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SYNOPSIS

This thesis is devoted to the study of éubstiﬁuﬁionally
disordered alloys (mainly btinary alloys). The contents are
divided into two parts., The first part deals with the
theories developed for the elementary excitations in disordered
systems. In particular, a single band tight binding model "
Hamiltonian for electrons in disordered systems has been
studied in detail, The single site coherent potential approxi-
mation (SSCPA), most commonly used in the study of elementary
~excltations in disordered systems, is not suitable for
realistic systems where the constituents have different
band widths and the system possesses some short-range-order.
It is also inadequate in situations where the mean free path
of exXcitations is small., The SSCPA has, therefore, teen
generalized Ly many people in many ways so as to suilt various
situations. These cluster generalizations are usually very
tedious. We have studied a cluster generalization of SSCPA,
winich is computationally simple so that a numerical calculat-
ion of the density of states is possible, We considered
clusters made up of a central atom and its Z.nearest neightours.,
Then analogous to the SSCPA scattering from one such cluster
embedded in an otherwise effective medium is considered. The
effeétive medium is determined in different ways namely (i) in
the self-consistent central site approximation, (ii) in the
self-consistent boundary site approximation and (iii) by
imposing self«consistency conditions on the averaged T--matrix

elements, The main assumption which reduces the computational
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effort to a manageatle level without effecting the final
results much, is that the various configurations for a fixed
number of different kinds of atoms on the shell'of nearest
neighbtours are taken to be indistinguishable. We have
considered off-diagonal disarders of Shita type where the
hopping integral h®B is the geometric mean of n™ anda n®5,
as vwell as,y, the general case where hAA3 hAB and hBB can
take arkitrary values. In the former case the problem
reduces to that of +the diagonal disorder when one uses

a renormalized propagator formulation. Ve have calculatéd
thé densities of‘states and ihe spectral densities of states
for a wide range of parameters. Our results are in good
agreement with the exact resulits obtained from compuﬁer
simulation or from the method of moments. A critical study
of wvaribus approximate cluster methods developed so far by

various workers, has also heen done.

This cluster method has further_been.applied to the
problem of miged Héiseﬁberg ferromagnets., In essence the
proklem is quite similar but a bit more complicated. The
constituents have been taken to have different spins and
the exchange integrals takes on three values for a bkinary
alloy. The theory describes very well the tehaviour of

ezcitations for all values of wave-~vector energy and concen-

>
tration. Some difficulties have been encountered in the
low energy region where the Goldstone theorem is not

satisfied.

The second part of the thesis deals with the problem



of surface segregation in alloys. It has Leen observed that
the surface concentration in alloys is different from that

of the bulk. A quasi-chemical model has been employed to
develop a formalism to calculate concentration in various
layers parallel to the surface assuming the alloy to simulate
a regular solution. Several interesting aspects of the problem
like the effects of foreign atom adsorption and surface
relaxation on surface segregation have teen considered in a
phenominological manner. In addition to éome model calculations,
results have been obtained for Ni-Au and Ag~Au alloys.

Good agreement has been obtained with experimental results
obtained from Auger electron gpectroscopy. This calculation

is further extended to incorporate the shorit-range-order in
alloys (alloys following non-regular solution model). Ve

are able to formulate a method which can predict the short-

range ~order at the surfaces of alloys.
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CHAPTER I
INTRODUCTION

For several good reason,szk the study bf elementary excita-
tions in disordered materials has attracted lot of attention

of solid state physicists in recent yearsl'8. Though the

subject is not newg’lo but significant advancement has taken
place only within the last two decades. The reason for this
slow}progfess in this exciting field is obvious, In ordered

10,11 because of

materialsq a great simplification is achieved
the presence of translational symmetry in the underlying arrange—'
ment descrikbed by the positions; composition and orientétion of
the constituent units. As a consequence of the translational
symmetry one only needs information about a unit cell of the
crystal to calculate the behaviour of the whole system. This

makes the study of ordered materials manageable. The guasi-

' momentum E (we put B = 1) of the elementary excitations is

a good quantum number and the energy spectrum (which consists
of continua separated by regions of forbidden energies) of
different kinds of elementary excitations in crystals is |
determined by the dispersion relation E= E(E). The eigenstates

. - _
of quasil-momentum i are, according to Bloch's theorem, described

by a modulated plane wave with wave vector K.

& In fact, in our practical 1life, most of the time we deal with
systems which do not have the periodicity found in ordered
materials. Examples of such systems are doped semxoonductors,
disordered alloys and magnetic materials amorphous semi-
conductorsy glasses and liquids.



Onn the other hand'the disordered materials lack the
periodicity of the erystal. As a result of which the states
of a given quantum number are non-stationary. Strictly speaking
the concept of dispersion relation giving energy in terms of
the quasi-momentum does not make any sense. As a whole the
description of states in disdrdered materials is quite differént

and difficult as compared to that in ordered materials.

The central question in the construction of a quantum
theory of disordered meterials is the study of the structure of
-the energy spectrum of elementary excitations and the explanation
of the character of quantum states possible in such systems, This
thesis deals with the theories which try to answer the first
question. We shall deal with the class of disordered materials
known as substitutionally disordered alloys where on a perfect
point lattice, atoms of more than bne kind are distributed randomly.
Most of our discussion will be confined to binary alloys. General-

izations to an n-component alloy will be straightforward.

The constituents of an alloy will,; in general, have diff-
erent masses and electronic configurations. For a study of the
electronic excitations, one considers the dynamics of an electrZéS
moving in a random aperiodic potential field of static ion cores
and an effective potential of all other electrons. The problem
of vibrations of atoms3’4, having different masses (mass disorder)
and goupled with each other through spring constants which can

have different values depending on the occupancy of the sites

(force constant disorder); can be transformed to look quite
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similar to the .electronic problem. The problem of the spin

waves in disordered alloys is again very similar

5

to the one of

lattice vibrétions. A'complete solution of such a problem has

not yet been achieved. Progress has been made in three direc-

tions.

(1)

(ii)

(iii)

-

Highly simplified model% have beern investigated and
exact results have been obtained from analytic

methods in some cases.12

Maéhine Calculationsl3“19 have been carried out for

some simple models. In these calculations one solves

“the equation of motion by constructing a Hamiltonian

for a tiny piece of the alloy which is taken to
raepresent the whole system. Most of such calculations
have been performed on one dimensional systems. These
machine calculations have played a very important
ro}le for providing checks on the validity of various

approximate'theories.

Study of more realistic models where one has to
depend on a number of simplifying assumptions. In
this thesis we shall be dealing mostly with problems

which fall in this category.

A basic problem which one faces in disordered systems

ié the lack of detailed information about the microscopic

configurations of the atoms in the system. What we know about

the disordered materials is some macroscopic parameters such as



the concentration in the case of the alloys. To meet the
difficulty of lack of information about the microscopic confi-
gurationslin Tormulating a microscopic theory of a disordered
system, we take all possible configurations consistent with the
macroscopic parameters of the system and then average cver all

these configurations. Suppose we have a quantity 0(eqse,9..-€)5
..+) which is a function of random variables e;js€sy...€ 3.0 & Let
these random variastbtles be distributed according to .the joint

probability distributibn function n(el,ez,..ek,..). Then the
configurational average of O is given by
<O> = J_! * e j oo 0(319623..‘61{3...)ﬂcelgegg.‘.eky‘..))‘
del dezo * - -dek‘ L4 . : . > (lcl)

The symbol <es-> represents a configuration average., If the
random variables €19 €osecs € gecees are independently distri-
buted as in the case of random alloys then m(eyy €p3 ees € ress)
can be written as the product pl(el)pZ(éz)“‘ pk(ek)... . This
configurational averaging is inherent in all theories of dis~

ordcred materials.

The mathematical tools (or the theoretical methods) for
the study of various types of elementary excitations in dis-
ordered systems are the same. In fact, to a good approximation,
electron, phonons; magnon and exciton problems reduce to the
same formulationé. To be specific, here, we shall consider the
problem of electrqnic states in disordered alloys in detail.

As stated earlier, this requires solution of the Schrodirger
equation with an aperiodic potential. Various approximations

7

have been made to solve this problem’. The simplest approximation
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ig the virtual-crystal approximation (VCA) where the actual
configuration dependent crystal potential is replaced by an
averaged concentration dependent potential V> constructed

out of the potentials of the constituents, For a binary alloy

A::Bl-—x;
<V>=X VA".(l"'X)Vc e (lo2)

VA and YB are the crystalline potentials which one would have
for a crystal of pure materials A and B respectively, The
potential (V) is periodic and the resulting Schrodinger
equation can be solved using the standard methods of the band
theory'.zo’21 In practice the VCA provides good agreement with
expéniments when VA'and VB do not differ appreciablys such as
GeSi alloys.22’33 In other words we can say that the VCA is
good for systems where the mean free path is quite large

compared td-khe interatomic separation.

Recent theories of disordered alloys, which take into
account disorder at a realistic'level,are usually viewed within

the multiple seattering framework 2525

which regards the
propagation of an electron in an alloy as a succession ot

elementary scatterings on the random atomic scattererse

Conventionally such a description uses Green's functions.zo

- Several experimental quantities like the density of stales,
the specific heat, the ﬁeutron'scatteriﬁg eross~sections etc.
are r-elated6 to the Green's function. Thereforcy a knowledge
of the Greents functiom will make a comparison between theory

and experiments possible.
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The most important devclopment in the theory of elementary
excltations in disordered alloys has been the introduction of
the coherent potential approximation (CPA) by Soven27 (for
electrons) and Taylor28 (for phonons) in 1967. The CPA is a
mean-field theory. The simplicity of the CPA arises from the
fact that formally it can be viewed as a reduction of the
alloy problem to ohe of a sirgle impurity in a self-consistently
determined effective medium. The CPA has been studied at length
for a sinmple single band tight-binding model Hamiitonian;'Though
this simple model is not of much interest as far as the realistic
systems are concerhed; but it has played an important role in
our understanding of the energy-spectrum of elementéry excitat~
ions in disordered alloys. In a very significant contribufion
Velicky et al®’ studied this model Hemiltonian by considering
disordef only in the diagonal term and established the supre-
macy of the CPA over all the other early theories. Lateron

numerous papers have appeared30

where people have tried to
improve upon this modelg Thesé improvements have beéh done -

mainly in three directions?

(1) Attempts have been made to incorporate the off—diagonél
disorder alongwith the diagonal disorder. This represents a
more reallistic situation. But even with this improvement we are
far from reality as far as electrons in disordered systéms are
concerned. However, these developments proved helpful in the

31,32 33-39

study of phonons and magnons in disordered systens.

(1i) From machine calc;ulationslB"‘-l9 it has been found that
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the energy spectrum of excitations presents a fine structure
which is a characteristic of various configurations of clusters
of atoms. This fine structure is more pronocunced in the case

of a linear chain. The CPA washes away this fine structure
because it is a single site approximation and is incapable of
seeing ahy potential fluctustions due to clusters of atoms.29’36
The energy spectrum of disordered systems has exact boundsy
according to the Saxon~Huther conjectur937“41¢'This states that
there can be no states in the energy region simultaheously
forbldden to the energy spectrum of each constituent. The CPA
spectrum is‘cut—off sharply and there are regions where the

CPA does not give any states but a finite density of states is
allowed, Further, in general, alloys are not completely random
but there exist some sort of local order. Such local order can
be incorporated in generalizations of the CPA where instead of
a singlc site one considers scattering from a cluster of atoms

embedded in an effective medium,

(iii) I'inally attempts have been made to improve upon the
single band modeis so as to account for the realistic systems.
This has led to the extension of the CPA fof degenerate d
bands*0? %% .n3 the two-band s-d models*” 48, Recently

attempts have also been mad649”57

to construct alloy theories
based on the familiar KKR method in the band structure calcula-
tions but using a simpler approximation such as the averaged

T-matrix approximatior (ATA).

In the first part of the thesis we present some of our

attenpts towards improving the CPA, We have developed cluster



theoriecs whiqhvincorporate the diagonal as well as the off- |
diagonal disorders in 2 Single‘band.tight binding model
Hamiltonian. Efforts have been made to mould the theory in
such a way that we get good agreement with exact results
obtained from machine calculations. The theory has been applied
to the disordered Heisenberg ferromagnetic binary alloys- a

problem of correlated site and bond disorders.

The organisation of the first part of thec thesis is as
follows. In Chapter II we recapitulate some of the ideas of
the multiple scattering theory. The single site CPA and the
ATA are introduced and discussed for a single band tight bind-
ing model. The merits and the demerits of the single site
approximation (SSA) are presented and a need for the improve=
ments over the SSA is emphasized. Chapter III deals with the
theories which improve upon the calculation of the single
particle Green's function. A critical study of the various
prevalent cluster theories is made. In this chapter we have
restricted ourselves to problems with the diagonal'disorder
only. Two simple cluster theoriesy the self-corgsistent central
site approximation (SCCSA) and the self-consistent boundary
site approximation (SCBSA) have been studied in detail. The
density of sta%es has been calculated for vﬁrious vaeluss
of parameters, The analytic behaviour of the Green's function
has been stud.ed., Finally we have studied a cluster generaliza-
tion based.on a new configuratiqh averaging téchniqué of
Mookerjee58’59. In Chapter IV we present formulations where

both the diagonal and the off=-diagonal disorders are»taken into
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account. These theories are capable of dealing»with alloys

having some short-range-order. Two éases'have been considered.'
(1) When the hopping integral ntB

ahd hBB

is a geometric mean 57 of h

» the problem reduces to that of a diagonal disorder
if one uses a renormalized propagator formalisméo’él.

(ii) The general case when the hopping integrals hAA, hBB
B

and

can have any valuess is more difficult to treat. As an

example of our approach to this general case, t he problem of

disordered Heisenberg ferromagnets is studied in Chapter V.

The constituents are supposed to have different spins coupled

through exchangeiintegrals ﬁhiéh can have three different values.

 The problem“isAfirst reduced to an analogous electronic problem.
calculation of the spin wave density of states énd the

spactral functions has been carried out for the whole concern-

tration range and for various values of exchange integrals.

The second bart of the thesis deals with the probleﬁ of
surface segregatiéhwin alloys, in recent years this problem has
attained great 1mportance and has attracted attention of
several experimentalists “and tbeoretlcians.62 It has been found
that the chemical comp051tlon in multicomponent systems may be
‘very different at the surface from its bulk value. It can be
understood easily from the following simple thermodynamic
arguments. Creatlon of a surface requires work and it is always
accompanied by a positive free energy change. Thus, in drder
to mimimize the positive surface free energy§ the surface
-will be enriched by the constituent which has the lowest

surface free energy. This results, for many multicomponent



systems, in gross lmbalance between the surface composition
in the topmost layer and in the bulk. Even when we are dealing
with monatomic solids,this surface thermodynamic drivirig férce
is the cause of the segregation of impurities at the surface

that lowers the total surface free energy.

There are several important surface phenomena such as
heterogeneous catalysis, passivation of the surface by suitable
protective coatingss corrosion etc. where the chemical composi=-
tion of the topmost layer controls the surface properties and
not the composition in the bulk. Yet another important class
of solids is semiconductor alloys which are now used in semi-
conductor devices in the form of thin films wheré the s urface
plays an important role. Most experimental processes like

LEED (low energy electron diffraction)63, photoemissionéq

etc.
essentially probe surfaces no more than a few ﬁngstroms deep.
Theoretical,interpretation of these experimental results should
therefore involve surface properties. In order to determine the
various propertics of surfacues it 1s cvsscntial to know the chemical

composition at the surfacec. -

It is expected from a crude calculation involving the

65

Gibbs equation that the compenent with the lower t'surface

tension! accumulates on the alloy surface. The expression which

. : . . 66
gives the surface concentration 156

S b ,
*‘z‘;‘= —Z‘—g expf(YB—Y&)a/ij . " eee (1e3)
L lex 1-X £ o
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Suffixes ssb denote respectively the éurface and the bulk,

x the concentration of the 'solute A in solvent By Y the

surface tension of the pure elements and a the average surface
area occupied per atom. Other symbols have thelr usual meaning.
Equation (1.3) is valid for alloys in which the surface
segregatlon is conflned to the first atomic plane of the
surface (the socalled monolayer model) and the entropy is
ideal. There are many surface active organic liquids which
demonstrate this surface accumulation of the lower surface
tension component in a random binary_alloyéV. Auger electron
spectrosccby (AES) provides a direct measuremenf of surface
composition68’69. Results have been reported for a large number
70-73’ Ag~Pd74'76, Pb—In77, Au~Ni78’79,

Fe-Cr8o, Ag~Cu81, Cu—Au82'84, Ag—Ad85"87, Au—Sn88,

of alloys e.g. Cu-Ni
Ni-Pa®?,
Pt~Au90, Pt~Sn?1’92, CJi.z.--.l\.l%’gL+ etc., Temperature and energy
dependance of Auger peak intensities give a very sensitive
measure of the surface concentration. It is obvious from
Eq.(1.3) that although the bulk concentration is independent

of temperature, the surface composition depends on it.Such
dependence has been borne out by the above experiments. Further,
\the environment of a surface can have a declsive effect on

surface segregation. For example surfaces of Pt-Ag and Pd-Au
alloys9 in vacuum are enriched in Ag and Au respectively.

However, the presence of CO in the surface cnvirommcn:
catscs enrichment of Pt and Pd. The cxplanation given is the

formation of strong carbonyl tonds with Pt and Pd, driving them
to the surface,

. As most of the solid solutions are not ideal; the
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monolaycr surface model is not good enough. Instead multi-

96~100 .o been developed for regular solutions.

layer models
Most studies completed so far have been carried cut on binary
systems which have fairly simple bulk thermodynamic properties
that can be described by the regular solution model. In these
models the two component crystal is treated as an infinité

set of layers of atoms and each layer is treated as having

a possibly different composition. An expreésion»is then written
for the free energy of the system in the quasi-chemical
approach (dr the pair bonding model)lOl with the atom fractions
of each layer inserted as variable parameters which are varied
to obtain the minimum free energy for the whole system. Such

100 and is discussed in Chapter VI.

an attempt has been made by us
In this model the constituent having the lower heat of vapériza—
tion, segregates at the surface. Several interesting aspects
such as chemisorption and surface relaxation effects on the
surface segregation have been studied. The theory has been
épplied to Ni-Au system which gives good agreément with the

AES experiments78.

This theory does not always provide good agreement with
the experiments. FOr-éxample_in Cu~-Au system significant
enrichment of the first layer with Aw occurs over the whole
concentration.raﬁge, though the heat of vaporization of Au is
more than that of Cu. This has bee.n explained on the basis of
strain theory of McLeanlO2 which predicts that segregation

should occur whenever the size difference between the consti-~

Lrmste 2% s Hama thn Aminive favea for gegregation is
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the lowering of the elastic strain energy _n the bulk which

arises from lattice mismatch.

Both of these theories of surface segregation have

97 and metallurgica1t©3

proven useful in interpreting catalytic
phenomenone But in some cases these theories do not agree with
thé experimentss e.gs the size difference theory does not
predict surfa;e segregation of Au in Au~Pt alloys while it does
occur, Similarly the quasi-chemical theory gives quite wrong
results for Fe~Zr and both theories fail for Pt-Ni and Pt-Fe

alloys. Recently Burton and Machlin;o%

have gsuggested a simple
criterion for surface segregation. It is related to the equi~
librium distribution of a solute in an alloy in its solid and
liquid phases. They observed the aralogy of a liquid phsase
with the surfaces of solids. The two have in common -

lower symmetrys lower coordination and no .lastic strain.
Therefores segregation should occur in the solid/surface
equilibrium if and only if distrib&fion occuﬁg in ﬁhe'solid/
liquid equilibrium so that the:iiqﬁid is fichérhiﬁ solute
than the solid phase., With this simple argument they noticed
that most of the experimental results could be explalned.

But this type of observation if at all trues would be able
to tell the constituent which wil} segregate at the surface,
To develop a microscopic theory one has to khow the chemical
composition;in various layers. Therefores one can think of

modifying the quasi-chemical theory to explain the experiments.

Another important factor in the case of alloys is the
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presence of short-range-order. There has so far been no{theofy
which can predict the short-range-order at the surfaces. We
have developed a theorylo5 based‘gn the pair bond energy
description (quasi-chemical approach) of heat of formation.

The theory can predict short range order parameter in different
layers parallel to the surface and also between,two adjacent
la&ers. This is described in Chapter VII. There are no experi-
mental results, It will be a significant step to determire the
short-range-order parameters because the values of interlayer
short-range-order parameters may be significantly different
from the corresponding bulk value because of the significant
difference in the composition of various layers. Such studies
will also be of importance in caleulating the contact potential

and the work function.



PART I

ELEMENTARY EXCITATIONS IN DISORDERED
SYSTEMS



CHAPTER II

MULTIPLE SCATTERING THEORY

 §2,1 General Considerations:
This section develops a formalism for describing the
motion of electrons in disordered substitutional alloys. The
‘results derived in thié section are valid for any single
particle Hémiltonian,in which thé disorder term can be
decomposed into a sum of contributions assoclated with eaéh

site.

We start with a simple substitutionally disordered
binary alloy A.B, _ in which atoms of two kinds A and B are
distributed in a Tandom way on a lattice ,having' N equivalent
sites. The probability of Tinding an A or B atom at any site

is x or (1-x) respectively. The one electron Hamiltonian is

2

= _ B g2 2 | '

where V(¥) is the total single particle potential which
varies frdm’cell to cell. V(?) can be expresSed as a sum of

potentials vn(3—§n) contributed by each cell centered at ﬁh,
Iy - .
v(r)= ﬁ vnﬂr~§£), | , : ees (2.2)

Vo takes the.value vA or vB depending upon whether the site

n is occupied; respectively, by an A or B atom. In general

v, may depend on the configuration of the neighbouring atoms,
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but this configuration dependence will bec neglected in our
discussion. It is convenient to express the single particlk

Hamiltonian (2.1) as a sum of two terms

H=H + 5 ceo (2.3}.

where B is a suitably chosen periodic unperturbed Hamiltonian.
For example, it may be a free particle Hamiltonian in which
case ﬁi is just V. In the case of a dilute alloy where a small
number of A impurities are present in a host B, it is preferred
to take ﬁb as the pure host B crystal Hamiltonian E@ and
devigtions from ﬁb, on sites A, may be treated in a similar
way as in the}point impurity case because thé probability of
finding two impﬁrity atoms close to each other will be very
_small. Another special case is where the crystal potentials

of pure A and pure B crystals do not differ appreéiably (weak
scattering limit). In this case we may usc the virtual-crystal

model as the unperturbed Hamiltonian ﬁb

2 .
il =—%§ Pt (U(D)) eee (2.1)

=0

and treat the deviation H; as small perturbation. For the
29 ; |

general case, one replaces the eﬁsemble of random systems
(chéractérized byng with various confiéurations by a periodic
average crystal whidh is characterized by an effective
Hemiltonian Hy..( yet to be determined). We shall be interested
in quantities such as the averaged density of states, the
partiél density of states and the spectral function which

gives information about the life time of excitations. These
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quantities: are related to the single particle Gréents

function (see Appendix A) defined as
G(z) = (zI - B)~* .. (2.5)

where z = E + in is. the complex energy having an infinitesional
imaginary part 7m. One can similarly define an effective

medium Green's function,
- -1 ‘ |
(G(z)) =G = [gI - Hypp2) 1 . ees (2.6)

(G(2)) and H_,p(2) both have the full crystal symmetry. As
stated earlier in the case of the disordered systemsy the
excitations have finite life time (as compared to infinite
life time in the case of ordered materials). This fact can be
incorporated into a theory if we consider that the eigen-
values of the effective Hamiltonian are complex so that the
'eigenstates-decay with time. From the analytic properties

of the averaged Green's fv.nctions'5 if follows that

Hopp(2h) = H:ffcz) . eee (2.7
Hypr (z) will thus be non-Hermitian and energy dependent.
In order to determine"'<vlg>f0r‘ our general problems; we search
for some approximaté Efwhich may be regarded as the starting
approximation to the ekact_éffective Hamiltonlan and which
has the same analytic propénéies as ﬁeff(z). The corresponding
Green!s function is defined as

~e - —=1
G(z) = [zz-E] . ee. (2.8)
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The configuration dependent Green's function G can now
be written-in terms of the reference Green's function.ﬁ

to obtain the following Dyson equation

¢=G+3Ug vee (2,9
where g = ,1:[_ - _ﬁ, . vee (2010)
Iterating (2,9) we obtain

6sG+8zQ | e (2011)

where T is the total T-matrix and satisfies the following

relation
2 = .-{‘I(-J; + -G- .‘Db‘ LR (2012}

Taking the configurational average in (2.11) we obtain

=G +3(G ' oo (2.13)

Mso from {2.6) and (2,8) we have

{eye G+ EH . - D (). boo (2.14)

Comparing (2.13) and (2.14) we have

(IyE = (- Do vor (2.15)
or Boo s E+(IY@+an ™t ver (2.16)

This equation represents the corrcction to our initial approxi-
mation.ﬁ for ﬁ%ff and can be used in two ways. Either the (I
corresponding to a given K can be imserted into (2,16) or

the equation {I%= 0 veo (2,17)
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may be used to determine ﬁéff.

two different classes of approximate calculation of géff, The

These two possibilities define

former is known as a non-self-consistent approximation and the
latter ié a self-consistent approach. For all practical purposes
it is impossible to solve (2.17) exactly. Therefore, approxima-
tions have been made whiéh simplify the condition (2.17). For
this purpose we expresé the total T-matrix in terms of atomic
Te~matrices using the multiple scattering theory.

‘ 2L 3106
The basic requirement of the multiple scattering theory

is that the perturbation term U can be decomposed as a sum of

contributions from each site i.ec.

..g: . ’ e (2018)

2y

5

Therefore, from (2.12) we have

'l\ll/
¥

s (203»9)

L= Iul+ED

This expresses the T-matrix as a sum of contributions arising

from the individual scatterers.

Now LI =ul(l+g %,zm) eeo. (2.20)
R N
where &, = (- 2y Q)'l u, | ' ee. (2.22)

is the atomic T-matrix.

Inserting (2.21) into (2.19) and iterating we obtain the

standard multiple scattering seriele7



.T_=Z§+Zt§§t+’i_t§"-.t.§2 L
n ? N T P mér M “p#m#En TP
0-0(2023)

This expresses the total T-matrix as a sum of terms in which

an electron undergoes successive scatterings at various sites.
The exclusions in the summations are due to the'fact that.the
atomic T-matrix En represents the complete scattering»from_.

the site n. An electron can scatter again from n only after it
has undergone at least one‘intermediate scattering process.
Equation (2.20) physically expresses the strength of a scatterer
ir the alloy as a product of the strength of an isolated
scatterer and a factor describing the transformation of an

unperturbed incident wave on the site n into an effective wave

because of the multiple scattering in the alloy.

§2.2 The Single Site Approximation (SSA) 27
| In the last section we developed a general expression
(2.20) or equivalently (2.23) for the total T-matrix. Taking the
configurational average in (2.20) we obtain

(T = ¢£(I+8 I ) i eee (2.2
L = (g, (L o > ) L)

The second term in the bracket on the right hand side involves
correlated scattering from two and more sites. Eq.(2.24) can be

rewritten as follows:

Y=ty @+E T KT

:!I—-J )

<

(L~ <Z>)) - ce. (2.25)
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The first term in this equation describes the efiect of

the averaged effective wave seen by an atom at the site n
and the second term corresponds to fluctuations of the
effective wave. In the single site approximation one neglects

the fluctuation term. We then obtain a closed set of’equations

.’. ~ .r ’ ' :
(L gL+ G oz T >0 | eee (2.26)
| n :
Using the fact that mgn I, = I- I we obtain
. . - -1 . ~ o : :‘ .
CIy= (I e O g (L + LI, veo (2,27

Substituting (2.27) into (2.16), we obtain

R
) Ly . ce. (2.28)

o}

Hypp = H *‘%:(l +{L>

l .
<<§m> is the effectlive scattering

The quantity (I +{& > ®
potential correspording to the average_scattering arising
from the scatterer at the site n. This is known as the average
T-matrix approximationi®® (ATA) and is non-self-consisteri.
On the other hand the self-consistency requirement (2.17)

simplifies to
<§n> = 0 ees (2.29)

for all n. Because of the periodicity of the averaged
quanfities, it is sufficient to consider only one, say the
zeroth site. This self-consistent approximation is referred
to as the single site coherent potential approximation27(GPA).
We shall consider this approximation in detail and will later

consider some improvements over the single site approximation.
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We can have a physical picture of the CPA as follows.

Our problem originally was to find a reasonable procedu:e

to determine the effective medium characterized by ﬁéff.
According to the CPA, one considers a system where each site
except for one (say the origin) is occupied by the average
atom and the origin by either A or B. Then the problem is that
of a single‘imﬁurity embedded ih the effective mediunm (we_
see from equations (2.24) and (2.26) that the configuration
-dependent incident wave_on.site n.has been feplaced by an
effective wave describing the surrounding alloy in dn averaged
vay) . The effective medium is then determined in a self-
-consistent manner by requifing the average T-matrix from this

site to be zero,

The fluctuation term neglected in Egn. (2.25) corresponds
to the neglect of all statistical correlations between the site
n and all other sites m., These correlations are of two tybes, )
(i) those resulting from short-range-order and (ii) those due
to mdltiple scattering., The first of these can be eliminated by
assumingvthe alloy to be completely randoim. The other correlations;
on the other hand, are always present. These correlations play

impoftant role when the scattering potential is apprecliably
large (strong scattering regime), These will be consideréd
~in Chapters III and IV, In the next section we present some
of the calculations of the density of statecs for a single
band tight binding model Hamiltonian. This has also been usecd

to discuss the demerits of the single site approximation.
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| §2.3 Critiques of the $SA
Here we study a simple single band tight binding
model Hamilbtonian in the framework of the SSA, This model
Hamiltonian has been very popular in the study of disordered
systems and will also be adopted by us in this thesis. Using

the Wannier states(m> ((ﬁ{m)>= 8,n) &S a basis, the one

electron Hamiltonian in the tight binding approximation i3109
| Ii = 5_ ln\) € nl + 3 h ln\‘<mi, o . io:‘.:o (2030)

n n <‘ méh i/ _ i o _
=DH+W oes (2,31)

The diagonal term £ is the atomic energy level (This includes

a torm h_ which has the effect of shifting the atomic

energies.) associated with the state |n)> at the site n and
. the off-diagonal element hnm represents the hopping integral betweer
the sites v and m.  The diagonal term €, 1s a random variable
depending on the type of atom occupying the site h.i.e. it

may‘bé cither eA or sB. The hopping integral hnm is ;lso a

randoﬁ variagble and depends, in gcneral, not only on the
configuration of the'pair of sites n and m but also on the
configuration of other sites. The most common.assumptionvhere

is to'hegiect the dcpendence of hom on sites other than n and

m and to restrict to hopping between nearest ncighbours, hnm
_ cang therofore, take the values hAA, hEB,bAB='hBAudepending,on‘
the configuration of sites n and me In fhis scetion we shall
furthér_assume that the hopping integrals arc translationally

invariant so that the only randomness is in the diagonal term D
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The general case where both the diagonal and the off-diagonal
terms are fandomvwill be considered in Chapter IV, With this
‘assumption the density of states of the two pure constituents
will be identical except for the shift of the energy scale.
The matrix elements of W in the Bloch representation can

be written as

CRIMIRY = égg,ws(-k’) ' W (2.32)
where - [E&) = Z e " fn> ves (2.33)
, " n

relates the Bloch and the Wannier ba51s. o = z{ih| is the
half band width and s(B) = £ 5_‘ 188 qescribos the K-
dependence of the band energy and is dlmen51onleso. 6 is
the nearest neighbour lattice vector., In the case of simple

cubic lattice s(X) is given by the following cxpression
s(k) ;(cosk a + coskga + cosk ;&) . aee (2.34)

We choose the cnergy scale such that
811 = %ﬂ& = '-E:B . %oiojo (2035')

which defincs a dimensionlcss paramcter &, Now we definc

—

the self-cnergy operator 3 (z) such that ﬂéff = W +7 and

o

ﬁ = W + g¥(z). The effective Hamiltonian and the averaged

- # »
Green's function are diagoral in k~represeptatlon,

-

KE|BpplEr> = op 2 L) + Z(Ey2) e (2.36)
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and  G(,z) = <{BIE(2) B

- ~» -1 |
= [z - ws(® - 2(kz2 ] . Lees (2.37)
5(&,;) is fully specified“py the spectral functions

AGRE) = -1l In G(#,E+10) Yoo (2.38)

because of the integral represcntation

oo

E.(I{’,Z) = I Z-(}Ié A(I{?’E) . fc:o:o (2039)
~ (00

From (2.,38) and (2.37) we have

A(K,E) = -

=

Re S(¥,E) %+ [Im S(E,m) 3%

[E-ws (&) >
eee (2.,40)

This shows that the spectral functions are of Lorentzian shape
having the half width -Im Y(K4E). The location and the width
of the.peaks detérmine, respectively, the quasiparticlc

cnergy and the 1life time. Re 3 (k,2) gives the shift in the
quasiparticie energy from its value in the perfect crystal

spccificd by W

Within the 884y » (Ksz) is independent of ¥ and thero-

fore ). is a number operator,

2 (2) = 3 |n> (=) Lnl. | (éolfl)_

- n

(2.31) can now be written as
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W42 > 0@l +Z 0> (e - 07) <n
o] n

_I-_{‘ =
=E+Elm>®fﬁ)@l
n o .
e H+Y Ve (2042)
;l%n . ,

Now proceeding analogous to Section § 2.1 onc obtains the
following expression“é for the self~energy

(D , '
2(2) = 0(2) + - ' eee (2.43)
1 +<td> F(2)

where F(z) = <nl §(z)ln} | | ees (2.4

and {t) is the averaged T-matrix. The self-consistency condi-

tion (2.29) reduces to

x(e- 1) (1-%) (eB- A e (2045)
s + : —~ - o enn .
1-(e - DF 1 - B -DF eve (204

S ie

Egnse(2.43) and (2.45) have been studicd by Velicky ct 0127
and late7éh by Schwartz ct él46 for a semi-elliptical model

density of states. The CPA which gives the first cight moments

110

of the density of states correctly s 1s the best single

site'approximation.?9’lll
46,113

first iteration of (2.43) towards self-consistency.

The ATA may be vicwed as the

Within the appropriate limits, both the CPA and the ATA,

r
exhibit dilute alloyit™, virtualcerystalr®’ and atomic

115

limits and thercfore represcent an interpolation scheme

29

that rcduces properly to the cxact solutions in very

diversc limiting cases. To check the accuracy of the CPA
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we compare the CPA density of states for a linear chailn
(Fige.?2.,1) and for a simple, cubic lattice (Fig.2.2) with the
exact results(histogram)18’36. The CPA density of states

is ‘obtained from the relation

P(E) = "_:?LE In (0| {G(E+i0)) [0) . Vee (2.146)

It is easily noticed from the figures 2.1 and 2.2 that the
exact results of the density of states have some fine struct-
urey particularly, in the minority band. The CPA gives a
smooth density of states. For small values of § the CPA‘gives}
a reasonably good descriptibn of an allcy over a wide range

of parameters. In other words, the CPA works best when the
mean free path of excitations is large. However, it Eecomes
inadequate when the scattering potential § is large in which
case the meaﬁ free path is short or the energy of interest lies
in the impurity band. The fine structure in the impurity band
of the density of states may be attributed to 1sdlated

clustgrs of impurity atoms. Furthermore, the CPA speétrum

has a’sharp cut-off andlthere is no band tailing. The talls in
the minority band are due to very large clusters ofﬁimpurity
atoms .y and play a central role in determining the electronic
properties of amorphous semiconductors. Obviously the CPA will
be unable to give such behaviours because of 1ts single site
natures The width of the band in the CPA is narrower than

the one obtained from the cxact results. in the CPAs the

band splits for a much smaller value of & than predicted by the
40

localization theorem® . These effccts may be included in a
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self~consistent manncr by applying the CPA formalism to a

cell contaiping several sites rather than to a single site,

The foregoing discussion clearly illustratc the need for
cluster generalizations of the CPA. This becomes more important
when one is interested in alloys where there exist some short-
range-order and instead of diagonal disorder alone, there is
off-diagonal (extended) disorder as well- a situation one

L
faces the study of real alloys.
"



Fig.2.1

Fig,2,2
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FIGURE CAPTIONS

Density of States from the CPA compared with the
exact density of states (histogram). (a) x = 0.5,
h= 1,0, 8§ = 0,25 (b) x = 0,5y h = 1.0, § = 1,0,
The curves are symmetric about = = O,

Density of states from the CPA (---) compared with
the exact density of states (——)., For all curves
h=1/6, (a) § = 0.8y x = 0,05y (L) 8§ = 0.8, x = 0,164

() # 20,8, x = 0.5 and (d) 8 = 1.5, x = 0.1,
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CHAPTER III

CLUSTER THEORIES

In the last scction we emphasized the need for cluster
goeneralizations of the CPA to get a better agreement with
the cxact results and to account for situations oﬁe faces in
rceal systemse Further,'a large number of experimentsllé"lgo
on concentrated alloys haﬁe shown the importance of the local
environment on the magnetic and electrical properties of
several alloys. Thesc éxperiments are generally interpreted
using a,semi—-empirical.modelll6 which assumes that the
electronic state of cach atémlis'mainly,dependent on the chem-

ical nature of its Z nearest reighbours.

The inadequacy of the CPA for large § can be understbod
from the fact that for large values of &, the fluctuation
tern (see Eqn. 2.25) ngglected,iﬁ the derivation of the CPA
will become important, Therefores in order %o obtaiﬁ‘a better
estimate of the configurationally averaged Green's fqmction,
it 1is necessary to include this fluctuation ferm i.c. to
consider scattering due to pairs, triplets etc. in a self-
consistent manner. In this éhapter we shall consider theories
which are improvements over the CPA. In what follows, here
we shall first consider the work done by us In this dircction.
4 critical study of various cluster theories will be presented

in the last scction of this chapter.
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§ 3¢1 The Molecular CPA

The method of molecular CPA (MCPL) also referred +to ’
as the cell method, was first introduced by Tsukada121’122.
It has been,,thereaftef, used by several workersB. This
method is based on the fact that if the mean free path is
small ( a case for which the cluster effects are important),
then the main effects of the microscopic configurations.of
the wholc system can be taken into account by considering
only the correlations between neighbouring atoms lying within
a sphere of radius equal to the mean frce path of the
excitations. As in this case an electron at a point r
can see configurations in a small nbighbourhood and not the
atoms sitting far enough from.it; Similar ideas were used
by Matsuda and coworkerslz3 in their method of MEAPS (Method
of Ensemble Average of Periodic Systems) in the calculation
of frcequency distribution function for random lattices} Very-
similar proposal was made by Butler and Koh:alzL‘~ in their
locality principle, They emphasized the fact that the density
of states of a'disordered system is a local property. There-
forey according to the locality principle a properly performed
cluster calculation of the density of states will be exact

in the 1limit of short mean free path.

Ir the cell methodIZl the crystal is divided into
small‘identical non-overlapping cells each containing several
sites. The atomic configuration in different cclls may be

quite different.Then analogous to the single site CPL, the
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behaviour of an electron is studied in onc of these cells
approximating the effcectsof all the other cells by an averaged
medium which is determined self-consistently by requiring the

average T-matrix from this cell to vanish,

To derive the MCPA we rewrite the Hamiltonian (2.30) in

the following form’C

B= Tlebe fol vu EEENCRS
c R A

Here again we are considering only the diagonal disorderl.
ic} is a column vector consisting of n of the states [i) %
r being the number §f sites in the cell. The diagonal matrix
&, contains the energies of the orbitals centered at the p

sites in the cell c.

-~

fel = Ceigls etpls Gigly enne &i D) ver (3.2)

and

£ .

. i’:“ (30 3)

&

»

Then the results of the multiple scattering theory may be
used by changing the single site operators into single cell
operators. Proceeding parallel to the section § (2.1) we

can write

eee ()

!
I
oM
]
O
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with T = 2 (1> &z = lcHclL. eeo (3.5)

c iec

The multiple scattering equations for,@c are

) . woe (3.6)

L= 5 +8 3 I,
where gc is given by
£, @- 1By, | | S (3.7
with ¥ = 2 [iD> e <3l - G aee (3.8)
1LEC . . e
g, = le} g @{cl. wae (3.9

Taking the.configurétional average in (3.6) and decoupling the
averages 1in thé right hand side, the exact self consistency

condition (2.,17) now reduces to
{t) =0 oo (3.10)

within the single cell approximation. In this generalization
of the CPi, the self-energy.z_(z) is cell diagonal36’121’125
i.e. the only non-zero matri; clemcnts of the self-energy are
those which connect sites in the same cell whereas the matrix
clements between sites lying in different cells are zero. By
the introduction of this cell diagonality of the'solf—orwrgy,
the translaticnal invariance of the configurationally averaged
mediun is broken. However, by the introduction of tﬁg cell
diagonality of the self-energy sceveral interesting and desired

features have been introduced into the theory. These will be
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discussed in Section § 3.5. The drawback of broken translat-
ional symmetry 1s perhaps not very important while dealing
with local properties such as the density of statess The
method can be generalized to any arbitrarily large size of

the cell, thereby improving the accuracy of the method, The
lowest order approximation will be the one atom cluster which
is the CPA. However, in this case the translational invariance

of the effective medium is preserved.

The self-consistency condition (3.10) may be alternatively
written in terms of the matrix elements of the corfigurationally
avéraged Green's function, if we observe that the Green's
function for a system with the averaged medium every where

except the cell ¢y can bewritten as

-
bl

+ .-G.: LCEC ) i'o':q:. (3.11)

o))

G
=c

Therefore the condition (3.1C) becomes

o.. (3. 12)

ot}

{&>=

or {cl<g,>lc} = {clBlc} . Sl (3.13)

Equation (3.13) is an nxn matrix equatiom and requires solu-
tion of n2 non—lineaf simultaneous ecquations in n2 annown'
matrix elements of the cluster diagonal self-energy. In
gencral, these equations will be quite complicated arnd diffi-
cult to solve without further approximations. For the one

dimensional nearest neighbour tight binding model, the density
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36

121 and Butler””,

of states has been calcuiated by Tsukadc
From these calculations it is observed that as the size

of the cluster is increased, the calculated density of states
matches with the exact density of states. For two or three
dimensional systems, no such calculations have been carried
out. Simple cluster theories have been developed and arec

discussed in the next section.

§ 3.2 Simple Self-Consistent Cluster Theorics
To simplify the calculations of the MCPL, people have

approximated the form of the cell diagonal self—enorgy} The

122,126

simplest approximation is to choosc a scalar self-

energy i.€e 2, = 2 I, (where I, is an nxn unit matrix) just

like in the single site CPLA, Therefore, there will be only
one adjustable parameter in the effective Hamiltonian rnaking

it impossible to satisfy cquation (3.10) which demands that

all the n° matrix elements of (% > must vanish or the

equation (3.12) which demands equality of each matrix clement of

of<<gc> with the corresponding one of E. Within the limitations

126

of the scalar coherent potential apsatz, Butler suggested

a sclf-consistent central site approximation (SCCS4) which was

615122,127-131 1 ypic approxi-

latc#gn used by several workerse
mation.z is chosen self~consistently in such a manner that the ’
averaged density of states per site at the center of the cluster

is consistent with the external medium i.c.,

-~

- N e
{oig,> o> = <ol
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Here the orbital |0} is centered at the center of the
cluster, The numerical calculations in this approximation are
easy and are in fact similar to that of the CPL except that
here one treats a cluster of sites embedded in an effcctive
medium rather than a single site, With the choice of the
scalar coherent potential, the effective medium retains its
translational invariancc. The density of states calculated
in this approximation, comparesrwelll26 with the exact
results on a linear chain obtained from the Schmidt integral-

132

equation technique . For three dimensional systems this

130

method was applied by Browers et a1129’ to the calculation

of the phonon frequency spectra of lattices with mass defects

17

for which exact histogram calculations are available,
fccording to their findings, the agrecment tetween the two
is fairly reasonable. Unfortunately, this approximation
133

suffers from some severe drawbacks and it is not uscful

in the strong scattering regime. In this rcgime the configura-
tionally averaged Green's function G(z) is not an analytic
fu:n_ct:'LonBL‘L of the encrgy paramecter z. For largc'values of §
branch points appear in G{z) off the real z axis. The density
of states may not be a single valued function of encrgy or

for certain values of the energy the density of states may
not be defincd. These difficulties do not show up for small
values of 8. But for large values of &3 one should be cautious

while performing numerical calculations. Butler36

has pointed
out that the branch points occur for values_of real z which

lie near the peaks ir the density of states. In this region
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of cnergy the averaged Green's function G(z) changes rapidly
and therefore one may easily overlook the fact that ones |
nﬁmerical algorithm has Ewitched branchesi The origin of
these difficulties in the SCCSL has been explained by~Butler36
who also gave a physical argument for the fallure of the SCCSA
in the strong'scattering rcgime, When the mean free path is
shorter than the distance from the center of the cluster to
its boundary, then the density of states at the center of the
cluster will be almost independent of the external medium,
Consequently, iﬁ will not be always possible to determinc

the mediun by making the denmsity of states at the cenmter of
the cluster consistent with the external medium; On the other
hand a boundary site in the cluster is in intimate contact
with the externﬁl medium. Therefore by requiring the consis-
~tency between the averaged diagonal element of the cluster
Green's functipn at the boundary of the‘cluster and a
diagonal element of the Green's functioﬁ for the uniform
external medium, one should avoid the most obvious difficulty
with the SCCSA, This hés led to the emergence of the self-
consistent boundary site approximation (SCBSA)36. Like the
SCCSA,y the SCBSA is also an ad hoc theory and the numerical
calculations are very simplec. To check the usefulness of

the SCBSA, Butlér36 calculated the density of states at the
center of the cluster for a linear chain. Surprisingly enough
it was found that the SCBSA is identical to the MCPA on a
linear‘chain though the later employed & full matrix self-

36

energy, Butler”~ was able to reproduce the fine structure in



-37-

the density of states observed in the exact machine caiculat-
ions, The equivalence of the SCBSA and the MCPL ié, however,

‘true only for .a linear chain and nét for two and three dimensional
lattices. Because in two and three dimensian; the cells which
reproduce the lattice when periodically continueds do not have

all the boundary sites equivalents Nonethelessy with this
unexpected success of the SCBSA on a linear chain, it was
naturally quite encouraging to check the Qsefulness of the

SCBSA in three dimensions. Wel3gsuggested a sinple success;ve
cluster reduction method which enables us to apply the SCBSA

to a systen of any dimensionality.

3.2a Successive cluster reduction method

In this method we considered clusters made up of a
central site and its Z mearest neighbours (This choice is
not restricted and cne can choose clusters of any size). Then
one su._ch cluster is thought to be immersed in an effective
medium which is to be determined self-consistently. The Green'!s
function _C_}f: for such a system can be written in terms of a
Green's function geln) of a system in which an atom at the site
n in the cluster has been replaced by a fictitious atom with

site encrgy I ’,.'

.G-C - _G_',C(n) +§-C(n)§-(n)gc(n) ‘.' (3‘15 )

where £

v /(g - geylndy | e (3.16)

is the T-matrix corresponding to the potential fluctuation J_f(n)
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(_\[(n) = (e:vn - 2 )In)¢nl) at the site n. Vow Q_C(n)can be

expressed in terms of a Green's function gC(n“) of a systen
in which two atoms at the sites n and m in the cluster have

been replaced bty fictitious atoms.

'E(m) = gfm)/(;,QC(nm)y(m)) is the T~matrix corresponding to
the potential fluctuation.ﬂfm) at the site rie This process
is repeated until all the (Z+1) atoms in the cluster arc
‘replaced by'fictitious atomse This method of successively
writing the cluster Green's function G° in terms of Greents
functions of smaller and smaller clusters and ultimately
in terms of a perfectly cohercnt mediuvm Green's function G
cnables us to calculate its matrix element at the boundary

site of the cluster,

We applied this method to a substitutionally disordered
birary alloy AxBl—x having the diamond lattice structure., The
cluster considered consists of a central site (o) and its
four nearest neighbours (1,2,3,4). The following set of

cquations is obtained by repeating the process of Ean.(3.15)%

GC = Qc(o) + ge¢o) l.;(o)- g

c eoe (3.182)
QF(O) - Q;(ol) +_gc(01)'§(l) gc(ol) ;;; (3+18b)

gq(ol)z Qc(ol2)*_gc(ol2) 3(2) QC(012) eee (3.18¢)

goto12); golo123) |, el 0123) ((3) gecoizs) Ve (3.184)

ccl0123) . 7 . & (W

:.Z‘Z. ( 3. 189)

ol
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This process is quite arbitrary and one can write equation (3.18)
in many different ways without effecting the final results.

Now suppose we want to calculate the matrix element of

G® at the boundary site 1 of the cluster, then from equation (3.18a)

we have
Gfl = foo) + G§g°>t(o)G8§0> o (3.19)
where §g>- wa - ¥Pesth™ vve (3.20)

Expressions for Gii?), GiéO) and Gggo)'are easlily obtained
from cquation (3.18) and can be finally expressed in terms

of the matrix elements'ﬁ(o),‘a(ﬂl) and 5(32) of the effcctive
medium Green's function G(z)e Herc we have made use of the

fact that for a single band,y the matrix elements of G depend

only on the separation betwecen the two sites. Here 0, Rl

and R2 in the argument of G denote 0, the first-néérest neighbour
‘and the second nearest neighbour separations. wa'a(Rl) and

»

5(32)-can.be expressed in terms of G(o) as follows?

The effective medium Green's function.@ can be written

as |
C=g+gUWG (3.21)
where g is the effective medium locator .apd is given by
2= L (z- D n><nl. oo (3.22)
n

Therefore
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Glo) = goo"'xi €00 WOiGiO

= goo+ gothE(R 1)

or R ={(z-DWo) - 1}/ w. S (3.23)
Also from (3.21)

() =Yg WG, .
| § Soo ol i]

W

goofoiGii+ gooh(z—l)G(R2)

or E(R2) -z {Z(z—Z}@(Rl)/ w - Wo)] / (z-1). ces (3.24)

The effective medium is then determined self-consistently by

satisfying the following condition

PCGEl = -G(O) . oua (3. 25)

o

c
We calculated Gil for .all the 32 configurations of the 5 atom
clusters P, is the probability of a particular configuration
of the cluster. The half band width of the pure constituents
~is taken to be k. Equation (3.25) was solved by an iterative
procedure, The density of states calculated in this_manner.
is shown in figure (3.1). We have calculated the density of
states at the center of the cluster and at the boundary of

the cluster, The density of states at the boundary site is

herc calculated from the relation

p(RE) = - ;[IL T G(o) vee (3.26)
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and is denosed by SCBSA(B).
The density of states at the center of the cluster is calculated

fron

p(j‘,) - e % Im}}; PCGg‘O so e (3-27)
C

and is denoted by SCBSA(C), Expression for Ggo is ottained
from (3.18a) and is given by

6¢, = 68+ gelodg{ogeled, . (3.28)

Gggo) and tgg) can again be calculated from (3.18b) and (3,20)
respectively and can be ultimately written in terms of the
matrix elements of the effective medium Green's function,

We have compared our results with the results okbktained

A126, the CPAY and the disordered field formalidm

from the SCCS
(DFF).136;The following conclusions can be immediately drawn
from the figure:
(i) The SCCSA, the DFYF and the CPA show splitting of
the band for § = 1 and x = 0.5 while the SCBSA does not., One
could see from qualitative arguments of Kirkpatrick et a140
that inclusipn of correlated scatlering from g cluster |
should cause the band split at a higher & than the one in the CPAﬁ
{13) There is not much difference in the structure of the |
SCBSA(B) and the CPA density of staltes except that the band
in the SCBSA (B) has broadened on both the upper and the lower
edges. The SCBSA(C) shows a peak in the density of states which
agrees well with the results of the DFF, The DFF shows two peaks

in the density of states, However, there are some mistakes in the

.calculations of the enviromment in the DFF (See Section 3..4).
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This effects the band edges and the middle of the band. The

DFF has been sl’lownl?"7 to be equivalent to using full cluster
self-energys whereas hefe in the SCBSA we used a scalar self-
energy, This shows that the SCBSA is also a good approximation
even for three dimensional systems, The SCCSA density of

states also shows a peaky structure but it has a discontinuity
at Ex~ 2,25, This is because the Green's function has a spurious
branch cut in the complex energy plane (for more detailssee

Section c§ 3.3).

3.2b An appfdximate configuration counting method

From above calculations it is apparent thet the SCBSA
reproduces well the fine structure in the density of states if
applied to the center of the cluster. The procedure followed
here in the derivation-of the SCBSA becomes a bit laborious
as the number of nearest neighbours increases (e.g. -the cutic
lattices). The computational effort needed increases a lot
because the configurational averages have to be performed over

Wel38 proposed another simpler

a large number of configurations.
method in which the number of distinct configurations is greatly
reduced by making an assumption that for a fixed number of |
different kinds of atoms on the shell of nearest neighbours,
the different configurations of the atoms on the shell are not
distinguished. This approximation in counting configurations

was earlier made by Brouers et a1128 in their study of the SCCSA.

With this simplifying assumption, the density of states comes

out to te the same as the one obtained by recognising and
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counting all the different configurations. This will mean that
the total averaged density of states is not sensitive to the

detailed configuration of the atoms in the cluster.

As before we considered clusters consisting of a central
site and its Z nearest neighbours. Then analogous to the
single site CPA, one such cluster ¢ is thought to be immersed
in the effective medium. The Green's functidn G° for such a

system can te written as

6= T - T ey D) <l
iliecC

. voo (3.29)

This can be expressed in terms of a Green's function G°
of a system in which the central site is also occupied by a

fictitious atom with site energy .. Then,

6% = G5+ 6°1°6° eo. (3.30)
where P = |Q>(EO- Z) <p| . eee (3.31)
and O denotes the central site.

Now the Greents function.gs can easily be expressed in

 terns of the effective medium Green's function G:

G° = G +G T°C , vee (3.32)

s - ' |

where _T_ = _YS(‘I _"‘Q __T_s) : on.0 (3033)
=t - . ' A

and v = ? i> (ei~ 4_){;', ce. (3.34)

s denotes the shell of nearest neighbours. Priue denotes that
the sum is taken over the shell sites.
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In order to determine the effective medium within the

SCBSA, we choose the following condition

P = G(o) ... (3.39)

c
ii) C .

Here PC is thé weighted probability of a cluster configura-
tion., Since the various configurations for a fixed number of
A and B types of atoms on the shell s are not distinguished,
we have gummed over all the shell sites and divided by Z to

obtain an average matrix element of QC at the boundary site.

The matrix elements of G° are obtained from (3.30)

15'ac - LS 4 S 3}« L %! oS oS -
Z ? Gii Z % Gii+ i,vgo/(l’vgocroo)j X7 & GoiGio‘ v (3.36)

Equation (3,32) is then solved to obtain

65 = T(o) +T2(Ry) I T
IR &

00
= o) +TRHT " | een (3.37)
where
1ot g . .
T == , T7.. : oo (3.38)
Z i? ij
- S - = ! mS =
Mso, Gig = Glo) + %k G157 5k%1

o |

Tlo) + © “'ms ® r <! msa®
Glo) + G(o) 2 T5,G  + [ 2 ToC1
JFL
k

k

= "G(o)+('(§.(o)-ﬁ)2T§i+ (2T 8y~ 9 ~!T§k

= 2 et vl k
-7 v eSS 4z [T,
3 i



Summing over i and dividing by Z, we obtain

] -tes . 1w P2 =1oS L (ol E(ay (7o 2 |
7 04y = Blo) + Z(@(0)- 1" 13, + {.zl‘e(ow(z [ 1T,
. s o e (3’39)
In a similar manner we also obtain
L' s s o
Z'f'" G -Gt

=2 oy 24 207 Ty '
o Ooifio = © (Ry) (142 T) {1+ £(G(0)- 1) b
+3(@(0)-T2 342

P

oo (3.40)

=
L 3

where

t

11 7 5/, @) -0, eee (3.41)
Here the matrix elements of the effective medium Creents

function between two different sites of the shell s are

approximated by [ which is defined as o’

— 1 -1 e
© =@ L Gy

ee. (3.43)
i#j |

This approximation is equivalent to the hypothesis that +the
various configurations for a fixed number of A and B types

T and TS

of atoms on the shell are not distinguished. Expressions for
7; are obtained from Eq.(3.33),

s _ ! .8
Ti; = V?Li“ig *E G ity s)
- S oI 8 -
Vii(sl G(o) TS .+ F 1
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or 155 = tii<sij+'r' % Tyy)-
Therefore | |
ro= 3 ez IO Doy | SEENE)
Similarly
%Z‘;Tii = %?tii + Jzi(1+z ET) %'tgi. “‘;. &3‘4,*)

Expression for E(Rl) is given by (3.23) and for [ it is the

same as (3.245,

-

M= {2(2-2) G A - Glo)1/(2-2). cos (3.45)

Once the effective medium is determined by solving the condi-
tion (3.35), the partial and the total averaged densities of

states are then determined as ktefore in two ways:

(i) At the boundary of the cluster the partial densities of
states are calculated from
t

PO(E) = - %Z Im S GS.. ee. (3.46)

= 11

vl

The total averaged density of states P(E) is obtained from (3.26).

(ii) At the center of the cluster these are obtained from

2
]
.
b=t
B
0
o

Crm -
PC(EY = oo eoe (3.47)
end P =3 P PE(EY. oo (3.48)
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Lxpression for Ggo is obtaincd from (3.30) o
¢ = G5 /(1-G3 vee (3.49)
Goo ™ Goo/(l.Goovgo)’

where G5, is given by Egn.(3.37).
This procedure has been used to calculate the densities

of states for binary alloys having the simple cublc and the
diamond lattice structures. The input density of states

P(O)(Ej for the pure constituents, needed in the calculation

of the Green's function matrix elements, is shown in figure 3.2
for a simple cubic lattice. For the diamond lattice it was
calculated using the continued fraction coefficients aj and

bi’s tabulated in table 3.1.

P(O)(E) = - % Im Gég)(E)

where Gég)(E) can be expressed as an infinite continued

fraction;39

(o) - 1 _
00 E"'ao—b%

E" al"bg
E"‘ L

d
*
L
E .

The Simple Cubic Lattice

Our results for alloys having the simple cubic lattice
structure are shown in Figs.3.3-3.7. The half band width of
the pure constituents is taken to be unity. in.Fig.3,3 we
have shown the minority band of an alloy with §=1.25 and
x=0,05, There is not much difference in the results of the
CPA and other methods (considered here) as far as the majority

tand is concerned. The CPA result and the results obtained from
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Takle 3.1

Continued fraction coefficientsfor diamond lattice bulk
s-band, 21 levels exact.

All ay's are zZero,

by
1 2. 0000
2 1.7321
3 2.2361
L 1.8439
5 2.0892
6 1.9358
7 2.0718
8 1.9140
9 2, 0861
10 1.9295
11 2,0517
12 1.9571
13 2.0458
14 1.9475
15 2.0533
16 1.9538
17 2.0367
18 1.9679
19 2.0338
20 1.9620
21 2.0348

22 2.0

co 2.0
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two other cluster theories, the SCCSA and the BPA bf Brouers
et a1128 and the method of mpmentsl4o, have also kteen shown
‘for comparison., The central peak in these results corresponds
to an'isolated impurity cluster configuration. The other peaks
similarly correspond to two impurity, three impurity....
resonance levels. It can be easily noticed that the various
peaks in the SCBSA(B) and the SCBSA(C) are centered at about
the same energies as in the SCCSA, the BPA and the method of
moments. However, there is a marked distinction between the
results obtained from the SCBSA(B) and the SCBSA(C). In the case
of the SCBSA(B), the various peaks are less prominent as |
compared to the results obtained from the SCBSA(C). Parti-
cularly, the central peak in the SCBSA(B) looks very similar
to the one in the CPA and is not well defined. Whereas the
results of the SCBSA(C) agree fairly well with the SCCSA, the
BPA and the method of moments except that the pesks in the
SCBSA(C) are more intense. The method of moments gives a band
which is wider than the one obtained from any other method
mentioned here. This is because of the smaller size of the
clusfer considered in the SCBSA or the SCCSA as compared to the
method of moments where a cluster of 7175 atoms has been used.
Lifshitz39 has argued that the tailing becomes more prominent
as vie increase the cluster size very much., The results of
the moments method given here are more or less thevsame as the
exact results obtained bty Alben e allB. The only difference
tetween the two is that the curves in the moment method are
smoother due to the fact that the continuation of the continued

fraction eliminates the finite size effects. Fronm these we
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cénclude that the SCBSA(C) results are in good agreement with

the exact results.

Figure 3.4 correspords to an alloy with 8 = 1,0 and

CPA results (not shown in the figure). The SCBSA(C) result shows

0.5. The SCBSA(B) results are more or less the same as the
peaks at Ex + 0.635 which agrees fairly well with the one obtained
from the method of moments. This corresponds to cluster confi;
gurations where an A(B) atom is surrounded by 6B or 5B (6A

or 9A) atoms as can be seen from figure 3.5 where we have plotted
the partial densities of states. However, the SCBSA(C) misscs
peaks at Ex *.325 and shows some unphysical.results in the

energy interval E=x -0,02 to Ex~+0,02. In this.region some of the

partial densities of states become negative which is obvious

from figure 3.5. It is also noticed from figure 3.5 that the

pertial densities of states do not match at £E = 0.0 i.e, there

are discontinuities in the partial densities of states curves.

-

This is a sign of non-analyticity (see the next section) which

makes an approximation unacceptatle.

In figure 3.6, we have shown the minority band of an
alloy with 8 = 2,2 and x = O0.1. This corresponds to a split.
band case. It is obvious from the figure that the SCBSA(B)
result is not much different from the CPA result. However, the
SCBSA(C) reproduces the fine structure as obsewved in.the result

of the moment method. The central peak in the SCBSA(C) is more

169894
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At certain energies even the total averaged density of
states is found to be negative. The results in this energy
region are not reliable at all.
Ihe Diamond Lattice

Our results for alloys having the diamond lattice
structure are shown in Figs.3.7-3.9. The half band width of
the pure constituents has been taken to be L. The results for
alioys with § = 1.0 and x = 0.5 are the same as shown in
figure 3.1; In contrast to the simple cubic lattice, here
for x = 0.5 there are no difficulties of non-analyticities
or negative partial densities of states. In figure 3.7 ﬁe
have shown the minority tand of relatively dilute alloy with
8 = 2.0 and x = 0,1, This correspords to the split tand
region. The SCBSA(B) as well as the SCBSA(C) both show fine
structure in the densities of states. However,'the peaks are
mdre intense in the case of the SCBSA(C). There are no results
avalillable for this particular case from other methods. As in the
case of the simple cukic alloyss here also we face the problem
of negative partial densities of states. In the case of the
SCBSA(B) , the partial densities of states are shown in
figure 3.8. In a small region of energy between B =x=3.461
and E %3.473, some of the partial densities of states become
negative, (This feature is shown in an insert in the lower
part of the/fig&re) whereas the total averaged density of states
is positive. In the case of the SCBSA(C), the partial densities

of states are positive in this region. But near E=3.2, in



~52..

both the SCBSA(B) and the SCBSA(C) some of the partial densi-
ties of states are negative. In the SCBSA(C) even the total

averaged density of states 1s negative.

In figure 3-9, results have bteen presented for an alloy
with 8 = 2.0 and x = 0.5. The SCBSA(B) result is more or less
similar to the CPA result but the SCBSA(C) shows a peaky
structure. Here we do not face any problem of non»analyticity

or the negative partial densities of states.

From these results it is clear that thougzh the SCBSA is
gquite simple and reproduces the fine structure well, yet it
suffers from the difficulties of negative partial densities of
"states and non-analytic behaviour of the Green's function
(See Section 3.3) in the strong scattering regime., Further, it
is apparent that the SCBSA is superior to the SCCSA as the region
of analyticity of the SCBSA is much greater than that of the
SCCSA. This region of analyticity also depends on the under-
lying lattice structure of the alloy. For the diamond lattice
the SCBSA is found to be successful over a larger range of
parameters in contrast to the simple cubic lattice. Horeover,
for a linear chain the SCBSA always yields analytic results
whereas the SCCSA does mnot.We conclude that the SCBSA(C) is
reasonakly good approximation for the calculation of the |
electronic strﬁcture of disordered alloys, but it should te

applied with care in the strong scattering regime,



-53-

§3;3 Analytic Properties of Averaged Green's Function

From the analytic propertiesl34 of the Green!s function,
every exact configuration dependent Green's function (2.9)
contributing to the average has singularities only on the
real axis. Therefore, the exact averaged Green's function is
analytic in the complex energy‘plane (Im z20) except for a
cut alohg the real axis. The configurationally averaged
Green's function may be written as follows:

-1
* @ (3.51)

e

&> = {(z=B71Y = (z-W-L)
where the self-energy } has the same analytic behaviour as
{G> . Further, both the (G»and 7 satisfy the ‘reality
condition's '

*( 29
"
(z

)

B0z |
2(z") . | ... (3.52)

i

§
and ;z
In the following we shall work in the upper half-plane (Im z > 0)
of the complex energy plane. From equatioh (4.4) of appendix A,

it is clear thét in this case the imaginary part of the Green's
function is negative definite and therefore, from equation (A.11),
the density of states is tve definite. This also leads to the

resulit that the'imaginary part of } is negative definite.lgs

The question of analyticity of the configurationally
averaged Greent!s function has become an important issue in the
theories of disordered systems (especially the cluster theories).
In fact the analyticities are very hard to establish analytically

and it tecomes ensier to locate nongnalyticities through a
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numerical computation of the Green's function in the complex
energy plane. Here from the non-analyticities of the averaged
Green's function we shali mean branch points off the real

axis. Approximations which lead to {G> with such?honanalytic

behaviour would be unacceptable,

Mﬁller~ﬁartmann;41 for the first time gave a general
proof that the single site CPA always leads to analytic

125 proved the analyti—

Green's functions. Later on Ducastelle
city of the MCPA., Since the MCPA is hard to apply, an important
question 1s whether the approximate self-consistept theories

lead to analytic Greents functions or not., Nickel and

Butlerl33 carried out numerical calculations of the average
Green's function for real as well as complex energies. These cal-
culations were based on two different approximations (1) the

42 nd (41) the

palr approximation of Nickel and Krumhansl
SCCSA. Tt was shown that both of these approximations suffer
from non-analyticities in the strong scattering regime. At

those values of Rez where singular points appear off the real

axlis, the density of states is not uniquely defined.

Wel38 have studied the analytic behaviour of the SCBSA
by solving the condition (3.3%) self-consistently in the
complex energy plane. This equation is highly non-linear and
yields many solutions. The correct solution was chosen ty
starting at a very large value of the energy where we know the
asymptotic behaviour of the Green's function (G(z)x 1/2%

z » ®). This root was then followed towards the energy region

-of interest. Our results for a simple cukic alloy with 8§ = 2,2
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and x = 0.1, are shown in figure 3.10 where we have drawn
contours of equal real and imaginary parts}of the configura-
tionally averaged Green's function. We started with a large
§alue of Im z ard tried to approach the real axis. It was
found that for Im é‘(0.0S as we go from E = +ootowards the
band region the root does not join continuously to the value
it will have if we approach the band region from & = ~-o00,.

(If every thing works well then there should be only one

root which joins continuously onto G = 1/z as |zl » co(Im z > 0)).
A discdntinuity in the value of the root is an indication for |
‘the existence of branch-point singularities off the real axis
and forces us to draw branch cuts off the real axis. Here the
cuic has bteen drawn parallel to the imaginary z axis at

Re zx .91, The density of states is different if we cross
E«.,91 from right to left and from left to right. From this
calculation it is apparent that the’SCBSA is non-analytic in
the strong scattering regime. We zlso ncticed earlier that in
this region some of the partial densities of states were
negative., It is our conjecture that one will face the problem
of non-analyticity of the averaged Green's function in a
region where tﬁe partial densities of states become negative.
The negative partial densities of states observed in both the
simple cutic and the diamond lattiges, are unphysical and
should not bte there in any theory. We feel that this defect

is ipherent in the boundary site condition and it does not
stem from the additional approximation that we introduced
through equation (3.42). This approximates the matrix elements

of G between two different sites of the shell by their averaged
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value f:and is exact on a diamond lattice. We have not searched
féf the lowest value of & and x at which the non-analytic
Lehaviour of the averaged Green's function (or the negative
partial densities of states) starts showing upj but for the
simple cubic alloys with 8 = 1.0 and x = 0.5 and for alloys
having the diamond lattice structure with 8§ = 2,0 and x = 0,1,
these features are seen in figures 3.4 and 3.7 respectifely.

It is also concluded from this'calculation that the SCBSA is
not equivalent to the MCPA in three dimensions as the later
alvays yields analytic Green's functions, but the SCBSA does
not. We feel that the problem of non-analyticity will be un-
avoidable in any cluster theory where the ccherent potential
matrix is approximated by a scalar coherent potential. Perhaps
one should use smaller clusters with proper symmetries and then

treat these exactly.

§ 3.4 The Disorder Field Formulation (DFF)

| From the discussion of the last section we noticed that .
nost of thé cluster theories except the MCPA suffer from the
difficulty of non-analytic behaviour of the averaged Green's
function. These difficulties arise because of the improper
choice of the form of the self-energy matrix. Mookerjee58 in
197343 introduced a new formalism known as the disorder field
formalism (DFF) which preserves the correct 'herglotz! |

propertyk

of the averaged Green's function. This is Lecause,
unlike other conventional techniques, here the averaging is done
exactly prior to any perturtation expansion and subsequent

approximations., There is no direct introduction of a self-energy

X A function f£(2) is called herglotz if for Im zy O, f(z) is ana-
lytic and Im £f(z) < 0.
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concept. Whereas all the conventional perturbtation approaches
construct an effective Hamiltonian by defiming a self-cnergy
operator; in the DFF one obtains an effective Hamiltonian

by enlarging the initial Hilbert space 9{(in.which the
Hamiltonian operator of the system H is described) through .
the introduction of another Hilbert space @ which descrites
the disorder field. The product space § =#H®) is referred to
as the'augmented space'. This method has-teen discﬁssed in
detail by Mookerjee58 in the case, when the Hamiltonian has _
only the diagonal disorder. It was shown‘ﬁy Bishop and Mookerjeé43
that within the single site approximatién the new formalism
reproduces the results of the CPA, In fthis papér they also
showed the way to construct cluster-CPA., The method‘reproduced
the fine structure in the spectrum of a disordered linear

136

chain., Later, Mookerjee applied this formalism to three
dimensional systems, namely, a%loys having the diamond lattice
structure. Unfortunately, in this caléulatign, some mistakes
crept in the calculation of the enviromment. In this section
we shall point out these mistakes and descrite some numerical
results., We shall not reproduce all the details of +he
formalism here, but start with the expressionl%3 for the

configurationally averaged Green's function defined as

_ -1
G(z) = (z_J;U - ) . (3.53)

where_;@ is the identity operator'in'@ and H is the effective
medium Hamiltonian which acts in the augmented space @’and is
defined as

=3P®Q + ¥ h .T,.OI | (3.5%)
2 | .
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vhere §; = L®L,®... I, ,8l; @ I, ,@., oo (3.59)
Qieﬁgﬁieﬁi 1B li}(;l is a projection operator in Z2.

Iy = DG
b= 000,00 4® .. . eee (3.56)

and I, is the identity operator in the space ﬁi. ® denotes
the direct or tensor product. We have yet to define #; and
l;. For eacﬁ randonm variatle €55 we find a Hilbert space ¢i,
& unit vector v (in #;) and a self-adjoim: operator N, .
(in #;) such that

/

e 1. i, ~1yd o .
pi(ai}~ o gigiﬁo In <voi(&li-l{1i) [v0>. | cee (3.5

In cther words, vé and ﬂi are chosen such that the spectral
dersity of H, with respect to vg Jt.s tJr‘le given probability
distritution p of the random variable. Such a relation can
always be found for any probability density p. For the

binary alloy the probability distrikbution is given by

For this distribution, ﬁi is a Hilbert space of dimension 2
ard the representation of the operator _Mi in & basis vi is
a 2x2 matrix
a ¢t o ‘ .
lﬁi - ‘b C y e (3059)
vhere g = xeA'*(LX)SB
b o= (EA»EB)J?(‘(I&T : .. (3.60)

¢ = (1-~:<)EA+ e,
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The eigen values of the matrix Mi are €, and ep and the
corresponding eigen vectors are

| [[T= | | | \
Wlex X

1 ) -1 | .

These eigenvectors can be obtained from a linear combina -

tion of the unit vectors

() = )

Therefore the appropriate unit vectors are

: 1y | X 0 ' |
VO = (0) al'].d Vl = 1} . . PR (3.61

The fact that Qi is equal to the identity operator on all

h

e — .
except the i“" component of @ is an expression of the indepen-

dence of the random variables ei's. We further define

_ 1.2 i ’
Yo = vO()vcgy., Vo@eer . ... (3.62

With these definitions we can now vrite the matrix elements

el

of the effective Hamiltonian in the adgmenﬁed'spaee U5

T - - Ead - /‘ff'
hif,jf‘ - <1f|ﬁ‘«]f‘> - Mi 513"' hl;jsffx J v eae (3.63

where the vectors {liﬁ>} in the augmented space U are defined

as

- 1 2 3 k
lﬂiébvalé§vazé?va3C)‘.. Vak€§ e >

where i denotes the atomic site index and o = 0 or 1.
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Following the notation of liockerjee we set

16> = 109> oo (3.64)
lifj> = lﬁli@)v:é@vg@... vg"l® v:{@vgﬂ@ e
. ) .- 03 -'+‘l ' .,-.l
15,55 [0V ... g deie... Ll
v{@bvg*i ..£>

and so on. Here fjf .... denotes the field states and wi = 1>,
The matrix elements of the averaged Green's function are then

determined from the relation

Can(®) = {U,@7 [{(BHo) I - E | liwm@yo> e ee. (3.69)
So far we have described thé augmented space formalism
for determining the configurationally averaged Greenl's
function of an alloy having only.the diagonal disorder.
Equation (3.65) is exact and is applicable to one, two or
three dimensional alloys. Essentially what we have done so
far is that we have transformed the initial Hamiltonian H
which involves some random variables to H that has no random
variatles. We shall now employ a graphical method which gives
us physical ins&ght into the nature of the new formalism.
Irn this method one reduces the evaluation of ﬁnm(z) to the
calculation of the contributions from all t'self-avoiding
walks'! between |nf> and Imf>' available in the whole augmented
space ﬁ. This graphical method was introduced by Anderson144
to study diffusion ih random lattices and was later uscd

.
by Bishop and Mookerjee‘43 to calculate the density of states
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of diagonally disordered alloys. In order to calculate the‘
density of states in the augmented space formalism we need to
evaluate the imner product (¥;@7,|(zly-B) ™ U@ >. Before
we actually calculate it, it is instructive to see what
equation (3,63) means descriptively in terms of !walks?

in the augmented space. An electron at a site labelled by i
and field state f can be induced by E either to make spatial
hops to one of the nearest neighbtours j of i with matrix
elemgnt hij’ keeping thq field state the same or it can remain
on the same spatial site while the field at the site i changes
according to ;s the fields at all other spatial sites

remaining unchanged.

Ihe Graphical Method.

e vmar

Our problem now is to develop an approximation for .the
determination of'ﬁoo. The exact graph for this in the augmented
space ﬁ is impossible to think of as it invclves an enormously
large variety of closed, self-avoiding lcops from'Of'and tack,
Herec we shall discuss the pair approximation in detail and
will make only some comments on the higher order approximations.
In the pair approximation we retain all the closed self~
avoiding paths in ﬁ tetween a nearest neighbodr pair of
spatial sites and delink all closed loops (which involve
both spatial and field hops) involving three, four or more
spatial sites, In oiher words in this approximation, two
spatial vertices one ﬁithin and one outside the cluster
(here the pair under consideratioh) cannot be linked in a

locp involving field hops. In the multiple scattering
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terminology we account exactly the multipie scattering
within the clustef whereas the scattering from vertices within
the clustér and outside the cluster is treated independently.

This is essentially the idea behind the cluster CPA's,

The graph corresponding to a pair epproximation is shown
' ‘ t .
in Fig.3.11. Here Of denotes that an electron is at a spatial
site '0! and in the field state |f) . It can go %o the site 1

with an h hop keeping the field same. This is denoted as

1f. Then it can change the field at the site 1. This field
hop has been denoted by bt and the corresponding veritex

is denoted as 1f; corresponding to the state [1fy) .

Now it can again come to site 'O' in the state |Ofi> without

- changing the field at 1 and then a field hop to come to state
|0f10> and so on. This graph is the same for one, two or
three dimensional solids. The only change will te in the
calculation of thé enviromment attached to each vertex of the
graph. This environment corresponds to walks in the delinked
part of the original graph and involves vertices outsiae the
cluster. For a linear chain this procedure was used bty Bishop
and Mbokerjeel43 and for the diamond lattice by Mookerjeel36.
In the application to the diamond lattice there are some
mistakes in the calculation of the environment. In.Fig;3.12
we show the correct graph for the enviromment on a diamond
lattice. This enviromment is the same whether one considers

a pair or a cluster of a central site and.its Z nearest .
neighbours (as considered by Mookerjee). In the augmented
space U, the graph corresponding to G(E) has five fold

éoordination (for the diamond lattice) at each vertex: four

L]
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of them with link factor h (singlé line) to the four nearest
neighbour spatial sites and one with lirk factor b {(double
line) corresponding to a 'field! hop. The circles g'! represent
graphs which we call the ‘environmeﬁt'. To begin with we
observe that in the graph for g', one spatial hop and a field
hop should be missing as wé héve already included these in
the main graph (Fig;3.11). Now we denote by § a graph with
four h hops to each of which we attach g! and a b link which
is again connected by §. This ensures a five fold coordinat-
ion at each vertex of the graph. Mookerjee missed thié later

£ attached to each b link, None of the B's attached to b links
from different vertices are interconnected; ‘'delinking! is,

therefore, assured.

When disorder is abksent i.e. b = 0, g' is just 3h2Ggg)
on the diamond lattice, where the superscript(o) on G denotes
that the Green's function has been calculatéd in the situation
where there is a ‘vacancyf in the neighbourhood of the
vertex '0', The test method of calculating this is the
recursion method where we calculate a set of coefficients

{Bn} such that

gp.1(®) = 1/ ~ 5 (B) ]

(o) (gy = |
G.o/ (B) = g (E). ... (3.66)

The values of B, in tables 3.2 and 3.3 were supplied to us
by il.J.Kelly.



Table 3.2

w Glym

Continued fraction coefficients for the diamond lattice

(with a vacancy) s-band, 21 levels exact.

A1l ai‘s are zero

O 0 1 O0\VULF W Ny

by
1.732051
1.732050
2, 081665
1.954610
1.990033
2. 011724
2, 001086
1.989212
2,004332
2,011427
1.976354
2.024587
1.982179
2.012238
1.986095%
2.020713
1.973568
2,026295
1.978129
2.017886
1.979012
2.0
2.0
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Table 3 o&“
Continued fraction coefficients for the simple
cubic lattice (with a vacancy) s-tand, 12 levels exact.
All ai's are zero.

by

2, 236068
2.863563
3.03%561
2.933415
3. 034377
2.99054L1
2.9882.2
3,021068
2.980383
) 3. 010758
11 . 3.,000135
12 2.9914.04
13 3.0

oo 3.0

OV OO0 F W N
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In the presence of disorder{(b¥0) and referring to Fig.3.12,

we have |
g = 30°609) (B-a-b%) cee (3.67)
_ . 7
R .
g = - 1 2 eo e (3068)
E-C&L{-h
E»a«g'«bzg )
"Here we choose h to ke unity. and define
X = B-a-t%8 , ... (3.69)
so that g! = 3h2Goé°)(X)
12
~and X=BE «a - - 5
Bec-lh™
- X - gt
' The last equation simplifies to
(E-0) %= {(B-c) g1 #4+(E-2) (B-0) b7} X |
-+ (E-a) (E-c)g'+l+(E-a)-b2g' =0 , e (3.70)

The solution of (3.67) for b#0 can be affected by a Newton-
Raphson type iterative procedure. We choose some value of B

in the band and start with the knoWn.solution for t = 0, Then
bty varying bt in small steps we successively reach the point

b = bo~by applying the Newton-Raphson technique on the
variable b. Then by varying the variable E in small steps

we calculate g!(E,b). For A = 1.0 and x = 0.5, the real and
imaginary parts of g! arc shown in Fig.3.13 for the diamond
iattice. A éomparison.with Mookerjee's resultl36(Fig.9)AshOWS
-that the results are almost identical except near E = 0,0

and the band edges. Once the enviromment is calculated, the

dlagonal element cof the averaged Green's function Goo is
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obtained from the following relation

G, = - e (307D
z-a-gt- ¥ C(P)
' p

where C(P) denotes the contribution of a self-avoiding walk.
Now from Fig.3.11l there are only four gelf-avoiding paths
which start from vertex 1 (0f) and come back to 1(0f) without
repeating any vertex. These are (121), (181), (123456781) and |
(187654321). Alsot#3slih

c(121) = n26iL)

c(181) = p2{1) |

c123456781)= 1oSE) £6{2Y) na(3ZL) 1alE3L) 4

33 Li
(54321 (654321 (7654321),
ho§4321) po(5H32L) (7654321,

= ek (15 (21),(321) - (4321) A (54321)
= pietogyleiite} ng G6643C x

98354321) Gégé54321) ee. (3.72)
and S
- Lo (1) (18).(187) ~(1876
C(187654321) = H*b Ggs O7p Geh ) Oy ) x
~ 5 (18765) (187651 , (1876513)
Ly 33 22 o
If we exclude 1 then the rest of the graph (Fig.3.1l) is just
2 linear chain shown in Fig.3.1l4. From this graph it is easy

to write the following expressions for various Green's functions.

(1) . L -
Goo™ v T g-a-g'-pecl21)
33



o2V - !
43
zZ~Cc-g'-h 2G£i21)
1
(321)

Yt i z~a—g‘-b2G§%321)

(4321) L
055 T Teg'-n G(?321)
54:321) 1
G =
éé. Z_c“g,_b2G§354321)
(654321) . 1
Gog z~a-gt-n2G§2654321>
(7654321) 1
Z o g’
(1) -
G =
88 Z_c“g,uthé%a)
o(18) . . 1
697 2-a-g'-526LE7)
(187) S ——
Ggs ) - Z-C"g'~h2G5%
'G§%876) = '12 T
Z-c-g!'-b qu
(18765)
G,
nn gma=g ._h2G§33-87654)
o (18765k) ., 1 _
“33 2-o-5 '-520 L0763
o(1876543); 1 __
22 z-a-g!

-
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& &

(3.73)
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The cofresponding dengity of states has beenAshown,iniFig.3.15
along with thg CPA resulté. The DFF shows a two peaked structure.
Densities of states for other parameters are shown in Fig,3.16.
The DFF shows a peaky structure which becomes more prominent

as disorder is increased and a wider band as compared to the

CPA, We have not been able to complete calculations for

clusters consisting the central site and its four nearest
neighbours, because of inadequate computer facilities. This
problem requires an inversion of a complex 160x160 matrix. The
main graph correspording to the cluster remains the same as
given by Mookerjee. We have also performed pair calculations

for a simple cubic lattice. The graph for the enviromment is
shown in Fig.3.17. In general the equation (3.67) may Lbe written

as follows:
gt = (zml)hgegg)(zg | cee (3074)
where X satisfies the equation

(5~c) X2- { (B-c) g 1 42n°+(E-2) (B~¢)-b2} X |
+(T-a) (E-c)g ' +Zh°(B-a) b ! = 0 e (3L

The results of the pair calculation for the simple cubic
lattice.are similar to the one for the diaménd lattice., A
cluster (consisting of (Z+l)sites) calculation for the simple
cukbic lattice will require inversion of a (7x27)x(7x27)
complex matrix andithe main graph for calculating'ﬁoo will be

much more complicated than the corresponding graph for the

digmond lattice.,
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The DFF has been shown;37 to be equivalent to using

. -a full cluster diagonal self-energy. In this sense we can say
that the cluster calculations in DFE are equivalent to the MCPA,
Both of these always yield analytic Green's functions. The
DFF has récently been applied to alloys'having diagonal as
well the off-diagonal disordersl™> and to situations where
there exist some short—range-orderllfé in the alloys. A
single bond approximation for alloys having off-diagonal dis-
ordér alone was formulated Ly us147. These formulationsnhave
been used to calculate density of statesfor a linear chain.
An application of the IFF to three dimensional lattices will
be quite involved. This necessitates, therefore, a need for
simpler cluster generalizations which preserve the herglotz

propery of the Green's function. -

§3.5 A Critical Study of Various Cluster Theories
After the introduction of the CPA by Soven?’ it was
reformulated in g variety of ways, e.g., the locator method148’1h9,
,thé diagrammatic techniquelso, the cumulant expansion methodlgl,
the moment method152, the recursion.method153, and the DFF143.
All of these methods led to the same results in the single
site approximation. But unlike the single site CPA there is
no unique way for cluster generalizations of the CPA. The
early attempts in this direction were based on improving the
CPA by considering correlated scatterings from pairs,
triplets etec. But conflicting ideas came into picture. In
some of these gen.eralizationslgl“’155 based on the multiple

scattering approach people have considered all the pairs which
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connect a site n with all the rest of the sites in the

system, The self-energy in this approximation is no longer
diagonal in the site representation but has off-diagonal
natrix elements between evefy pair of sites, Whereas in

some of the other pair generalizatizggflggasod on diegrammatic
techniques people have considered multiple scatterings f:om

a nearest neighbour pair embedded in an effective medium,

The self-energy in this approximation is a 2x2 matrix.

Though these generalizations produced some fine structure in
the density of states but were not quité satisfactory. In
these generalizations the equivalence tetween the locator

and the propagator expansions as observed in the single site
CPA, is no longer preservedqu. The numerical calculations

by Nickel and Butlerl33 show that these generalizations

suffer from the difficulty of non-analytic behaviour of the
averaged Green's function in the strong scattering regime.
Further the formulae of Nickel and Krumhansllgz'and that of
Cyrot-Lackmann and Ducaste119154 do not have the appropriate
split band limit. The paif approximations also fail to take
into account the correlation effects arising from the symmetry
of the underlying lattice. This has led to generalizations
like the MCPA already discussed. In these generalizations

one usually considers instead of a pair, a cluster of

central sife and its Z nearest neighbours, This cluster
generalization has proved quite fruitful, as it preserve3157
the equivalence tetween the locator and the propagator
expansions and yields analytic Green's functionslzs. Numerical

. 36 ) . X
calculations on a linear chainh also give excellent agreement
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with the exact results, But the MCPA is quite difficult

to apply to three dimensional lattices. The DFF also appears
to be equivalent to the MCPA though it has not been rigorously
proved. The only drawback of the MCPA is that the effective.
medium does not have the property of translational symmetry

of the empty lattice. But it is supposed not to te a severe
drawback while evaluating local properties such as the

densities of states.

The difficulty in applying the MCPA to three
dimensional lattices has led to the emergence of simple
approximations like the SCCSA and the SCBSA. Though the two
approximations givé quite reasonatle density of states which
agrees well with the available exact results but suffer from
the difficulties of non-analytic behaviour of the averaged
Green's function and the negative partial densities of
states in the strong scattering regime. The DFF too Lbecomes
very much involved as we go towards higher order approximat-
ions and its general applicability seems to be very restricted.
Recently Des jongueres and’Cyrot~Lackmann14Q have done
calculations using the method of moments. This promising
method gives anieXCellent agreement with the exact resultsl8.
The important point in this method is that it does not use
the Bloch's theorem or the detailed band structure. It
works for both the bulk as well as the local properties at
the surfaces of ordered and disordered materials. However,

this method has not so far been applied td any real alloyx.

X This method has been apvlied to several transition metals
by Cyrot-Lackmann and coworkers and excellent results have
been obtained,
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Yet another method, which is similar in nature to the method
of momenis in the sense that it also does not require the
use of detailed band structure calculations, is the recursion
method. This method was initially introduced by Haydock et a1l3?
to study the electronic structure of transition metals which
can be well described in the tight binding approximation.
Later, it was applied to disordered alloys by MookerjeeSS,
Jacobsls3, Cublotti et a1158, and KgrkerlSB. This method,

in principles allows one to treat exactly the probtlem of

a cluster embedded in a given Cayley-tree or linear chain
effective medium. In their application of the recursion method,
JacobslS3 and Cubliotti et a1158 chose an effective medium
characterized by a Green's function which is a weighted

average of the Green's functions for the_two pure compohents

of an alloy . Since such an effective VCA type medium is

“known to yield less accurate densities of states, it is
expécted that using such a medium should yileld less accurate
cluster Green'!s functions, Also for a dilute alloy Jacobks and
coworkers obtained an unexpected triangular shaped majority
band which is certainly due to an inadequate termination of
their continued fraction., They truncated the contihued fract-

ion at the fourth level which will not give the proper shape

of the density of states curves.

We feel that the MCPA and the method of moments are
the best approaches todate for cluster generalizations.
But for general applicability some simpler methods have yet

to Le developed which would preserve the desired herglotz



properuy of the Green's functlon. Here it w111 Le of
1nberest £0 mentlon that the SCCSA and the SCBSA glve

-very good resu~ts for moderacely dlsordered a]loys ahd are

the 51mp1est of any other cluster generallzatlon of the

same order.
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FIGURD CAPTIONS

Fig.3.1 Dengity of states curves for a binary alldy having
the diamond lattice structure.8 = 1.0, x = 0,5 and

Al

w = 4,0, The curves are symmetric akout E = O,
Fig.3.,2 Density of states for a simple’cubic btulk s-band.

Fig.3.3 Minority band of the density of states curves for
a btinary alloy having the simple cubic lattice structure.
8§ = 1.29, x = 0,05, w = 1,0, '

Fig.3.4 Density of states curves for a binary alloy with
§ = 1.0y, x = 0,5 and having the gimple cubic lattice
- structure. The arrow shows the region where non-
physical results are obtained in the SCBSA,

Fig.3.5 Hepresentative plots of the partial densities of
states. The curves are discontinuous at i = 0,0,

Fig,3.6 Minority band of the density of states curves for a
simple cubic alloy with § = 2,2 and x = 0,1, The
vertical arrow shows the region where the branch
point occur off the real axis. The horizontal arrow
shows the region where some of the partial densities
of states are negative,

-

Fig.3;7 Minority band of the density of states curves for
a btinary alloy having the diamond lattice structure
with 8§ = 2,0 and x = 0,1, The horizontal arrow shows
the region where some of the partial densities of
states are negative.

Fig.3.8 Plots of the partial densities of states in the minority
band in the SCBSA (B), The parameters are the same as
in Fig.3,20~—==)y (= =), (- =), (=== and
(~=-v¢e-~-) respectively correspond to cluster configura-
tions in which an impurity atom A 1s surrounded by LA,
34 and 1B, 2A and 2B, 1A and 38 and 4B, See the missing
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peak near E=3.2. The arrowv indicates the region
where some of the partial densities of states
become negative. This has teen shown on an enlarged
scale in the lower part of the figure. Also in the
.region near £ x 3.2, some of the partial densities
of states are negative.

Fig.3.9 The :density of states curves for binary alloys
having the diamond lattice structure with & = 2,0
and x = 0.5. The curves are symmetric about & = O,

Fig,3.10 Contours of equal real and imaginary parts of the
averaged Green's function G(o) in the SCBSA, The
various parameters are the same as in Fig,3.6, The
solution has been chosen in such a manner that
G(zY~1/z as z » ® (Imz> 0)., A branch cut has been
drawn at Rez =~ 0,91,

Fig.3.11 The graph showing exactly all closed loops in the
augmented space connecting two nearest neighbour
sites for an alloy whose site energies have a bimodal
distribution.

Fig.3.12 The graph g' corresponding to the environment on a
diamond lattice.

Fig.3.13 Real (-~=) and imaginary (~—) parts of enviromment
g! for a binary alloy with § = 1.0 and x = 0.5 on a
diamord lattice. !

Fig.3.14 Part of the graph 3.11 when the vertex 1 is excluded.
Fig.3.15 Density of states in the pair approximation (~-=-)
and the CPA(---) for a binary alloy having the

diamond lattice structure. The curves are symmetric
atout & = 0O,
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Fig.3.16 Minority band of the Q@ensity of states curves
for an alloy having the diamond lattice structure.

Fig.3.17 The graph g' corresponding to the environment on
a simple cubic lattice.
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CHAPTER IV

CLUSTER THEORIES (Extended Disorder)

So far we considered situations where only the diagonal
term in the tight binding Hamiltonian (2.30) was random. While
this model has played an important role in the deVelopment of
the CPA, it is inadequate for real systems where addition of
impurities introduces both the diagbnal as vell as the off-

8 have been made to deal

diagonal disorders. Several attempts
with the probtlem of the diagonal and the off-diagonal disorders
but unfortdnately most of these fail to produce the known
results in the diluté limit (See appendix B). Another diffi-
culty with these generalizations is that these lead to non- |
analytic averaged Green!'s functions for large & when the
hopping integrals are not too different. The standérd model

in these calculations has been the following. In the single

band model the diagonal term e€_ - is assumed to be egual <o aA

n
or aB depending on whether the site n is occupied by an A

or B atom. The hopping integral hnm can‘take three values
hAA, W*B (=pPAy ang nPP depending upon the occupancy of the

sites n and m, But this model fails159 to produce more than
160

simply an s-wave scattering and hence. does not allow enough
flexibility to meet the self-consistency requirement on the
atomic potentials to satisfy the Friedel sum ru1e16l, However,
if one includes changes in the diagonal matrix elements on_ -

162

sites neighbouring the impurity, one can allow higher

phase shifts in a single s-band model. To our knowledge no

EENTR L LIBKARY URIVERSHY OF ROORKEE
CONRKEER
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such self-consistent calculation like the CPA has been done

todate,

The most successful treatment of the problem of the
diagonal and the off-diagonal disorders was given by Blackman

et 21103 (hereafter to be referred to as BEB) using a

locator formalism., A single site approximation(Though
apparently it looks impossible to develop a single site theory
when the off-diagonal disorder is present), similar in

nature to that used in the CPA, was employed while performing
the configurational averages. In fact this simplification
followed from the use of the occupation indices. For a binary
alloy the use of 2x2 matrices facilitated the characterization
of quantities like the Gfeen's function G(K,E) with no
restriction on the hopping integrals. When the Green'!s funct-
ions in fhis formalism, is expressed in terms of an effective
medium Hamiltonian, the self-energy (and hence the effective
medium) requires coupling between all pairs of sites, though
the hopping in the real lattice connects only the neares?
neighbours. Therefore, the substitution of a single real atom
into the effecﬁiVe medium will produce a perturbation,that
instead of being localized to the impurity site, as in the
case of the diagonal disorder, exterds to all neighbours. The
BEB formalism gives the first four moments of the density

of states exactly. As a special case when the hopping integral
hAB between A and B atoms is equal to the geometric mean of
hAA and hBB, Shiba57 also using a locator approach, independently,

obtained results for the diagonal element of the Greents
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function. It was shown by Blackmanlég'that the formalism of
BEB reduces to Shiba's theory when the appropriate restriction
is imposed on the hopping integrals. These generalizations
preserve159 the correct dilute limit'of the self-energy.
Another special case, where the values of the hopping integral
are additive i.e. nAB = (nAh+ hBB)/Z, was considered by
Fukuyana et allés. In this case also the probtlem can be for-
mulated within a single site approximation. Their results give
the correct dilute and the split band limits and are also |
special cases of the BEB results. The special case considered
by Shiba is interesting as in this case the problem can be
reduced to that of a diagonal disorder. This particular case

61

has been studied by us using a renormalized probagator

60

formalism™ which gives the same results as obtained by

Shiba using a locator formalism within the SSA. This has been
further generalized to incorporate‘multisite correlations.
These are discussed in Section § 4.1 whereas in section § L, 2
the general casg where ho restriction has beén.imposed on hij
is studied.

§.k.1 Renormalized Propagator Formulation (RPF)
a. CPA in RFF
When the hopping integral hAB is equal fo the geometric
mean of hAA and hBB, then the hopping integrals can be
57

factorized as

hij = aih aj * e " ()‘f'.l)

N . -
where h is independent of the atomic configurations and o«
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is determineg from the bandwidth of the pure constituents
(e.g. ai is proportional to the bandwidth of the pure A consti-
tuent.), In this approximation the Hamiltonian (2.30) can be
renormalized and the problem reduces to that of the diagonal
disorder, This was also noticed inﬁependently cy Mertsching.166
This method has beeh referred to as the rénormalized propagato:
formalism by NiiZekiéo. In RPF one defines a diagonal, random

and non-singular operator aop’
aop;:}i-h>ai<i" ces (3.2
o~ .
The renormalized Hamiltonian H and the renormalized Green's

N
function G(z) are given by

N . .
-1 -1 _ N . N .
s A S IR e (3)
and '
G(z) = o G ( ML (
Glz) = o, Glz)a = (0,2 - B eoe (o)
where gi = azg £y
S | -1
h ai hij“j |
and 7, =% 11> apCil oo (1.9)
1 .

~n . ’
Since h is configuration independent, the renormalized
Hamiltonian has no off«diagonal disorder. Lquations (4.3)

and (4.4) can te rewritten as

=>

A A
H=D +]

@(z)

? A . «e o (Lf'oé)
A_-1
El\.\jop(z) e l/\.]] . veo (Lf'a 7)

A ) ~
Here D is the random diagonal part in (4.3) and W is the
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non-random part and will be called the unperturted Hamiltonian,

th

(2) is a random diagonal operator whose i~ component in

Mop
the Wannier basis is

_ 2 o
Mi(Z) - (Z"Ei)/aio ese (LP08)
4 R .
We now define a quantity zop which characterizes the effective

medium,

A A_-1
<= T Z () -uwl e w9

~op

>

In order to determine'zdp(z) self-consistently we first use
the single site approximation and see that the sélf»consistency
equation obtained in this gpproximation is the same as the one

obtained earlier by Shiba in the locator formalism.

In the SSA we have

s ’ . A

Zop(z) = Llip T (2) {1l. ‘ eor (410)
l .

—rr

A
In order to determine J (z) we start with the reference Green's

- function defined as

G2 = U3 @ -u1=6¢T) ... G

- where Q(o)(z)z (zinﬁ')-l cee (4.12)

is the Green's function for the unperturted crystal with
A .
Hamiltonian W. Then using the multiple scattering description

of Section é 2.3 we obtain

Y(2) =3 (2) <55/ 11 +¢>F() ] ... (4.13)

-~
where {t > is the averaged single-site scattering matrix
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A o IEI(Z)-MP(Z) | (10
t - ) P ¢ o0 »
<t p"—f'l *» 1- [ 2(2) - M, (2) 1F(2)
and gkz) = <O[§CZ)iO> . : ' vew (4,19)

p denotes the type of atom (say A or B.,.) at the site under

consideration and xp is the probability of the occurrence of

a pth type of atom. Equation (4.13) is the generalization of
equation (2.43) for alloys with off-diagonal disorder of Shiba

typeo

| The density of states_in this formalism is obtained in
terms of the corditionally averaged renormalized Green's function

60<z> defined as
A A N o -1 ‘
G (z) = ﬂ&(z)'l+ M (2) - 2 (z) 1lo><of ! | ee. (4.16)

This is a random operator which takes the value @g(z) depending

on the configuration of the site 0. We define

Y op -

FP(z) = <olg_o(z) (o>, eoe (4,17
Then from (4.16) we obtain

Ap ‘ "l A "1 o

FP(z) = {F70+ (0 - IO} . cer (4.18)
IThe partial density of states is then given by

pP(E) = - L1 %p(E+iO)/a2 ; (4.19)
n p. v oe .

The total averaged density of states per atom is then

n ‘ '
P(EY = xppp(E). | vor (4, 20)
p=1 '



It is important to note that in RFF the tptal averaged

. N

density of states P(E) can not be obtained from F(z) directly.
Now using a definition similar to (4.18) for FP(z), Zq. (4. 1y)

can te written as

A ~ K . s
Syt — 1, ver (Ga21)
¥ x FP F
p=1 P |

A
The self-consistency condition for the determination of . is

<%\> : O ' L (4022)

N '
which meangthat » = Y.

Equation (4.22), when solved for a binary alloy, reduces to
2/ 5 4T 4 e /G 5 Y =R L 2y
R .
If the M;(z) and } (2) used here are identified withZ; and
i%rused in Shiba's paper, then Eq, (%.23) is the same as the
self~consistency equation derived earlier by Shiba in the
locator formalism., When no restriction is imposed on the

60 Spowed that the RFF and the

hopping integrals, Niizeki
locator method of BEB are equivalent. This also shows that
within the SSAy the locator and the propagator formalisms
give the same results even in the case when the off-diagonal

167 have

disorder is also present. Recently Gonis and Garland
2lso shown that the formalism of BEB (and therefore of Shiba)

has the correct analytic properties;

b. Cluster CPA in RFF,
We now extend the single site generalized CPA discussed

in sub-section § 4.la to include correlated scattering from
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a gite and its cluster of neighbors in an approximate manner

and call it cluster coherent potential approximation (CCPA).

After the Hamiltonian is renormalized and the problem
.has bteen reduced to that of a diagonal disorder’then the cluster
formalisms (particularly MCPA, SCCSA, SCBSA etc. which are
of our main interest) developed to treat the diagonal disorder
proklem can be carried on directly to (4.3). As already
noticed, the application of the MCPA wili agaln be cumbersome
and therefore here again we shall work with simple theories like
the SCCSA and the SCBSA, Here we slightly deviate from the
treatment of Section é 3.2. This will facilitate our study
when we later consider the general case, We consider a cluster
of (2+1) atoms (a central site and its Z nearest neighbours)
immersed in an effective medium which we approximately character-
ize by }’_\'_c = f_ X, in the spirit of the CPA., Fere I, is the
(Z+1)X(E+1) unit matrix, The renormalized Green's function for

such a System is
A A~ o
GS =G> +¢ 8> TGS, e (a2

Proceeding parallel to our treatment of SSA we have

Ao e | o
G® = %058 %op ' eoo (4.25)
and .,‘}C = X lipil( ‘_% - M. ees (4, 26)
1EC

¢ denotes a cluster and i is a site in this cluster. We can

now write

) Ne ~ ~ AC n
G- = LGX+d{G>2T-<G >, oo (L 27)
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A A ' }
where T° = T°(1 +<G>T9). s (4.28)

TC ig a (Z+1)x(Z+1) matrix and is difficult to solve in the
present form to obtain.@c. Here we introduce an approximate
scheme to simplify these equations. The physical idea behind
this scheme is that for certain properties like the averaged
densities of states, the magnetic response etc., enviromment
effects depend only on.the number of different kinds of atoms

on the shell s of nearest neighbors and do not depend critically
on their detailed configuration on the shell., So we calculate
the %C matrix with the assumption that 1t depends only on the
total number of say A and B atoms on the shell, but is independent
of their detailed configuratién. This is achieved by replacing
the propagators between two different sites of a shell by their
averaged value. A similar approximation was also made while
dealing with the problem of the diagonal disorder alone, With
this approximation all the (Z+1)° matrix elements of T¢ can be

) L. he  Ac N me
expressed in terms of four quantities T T 62 T and 1

oco? ~o so ~“ss*
The latter three are defined as
mc . 1 =thc
1os T Z % Toi’
~e 1 <'Ac o o
Too = 3 % T eoe (4.29)
A N
and Tgs = "‘]"‘2‘ Z’ Tc .

The prime denotes that the sum is taken over the shell sites.
0 denotes the central site, Here we shall not give expressions

/\ .
for different matrix elements of ic explicitly, as the relevant
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expressions 1nv01ved in the calculation of the den51ty of

N
C me
states require expressions for T 607 T o5 Tso, and s only.

These are easily obtained from Eq.(4,28)%

Tgo.= Too T 73 <G>R so’ e (4,30a)

A - -]a n AC ¢ ,_] o

Too = 70 €62 Tt rT o = tiy veo (4,300)

A _ A A Aq .

Tgs =2 Too<'G)R Tss’ . ees (4.300)

aTc = i1 +z2¢B ¢ 4 22{'\'{50 y S'e ' (2. 304)

an - 22 R O 88 >J-_‘ tii b 6 e 4.3
where |

~ _ A A~ ~ . g

Too = Voof (1-V5o<C2) s e. (3D

N~ A A ~ A . n

tii = V;i/ El - V?.i(< G>O - r) .] P (Ll’o 32)

(i is a site on the shell) and

[/_‘.

< G ‘ '. ) “ | v.oc ( »
(2-1) J§ 4.33)

o ~
. Here the subscripts O and R ond G > denote zero and nearest
neighbour separations respectively. Equations (4.30) are

. solved to obtain

N
Ne _ % ot oA S
Too = 5%9(1 - I g ti4) e (4o 34a)
N
c Ao _ TOO A <t A . ..
T Tos = D <G>R-§: tiy0 eoo (4,34B)
¢ . 1S N
and Igg = 5= 2y cor (h340)
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A ta B
[ tii' ' s (2{-035)

. . .o
wherce D! = 1-(t + Too‘<G>R )

e

The renormalized Gieen’s function at the center of the cluster

is obtained from Eq.{(4.27),

AC _ A A A Ac ~ N /\C + AC
Gog = A + <G 2 <G>O Too ¥t Z<G>O <G>R(TOS TS

+ 2285, <oy 1. e (4a36)

This can be simplified using (%.35) to obtain
' A

e =L Jeoc(dy + (<8 <t < )T, (4. 37)
oo D! gc 0 R >R 0 T il ¢ e ’
(o] 0]
A
Y is then determined from the condition
A A
<Gy = %CPC o, e (138

where again_PC is the weighted probability of the occurrence
of a cluster configuration. We sum over all configurations,

keeping in mind that for a fixed number of different kinds of
atoms_on the shell the different possible configurations are

not to be distinguished in this approximation..

In the case of clustersy Eq,(4.21) can be generalized

to the equation

N

Z = Z + — 11:; 'élc - }; L} s a0 (L{lv 39)
% ¢ 00 G o) ‘
e

A N
The quantities QGJﬁ_and [ can easily be expressed (See Scction 3.2)
N
in terms of 2 and <§>b ’
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Gy = T Ll -1, cee (440)
and f = Cixzn 02 Loy - B, ero (e 41

Here we have assumed that the unperturbed crystal half-band-
width (v, = 2 x h) is unity. The averaged density of states

per atom is obtained from

P(Ew-%xm% p

>, GS /2, U ()

c

"\
In the one center approximation t;; is zero and Eq.(4.37) reduces

“to

/\c _ N A ~
G = (/DN (T, SV ) <G
Taking the configurational average and using (4.38) we ottain
S
{Ty0= 0
which is the same as Eq. (4.22) obtained in the SSA,

We have numerically evaluated the density of states for
‘binary alloys having the simple cubic lattice structure. ,
Equation (4.39) has keen solved by an iterative procedure.The
unit of energy is taken to be the half btand-width of the
unperturbed crystal, which is set equal to 1. The half bandwidth
of pure B is also taken to be 1 which means aé = 1. The zero
of energy is chosen in such a manner that E) F -Ep = %&{.The
alloy density of states (full curve) is shown in Figs,4.l and
4.2 for various valdes of the parameters x,8§ and ai. The
dashed curve showg the corresponding generalized CPA results

calculated from Eq.(4.22), For 8 = 1,0, the minority band is
shown completely, along with a part of the majority band.
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" For 8 = 0,79, the effects of the local enviromment on the
densiﬁy of states are not very significant and our results

18,19

are in excellent agreement with the exact results « For

§ = 1,0 we £find a good deal of structure showing up in the
impurity band. The variations with ai are best seen in the
‘modification of the central peak of the impurity band. The
central peak correspords to the resonance level of the isolated
impurity A. The peak btecomes sharper when ai i.e, hopping from
A atomsy is decreased. This can be understood on physical
grounds as followss since we expect that, 1f hopping from
isolated siteAis reduced , an electron will spend comparatively
more time at that site and the corresponding resonance level
will become sharper, leading to a higher density of states in this
region, We face  just the reverse situation when the hopping
from A atoms is dncreased, The central peak is reduced in height
and is broadened, showing that the above mentioned life-time

of the single impurity resonance level becomes smaller. Similar
congiderations apply to other peaks in the impurity band. These
correspond to two impurity, three impurity,.... resonance
levels. As mi is increased, these peaks become broad and well
defined becausc the increased hopping among impurity atoms
favours a multi-impurity resonance level at the expense of

a single-impurity resonance lcvel, Further, as mi is increased
~to 1.9, the impurity and thc majority bands merge together,
whercas the generalized CPA density of states still has a

gap., Our results are in very good agreement with the rcsults
ottained from the method of moments139 which also shows no

gap in this case, For ai = 1 our results coincide with those
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of Brouers et a1139

2
“p
we find extra structure in the btand, The CCPA band is wider

as they should, becausc for this value of

there is ho off—diagonal disorder. In general for ai 7 1,

than the corresponding CPA band. In the impurity band of the
CCPA there appears a gap which is not present in the exact
results.18’19 The majority band in the CPA and the CCPA are

almost similar.

Recently Gonis and Garland168

have generalized the MCPA
formalism for alloys having the diagonal as well as the off-
diagonal disorders. This is based on a reformulation of the
renormalized interactor formalism of BEB which is the best
treatment of the off-diagonal disorder (ODD) problem within
the SSA, It has teen further shown that the MCPA with ODD
always ylelds analytic Green's functions like the ordinary
MCPA, However; it is computationally quite difficult. Therefore
they studied two simple approximations namely the SCCSA and
the SCBSA in the presence of ODD treated in the BEB manner.

It was found that the SCCSA yielded severely non-analytic
results whéreas the SCBSA was equivalent to the MCPA even in
the presence of ODD for a linear chain and therefore for a
linear chain it would always yield analytic resulté. This

will also be true if ODD is treated in Shibals manner. The
calculations of this section can easily be carried onto the
SCBSA following the treatment of Sections § 4.la and 3.2, As
noticed in the case of the diagonal disorder, for small values
of 8, the general features of the results in presence of ODD

in the SCBSA will be quite similar to the one obtained in the
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SCCSA, But for large &, in two and three dimensions, the
analyticity of the SCBSA with ODD is still questionable as

we found the SCBSA to be non-analytic for three dimensional
systéms in the absence of ODD._waever, it may turnout that

in some cases the difficulties of non-analyticity get eliminated
in the presence of ODD. In the next section we present a

generalization of the CPA where no restrictions have been

imposed on the hopping integrals.

§ 4.2 Self-Consistent T-matrix Formulation

In this secfion we consider the case of extended dis-
order where no restriction is placed on the hopping integrals,
This problem has been tackled within a cluster formulation
which is a generalization169 of our treatment given in
sub-section 4.1b. In this case we do not renormalize the alloy
Hamiltonian, but start with the following most general form of

the effective medium Hamiltonian

Aot = % lo)5 o<ml + mgn Ly 15><nl (e ls3)

where }  and an are the diagonal and the off-diagonal parts
of the effective Hamiltonian respectively, Here the summgtions
over nand m in the secord term run over all the lattice gites,
The Green's function corresponding to this effective medium
is
-1 ‘ i .

G(z) = (2I - Hyep) . oo (k)

Here it is important to notice that the effective Hamiltonian

has the translational symmetry of the empty lattice in
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contrast to the MCPA formalism where this translational
symmetry is not preserved.

The alloy Green's function G can now ke written as

+G1TG6 eoo (45D

6=G
where T=¥1+8D e ()
‘and _y =A_I_'_I - "E@ff. sa e (40’-}-7)

Taking the configurational average of Eq.(4.45) we obtain

(G>= 8 +TLIHE. vor (4.48)

The self-consistency requirement for the determination of the

effective medium gives the following condition-

(Zy=0 - | eve (449
or equivalently{G)= G. eee L50)

Equation (4,49) implies that on the average there is no scatter-
ing from the crystal and Eq;(4,50) means that the configurat-
ional average of any matrix element of the alloy Green's
function should be equal to the corresponding matrix element

of the effective medium Greenfs:function; One can in principle
utilize the set of equations (4.49) or (4.50) to determine

all an's. No approximations have so far been made, But it will
be impossible to solve these extremely large number of coupled
equations in a self-consistent manner without making any
approximation. Therefore, one considers scattering from a

small cluster of say n atoms and introduces some physical
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-

- simplifications which allow one to keep only a few parameters
in the effective Hamiltonian, For the problgm involving only
the diagonal disorder Butler and others putforth models with
only one parameter for the effective potential matrix, In

the same spiriﬁ here, where we are having the off diagonal
disorder alsos we choose two parameters to represent the
effective potential matrix. zi correspording to an effective
site energy and 22 representing an effective hopping integral
between the nearest neighbours, As done in the case of the
diagonal disorder, here also we shall consider clusters made
up of a centfél atom and its Z nearest neighbtours. One Quqh
cluster is thought to be immersed in the effective medium.
Then there is ﬁroblem to introduce parametefs for hopping
between a real and a effective medium atom, Stern and Zin17O
- have emphasized that to treat the problem of such necarest
neighbour clusters properly one should conéidor clusters
~upto the second nearest neighbours, Bul here we shall make
use of our earlier hypothesis that for a fixed number of
different kinds of atoms on the shell of nearest neighbours,
the different configurations will not be distinguished,
Consistent with this we shall assume that the hopping matrix
element from a shell atom to the nearest neighbour effective
medium site is equal to 22. Therefore, the potential fluctua-

tion matrix due to this cluster can be written as

v = Voo‘°><o|""%t{vnn‘@(n‘won‘@(n!*Vno'@@l}.-“" (4.51)

- - \y - -
Also Vo, = g, - Xﬁ’ Vo = €y - g and Vo = Vo = by - Z2‘
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The Green's function for such a system with the medium every
where except the cluster ¢ is

¢ =G +G 1% een (5.52)
with ¢ = (1 + G 19, , eee (La93)

Performing the configurational average in (4.52) one obtains
<§.c>= -g- +6<Tc>§ ' | ¢ e (L"‘QSL")

The effective medium is now determined self-consistently by

imposing the condition

oo (1,59
(4.56)

{I> =

or equivalently <_(_}_C> =

D) /o

As noticed earlier,; in our formulation, the various matrix

c
SO

elements of T°

=N

. C
can be expressed in terms of T__, Tgs, T  and

Tgs defined in (4.29). Now using only two parameters Zi.and
Lo in H pps it is impossible to satisfy Eq.(4.55) or (4.56).
Then to determine the effective medium self-consistently
one can choose a variety of different self-consistency
corditions. Here we replace (4.55) or (4,56) by two sets of

alternate conditions. These are?

1. Adopting the philosophy of Butler and others we require
that the total averaged density of states at the center of

the cluster is consistent with the external medium i.e.

d{o1g®10>} = LoiGlo) o o (4.579)

and the average matrix element of the cluster Green's function
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between the central site and a shell site is equal to the

corresponding matrix element of the effective medium Green's

function i.e.

<—§7 %’ (o!.qcln>> = {0{Gln) = G(R) _ eer (5.570)

Here R denotes nearest neighbour separation. As the shell is
not treated exactly, here, we have summed over all the shell
sites anmd divided by Z to obtain an average nmatrix element

between the site O and a shell site.

2. TSN = o oo (4.582)
and (T8> = 0. ' cee (1.580)

Expressions for the matrix elements of the Green's function

G® are obtained from (4.52) and are given by
¢ _ = =, 2 c = = mC c
_Gg = Glo) +Glo) T, + ZG(o)G(R) LT+ T, ]

+22G'(R)2Tgs e (4,59

1"

L y'ge
and Y Gon

72 G(R)HG(0)G(RIT]_+G(0) [T(o) +(2-1) 7 Toe

+Z8(R) 218 _+ W(R){GC0) H(2z-1) [ J2°_. ... (4,60)

The quantities G(R) and [° (defined in 3,42) can be easily

expressed in terms of G(o) to obtain

G(R) = [(z- 7))G(0)-11/2 2, oo (4.61)
- Z_zl _ _ .o .
and M = [(—{—)G(R)-G(o)]/(z-l). coo (1.62)
2

1D . c c 7C c .
xpre331onsAfor Too’ Tos’ 5o and TSS are obtained from
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Eq. (4.53) and are given by

c
-
1OO

C

m

i
oS

C
T
so

TC
SS

and

Dn

| . ) .y
In equations (4.632) and (4.63b) the quantities ) . To
‘ n

'
and »

hm

5!
n

and

i

u

H ]

i

ii

T o+ 2(7, C(R) + ZFTOS)TEOKG(O)-{Z) %'fonTio”' (4., 63a)

om mn .

oo (4,63b)
'{tso+(ts"@(R)%SOE(o))Tgo}/{laz(’cs[_ﬁsoﬁ(R))} cv. (4.630)

; @y 427 r, )T + 2@ (o)1) T 7, 18
Tt Z(TOOG(RHZ, TOS)TSS‘*' Z(G(o) VF) —/ﬁm Tt T

(%tsf_r(t’s“é‘(mﬁsoc‘;o>>trgs)/{:1h-z(tsf‘+ £ CEN L. (4. 630)

% 3 o LT G,
Ehn 3 Ton ™ Ton
P2 % bt Y L e

l“vcnn(E(O)" r- ) .

on no

tongn'wéré again caicuiated from (4.53). We find

T

— — 1 |
‘on?gc = l+Z(G(R>Tgs+'G(O)Tgo) % 7bntno -0 (. 65)
2T+ TRy T'e b cer (14,65)
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T. C - + cC + C
) Tbm:mn 1+2(G(R) T z['T s) Z Tontnn

nn

+2(G(0) T g+ ZG(RITS ) E ron not  ser (4.66)
quuations (4.65) ard (4.66) are substituted in equations .
(44.632,b) and ultimately the set of equations (4i63ajbjycsd) .is

(6] Cc C C - N . .
solved for TOO, Tos’ TSO and Tss. The final expressxons:are.

2F - .
Tgo = { ZTootsr + (Glo)- r’) F Tontnot 4 r-""ostso
ﬂf@m%fﬂﬁwé%w%fgé%gm]}/D vor (4.672)
Tos = 170g *+ L(G (o)~ I‘) 3 Tontnn§ZG(R)TOSLSO+G(R)f o

I

+G(R)(G(o>ur>lj~‘s Fr_l Torbro oo & Tont ‘mj /D e (4 670)
n

Too = {tgo¥7,, (C(RIt *G(o)t )G (R) (G(o) - f"\f't z Tt

so orlno
“tgq %’ o nn:”l /D . | (4.67¢c)
and
1oy = 13t s +o,s BRI B0 by )+ Hio) (B~ [t 2 oo
SID AN | 2 e (67 Q)
where A »
1{L%(ﬁtg@ﬂnt YHi-@oy-M) G 3 2 nnﬂ@ )ﬁ% o&nQ]
-2{t TR+ T(0) He, BRY 42 1 _+(G(0)- ) (7 3 ”‘Ontnn
4G (R) Z Tt ). : vee (4,68)

on no
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Here it 4is noticed that the expressions for Tgs and Tgo are
different as the central site and the shell sites are not treated

on the same footing., But as we shall see numerically, the

difference is negligible,

The averaged density of States-per site is obtained

from the imaginary part of G(o) which is defined as

G(0) = § Z T(R,2) oo (4.69)
k
_ 1 o
where G(R,z) = — ees (4,70

Z— Zl-Z Zzs(k)

Since values of k are qua51~cont1nuously dlerlbuted, we can

convert the summatlon.ln (4.70) into an integral to obtain

G(o) I s e G 7D)
GO = *e > L!‘o 1
Rl -2 Is®
where ¢ is the volume of a unit cell.
Eqn. (4.71) can bte further written as
_ o 8k dBTS(EIwgs(B) o
G(o) = . vie (L, 72)

gns Z - Zl - ZZE'/hBB
Now using the definition

5%3 f&3k5(E'-wBs(§))l= p(0) (g1 o (73

for the density of states of pure B constituent and the faci
that wy = ZhBBS equation (4.72) can be written as

— . - (O) 1 ' o
Glo) = dErp — (EL) oo (i
) = | 2= -3 Bt /055 (e )
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This can row te written in the following form

dE'P(O)(E!)

Glo) = ——2t
° Z Zz/wB I Z- ;l - E,
Z Fo/wg
2 (k) 2 b, (4. 75)
A 7 5/ ’ T
@ LR 2’7B
o ' (O) i . . .
where F(O)(Z) = ( dE;p___ ESB') . ve e (!i-o 76)

”

We introduce two dimensionless variables B and m such that
n* = PP ana 1A% = P8, our results for the density of

states are shown in Figs.4.3-4.6. In figure 4.3 we have shown
-the density of states for a binary alloy having the diamond
lattice structure with & = 1.0 and x = 0.5, Wy is taken to be

L. The hopping integrals are taken to be non-random in this case.
It is séen that the results obtained using the conditions (4.57)
and (4.58) are very similar., When the cormdition (4.57) on the
Green'!s function matrix elements was applied, the averaged
T-matrix elements {Tg > 2 LT, > 2L Tc > s and (T ) are found
to be small and showed an oscillatory behaviour with respect

to energy. When the condition (4.58) was applied, <1Tgoj>was
also cqual to zero (within the desired accuracy) and<:T§S>>had
_a very small value. The variation of<:T§S> as a function of
energy was again oscillatory. The non-analytic difficulties
encountered in this case in the SCCSA are not there in the

present formulation, The results of this calculation are in

close agreement with those ottained in the SCBSA(c).

In Figs.h.4-4.6, we have shown the density of states
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for alloys having the simple cubic lattice structure with

§ = 0,79 ard x = 0.30; Wg is taken to be 1, In this case the
dengities of states obtained from the two conditions are

dlmost similar. Here we have shown the results obtained from
the condition (4.57). In figure 4.4 we have shown the

density of states for & case where the hopping integrals

are non-random, If this result is compared with the one
obtained in the CCPA (Section 4.1) then it is found that the
density of states curves are smoother in the present formalism,
The variation of the density of states with respect to f and

n is shown in Figs. 4.5 and 4.6, For B = 1.5 and 1 = 1;25,'the
band becomes wider whereas in the ¢asc of § = 0,5 and 1 = 0.75,
the tand has narrowed down. It ié noticed that for & = 0,75
the effects of local environmment on the density of states.are
not very significant (see also Fig,4.1) but for & = 1, these
effects show up in figure 4.4, For large values of's this
formalism gives some non—analytic-results such as non-unique
density of states at some energies in the minority band., This

171 in their

problem was also encountered by Bose and Foo
calculation for a linear chain, They also used the same
effective medium Hamiltonian as used by us in this calculation.
However, it is observed that if the hopping integrals are .
significantly different then the problem of non-analyticities

may be overcome ih some cases.

In Figs.%.7-4.9 we have shown the spectral densities
of states for three values of structure factor s(R) (Bgn.2.34)

(a) s(B) = 1,0, (b) s(B) = 0.0 and (c) s(B) = -1.0.The values
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of other parameters are the same as in Figs. Y. 4-4.6. As
‘expected the spectral functions become sharper when the values
of B and n are increased. There is some structure in the

. spectral functions in the”energy region.E;z0.0 to Ex1.0.

This structure becomes prominent as the values of $ and n are
reduced. It can be understood as follows. When the values of

f and 1n are reduced i.e. the hopping from the impurity is
reduced , then the electronic wave function will have larger
amplitude on impurity sites, giving rise to a peak in the

spectral density of states.

From the foregoing discussion it can be said that our
formalism takes into account the cluster effects and the
hopping disorder in a fairly satisfactory manner, but it is
not the complete solution of.the problem. The merit of our
formalism is that the computation of density of states is
tractible; Our formalism suffers from two drawbacks. (i)It
does not give the correct dilute Timit and (ii) in the strong
scattering regime it suffers from the difficulty of non-
analyticity of £G>. However, our formalism can ke eagily
improved to get rid off these difficulties. It was noticed
by Schwartz et all72 that the self-energy should ét least
have a factor of s(K)2 in order to give the correct dilute
limit. In our formalism we can attain the proper dilute 1limit
if we take the matrix elements of the effecﬁive medium
Hamiltonian between two different sites of the shell to be
non-zero, These matrix elements are expected to be small as
comparcd to Zl and 22 and may be aﬁbroximately taken to be

equal to 23 for all pairs of sites on the shell in our
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formalism. With this, the self-energy in the E?répreéentation

can be written as

- For the simple

[

E (I{’,Zj

vhere (&)

ik, (B.-F.)
oo iy cee (4 7D)
ij :

Lij‘

=

cubic lattice it can be simplified to obtain

T+ 6 T,e® + 6 T,s(aR)

412 Z3Y(IE') eee (4:78)
oy o '
' ik. 8 |
li'é _5; e 2 C ere (579
65

32 is the secord nearest neighbour lattice vector, ¥ () can

be alternatively written as

v (@) =

%|:5 s(®)2-1-s(20) 7. | | ove (4.80)

It is now noticed from (4.78) and (4, 80) that the self-energy

contains a factor S(gjg. This ensures us that with this modi—

fication our formalism will give the proper dilute limit., Ve

also expect that the problem_of~non—analytic behaviour of the

averaged Green's functioh will no ionger‘be there after the

introduction.of 23 injﬁeff; The three quantities 215 22 and

):3 can then be determined self-consistently from the following

corditions?

E

(Tgo>.~ 0 |
LIS = 0 oo (481)
<T§S>= 0.
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The formalisms presented in this chapter (and also
of sections 3.1 and 3.2) can be used to study alloys having
some short-range-order. The only change will be in the
probability factor Pc in performing the configurational
averages, We can define a short-range~order parameter o SO
that the probability PAB of finding a B atom near an A atom
is xa(1-x). Then the probabilities of pairs AA, BA-and BB
are Py, = x(1-a(1-x)), Py = (I-x)ax and Pgp = (1-x) (1-ax)
respectively. If « = 1, the system is perfectly random., If
o is larger (smaller) than 1, the system faﬁours the
amalgamation of different (same) atoms in the nearest neigh-
bour sites, The probatilities of different cluster configura-

tions can then be easily calculated.
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FIGURE CAPTIONS

Fig.,h.1l Density of states curves for a simple cubic .binary
alloy with x = 0,3 and § = 0,75, (a) mi = 0.5,
(&) &E = 1,0 and (c) ai = 1,5,

Fig.4.2 Impurity band of the density of states curves for
x= 0,1 and 5 = 1.0, (a) «2 = 0.5, (1) «f = 1.0

and (C) a§ = .1, 5¢
'y

Fig.4.3 Density of states curves for a binary alloy Ao;SBO.S
having the diamord lattice structure. (-—-—-) and.
(-=-++---) correspond to conditions (4.57). and (4.58)
respectively., («--) and (+=-+--) show the correspond-
ing CPA and DFF results. The curves are symmetric
about & = 0,

Pig. L. Density of states for a simple cubkic alloy with
&= 0,79 and x = 0,3, = 1,0 and n = 1,0,

Fig.L.5 Density of states for a simple cubic binary alloy
with § = 0.75, x = 0.3, B = 1.5 and n = 1.25.

Fig.4,6 Density of states for a simple cukic binary alloy
with 8 = 0,79, x = 0,3, 8 = 0.5 and n = 0.79.

Fig.4.7 Plots of the spectral densities of states (a) s = 1.0,
() s(®) = 0.0 and (¢) s(X) = -1.0. Other parameters
are the same as in Fig.lk.l.

Fig.4.8 Plots of spectral densities of states, (2) s(B®) = 1.0,
(t) s(@) = 0.0 and (c) s(X) = -1,0. Other parameters
are the same as in Fig.4.5.

Fig.4.9 Plots of spectral densities of states, (a) s(¥) = 1,0,
() s(®) = 0.0 and (c) s(B) = -1.0. Other parameters
are the same as in Fig.k.6.
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CHAPTER V

THEORY OF DISORDERED HEISENBERG FERROMAGNETS

£5,1 Brief Survey of Early Work
So far our efforts were confined to the study of a
simple single band model for electrons in disordered systens.,
Attempts were made to get a reasonable fit with the exact |
.results. No attempt was made to apply the models develcped
to realistic systems énd to get experimental agrecments,

173

Congiderable experimental work on lattice vibration spectra

5

of alloys using neutron scattering

5

and spin wave spectra
has appeared in past few years. Cowley and Buyers® and others
have pointed out that the magnetic excitations are the btest
candidates for quantitative comparison between the theory and
the experiments. The reason is that the magnetic excitations
in sceveral cases are well described by simple Helsenberg
exchange Hamiltonian along with suitable single ion aniso-

tropices. On the other hand the realistic models for phonons

and electronic states tend to be rather complicated.

As we mentioned in the introduction, all the above
nentioned excitations in several cases may be well described
by the Hamiltonian (2.30) with proper interpretation to the
states In)>. The spin wave problem based on the Heisenberg
exchange Hamiltonian involves both the diagonal and the off-
diagonal disorders in a correlated manner, In fact the site

energy (diagonal term) is determined by the composition of
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the neighbours of the given site and the hopping integrals
(off-diagonal terms) connected to a gilven site are ali
correlated, The correlation in the matrix elements is
related to the isotropy of the Hamiltonian in_the spin-
space and gives rise to the Goldstone theorem., The simplest
theory that would preserve the relationship between the site
energies and the hopping energies, would have to treat
scattering from a cluster of (Z+1) sites i.e. a cluster
consisting of a central site and its Z nearest neighbours

coherently.

There exist several treatments of this problem. The
earlier treatments of Foo and Wul74, Tahir—Khelil75, and

176 can te classed as effective bond theories.

Elliott and Pepper
These theories are simplest extensions of the CPA in which one
calculates the scattering from one bond at a time with respect
to an effective medium., The effective medium is then determined
ty requiring that scattering from a single btond vanishes on
the avérage. The requirement of the Goldstone theorem is built
into the theory by properly choosing the diagonal and the
off-diagonal parts of the self-energy characterizing the
effective medium. Tsuka.cil:sv.l'?7 has extepded this sort of cal-
~culation by considering a clgéter scattering from four tonds
for an fcec lattice. His'freatﬁent, howevery; makes use of

a gpatial simplification that occurs for a four bond cluster

on an fcc lattice. The theories of Kaneyoshil78, Edwards and

179 180

Jones and Jcnes and Yates are based on diagrammatic

expansions of the Green's function, These theories are not
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self«consistent and the approximations made in them ére
realiy valid in low impurity concentration limiﬁ. The first
attempt to take into account the disorder in site encrgies
as it arises from the configurations of the neightours of a
given site, was by Buyers et a133’34 for the case of anti-
ferromagnets. These authors obtaitied reasonable agreement
with experimental results, but their theory had the drawback
that it did not treat the off~diagonal disorder at the same

 footing. On the other hand Theumanno-

proposed a theory in
which the off-diagonal disorder was treated quite adequately
using:the‘method of BEB, tut .the diagonal discorder was treated

in the virtual-crystal approximation.
Another point that has not been realised explicitly in
the earlier work is that for a problem in which two types of

atomsy being alloyed, have different spins, the normslized

_ ‘ 4 .
spin deviation operators a; = ,1 'Si have teen conventionally
' ' J2Si
employed. However, the operator Al= S al does not commute

, i
o 1
with the Hamiltonian and thus the spectrum of excitations

‘given by the operators {ai} does hot start‘with Zero energy
‘as required by the Goldstone theorem. On the oﬁher hand if
‘one makes use of the true spin-deviation opérators, one
obtains a Green's function equation of motion in which the
inhomogeneous term is‘aISO‘random..Murray182 has handled this
difficulty in a variational method, but her method is suitable
ohly in the long wave-length limit, Edwards and Jonesl79 have
also employed the‘operators S%, but it is difficult to see

how one can construct a CPA type self-consistent theory in
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The ground state of the Heisenberg ferromagnet is
assumed to be the one in which all the spins are alligned
in the z-direction. The spin excitations are then described
through the equations of motion of the operators S% = Sixiisiy’
which increase or decrease the spin component along the z-
direction, For the discussion of the spin wave spectra it
is convenient to write the Hamiltonian (5.1) in terms of

+
Bosen operators {ai} related to spin operators Sg through

the Holstein-Primakoff transformation .

) 1/2 4

S; = (QSi) a; -

ot . 1/2 | _

Si bt ( 281) ai >t ® (5‘ 2)
arnd . S = S - a":a- .

iz i i=i

Here we have considered the first order approximation and
neglected the higher order terms. Thus we obtain for +the

Hamiltonian of Eq.(5,1)

= J 2y /2%,

Here again we have neglected the higher orde: terms since

we are interested only in the spin wave spectra.

. If we now define

™
H
Ny
™1
ey

1}

~2(SiSj)l/2J.u, e.. (5.

and h i3

i]

then.Eq.(5.3)Abén be rewritten as
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this approach. In some of the earlier work employing
normalized operatorss the requirement of the Goldstone
theorem is artificially‘achieVed by imposing it on the self-
energw(’HbWeverzﬂthis does not makeuthé procecdure strictly
self-consistent., Here we'héVe=emp16yéd the formalism of

Sééﬁion § 4,2 which treats the diagonal and the off-diagonal

disorders -on an equal footing, It this method both the diagonal

and the off-diégonal'pértéiofﬁthe*éelf—energy are determined
self-consistently from the T-matrix equation, So there are
slight deviations from the Goldstone symmetry. Thus we do not

expect our results to be good at low energies.

¢ 5.2 The Model

. We consider a substitutionally disordered ferronmagnetic
binary alloy A,_.By where_tﬁé‘magnetic atoms of the consti~
tuents A and B have spins S, and Sg respectiveiy. The ihter—
action among the spins is represented by the Heisenberg

Hamiltonian

I3 3

m

"

i
e

J
where the summation is taken over the nearest neightour pairs.

Jij

neighbour pair (ﬁi,ﬁ%) and its value depends upon the species

of spins which are being connected by it. For a2 binary alloy

the exchange integral is nonzero only for the nearest

it can, therefore, take three values J,,; J,.(= J,) and

Ll

Jg

‘.the lattice position.ﬁi.

B'hgi is the atomic spin operator for the atom located at

8,3, cer (5.1)

S
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H= Z}a.éra- +7 h
I R

ijégaj‘ B oo (5.5Y
Clearly we have reduced the Hamiltonian (5.1) to a form

(5.5) which we have already dealt with., From Eq, (5.4) it is
‘seen that the diagonal matrix element €4 depends on the occ-
upancy of the site at ﬁi as well as on the occupancies

of sites which are nearest neighbours to the site at'ﬁkﬁ
Moreover, the diagonal and the off-diagonal disorders are

both equally important as they arise from the same terms.

The Goldstione theorem is obeyed when

. . . - i \ - ) ‘

<E’i> = - >:j.<.hij) . ‘ ‘ s (506)
However, this condition is not obeyed for Eq.(5.5).

The dynamics of the spin disordered sy-tcm 1s best
descrited bty the double time retarded Green's function which

is defined as

1H

G, (1)

;5 ~2mi0(8) < L8708, 8500 1>/ {2(8;8)1/2)

H 1

La;(®), a0 . cer (5.7

The Fourier transform of Gij(t) is defined as
1 O et s |
Gij(w) = Sn 1loo.e Gij(t)dt. | eee (5.8)
We shall be interested in obtaining the averaged density of

states P(w) for the spin waves and the . . spectral

functions A(ﬁ,w) which are given by

Plw) = - =Im Gy (w) > | cor (5.9a)
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> 1 . - ' ‘
and Ak,0) = ~ £Im {G(k,w) > : e (5.9B)

wheTre <G("};,w}> is the momentum transform of <Grij(w)> .

The equation of motion for the Green's functilon G; . (%)

J
follows from (5.7),
L - '
W Gij(w) = 513* aiGij(w) +f7 hi(ij(w). oo (5.10)
In matrix notation it can be written as
(w_l"ﬂ)ﬁ = ..;.E‘ ) v ae (5‘11)

We now define an effective medium Green's function G such that
(w_I. - Eeff)g = .1' s s e (5012)

ﬂéff is the corresponding effective medium Hamiltdnian (so far

undetermined) and we choose it to have the following form:

H

“eff = Z O-i- a—-t.a. + g‘, %_ aTa‘o s o0 (5013)

5 i“i j i7]
Here the summation in the second term is over the nearest
neighbour pairs. As already noticed this choice of effective
mediumn is not consistent with cluster T-mmtrix equations, as we
have jgnored the self-energy matrix elements between the shéll
sites., For this reason the results obtained do not reduce

183.

correctly to the single impurity result of Izyumov™

Further treatment runs parallel to what we have
already done in Section § 4.2. Here again we consider a
cluster ¢ made up of a central site and its 7 nearest neigh-

bours, immersed in an otherwise effective medium. The CGreen's
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function.gc for such a system is written as

PN

=G +3 Vv ¢° eee (5.14)

where

igc(ai*oi) ial+ﬁ§s(h 2)(3 aj éSa')..;. (5.15)

A

it

s denotes the shell of nearest neightours. Just like the
electronié case, an approximation has been made in writing
Bq.(5.15). There is a problem of how to write interaction
between a spin on the shell s and a spin in the effective
medium, To simplify the algebra as well as the numerical

conputation we assume it to be the same as in the effective
1

medium arnd similarly for a shell -site e; ~ 0; = 2J; S - 707,
where o denotes the central site.
Equation (5.14) can now be written as L
=G +E81°8 .. (5.26)
where 'lc = X?(; + 3G 1% - ;;; (5;17)

is the T-matrix corresponding to the cluster ¢ imbedded in
the effective medium. The T-matrix equations are simplified

. 1. 1C mc c C 3 : ) . 3

in terms of loo Tog? Tso and Tss as we did in the case of
electrons, The expressions for these have already been derived
in Section § 4.2, The effective medium is then determined by

solving the following conditions self-consistently,
c mC - \ |
4T00> = O) ‘ <-‘-OS "O . «s (5018)

These conditions have Leen solved for various values of

concentration and exchange integrals., It has Lteen found that
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(T§O> is also vanishingly small and<:T§s> has a very small

value which oscillates about zZero as energy is varied.

§ 5.3 The Spin-Wave Spectra

We calculated the spectral functions A(k,w) and the
averaged density of states P(w) for a ferromagnetic binary
alloy having the simple cuﬁic lattice structure. The magnetic
atoms are assumed to have spins 1/2 and 1. In Figs.5.1-5.3
behaviour of the spectral functions is studied for various
values of x and ¥ keeping the exchange integrals fixed. The
energy is expressed in units of ZSA;AAZ‘ As expected the
spectral functions are very sharp‘in.the low ehnergy region and
correspond to well defined spin waves. For low'concenﬁration
of B spins, the spectral functions at‘higher values of k are
very broad and even some satellite peaks appear in the high
energy region (Fig.5.1). As the concentration of B spins is
increased (Figs.5.1 and 5.2), the spectral functions correspondii
to large k values get comparatively sharper apari from tailing
at the low energy side. This can be understood in the following
way. For higher energies, the spin-wave function has larger
amplitude on B sites and thus it suffers coﬁparatively less
scattering as the concentration of A spins is decreased., The
spectral functions shift towards higher energies as the
concentration of B spins is increased (Fig.5.3). In general
the shape of the spectral functions is similar to those of
Ts'.lkadal'?7 and Harris et allS# obtained for the diluted
ferromagnets., A detailed comparison of our work with the

earlier theories is not possible as most of these deal with
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diluted system. As far as we are avare, Ours is the first
self-consistent calculation for mixed ferromagnetic systems
where both the diagonal and off-diagonal disorders are considered

on an egual footing.

In Figs.5.4-5.6 we show fhe variations of +the spectral
functions as the valués of the exchange integrals JAB and JBB
are varied, the concentration teing fixed at x = O,4. The low
k spectral functions remain very sharp in all the casess but
high k spectral functions become comﬁaratively sharper as JBB
is decreased., In Fig.,5.7 we have plotted the spin wave energies
in the (1,1,1) direction for the entire rante cf concentfation.
The exchange integrals are kept the same as in Figse5.1-5.3.

We have not shown the results for very low values of k Lecause
the Goldstone theorem is not satisfied. In this region our
theory does not give good results and moreover there are

numerical problems due to which spectral functions have more

than one peak. In Fig.5.8 we have shown the variation of +he

stiffness constant D defined as .
1 2% ) -
D = 5 =5 cee (5.1
ak ']:{""-O -

This result is compared with the variational theory of Hurrayl82

whose results are shown bty the broken line. Our results lie
telow the variational estimateé which is a rigorous upper bound

for spin-wave energy.

Figures 5.9 "and 9.10 show representative plots of the

averaged densities of states. In Fig.5.9 exchange integrals are
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kept fixed at values same as in Fig.5,1 and the variation with
concentration is studied. At low concentrations, there is some ;
structure at high energy end. These correspord to the resonance
modes of B spins. The oscillations at the low energy side

are due to numerical difficulties and no physical significance
need Le attached_to these. Such difficulties have also been
encountered in the work of Theumann and Téhir«Khelil85 on the
diluted ferromagnets. As the concentration is increased, the
band edge at the low energy end shifts away. from.zero. As
discuSSed earlier, this arises due to the use of normaglized
spin deviation operators for which Goldstone theorem is not
oteyed., In Fig.5.10 we have shown the variation of the

density of states as the values of exchange integrals are
varied., The concentration of B spinsg is kept fixed at x == O.4.
4s expected, the width of the band depends upon the largest

exchange integral,

From this analysis we can say that our theory descrilbes
well the mixed Heisenberg ferromagnets in the whole energ
region eicept at very low energies and at very low concenisra-
tions., As far as the low concentration limit is concerned, we
can introduce a term in the effective medium Hamiltonian
correspording to an effective interaction between the second
nearest neighbours as done in the case of electrons. This
additcional matrix element can te determined self-consistently
in our formulation by supplementing the equation (5.18) ty
the conditiorl(T§s> = 0, This theory can also be easily extended
tg the mixed antiferromagnets for which extensive experimental

results are avallable.
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Fig,5.1 Spin wave spectral functions of the disordered Heisenberg
ferromagnetic binary alloy for various values of the

wave vector K. x = 0.2, JAA = 1.05 JAB = 1,25, JBB” 1.5,

Sy = 0.5 and SB = 1,0,

Fig.5.2 Spin wave spectral functions for x = 0.5, Other

parameters are same as in Fig.5%.1.

Fig.5.3 Spin wave spectral functions for x = 0,8, Other
parameters are same as in Fig,9,1.

Fig.5.4°Spin wave spectral functions for various valueg of

> .
wave vector k., S, = 0.5, 85 = 1.0, J,, = 1.0, J,;
Jgg = 0.5 and x = O.h.

Fig.9.5 Spin wave spectral functions for Tap = L0y Jyp =
and Jgp = 0.75. Other parameters are same as in
Fig . 5’0}""‘0

Fig.5.6 Spin wave spectral functions for Jyg = 0.75, and

= 0.75)

1.25

Jgg = 1.5. Other perameters are same as in Fig,5.k.

Fig.5.7 Spin wave dispersion relations in the (111) direction

for various values of impurity concentration., Other

parameters are the same as in Fig.5.1.

Fig,5.8 Plot of stiffness constant vs. concentration. The

broken line corresponds to Murray's results. .7, =
J.AB <= J_n25, J_BB - 1.5, SA b 0.5 and SB s 1‘0'

lcO,

Fig.5.9 Spin wave densities of states (a).x = 0.1, (B) x = 0,3,

() x= 0.5, () x = 0.7 and (e) x = 0,9, Other
parameters are the same as in Fig.9.1,

Fig.5.10 Spin wave densities of states (a) Tus = 1.25,
Jgp = L.9s (B) J,5 = 1.25 and Tgg = 0.755 (e} yp

= 0.75

and JBB = 0,5, Other parametcers are the game as in

Fig.5. k4.
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PART I

SURFACE SEGREGATION IN ALLOYS



CHAPTER VI

LEGULAR  SOLUTIONS

§ 6.1 T'he.Model

We first assume that the binary alloy is a solid solu-~
tion in thermodynamic equilibrium. It could be ohtained, say;
by first preparing the liquid alloy and then cooling 1t slowly,
such that at every stage the solution is in equilibrium. In
this procéss it 1s assumed that the surface is produced in
vacuum; The presence of some enviromment such as the gasious
enviromment is also considered in a heuristic manner in a later
section., If a surface is produced in a solid alloy bty cleavage,
the guestion of surface relaxation of atoms'poses a difficulc

protlem, We have ignored such non-equilibrium processes.

We shall always remain above the critical order-disorder
transition temperature, so that the alloy is completely random.
The bulk composition is a known factor. Further, deperding upon
the bulk concentration and temperature, the equilibrium latfice
structure 1ls known. We assume that the surface is atomistically
plane, alﬁhough in reality thié has been.shown;86 not to ke

the case.,

The phenomenon of surface segregation and its tempera-
ture dependence indicates that in the socalled random alloys
there is a configuration dependence of internal energy. Since
the short-range-order in such alloys is negligible at ordinary
temperatures, the energy difference Letween various configura-

tions must be small compared with thermal energy k7.
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Here we assume a simple model for configura-
tion en2rgy. We assume that only nearest neighbour atom pairs
interact and the total configuration energy may be taken as a
sum of interaction energies of nearest neighbour atom pairs.
A similar modellhas.also bteen employed by Williams and Nason96.
The pair energies depend only on the type of atoms occupying
the pair of sites, Such a model has teen extensively ased187’188
for discussing order-disorder transitions in alloys. However,
the present problem is different from the usval Ising problem
of order-disorder transitvion. We are always in the disordered
regime, so the question of assigning sublattices to different
components does not afise, rather we fix the overall bulk
concentration by an external constraint. In the Ising model

language, this external constraint is like an external magnetic

field.

Let {NAA’ Nggo NABj denote a configuration with EAA’
Ad pairs etc. If on the whole there are I atoms, the extrinsic

configuration energy 1is given by

N (6.1)

Un(Upps Hapgs Ngg) = epplpp+ egplippt e,0 1) o

where we have assigned energies €A to AA pairs etc,

In general this is a degenerate state. The configuration

parameters [ﬁﬁA’ Nppo NAB} are not all indeperdents but are

related according tol89
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2y = 2Nyt Nyg o
Ziy = 2Ngg+ Nyp eoe (6.2)
= NA+ NB

where Z is the number of nearest neighbours.

Substituting back into (6.1) we get

UN(NA,NAA) = (EAA+ EBB—EEAB>NAA+ (EAB-EBB)ZHA

lre |
. + 5Ze sl ve. (6.3)

The last term is irrelevant because it does not depend on
configurations and it can ke eliminated by a suitable choice

of energy origin.

Let us now divide the semi-infinite systew lattice into
layers parallel to our planar surface and number the layers as
= 03192y...69 A= O being thé surface which we shall also

call the first layer. The intrinsic assumption of our model

is that the concentration varies normal to our planar surface
only. This assumption is reascnable for a semiminfiniﬁe system
with a planar surface. Since the environments of points on

the same layer parallel to the surface are equivalént, there

seems no reason why composition should vary along a layer.

Let there be N sites on the Kth layer of which Nﬁ,

Ng are occupied by A and B atoms respectively ’

. . g— " . )
=0
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th

A site on the A layer has th nearest neizhbours on the

same layer and ZX nearest neightours on the neighbouring layer

3
p so that

g 4 Y Z. = 7., | | ... (6.5
AN MJ% Al A ‘

This ZX on the surface layer is different from the other lower

layers.' The external constraint is

AN AN |

Y e : Y -

k‘f'«{oNA ) NA ’ x,)_':o 5 = g | r-e (6.0)
If WM apg N

and etc., refer to pairs in the same and adjiacent
.Ad-q- .I,‘ L‘l Y

layers respectively, the internal energy can be writtei. as

A u/h AN

+ (EAB““eBB)E Z, M) . oo (6.7

Uy (5 ﬁ_‘: Wy = ey

Here we have assumed that the pair bond energies €,,, €, and

€ BR do not change as we move from the btulk to the surface,

Define. now
A ‘{,, . . _ ] x K ‘ ) . ' ‘
R S S m?\' .> NA = %N (m +l) vee (6 . 8)

mx i1s a direct measure of local Concentration.xx of a consti-

tuent in the ACh layer by the relation

. m)\ - 2}(?\”‘1 = 1*2y?\'~ ¢ e (609)

Further the ratios
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A

M A o
1‘AA—X = 1( 41) | oo (6,10a)
ZKKN
WAl 1 ' .
=R CRCRRS e thron

2 K

measure the fractlon of AA pairs on the same layer and in two

adjacent 1ayers,

We shall now make a !Bragg-Williams approximation' which
states that the probakility of finding an AA pair on neighbour-
ing sites i and j, is the probability of independently finding
an A aﬁém-each‘on sites 1 and j$ the same holds for BB and AB
pairs. In essence, this implies that there is no short-range-
order. For binary alloys with very little shori-range-order,
this approximation is reasonable. The case of non-regular
solutions where some shorit-range may exist will be treated in

the next chapter. Within this approximation
. o1, 5
~ ok .
(o Ku +1) >~ 2(mhﬂ)(muﬂ). ees (6.11)

The set [mh}'now completely determines a configuration and we

can wrice

A Ay
Nz, mom B E N7 .
aEo uSher | MM, E0 TN A

N

i i\/
T >
it

bﬂj

u{m ) = -
oo (6,12

where
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. Eapt e .
T | ... (6.13)
and -B = ‘,_];(EBB'”EAA)n PR (6.1)1(-)

The parameters ¢ and B are the only parameters which are to be
known in our formalism. These have simple thermodynamic inter-
pretation., Ze may be identified with the heat of mixing, while
the parameter B is related to the_difference is the heats of
vaporizatioﬁ of the two pure constituents. In the present theory
ZmB where Zm is the number of missing neighbours for the

surface atomss plays the role of the surface tension difference
of the two pure metals. Thus Loth the parameters can, in simple
cases, be estimated from the experimental data. One particular
Cdifficulty ariées in cases when the atoms of the constituents
being alloyed have appreciably different sizes. In such cases,
the parameters B and & will not have the above simple inter-
pretasions, but should incorporate some energy changes arising
due to the size difference. Further, both the heat of mixing

and the heat of vaporization are somewhat temperature dependent
quantities. So their correspondence with € and B is not guite

brecise.

The alloy has some crystal structure and the consti-
tuents that make up the alloys may have different crystal
structures from that of the alloy. In the calculation of <the
surface segregation,; we have to know 4-A and B-B. bond strengths
in the alloy. These should be calculated from the heais of

vaporization of the pure constituents having the alloy crystal
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structure rather than the normal constituent crystal structure.
Kaufmann and Bernstein;go have calculated such heats of vaporiza-
tion for a number of elements., However, most of the alloys of

catalyktic interest have the same structure as their constituents.
The intrinsic configuration energy per atom is given by

Gap = 5 P s’ E o nesn) m . (619
U L B W a Bl - d_ Z m o Z / . ’ e 6 ol
A N I A N T S

In the thermodynamic limit N » oo, Nh_e-oo, A 0y kut the

sumsg of the type

remain finite, since Nh/ano(l/E). This configuration energy

is degenerate for all configurations sharing tThe same {mx}.

The thermodynamic probability of a configuration is given by

o - A 4
Pl =TT = L (6.16)

A=0 1A ' L '

and 1s related ©to the intrinsic entropy
stm 1) = Ge/m nl Py, 1 ] o (6.17)

where k 1g the Boltzmann constant. When NM 1s very large, we

may use Sterling's formula to get

. E;. N?\- i“" 1 +m.>\ 1+ m.‘
L e L b e werrtan o e et i 7\

A=0

+ MM L (6.18)

S
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The free energy per atom in the thermodynamic 1imit becomes

S e M, ~BZ.m
F = U.TS = Limit /2 %~ - 5 2 m, m
(thern) A=o0 N .2 e N KP Ao AT
l+m' l+m' lmm. 1 m ’
+ kT (z-Mn 5"+ 5-An s MI el (6.19)

The external constraint fixing the overall tulk concentration

is
%~ mx. ee. (6.20)

To determine the équilibrium configuration we have to ninimise
(6,19) with respect to {mk}, under the constraint (6.20). Using

a Lagrangian nultiplier n we obtain the (¢ +1) equations

AL
S

km + BZ, ) /KT, oo (6.21)

tanh”lmi = (e
The (£+2) equations (6.20) and (6,21) are sufficien’ %o
determine the (¢ +2) variables {mX} and n, The determination
of the local concentravions in various layers reduces to the
solutcion of these equations. In a gsemi-infinite system it is
to be expected that m, =m, in the bulk fairly rapidly. The

Lagrangian multiplier mn can rather te deduced from

tanh™tm = ( Ze my +7ZB4n) /KT e (6,22
where my, is related to the overall bulk composition and Z
describes the bulk environment, We may then put mx =My for
A sufficiently large, say kj5 and solve the setv of Kj simultaneous

nonlinear equations
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é 6,2 Face-Centered Cubic todel Calculations

To illustrate our theory we performed numerical cal-
culations on a face centered cubic lattice. To begin with
we assume that mi approaches my,, the bulk value, rather
fast, This will be justified later by our numerical results.
Congidering tihe concentration variation in ﬁhe first three

layers we can write equations (6.20) and (6.21) as

i

o _l , r'
tanh “m_ (smOZL+£leIL+BZO+n)/kI

tanh"lmj

it

(aleL+ amQZIL+ EmOZIL+BZ+ﬂ)/kT

o - :L r; 1
tan Tm, = (eleIL+ emyZy ¥t sthIL+BZ+n)/ki

~'canh"1mb = (em 2 + ZB+n) /KT .. (6.23)

where we have defined ZL and‘ZIL respectively to be the
number of néarest neighbours in a layer and in two neighbour-
ing layers (IL stands for interlayer). When my = #1 i.e. for
a pure solid (x = Oor y = 0), it is easy to check that

all mi = *1 as it should be, For -1<m, {1 these equations
are solved for three surfaces (100), (110) and (111) of a
face centered cubic lattice, The results are shown in figures
6,1-6.5, In figure 6.1 we have plotted the first layer

composition m_ against o, for different values of Genperature.

¢
e and B are chosen such that ¢/k = 10 K and B/k = 75 K, For
ideal solutions € is zero and in this case the alloy composi-
tion differs only in the first layer. The kroken straight
line in the graphs denotes that the btulk and the surface

composgitions are the same, Since B is positive, the pair bond
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in the second, third and further layers as well, In figure 6,5
ve have studied the behaviour of varying B on the (111) face at
¢ = 773 K. As the value of B/k is increased from 79 to 122 K

segregation of the B component increases at the surface. We
have not plotted the composition in the second and the third

layers for all the cases studied here Lecause these are only

a 1ittle different from the bulk.

§ 6;3 Chemisorption and Surface Felaxation Lffects
a. Chemisorption

So far we have con51dered the solid binary alloy with
the surface contiguous to vacuum (clean surfaces). If the
alloy is prepared in the presence of some gass €.8. 0,HyS,
CO etc.y then chemicai adsorption of the molecules of the

gas will take place on the alloy surface. As discussed in

the introduction, this can change the surface compoSitiorlvery

moeli., We can extend the formalism of Sce.6.1 to take in account

this effect easily. Let ZA and ZB te the coordination number
of the A and B atoms at the surface with the chemisorbed
specieé M, If € p and Epy are the pair bond energies of the
A~ and the B-M bonds respectively, then the internal energy

cai be written as

| £ AL .
A AN AL % it & K ‘
UI\!({-l\‘A’ hAA, NA.A}) - [ + < 2 )\%o ‘LA')\‘ lI\A,[‘ 3 (81‘\‘.[:\,—}-8.88’ Zec )
u/% .
+(€ , n—Epn) ?‘ z b" + £ 0+ g . 7 N° (6.24)
AB BB AA AM X ‘A BM“B*'RB* LA .

A=0
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Proceeding parallel to the procedure of Section § 6.1 ve

shall obtain the following final form for UN

o A N £ : . 1
Uplim }) = %_' ~-—-L— = Zy Mom ~BZ.m. !
NN L% \eo N 2 W= A-1 ACATR N W

L © | N |
- SlegyZp-e 2 )T By | . (6.25)

In this expression we have again dropped the constant lerms.
Now minimizing the free energy with the help of the Lagrangian

multiplier we obtain a set of four equations. The first is

canh™m_ = [em Zy* emlzIL+BZO+(eBMZB—aAMZA)/2 o
+n | /kT ... (6,26

and the remaining three are the same as in equation (6.23).

In our calculations we have taken Zy = Zg = Zyp, and
defining X = (gg, - e ) /X the surface concentrafion against
the tulk concentration is plotted in figure 6.6 for two values
of X.The central full curve correspords to the clean surface.
For positive values of X we see that the surface segregation
decreases whereas for negative values_of X, it increases.

It can te understood eagily because when X is positive, then
- the €\ btond is stronger than the egy Pond and therefore it
tries to drive more A gtoms on the surface and therefore the
net effect is a reduction in the surface corcentration of

B atoms. The reverse of this statement is true for a case

where X is negative,
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t. Surface relaxation

In the derivation of equation (6.21) it was assumed
that tﬂé pair bond energies do not change as We move frdm
the btulk to the surface. In practice there may ke surface’
relaxation effects which will change the pair bond energies
of thé atoms in the regime of the surface. Here we shall assume
that only atoms on the surface layer are affected. If the
fractional change in all the pair bond energies is denoted by
a relaxation parameter 8, then the first equation in the set

of equations (6.23) will become

sant™tm = [E(1+)n Z; + emgZp +B(148) 7y
+BZ 110 /KT, col (6027

The remaining three equations will be unchanged. The surface
composition has been calculated with 15°/. surface relaxation
in the pair btond energies and is éhown in figure 6.7. The
parameter 8§ can be either positive or negative. For positive &
the surface segregation effect is reduced whereas for negative
8s the gegregation at The surface increases. The surface
relaxation also affects the second layer composition but the

change 1s very small and we have not plotted it in the figure.

§6.4 Application to Ni-Au System
Williams and Boudart78 have studied the surface composition
of the Ni-Au system by Auvuger-electron spectroscopy. Their
xperimental results reflect the segregation of gold at the
surface of the Ni-Au solid solution. Our calculation give

results which agree with these experiments and are shown in
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figures 6.8 and 6.9, The parameters e/kT and B/kKT were

191'and have

calculated from data tabulated by Hultgren et al
the values ~0.075 and 0.3083 respectively. Ve have calculated
surface composition for (111), (110) and (100) faces of

Ni--Au system, HMMaximum segregation océurs at the (110) face.
The compositions in the second and third layers also differ
from the bulk composition and are shown in figure 6.8. In the
first layer segregation of Au occurs whereas in the second
layer Ni content is greater than in the bulk. This is because
€ how has a negative value which means that the Ni--Au tond is
stfonger énd therefore the excess of Au atoms 1n the first
layer pulls Ni atoms in the second layer and we obtaln an
excess of Ni atoms in the second lJayer. The change in the
third layer is not appreciable. We have no% shown the experi-

78

mental points of Williams and Bomdart since they have not
mentioned the surface which they have studied. They have also
reported that oxyzen or hydrogen chemisorption on the sample
leads to Ni~enrichment at the surface, Since the oxygen-
nickel or hydrogen-nickel btond is stronger than oxyzen-gold
or hydrogen-gold bond respéctively, Wwe can argue on the basis

of our results of §6.3a that nickel ‘enrichment should occur

at the surface,

¢ 6.5 Discussion

The results of the earlier sections show that this sihple
model can explain the important and broad features of the
phenomenon of surface segregatioh. Clearly the model is only

qualitative and for any real system such simpligtic assumptions
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stout configuration energy will not suffice. It is quite
conceivable that the bond ehergies themselves are composition

dependent. The thermodynamic datatOt

on heatv of mixing for
several alloys like Au-Ni, Ni-Pt etc, indicate that the
present ﬁodel is fairly reasonable, while for several other
alloys more complex behaviour is observed. It is not unlikely
that even some of the other features may be understood by
including (i) interactions among second nearest and farther
atoms and (ii) improving upon the statistical calculation of
entropys This has been studied in the next chapter where we
have applied the Bethe-Peierls approximation to calculate

the free energy. In this approximation we can considasr the
short~-range-order that may be present in the bulk alloy and
its influence on the surface composition. When the atomic size
difference is significant, in our formalism, we shall have

to adjust the'parameters B and £, to incorporate the size
aspect. This only shows that the thermodynamic calculation

of the parameters & and B, as mentiohed in é 6.1 is not always

reliable. -

A more basic question is conberned with the pair tonding
assumption involved in the calculation of configuration
energy. When can such an approach te justified on microscopic
principlesf Such a question can be investigated by considering

a simple tight binding model description for the alloys.
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FIGURE CAPTIONS

Fig,6.,1 First layer composition against the bulk composition
for different temperatures on (a) (100) face, (b) (110)
face and (c¢) (111) face of an FCC laittice, The broken
line corresponds to no segregation., B/k = 75 K and
e/k = 10K.

Fig.6,2 Comparison of the first layer compositilon on the
(110) , (===)% (100), (~=-)% and (111), (w=-evmnems)
faces, T = 600 Ky, B/k = 75 K and e/k = 10K.

Fig,6,3 Variation of composition on the first (—-—) and
second (~-~) layers of the (110) face with the Lbulk
composition, T = 600 Ky B/k = 75K and &/k = 10K,
(+— -=-) corresponds to no segregation.

Fig.6.4 Plots of fn(l(x5/yS) /(x"/y") ] against 1/T for (110),
(—=eome=)y (100)y (==-) and (111), (---) surfaces.
The -bulk composition for all surfaces is fixed at
m = 0.5 B/k = 75 K, e/k = 10K,

Fig.6.5 Composition on the first layer of (111) face for
various values of B/k, T = 773 K, e/k = 10K,

Fig,6,6 First layer composition of (111) face against bulk
composition. (-—--), clean surface$ (--~), ¥ = ~30K%
(—emmem )y = 30K, B/k = 12K, T = 773K and e/k = 10K,

Fig,6,7 Surface relaxation effects on the composition of the
first layer of (111) face (—~--), clean surface with
no surface relaxationy (---), 8 = --0,15%(--—--),

§ = 0,15, B/k = 12K, T = 773K and e/k = 10K.

Fig.6.8 Variation of the composition in the first three layers
on the (100) face with the bulk composition of Ni-Au
alloys. (---) corresponds to no segregation.

Fig.6.9 The first layer composition on the (111), (wmun*mu_ﬁ)s
(100) 3 (-=——) and (110), (---) faces of Ni-Au alloys,
The surface is assumed to be rlaan
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CHAPTIER VII

NON-REGULAR SOLUTIONS

Almost all the theories of surface segregaﬁion todate
assume an alloy tb ke either an ideal solution or a reg&larw
solution., In many cases this gives a reasonably good agreement
with the experiments. But most solutions do not fall inte the
category of either ideal or'fegular solutions. Irom the phase
diagrams of entropy and free energy of various metallic alloys,
it has teen observed that the excess entropy éf mixing and the
heat of férmationime nonzero for these solutions., This suggests
that there is deviation from perfect randomness of the‘distrin
bution of atoms in the system, and there exist some short-range-
order. There is experimental evidence based on diffuse X-ray
scattering which shows that there is consideraktle short-range-

order in many alloys.

This ordering phenomena is more likely in allovs whose
constituents have significantly different atomic radii hecause
this leads to excess thermodynamic quantities. Further for
alloys having shortmrangeforder)the parameter € 1is not a
constant buit changes with éoncentration and‘temperature. We
have extended our formulation of Chapter VI for non-regular
solutions. We have introduced surface short-renge-order para-
meters which will in general be different from their bulk
value, These‘can be determined with a knowledge of bulk thermo-
dynamic data. We have taken into account the temperature and

concentration dependence of the parameter € using the method
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of Averbach192i In this way we are able to take into account
to some extent the vikbrational contribution to free energy,

which are otherwise neglected in the model,

4 7.1 General Formulation

We consider a semi-infinite solid binary alloy in thermo-
dynamic equilibriuﬁ. The configuration energy is still given by
equation (6,1), We ggain divide the systen into layers parallel
to the planér surface and number the layers A = 0431424...5 as
before. Using the notations df the last chapter, the relations

(6,2) can be generalized as follows for surfaces}

Ry S AN AN o ) _
ZAhNA = 21\5‘n + N(AB) ave (7.12)

S N Y Y Y ' o

I S 1) Al -

Rty SR V) Ap

Here (4AB) denotes pairs of both the types AB and BA., Next
we introduce the shor%-range—order perameters in the usual

mamner of solid solution theory, We write

N%QB) - gxxyx“xmhx . \ : : ve. (7.23)
VR NCEV N | e 2
@% =yﬁldﬁ%”ﬂ% ' e.. (7.20)

where Xy ® NQ/NK and y, = N%/Nk. “X is the short-range-order

th

parameter for the A layer, It will vary from layer to layer.

Since the concentration Xy is tp vary with A, we shall require

t
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two more short-range-order parameters to obitain similar

expressions for interlayer pairs. Thus we have

1\\]’2}5«4-1 = 7\3;-7\-*-18?\1\1’7\‘ )\'+l . ee e (7- 3&)
-+ + |
I\%} 1 . y?\x}.ﬂ.B?\N?\ A l | veo (7.3B)
o+
N§2+1 - Xx(l“sxyx+1)N}‘ﬁ 1 oo (7.30)
NR?\'-!-]‘ b1 y}\-( }_-n 6;\.X7\+1) I\T?\ }\.+l . ¢ o ( 70 3d)

Here Bh is the shori-range-order parameter associated with the
probability of finding a B atom in the (A+L)%4h layer nearest

th layer. whereas BJ is the

neighbour to an A atom in the A
short-ranze~order parameter associated with the probability
of finding an A atom in the (K+1)°h'layer nearest neighbour

to a B atom in the ALP

layir. As the concentration in various
layers is different, these two parameters have different values,
tut we shall see that these are not independent., The relation

betvween thenm foliows from the constraint.

AL, Nm\+1

A+L
AA B T 21Ny

. e (7.4)

This can be simplified using the definitions (7.3) to obtain

X?&NX?\.-}-]. = X?\-y?\+lB?\- - y?\;x:?\_i_lB?l\. . LR SN (7! 5)

The configuration energy (6.1) can now be expresged in terms

of layer parawmeters

& KR Kk+l

MALL I
*eap %(N(AB) T AE Tt gy )

g | % iy} + Wik, .o (7.6)
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Now using the definitions (7,2) and (7.3) this can te easily

reduced to the following form

| i + _ AFL
U [N",I ”‘,Nﬁ M = (0% €pg- 2645 _}_ (1\”‘ + N}‘A Y
+(e ,0m Enp) i (z. N“ ' N”+ Z, 7‘“*'1>
8™ €ap) & TEATAT L+ xx+1 Ny
oo (7.7

Here again we have dropped the constant terms. Now using the
relations (7.2t), €7.3¢c) and the fact thas Nﬁ e XKNK vie can

rewrite (7.7) in the fornm

e e L,
Up({zyse 5By ) = 26 kﬁo[zxxxxyxgxm

Bt 7 g By x+13x5x>

.28 § Mz, .
A= O

hk+l

* Zxx+1 At D Fpag) 2o ee (7.8)

xxxx

where the expressions for € and B are given by (6.13) and

(6,14) respectively.

The configurational entropy is given by (6.17), but now

the Thermodynamic probablllty of a conflguraulon is given by

Nkh( - - . Fkh+14

Py = '»T x ) +7 V +
R o
N fN | Z -1
x (‘A"'—'“"'“) A 9 o s e (709)

where Zk denctes the number of nearest neigibours of an atom

in the xth layer. The configurational entropy is therefore
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S = kt. % In ka1+ In Nxh T+ g Ak Zn Nhk

~In PK* fn Nkk - fn Nhh - fn Nhlﬂii

~fn Ihk+l{« In NAK+1§ I ka+1l]
le N?\I)Z?\ 1
NK’ .

Ld

where Ah = N N
ANF w .
In the limit of large Nk, Nkh, ka l, we can uvuse the Sterlingls

A}
approximation to write

Are - S :
- 1 N 3
S o= L}ig N'LEZK 1)(xlfn xx+ykfn yk)

lr ‘ SN g ' N
+ zxkyxakfn Ky Yl + yk(lmahxh)fn yx(luakxh)}

'zhi+1{xh(l“9hym+17[n-Xx(l“Bm¥u+1)

BT a0 BT a1 B a s B0 Xpaq VB

+y$(1wﬁixx+l)fn yi(l“sixiﬁl)l}‘ oo (72200

The Quantities quantities Xx, ax, BX are now obtained by
minimizing the free energy per atom F= U.TS with the

constraint that the overall concemtration of various consti-
tuents in the alloy is fixed. Mathematically this constraint

is

N . | |

L N - I\‘ [ L (7.11)
o M A

This minimization procedure leads to the following set of
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equationss
28
T | 2 4\ (7y-2p) + ZF (Bxyx+1 Byx x+1+yx 1841
- 'VBZ}\-i- N , L
“".Jc IBK 3} f"' — *"Tf'*'“‘ e (Z?\"‘l)(n (Xx/y%}

+ %zotfluax(y£wxx)}fn xx(lwain)'
m{1+ai(yi~x$)}fn yx(lmaXXX)

+ axi(yi~XX)fn axxiyxg]

e (1 Y + {3 )X
2t fn MEASE 4 gy Bpfn 1--57‘1"?6"“
y}\(-' 5)\. 7\+1) ‘ AFHLTA
. : X. B . . x. B‘!
—ATLA : WAL
" B T T Yr1Ph-10R %61 1
' PP B
28 4 Loy o “7% .S SR RTRTS
and
- B y + B Lo o ' .
85 + Tfn ——NALA ML 5 0 oo (7.130)

(1~ yaufy) (kg B

Here n 1s a Lagrangian multiplier and it can be determined

from
2eZ 2BZ+n

R’rj‘? ""O:b (yb""xb) i “ﬁ“—m - (Z""l) Iﬂ(xb /y—b)
+ %Z!ilnab(yb«xb)}[h Xb(l“yb“b)“{l+“b(¥b“xb>} X

In yb(l““bxb)+ E(ybmxb)mbfn “bxbyb“} = O, o (7.1
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This equation has been obtainéd‘from (:7.12a) Ly replacing

the surface variables by their correéponding bulk valae. In
the 1imit of perfectly random alloy (x=l) ecuations (7.12a)

and (7.14%) reduces to equations (6.21) and (6.22) respecfively,
(7.12b) and (7.12c) are the generalizations of the familiear
relationship for the bulkl92.

KL, Y . -
ii—% +J?-‘-[n b b b '- = O, s e (7015)

(l*abyb)(l“abxb)

Bquations (7. 3.3) and (7.14) can further be simplified to

okttain the follow:.m express:.ons.

2e8 L aim o 81 e g
e (Bt~ *a1Pat Yan1BPi-1m%ao1Pon1)

2bZ+n o locy BLY-
A z° AT 21{[P__M AT

R n
S N %aZ, BaAFa+1
fye Bl %ifx . o 2Pt
Tas1Bal0 T Taap By A1Pa-1R Ty e
S X841 s Ea Bl
by g8 o0 —RAEL o gy TATA
A-1PA- 11 T gy MR T i,}
- (fo'%” MZl—l)fn(xx/yk) = 0 oo (7.162)

~1+141+#YXXyX

’ ... (7.16L)
2:(7\}?'7\)

B;\ = - ‘
gfyx}\yhﬂ-}_ s v (70 160)

where ¥ = (e¥€/%T. 7y, . (7.17)
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‘ - o o -
For brevity we have replaced %N and Zkh+l by 2 .and Z

respec%ivély, because these will be the same for all the layers.

For n the final equation is

. 1o~y e, '
n* 287 . (Z iz o gk
-L..L?r.aw = (§ -1 fnlx,/v,) - 32 {n eoo (7.18)

l"‘ XbOZb‘

As ve did in the case of random alloys, here also we can
consider first two or three layers in which the concentra-
tion is different from the bulk. Then it can be assumed that
all the remaining layers have the btulk concentration. For

each layer we have to determine three parameters.

§ 7.2 Preiliminary Results for Ag-Au Alloys

253

Recently Overbury and Scmarjail have studied the
surface composition of Auv-Ag alloys using Auger electron
spectroscopy. They have compared thelr experimental data with |
the monolayer regular solution model. They find that the

-monolayer regular solution theory predicts much more segrega-
tion for Ag at the surface than is found experimentally. The
heat of mixing of these alloys and the difference in the heats
of vaporization of pure Ag and Au is quite large. Further there
is experimental evidence based on X~ray scattering that there
is considerable short~range—ordei in tkese alloys. Thus it is
expecied that the monolayer regular solution model will not be

appropriate for Ag-Au alloys.

Here we have calculated the quantities € and o« from the

ol
data on heats of mixing of these alloys using the .method of
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Averbacklgz

. Now ¢ and o are concentrétion (xb) and tempera-
ture (T) deperndent. Fo: Ag-Au alloys these are tabulated in
the table 7.,1. The temperature dependence of & is easily
understood as being due to vibrational contributions to the heat
of mixing. The concentration dependence is presumably related
to three body forcés and long range forces in the alloys. |
As discussed in Chapter VI, B is proportional to the diff-
erence in the heats of vaporizatidns of the pure constituents
A ard B, This has bheen taken constant. Using the daﬁa takulated
by Huitgren et al’?t we find that NB = -1678 Cal/ﬁqol. at
800%%, The numerical solutions of equation (7.16) are obtained
following the method of Chapter VI. We assume that xx etc.
attéim the bulk value after the first three layers. Then
equation (7.16) is written explicitly for the first three
layers which are then solved simultaneously. Here, we present
some of our results in the atsence of short-range-order
(though it has been taken into account in the calculation of
e). The complete solution of (7.16) is in progress. Our
calculation shows that a rather heavy enrichment of Ag occurs
at the top layer. However, the variation of concentration with
layers is not monotonic, for in the second layer, there is

a slight enrichment of Au, In the third layer again enrichment
of Ag occurs. This sort of oscillatioh is to be expecied as

€ is negative for these alloys, so that unlike pairs have
stronger bonds. The results are shown in figure 7.1. Our
results for the segregation on the top layer are much higher
tharn those observed experimentally by ALS. However, an ALS

experiment probes not just the topmost layer but a few of
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Table 7.1

Values of parameters € = u + j{x) + g7 and o
for Ag-Au alloys at T = 800°K

o GRS e b Cal ol

0,1  -384.4556 0.0867 1.0356  ~315,0956
0.2  ~368,0235 0.0779 1,061k ~305,7035
0.3  ~356,7311 0,0713 1.0790 ~299.6911
0.4 -347, 6946 0, 0674 1.0885 ~293. 7746
0.5 ~339.4583 0. 0660 1.0900 - 286, 6583
0,6 ~336,1584 0. 069k 1. 0846 ~280., 6384
0.7  ~333.1505 0,0749 1,0720 ~273, 2305
0.8 ~ -331,3079 0.0826 1.0533 - 265, 2279

0.9 ~332,8094 0,0908 1. 029 - 260, 1694
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the layers near the surface depending on the incident
electron energy. For theisake of comparison with AES
experiment}we should calculate the average concentration over
the top few layers. Figure 7.2 shows the average of Ag
concentration on first three layers and its comparison with
the results of manolayer modél. Our results are closer o
experimental values. We think that the AES results should

be taken for various incident electron energy. Then by know-
ing +the attenuation depth of electrons of various energies
one can calculate an average concentration on those layers
from the present model and a comparison can be made with the
experiments. Also so far we have not come across any experi-
mental results on surface short-range-order parameter. “he
mostv suitable experiment for this will be LELD, We feel that
the short-range-order may have significant effect on the
surface segregation and the surface short«rangemorder
parameter may ke quite different from its bulk value., These
guancivies will naturally play an important reole in determin-
ing the behavioui of various elementary excitation near

surfaces of alloys.
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Fig.7.2
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FIGURE CAPTIONS
Pilots of surface concentration mx = X%—Yi VS
tulk concentration (mb = xb—yb). (——)y (~=-) and
(—=+-) denote respectively the first layer, the second
layer and the third layer composition., T = 800°K.

Plot of the surface composition of Ag vs. the bulk

Ag concentration. The full line denotes the averaged
surface concentration of Ag which is the mean over

the first three lavers. The broken line denotes *“he
corresponding resiilt obtained from the monolayer model..
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APPENDIX A

Single Particle Grquis Function

-

For a given alloy configuraition described by H, the

single particle Green's function is defined as

G(z) = (z-0)~1 | | ee. (A1)
where 2 = B + inis the complex energy having an infinitesimal
imaginary part Y.

(A.1) may be rewritten in the following form
G(z) = J an “Z'”‘:ﬁ 8(n-), el (A2

Using the identity

~ 00

’yL];m E’*ﬁl‘i‘ym = P vﬁ‘}ﬁ + ins(B-n) ve. (A
o)
e have

G(E+io) = j dan %»ﬁ + in&(fﬂmnﬂs(n—-m, cae (AL

Here P denotes the principal value part.
Therefore,

§(E~H) = (2mi) |G (E-10)-C(E+io) . ... (8.5)

The spectral density operator A(E) defined ag A(E) u-<§(E~Hx>

is therefore
AE)Y = (211) 1 LG (B-10) -G (B+io) D> eo. (4.6)

which shows that the configurationally avereged spectral

density of states operator is related to the discontinuity
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of the configurationally averaged Green's function across

the real axis. From equation (A.4) it follows that G(I+i0)

and G(E-1i0) are complex conjugate to each other and

therefore
LG(E-i0) ~ G(E+io) > = -2i ImG(E+io)> . voo (A7)
Hence | | |
AE) = - £ Imga(atio)D>. co. (4,8)

n

The significance of the spectral density operator is clarified
if it is expressed as a matrix element with respect to a
- .
configuration independent set of states tk>‘appropriate to

a perfect crystaly

AGEEY = (E| ¢sCE-m> (k>

= - 2 In¢K| <CEH)> KD . oo (4.9)

The spectral functions A(E}E) gives information atout the
energy and the life time of excitations. Another quantity
of main interest in disordered systems is the averaged
density of states per atom which is' related to the trace

of the spectral density operator A.

- > .- - -
P(E) = %k A(k,2) = W rrr[AE) 7] cee (A.10)
“herefore P(Z) = -~ %= Im Tr LG(E+o)> = . L 1m0l o> 10>
co. (A011)

which shows that the trace of the imaginary part of the
configurationally averaged Green's function gives information

about the density of states.
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APPENDIX B

Exact Results in Dilute Limit

We éonsider a single impurity in a simple cubic
crystal., In the subspace of the Wannier states spanned by
the impurity site and the six nearest neighbours, the
impurity potential in a single s~-band model can be written

in the following form:

O
84 8, O 0 © 0 0
&, 0 8, 0 0 0 ©
T e §; O o 8§, O 0 0 | . (BL1)
5§ O 0 ©0 §, O 0
.8 0 0 o0 0 8, O
5§y O 0 o o o0 s,

=
A

vhere L0|VI0D>= 8 , L1lVio> = 8,, (1lVii) < 8,y and

is any nearest neighbour site.

In forming this potential, diagonal perturbations (8,)
on the neares’-neighbour sites have been included, This matrix
can be block diagonalized using the unitary transformatign

S discussed by Wolfram and Callaway193,
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1 0 0 0 0 0 0
0 a b 0] 0 0 d
0 a - 0 0 0 d
S - O 3. O b O C e s (B¢2)
0 a 0O -b 0 c e
0 a 0 0 b =-c e
0 ._a 0 0O -t =-c e
= 1/[2, c = % = 1/3, and e = 1/{12
where a = 146 , b =1/{2, c =% , d= 1/43, and e .
. 1
Under this transformation, the potential becomes 59
5 168 |
( o 1) 0 0
J6s8, &,
82 0 0] \ L
V‘mSTVS = 0 (O 52 0 O ... (B3
\O O 5'2/ :
5 O\
2
0 0 (o 5,) .

The first btlock operates on the two s-states, the second on
the three p-states and the third on the two d states. The
same'unitary transformation block~diagonalizes the Green's

function giving
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G e ¢

(__oo . Ol} 0 0

46 CTol Gs '

Gp 0 O\
Gr o= STGS = 0 : 0 G’.o 0 0
' 0 G
o 3 a )
G o)
; o)
o) Gd
vee (B4
where,
e 6 ¥ 82 LLly Ll

g () = N“Z E - BEp °? Qo0 ® W& s 2

2 k 2 k

(1-s(2i)) | N
Wy ey S ' Ly w“sug.l{.)_m
Gp(“) = }TZ. ’ Goq = Iwzg ‘ ’
g B Ep - kKB~ Dp

. (Ey 1« %(1*3(2E)m232(§))
LTd L) = I Z;; I LE__

k

and s(k) = %(coskxa + cos k,a + cos k,a).

¥

‘he T-matrix can now be written in block diagonal forms with

the three blocks _ 1 :
‘L ™ uz :l © 56 e 81\ / Goo I Gol - 5 16 Si :
Ls(l-l) - 3 (,., ‘ . 9
| ‘o1 88, s,/ \[6 G, ¢ 68, 5

. LY (Bosa)

_ 1 0 O o
(v - IS -
1.p(u> = Ll-—-52(}p(E)_j 5,1 0 1 0}, ... (B.51)

0O 0 1
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A
s

-+

-1 0 :
Cd(Tj) = ﬁ—“"ézGd(E)j 69( 0 1 ) . c.s (B.5C)

160

~ As Stern " has pointed out,; the diagonal-disorder model
contains, necessarily, only s-wave scatltering bty each defect,
and hence has only a single phase shift to satisfy the Friedel
sumn rule. When the off-diagonal disorder is included (81 # 0)
but 52 = 0y we see from Eq.(B.S)'that only the s-wave scattering
is non-zero. It is, therefore, clear that the mere existence

of some .off-diagonal disorder is not sufficient for p-~ and ‘d~
wave scattering by a defect to cccur. Rather it is required
that the perturting potential on the neighbouring sites also

bte nonzero, For example 85 # 0 is sufficient. Thus the standard
model of off-diagonal disorder (60#0, 81 # 0) which has been
in common use in various generaliéations-of the CPA for the
electronic problem,elearly fails to produce more than simply
s-wave scaliering and hence does not have enough flexiblilizty
~to satisfy the Friedel sum rule when self-consistency require-
ment on the potential is imposed, When only the s-~wave
scattering is non-zero, the diagonal element of the T-matrix

in E~space becomes
§ + 682¢_+125, (1-68.C s (F)+ 3658°G s (k)
'S o) 17s —<P1' 170l 100
t, = T o ¢ o (Bc 6)

> P 2~ 2 2 . .
Kk 148Gy o-1281G; 3651%‘1_65-1&00@5

In the low concentration limit the self-energy is given by

Y (K,2) %xtgﬁ . ... (B.7)
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From Bgs. (B.6) and (B.7) it is clear that in order %o

achieve the propér dilute limit the self-energy should contain

. . 2,2
a term proportional to s“(k),.
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‘energy which is related to the heat of vaporization of the

B component is less than that of A. From the graphs it is
seen that the B component becomes enriched at the surface.
These results are in agreement with several experimental
observations and simple surface thermodynamic principles

that the component with lower heat of vaporization or the
surface tension gets enriched at the surfacef From Figure 6.2,
it is observed that the enrichment on the (110) face is the
‘maximum among fhe three surfaces studied for the same values
of parameters €, B and T and is the least on the (111) face,
which is a simple cbnsequence of the fact that the segregation
is larger, the larger the value of ZIL' As the temperature is
increased, the surface segregation decreases for all the

three surfaces. The variation of the concentration in the
different layers is shown in figure 6.3, The composition in
the first layer is markedly different from that of the tulk
whereas in the secord layer this difference is very small.

The composition in the third layer is almost the same ag the
bulk and therefore it is not shown.explicitly in the graph.

This also justifies our approximation that Mo approaches

rather fast to the bulk value for small values of €, and this is
consistent with the assunption regarding the absence of “hes shors:

range order.In Fig, 6.4 we have plottod fh[:(xs/ys)/(xb/yb):]
against 1/T for the three faces and we obtain straight lines.
This shows that the simple thermodynamic monolayer model
is consistent with our model.‘waéver, for larger values

of € one should expect appreciable deviation of composition
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