiation was due to an 

incorrect choice of the z-axis86. 

Remembering that the Glauber approximation is an 

special case of the eikonal approximations and that in the 

case of potential scattering Glauber's derivation leads to 

the same expression for the scattering amplitude rEq.(2.29)] 

as obtained using the eikonal wavefunction Tq.(1.55)I we 

will henceforth call Eq.(2.29) as the eikonal scattering 

amplitude derived from the eikonal approximation. The composite 

collision version of Eq.(2.29) which is according to our 

present terminology the many body generalization of the 

eikonal scattering amplitude will be termed as the Glauber 

scattering amplitude and will be expressed by Eq.(2.4?). Now 

the Glauber result (2.47) may also be viewed as an eikonal 

approximation to a model proposed by Chase88, in which the 

target particles are frozen in a given configuration65. 
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in - 	GLAUBER TRANSITION AMPLITUDES 
IN CHARGED PARTICLE-HYDROGEN ATOM COLLISIONS 

3.1 INTRODUCTION 

In this chapter we concentrate on inelastic scattering 

of charged particles by atomic hydrogen in Glauber approxima-

tion. The Glauber scattering amplitudes for excitation to 

ni In 2 and 3 levels from the ground state (n = 1) of atomic 

hydrogen have been calculated by Ghosh and Si189 Ghosh et a190 

Tai et a191  Tai et al87 Bhadra and Ghosh929 and Franco and 

Thomas93. In these calculations the five-dimensional integral 

amplitude was reduced without any further approximation into 

a one-dimensional integral form by methods similar to those 

employed by Franco94  for e-H(ls) elastic scattering. 

Thomas and Gerjuoy59 have obtained these amplitudes in 

a closed form. These expressions, besides being readily calculable 

are useful in studying the limiting behaviour of the Glauber 

scattering amplitudes for (say) the high energy or small momentum 

transfer. For the sake of completeness, we reproduce, these 

expressions from Ref.59: 

e .—) 
Fis— nt s 	Ski)   	ik ('2- 3  1( 	

—3/2 n:). 
2 	. (n.1  ) (-1)1+1  

	

aci 	n 	
j=0 

j41 	

2 

 ! 

	

x(#) 	Io(X q)1 
 R.=(1/a0)(1+1/nt) 2  ... (3.1a) 
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where 
j 

cc i  (fli  ) 	(-nt+1) /( j (1717) 7 

Io(X,q) = -141111(1+-1n)r(1-in)X-2-23.11 q-2+2i.° 

1-11121;-X2/q2)) ... (3.1c) 

(a) i  = r (a+j)/r(a) ; 	 ... (3.1d) 

F 	(k k.) 0 ls-nlpo f' 

and 
1/2 	4....1.(0  

F 	(k k.) 2ik.(3/2) is-ni p ( f  f 2- 3. 	3. 	41 	n13 L-(ni -2)0  

(3.2) 

710 n? -2  
xe q 7 Pi(nf )(-1) j+1( iii:) i+l ii(N.:0 , 

o 	 17■.=t1/ad 
I ,c(i-FiAin 

... (3.3a) 
where 

Ii  (% a q) = 4i 	r ( 2- in) (in)X6.2-2i1)  q-3+2131  

f-2111( 	1-in51,-x2/q2) 

+( 1+in) 2F1( 2-in )1-in, 	X2/q 2) } 
	

( 3. 3b) 
Pi(n ) 	E(-n1+2) i/j\(4) j .:(2/riao) i . 	 ... (3.3c) 

Here ao is the Bohr radius and n = e2Av. The quantization 

direction (i.e. z-axis) has been chosen perpendicular to the 

momentum transfer vector 1. It is obvious that these express-

ions D.1 to 3.E are quite useful for studying excitation 

to relatively low lying states from the ground state in 

e H atom collisions. The simplicity of these expressions is 
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however, lost if n' becomes large because of the increasing 

number of hypergeometric functions appearing in the express-

ion. Similar is the problem with the Glauber scattering 

amplitudes obtained recently by Thomas and Franco95 for the 

scattering by ionic targets. 

We have obtained *simplet expression in the Glauber 

approximation for the general transition. am - ntillmt in 

e-H atom scattering by combining the techniques of Franco6o 

and Golden&nd McGuire61 and using the Laguerre polynomials 

appearing in hydrogen atom wavefunctions straight away rather 

than breaking them into a series of terms of the form xl/e-vx. 

Our final expression involves only a one-dimensional integral 

over the impact parameter b and is particularly suited to 

study excitation to highly excited states. It involves only 

a few hypergeometric functions if n is not too large. There 

is no restriction on n`. 

In Sed. 3.2 we present the derivation of these 

expressions which are commented upon in Sec.3.3. Rydberg 

atomic units 	e 	m = 1) will henceforth be used • 

throughout. 

3.2 DERIVATION 

The Glauber scattering amplitude, in the case of 

electron-hydrogen atom collisions, for the transition from 

an initial state i with wavefunction 4)j.  = )gym  to some final 

state f with wavefunction (!)f. E (1)0flois given by 



ik, 
r

*  
F (17 	= 

fi f / 	211 f 

ail  lielq.bd2b d3x,...  (3.4  
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in which q = (k.-If) is the momentum transfer, in the laboratory 

system, which the incident electron imparts to thn target. The 
4 

vector c is assumed to lie in the plane of b. The ':ontributior 

to Eq.(3.4) from the term equal to unity in the square bracket 

is proportional to the two-dimensional delta furctton 8 (c7): 
• 

and therefore vanishes for inelastic transitions. 

The normalized wavefunction 4)4, is given by 

- fl 	I 1 ,2x 
r.,61(1) 	

- 
= 	x L_

kl 
	(3.5a) 

0, 
where L 	n  is the associated Laguerre polynomial (Ref.96, k

,

1  

p.24.0) and 

2e +1 

= 77-2 ... (3.5"o' 

= ( 2,e + 1), 	 ... (3.5c) 

and 
	

k1  = (n-f-1). 

The product eftli  in Eq.(3.4) may be written60  as 

tfil m AfiI e-ann" xf+fl i:a_i (.2z) 1 al(ily)  
yfyi 	k 	n! "...ki  n' nn' 	1 

:xYri(020) li (0:0) 

... (3.5d) 



(-1)13-1-(L+M)/2(L-FM+2p-1) 
DP - 

	

	  
( 2p) t (L-M- 2p) !! LM 

... (3.7' 
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fde -arex 	(4)1.1c l ( 2 ,2i)  
= I e  hn 

	

n 	n 
1 

);YeLAL  exp( is10) P14( cos()) 

- fe 	0,_fli a, 
• .nni e 	X-rK L±. (2a) 	

a1(2x
kl n' 	L-k 

1 

2  x2LBLAL  exP 	 P9, 

	

aRO)sir Q 	D P41(Le)/2 P  cos p=  0 	Lig 	 (3.6) 

where 

A 1= 11. t  N nn ni 

arm' nn" 

m-m' and PI 4. !Ltd 2 

B 	/(L+M)I 2  

AL  .4 1-- (-1)rfi E(2f+1) ( 	+1) ( L+M) /(L-M)  1+71 

•xC(Z9f1  9L*9 0 20) C(i 	2LSras"'Int) 

1/2 

exp(iTcm) 5 Et 0 

1 s 	,( 0 

(L-M) is an even positive integer and Cts are the Clebsch-

Gordan coefficients. For odd positive integral values of (L-11)7 
the integration over polar angle .8 vanishes. Eq. (3.4.) now 



64- 

reduces to 

F 	(11 
fi`"f 211ii  

ik. 
AKK 
'nn'J' 

-a nn'4  
• 

a, 
,f+ft+2 al 2x 	2 
" 	L , (=)1_ k n k 1 	1 

17,-> 	217-) 	byg b  
Y\( 2:L) 	e14.  e 	18 ell1(°s-Ob)  

b 
(I-j'0/2 n  

M .x7 B
L  AL  L 	L cos2PG b db d0bdx d@d0s.. ... (3.8) 

The angular integration over Os  and 013  can readily be 
performed (Ref.96,p.555 Ref.97,p.952): 

f 2n il-11 2LT)  eiMSOs-øb)do 	2n 
s j (1+z'

0  
-2zcos0)171  eill°d0 

V40 

- 27t17  (M-17)) .(z) 2  
 r(-in) 

where 

z _ b xsing 

zM 
2F1 	iri,M+1;z2) 	z <1 

G( z) 
z-14+2in 2 F 

1
( ^ • 9 14 • 	... 	M+1*9 z

- 2) 2 Z >1 11 	9 

... (3.9a; 

... (3.9;5) 

.(3.9c) 

J
. 	1211(13-°q) 	= 2n i and  j 

	

	 Jm(gb). el 	0 
- 

0 
... (3.10) 

Using Eqs.(3.9) and (3.10), Eq.(3.8) reduces to the form 
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.M+1 F • (k 9k.) 1-.1 -27E 1 	k. 	7 (1' ill)  	e" L0 Auk  
Iv1 1.7 (-in) fi f 	 nn 

(L- M)/2 	-annt x f+f +2 x-̀".  BL  AT  \ 	DP LM  e x -   plto 

o Y.-71.c ) G(xsing/b) Jm(qb) 
1 n 	n  

xb sinivi+18 cos 2P0 db dx dg. ... (3.11) 

Making the transformation b 4 b sing we have 

17 (1/411) IMO 
F 	II.) r. _211 AM+1 k. 	e 	q  A fi f 1 	

1  r 	nn 
/ 2 	r -a 

"ILBLAL 	le  ne xf4.,„ 42  

7,o 

L
17 • a 

x L i,  ( 2;4) 1 1  (22S)G(x/b) eim(qb sin()) k n -k n -- 1 	1 '- 

xb sinM+3G cos 2p8 db dx dg , , ( 3 . 1 2) 

Replacing now a factor of sin2  g by 1-cos 2©yEq. (3.12) trans-

forms to 

(L-11)/2 
F .(k Ski)  	E B 	 p-II 

f  	=I nn' fk 	 DEM( gEM gLM )' 	(3^ pr.0 

where 
-a 	x k+e-1-2 a' 

gEm = 	J e  "I 	
1 1, 	;Lk 

a
1(22  L) 
1

■ la  

:xG(x/b) Jm(qb sine) sinM+1Q 

• :xcos2pQ  b db dr dA 	 • 	( . 
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and 

H 	 ,.. 

	

ft= -27c a.  	

The integration over 0 may now be performed (Ref.970.740).: 

211 
Jm(qb sing)sin114-10 cos2PQ dO = 2(2p-1)!! (qb)-Pjp+m(qb) 

0 

Ele(20> -1; 1v1>-1], 
... (3.16) 

yielding spherical Besse' functions 	which can be expanded 

in inverse powers of qb (Ref.97,p.966); 

X 
1 1321' aP+11  [eiqb 	(-1)124M-7'-1  e-iqb:], jp+k,i(qb) 	7iqb xtt:o  (c735.7  

• (3.17a)  

where 
-p-M+%-l(p+m+x)!  

ap+m  
(P+M-N)! 27' 

• • (3.17b, 

Finally making the transformation b->bx/q, the integral for 

gPki takes the form. L 

	

p-  (2p-1)!
1 	P+:ivi 	(.03 	P-N glilyi - 	7 	z.... a 4.1  j db b- 	G(q/b) 

C! 	Xo P  o 

	

x., cll.. x 	. 	cc 1 	2% 	cc]. -22,- rGo 	f+jZ1+3-P-X  L1  (--t) L 	(n  ) 
o 	10 n • ki  

1 

a 1  -ib)x N+p- X-1 - (cc i  -Fib) x
] e nn 



-67- 

(2p-1)0 p+M 
ar gIpivi 

 
- 	2 

X=o 
+m _ 	db 	G(q/b) IK(b) 

0 

. . . ( 3 . 1 8 ; 

where 

JP(b) = / E G1 dx e
H3tx x 
	' 

( 

1 

d-1 	2&1( 1. (as). ... (3,3 9) 
nt' ki‘n 

and 

	

nnt-lb 
	

,t itl 

	

Pt = 1 a
nni 

+ib 
	

't =2 

1 	 ,t = 1 

et = 1 (-1) 
M+P-X-1 't = 2 

d = 

... (3.20e) 

• (3.2Ct' 

• (3.20c) 

Final reduction of the scattering amplitude to a one-

dimensional integral is done by expressing associated Laguerre 

polynomials in terms of confluent hypergeometric functions and 

integrating over x (Ref.98910.54), yielding 

I13
X 	

E 
t 	

dx (b) = Bat 	faD„ e 
	x

d-1 
-  

t-1 0 

x F (-10 'a t +1 '1 221) F (-'. a +1 * 
1 1 	12 1 -L2 nt 1 1 '1' 1 	2 n 

( k ) (d) (2/n) v 
Dfql 	r,(A, t19  - -1 v 	v  

.')1111H tr-letljt I 	V="0 (a1+1) v 

	

x2F1(-ki5d+v; al+1; 2/Ptnt )5 	(3. ^'_a) 

where 
B~Q
B

(nil)!(nt-qt )! 

not   
(2M)! (2P -1-1)! (n-Z-1)! (n'-P-1)! 

(3.21_1)) 
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3.3 COMMEITTS 
The infinite sum over v in Eq. (3. 21a) is really a series 

terminating at v = kl  = (n4-1), i.e.)  the number of terms in 

the infinite series depends upon the values of n and f. If 

n = 15 the infinite series )  Eq.(3.21a), terminates after the 

first term. In general, this series will have (n-f) hyper-

geometric functions. It is important to note that the 

termination of the series does not depend on ni. The 

number of hypergeometric functions appearing in the expression 

for scattering amplitude, therefore, does not depend upon the 

final excited state. Furthermore, the hypergeometric functions 

in Eq.(3.21a) are terminating in themselves. Thus much 

computational effort is not needed to evaluate the Glauber 

scattering amplitudes even for excitations to highly excited 

states. Our expression is particularly useful for transitions 

to highly excited states from a low lying state and is simple 

to compute than the earlier expressions5 . It may not prove 

to be of much value when n is large because of the occurrence 

of large number of hypergeometric functions. 

In the following we give explicit expressions for the 

transitions is 	n's and is - nip. Eqs. (313) and (3.1)  ) 

together with Eqs.(3.18) and (3.21) reduce to 



ls-n? s (If 'itl) 
= 2ik. 1 	 (Ili) 5/2`600 Boo' 

2k4 	2 
= 	j db G(q/b) 

q. ( n' ) 	1c.:1 t 

E6(ctPt) -4 21'1( n:T +1 )4;2°) R2ni) 

4-21( (tPt) - 3 F].( -nt 41',3 2; iTNO /b 

) 2 F.1.( -11.1 	2.) 2; ,2„,)/b2, 	(3.22) 

1/2 
2,~bi~1k1 E:(nt- 2)1.1 	 eTi.oq r 
(rit) 3 Cc/it-I-1)01/2 	 611 bll —L 

and 

F .4 4 (k, 	.) ls-nip 	5k 1 

2 	[I' ( n141); 	
1/2 

07195q 1db G( q/b) 
(nt)3 	(11-1- 2)! 	q2 

2 
x E (t[4((.030-5 F1 (—nt4-25;4; t=1 	2  

+21( (0t)-42F1( -n' +2 '41i.; 4T,) /b 

-( tit)-32F1(-n' +273',4; 2 0 / b2 
Ptn 

-i((-00 22F1(-w+2 '2;4; —27[3 tn. )./.( 2b(3 3)] .:3) 

where 

Ct 	- (-1) t. 	 ... (3.24) 

The hyper geometric f unctions appearing in Eqs , (3.22) and 

(3.23) can be expressed in simple closed forms. Eq. (3.22) : for 
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example, can be written as 

2H. 	2 
F 	

- 	
= 	171‘b G(q/b) E ct  ls-nts f 1- 	
q2(nt)3/2  c' 	t=.1 

nt-1 

12(tPt)-2(1- R ent) 	/b2  

-2i(ctPt)-3(1- -2—Ont-2((1- 
Pt Ptn  ptn 

4 	2 
-2((tPt)

- , 
Ptn  

6 	1 N 	+  2 
4  
' 
2 (1- 

pt
q0 	t Pt 	 Ptfl 

3(.1(1- 2-)(1- 
Pt 

	R)-l} 
 

... (3.25) 

large nt 	2k . 	 2 	-2/4 
	> 	 Jdb G(q/b) E 

q
2
(nt )

3/2 t 	
t=1 

-2 	-3 
t t) -2ib-1(yt) (1- -07) 

 

-2(C00 -4(3- 

 

.. (3.26) 
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CH! l?97ER 

STUDY OF ELASTIC AND INELASTIC SCATTERING 
OF ELECTRONS BY LITHIUM 

4,1.1 INTRODUCTION 

In the last chapter we have studied the tractability 

and usefulness of the one-dimensional integral forms8789-94' 

and the closed form expressions59  of the Glauber transition 

amplitudes in e-H atom scattering. To obtain closed form 

expressions for atomic systems containing more than one electron_. 
100 

even with the simplest approximate wavefunction is you unli.kely, 

The Glauber amplitude expression (2.49) for the scattering 

of charged particle by a Z-electron atom involves a (3Z+2)-

dimensional [-(3Z+2)L-1 integral. In order to appreciate the 
difficulties in actual calculation and to be more specific 

let us consider the next simplest :i.e. next to e-11(1s) 	atomic 

collisions  namelys  e-He(ls2). 

4.1.2 SCATTERING BY HELIUM. 

The Glauber scattering amplitude for e-He(1_s2) requires 

an SD integral DID integration over the impact paTarlate:c b and 
3D integrations over each of the bound electron coordinates 

and 	For this cases  the Glauber phase function X of 

Eq.(2.47c) reduces. to 

Xi' X2) 0 • 0 ( 4,  la) 
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where 

11_12I.1  =-211 xn( 	). (4.1b) 

4 
In Eq.(4.1b), the 2D vector sj  is the projection o xj  onto 

the plane ;containing impact parameter vector t) perpendicular 

to the integration direction e( 1 - b in Eq.(2.47d), and 

= 1/k1 	as in e-H(1s).'Inspite of this simle form for 

X 2 the profile function 

r7  E 1 - 	= 1 - ei( 71+42) 

is quite complicated than either 

= 1 	e 11 1 - 
1%0  or 	r e 	2  2 .. ... 4.37 

and this is why the 8D analogue of e-H(ls) Glauber amplitude 

expression (3.4) can not be reduced to as simple a form even 

with factorable helium bound state eigenfunctions. Francol01  

using his Ref.94 procedures could only reduce the e-He(1s2) 

elastic scattering amplitude to a 3D integral which was evaluat 

ed numerically. A further reduction to more easily calculable 

2D representation for elastic and inelastic scattering has 

been proposed by Yates and Tenneyi0  °. Still more recently: 

Franco
102

2 Thomas and Chan103:  Chan and Chen
104 

and Chan 

and Chang105 have shown that Glauber scattering amplitudes 

both for e-He(ls2  ) elastic and inelastic transitions can be 

reduced to 1D form without making any further approximation. 
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These reductions to 1D integrals are readily generalizable 

to collisions with target atoms involving more than two 

bound electrons. Franco
102 

basically uses the procedures 

outlined by him earlier[Ref.60. The method of Thomas and 

Chan103  also leads to a 1D form Different that of Francol021 

involving modified Lommel functions Z. v ') Thomas and Chan103 
1,17 

break up the profile function 1" into single and double 

scattering terms: 

i(Y +/ ) '1 '2 
rEl-e = 1 -e 

= (1 - 	+ (1 - ei;) - (1 - ell1)(1 - egi') 

ri(ovi) 	F72(v)3t2) — [3_( 12-11) r2(17-i'2) ,  
... (4.40) 

where --) i X.( b 1:Z ) 
e .64 (441,Lb) 

with X. given by Eq.(4.1b). 'Single scattering' contributions 

P and r2  have been evaluated in closed form. It should be 

noted that the 'single scattering' contribution fl is not from 

a single fundamental particle)  but from a hydrogenic atom 
a Ike ,e0.1..1euz 

composed of electron 1 and a charge Z = 1wharge together 

with electron 2, forms the another hydrogenic atolii whose 

!single scatterings contribution is associated with 12. We 
now consider the next complicated system i.e. e Li scattering. 

4.1.3 SCATTERING BY LITHIUM WITH 'FROZEN CORE' APPROXIMATION 

It has been pointed out earlier that the Glauber 

transition amplitude describing the scattering of a charged 



-74- 

particle by a Z-electron atom involves a (3Z-1-2)D integral. 

Thus in order to compute e 	Li(1s2 2s1) collision amplitudes, 

an 11D integral has to be performed. Obviously this cannot be 

handled as it is. Simplifications can be made by either makinf, 

certain analytic reductions or by introducing some simplifying 

approximations. One such approximation is t o treat the alkali 

atom !effectively! as a one-electron (hydrogen-like) system; 

the core of the atom, consisting of (Z-1) non-valence 

electrons in the inner orbits and (Z-1) protons at the nucleus, 

is assumed to be frozen and is ignored. This approximation, 

the so-called frozen core' approximation, thus involves only 

the active (valence) electron and a nucleus of charge unity 

and ignores the effects of core electrons. If one looks at the 

electronic configuration of an alkali atom, one finds that 

the (Z-1) non-valence electrons forming a closed shell 

structure are chemically inactive and only the valence electron 

in the outermost orbit is the active one. One might argue 

purely on this ground that the !frozen core! approximation 

should be quite good. This approximation reduces the full 

(3Z+2)D Glauber integral (2.49) f or a Z-electron target (alkali) 

atom to a 5D integral, as it is in the case of e-H(1s) scatter-

ing. Hathur et al62 and Tripathi et allo6 have followed this 

approach. 

The effect of core electrons can be taken into account 

approximately by including a core potential Vcdx) 'Thich is 

obtained by replacing the actual pairwise Coulombinteractions 

between the incident electron and the (Z-1) non-valence 
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electrons together with the balancing -(Z-1)e
2  interaction nteraction 

between the incident electron and (Z-1) nuclear protons with 

an effective purely central potential. Such an approach has 

been followed by Walters 	The interaction potential for 

electron-alkali atom scattering in !frozen corer approximation 

is given by 

= P[Ival(1,) - 2  + 	2 j P 	• • • (4• 5a) 

(4,5b) 

where x1 is the spatial coordinate (relative to the nucleus) 

of the valence target electron. In Eq.(4.5), the projection 

operator P is given by 

V 
P ° 1 - L 101 1 / )'\ 	j )1;  

and the core potential V6.(1) is of the form 

... (4.6) 

r 	-111  
:=:-P E. vCR(71) + VH(1211)  j.P  2 

I\T 

R(I) = 2 1 j 3  .xl 1.) (0 (.1 j=1 
(1) (1.- r 'Yj 1)  2  • • 6 ( . 7) 

where (2N+1) = Z (atomic number) and Onormalized) denotes the 

spatial wavefunction of the jth core electron of the alkali 

atom. The core orbitals Oc  are taken to be orthogonal to 

the valence state v.. The Glauber scattering amplitude 4)j  

Eq.(2.4.9), corresponding to a transition (inlf) 

in the target from an initial state i with valence wavefunction 

r to some final state f with valence wavefunction r is 

given by63  
1 NRARY UNIVERSITY OF ROOIIKEE 



where 

1 - ei(H+XCR) 
(1-3', 1)  

- (1 - eiX11) + e Y11(1 - e 

= 171  + e " 1-  62  

... (4.9a) 

... (4 t To) 

2:11  
. 	OD 1 

-2k.f 	VH(hz•lx1)dz 1 -00 
... (4.10) 

r= 

	

x 	0 'CR 	—2k. 	"CR' ̀ 'd Z) dz. 
-co 

Walters63 sets P equal, to unity to get 

ik4  0 	b 	41‘7 	V 
F 	= 	 -"fd`b 	jd'x (I)'( 4  ) r-7(1).(i ) 

	

fi f 2  i 	2TE 	1 f "1 H 	1 

	

ik 4 f 0 	4 3 .i 	, V4%-) 	1A-1 d‘t 	d-)x1f(x1)e - 	(1):(2 ) 27c 	 CR i 1 

HC 
E H 	k ) + F (k 

	

1 f' 	fi 	fk' i)  2  (i_4.11) 

where 
7;11  FH 	=0 1 - ( 	2111  

x1 = 1 + z 1 1 , 

1 1 0  

=1/k1  ki  

FH and  FHC can now .he handled easily by methods used for 
e-H(1s) scattering. 

(Att.19.) 
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4.1.4 SCATTERING BY LITHIUM WITHOUT 
!FROZEN CORE! APPROXIMATION 

In the foregoing discussion, the application of the 

Glauber approximation has been restricted to the scattering 

by atoms having one or two !effective! electrons. Obviously 

these procedures fail if the target atoms have more than two 

'effective' electrons or if one wishes to consider all the 

target electrons explicitly. The difficulties are removed 

automatically if one follows analytical procedures which 

first reduce the (3Z+2)D integral sufficiently before attempt-

ing any numerical calculation. Such a procedure has been 

given by Franco6°. We have adopted this procedure in our 

e-Li atom scattering calculations. In the following we present 

its details. 

This procedure reduces the (3Z+2)D integral to a 1D 

integral for the elastic and inelastic scattering of charged 

particles by arbitrary neutral atoms. It is based (i) on the 

assumption that the product of the initial 	and the final 

wavefunctions of the target can be written in the form 

n 

	

e- 	- 7 (1) 	TT r l 
 k 

	

f 	- 	
— x. 2°  e k,J.413 

 
ktr.1 	jr.1 Jm J  

(Q•295.) Y: (Qj, 0 

... (4.13) 
where xi, Op 0i  are the spherical polar coordinates of the jth 

electron and Yfm  are the spherical harmonics and (ii) on carry-

ing out the integrations over the coordinates of the target 

electrons without involving the impact parameter b. This 
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procedure differs from the one followed in Refs. 100 and 

101 for et-He scattering. There the impact parameter is 

4 
mixed with the coordinates x1(s

4  
11z1) and  2(s22z2)  of the 

target electrons to generate a new set of variables 

and C in place of b, sl  and 	This This mixing is not feasible 

for more than two electrons in the target. The assumption 
o(- 

regarding the form, Eq.(4.13), of 9f0i  is really no restric- 

tion as the wavefunctions usually employed in describing the 

atoms can always be put in that form. The result is that 

the final expression involves just a 1D integral over b. 

The only problems with this method are the evaluation of 

the integrand which involves the calculation of the diff-

erences between strongly divergent functions and the numerical 

calculation of the 8-function whenever elastic scattering is 

considered103. Thomas and Chan103 have modified this procedure 

to eliminate these difficulties by using the properties of 

modified Lommel functions and have reported calculations of 

the elastic and inclastic e-He scattering as pointed out 

earlier. This has also been used more recently by Chan and 

Chang107 to study elastic e-Li scattering. The main attribute 

of these methods is that the contribution of the inner 

electrons is explicitly taken into account and can be analysed  

in contrast to the 'frozen core' approximation. 

In the present work we have avoided - the encounter with 

the divergent functions appearing in Franco's final expressiol. 

by stopping a step earlier (Sec.4.2). The concealed 8-function 

in the momentum.transfer 1 presents no numerical problem. The 
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price to be paid for this simplification is that our final 

expression is a 2D integral, irrespective of the atomic 

number of the target, against Francots 1D integral. Thomas 

and Chanl°3  have also pointed out this possibility but did 

not pursue it. We illustrate this procedure by considering 

the elastic and inelastic scattering of electrons by 

lithium atoms. 

In Sec.4.2 we discuss the case of the elastic 

e-Li(1s22s1) scattering, wherein we outline the method, 

give the details of the calculation and discuss the results 

of these calculations. Sec.4.3 is devoted to the inelastic 

(2s-213) e-Li scattering. Polarization calculations of 2p42s 

resonance line of 6Li and 7Li following electron impact 

will be presented in Sec.4.4. 

.2 ELASTIC SCATTERING 

4.2,1 METHOD 

Recalling Eqs.(2.49.), the Glauber scattering amplitude 

fi 'f a ki) 	 o 	ki  of a charged particle with momentum 	by a 

Z-electron target atom which undergoes a transition from 

an initial state i with wavefunction 1)i  to some final state 

f with wavefunction f is given by40,60  

ik. 
,r 	l • ) - 27T if c-19 • • • 9-;) r (t 9371  9 • • • 97tz) 

x 	1' " 'x )e 	d2 i b d3xl. 3„  (4.11+a) 
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and the profile function ris given by 

ri 
21:126.42XZ) :771 I -)25126'' 9 SZ) 

 

= 1 - exP E.:X(13-';;11 • • • 

Z 	ib-j1 
-1 -Ti ( 	) j=i 	b 

Combining Eqs.(4.14a) and (4.14b), the scattering amplitude 

F 
fi (k

f 2 IL) takes the form 

Ffi(2A) = 1-21111  IC121) e4.1.'"1141321efied3XXI Iii 

Z 	Irpt 	2111 

;K' 	TT 	-----) J,1 ... (4.15) 

The contribution of the first term in curly brackets 

in Eq.(4.15), though proportional to the 2D delta function 

8 (q), can not be ignored for otherwise the integrand over 

b would not tend to zero, as it should, for large values of 

the impact parameter b and would create numerical difficulties. 

For the product rf ei)i, we prefer the form 

Z 	-a 	.x . 
0*  (1) = TT ( 2 c 	k73  Jyyz ..(epoi)YA.,(epoi), f 	k 1 k2j J J 	J 

which can be obtained by regrouping the terms in Eq.(4.13). 
For elastic scattering by lithium atoms only s states are 

fj 	= m. 	m! = 0 for'all j. Thus 



-akixi 
I(ak)j;13) 	

a ------- ( 	 ) 	d3, "j . 

where 

... (4.19) 
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N.I. 

4(1)i 	(411)-3  * ( 7: c .x.ilk,i p-ak,iXi,  

jr-1 Ict--1 1c2J i 	- 	
) 

. 
-3 a N i 	 1 +n,.. 	 l+nk  i e- cck :jx j 

K230 	 
j.---1 kr.1 lc 2j 	 bak2j 

 
" • , 

J 

(4.171)) 

Using Eq. (4.17b) in Eq. (4.15) :and carrying out the 

integration over 0b'  yields 

a) 
Ffi(7f :.1Zi) = ikil db 	( qb) b a-(Lot) -  

0 

N- ..,.) 
, 	, - 1.1 , c — k  

k=1 	'
.■ 

 

(1--„ 	
l+nk 

2d  I(cck j 	
] 2 uv6k :j 

... (4.18) 

... (4.17a) 

It is worth mentioning here that the limit b 4 co of the 

second terra in Eq. (4.18) is unity. The integral in Eq. (4.19) 

can be performed by introducing cylindrical coordinates s :z 
J j 

for 	and following the methods of Franco
6o 

and Thomas and 

Gerjuoy59 to give 

co 	.co 	0 0  -1/2 
I(a, • ,b) = 21 	ds .s 	dz .(s+z) 

ib 

27 	2 
s i 	2s1 	in 

X exp Pck 1 i  (si
2
+zi

2)1/2-15 
 d0(1+ 2 (1+ 1).  - 7' cosh) 

- o 	b 

0  co 	 (27 	 in 
r4  2131-  ds sK

o 
(oa

k :jbs) 
 ] Ufa-is 2  

o 	 o 



where 	 . r( l+irl) 21+2111 
(i-j-T)) 

E(r)) 	-7C 
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2, _11 21+2111 1- (1-fin) = 	 Tr 67171.3- 	ds s Ko(ak jbs) 

dt t 2:1-71  dt EJo(t),I(st) 

ea 	 co '-' 	7 2i3 E(r1) i dt t-`.--ir dt  1  --0-0  (t) ( ds s Ko  (a, .bs),T0  lst)) 
Klj  

0 	 0 

2 	°3 	-21'n d 	J0 	(t) 
2b E(r)) .!r  dt t - —( 	 2) 2 	.., (4. 20a) 

o 	dt t 2+ (ak:jb 

0 

Franco60  i n-,-,egrates Eq. (4. 20) by parts, to get (Ref.1087p.4-34-) 

2, 	r(1° 
 oa 	t-  2111-1   Ja_(t) I(cck:j .13) 	141lb E(T)) 	dt ( t 2 cc 2 

k lj ' 

, 2 2-2in F 	2ak 9  ju /4.) [Tyr)) (ak2iii) 	0  = 411113 L"" 

. 	 /, +E 2 (.11) 12(1.12+in 2+iri a - 2  .b  2 74) 	• • • (4.21_) 2 j 

where 
E1  (n) 
	

(1+i-n) /2 	 ... (4. 22) 

and 

E2(n) = r (-1-in) / 23+21T' FY  ( 2+in)). 	 ... (4.23) 

The hypergeometric functions appearing in Eq.(4.21) are them-

selves divergent functions of cck5lb although their combination 

as appearing in Eq. (4.21) is convergent. This can be clearly 

seen by carrying out the differentiation indicated in 

Eq. (4. 20a)':. 
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I(a .1b) = -2b 2 E(n) j dt t-21/1 	
(t)+2t,To(t)/(t24mk,J  -b2) r(D 

k)j 
o 	 (t

2
+ mk

2 
.b
2
) 

... (4.24) 

The integral in Eq.(4.24) can be easily evaluated numerically. 
We have used this form to avoid the problems associated with 

the calculation of the differences between strongly divergent 
functions appearing in Francois expression rk.(4.21) ]. 

The differentiations of I with respect to a
k2j in 

Eq.(4.18) can be done analytically. 

4.2.2 CALCULATION 

For elastic scattering by lithium atoms we need only 

(1)i  where the electrons are in (15)2(25)1 configuration. We 

have taken these orbitals of the form given by Clementi109, 

and 	is obtained by taking their antisymmetric combination. 
This leads to 

= (1/3!)Idet(q ts  :q.st  ,V2s)1 2  

2 
= Iqs(1) is(2) gs(3)I 

-Iqs(1)1 2q:(2)11)121s(2)qs(3)(1)2:(3). 

The orbitals Ov  are of the form (Ref.109): 

(1)C,V.'4, LX) 	R(X) Yoo  (020) 

with 
2 	ix 	6 

R(x) 	7*A.e 	+ 	Aix e 	. • • 	4. '-)6b) 
j=1 

Both the terms in Eq.(4.25) for OfTi, with V'vls or the 

... (4. 23a) 
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form (4.26) lead to the expression (4.17a) with 

N. 	= 21 To  

0 	k 

ri1 9,j 
	1 	3<k 	11 	 ... (LI . 27) 

2 	11:1‹ ; 21 

The values of the constants ck 2j and  ak'j are obtained from 

thevaluesoftheparameters. Al  and 	given by Clementi 
109 

 

and are tabulated in Table 4.1. 

The integrals in Eqs.(4.18) and (4.24) were done by 

the Filonts method
110. The wiggles of the Bessel functions 

were accurately taken into account by combining the Simpsonts 

rule with the standard Bessel functionintegrals (Appendix Al). 

The differential and integrated cross sections for 

elastic scattering are obtained from the scattering amplitude 

expression (4.18) in the usual way. Recalling Eqs.(2.50) and 

(2.54a) , these are given by 

d0' (q) 	
F 	

2 
el 	(1-Z 11-) 

fi ft 	in units of ao
2  

dQ 

and 2ki  .„. .,, 2 
Cr i (k

i
) = 2- I 	dq qlF (k1  ,, 1)1 ,k. e... 	2- 	f i  k

a. 
. o 

in units of ta2. 

... (4. 28' 

0011 (4629) 

4.2.3 RESULTS AND DISCUSSION 

In Fig.4.2 we have plotted the differential cross-section 

against the scattering angle G upto 80°  at electron laboratory 
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244TLLt1 

Coefficients ck)j  and:exponents_akij-for the prclucts 
ihici2 hy 2 

and 	 a  of the type 	i 	 appearing "is" "v2s 1 	V 2s V14 	ng 
in e-Li scattering. 

Ck  
a 	. 

isxls 2s x 2S lsA2s 
k j 

1 49.19403076 1.27017689 -7.90478706 4.9606 
2 5.07708359 0.10466754 -0.72890657 9.4142 
3 31.60772705 0.72923636  -4.80836201 7.1874 

4 -0.00007043 -0.00038102 0.00119128 2.8303 
5 o.00624801 -0.90173423 2.80539989 3.1403 
6  -0.02332481 -00-23625112 0.73701036 3.'4803 
7 0.60178995. • 0.92508828  -2.92692184 4.2153 
8 -0.00002262 -0.00010938 0.00038248 5.0571 
9 0.00200702 -0.25885248 0.90118235 5.3671 

10 -0.00749251 -0.06781840 0.23668224 5.7071 
11 . 0.19331002 0.26555651 0.93854916 6.4421 
12 0.00000000 0.00000003 0,00000000 0.6999 
13 0.00000020 0.16004151 0.00017819 1.3200 
14 0.00000276 0.01098560 -0.00017428 2g)000 
15 0.00184042 0.16843867 -0.01760677 3:47Q0 
16 -0,00000000, 0.00013525 -0,00000193 1.0100 
17 s '- 0,00000002 0.00003544 -0.00000081 1.3500 
18 -0.00000043 -0.00013875 0.00000931 2.0859 
19 -0.00000148 0.08386087 -, 0.00061851 1,6609 
20 0.00003822 -0.32837284 0.01697948 2.3959 
21 -0.00014267 -0.08603281 0.00517890 2.7350 

See Eq. (4.16) 
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energy of 54.38 eV (k=2a01). The curves a and b correspond 

to the calculations(---) in the tfrozen core(  Glauber 

approximation without and with core potential j respectively. 

These are similar to those in Refs.62 and 63. The curve c 

corresponds to the present calculation 	Clementi 

wavefunctions have been used in all the calculations. All 

the curves show almost identical variation indicating that 

the inner electrons (those in the is state) are not very 

active. A more quantitative picture is given in Table 4.2. 

The slight increase in cross section,when the core potential 

is included, is in agreement with the findings of Walters63. 

The differential cross sections with the present calculation 

differ little from those in the tfrozen corer approximation. 

Similar is the case with the total cross section for 

energies upto 200 eV.EFig.4.3.). 

In order to assess the accuracy of our theoretical 

differential cross sections we have compared, in Fig.4.1, 

our results (curve c) at 20 eV with the recent experimental 

data 0) of Williams et al111. It is evident from the figure 

and as expected the Glauber approximation underestimates the 

differential cross sections at such a low energy over the 

entire angular range. Our total cross sections, plotted in 

Fig.4.3, are also quite low as compared with the experimental 

dataill  (0).  even at intermediate energies (upto 60 el7). 

To summarize it appears that nothing much is gained by 

including explicitly the inner electrons and the tfrozen core! 
Glauber. calculation is good enough. 



Scattering I 	Frozen core angle 
(in degrees) 

10 

20 

3o 

40 

So 

6o 

70 

80 

Glauber approximation 
Without 

core potential 
with 

 core potential 
Present 

calculation 

27.11 27.06 26.90 

5.59 5.52 5. of 

1.58 1.57 1.37 

o.61 0.63 0.54 
0.29 0.31 0.27 

0.16 0.18 '0.16 

0.10 0.12 0.10 

0.06 0.08 0.06 

TABLE 4.2 

Ells is e-Li differential cross sections 
inunitsofao2  at ki  7. 2a-0

1. 
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4.3 INELASTIC SCATTERING 
4.3.1 METHOD 

Since we are concerned here with the electron impact 

resonance- transition (ls 	2s)
1 

4. (1s) 2(2p)1 in lithium 
atoms, we have 

k. =/=k =m=m -m - 0 
1 	2 	3 	1 	2 - —3 - - 2  

= fl = MI = 114 =0 

and 	,q = 1, m = 0, 	1. 	 ... (4.30) 

In the present case Eq.(4.16) simplifies to 

Ni  

a.( 	c 	xnk 	a  'j -k2ixi) 
3  kt1 

k,j 
 j 

( 4.31a) 

VW,  .• • (4.31b) 

where 

a1 = a2 = 1/(47) 

and 
a3  = Yi''int (03)  03) / AiTi-Tc • 

3 

... (4.31c) 

... (4.31d) 

Using Eqs.(4.31) in Eq.(4.14a) gives 

-) 
iki0  3.q.b 

F 	k.) - - 	et e fi f' 	27t j xo.. 
1' 3  b 

The terms P1 
 and P2 also appear in the case of elastic 

scattering and have been evaluated in Eqs.(4.20a) and (4.24): 

11o4ji  ail -1-nk  
d x. = 1 	c .(-1) 

NJ 	
1 	

) 
.1+n k2j

k2j2b) 
47  k=1 k2J 	°cck 2,1 

-1̀ 7-t  Tj(b) 	j = 122 	•.• (4.33) 
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where 

roo 	t-2iTT-.1 (t)+2tJ0(t)/(t 71,11c 	) 
b2% --1 

1(a
k2j313 ) -2132E(11) 	dt 	

2 2 ,2,  0 	 (t 	ak,i0  ) 

and E(n) is given by Eq.(4.20b). We now calculate the contri- 

bution to Eq.(4..32) from the factor P3: 

rp ( __s_3„._ , *4 2ill 
) 	d'x 	1 	

N
3 	

3 -a  )3X3(  Ii":111iT)  
i  3 	b 	 f I olc3x3 	e 

,17.17 k=1 2 	 b 

X 71m ( G3 2°3) d3X3 

1/2 	, 	N.)

I
.3(1-mp 	(_1).3  27), 	f(s2+z2  nk13/2 

(1 + m.p f 	 k=1. k'3 	3 3  

cc  (s+z )1/2  

e
_ 

k73 3 3 ( 	
b 3 ) 	Plral c (c,2 

z3 
4.,72)1/2) 

J 

-imt0 
x e 	3 3 s3  ds3  d03  dz

3 
 • ... (4.35) 

For m3 0, the associated Lag uerre polynomial Phil  is an 
3 

odd function of z3  and therefore:  the integral over z3  vanishes. 
For m = +1:  Eq.(4.35) can be written as 

111( 
3 	) 2  ' -X-, 	:67 	23  c 	 2(2/ 

	

j 	2(47 )  k.1  k
)3 2 ds s 	dO 

o 	3 30 	3  

-710  1?-2 I 211`) 	nk 	nk 3 ico  

	

Ke 3(7-3—) (-1) 2j0 	) 	d 

	

oak 23 	6 

exp f-ak (s2+z 2)1/21 

(s2+  2)1/2 	1.  (s3  +z3, 

(4.30 
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2(411) 	k=1 
-- 	4- Ck 3(-1  

)3(a--)11k23 1(vk232b) 2  .... (4.36) aako  

where 

21-c 

I(a
k

b) = -„oo ds s
2
K (a 

3
s
3 
 )f dO

3  e
+1  

o 	
3 3 	k l   0 

( x .37) 

Eq.(4.37) can now be solved by procedures lef.60: Eqs. (11)-( 21); 

Ref.1127 Eqs. (9) and (12)jused in Eq.(4.19) 2 to yield 

I(a
k :3

213) 
71013 = 

e 

, 
3E (11) GO dt t-21:11 

dt  
.4-411 (t) 

„OD 
ds sc-

,D 

 Ko(a.
3±  
bs)J,',st) 

0 

[12.1)3E(TOrt ad d 	

2t Ji(t) 

6 	
dt

( 
 2 2 	2 )_1 
(t +a

k:3
b ) 

+1 
e 

= e 	 illE(T)df al)dt t-2131  
J
1
(t) 

2 2 2 3 
t + a

k3
b ) 

• • ( 1+.38 

Using Eq.(4.38) in Eq.(4.36) gives 

jp ------) 21.  d - x = m 

	

	 e J /111.11 1 . .11 3 	 7i9ib E  
3 	2(47t) 

C 	(.4)11k:3( 	)111(231I(ak:3,b) 

k1 k13 	
oa

k13 

-.16 b 
e 	T (b) 

where 

H(a
kl3

'13) 

J1(t) t - 21'n  

( t abcc 2  7,2) 2 d  " 
(4.39b) 

We have evaluated the integrals in Eqs. (4.34) ' and (4.39b) nunioi -- 

tally rather than expressing theri as a difference of two diverging 

- 	2(++7E) 
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hypergeometric functions (Eq.t22)of Ref.60) as we do in the 

case of the elastic scattering112. The integrands in these 

integralsEqs.(4.34) and (4.39b)21, except for the factor 

2irl 9  need be evaluated only once at mesh points and can be 

stored. 

The scattering amplitude can now be obtained by putting 

together the contributions P1, P2  and P3 Oks. (4.33) and 
(4.39)] in Eq.(4.32). Integrating it with respect to 013  gives 

(-)1, -)1 • 	ki 	7'10 oo 
= +1) 	 qi db bJ

1
(qb) 	T4(b). 

	

2(4n)--) 	j=1 4  
... (4.40) 

4.3.2 CALCULATION 

The ground-state wavefunction k of a lithium atom with 

electronic configuration ls22s
1 
has been obtained by taking 

the antisymmetric combination of the ls, is and 2s orbitals:  

of the form given by Clementil°9. Similarly the final-state 

wavefunction (131f  is the antisymmetric combination of the ls, 

is and 2p orbitals. This leads to 

= (1/3!) [et(qs.1,7 qs+, wv2p)J. 
A ;1 

X [let (i)1L, 	(1)L, (1 3/112s)].  

= 14 s (1)1 2[14) s (2)1 2 (1(3)(1)2s (3) 

$V21)0,( 2) 	( 2) qs (3) (V2 (3) 3. 

The is and 2s orbitals of Clementi10 'q  arc of the form 

... (41,41) 
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4c21/( ) = R (x)Y (9)0) 5 	n = 1:2: 	... (4.42Q ns 	ns 	oo 

with 

Rns (".\ 	
2 	6 	

W A x c 1 
1=1 in 
	j.3  in ... (4.4a ) 

The 2p orbital has been taken to be of the form given by 

Stone
113 

 2 

(I)V2p(1) 
	:2p (x)Ylm(g'°) 

with 

R2p(x) = Axe 	2 

where 

A = 0.228205:  

0.5227. 

114- 4 (441143Z) 

• (4.+3,  

• (4.)1.3( 

Both the terms in Eq.(4.41) for 4)7d)i  with Ovis of the 

form (4.42) and (4.43) load to the expression (4.31a):  with 

NJ  and nk:i  given by Eq.(4.27) for the products of the 

type lqs 1 2  and C27:1 s, and 

N
i  = 6:  nk,,j 

	
1
1) 	1<k, 2 	

... (4.44) 

	

2) 	2<k‘6 

v 
for epl

v 	
e
p
C" and 

2 2s. The values of the constants ck:j and 2 

a
k:j appearing in Eq.(4.31a) are obtained from the value 

ofthcparametersAinand F inn given by Clementi
109 
 and the 

values of A and F, given in Eqs.(4.43c) and (4.43d). They have 
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• 5) 

... (4.46) 
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been tabulated in Table 4.1 for the products of the type 

dl
ls 

12 and 
 (1.1v4"
2s'

,h
ls 

 and in Table 4.3 for the products of the Y  
v*Lc 	v*A,v 

type (p2pQls  and 02___y p 2s' 

The differential and the integrated total cross 

sections are given by 

d0-2s_213(q) _ 1!IliF .(2,,, 2...2111;  = 1)1 +IFficlf, 2;=-11 fl  1 	3 	

2 	27 

dg2 	ki 

-2k 
4, 1 	-3 -1 	2  
1Ffi (kf' 1 k.)1 in units of E.1 2  
1 

and 	ki+kf  2 
02s- 2p(k.) IFfiliA)1 q dq 

ki  k.-k f 
2 

in units of _Tca.o 
4.3.3 RESULTS AND DisCU5StoN 

In Fig.4.4 we have plotted the differential cross 

section against the momentum transfer q upto 1.6a-01  at an 

electron laboratory energy of 54.38 eV (k 	2a01), The curve 

a corresponds to the calculation (---) in lfrozen cores 

Glauber approximation. This is similar to the one by 4alters
63
. 

The curve c corresponds to the present calculation (--). Same 

wavofunctions have been used in both the calculations. Both 

the curves show almost identical variation indicating that 

the inner electrons (those in the is state) are rather inert 

in agreement with our earlier findings in the case of 6-1,i 

elastic scattering112. In the forward direction, q`0.4 ao 
1 

the two curves overlap as expected. This region is doMinated 

by the contributions for large b and the incoming particle 



TABLE 4.3 

Coefficients ck 	and exponents ock:i 	ee Eq. (4.16) for 
the products of. the type 0,* 

 
11)c 	and 1Tp-(1)2s  appearing ep ls 

in inelastic (2s-2p) e-Li scattering. 

1 	 ak2j 
1s .2s as ,.2p 

1 -1.59950750 . 0.25701719 3.0031 

2 -0.51385103 0.07377956 5. 2298 

3 0.00000228 -0.00003950 0.8727 

4 -0.00010198 -0.09123183 1.1827 

5 0.00037886 -0.02390242 1.5227 
6 -0.00968662 0. 09359463 2.2577 

k 



102 

10
1  

10 
 Nao 

N

, 

10 

1.2 	1.4 	1.6 
10

2 
 
0 2 	C.4 	0.6 	G.8 	 1.0 

	

FIG . 4.1. — DIFFERENTIL 	-R":5 SECTION FOR THE 2 s- 2P EXCITATION OF Li FOR MOMENTUM 
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FROZEN CCRE GLAUBER CALCULATIONS ( o,b ) WITHOUT AND WITH CORE POTENTIAL INCLUDED. 
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does not see much of inner electrons. Fig.4.5 shows the total 

2s-2p cross sections in units of 7cao
2 
  for electron energies 

upto 250 eV. The' results for ,both the 'frozen corei Glauber 

and the present calculations again show similar variations. 

Our results are always smaler than the 'frozen corei Glauber 

results and approach to them as the energy increases. This is 

because the inner electrons are more tightly bound and their 

involvement decreases the calculated cross section. This 

difference in binding energies is naturally reflected more at 

lower energies. The results for both the ifrozen coret Glauber 

and the present calculations are in very good agreement above 

15 eV with the recent experimental data 	of Leep 

and Gallagher
64
. However, at lower energies, they appear to 

fail badly and give a cross section peak at too high an 

energy. We have also plotted in the figure the recent experi-

mental data () of William eta1111. A more quantitative picture 

is provided by Table 4.4. It appears that;  for any further 

improvement in the Glauber scattering amplitudes:  one should 

look for corrections for including the exchange effect, 

polarization of the target and the next term in the eikonal 

expansion. 

On the procedural side our calculations have further 

confirmed that Francois procedure presents no numerical 

problems even when spherically asyMmetric states (2p state 

in lithium) are involved. 
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TABLE 4.4  

Comparison of the 2s-2p total cross sections at different 
energies. icyc and 0-  are the total cross sections_in units 
of 1-ca in the frozen core Glauber approximation and present 
calculation, respectively:  and OE are the experimental 
results of Leep and Gallagher64 corrected for cascade. The 
number in parentheses gives the uncertainty in the last 
place (s) of the preceding number. 

2.10(1) 14.8 1.77 1.41 

3.10(2) 37.1 10.57 9.15 

5.00(3) 46.7 28.93 26.85 

10.81(12) 44.3 43.12 41.67 

15.64(12) 40.2 41.43 40.41 

23.78(12) 34.5 35.99 35.40 

38.60(12) 26.93 28.15 27.83 

63.56(12) 19.79 20.55 20.40 

99.15(15) 14.51 15.00 14.94 

149.4 (2) 10.67 10.99 10.98 

249.9(2) 7.089 7.31 7.30 
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4.4 POLARISATION OF THE RESONANCE RADIATION 
FOLLOWING ELECTRON EXCITATION  

4.4.1 INTRODUCTION 

If an electron beam passes through a gas with energy 

sufficient to produce excitation of the gas (or vapour), 

'the polarization of the light emitted in a particular direct-

ion due to transitions from states so excited will depend 

on the relative probability of excitation of the magnetic 

sublevels of the upper states concerned. It is usual, in 

measuring the percentage polarization of. impact radiation 

following transition, to observe light emitted at 90°  to the 

beam. Trking reference axes with Oz along the beam and Ox 

as the direction of observation, let III and Il  be the 

respective intensities of emitted light with electric vector 

along 0z  2 0y 
 respectively. The polarization fraction is then 

defined as 

111_2_1_ 

+ 
1 

and the percentage polarization as 

'LI = 100 PI: 100 3-11-  

11 	
I 

The study of the polarization fraction,(, of the electron-

impact induced lines emitted from hydrogen and alkalies have 

been of considerable interest both for experimentalists and 

theoreticians. Gerjuoy et a1
8 

have recently applied Glauber 

approximation4  for the study of the polarization of Lyman-ca 

line resulting from e-H(1s) collision and found a good agreement 

• • • 	.4713) 
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with the:experimental results of Ott et al
114 even at low 

energies (above "18 eV). They remark that close agreement 

at low energies where the total and differential cross 

sections are not so close comes about because the polariza-

tion fraction depends on the ratio of certain integrals 

involving differential cross sections. The success of these 

Glauber predicted values of Pparticularly at moderate 

energies between 30 ,eV and 200 eV has tempted as to extend 

them to e-Li system. 

We now proceed to calculate the polarization fraction 

of the 2p.42s resonance lines of 
6Li and 7Li following electron 

excitation to the 2p state in Glauber approximation °. We 

compare our values of the polarization fraction fP with (1) those; 

obtained from the 'frozen core' Glauber approximation without 

core potential and (ii) the experimental data of Loop and 

1 
Gallagher

64 
for energies upto 250 eV. Tripathi et al-15  have 

done similar polarization calculations for the 2p a 2s resonance 

line of lithium and 3p a 3s resonance line of sodium following 

electron excitation in'frozen core' Glauber calculation.Their 

calculations are )  however )  in error
63
. 

The details of the method and the results of the 

calculation are discussed in the following sections. 

4.4.2 METHOD 

The percentage polarization of the 2p 	2s resonance 

line of lithium in a direction of right angles to the collision 
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axis is given by the following expressioxil6  

300(9a-2)(Q0-Q1) 

12Q0+24Q1+( 9a- 2) ( Q0- Q1) 

where Q
o 

and Q
1 

are the total .2s-2p excitation cross sections 

with the component mf of the orbital angular momentum equal to 

0 and 1 respectively. The value of a depends upon the hyperfine 

structure and natural lifetime of the 2p level and is 0.413 

for 6Li and 0.326 for ?Li (Ref.116). 

The total cross sections Q0  and Q1  appearing in Eq.(4.48) 

for Pare evaluated from the scattering amplitudes 

w
2p,2s

1
f14i112')  

(i) 	• 	quantized along the incident electron momentum - s-k   
kl  .. However:  the correct 2s-2p Glauber amplitudes are 	 n- rc conve  

iently calculated, for a given initial and final momenta -1!i  

and k
f, 

by quantizing along a direction t: perpendicular to q. 

The transformation required to obtain the desired amplitudes 

F(i)  in terms of F(C)quantized along e have been discussed 

by Gerjuoy at aand are given by 

F(i) 213,2s“cf)/ti'mf 11  0) =-L,P. cosO F()  (. -3 ) 
q 2p )2s f'ki- 

,(i) 	4 	 ( () 2 2,322s (kf ,kf ;mejl) 	eXp(710q)Singe2p,2s(kf ,ki). 
+.49b) 

Finally the total cross sections Q0  and Q, are obtained from 

Eqs.(4.44) in the usual way 

k.ik 1 f 	27c 
0 .7. 

 1 i 	dq q f do IF(i) 	ct .t.•pi )1 In 	2 
k: k.-k 	j

o 	
q 21322s f' 1 1' 

1 1 f 
(1;,50) 



-100- 

The amplitudes F
(C) are obtained from our calculationsil?  

reported -in Sec.4.3. 

4.4.3 RESULTS AND DISCUSSION 

Fig.4.6 shows the general trend of. how 	varies with 

energy for 6Li. The full curve represents the present 

calculations. Also indicated in the figure are the experi- 

mental data 	of Leep and- Gallagher64, data points () 

of Hafner and Kleinpoppen
*18 

the results of the close 

coupling calculations 	of Burke and Taylor119, the 

modified close-coupling calculations' (---) of Feautrier120  

incorporating the dipole polarizability of atomic states, 

the results of the variational calculations (— 0 	of 

MeCavert and Rudge
121 

and the tfrozen corer Glauber calculations 

of Tripathi et al115. The tclose-couplingt 

results in the energy range 2-5 eV are certainly better, as 

one would expect. In Fig.4.7 we have shown the variation of 

Pfor 7Li. An experimental curve for ?Li has been obtained 

from the values of P for 6Li using the relation given by 

Leep and Gallagher
64.  
. 

P(7Li) 	9a(7Li) -2 	3 -((71,i) 

P( Li) 	( 9a(6Li) -2 	) ( 	• 

We find that our calculated values of Piare always 

• (4.51) 

higher than the experimental values of Leep and Gallagher
64 

and converge towards them as the energy increases. For 

energies above 60 ev, agreement is within 2'/.. Even in the 



E
X
P
E

R
IM

EN
TA

L 
C

O
U

PL
IN

G
 

1M
PA

C
T
i_

,
P
R
E

S
E

N
T  

ry 

0 

tn 

1 1 1-  1 I I 1 I I I I. I I 1 I 1 I I I T 

0 

Ory.449 .  

W a o a. 
0 
7 CC 0 

a. 

; z 

• 

UJ  
-J 	4 

cr)“. 
CC 0 

r) 0 tj > Z 
.4 4 

• u 
0 

 - 

X w 
L.L1 

0 	IL 
• L. 4  

1 4  0 X 
u.i W 	

11 

W 
X Z 0 tc  

- 03 
0 

LL 
0 

IN
C
 IC

A T
ED

 

R
E
  

•••■•, 

O 

/ 07  
O 

001 	/ 

0 

1,4 

er 
- 0- 

	

N 	X 4  7  
• > 

	

ry 	 T. 
Z 

• 

•-• 

▪ 0- 
13 

CE 

- U0 (D X 

• —J 

lA 
LLI CC 

LIJ 
0 — 0 
Li 1— 
, X 0 LI. 

< Z 0  N 
tin 	 1.1..W 

C
A

LC
U

LA
TI
O

N
 
-
  -
-)

 

0 0 O O 

( 04 ) NOIIYZIad10d 

PI
G

.  

r0.17/  
z,. 



1 

I I I I II I 1 II I I I I TH I 	I I II I I 

(*1.) N01,vZI8 V10d 

In 0 UI 

0 

0 

1(1 

R
E

S
O

N
A

N
C
E
  
L

IN
E
 

a. 
N 

Li 
X 
•- 

0 

S
A

M
E
  A

S
 I

N
 

P
O

L
A

R
IZ

A
TI

O
N

  

Li 
cc 

F
IG

 4
.7

 -
  P

E
R
C
E

N
TA

G
E
 

0 
0 
(.1 

N
O

TA
T

IO
N

S
 

I- 
U 
O. 
X 

B
Y
 E

L
E
C

T
R
O

N
  

a 
UI 

X 
0 
Li. 
0 
Li 
•-• 
I- 

I 
Li 



low-energy region (2-10 eV) whore the total cross sections 

for the 2s-2p transition in the Glauber approximation differ 

quite noticeably from the experimental data) the differences 

in p are not as pronounced. We have also calculated in the 

tfrozen cores approximation and find little difference from 

our results. This is in agreement with the observation made 

by Walters63 that the core electrons have little effect 

on the 2s-2p transition. Table 4.5 gives a quantitative 

picture 



TABLE  

Percentage polarization of the 2p-)2s resonance line 
emitted from6Li following electron impact, 

Energy(eV  Experimental 	Present 	Frozen core 
Glauber calcula- 

valuet 	i calculation tion 

2,10(1) 28.2(6) 33.00 33.10 

3.10( 2) 22.1(4) 27.62 27.29 

5.00(3) 12.7(3) 19.91 19.57 

10.81(12) 4.8(2) 8.57 8.31 

15.64(12) 1.85(20) 4.2o 3.98 

23.78(12) -1.19(1.6) 0.13 -0.02 
38.60(12) -4.02(14) -3.51 -3.60 

63.56(12) -6.46(14) -6.27 6.33 

99.15(15) -8.22(14) -8.09 -8.17 

149.4(2) -9.56(21) -9.11 2 -9.51 

249.9(2) -10.93(25) -10.77 -10.84 

..1.11/•.■■•11111■■■•■•■■••••••••••■100.00•Mfamo.......* 	 

...?umber in parenthesis gives the uncertainty in the last 
places of the preceding number. 
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CHAPTERS  

INZZLEDIATE ENERGY CHARGED PARTICLE-ION ELASTIC. SCATTERING IN 
THE EIKONAL OPTICAL MODEL-THE CASES OF e-B7 ZID 	COLLISIOYS. 

5.1 INTRODUCTION 

The problem of charged particle-ion collision has 

recently received considerable attention because of its importance 

in astrophysics and plasma physics. The excitation of positive 

ions by electron impact is responsible for most of the line spectra 

emitted by laboratory and astrophysical plasma. 

In this chapter we shall study the scattering of electrons 

by ionic targets at intermediate energies. An eikonal optical 

model of intermediate energy electron-atom scattering, proposed 

by Mittleman
65 
 and Joachain and Mittleman

66 
 has been found to 

be quite useful for the study of the scattering of electrons 

by helium, particularly, in the region where the energy is 

large enough for the, close-coupling method to be prohibitively 

difficult due to large number of open channels, and yet small 

enough for the Born approximation to be inaccurate. The basic 

ingradient of the model is the calculation of an 'optical! 

potential. In Sec.5.2 we sketch out the basic features.of the 

'optical potentialt. Sec.5.3 briefly outlines the underlying 

assumptions and the main features of the eikonal optical model. 

Its applications to e-H-  and e7Li+  elastic scattering will be 

described in Sec.5.4. 



502 THE OPTICAL POTENTIAL 

The optical potential
6768122 attempts to convert the 

elastic scattering problem involving a many-body target to 

a one-body problem. We thus seek a one-body potential operator Ary 

which may be non local:  such that the scattering given by the 

solution of the equivalent one-body Schroedinger equation 

(k -71-1()Vi= 0. 	... (5.1) 

is the same as the actual elastic scattering for the same 

initialwavevectorl.in the many-body case. Here k
2  
. is the 

energy of the incident electron:  7T is its kinetic energy 

operator and Vi  is the scattering wavefunction corresponding 

to an incident electron with wavevector 
-4
l. The equivalent one- k 

body potential operator lris usually referred to as a !pseudo! 

potential or an !optical! potential. It: thus:  replaces the 

actual interaction potential between the incident particle and 

the many-body target atom by an effective one-body potential 

in which the incident particle moves. 

The determination of an optical potential is a formidable 

task. It is only in some special circumstances that it can be 

derived from first principles. Various attempts made in this 

context have been recently reviewed by Joachair and Quigg
123 

Following Refs.67 and 68:  an explicit expression for the 

optical potential is given by 

VII  + Oi lVGIQVI4)i> 1 	 ... (5.2) 



G
t 

= 	. 1  
E Ho QV + ic 

where Q is a projection operator which projects onto the 

target states (4)j) other than the ground state (i)i)., V is 

the actual interaction and, for electron-atom scattering, 

has the form 

• z 
v(rSZ) - + 27  1 	 

j=1 111  - xjI 

GI is the Green's function for the partial potential 01 

11.0111 (5.4a) 

Go + GoqvGt 2 
	I.. (5.4-V) 

... (5.3) 

and 
v..= I). VI .1\st. 11 	0/ 

The second term in Eq.(5.2) is the contribution due to 

virtual transitions which occur during the collision. In 

general, it will be complex. The physical interpretation of 

the imaginary part of is given as follows. Not all the 

particles colliding with the actual target atom undergo 

elastic scattering. Those which undergo inelastic collisions 

must be absent from the purely elastic scattering described 

by the optical potential. The optical potential describes 

their removal in terms of an effective absorption. Obviously, 

below the inelastic threshold it will be real. Apart from 

being complex above the excitation threshold it is, in general)  

non-local as pointed out above. 
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Various orders to optical potential can be obtained 

by substituting the explicit foil-a of Gt in Eqi; (5:2) We dais 

write 

ii(1) +fv( 	+ 13). + 

where, 

( 	< I V 

( 	(i) I VG 
°

Q (1)i> , ?)/  

. (5.6) 

!i v (5:7) 

.* • (5.8) 

and so on. We can further simplify the second and higher 

order terms in 	Eq.(5.8), for example )  can be Written as 

<d)i  I vG0  1(1)i  :4 j 1Qvi 

j0)  E H0  iE 

<.(ti lV1(1) 	(1)•1\14)i> 
2 
k+ 

where 

Fl 	 + H . • 0 	• 	t • (5.10) 

The target Hamiltonian Ht  satisfies the eigenvalue equation 

Ht 1(1).)= w.1(0. 0 	 ' • (5.11) 

Herewi  . and w represent the internal target energies res-

pectively in the initial state i and the intermediate state j. 

2) 

W.1" IC 
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The optical potential approach has been successfully 

developed in the last few years, by using the eikonal 

approximation to obtain the scattering amplitude
652667124• 

More recently, methods56'125-128 have also been proposed to 

obtain an approximate local second-order optical potential. 

The non-local exchange kernel in electron-atom scattering 

can also be represented by an equivalent local potential. 

A comparative numerical study of such equivalent exchange 

potentials1262 129-134 has been made very recently by 

Bransden et a1135. In our present work:  described in 

next sections:  we follow the approach proposed in Refs.65:  

66 and 124. 

5.3 THE EIKONAL OPTICAL MODEL 

Joachain and Mittleman66 solve the equivalent one-body 

Schroedinger Eq.(5.1) for e-atom scattering under the 

approximations of (i) neglecting the Pauli-principle between 

the incident and target electrons and (ii) evaluating the 

optical potentia1Vupto second order. The first order 

optical potential:  Eq.(5.7), referred to as the static 

potential of the target atom, can be written in configuration 

space as 

(1) (r) \ 	> ficoi(x) 2v(1-j)d3x 	... (5.12) 

The second-order part r(2) can be simplified by making a 

further approximation, viz., by replacing the difference 

to .-w.. 	0 t by an average ' 	of the excitation energies of the J  



targot..Th3 expression (5.8) for 	2)  then simplifies 

to 

<4i  Iv1(1).N /1)3  •ivid).> _J/ \  

  

   

 

- 174. - 	+ 

V2I  (1)i)- 10. 'VIC> 1
2 

jai 	 2 k! J i£ 
... (5.13) 

where 2 	– k!. ki  --t.-w . ... ( 5.14) 

In configuration space it can be represented in the form 

Ff. Appendix AO: 

<rl 	2)  1--r>1  > 	("i'Vf*>1  ) A (?)?1  ) 
	

(5.15) 

where 	77.1  is the free Greens function describing the free 

propagation of the incident particle in some average inter-

mediate state with energy kit and is given by 

d 3,- e i7!.(1-) 

k• (27t —1'73( ,27c) 	k! 2 - 'ZN 
2+ ic 

(5.16) 

and the function ,A( -/-?!) is given by 

A 	t) = fej(3) 	(8 (-Pc-1>!) - (I)i(?c) (i(t1)) 

A V(-r- t 2.1! )01.(171!) d3xd3x! 	... (5.17) 

The equivalent one-body Schroedinger Eq.(5.1): using 

Eqs.(5.12) and (5.15), takes the form 
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FA.- '3.- v 1)  (It) 
j 	(r 	A(r,rt)ti(1.2 d3rt = O. 

2  
1 

.... (5.13) 

Eq. (5.18) in its present form is still very complicated 

because of the structure of A(r,rt). Joachain and Mittleman`' 

solve it in the eikonal approximation. By changing the 

variable of integration 7:„.. 171 	T and neglecting the 

term T
2 in the denominator of Eq.(5.16), the free Greents 

propagator * -A
( 	transforms to the linearized formgqs.(2.13)- kiId  • 

( 2. 20) 
-4 .4 -4 ikl.(r-rt) 

kl
-4  (4r

2
rt) 	2k! _ 	

1 	
8(1)-}:lt)8(z-zt) 	(5.19) 

where e is a step function defined in the usual way. The 

wave vector kl is taken in the direction of the incident 

zmomentum 	(zt) is the component of -1. ( --4'rt) along k. and 
1 

the vector t(E7) is perpendicular to it. The vector 7c.>  can be 

interpreted as the momentum transfer during the intermediate. 

state: The neglect of T2  term in (5.16), therefore, restricts 

the validity of expression (5.18) to small momentum 

transfers. Now using the eikonal form of the wavefunction 
. A( 3.k . .r.+2 	b ,z) 1  

(27 3/2  0 

_42 and substituting Eq.(5.19) for L4 	into Eq. (5.18) we 
4k1 

... (5.20) 

obtain 
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Eki2+V2- 	) 	ex ( •T  a. 	2z))' 
	

J
f
exP (ik!.(rrt  )) 

  
 

-4 e, 	 .4 
4-/ oth-b t ) t.-9(z-zi)gb:z 2b1 :zt) exp( 	iA(b1  2zi)) 

g  d213 1  dZ t 	74  0 

which, by simple manipulation, yields 

_ 2qA 	1)Cr) - A)  2+i 72" 

exp ( t - 1-c)) 	) ) A (-;›,z *2-e,z t) 
--GD 

X exp(iDN(Zzl)- 	6 2 z) ])dzi = 0. 	 (5.21) 

The eikonal approximation in the above expression takes the 

function t, to be slowly varying on the scale of the de Brogito 

wavelength 7.(;-4 1  ./Ica.) of the incident particle. Therefore:  
the higher order terms (A) 2  and (V2A ) may be neglected 

and we are left with the following expression fori\*. 

it\(32 z) 	(1) iA(b 3z) 
. 	 - 	tr> ki) 2  z) e 2kie 	dz V 

z 	-4) --.) i(ki-k•)(z-zi) 	 —> --) iA(b 2  z 
- -1--- si dzt e 	i 	-') .-. A(b 2 z 213 2 zi)e 2k1 i -oo 

4  _÷ 	(5.22) 
dA 	1 ,Il)(.2z)+ 	rz _ _ i(ki-ki)(z-zt) 
dz 	. 	 ...j codz1 e 2ki  

)( A(-3'2 z , 2 z I)e 	
-7 i ENOT, z I) -,A (b--4 	j ,z)  ( 5. :-).3) 

Since; Ais a slowly varying function, we may also take the 
difference [1://\(52z!)- A( 2 z) ] to be equal to zero. The 



-ik 

f  C (1)  (1) 8 (1-3 t ) 

. 
.r t +1A(b t  

,rt)A(r,rt)] e 1K1 
1{! 

d r 

expression retained in first order for /\ is theh readily 

integrable to yield 

A(V,z) 	
2k 
1 	dzty( . - 

a. -co 

1 
(b,z) 

zt • 
dzt.1 dzn 6-1"zt-zn)A(b3z 

1 1 -co -op 
 

... (5.24) 
where 

k. 	kt i 1 ... (5.25) 

The scattering amplitude for el6stic scattering is now given 

by 

F .(1-Z 	= f' 
... (5.2.6) 

This expression; by substituting the explicit form for, 

A
ir , from Eq.(519), can be further simplified to the form; 

it(ez) _,) 
	j2 	C •(k 	- 	 d b dze 	y (b)z)e fi f • sk. 

1 	411 

iz 
	

ikl(z-zt) 
. 	ik zcos0) 

1 
dz t  e 

2kt 
1 -Co 

x eiA(g:zt) 	
.... (54 2 t,,k 

where GI is the scattering angle. 

Finally, making the Glauber••approximation of neglecting the 
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longitudinal component of momentum transfer in the exponent: 

the above expression for the scattering amplitude becomes 

11, b e  2igsb I dzE./ 	) z)c° 	(1)  01 Ffi(kf' 

	

	a  
k.) = -  

4u  

i(M-k)-Zt) .Adr 
1 1 

Jr dz e 	el2  A(r7 z2-76- z n 1  2k1 _00 	 7 /...1 

iA(t,z) fd2 lg. 
g  r d do 

4u 	
z- 2kz  e dz -co 

ikir 2 	il.71 	d reiA (32z): - 2,17=J d b e 	dz 1— -co 
i)( 073) 1,1 21, eici..or re  opt 	1];  

— 27c -1' ... (5.26) 

where the eikonal optical phase function Xopt  is given by 

5' oo(1) 
	i co  z 

ii 
-a(z-z1 ) 

Xopt() r - 21.1 	 (V,z)dz + 4- k idzi Cze 
	
A(b.--.  lz;o--,,  

2z1). 
1  -co 	a. 1-00 -CO 

... (5.29) 

The first term in Eq.(5.46) is simply the result one would 

expect from the static charge-cloud and can be written as 

rm ((1)  
(7) =." 	') 	(b2z)dz st 	2k 	' -co 

... (5,30) 

The second term is more interesting: it is of order l/ki  

relative to the first term and has both a real and an 

imaginary part. The imaginary part represents the leading 

contribution from the open channels. Joachain and Mittleman 66  
write this term as 
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Tabs( 	=Lfk.k! 	
dz 	dzi cos(z-zt) A(b2z;b lzt) 

i -co -co 

r ap 	,00 

8k dz' e-i ( z-zi)  A(V2z;1,z1 ), ... (5 	' .k! 
1 1 -00

(12 

	

	 v 
-00 

where the fact that A is symmetric has been used (cf. Appendix A3). 

This multiple integral (recall that a multi-dimensional integra-

tion is concealed in A) can be reduced to a one-dimensional 

integral for any case in which the wavefunction of the target 

ground state can be represented as a sum of the products of 

single particle orbitals l2)  

It is eapected124  that tabs  (11 should contribute signi-

ficantly at small angles where the amplitudes for transitions 

into optically allowed channels are very large. At wide angles:  

the amplitudes for these transitions diminish rapidly:  as do 

all other amplitudes except the elastic amplitude; thus IXst  

which represents the effect of the ground state (or the 

elastic channel):  is expected to dominate in all orders of 

perturbation theory at large angles. 

Now let us consider the real part of the second term 

in Eq45.291; 

pol (b) 	
4k.k t 	 j dz 

em  
dz1 siWz-zt) A(13:440). 

-co -co 

It corresponds to the polarization of the target
124

. This effect 

can easily be included phenomenologically by adding  directly to 

SOO (5632) 
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;pt(o) a term corresponding to a polarization potential (say) 

of the Buckingham form
136.  

. 

 

V(r) 	2 	2 0; 
(r + d )2  

where 

d4_ (1 7()Z-1/3. (5. 33b; 

Here a is the polarizability of the target of atomic number 

and d is a phenomenological parameter. The complete eikonal 

optical phase can thus be written as 

Copt Xfst )abs % . pol ... (5.34) 

5.4 APPLICATIONS OF THE EIKONAL OPTICAL  MODEL 
TO ELECTRON-ION SCATTERING 

The problem of the elastic scattering of charged 

particles by ionic targets requires special attention because 

of the fact that the overall interaction between the target 

and the charged particle now involves a lorig-range Coulomb 

interaction. A simple procedure to deal with such a problem 

is to separate out the Coulomb term from the overall inter-

action and consider its contribution exactly. The total 

elastic scattering amplitude can then be obtained by adding 

the contribution from the remaining part of the optical 

potential to that from the Coulomb potential of a point 

target)  i.e.: we write 

F
fif ; ki  ) = Ffi  (kf ; k ) + Ffi  ( f 2  k ) ' 
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Here the superscript C denotes the Coulomb part and T the 

total scattering amplitude. We use this procedure to apply 

the eikonal optical theory to the elastic scattering of 

electrons by helium like ionic targets (H and Lit). This 

problem is simple in the sense that both the target electrons 

can be easily treated explicitly and no correction need be 

made for any core. The elastic scattering of electrons by H-

and Lip  ions was earlier treated by McDowell - I  in variational 

approximation using two-parameter trial wavef unctions and 

accounting for the exchange:  and diple and quadrupole polari-

zation potentials. 

5.4.1 e-H-  ELASTIC SCATTERING 

In the present work we proceed to calculate the e-117 

elastic scattering cross sections at 0.5 and 1.0 Rydbergs. We 

have selected these energies just to compare our results with 

the variational calculations of McDowell
69
. To our knowledge 

there is no other theoretical calculation. Experimental 

results are still unavailable on e-H-  elastic scattering. 

Although the eikoral optical model can only be successfully 

applicable to intermediate energies (from two times of the 

threshold to twenty times of the threshold):  our main aim is 

(i) to know how far one can use this method;  which is 

comparatively very simple:  to study collisions such as e-H-

elastic scattering even at low energies:  and (ii) to analyse 

the contributions of the second order terms of the optical 

potential. In the case of e-He elastic scattering these have 
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been found to make substantial contributions at small momentum 

transfers. In the next subsections we outline the procedure 

giving details of the calculation and discuss the results. 

(i) Procedu7e 

In the case of e-117 elastic scattering )  the inter-

action potential V is of the form 

	

l 	1 V = 2 
r 	1r - 	I 	ir 

 

 

We have used hydrogen-like form (Ref.137, p.240) for the ground 

state target wayefunction, 

y3,!) 	1),(11:  12) . (--)e-a(xl+x2):  a = 0.688 a-1. 
... (5.37) 

This wavefunction is similar to the one considered by Ref.66. 

y
(1) The first order interaction potential 	(r) given by Eq.(5.12) 

now simplifies to 

" f( )(r) ^ v0-)(13 2z) = 2(a3/1c) 	e 

1  + 1 

I 	11L3? I 1 	2 

-(4/r) (1-far) exp(-2ar) + f7. 	... (5.38) 

The last factor in Eq.(5.38) is a pure Coulomb interaction 

due to the net (point)charge on the target. It is dropped 

in the main calculation and is treated separately. The Coulomb 

scattering amplitude corresponding to this factor can easily 

3x1d3x2 
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be obtained exactly and is of the form 

C 141  (k k. fa. f 2i 

where 

( 2/q2) expti. Et ± 250- (1/k2 (sing  0/2) ],[" 

... (5.39a) 

8o 
 = ar g 	(1+i/k) 	 . (5.39b) 

The scattering angle G is related to the momentum transfer 

q via the relation 

--q1 	I = 2kisin(G/2) 	 4.. (5.40) 

We evaluate the second part Ffi(-41  ri) in Eq.(5.35) by 

using the eikonal optical model of Joachain and attleman66. 
We use their results directly to simplify the eikonal 

optical phase opt ) Eq. (5. 29): 

Y 	(V) 	- (1/k .a.) u (13 + u (To) 	+ 	(1) 	• 	.1+1) vopt 	 1 	P 	2k.k7, 	• • 	- 

where .  

u1( 	 fc°- V, '(1) (7?,z)az 2.  -co 
rco 	 2a(132+z2) 1/ 2 

2.1  ( 2 12 1/2 + a)  e 	dz  -co (b 	z ) 

[K0( 2ccb) + ably 2c(b): 

u 	
-co 

 v ( -1,z) az 	-7(1 (7) (b 2+d 2) 
3/2 

2 	p 	 Li- 

(5.2+2) 

.. (5.43) 

a = 203.0 for if' y 	 01. (5043a) 
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and 

4 	

r 	-5_(z-z t ) 4 -3 r. 	 °D 	OD 
dz 	dzt e 	A(b,e,b,z ) 

-00 -co 
... (5.44) 

which, by using the definition of A, Eq.( .34)1 is writer 

as 

W(b) = ' u) ('' 	W (1'N  2''' 
.1.15) 

00 ,.00 	-i(z-zt)( 3 
= 2j dz j dzt e 	d-1 -*  

2 

-00 	00 

v J,(ab sinh v) 
se 	 (5.40 16i dv 	 

o 	[1.1 sinh v/a) 212  

where 

and 2 

iCz I 3 (1c 	
i 2 

	

W
2
(b): 	 S°D  dz e 	jd x 

-co 	I 	11 
2 

ko(t,b) 	Ko(ab) 	(2a2b/a)K1(ab) 
I 
 . 

(5.47) 

2 	2  1/2 

	

a = 	+ 4a ) 	... (5.48) 

Jo 
is an ordinary Bessel function, and Ko  and K1  are 

modified Bessel functions. We have taken the average 

excitation energy w of the target in Eq.(5.42) to be 0.05 Ryd 

following the crude estimate procedure of Joachain and 

Mittleman
66 

that it is of the order of the ionization 

energy. The results, however, are not very sensitive to its 

value. The reason is that the values of W(b) for different 

values of w differ only for large b, which contribute 

little to the scattering amplitude138 . 

It is evident from the Eqs.(5.42) to (5.47) that the 



eikonal optical phase Xopt  no longer depends on the direct-

ions of b, The 0b-integration in Eq.(5.38) can thus be 

easily performed to yield 

co 
. 

(1'm 	dip 10,T (0)(1-e- 	). 	... (5.49) 
fi 

The differential cross section is now obtained in the 

usual way and is given by 

d0-(q) 	2 	C 	4 	t-4 4 2 
;(0 ki) = IFfi(kf,ki)iFfi(kf,ki)1 

dg 
• ... (5.5o) 

We compare it with that due to the pure Coulomb field 

1C(0,ki) 
2 

a? "fc'. I 
' (5.51) 

Another convenient quantity to be examined is the ratio 

R(024) of the calculated differential cross section I(O:ki2.) 

to I
C 
 (02k.

2 
 ), 

(ii) Resqlts,and Discus„ ,ion 

Figs.5.1 and 5,2 show the calculated values of the 

differential cross section at 0.5 Ryd and 1.0 Ryd respectively. 

These values are quite large at small angles due to the 

associated Coulomb contribution. The deviations from the 

Coulomb cross section are of interest. Our calculations 

without the polarization potential and absorption effects 

( MM... 3 •••••••••) show a suppression over the Coulomb cross 

section upto 0r4800, in agreement with the results of 
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McDowell (— 	). The overall shape of these curves is)  

however:  different although this improves considerably 

when theepolarization potential and the absorption effects 

are taken into account 	This change is mainly 

brought about by the absorption effects; the inclusion of 

the polarization potential makes only a small change. For 

large G, our results are very different from those of 

McDowell.- 

In Figs.(5. 3) and (5.4) we have shown the ratio 

R(A24) of I(g,ki) to IC(G 	for 14 = 0.5 and 1.0 Ryd 

respectively. These figures display the main features of 

the calculated cross sections more prominently. The 

calculated R(G,ki
2  
.) 	- - - (------- curve shows oscillations 

in fair agreement with the results of McDowel1
69 

 (-  

except for large Q. The position of the first minimum moves 

towards smaller angles as the energy increases just as in 

McDowell's case. The main difference is the enhancement 

(R(Q,k1)> 1) in the backward direction. Our calculations 

without the absorption effects do indicate the enha.:'cemerts  

but they can not be relied upon at large angles. 

In conclusion, we have shown that the main features 

of th6 results of McDowell
69 

can be reproduced, at least 

qualitatively, by this method, which is comparatively very 

simple. 
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5.4.2 INTERMEDIATE ENERGY e-Li+  ELASTIC SCATTERING 

We have calculated e--Li elastic scattering cross 

sections in the energy range A4300 eV. At low energies (less 

than 3 Ryd), it has been treated earlier by McDowell69. 
The eikonal optical model has the flexibility of accurately 

taking into account the contribution of any particular 

inelastic channel to the optical potential. In the present 

calculation we have exploited this feature to include 

accurately the contribution from the first excited state... 

The effect of the polarization of the target has also been 

taken into account. In the next subsections we outline the 

procedure giving details of calculations and then discuss 

the results. 

(i) Procedure 

If the contribution of any particular excited state 

(say, the first one) in the summation of Eq.(5.13) is to 

be taken accurately:  the approximation made in respect to 

it in Eq.(5.13) can be easily corrected for e  to get 

6 LvPi6i / 	<6i  l 	1v16 \  1
2 

- 	kl 2  - 
2 	, 

+ 10? I vith 	( 	 - 	1 	(5.52) - i 	1 	2 	(-1 	2 -- 	/ " k 	j 	k! - ) 
1 	' 

where 

(w1 
 .- w1) 
	

• • 
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In configuration space)  Eq.(5.52) takes the form . 

(14. 	) A 
1 

1:PqB(-If j 7.'t), 
... (5.54) 

where A(I.*:?t) is defined by Eq.(5.17) and 

B(37$1) z J(1)1(5 vCi'',Zi),(;)d3xfOr(li) 	2.1i)(1),(7.- t)dxt. 
... (5.55) 

Here (I)I() is the wavefunction for the first excited state of 
the target and 	is the free Green's function corresponding 

-> 
to a wave vector 	k1.  

This form of the optical potential leads:  in eikonal 

approximation:  to the expressior (5.28) for the elastic 
scattering amplitude:  where the eikonal optical phase

.
;IA  

is now given by 

;Pt(b)  = -(1/k
i) ail  (D) + up  (b) 	i/2kik1) W(b)+(i/2ki) y(b) 

(5.6) 

Here 

y(b) = z 	dz Fyki)exp(-1 z zt) 
-CO -OD 

-(1/kit) -exp(-i(z-z1)):B(1314b:z1)) 	(5.57) 

where 

i 	3. 
k.-k1 	

(w
1 
 -w )/21,  (r4 000 s../oVU) 

The other parameters are defined in the usual way. The target 
polarizibility a for Li+  in Eq. (5.60) is equal to 0.19Mef.6T1. 
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The interaction potential V for e-Li
+ 
elastic 

scattering is given by 

V = 2( 	1  
fir- x 1 	

I- 
 r
5 	-5 1 	I" • 
- x2 

... (5.59) 

We have used the following hydrogenlike wavefunctions139  

for the ground state and the first excited state (excitation 

energy wrwi  = 4.47 Ryd) of Li+  

Oi  (3; 	(x2 :12) = ( p,3a 3/g) exp (-11cc (xii-x2) ) . . (5.60) 

-1/2 -) .) 1/2 	1/2r  
11)1 (- 	(1)1(A) = 2 	(p.l-',c0J/7c) 	(µt /37tH) 	texp(-1.0a'xl) 

Ex2exp (- x2) - (3M/0) exP (- 0 x2) :1 

+ exp(-pratx2) Eiclexp(-1,0x1)-(31v1j,t) 

exp(-[-00x1) :11 ) 	(5.61a) 

where 

1-tcc at 2.69 

1,40 3.00  

opt = 2.17 

21.0 = 2.1; 

M r  (C)+P i)3/(14-00)4  

and N = 1+0m2/(3t3)-4817/(14-0)4. 	(5.61b) 

The first order interaction potential ,V(1)(r) in Eq.(5.12) 

with yi(xl,x2) of the form (5.60) and V of the form (5.59) 

simplifies to the form 
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-v(1)  (r)o -,j(1)(b2z) = -(4/r) (1+11ar)exp(-2µ1r)- 	(5.62) 

The last factor in (5.62) is due to the net charge on 
+ 

ionic target Li . We drop it in the main calculation as 

pointed out earlier. As is evident that the form (5.61) of 
-4 .4 

T-(x12 x2  ) is similar to the one considered by Joachain and 

Mittleman66  and Kumar et al140 we directly use Eqs.(5'.45) 

to (5.47) for 1T(b) with 

a  = 	2444120c2) 1/2 	 ... (5.63) 

We have taken w = 5.5 Ryd. As pointed out earlier in the 
case of e-H" elastic scattering )  the results for e-Li+  are 

also not very sensitive to its value (see Fig.5.5). 

The calculation of y(b)'  though lengthy)  is simple. 

The matrix element 

oi  vi (16) = S(14.(.7,21,7 ) 	1 	+ 	1  
" 	) 	x.12-1.2 2 i 	

— x2I 

= 21/2( C2  E 217- (a1+ -11,--) exp-2air)j 

+c1{ 	(213fr 	4131 + /4) exP(-201r) 
2131. 

311
—r 	1 + 1.

r)exp(- 2111r) ]f) 	... (5.64) 3  
211 

in Eq.(5.55) and the integrations indicated in Eq.(5.57) 
give 

y(b) = y1(b) - y2(b), 	 ... (5.65) 
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1/2 

„,2%  1./2 	2,t 	0)2] 	) 
“'17-411) 	r'17-""'" 

q4.144)1/2 = pi.( ilaillt)211/2 7  

1/2 

= 
14
la

1 	L 	t 2] Pr) / 2 	 \
) 	- + 	(-1 

 

• fl (5.L8) 

C 	
P3a3W 4  at3 1/2 

a3 	31\1-)  
'1 

and 

• ( 5. 70) 

C 2 2 = C1 - (1— 	24 	 ... (5.71) a 4  
1 

y2(b) is given by an expression similar to (5.66) with kJt 

for ki  and 	for r-3.1. 

The total scattering amplitude for e-Li+  elastic 

scattering is now given by expression (5.35) where 111  
is the Coulomb contribution corresponding to the second 

factor in Eq.(5.62) and is given by 



-126- 

-> -0  FfC  i(kr:ki) = (2/q2) exp[i +28o+( 2/ki)11/( sing/2) 

So arg r7 (1-i/ki); 

(5.72) 

4 
and Ffi t' (k k.) is obtained from (5.49) using 7G (b) given opt 

by .Eq.(5.56). The differential cross section I(A:kf) and 

I 	. C
:kJ) 2 	2 	C 	2 :arid the ratio R(G:k) of I(A:k.) to I 0:k.) are . 	• 	i 

now obtained from (5.50) and (5.51) with the new values 

of 	and Ff1. 

(ii) heggltland Discussion 

Figs.(5.6) and (5.7) show the calculated values 

of the differential cross section along with the correspond-

ing Coulomb cross section 'for the point target at 200 eV 

and 500 eV respectively. The values are:  as expected: quite 

large at small angles due to the associated Coulomb contri-

bution. Our calculations without the absorption effects 

(i.e. without the second-order term in the optical potential) 

and the polarization potential (--- 	show a suppression 

over the Coulomb cross section ( 	) but this is off-set 

when the absorption effects ( 	and the absorption 

effects and the polarization potential together 

are included. 

All these features are very prominently displayed 

by Figs.(5.8) and (5.9) where we have plotted the ratio 
R( D:k.2  )0f1( 2) lk) to IC  (A lk.2  ) for 200 and 500 eV yespect- 

ively. It is found that the inclusion of the absorption 
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effects reduces the suppression over Coulomb cross section 

for 0 upto about 80°. This range decreases as the energy 

increases„ When the polarization potential is also included 

the suppression is reduced further over almost the whole 

range except, for small angles„ Actually the cross section 

in this case shows enhancement (R(82ki2)) 1) over Coulomb 

cross section for large angles (0 >130°  at 200 eV, 8 >55°  

at 500 e . 

Another feature, in agreement with the findings 

of McDowell69 )  exhibited by these curves is the occurrence 

of a minimum in R(0;ki2) . This minimum becomes sharper 

and moves to smaller angles for all curves as the energy 

increases. The inclusion of the absorption and polarization 

effects shifts the position of this minimum (absorption 

effects towards larger angles and polarization towards smaller) 

and makes the curve shallower. 

y(b) in Eq.(5.56) is found to be of almost no 

co:ns,Kluence. Its values are much too small compared to 

W(b) indicating thereby that the coupling to the first 

excited state (2s) in this case is very weak. 
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CHAPTER 6  

e-H ELASTIC SCATTERING IN GLAUBER-BORN APPROXIMATION 

6.1 INTRODUCTION 

In the preceding chapters we have discussed the Glaube_ 

approximation and its applications to study the elastic and 

inelastic scattering of charged particles from atoms and 

ions at intermediate and high energies. The range of validity 

of the Glauber ( straight-line= approximation (GSA) with angle 

and energy have been discussed in Chapter 2. It is well known 

that in the limit of high energies the Glauber amplitude 

approaches the first Born amplitude, At intermediate and 

low energies it is expected to contain more information than 

the first Born approximation (FBA). But the recent measurements 
71-73 

of the differential cross section for e-H elastic scattering 

have indicated that GSA underestimates the cross section and 

gives a value lower than even FBA at large scattering angles 

in the intermediate and the low energy region. For small 

scattering angles anyway the Glauber amplitude diverges as 

Inq in the limit q o;  q being the momentum transfer 

Various attempts have been made to improve upon GSA and to 

extend the range of its applicability to lower energies. In 

the angle Glauber approximation81 
 
382  a correction to the 

straight-line classical trajectory has been made by replacing 

it by two semi-infinite straight lines. The eikonal optical 
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model
65682 124-128 

includes the second order optical 

potential in the evaluation of eikonal phase and also 

removes the logarithmic divergence in the forward direction 

by introducdng an average excitation energy of the target. 

The eikonal-Born series24155-58  approach combines, in the 

spirit of exact scattering amplitude expansion, the Born 

series and the Glauber series. We have already touched upon 

these procedures in our earlier discussion. Birman and 

Rosendorff141  have recently proposed a procedure to eliminate 

the small angle divergence, within the framework of the 

Glauber approximation, by incorporating a non-zero average. 

excitation energy of the target. All these procedures make 

a distinct improvement over GSA but are quite a bit tedious 

to apply in actual calculations. Ishihara and Chen70 have 

recently pointed out that the poor performance of GSA (even 

relative to FBA) is primarily due to the improper semiclassical 

treatment of the electron-atom interaction V(1,1). This 

interaction behaves like -Z/r as the incident electron 

coordinate r o. Ishihara and Chen have attempted to eliminate 

this shortcoming of GSA by separating out, from V, a central-

force potential V1(r) for which semiclassical approximation is 

not valid. They treat it quantum mechanically taking few 

partial waves and the rest of the interaction V(U) = 

- V
1 

	, (r) which satisfies the semi-classical conditions, 

in the Glauber approximation. 

In the present work our motivation is to obtain a simple' 
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expression giving results considerably better than GSA yet 

with no additional effort. In order to achieve it)  we use 

the standard two potential approach and treat Vo  in GSA and 

V
1 

in the Glauber-distorted Born approximation. We have 

applied this procedure to elastic e-H scattering. The 

exchange effects have been taken into account in the well 

known Ochkur approximation29. A similar approach treating 

the primary interaction responsible for the transition to 

first order and the initial- and final-state interactions 

in eikonal approximation has been followed by Chen)  Joachain 

and Watson142 for the study of is- 2s and is- 2p excitations of 

hydrogen atom. 

In the next section we give an explicit expression for 
the two-potential form of the scattering amplitude in 

s'.istorted wave Born approximation (DWBA). Sec. 6.3 outlines 

our procedure. The details of the calculation are presented 

in Sec.6.4 and the results are discussed in Sec.6.5. 

6.2 TWO POTENTIAL  FORM OF THE SCATTERING AMPLITUDE-
THE DISTORTED WAVE BORN APPROXIMATION (DWBA1_ 

Let us consider the scattering of an electron by a 

Z-electron target atom. The complete Hamiltonian of the 

system is given by 

H = H
o 

+ V ) 	 ... (6.1) 

where the unperturbed Hamiltonian Ho  is given by 

Ho  = 	Ht, 	 (6.2C) 
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and the interaction potentials V, has the form 

1 
V = -21  + 2 

r j=1 11- 
	
1.1 

(6.2b) 

In Ecis.(6.1) and (6.2) ") is s  as usual, the kinetic energy 

operator of the incident electrons xis are the coordinates 

of the target electrons and Ht  is the target (neutral atom) 

Hamiltonian 

where 

Z 
H
t 	

7 v + vt  2 j71   

Z 
V
t 	

22 ( - 	+ 2 	. 
j 

x. 
=1 	J 	j>i=1 

... (6.3) 

... (6.4) 

All the positions coordinates have been taken, as usual, 

relative to the target nucleus. In Eq.(6.4), i denotes the 

ground state of the thrget. 

The transition matrix element corresponding to a 

transition of the target atom from an initial state i to 

some final state f is given by 

Tf 	( 27) 3 6f 1 v 1 	= ( 27) 3  < 114.-  ) 1 V1k > 	. . . ( 6 . 

,6(i) where . 1  and t(-)  denote the scattering wave functiongof Y 

the whole system described by the Hamiltonian H and satisfy 

respectively the following LippmannrSchwinger equLition 

t( . +  1  vt( 
i 	i E-H + ie 

=  
f 	if E a

1 	et( 
H - is 	f-) 

 
O 

... (6.6) 

( 6. 
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Here is the unperturbed wavefunction and satisfies the 

Schroedinger equation 

H
0J

= E 

k.2 	k
2 

1 w  .11 
2 i 2 "V' 

and is given by 

4 9 
1 -7-"„ (2n e () 

3 	)-)" 

where 

E 

. (6.8) 

... (6.9) 

,.. (6.10) 

ignoring the (spin) exchange effects. w
j 
is the internal 

target energy of the target in the state j with wavef unction 

We now write the interaction potential V as the sum' 

of two parts 

V = Vo + V1. 	 ... (6.11) 

If his scattering wavef unction of the system in the presence 

of the potential Vo  alone:  it satisfies the Lippman-Schwinger 

equation: 

( 4) 	x 	,1  . 	w. 	 V hc h 
1 	i 	E - H+ is 	o 

1 
Ho - ie  V (-) • 

of 
 ... (6.13) 

Substituting for i  from Eq.(6.13), the transition matrix 
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element Tfi Eq.(6.6), takes the form 

(27)-3Tf i  = f 	 . t(-)  I V +V1  I (hi(  +) 	11 	o 
1 	(+) 

	

h. 	- E- 	V  

= <4-) vo  4+)>  <-14-) vi ihi+) 

<t) 11T0+ E-111+ iE 	V014.4)  0   

= 04-)  Vo lhi+)> - <14-)  I 77.17777 V-0 14+)  
0 

+N--) 1 15.14. 4) % f 

Using the operator identity (AO= 	 it it becomes 

(21) `3T fi = 	E-Hlic 	V Ihc+)>+ (4( f -) V1  lac o o  

vo ihi+).> <147)1 vl ihi+)›. 	 (6.15a) 

Similarly:  proceeding with the alternate form of Tfi  in Eq.(6.5), 

it can be readily shown that 

(211)-3  Tn.  :2  <4f 11[014+)\> 	<4'') IViltil.);>4 	(6.15b) 

The distorted wave Born approximation (DWBA) corresponds to 

approximating tC.19  in the second term in Eqs.(6.5) by hC.71) ' 
0 

DBA 	7c)  3 E., r 
fi

W 	2 
	 f,I *V 	Vih Ih. > +(h(-)1 	(+) 

o i 

I. T(1) + T(2) 
fi 	fi 

... (6.16a) 

(6,16b) 
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6 . 3 PROCEDURE  

If the potential Vo  is smooth enough and ( Vo liEl for 

all values of 11  the distorted wave h i( -±)  described by the 

Hamiltonian Ho  +Vo  can be obtained in the Glauber approximation: 

(4-) 	( 4 G - 1  h. 	. 	- 	expfirt..I? + 	A.Cta zi)1) 	. 	(6. 173., ( 2a)  3/2 	 a 	.14() 

h(-) 	h(-)G = f 	f Af (Tal* )z11)} (1)±.(-3.c) 	(6.17b) 

where 

.A 11( 	- 	vo(2)zt ;15 dz 2ki  _co  
co 

Af (112 Z-pl) 	 j V ( b 1  x)dzt 2kf z o 	2  

r 	b + Cz  

the unit vector C is taken along the incident direction,. ki  

and kf are )  as usual )  the initial and final momenta and 8 is 

the impact parameter. Using these distorted waves in Eqs.(6.16) )  

the first term can be written as 

a.q.r -> ( )z )x) 	 2  
Tf̀ r 	j e 	e 	f ( x) Vo ( r 'X) (pi ( x) d-bdz d3x 

	

= -2ikifd2b 	x 04;(?)T7 (1:3)0 (1)i(11) 	... (6.20) 

where 

(box) 1 eix(11,1) 

01;7) = - 	fc°  v
o 

 ( b 2z ix) dz. 
1 _op  

(6.21) 

... (6.22) 
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In the above:  we have made the usual Glauber approximation 

of neglecting the longitudinal component of momentum transfer. 

Let us now, consider the second term)  Tfi(2)  3 of Eqs.(6.16). 
( Withthepresentchoiceof. hj+) 	i:it s given by 

9 
T()  = fd3r d3x elq'r  V1  (r)(1)*f(-1) fi  

xexpti[ i(r3lz'il) + Af(11 2zil) 	(i)i(71) 

i)4(143'71) 
fd.'r elq'r  V1(r) 	9f(x)e 	(tii(x) 	(6.23) 

for elastic scattering. 

6.4 CALCULATION 

In this section we apply the expressions obtained above 
to elastic e-H scattering. For hydrogen (Z • 1), the inter-

action potential V is given by 

2-1) -+ 2 
r 	1, (6.24) 

The arbitrary potential Vi is chosen to be equal to the 

static potential of the hydrogen atom in the ground state. 

We thus have 

1/1(r) 	vst  .7. -2(1 + 	e-21' 	 ... (6.25) 

and 
-2r 

Vo(12
1) = V-V1 	- 	+ 	+ 2(1 + 4-)e 	.... (6.26) r 

This choice of V1  makes V4-0  quite smooth. 
-)  Writing x = s + C zi , Eq.(6.22) gives 

X(t)-1) E r1-3>:1) 	(-11s)+f(b) ... (6.27) 



2 11(3)(°°  2 -fie 	j ds s K1  (2s) 

... (6.30) 
0 

db b_
ap 	r27t 

-2 iki  j  
0 	0 

X  dO 
(21c , 11:1-11 

o  s b 

-4 -4 

dOb 

eiq.b 
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where 

Y (11T) 
2 
 - 	f 2k (- + ----)dz 

= 211 ln() / 	= 1/ . 
b 	

ki ... (6.28) 

is the usual Glauber phase function for e-H scattering and 

f(b) 	f 2(1 + 	e-  21  dz - 	. 

2  Co -2, 77 -2, 

k. f (e 
	 e 

0 

= - 2r [K0( 2b) + 	2b) 	2  ... (6.29) 

K0  and KI  are the modified Bessel functions of zeroth and 

first order respectively. Using Eqs.(6.27) to (6.29) and 

the ground state (normalized) wavefunction of the hydrogen 

atom, Eq.(6.20) reduces, for elastic scattering, to the form 

-21s24z2  
T(1)

1S  = 2iki  id% el
q.''' [i - n fd 2s fa)  dz

1  e 
	- -1  ,- 1S  -OD 

e--  • - 

Following Franco94 and Tai et a191
s- and 013  - integration 
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can be easily performed: 

2% 	It:11 

dO 	 r d0(1-ycos0)b
2% 	irk 

2% s 	21(by) $  

	

(2s)il b2 	s2  1 211)14 	4.  1. 

by 	2 	2F1s2 • -2'111;1+ liT)*1•,2% 

	

b + 	
2 / )0 ) 

= Io  (b ,s 911), 

2bs 
= (b2+s 2) 

n2N   dOb e 	= j o"-' 2it 

... (6.31a) 

(6.31b) 

... (6.32) 

Using Eqs.(6.31) and (6.32), the transition matrix element, 

Eq.(6.30), simplifies to a two-dimensional integral form 

00 

T(1) 
 1s -16iki% 	db b Jo(qb) 

0 

m  eif(b) f ds s 2 
1 	2K 1(2s) Ib 

4 	 1
( 	

0 
( 

Is 
• 
3111• 

0 

(6.33) 

Let us now consider Eq.(6.23) for the contribution from 

Writing 

• q.r = qb.b 	qz  z, 	 ... (6.34) 

where r&I = q cos (8/2) and qz  = -q sin(8/2) are respectively 

the components of q in the plane of TS and along the z-axis, 

and using the explicit form of Vi from Eq.(6.25), Eq.(6.23) 

simplifies to 



ie(b) 	 CO 
e 	 J e 	d's J dz

i  
-co 

..js24z2
1(e ) 

..b 
(2) = _ Z fd2b Tls-ls 	7 

it 	
21r 

x id2s s K1s 	) (2 )( 	s  
b 

,co 	iq,z 
dz e " (1 + 	

1 	) b
2
+z 

-co 	1132+ z2 

1.7. 4441,N 

= -
a
2b e

iqb.0 if(b) 

	

[i (b „Fr, 	--212—. 1C (1, 	L 1 
0 	Clz44, 	4 Liz ' 	j 

clz44 

The longitudinal component q2  of the momentum transfer has 

been retained here as T(2)  is expected to contribute significantly 

for large scattering angles. The integrations over the azimuthal 

angles Os  and fib  can be performed as before to yield 

tco 	 213 

Tls-)ls 
 = -327 	db b Jo  (qbb) F.0(b A 2 ) 	K (b 

qi+ 	 qz+ qZ+ 

if (b) 
Ids s2K1(2s)I0(b2sin). 
	(6.35) 

The s-integration in Eq.(6.35) is identical to that in Eq.(6.33). 

The direct contribution to the scattering amplitude for the 

elastic scattering of electrons by hydrogen atom in Glauber-

'distorted Born approximation is now given by 

F 	Oi)  TZ)  
ls-ls f 2  i 	- L 	is-

) 
 is

.1. T
is
2)  

ls)  ... (6.36) 

So far the exchange effects )  which are important at intermediate 

and low energies )  have been ignored. We have included them in 

Ochkur approximation rather than following the procedure of 
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Ishihara and Chen70  in order to keep the calculations simple 

which is the prime motivation behind the present work. The 

Glauber approximation for the exchange contribution cannot 

be used because of the indeterminate phase factor appearing  

therein143. 

The differential and total cross-sections are obtained 

in the usual way: 

and 

(q) 
IFS -  + 1g 1 2 	

Re(F g4) 

2k. 

dQ 

0- (k ) = 	c16-(q) 
i 	2j 	

n 
 dQ 	2  

ki  o  

... (6.37) 

... (6.38) 

where g  is the Ochkur exchange amplitude. 

6.5  TEgolv AMID DiLscuspzoN 

We have shown our calculated differential cross sections 

at low energies (20 eV and 30 eV) in Figs.6.1 and 6.2, and 

at intermediate energies (50 eV and 100 eV) in Figs.6.3 and 6.i, 

They are compared with (i) the usual Glauber (GSA) results 

including  exchange in Ochkur approximation29, (ii) the two-

potential eikonal calculations of Ishihara and Chen70 /  

(iii) the eikonal-Born series calcUlations of Byron and 

Joachain24 (Figs.6.3 and 6.4) and (iv) the recent experimental 

measurements of Tenbner et a1711  Lloyd et a172 and Williams73. 

Also plotted are the cross sections in FBA. In the low energy 

region our results exhibit considerable improvement over the 
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usual Glauber results at large scattering angles (49),50°). 

At 20 eV present results compare very favourably with those 

of Ishihara and Chen
70  and are in very good agreement with 

the experimental data. At 30 eV)  though we are better than 

FBA, the agreement with experimental data is not so good. 

As the energy increases (Figs.6.3 and 6.4) our results begin 

to underestimate the cross.sectiors even with respect to 

FBA. They continue to remain better: though not very signi-

ficantly) than GSA. 

The overall conclusion is that though the present 

calculations do not have as good a fit to the experimental 

data as obtained by Ishihara and Chen
70 

they provide a 

simple and reasonably accurate alternative for elastic scatter-

ing studies at low atd intermediate energies. The loss of 

accuracy is compensated by considerable saving in computational 

labour. 
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CHAPTER '7 

SUMMARY)  CONCLUSIONS AND COMMENTS 

Throughout the work reported )  the Glauber approxima-

tion has been used as the basic tool to study the problems 

of atomic collisions. The underlying assumptions )  the 

limitations and the range of applicability of this approxima-

tion with respect to the scattering angle and the incident 

energy) and its, relationship with the Born approximation have 

been reviewed. 

In the present work following problems were investigate' 

(i) We have obtained a 'simpler expression for the 

Glauber scattering amplitude in a one-dimensional integral 

form for the general transition nfm nIftmt in e-H(ls) 

scattering by combining the techniques of Franco60and Golden 

and McGuire61 and using the Laguerre polynomials appearing 

in hydrogen atom wavefunctions straightaway rather than 

breaking them into the form xlie-vx. Our expression is parti-

cularly suited to study excitations to highly excited states 

from a low lying state. Earlier expressions59I  although 

in closed forms)  become a bit complicated because of the 

increasing number of hypergeometric functions depending on 

the value of of [Chapter 3)  Publication No.4]. 

(ii) We have studied the elastic scattering and the 

2s-2p excitation of lithium following electron impact by 

modifying Francois procedure60 of explicitly involving all 



the three electrons of lithium atom. Earlier Glauber 

calculations of e-Li elastic and inelastic scattering 

were made in 'frozen core' approximation without62/63 and 

with63 the core potential. Our main conclusion is that the 

involvement of inner electrons (those in the is state) in 

lithium causes very little change over the 'frozen core! 

Glauber results and the latter are good enough for studying 

e-Li scattering. As a side excercise we have also obtained 

the percentage polarization of the 2p42s resonance line 

emitted from 6Li and ?Li following electron excitation.144 

The agreement with the experimental data of Leep and 

Gallagher64  is excellent for energies above 60 eV. Even for 

lower energies the differences are not as pronounced .as in 

the case of total cross sections Chapter 4, Publication 

Nos.214 and J. 

(iii) We have considered e-B-  and e-Li+  elastic scattering 

by extending the eikonal optical model of Mittleman
65 and 

Joachain and Mittleman66 for e-atom scattering. We have 

treated separately the pure Coulomb interaction between 

the projectile electron and the ionic target and taken its 

contribution into account exactly. The total scattering 

amplitude has been obtained by adding coherently the 

contribution due to the pure Coulomb interaction to that 

due to the remaining interaction treated in eikonal optical 

model6566. The main aim of the present work was (a) to 

investigate how far one can use the eikonal optical method, 

which is comparatively very simple, to study e-ion elastic 



scattering at intermediate and low energies and (b) to 

analyse the contributions of second order terms of the 

optical potential in the,evaluation of the eikonal phase. 

The main drawback of the method is the neglect of the 

interference of the Coulomb interaction with the remaining 

interaction. Recently Narumi and Tsuji145 Ishihara and 

Chen146 and Thomas and Franco
95 

have suggested a procedure 

to study charged particle-ion scatteringin-Glauber approxima-

tion. No results have yet been reported, to our knowledge, 

using this procedure for charged particle-ion elastic 

scattering [Chapter 5, Publication Nos.l and E. 

(iv) 	A simple procedure based on two potential Glauber- 

distorted Born approximation has been proposed to improve 

the behaviour of the Glauber approximation for large scatter-

ing angles and used to study e- H(1s) elastic scattering. The 

main feature of the present method is the simplicity of 

calculation it is hardly any more difficult than the 

ordinary Glauber-approximation, Electron-hydrogen atom 

scattering has always been an attractive testing ground:for 

investigating various approximations and calculational proced 

ures. Recently good experimental data on e-H(ls) scattering 

has become available71-73. It is found that the Glauber 

approximation underestimates the cross section even with 

respect. to FBA at large scattering angles. Various attempts 

have been made to improve the results. These are the 

tunrestrictedt (without the approximation of negl'cting the 

longitudinal component of momentum transfer) Glauber 
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approximation147-150 ) the eikonal optical mode165-68)122428 

the eikonal-Born series24)55-58 and the two-potential eikonal 

approach70.'Our work151  is a step in the same direction. 

[Chapter 6;  Publication No.f. 

(v) 	A numerical technique has been developed in the spirit 

of Filonts method in order to take into account accurately 

the wiggles of the cylindrical Bessel functions in the 

integrals of the type 

IF(x)Jv(ax)dx. 

Such integrals are of common appearance in Glauber calcula-

tions.appendix Al) Publication No.1]. 

Inspite of all the. developments )  present use of the 

Glauber approximation still has many weak points. These 

are 

(i) 	For elastic scattering) the Glauber amplitude diverges 

logarithmically in the forward direction. This divergence) 

in turn)  leads to the violation of optical theorem and is) 

therefore) worth special mention. It is found to occur in 
a6,152)1s$ 

the imaginary part of the second-order scattering amplitude. 

It has been shown by Moisewitsch and Williams152) Birman 

and Rosendorff153 and Joachain and Mittleman66 within the 

framework of the eikonal approximation and by Birman and 

Rosendorf1141  in the case of Glauber approximation that the 

logarithmic divergence can be easily removed by introducing 
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an average target excitation energy in the intermediate 

states. 

(ii) It is difficult to handle the exchange contribution 

to the scattering amplitude in Glauber approximation. Although 

Ochkur like reduction of the Glauber exchange amplitude has 

recently been proposed154'143, the method suffers from an 

undesirable feature in the form of an indeterminate phase 

factor which restricts its application to only optically 

forbidden exchange allowed 	transitions. 

(iii) The leading contribution from the polarization of the 

target is missing from the Glauber scattering emplitudes.The 

need for introducing polarization effect has long been 

recognised. In the present day Glauber calculations,this 

has to be added from outside. For example, Mathur
155 

has 

considered) in e-H elastic scattertrig, the perturbation of 

the target eigenf unction (by the static field of the incoming 

charged particle) by including a polarization part as given 

by Temkni°  

On the problem of charged particle-ion scattering)  we 

feel that looking at the success of the two potential 

approach of Ishihara and Chen
70 best results within the 

framework of the Glauber approximation could be ei::tained by 

combining the approach of Ishihara and Chen
70 

with that 

of Narumi and Tsuji145  Ishihara and Chen.. 46 and Thomas and 

Franco95. The total interaction potential should ':7,o broken 



- 2  + (- 	2 	- V ) + V  • 

= 

st 	st 

-146- 

up into three parts; the pure Coulomb potential, the 

static potential due to the remaining neutral target 

and the remaining potential. For example: in e -He+  scatter-

ing 

V1,2-  

VC + V + V'st' C o 

where 

	

Vst(r) 	(- r 4. 	2 	 (1)i 	d34 	... (7.2) 117). 

(0 	is the ground state wavefunction of He . If 

	

8 	SC  + So  + 6st 
	 (7.3) 

is the phase shift in any partial wave, its contribution to 

the scattering amplitude can be written as 

(e2i8-1) 	(e
218c

- 1) 	e
2i

e
2i

- 1) + e
2i(Sc 	) 2i5 o 

... (7.) ' 

Now the three terms can be handled 	the first two by foefocz- 

ing the procedures of Refs.95,145 and 146 and third by the proced-

ure of Ref. 70. This method will have the merit of treating the 

singular part of the interaction in a way better than the 
Glauber approximation. 

The problem of electron impact ionization has not beer 

undertaken in this study. The main difficulty comes about 



due to the appearance of the Coulomb continuum waver unction. 

Expressions in the form of an infinite series156157 or a 

1D integra1158-16o have been obtained. But the procedure 

is still quite involved and is restricted to include the 

contributions of only a few partial waves. A suggestion 

has been made that by working in hyperbolic coordinates 

may avoid the expansion in partial waves and save computation 

time160. To our knowledge this suggestion has not yet been 

followed. 



m z lIg t2 ,v ) t3Y( 11,v7P)Jv+2p ia(z) p=0 

z 
z r  2 v +4 +1) 

x4Jv(x)dx E12-( v-11+1) 

co (v+2p+1) fl 	v-p,+1) +p X 
 

p=0 	r 	v+11+3) +p 
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APPEMIX Al  

EVALUATION OF AN INTEGRAL INVOLVING ORDINARY 
BESSEL FUNCTIONS 

The integrals involving ordinary Bessel function Jv  

of order v frequently occur in our calculations. The 

difficulty in their evaluation arises because of Jv  

whose oscillations must be properly taken into account, 

We give below a numerical technique to evaluate them. We 

divide the total range into a suitable number of subintervals 

and approximate, in each subinterval, the remaining part of 

the integrand by a parabola 

xn+l  
xn+1 (o) 	(1) 	(2) 2 

f F(x) Jv(ax)dx 	(Cn-1+  Cn-1 + Cn-11  ) 
xn-1 	 xn-1 

A
v
(ax) dx 	... (A1.1) 

The constants C(i) are obtained from the values of the n-1 

function F(x) at xn_12 xn  and xn+1. The right-hand side can 
now be exactly evaluated using the equation (Ref.1611p.480). 

v+21341(z)  

... (A1.2) 



-149- 

to give 

xn+1 	1 	lo 	DP 
F(x)J 	

-(ax)dx 	4--  I C"-' p(p. v) 	T(u2 v,p) v 	
a 	n-1 	2  

n-1 	
wzo 	p=o 

x  r11 	 4 L.  n +1 
j 
 v+2p+1(a x  n+1)-  x  n-1J  v+2p+1(a xn-1) 

... (A1.3) 

The summation over p is :  in practice :  finite because the 

Bessel function J (x) 	0 as p a a). This method is reasonably 

fast because the constants in Eq.(A1.2) need be calculated 

only once and the Bessel functions are needed only at half 

the number of mesh points. No special effort is needed to 

calculate the Bessel functions of different orders as they 

are all generated in the standard 'Bessel subroutine! based 

on recurrence relations. 
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APPENDIX A2 

CONFIGURATION REPRESENTATION OF THE SECOND ORDER 
NON-LOCAL OPTICAL POTENTIAL 

The second order term )/(2)  of the optical potential 

in Eq.(5.13) is written in the form. 

2). 	i <0 1 1/10.)K0 - 1 1/0 ) v(7.   
2 

ii 	 - 	+ i6 

1  
J i 13 ke_ t-3 +.1.6 	Vii ... (A2.1) 

where 

Via = <O3 iv10, > . 	... (A2.2) 

If the interaction potential V is local)  it can be written 

in the form: 

KVII V 	V (/)8(-  pa 	= pc( 	r - r 

.10i3  (1) Vcrt15 (I)cc  G) d3X • ... (A2.5) 

Let us write 2  in configuration space of the incident 
particle coordinatei. 

(8_2<,1) 0> 
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= I 1- Gilv..1T,>< 	1-7><ri 	 
j#i 1 1 1 	2 --+ is 

<5tV <7''? IV. I 2' 2 ji > d3rid3r2d3X d3,x! • • 	(12.5) 

where the kinetic energy operator 7 satisfies the Schroedingcr 

equation 

... (A2.6) 

Using the relations 

JAZ. -rig\ 	e- 
( 2703/2  

<gb-Zi> = 8,(Z-01 

(A2. 7; 

... (A2. 

and Eq. (A2.3) I  Eq. (A2.5) simplifies to 

< 	 ( 	e 
( 27) 

3/2 	21  2 . 	 3/2 kJ +3.e (27c) 

x 	) V ji(t 

j 
2---4-5.--jd 

( 270')  

t et X 
10 2 - 1 + IC 

... (A2.9) 

where 

(1rt) -.:.  ......1.-- 1 3 	-
i

2 _2 
I 	( 270 3' 	' 	k -.Y,,-+ is 

... (A 2 .40) 

and 
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A(P,P,) = I v. .(-r v.. ( iti) 
2- J 

7 4, (:-) 1 vir',3?) t4) (3Z)>< chi (xi) I v(to ,-I!) I 	)> 

<(1j.(3t) I 4, 2"-It) 	03,i(1)>. 

Oict v(P,A I (liot>6);(2=) 14= 	) f0),(1!) 

= J(i)i(x) v1,36 vCr't ,Z(1)iGt)d3x 

vc?.,x) 41(x) eiGti, v(Pt 7!) (It) d3x d3x  t 
• (A2.11a) 

= .141(1) v(7,1) [5 ( t--3tt )-(1)i(1) e.;:(3tt)] 

x IT(t 1-11 )(1)i(21 )d3x d3x 

• 

• (14.2.11b) • 
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the shaded area of the square figure. The same area can also 

be spanned if we first vary zi from a to b and then vary z 

from zt to b (horizontal arrows) for every value of zt. Thus, 

we should have 

,b z 	 b b 
dzj dzt f(z,zt) = j dz' J  dz f(z,zt) 

a a 	 a z' 
... (A3.3) 

Interchanging the variables on. the right hand side and using 

(A3.2), it becomes 

b 

	

r dz f zdzt f(zazt) 	dz jj3c1 t f(zizt) . 
a 	a 	 a 	z • 

Combining Eqs.(A3.1) and (A3.4) we can now write 

b z 	 b 
I 	r 	 I 2 	dzt f(z,z1 )+ 	dz.! dzt f(z,z1 )1 - 

	

a a 	 a z 

b 	z • 	b 
= 	dz(j dzt+ I dzi)f(z,z1)1 

a a 
b b 

2 dz 4  dzt f(z zt). a  

This is the required expressiondn which the variable upper 

limit of the integral is transformed to the fixed value b. 

The integral gets further simplified if the function f(z)zt) 

is separable. 

(A3.4) 

(1,3.5) 
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