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RESUME

The present thesis contains scme of the author's
theoretical investigations aimed at understanding the
behaviour of electrons and phonons in disordered systenms,
The usual tools of band theory are not applicable to such
gsystems because of the lack of translational invariance,
With the breakdown of BlochrFloqﬁet theorem in disordered
systems, the nature and distribﬁtion of their eigen~
states in energy become the foci of theoretical interest.
With the availability of high-speed computers? it has
become possible to apply sophisticated Green-function
techniques to the present problem. Amomgst the analytical
tools developed for studying disordered systems the
Coherent potential approximation (CPA) occuples a central
position. This theory has proved extremely helpful in
providing a semi~quantitative description of a wide class
of elementary excitations (electrons, phonons, excitons

ete.) .in disordered systems.

We applied this theory for phonons in Si~Ge alloy
and tried to interpret thé Raman~-data available for this
system, This study led us to conclude that it is necesgary
to modify some of the simplifying assumptions in CPA
theory for a fruitful confrontation of theory and experi-

ment .,

Our efforts aimed at improving upon CP4L have

followed two differcnt dircctions, First, Dllowing the
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line of CP4 we developed = coherent pseudnpotential
approximation, This 1s capable of taking into account
the difference in band-widths and shapes of density of
states curves of the constituents of the alloy. This is
a self-consistent, single-site, single-band theory and
~is valid for any number of subbands. Its application to
Cu-Ni alloys has been quite promising. Secondlys we have
attempted to synthesize the numerous approaches to improve
upon the single-sito nature of CPA. This type of general-
ization of CPA is non-unique. All the generalizations
to include the clusﬁer effects can be categorised into
two classes based on two types of decoupling schemes.

It becomes interesting to compare the numerical results
obtained from the two methods. Numerical results are
available for two-site clusters from one of these methods.
We have performed the calculations using the other method.

The results are quite differcnt,

- The studies mentioned so far were concerned with
the distribution of eigenstates in energy. The other
important aspect studied in the thesis is the nature of
the wave functions in disordered systems. Anderson
introduced the idea of non-diffusion of an ¢lectron in
a disordered system., Further charm was added to the idea.
by Mott, Cohen, Fritsche and Ovshinsky, who conjectured
- that in a disordered system the localized and extended

cigenstates are separated by a well-defined energy called
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mobility edge. Anderson's original work wWas extended

to determine the mobility edges, by two sets of authors,
Economou and Cohen, and Abou-Chacra, /Anderson and
Thouless. They used renormalized perturbation expansion
of self-energy and dealt with the convergence and
divergence of the series, The former authors assumed
all the terms in the series to be strongly correlated
whereas the latter ones took them td be uncorrelated.
The convergence of the sceries implies localization and

divergence implies extension.

We have modified the Economou-Cohen criteria by
avoiding a,mathematical approximation made by them, and
have calculated the percolation concentration, This
concentration comes out to be 7% and 8%. against the
corresponding old values of 177, and 2L % yielded by two
of Economou~-Cohen criteria. Percolation studies of local-
ization yield the value 31Y. . We have made some prelimin-
ary studies regarding the influence of short range order
on localizations, and the meaning of localization of

 phonons,

The shape of localized wave functions is a gubject
of great interest in localization studies, dssuming the
mobility edge to be known we have studied for a Cayley
tree lattice the extent of localized wave function as a
function of cenergy. We have found that the extent of wve-

function diverges at the mobility edge — an observation
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consistent with Mott's contentions. It is interesting

to note that the extent also increases gradually as
energy moves deep into the band tail. This behaviour

can be explained by the probabilistic arguments proposed

by Lifshitz,

In the end of the thesis we have critically exam-
ined the recent approach to localization problem proposed

by Mattis and Yonezawa.



CONTENTS

CHAPTER

11

I1I

v

PREAMBLE

COHERENT POTENTIAIL APPROXIMATION
1. General Formulstion
2. CPA for Phonons

3. Phonons in Disordered Si-~Ge
Alloys

COHERENT PSEUDOPOTENTTAL
APPROXIMATION

1. lodel

2. Computation and Discussion
of Results

CLUSTER EFFECTS IN. DISORDERA

- SYSTEMS

APPENDIX

l. Generglization ol CPA
2. Pair Calculation .

LOCALIZATION

1. General Theory

2+ No-Correlation Case

3. Strong Correlation Case
L. Localization of Phonons

5. Theory of Mattis and Yonezawe
~-- A Refutal

I. ANDERSON'S UPPER LIMIT
APPROXIMATION

BIBLIOGRAPHY

Page
LI 3 l
eoe 9
ess 10
eee 13 -

ces 31

. 32
‘s )-1-5‘
L) 59
.. 60
a 8 '72
ees O3
ere 96
'E R 91
ses 106
* o0 117
ves 131
LI BN 136

voo 140



CHAPTER 1

Preamb‘e
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jorder means deviat:on from order, In the natural
world, there exists an enormous amount of important materials
whose microscbpic structures are far from periocdic. As a
matter of fact as has been described by Krumhansll, it is
really a random world, It is now conceded that many materials
possess interesting properties largely on account of their
disorder, and solid state philosophers freely predict
that the norscrystalline state, when fully unravelled will
be found to exhibit its own range of phenomena, no less
rich and varied thaﬁ that shown by the other aggregations

of matter,

1. Range of Disordered Systems.

Disorder is mainly divided into two classese.

(a) Substitutional or Cellular Disorder.,

The lattice structure is retained but each atomic
site is randomly occupled by atoms of different isotopic
or chemical species, We also include in this class vacancy
defects due to absence of atoms from a lattice sitey or
interstitial defects due to the presence of additional
atoms in the lattice interstices. As a general definition

it is best to think of cellular disorder as a disorder

where properties vary from cell to cell in a lattice, Cells
may contain molecular units which may vary in their orienta-

tlony then we have an orientationally disordered crystal.



(b) Topglogicg; Disorder,

Topological disorder is associated with glassy or
liquid like characteristics. Two extreme situations
occur, In the first case each atomic species has its
own well defined coordination requirement and its nearest
neighbour environment is similar to that in corresponding
erystal, In the second case this short range coordination

order is absent.

There is an intermediate situation between the
orientational disorder and topological disorder which is
present in liquid crystals, They aré devoid of any lattice
structure but the molecules tend to be lined up parallel
over long distances,

Before we move on to the problem as to how to study
disordered systems, we explain some relevant basic concepts

and definitions,

20 Probability Distributions and Ensemble Averagess

In a random system we never have complete information
about the structural details of a given specimen. What we
can know at most is the probability for a particular
structure (or configuration) to appear. Thus we are led
to the concept of an ensemble as a mental collection of
replicas of the system, each member of the ensemble corres-
ponding to a particular possible structure of the system,
Experiments are performed on particular specimens, so we

assume that experimentally observable quantities pertinent
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to macroscopic systems are sharply distriouted around
the ensemble average value, In other words we assume
that the value of an observable quantity for a member

of the ensemble chosen at random differs from the
ensemble average value of the same quantity by an amount
- which is vanishingly small. It therefore follows that
purpose of a theory is to calcUlate ensemble averages
ory even more generally, probability distributions for
the quantities of physical interest, At whiph stage the
ensemble average_will be perﬁormed‘depends'on the operat-
ilonal definitioﬁAof the quantity of interest., This will‘

be made clear later when the averaging is employed.

3. One-body Approximation,

The propagation of the particle or wave we shall
consié;r here will be gove 'ned completely by a one-~body
Hamiltonian, whose matrix elements will be random varia-
bles with a known probability distribution., This random-
ness in the Hamiltonian stems from the randomness in the
structure of the naterial, We will omit many body effects.
It showld be pointed out that many body effects may be
important and possibly different than in a periodic
structure.,

4o Short- and Long-range Order, Correlation Functions,
Degree of Randomness.

In almost all disordered systems there are somc

elements of order remaining., Usually the material is ordered
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to a high degree locally, This means that in the neighbour-
hood of any arbitrary atom the structure is always very
similar to that of a corresponding periodic system. We say
that the system possesses short-range order. As the size of
the considered neighbourhood increasesy its structure for
the disordered system usually becomes more and more
different than that of a corresponding periodic system and
eventually for the very distant atoms there is no correla-
tion at all between the two. This situation is character-
ized as absence of long-range order., Mathematically .speaking,
the existence of disorder implies that at least some matrix
elements of the Hamiltonian are random variables. Existence
of short-range order implies that the matrix elements |
referring to neighbour atoms are strongly correlated random
variablés$ absence of long-range order means that matrix
elements referring to distant atoms become statistically
independent as the distance between the atoms becomes
infinite,

To decide that one system is more random than
another s we make the following considerations. (a) The
wider the probability distribution of each matrix element
isy the ﬁore random the system igs,y provided all other para-
meters characterizing the probability distribution remain
unchanged 3(b) the smaller the range of statistical correla-
tion is, the more random the system is3(c) the weaker the

statistical correlation is, the more random the system is,



5. Quantities of Interest,

Having discussed the above basic input informat-
ions for a theorys we now cxamine briefly what the out-
put is, i.e, the quantities we calculate. The most
basic information we need is how the elgenstates are
distributed iz cnergy, i.e, the density of states.
Secondy we like to have information about the nature
of eigenstates, their spatial extent, i.e., whether

they are localized or extended.,

5.1. Localized Eigenstates,

A wave function U(T) is defined as localized if
it decays fast enough as |F|-» ®so that the integral
~r¢*$d3r exists., When P(T) is localized, it is assumed to
decay in an exponential way,li(%) 5;2)e"l;[/Rd, vhere
Rq 1s called the decay localization length. The quantity
Rg determines the behaviour of the wave function only
at very large distances} for finite distances:NI(f)]2
may exhibit a very complicated behaviour. One possibility
is that |P(¥)]° remains more or less constant within a
finite simply connected region of space of simple
geometrical shape characterized by a linear dimension Rf,
termed as fluctuation localization length. More exhaustive
definitions of locélized eigenstates will be given in

the Chapter 5 while doing the physics of such eigenstates,

5.2 Extended Eigenstateg

Extended eigenstates are characterized by the

shape of the multiply connected channel type region
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extending to infinity, where |§(?)|? is appreciable.

An essential difference in theoretical treatments
of periodic systems and disordered systems lies in the
fact that in the former thé problem is reduced, owing
to the Bloch theorem, to that of solving a Schrddinger
‘equation in an unit cell. For systems which lack in
perfect periodicitys the Bloch theorem fails to work
(k-selection rules are also lost) and thus the Schrodinger
equation with an aperiodic potential of infinite extent
must be treated. Therefore, for disordered systems 1t 1s
lmpossible to solve this equation exactly. S8tatistical
physics provides us methods for deriving macroscopic
properties of these disordered materials from guantum

mechanical rules governing the microscopic world,

In this thesls we present some of our attempts to
tackle with two main themes in the study of phonons and
electrons in disordered systems, The first theme is
related to the distribution of the eigenvalues of the
wave functions for these systems. This is'concerned with
the problem of the energy spectrum and other one-particle
‘properties of the elementary excitations which are to be
discussed by means of the ensemble~-averaged one~particle
Green's function {G>» , where the ensemble consists of
elements corresponding to all poésible microscopic confi-
gurations of atoms which can not be distinguished macro- |

scopically. The second theme is associated with the
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behaviour or the character of the eigenstates, i.e.
whether it 1s spatially lovalized in a restricted region,

or extended throughout the sample.

The organization of the thesis is as follows,
Chapter 2 contains a general formulation of the self-
consistent single site approximation; the so-called
coherent potential approximation2?3 for obtaining ensemble
averages of the quantities of interest. It has been sub-
sequently generalized for the case of phonons for lattices
containing more than one atom per unit cell. This has
been applied to Si~Ge alloys of arbitrary compositioﬁ
and comparison has been made with the available Raman
spectra, In Chapter 3 4 coherent pseudo-potential approxi-
mation has been reported, This is again a self-consistent
single site theory but enables one to deal with realistic
systems having arbitrary shape and any number of subu;}
bands of density of states. Comparlson of the computed
- results for Cu-Ni alloys has been made with the photo~
emission results. Generalization of CPA to include the
effecfs due to clusters of like atoms has been given in‘
Chapter L. Various decoupling schemes have been compared
and critically studied with special emphasis upon the |
pairs embedded in an effective medium. Calculations within
self-consistent pair approximation have been reported
- for simple cubic lattice and results have been compared
with other similar but not so exact calculations. The
fifth and the final chapter dezals with the difficult

problem of localization in disordered lattices. Three
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methodologies in the field have been stated and discussed.
Results for the exteht of wave functions in the localized
regime obtained for the first time for three dimensional
latticesy have been given for infinite Cayley tree
lattice with horenzian shape of site-energy distribution.
The famous Economou=Cohen criteria for localization have
been modified. Attempts have been made to understand the
localization of phonons. Qualitative argﬁments have been
atated and supported to a good extent by the gquantitative
results obtained by adapting the Ecohomou~Cohen criteria
to the case of phonons., The final sectioh of the chapter
reports the socalled new criterion for localization given
by Mattis and Yoneza#é£9& This method has been shown

to rest on erroneous arguments.,



CHAPTER 2

Coherent Potential

Approximation
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We present a brief systematic derivation of the
so-called coherent potential approximation (CPA)2’3, which
is a powerful approximation scheme for obtaining the
ensemble aﬁerage. We clarify‘its meaning and limitations
and discuss a moderately realistic single band model

corresponding to a three-dimeiisional system,

The CPA 1s a self-consistent single site approxi-
mation within the muitiplemscattering framework”wé. In
this approach the propagation of an electron or lattice
wéve in an alloy is regarded as a succession of elementary
scatterings on the random atomic scatterers, which are
then averéged over all configurations of atoms. A scatterer
is viewed as being embedded in a fictitious medium
described by a yet undetermined effective Hamiltonian,
Héff which possesses the same symmetry properties as the
average Homiltonian (i.e; it is periodic). An incident
wave assoclated with this effective Hamiltonian is intro-
duced which is scattered in the real material by the
scattering potential (H—Heff) (H is the actual Hamiltonian
of the disordered system), Hypp 1s then determined by
the requirement that the séattering onn the average is
minimal. The so~determined Heff is called the coherent
potential Hamiltonian and is used to describe the average
properties of the material. A detailed study of CPA has
been done by Velicky, Kirkpatrick and Ehrenreich7 and
all the parallel methodologics have been reviewed by

I .8
Yonezawa and Morigaki,
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1, GENERAL FORMULATION:

We derive results that are valid within single
site approximation for any single-particle Hamiltonian
which can be decomposed into a sum of contributions
assoclated with each site, The N equivalent sites of a
lattice are randomly occupied by two kinds of atoms,
A and B, The probabilities for a site of being occupied
by A and B are proportional to their concentrations
per unit cell, which are respectively x and y = 1-X,
both varying from O to 1. The one~electron Hamiltonian
corresponding to a given configuration is denoted by H.
The single particle properties are derived from the
Green's function G(Z) = (2~-H)™". The quantity of interest
is~<G{Z)> which détermines all the macroscopic quantities
and has the full symmetry of the empty lattice. The
effective Hamiltonian characterizing the average crystal
is defined by the relation {G(Z)> = (Z-H_..) *. An
approximation H(Z) is made for the exact Hopp(2) ahd a

perturbation equation is written,

n~

Here, T = (Z-ﬁ)"l 3 aee (1.2)

is the unperturbed (reference medium)} Green's function.
In the muwltiple scattering theory a T matrix is defined

by a relation similar to (l.l),

¢ =G + 377, eee (1.3)



On averaglng one gets,
<G> G+ TG, . ver (Lal)
From (1.1; and (1.4) we get,

H .2 + < (146<Ty) "L, eee (1.9)

eff

This equation can be solved in two ways.

(a) Non-gelf consgistent method:

{T(H)® corresponding to a given H is inserted.

(b) Self-consistent method:

<T(®> = o, e (1.6)

is solved. Approach (a) is simpler than (b),

1.1 Single Site Approximation(SSA):

The random-perturbing potential (H-H) is decomposed

into a sum of contributions from individual scatterer,
H‘E=E an aee (107)
= |

The multiple scattering method is applicable if such

a decomposition is possible. Combination of (1.3) and

¢=10+C8@H- DHa, - eeo (1.8)
yields, T = (H-H) (14GT) , vor (1.9)
=5 V. (4CT) & ¥ 7, cee (1.10)

L L T |

Ty is the contribution of an individual scatterer to T.
We now introduce tn, the atomic T matrix associated with

the isolated site n,

- v =1
t, = v (-V 67, eee (1,11)



-12-

With the help of (1.10) and (1.11), Tn is written in

terms of tn asy
Tn = tn(l + GﬁgnTm).  ese (1.12)

Tn is the strength of a scatterer in alloy. tn is the
strength of an isolated scatterer,(1+G § T,) describes
the multiple scattering from all the scgtgerers(except n)
in the alloy of an unperturbed wave incident on n. After
iterations (1.12) evolves into an hierarchy of atomic T

natrices,

7= 4 +}‘_t&'n§t T oeene oo (1.13)
- n T &n o 0 :
Averaging the exact relations (1.10)-(1.12), we get,

<T> = }I‘:l<Tn>, se 0 (lqll{.)
<N (tn<1+§m§nTm)> ) oo (1.15)

=< tn><1+’5n%n<Tm>>+ < 5 (Tl eenn (1.26)

The first term describes the effect of the averaged effec-
tive wave seen by the 0 atom and the second term corres-
ponds to the fluctuations of the effective wave., We neglect
this fluctuation term which amounts to assuming that all
statistical correlations between n and all other sites n

.are neglected. 8o that;
G RTINS t.> 140 n@ﬂ(mm» . eoe (1.17)

This découpling of average in (1.,15) is termed as gingle-

site decoupling scheme because it isolates the average
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scattering from nﬁh

scatterer from the ﬁultiple
scatterings from rest of the sites in the system.

Since '5’ Tm =VT-T y we get from (1.17),
mgEn n

-1
(T )= <t AT (18G5 .. (1.18)

so that (1.9) can be rewritten as,

Hope = W +‘% e raAE N e (1.19)

Thus the non-self consistent and self consistent methods
described above may be done in terms of tn within SSA. -
Within SSA the self consistency condition (1.6) is equi-~

valent to solving,
<tn(ﬁ’)> = O‘, e s (1020)

for all n, Determination of an effective medium through
‘the fulfilment of the condition (1.20) within the set of
approximations made in arriving at (1.20) is called the

coherent Potential Approximation(CPA4) .

2, CPA FOR PHOLONS®

We essentially repeat the CPA formulation of Taylor3
for phonons in disordered alloys, generalizing it for
| more than one atom in a unit cell.? We discuss a single~
band model which is closely related tothe tight-binding
approximation. The Hamiltonian for the harmonic lattice

containing impurities is

H = H +H', ees (2,30



where,

22 2M 5 221 E ¢ wp (Ll kD wy ((k)uB((tkt),
ik e (2.1)

is the perfect lattice Hamiltonian, p(fk) is the momentum

operator for the atom of mass M in the [th unit cell
with basis index k, and u, ({k) is the ot Cartesian

component of the displacement operator for this atom,
i) B(lk,l’k‘) are force constants. If we confine ourselves

written as,

-3 P-%@gm?w Sl e (23)

Such an assumption makes the disorder cell localized.
Contributions to H' come from impurity sites only. The

displacement-displacement double-time thermal Green's

10

functions are defined as

m

?W<KU.(Kk:tjsup(l'k"t’))>ret

-2711 (['u (Lkyt) ;U-B((‘k')t!) ])Tg(t"t') 2
ess (2u43)

rgt((k,('k',t- D)

626" (K1 He=51) B 2, (L) Jug (UM ' 50)P 50

2ni < Dy (L st) yuq (1t 519 TDHg0(t1-1)
ees (2.4D)

8(t) =1, t>0
e 0; t<0.
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o yf denote the Cartesian components and X denotes the
thermal average., The average over different configurations
is denoted simply by{ D» The Fourier time transform of

G is given by '

w+4is)t

Gy (LMt juxis) = Lo [© 6o 1Y (L, 1t 5t) e at
-0
s0 0 (205)

We shall suppress the infinitesimal quantity & and
anderstand that for the retarded and advanced cases w

approaches the réal axlis from the upper and lower half
planes, regpectively. For a harmonic lattice, both
Green's functions of (2.4) for a system described by egns.
(2.1)=(243) satisfy identical second order differential
equations of motion which, when transformed according

to (2.5), give the following equation for G:
U058 g (i e 5 + 2% Gy RSB T Gg (€ 110 51 50)
| PR

5 -5,g8 (0 1kT) + oy S L 56 0y (LTK2 1 50) 5
‘kx’kn ) see (206)

Cog e Mk 50) = DU MO TuPsy s (LoD o ous (2.7)

For a defect atom at [;k;, it is convenient to describe

the change in mass,

(£iks)
2

I\’lo—‘b’.{(/(iki) " I408 LR (2.8)

by the matrix,

Lk

| Uy
Cup M t50) = H 8 0B 8Ll k1) 6 (il ky)

eee (2.9)
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(£yk,) |
e therefore gives the fractional mass change
at ((iki) occupied by an atom of type p. If the Green's
function for the perfect lattice [i.e.; C = 0 in eq.(2.6) ],

denoted by P, is known, then one obtains for G

S.;'Y

Gup kol et 5u) = B o (el et ju) M 807 § P (ficyskg s w)x,
| ' k

S
G'Y B(S‘ks”,,(lk ! ;U)) e (2010)

(sks) denotes the impurity site, Now

oMo Do EpeRonen)

P&B(lk:l’k’i w) = 3%?‘ b )

© 353 RHE

eas (2,11)
N is the number of unit.cells and j specifies the 3s

branches,; where s is the number of atmos per unit cell.

wj(a) are the eigenvalues and o—g(ﬁ) are the eigenvectors

of the “ynamical matrix for a perfect crysial. Eq.(2.10)

 for the Green's function of the imperfect'crystal_g can bé

rewritten in the fornm

G 50) = POO,L Tkt j0)+ ZZ _E(lk:flkl,sw).g()(lkl oL K 558) .

1245
k0% GU Mk 50),
ss e (2-12)
where the defect matrix is given by '
(L)) | |
SV ey ety V. (2.13)

Sk [kt y) = {E
k.
i7i

H
Equation (2.12) is the usual Dyson equation with C as

perturbation, If we introduce the t-matrix,
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E(zlkl’zzkzsw) = 2 et (2.11{.)

1-C(Lykq 2L oo 30) B(L kg 3Lk 5 30)

We can write

Gl Lic0) = P(Lk oL 1k "’w)+zz PO My kp 30) 20U %, L p30)
1245 ) |
ky sko X PU e ps M )

| ees (2.15)
Averaging (2.15) over all configurations, we have

CQUBRT)Y = UL + £ BUeadyky 300KEU K, o g3
142
K152 x PU KL 0)

ces (2,16)

On iterating eqn.(2.12) and avermging, we have the result

in terms of the self-energy J :

Lk A1kt 5w)) = P(Lk, 0tk jw)+ ZZ By fydeg 50) 2Lk ol kg 5u)
‘ 1242 -
kyalty  xGUGkp Tk i) >,

| e (2.17)
Now we make an approximation & for the actual self-

energy 3. A new Green's function is defined in terms of E as
GOy Nkt j) = R(L, M Pt j)+ E g BUA I 30 B s 50)
. X (2018)
‘Then writing Eqn.(2.12) in terms of G° rather than Py we

obtain
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. (£ k)
Gk (T ) = k30 +Y  Cfkaliky 3 0T 2 2 Lqky o kp36
,1,[ 171 1717%2
2

kl’ké X.Q(fgkg:f'k'5w>:
ses (2.19)
with :

)

(Klkl,fgkg; w) = mg(flkl,fekgs w) for a host atom
at £k, vor (2.20a)
- . 2
h -‘E‘({lklﬂezkzﬁw)'fM ew 5(%11{1’(2}{2);

- for a defect atom at L k,. ... (2.20b)
In the single-site CPA we choose our system such that

besides the site, say, ({k) (which has the liberty of being
occupied by the host atom or the defect atom) s the rest

of the sites are configurationally averaged., If we identify
I with the exact ¥ , then G° becomes equal to ‘the exact G

and the self-consistency condition for determining E is
2 PP (Guw) = 0. ves (2.21)
p .
¢ is the concentration of the p-type atoms in the lattice
and hence is proportional to the probability of the occurr-
ence of a p-type atom at a site. I is calculated in terms

of the modified Green's function G°. Tquation (2.21) is

(1-c)Tc7d = 0,

Vp
w'-th P = s e
: ST o

where h and d stand for host and defect, respectively,
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The explicit form of ¥ is given in eqn.(2.20) and on

simplification we get

EQw) @+ I AwEEW™ x @ - Q-0 2%°w)
: q
+ $ L GO(Qwnm) = 1 e8I, e (2.22)
q
where GO(u) = GO(fk,Mkw) = % T G°(dm), civ (2.23)
' q

Thus E(a;w) is independent of q, so that

%I&O(a.:m)ﬁ(a:w) = Qo(w),hj(({))_;

q
and on further simplification eqn.(2.22) becomes

E@) - He?l - B) 1 802I-E@) T 8%) = 04 vur (2.2
We write
E@W) = 1 ¥, | | cer (2.25)

convert (2.18) into a representation, and change the |
unperturbed Green's function (2,11) from normal coordinate

representation to qj representation., This enables us to

write
Plwt
GO (w) =%;- I — 2 3 dw'y ceo (2.26)
0 w2ﬁ,—€(w)j-w’
with P = 3T oo, @-u), | o (2,27

ad
which is the phonon density of states of the unperturbed

host crystal. Writing (2.26) as

¢O) = (1/1%0)50@) )
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and using (2.25), we write (2.24), finally, in the form

Ew) = ces¥w) [B-Ew) w2g£(w) ) ee. (2.28)

where Plw?)
go(w) = ~ dw?, err (2.29)
' WP 1-Ew) J~w'? ,

The averaged Green's function G(g,») is speci-

fied by the spectral density

@i = -1t ka3 ,0)>. ... (2.30)

We can cast the spectral density function into a form

which is convenient for calculation. From eqns.(2.26)

and (2.27) we have

Ef 8o, (-1}
2[5, E(w) ] ~w!

G (UO) u"‘L

M

2 d(l)'. 0113(2031)

G°(w) may be written in terms of the modes specified

by qs3 as |
%) = %- g G°(qj ) ees (2.32)
dsd ’
where 60(33 ) = i L ©2-Re€(w)) w3(®) }-10PmE ) 7
° e (2.33)

In the CPA
(G (i = 62(g)w) .

Separating the real -and imaginary parts in (2.33); we
get the imaginary part

21\!

W<Ing (w)

Ho {wzf_-l Reg(w) ] - wg(q) }2+{w Irlg(w)}g
s 0 (? 31',')\

TG (G5 ,0)) = &-
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This is the spectrai density, which can be evaluated
by calculating the self-energy from the self-consistent
'equationsv(2.28) and (2.29). Go(aj,w), which is completely
determined by@(3jsw), contains full information about
the one-particle properties and in particular permits
discussion of the quasiparticle approximation, Because Ekw)
is aj~independent in the CPA, Go(aj,w) depends upon qj
only throwh wj(‘o‘n . Iefl(3j.w) be calculated for the
whole allowed range of qj, one can get information
about localization or deloéalizétion of an eigéﬁmode.ln
the spectral density two kinds of excitation appear, one
related to the plane wave like eigenstates of pure host
crystal and the 6ther to the impurity states, A peak in

A(3jsw) s if well localized in 3j space as well as in
spacey has a quasiparticle character and hence corresponds
to the delocalization in r-space (because of the uncert-
ainty principle). On the contrary a flat peak extending
over the entire band is expected of states localized in

coordinate space,

A fairly comprehensive set of density of phonon
states and spectral density obtained from CPA-equations
(2.28), (2.29) and (2.34)y has been given in Figs.l and 2
for a series of compositions in Cu-Au alloys, The un-
perturbed density of states for Cu and the wj(a)'s
were taken from Svensson et.al.[?hys.Rev.;55,6l9(l967):].
Only mass defect was considered., Figure 1 is a good ill~

ustration to see how CPA interpolates between the
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wnperturbed densities of states of pure Cu and Au., Thé

Cu-Au system is further interesting because Au is
slightly more than three times heavier than Cu; so that
in~band resonance mode of Au in Cu-rich alloys and iso-
lated impurity mode of Cu in Au-rich alloys can be
distinetly seen; Figure 2 shows spectral densities for
Cu containing 25°%, 757 and 95%. Au and for wj(a) = 0.2,

OOL[-) 00_6,‘3 0.8 and Oc95 Of wcu Cu

o o is the maximum

3y Where w
frequency in the frequency distribution of Cu. A compar=:-
ison of spectral density plots and the density of states
for the corresponding alloy gives some insight into the
discussions made in the preceding paragraph about the

spectral density.

3. PHONOWS IN DISORDERED Si-Ge ALLOYS.

In recent years a lot of work has been done on
lattice vibrations of disordered alloys. The vibrational
spectra of a lérge nunber of binary and pseudobinary alloys
have been studied by means of infrared absorption and

Raman scattering.ll

Two distinct types of behaviour are
found, For same systems only long~wavelength optical
phonon frequencies occur which shift, in most cases)
linearly with concentration from the mode frequencies of
the lighter component downward to the mode freguencies of
the heavier component. In other systems vibration freg-
uencies related to each one of fhe constituents can be
separately found in the middle of the concentration range.

The first,y or the one-mode-type behaviour, is obtained for

most of the solid solutions of alkali halides, while the
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second or two~mode~type bchaviour is found in most

of the so0lid solutions of zinc~blende~type crystals.
Balkanskil2 suggests that the long-range average-crystal-
potential variation may have been large enough for the
one-mode systems to shift the eigenfrequencies of each
constituent towards a unique value, and is not sufficient
for the two-mode case. The alkali-halide mixed crystals
are strongly ionic in character,; and theréfore sach atom
is subjected to electrostatic forces extending much
further than the statistical cluster in which it is
embedded, These forces therefore average for each pair
of ions and yield a unique frequency for the mixture. On
the contrary, in zinc-blende-type mixed crystals the first-
neighbour interaction dominates and is responsible for
the splitting of the vibrational spectrum,

A third type of multimode behaviour has been
reported for the Raman'SpeCtra of Ge-B81i alloys by Feldman
et.al;13 over a small composition range'(0—33 at °4 81 in
Ge) and by Renuccil et.al. ™t and Brya15 over the whole
composition range. Three peaks have been found and are
attributed to the vibrations of Ge-Ge, Ge-Si, and Si-Si
nearest neighbour pairs. Silicon and germanium form a

mixed crystal in all proportions.16

Because the mass of
silicon is much less than that of germanium, one would
expect local modes to be associlated with the motion of
silicon atoms in germanium, Germanium and silicon have
a common valency, so that such modes are not expected to

be infrared active in first order however they should
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be Raman active, We have tried to understand the
experimental observations for the Ge-9i system by Feldman
et.al.t3 and Renucei et.al.145theoretically9 within the
framework of the coherent potential approximation. With

- the help of equations (2.28), (2.29) and (2.34) we
calculated the spectral density functions for Ge-S81

alloys. An exanination of the optical modes of germaniuml7

and silicon'® in directions [10G] and [11d], obtai_hed

.through neutron-scattering measurements by Ghose et.al.l7,
and Dollingl8, respectively, shows that the opitcal phonons
gscale by numbers which lie between 0,58 and 0.61. This

)1/2 = 0,62, This encouraged

is reasonably close to (MSi/MGe
us to take into account only the mass change in this
-calculation. The function P(w!) was taken from Dolling and
Cowley!s calculationsl9 based on their neutron spectro-
scopic weasurements for Ge and 8i, The density of states
was taken as a histogram of very closely spaced poiﬁts and
integration of (2.29) was done using Simpsonl?!s rule, with
an initial approximate choice of $(w). Equation (2.28)

was solved iteratively using Newton-Raphson'!s method
applied to a function of a complex variable. Thereafter

we calculated the spectral density function from (2,3L)
for a = 0 optical modes of Si-Ge alloys,

Hesulitss

3.1 Dise gsion of
The peaks of the spectral density function for

optical modes at g = 0 give information about the zone-

centre optical vibrations of alloys of Ge and Si, either
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of the two taken as the host crystal., For low concent-
rations of %e in Si, one of these may be identified as
being due tovthe heavy defect resonance and the other is
near the optical frequency of 8i., In our calculations

we find that the spectral function shows two distinct
peaks, In the impurity band region the spectral function
1s not sharply peaked; and peaks are too broad to be
called peaks. As the defect concentration increases, the
weaker peak becomes merely a shoulder on the larger peak
(ef,Fig.3). At any concentration, the more prominent
peak is attributed to the majority atoms. With Ge taken
as host lattice, when 81 is added in small quantity it
gives rise to a very weak and broad resonance, but this
resonance gains prominence as more and more 8i 1s added.
At the middle of the concentration range, the two peaks
are of comparable prominence, and as more Si is added the
lower peak gradually loses prominence while the upper peak
becomes narrower. Eventually the lower peak appears only
as a shoulder to the upper peak, which approaches optical
frequency of pure Si. When Si is taken as host and Ge is
added to it, the similar structure of peaks is seen
throughout the composition range with a shift in the
frequeney scale, The peaké at all compositions are
shifted to slightly higher frequencies and the amount

of shift remains almost constant, This shift may be
attributed to the changes of force cohstanfs that

accompany the alloylng process. In our calculations we
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did not consider these char-es in force constants, When
Ge ls taken as host we assume that the force constants
‘for the alloy are the same as those for pure Ge.
Bimilarly, with 81 we take the alloy force constants to
be identical to those of 8i. In order to take into account
in an approximate manner the force-constant changes due
to alloying, we did all calculations by first taking Ge
as a host, then taking Si as a host lattice, and finally
taking the average of the two value_s‘a.fter weighting them
with the concentration of that constituent which was
regarded as host in that calculation. This appears to.be
reasonable and has the appearances of a virtual crystal

approximation for force constants.

The variation of the frequencies assigned to the
peak in the sﬁectral function with the variation of the
81 concentration is shown in Fig.L. The lower peak shows
only slight variation with composition. The frequency
decreases as the 8i content increases. The maximum varia-

tion, was observed to be 16 et

1

s when Ge was host and 1t

was 20 em — when Si was host. These variationn for the

. frequency of the upper peak were 76 and 7, et

sy respect-
ively in the two cases. The slight decrease in the lower

- frequency with increasing Si content obtained in our
calculations does not agree with the experimental results
of Chang, Lacina and Pershago, but is 1n agreement with
the observations of Feldman et.al.l3 and Renucci et.al.lh.

At 33 at *4 8i the calculated downward shift is about 77,
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of the Ge optical-mode fre_ uency., Xinh®l has treated

Raman scattering of light by crystals of the diamond
structure containing substitutional random mass defects
and no force constant changes, He obtained theoretical
expressions for the Raman scattering using a self-energy
calculated to lowest order in the concentration of the
minority atoms.22 His results should be valid, therefore,
only for small concentrations, These results, when

applied to Si in Ge, show that the Raman-active localized
mode frequency for small finite concentrations is slightly
higher than the localized-mode frequency for a single’
mass defect. The theory also predicts that the peak in the
Raman spectra of the disordered crystal which corresponds
to the optical mode (quo) of the perfect Ge crystal should

shift to lower frequencies with increasing Si concentration,

As may be seen from Fig.l, the upper peaks obtained
by Renucci et.al,, which they assign to be Si-Si nearest
nelghbour vibrations, are very close to the upper peaks
obtained by us taking Si ashost, i.,e. assuming atoms to
be jolned by the Si-Si force constant in the alloy.
Similarly, the socalled Ge-Ge peaks of Renucci et,al.fall
very close to our peaks obtained by taking Ge as host
where Ge-Ge force constants are assumed to prevall in the
whole lattice, The upper peaks obtained by taking weighted
averages fall close to the upper peaks obtained with Ge

base at small concentrations of Si and move close to the

upper peaks obtained with Si base as the Si concentration
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increases, Similar behaviour is seen with the lower
peaks also. The averaged sehaviour in bo:h cases is
pretty well in agreement with the behaviour obtained

experimentally by Renucci et.al..

It is also worth noticing that many of the poaks
havé characteristic asymmetryg they are sharp on the
high frequency side and broader at lower frequencies.
This is consistent with the CPA theory. The CPA gives
~the sharp edges of the bands of the density of states,
consequently lopsided spectral functions for the phonons

7

belonging to the E values at these edges.’ We are
concerned with the top of the optical band; hence the
peaks obtained by us are sharp at the high frequency
side.

Feldman et.al. and Renuccli et.al have assigned
the three peaks to the vibrations of the pairs Ge-Ge,
Ge-81 and S8i~8i. Our calculation was based on the CPA,
which is only the single-site approximation treated
self-consistently., This approximation by its nature
smooths out the structures due to pairs or clusters,so
we did not assign the peaks in our results to the pair
vibrations. The nature of upper and lower peaks is in
correspondence with the upper and lower peaks obtained

in references 13 and 1L, Some other experimental data on

8i-Ge alloys may be had from references 23 to 28,

To conclude this chapter we wish to indicate some

limitations of CP4. The complexities involved in solving
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the self-consistent equations in CPA require the use

of a 3ingle band model. One has to furthor assume that
the density of states curves (phononic or electronic)
for constituents in their pure phases should have the
same form and width and should only be displaced with
respect to each other along the energy axis. This is far
‘ from reality because the density of states curves for
the two constituents are usually devoid of any such
similarity. The inability of CPA to take this effect into
account limits its application to model systems only.
Another complication with the realistic systems is

that instead of a single non-degenerate band they have
several sub-bands generated from the crystal field split
atomic levels, Besides this the single site nature of
the CPA and the inclusion of only diagonal disorder
prove to be inadequate, The single site naturc assumes
that vhe environment of each site is identical whereas
there are always goocd chances that the clusters of like
atoms appear. The neglect of off-diagonal disorder is

a highly simplifying assumptionj in the case of electrons
it means that the constituents have the same transfer
integral and in the case of phonons it means that the
constituents have the same force constants. In the
succeeding two chapters we have attempted to extend CPA

to account for these ingredients in two classes.

(a) Retaining the single-~site nature of CPAy with the

help of a technique using pseudopotentials we impute the
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effect due to the different shapes and ba'd widths of
the constituent densities of states. This is equivalent
to roughly take into-account the effect of off—diagonal
disorder, We also generalize this technique to account
for the several sub-bands generated from the crystal

field split atomic levels.

(b) Breaking the single-site nature of thc CPA, we

include the offects due to clusters, We explicitly cal-
culate the effects due to palrs embedded into an offective
medium and take into account both the diagonal and off-

diagonal disorders., We test it for a simple cublc lattice.,
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CHAPTER 3

Coherent Pseudopotential

Approximation
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In the concluding rcmarks of the preceding
chapter we pointed out that for CPA calculations the
constituents should have identical (in all respects)
densities of states, merely shiftcd on energy scale.
This is understandable for model systcms only. Recently
attempts have been made to improve wpon these cons-
traints. Following arc the attompts within singlo-sito
approximation, Soven29, Gyorffy30 and Bansil et.al.31
do it by using muffin-tin form for the alloy potential,
Clark and Dawber32 have attempted to improve upon thé

constraints using a gsimple pseudopotential scheme,

The basic idea behind our technique >3 of
handling the problem is the following. In an AB alloy,
starting from the electronic density of states,P(E) jof
pure A constituent, one can arrive at the P(E) for purc
B constituent by putting an encrgy dependent pseudopoten~
tial, V(E) 4 on all the A sites, V(E) can be determined
from the knowledge of densities of states of both the
constituents of the alloy, and thus acts as aﬁ encrgy
dependent parameter completely determined from the one-to-
one correspondence for the densities of states of the
two congtituents, This idea has been gencralized for the
casc where there arc many sub-bandss a situation which we
always face in real systems, The density of states for

each sub=-band is allowed to have arbitrary shapc,

We apply this gencralized formulation to the Cu~Ni

system, This gystem is a good cxample of a continuous solid
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solution having f.c.c, lattice, The lattice constant
changes by only 2.5% between pure Ni and pure Cu.35
. There is evidence for clustering of like atoms in a CulNi
sample of roughly equal concentrations36, but the cluster-
ing observed is slight and the clusters are sﬁall in
size, The electronic band structures of the constituents,

37 and pure Cu38’39 are well known, Comparison of

pure Ni
the essential features of the band structure of Ni and

Cu reveals that the s-p bands are very similar in two

and the two differ substantially in the location of d-
bands with respect to the Ferml level, 4 lot of experi-
mental information for this alloy system is available from
the measurements of soft-x~ray spectra,ho'h3 and photo-
emission spectra.lh’hg The electronic density of states

of this alloy for a range of concentfations has also been
previcusly calculated by Kirkpatrick et.al.1F6 (hereafter
referred as KVE) and Stocks et.a1.47 (hereafter‘referred
as SWF) , using the CPA. We can, therefore, compare our

calculation with the existing ones and examine the effects

of improvement of the model.

1. MODEL

1.1 Generalisation of CPA for Systems with Meny Sub-~Bands.:

Within the single site approximation we have from

0qn,e(1.20) of Chapter 2, the CPA condition
(typ=0 eoe (1.1)

We now take up the generalization of this condition for
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a case where there are many subbands,

fingle-Site, Single-Band Approximations
If the systen has F-~fold orbital degeneracy(F =

number of sub-bands), the single-site self-energy would
become a FxF matrix, and FxF simultaneous equations would
be required to find the elements of the matrix, It would
simplify the matter a great deal if we assume F bands to
be nOnpinteracting. The perturbations with respect to the
reference medium are assumed to be localized with respect

to sites as well as sub-bands l.c.)
Perturbation = Hopp= H = % P, = %f P s ees (1.2)

where H pr 1s the Hamiltonian of the averaged medium,ﬁ
is the Hamiltonian of a reference medium, P is the
coﬁtribution of nﬁh sité to the tofal perturbation, and
P,e ic the contribution of the £*" band to B, This app-

roximation yields,

P
tn = ____l’_l_____
1-p G
LB
1-C PG
L
- Z tnf : ' 3 e (103)
f P )G
‘—( Fy nf?s |
1 - PG
wherey t . = ey | (1.L)
3 nf . -~ 3 ' o0 o o’+
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and ¥ implies the sum over all the sub-bands excluding
3

the Iﬁh one, We can approximate tn as a sum of tnf’s

t /:_\_/ se 0 (105)

1

il g

if P o1 for all f's, seo (L1.6)

The approximation (1,6)is the same as introduced by KVEL*6
in their eqn,(L.26) and was found to be reasonable for
Ni-rich alloys. Laters it has been shown by SWF*( that
the limitations imposed by (L.6)are not severe for the
whole range of composition in Cu~Ni system, Introduction

of (1.5) into the well-known relation (1.19) of Chapter 2,

Heff = ﬁ +% [<tn> ' (1+G<tn\/)~ljﬁ vee (lc7)
yields,
. ~ _ e -1
Hopp = H+ 3 DO Ctpe> ) {106(T £ 0}

7 * .‘. . 08
1.2 Model Hamiltonian for Cu-Ni: (1.8)

The Cu-Ni alloys have the nearly ideal substitutional
nature, Mossbauer isomer shift data of Love et.al.42 show
that the nuclear contact density at the Ni nucleus does
not depend on the concentration of Cu, This indicates
that there is no charge transfer in CUrNi system,The s-p
bands of pure Cu and Ni are identical and this band is
assumod to remain unaffected on alloying Ni and Cu, One
then has to examine the effects of alloying on the d-
bands. In the Wannier representation, the d-d block of

the model Hamiltonian takes the form,
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H,. = nf> € . <nf| + nf)> t nif?
ad ggf,' n | A;nt [ nf snts € 15 (1.9)
,ft ses §9

Hh

where f represents the sub-band and n denotcs the lattice
sites, For an AB alloy gnf takes on values Sﬂf or ng
| depending on the site n being occupied by A or B respect~
ively., We simplify the problem by assuming tnf,n’f' to be
translationally invariant and independent of the random-
ness of 8nf' Calling the off-diagonal part to be Wywe can

choose the reference Hamiltonian iﬁ two ways.
(a) Hyq = & Inf)o%(nf_l + W | oo (1.108)
n,f - | |

- We assign a separate Gf to each sub~band.

(b) Hyy =n§;f In ot | + W, ee. (1.10b)

Here a single ¢~ is common for all sub-bands,

We discuss below the use of these two gchemes to
solve (1.8) to determine the self-energy non-self-
consistently as well as self~consistently and we shall

usc coherent pseudopotential model.32

1.3 Coherent Pgseudopotential Method

We consider an alloy Ay _.B,» where c is the fract-

ional concentration of B, In general pure A would have
a band structure quite different from that of pure B.We
can relate the band structure of pure B to the band
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structure of pure A in an approximate mamner by writing:

BB o= mh o+ (’Ef v§(E). eoo (1.11)
3

82 and H* are the Hamiltonians of pure B and pure A
respectively, We have introduced an energy dependent
pseudopotential V§(E) to represent a B atom replacing an
A aton on the site [ for the sub-band f. Vo(E) is assumed
to be dlagonal in site in the basis of Wannier functions,

W (E) 2 8T (E). e (12)

‘4 reference system nay now be introduced with Hamiltonian,
Y= ph +"c; ). eer (1.13)
., | ot
H becomes H* and B in the two limits (0 and 1) of c.

With the help of eqns.(1.10a), (1.,10b), and (1.13), eqn.(1.8)

is sol:ed as follows.

Non-Self-Congistent Method s

We write

tnf‘ = Inf> 1 (nf| and G =In:>§nf<nf!. oo (1.1Y4)
Then we can write eqh.(1.8) as s
Bopp(E) = W +§ Inf>[ of +§<‘t‘nf> (1+F %{wm> )™ Xnt |

‘ | ere (1.15)

If we now transform to k-representation, we obtain for

the self-energy of the effective mediumg
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Ef (k,E) - }:f(E) = OE‘ + t'.-f-:;‘ ) (1016)
H e g

For the reference medium the Greent!s function isgiven byhé,

n ~ P, e(E)dE
Foe(B) = Fp(B) = AL eos (1417)

In the alloy Al-ch) for the sub-band f, the fluctuation
with respect to the reference medium is -c Vf(E) at sites
occupied by A atoms (A sites) and is (1L-c) Vf(E) at B
sites. rnf's can therefore be calculated., An initial choice
of 0 amd €.+ c Vf(E), then enables one to solve (1.16),
with Tap and Tar given by,.

-C Vf(E)

Thr T » 2
1+c Vf(E) Ff

eoo (1.18a)

and Top dra B ver (1.18b)
| S 1-(1-e) Vp@)F,

Having obtained }..(E), a new cholce of the reference mediun
is made by replacing cVp(E) in eqn.(1.13) by ,zf(E)-zAf and
as before we again calculatevE&(E). This procedure is
repeated till two values of Zf(E) in conSecutive cyecles

coine cloge together within a tolerance.

Self-Consistent Method
~ With the help of equations (1.1),(1.9), (1.10a) and

(1.10b) 5 eqn.(1.16) may be solved self-consistently in

tWo ways
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(I> <tnf> = 0} o0 o (1019)
which follows when we write H&d as in (1.102).

(-II)Oi; toe? = 0, | eoo (1.20)

which corresponds to Hyy given by eqn,(1.10b).

The self~consistency condition (1.19) yields,

qil - gf - (SM‘ %)Ff(ng - O}).’ Y (1021)

where
gD = (1=c)€ ot cEgp(E) e (1.22)
Epp(B) = Eppt Vp(E) ) eee (1.23)
.y p,-(€)d€
and  Fg = f"&f“‘““‘“‘.’ e (1a24)

E"‘g"‘ o-i\’i'gAf
pAf is the density of states of the sub-band f of pure A
systen.,

The self-consistency condition (1.20) yields,

£, =0 Cne=0"
L L) ——m v o T = 0,
¢ 1-(8,p-0)Fp  17\Epr0 0¥ e en(1.25)
Here ﬁf is given by,
~ P..(€)4g
Ff =j—m""_—-_". sse (3—.26)
EnG=0+ SAf

1.4 Calculation of Pseudgpo?enﬁial:

If a system has a Hamiltonian involving an ecnergy



-39..
dependent potential, we follow Soveny8 to derive the
expresgion for the densicies of states., The out-going
Green function, G in this case is given by [E+i$-Elfl(E) :]"1,
where Eﬁ(E) is the formal eigenvalue € the energy dependent
Hamiltonian. The potentials are chosen to ensure E'(E )=E .
Explicitly we want the quantity Z §(E-E ) while we actually
calculate‘? 8(E-E} (E)) . But smnce EE)® Epy with the
use of thenidentlty.

6(f(E))lf'<E)IE,EO = 8(E-E ), oo (1.27)
where B, is the zero of £(E) (i.e, f(EO)=O), we have,

B!
5(E-E) = 6(B-EL(E)) (1- =), ver (1.28)

The density of states isy therefore, given by,

o B}
°®) =T 5(E-E D = -2 L mrsare I a- =B
I I
N aEr -
= -1 “lu TI'G‘(I." ) sse (1129)

Using similar arguments we establish a relation
between the densityvof states for each'sub—band of pure 4
and pure B crystals. We have a pure 4 crystal Hamiltonian,
H‘A('I");v and the Bloch ei‘genstates B () , satisfying the

Schrodinger equation,
HA(E) e () = Cpoflee () ees (1.30)

The pseudopotential Vf(E) is diagonal in Bloch represent-

ation. So the eigenstates of crystal B are the same Bloch
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functions as those of crystal 4 but their energies are

changed,
(@)t () = (HE) 1, (B)) By, (F)
= (Ep T, (B)) p, (D) |
= Bpoflpe ()0 eor (1431)

The eigenvalues of pure B crystal, Eﬁf are thus related

to the eigenvalues of crystal A by the relation,

Ef{f - Vf(EEf> - gﬁf. s e (1032)

Now the pure A and pure B densities of states are defined

as s
QM(E) a% 8(E-Epe) 5 | eee (1.332)
’ o

Making use of the identity (1.27), we can write,

Par (B) = ¥y 5 (BmEpe)

K
5 | oV, (E)
= 1 8(B=EpemV,(B)) (1~ —;rm) y eee (1.34)
I ' o

where Eﬁf's are the zeros of the function f(E) =E-8Ef—Vf(E).
Using the definition (1.33a), we have from (1.3Y4),

) ) oV, (E)
pr (E) - pA.f (E"Vf (E>) (l" ) . ' X (1 035)

o

Subgtituting X = E-V.(E) in (1.39) and integrating from
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-0 to +00,

0.0) o

-00
If the bottoms of A and B bands are respectively at

E and E

Bf? '
Vf(O) bt EBf“‘EAf. see 01037)

Af

Other valueg of Vf (E) are.then obtained as P

| jE;Bf(E)dE - JE

-V (E) |

D P (X)aX, eoe (1.38)
E .
EBf 4f
Vf(E) is thus completely determined from the knowledge
of the electronic densities of states of the two consti-
tuents., For all the energy measurements we assurme the
energy zero at the bottom of the s-band, which we take

as éommon for both A and B.

2.5 Total and Partial Densities ’of States:

We shall adopt two approaches to calculate the

total densities of states,

(1) In the first approach (hereafter referred to as
approach(i)) we calculate the contribution from each
individual sub-band to vthe total density of states,
For an averaged medium, eqn.(1.29) enables us %o write
the alloy density of states for the gth sub=band usg

0V, (E)
Pf(E) = —(TCN)’.J‘ InTr <G(E) (l"‘ gE )) . eve (1039) .
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Decoupling of the configurational average simplifies
ity

QACN

pp(B) = =(xl) ~Mn Tr (GEPKL- —— vee (1.40)

Our mean crystal consists of a potential €, cVa(B)
oh every sitey so that (1.40) may be written as,

1 AV, (B)
Po(E) = ~(nN) Im% @t [ <a(®)) [nf) (1-c ).

ees (141)
{G(E)} is approximated by G introduced in Eq.(l.1Y}) . We

can then write Eq,(1.41) as
-y ~ @Vf(E>
Pf(E):—(ﬂm) In Ff(l-c EET““")’ ees (1.12)
where N is the total number of states in the system.The
validity of the decoupling employed above depends upon
the magnitude of [aVy(E)/eE|. It is valid if lo V. () /6B
is nmuch smaller than 1, |

(ii) In the second approach (hereafter referred‘as

approach (ii)) we calculate the contributions of 4 and

B to Pf(E). For calculating the partial (component)
densities of states we defineFe® ard%® as the Hamiltomians
of the systemsin which in an otherwise averaged medium

th

one sitey say 07", is occupied by an 4L or a B atom. In

our formalism the two are related by

%5 =g+ v(m,

Ifgg?‘%) be the projections of3%A<B) on the £k sub=-band ,
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they would satisfy the relation,

Fet =t + Vo (®)

The partial dengities of states are given by,

pl8) = - B (1-c)In (o] (E+is-ge DT o> coe (1u432)

o " V.. (E) | ,

p$B = - 2 o 1m <o) (Erisgg) o> (1- )5 wun (LA3D)
t

where m indicates the m-fold degeneracy of the £ sub-
bend, For Cu~Ni systems m is 3 for ﬁzg symmetry and 2 for

eg symmetry, These partial densities of states may be

evaluated in two ways. In the first method as shown by

VKE,7 we write for A-component:

§2
f 29 e (loll')'l')

pf(A):" - %(l—c) Im A ~ .
1-(€p - 0p)Fp
In the other method we borrow the following expression from

KVE 40

plA) = - B (ef - et mT(o-eD)F, 1. cre (L45)

Both formulae may be used in any single site theory but
they yield different results and only (1.45) satisfies the

natural condition,

= olA) (B)
pf - pf + pf U tee (lo’-}é)
With the help of eqn.(l.43b) and the analogy with eqns.,(L.LL)
and (1.45), the corresponding formulae, for the partial
density of states for the B-component according to these
- first and sccond methods are respectively

ki oV, (E)

B £

ptPu - B¢ m { a- =), ... 4D

B - 3k
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and e o o OTo(B)
o 2.2 (eg-€0) ™ In[ (05-eHF, Ja- ).

oo (1.48)
When we use O"from cqns.(1.21) and (1.25) based on the

two self-consistent methods, the formulae written above
for the two methods become identical, So either of the two

may be used in the present calculations.

After having calculated Pels cither through (1.42)
or through (1.45), (L.48) and (1.46), it is importént to
examine Whiéh of the two proccdurcs is more riéorous for
calculating the total density of states,

p =§ Pe vee (1249

Calculations through (L.42) involve a decoupling in
averagings whercass the calculations through the approach
(11) [eqns.(@45) 5 (1.48) and (1.46) ] de not involve any
such approximation. Obviously the approach (ii) should

be preferred. Denoting pi(‘A) 'sy calculated from the approach
(1) and approach (11) by, pi¥ (1) ama 0¥ (11), wo £im
the difference in their magnitudcs as,

an(E)
ok

[ (1-c){im

o$# (11) - p{M (1) = - L

Y ees (L50)
For CPA this differcnce is zero. CPA does not distinguish

between the two approaches as it does not deal with an

energy dependent part and we do not have to introduce the
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decoupling approximation of the type used in eqn.(1.42),

2, COMPUTATION AID DISCUSSION OF RESULTS

We studied the density of states for Culi alloys
using the model Hamiltonian for the d-d block derived
in Section 1.2 , This model for the d-bands incorporates
the effcets of hybridization and takes into account the
orbital degeneracy. For this system in Eq.(1.9) f
describes the d-orbital symmetry which is t2g for
f = 1,23 and e, for £ = 4,5, The inputs for the calcula-
tions arc based on the data provided by the calculations

- of SWF.#7. The components of Cu and Ni densities of
states have been illustrated in Figs.5(a) and 5(b),
As mentionecd before we assume that the s=p band rcmains
unaffccted by alloying, and we dwell lere on the total
and component densities of states for the d-band only, of
the alloy. The input parameters for Cu and Ni have been
tabulated in Table 1, The e_ and t2g sub~-bands have

g
common atomic potentials for both Cu and Ni.

The pseudopotentials belonging to each sub-band
arc calculated from eqn,(1.36) ., Thc mesh for Cu-densities
of states consists of 77 points sprcad at a regular
interval of 0,006l Ryd. and for Ni it consists of 103
‘points spread at an interval of 0.0050 Ryd. The pseudo-
potentials for the t2g and Cy sub~bands have been shown
in Fig.6 by broken and full lines respectively., In order

-

to evaluate the derivatives of V~(E), we usc their values
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available to us at poiﬁts at intervals of E equal to
0,0061 Ryd. For calculating the derivative at a cortain
energy point Ey a secdnd order polynomial is fitted at
three points: the point E undcr consideration and its
two nearest neighbours., In order to make surc that we
have avfairly recasonable value of the derivative by
this methqd, we calculated the derivative at a few
points by using points successively upto nearest, upto
next nearest and upto next-next nearest neighbourhood and
found that the values of the derivative differ only at
the third placc of decimal,

.Having obtained V.(E) for th and &g bands, the
self-consistent equations (1.21) and (1.25) are solved
with the help of eqns.(1.22), (1.23), (1.24) and (1.26).
The difference in the value of gNi for the two sub-bands is
sufficiently small’*?, so ‘lat we take it .o be the same
for both tzg and Cq bands and obtain two sets of SCu’s
with the help of eqn.(1.23). For calculating Fe's from
(1e24) and (1.26) we use Ple(E)’s for Ni rich alloys
and PCuf(S)’s for Cu rich alloys. In order to take |
proper account of the degencracy of t2g and eg bands we
normalize the corresponding electronic densities of
states to 3 and 2 respectively, The arcas enclosed by
the t2g and €g densitics of states curves of Cu and
N1 are given in the table 1. In Sec,l1,3 we had discussed
the two self-consistent methods to evaluatec the self-

energies, In one we obtaln G¢'s from (1.21) and in the
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other eqn.(1.25) is used to calculate 0~. The self-
consistent équations (1.21) and (1.25) have been solved
iteratively using Newton-Raphson'!s method (for complex
variables here)., The integrals (1,24) and (1.26) are
evaluated by Simpson's rule, The iterations are seen to
converge quite rapidly. These self-cnergies arc then
used to calculate the th and €y
of states from (1.42) and also the partial densities

of states for the sub-bands using (1.45) and (1.48). Then
~use is made of (1.46) and (1.49) for calculating the total

components of the density

d-band densities of states. Figures 7-12 show the results
of our calculations of the total and partial densities

of states for d-bands, P(E), P{CW (&) and p™J(x), through
the two self-consistent methods diseussed above for the
alioy sysibenms possessiing the following atemic percentages
of N3 + 13°% Ni, 23Y. Ni, 38Y. Ni, 61¥, Ni, 81% Ni and
89% MNi. The P(E)'s displayed in these figures were cal- |
culated from the partial densities of states [ i.e. the
approaéh (ii):]and not from (L.42). We have compared the
density of states curves calculated by us with CPA calcula-
tions of SWFh7 and the experimental results of Seib .
and Spicerhq’us. In all the figures P(E) i1s given by the
the full line, (™ () by the dashed line and o¢™) (m)

by the dotted line. The CPA results of KVE and SWF follow
as a special case of cur formalism in which all the Vf(E)‘s
reduce to a constant value, the §-parameter (6=€,-€3). Ve

did verify this by replacing Vf(E)’s by 0.1340 Ryd. and
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then calculating the density of states for 13% Ni composi-
tion, The results based on the two self-consistent methods
are shown in Fig.l3., The results from the first method
.(Eqn.(l.l9)) are almost the same as thoseof SWF, The second
method, which uses the same 0 for poth the sub-bands t2g

and eg shows slight differences in the structure of the
curve and the peak positions are sghifted to the lower energ-

ies by a small amount (about 0,0095 Ryd.).

Comparison of our results for QOnsities of states
and those of SWF reveals that the shapes of P(E) ¢ urves
from these two calculations, are different specizlly for the
majority baucs of Cu~rich alloys.Our ¢alculations show lot of
structure wﬁereas the density of states curves calculated
by SWF are comparatively smooth, But the densities of
states curves calculated here for Ni-rich alloys, 81 at, %
Ni and 89 at, ¥ Ni are almost similar to those from calc-
wlations of SWF, only that the structures are a bit more
pronounced in P(E) calcwlated by us,., This may be understood
from the conclusions reached by SWF in their analysis that
Cu~rich alloys are very scnsitive to change in &4 as
6Eﬂ8Ni-€Cu] increases from 0,0, and this is not the case
for Ni-rich alloys. The stater-Koster49 critcerion for the
formation of an impurity level lcads us to sce that the
values of § required to split off an impurity lovel'from
the bottom of the Ni d-band and the corrcsponding valuc
to split off an impurity level from the top of the Cu d-band
are 0,42 Ryd. and 0,07 Ryd respectively. Our energy dependent V(E)
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(corresponding to §) assumes the values in the range of
0,02 Ryd.—0,14 Ryd. Onc could, therefore, expect the
structures shown for Cu~rich alloys and their sensitivity

to V(E) .

Both the self-consistent methods lead tokquite
the same structures in densities of states, In the sccond
method (Eq.(1.29)) the structures are not as sharp as in
the’first one (eqn.(l.21)). This relative rounding off of
the structures in the second method becomes lesé noticeable
with increasing Ni-concentration., The pcak positions in the
two methods are nearly thé sane. The second method based on
é conmon self—enbrgy‘for both the sub-bands is simpler to
'implement compared to the first method wherc wec assign a
scparate self-energy to cach sub-band, The likcness of the
curves in the two methods is interesting in the light of
the fact that computer time required for calculating P(E)
for the second method is almost half of that required for
the first,

An important difference between SWF and our calcula-
tions for 13 at,?. Ni and 23 at ,% Ni alloys (ﬁigs.? and
8 respecfively) is that in SWF calculations the three
main peaks of the host band (marked 2,3 and Y4 on the
graphs) follow descending order for fheir heightsy whereas
our calculations show just the reverse for both the Ni
concentrations. Also the height of the Lth peak in the
host band is almost double in our case as compared to

the SWF calculations. The impurity band in our case isg



-50-
slightly broader than in SWF calculations, In our
calculafions with the second method (egn.(1.29)) some
structures show up in the impurity band and these are
absent when we use the first method (eqn.(l1.21)). These
structures appear near the top edge of the impurity band
and may be suggestive of the trend to build wp the top
peak in the pure Ni density of states,

.These features regarding the differences in
structures in densities of states calculated by us and
SWFy may be qualitatively understood, with the help of the
imaginary part of self-energy., For 13 at.?, Ni alloy, the
imaginary part of self-energy has been plotted in Fig.lh.
Figure 14(a) shows it for the present coherent pseudo-
potential'approximation and Fig,14(b) shows it for the
CPA, The solid line curves belong to the first method with
dotted line curves and dash and dot line curves showing

regpectively the ¢, and t2g band contributions to the total

g
salf-encrgy. The broken line curves belong to the sccond
method (an average self-energy for each sub-band). The Imo-
is proportional to the life time of the electronic statés
in disordercd systems, Comparison of Figs,ln(a)‘ahd

14(b) show that in the rogion where Imo-is significantly
large, it is larger in CPA than in our case by almost a
factor of 2, This implies that compared to our calculation,
CPA should show more of the rounding off of critical point
singularities in the density of states. The two methods,

eqns.(1.21) and (1.29)4 show little differcnce in Imo for

109377
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CPA in the region where impurity band occurs. This feature
also showed up as additional structures in the impurity
band obtained through eqr_l.(l.25) as compared to that
obtained through eqn.(1.21).

OQur calculation takes into account the forms and
the widths of the densities of states of both the consti-
tuents based on band-structure calculations, The input
densities of states used here are shown in Figs.5(a) and
5(b) instead of densitics of stakes in Fig.5(c) which
were inputs of SWF calculation, Almost complete indepeh—
dence of the location of high cnecrgy edgce in the majority
band on Ni concentration in Cu rich alloys is consplcuous
both in our casc as well as SWF calculations and also in
experiments, The gradual erosion of the high energy peak
in the Cu band as Ni is added is seen in SWF and also in
“our calculations with the difference that for 13 at. %
Ni alloy this peak 1s very prominent in our casc whereas
in SWF calculations it is not so prominent,

For comparison the optical density of states (0DS)
plots calculated from the eloectron distribution curves
(EDC) of Soib and Spicer™ ™ using a non-dircct transi-
tion model, have been given for 13 at, % Ni and 23 at. 7.
Ni alloys. For the rest of alloys EDC's™¥ have boen
reported, The EDC for 38 at, % Ni alloy is for an incident .
photon energy of 10,2 eV and the rest are for an incident
photon energy of 10,0 eV, The peak positions of the promi-

nent pcaks deduced from the experimental ,SWF and our
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calceulated curves have becn displayed in table 2, The
peaks have been numbered as 12,3, and 5, sd this
identification is shown in figures, This aésignment is
arbitrary and has been made to locate only those
gstructures in calculated density of states which appear
to correspond to the structures in the experimental curves,
The disagreeménts among the calculated and measured curﬁes
should be taken in the light of the fact that.the inter-
pretation of photomission measurements is not véry clear.
In particular the relationship of EDC!s with density of
states is quite ambiguous. In general the agreement of
the peak positions from our calculations with the experi-
ment is good except for a few peaks, Of all the alloy
compositionsy the SWF calculation for P(E) for the alloy
61 at ,°% Ni (Fig.l0) shows worst correlation with the
structures in the experimeital EDC, On the other hand the
threc main peaks in EDC for this alloy are in good agrec-
ment with those obtained in our calculations, This is
expected because SWF and KVE calculations incorporate as
inpﬁt only Cu density of states for Cu rich alloys and
Ni dengity of states for Ni riéh alloyss so that the
calculations tend to become inaccurate as the two consti-
tuents appear in comparablevcompositions. In our case the
use of the energy dependent pscudopotential cnables us to
incorporate the change in density of states as we go from
pure A to pure B(through Eqn,(1.38))s our calculation should
be much better than SWF or KVE calculation for alloys
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having Sbfat.ﬁﬂNi..As stated earlier we automatically

go fromvpure Cu to pure Ni density of states in our
caleulation whon we change Mi concentration in the alloy
from 0 to 100 at. °%4 . This has not been done in an ad hoc

basis as in earlier CPA calculations,

Figure 15 shows the total density of states and
its to, and e, components for 77 at. % Cuy 23 at. % Ni
alloy calculated through the approach (i) mentioned in
Sec, 2.5. Comparison of Fig,l5 with Fig.6 shows a major
difference in the impurity band., In Sec,l.5 it has been
proved that the method involved in the Fig.l5 is less
accurate than that involved in Fig.6 and this is revealed
in the calculations plotted in Fig.l%. Therc the height
of the impurity band appears to be undercstimated by a
factor of about 2, though the width remains the same.

Figure 16 compares the t,, component of total density of

g
states for 23 at..% Ni alloy as calculated through appro-
~aches (i) and (ii) within the schemes represcnted by

eqns. (1.21) and (1.29).

Recently, House et.al.sO have completed a CPA
calculation for a cluster of muffin tin wells by applying
the methods of scattering theory, With a 13~atom cluster
they calculate the densitles of states for pure Cuj 10 at,

*% Nis 90 at. .% Cu and 10 at.¥. Zny 90 at.? Cu alloys.
Their density of states for Cu is shifted downwards on the

energy scale by about 0,05 Ryd. as compared to the density
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of strtes calculated by St icks et.al.,h7 shown in

Fig.>. Consequently their alloy density of states is also
shifted downwards on the energy scale by about the same
amount as compared to the density of states functions for
13 at,Y. Ni alloy reported in this work , For comparison
their 10 at.% Ni alloy calculations have been shown with
our 13 at.¥. Ni alloy calculations in Fig,17. Their plot’
has been pulled to the higher energy so that the major peak
in the main band falls around 0,5 Ryd. The agreement is
good and a significant feature is that the high energy
peak (~ 0.5 Ryd.) in Cu is enhanced in magnitude by about
25% when 10 at.% Ni is added, Our calculations also
exhibit this feature, whereas CPA shows a damping of the
same peak by an‘amount of 25 % . The ratio of the intensities
of the impurity peak and the high cnergy pcak of the main
band is 1/8 in cluster calculations as compared to 1/5

~ in our caleculations.

Above discussion suggests that the method réquires
a precise calculation of V(E)'s done with a reliable
integration scheme and that too using extrapolation of
densities of states at a narrow grid of energy. The
Simpsonts rule (for intcgration) used by us with the grids
of 0.0061 Ryd, and 0,0050 Ryd. for Cu and Ni respectively
may not be very reliable in the regions wherc stecp rise
and fall are occurring in the densities of states. In the
light of this weakness of our calculations, the good

agrecement with experiments indicated in table 2 indicates
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that the method is promising.

To sum-up the Chapter we indicate that within the
coherent pseudopotential scheme we can have three self-
consistency requirements in order of austerity. In a F-band

formulationy, a single~site, single-band approximation yields,

(4) {tye» = 0 (each sub-band has a separate self-energy)

(iiJ<Z tnf>> s 0 (all subbands have a common self-energy)
4y A

And in a single~band formulation, a single=-site approximation

requiresy

(1i1) <itnj> 2= 0 (this is within pseudopotential scheme, hence
" different from CPA).

In addition to the calculations using (i) and (ii), we also

)51

performed calculations using (iii and found that if one
is interested in the essential features of the density of
statesy it is not necessary to complicate the calculation
by ilncorporating subbands. The experimentally found density'
of states (photo-emission) avallable for comparison with
calculations, possess extremely rounded-off structures and
depict only roughly the peak positions., As long as this
requirement goesy (iii) yields as good resulis as those
obtained from (i) and (ii}, This finding is important in
the light of the fact that the computer time required for
(ii) is almost half of that required for (i) and for (iii)
it is again almost half of that required for (ii), For

comparison we have plotted in fig,18 *the pseudopotentials



- 56-

for eg 0d t,, subbands and within the sinfle band theory.,
The densities of states for 62 at.%. Cu, 38 at.¥% Ni alloy
obtained through method (iii) are shown in £ig,19(a), along
with the same obtained through (i) and (ii) as shown in
fig.19(b). The main features are retained in all the methods

with negligible changes in peak positions,

~—

CPA follows as a special case of our method [replacing
V(E)!'s by -0.13%4 Ry. (= ecu-sNi):]. With this replacement
in CPA also we have three self-consistent methods parallel
to (1), (1i) and (iii), The densities of states in CPA for
87 at.% Cuy 13 at,*/. N arc shown in £ig.20., [ (a) gives
those obtained through (i) and (ii) ]. This leads to the
same conclusion as made in the preceding paragraph, However,
the comparison of our method with CPA shows that the effects
of the difference in the shopes of the densities of states

of the constituents are more important.



57

TABLE 1 Parameters relevant for

~calculations
Parameters Copper | Nickle N
€ 0.4418 Ryd, 0.5760 Ryd,
Ep 0,6740 Ryd. 0.6800 Ryd.
AREA(e.) 1.97 States/ 1.72 Sstates/atom
g atom,
AREA (t,.) 2.91 States/ 2,65 States/atom
28 atom
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TABLE 2. Positions of the prominent pcaks in the densities
for six alloy systems, Comparison has been made for
results based on calculations with eqns.{.2l) and
(0.27) (indicated as methods I and II respectivel),

CP.. and the
Spicer J[Mlak

Peak Positions (Rydbergs)

r;pho’co--emission experiments of Seib and

Composition |Method :

- 1st . 2nd 3rd Lth 5th
87 at % Cuy | I 0.4000 | 04427 | 0,L732 |0.4976 0.607Y
13 at.o, N, | II 0.3939 | 0.4427 0.4732 10,4976 | 0,607,

CP4 | 043923 | 0.4933 04771  |0.5229 0.,60L5
EXPT,| 0,36 0443 0449 0,51 0,61
77 at.% Cu I 04122 | 0,4L2L 0.4610 |0.4915 0.6071,
123 at.% "o 0.4183 | 0,448 0.4671 | 0.,4976 0.6071,
CPA oo3§95 - 0.462, | 0.L9L1 0.6241
EXPT | 0,3 - 0Ll 0.50 0,62
62 at.%, Cu I 0.4183 - 0.4671 | 0.,970 | 0.6196
38 at.% Ni, II 0.L183 - 0.4671 o.ﬁ9o9 0.6257
CPA | 0.4076, - 0.4757 - 0,6400
EXPT.! 0.43 - 0,49 - 0,62
39 at.% Cuy| I 0,000 - 0.4,671 - 0.6623
61l at.*f Ni | II 0,14.000 - 0.4610 - 0,668
CPA | 0,369y - 0.5523 - 0.6%89
EXPL, | 0.37 - 0.52 - 0.6
19 at.% Cuy | I 0.4183 {0,552 B 0.607y . 0.6562
8l at."4 Ni II . | 0.4183 0.5586 - 0,613 0,662
CP4 | 0.3923 |0.5617 06136 0.66L
EXPT, - 0.52 - - 0,66
11 at.% Cuy | I 0.4122  10.5403 - 0,6196 0.6755
89 at,% Ni II 0.4183 0.5%64 - 0,607 0,668,
CPi |0.3910 |0.5502 - 0,604 0.6631
EXPT | 0,39 0.91 - - 0.67
| .




30 —

Cu
I\ =
— B
’p\ l\
"o (2) :\ I
A
5 REE
/ \ /
/‘\
/
N 10— \
(3
o -
4
3
N O |
O ~y
£ 00 —
2
3
a ~ (b)
:
= 10—
(s}
3 |
2
3 oL L
3 30—
a
V(o)
10—
0 1 Lo
0.0 0.2

) BRERGY (Ly)

Fig.5(a, The"tp, component of the unperturbod densitles of states of
Cu(~=me==) and li(——————), (b, The og component of the
wmperturbed donsitles of stater of Cu(----- ) and id( e
(¢) Tho model usod in CPA caleulations.Cu and il hrve iden-
tieal forms, mercly shifted by & on energy gcalg,(evere, and
(-=w-- ) arg o, cnd to, compononts of Cu denciiy of sertec
roesvoctivelys wnd (-~S.~.) ond (- ——; douoto he soue Tuv




AL(CCy)

helie o of
PO IR &

POLL

OoOc r—

B.shigy (hy)

0,00

"O gOzﬂ e

~0.04 —

-0.08

“‘Oollﬁ —

"‘0 01!:

i1 (. Plotz of the pseudopoitouticis verste ¢..0w.7
(=== ; belongs to the tﬂg symmetry,V..(.., s an

( ) belongs to the e, syumeiryy V.-(.s.

g



4 —

~
)
sl
=]
(@]
O
40 — w
o 10 S
&3] 5]
&4 6}
o H
%)
.~ .é;;
)
S 7
g o
£l B4
é—:
) e oo
= 3~ %
QAP
3 3 .
2 éﬂ -4
« [ i-t})-l
~ P -
,_\* , 2
4(% (@} ~ a
» ¢ <
3] . B
3 87¢. Cu, 137, Ii Y (b)
o .
mn
i 4O | —
e
-
2
(]
20 e
[ng
0 BHERCY(Ry,
000 09:) 0-1-'-

Figz.7, Densitles of states for o t7 at.”. Cu,l % t 7. i 2lloy.

( ) douotes P%L-Is (-“-) dowotos PLCW (L;g and
veveo) demnocos pluds(u, . (— —,deiotes The cuperl=
fledm,.‘l)ODu (ub' ;r-:T,,. / :2._.(1 ( ‘‘‘‘‘ ) the CPA c: lCU.l tice
(s ’7). (.) pives the enleul: tlous do.e uniar the ce? x—i- ,
consis, l,om. oilwtton (V.71 nad (b) {"vm the ~~o vIn. e,
thio oqi. (. L-f coro ol the caer;y scele is the

bovton or tha s-bang.



D5..5ITY OF STATES (States/atonm Ry’

LO—

bS]
o
walts,
ry

(arbitrory

OPTICAL DEIISITY OF STATLS

CPA DELSITY OF STATB3(States/aton Ry

40 — 779, Cu, 237, Ni

0 S S I N

0|0 OCP ‘ O-L]- Ooc
| EUERGY (1w

Fig.8, Densities of states for a 77 at.'/; Cuy 23 ot % @i
alloy. The notatlown is ws in Fig«7/s




0

40—
4
a
4
"
a
he)
R
a
N ~
P i
£3 e
L2
B4
d
N
N
ol

‘L(JA

L0 [ 62, Cuy3f7ii

874 nS (States/aton

33

DEilSIYY
e

o0 L

0 l 1

0°0 0.? OoL‘- 0.0
BILRSY(Ry)

Fir,9. Densitios of ctates fa & 60 at.”. Cu 4 35 at.’A
11 alloy. lor theoretical curves the notation ic as
in I'iz,7. The experimenial curve is tho electrou
dictributior. curve tako:. from the protoemission work
of Geib end Spicer, “he DU 1s for . l..cidcuc
chsto. e ory. of 10.7 eb,

—

Ctates/atonm Iy,

SR S(

Lnal

S

L SITY O

CPA D



— 50 5
=)
Q
L+0r_—_ ,\3|—_- 'é
or{ / . by
5 — 300
. \ p
B %)
o ~
5 %
- 0]
Al o
B 00 |— 3 S
f:d, ‘ vl w0
: P
2 5 c
N < 2
5 a 0
2 ° 3
2 a
~ ’ o
vn Ol — ——“"'"’r/ - &
%;]‘ )-}Or—‘ . ] C .
4 39/. Lu, l/- n-i
oA
0 (L)
S
]
{4
j'(?; g
£
(o]
20 — 3
1

0 | < 1
0.0 0.7 0.4 éTC

LIERGY (Ry)
~1g .10, Nensities of stataes for a 39 at."”, Cuy O1 st.?, .1 alloy.

A

e notation is as ir 1i5.9. “he LDC is for ar incident
photo.. eneryy of 10.0 eV.



SV

.5 {States/aton .

€
Y b

P
re WYL ow

\
B

s)

”~
. g

(2 yv) (erbitrary wdts

[ e

4O — 19°4 Cuy"i% id

0 l l l

|

TATLS(Ctates/aton tiy)

Y O S

—y

CPA Du.SI

0.0 0. 0. 0.6
;.;J.»,\tm.r (**)’)

e

L1p.1l. Dencitics of ouwtes Jor a 1Y te
© 81 at.* ui alloy. “he nototion i

in Jig 9.



-~
v

- TIo3R/U93218)ETINVIS T0 ANISTIQ Y40

(] (] o o]
o (ap! o =i (&
! T J
o L/
— .\|\|l|.v-\.|\|.\|. 4
C ===

N

; §
ar 1 | E o

(L)

<o = o ’ _ HMI
(caTim LI2ILTIR) (A 16 7Y i
TS
| | 4
(o < <o _
o - r Co
¢ roan/s93el) - 3 "

G

7.

el

v ; v q - N «
t . A/ca&)ivie: [ORY u\.».:'.q

1

gl

4

ior o 11 o0,

v /s

2
.k,

hoes
Ao

[

RCEISVEREIY

.
1



‘ D

10—

Sy alns (Utaleo/ztom 1)

. 0.

87./. CU, .1.3./1 4-i

DX

0.7 0.7

— .’\_\L (.L}I)

LDigel3, JSeacitics of stutes calculuted usiung Lhe Chut(—--,

rowlh cen (1,71, wnd

(
\

—————) Lllrouuh G(jlac(: 0:5/0



I

0.12_ (a)

0.0k | —

87°/ Cuy 137, 1

(b)

Ocli—

Im T (03)

‘L. Lie Im C(B) versus euergy ploits culculated wih netlods cuploy-
{1y oqu.{1.71) ( ) and equ.,(1.77, (----)}. (&, shows the same
for cohercut pceudopotcntial method w.d (b, shows theu ror CFA,
(vevee) vud (— == , respectively belowg to the ey and tpy coie-
ribheions Lo bhe total Im O obtained through equi(l.’l,.




S

ates/aton .

ALe(C

T
L

0

30

10

ﬂﬂn\o Cﬁv“)w'\.o LA

0.1

~he trg component of the dernsities of states culetd:-.ted tlrough
the approaches (i, znd (ii, Jiveu restectivel: b coa (T 47,

end By (145, (L.30, cad (L.58, willd.. the tuc folo—Co.Lareat
Lothods given by equ.(’.71, wa (L.79,. (—, .0 (- - —;, lov

P.~, obtrined from (i wd (----, ol (-—-y X0 cnoeiced fron (L, .,

s




PSEUDO-POTEITIAL (Ly)

0.07 —

0.7 0.5 0.0 | O
0.0 l | | | L |

~0.0k |—

-0006 —

0,08 —

0,10 —

~0,17 —

“"O.lj-}- —

Flg.1P, Plots of the pscudopotentlal versus enorgy:

y shows V(D) from method (1ii) eand

(e--=) and (===~ ) rospeetively belong to
the Vog () and Vgn,(E) shown carlicr in Lig.S,




5 (Ctetes/oton. Y

‘r.,,ﬂ.
NG IR & G

0. o

Tk

Don -

0 — (7% Cuy 38703 (2)

a4

30 —

"0
£ —

‘_‘4
(o
|

(&

(bJ

10+-

10

J \/
L

0.l 0.3 C.5 0.7

J__'..L,;L{J:{(u}j
rig.ly, Dencities of states cnlewl-ted iln CPPA,
(a) Coiewlctions with method (11)3(-—
deaovtes the Lotll densicvy of stugcry
i (semm=- ) cud (eesee, deaote p(Cu, (i,
£ 5(“1)(h/ maooeevivel .

(b, Crlcw . tlons Wit .ctlnes (1) :ow (il
ol KPR e SN of CRVILR R Ly 5 (-—=—-, x (— .

~ o



(44, Cuy 137, .

) St

0 |-

1% -

oL

Rl

S .
fmvte & oGy
i

P S



CHAPTER &

Cluster Effects in

Disordered Systems
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This chapter is conéerned with the generalizations
of coherent potential approximation to include the
effects due to clusters, as indicated in Chapter 2, The
CPA has been generalized in numerous way352 to include self-
consistently the two or many site scatterings. The methods
involving multiple scattering theory.are due to Cyrot-
Lackmann and Ducastelle53, Schwartz and Ehrenreichsh,

Cyrot-Lackmann and Cyrot”’”y Vipin and Joshi” ™y Foo et,als.y

60

Horiguchi et.al.59‘and éapek.- A method involving

generalized mean field theory has been given by Ducastelle?;}éz
A diagram technique has been introduced by Aiyer et.al.63
and Nickel and Krumhansléh‘Some other attempts have been
given in references 65-71, There are also some attempts due
to Brouers et.al. 2?'3 and Butler ¥ which treat clusters in
the spirit of single site approximation centring attention
on'a single site and taking lLocal envirommental effects

of the nearest neighbour sites.

The CPA treatment is the unique self-consistent single
site method. But there is no unique way to generalize it
for clusters, We have made a critical study of this non-
uniquenessy to examine the subtle differences in their
derivationsy in the decoupling schemes involved in them,
their calculational details and finally how all these
methods may be linked together, This helps in seeing how the
calculations in a method may be made tractable by taking
clues from alternative approaches, For the sake of simplicity

we look at the case of pairs only. All the arguments can be
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generalized for higher order clusters.

1. GENERALISATION OF GPA

- The properties of a disordered system represented by
a Hamiltonian H are determined by replacing it by an ordered
system (reference) of Hamiltonian H and then treating the
difference between the two as perturbation, The feference
medium is)the one in which at every site a self-energy
matrix } (%) is placed, The scattering in the system is

governed by a scattering matrix

P .

.2 == 2 ’ se ‘(lol)

-V g |

G= @B, v gH=7 3 e L2
: n

<..G.'\/= ves (lo3)

o),
+
f}}
I
)
NS

i.ee to determine 2 , which, as we have seen in Chapter 2,

Lo

is done self-consistently by putting

<T»= 0,
The problem becomes convenient in momentum representation
so that one must go back and forth from coordinate to

nomentum representation according to,

)
L=l (o

! t

IPASJELIE 2 PN G

<
L
m

B !\"l

+ 7" kB TS (2)<nm> +‘z zI§3><nm>+...j,
i L el (1.9)
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) "iﬁ'ﬁnm
1 3 €. .
nd {G = de_ . X (106)
sl e 1| G - %

The various terms on the right hand side describe the
contributions from single sitey two sitesy three sites

etc, and will be described in more detail later. The primes
on the lattice sums indicate that no two indices be the

same,

It is impossible to solve (l.4) exactly using all the
terms of (1.0). I

is therefore expanded in terms of the

single site contributions to it (cf. eqn,(1.12) of chapter 2),

=5
n

I3
o]

= %_’En +§ti§_ m;n'tm.l- PPN o see (107)0

Vanishing of (T implies {I,y = O, which in the SSA
decoupling scheme reduces t0<<§n>= 0 (the CPA condition),
In CPA } is taken to be ce.l localized (i.e. (1.5) is
truncated at the very first stage, > = 2 7 30 (1) , where
I (n) 1s site aiagonal) , so that ¥_ is cell localized and

consequently in is site diagonal.

To extend GPA, ;. should be taken to be non-diagonal.
Restricting to the case of pairs only,; the self-energy
ZE can be broken in terms of the various contributions

to it in two ways,.

(AQ Contributions from single sites and from pairs of

_various separationsy il.e.
ik.R
Tp = Z(am)+ %‘ TPy ¢ T, L, (1.8
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be further broken in two parts, one

giving the contribution.whsn electron comes at n and

gets immediately reflected and the other belongs to the

case in which electron comes at n and goes out of n after

suffering intermediate scatterings between n and all other

m'S ’ i.e.

S = 3 + 3 72 (e 51 ER (m)e
m m

k.R

nm

se e (109)

If in a systen there are (N-1) rairs of different

separationsy then for the evaluation of the effective

mediumy (A) has N and (B) has (2N-1) unknown variables. The

self-consistent equations for their calculation are obtained

as follows. We will briefly review three main approaches to

the problen,

(a) Multiple Scattering Approach:

The t-matrix expansion (1.7) is written so as to

involve one site explicitly as

and two sites explicitly as
I =t +1t

Ty =3y + 5, O

soe (1010)

ese (1 .lla)
ees (1,11D)

In (1,10) the influences of all m(#n) over n have been

summed and we will call it the !single site framework!, In

(1.11) the influences of all f (#m,n) over the pair of sites
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m=n have been summed and we will call it the 'two site
framework?!, We will derive two self-consistency conditions
within these frameworks.

(i) Two_gite framework: The solution of the coupled equa-

tions (1.,lla) and (1.1lb) is

=8P a8 3 g0, . (L.122)
{Fmyn
where 52 (m) = £, (148 &) (T-£,E 5,87
= -_t-n+.-.t.ng.'.t.rn+_rrg _'_t_mg _tn'l- ess e ceoe (l 912b)

If (1.,12a) be averaged over all configurations of n and m
and the average on the right hand side be decoupled to iso-
late the pair scattering matrix from the effective wave
inpiden$ on the pair, then the general self-consiétency reg-

56

uirement ( <Tn>'= 0) yields,

<t m)>= 0 for all n and m eoe (1.13)

&

i.e. on the average the scattering from n and all the multi-
ple sca%terings bepWeen n and m of an electron entering

either through n or ﬁ but emergiﬁg out of n only, together -
go to zero, This is required fof all pairs of any separation,
Since we can discriminate between the situétions in which
electron enters at n, or m for each specified pair, (1.13)
should be capable of calculating the corresponding contri-
butions, zé2)(nn) and 2(2)(nm) separately, The (2l~1} elements

of (1.9) are calculated from the following equations;
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—

énlj_nﬂ_:_ Gt +t G £ Gt +...|np= 0 [(I-1) eqns.], vee (1.143)

=[r=-n
~ . o~ i
QaltreBegrn B 68 6T ol e T opr . ladao

: _E(N—l) eqns s «se (1.14D)
<<n|.§n(n)>= 0 - C1 eqn.] oo (1a14e)

Equation (l.1hc) is obtained as a special case of (1.13) in
which n and m are infinitely distant, The atomic t-matrix,_i;n,

is defined as,

t = gn — v 3 s e (1015)
Iy 26

and is different from the one used in CPA because now the
site n is influenced by the other specified site m, The
information of all m's is contained in §, which 1s a function-

al of full ZIE is the site energy matrix, This method yields

s E
=n
12 exact moments of density of state's.62

(ii) Single-Site Framework: Instead of treating each pair

individually, if we introduce (1,12a) into (1.10), weget

: el 3 8T ona G+E 3 200 . (a6

which after usual operations yields a self-consistency condi-

tion,

[ m; 2> = o, vee (1.17a)

or(i+nx§n_tn§t+r;_5t'@_‘g+...>= 0 vos (LL17H)
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i.e, the scattering from n and multiple scattering
corrections due to all m(#n) in the system go to zero
on the average., By the nature of (1.17) it is clear that
if the electron is incident at n; then before it goes out
of ny the multiple scattering corrections due to individ-
ual m(= nd can not be distinguished, Hence the contri-
butions zé2> (nn) due to individual m can not be sieved
~out; and all such scatterings together contribute a single
termy ¥ (nn) ( = Z(l) (n) + }:'Zm(nn)). But if the electron
is incident on m, then thg multiple scatterings before it
leaves through n can be distinguished, It follows from
the fact that <u| S  t.G &, lm> = 0y because with n fixed,
" [=m,n =
(1,17b) allows multiple scatterings only between n and all
other m's and not between {(#¥n) and m's. Therefore § is a

functional of N elements in (A) 3 which are determined

from the following equations,

Goligr T 68 5,68 58 £r0 1) =0 [f el
- eve (1,182)

<<nl.’§n+_1;(} G 5,0 Birree lm/> = 0 [(N-l)eqm d 1
ees (1.18b)

This method yields 11 exact moments of density of states.62

Cyrot-Lackmann and Cyrot55 have made a remark on
(1.17) that it does not treat all the pairs in the system
equivalently because an atom being fixed at n} all possible
pairs n-m are properly taken into account but pairs m~{ 5
with {#n, are not correctly described., We see that this

argument is not right. The choice of n is random and in (1.17),
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the sum has been taken over pairs of all possible separa-

tions from n, It is only the different separations between

the two sites of the pair that give rise to the various
contributions to ., Rather it seems that the sites of the

pair are not treé;ed equivalently while considering the
scattering from the pair in both (i) and (ii). One of the

two sites is given special treatment by requiring the

effective wave to emerge out of it only. This incongruity

is trivial from numerical calculational point of view, However,
it is simple to avoid it also., Adding expressions for En and

I, of the type (1.12a),

47 = 2 )+ ) (d ¥ 7
n=m - M VT n’) _,_1#%3nf%)a

(2) ~ T |
;t_ (n m) (.,.I_+_G_-. T ) . XX lol
’ I}lfﬂ‘gn—l ( 9>

To elaborate a little further, (1.19) can be written in a

symmetrical form as

- (2) N —
T+ =t
L, = £ (nym) (I*G K%b (L)) v (1.20)
(#nym)

the sum extends over half the sites because a pair n-m
(or £-p) got specified would mean that fixing n(or f)
would fix m(or p) also. The eqn.(1.20) is thus in terms of
identical and disjoint pairs. Averaging (1.20) and then
decoupling of the avefage gives the self-consistency
condition,

<t 2mm> =0 for all nand m, oo (1.20)



-67-
1(2)(n,m) is the pair t-matrix and includes all the
multiple scattering terms in which the effective wave
exits through n as well as m after being incident on n as
well as m, Sites n and m are therefore treated symmetri-
cally, If (1.20) be iterated we get the standard multiple
scattering series with atomic t-matrices replaced by pair

t-matrices,

_ (2 (2) ~ (2)
T 4T = % + £ G £ (L sp)
I AL, = 2 (nam) + 7% (nom) G fp§ (2m) e
(2) ~ (2) ~ (2)
+ £ (nm)G 2 54 (L) G Y (qas) e
, £ yp#(nym) P ;%a#(P:() 128

o¢c e (1022)
It i1s not possible to get such a series from (l.l2a).

Conditions (1.13) and (1.21) are formally the same and make

no difference in calculations.

(b) Diagram Method

For a particular pair the self-energy is broken

as

o= g(l) + 2(2)
(V@ o ) 5P 5@

0] z(l) 1) : j
LN I (1’23)
and following equations are solved simultaneously,
TP g T @ (e, ver (1.240)
and ¢ = o5 {<aes}. cee (1.24D)

Equation (1.24b) is solved for all pairs in the system
whereas (1.24a) is the simple CPA condition, This method

is essentially the same as (i) and the differences between
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the two may be noted from the following. The self energy

in (1.23) is broken as in (B) 4y but it follows from the
textof Nickel and Krumha,nslélF that when (1.24b) is solved
for a particular pair, Eég)(nn)'s and 2(2)(nm)’s belonging
to other pairs are completely ignored i.e. taken to be

zero, Thus the Green's function is a functional of six
elements of self-energy whereas in (i) it is a functional

of full self-energy matrix, Because of this reason (1.24a)
is different from (1.1lhc) contrary to the statement by
Cyrot-Lackmann and Cyrotss that they are the same., These are
the subtle differences between this method and multiple
scattering method and not the one pointed out by Leath75
that the two methods involve self energy respectively like
(B) and (4)+ Bothy (b) and (i) take self energy in the "
form _(B‘) . | '

(c) Generallzed Mean Fleld Method ¢
This method goes parallel with the dlagram method .

and ane assumes '(2) [:>(2)(nﬂ) =~'n| >(2)|n\‘ (2)(nm) =
Lnl > <2)lnﬁi] to be the same for all p's # m when going
from Héff to Héff[:Hnm is the Hamiltonian of the system

in which n and m sites have been excluded from averaging:l
What 2‘2) is to be taken for all the pairs but the one
under zénsideratipn,_is free to be chosen and choosing it
to be zero like in (b), is a special case of this method.
In fact using some approximate suitable value for these
terms is necessary because it is not strictly speaking

possible to disconnect a single pair from the others and



the information belonging to these other pairs should

be contained in an approximate way in G.

It is important to state Leath's theorem75 at this
stage. The theorem bridges the generalized CPA obtained
through Bloch state expansion [ i.e. (a) _| and locator
exXpansiony and provides an interpolation formula from the
virtual crystal to the atomic 1limit (not the split band
limit as stated by Leath75). The theorem states: the self
energy as a matrix should be cluster diagonal;i.e; it does
not have any non-zero elements ¥ (n,{) connecting a site n
within the nxnrcluster to another site [ outside the cluster.
Besides merging the locator approach into the multiple scatt-
ering approach, we see that it further merges (c) into (b) and
also (i) into (b). Thus all the methodsthat use 2p of the
kind (B) merge to yield a single method,i.e. (b). The
method (ii), that uses 2p of the kind (4), is greatly simpli-
fied with the use of Leath's theorem, which cradicates the
sums of the type 'y ' hidden in (1,18a) and (1.18b) because
of the specified g dgg?ding (1.18b) ,Howevers (ii) does not
merge into (b) s contrary to what Leath75 has stated,

So eventually we are left with two methods,(ii)
[simplified form ] and (b), respectively based upon 2p
of the kinds (&) and (B). It will be discussed in the next
section that to make the numerical calculations tractable
one has to take into account only the pairs of nearest
neighbours. Then the formulation outlined under (ii) takes

into account simultaneously all the Z ncarest neighbours
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of a pair, where Z is the coordination number, and (b) type
formulations take into account only one such pair embedded
into an averaged medium, It should be interesting to
compare the detailed nature of density of states obtained
through the two methods. Ducastelle!s observationé2 that
(1i) has 11 exact moments of density of states whereas

(b) has 12 , makes it more interesting although a priorily
{(ii) looks to be firmer than (b)., Using the approach of the

type (ii) originally due to Cyrot-Lackmann and Ducaste11e53;

78 have done density of states calculation

Moorjani et,.al.
for body-centred cubic lattice. We have attempted to do
the three dimensional calculations using the (b) type

approach for simple cubic lattice,

1,1 Simplifications For Numerical Calculations

the calculations are still too tedius to be tract-
able if done for all pairs of all separations. Howevers since
E(2> decays asymptotically as (<fGnm> )3, one can expect
;nly small an to contribute except possibly at isolated
energies near band edges. So one.can further simplify the
calculations by doing them for few pairs of small spatial
separationsy and thus truncating the self-enecrgy matrix
after few neighbours. We have seen that the calculations
for a single pair lead to heavy computation, so doing it
for few pairs would multiply the amount of computation

accordingly. It can be guessed from the fact that following

L B A AN o



the methodology discussed here, only one dimensional

27576577 54 gar, We report the

calculations havé been done
results obtained by assuming a pair of nearest neighbour
atoms embedded in an effectivé medium, Our aim is not

to analyse the fine structures of the effective medium

but to see the behaviour of diagonal part of Green's
function, Therefore, we do not isolate 1) (n) trom 2 (nn)
and consider the sum of the two ( 2(nn) = Z(l)(n)+-§x2)(nn))
as the diagonal part of self-energy. This removes the need
of solving (1,lhc), We have to solve only two equations
(1.14a) and (1,14b), The elaborated calculation of these
two equations is discussed below, Weconsider both,diagonal
and off-diagonal randomness. dAmong the other attempts to
consider the off-diagonal randomnessy two are due to Brouers
and Van der Rest’® and Blackman et,al,9998! (nereatter |
referred as BEB). They cast the off-diagonal disorder
problem in a form sultable for single site averages. The two

sets of authors respectively work within multiple scattering

and locator approaches.,

To conclude this section we remark that for three
dimensional systems there is no calculation for clusters
consisting of more than two sites. All big cluster calculat-
ions done so far are in the spirit of single site approxi-

mation., Ducastelle82

has reduced the problem discussed in
the preceding text by further neglecting the off~diagonal

matrix elements of the self-enecrgy within a cluster, and
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keeps a single scalar self-consistent equation. He
reduces the Molecular CPA(MCPA) condition {t.) = 0
[equivalent to <<g>> =G ] to -<<GOO>C> = G only, where
10t is the central site of the cluster 'c!, This approxi-
mation is called the central site approximation and has
also been used by Butleréé, Brouers et.al.,72’73 and
Tsukada.77 This approximation yields good results aftér
calculations, Bu.t:l.er76 has discovered that if the above
thing is done for a site at the boundary of the cluster
rather than for the central sitey then in one dimension,
the single self-consistent equation obtained in this way

is exactly equivalent to the MCPA,

2. PAIR CALCULATION

The alloy effective medium may be written in terms
of the diagonal ( Zl) and off-diagonal ( ZQ) parts of the

self-energy discussed in (1.8),

Bopp = 27 (E) % ln><n!+22<E>n§m:n><m1 e (2.1)
Here |n>and |m)> are the Wannier orbitals at the n'’ and

mth lattice sites, Naming two nearest neighbour sites

constituting the palr as 1 and 2; the perturbation equation(l.l)
1s expanded to yield Tll and T21 as followsg

Vil+vé1(V11G12+VizG22>
1- (Vo1 & p*Tpplpp)

T, = ) )
11
1o (Vo G 4V G ) (V3189 57 Vy 98 00) (Vg Gy 1 +Voliy )
11%1+ 120 et
21012+ Vo00 00
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Vil+N

e maat

ed e (22)

Vot (Vo Gy 1 4V5 0007 ) Ty :
1= (Vg Gy 5+ VpGrpp)
Vo +A

B .

+3
R

¢o e (203)

T,, and T,, are diagonal and off-diagonal parts of 3(2)(m).
11 21 n

The expansion of (1.1) +takes the terms belonging to n and

m other than 1 and 2 to be zero, The diagonal and off-
diagonal perturbations with respect to the effective medium

parameters Si and(ﬁ(l~ 22) are given as

Vll = El-zl 3 ese (2014{-)
V22 = 82-21 9 ces (2 05)
Vl~2 = V2l = h—h(l"22> . soe (2 06)

61 and €, are allowed to t.ke two values B and eB and hy

. X |
the hopping integral can be hAA’hBB and hAB"hBﬂf Q(hAA+hBB)
depending upon the occupancy of the sites of the pair,
The particular form of hAB 1s a simplification; not a require-
nment,

_ . . N - smo N
The self-consistency requlrements/<Tll/x~ 0 and \T2l/“ 0,

yield two coupled equations in z; and X, to be satisfied

simultaneously,
€
(2>
5 =22 cee (2.7)
{1/D>
Z =l~ <h/B)+ <A/B>a s 0.0 (208)

2 T{1/BY
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The averaging is done over the occupancy of the pair 1-2,
The pairs A-A, A-B, B~A and B-B occur respectively with
the probabilities 02, ¢(l-c),y (1-c)cC and (1-0)2, where
¢ 1s the concentration of A atoms. The diagonal and
off-diagonal contributions to the medium Green!s function

are obtained as follows. The diagonal part is

1
Gy = Gpp = 2 s (o 1y (3 -
11 227 £ L 3 (B)-hzZs (k) [[1-7,(E) ]

1

— y -

1-3, k pS, o
=2 E—Z‘L-WS(K)

1-25

W = Zh, where Z is the number of nearest neighbours. For con-

]

2 ) (209)

venience if we take h = hAA’ then the t'integral! form of

(2.,9) can be written as

G’ ="""‘l‘" J‘ p ( ) dE!. e 0 (2010)

11
1- -
22 E-2], - Riieh

1-Y 5

PA(E’) is the unperturbed density of states of pure 4
éystem and the integral runs between the band edges of
PA(E), For deriving the off-diagonal part of Grecnts

functiony we proceed as in the localor formulations

G ese (2,11

= <
117 gt g By, o

where gq; = (E—Ei)"l, Wy o = E(l{zz) and 2 denotes the

nearest neighboirs of 1. So we easily get,
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(B-27)Gpp-1

Gyn = Goy = . cee (2.12)
12 21 -

Having obtained }:l and ), from (2.7) and (2.8), the alloy

density of states is given by

P(E) = -n"llmGll(E+iO) eee (2.13)

2.1 Component Density of States

The partial density of states PA(B)(E) can be derived

by defining the conditional averaged Green's functions,

le® @ = o @
iél{Z-ﬁeff—<§‘—‘£ll> |11
-[h-h,, (1= Ylisel ... (20
[B-hy, "‘2)]2;{' 1H (2.11)
and a similar expression for G( )(Z), = E+i0,

After some transformations this can be rewritten,

(A) = Gll(Z)
Gy3Y (2) ) < | 1-2.
(Z-e9)6, (2)-{(2-2)) 61 (2) -1}/ (1-2,) ver (2.15a)
G (2
(B) (Z) = ll( )

(2-£°) Gy (2) ~hg{ (2-7) 6, 1 @)=}y, AT}
oo (2.15D)

The partial densities of states are given by,

p,(E) = %" ImG(A)(E+:LO), c.. (2.168)
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and Po(E) = -nLim o{B) (8+i0) . vee (2.16b)
B 11
These quantities satisfy the natural identity

P(E) = cPy(E)+(1-c)Py(E). cee (217)

2,0 Compubtation and Discussion of Resultsﬁ

The self-consistent simultaneous equations (2.7) and
(2.8) have been solved with the required components cal-
culated from eqns.(2.10)5(2.12) and (2.2)-(2.6). Having
obtained Ei and §2 iterativeiy from (2.7) and (2.8),
component densities of states are obtained from (2.5a)-(2.6b)
and finally the total density of states from eqn.(2.17).
The parametefs for which we performed the calculations are
the followingfé = 0.4(=8Af6B)3 cA(concentration of A atoms)=
0.6 § and 8 = 1, CA'=0.1. Fof § = C,A, cAf_O.é we also gtudied
the effect of off-diagonal randomnéss, taking hAA= 2hBB/3
and 3hgp/2. .

For small 6(=0.4) we employed the simple iteration
method to solve the twin equations in.zi and 7, but for
larger &(=1.0) we had to use the Newton Raphson's method
for iteration. Although the latter method gives convergence
at places where the former fails but the amount of computa-
tlon per iteration increases enormously. Besides this, in
the impurity band region the convergence becomes very tough.
About 1,5 to 50 iterations are needed even at very close

interval of energy., The calculation is thus very time taking,
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even on the IBM 360/44 computer, Another type of con-

vergence difficulty arises in the minority band region,At
certain energies two different solutions are obtained
depending on whether these energies are approached from
higher or lower energy side, Similar difficulty has also

been reported by Moorjani et.al.,78

Figures 21 and 22 show the density of states respecti-
vely for C,y - 0.6, 5+ 0.4 and C,= 0.,1,6%1,0. For 8%0.k4;
fig.2l shows very little and trivial difference between
the pair calculation and the CPA result8l(the BEB81 method
reduces to CPA for no off-diagonal disorder). Figure 23
quantifies the difference in terms of the off-diagonal
coherent potential, zé. zé, which is zero for CPA, is

only about 7%. of Zi (if the maximum values of the two

be compared). For larger 8(=1), i.e. stronger scattering case,
Zé becomes very significant, Zi and Zé have comparable magni-
tudes, also Zi reduces by a large magnitude as compared to

its CPA value (cf.fig.24). The effect of large megnitude

of Zé is seen in the density of states plot in fig.22. CPA
gives two split bands with a considerable gap between the host
and’ impurity bands, The present pair calculation erodes this
gap by pulling the top edge of host band and the bottom

edge of impurity band towards each other by a sufficiently
large amount. The convergence problem discussed earlier arises
around E=0,32,While approaching higher energies from lower

sidey density of states decreases smoothly upto E=0,38 then

a sudden increase occurs at E=0,39 and density of states
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goes smoothly upto E=0.804. After this energy, convergence
is not obtained even at the energy interval of 0.0005. Then
we tried convergence from the top of the band with energy
decreasing. The iterations did converge though at very
small energy interval and very large number of iterations
(around 45 to 50). The region between E = 0,85 and 0.39 was
retraced and this time it kept decreasing smoothly and
joined the main band at E = 0,32, The shape of the impurity
band is quite different than that obtained from CPA. An
anomaly is found ithe density of states obtained by us does
not seem to be conserved., We are trying to analyse this
anomaly by doing the calculations again with a small ima-
ginary part added to energy. However s it appears that the
shape of the impurity band will not change much, only the
magnitude of density of states may change in some energy
regions. The shape obtained by us looks very much like that
obtained from continued fraction methods.83 The results of

Moor jani et.a1.78 show distinct structures in the impurity
band and are assigned to the bonding and anti-bonding states

of a molecule embedded in an effectiﬁe medium. Schwartz

.8y
and Siggia

also obtained similar structure in the impurity
band, |he non-self «consistent approach of Schwartz and
Siggia,thas been shown in its self-consistent form to be
equivalent to the approaéh of the type (ii) discussed in
Section 1. The approaches (ii) and (b), representatives

of the two classes of pair-methods discussed in Section 1,

thus lead to two types of impurity bands. The earlier shows
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structures in the minority band, whereas the latter shows
a smoothly varying pattern with a peak at the top of the
band, It is interesting that the feature of imzz, that
it changes sign within the minority band, has been found
common with both the approaches. This feature has been
discussed to be compatible with the dispersion relations
and with interpretation of associating the side bands as

~

originating from bonding and anti-bonding states of a
78

molecule,

3.2Effects due to off-diagonal disorder:

We now discuss the effects when two elements with
quite different band widths are alloyed, Figures 25 and 26
show the total and component densities of states- for the cases
when the bandwidths of 4 are respectively 3/2 and 2/3 times
the bandwidth of B, The figures also show the corresponding
results obtained by BEB.OL The diagonal and off-diagonal
self-energies for these cases are plotted in figures 27 and
28. The centers of gravity of pure A and pure B densities

of statesy Ey and €py are respectively at 0.2 and ~0.2, i.e,

6 = €, = €g = 0.4. The concentration of 4 atoms is 60%.

The effect of narrower solute (B) band (cf.Fig.25) shows
up in the negative energy portion of the total and paftial
densities of states (p’pB and PA). P and Py have distinct
peaks at almost the same energy and PA has a shoulder
(satellite peak) in the same region. The results of BEB81

are almost like ours except that in our case the band width
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is slightly larger than the BEB results. This shows that
the larger band width of host(A) band plays more important
role in our case, Both the peaks in P are indicated as
kinks in the real and imaginary parts of Zi and Eé. Both
the coherent potentials have almost equal magnitudes at
individual energies, Interestingly the plots of Ei and

22 look like mirror images of each other, the physical
implication of which is unclear. The development of the
satellite structure in the component density of states is
of physical importance. The exigtence of the shoulder in
PA(A atoms being in majority) due to a narrower pure B-band,
indicates that slightly more charge i; concentrated>about
the A atoms (and slightly lesser about the B atoms) than
would be inferred if the weight of the peak in P was attri-
buted solely to a peak in Pg. |

In the casc of a narrower host (&)band the satellite
peak is seen in the A4-component density of states PA and
in the positive energy region (cf.fig.26). The total density
of states in this case is quite different as compared to the
same obtained by BEB. The solid and broken curves for P are
respectively obtained through egns. (2.17) and (2.13). 3
in this case becomes much larger than.Zi. Besides, ImZi
and ImZé are peaked over a narrower range as compared to
the earlier case (cf.figs.27 and 28). This can be under-
stood as follows. The imaginary parts of seclf-energies
indicate the width caused by disorder in the dispcrsion

curves sy hence they should be large in the energy region



where P, and Py are almost equal or have small ratio

A
(i.e. both types of atoms contribute to P comparably). This
region is obviously narrower in the latter case. Total
. . b - 2
span of allowed energies is much narrower when hAA 3 hBB
- 3_ 3 - = = +
than when h,, = % hgpg if Zhgg= Vg .l (wg = unperturbed

bandwidth of B-band).

To sumﬁp these results we make following remarks.
Generalization of GP4 for clusters is non-unique. The
numerical computation for cluster-CP4 is at the same time
too tough to be feasibie. The simplifications to make %the
calculations tractable for three dimensional solids cate-
gorise all the generalisations into two classes. The cal-
culations through one of these two methods have been done

78, and results through the other method

by Moorjani et.al.
are obtained by us. The case of most interest is when

8§ = 1.0 and ¢ = 0.1. The method used by Moorjani et al.
would yield a well separated impurity band with lot of
structures. Our method yields highly broadened and smoothly
varying impurity band. No band gap is obtained. It is
difficult to predict which of the two methods is better.
Though the two methods respectively yield 11 and 12 exact
moments of density of states, this can not be held as a
reliaEle criterion for judgement. Only computer simulation
results can be the best results for comparison. The so-
called“experimen.’calt numerical results for crystalline

83

semiconductors obtained using the moment technique™™ show

the impurity band of the type we have obtained,
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In the case of off-diagonal disordery for small &,
although BEB%JQ'PGSUltS look like ours (BEB's method has
first four moments of density of states exactly), but the
| very significant magnitude of Zé indicates the necegsity
of'employing pair-calculations rather than incorporating

thege effects in single-site theories,
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CHAPTER 5

Localisation
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We finally turn to the most fascinating, yet
controversial phenomenon in the study of disordered systems;
exciton localization caused by disorder. An.derson.S6 first
suggested that under same conditicns an electron cannot
diffuse in a random lattice, Using a tight-binding model
which goes under hig name, Anderson pregsented the first
guantitative estimates of the critical disorder which
produces such localization.

There are two competing processes that must be
accounted for. firsty the potential flucfuations favouring
localization) aﬁd secondly the fact that however deep the
.well the electron may experience, it can always quantum
mechanically tunnel away with finite probability. The
subtle balance between these two competing phenomena is the
ultimate cause of localization., We can express the problem
of wave propagation in a given system in terms of the
wave amplitudes at fixed atomic sites, The wave equation
takes the form of a set of coupled linear equations for
those amplitudes, The propagating character of the wave is
expressed mathematically through the existence of non-
vanishing transfer matrix elements coupling the amplitudes
at a given site with those of neighbouring sites. If the
transfer matrix elements were zero, the eigenmodes of the
system would be non-propagating oscillations associated with
each atomic site, As the transfer matrix elements are
turned ony an oscillation formerly associated with one

specific site would propagate to neighbouring sites



and from them on giving thus rise to a wave propagating
through the system, This propagation however does equally
strongly depehd on another factor, namely, the matching

of eigenfrequencies of oscillations at the sites i and j.
The closer the cigenfrequencies the casier the transfer

of energy is. Thus the most favourable sondition for
propagation is achileved when all the eigenfrequencies are
the same, The wave can then propagate through the whole
medium without any scattering in the form of Bloch's solute
ion. These states are oxtended throughout the space, with
a perfecetly horizontal envelope., When a little disorder

is introduced, and we depart from the ideal condition of
having all the eigenfrequencies the same, the wave is
scattered, the wave function remains no longer periodic

and has random sign and fluctuating amplitude across the
system. We expect two possibilites: first.s thé wave functien
may remain extended with a horizontal envelope (in the

- sense that there is always a finite probability of the
éiectronkbeing'$omewhere in its neighbourhood;) These are
the extended states of disordered §ystem, Secondlys the
wéve may be attenuated in such a way that it would cease to
propagatey thus giving rise to Jocalized eigemnmodes. The
envelope of localized states is quite different in charac-
@ep§ It becomes humped over the region of localizafion

and fallg off to zero far away, Howlﬁhe wave function falls |
away from the regidﬁ of localization is a matter of |

conjecture, Mott defines it to fall off like exp(-Y|§~§ol)
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from the centre ?o of the localized region. Thouless and

7

Last}"'2 suggest that in addition to exponentially localized

states there are also states localized by ‘'power laws',

Thus the existence or not of localized states depends on
the strength of transfer matrix elements and the difference-
in the eigenfrequencies associated with each site.The more
random the systemy the larger the spread in eigenfrequencies
is and consequently the more favourable the situation is

for localization.

Localization can be defined in an alternative way
in terms of conductivity. Mott defines an energy to be
localized if the configuration averaged d.c. conductivity
'O“(E) vanishes for that energy, in an energy range where

the density of states is finite,

We now introduce the model which we have used for
our localization studies. We work within the Mott-CFO(after
Cohen, Fritsche and Ovshinsky) modelpp, which states that
the extended states in the centre of the band and the
localized states tailing deep into the band gap of the
ordered system are separated by sharp mobility edges EC.

At a critical degree of disorder Yc” measured by the ratio

of the spread in well-depths (caused by disorder) to the

band width-suddenly the entire spectrum becomes localized,
This transition is called Anderson transition.

Following Anderson86 we adopt the following criterion
for localization: let P_ () be the probability of re-

discovering a particle at a particular Wannier state |Q)as



6.
t 3 ooif initially (t#0) the particle was at the state |0 .,

then the existence of localized eigenstates overlapping

with |0) is equivalent to P _(co) # O.

1, GENERALY THEORY

The Hamiltonian in Anderson's model is expressed as,

<nlH|m> = €0t Vo ? eee (1.1)
th = Vv if n and m are nearest
neighbours,
= 0 otherwise,

€, are distributed with a probability distribution p(sn).
Corresponding to H we define a resolvent as before; G(Z) =

(ZI-H)"l.'For,t)>0, the wave function can be expressed in

terms of the amplitudes at given sites,

§e)y =% c (0)In>, cee (1.2)
: n

then " P _(t) = Li ljt ERCDIEE (1.3)
en 00 tigg t ) o . ees (1.3

It can be shown§8 that,

_ 0
Poolt) = ] Py (E)AE; cee (1.1)
-(I) : *

- rs. O . 2
where, pOO(E) -6£i§ - IGOO(E+16)| .

GOO is the diagonal element of Green'!s function, i.e.

G, (B+18) =< 0| (@+i8-H) 1[0, Tt is clear from (L.})

that localization is related to the analytic properties of
the Green's function. Introducing a self-energy E;(E) through

the definition, G__(E) = (E-sO~ZO)'1, we get p__ in terms
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of 25 ass

' Im G (E+i8) :
b (E) = Lim 2 Q0

- . ees (1.5)
820" T 218-[3 (E+18)-3_ (E-18) ]

iy S ; = oBoipy i, -
Writing Z%(Z) = B (2)-1A_(2) and G__(2)= G (2)-1iny(Z) in terms
of real and imaginary parts, where n (E) = 5(E-so"§5)’ we
get from (1.5),

n (E) '
p. (B) = Lim {‘ 3 }‘ . ee. (1.6)
00 6io+ Y o+ AO(E) )

For an infinite disordered system, the complete spectrum

of the Hamiltonian can be separated into two parts.(i) Extended
part €¢ this constitutes a true branch cut for GOO(Z) along

the real axis . On it the spectral measure is absolutely
continuous, AO(Z) -+ a finite quantity as & = 0" ;n a set

in &€ of finite measure, (ii) Localized partéf: this consists

of a dense set which does not constitute a true branch cut.

On it the spectral measure is singularly continuous and

AO(Z) 5 0as 60 except 021 a set in £ of measure zero.,
Whenever E€ &, we have g._i;gl_’_ -5-9 9 3 SO pOO(E) = 0, This is
what we expect. Pyo Can also vanish because of the poles of
25. But Economou and Cohen68 have shown that the poles of

2 (2) coincide with the zeros of G_ (Z). When G__(Z) is

zgro Wwe are in a gaps so the possibility is trivial, We are
left with the possibility that the only contributions to

p,, comes from the bound and localized states; i1.e. from the
part of the spectrum consisting of discrete polessy or cont-

inuous bhits which have the 'singular continuity! character.
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8 (2) o o ab r
Here L1m+~3"~— ~»g-finite quantity EZ—WQZ*E(”A0>’

80 )
and since within the continuous spectrum nO(Z) is non-

zero almost everywhere, pOO(E) will be non-zero, Now

3 V (o] k! ”l . { “y
GOO(Z) may be wrlttep,as g:fi(zmui y where Ei are the
energy eigenvalues corresponding to the eigenfunctions
[U £5° <p|ﬂg><wilo) is the probability that an electron
in the eigenstate l¢£>will be on the site 0,Thus with the
help of (1.4) we obtain,

- foo _— 2
P ¥ 1;OPOO(E)dE = %:fi . vee (1.7

since 011 withg:fiff*- 1, we get 0CP L1, i.e,

pOO(E) varies between 0 and 1.

We examine the consequence of allowing the dimen-
sions of the system to approach infinity. If Il be the |
number of sites in a finite system and Py( 2;,N5E) te the
probability distribution of §;$N for B belonging to the
spectrum of infinite (l=oo0) system, then following Economou
and Cohelgl9 and Licciardello and Economougo we sfate that

in the localized region Lim PF( ZQ,N;D) exists whereas it
: Nooco ™ ,
does not exist in the extended region.One can clso consider

the probability distribution of 1n1§% i.e. A, Lim Lim
80t Haoo
PN(AO,N;E+16) exists and is a smooth function of E in the

extended regime; whereas in the localized regime Lim Linm
c’> 1 8-?0'*”1‘1»*00
PN(~§J-;E+i6) exists and 1s a smooth function of E,
Thus the existence of localized eigenstates depends on
the existence of the probability distribution of Z;.In order to
study the properties of the probability distribution of 55, A
one has to express it in terms of

4.



known quantities., 4 perturbative expansion of Zo in

terms of site energies with hopping integral as pertur-
bation diverges for all energies, The problem is resolved

904591,92
by writing a renormalized perturbation expansion (RPE)

of 253

- e SO0T-1 by T -1 v
Zo(E--) ngovonl:E ©n Zn:j Yot 2 Von*EE“sn’"-?-oi"x?] Vatn

n¥o
1 nt#on
- (0] -

x[mmﬂ{n] Vooteees “f(lﬁ)
or equivalently
T by | - ' '
LO(E) - réovon _ 1 » Vno+onooo

E"‘ Sn"' Z V mvkn+. o see (l .9)

k#n,o nk E-€ =00

The superscripts ojny...denote that the corresponding quan-
tity has been calculated for eo,en;,,.? © o The summations

in (1.8) run over all self-avoiding paths i.e., all paths
which begin and end at O and do not visit the same site

more than once, For a system of finite size both the infinite
series and the continued fraction terminate and (1.8) and
(1.9) form a closed solution of > o For infinite series we
cannot make this statement unlessothe infinite step iteration
procedure implied in (1.9) and the series itself converges
in probability. It can be :;1351.1med89-’90 that the convergence
of the series implies the convergence of the iteration
procedure, In one dimensional casey the series terminates

at the first step and only the iteration procedure remains,

One can show that the latter always converges when the
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degree of randomness is non-zéero., This was the basis of

the statement that in l-dimensional disordered systems all states
are localized, Hence following our previous discussion

we infer that the convergence of RPE implies localization

and the divergence implies the extension. We may rewrite

(1o9) as s

=

— lonne

S ® = 3 3 p vee (1,10
o a2 20,11t 2’ ‘

where Eé%% is the sum of all diagrams visiting M sites.

If the eigenstates at E are localized then: (a) the

probability distribution of 2&?&(E> converges as Moo s

and (b) the contributions of all terms | ZéM)(E)I where
M:>MO are negligible as M =co, The reason for (a) is as

follows, Eé?%(E) can be expressed in terms of finite

number Gg;&‘, for each of which the probability distribution

converges as N»oo (if states at E are localized, probability
distribution of Zo converges and same is true for all other

Zg, Zoi?ll;l etc,) . Thus if the eigenstates of H corresponding

to E are localized, so are the eigenstates of H°?*** at E
(if any). If (b) is satisfied, (a) is satisfied too’*. Thus
the problem reduces to look at the probability distribution.
of ngD(E) as Mswm y i.e. of

sMW@E v 3 T L vee (1.11)

a1l diagrams €1 %2 Oy
of order M(~x@

Here e; = E—ei—Z?’n""i'l and the sum extends over all
i
M-step self-avoiding diagrams starting and ending at O.
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A particular contribution to SV is,

M) = M
Tg) ”’b%%%— e (1.12)
1 °2 M
Even if one knows the probabiliy distribution of T§M) :

the problem is not solved since one ought to know the
degree of statistical correlation among the various T\
There are roughlyICM,TgMp terms contributing to EéM>, where
Ky the connectivity of the lattice, is related to the
number CM of self-cvolding paths of M steps by the relation,
< = Lin £ {nCy. One can proceed with the two limiting

200

cases of 'no correlation! and 'extremely strong correlationt,

This has given rise to two schools of thought.

2, NO-CORRELATION CASE

It is easy to see that there is atleast one case where
the different contributions due to a certain number of
steps are statistically wncorrelabeds This is the case of an
infinite Cayley free lattice as shown in the Fig.29., The
topology of the Cayley tree indicates that due to the absence
of closed polygonal paths on it, the infinite series(1.8)
terminates after the first term. Only the second order
terms are retained. The sum over n runs only over the
nearest neighbours of the site under consideration, If K
is the connectivity of the lattice, so that there are (K+1)
nearest neighbours, then the first sum in (1.9) rumns over
(K+1) independent terms and the subsequent sums in the

continued fraction have K independent terms. For this case
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the problem of localization has been solved exactly by

9 Without going into the details of

Abou-Chaora at.al.
their method, we briefly mention what they have done, They
construct an integral-eigenvalue equation involving the

joint probability distribution of the real and imaginary
parts of the self-energy and taking advantage of the fact
that imaginary part of self-energy tends to zero -as §(imagin-
ary part of energy) tends to zero, they evaluated the
mobility edge as the point where the integral equation
ceases to have solution., Their theory is thus a theory of

the breakdown of localized states., Having known the localized
regime from this work we have attempted to dgtermine the

nature of the wave functions (i.,e. the knowledge of P

and L,ces the spatial extent) in this reginme,

In a disordered system these parameters are configur-
ation dependent anda statistical description demands the
knowledge of configuration averages of the type {poo>.
 For a convincing calculation of <bOO(E)>> we have to resort
to more sensitive averaging procedures than the usual
effective medium type. To this date no satisfactory
calculation of these quantities has been reported, apart

9%

from the linear chain case.’” We have presented a formula-
tion?’ for the calculation of P, (E)> on a Cayley tree
lattice with diagonal disorder and Cauchy probability
~distribution for site energies, Af the outset we have
assumed that we have the knowledge of mobility edges cal-

culated by Abou-Chacra et.al.95
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From eqn.(1.6) and the subsequent discussion, we
see that for calculating <;poo(Ei> in the localized regime
we have to have the knowledge of the joint probability
distribution of E, and A1, (E_,A!) . We have F,(E_,41) =
GF(EO,Aé)G(Aé),Q(Aé) vanishes for negative values of Aé
and is unity otherwise. We have to do this because AO and
hence Aé is always positive so as to yield positive density
of states. In the localized regime we can write (1.6) as

= - H

(E) S(E' 80 EO)/(1+AO). s e0 (201)

pOO

§(E~e =B )

N L ‘ o B
80, p,E) = !OOdSOIGDdEO]O dAQp(eO)Qi(EO,Aq} Y
0

@
= IOOdEOJ dAép(E_Eo)g+(Eo~’Ac;) 1‘,;%"{
= I dE I dA’p(E-E YIE 913')9(13‘)1.“3:

- JtodE JGDdA'p(E o) FE AN 1+A,. vos (2.2)

p(ao) is the probability density of €y E denotes the
energy measured with respect to Ec’ the mobility edge.
Evaluation ofE}(EO,Aé) has been elaborated in the following.
Eo and Aé on a Cayley tree are given in the localized regime

as .
K41 2

EO = ..Z V ’ o0 . (2.3&)
J=1g - £, - Eg

IS t
§l v2(1+89 )

At = %
o LT RGN
1 (B €, Ej)

eee (2.3b)



The subscript denotes the contribution from the particular
site and the superscript dcnotes the site removed. We

have seen that because of the topology of the Cayley tree
(K+1) factors in the sum in (2.3) are statistically inde-

pendent,

For convenience we rewrite (2.3) as

2 -
zO = Z -;—f-— = Z X ves (2043)
j J
2
At = z-v—-z Ez Y see (2-1{-b)
L B
and E? = E-—GO-—X E f(X) 3 | . oo (2.53)
A§’= y-1 = g(y). ... (2.5b)

t
A? never becomes negative, therefore Y and Aé are always
positive, Let us denote joint probability distribution of

X and Y as G+(X,Y) for positive Y and G(X,Y) for Y lying
0

anywhere between -ocoand o . The similar quantities for E3

1 t t
and A2 are denoted by F+(Eg ,A? ) and F(E?,A‘J? ). We can

m98'F as

write the Radon trandfor -

(8.8] Q0 (00)] 1 1 1
' - O (0] O AO (0] 6]
G, (X,¥) = {mdsoloodEj jo a3 T (BS,A5 )8 (B5-1(x))8 (A7 -g(y))p(e)
' s (2.6)
In further calculations we will require Fourier transforms
of these distribution functions. To facilitate this we

t t ,
introduce G(Ag ) to make Ag vary between -ooand co and thus



.
;:_95, _
.v«‘\‘vf‘ N e . . R
- " .
- T

get 2 relat:.on between G and F
N G(X,Y) = J e [deg'[ aA°;{F(E A°))6(A° )}S(Eo—f(‘{))B(Ao-—g(y))p(gg
Ol ‘~m

LIRS N
Ty

R . ) a ] & Dl O
We have G+(X’Y) = GKX,Y})Q(YO and 1‘4,(5‘4? ,Ag“)““ l‘ﬂa@)ﬂj) >G(Aj )o

The Fourier transform of (2,7) is

- (k. X+k Y):L
Gl skp) = L J “ax]” ay[F (£ () ,gcyne(g(y))I LAy
(2m) —D
| f p(e )de .
. -00
3 cee (2.8)
Again in terms of Fourier transform we have ’
R g (ks ]
F(f(x) :g(Y))G(g(.V)) f f F(kl:k | 1 2 dkidky,
" eoe «2_9) '
so that (2.8) is written as .
ik V2 ik V2
G(kl,k2)= L [ ax [ aPNF (k" —Z—)expELk'E.-lk' .27
-~ X
ose (2,10)

where P(k!) " is the Fourier transform of p(eo) and the follow-

ing defimtion has been used

’ :V2 .
6(1{2— -—XT) - -2-;,; I exp Li(k "-—‘g Ny Jay dio (2.11)

For a Cayley tree we have the following relation between
G (ky skp) and Fk sk,) » the Fourier transform of F(E ,4)) .

‘/ o ; 1{.,.11“!};L :
G;(kl,k2) = {G(kl,kgr} . )
R ‘ Lik V2
= &mf dxfmdk'P(k')F(k' )expﬁk’E—lk'x— ;
"o @ x* 1k V2 _ Kot
- 2 ]}'

X s00 (2012)
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Given P(k!) = exp|=YSgn(k")k'] i.,e. Cauchy distribution
for site energies, it can be shown by substitution that

a solution of (2,12) is given by

exp [ { n13gn(k1) Jx +{-—1m2 2Sgn(k2) }k 1,

F(kl’YZ) cee (2.13)
exp [ {-:La-b Sgn(k,) }klh{ ~ig-T sgn(k,) }k2 1s

1"

. . - . = 5 = P R
with my-ing = 2, mymin, = 2,5 a-ib 2 Gy, g-iy = ¢,

+1 s k>0
=1, k<0
= 0 9 k=0

and Sgn(k)

With this substitution , the k'-integral becomes,

X ~Tk! T
I akr M exp]_-l(E-x)-lZ ]k'-l-j ittt exp [1(E-x)- 1Zl]k'

-@o
Jdk' e ~Tk! [éxp l[E—X—Z :]xc’-t-exp 1[J_=1‘.-X-Z*:]k’:]

- (v, ) k! 1(E-x-m k! -1(E—x~m )k!
o o [ AR e 1

0
= dek!
(e}
5 ~-(¥+n. ) k! : ‘
=<g°°dk‘e "1 2 cos{(E-x-ml)k*}
20ny) -1 1
e %)% (an) 2 Lo - =]

o ; - o A
where T = (b-ml_)ﬂ(}-knl) = E+ iY-2,

Thus (2,12) can be written as

exp[_{~1a-b Sgn(kl)}k +{ni¢-¢ sen(k,) i,

2
= _ 4 i+ )
exp -‘% {—1m2-n2Sgn(k2)}k2]K+l oo (2.13)

X



If k20 and ko) 0y (2.14) reduces to

- it K+1
lC]_ 1 1 2k2 EXP l{ + = k2} eXp{ 2 2@')22]]

or
_ 2
ko =L 2 (Z +1)(K+1)V

(Zl+€)

3

- QA . A ’ - . ,“ 3 /\ 03 . .
where 21"12132231223 Cl"lcl ? C2=l C2’ E=Y-ik, Cl= b'i"la'g Cezﬁ}f‘lg
and -iT= Z;+6,

Comparing the coefficients' of kl and k2_We get

2
(K+1) V= .
Cl Zl'l'E.\ 9 ] (2'163)

1

(K+l)(22+i)V2
and Cp = - (Zl+ﬁj§’

cee (2416b)

Thase relations are at the origin of the Cayley tree, Zl

and 22 can be obtained by.writing ahalogous expressions

for the interior of Cayley treey, and these easily turn out

to be

KVZ/(2,46) vee (2.172)
KVP(25+1) /(2 46) 2 vee (217)

Zy

Zg

i

If kf>0 and k2< 04 one easily gets after some algebra the

following relations,

¢y = (K+l)V2/(Zl+i)
0y = {-(1) P(Bp1a) /(2,460 %)

which shows that the relations (2,16) and (2.17) which
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cvaluate asby and @, remain unaltered., The other cases,

(Kl<0~’ k2>0) and (kl—(o‘,k2<'o) also do not change them,

The two pairs of relations (2,16) and (2.17) yield,
(K+1) ' '

= = bl . (2,18
Cl - K Zl - btia X (2 1 a)
and r,= ) 2 2y 4 ig cer (2.180)

From (2,17a) we get

In separating real and imaginary parts of this equation,

we encounter two situations.

(a) (E2-72—1,LK) >0 ¢ this gives

Re 2, = - % + %r sin%2 e (2.192)
E
Im2y = 35 - % r cos ® ceo (2,190)
(b) @i2-72-4K)<o * this gives
Re Z1 = - % +% T cosg/2 vee (2.20a)
In 2, = % -1 s ves (2.20B)

e 1%
where 6 = tan IDWlE:Q—Y2—l+KI 1 and r = E.72E2+(E2—Y2—L;K2) ] )

and the + or - sign is chosen such that Re Z1 remains positive,
This is to satisfy the natural condition that :}(EogA(;) is
always positive, This will be clear later when the expression
i‘or?F(EO.,A(')) is obtained., With the help of (2.,19) or (2.20),
and (2.18) we get a and b as

b = Rely = K+1pey vee (2.213)

K 1
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= Im & = Kﬁl Im 7, e (2,219)
From (2,16b) and (2.18b) we get

i(K+1)
(Zl+a)2+K

Cz(zl) = -

which may be converted to the form

‘ ~1(K+1)
Cs(8y) = 3 voe (2,22)

(K+lcl+£) + K

Its real and imaginary parts are

(e = - /(%) cvo (2.232)
#(t)) = - (1) D/ (D%19) e (2.230)

whére D= (Y K+1) (K+l -E) +K, eee (2.20)
and T = 2(T+ K+1)(K+l ). oo (2.29)

Now the Fourier inversion of:f(kl,kQ)‘as given in (2,13),

yields

b/ﬁ P ( )/ﬂ
Ey(EO}Aé) = Cl

Substituting this exact distribution function into (2.2) we

get
@ @ :
(05, @) = 2n] B | aslp@-B) 2L ,Mz Uz‘"“““l,
' e O (B -2)24b2 (A-@) 24P 144}
=ZJ%EIdA s b/n L4 —

% ° (z_-E) 2y2’ (B -2) 242 (A1-9) 2R 1+A'
290 (2 27)
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where p(3-E ) = Y/g 59 eve (2.28)
(EFEO) +Y

is the Cauchy distribution for site energies. Aé and E_

are related through (2.3) in a very complicated manner, This

makes the eXact.solution of (2.27) impossible. To get rid of

this trouble, we assume Aé and EO to be independent of each

other like in Anderson's upper limit approximation.74

This approximation has been discussed in the appendix I,

and it has been found that though this approximation is very

less rigorous as compared to our line of action still it

lcads to certain complexities that are cruecial, Owin% to

this assumption of taking Aé and EO to be independent the

simplification enables us to solve the Al part of (2.27)..

Calling it to be 'I' we have

00 ¥ () /

I= i d
/ Lo car-m 2 92 o

~1 1+
= L2 _ ) & -t)+n cos(tan )
(140) 2+IP2E 27 ! {sin(t—t-tan"l %@' 1
o oo (2.29)

Where t = "ta.n-;l % i see (2030)
Thus (2.27) reduces to

R ® 4

(B = &2 [T ! E o eeo (2.31)

o1 d
- (EO—E)_2+72 (Eo~a) 2+b2 "

This can be coﬁveniently solved numerically using 'Gauss-
quadrature! method for integration., E-uation (2.31) gives
the average probability of localization per unit encrgy

interval., It can be related to the average total extent of



mobility edge. Anderson's original work wWas extended

to determine the mobility edges, by two sets of authors,
Economou and Cohens and Abou-Chacra, finderson and
Thouless. They used renormalized perturbation expansion
of self-encrgy and dealt with the convergence and
divergence of the series., The former authors assumed
all the terms in the series to be strongly correlated
whereas the latter ones took them té be uncorrelated.
The convergence of the series implies localization and

divergence implies extengion,

We have modified the Economou-Cohen criteria by
avoiding a,mathematical approximation made by them, and
have caleulated the percolation concentration., This
concentration comes out to be 7% and 87, against the
corresponding old values of 17/, and 24°%, yielded by two
of Economou-Cohen criteria. Percolation studies of local-
ization yield the value 31Y, . We have made some prelimin-
ary studics regarding the influence of short range order
oh localizations and the meaning of localization of

'pMmm.

The shape of localized wave functions is a subject
of great interest in localization studies, Assuming the
mobility edge to be khown we have studied for a Cayley
tree lattice the extent of localized wave function as a
function of cnergy. We have found that the extent of wve-

function diverges at the mobility edge — an observation
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Imaginary part of (2.39) gives the average density
of states, If (E -7 -4K)> 0y <n / is given by,

v F KZ—K’*ir sin 9/2)
(1,(B)) =3 f
ZK B+ E%% r caos 6/2) +(%Kl7+ K+l

\

r sin 9/2,
ere (24362)

1t (E2-¥2-4K) € 0, we have

o Esly 7 Bl cos 8/2)
<no(E)> - l oy T Fﬁ o

K__lE 7 —z% r sin 9/2) “K—% " KH; § 9/2)(2 36b)

® and r are given as described earlier after the eqn.(2.20),

and out of + and -~ signs + is tgken so as to keep'<ho> positive,

2.2 Results and Discussion

| We have solved equation (2.31) with the help of the
preceding equations for the evaluation of (b, (E)> . By
integrating <?OO(EX> we obtain Py s introduced in (1.3).

These results have been plotted in Fig.30 as a function of

disorder parameter Y, The figure shows the results for both
K= 3 and X = 1, the linear chain case, taking V= 1, An
increase in Pbo with increasing 1 is always seen, This is
the antiéipated result but the quantitative behaviour has

been reported for the first time for lattice of any K.
After calculating«<pb(EZ>from (2,36) we calculate
the average extent of the wave functions in the localized

region with the help of (2.32), The results for K = 1 have
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been displayed in Fig.3l, and those for X =+ 3 in Fig.32.
The results indicate two very significant features of
the wave functions in the localized region., These have.

been discussed below,

Jlthough MotthO has made & humber of illuminating
conjecﬁuﬁes for states near Ec,-there has been very
1ittle quentitative work on this reglon of the band,The
nzture of the states is of great interest because they tell
us how localized states near the transition energ& change
to extended stales in a disordered system, Our resulis are
in striking sgreement with the contentions of Mottloo. We
have for the first time shown quantiteatively that the
extent of wave function falls from infinity to a very
small magnitude in the viclnity of Ec on the'localizéd
portion of density of states. This is related to the Mott's
conjecture that the d.c. conductivity at T w0 falls
abruptliy to a very small value 2s soon as the localized

1

‘region is approached after the trensition ehergy. % should
be emphasized that except the efforts by .bram and Edwar%gl
no formal proof for this behaviour was so far given, end
some éuthors have thought otherwise [e.g. CohenlOQ:].In
the neighbourhood of EC the extent of wave-function goes
very much like that found by sbram and Bdwardlel[Q(BnEcl“3/5:].
IFor small T (~ 1) we find some structures in<(Leff“¥>”l, the
physical implication of which is unclear. These structures
vanlsh as 1 1s increessed and at a particwliar energy,(iLé%f}"l,
Gecreases as Y increases, which is reasonable,

There is another significant featu{e in the behaviour

of <Ig%f>71 as the energy approsches the band tail., The
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Aexteni of wave function is scen to increase with

energy in this region, The behaviour estimated by

Abram and Edwards® Ol [falE«Ec!ul/z as B » o] is not
correcty as we see that the'behaviour obtained by us is
congruent with the probabilistic arguments first proposed

by Lifshitzlo3 and Halperin and Lax.loLf

Let H = T+V be the hamiitoﬁian of the disordered
éysfem5 T is the kinetic encrgy Operatér and 1s equal
to the enérgy of an electron in host system plus the
average potential of the impurities. V is the fluctuation
of the impurity potential about the mean value, If V = 0
(i.é; no fluctuation), the band ecdge is decided by the
minimum eigenvalues of T.,Let the lower and upper band -
edges be E and-EO.<If the fluctuations be switched on,
the positive fluctuations pull the right band edge to a
larger energy and the negative fluctuations pull the left
band edgg more to the left; For a pérticUlai disorder
let the new band cdges be at.Eg»and Eg. Obviously larger
the (Egéﬁo),ilarger will be the potential fluctuation
-causing this shift. This potential fluctuation has to
be large enough to.bind-states with minimun eigenﬁalues
B! and’ﬁg»'The‘states in the tail should be associated
with deep and extensive fluctuations in potential., Becausc
of random nature of impurity distribution, there will
always be some region of macroscopie cryétal in which

we find an unusually high number of attractive impurities
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or an unusually small number of repulsive impurities.

If fhe region is sufficiently large and the fluctuation
sufficiently deep, then we expect to find a bound state,
"localized in this region, The probability‘of finding

such a region may be roughly taken to be proportional to’
cV, where ¢ 1s the average concentration of the atoms
lying in the deep tail of the distribution and v is the
volume of the region. The size of the region containing

a fluctuation of sufficient magnitude to produce a bound
state increases very rapidly, and hence the probability

of finding such strong fluctuations decreases veryrapidly
as E moves deep into the tail. Therefore the density of
states, which goes as cv, becomes very small, This has been
verified, At the same time the increase in the size of the

region indicates that the extent of wave function should

increase, Qur results confirm it directly.

In summary, we have determined the nature of the
wave functions in the localized régibn by calculating the
guantities directly rélated to transport coefficients. The
nature of wave functions near E, and in the extreme tail
region has been found to be of speclal significance. We
have been able to make definite statément regarding the
nature of wave functions and thus the behaviour of conduc-
tivity (at T = 0) near E, » from the model used here, The
conductivity experiences a sudden drop and does not

fall graduélly to a very small value as Ec is approached
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equivaiently they have beeu replaced by infinite potentials;

*\'O, n'_
The quantity G "1M-1 5o defined by
ny

. .\,Op ,t..n‘~ NO; 30..11'_
fn &L L T

n. \

={fn] ——; | >
. e . gl’l 3o-oni_l
b eni ZO 1 ‘ tec (3.3)

The L(E) is too complicated for practical calculations.
To simplify it Z:‘Lman&‘L omits the self-energy and obtains

L(E) = 2V exp[- (Kn]E-en: 1> eos (3a1)

A

where Z is the number of nearest neighbours.

Economou and Cohen89 have obtained within the frame-
work of an effective medium theory7 and for symmetrical
bands a more sophisticated approximation to L(E) which
retains the self-encrgy. They replaced all the G's int(3.2)

by the effective medium Green's function'ago and further

simplify as

. ~Q )nljovon-_l - ,.,_,0 31’)1:. ooni_l
={fn] G 1>

In Gni n,
= <nlG | > vee (3.52)
-~ 11’141800‘ > oo (3.50)
= In-!<§;o>| 2

-1
N f. -1 - ff .
where((}oo)- Gig = <0!(E—Heff) o> = (B%) . Gso is

the CPA Green's function and . is the CPA self-cnergys or

the effective medium site-energy. Thereforc, one gets an
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approximation for L(E) as,

L(E) ~ F(E) = KV ~&— vee (3.6)

|B-Z]

A is a constant and is determined by the requirement that
in the periodic limit F(E) should be 1 at the band edges
i.e., mobility edges move to the band edges. In the (periodic)

effective medium (¥ - ZV) ( E{( 2 + Z2V), so that

KVA
rz"v- - l . ss e (3-7)

or A = Z/K and thus finally

k=

where Z is the coordination number,

ver (3.8)

3.1 4 New Criterion based on the L(E)-Method.

In this section we report a more sophisticated approxi-
mation for L(E) obtained by Licciardello and Economou.106
For a better calculation of the average in (3.3)s an effective

Hamiltonian J¢ is introduced which satisfies the relation,
NO.in e oni_l

O 31y oo alls -1
e {eakng L= 72T > >

1
o) Qs-n-_ "‘l
fn|<n; | (B~Fc T g

(l4 :nlh”ni'll e G

il

¢

]

0 ’nl e .ni-'l

J« ig a tight binding Hamiltonian with

€n=07 I)fO, nlﬁotorli_l and Sn = 9 n = o,nl;...ni_l.within ‘

this approximation L(E) becomes
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1/M

L(E) ’;‘.’Le(E) MEalglo E/-M+l S lg go;lj:.go...nM lﬂ
eve (3.10)

Replhacingvall theg's in (3.10) bygbn%'l, Ie-(E) becomes
Ce 1
Le(E) Kv{ 'ni"l(E Z}l . (3.11)
€ >~ gnl - L= . ese .

? is an effec’clve medium self- energy,and8

By A | . |
1y /x cer (3.12)
gn‘ /ny Lox Dy 19111 1’“1] Ay .

L

Viewed differently, (3 ll) is obtalnod as

N ...n - -oon
An sz_,nl i-1 HIG v 1 ll ErA
. l -
anwnl veo (.3 '138)
l C s
’ Zn\lG_ l l,\ | see (3‘l3b)

= lnl/Gnl 1>' = Kniﬁnl ll

T}ms from (3 2) we again get (3. 11)
The following section (3,2) contains an error and 1t
is regretted that this was included without adequate
analysis of the matter, You may please ignore this
section and its conclus1ons
improving upon the approximatien involved in egns,.(3.5b) and
(3 13b), Let H be the Hamiltonian 1nvolv<>d in G, so that

<o|(E H)'llo/ y and B = H .o+ ¥ giving 67 = (2-H )71,

the Green's function of a reference systcm, Then we have
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:<f(n \OI(E-H ff - lo, )
-1

= <<n <O! (E-Eeff) -1‘0><3 I{_]_;- (E—‘Heff) -11} !0>l >

= (ol oS %ol {16 f.\.f}‘llo# >

= {tn| T > + <1n{ <o|{1-g_eff_\[}‘1]o>’>;. (3.14)

Thus the approximation involved in (3.5b) is equivalent
to neglecting the second term in (3.1L). Gggf is the
CPA or generalized CPA Green's function., To study whether
the approximation of neglecting the second term of (3.1y)
is crucial we have devised a method of calculating this
term exactly,

Since we have configurational averages involved,

we have the advantage of using the property

Lmrxd= e (xd>= Q'O = <<_ol_x[o> e (3.19)
Therefore (3,1@) can be written as
((n] <0l 1-g*w o>y = <] <ol4n(2- Geffv>'1[o>[>

= & re | fn(1-c°) D

7 {fn et (g7 >

- § <o ln-g D | >l (3.16)

The problem thus reduces to the evaluation of (n(1-a®Ty),

which is done as follows, Let B and B(M) be two matrices

defined as

-:-S.= L —V. lﬁdl{ﬁ.‘[*‘ Ql..] see (3.17)

2=

!G’)?
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— own m—— — —

5
Thus G TB(A) = T(N) s | oo (3.19)

and BN T LAV +2G VGV + yeeee] ev. (3.18)

where I is the total t-matrix of the system defined

carlier. From (3.18) we have o
E(M G Lvae Bygviv
de'g.\[’*“éﬁ.‘lﬁ_\l*‘jﬁl{g,_ Yeoes
= _ln(l-..a: ..Y) ) (3.20)
1 IZ(N) ~ | o
or TG an = B o (3.21)
0 . . :

Thus we have for (3.16)

1IN
B ;LI\T <T1‘Mn(1'"§eff_\l) | > = %’\/Tr!f = geHan >
0

1 <o} 2(n 6% Fov
=<|[
@]

We have scen in Chapter 2 that I can be expanded in terms

ar> ... (3.22)

of atomic t-matrices and within single-site approximation

eff

we have {O|T(N) [O)g_to(k). Also G ig gite diagonal

in single-site approximations so that (3.22) can be written

as
1t (}\)Geff
- 5 Pl L =) —es—e— ay >
Ol v qeff -
= Q.00 . g\ ees (3.23)
<!£ 1-Av Geff ‘>
000

= Y

Thus having known Gggf from CPA, (3.23) is exactly calcul-

able. Equation (3.14) can now be written in the form

~AO 9 e e oIl
(8T g6 4 e (32
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Theref .re the modified foru of criterion (3.8) is
I eff
I (B) = KV exp[ fn]G. " |+Y_] eee (3.29)

The modified form of the criterion (3.11) is

L%I(E) =KV exp[,(n[Go off |4yt ves (3.26)
GO0 off
where Y! = <IJ’l = 110 =FF an|> ere (3.27)
_ 0 Gll
and G:‘il?ff = 65" - LoSit o8It / ¥If vee (3.28)
whore 62T 2 GOIf o @ PET @ oF 1 ... (u2o)

The last relation is the same as Eq,(2.12) of Chapter L,
There it was derived for a nearest neighbour pair along with
a 2x2 matrix for self-energy. Herc in the singlc site frame

work we have put 3, = 0.

It is necessary to normalize all the localization
functionsso as to fulfil the requirement mentioned before
(3.7). The mobility edge should coincide with the band edge
in the periodic limit, The arguments leading to (3.7)
yield the normalization constant for LG(E) in (3.11) to be

Z/K. The normalization constant for both Lé and Lél is

obtained in the following way. Calling it to be A, we have,

i) = 4 kv e CY Tpepy = 1o

o eff
11

tends to zero and E tends to the periodic system's band

eff

because G and G both tend to 1/ZV as disorder
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)

edge. In the periodic lim’t if we take x = O(concentra-
tion of say 4 atoms) then y = 1l-x=1 and therefore v =eg

(as ¥ = 0), so Y reduces to the following

1 =
- —D = -

Thercfore & =1/ EKV(l'*SB) :l 3
and . Li = ¢Xp Ezanggf l + Y:] / (l“‘EB) ces (3030)
1= oxp [ gn]6d, o e v / (e vee (3.31)

Numerical results for F(E), LG(E), Lé(E) and LéI(E)
are displayed in Fig.33 for § = 1 and 2 and x = 0.1 and
0.05., It is indicated that F(E) and L, (E) greatly over-
“estimate the localization és compared to their modificd
versions obtained by us. For x = 0.1, no localization is
seen through L. and L' for both &6 = 1 and 2, although
for & 2 all states are localized if seen through F(E) and
Le(E). It is more instructive and a religble test of
conformity to comparc the percolation limit of concentra-
tion, Xq3 obtained from the four criteria. Percolation
concentration, X9 is the maximum éonccntration of impurity
at which .inderson transition does not occur even as 69w .
Some direct numerical estimates (see e.g. ref,106) indicate
it to be 0,31 andy F(E) and L (E) yicld respectively 0.17

and 0,25 for simple cubic.106

If simple cubic lattice be
assumed to have parabolic shape of density of states, then
Li and Lél respectively indicate 0,07 and 0.08 values for

X Thus there is hardly any agreement, with the value 0.31.
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This cows that the approximation, <<ln]...‘> ~ 1n<{...¥>
leads to a fortuitous agreement, & more critical study is

under process.

3.3 Localization and Short Rangc Order

Our study was motivated by the fact that complete
disorder is possible only in principle and that in
practice it is doubtful whether the 'annealing' tempera-
ture is high enough or the 'quenching' fast cnough (in the
preparation of sample) to guarantee total randomnesss so
fhere will always be some local order present, Moreover,
it is now possible to measure the degree of localorder
(sec e.g. Mozer et al., Phys.Rev.175, 868(1968)), hence,
instead of trying to remove local order it would scem
worthwhile to make it an adjustable parameter and study
its eficects. The knowledge of short range order gives
information about clustering or anticlustering of like
atomg, It will be shown further that clustering or anti-
clustering show effects near the band edges of the density
of states. dlsoy there are the regions wherc localization
is seen, Thcrefore} short range order should show signi-

ficant changes in localization,

Local order cannot be introduccd in any of the
single-site theories (say CPA) because they completely
ignore the correlations among the lattice sites. One should
therefore use atleast two-site cluster theory. We have used

the pair calculation discussed in Chapter Ly and introduce
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the suort range order in the following manner,Suppose O is

short range order parameter such that the probabilities

for A-A, A-B(B-A) and B-B configurations of a nearest
neighbour pair aré respectively,'PAA = c20‘, PAB = 0-020"=PBA
and PBB = l~2c+020“, where ¢ 1s the concentfation of A .
atoms. Thus 0= 1 implies complete rgndomness and 0"=1/c

implies complete A-A order,

The computational results are shown in Figs.3L and
35 for simple cubic density of states with ¢,* 0.1 and
0.2, and 6 = 1, For Cy = 0,1y O takes the values 1,4 and

6y and for ¢, = 0,2, it takes the values 1,1.5 and 2.5.

A e
Starting from the completely random casey as 0 increases,

P,y and Ppp increase by equal amount and PAB( or PBA)

decreases by the same gmount, 4s a result of this, affinity for
the formation of 44 and B-B pairs increases, This will

cause the segregation of 4-4A and B-B pairg, until at 0" =10

for ¢, = 0.1 and 0"= 5 for ¢, = 0.2 when complete segregat-

A
ion should take place (i.e. absence of 4i-B order). We can
describe this situation as. for c, = 0.1, PAA will be 0.1,
i.e. if one of the sites 1s known to be &4 then the other
will be 4 with probability 1. Thus,s in the cases under
consideration with increasing 0~ we have an increasing
tendency for fhe formation of small .i~atom clusters in the
sea of large B-atom clusters., This will give rise to larger
fluctuations in potential as compared to the case when there

is complete disorder, Switching over to the discussions

like in Sec,2.,2 of this chapter, we see that the eigenvalucs
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of t..e Hamiltonian of the disordered system (H=T+V,

T= Kinetic energy operator, V = fluctuation in poten-
tial) should shift to the energies more on the right

and left of the density of states. The effects of chang-
ing 07 should dominate at the top of the alloy density

of states where thé impurity (4) band is situated. The
reason is the following., The ends of the alloy density

of states contain the maximum effects due to fluctuations.
The concentration of A atoms being small only the positive
fluctuations arec significant. The ncgative fluctuations
can be ignored because there is very little chance of
small clusters of B atoms being embedded in larger A-atom

clusters.

The above considerations allow to make the following
conje:tures. With increasing 0, density of states
should be stretched to form long tail at thc top-side of
the band and a little strcetch on the bottom side. The
localization should increase as 0  increascs. Our results
for the aforesaid parameters are in conformity with these

theoretical qualitative contentions.

The ¢, = 0.1 casei For complete disorder (0 = 1)
a band of extended states sandwitched betwecn bands of
localized states is seen in the impurity band region.
Very little localization is scen at the bottom edge. For
0 = 1, tﬂe structurc in the impurity band is eroded and

a gradual fall of density of states is seen., The band of
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exteided states also vanishes and all impurity states
become localized. The localization at the bottom increases
slightly. &s O further increascs to 6 , the impurity band
looks like a long tail of the main band. Localization at

the top and bottom of the band increases.

The ¢, = 0.2 case: The variations in the shape
of density of statcs with varying 0 are like those

explained for c¢,= 0,1 case. For 0= 1 the band of the

L
extended states in the impurity subband is bigger as

compared to ¢, = 0,1 case. 4s O increases this band of

4
extended statces shrinks. The localization at the bottom

of the band also incrcases gradually.

Lo LOCALIZATION OF PHONONS:
There is only a little knowledge available about
localization of phonons in disordercd systems. Some

insight into the problem has becn given by Econ.omou.l07

and Be11108

. We have just started studies in this direcc-
tion from the very beginning, starting from tﬂe meaning
of localization of phonons. So far we haveonly assimilated
some qualitative knowledge and some quantitative knowledge
obtained by adaptation of the results for electronic
systems into phononic systems. Both thc systems reépond to

localization phenomenon broadly in the similar fashion,

but there are some subtle differences.

Following general behaviour is found for phonons in

disordered alloys:
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(a) 4n impurity atom which is sufficiently light and
strongly bound will vibrate in a mode which has a higher
frequency than any of the modes of the pure host crystal.
The amplitudes of the atoms vibrating in this 'local mode!
are, to a greater or lesser extent, localized around the
impurity site. The degree of localization dcpends on the
interatomic forces and on the mass of the impurity atom
relative to a host atom, The smaller the mass of the
impurity, the more localized at the impurity site is

the local mode.,

(b)  4n impurity atom which is sufficiently heavy and
weakly bound will produce a 'resonant mode'! at a frequency
within the band of lattice-vibrational (phonon) frequencies
of the pure host crystal. The greater the mass of the
impuricy atom relative to the mass of a host atom, the
lower will be the 'resonant frequency® and the more rcadily

apparent will be the effects of the resonant modc.

Various experimental techniques have becen applied
(or are in principlc applicable) to such studics, Among
these are the Mossbauer effect, infrared absorption, Raman
and Brillouin scattering, diffuse x-ray scattering, coherent
and incoherent inclastic neutron scattering etc.(for ref-
ercnces sec Maradudin;09(l966)). Of thesey cohercnt inclas=
tic neutron scattering is considercd to be the most power-

110

ful, From the neﬁtron scattering profiles one can deduce

the intensitics, encrgies and cnergy widths (inversec lifetimes)
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of the individual modcs of vibration. Without giving
details we state that these quantities are also easily
obtainable through theoretical techniques and respect-
ively correspond to the spectral density, real part
(which gives the shift in cnergy with respecct to the
host band) and imaginary part of self-cnergy. Thus one
can casily obtain the frequencies (energics) and the
degree of localization (spatial extehﬁ) of local and

resonance modes. A qualitative discussion of this follows.

For illustration the density of states, sclf-
encrgy and spectral densities for various paramcters
have beén displéyed in Figs .37 and 38, They have been
obtained through CPA discussed in Chapter 2. The consti-
tuents possess the Debye form of phonon density of states.
The spectral density(3(gq-w) can give a vague information
about the localization or delocalization of a phonon (or
electron) state. Localization in g-space indicates deloc-
alization in coordinate space (uncertainty principle),
and vice-versa,.(1(3sw) gives distribution of w's for
a particular Q, hence the informations about localizat-
ion are obtained by looking atCZ(a:w)'s at a particular
w for a series of Q's ranging over the whole allowed
range. For alloys (& (3,w) shows two peaks (for large

mass-ratio and small concentration of light impurity),

one sharply distributed about a central energy (lorcnzian

in shape) and anothér very flat in shape. The first shows
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the quasi-particle nature of the excitatlions and is
related to the plane wave like eigenstates of host
crystal. The other flat peak is extended over a large

q - space, indicating localization in T-spacc. This is
consistent as seen from the density of statcs and
Cﬁ,(q,w) for € = -2 (i.e, mass ratio = 3/1) and

¢ = 0.79 (conc. of heavy atoms). If € is reduced and

¢ is increased 7 (gsw) is seen to be affected for large
a's only. This means cqmparatively more localization
in g-space, thus delocalization in T-space (cf.Fig.35).
This is what one expécts. In the region of main band the
Lorenzian character ofGi(a,w> is congistent with the
small magnitude of Imy (imaginary part of self-energy)
in this region (see Fig.37(b) for ¢ = 0.5 and 0.75).
Small Img means small damping of states because of
impurities g i.e¢. the states in this region have large
life time (a L/Im)). Life time tells that if an cigenstate
be assigned an energy it will stay at that encrgy for
the time proportional to (Dd{)"l before it diffuses to
the neighbouring energies. Thg strongly damped; non-
Lorenzian character of(gsw) in the region of impurity

band is consistent with large Imd i.e, small life time,

For resonance mode (in-band mode) the state of
affairs is slightly diffcrent. 4 crude physical explanation
of the resonance mode can begiven as follows. We congider
the case of a very heavy impurity coupled very weakly

to the surrounding host crystal. .t very low frequencies
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because of infinitesimal translation it vibrates in

phase with the neighboﬁrs in the host crystal. However,

as the normal mode frequency increases, because of its
heavy mass and (or) weak binding to neighbours, it begins
to lag.more and more behind the neighbourss until a
frequency is reached at which it vibrates 180° out of
phase with the surrounding lattice in a kind of local
optical vibration mode, The frequency at which this occurs
is called the frequency of resonance mode, The mean square
vibration amplitude of the impurity atom as a function of
its frequency is sharply distributed about the resonance
mode frequency. Resonance mode is not spatially localized
in the way a local mode is localized. Since it lies in the
allowed frequency range of the host lattice,the vitration
of the heavy impurity is transferred to the neighbouring
light atoms. Resonance mode appears like a hump or shoulder
on the low frequency side of the density of states (c.f.
density of states for c= 0.05 and 0.25). This description
facilitates the understanding of the Fig.36(a). The line
shape of a mode with a frequency gslightly lower or higher
than that of the resonance (this can be roughly known from
the density of states plots) tends to have a shoulder or
pronounced tail over the resonance region. When the line
shape peaks right at the resonance, it is symmetric but

broad.

110

The resolution broadened line shapes obtained from

neutron inelastic scattering profiles taken for a series
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of g-vectors are comparable with the spectral density
discussed here, The two look alike for bothy the local
mode and resonance mode. The width at half maximum of

a line shape belonging to a particular energy [Z@(a,w) T
gives the inverse life time of that energy state%90)5this

is thus comparable to the Im } obtained theoretically.

It is always more illustrative to do calculations

for realistic systemé rather than the models as discussed
just now, In Fig.l we have displayed density of phonon states
for Cu-4u alloys for 3%, and 9.37. Au. These systems have
been widely scanned (see ref}90 and the references therein).
The resonance mode due to heavy impurity (Au) is clearly
shown, The real and imaginary parts of 2 (Fig,38) are in

very good agreement with the experimental data (for compari-

son se ref.l10).

We now proceed further to study the localization
problem more rigorously rather than the qualitative argu-
ments given above., We take the analogy with the problem
of electrons and define phononvlocalization in Anderson-

sense,

Suppose U&(o,o) = U, is the amplitude of displacement
of an atom at 0% site and at't = 0, Then the localization
criterion would require, U (o;c0) ?‘O at t = ©. To be
more explicit suppose UX(o,o) = U, then the criterion would

bey |U(osm)|? = [ékOaaﬁ;+ U%(Qlaﬁ +U§(qgaﬁ # Oyl.e. the gqpan-

tity of interest is Lim ]U(o,t)|2.Alternatively,given arbitrarily
t~00
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small nywe can always find a finite number M(n) of lattice sites
which contain all but n of the total amplitude.To quantify
the concept we introduce a participation ratio which gives

the proportion of atoms in a ‘system contributing effect-.

ively to the energy of a given mode.

In the case of electrons the localization is found
symmetrically on the both ends of a band. Unlike this the
situation in the case of phonons appears to be entirely |
unsymmnetrical mainly because all the frequency distribut-
lons start from the zero of frequency. Further it appears
that the states lying in the low frequency region of the
density of states; attributed mainly to the vibration of
heavy atoms can not be localized in the Anderson sense,

A small displacement given to a heavy atom surrounded

by light atoms, will always be transferred to the neigh-
bouring atoms., This also suggests that the elgen-
frequencies less than W9 the maximum eigen-frequency

in the spectrum of ﬁhe heavy atomy should not be localized.

To guess the localization of higher frequencies (>wm) we

understand in the following manner., Consider the situation
where mass ratio is sufficiently large and the concentra-
tionof light atoms is sufficiently small so that the
impurity‘band is separated. The main band is mainly consti-
tuted due to heavy atoms and very little of light atoms.
The top of this band is due to clusters of light atoms

surrounded by heavy atoms. The movement of the light atoms
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is damped by the surrounding heavy atoms, thus reducing

the eigenvalue. If the cluster of light atoms is suff-
lciently large to have an eigenfrequency greater than

W it will trap the eigenstate ofthe corresponding
eigenfrequency. These clusters will of course be not

very large in size hecause the eigenvalues that they can
accommodate are still quite smaller than those in the
impurity band. As the edge of this band is approached

thé size of the cluster required increases. The impurity
band is constituted of so high eigenvalues that they

are scarcely taken by heavy atoms§ so it is mainly due

to very large clusters of light atoms. However, the
presence of few heavy atoms cannot‘be ignored in principle,
These heavy atoms tend to reduce the eigenvalue, so the
lower ; >rtion of the impurity band has the effects duc

to the clusters of heavy atoms embedded among light atoms,
The situation in this band can be conceived in terms of
the configurations shown in Fig.39. Large clusters of light
atoms containing small clusters of heavy atoms as shown

in (I) correspond to the lower portion of the impurity
band. As the size of the small cluster of heavy atoms
reduces the eigenvalue increases, Since the large clusters
of light atoms are further enveloped by the heavy atoms,
the eigenstates are localized in this region. There is

also possibility of findihg clusters of light atoms open
at atlecast two boundaries of theé crystal, likec in (II). They
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give rise to the extended states. The probability of
occurrence of such clusters is proportional to the
concentration of light atoms. ds one approaches the
higher eigenvalues, the effect of heavy atoms reduces
rapidly. So that the topmost eigenfrequencies are
thought to be due to very large clusters of light atoms
as shown in (Ili). If their concentration is quite
smally there will be very few such clusters but they
will be enclosed by heavy atoms, thus creating localized

states of very high eigenfrequency.

It is interesting that in the results reported
in the following all such features are revealed. It is
important to state that as M 3 oo (the weight of heavy

atoms) y w_ 3 0, thus making all the states localized

m
provicad concentration of heavy atoms is larger than
a critical value., This may correspond to the Anderson

transition for electron states.

Without working out the localization problem for
phdnons from the very beginning as has been done for
electronsy we transform the two localizétion criteria
for electrons reported in eqns.(3.6) and (3.11) to the
case of phonons. This is done with the comparison of the
equations of motion for electrons and phonons in a

disordered system;

(e;-E)a; = (electrons) e (4.30)

(m(u-ZK)QL (phonons) eos (4.31)
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The electron wave function is given by ¥ = Z:ai[i‘>,
il

th particle of mass m

uy is the displacement of i 50
K is the coupling constant for oscillationsy w is the
elgenfrequency of the oscillation, E is the eigenvalue
and V is the hopping integral between nearest neighbours.
Comparison of the two equations yields the following
correspohdences,

2
€y < MW

E ->ZK. ' s o (l.l_.32)
V - K '

Now we will derive the correspondence between the forms
of self-energy, in which it is commonly used in the

calculations of electronic and phononic properties. For
that we compare the single-particle Green's function in

the tvH casges,

gélectronig vy = Ly ! oo (1.33)
11 Vi Y —ws(x)
gphonon = Lo ¥ L oo (a30)
1 Wi w2 - w2

where s(k) = 'Z:L%_- ei]‘,{6

and | w = half width of energy distribution func-

tion, € ig the self energy for phonons as defined in Chapter 2,

It is very simple to see that

wg z %K(l~s(k)) oo (4,35)

So (3.34) can be written as
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gbhonon - 1§ 1 oo (1.36)
11 N 7K (1-5(0)) - m2(1-%)

Replacing E by ZK in (4.33) we get for phonons,

gPhonon

1
i1 vor (4237)

Comparison of (4.,36) and (4.37) yieldsthe correspondence,
T 201 [ :
L = (l-€) ! Voo (1038)
W —»ZK j

The correspondences (electronsphonon) (L.32) and (4.38)

transform the localization criterion (3.6) as

ZK

F () S—
YT - w20 |
mwg / 2

11

Immi / 2 = m&2(1§§>|

; ~ b} ¢os L[-Q39)
|1-22°[1 - &%) | o
Using the relation ZK = mw§/2, where w. is the maximum
- frequency in the frequency spectrum of the host, X = w/b
in dimensionless units. For the transformation of the

criterion (3.11) we have to transform the Green's function

occurring in (3.12),
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N o 1
gni(E 2)* % K E-SE) - ws(k)
= 4L E 1 .
TV 2Keme®(1-2) -ZKs (k)
"I
k moy - m (1-€)
- ;_I@m'.‘.po(@r)dw{.
Mg 5t2y2(1-8)
= L.l _PolXluydX (1 .140)
mu)mC 3 X'g-X‘?ﬁ."E(X) j tet ’

Here X' = w'/mm, P, is the unperturbed density of states

of the host lattice, and C is the normalization constant,
i.e. |
W

J et = c oo (441)
O ‘

The only thing to be resolved in (L.,40) is to write Po(thm)
in ter s of PO(X') which iiwvolves dimensionless variable

for frequency. Equation 8, .41) is equivalent to

:

%ngm Polenaut = 1 = g P, (K1) ax!
or —é—fpg(x'wmmmdxf =1 :(J)l Qo(x")d:{'
so that we get
P (xX!) = Zm P (w XY e (42

Thus we have,
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phonon 1

[ o (XX (4 43)
. ni mws 5 X,Q_XZ L—l_g(x) :I eoe ,-l-c‘f'

Substitution of this into (3.11) through (3.12) is

straightforward and finally yields the criterion,

= &lD - L*E{']é‘ - x2[1-¥(x) J}p-17° I

D

Lo(%)

eoe (Lalil)
fl o () dx! !

where D = 5
°©  xveux<[I-gx) J

cee (4.“—5)

We have calculated €(X)and D within CPA as discussed

in Chapter 2. The results for Cu~Au alloys (the density

of state, F(X)and‘Le(XQ) have been shown in Fig.;0(asbsc,.d),
The criterion Le pushes the mobility edges more inside the
band as compared to ¥. For Cu25 Au75, all states in the
impurity band have been shown to be localized by Le whereas
F shows quite a large amount of extended states in the
middle of the impurity band. Other featurés of the local-
ized states are as conjecturéd above cxcept the one which‘
states that localization should be observed among the

states with elgenfrequencies wm(defined there) . If this

was to holds we should not have obtained localization before
X = 0.65but we do obtain it for Cu50£ugoalloy. The error

may be assigned to CPA. The self energy and D obtained

in CPA4 may yvicld an overestimation ofllocalization and the
same quantities obtained through a very sophisticated

technique may correct it, Besides this for calculating
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the d nsity of states for alloys (with arbitrary concen-
tration of Au)s the integral form of Green's function
involves the unperturbed density of states of Cu and

no force constant changes have been taken into account,
which should be gquite different for Cu and Au. Our

experience from the calculations for £i-Ge alloys tells
Cu AAu
o * %
of Green's function, the essential features remaining

that if instead of P is used in the calculation
unchanged,the alloy density of states in the two cases

should have a marked shift.,

Keeping in view these discrepancies,we can say
that the Economou-~Cohen criteria originally obtained
for electron localization, are able to describe some feat-
ures of the phonon localization. However, it should not
be taken seriously to be a very good theory (for phonons
also) as We havc seen in the previous section. 4 more
consistent theory is yet to come out specially for phonons.
It is important to indicate that all the theories to
deal with localization are for the models that are
far from reality. In realistic systems very litle local-
lzation is expccted because of long range hopping which
ig completely omitted in the theory. There are other
important factors also,such as off-diagonal disorder,
- which should be incorporated into a theory to make it

apt for realistic systems,
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5. IHEORY OF MATTIS AND YONRZAWA — A REFUTALS

Recently Mattis and Yonezawalll(MY) have proposed

& new criterion for locating mobility edges in a three
dimensional disordered meddum. It is completely alienated
from the concepts introduced in the preceding sections
and incorporates an altogether different concept of
localization., The criterion relates the mobility gap

to regions of anomalous dispersion of quasi-particles,
They construct a wave packet, which in this region
becomes an incoming spherical wave packet and grows
unphysically as it approaches the origin and then ceases
to exist at large t. The conclusion that there is a
sink at r= 0, is related to localized eigenstates.

t 112 some unphysical outcomes of the

We have pointed ou
criterirn, It starts with <G> , which can rever yield

Jocalization,

The MY criterion is essentially based on the foll-
owing congiderations, One considers the single particle -
dispersion relation obtained after averaging the retarded

single-particle Green's function!

W) = W) + 63, @) (6 ) e (5.1)
Here ‘zg(w) = R.(w) - i[&(w), T ves (5.2)

igs the self-energy. The single particle dispersion relation

is given by
w = 8k+Rk(w) o see (5.3)
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MY construct a spherical wave packet about a central
energy given by (5.3). This is written after some simpli-

fications as,

F(r,t) = -exp(~1w t¥iK LF) [1P (sk ) /& r:] X

exp[rr'/lv l:[ Imd@f@) expl:ﬁ(t -/l D7,
'R (5 l{')
where V= (dek/dk)k =k, £ = w0 ,f@?) is the cnvelope

function and *= [i- de(w)/dw:} is the dispersion
parameter, {L(w) is-assumed to be sméll I:[; = [&(wo):]as
well as slowly varying. MY argue that in the region of
anomalous "dispersion given by '

de(w)

El" ‘](JO'-‘UJ \< 0 ce e (5-5)
0]

the states are localized with the equality sign locating
the mobility edge. The spherical wave-pocket F(T,t) built
out ofthe energy states for which (5.5) is satisfied does
not correspond to outgoing spherical waves, but prather to
incoming spherical waves indicating a sink at r = 0O,
Equivalently the region where (5.5) holds has been assigned
to the localized states.

_We have shown in the following that (5.5)leads
to negative density of states in the localized region,
which is unphysical;‘Subsequently'we see that the line
of action adopted by MY yields only extended states.

{6, (@) can be written in terms of e, and T(kyw) as,
1
G () = . ces (5.6)
Nk U.)-'Ek"Z(K ,U.))
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This has a pole at wk-ifL (for small T&), where w, is given
by the solution of (5.3), Expanding the denominator about
w -1, s we get,

1

(o) = — e (5.7)
(W-w, +1 T, (@) (1- alfo )m0 taes
: Sk

4t W=,y Im <Gk>is written as

oR

— k

-lkE‘ T Aw (.

Im <Gk(w)> = e (508)

af, 72 oR,_—12
w ] Tl w
w-j-(.l)k U)":(DK

Therefore to keep the deﬁsity of states positive one

always has '
- —-l'{’]> Oo sse (5.9)

Thus {'{0; which is the MY criterion, is hever satisfied.
' 3
@*= 0 1s trivially satisfied in the region of no density

of states.

The reasons for our assertion that the MY states
are extended are easily understood in the light of the
86

work by /inderson ~ and Economou and Cohen.89 We present

below essentially their arguments in the present context,

(a). In constructing the wave packets MY use the Green's
function that has the translational symmetry of the

regular lattice, If the system contains the localized
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statesy they are necessarily localized in some finite
part of spacc within the system, where a strong enough
fluctuation in the potential has occurred, thereby making
the Green's function translationally non-invariant. The
effect of averaging this Green's function is placing such
a localilzed state at all the equivalent sites of the
lattice,y and thus destroying the local character. The
argument has been stated in references(65) and (68)

in terﬁs of the analytical propertics of the Greon's
function, For a N-site lattice, we can writc the Green's

function in the site representation as

' N Qlay<loy ¥y |
¢ = Qlelo= > ' = > == eee (4.10)
w® Ole9 051 B-E_ am1 BBy’

‘where ]d> 's denote the eigcnstates of the system., Now
we can divide the sum into two parts-one over the extended

states and the other over the locallzed states,

n i‘N +z _N ? co e (’{-oll)
E Ei ; B Ej

but £,y « 1/N for extended states,
-

and f PR3 for localized states,

5N @ e
where ﬁj is the distance of 0 site from the sitc where
jth state is localized. 4s we take the limit N - co, the
first sum becomes an integral leading to the familiar

branch cut in the Green's function, while the second term

bas most peculiar analytical structure., Though the number
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and packing of localized states increases as N 5 @,

the second term remains a dense distribution of discrete
polesy some of which have very small residues and the
others have residues of order unity. From the above
argument it is clear that this must be a basic property
of Green's function describing localized states. The
Green's function that MY use has only a branch cut which

should correspond to extended states only.

(b) Lnother demonstration of this argument may be seen
by considering the quantity Poo’ defined ecarlier, It is
given as follows
L7 8 4 -
P = gig £ | G, (B-18)G_ (B+is)dB. .o (4.12)

Plugging the Green's function that is employed by MY

we get,
P =rLing [ST L . L dE
0 a0 T J‘k E'  E-g, 4}, (B+is) B-g, 1- 2, 1 (E-1s)
' loo(){-ol.g)
But 2, {Etis)= R (B)F1[, (B) , | Cees (1)

so that Poo-ﬁ O for such a form of self~energy.

(c) For a disordered system the calculation of the
wave-function F(T,t) involves off-diagonal part of the
Green's fgnction as well, It is not clear that if we ignore
the off-diagonal part of Green function, we will be correctly
describing the situation, particularly in the presence of
localized states, MY's formulation takes into account only

the diagonal part of Green's function.
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ANDERSUN'S UPPER LIMIT APPROXIMATION.

Anderson has argued that an upper limit to the
width of the site energy distribution hecessary to
produce localized states could be obtained by ignoring
the real part of the self-cnergy., A similar argument can

'be made here. The argument is that a very small value of
E~ej~Ej produces a very large valuc of A{, but also
produces a very large value of B;. If eqn.(2.3) of
Chapter 5 is itcrated again, Af, which now occurs on the
right hand side of the equation,is large, but (3-£,-E,) 2
is also large, so there is no particularly large effect

from this term, Thus under the approximation that the

effect of EO over Aé is negligible, we write Ag as

K+l Vo(1+A%1)  K#l 2,4, 0"
At oat _TUATL By (1449 )

! (I1)
L se e
°E Eee)? ET 2 »

The joint probability distributionZ;(Eo,Ag) then splits

as
FE 80 = £ (B )EHAN, ves (12)

and the expression for <:pOO(E)Z> is simplified as

00 ® dAé
Poo®) = | pE-EE (B )an [ 1500 3
© oo (I3)

1t follows from the equatioms (2.1) and (2.32) of Chapter 9
that (1+A! is related with the participation ratio
(roughly proportional to the number of sites over which

the wave function is spread). 8o for the caleulation
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-1
of <Leff> (~<L;%f ) we can solve separately the second

integral in (I3)., At this stage it is necessary to make
it clecar that one has to rosort to the calculation of
<l/(l+A(;)> as <Aé> does not exist. To eheck this one
should study the form of fz(Aé) for very large A(; or
equivalently by studying the form of f(s) [ Laplacc trans-
form of £,(A}) ] for very small s. Following ibou-Chacra
et al.’* one can show that | o

f.(s) o 1-ad y 0{p<L1/2 coe (IN)

for small s. Thig means 3f/ds ~> @ 5 1,6, of /aA A' —>®0

540
or fg(Ag) falls off too slowly as AC') 2 oo . Thereforec A(‘)
does mot exist. But{1/(1+4!)> does exist. Following the

same 1inc of action as in section 2 of Chapter § we got

kV2 1kV2 )}

[ I (IC)J)
For Cauchy distribution of site energes, p(eo)= Y/m /(8§+Y%,

1 (@
F(k) = 'é'vff p(e )de _f5( )exp(-
-

eqn. (I5) is solved, .

z:o
where ¢ = E-i-i?(..Talcing solutions of this cquation as

pa0=e 5l ana 2,00 = Pl e gt

| || V2 (1)
exp.(~a]k]) = cxp(-B LI‘{?"TQ‘)'VQ,IKCI) cxp (-1 ——5— )
Z;O CO
so that “@ = V2(B+i) eee (I7)
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Solving this for the interior of Cayley tree, we get
B-iﬁwﬂ> ¥+ 0,

(@]
i ngKv2

| 2 .2
—2—%% R
. (ES=Y=-KV") “+L.Y“E

With the help of this we get for.tho origin of Cayley

with

tree,
« = iﬁilli_ (U + ig+i) 3T+ ia
o (K+1) V2 CP(E2-12) +21E (14+) ]
with [= 2

(E2-13) 2%+ 17282 ve. (110)

(K+1) VP [ (148) (B2-72) -2\ E
and . a = E( )( - ) m] cee (Ill)

(EZ-Y2)2+ 472E2

From (I3) we get

~1N\ o S dAé ) 1
L / = = L ] ss e (112)
< eff i IO (Aé_a)2+r‘2 1+A(;
because the Fourier inversion of F(k) yieldé,
£,(Al) = /r (113)
2 0 (AC;_&)Q_*_""Z be
Equation (I12) can be solved to give
' -1 1l+a
/ o\ _ /= L cos(tan = ==) |7
L ——p—— (1+a)(— ~t)+[ fn 3.
NPeffl T )2l 2 sin(trtan~t L3y 1

see (Il)-}-)
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where t = -tan“l(?L) | ees (I.19)

l "'l

The results for <?" look very nuch like thosec

eff
shown in figures 31 and 32 except that the feature, that
<P;%£>"l increases as E moves deep into the deep tail,

is lost,
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