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SYNOPSIS 

This thesis is devoted to the study of substitutionally 

disordered alloys (mainly binary alloys) . The contents are 

divided into two parts. The first part deals with the 

theories developed for the elementary excitations in disordered 

systems. In particular, a single band tight, binding model 

Hamiltonian for electrons in disordered systems has been 

studied in detail. The single site coherent potential approxi-

mation (SSCPA) , most commonly used in the study of elementary 

excitations in disordered systems, is not suitable for 

realistic systems where the constituents have different 

band widths and the .system possesses some short-range--order. 

it is also inadequate in situations where the mean free path 

of excitations is small. The SSCPA has, therefore, been 

generalized by many people in many ways so as to suit various 

situations. These cluster generalizations are usually very 

r  tedious. We have studied a cluster generalization of SSCPA, 

which is computationally simple so that a numerical calculat-

ion of the density of states is possible. We considered 

clusters made up of a central atom and its Z nearest neighbours. 

Then analogous to the SSCPA scattering from one such cluster 
embedded in an otherwise effective medium is considered. The 
effective medium is determined in different ways namely (1) in 
the self-consistent central site approximation, (ii) in the 

self-consistent, boundary site approximation and (iii) by 

imposing self-consistency conditions on the averaged T--matrix 

elements. The main assumption which reduces the computational 
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effort to a manageable level without effecting the final 

results much, is that the various configurations for a fixed 

number of different kinds of atoms on the shell of nearest 

neighbours are taken to be indistinguishable. We have 

considered off-diagonal disorders of Shiba type where the 

hopping integral hAD is the geometric mean of hAA  and 

as well as = the general case where hAA, hAB  and hBB  can 

take arbitrary values. In the former case the problem 

reduces to that of the diagonal disorder when one uses 

a renormalized propagator formulation. We have calculated 

the densities of states and the spectral densities of states 

for a wide range of parameters. Our results are in good 

agreement i.ith the exact results obtained from computer 

simulation or from the method of moments. A critical study 

of var-aus approximate cluster methods developed so far by 

various workers, has also been done. 

This cluster method has further been applied to the 

problem of mixed Heisenberg ferromagnets. In essence the 

problem is quite similar but a bite more complicated. The 

constituents have been taken to have different spins and 

the exchange integrals takes on three values for a binary 

alloy. The theory describes very well the behaviour of 

excitations for all values of wave--vector,enexrgy and concen 

tration. Some difficulties have been encountered in the 

low energy region where the Goldstone theorem is not 

satisfied. 

The second part of the thesis deals with the problem 
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of surface segregation in alloys. It has been observed that 

the surface concentration in alloys is different from that 

of the bulk. A quasi-chemical model has been employed to 

develop a formalism to calculate concentration in various 

layers 'parallel to the surface assuming the alloy to simulate 

a regular solution. Several interesting aspects of the problem 

like the effects of foreign atom adsorption and surface 

relaxation on surface segregation have been considered in a 

phenominological manner. In addition to some model calculations, 

results have been obtained for NivAu and Ag--Au alloys. 

Good agreement has been obtained with experimental results 

obtained from Auger electron spectroscopy. This calculation 

is further extended to incorporate the short-range-order in. 

alloys (alloys following non•-regular solution model) 'Te 

are able to formulate a method which can predict the short.-

range-order at the surfaces of alloys. 
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CHAPTER I 

I N T R O D U C T I O N 

For several good reasons the study of elementary excita- 

tions in disordered materials has attracted lot of attention 

of solid state physicists in recent years1-8. Though the 

subject is not new9,10 but significant advancement has taken 

place only, within the last two decades. The reason for this 

slow progress in this exciting field is obvious. In ordered 

materials ' a great. simplification is achieved10911 because of 

the presence of translational symmetry in the underlying arrange- 

ment descrired by the positions, composition and orientation of 

the constituent units. As a consequence of the translational 

symmetry one only needs information about a unit cell of the 

crystal to calculate the behaviour of the whole system. This 

makes the study of ordered materials manageable. The quasi- 

 momentum k (we put l'i = 1) of the elementary excitations is 

a good quantum number and the energy spectrum (which consists 

of continua separated by regions of forbidden energies) of 

different kinds of elementary excitations in crystals is 

determined by the dispersion. relation E = B(1~), The eigenstates 

of quasi-momentum %- are, according to Bloch's theorem, described 

by a modulated plane wave with wave vector 

A In fact) in our practical life, most of t e time ue deal lwith 
systems which do not have the periodicity found in ordered 
materials. Examples of such systems are doped semiconductors, 
disordered alloys and magnetic materials amorphous semi-
conductors, glasses and liquids. 
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On the other hand the disordered materials lack the 

periodicity of the crystal. As a result of which the states 

of a given quantum number are non-stationary. Strictly speaking 

the concept of dispersion relation giving energy in terms of 

the quasi-momentum does not make any sense. As a whole the 

description of states in disordered materials is quite different 

and difficult as compared to that in ordered materials. 

The central question in the construction of a quantum 

theory of disordered materials is the study of the structure of 

the energy spectrum of elementary excitations and the explanation 

of the character of quantum states possible in such systems. This 

thesis deals with the theories which try to answer the first 

question. We shall deal with the class of disordered materials 

known as substitutionally disordered alloys where on a perfect 

point lattice, atoms of more than one kind are distributed randomly. 

Most of our discussion will be confined to binary alloys. General-

izations to an n--component alloy will be straightforward. 

The constituents of an alloy will, in general, have diff- 

erent masses and electronic configurations. For a study of the 
7,8 

electronic excitations, one considers the dynamics of an electron 

moving in a random aperiodic potential field of static ion cores 

and an effective potential of all other electrons. The problem 

of vibrations of atoms3  ? having different masses (mass disorder) 

and coupled with each other through spring constants which can 

have different values depending on the occupancy of the sites 

(force constant disorder) 9  can be transformed to look quite 
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similar to the :electronic problem. The problem of tho spin 

waves in disordered a ,loys is again very similar to the one of 

lattice vibrations. A complete solution of such a problem has 

not yet been achieved. Progress has been made in three direc-

tions: 

(i) Highly simplified model* have been investigated and 

exact results have been obtained from analytic 

methods in some cases.12  

(ii) Machine calculations 9  have been carried out for 

some simple models. In these calculations one solves 

the equation of motion by constructing a Hamiltonian 

for a tizay piece of the alloy which is taken to 
represent the whole system. Most of such calculations 

have been performed on one dimensional systems. These 

mao.hine calculations have played a very important 

role for providing checks on the validity of various 

approximate theories. 

(iii) Study of more realistic models where one has to 

depend on a number of simplifying assumptions. In 

this thesis we shall be dealing mostly with problems 

which ,Fall in this category. 

A basic problem which one faces in disordered systems 

is the lack of detailed information about the microscopic 

configurations of the atoms in the system. What we know about 

the disordered materials is some macroscopic parameters such as 



the concentration in the case of the alloys. To meet the 

difficulty of lack of information about the microscopic confi-

gurations in formulating a microscopic theory of a disordered 

system, we take all possible configurations consistent with the 

macroscopic parameters of .the system and then average over all 

these configurations. Suppose we have a quantity O(el,e2,•..ek, 
...) which is a function of random variables e,e,... e,.. . Let 
these random variables be distributed according to the joint 
probability distribution function 1c(el,e2,.. ek ,..) . Then the 
configurational average of 0 is given by 

<0  > ° fJ ... f 
del  de2....dek... . 	 ... (1.1) 

The symbol °',• • 	represents a configuration average. If the 

random variables el, e2.... ek 9..... are independently distri-

b'ated as in the case of random alloys then it(ela e2, ...  

can be written as the product pl(e1)p2(e2)  • • . pk(ek) .. « . This 

configurational averaging is inherent its all theories of dis-

ordered materials. 

The mathematical tools (or the theoretical methods) for 

the study of various types of elementary excithtions in dis-

ordered systems are the same. In fact, to a good approximation, 

electron, phonon, magnon and excitors problems reduce to the 

same formulatior_6. To be specific, here, we shall consider the 

problem of electronic states in disordered alloys in detail. 

As stated earlier, this requires solution of the Schrodin_ger 

equation with an aperiodic potential. Various approximations 

have been made to solve this problem7. The simplest approximation 
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is the virtual-crystal approximation (VCA) where the actual 

configuration dependent crystal potential is replaced by an 

averaged concentration dependent potential <V> constructed 

out of the potentials of the constituents. For a binary alloy 

<V = x VA + (1-x)V8. 	 ... (1.2) 

VA and V~ are the crystalline potentials which one would have 

for a crystal of pure materials A and B respectively. The 

potential .(V > is periodic and the resulting Schrbdinger 

equation can be solved using the standard methods of the band 

theory.20,21 In practice the VCA provides good agreement with 

expetiments when VA and Vg do not differ appreciably, such as 

GeSi alloys..22'33 In other words we can say that the VCA is 

good for systems where the mean free path is quite large 

compared to the interatomic separation. 

Recent theories of disordered alloys, which take into 

account disorder at a realistic level7are usually viewed within 

the multiple scattering framework 24,25 which regards the 

propagation of an electron in an alloy as a succession of 

elementary scatterings on the random atomic scatterers. 

Conventionally such a description uses Green's functions. 20 

Several experimental. quantities like the density of states ,, 

the specific heat:,, the neutron scattering cross-sections etc. 

are related6 to the Green's function. Therefore, a knowledge 

of the Green=s function will make a comparison between theory 

and experiments possible. 



The most important development in the theory of elementary 

excitations in disordered alloys has been the introduction of 

the coherent potential approximation (CPA) by Soven27  (for 

electrons) and Taylor28  (for phonons) in 1967. The CPA is a 

mean-field theory. The simplicity of the CPA arises from the 

fact that formally it can be viewed as a reduction of the 

alloy problem to one of a sir_gle impurity in a self-consistently 

determined effective medium. The CPA has been studied at length 

for a simple single band tight-binding model Hamiltonian. ' Though 

this simple model is not of much interest as far as the realistic 

systems are concerned, but it has played an important role in 

our understanding of the energy-spectrum of elementary excitat-

ions in disordered alloys. In a very significant contribution 

Velicky et al29  studied this model Hamiltonian by considering 

disorder only in the diagonal term and established the supre-'. 

macy of the CPA over all the other early theories. Lateron 

numerous papers have appeared where people have tried to 

improve upon this model. These improvements have been done 

mainly in three directions: 

(1) 	Attempts have been made to incorporate the off-diagonal 

disorder alongwith the diagonal disorder. This represents a 

more realistic situation. But even with this improvement we are 

far from reality as far as electrons in disordered systems are 

concerned. However '  these developments proved helpful in the 

study of phonons31'32  and magnons33-35  in disordered systems. 

(ii) 	From machine calculations13`.19  it has been found that 
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the energy spectrum of excitations presents a fine structure 
which is a characteristic of various configurations of clusters 
of atoms. This fine structure is more pronounced in the case 
of a linear chain. The CPA washes away this fine structure 
because it is a single site approximation and is incapable of 

seeing ar y potential fluctuations duo to clusters of atoms.29 936 
The energy spectrum of disordered systems has exact bounds j 
according to the Saxoti-Hutner conjectur03?-4li This states that 
there can be no states in the energy region simultateous .y 
forbidden to the energy spectrum of each constituent, The CPA 
spectrum is cut-off sharply and there are regions where the 

CPA does not give any states but a finite density of states is 
allowed. Further, in general, alloys are not completely random 
but there exist some sort of local order. Such local order can 

be incorporated in generalizations of the CPA where instead of 
a single site one considers scattering from a cluster of atoms 
embedded in an effective medium, 

(iii) Finally attempts have been made to improve Upon the 
single band models so as to account for the realistic systems. 

This has led to the extension of the CPA for degenerate d 
bands 'C i 42-44 and the two-band s-d model~s )~'S'"48. Recently 
attempts have also been made1'9"57 to construct alloy theories 
based on the familiar KKR method in the band structure calcula-
tions but using a simpler approximatior such as the averaged 
T-matrix approximatior (ATA) . 

In the first part of the thesis we present some of our 
attempts towards improving the CPA. We have developed cluster 
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theories which incorporate the diagonal as Drell as the off-

diagonal disorders in a single band tight binding model 

Hamilton an. Efforts have been made to mould the theory in 

such a way that `we get good agreement with exact results 

obtained from machine calculations. The theory has boon applied 

to the disordered Heisenberg ferromagnetic binary a .oys- a 

problem of correlated site and bond disorders. 

The organisation of the first part of the thesis is as 

follows. In Chapter II we recapitulate some of the ideas of 

the multiple scattering theory 4  The single site CPA and the 

ATA are introduced and discussed for a single band tight bind-

ing model. The merits and the demerits of the single site 

approximation. (SSA) are presented and a need for the -improve- 

merits over the SSA is emphasized. Chapter III deals with the 
theories which improve upon the calculation of the single 

particle Green' s function. A critical study of the various 

prevalent cluster theories is made. In this chapter we have 

restricted ourselves to problems with the diagonal disorder 

only. Two simple cluster theories.9  the self-consistent central 

site approximation (SCCSA) and the self-consistent boundary 

site approximation (SCBSA) have been studied in detail. The 
density of sta-,es has been calculat• d for various vales 

of parameters. 	The analytic behaviour of the Greent s function 

has been stud...ed. Finally we have studied a cluster generaliza-

tion based on a new configuration averaging technique of 

TvIooker jee58:59. In Chapter IV we present formulations where 

both the diagonal and the off-diagonal disorders are taken into 
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account. These theories are capable of dealing with alloys 

having some short-range-order. Two cases have been considered. 

(1) When the hopping integral h is a geometric mean57  of h 

and 1P p the problem reduces to that of a diagonal disorder 

if one uses a renormalized propagator formalism, 602610  

(ii) The general case when the hopping integrals h, hBB  and 

h can have any values , is more difficult to treat. As an 

example of our approach to this general case )  t he problem of 

disordered Heisenberg ferromagnets is studied in Chapter V. 

The constituents are supposed to have different spins coupled 

through exchange integrals which can have three different values. 

The problem is first reduced to an analogous electronic problem. 

A calculation of the spin wave density of states and the 

spactral functions has been carried out for the whole eoneeri-- 

tration range, and for various values of exchange integrals. 

The second part of the thesis deals with the problem of 

surface segregation in alloys. In recent years this problem has 

attained great importance and has attracted attention of 

several experimentalists 'and theoreticians.62  It has been found 

that the chemical composition in multicomponent systems may be 

very different at the surface from its bulk value. It can be 

understood easily from the following simple thermodynamic 

arguments. Creation of a surface requires work and it is always 

accompanied by a positive free energy change. Thus 9  in order 

to minimize the positive surface free energy, the surface 

will be enriched by the constituent which has the lowest 

surface free .energy. This results y for many multicomponent 
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systeras3 in gross imbalance between the surface composition 

in the topmost layer and in the bulk. Even, when we are dealing 

with monatomic solids,this surface thermodynamic driving force 

is the cause of the segregation of impurities at the surface 

that lowers the total surface free energy. 

There are several important surface phenomena such as 

heterogeneous catalysis, passivation of the surface by suitable 

protective coatings, corrosion etc. whore the chemical composi-

tion of the topmost layer controls the surface properties and 

not the composition in the bulk. Yet another important class. 

of solids is semiconductor alloys oys which are now used in semi-

conductor devices in the form of thin films where the s urf ace 

plays an important role. Most experimental processes like 

LEED (low energy electron diffraction)63, photoenlission64  etc. 
P 

essentially probe surfaces no more than a few Angstroms deep. 

Theoretical, interpretation of these experimental results should 

therefore involve surface properties. In order to detormixi.e ttho 

various properties of surfac:;s it is ussontial to know the chemical 

composition at the surface. 

It is expected from a crude calculation involving the 

Gibbs equation65  that the component with the lower 'surface 

tension= accumulates on the alloy surface. The expression which 

gives the surface concentration is66  

z  s  yh  ^ - 	b exp 	 B-  ) a/kT 	 ... (1.3) 
1-x 	1-x 



Suffixes s ,b denote respectively the surface and the bulk, 

x the concentration of the 'solute A in solvent B 3 y the 

surface tension of the pure elements and a the average surface 

area occupied per atom. Other symbols have tbo.r usual meaning. 

Equation (1.3) is valid for alloys in which the surface 

segregation is confined to the first atomic plane of the 

surface (the socalled monolayer model) and the entropy is 

ideal. There are many surface active organic liquids which 

demonstrate this surface accumulation of the lower surface 

tension component in a random binary alloy 	Auger electron 

spectroscopy (AES) provides a direct measurement of surface 

composition68 269. Results have been reported for a large number 

of alloys e.g. Cu-N'707 , Ag--Pd76, Pb-In77, Au-Ni78,79' 
Fe-Cr80, Ag-CL181, Cu-Au82-84, Ag-Au85-87, Au-Sn88 , Ni--Pd89, 

Pt-Au90, pt-s9,92, Cu-A193 '9~+ etc. Temperature and energy 

dependance of Auger peak intensities give a very sensitive 

measure of the surface concentration. It is obvious from 

Eq. (1.3) that although the bulk concentration is independent 

of temperature, the surface con-position depends on it.6uuch 

dependence has been borne out by the above experiments. Farther 9 

the environment of a surface can have a decisive effect on 

surface segregation. For example surfaces of Pt-Ag and Pd-Au 
alioys95 in .vacuum are enriched in Ag and u respectively. 
However, the presence of CO in the surface environmcn_~; 
causes enrichment of Pt and Pd. The oxplana tion given is the 
formation of strong carbonyl bonds with Pt and Pd, driving them 
to the surface. 

As most of the solid solutions are not ideal p the 
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monolaycr surface model is not good enough. Instead multi-

layer models96"100 have been developed for regular solutions. 

Most studies completed so far have been carried out on binary 

systems which have fairly simple bulk thermodynamic properties 

that can be described by the regular solution model. In these 

models the two component crystal is treated as an infinite 

set of layers of atoms and each layer is treated as having 

a possibly different composition. An expression is then written 

for the free energy of the system in the quasi-chemical 

approach (or the pair bonding model)101 with the atom fractions 

of each layer inserted as variable parameters which are varied 

to obtain the minimum free energy for the whole system. Such 

an attempt has been made by us100 and is discussed in Chapter VI. 

In this model the constituent having the lower heat of vaporiza-

tion, segregates at the, surface. Several interesting aspects 

such as chemisorption and surface relaxation effects on the 

surface segregation have been studied. The theory has been 

applied to Ni-Au system which gives good agreement with the 

ADS experiments78. 

This theory does not always provide good agreement with 

the experiments. For example, in Cu-Au system significant 

enrichment of the first layer with Au occurs over the whole 

concentration range s though the heat of vaporization of Au is 
more than that of Cu. This has beefl . explained on the basis of 
strain theory of McLean102 which predicts that segregation 

should occur whenever the size difference between the consti- 
~..___~_ _ , ___ u_r„ +k 	r„'-,c- t„r„ for segregation is 



the lowering of the elastic strain energy in the bulk which 

arises from lattice mismatch. 

Both of these theories of surface segregation have 

proven useful in interpreting catalytic97  and metallurgical1:03  

phenomenon. But in some cases these theories do not agree with 

the experiments i e.g the size difference theory does not 

predict surface segregation of Ad iii Au.-]fit alloys while it does 

occurs Similarly the quasi-chemical theory gives quite wrong 

results for Fe-Zr and both theories fail! for Pt-rfi and Pt-Fe 

alloys. Recently Burton and Machlinla  have suggested a simple 

criterion for surface segregation. It is related to the equ -. 

librium distribution of a solute in an alloy in its solid and 

liquid phases. They observed the analogy of a liquid phase 

with the surfaces of solids. The two have in common 

lower symmetry, lower coordination: and no .las tic strain* 

Therefore, segregation should. occur in the so-lid/surface 

equilibrium if and only if distribution occurs it the solid/ 

liquid equilibrium so that the liquid is richer In solut'.e 

than the solid phase. With this simple agent they noticed 

that most of the experimental results could to explained. 

But this type of observatiori; if at all true,. would be able 

to,  tell the constituent which will segregate at the surface. 

To develop a microscopic theory one has to know the chemical 

composition in various' layers. Therefore y. one can think of 

modif y hg the q uassi--c:hemic:al theory to explain the: experiments. 

Another important factor  n the case of alloys' is the 
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presence of short-range-order. There has so far been no theory 

which can predict the short-range-order at the surfaces. We 

have developed a theory105  based on the pair bond energy 

description (quasi-chemical approach) of heat of formation. 

The theory can predict short range order parameter in different 

layers parallel to the surface and also between two adjacent 

layers. This is described in Chapter VII. There are no experi-

mental results. It will be a significant step to determine the 

short-range-order parameters because the values of interlayer 

short-range-order parameters may be significantly different 

from the corresponding bulk value because of the significant 

difference in the composition of various layers. Such studies 

will also be of importance in calculating the contact potential 

and the work function. 



PART I 

ELEMENTARY EXCITATIONS IN DISORDERED 

SYSTEMS 



CHAPTER II 

MULTIPLE SCATTERING THEORY 

§ 2.1 General Considerations: 

This section develops a formalism for describing the 

motion of electrons in disordered substitutional alloys. The 

results derived in this section are valid for any single 

particle Hamiltonian in which the disorder term can be 

decomposed into a sum of contributions associated with each 

site. 

We start with a simple substitutionally disordered 

binary alloy AxB1--x in which atoms of two kinds A and B are 

distributed in a random way on a lattice having N equivalent 

sites. The probability of :: inding an A or B atom at any site 

is x or (1-x) respectively. The one electron Hamiltonian is 

2 
H = - 2m V2+ V(z' ) ... (2.1) 

where V(r) is the total single particle potential - which 

varies from cell to cell. V(r) can be expressed as a sum of 

potentials vn(r-Rn) contributed by each cell centered at Ong 

V(r) =2. vn(r-In) . 
n 

... (2.2) 

vn takes the value v'~ or vB depending upon whether the site 

n is occupied, respectively; by an A or B atom. In general 

v may depend on the con'jgt'ation of the neighbouring atoms2 
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but this configuration dependence will be neglected in our 

discussion. It is convenient. to express the single particle 

Hamiltonian (2.1) as a sum of two terms 

... (2.3) 

where ,H~ is a suitably chosen periodic unperturbed Hamiltonian. 
For example, it may be a free particle Hamiltonian in which 
case ;Hl is just V. In the case of a dilute alloy where a small 
number of A impurities are present in a host B, it is preferred 
to take H as the pure host B crystal Hamiltonian HB and 

deviations from H0, on sites A, may be treated in a similar 
way as in the point impurity case because the probability of 

finding two impurity atoms close to each other will be very 

small. Another special case is where the crystal potentials 

of pure A and pure B crystals do not differ appreciably (weak 

scattering limit). In this case we may use the virtual-crystal 

model as the unperturbed Hamiltonian H,o 
2 

,H0 =- 2m V2+ (v()> ... (2.~}) 

and treat the deviation Hl as small perturbation. For the 

general case229 one replaces the ensemble of random systems 

(characterized by H) with various configurations by a periodic 
average crystal which is characterized by an effective 

Hamiltonian Heff( yet to be determined). We shall be interested 

in quantities such as the averaged density of states, the 

partial density of states and the spectral function which 
gives information about the life time of excitations. These 
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quantities.are related to the single particle Greenrs 

function (.see Appendix A.) defined as 

	

G( z) = (z. - H)-1 	 .... (2.5) 

where z == L + i'1 is. the complex energy having an infinitesional 

imaginary part ').. One can similarly define an effective 

medium Green's function. 

-1 
- ff(Z) 	 .... (2.6) 

<G(z)> and ,Hoff (z) both have the full crystal symmetry. As 

stated earlier in the case of the disordered systems 3 the 

excitations have finite life time (,as compared to infinite 

life time in the case of ordered materials) . This fact can be 

incorporated into a 'theory if we consider that. the eigen-

values of the effective Hamiltonian are complex so that the 

eigenstates decay with time. From the analytic properties 

of the averaged Green's f unction55 if follows that 

Heff .Z) 	Hefft7) • 	 ... (2.7) 

Heft f (z) will thus be none-Hermitian and energy dependent. 

In order to determine < G > for our general problem 9. we search 
for some approximate H which may be regarded as the starting 
approximation to the exact effective Hamiltonian and which 

has the same analytic properties as Heff(z). The corresponding 

Green's function is defined as 

- H~ 	.. 	 ... (2.8) 
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The configuration dependent Greents function G can now 

be written in terms of the reference Green's function G 

to obtain the following Dyson equation 

G = G +G UG  .,. (2.9) 

where 	U = H - K . 	 ... (2.10) 

Iterating (2.9) we obtain 

G= G+ G T G  ... (2.11) 

where T is the total T-matrix and satisfies the following 

relation 

x =7Jcz +G2). 	 ... (2.12) 

Taking the configurational average in (2.11) we obtain 

.., (2.13) 

Also from (2.6) and (2.8) we have 

G =G+G(Heff - H) <a>.  
Comparing (2.13) and (2.14) we have 

(=leff- 
fi) <a> 

or  

... (2.14) 

... (2.15) 

... (2.16) 

This equation represents the correction to our initial approxi- 

mation for Neff  and can be used in two ways. Either. the K'T 

corresponding to a given can be inserted into (2.16) or 

the equation 	<T>- 0 	 ... (2.17) 
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may be used to determine He f f . These two possibilities define 

two different classes of approximate calculation of Neff . The 

former is known as a non-self-consistent approximation and the 
latter is a self-consistent approach. For all practical purposes 
it is impossible to solve (2.17) exactly. Therefore, approxima-

tions have been made which simplify the condition (2.17) . For 
this purpose we express the total T-matrix in terms of atomic 

T..matric.es using the multiple scattering theory. 
2L1-,l06 

The basic requirement of the multiple scattering theory 
is that the perturbation term U can be decomposed as a sum of 
contributions from each site i.e. 

L. 	 ... (2.18) 
n 

Therefore, from (2.12) we have 

T n.uun(I +G ) 	n 	 ... (2.19) 

This expresses the T-matrix as a sum of contributions arising 

from the individual scatterers. 

Now Tom = u. (I +G: Tm) 

or 	Tn = tn(I + G 	Tm) 
m~n 

where t = (1 - u G)-1 un 

.... (2.20) 

.... (?.21) 

... (2.22) 

is the atomic T-matrix. 

Inserting (2.21) into (2.19) and iterating we obtain the 

standard multiple scattering series107 
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T= L t +I t G 	t  
n n n 	mn -m r_ ~n m 	mr_ 	pm

p +.... 
 

... (2.23) 

This expresses the total T-matrix as a sum of terms in which 

an electron undergoes successive scatterings at various sites. 
The exclusions in the summations are due to the fact that the 
atomic T-matrix t„n represents the complete scattering from 
the site n. An electron can scatter again from n only after it 
has undergone at least one intermediate scattering process. 

Equation (2.20) physically expresses the strength of a scatterer 

in the alloy as a product of the strength of an isolated 

scatterer and a factor describing the transformation of an 
unperturbed incident wave on the site n into an effective wave 

because of the multiple scattering in the alloy. 

' 2. 2 The Single Site Approximation (SSA) 29 
In the last section we developed a general expression 

(2.20) or equivalently (2. 23) for the total T-matrix. Taking the 
configurational average in (2.20) we obtain 

... (2.24) 
m~n 

The second term in the bracket on the right hand side involves 

correlated scattering from two and more sites. Eq. (2. 2 .) can be 
rewritten as follows 

+<tn (Tm--Tm; ) 	 ... (2.25) 
min 
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The first term in this equation describes the effect of 
the averaged effective wave seen by an atom at the site n 

and the second term corresponds to fluctuations of the 

effective wave. In the single site approximation one neglects 

the fluctuation term. We then obtain a closed set of equations 

< r i> = 	(I + G L <Tm> ). 	 ... (2.26) 
m97n 

Using the fact that 	-T we obtain mn  

Tn> -(Z +<,> G)-~ ~ Z + G /T f ). 	... (2.27) 

Substituting (2.27) into (2.16), we obtain 

Hef f 	H + 	(I + tn; G) < tn> . 	... (2.28) 

-1 
The quantity (I +(tn> G) (t~) is the effective scattering 
potential corresponding to the average scattering arising 

from the scatterer at the site n. This is known as the average 

T-matrix approximation108 (ATA) and is non-self-consisten~.. 
On the other hand the self-consistency requirement (2.17) 
simplifies to 

t 	 = 0 	 ...  (2.29) --n JJ 

for _ all n. Because of the periodicity of the averaged 

quantities, it is sufficient to, consider only one ? say the 

zeroth site. This self-consistent approximation is referred 

to as the single site coherent potential approximation27(CPA). 

We shall consider this approximation in detail and will later 

consider some improvements over the single site approximation. 
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We can have a physical picture of the CPA as follows. 

Our problem originally was to find a reasonable procedure 

to determine the effective medium characterized by Hoff. 

According to the CPA, one considers a system where each site 

except for one (say the origiu) is occupied by the average 

atom and the origin by either A or B. Then the problem is that 

of .a single impurity embedded in the effective medium (We 

see from equations (2, 21k) _ and (2.26) that the configuration 

dependent incident wave on site n has been replaced by an 

effective wave describing the surrounding alloy in an averaged 

The effective medium is then determined in a self- 

consistent manner by requiring the average T--matrix from this 

site to be zero. 

The fluctuation term neglected in Eqn. (2.25) corresponds 

to the neglect of all statistical correlations between the site 

n and all other sites m. These correlations are of two types:  

(i) those resulting from short-range-order and (ii) those due 

to multiple scattering. The first of these can be eliminated by 

assuring the alloy to be completely random. The other correlations 

on the other hand,, are always present. These correlations play 

important role when the scattering potential is appreciably 

large (strong scattering regime). These will be considered 

in Chapters III and IV. In the next section we present some 

of the calculations of the density of states for a single 

band tight binding model Hamiltonian. This has also been used 

to discuss the demerits of the single site approximation. 
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§2.3 Critiques of . the SSA 

Here we study a simple single band tight binding 

model Hamiltonian in the framework of the SSA. This model 

Hamiltonian has been very popular in the study of disordered 

systems and will also be adopted by as in this thesis.. Using 

the Wannier states jm ; ((nl m> = s) as a basis, the one 

electron Hamiltonian in the tight binding approximation is109 

H= 4 (n )€nKnl +manhnmIn"<mIj 
	 . (2.30) 

=- 'D + W 	 _ 	:.. (2.31) 

The diagonal term en is the atomic energy level (This includes 

a_ term h. which has the effect of shifting the atomic 
energies.) associated with the state In> at the site n and 

the off-diagonal element h..n represents the hopping integral betweer 

the sites n and m. 	The diagonal term e, is a random variable 
depending or the type of atom occupying the site n. i.e. it 

may be either eA or sH. The hopping integral h is also a 
random variable- and depends, in general, not only on the 

configuration of the pair of sites n and m but also on the 
configuration of other sites. The most conmion assumption here 
is to neglect the dependence of h. on sites other than n and 

m and to restrict to hopping between nearest neighbours. h. 

cane therefore, take the values hey h$$ ,►~ d 1,8: depending on 
the configuration of sites n and m. In this section we shall 
further assume that the hopping integrals are translationally 
invariant so that the only randomness is in the diagonal term D, 



The general case where both the diagonal and the off-diagonal 

terms are random will be considered in Chapter IV. With this 

assumption the density of states of the two pure constituents 
will be identical except for the shift of the energy scale. 
The matrix elements of W in the Bloch representation can 

be written as 

... (2.32) 
 F, L 

where 	:~ 	e 	I r,) 	 ... (2.33) 
.1 FT n 

relates the Bloch and the Warnier basis. to = Z1h1 is the 

half band width and s (i) = Z 57 e g describes the l 
n. 

dependence of the band energy and is dimensionless. .S is 

the nearest neighbour lattice vector. In the caae of simple 

cubic lattice s(i is given by the following expression 

s (k) = 3(coskxa + coskya + coskZa) . 	... (2.34) 

We choose the energy scale such that 

,ii 	 B r (2.35 ) 

which defines a dimensionless parameter ,. Now we clef Inc 
the self-energy operator (z) such that Fio f f = Z~ + and 
T-I = W + O'(z) . The effective Hamiltonian and the averaged 
Green's function are diagonal in k-representation , 

C k ~ FIeff ~ k ~/ - ~k 9kt 

 

Ls(I) + c(k,z) 	... (2.36) 
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and 	G(,z) = < 1 G(z) 1k ) 

z [z - ws(k) - E(, z) 	 , ... (2.37) 

G(k,z) is fully specified - by the spectral functions 

AfklE) ,~ -it 	Im G(i ,E-i0) 	 ... (2.38) 

because of the integral representation 

G(k,z) 	Z E A( ,E) . 	 .`.. (2.39) 

From (2.38) and (2.3?) we have 

I . j U 9E) 
A(k,E) 	.. 1 

e ? ( E) 2+ 
... (2.40) 

This shows that the spectral functions are of Lorentzian shape 
having the half width - Im i(k 9 E) . The location and the width 
of the peaks determine, respectively, the quasiparticle 
energy and the life time. Re I (k,z) gives the shift in the 
quasiparticle energy from its value in the perfect crystal 
specified by W. 

Within the GSA, 2 (Ii'z) is independent of and there-
fore S is a number operator 2 

(z) 	I In> I(z) <nI. 	 ... (2.!.i) 
n 

(2.31) can now be written as 
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H=ti,~J+2 In>O4 +L In>(E° 0 )( i 
n 	n 

= 	In> (cri -) ('nI 
n 

C H + C un 	 :» r• (2.42) 

Now proceeding analogous to Section 2.1 one obtains the 

following expression'6 for the self-energy 

(t> 0 (z) + 	N 	 ... (2.L3) 
1 + <t> F(z) 

where F(z) = <nf G(z) In> 	 :... (2.411) 

and (t) is the averaged T-matrix. The self-consistency condi-

tion (2. 29) reduces to 

{1-x) Cs- ) 

Egns`. (2.43) and (2.45) have been studied by Velicky c t a129 

and later/on by Schwartz et a1 6 for a semi-elliptical mode 

density of states. The CPA which gives the first eight moments 

of the density of states correctly1102 is the best single 

site approximation ~9,111  The ATA may be viewed as the 

first iteration 7113 of (2.43) towards self-consistency. 

Within the appropriate limits 9 both the CPA and the ATA, 

exhibit dilute alloyill+, virtualcrystal107 and atomic 

limits' and therefore represent an interpolation scheme 

that reduces~9 properly to the exact solutions in very 

diverse limiting cases. To check the accuracy of the CPA 
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we compare the CPA density of states for a linear chain 

(Fig'.2.1) and for a simple, cubic lattice (Fig.2.2) with the 

exact results(histogram)1836. The CPA density of states 

is obtained from the relation 

P(E) = -- 	Im (01 <G(E-fio) > 10 	 ... (2.46) 

It is easily noticed from the figures 2.1 and 2.2 that the 

exact results of the density of states have some fine struct-

ure, particularly, in the minority band. The CPA gives a 

smooth density of states. For small values of 6 the CPA gives 

a reasonably good description of an alloy over a wide range 

of parameters'. In other words ) the CPA works best when the 

mean free path of excitations is large. However, it becomes 

inadequate when the scattering potential is large in which 

case the mean free path is short or the energy of interest lies 

in the impurity band. The fine structure in the impurity band 

of the density of states may be attributed to isolated 

clusters of impurity atoms. Furthermore, the CPA spectrum 

has a sharp cut-off and there is no band tailing. The tails in 

the minority band are due, to very large clusters of impurity 

atoms ;. j  and play a central role in determining the electronic 

properties of amorphous semiconductors. Obviously the CPA will 

be unable to give such behaviours because of its single site 

nature. The width of the band in the CPA is narrower than 

the one obtained from the exact results. In the CPA ?. the 

band splits, for a much smaller value of 8 than predicted by the 

localization thoorem C̀'. These effects may be included in a 



self-consistent manner by applying the CPA formalism to a 

cell containing several sites rather than to a single site. 

The foregoing discussion clearly illustrate the need for 

cluster generalizations of the CPA. This becomes more important 

when one is interested in alloys where there exist sonic short-

range-order and instead of diagonal disorder alone, there is 

off-diagonal (extended) disorder as well-- a situation, one 

faces the study of real alloys. 
ON 
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F IGUPI CAPTIONS 

Fig.2.1 Density of States from the CPA compared with the 
exact density of states (histogram) . (a) x 	0.5, 
h 	1.02 8 = 0. 25 (b) x = 0.5, h ° 1. 0, s .v 1.0.  
The curves are symmetric about ' 	0. 

Fig. 2. 2 Density of states from the CPA ( - -) compared with 
the exact- density of states (----) . For all curves 
h = 1/6. (a) 	0.8? x - 0.05; (b) S 	0.8, .x ., 0.16 7 
(c) 	0.8, x ... 0.5 and (d) s 	1 .5'  x - 0.1. 
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CHAP TER III 

CLUSTER THEORIES 

In the last section we emphasized the need for cluster 

generalizations of the CPA to got a better agreement with 

the exact results and to account for situations one faces in 
real systems:. Further, a large number of ox perimentsll6"~ 20 
on concentrated alloys have shown the importance of the local 

environment on the magnetic and electrical properties of 

several alloys;. These experiments are generally interpreted 

using a semi-empirical. modelll6 which ass m s that the 

electronic state of each atom is mainly dependent on the chem-

ical nature of its Z nearest neighbours. 

The inadequacy of the CPA for large 5 can be understood 

from the fact that for large values of &) the fluctuation. 

term (see Eqn.2.25) neglected in the derivation of the CPI,, 
will become important. Therefore, in order to obtain 'a better 

estiinate of the configurationally averaged Green's function, 

it is. necessary to include this fluctuation term i.e. to 

consider scattering due to pairs, triplets etc. in a self-

consistent manner. In this chapter we shall consider theories 

which are improvements over the CPA. In what follows ; here 

we shall first consider the work done by us in this direction. 

A critical study of various cluster theories will be presented 

in the last section of this chaptor. 
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3.1 The Molecular CPA 

The method of molecular CPA (MCP:!.) also referred -~.o 
as the cell method, was first introduced by Tsukada121~122. 

It has been? thereafter, used by several workers8. This 
method is based on the fact that if the mean free path is 

small ( a case for which the cluster effects are important) , 
then the main effects of the microscopic configurations . of 
the whole system can be taker into account by considering 

only the correlations between neighbouring atoms lying within 
a sphere of radius equal to the mean free path of the 
excitations. As in this case an electron at a point r 
can see configurations in a small neighbourhood and not the 
atoms sitting far enough from it. Similar ideas. were used 

by Matsuda and coworkers1~3 in their method of i .IFS (Method 

of Ensemble ,average of Periodic Systems) in the calculation 

of frequency distribution function for random lattices,. Very. 
similar proposal was made by Butler and Kohn12 in their_ 

locality principle'. They emphasized the fact that the density 

of states of a disordered system is a local property. There-

fore ! according to the locality principle a properly performed 
cluster calculation of the density of states will be e.vact 

in the limit of short mean free path. 

In the cell methodl21 the crystal is divided into 

small identical non-overlapping cells each containing several 
sites'. The atomic configuration in different cells may be 
quite different. Than analogous to the single site, CPI = the 
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behaviour of an electron is studied in ono of these cells 
approxinlating the effects of all the other cells by an averaged 
medium which is determined self-consistently by requiring the 
average T-matrix from this cell to vanish. 

To derive the IICP we rewrite the Iia~ .iitonian (2.30) in 
tho following f orm70 

H = 	!c } cc [ci + i. 	 ... (3.1) c 
Here again we are considering only the diagonal disorder'.. 

id is a column vector consisting of in of the states I i 2 
. being the number of sites in the cell. The diagonal matrix 

Ec contains the energies of the orbitals centered at the 

sites in the cell c. 

	

I, c l - ( <cil , ~c12 t , \C31 s .... cili ~) 	... (3.2) 
and 

cil 

e 	 ci2 	 (3 3) 

Then the results of the multiple scattering theory may be 

used by changing the single site operators into single cell 

	

operators. Proceeding parallel to the section 	(2.1) We 
can write 

- LTc 	 ... (3.4) 
c 



with T - 	I i> lei T 	i cHHc ! T. 	 ... 
iec 

The multiple scattering equations for Tc  are 

Icy

• Tc1 ) 	 . (3.6) 
c'Vic 

where 	is given by 

	

c  - ( - 1G)-11c 	 :... (3.7) 

with 	Tc  j i> 	L-i  <i j 	- ;.;•,• 	(3.8) 
iE: c 

Uc  = j c} Q-  (z) {c I . ... 	(3.9) 

Taking the configurational average in (3.6)  and decoupling the 

averages in the right hand side, 	the exact self consistency 

condition (2.1?) now reduces to 

... (3.10) 

within the single cell approximation. In this generalization 

of the CPA the self-energy 	(z) is cell diagonal3611212125 

i.e. the only non-zero matrix elements of the self-energy are 

those which connect sites in the same cell whereas the matrix 

elements between sites lying in different cells are zero. By 

the introduction of this cell diagolnality of the self--energy y 

the translational invariance of the configurationally averaged 

medium is broken. However, by the introduction of the cell 

diagonality of the self-energy several interesting and desired 

features have been introduced into the theory. These will be 
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discussed in Section § 3.5. The drawback of broken translat-

ional symmetry is perhaps not very important while dealing 

with local properties such as the density of states'. The 

method can be generalized, to any arbitrarily large size of 

the cell) thereby improving the accuracy_ of the method;. The 

lowest order approximation will be the one atom cluster which 

is the CPS.. However, in this case the translational invariance 

of the effective medium is preserved. 

The self-consistency condition. (3.10) may be alternatively 

written in terms of the matrix elements of the corfigurationally 

averaged Green's function, if we observe that the Green's 

function for a system with the averaged medium every whore 

except the cell c ) can be w ritten as 

G 	G + G t G. 	 ''. 

Therefore the condition (3.10) becomes 

(3.12) 

orci <> idl = {c~G,cj- • 	 ... (3.13) 

Equation (3.13) is annxrn matrix equation and requires solu-

tion of n2 non-linear simultaneous equations in n2 unknown 

matrix elements of the cluster diagonal self-energy. In 

general, these equations will be quite complicated and diff i-

cult to solve without further approximations. For the one 

dimensional nearest i eighbour tight binding model, the density 



of states has been calculated by Tsukad(=:
121  and But? er36. 

From these calculations it is observed that as the size 

of the cluster is increased )  the calculated density of states 

matches with the exact density of states. For two or three 

dimensional systems, no such calculations have been carried 

out. Simple cluster theories have been developed and are 

discussed in the next section. 

c 3.2 Simple Self-Consistent Cluster Theories 

To simplify the calculations of the MCP' 2  people have 

approximated the form of the cell diagonal self-energy. The 

simplest approximation122'126  is to choose a scalar self- 

energy i.e. 	_ 	Ic  (where Ic  is an m1 n unit matrix) just 

like in the single site CPA. Therefore 7  there will be only 

one adjustable parameter in the effective Hamiltonian making 

it impossible to satisfy equation (3.10) which demands that 

all the n2  matrix elements of tc  f must vanish or the 

equation (3.12) which demands equality of each matrix element of 

of < Gc> with the corresponding one of G. Within the limitations 

of the scalar coherent potential a n atz  ! Butler126  suggested 

a self-consistent central site approximation (SCCSA) which was 

late2fon used by several workers. b1 S122g127-131 In  this approxi-

mation Z is chosen self-consistently in such a manner that the 

averaged density of states per site at the center of the cluster 

is consistent with the external medium i.e. 

<0 i <: G c> i> 	i C . 	 ;... (3.12k) 



Here the orbital 10) is centered at the center of the 

cluster. The numerical calculations in this approximation are 

easy and are in fact similar to that of the CP« except that 

here one treats a cluster of sites embedded in an effective 

medium rather than a single site'. With the choice of the 

scalar coherent potential, the effective medium retains its 

translational invariance. The density of states calculated 

in this approximation, compares well±26  with the exact 

results on a linear chain, obtained from the Schmidt integral-

equation technique1132.. For three dimensional systems this 

method was applied by Bro uers et all29'1 3C  to the calculation. 

of the phonon frequency spectra of lattices with mass defects 

for which exact histogram calculations17  are. available. 

According to their findings' the agreement between the two 

is fairly reasonable. Unfortunately, this approximation 

suffers from some severe drawbacks133  and it is not useful 

in the strong scattering regime. In this regime the configura-

tionally averaged Green's function G(z) is not an analytic 

f unction134  of the energy parameter z.. For large values of 6 

branch points appear in G(z) off the real z axis. The density 

of states may not be a single valued function of energy or 

for certain values of the energy the density of states may 

not be defined. These difficulties do not show up for small 

values of 8. But for large values of fi 2 one should be cautious 

while performing numerical calculations. Butler36  has pointed 

out that the branch points occur for values of real z which 

lie near the peaks it the density of states. In this region 
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of energy the averaged Green's function G(z) changes , rapidly 

and therefore one may easily overlook the fact that ones 

numerical algorithm has switched branches. The origin of 

these difficulties in the SCCSl has been explained by Butler36  

who also gave a physical argument for the failure of the SCCSA 

in the strong scattering regime. When the mean free path is 

shorter than the distance from the center of the cluster to 

its boundary, then the density of states at the center of the 

cluster will be almost independent of the external medium. 

Consequently, it will not be always possible to determine 

the medium by making the density of states at the center of 

the cluster consistent with the external medium. On the other 

hand a boundary site in the cluster is in intimate contact 

with the external medium'. Therefore by requiring the consis-

tency between the averaged diagonal element of the cluster 

Green! s function at the boundary of the ' cluster and a 

diagonal element of the Green's function for the uniform 

external medium, one should avoid the most obvious difficulty 

with the SCCSJ. This has led to the emergence of the self-

consistent boundary site approximation (SCBSA)36. Like the 
SCCSA, the SCBSA is also an  ad .hoc  theory and the numerical 

calculations are very simple. To check the usefulness of 

the SCBSAy Butler36  calculated the density of states at the 

center of the cluster for a linear .  chain,. .Surprisingly enough 

it was found that the SCBSA is identical to the MCPA on a 

linear chain though the later employed a full matrix self-

onergy,. Butler36  was able to reproduce the fine structure in 
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the density of states observed in the exact machine calculat-

ions The equivalence of the SGB& and the MCP , is, however, 

true only for a linear chain and not for two and three dimensional 

lattices. Because in two and three dimensions] the cells which 

reproduce the lattice when periodically continued, do not have 

all the boundary sites equivalent. Nonetheless, with this 

unexpected success of the SCBSA on a linear chain, it was 
naturally quite encouraging to check the usefulness of the 

SCBSIL in three dimensions, We135suggested a simple successive 

cluster reduction method which enables us to apply the SG"BSA 

to a system of any dimensionality. 

3.2a Successive cluster reduction method` 

In this method we considered clusters made up of a 

central site and its Z nearest neighbours (This, choice is 

not restricted and one can choose clusters of any size). Then 

one such cluster is thought to be immersed a n. an effective 

medium which is to be determined self-consistently. The Green's 

function Gc  for such a system can be written in terms of a 

Greenss function 	of a system in which an atom at the site 

n in the cluster has been replaced by a fictitious atom with 

site energy Z . 

G c  - &C(fl) + Gc(n) t(n) Gc(n) 	 ... (3.15 ) 

where 	I(r) = V(n) /C1 - Gc(n)  V(n)) 	 ... (3.16) 

is the T-matrix corresponding to the potential fluctuation Vtn) 
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(V(n) 	(En - 	 ) In> <nl) at the site P. Now G 0 ) can be 

expressed in terms of a Green's function 	of a system 

in which two atoms at the sites n and m in the cluster have 

been replaced by fictitious atoms. 

Gk(n) 	G c(nm) + Gc(nm) t (m) Gc(nn) 	 ~.... (3.17) 

V(ra) /(Gc (nm) V(ua) ) is the T-matrix corresponding to 

the potential fluctuation 	at the site ri. This process 

is repeated until all the (Z+l) atoms in the cluster are 

replaced by fictitious atoms. This method of successilvely 

writing the cluster Green's function GC in terms of Green's 

functions of smaller and smaller clusters and ultimately 

in terms of a perfectly coherent medium Green-I s function G 

enables us to calculate its matrix clement at the boundary 

site of the cluster. 

We applied this method to a substitutionally disordered 

binary alloy A Bl_x having the diarxond lattice structure. The 

cluster considered consists of a central site (o) and its 

four nearest neighbours (1)2,3 s4) . The foUoring set of 

equations is obtained by repeating the process s of Eqn. (3.15) 

Gc = Gc(o) + Gc(o) t(o) Ge(o') 

G,",(o) = Gc(ol) +G 0i) * .t(l) Gc(ol) 

Gc(o1)= Gc(o12)+ Gc(012)' 1(2) Gc(o12) 

Gc(o12)_ Gc(o123) + Gc( 0123) t(3) Gc(0123) 

Gc(0123) G+Gt( )̀ G. 

... (3.18a) 

r.. (3.J.8b) 

... (3.18c) 

.. . ( 3.18d) 

'... (3.18o) 
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This process is quite arbitrary and ore can write equation (3.18) 

in many different ways without effecting the final results. 

Now suppose we want to calculate the matrix element of 

GC at the boundary site 1 of the cluster, then from equation (3.18a) 

we have 

+ Gc(o)t(o)Gc(o) 
11 11  10 00 01 ... (3.19) 

where 	tCO) = VCO~ (1 -
'' 

(,20) 
00 00  00 00  ' 

Expressions for Gc(o) 2 Gc(o) and Gc(o) are easily obtained 11. 	1C 	o0 
from equation (3.18) and can be finally expressed in terms 

of the matrix elements G(o) y G'( 1) and G( 2) of the effective 

medium Greents function G(z)-. Here we have made use of the 

fact that for a single band, the matrix elements of G depend 

only on the separation between the two sites'. Here 0, ;s_3 

and H2 in the argument of G denote 0, the first nearest neighbour 

and the second nearest neighbour separations. Now G(R,) and 

G(F2) can be expressed in teats of G(o) as follows: 

The effective medium Green's function G can be written 

as 

G = ~ 	g W 	 .`.. (3.21) 

where g is the effective medium locator and is given by 

(Z - i )- f n> (nI. 	 ... (3.22) 
n 

Thor of ore 



(o) = goo+ I goo WoiGio 

" goo+ g00hZG(R1) 

or 	GC 's) = {(z - DG(o) - l / w.. 	 ... (3.23) 

also from (3.21) 

G()  goo oiGij 

- °ooWoiGii+ gooh(Z-1) G(R2) 

or G(R2) -= [Z(z-Z,) G( ~l) / w - (o)} / (Z-1). 	... (3.21k) 

The effective medium is then determined self-consistently by 

satisfying the following condition 

P
c GC 
	 ;.'.. (3.25) 

We calculated Gil for all the 32 configurations of the 5 atom 

cluster. P is the probability of a particular configuration 

of the cluster. The half band width of the pure constituents 

is taken to be :• Equation (3.25). was solved by an iterative 

procedure. The density of states calculated in this manner 

is shown in figure (3.1) . We have calculated the density of 

states at the center of the cluster and at the boundary of 

the cluster. The density of states at the boundary site is 

here calculated from the relation 

P(E) = - 	Ira G(o) 	 ... (3.26) 



and is denoted by SCBSA(B) . 
The density of states at the center of the cluster is calculated 

from 

P() -- -- 1 Im P P Goo 	 ... (3 .27) 
C 

and is denoted by SCBSA(C). Expression for G 0 is obtained 

from (3.18a) and is given by 
Ge = 

 
G0(0)+ Gc(o)t(o)Gc(o) . 	 ... (3.28) 

00 00  00 00 00 

C000) and ~coa) can again be calculated from (3.18b) and (3.20) 

respectively and can be ultimately written in -'Germs of the 

matrix elements of the effective medium Greens s function. 

We have compared our results with the results obtained 

from the SCCSA1267 the CPA29 and the disordered field formal.ilm 

(DFF) .136. The following conclusions can be immediately drawn 

from the figure: 

(i) The SCCSA, the DFY,. and the CPA show splitting of 

the band for 8 - 1 and x = 0.5 while the SCBSA does not. One 

could see from qualitative arguments of Kirkpatrick et al1+0 

that inclusion of correlated scattering from a cluster 

should cause the band split at a higher 3 than the one in the CPA,. 

(is.) There is not much difference in the structure of the 

SCBSA(B) and the CPA density of states except that the band 

in the SCBSA (B) has broadened on both the upper and the lower 

edges. The SCBSA(C) shows a peak in the density of states which 

agrees well with the results of the DFF. The DFF shows two peaks 

in the density of states. However 9 there are some mistakes in the 
•calculations of the environment in the DFF (See Section. 3.t.) . 



This effects the band edges and the middle of the band. The 

DFF has been shownl37 to be equivalent to using full cluster 

self--energy, whereas here in the SCBSA we used a scalar self-

energy. This shows that the SCBSA is also a good approximation 

even for three dimensional systems., The SCCSA density of 

states also shows a peaky structure but it has a discontinuity 

at E 1 2.25. This is because the Green's f unction has a spurious 

branch cut in the complex energy plane (for more details see 

Section § 3.3) • 

3.2b An approximate configuration counting method 

From above calculations it is apparent that tho SCBSA 
reproduces well the fine structure in the density of states if 

applied to the center of the cluster. The procedure followed 

here in the derivation of the SCBSA becomes a bit laborious 
as the number of nearest neighbours increases (e.g. the cubic 

lattices) . The computational effort needed increases a lot 
because the configurational averages have to be performed over 

a large number of configurations. We~3o proposed another simpler 
method in which the number of distinct configurations is greatly 

reduced by making an assumption that for a fixed number . of 
different, kinds of atoms on the shell of nearest neighbours, 

the different configurations of the atoms on the shell are not 
distinguished. This approximation in counting configurations 
was earlier made by Brouers et a1128 in their study of the SCCSA. 

With this simplifying assumption, the density of states comes 

out to be the same as the one obtained by recognising and 
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counting all the different configurations. This will mean that 

the total averaged density of states is not sensitive to the 

detailed configuration of the atoms in the cluster. 

As before we considered clusters consisting of a central 

site and its Z nearest neighbours. Then analogous to the 

single site CPA, one such cluster c is thought to be immersed 

in the effective medium. The Green's function Gc for such a 

system can be written as 

A, G e 	{G 	- 	I i (€ i 	)~ i I 4 	 • 	... (3.29) 
iec 

This can be expressed in terms of a Green's function Gs 

of a system in which the central site is also occupied by a 

fictitious atom with site energy ,. Then, 

GC - G5 -f- GS V°G C 	 ... (3.30) 

where 	_Vo = I0>( - `) (a 	 ... (3.31) 

and 0 denotes the central site. 

Now the Green's function Gs can easily be expressed in 

terms of the effective medium Green's function G; 

... (3.32) 

s 
where 	T = ?6 U + G Ts) 	 ... (3133) 

and 	 Vs — _ 	I i (ei_ 	) <i I s 	 ... (3.3I) i 	 - 

s denotes the shell of nearest -neighbours. Pri.ino dcnotcs that 
the sum is taken over the shell sites. 



In order to determine the effective medium within the 

SCBSA, we choose the following condition 

P ~ZtGii)Pc  G(o) 

c 
... (3.35) 

Here Pc is the weighted probability of a cluster configura-

tion. Since the various configurations for a fixed number of 

A and B types of atoms on the shell s are not distinguished, 

we have summed over all the shell sites and divided by Z to 

obtain an average matrix element of QC at the boundary site. 

The matrix elements of Gc are obtained from (3.30) 

Z tGii - Z 	Gii+ !. oo/(l- o0Goo) x Z 	Go1Gio. 	..' 3.36) 

Equation (3.32) is then solved to obtain 

 
Goo = G(o) + G2(R) j 

3.j 

= G(o) + G2(R1 )T ' 	 e.. (3.37) 

where 

T - Z L= Ts j. 	... (3.38) 
ij

•Also,  G~i - G(o) + Et GijT~kGki 
jk 

= (o)+ G(o) `) `TikGki+ r' TjkGki 
k 

= G(o)+(G. o 	T 	2 G 	^TS  

2 	 k - (_ 	 t Ts + Z i--. 2 Ts 
Ji 



Summing over i and dividirn by Z, we obtain 

G  'Gii = G(o) + 1(()E)2 'Tii+ t2rG(o)+(Z-2) r 2 ..~T 

... (3.39) 

In a similar manner we also obtain 

GoiGio - G2(Rl) (l+Z (M T) 2f 1+ Z(G(o) - E) t t tii 

.,. (3.o) 

where 

° 	i/(l-Vl1( (o)-- )). 	 ... (3.J-1) 

Here the matrix elements of the effective medium Creents 
function between two different sites of the shell .q are 
approximated by r which is defined as1~9 

(Zll) 	t G1 . 	 ... (3.i-3) 
ij 

This approximation is equivalent to the hypothesis that the 

various configurations for a fixed number of A and B types 

of atoms on the shell are not distinguished. Expressions for 
T and Tii are obtained. from Eq. (3.33) , 

r 	s 
1i1 - V4(1 + k GikT j) 

_'t ,S 	c ± (o)T .+r 	-kj°- ('Tip) 
k 



or 	T J  iii(  ij+  i:::  

Therefore 
T _ Z(1 + z 1T) 	 tii. 	 .: U3) 

Similarly 

+ 	(].+z rT) >'t 1.  Z i  ii 	i 	 i 

Exp;?ession for G(R1) is given by (3.23) and for E it Is the 

same as (3.2k) , 

0•i (3.4-5 ) 

Once the effective medium is determined by solving the condi-
tion (3.35) , the partial and the total averaged densities of 

states are then determined as before in to ways; 

(i) At the boundary of the cluster the partial densities of 

states are calculated from 

PC(E) A - 3Z Im > 1 Gii. 
i 

0 0 . (3.6) 

The total averaged density of states P(E) is obtained from (3.26). 

(ii) At the center of the cluster these are obtained from 

PC  (E) 	- 	Im Gc 	 ... (3.1.-7) 

and 	P(E)= i Pc  Pc(E) .  
P 

C 



Expression for Goo is obtaixncd from (3.30) 

Gc
0 w 

- GS 00 /(1-G00
s V

00
) ) , 	 ... (3.+9) 

0  

uhcro Goa is givon by Eqn. (3.37) . 
This procedure has been used to calculate the densities 

of states for binary alloys having the simple cubic and the 

diamond lattice structures. The input density of states 

¢(o) (E) for the pure constituents, needed in the calculation 

of the Green's f unction matrix elements ? is shown in figure 3.2 

for a simple cubic lattice. For the diamond lattice it was 

calculated using the continued fraction coefficients ai and 

bits tabulated in table 3.1. 

P(o)(F) = _  Im Goo)(E) it 

where G(0) (E) can be expressed as an infinite continued 

fraction139 
	 m 

(o) ~E) - 1. ___ 
00 	E_ ao_b2 

E- al-b 2 
E~... 

(3.50) 

The Simple Cubic Lattice 

Our results for alloys having the simple cubic lattice 

structure are shown in Figs.3.3-3.•7. The half band width of 

the pure constituents is taken to be unity. In Fig.3.3 we 

have shown the minority band of an alloy with 8l.2 and 

x=0,05. There is not much difference in the results of the 

CPA and other methods (considered here) as far as the majority 

band is concerned. The CPA result and the results obtained from 



Table 3.1 

Continued fraction coefficients for diamond lattice bulk 
s-band, 21 levels exact. 

All a1 t s are zero. 

bi 

2.0000 

1.7321 

2.2361 
i.8)39 

2. 0892 

1.9358 

2. 0718 

1.9140 

2.0861 

1.9295 

2.0 517 

1.9571 

2. 01.58 

1.9175 

2..0533 

1.9538 
2.0367 
1.9679 
2.0338 
1.9620 

2.0 31+8 
2.0 
2,0 

1 

2 

3 

if 

6 

7 

8 

9 

10 

11_ 

12 

13 

1~. 

15 

16 
17 
18 
19 
20 
21 
22 



two other cluster theories, the SCCSA and the BPA of Brouers 

et al128  and the method of moments11+0 , have also been shown 

for comparison. The central peak in these results corresponds 

to an isolated impurity cluster configuration. The other peaks 

similarly correspond to two impurity, three impurity.... 

resonance levels. It .can be easily noticed that the various 

peaks in the SCBSA(B) and the SCBSA(C) are centered at about 

the same energies as in the SCCSA, the BPA and the method of 

moments. However, there is a marked distinction between the 

results obtained from the SCBSA(B) and the SCBSA(C). In the case 

of the SCBSA(B) , the various peaks are less prominent as 

compared to the results obtained from the SCBSA(C) . Parti-

cularly, the central peak in the SCBSA(B) looks very similar 

to the one in the CPA and is not well defined. Whereas the 

results of the SCBSA(C) agree fairly well with the SCCSA, the 

BPA and the method of moments except that, the peaks in the 

SCBSA(C) are more intense. The method of moments gives a band 

which is wider than the one obtained from any other method 

mentioned here. This is because of the smaller size of the 

cluster considered in the SCBSA or the SCCSA as compared to the 

method of moments where a cluster of 7175 atoms has been used. 

Lifshitz39  has argued that the tailing becomes more prominent 

as we increase the cluster size very much. The results of 

the moments method given here are more or less the same as the 

exact results obtained by Alben e al18. The only difference 

between the two is that the curves in the moment method are 

smoother due to the fact that the continuation of the continued 

fraction eliminates the finite size effects. From these we 
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conclude that the SCBSA(C) results are in good agreement with 

the exact results. 

Figure 3. corresponds to an alloy with 8 = 1.0 and 
-x = 0.5. The SCBSA(B) results are more or less the same as the 

CPA results (not shown in the figure). The SCBSA(C) result shows 

peaks at E- -+ 0.635 which agrees fairly well with the one obtained 

from the method of moments. This corresponds to cluster confi- 
gurations where an A(B) atom is surrounded by 6B or 5B (6A 
or 5A) atoms as can be seen from figure 3.5 here we have plotted 

the partial densities of states. However, the SCBSA(C) misses 

peaks at E f. 325 and shows some unphysical results in the 

energy interval E z. -0.02 to E+0.02. In this region some of the 

partial densities of states become negative which is obvious 

from figure 3.5. It is also noticed from figure 3.5 that the 

partial densities of states do not match at E = 0.0 i.e. there 

are discontinuities in the partial densities of states curves. 

This is a sign of non-analyticity (see the next section) which  

makes an approximation unacceptable.  

In figure 3.6 , we have shown the minority band of an 

alloy with fi = 2.2 and x = 0.1. This corresponds to a split 
o 

band case. It is obvious from the figure that the SCBSA(B) 	 a~ 

result is not much different from the CPA result. However, the 	=-a 

SCBSA(C) reproduces the fixie structure as observed in the result 
of the moment method. The central peak in the SCBSA(C) is more 

intense compared to the result of the moment method, whereas 

the other peaks are subdued. The partial densities of  
I PoorKEE J 

are found to become negative in the energy region below  
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At certain energies even the total averaged density of 

states is found to be negative. The results in this energy 

region are not reliable at all. 

The Diamond Lattice 

Our results for alloys having the diamond lattice 

structure are shown in Figs.3.7-3.9. The half band width of 

the pure constituents has been taken to be 4. The results for 

alloys with 5 = 1.0 and x = 0.5 are the same as shown in 

figure 3.1. In contrast to the simple cubic lattice, here 
for x = 0.5 there rare no difficulties of non analyticities 
or negative partial densities of states. In figure 3.7 we 
have shown the minority band of relatively dilute alloy with 

fi r- 2.0 and x = 0.1. This corresponds to the split band 

region. The SCBSA(B) as well as the SCBSA(C) both show fine 

structure in the densities of states. However 9 the peaks are 

more intense in the case of the SCBSA(C). There are no results 

available for this particular case from other methods. As in the 

case of the simple cubic alloys, here also we face the problem 

of negative partial densities of states. In the case of the 

SCBSA(B)., the partial densities of states are shown in 

figure 3.8. In a small region of energy between L 3.I~.6l 
and E N3:.L+73, some of. tho partial densities, of states become 

negative, (This feature is shown. in an insert in the lower 

part of the figure) whereas the total averaged density of states 

is positive. In the case of the SCBSA(C), the partial densities 

of states are positive in this region. But near E3.2, in 
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both the SCBSA(B) and the SCBSA(C) some of the partial densi-

ties of states are negative. In the SCBSA(C) even the total 

averaged density of states is negative. 

In figure 3.9, results have been presented for an alloy 

with &= 2.0 and x 0.5. The SCBSA(B) result is more or less 

similar to the CPA result but the SCBSA(C) shows a peaky 

structure. Here we do not face any problem of non-analyticity 

or the negative partial densities of states. 

From these results it is clear that though the SCBSA is 

quite simple and reproduces the fine structure welly yet it 

suffers from the difficulties of negative partial densities of 

states and non-analytic behaviour of the Greents function 

(See Section 3.3) in the strong scattering regime. Further, it 

is apparent that the SCBSA is superior to the SCCSA as the region 

of analyticity of the SCBSI, is much greater than that of the 

SCCSA. This region of analyticity also depends on the under-

lying lattice structure of the alloy. For the diamond lattice 

the SCBSA is found to be successful over a larger range of 

parameters in contrast to the simple cubic lattice. Moreover 9  

for a linear chain the SCBSA always yields analytic results 

whereas the SCCSA. does not. We conclude that the SCBSA(C) is 

reasonably good approximation for the calculation of the 

electronic structure of disordered alloys '  but it should be 

applied with care in the strong scattering regime. 
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~ 3.3 Analytic Properties of Averaged Green's Function 

From the analytic propertiesl3)+ of the Green's function? 

every exact configuration dependent Green's f unction (2. 5) 
contributing to the average has singularities only on the 
real axis. Therefore, the exact averaged Green's function is 
analytic in the complex energy plane (Tm z 0) except for a 
cut along the real axis. The configurationally averaged 
Greens s function may be written as follows: 

° ((z-'> 	(z-W-; )rl ; 	 ...(3.5l) 

where the self-energy has the sane analytic behaviour as 
Further, both the < G > and y satisfy the 'reality 

condition': 

z) - G(z) 
and 	(z) = (z ) . 	 ... (3.52) 

In the following we shall work in the upper half-plane (Im z> 0) 
of the complex energy plane. From equation (A. .j.) of appendix A, 
it is clear that in this case the imaginary part of the Green's 

function is negative definite and therefore, from equation (A.11) , 
the density of states is +ve definite. This also leads to the 
result that the imaginary part of Z is negative definite.i~5 

The question of analyticity of the configurationally 
averaged Green's function has become an important issue in the 
theories of disordered systems (especially the cluster theories). 

In fact the analyticities are very hard to establish ana,J.ytically 
and it becomcG pnglPr to locate norianalyticities through a 



numerical computation of the Green's function in the complex 
energy plane. Here from the nor-nalyticities of the averaged 
Green's function we shall mean branch points off the real 

C(( 
axis. Approximations which lead to <G> with such nonanalytic 

n 

behaviour would be unacceptable. 

Ivialler-Hartmann~'41 for the first time gave a general 

proof that the single site CPA always leads to analytic 

Green's functions. Later on Ducastelle125 proved the analyti-
city of the MCPA. Since the MCPA is hard to apply, an important 
question is whether the approximate self-consistent theories 

lead to analytic Green's functions or not. Nickel and 
Butleri33 carried out numerical, calculations of the average 
Green's function for real as well as complex energies. These cal-
culations were based on two different approximations (i) the 
pair approximation of Nickel and Krumhansl1 2 and (ii) the 

SCCSA. It was shown that both of these approximations suffer 
from non-analyticities in the strong scattering regime. At 

those values of Rez where singular points appear off the real 

axis, the density of states is not uniquely defined. 

Wel38 have studied the analytic behaviour of the SCBSA 

by solving the condition (3.35) self-consistently in the 
complex energy plane. This equation is highly non-linear and 

yields many solutions. The correct solution was chosen by 

starting at a very large value of the energy where we know the 
asymptotic behaviour of the Green's function (G (z) 11 1/z? 

z -s co). This root was then followed ,towards the energy region 
of interest. Our results for a simple cubic alloy with S = 2.2 
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and x = 0.1, are shown in figure 3.10 where we have drawn 

contours of equal real and imaginary parts of the configura-

tionally averaged Green's function. We started with a large 

value of Im z and tried to approach the real axis. It was 

found that for Im z {0.05 as we go from E = +co towards the 

band region the root does not join continuously to the value 

it will have if we approach the band region from E = -oo. 

(If every thing works well then there should be only one 

root which joins continuously onto G = 1/z as 1 z f 	oo ( Im z > 0)) . 

A discontinuity in the value of the root is an indication for 

the existence of branch-point singularities off the real axis 

and forces us to draw branch cuts off the real axis. Here the 

cut has been drawn parallel to the imaginary z axis at 

Re z, .91. The density of states is different if we cross 

E z .9l from right to left and from left to right. From this 

calculation it is apparent that the SCBSA is non-analytic in 

the strong scattering regime. We also noticed earlier that in 

this region some of the partial densities of states were 

negative. It is our conjecture that one will face the problem 

of non-analyticity of the averaged Green's function in a 

region where the partial densities of states become negative. 

The negative partial densities of states observed in both the 

simple cubic and the diamond lattices ! are unphysical. and 

should not be there in any theory. We feel that this defect 

is inherent in the boundary site condition and it does not 

stem from the additional approximation that we introduced 

through equation (3.12). This approximates the matrix elements 

of G between two different sites of the shell by their averaged 



value rand is exact on a diamond lattice. We have not searched 

for the lowest value of !3 and x at which the non-analytic 

behaviour of the averaged Greens function (or the negative 

partial densities of states) starts showing up ) but for the 

simple cubic. alloys with S = 1.0 and x = 0.5 and for alloys 

having the diamond lattice structure with S = 2.0 and x = 0.1, 

these features are seen in figures 3.1k and 3.7 respectively. 

It is also concluded from this calculation that the SCBSA is 

not equivalent to the MCPA in three dimensions as the later 

always yields analytic Green's functions, but the SCBSA does 

not. We feel that the problem of non-analyticity will be un-

avoidable in any cluster theory where the coherent potential 

matrix is approximated by a scalar coherent potential. Perhaps 

one should use smaller clusters with proper symmetries and then 

treat these exactly. 

3.t4. The Disorder Field Formulation (DFF) 

From the discussion of the last section we noticed that. 

most of the cluster theories except the MCPA suffer from the 

. difficulty of non-analytic behaviour of the averaged Green's 

function.  These difficulties arise because of the improper 

choice of the form of the self-energy matrix. 1,lookerjee58  in 

1973, introduced a new formalism known as the disorder field 

formalism (DFF) which preserves the correct 'herglotz' 

propertyl  of the averaged Green's function. This is because, 

unlike other conventional techniques, here the averaging is done 

exactly prior to any perturbation expansion and subsequent 

approximations. There is no direct introduction of a self-energy 
A 

 
Afunctionf(zicalled herglotz if . for lm z ) 0, f( 	is anaW- 
lytic and Im f (z) C 0. 
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concept. Whereas all the conventional perturbation approaches 
construct an effective Hamiltonian by def~f.ang a self-energy 
operator 9 in the DFF one obtains an effective Hamiltonian 
by enlarging the initial Hilbert space (in which the 
Hamiltonian operator of the system H is described) through 
the introduction of another Hilbert space I which describes 
the disorder field. The product space 	is referred to 
as the'augmented space'. This method has-been discussed in 

	

detail by Mooker 	j ee58 in the case, w_ when the Hamiltonian has 	
1.3 

only the diagonal disorder. It was shown by .Bishop and MMlookerjee 

that within the single site approximation the new formalism 
reproduces the results of the CPA. In this paper they also 

showed the way to construct cluster-CPA. The method reproduced 

the fine structure in the spectrum of a disordered linear 
chain. Later, IVlooker j ee136 applied this formalism to three 
dimensional systems ) namely, alloys having the diamond lattice 

structure. Unfortunately, in this calculation' some mistakes 
crept in the calculation of the environment. In this section 
we shall point out these mistakes and describe some numerical 
results. We shall not reproduce all the details of the 
formalism here, but start with the expression 3 for the 
configurationally averaged Green's function defined as 

-1 

	

G~z) 	(zIV -. H) 	 ... (3.53) 

where I. is the identity operator in T and H is the effective 
medium Hamiltonian which acts in the augmented space I and is 

defined as 

	

P.S.Qi + 	
j 

hiJ 1jQI 	 ... (3.5 i 	i 



where 	- Il®I2 	 .. Ii , c iii ®-+®• 	 ... (3.55) 
Qie M.eOi y Pi ° (i> i is a projection operator ink. 

Ii>(iI, 

	

0ir ... . 	... (3.56) 

and Ii is the identity operator in the space 0i. ( denotes 

the direct or tensor product. We have yet to define 01 and 

For each random variable ei, we find a Hilbert space O1, 

.a unit vector v (in 01) and a self-adjoinc operator Mi 

(in 01) such that 

pi (Ei)= - 	Lim 	Im Kvoi(eIi-HIi) M1 Iv*'>- 	... (3.57) 
s+E i+io 

In other words, v and t~Ii are chosen such that the spectral 
r 

density of H1 with respect to v is the given probability 

distribution p of the random variable. Such a relation can 

always be found for any probability density p. For the 

binary alloy the probability distribution is given by 

... (3.58) 

For this distribution, 0. is a Hilbert space of dimension 2 

and the representation of the operator Mi in a basis vl is• 
a 22 matrix 

t 
c 	 ~.. (3.59) 

;:here a  

b 	(E A_ cB )JT[f - ) 
	 ... (3.6o) 



The eien values of the matrix Mi are EA and eB and the 

corresponding eigen vectors are 

/ p:'  
x 

iJ Li 

These eigenvectors can be obtained from a linear combina •- 

tion of the unit vectors 

(1)-  (0)  and  

Therefore the appropriate unit vectors are 

1 	 (0) 
vo \0 and v: 1 ,.. (3.61 

The fact that qi is equal to the identity operator on all 

except the 1''h component of ' is an expression of the indepen-

dence of the random variables €its . We further define 

= v0Ov() j... 	vo®... 	 ... (3.62 

With these definitions we can now uurite the matrix elements 

of the effective Hamiltonian in the augmented- space 2i 2 

hif 9 jf' 	\if iH)if t 	= rlif t5ij+ hijsfft• 	.. (3.63 

where the vectors (J if>_}' in the augmented space 	are defined 

as 

	

Ivi€€v1 € Va Y v3 ~,., vk 	... 
1 	2 	3 	ak 

where i denotes the atomic site index and ak = 0 or 1. 



Following the notation of iiookor jee we set  

if> = I Vle 	 >> ... 	(3.6L.) 
I if j> = IV 	v0 (& VOO... +1 voa l0 vZ(0vo 	€ ..> 

if j,> = 11Ji®c vow... +1 voWlS v 	jvo 	®... vo~l® 
of ne vo +l 

and so on. Here f i e ..., denotes the field states and 1Ti 	I i> 
The matrix elements of the averaged Green's function are then 
determined from the relation 

_ 	 -1 
G (E) 	<ijn(3Yo 1 CE+i.o) z 	... (3.67) 

So far we have described the augmented space formalism 
for determining the configurationally averaged Green's 
function of an alloy having only the diagonal disorder. 
Equation (3.65)'is exact and is applicable to one, two or 

three dimensional alloys. Essentially what we have done so 

far is that we have transformed the initial Hamiltonian H 
which involves some random variables to H that has no random 
variables. We shall now employ a graphical method which gives 

us physical insight into the nature of the new formalism. 
In this method one reduces the evaluation of Gm(s) to the 
calculation of the contributions from all 'self--avoiding 
walks' between I of > and I mf > available in the whole augmented 
space T. This graphical method was introduced by Andersonlj']̀ 
to study diffusion in random lattices and was later used 
by Bishop and Hooker jco 3 to calculate the density of states 
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of diagonally disordered alloys. In order to calculate the 
density of states in the augmented space formalism we need to 
evaluate the inner product 	{ (~I-~ -1 i tJ Q3'o 	Before 
we actually calculate it, it is instructive to see what 

equation (3.63) means descriptively in terms o.f 'walls 
in the augmented space. An electron at a site labelled by i 

and field state f can be induced by H either to make spatial 
hops to one of the nearest neighbours j of i with matrix 

element hid = keeping the field state the same or it can remain 
on the same spatial site while the field at the site i changes 
according to 111 ~ the fields at all other spatial sites 
remaining unchanged. 

The Graphical Tethod: 

Our problem now is to develop an approximation for the 

determination of Goo. The exact graph for this in the augmented 
space is impossible to think of as it involves an enormously 

large variety of closed, self-avoiding loops from Of and back. 
Here we shall discuss the pair approximation in detail and 
will make only some comments on the higher order approximations. 

In the pair approximation we retain all the closed self-

avoiding paths in J between a nearest neighbour pair of 

spatial sites and delink all closed loops (which involve 

both spatial and field hops) involving three 9 four or more 
spatial sites. In other words in this approximation, two 

spatial vertices one within and one outside the cluster 
(here the pair under consideration) cannot be linked in a 

loop involving field hops. In the multiple scattering 



p-624- 

terminology we account exactly the multiple scattering 

within the cluster whereas the scattering from vertices within 

the cluster and outside the cluster is treated independently. 

This is essentially the idea behind the cluster CPA's. 

The graph corresponding to a pair approximation is shown 
r 	t 

in Fig.3.11. Here Of denotes that an electron is at a spatial 

site '01  and in the field state If> . It can go to the site 1 

with an h hop keeping the field same. This is denoted as 
lf. Then it can change the field at the site 1. This field 
hop has been denoted by b and the corresponding vertex 
is denoted as lf l  corresponding to the state Ilfi> . 
Now it can again come to site '0' in the state  1 0f1;% without 

changing the field at 1 and then a field hop to come to state 

IOf l0) and so on. This graph is the same for one, two or 

three dimensional solids. The only change will be in the 

calculation of the environment attached to each vertex of the 

graph. This environment corresponds to walks in the delinked 

part of the original graph and involves vertices outside the 

cluster. For a linear chain this procedure was used by Bishop 

and Hooker j eel 3  and for the diamond lattice by Mooker j ee136. 

In the application to the diamond lattice there are some 

mistakes in the calculation of the environment. In Fig.3.12 

we show the correct graph for the environment on a diamond 

lattice. This environment is the same whether one considers 

a pair or a cluster of a central site and its Z nearest, 

neighbours (as. considered by Mookerjee) . In the augmented 

space 3, the graph corresponding to G(E) has five fold 

coordination (for the diamond lattice) at each vertex: four 
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of them with link factor h (single line) to the four nearest 

neighbour spatial sites and one with link factor b (double 

line) corresponding to a 'field' hop. The circles g' represent 

graphs which we call the 'environment'. To begin with we 

observe that in the graph for g', one spatial hop and a field 

hop should be missing as we have already included these in 

the main graph (Fig.3.11). Now we denote by g a graph with 

four h hops to each of which we attach g' and a b link which 
A 

is again connected by g. This ensures a five fold coordinat- 	u 

ion at each vertex of the graph. Mookerjee missed this later 

g attached to each b link. None of the g's attached to b links 

from different vertices are interconnected? 'delinking' is, 

therefore )  assured. 

When disorder is absent i.e. b = 0, g' is just 3h2Goo) 

on the diamond lattice )  where the superscript(o) on G denotes 

that the Green's function has been calculated in the situation 

where there is a 'vacancy' in the neighbourhood of the 

vertex '01. The best method of calculating this is the 

recursion method where we calculate a set of coefficients 

such that 

- P g(E)  J 

G°0 (  E) = g0(E) . 	 ... (3.66) 

The values of on  in tables 3.2 and 3.3 were supplied to us 
by 11. J.Kelly. 



Table 3. 2 
Continued fraction coefficients for the diamond lattice 
(with a vacancy) s--band, 21 levels exact. 

All ai ls are zero 

bi 

1 1.732051 
2 1.732050 
3 2.081665 

1.952610 
5 1.99 0033 
6 2. 01172 
7 2. 001086 
8 1.989 21.2 
9 2.00433 2 

10 2. 011.27 
11 1.9763514 

12 2.0214587 
13 1.982179 
11~ 2.012238 
15 1.986095 
16 2.020713 
17 1.973568 
18 2.026295 
19 1.978129 
20 2..017886 
21 1.979012 
22 2.0 
00 2.0 
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Table 3.3d- 
Continued fraction coefficients for the simple 
cubic lattice (with a vacancy) s-band , 12 levels exact. 

All airs are zero. 

bi 
1 2.236068 
2 2.863563 
3 3.03561 
4 2.933415 
5 3.031-3 77 
6 2.99051+1 
7 2.9882L12 
8 3.021068 
9 2.980383 

10 3.010758 
11 .3,000135 
12  2.991401+ 
13 3.0 
00 3.0 



In the presence of disorder (bb 0) and referring to Fig.3.12, 

a • 

we have 

gf 
e 3h2Goo) (E-a-b2g ) a 

1 2 EYc  

E"a•-gi-b2g 	a 

Here we choose h to be unity. and define 

11 
 tT _ E _ a_ b 29 . s '°' 

so that g =- 3h2Goo°~ ( ) 
L~ and 

Ea-c--h? 

	

Nr 	g 11 

The last equation simplifies to 

(E--c )x2- f (E-c) g' +1.+(E-a) (E- c) --h ~} 

	

+ (E-a) (E- c) g' +1(E-a) -b2g t 	- 0 

... (3.67) 

... (3.68) 

... (3.69) 

... (3.70) 

The solution of (3.67) for b/0 can be affected by a Newton-
Raphson type iterative procedure. We choose some value of E  
in the band and start with the known solution for b = 0. Then 
by varying b in small steps we successively reach, the point 

b = b0 by applying the, Newton•-Raphson technique on the 
variable b. Then by varying the variable E in small steps 
we calculate g' (E,b) . For 	1. 0 and x = 0.5' the real and 
imaginary parts of g' are shown in Fig.3.13 for the diamond 

lattice. A comparison with Mookerjeets result136(Fig .9) shows 

that the results are almost identical except near E W 0.0 

and the band edges. Once the environment is calculated, the 
diagonal element of the averaged Greens s function  Goo is 
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obtained from the following relation 

_ ------~-~- 1 	_ _ _ 	 (3.71) 00 z-a_gt- C(P) 

where C(P) denotes the contribution of a self--avoiding walk. 
Now from Fig.3.11 there are only four self-avoiding paths 
which start from vertex' 1 (Of) and come back to 1(Of) without 
repeating any vertex. These are (121), (181), (1231.56781) and 

(1876.32i). Also1~t3 >l~w2+ 

C(121) 	= h2G22) 

C(181)  = t2G8~) 

C(123!156781)= hG 22) bG331) hG 21) hG ~.32I) 

hG (54321) bG(654321) hG(7654321)b 66  7?  88 

33 
G +321) 

 

G(654321) 688654.321) 	 ... (3.72) 

and 

C(18765L.321) = h 1̀Gg8)G778)G6687) 6(1876) x 

G(18765)G(18765).)G(187651+3) 
44  33  22  

If we exclude l then the rest of the graph (Fig.3.11) is just 
a linear chain shown in Fig.3.1L. From this graph it is easy 

to write the following expressions for various Green's functions. 

22 	- e--a-g --bEC2]l 
33 



(21) - 
G33 

9 

z-c-gt_h2G(321) 

G(321)= 	
1 

.f. 	z_ a_ g , _b 2G5~3 21) 

G55321) - z-c_ t_h2G x'321) 
g  66 

 1 l-2 	x.321) z- c--g b G77 

G(65).321) = - 	1 
77 	z-a-g t-h2G88 1'321) 

G877651+321)-, Z-c1 = 

G(1) 	-  
- 
1 .. 88 	z-c-g'-h2G(18) 

G (18) 	= .~._.1.., 
z-a--g t-b2G668 

6(187) 	_ 	1 
66 	z- c-- g' - h2G (1~$76)~ 

G(1876) r 	1 
55  z-c-gt-b2G 8 ) 

6(18765)  1 _  

4̀  	z_ a_ g 1 - h2G 

6(187651,) u 	1 
33 	z.. c_g t _b2G2287 1-3) 

G ('1876 513) = _ 1 t 22 	z- a- g 

... (3.73) 



The corresponding density of states has been shown in Fig.3.15 
along with the CPA results. The DFF shows a two peaked structure. 

Densities of states for other parameters are shown in Fig.3.16. 
The DFF shows a peaky structure which becomes more prominent 
as disorder is increased and a wider band as compared to the 

CPA. We have not been able to complete calculations for 
clusters consisting the central site and its four nearest 
neighbours, because of inadequate computer facilities. This 
problem requires an inversion of a complex 160x160 matrix.. The 

main graph corresponding to the cluster remains the same as 
given by Mookerjee. We have also performed pair calculations 
for a simple cubic lattice. The graph for the environment is 
shown in Fig.3.17. In general the equation (3.67) may be written 
as follows: 

(Z-1)h2Go°) (x) 	 ... (3.74) 

where X satisfies the equation 

(E c) L2-~[(E-c)g!+Zh2+(E--a)(F~-c)-b2 F x 
+(. -a)(F-c)gt+Zh2(E-a)--b2g' 	 =, 0 	 ... (3.75) 

The results of the pair calculation for the simple cubic 
lattice are similar to the one for the diamond lattice. A 
cluster (consisting of (Z+l) sites) calculation for the simple 
cubic lattice will require inversion of a (7x27) x(7x27) 
complex matrix and the main graph for calculating G will be 
much more complicated than the corresponding graph for the 
diamond lattice. 



The DFF has been shown137  to be equivalent to using 

-a full cluster diagonal self-energy. In this sense we can say 

that the cluster calculations in DFF are equivalent to the MCPA, 

Both of these always yield analytic Greents functions. The 

DFF has recently been applied to alloys having diagonal as 

well the off-diagonal disordersl1+5  and to situations there 

there exist some short--range-orderl6  in the alloys. A 

single bond approximation for alloys having off-diagonal dis-

order alone was formulated by us17. These formulations have 
been used to calculate density of states f or a linear chain. 

An application of the DFF to three dimensional lattices will 

be quite involved. This necessitates y therefore, a need for 

simpler cluster generalizations which preserve the herglotz 

propery of the Green's function. 

S3.5 A Critical Study of Various Cluster Theories 

After the introduction of the CPA by Soven27  it was 

reformulated in a variety of ways ) e.g., the locator methodl)`8,1.9 9 

the diagrammatic technique150, the cumulant expansion methodi519  

the moment methodi52, the recursion methodl53  , and the DFFl `3. 
All of these methods led to the same results in the single 
site approximation. But unlike the single site CPA there is 
no unique way for cluster generalizations of the CPA. The 

early attempts in this direction were based on improving the 
CPA by considering correlated scatterings from pairs s  
triplets etc. But conflicting ideas came into picture. In 

some of these generalizations - '-55  based on the multiple 

scattering approach people have considered all the pairs which 
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connect a site n with all the rest of the sites in the 
system. The self-energy in this approximation is no longer 
diagonal in the site representation but has off-diagonal 
matrix elements between every pair of sites. Whereas in 

150,156 
some of the other pair generalizations based on diagrammatic 
techniques people have considered multiple scatterings from 

a nearest neighbour pair embedded in an effective medium. 
The self-energy in this approximation is a 2x2 matrix. 

Though these generalizations produced some fine structure in 
the density of states but were not quite satisfactory. In 
these generalizations the equivalence between the locator 
and the propagator expansions as observed in the single site 

CPA, is no longer preservedl °8. The numerical calculations 

by Nickel and Butler133 show that these generalizations 

suffer from the difficulty of non-analytic behaviour of the 
averaged Green's function in the strong scattering regime. 
Further the formulae of Nickel and Krumhansll)'2 and that of 
Cyr.ot-Lackmann and Ducastellei51' do not have the appropriate 

split band limit. The pair approximations also fail to take 

into account the correlation effects arising from the symmetry 
of ' the underlying lattice. This has led to generalizations 
like the NCPA already discussed. In these generalizations 

one usually considers instead of a pair, a cluster of 
central site and its Z nearest neighbours. This cluster 
generalization has proved quite fruitful, as it preservesl57 

the equivalence between the locator and the propagator 

expansions and yields analytic Green's f unctionsi~5. Numerical 
calculations36 on a linear chain also give excellent agreement 
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ith the exact results. But the MCPA is quite difficult 

to apply to three dimensional lattices. The DFF also appears 

to be equivalent to the MCPA though it has not been rigorously 

proved. The only drawback of the MCPA is that the effective, 

medium does not have the property of translational symmetry 

of the empty lattice. But it is supposed not to be a severe 

drawback while evaluating local properties such as the 

densities of states. 

The difficulty in applying the MCPA to three 

dimensional lattices has led to the emergence of simple 

approximations like the SCCSA and the SCBSA. Though the two 

approximations give quite reasonable density of states which 

agrees well with the available exact results but suffer from 

the difficulties of non analytic behaviour of the averaged 

Green's function and the negative partial densities of 

states in the strong scattering regime. The DFF too becomes 

very much involved as we go towards higher order approximat-

ions and its general applicability seems to be very restricted. 

Recently Desjonqueres and Cyrot-Lackmann ° have done 

calculations using the method of moments. This promising 

method gives an excellent agreement with the exact results18. 

The important point in this method is that it does not use 

the Blocht s theorem or the detailed band structure. It 

works for both the bulk as well as the local properties at 

the surfaces of ordered and disordered materials. However 9  

this method has not so far been applied to any real alloy. 

A This method has been applied to several transition metals 
by Cyrot-Lackmann and coworkers and excellent results have 
been obtained. 



Yet another method, which is similar in nature to the method 

of moments in the sense that it also does not require the 

use of detailed band structure calculations s  is the recursion 

method. This method was initially introduced by Haydock et a1139  

to study the electronic structure of transition metals which 

can be well described in the tight binding approximation. 

Later, it was applied to disordered alloys by Hookerjee58, 
Jacobs153)  Cubiotti et al158, and Kerkerl53. This method, 

in principle, allows one to treat exactly the problem of 

a cluster embedded in a given Cayley--tree or linear chain 

effective medium. In their application of the recursion method, 

Jacobsi53  and Cubiotti et a1158  chose an effective medium 

characterized by a Green's function which is a weighted 

average of the Green's functions for the two pure components 

of an alloy.. Since such an effective VCA type medium is 

known to yield less accurate densities of states, it is 

expected that using such a medium should yield less accurate 

cluster Green's functions. Also for a dilute alloy Jacobs and 

coworkers obtained an unexpected triangular shaped majority 

band which is certainly due to an inadequate termination of 

their continued fraction. They truncated the continued fract- 

ion at the fourth level which will not give the proper shape 

of the density of states curves. 

We feel that the MCPA and the method of moments are 

the best approaches todate for cluster generalizations. 

But for general applicability some simpler methods have yet 

to be developed which would preserve the desired herglotz 



property of t.he6  drebhfs fLuictiori Hóe it will be of 

Interest tomention that the SCCSA and the SCBSA give 
very good i'ésuits for oe±'àt 1y  disordered aUby 	ad are 

the simplest of àh other cluster generalization of the 

same order 
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FIGURE CAPTIONS 

Fig.3.l Density of states curves for a binary alloy having 
the diamond lattice structure.8 = 1.0, x = 0.5 and 
w = 1..0. The curves are symmetric about E 	0. 

Fig.3.2 Density of states for a simple cubicbulk s--band. 

Fig.3.3 Minority band of the density of states curves for 
a binary alloy having the simple cubic lattice structure. 
8 - i.2, x -- 0.05, w = 1.0. 

Fig.3.4 Density of states curves for a binary alloy with 
8 	1.0, x = 0.5 and having the simple cubic lattice 
structure. The arrow shows the region where none 
physical results are obtained in the SCBSA, 

Fig.3.5 Representative plots of the partial densities of 
states. The curves are discontinuous at E 	0.0. 

Fig.3.6 Minority band of the density of states curves for a 
simple cubic alloy with S w 2.2 and x = 0.1. The 
vertical arrow shows the region where the branch 
point occur off the real axis. The horizontal arrow 
shows the region where some of the partial densities 
of states are negative. 

Fig.3.7 Minority band of the density of states curves for 
a binary alloy having the diamond lattice structure 
with 6 = 2.0 and x = 0.1. The horizontal arrow shows 
the region where some of the partial densities of 
states are negative. 

Fig.3.8 Plots of the partial densities of states in the minority 
band in the SCBSA (B). The parameters are the same as 
in Fig . 3.7. (..— -) , (.-_ ..-..:) , (..._ 	_) , (__ . _ _) and 
(w--•• -) respectively correspond to cluster configura-
tions in which an impurity atom A is surrounded by 4A, 
3A and 1B, 2A and 2B, 1A and 3B and I.8. See the missing 



peak near E3.2. The arrow indicates the region 
where some of the partial densities of states 
become negative. This has been shown on an enlarged 
scale in the' lower part of the figure. Also in the 
region near E.; 3.2, some of the partial densities 
of states are negative. 

Fig.3.9 The , density of states curves for binary alloys 
having the diamond lattice structure with 	2.0 
and x = 0.5. The curves are symmetric about 

Fig.3.10 Contours of equal real and imaginary parts of the 
averaged Green's function G(o) in the SCBSA. The 
various parameters are the same as in Fig.3.6. The 
solution has been chosen in such a manner that 

as z -~ oo (Imz> 0). A branch cure has been 
drawn at Re z N 0.91. 

Fig- 3.11 The graph ,showing exactly all closed loops in the 
augmented space connecting two nearest neighbour 
sites for an alloy whose site energies have a bimodal 
distribution. 

Fig. 3,12 The graph g' corresponding to the environment on a 
diamond lattice. 

Fig. 3. l3 Teal (-- -) and imaginary ( - --) parts of environment 
g' for a binary alloy with S ® 1.0 and x 0. 5 on a 
diamond lattice. 

Fig.3.lI. Part of the graph 3.11 when the vertex 1 is excluded. 

Fig.3.15 Density of states in the pair approximation (----) 
and the CPA(-•...-) for a binary alloy having the 
diamond lattice structure. The curves are symmetric 
about B = 0. 



Fig.3.16 Minority band of the density of states curves 
for an alloy having the diamond lattice structure. 

Fig.3.17 The graph g' corresponding to the environment on 
a simple cubic lattice. 
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CHAPTER IV 

CLUSTER THEORIES (Extended Disorder) 

So far we considered situations where only the diagonal 

term in the tight binding Hamiltonian (2.30) was random. While 

this model has played an important role in the development of 

the CPA, it is inadequate for real systems where addition of 

impurities, introduces both the diagonal as well as the off-

diagonal disorders. Several attempts8  have been made to deal 

with the problem of the diagonal and the off--  diagonal disorders 

but unfortunately most of these fail to produce the known 

results in the dilute limit (See appendix B) , Another diffi-

culty with these generalizations is that these lead to non-

analytic averaged Greens s functions for large S when the 

hopping integrals are not too different. The standard model 

in these calculations has -been the following. In the single 

band model the diagonal term en is assumed to be equal to sA  

or e;B  depending on whether the site n is occupied by an A 

or B atom. The hopping integral h can take three values 

hAA, h (°hBA) and h depending upon the occupancy of the 

sites n and m. But this model faiis159  to produce more than 

simply an s-wave scattering and hence, does not allow1  enough 

flexibility to meet the self-consistency requirement on the 

atomic potentials to satisfy the -Friedel spun rule16l. However, 

if one includes changes in the diagonal matrix elements on 

sites neighbouring the impurity, one can allow162  higher 

phase shifts in a single s-band model. To our knowledge no 

?".TtLA L1 AY UNcVE SJTT OF ROORK1 
r: nn o ;KF5 
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such self-consistent calculation like the CPA has been done 

todate. 

The most successful treatment of the problem of the 

diagonal and the off-diagonal disorders was given by Blackman 

et al163 (hereafter to be referred to as BEB) using a 

locator formalism. A single site approximation(Though 

apparently it looks impossible to develop a single site theory 

when the off-diagonal disorder is present)) similar in 

nature to that used in the CPA, was employed while performing 

the configurational averages. In fact this simplification 

followed from the use of the occupation indices. For a binary 

alloy the use of 2x2 matrices facilitated the characterization 

of quantities like the Greent s f unction G(k,E) with no 

restriction on the hopping integrals. When the Greents funct- 

ion, in this formalism, is expressed in terms of an effective 

medium Hamiltonian, the self-energy (and hence the effective 

medium) requires coupling between all pairs of sites, though 

the hopping in the real lattice connects. only the nearest 

neighbours. Therefore, the substitution of a single real atom 

into the effective medium will produce a perturbation that 

instead of being localized to the impurity site, as in the 

case of the diagonal disorder, extends to all neighbours. The 

BEB formalism gives the first four moments of the density 

of states exactly. As a special case when the hopping integral 

hAB between A and B atoms is equal to the geometric mean of 

h and hBB, Shiba57 also using a locator approach.* independently, 

obtained results for the diagonal element of the Greent s 



f unction It was shown by Blackman16 that the formalism of 

BEB reduces to Shiba's theory when the appropriate restriction 

is imposed on the hopping integrals. These generalizations 

preserve159 the correct dilute limit of the self-energy. 

Another special case, where the values of the hopping integral 

are additive i.e. h = (hA+ hBB) /2, was considered by 

Fukuyama et a1i65. in this case also the problem can be for- 

mulated within a single site approximation. Their results give 

the correct dilute and the split band limits and are also 

special cases of the BEB results. The special case considered 

by Shiba is interesting as in this case the problem can be 

reduced to that of a diagonal disorder. This particular case 

has been studied by us6i using a renormalized propagator 

formalism60 which gives the same results as obtained by 

Shiba using a locator formalism within the SSA. This has been 

further generalized to incorporate multisi- e correlations. 

These are discussed in Section § L..1 whereas in section § L. 2  

the general case where no restriction has been imposed on 

is studied. 

)..1 Renormalized Propagator Formulation (RPF ) 

a. CPA in RPF 

When the hopping integral h is equal to the geometric 

mean of h and hBB, then the hopping integrals can be 

factorized as57 

= aih a~  ... ()..1) 

where h is independent of the atomic configurations and ai 



is determined from the bandwidth of the pure constituents 

(e.g. aA is proportional to the bandwidth of the pure A consti- 

tuent'.). In this approximation the Hamiltonian (2.30) can be 

renormalized and the problem reduces to that of tle diagonal 

disorder. This was also noticed independently by Mertsching.166 

This method has been referred to as the renormalized propagator 

formalism by Niizeki60. In RPF one defines a diagonal, random 

and non-singular operator aop , 

a o p ° ~ l i> a i< iL 

The renormalized Hamiltonian H and the renormalized Green's 
n 

function G(z) are given by 

iii Emil +y htif(j 
p p i  ij 

and 
G ( z) = aopG(z)aop = (,jopz 

where ei a12 ei 

h ° ahi a~~ 

and 	'qop -- 	i i> ail < i L . 

n 

Since h is configuration independent, the renormalized 

.•. (L..3) 

... (L.4) 

... (L1.45) 

Hamiltonian has no off-diagonal disorder. Equations (l..3) 
and (1.j..1i.) can be rewritten as 

A n A 
H ° D + TAT 

G(z) 	ELlop(Z) ~- w]. 	 ... 
A 	 ,. 

Here D is the random diagonal part in (L1-.3) and W is the 



non-random part and will be called the unperturbed Hamiltoniar. 

hop(z) is a random diagonal operator whose ith  component in 

the Wannier basis is 

1I1(z) _ (z-ai)/a. 	 . . . (1',8) 
A 

1-Je now define a quantity 7Op  which characterizes the effective 

medium )  
/l 	 A  

<(z)> = r Top(z) - wj 	 ,.. 
A 

In order to determine iop(z) self-  consistently we first use 

the single site approximation and see that the self-consistency 

equation obtained in this approximation is the same as the one 

obtained earlier by Shiba in the locator formalism. 

In the SSA we have 
n  

op(z) = Z(i> r (z) <ii. 	 ... (4.10) 

In order to determine 	(z) we start with the reference Green's 
function defined as 

(z) 	, lop(z) - 	.. (x.11) 

A 
where 	G (0) (z)- (zI--W )-1 	 ... (4.12) 

is the Green's function for the unperturbed crystal with. 
A 

Hamiltonian Gd. Then using the multiple scattering description 
of Section c 2.3 we obtain 

h 	 N 

(z) = Z (z) - A / a 	 b... ('-.13) 
I' 

where L t > is the averaged single-site scattering matrix 



a 

n 	 (z)-i4(z) 
x 	.., 	- 	... 

p l p 	.(z) _ II() ]F(z) 

and F(z) = C0tG(z) 0>. 	 ., (Li, 1) 

p denotes the type of atom (say A or B...) at the site under 

consideration and xp is the probability of the occurrence of 

a pth type of atom. Equation (Lj..13) is the generalization of 

equation (2.L.3) for alloys with off-diagonal disorder of Shiba 
type. 

The density of states in this formalism is obtained in 

terms of the conditionally averaged renormalized Green's function 

Go ( z) defined as 
A 

Go(Z){(z)-+ 	i(z) .. 	(z) T (0> <0) ~ 	._.. (.i6) 

This is a random operator which takes the value Go(z) depending 

on the configuration of the site 0.. We define 

Fp(z) = <O IGo(z) ( 0). 

Then from (l}..16) we obtain 

FP (z) = {F-l+ (M I )
1 

The partial density of states is then given by 

... (4.17) 

... 

PP (E) _ - I Im  

The total averaged density of states per atom is then 

n 
p (E) 	~ x Pp (E) . 

p=l p ... (4.20) 



r 

It is important to note that in RPF the total averaged 

density of states P(E) can not be obtained from F(z) directly. 

Now using a definition similar to (4.18) for FP(z) , Eq. (1j.. l) ) 

can be written as 

_+ 	1  - 	 ... (1..21) 
7xFp 	F 

P= l P 
n 

The self-consistency condition for the determination of is 

A 
<t> =0 ... (+.22) 

A ' 
which means that L —• 

Equation 0+.22) )  when solved for a binary alloy, reduces to 

+F) 	( -x) /(1IB- 	+F )  = F. 	... (.23) 
n 

If the M1(z) and (z) used here are identified with41  and 
used in Shiba's paper, then Eq. (1.23) is the same as the 

self-consistency equation derived earlier by Shiba in the 

locator formalism. When no restriction is imposed on the 

hopping integrals, Niizeki60  showed that the EFF" and the 

locator method of BEB are equivalent. This also shows that 

within the SSA, the locator and the propagator formalisms 

give the same results even in the case when the off-diagonal 

disorder is also present. Recently Gonis and Garlard167  have 

also shown that the formalism of BEB (and therefore of Shiba) 

has the correct analytic properties. 

b. Cluster CPA in TPF. 

We now extend the single site generalized CPA discussed 

in sub-section § !.+.la to include correlated scattering from 



i 

a site and its cluster of neighbors in an approximate manner 

and call it cluster coherent potential approximation (CCPA) . 

After the Hamiltonian is renormalized and the problem 

.has been reduced to that of a diagonal disorder then the cluster 

formalisms (particularly MCPA, SCCSA, SCBSA etc. which are 

of our main interest) developed to treat the diagonal disorder 

problem can be carried on directly to (4-3). As already 

noticed the application of the h'CPA will again be cumbersome 

and therefore here again we shall work with simple theories like 

the SCCSA and the SCBSA. Here we slightly deviate from the 

treatment of Section § 3.2. This will . facilitate our study 

when we later consider the general case. We consider a cluster 

of (Z+l) atoms (a central site and its Z nearest neighbours) 

immersed in an effective medium which we approximately cha.racter- 
n 	A 

ize by 4~ _ ,7, Ic in the spirit of the CPA. Here Ic is the 
(Z+l)xa(Z+l) unit matrix. The renormalized Green's function for 
such a system is 

+1 G > UcGc, 	 ... (4.. 2L) 

Proceeding parallel to our treatment of SSA we have 

Gc = aoPGcaop 	 ... (L..25) 

and 	Ve = 	f i,i f ( 	- Mi) . 	 ... (L+. 26) 
is c 

c denotes a cluster and i is a site in this cluster. We can 
now write 

Gc ~ G> +C G> Tc G > 



where 	.T''= Vc(1 + tG>.Tc) . 	 ... (L.,28) 

Tc is a (Z+l)x(Z+l) matrix and is difficult to solve in the 
A present form to obtain Gc. Here we introduce an approximate 

scheme to simplify these equations. The physical idea behind 

this scheme is that for certain properties like the averaged 

densities of states, the, magnetic response etc. ? environment: 
effects depend only on the number of different kinds of atoms 
on the shell s of nearest neighbors and do not depend critically 

on their detailed configuration on the shell. So we calculate 

the Tc matrix with the assumption that it depends only on the 

total number of say A and B atoms on the shell,, but is independent 

of their detailed configuration. This is achieved by replacing 

the propagators between two different sites of a shell by their 

averaged value. A similar approximation was also made while 

dealing with the problem of the diagonal disorder alone, With 

this approximation all the (Z+1)2 matrix elements of Tc can be 

expressed in terms of four quantities Too' Tos7 Tso and !ss` 

The latter three are defined as 

1;C _ 1 wt Ac 
os  Z Toi 

z Tso Z Tio' 	 ... (l.29) 

A 
and 	TC = l2 	TC~. ss 

The prime denotes' that the sum 'is taken over the shell sites. 

0 denotes the central site. Here we shall not give expressions 

for different matrix elements of T~ explicitly, as the relevant 
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expressions involved in the calculation of the density of 

states require expressions for Too, Tos' Tso1. and Tss 
only. 

These are easily obtained from Eq. (L1.,28) 

it N c  
Too _ TOO + Z Too < G>R T

c o 

Tso Z( GAR Too+ rTso~ 	 ii~ 

Tos 	Z Too C G?R TSS' 
n  _ 

and Tss = 	 (1 + Z < G,>R c̀ os 	+ Z2 rTss ) 	tii Z 	 i 

where 

TO0 00 (1- 00  G'~0 

x;11 - 	i/ C J. - 	r) J 

(i is a site on the shell) and 

A 
1. 

(Z-1) 

... (Lt..30a) 

.. (..3ob) 

... (..30c) 

.. , ( ..3od) 

,.. 

r '. • (l. 3 2) 

... (1-.33) 

Here the subscripts 0 and R on< G > denote zero and nearest 

neighbour separations respectively. Equations (x-.30) are 

solved to obtain 

n 	A t 

Tc = loo 	 ( ~-.31+a) 0o 	D: (1 -  
A 

Tso = Tos = D°O G>H 	t ii 3 	 ... (4.3LFt) 

A O 	1 	to 
and TSs = Z2D ;ii ~ .  ... 



88- 

where Ds = i(1 + *roo 	'tii. 

The renormalized Green's function at the center of the cluster 

is obtained from Eq. (x..27) 9 

Goo <G>o + KG >o CG)o To o + Z < G>0 <G>R(Tos + TSo) 

+ Z2 <.8>R <G)R Tss. 	 ... (+.36) 

This can be simplified using (Lj-.35) to obtain 

Goo D ^oo(< G)o + (< G>R <G?R -<G>0  r) 1  tii) . ... (~►.37) 
00 

A 

Z is then determined from the condition 

A 
~G>o = 	Pc G-o 

P 	
o  

c 

... ('.38) 

where again Pc is the weighted probability of the occurrence 
of a cluster configuration. We sum over all configurations, 
keeping in mind that for a fixed number of different kinds of 
atoms on the shell the different possible configurations are 
not to be distinguished in this approximation.. 

In the case of clusters Eq. (L+.21) can be generalized 
to the equation 

w 	 . . . 	• 

s L Z Pc Goo 	C G,o 
Pc 

The quantities <.G ~R and F can easily be expressed (See Section 3.2) 
A 

interns of ? and <G>o 



• 

C G>R  = 	..,(G>>o  m 1, 	 ... ( .. I+d) 
A  

and 	r = [ l/(Z-l) I C z  LZ  `GBH <')o 1 	... 

Her-e we have assumed that the unperturbed crystal half---band-

width (wo  = Z x h) is unity. The averaged density of states 

per atom is obtained from 

P(E) _ _ 	Im 	Pc  Gc  /ao .  ... (+.1+2) 
PC 00   

In the one center approximation tii  is zero and Fq. (?1.37) reduces 

to 

Goo  = (1/D)(  coo/ C)<G 0.  .> 

Taking the configurational average and using (L}..38) we obtain 

which is the same as Eq. (I+. 22) obtained in the SSA1  

We have numerically evaluated the density of states for 

binary alloys having the simple cubic lattice structure. 

Equation (.39) has been solved by an iterative procedure. The 

unit of energy is taken to be the half band-width of the 

unperturbed crystal, which is set equal to 1. The half bandwidth 

of pure B is also taken to be 1 which means a2 = 1. The zero 

of energy is chosen in such a manner that sA  = -eB  = 28.. The 

alloy density of states (full curve) is shown in Figs.tj..l and 

L..2 for various values df the parameters x,S and aA. The 

dashed curve shows the corresponding generalized CPA results 

calculated from Eq.()-j..22). For 8 = 1.0, the minority band is 

shown completely, along with a part of the majority band. 



For 8 = 0.752 the effects of the local environment on the 

density of states are not very significant and our results 

are in excellent agreement with the exact results18219. For 

8 '- 1.0 we find a good deal of structure showing up in the 

impurity band. The variations with aA are best seen in the 

modification of the central peak of the impurity band. The 

central peak corresponds to the resonance level of the isolated 

impurity A. The peak becomes sharper when cc i.e. hopping from 

A atoms, is decreased. This can be understood on physical 

grounds as follows ; since we expect that, if hopping from 

isolated site is reduced 9  an electron will spend comparatively 

more time at that site and the corresponding resonance level 

will become sharper, leading to a higher density of states in this 

region. We face just the reverse situation when the hopping 

from A atoms is increased. The central peak is reduced in height 

and is broadened) showing that the above mentioned life-time 

of the single impurity resonance level becomes smaller. Similar 

considerations apply to other peaks in the impurity band. These 

correspond to two impurity, three impurity,..., resonance 

levels. As aA is increased, these peaks become broad and well 

defined because the increased hopping among impurity atoms 

favours a multi-impurity resonance level at the expense of 

a single-impurity resonance level. Further y as aA is increased 

to 1.5, the impurity and the majority bands merge together, 

whereas the generalized CPA density of states still has a 

gap. Our results are in very good agreement with the results 

obtained from the method of moments139  which also shows no 

gap in this case. For a2 = 1 our results coincide with those 
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of Bi otters et a113G as they should' because for this value of 

a there is no off-diagonal disorder. In general for aA / 1, 

we find extra structure in the band. The CCPA band is tiwider 

than the corresponding CPA band. In the impurity band of the 

CCPA there appears a gap which is not present in the exact 

results.18219 The majority band in the CPA and the CCPA are 

almost similar. 

Recently Gonis and Garland168 have generalized the MCPA 

formalism for alloys having the diagonal as well as the off-

diagonal disorders. This is based on a reformulation of the 

renormalized interactor formalism of BE1B which is the best 

treatment of the, off-diagonal disorder (ODD) problem within 

the SSA. It has been further shown that the MCPA with ODD 

always yields analytic Greens s functions like the ordinary 

MCPA, However q it is computationally quite difficult. Therefore 

they studied two simple approximations namely the SCCSA and 

the SCBSA in the presence of ODD treated in the BEB manner. 

It was found that the SCCSA yielded severely non-analytic 

results whereas the SCBSA was equivalent to the MCPA even in 

the presence of ODD for a linear chain and therefore for a 

linear chain it would always yield analytic results. This 

will also be true if ODD is treated in Shiba's manner. The 

calculations of this section can easily be carried onto the 

SCBSA following the treatment of Sections § L..la and 3.2. As 

noticed in the case of the diagonal disorder, for small values 

of S ? the general features of the results in presence of ODD 

in the SCBSA will be quite similar to the one obtained in the 
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SCCSA. But for large 6, in two and three dimensions, the 

analyticity of the SCBSA with ODD is still questionable as 

we found the SCESA to be non-analytic for three dimensional 

systems in the absence of ODD. However, it may turnout that 

in some cases the difficulties of non-analyticity get eliminated 

in the presence of ODD. In the next section we present a 

generalization of the CPA where no restrictions have been 

imposed on the hopping integrals. 

L..2 Self-Consistent T-matrix Formulation 

In this section we consider the case of extended dis-

order where no restriction is placed on the hopping integrals. 

This problem has been tackled within a cluster formulation 

which is a generalization169  of our treatment given in 

sub-section )..lb. In this case we do not renormalize the alloy 

Hamiltonian, but start with the following most general form of 

the effective medium Hamiltonian 

Heff = 	In>T  <n) 	m n L 	knx mI 	
... (L1 3) 

where nnand 	are the diagonal and the off-diagonal parts 

of the effective Hamiltonian respectively, Here the summations 

over n and m in the second term run over all the lattice sites. 

The Green's function corresponding to this effective medium 

is 

_ 	-1 
G(z) -- (zZ - Heff) 

Here it is important to notice that the effective Hamiltonian 

has the translational symmetry of the empty lattice in 
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contrast to the MCPA formalism where this translational 

symmetry is not preserved. 

The alloy Green's function G can now be written as 

where 	T -- V(1 +U T) 	 , .. 

and 	 V = . x - He f f . 	 ... (1 • 7) 

Taking the configurational average of Eq. (lf.1J.5) we obtain 

. . . (T.48) 

The self-consistency requirement for the determination of the 
effective medium gives the following condition- 

~T~ 0 

or equivalently)= G. 	 ... (x-.0) 

Equation (L..1.9) implies that on the average there is no scatter-
ing from the crystal and Eq.. ()+.50) means that the configurat- 
ional average of any matrix element of the alloy Green's 

function should be equal to the corresponding matrix element 
of the effective medium Green's function. One can in principle 
utilize the set of equations (L1..!9) or (L..50) to determine 
all ~M's. No approximations have so far been made. But it will 
be impossible to solve these extremely large number of coupled 

equations in a self-consistent manner without making any 

approximation. Therefore, one considers scattering from a 
small cluster of say n atoms and introduces some physical 



M 

simplifications which allow one to keep only a few parameters 

in the effective Hamiltonian. For the problem involving only 

the diagonal disorder Butler and others put orth models with 

only one parameter for the effective .potential matrix, In 

the same spirit here, where we are having the off diagonal 

disorder also, we choose two parameters to represent the 

effective potential matrix. 1l corresponding to an effective 

site energy and 7-2 representing an effective hopping integral 

between the nearest neighbours. As done in the case of the 

diagonal disorder, here also we shall consider clusters made 

up of a central atom and its Z nearest neighbours. One such 

cluster is thought to be immersed in the effective medium. 

Then there is problem to introduce parameters for hopping 

between a real and a effective medium atom. Stern and Zin170 

have emphasized that to trea.t the problem of such nearest 

neighbour clusters properly one should consider clusters 

upto the second nearest neighbours. But here we shall make 

use of our earlier hypothesis that for a fixed number of 

different kinds of atoms on the shell of nearest neighbours y 

the different configurations will not be distinguished. 

Consistent with this we shall assume that the hopping matrix 

element from a shell atom to the nearest neighbour effective 

medium site is equal to L2. Therefore, the potential fluctua-

tion matrix due to this cluster can be written as 

V, = V Ion{oI + 	V 	~ In n+V l 	f o> n!+V in   00 n nn 	on 	no   

Also 00 - eo - ~l , V = en - Ll and Von Vno = hen - 2. 
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Tho Gr eent s function for such a system with the medium every 

where except the cluster c is 

GC 	G + G TcG 	 .... (..52) 

with 	Tc - V(1 + G Tc) 

Performing the configurational average in (x..52) one obtains 

The effective medium is now determined self--consistently by 

imposing the condition 

 

or equivalently < Gc> = G .. (L+.56) 

As noticed earlier, in our formulation, the various matrix 

elements of Tc can be expressed in terms of T 0 , T3, Tso and 

T s defined in (1..29). Now using only two parameters ) and 

E2 in Heff ? it is  impossible to satisfy Eq. (L . 55) or (L1..56). 

Then to determine the effective medium self-consistently 

one can choose a variety of different self-consistency 

conditions. Here we replace (L..55) or (Lj..56) by two sets of 

alternate conditions. These are 

1. 	Adopting the philosophy of Butler and others we require 

that the total averaged density of states at the center of 

the cluster is consistent with the external medium i.e. 

~(WGC JO,>j - <0I0> 	 ... (L.57a) 

and the average matrix element of the cluster Greents function 



between the central site and a shell site is equal to the 

corresponding matrix element of the effective medium Green's 
function i.e. 

Z n' (0(Ge (n 	=0:(G(n 	G(R) 	 ... 

Here R denotes nearest neighbour separation. As' the shell is 

not treated exactly, here, we have summed over all the shell 

sites and divided by Z to obtain an average matrix element 

between the site 0 and a shell site. 

2. ' Too\ - 	0 	 . 	(t.58a) 

and Tc 
os/ 

= 	0 	. 	 ... 	(!..58b) 

Expressions for the matrix elements of the Green's function 

Gc are obtained from (..52) and are given by 

Goo = GCo) + G(o) 2To0+ ZG(o)G(R) E TC+ Tso I 

+ Z(R) 2Tss 

and Z I Gon ° dCR)-UCo)GCR)Too4+GCo) CG(o)+(Zr,l) I ] Tos n 	 v  
+z(R) 2Tso+ Z(R) (o) +(Z1 flTss. ... (4. 

6 0) 

The quantities G(R) and E (defined in 3,1.2) can be easily 
expressed in terms of G(o) to obtain 

GCR) _ 	(z-- 1)G(0)-1 ]/Z S2 	 ... (.6i) 

and 	r _ [ C~~ l)GCR)-•G( ) ]/CZ--~_) 	 .. ( .62) 
12 

Expressions for Too , Toss Tso and Tc are obtained fromSS 
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Eq.. (+.53) and are given. by 

TC = ti + Z(ti U(R) + Zrti )Tc +((o)-E) 1t ti TC .,. (~+.63a) 
00 	00 	00 	 Os SO 	 n on no 

Z(ti G(R) +Zf 	)Tc + (G(o)- r) ~ t ti Tc 
os 	Os 	oo 	qs ss Z 	om mn 

... (Ii. 63t) 
Tso = {tso+(tSG(R)-~tsoG(o))Tooj/fl-Z(t5C--ttsoG(R))I . . (..63c) 

and 

(L..63d) 

where 
T 	'Vc /DO 	t 	D = 1- V

00
c d (o) - G (R) 

00 	00 	 O 	n 03.1 

_ 

tios 	Z n. Ton ' ion - on/Do 

cs - Z to 	tnn = nn n 
n 

 

t r no/Dn 

. . 4 	(1.1-.6J) 

and 

in equations (63a) and (L1.. 63b) the quantities t "~onTno 
t 	 n and 	'ComT~ were again calculated from (1..53) . We find 

nm 

n t tionTno - l+Z(G(R)Tos+ G(o)T00) nr'contno 	•... (I-.65) 

+Z(ETos+ G (R) Too) 	tiont 	 ... (x..65) 
n 

and 



is T Tc 	l+Z(GCR) Tc + Z E T° ) :t ~ t oin mn 	os 	s s n on nn 

+ZCG(o)Tos+ Z(B)T5)~t tiontno. ... (4.66) 
n 

Equations (L1..65) and (..66) are substituted in equations 
(i.. 63a ,b) and ultim6tely the set of equations (.4 63a 2b , c,d) . is 
solved for Too a Tod Tso and Ts5 . The final expressions are 

Tc = {ti --ZT t r_ CG(o)- r") T-"T t + Z2('ti t 00 	oo oo s 	n on no 	os so 

+ZE (G(o)-- E) L tso Zntnn- s ~z `' onno } / D 	• • (+.67a) n 	 n 

Tcs y { Os + (G(o)- ~)  Z  r~ on =I  os so  oo s 

: Ton~no-tso  n 	n 
Tso 	-{tso+TOO CGCR)ts +GCo}tso)(R) CGCo) - r) '~ts n1'ron`'no 

_tso 2- "coat J } / D 	 ... (L..67c) 
n 

and 

Tss a tZts+-r CG(R)ts+G(0)tso) `~ 	(o) (G(o)- ~) ~tso x t tion'nn  OS n 

-ts n Tontno J I / D 
	 ... (L.. 67' d) 

where 

	

D °- i1.-Z( r Ls +G(R)tso) b-(GCo)- ( ) (G(R) 	t ti t 

	

11 on nn 	) n on no) 

-ZitsG(R) +tsoG(o) i twooG(R) +ZE T +(G(o) _ ) (E `tiontnn 
n 

-f(R) 	t n 'Fontno) 	 ... (L+.68) 



Here it is noticed that the expressions for Tos and Teo are 
different as the central site and the shell sites are not treated 
on the same footing. But as we shall see numerically, the 
difference is negligible, 

The averaged density of states per site is obtained 
from the imaginary part of G(o) which is defined as 

G(o) 	 ... (1..69) 
k 

1 
where 	G (,z) = 	-, 	 .. , ( -.7o z- Z1-Z its (k) 

Since values of k are quasi-continuously distributed, we can 

convert the summation in (L1.,70) into an integral to obtain 

d3k 
G(o) 	J z - l- Z 2s -~. 	... (. 71) n3 	~ Z (k) ,  

where Q is the volume of a unit cell. 

Eqn. ()..71) can be further written as 

G(o) - _ C d3k dE'8(E'--w$s(.I))-.,._
- ~ 1 

1 

Now using the definition 

3 f d3k8 (E' -wBs (k)) = P °) (E T) 	 ... 
8% 

for the density of states of pure B constituent and the fact 
that wE = ZhBB, equation (1..72) 	can be writteXi ae 

dE I .P 
~. 	(0) (E ) 	

.... (I•. 74) 
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This can now be written in the following form 

j 
Z 72/wB 

dE'P (o) (E') 
z- - 1 	_ Et 

 

Z 7 2/wB 

dE ,P (o) (Et)  
z--El 	• 

Z 12/WB . . . (L .75) 

00 

where 	F ° (  z) '- -00 

 

.*. (4.76) 

We introduce two dimensionless variables R and r) such that 

h 	= PhBB and hA3 _ ~1hBB. Our results for the density of 
states are shown in Figs-4.3-4.6. In figure L1..3 we have shown 
the density of states for a binary alloy having the diamond 
lattice structure with b y 1.0 and x = 0.5. u is taken to be 
1j.. The hopping integrals are taken to be non-random in this case. 
It is seen that the results obtained using the conditions (L.57) 
and (L1..58) are very similar. When the condition (L..57) on the 

Green's function matrix elements was applied, the averaged 

T-nlatrix elements 'Too (Tc 
 / 	2 	.Tco> 9 and (TSs > are found 

to be small and showed an oscillatory behaviour with respect 

to energy. When the condition (1+.58) was applied, (T 0> was 

also equal to zero (within the desired accuracy) and < Tcs j had 

a very small value. The variation of <T> as a function of 

energy was again oscillatory. The non-analytic difficulties 

encountered in this case in the SCCSA are not There in the 

present, formulation. The results of this calculation are in 

close agreement with those obtained in the SCBSA(c). 

In Figs. ..1.-1.. 6 7 we have shown the density of states 
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for alloys having the simple cubic lattice structure with 

8 = 0.75 and x = 0.30. wB is taken to be 1. 	In this case the 
densities of states obtained from the two conditions are 

almost similar. Here we have shown the results obtained from 
the condition (4.57). In figure 1f. L. we have shown the 
density of states for a case where the hopping integrals 
are non-random. If this result is compared with the one 

obtained in the CCPA (Section Ii.. 1) then it is found that the 
density of states curves are smoother in the present formalism. 
The variation of the density of states with respect to and 
r, is shown in Figs. 4.5 and 1.6. For R = 1.5 and T) = 1.25, the 
band becomes wider whereas in the 5aso of ~3 - 0.5 and 	0.75 2 
the band has narrowed down. It is noticed that for 8 = 0.75 
the effects of local environment on the density of states. are 
not very significant (see also Fig.l+.l) but for 8 = 1, these 
effects show up in figure if. L, For large values of 8 this 
formalism gives some non-analytic results such as non-unique 
density of states at some energies in the minority band. This 

problem was also encountered by Bose and Foo171 in their 

calculation for a linear chain. They also used the same 
effective medium Hamiltonian as used by us in this calculation. 
However, it is observed that if the hoppiM integrals are 

significantly different, then the problem of non-analyticities 
may be overcome in some cases, 

In Figs.if.7-l.9 we have shown the spectral densities 

of states for three values of structure factor s(k) (Pgn.2.3L.) 
(a) s(1) = 1.0, (b) s (I~) = 0.0 and (c) s(J) -: ---1.0. The values 
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of other parameters are the same as in Figs.1..4- ..6. As 

expected the. spectral functions become sharper when the values 

of 0 and r are increased. There is some structure in the 

spectral functions in the energy region E Z0. 0 to E -1.0. 

This structure becomes prominent as the values of R and n are 

reduced. It can be understood as follows. When the values of 

0 and fl are reduced i.e. the hopping from the impurity is 

reduced 9 then the electronic wave function will have larger 

amplitude on impurity sites, giving rise to a peak in the 

spectral density of states. 

From the foregoing discussion it can be said that our 

formalism takes into account the cluster effects and the 

hopping disorder in a fairly satisfactory manner , but it is 

not the complete solution of the problem. The merit of our 

formalism is that the computation of density of states is 

tractitle. Our formalism suffers from two drawbacks. (i) It 

does not give the correct dilute limit and (ii) in the strong 

scattering regime it suffers from the difficulty of non-

analyticity of ,G >. However y our formalism can be easily 

improved to get rid off these difficulties. It was noticed 

by Schwartz et a1172 that the self-energy should at least 

have a f ac nor of s (I) 2 in order to give the correct dilute 

limit. In our formalism we can attain the proper dilute limit 

if we take the matrix elements of the effective medium 

Hamiltonian between two different sites of the shell to be 

non-zero. These matrix elements are expected to be small as 

compared to El and ~ and may be approximately taken to be 

equal to 13 for all pairs of sites on the shell in our 
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formalism.. With this, the self.-energy in the I representation 

can be written as 

ik.(  R i-~) 
L Ck~z) 	1 	-V

13 
 (i.77) 

For the simple cubic lattice it can be simplified to obtain 

(,z) - 1 + 6 23s(2k) 

... (1+: 78 ) 

'where 	Y(k) -- 12 	e 	 ... (i.79) 
s2 

s2 is the second nearest neighbour lattice vector. ? (1~) can 
be alternatively written as 

T(k) 	6 s(k) 21-1-~s(2k) 1 	 .,. (x.80) 

It is now noticed from (1..78) and (if, 80) that the self-- energy 
contains a factor s (k 2. This ensures us that with this modi-
fication our formalism will give the proper dilute limit. We 
also expect that the problem of - non-analytic behaviour of the 

averaged Green's function will no longer be there after the 
introduction of 13 in 'He f f , The three quantities 2l 2 2, and 
~3 can .then be dbtermined self -consistently from the following 
conditions. 

c 	0 

<Tos 	0 	 ... (11.81) 

Tss = 0 



The formalisms presented in this chapter (and also 

of sections 3.1 and 3.2) can be used to study alloys having 

some short-range-order. The only change will be in the 

probability factor PC  in performing the configurational 

averages. We can define a short-range-order parameter a so 
tha-L-  the probability PAB  of finding a B atom near an A. atom 

is xa (I-x) . Then the probabilities of pairs AA, BA -and BB 

are PAA  = x(1-a(l-x)) 9  PBA  = (1-x) ax and PBB  °° (1-x) (l--cax) 

respectively. If a = 12  the system is perfectly random. If 

a is larger (smaller) than 19  the system favours the 

amalgamation of different (same) atoms in the nearest neigh-

bour sites. The probabilities of different cluster configura-

tions can then be easily calculated. 



FIGURE CAPTIONS 

Fig.)+.1 Density of states curves for a simple cubic binary 
alloy with x = 0,3 and & = 0.75, (a) a2 p 0.5, 1~ 
(b) a 1 == 1.0 and (c) oc = 1.5. 

Fig.Lj,.2 Impurity band of the density of states curves for 
x = 0.1 and 5 	1.0. (a) a2 = 0.5, (b) a2 ° 1.0 
and (c) a = •1.5. 

li ig.l..3 Density of states curves for a binary alloy A0. 5B0. 
having the diamond lattice structure. (---) and . 
(~-•--) correspond to conditions (L.57). and (t1.58) 
respectively. (~-•-• •) and (-~• °-) show the correspond-
ing CPA and DFF results. The curves are symmetric 
about E -p 0. 

Fig,.L.L Density of states for a simple cubic alloy wi -!.:11 
fi = 0.75 and x 	0.3. 3 = 1.0 and 	1.0. 

Fig.1L.5 Density of states for a simple cubic binary alloy 
with S - 0.75 , 	0.3 9 	1.5 and Y _-- 1.25. 

Fig.L1.,6 Density of states for a simple cubic -binary alloy 
vii-h b - 0.75, x = 0.3, R 	0.5 and 'n = 0.75. 

Fig-4.7 Plots of the spectral densities of states (a) s (I) - 1.0 
(b) s (k) 	0.0 and (c) s (k) = -1.0. Other parameters 
are the same as in Fig.L.I-. 

	

Fig.1i..8 Plots of spectral densities of states, (a) s (1~) 	1.0? 
(b) s (Ic) `= 0.0 and (c) s() =: --1.0. Other parameters 
are the same as in Fig.Lf.5. 

Fig.1..9 Plots of spectral_ densities of states, (a) s U) =a 1.0, 
(b) s(I) 7̀  0.0 and (c) s() = -•l. 0. Other parameters 
are the same as in Fig.L..6. 
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CHAPThR V 

THEORY OF DISORDEP,ED HCISENBERG FERROMAGNETS 

5.1 Brief Survey of Early Work 

So far our efforts were confined to the study of a 

simple single band model for electrons in disordered systems. 

Attempts were made to get a reasonable fit- with the exact 

results. No attempt was made to, apply the models developed 

to realistic systems and to get experimental agreements. 

Considerable experimental work on lattice vibration spectra173  

and spin wave spectra of alloys using neutron scattering 

has appeared in past few years. Cowley and Buyers5  and others 

have pointed out that the magnetic excitations are the 'rest 

candidates for quantitative comparison between the theory and 

the experiments. The reason is that the magnetic excitations 

in several cases are well described by simple Heisenberg 

exchange Hamiltonian along with suitable single ion aniso-

tropics. On the other hand the realistic models for phonons 

and electronic states tend to be rather complicated. 

As we mentioned in the introduction, all the above 

mentioned excitations in several cases may be well described 

by the Hamiltonian (2.30). with proper interpretation to the 

states tn> . The spin wave problem based or the Heisenberg 

exchange Hamiltonian involves both the diagonal and the off-

diagonal disorders in a correlated manner. In fact the site 

energy (diagonal term) is determined by the composition of 



the neighbours of the given site and the hopping integrals 

(off-diagonal terms) connected to a given site are all 

correlated* The correlation in the matrix elements is 
related to the isotropy of the Hamiltonian in the spin 

space and gives rise to the Goldstone theorem. The simplest 

theory that would preserve the relationship between the site 

energies and the hopping energies, would have to treat 

scattering from a cluster of (Z+l) sites i.e. a cluster 

consisting of a central site and its Z nearest neighbours 

coherently. 

There exist several treatments of this problem. The 

earlier treatments of Foo and Wu, Tahir-Khelil75, and 

Elliott and Pepperl76  can be classed as effective bond theories. 

These theories are simplest extensions of the CPA in 'which one 

calculates the scattering from one bond at a time with respect 

to an effective medium. The effective medium is then determined 

by requiring that scattering from a single bond vanishes on 

the average. The requirement of the Goldstone theorem is built 

into the theory by properly choosing the diagonal and the 

off-diagonal parts of the self-energy characterizing the 

effective medium. Tsukadal77  has extended this sort of cal-

culation by considering a cluster scattering from four bonds 

for an fcc lattice. His treatment )  however, makes use of 

a spatial simplification that occurs for a four bond cluster 

on an fcc lattice. The theories of Kaneyoshi178 s  Edwards and 

Jones"' and Jones and Yates180  are based on diagrammatic 

expansions of the Green's function. These theories are not 
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elf-consistent and the approximations made in them are 

really valid in low impurity concentration limit. The first 

attempt to take into account the disorder in site onorgies 

as it arises from the configurations of the n©ighbot rs of a 

given site, was by Buyers et al33 231+ for the case of anti-

ferromagnets. These authors obtained reasonable agreement 

with experimental results) but their theory had the drawback 

that it did not treat the off-diagonal disorder at the same 

footing. On the other hand -Theumann1$1  proposed a theory in 

which the off-diagonal disorder was treated quite adequately 

using the method of BEB!  but the diagonal disorder wastreated 

in the virtual-crystal approximation. 

Another point that has not been realised explicitly in 

the earlier work is that for a problem in which two types of 

atoms 9 being alloyed , have different spins, the normalized 

spin deviation operators a.• = l S. have been conventionally 
.2Si  1  

employed. However, the operator At  5 ai does not commute 

with the Hamiltonian and thus the spectrum of excitations 

given by the operators {.ai l does not start with zero energy 

as required by the Goldstone theorem. On the other hand if 

one makes use of the true spin-deviation operators, one 

obtains a Green's function equation of motion in which the 

inhomogeneous term is also random. Murray1S2  has handled this 

difficulty in a variational method, but her method is suitable 

only in the long wave-length limit. Edwards and Jones1?9  have 

also employed the operators S, but it is difficult to see 

how one can construct a CPA type self-consistent theory in 
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The ground state of the Heisenberg ferromagnet is 
assumed to be the one in which all the spins are alligned 
in the z-direction. The spin excitations are then described 
through the equations of motion of the operators Si = si 	ly e 
which increase or decrease the spin component along the z- 

direction. For the discussion of the spin- wave spectra it 
is convenient to write the Hamiltonian (5.1) in terms of 

Boson operators {ai}- related to spin operators Si through 

the Holstein-Primakoff transformation 

1/2 
Si = (2Si) 	ai 

	

si = ( 2Si)1/tai 	 .. , (5.2) 

and 	Siz Si - aiai• 

Here we have considered the first order approximation and 

neglected the higher order terms. Thus we obtain for the 

Hamiltonian of Eq. (5.l) 

H - 2 	jijS~atai - 2 ~, J1j(S1S j) l/24a j.,. (5.3) 

Here again we have neglected the higher order terms since 

we are interested only in the spin wave spectra. 

- If we now define 

Ei 2 

and 	hi - -2(Sis j) 1/2Ji 9 	 ... (5.1k) 

then L.q. (5.3) can be rewritten as 



this approach In some of the earlier work employing 

normalized operators, the requirement of the Goldstone 

theorem is artificially' achieved by imposing it on the, self-

energy. However y" this does not make the procedure strictly 

self-  consistent." Here we have- employed the forrialism of 
Section , Lj..2 which treats the diagonal and the off-diagonal 	1 

disorders on an equal`. footing,- In this method both the diagonal. 
and the off-diagonal parts of the self-energy are determined 
self-consistently from the T-matrix equation, So there are 
slight deviations from the Goldstone symmetry. Thus we do not 
expect our results to be good at low energies. 

i 5.2 The Model 

We consider a substitutionally disordered ferromagnetic 

binary alloy A,-x:Bx where the magnetic atoms of the consti-
tuents A and t3 have spins SA and SB respectively. The inter-
action among the spins is represented by the Heisenberg 
Hamiltonian 

H =- 	Ji ~ 	 i ij 

There the s Lin oration. is taken over the nearest neighbour pairs. 
Jl ~ I the exchange integral is nonzero only for the nearest 
neighbour pair ( ) j) and its value depe3d upon the species 

of spins "which are being connected by it. For a binary alloy 
it can, therefore 9 take three values J, J 1~1  (° J) and 
J~ 	z is the atomic spin operator for the atom located at 
the lattice position Ri. 
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H - 	ciaiai + 	hi 1 aia. 	 .. 

Clearly we have reduced the Hamiltonian (5.1) to a forrii 

(5.5) which we have already dealt with. From Eq. (5.L) it is 

seen that the diagonal matrix element ei depends on the occ-- 

upancy of the site at 	as well as on the occupancies 

of sites which are nearest neighbours to the site at 

I4creover, the diagonal and the off-diagonal disorders are 

both equally important as they arise from the same terms. 

The Goldstone theorem is obeyed when 

-,~ .' 	 ... (5.6) 

However ' this condition is not obeyed for Eq. (5.5) . 

The dynamics of the spin disordered s; :cm is best 

described by the double time retarded Green's function which 

is defined as 

Gib (t) w 2iri©(t) < [ S+(.t) y S(  o) J>/ {2(SiS )1/21. 

((ai(t), ai(o)>j 	 ,.. (5.7) 

The Fourier transform of Gib (t) is defined as 

00 G1~ (W)_ = 	etG1 (t)dt. 	 ... (5.8) 

We shall be interested in obtaining the averaged density of 

states P (w) for the spin. waves and the 	spectral 

functions A(k,w) which arc given by 

P(w) ._ - Im < Gil (W) 	 ... (5.9a) 
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and A(k,w) 	 ... (5.9b) 

where <G (k,w)> is the momentum transform of  

The equation of motion for the Green's function Gi  (t) 

follows from (5.7) , 

w G(w) 	8. .+ ezGijCw) + 	hiftCW). 	... (5.10) 

In matrix notation it can be written as 

T. 	 ... (5.11) 

Ue now define an effective riiedium Greents  function G such that 

	

Hef f)  G = I. 
	 ... (5.12) 

Heff is the corresponding effective medium Hamiltonian (so far 

undetermined) and we choose it to have the following form: 

xeff - 	Ql aia1  + 	O a'aj•... (5.13) .l 

Here the summation in the second term is over the nearest 

neighbour pairs. As already noticed this choice of effective 

medium is not consistent with cluster T-matrix equations, as we 

have ignored the self--energy matrix elements between the shell 

sites. For this reason the results obtained do not reduce 

correctly to the single impurity result of Izyumov183. 

Further treatment runs parallel to what we have 

already done in Section 	.2. Here again we consider a 

cluster c made up of a central site and its Z nearest neigh-

bours, immersed in an otherwise effective medium. The Green's 
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function nction G c  for such a system is written as 

... (5.1l+) 

where 

iec 	,jes 

s denotes the shell of nearest neighbours. Just like the 

electronic case, an approximation has been made in writing 

Eq. (5.15) . There is a problem of how- to write interaction 

between a spin on the shell s and a spin in the effective 

medium. To simplify the algebra as. well as the numerical 

computation we assume it to be the same as in the effective 

medium and similarly for a shell site e 	-- 61  - 	2J oSo GCfl? 

where o denotes the central site 

Equation (5.11) can now be written as 

Gc  - G + G Tc  G _.. (5.16) 
where 	Tc 	+ G Tc) 	 ... (5.17) 

is the T--matrix corresponding to the cluster c imbedded in 

the effective medium. The T-matrix equations are simplified 

in terms of Too , rTos ,  Tso and Ts3  as we did in the case of 

electrons. The expressions fer these have already been derived 

in Section L.2. The effective medium is then determined by 

solving the following conditions self-consisten ,ly, 

(Too> " 0, 
	 ... (5.18) 

These conditions have been solved for various values of 

concelTb,ration and exchange integrals. It has been found that 



< Tc is also vanishingly small and < Tcs ) has a very small 

value which oscillates about zero as energy is varied. 

5.3 The Spin-Wave Spectra 
We calculated the spectral functions ACk,w) . and the 

averaged density of states P(w) for a ferromagnetic binary 
alloy having the simple cubic lattice structure. The magnetic 
atoms are assumed to have spins 1/2 and 1. In F'i gs.5,1-~5.3 
behaviour of the spectral functions is studied for various 
values of x and k keeping the exchange integrals fixed. The 
energy is expressed in units of 2SAJAAZ, As expected the 
spectral functions are very sharp in the low energy region and 
correspond to well defined spin waves. For low concentration 

of B spins, the spectral functions at higher values of k are 

very broad and even some satellite peaks appear in the high 

energy region (Fig.5.1) . As the concentration of B spins is 

increased (Figs 5. l and 5. 2) ' the spectral functions correspondii 

to large k values get comparatively sharper apart- from tailing 

at the low energy side. This can be understood in the following 

way. For higher energies, the spin-wave function has larger 

amplitude on B sites and thus it suffers comparatively less 

scattering as the concentration of A spins is decreased. The 

spectral functions shift towards higher energies as the 

concentration of :B spins is increased (Fig. 5.3) . In general 
the shape of the spectral functions is similar to those of 
Ts ukada177 and Harris et ally obtained for the diluted 
ferromagnets. A detailed comparison of our work with the 
earlier theories is not possible as most of these deal with 



diluted system. As far as we are aware, ours is the first 

self-consistent calculation for mixed ferromagnetic systems 

where both the diagonal and off-diagonal disorders are considered 

on an equal footing. 

In Figs. S.L-°.5. 6 we show the variations of the spectral 
functions as the values of the exchange integrals J and JBB 

are varied, the concentration being fixed at x 	0.L1.. The low 

k spectral functions remain very sharp in all the cases, but 

high k spectral functions become comparatively sharper as JBB 

is decreased. In Fig.5.7 we have plotted the spin wave energies 
in the (191,1) direction for the entire range of concentration. 

The exchange integrals are kept the same as in Figs.5.l-.5.3. 
We have not shown the results for very low values of k because 

the Goldstone theorem is not satisfied. In this region our 

theory does not give good results and moreover there are 

numerical problems due to which spectral .func'tions have more 

than one peak. In Fig. 5.8 we have shown the variation of the 

stiffness constant D defined as 

s . . 
ak 	'k-o 

This result is compared with the variational theory of IIurray182  

whose results are shown by the broken line. O_Lr results lie 

below the variational estimate which is a rigorous upper bound 

for 'spin-wave energy. 

Figures 5.9 "and 5. l0 show representative plots of the 

averaged densities of states. In Fig.5.9 exchange integrals are 



kept fixed at values same as in Fig. S.1 and the variation with 

concentration is studied. At low concentrations, there is some 

structure at high energy end. These correspond to the resonance 

modes of B spins. The oscillations at the low energy side 

are due to numerical difficulties and no physical significance 

need be attached to these. Such difficulties have also been 

encountered in the work of Theumann and Tahir---Kheli185  on the 

diluted f er romagne•ts . As the concentration is increased 2  the 

band edge at the low energy end shifts away. from.zero. As 

discussed earlier 9  this arises due to the use of normalized 

spin deviation operators for which Goldstone theorem is not  

obeyed. In Fi g. 5. l0 we have shown the variation. of the 

density of states as the values of exchange integrals are 

varied. The concentration of 3 spins is kept fixed at x 	O.L. 
As expected, the width of the band depends upon the largest 

exchange integral. 

From this analysis we can say that our theory describes 

well the mixed Heisenberg f erromagne ;s in the whole energy 

region except at very low energies and at very low concentra-

tions. As far as the low concentration limit is concerned, we 

can introduce a term in the effective medium Hamiltonian 

corresponding to an effective interaction between the second 

nearest neighbours as done in the case of electrons. This 

additional matrix element can be determined self•-consistencly 

in our formulation by supplementing the equation (5.18) by 

the condition <iss> = 0. This theory can also be easily extended 

to the mixed ancif erromagnets for which extensive experimental 

results are available. 
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FIGURE CAPTIOUS 

Fig.5.1 Spin wave spectral functions of the disordered Heisenberg 
ferromagnetic binary alloy for various values of the 
wave vector k. x 	0.2 9 J 	N 1.0 9 JAB 	1.25, 3c 	1.59 
SA = 0. 5 and SB - 1. 0 . 

Fig.5.2 Spin wave spectral functions for x = 0.5, Other 
parameters are same as in Fig.5.1. 

Fig. 5.3 Spin wave spectral functions for x 	0.8. Other 
parameters are same as in Fig.5.1. 

Fig. 5. L}. • Spin wave spectral f unctions f or various, values of 
-~ Wave vector V. S = 0.51 S 	1. 0 , J1i11 	1. 0 , J 	 = 0.75,  

JBB -- 0.5 and x 	O.L. 

Fig. 5.5 Spin wave spectral functions for J A - 1.0' J 	= 1.25 
and JBB = 0.75. Other parameters are same as in 
Fig. 

' ig 5.6 Spin wave spectral functions for J 	0, 75 , and 
1, 5. Other parameters are same as in Fig.5.1 

Fig. 5.7 Spin wave dispersion relations in the (111) direction 
for various values of impurity concentration. Other 
parameters are the same as in Fig.5.1. 

Fig .5.8 	 concentration. Tile 3 Ploi, of stiffness constant vs. concei_' 	`~' 
broken line corresponds to Murrayt s results. J f 1.0 , 

AB ° 1. 25 3BB 	1. 5, SA = 0.5 and S 	1.0. 

Fig.5.9 Spin wave densities of states (a) 	0.13 (b) x - 0.3, 
(c) x-= 0.5, (d)- x - 0.7 and (e) x 	0.9. Other 
parameters are the same as in Fig.5.l. 

Fig.5.10 Spin wave densities of states (a) J 	̀  1.25 7 
J B~ = 1.5 9 (b) J 	= 1.25 and J., = 0.75, (c) JJA = 0.75 
and J,B = 0.5. Other parameters are the same as in 
Fig. 5'.L. 
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PART II 

SURFACE SEGREGATION IN ALLOYS 



CHI!PTEPL VI 

1~11GULAR SOLUTIONS 

6.1 ''he , IMModel 
We first , assume that the binary alloy is a solid solar 

tion in thermodynamic equilibrium. It could be obtained, say g 
by firs" preparing the liquid alloy and then cooling it slowly, 
such that at every stage the solution is in equilibrium. In 
this process it is assumed that the surface is produced in 
vacuum. The presence of some environment such as the gasious 
environment is also considered in a heuristic manner in a later 
section. If a surface is produced in a solid alloy by cleavage, 
the question of surface relaxation of atoms poses a difficult  
problem. We have ignored such non-•equili%riva;. processes. 

We shall always remain above the critical order•.disorder 
transition temperati.~.re 9 so that the alloy is completely random. 
The bulk composition is a known factor. Further, depending- upon 
the bulk concentration and temperature, the equilibrium lattice 
structure is known. We assume that the surface is atomistically 
plane s although in reality this has been shown 	not to be 
the case. 

The phenomenon of surface segregation and its tempera.-
ture dependence indicates that in the socalled random alloys 
there is a configuration dependence of internal energy. Since 
the short-range-order in such alloys is negligible at ordinary 
temperatures ) the energy difference between various configura.- 
tions must be small compared with thermal energy ki. 
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Here we assuine a simple model for co:! guri - 
ion, Ene;°oy, We assume that only nearest neighbour atom pairs 

interact and the total configuration energy may he taken as a 
sum of interaction energies of nearest neighbour atom pairs. 
A similar model has also been employed by Williams and Mason 6. 
The pair energies depend only on the type of atoms occupying 
the pair of sites. Such a model has been extensively usedl~~?~ 88 

for discussing order-disorder transitions in alloys. However, 
the present problem is different from the usual Ising problem 
of order-disorder transition. We are always in the disordered 
regime, so the question of assigning sublattices to different. 
components does not arise, rather we fix the overall bulk 
concentration by an external constraint. In the Ising model 
language, this external constraint is like an external magnetic 
field. 

Let f N , T'IBB ? ATE J denote a configuration with AA 

JA pairs etc. If on the whole there are T' atoms ) the extrinsic 
configuration energy is given by 

UN(T;fAA, TAB' 1 BN -. ~'AA1 AA+ £BBRB+ c, 1.'rl, 	... (6.1) 

where we have assigned energies E 	to AA pairs etc. 

In general this is a degenerate state. The configuration 
parameters N ' 1'BB' Tv 	are not all i, dependen;;1 but are 
related according to189 
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Zri, 	2N.A.A+ NAB 
ZT \T 	- 2N + N 

	

j3 	BB AB 

	

N 	NA+ NB 

where Z is the number of nearest neighbours. 

.,r (6.2) 

. s . 

 

Substituting back into (6.1) we get 

U13 (NA ,NAA) w (E AA+ £BB-2EAB) Nom+ (s AB-eBB) Zr~A 
N + 1ZF_BB N. 2  (6.3) 

The lase term is irrelevant because it does not depend on 
configurations and it can be eliminated by a suitable choice 
of energy origin. 

Let us now divide the semi-infinite system lattice into 
layers parallel to our planar surface and number the layers as 

° 0 being; the surface which we shall also 
call the first layer. The intrinsic assumption of our model 
is that the concentration varies normal to our planar surface 
only. This assumption is reasonable for a semi--infinite system 
with a planar surface. Since the environments of points on 
the same layer parallel to the surface are equivalent ' -here 
seems no reason why composition should vary along a layer. 

Let there be NX sites on the ~.zh layer of which RA' 
NB are occupied by A and B atoms respectively 

Ng + N% 	N% 	L NX = LT • 	 ... (6.)-) 
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A site on the %th layer has Z nearest neighbours on the 

same layer and Z nearest neighbours on the neighbouring layer 

so that 

Z A + 	 Z= Z7 	 ... (6.5) 

This Zx on the surface layer is different from the other lower 

layers.' The external constraint is 

NA ° FT 	, N 	-- 	N~. 	 ... 	(6.6) 

If N and Ii 	i etc. refer to pairs in the same and ad jacen 
layers respectively 9 the internal energy can be written as 

U Tv ; (Nla  N, AA ~,T) 	n:. (E 	+ £ . 	2s 	) (' T~r +  ~~ N)) 

+ (E AB- ~: BB) 	Z, N7 . 	 ... (6. 7 ) 

Here we have assumed that the pair bond energies s ~ E 	and  
EBB do not change as we move from the bulk to the surface. 

Define, now 
1`TA.., NB 	

N 	_ 	I\T2 (mx+l) 	 ... (6.8) 

is a direct measure of local concentration x of a consti- 
tuent in. the 	layer by the relation 

m7.  	2X X-1 	1.-• 
	 ... (6.9) 

Further the ratios 
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,.. (6.l0a) 
2?XN 

N?4L 
A7'µ 	 ... (6.10b) 

measure the fraction of AA pairs on the same layer and in two 

adjacent layers. 

We shall now make a tBragg-Williams approxirnationt which 

states that the probability of finding an. AA pair on neighbour-

ing sites i and j, is the probability of independently finding 

an A atom each_ on sites i and j, the same holds f'or BB and AB 

pairs. In essence, this implies that there is no shor-tG-range-

order. For binary alloys with very little short-range-order, 

this approximation is reasonable. The case of non--regular 

solutions where some short-range may exist will he treated in 

the next chapter. Within this approximation 

( O +l) =  

(a+1) 	(m~+l) (RI+l) . 	 ... (6.11) 

The set ~m.1 now completely determines a configuration and we 

can write 
X+l 

TJNClm~1) 	2 s;? 	NZ~um~m~ : 	NZm =m o µ~ ry~...1_ 	X-: 0 

... (6.12) 

where 
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AABB C£AB  - 	A    

and 	B " !(EBB-EAA)u 

... (6.13) 

... (6.11,.) 

The parameters and B are the only parameters which are to be 

known in our formalism. These have simple thermodynamic inter-

pretation. Ze may be identified with the heat of mixing, while 

the parameter B is related to the difference iii the heats of 

vaporization of the two pure constituents. In the present theory 

Zm:B where Z, is the number of missing neighbours for the 

surface atoms ? Plays the role of the surface tension difference 

of the two pure metals. Thus both the parameters can, in simple 

cases, be estimated from the experimental data. One particular 

difficulty arises in cases when the atoms of the constituents 

being alloyed have appreciably different sizes. In such cases'  

the parameters B and s will not have the above simple inter-

pretaa.ion t  but should incorporate some energy changes arising 

due to the size difference. Further, both the heat of mixing 

and the heat. of vaporization are somewhat temperature dependent 

quantities. So 'their correspondence with E and B is not quite 

precise. 

The alloy has some crystal structure and the consti-- 

tuents that make up the alloys may have different crystal 

structures from that of the alloy. In the calculation of the 

surface segregation, we have to know A--A and B--B. bond strengths 

in the alloy. These should be calculated from the hea-s of 

vaporization of the pure constituents having the alloy crystal 
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struc u-e rather than the normal constituent crystal structure. 

Kaufmam-i and -ernstein190 have calculated such heats of vaporiza-

tion for a number of elements. However y most of the alloys of 

catalytic interest have the same structure as their constituents. 

The intrinsic configuration energy per atom is given by 

U(•{mj) 	D1-( 2 s 	ZXµmµ._BZ) m. 	... (6.i) 
Ago 	 x--i 

In tie thermodynamic limit N co NX > co 	co, but the 

sums  of the type 

X!o  

remain finite ? since PT/T O(l/~) . This configuration energy 
is degenerate for all configurations sharing the same fns}. 
The 'thermodynamic probability of a configuration is given by 

P.~ ( J,mx}) 	TT 	---------.~_ N 	~_. _ 	 ... (6.16) 

and is related to the intrinsic entropy 

S{ m ) 	(k/N) fn[PN("lm,€) 	 ... (6.17) 

where k is the Boltzmann constant. When NX is very large, we 
may use Sterling's formula to get 

_ 	PIS' 1 k ( l+m~ fr ,1 + fl  S( rm ) 	 -  
I 	E.. 	T2 	2 

	

+ . 	..Q .. ~2 .~) ... (6.18) 
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The free energy per atom in the thermodynamic limit becomes 

F 	U-TS - Limit 	r ~ 	? 	Z~ m~m~ _BZ~m ( 

	

	 ~ 
Therm) ~=o  

l+m l+m lm lm 
+ 	 ..efn .._-~) 	... (6.19) 

The external constraint fixing the overall bulk concentration 

is 

NAB b l~I •- l N~ m~. 	 ... (6.2o) 

To determine the equilibrium configuration we have to rani mice 
(6.19) with respect to jij-, under the constraint (6.20) . Using 

a Lagrangian multiplier r we obtain the (+i) equations 

t anh 1m _r ( e h1 Zmti + BZ~+y~) /kT.. 	... (6.21) 

The (+2) equations (6.20) and (6. 2l) are sufficient, to 
determine the ( +2) variables [m,_ - and r;, The determination 

of the local concentrations in various layers reduces to the 

solution of these equations. In a semi•-infinite system it is 
to be expected that n1, -> mb in the bulk fairly rapidly. The 
Lagrangian multiplier r can rather be deduced from 

tarh-lmb ° ( zE mb+ZB+r~) /1:T 	 ... (6.22) 

where mb is related to the overall bulk composition and Z 

	

describes the bulk environment. We may then put m 	mb for 
X sufficiently large' say ~, j ? and solve the set of ~.j simultaneous 
nonlinear equationr 
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6.2 Face-Cen,ered Cubic :Model Calculations 

To illustrate our theory we performed numerical cal-- 
culations on a face centered cubic lattice. To begin with 

we assume that m. approaches mb) the bulk value, rather 

fast. This will be justified later by our numerical results. 
Considering the concentration variation in the firs", 'three 
layers we can write equations (6.20) and (6.21) as 

tan.h-1m0 = (cmoZL-cm1ZIL+BZ0+r)) /kT 

tanh"lm1 _ (em1ZL+ E:m2ZIL+ smoZIL+BZ+T)) /kT 

tan-im2 a (ern1ZIL+ cm2ZL+ emb ZIL+BZ-I'T) /k`±' 

earth lmb _ (cm Z •+ ZB+r~) /kT 	 ... (6.23) 

cohere we have defined ZL and ZIL respectively to be the 
number of nearest neighbours in a layer and in 'two . neig.hbour-
ing layers (IL stands for interlayer) . When mb _ +l i.e. for 
a pure solid (x = 0 or y - 0) , it is easy to check that 
all m 	±1 as it should be. For -1/,mb < l these equations 
are solved for three surfaces (100) , (110) and (111) of a 
face centered cubic lattice. The results are shown in figures 

In figure 6.1 we have plotted the first layer 
composition mo against mb for different values of temperature. 
E and B are chosen such that :/k = 10 K and :B/k = 75 K. For 
ideal solutions c is zero and in this case the alloy composi-

tion differs only in the first 1ayex. The broken straight 
line in the graphs denotes that the bulk and the surface 
compositions are the same. Since B is positive, the pair bond 
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in the second, third and further layers as ie1_ -. In figure 6.5 

ve have studied the behaviour of varying B on the (11.1) face at 

`1 ti 773 K. As the value of B/k is increased from 75 to 122 K 

segregation of the B component increases at the surface. We 
have not plotted the composition in the second and the third 
layers for all the cases studied here because -these are only 
a 1 itt1_e different from the bulk. 

§ 6.3 Chemisorption and Surface Felaxation :effects 

a. Chemisorption 
So far we have considered the solid binary alloy with 

the surface contiguous to vacuum (clean surfaces) . If the 

alloy is prepared in the presence of some gas, e.g. O,H,S9 
CO e'tc. 2 then chemical adsorption of the molecules of the 

gas will take place on the alloy surface. As discussed in 
the introduction, this . can change the surface composition very 

much. We can extend the formalism of Soc.6.1 to take in account 

this effect easily. Let ZA and ZB be the coordination number 

of -she A and B atoms at the surface with the chemisorbed 
species N. If EA- and EB~,1 are the pair bond energies of the 
•A4i''' and the B••N bonds respectively, then the internal energy 
can be written as 

U1 L Cd N~ ~ }~A N~  ) 	N 	+  A , 1-,A 	AA 	~- o AA  

+(£ A8-EBB) 	ZA~!A + e ZZt1V0+ E.13MZBSIB. 	. , . (6. 2~.f.) 
=o 
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Proceeding parallel to the procedure of Section 6.1 we 

shall obtain the following final form for UN 

FL:

~
2 I 	ZXµm?mµ_ BZ,mh .. 

i1 

1, 	
r7\ T m0. 	 o r s (6.25) 

In this expression we have again dropped the constant. terms. 

Now minimizing the free energy with the help of the Lagrangian 
multiplier we obtain a set of four equations. The first is 

tanl~'7mo M 	 in0ZL+ smlZIL+8Zo+(sbl1ZB--E ZA) /2 

+r1 /kT 	 ... (6.26)' 

and the remaining three are the same as in. equation (6.23) . 

In our calculations we have taken ZA -= ZB = ZIL and 
defining X "  (s 	- c )/2K the surface concentration against 
the bulk concentration is plotted in figure 6.6 for two values 

of X.T'he central full curve corresponds to the clean surface. 
For positive values of h we see that the surface segregation 

decreases whereas for negative values of X, it increases. 

It can be understood easUy because when X is positive? -then 
the : bond is stronger than the eB  bond and therefore it 
tries to drive more A atoms on the surface and therefore the 

net effect is a reduction in the surface oancentration of 
B atoms. The reverse of this statement is true for a case 
where XL is negative. 
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b. Surface relaxation 
In the. derivation of equation (6.21) it was assumed 

that the pair bond energies do not change as we move from 

the bulk to the surface. In practice there may be surface 

relaxation effects which will change the pair bond energies 

of the atoms in the regime of the surface. Here we shall assume 

that only atoms on the surface layer are affected. If the 

fractional change in all the pair bond energies is denoted by 

a relaxation parameter 5, then the first equation in the set 

of equations (6.23) will become 

canh^lmo  = { j (1+S) moZL  + smlZ IL+r3(l_+8) ZZ  

+BZ IL-0 1 /kT. 	 ... (6.27) 

The remaining three equations will be unchanged. The surface 

composition has been calculated with 15'/. surface relaxation 

in the pair bond energies and is shown in figure 6.7. The 

parameter 8 can be either positive or negative. For positive g 

the surface segregation effect is reduced whereas for negative 

5, the segregation at the surface increases. The surface 

relaxation also affects the second layer composition but the 

change is very small and,  we have not plotted it in the figure. 

Application to Ni-Au _ System 

Williams and Boudart73  have studied the surface composition 

of the Ni--Au system by Auger—electron spectroscopy. Their 

experimental results reflect the segregation of gold at the 

surface of the Ni-Au solid solution. Our calculation give 

results which agree with these experiments and are shown in 
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figures 6.8 and. 6.9. The parameters /kT and B/kT were 

calculated from data tabulated by Hultgren etc a1193-  and have 

the values -0.075 and 0.3083 respectively. Ue have calculated 

surface composition for (iii), (110) and (100) faces of 

Ni •Au system. Maximum segregation occurs at the (110) face. 

The compositions in the second and third layers also differ 

from the bulk composition and are shown in figure 6.8. In the 

first layer segregation of Au occurs whereas in the second 

layer Ni con=tent is greater than in the bulk. This is because 

c now has a negative value which means that the 1`i•Au bond is 

stronger and therefore the excess of ALu atoms in the first 

layer . pulls Ni atoms in the second layer and we obtain an 

excess of Ni atoms in the second layer. The change in the 

third layer is not appreciable. We have not* shown the experi-

mental points of Williams and Soudan. h78  since they have not 

mentioned the surface which they have studied. They have also 

reported that oxygen or hydrogen chemisorption on the sample 

leads to Ni--enrichment, at the surface. Since the oxygen 

nickel or hydrogen--nickel bond is stronger than oxy en•gold 

or hydrogen-gold bond respectively )  we can argue on the basis 

of our results of §6.3a that nickel_ 'enrichmexit should occur 

at the surface. 

6.5 Discussion 

The results of the earlier sections show that this simple 

model can explain the important and broad features of the 

phenomenon of surface segregation. Clearly the model is only 

qualitative and for any real system such simplistic assumptions 
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about configuration energy will not suffice. Ii, is quite 

conceivable that the bond energies themselves are composition 

dependent. The thermodynamic data101  on heat- of mixing for 

several alloys like Au-Ni, Ni-Pt etc, indicate that the 

present model is fairly reasonable, while for several other 

alloys more complex behaviour is observed. It is not unlikely 

that even some of the other features may be understood by 

including (i) interactions among second nearest and farther 

atoms and (ii) improving upon the statistical calculation of 

entropy: This has been studied in the next chapter where we 

have applied the Bethe-Peierls approximation to calculate 

the free energy. In this approximation we can considor the 

short-range-order that may be present in the bulk alloy and 

its influence on the surface composition. When the atomic size 

difference is significant, in our formalism, t:e shall have 

to adjust the parameters B and , to incorporate the size 
aspect. This. only shows that the thermodynamic calculation 

of the parameters e and B, as mentioned in 6.1 is not always 

reliable. 

A more basic question is concerned with  the pair bonding 

assumption involved in the calculation of configuration 

energy. When can such an approach be justified on microscopic 

principles Such a question can be investigated by considering 

a simple tight binding model description for the alloys. 
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FIGURE CAPTIONS 

Fig.6.l_ First layer composition against the bulk composition 
for different temperatures on (a) (100) face, (b) (110) 
face and (c) (111) face of an FCC lattice, The broken 
line corresponds to no segregation. B/k 75 K and 
c/k -.= 10K. 

Fig.6.2 Comparison of the first layer composition on the 
(110) , (_.-.__) 	(100) , (- --) ; and (lii) ,  
faces. T = 600 K, B/k = 75 K and e/k : 10K. 

Fig. 6.3 Variation of composition on the first (--'---) and 
second (--•- ti) layers of the (110) face with the bulk 
composition. T :- 600 K '  B/k ° 75K and c/k = 10K. 
(°-- --) corresponds to no segregation. 

Fig. 6.1.x. Plots of tnc, (xs/ys ) /(xb/yo ) ] against l /T for (ho), 
(--) (100) , (---) and (111) , ( -) surfaces. 
The-bulk composition for all surfaces is fixed at 
mb  = 0.52 B/k = 75 K, c/k = 10K. 

Fig.6.5 Composition on the first layer of (111) face for 
various values of B/k. T = 773 K, e/k : TOIL. 

Fig.6.6 First layer composition of (-11l) face against bulk 
composition. { --_) 2  clean surface; (''-),  ;' ::: 30K, 
—.--- ) y 	30K. B/k - 12,11, y T •- 773K and e/k •• 10K. 

Fig. 6, 7 Surface relaxation effects on the composition of the 
first layer of (111) face (-------) , clean surface with 
no surface relaxations (--.) , 8 _ -0,15; (-.--• -) , 
S = 

 
0. 1, B/k = 12 K, T - 773K and c/k IOK. 

Fig.6.8 Variation of the composition in the first three layers 
on the (100) face with the bulk composition of Ni-Au 
alloys. (---) corresponds to no segregation. 

Fig.6.9 The first layer composition on the (111) ( -- - -- -) ; 
(100) , (° 	--) and (110) , (•---) faces of Ni-Au alloys. 
The surface is ass Tuned to be 
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NON. REGUL.AR. SOLUTIONS 

Almost all the theories of surface segregation Iodate 

assume an alloy to be either an ideal solution or a regular-

solution. In many cases this gives a reasonably good agreement 

with the experiments. But most solutions do not fall into the 

category of either ideal or regular solutions. From the phase 

diagrams of entropy and free energy of .various metallic alloys, 

it has been observed that the excess entropy of mixing and the 

heat of format-ion ary nonzero for these solutions. This suggests 

that there is deviation from perfect randomness of the distri--

bution of atoms in the system, and there exist, some short-range-

order. There is experimental evidence based on diffuse X--ray 

scattering which shows that there is considerable short-range-

order in many alloys. 

This ordering phenomena is more likely in alloys whose 

constituents have significantly different atomic radii because 

this leads to excess thermodynamic quantities. Further for 

alloys having short-range-order the parameter s is not a 

constant but changes with concentration and temperature. We 

have extended our formulation of Chapter VI for non-regular 

solutions. We have introduced surface shor-L---range--order para-

meters which will in general be different from their bulk 

value. These can be determined with a knowledge of bulk thermo-

dynamic data. We have taken into account the temperature and 

concentration dependence of the parameter s using the method 
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of Averhach192: In this -.ay we are able to cake into account 

to some extent the vibrational contribution to free energy, 

which are otherwise neglected in the model: 

7.1 General Formulation 

We consider a semi-infinite solid binary alloy in t.hermo-

dynamic equilibrium. The configuration energy is still given by 

equation (6.1). We again divide the system into layers parallel 

to the planar surface and number the layers T = 0,1,2,..., as 

before. Using the notations of the last chapter : the relations 

(6.2) can be generalized as follows for surfaces; 

Z N = 2ND + N( ) 	 .. (7. la) 

Zxx B 	2NBS + N(BA) 	 ... (7. ib) 

Z 

	

µNA 	N 	+ N 	 ... C7.1c) 

	

T~ 	~~ 	xµ 
BB 	 (7. ld) ZX11 B 	N 	NBA  

Here (.AB) denotes pairs of both the types AD and BA. Next 
we introduce the short-range-order parameters i;a the usual 
manner of solid solution theory. We write 

N 8) = 2x~y~a ~N%7% 	 .. (7.2a) 

N 	= X(l_a~y) Nh.% 	 ... 

NBx 	= y(1x) N~.3., 	 .... (7.2c) 

where x. - NA/Nh and y. = ITX/N~', a is the short--range--order 
parameter for the Ath layer. It will vary from layer to layer. 

Since the concentration x. is tp .v,ary with 	we shall require 
I 	 - 
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two more short-range-order parameters to obtain similar 

expressions for interlayer pairs. Thus we have 

(7.3a) 

TT Y+I L y~x~+~0 1 JT~' +I 	 .,. (7.3b) 

ITT +l 	 ... (?.3c) 

... (7.3d) 

Here ~i is the short-range-order parameter associated with .h the 
probability of finding a B atom in the (?+1)th layer nearest 
neighbour to an A atom in the 7, layer. v;hea eas 	is the 
short,-range-order parameter associated with the probability    
of finding an A atom in the (~.+l) 	layer nearest neighbour 
to a B atom i.n the Xth layer. As the concentration in various 
layers is different, these two parameters have different values, 
but we shall see that these are not independent. The relation 

between them follows from the constraint. 

N +, + 	z1LNA+1 	 ... (7.4)BA 

This can be simplified using the definitions (7.3) to obtain 

x?yx+z 	-- 	 . •. (?.5') 

The configuration energy (6.1) can now be expressed in terms 
of layer parameters 

UN:: EAA L (NAA + A 

	

+eAB 	(N%% 	+ K' %X+l+ ~ 1) 

	

BB 	(N$ + NAB +I) . 	 ... (7.6) 
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Now using the definitions (7.2) and (7. 3) this can be easily 

reduced to the following form 

uN 	A,rv' 	) AA (cAA+ EBB- 2s1 ) 	L IT + 
~-o 

+(c LB £BB) 	(ZxxNA  Z%X+1NX+ ZXA+ZNA+l) . 
A_o 

... (7.7) 

Here again we have dropped the constant terms. Now using the 

relations (7,2b), (7.3c) and the fact that N%~ x VT% we can 
rewrite (7.?) in the form 

	

2B 	N~ (Z.. X
. + 

	(7.8) 

where the expressions for : and B are given by (6.13) and 
(6.l.) respectively. 

The configurational entropy is given by (6.17), but now 

the thermodynamic probability of a configuration is given by 

PN - 	NXX LAB 	I 1 ? t 	1%%+11 T,T 	?+T t ~1Xal 
AA . AB • BA . BB 	A1! . 1 B 	BA 	BB 

NAtNB ! Z%-z_ 

	

X (.. N~ I ~--) 	, 	 ... (7.9) 

where Z denotes the number of nearest neighbours of an atom 
in the xth layer. The configurational entropy is therefore 
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S ~ k  	N~ ~ I + In N 	l + In 	_ fn PTA• 

T f fn rB 	- 	In NAH+11 

Q 	t rB 1 	NB +l [n 	nA 	An  AB 

where h~ 	
{ N?!.1Bj) Z~-1 

In the limit of large NX , N~'~'2 N7,X+19 we can use the Sterling's 

approximation to write 

S '- IL' 	N -~ (Zhp1) (x~Qn x~-fy~en y~) 

{x(1- ay) fn x(i c y) 

+ 2x%y%a~fn x,ya, + y7,('_---u Xx%) Qn y, (l-axh) J 

Z~T.1{x~(1-.-•¢XyN,~l) Qn xN(l• 	 y +1) 

+-t 	 n  

+rX (l-W (3&x~+i) fn y,(l--(3axX+1) 1 	 ...- r .lo) 

The quantities quantities x,\., a%, (3. are now obtained by 

minimizing the free energy per atom F= U= -TS with the 

constraint that the overall concen ation of various consti-

tuents in the alloy is fixed. Mathematically this coxystxairt 

is 

... (7.11) 

This minimization procedure leads to the following set of 
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equations; 

RT [ZOCC, ya -xh)+ ZI( R~.yh+i 	x l hl1 
2i3Z +Tl 

1x-.1J - 	kT 	_ .. (z 1) n 

+ -2Z0 j1--a(y_xh)Jn x(1y) 

.-~1-~-cc hCyh~xh)~;Qn yh(1wahxh) 	 . 

+ 	(y. - x) fn a 

+G1 ! fn  
?N(1-P)"Xx+-~)  

•xX+l~~' n 1-x~+~._ _. + y~~i ~sl~n i X~~~ --  
+1 	A-- i 

Y x 	Qn ys~rl 	0 	 ... 

2 
2E + 1 Qn 	_ ___  0 	 (7.1 2b ) IT 	1--ay~) i .axh) 	 • • • 

- and 

? 	----- ., 0 
C1-x~.~lp~) 	 ... (7.13c) _3c) 

Here y1 is a Lagrangian multiplier and it can be determine. 

I f i 

2€Z 	 2BZ+-0 
kr; ----a~ (yb--xb )  	-, (Z--1) 	b/y& 

+ 2z ~ i--ab Cyb--xb) f" xb Cl y ap)  1-+ b (sr xb) } 
Ian yb (1 ab xb )+ 2(yb . b )ab Iln ab xb yb 	0. 	. . (7,1 ) 



This equation has been obtained from (?.12a) by replacing 
the surface variables by their corresponding bulk value. In 
the limit of perfectly random alloy (a~=1) equations (?.12a) 
and (7.1!) reduces to equations (6.21) and (6.22) respectively.. 
(7.12b) and. (7.12c) are the generalizations of the farlillear 
relationship for the bulk 

kT + 1Qn 	
V b b 	 0. 	 ... (7.l) 

(la-abyb) (lrabxb ) 

Equations ,ions (7.13) and (7.11+) can further be simplified to 

obtain the following expressions: 

iF ~1- J(1+ 
 

.!b: + T, Zo 	1•-a %y%_ + 
la rl {  kT 	2 	Qr. 

+ lyyx+1 % 	x%-1O N._1~~~ Z-,lxpx.,al 

l T l  

(Z 	2 - ~-• Z1-1) fn(x~/y.) 	C ... (7.16a) 

° l+ l 'Yx yh 
... (7.16b) 

2 t7 \
i 

_ h) a  	2  
2Yx,y,+l 	 ... ( '.16c) 

where Y - (en s̀/kT.._. 1) . 	 ... (7.17) 



For brevity we have replaced Z and Zxh+l by Z° and Z 

respectively, because these will be the same for all the layers. 

For rj the final equation is 

(2 _l) fr_(xb/ 	2Z Qn 	
b. 

1,r. 	 . (7.18) 
kT  yh 

}~ b  

As T:7e did in the case of random alloys, here also we can 

consider first two or three layers in which the concentra- 

tion is different, from the bulk. Then it can be assumed that 

all the remaining layers have the bulk concentration. For 

each layer we have to determine three parameters. 

7.2 Preliminary Results for Ag--Au .Alloys 

Recently Overbury and Somarjai85 have studied the 

surface composition of Av--Ag alloys using Auger electron 

spectroscopy. They have compared their experimental data with 

the monolayer regular solution model. They find that the 

monolayer regular solution theory predicts much more set rega--

'cion for Ag at the surface than is found experimentally. The 

heat, of mixing of these alloys and the difference in the heats 

of vaporization of pure Ag and Au is quite large. Further there 

is experimental evidence based on X-ray  scattering that there 

is considerable short-•range--order yn these alloys. Thus it is 

expected that the monolayer regular solution model will not be 

appropriate for Ag -Au alloys. 

Here we have calculated the quantities c and ar from the 

data on heats of mixing of these alloys using the .method of 



Averback192. Now E and ab are concentration (xb) and tempera-

ture (T) dependent. For Ag-Au alloys these are tabulated in 
the table 7,1. The temperature dependence of E is easily 

understood as being due to vibrational contributions to the heat 
of mixing. The concentration dependence is presumably related 

to.~hree body forces and long range forces in the alloys. 
As discussed in Chapter VI' B is proportional to the diff-
erence in the heats of vaporizations of the pure constituents 
A and B. This has been taken constant. Using the data tabulated 
by Huitgren et a1191 we find that NB - 1678 Cal/mol. at 
800°K. The numerical solutions of equation (7.16) are obtained 
following the method of Chapter VI. We assume that x etc. 
attain the bulk value after the first three layers. hen 
equation (7.16) is written explicitly for the first three 
layers which are then solved simultaneously. Here 9 we present 

some of our results in the absence of short-range-order 
(though it has been taken into account in the calculation of 
e) . The complete solution of (7.16) is in progress. Our 
calculation shows that a rather heavy enrichment- of Ag occurs 
at the top layer. However, the variation of concentration with 
layers is not monotonic, for in the second layer, there is 
a slight enrichment of Au. In the third layer again enrichment 
of Ag -occurs. This sort of oscillation is to be expected as 
e is negative for these alloys, so than unlike pairs have 
stronger bonds. The results are shown in figure 7.1. Our 
results for the segregation on the top layer are much higher 
than those observed experimentally by IS. However, an JS 

experiment probes not just the topmost layer but a few of 
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Table 7.1 

Values of parameters 	u + j (x) + gT and ab 
for Ag-Au alloys at T 	B00°}~. 

Au 	I~ (u+j (x)) 	Ng 	xb 	 Ye 
Cal/mol 	Cal/mol°K 	 Cal/mol 

0.1 -38! 1 556  0.0867 1.0356 -35. 0956 

.-368,0235 0.2 

 

0.0779 1. o6i1 -305.7035 

0.3 -356.7311 0.0713 1.0790 -299.6911 

0. lj. --3L.7,691 .6  o. o67i. 1.0885 -- 293. 7746 

o.5 -339.1+583 0.0660 1.0900 .,- 286.6583 

0.6 -. 336.158Lf o. o69 . 1.0846 -280.638J - 

0. 7 -333.1505 0.07+9 1.0720 ... 273.2305 

0.8 -331.3079 0.0826 1.0533 -v-65.2279 
0.9 -.332.8094. 0.0908 1.0294 .-260,169L& 



the layers near the surface depending on the incident 

electron energy. For the sake of comparison with ABS 

experiment,we should calculate the average concentration over 

the top few layers. Figure 7.2 shows the average of Ag 

concentration on first three layers and its comparison with 

the results of manolayer model. Our results are closer to 

experimental values. We think that the 4'ES results should 

be taken for various incident electron energy. Then by know-

ing the attenuation depth of electrons of various energies 

one can calculate an average concentration on those layers 

from the present model and a comparison can to made with the 

experiments. Also so far we have riot come across any experi-

mental results on surface short-range--order parameter. The 

most suitable experiment for this will be LED. We feel that 

the shorts-range-order may have significant effect on the 

surface segregation and the surface short---range-•order 

parameter may be quite different from its bulk value. These 

quantities will naturally play an important role in determin-

ing the behaviour of various elementary excitation near 

surfaces of alloys. 
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FIGURE: CAPTIONS 

Fig.7.1 Plots of surface concentration m 	x~-yx vs. 
bulk concentration (mb v x~-y~) . (----•) , (---) and 
(°-• ) denote respectively the first layer s the second 
layer and the' third layer composition. `1' 	800°K. 

Fig.7.2 Plot of the surface composition of Ag vs. the bulk 
Ag concentration. The full  line denotes the averaged 
surface concentration of Ag w:Lich is the mean over 
the first three layers. The broken line denotes the 
corresponding result obtained from the monolayer Model. 
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APPE1NDIX A 

Sine Particle Green! s Function 

For a given alloy configuration described by H9 the 

single particle Green's function is defined as 

G(z) _- (z--H)-1 	 ... (A.1) 
where z = E ± i'Y is the complex energy having an infinitesimal 
imaginary part T. 

(A.1) may be rewritten in the following form 

00 
G(z) - JdY)  1_ - 8(r,-H) 

Using the identity 

•Lim K.~~j+ 'y - P 	- + ill,(- _i) 

toe have 

J dp P L 	+ i 	( .' T)) r fi (rla I) 
oo 

Here P denotes the principal value part. 

Therefore, 
8(E-H) 	(2Ui)_'1EG(L-io)-•G(E+io) 1. 

... (A•2) 

... 

... (A.5) 

The spectral density operator A(E) defined as A(E)  
is therefore 

A(E) - (2iti)'1 <G(E-io) -. (E+io)) 	 ... (A.6) 

which shows that the configurationally averaged spectral 

density of states operator is related to the discontinuity 
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of -;he configurationally averaged Green? s function across 
the real axis. From equation (A.I.) it' follows that G(+i0) 
and G( -i0) are complex conjugate to each other and 
therefore 

ZG (L.. io) - 	--2i Im <G (E+io)> . 	 ... (A. 7) 
Hence 

A(E) 	Im<G(w+io)>. 	 .. (A.8) 

The significance of the spectral density operator is clarified 
if it is expressed as a matrix element with respect to a 
configuration independent set of states t > appropriate to 

a perfect crystal', 

1 -.. _,. 	Im < k ( (G (E +io ),> i ... (A.9) 

The spectral functions A(k,u) gives information about the 
energy and the life time of excitations. Another quantity 
of main interest in disordered systems is the averaged 

dei~.,sity of states per atom which is related to the trace 
of the spectral density- operator A. 

l t_ 	-~ P(~_,), .v 	) A(k,1) 4 I\I Tr I.A(E) y_~ 	 ... (A.10
) 
 k 

Therefore P(E) '° - 	Im Tr /,G(E+io)> ry 	Ian /01 <G> 10> 

. (A.11) 

L'hich shows that the trace of the imagix~.a.ry part of the 

configurationally averaged Greens s function gives information 
about the density of states. 
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Exact Results in Dilute Limit  

[•Je consider a single impurity in a simple cubic 

crystal. In the subspace of the Wannier states spanned by 

the impurity site and the six nearest neighbours, the 

impurity potential in a single s-band model can be written 

in the following form: 

So  S1  Sl  Sl  Sl  Si  Si  

sl  S2  0 0 0 0 0 

Sz  0 s2  0 0 0 0 

a 	sl  0 0 S2  o 0 0 	(B._) 
81  0 0 0 82  0 0 

sl  0 0 0 0 S2  0 

Sl  0 0 0 0 0 82  

\there <01V10>= 8o  y <l (Vj 0) = S-i  2 <l I VI l> 82,  and i 1> 

is any nearest neighbour site. 

In forming this potential } d.ia,goxlal per -, Lu bations (S 2) 
on the nearest.  --neighbour sites have been included. This matrix 
can be block diagonalized using the unitary t ransf ormati.On 

S discussed by Wolfram and Callaway193  2 
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1 0 0 0 0 0 	0 

0 a b 0 0 0 	d 

0 a -b 0 0 0 	d 

0 S Y a 0 b 0 c 	e 

o a 0 -b 0 c 	e 

0 a 0 0 b -c 	e 

0 a 0 0 --b --c 	e 

... (B.2) 

where a 	9 b 	1/f2) c ._ 2, d 1/J3 9 and e -- / 2. 

Under this transformation, the potential becomes -5 

5o ~~sl 

fil 62 

V z St VS 	0 

0 

/820 0 
0 82 0 

t0 0 82/ 

0 

0 

52 0 )  
o 82 

... ($.3) 

The first block operates on the two s-states 9 the second on 

the three p.,-states and the third on the two d states. The 

same unitary transformation block diagonalizes the Gre-en's 

function giving 



G 	16G 00 	 ol•  
0 

p
0 0 

G 	S1 G S 	0 	0 G 0 
\o 0 Gp 

[I] 	 [ii 
	

Cd 	0 

o G d 

•.. (B. J+), 

•there, 	
2 6 G5(D) 1 v 

Co 
 

k 

G. () 	 G 	Y p 	 E 	° 

a(l+s(2k).~ 2s2( k)) 
d 	E E, -__ 

k 

and s()- (coska + cos ka + cos ka).x 

The T-matrix can now be written in block diagonal form, with 

the three blocks 

	

1 0 	8Si
) / G 	6 	6 5 \

00 t() 	
to 1 	 8 	82J1 G0]  G5 )J U 	2) 

• • • 	(B. 5a) 

fl 0 0 

	

j 82 1 0 1 0 	 ... (fl.b) 
0 1 



"I_ I 0 

td(J) 	11N•82Gd(T) I Sgt 0 1 	.  

As Sternl60. has pointed out) the diagonal-disorder model 

contains, necessarily, only s-have scattering by each defect, 

and hence has only a single phase shift to satisfy the Friedel 

sum rule, When the off--diagonal disorder is included (8-i / o) 

b.ut g 2 	0, we see from Eq. (B.5) that only the s--wave scattering 

is non-zero. It is, therefore, clear that the mere existence 

of some .off-diagonal disorder is not sufficient for p-- and dT-

wave scattering by a defect to occur. Rather it is required 

that the perturbing potential on the neighbouring sites also 

be nonzero.. For example 82 	0 is sufficient. Thus the standard 

model of off-diagonal disorder (8'O, sl ,1 0) which has been 

in common use in various generalizations of the CPA for the 

electronic problem clearly fails to produce more than simply 

s-wave scattering and hence does not have enough flexibility 

to satisfy the Friedel sum rule when self--consistency require-

ment on the potential is imposed. When only the s-- wave 

scattering is non--zero, the diagonal element of the T'--,matrix 

in -space becomes 
50+ 682GS+l281(l-681 Gol)s(i )+ 3682Goos2(k) 

s _ 	 _ 
G -125 G _-+ 368 2cT 	G

--~ 	(B. 6) 1 
0 00  1 0l  1 01-6 100Cs 

In the low concentration limit the self-energy is given by 

(k,z) 	x tk 	 .. 	(B.7) 



From Eqs. (iB.6) and (B.7) it is clear that in order to 

achieve the proper dilute limit the self-energy should contain 
2 a term proportional to s (k) . 
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energy which is related to the heat of vaporization of the 

6 compone-nt is less than that of A. From the graphs it is 

seen that the B component becomes enriched at the surface. 

These results are in agreement with several experimental 

observations and simple surface thermodynamic principles 

that the component with lower heat of vaporization or the 

surface tension gets enriched at the surface. From Figure 6.2, 

it is observed that the enrichment on the (17 0) face is the 

maximum among the three surfaces studied for the same values 

of parameters e, B and T and is the least on the (iii) face, 

which is a simple consequence of the fact that the segregation 

is larger, the larger the value of ZIL. As the temperature is 

increased, the surface segregation decreases for all the 

three surfaces. The variation of the concentration in the 

different layers is shown in figure 6.3. The composition in 

the first layer is markedly different from that of the bulk 

whereas in the second layer this difference is very small. 

The composition in the third layer is almost the same as the 

"bulk and therefore it is not shown explicitly in the graph. 

This also justifies our approximation that m,, approaches 

rather fast to the bulk value for small values of e, and this is 

consistent iitb the ass umptc. on regarding the absence of the short 

range order. In Fig,. -6.). we have plott. d In! (xs/ys ) /(xb/yb)  M1  

against l/T for the three faces and we obtain straight sines. 

This shows that the simple thermodynamic monolayer model 

is consistent with our model. However, for larger values 

of e one should expect appreciable deviation of composition 
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