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RESUME 

The present thesis contains some of the author's 

theoretical investigations aimed at understanding the 

behaviour of electrons and phonons in disordered systems. 

The usual tools of band theory are not applicable to such 

systems because of the lack of translational invariance. 

With the breakdown of Bloch-Floquet theorem in disordercid 

systems) the nature and distribution of their eigen-

states in energy become the foci of theoretical interest. 

With the availability of high-speed computers, it has 

become possible to apply sophisticated Green-function 

techniques to the present problem. Amorgst the analytical 

tools developed for studying disordered systems the 

Coherent potential approximation (CPA) occupies a central 

position. This theory has proved extremely helpful in 

providing a semi-quantitative description of a wide class 

of elementary excitations (electrons, phonons: excitons 

etc.).in disordered systems. 

We applied this theory for phonons in Si-'Ge alloy 

and tried to interpret the Raman-data available for this 

system. This study led us to conclude that it is necessary 

to modify some of the simplifying assumptions in CPA 

theory for a fruitful confrontation of theory and experi-

ment. 

Our efforts aimed at improving upon CPL have 

followed two different directions. Firstlibllowing the 



line of CI we developed a coherent pseud-Totential 

approximation. This is capable of taking into account 

the difference in band-widths and shapes of density of 

states curves of the constituents of the alloy. This is 

a self-consistent, single-site, single-band theory and 

is valid for any number of subbands. Its application to 

Cu-Ni alloys has been quite promising. Secondly, we have 

attempted to synthesize the numerous approaches to improve 

upon the single-site nature of CPA. This type of general-

ization of CPA is non-unique. All the generalizations 

to include the cluster effects can be categorised into 

two classes based on two types of decoupIng schemes. 

It becomes interesting to compare the numerical results 

obtained from the two methods. Numerical results are 

available for two-site clusters from one of these methods. 

We have performed the calculations using the other method. 

The results are quite different. 

The studies mentioned so far were concerned with 

the distribution of eigenstates in energy. The other 

important aspect studied in the thesis is the nature of 

the wave functions in disordered systems. Anderson 

introduced the idea of non-diffusion of an electron in 

a disordered system. Further charm was added to the idea 

by Mott, Cohen, Fritsch° and Ovshinsky, who conjectured 

that in a disordered system the localized and extended 

cigenstates are separated by a well-defined energy called 
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mobility edge. Anderson's original work was extended 

to determine the mobility edges, by two sets of authors, 

Economou and Cohen, and Abou-Chacra, Anderson and 

Thouless. They used renormalized perturbation expansion 

of self-energy and dealt with the convergence and 

divergence of the series. The former authors assumed 

all the terms in the series to be strongly correlated 

whereas the latter ones took them to be uricorrelated. 

The convergence of the series implies localization and 

divergence implies extension. 

We have modified the Economou-Cohen criteria by 

avoiding a. mathematical approximation made by them, and 

have calculated the percolation concentration. This 

concentration comes out to be 7'/. and 8/. against the 

corresponding old values of 17Y. and 24■/. yielded by two 

of Economou-Cohen criteria. Percolation studies of local-

ization yield the value 31V. . We have made some prelimin-

ary studios regarding the influence of short range order 

on localization, and the meaning of localization of 

phonons. 

The shape of localized wave functions is a subject 

of great interest in localization studies. .4ssuming the 

mobility edge to be known we have studied for a Cayley 

tree lattice the extent of localized wave function as a 

function of energy. We have found that the extent of love- 

function diverges at the mobility edge -- an observation 
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consistent with Mottts contentions. It is interesting 

to note that the extent also increases gradually as 

energy moves deep into the band tail. This behaviour 

can be explained by the probabilistic arguments proposed 

by Lifshitz. 

In the end of the thesis we have critically exam-

ined the recent approach to localization problem proposed 

by Mattis and Yonezawa. 
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CHAPTER 1 

Preamble 



Df3order means deviatfm from order. In the natural 

worlds  there exists an enormous amount of important materials 

whose microscopic structures are fax from periodic. As a 

matter of fact as has been described by Krumhans111 it is 

really a random world. It is now conceded that many materials 

possess interesting properties largely on account of their 

disorder, and solid state philosophers freely predict 

that the nord.crystal1ine state, when fully unravelled will 

be found to exhibit its own range of phenomena:  no less 

rich and varied than that shown by the other aggregations 

of matter. 

1. galEagg21Aardered  Systems. 

Disorder is mainly divided into two classes. 

(a) ,Substitutional or Cellular _Disorder. 

The lattice structure is retained but each atomic 

site is randomly occupied by atoms of different isotopic 

or chemical species, We also include in this class vacancy 

defects due to absence of atoms from a lattice site or 

interstitial defects due to the presence of additional 

atoms in the lattice interstices. As a general definition 

it is best to think of cellular disorder as a disorder 

where properties vary from cell to cell in a lattice. Cells 

may contain molecular units which may vary in their orienta-

tion, then we have an orientationally disordered crystal. 



-2-- 

(b) Topoalogical, Disorder.  

Topological disorder is associated with glassy or 

liquid like characteristics. Two extreme situations 

occur. In the first case each atomic species has its 

own well defined coordination requirement and its nearest 

neighbour environment is similar to that in corresponding 

crystal. In the second case this short range coordination 

order is absent. 

There is an intermediate situation between the 

orientational disorder and topological disorder which is 

present in liquid crystals. They are devoid of any lattice 

structure but the molecules tend to be lined up parallel 

over long distances. 

Before we move on to the problem as to how to study 
disordered systems, we explain some relevant basic concepts 
and definitions. 

20....EPakgAlkLYJ1=1.11110441anLAmmtlaAmtaaaal 

In a random system we never have complete information 

about the structural details of a given specimen. What we 

can know at most is the probability for a particular 

structure (or configuration) to appear. Thus we are led 

to the concept of an ensemble as a mental collection of 

replicas of the system:  each member of the ensemble corres-

ponding to a particular possible structure of the system. 

Experiments are performed on particular specimens, so we 

assume that experimentally observable quantities pertinent 



to macroscopic systems are sharply distributed around 

the ensemble average value. In other words we assume 

that the value of an observable quantity for a member 

of the ensemble chosen at random differs from the 

ensemble average value of the same quantity by an amount 

which is vanishingly small. It therefore follows that 

purpose of a theory is to calculate ensemble averages 

or, even more generally, probability distributions for 

the quantities of physical interest. At which stage the 

ensemble average will be performed depends on the operat-

ional definition of the quantity of interest. This will 

be made clear later when the averaging is employed. 

3. 921gtLclgaproximation., 

The propagation of the particle or wave we shall 

consie—r here will be governed completely by a one-body 

Hamiltonian, whose matrix elements will be random varia-

bles with a known probability distribution. This random-

ness in the Hamiltonian stems from the randomness in the 

structure of the material. We will omit many body effects. 

It should be pointed out that many body effects may be 

important and possibly different than in a periodic 

structure. 

40 Short- and Lo r e Order Corre ation Functions 
IlaE1221111LItana9mnoos■ 

In almost all disordered systems there are some 

elements of order remaining. Usually the material is ordered 



to a high degree locally. This means that in the neighbour-

hood of any arbitrary atom the structure is always very 

similar to that of a corresponding periodic system. We say 

that the system possesses short-range order. As the size of 

the considered neighbourhood increases, its structure for 

the disordered system usually becomes more and more 

different than that of a corresponding periodic system and 

eventually for the very distant atoms there is no correla-

tion at all between the two. This situation is character-

ized as absence of long-range order. Mathematically.speaking, 

the existence of disorder implies that at least some matrix 

elements of the Hamiltonian are random variables. Existence 

of short-range order implies that the matrix elements 

referring to neighbour atoms are strongly correlated random 

variables; absence of long-range order means that matrix 

elements. referring to distant atoms become statistically 

independent as the distance between the atoms becomes 

infinite. 

To decide that one system is more random than 

another, we make the following considerations. (a) The 

wider the probability distribution of each matrix element 

is, the more random the system is, provided all other para-

meters characterizing the probability distribution remain 

unchanged;(b) the smaller the range of statistical correla-

tion is, the more random the system is;(c) the weaker the 

statistical correlation is the more random the system is. 



5. Interest  

Having discussed the above basic input informat-

ions for a theory, we now examine briefly what the out-

put is i.e. the quantities we calculate. The most 

basic information we need is how the eigenstates are 

distributed as energy, i.e. the density of states. 

Second s  we like to have information about the nature 

of eigenstates, their spatial extent, i.e. whether 

they are localized or extended. 

Local,i4ed Eiunstates4  

A wave function 11T(..) is defined as localized if 

it decays fast enough as Ifl- a)so that the integral 

yid3r exists. When 	is localized) it is assumed to 

decay in an exponential wayjW).5. e-111/Rdl  where 

Rd is called the decay localization length. The quantity 

Rd determines the behaviour of the wave function only 

at very large distances; for finite distances ITIT(t.) 12  

may exhibit a very complicated behaviour. One possibility 

is that *5)12  remains more or less constant within a 

finite simply connected region of space of simple 

geometrical shape characterized by a linear dimension Rf , 

termed as fluctuation localization length. More ezhaustive 

definitions of localized eigenstates will be given in 

the Chapter 5 while doing the physics of such eigenstates. 

5.2 Extended  

Extended eigenstates are characterized by the 

shape of the multiply connected channel type region 



extending to infinity) where ilv(5)12  is appreciable. 

An essential difference in theoretical treatments 

of periodic systems and disordered systems lies in the 

fact that in the former the problem is reduced )  owing 

to the Bloch theorem)  to that of solving a SchrOdinger 

equation in an unit cell. For systems which lack in 

perfect periodicity)  the Bloch theorem fails to work 

(-selection rules are also lost) and thus the Schrbdinger 

equation with an aperiodic potential of infinite extent 

must be treated. Therefore) or disoTdcrod systeDas it is 

impossible to solve this equation exactly. Statistical 

physics provides us methods for deriving macroscopic 

properties of these disordered materials from quantum 

mechanical rules governing the microscopic world. 

In this thesis we present some of our attempts to 

tackle with two main themes in the study of phonons and 

electrons in disordered systems. The first theme is 

related to the distribution of the eigenvalues of the 

wave functions for these systems. This is concerned with 

the problem of the energy spectrum and other one-particle 

properties of the elementary excitations which are to be 

discussed by means of the ensemble-averaged one-particle 

Greents function <G> ) where the ensemble consists of 

elements corresponding to all possible microscopic confi-

gurations of atoms which can not be distinguished macro-

scopically. The second theme is associated with the 



behaviour or the character of the eigenstates, i.e. 

whether it is spatially lo?alized in a restricted region, 

or extended throughout the sample. 

The organization of the thesis is as follows. 

Chapter 2 contains a general formulation of the self-

consistent single site approximation, the so-called 

coherent potential approximation2)3 for obtaining ensemble 

averages of the quantities of interest. It has been sub-

sequently generalized for the case of phonons for lattices 

containing more than one atom per unit cell. This has 

been applied to Si-Ge alloys of arbitrary composition 

and comparison has been made with the available Raman 

spectra. In Chapter 3 a coherent pseudo-potential approxi-

mation has been reported. This is again a self-consistent 

single site theory but enables one to deal with realistic 

systems having arbitrary shape and any number of sulo0 

bands of density of states. Comparison of the computed 

results for Cu-Ni alloys has been made with the photo-

emission results. Generalization of CPA to include the 

effects due to clusters of like atoms has been given in 

Chapter L. Various decoupling schemes have been compared 

and critically studied with special emphasis upon the 

pairs embedded in an effective medium. Calculations within 

self-consistent pair approximation have been reported 

for simple cubic lattice and results have been compared 

with other similar but not so exact calculations. The 

fifth and the final chapter deals with the difficult 

problem of localization in disordered lattices. Three 



methodologies in the field have been stated and discussed. 

Results for the extent of wave functions in the localized 

regime obtained for the first time for three dimensional 

lattices) have been given for infinite Cayley tree 

lattice with Lorenzian shape of site-energy distribution. 

The famous Economou-Cohen criteria for localization have 

been modified. Attempts have been made to understand the 

localization of phonons. Qualitative arguments have been 

stated and supported to a good extent by the quantitative 

results obtained by adapting the Economou-Cohen criteria 

to the case of phonons. The final section of the chapter 

reports the socalled new criterion for localization given 

by Mattis and Yonezalgi.91  This method has been shown 

to rest on erroneous arguments. 



CHAPTER 2 

Coherent Potential 

Approximation 



lic3 present a brief systematic derivation of the 

so-called coherent potential approximation (CPA)223, which 

is a powerful approximation scheme for obtaining the 

ensemble average. We clarify its meaning and limitations 

and discuss a moderately realistic single band model 

corresponding to a three-dimensional system. 

The CPA is a self-consistent single site approxi- 

mation within the multiple-scattering framework "-6. In 

this approach the propagation of an electron or lattice 

wave in an alloy is regarded as a succession of elementary 

scatterings on the random atomic scatterers, which are 

then averaged over all configurations of atoms. A scatterer 

is viewed as being embedded in a fictitioua medium 

described by a yet undetermined effective Hamiltonian, 

H
eff which possesses the same symmetry properties as the 

average Hamiltonian (i.e. it is periodic). An incident 

wave associated with this. effective Hamiltonian is intro-

duced which is scattered in the real material by the 

scattering potential (H-Heff) (H is the actual Hamiltonian 

of the disordered system). Heil  is then determined by 

the requirement that the scattering on the average is 

minimal. The so-determined H
eff 

is called the coherent 

potential Hamiltonian and is used to describe the average 

properties of the material. A detailed study of CPA has 

been done by Velicky, Kirkpatrick and Ehrenreich7  and 

all the parallel methodologies have been reviewed by 

Yonezawa and Morigaki.
8 
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GENERAL TORMULATION: 

We derive results that are valid within single 

site approximation for any single-particle Hamiltonian 

which can be decomposed into a sum of contributions 

associated with each site. The N equiValent sites of a 

lattice are randomly occupied by two kinds of atoms)  

A and B, The probabilities for a site of being occupied 

by A and B are proportional to their concentrations 

per unit cell)  which are respectively x and Y.=  1-x, 

both varying from 0 to 1. The one-electron Hamiltonian 

corresponding to a given configuration is denoted by H. 

The single particle properties are derived from the 

Green's function G(Z) ='(Z-H)-1. The quantity of interest 

is <G(Z)> which determines all the macroscopic quantities 

and has the full symmetry of the empty lattice. The 

effective Hamiltonian characterizing the average crystal 

is defined by the relation4(G(a> = (Z-Heff)-1. An 

approximation 11(Z) is made for the exact Heff(Z) and a 

perturbation equation is written)  

<G> = 5 + Z(Heff-) <G> . 	(1.1) 

Here) 	G = (Z-11-1 	(1.2) 

is the unperturbed (reference medium) Green's function. 

In the multiple scattering theory a T matrix is defined 

by a relation similar to (1.1), 

G= 	4- Zlti. 	 (1.3) 



On averaging  one gets, 

<0 > G + 6<rf>,. 

From (1.1;, and (1.1+) we get)  

Heff:r1 + <T>.(1+'.6<T>)-1, 

This equation can be solved in two ways. 

(1.4) 

... (1.5) 

(a) tent methsj:. 

0(1153 corresponding  to a given H is inserted. 

(b) Self-consistent method: 

<T(T)).T. Oi  ... (1.6) 

is solved. Approach (a) is simpler than (b). 

1.1 .Sip.4,119.., mation(SSA) 

The random-perturbing  potential (H-.a) is decomposed 

into a sum of contributions from individual scatterer '  

1.1 . 	= E vn. 	 ... (1.7) 
n 

The multiple scattering  method is applicable if such 

a decomposition is possible. Combination of (1.3) and 

yields, 

G = 	+''6(H - 11)G, 

T = (H:g)(1+15T) 2  

= Vn(l+n) a T. 
n n " 

Tn is the contribution of an individual scatterer to T. 

We now introduce tn2 the atomic T matrix associated with 

the isolated site n2  

to -.7. Vn(1-Vna)-1  .,. (1.11) 
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With the help of (1.10) and (1.11), Tn  is written in 

terms of to as / 

Tn = to  (1+  Tm).  ... (1.12) 

Tn is the strength of a scatterer in alloy. to 
is the 

strength of an isolated scatterer.()4  T,) describes 
m n 

the multiple scattering from all the scatterers(except n) 

in the alloy of an unperturbed wave incident on n. After 

iterations (1.12) evolves into an hierarchy of atomic T 

matrices) 

T E t,
" 

 + tnG • • • 1.13) 

Averaging the exact relations (1.10)-(1.12)) we get)  

<T> 1: <gla> n 
(Tn):: <tn(14; E Tm)›. ) 

min 

(1.14) 

... (1.15) 

= <tn>(14 (Tni))+ Ct:al  T (Trn-<Tni>)> .... (1.16) 
nvAin  " n 

The first term describes the effect of the averaged effec-

tive wave seen by the nth atom and the second term corres-

ponds to the fluctuations of the effective wave. We neglect 

this fluctuation term which amounts to assuming that all 

statistical correlations between n and all other sites m 

are neglected. So that)  

Tn>as < tn> 1+'"Oj  
" 

<T,>) • 
n 

... (1.17) 

This decoupling of average in (1.15) is termed as glalg= 

site decoupling scheme because it isolates the average 
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scattering from nth  scatterer from the multiple 

scatterings from rest of the sites in the system. 

Since 	Tm  = T-Tn, we get from (1.17), 
m n 

On> (L4T<T>)(1+(tn>)-1, 	... (1.18) 

so that (1.5) can be rewritten as 

Heff = H + 	<tn).(1+'".1 <tn),)-1. 	(1.19) 

Thus the non-self consistent and self consistent methods 

described above may be done in terms of to  within SSA. 

Within SSA the self consistency condition (1.6) is equi-

valent to solving, 

<tn(Z> = 0, 	 ... (1.20) 

for all n. Determination of an effective medium through 

the fulfilment of the condition (1.20) within the set of 

approximations made in arriving at (1.20) is called the 

coherent Potential Approximation(CPA). 

2, gyA.FoRp4oriolis:  

We essentially repeat the CPA formulation of Taylor3 

for phonons in disordered alloys, generalizing it for 

more Ulan one atom in a unit cell.9  We discuss a single-

band model which is closely related tothe tight-binding 

approximation. The Hamiltonian for the harmonic lattice 

containing impurities is 

H = Ho+HI' 
	 ... (2.1) 



where 

.4. 
Ho -4 2M0 	2 tit , ,,E13  liap(tkafkl)uccuk)up(tikt), 

kw 	 (2.1) 

is the perfect lattice Hamiltonian) p(tk) is the momentum 

operator for the atom of mass Mo  in the tth  unit cell 

with basis index k) and um  (A) is the mth Cartesian 

component of the displacement operator for this atom. 

44(tk )Pk') are force constants. If we confine ourselves 

to the mass disorder only thaperturbation part of H is 

written as 

H' 1..) 
llo • ... (2.3) 

Such an assumption makes the disorder cell localized. 
Contributions to HT come from impurity sites only. The 

displacement-displacement double-time thermal Green's 

functionsl°  are defined as 

	

Gar  (tk)t tit t  St-t ) 	2N<< ut  (Mit) Sup (t h1 1 ) >>ret 

; -271 < E ucc  (tk)t) 'up  (t Tk T 1 ) DT@ (t-t t) 
... (2 Ifa) 

,ad v(pwx  

	

 it-t 1 ) 	2I<Cum(tklt)3u0(ilkl,t)) adv 

a 27ci<Eucc (fk )t) ttp((ik'iti)3>TG(V—t), 
(2.4b) 

4(t) 	1, t)o 
0,1  t<o. 



-'u- 
a)(3  denote the Cartesian components and q denotes the 

thermal average. The average over different configurations 

is denoted simply by 0. The Fourier time transform of 

G is given by 

+is)t G ukatk ip+io) a. 1_ flpriretladv (tic tikf5t)e 	dt ap  
-000'aP ... (2.5) 

We shall suppress the infinitesimal quantity 8 and 
understand that for the retarded and advanced cases w 

approaches the real axis from the upper and lower half 

planes) respectively. For a harmonic lattice) both 

Greents functions of (2J.) for a system described by eqns. 

(2 1)-(2 3) satisfy identical second order differential 

equations of motion whichl  when transformed according 

to' (2.5)) give the following equation for G: 

-m w2Gap  (ticdtkt;w)-- 
0  4cc7 (tkduk tt) p  (Pt k ft )/ TO 5w) 

k 51c 7  

8(tkatki) + ]E  C,,v (ikpenkft;w)Gyp(tftkedskt3w) 
tY 1.41  

kt,kn  (2.6)  

C (tic ftki.w) = o-M(Kk) :1 28, (tic Pict). ... (2.7) Cap(  /  ap 

For a defect atom at t.k
i) it is convenient to describe 

the change in mass, 

by the matrix)  

(t.k.) 
No-M((iki) re M

oC 1 1  ... (2.8) 

(t.k.)  (tiki) 2  
1 1  (Lkalkr;w) = Nog  w 545(tk)tikt)5(tkaiki) ace 

... (2.9) 
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(t k) 

therefore gives the fractional mass change 
at (tiki) occupied by an atom of type p. If the Green's 
function for the perfect lattice 	= 0 in eq.(2.6):])  

denoted by Pi) is known)  then one obtains for G 

G (tk,flk 4 = Pa (Lk tk ;w)+1\210C-1.to 2 	P (A )sks ", 	x 
s .27 
ks 

G/p (sk pOkl;w) ... (2.10) 

(sks) denotes the impurity site. Now 

a (tk)tok1 3 w) - 1 c ilcl)  a- j   (4  )  -ia e(1""yk-ltuks)  

 ! 	-x MI 0 	2 .4  w -w(q) 1 	
) 

cl'i 	 J 
.0. (2.11) 

N is the number of unit cells and j specifies the 3s 
branches)  where s is the number of atmos.per unit cell. 
w j  (1) are the eigenvalues and c-lc(I) are the eigenvectors 
of the '- ynamical matrix for a perfect crystal. Eq.(2.10) 
for the Green's function of the imperfect crystal can can be 

rewritten in the form 

G(tic,PkIlw) = p(tk)ttktp)+ 
1,

2 luk 41k1  ;03 cqiq ),( K 2  aces) . 

k1  )k2 LiC(2k2,fik T P), 
(2.12) 

where the defect matrix is given by 

_g(tk,tikt w) =  c
(f4k4) 

 
i
k. 

Equation (2.12) is the usual Dyson equation with as as 

perturbation. If we introduce the t-matrix )  

(2.13) 



xAC2(f2k2dtkt;'■'J3)›. 

••• • (2.17) 
Now we make an approximation E for the actual self- 

<G(tk tikt;w)> 	P(Kk.,K TIOP)+13(fLikalkj)w) /(fiki. s,(21c2iw) 
42'2 
k1 /k2 
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2(41k1,42k2P)  
P ) 

•.. (2.10 

 

12  
k k2 

1-C(K1k1,12k 

We can write 

G(1Ck),61;w) = 	dtk jw)+  

) P(qkl ,f2k2;w )  

2(1k)11k1;w)2(11k1 it2k2;w) 

x 2(12k2.a1tk!;w) . 

Averaging (2.15) over all configurations) we have 
• • • (2.15) 

= 3'(Xkaik=;(1))guk t1k13w)(X(t k1 	y ) 2-2 > 
1/2 
kk2 

<2(1k 

xj."(t2k21,(1k fp) 

0 • . (2.16) 

On iterating eqn.(2•12) and averaging)  we have the result 

in terms of the self-energy 	: 

energy y. A new Greents function is defined in terms of E as 
G°(,(k )ilkt ;0)) =I ECCkperkt ;6))+ 	2(1k.d1nic1;w)g(f ik1d 2k2 ;(1)) 

3.0 A.2 
.g.°Le2k2 2tik ;(o) • k1).k2 

(2.18) 

Then writing Eqn.(2•12) in terms of g° rather than e  we 

obtain 
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G(Kk )ek")w) = G°(& )Ktk") w) + 

1'^2 
k1)k2 x .q(K2k  ;w) 

... (2.19) 
with 

(K,,k2) 

( 1k1'42k2; 
 -%E(Kiki)K2k2; w) for a host atom 

at K2k2 	(2.20a) 

= -Wikilk2k2;w)+Mosw28(kiki)K2k2).1_ 

for a defect atom at K2k2.  (2.20b) 

In the single-site CPA we choose our system such that 

besides the site)  say)  (Kk) (which has the liberty of being 

occupied by the host atom or the defect atom)) the rest 

of the sites are configurationally averaged. If we identify 

.4.  with the exact  ) then 2°  becomes equal to*the exact 

and the self-consistency condition for determining E is 

clyci,w) = 0. 
p 

c.13  is the concentration of the p-

and hence is proportional to the 

ence of a p-type atom at a site. 

of the modified Green's function 

(2.21) 

type atoms in the lattice 

probability of the occurr-

2 is calculated in terms 

G°. Equation (2.21) is 

with 

(1-c)Tb+cTd  = 0)  

VP 
TA 

—  2  1 - G°  

where h and d stand for host and defect)  respectively. 
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The explicit form of VP is given in eqn.(2.20) and on 

simplification we get 

E(1 w)(14.  N  0(q w)E(110-1  x (1  (1-6M00:02G°(w)) 
q 

+ 	E G°(cl,w)E(ri,e0)) = ilocc(02i, 
q 

where G°(w) = G°M),(1,C1w) = -11 2 G°(1,w), 
q 

Thus E(C1,0) is independent of q l  so that 

(2.23) 

... (2.22) 

4)(1)w)E(1,w)  e(w)E(4), 

and on further simplification eqn.(2.22) becomes 

E(w) - hocao2I - EMIT/1004)21-E(w)] G°(w) n  0. 	(2.24) 

We write 

E(w) 	1.10 (w)w2I) 	 ... (2.25) 

convert (2.18) into q representation, and change the 

unperturbed Green's function (2.11) from normal coordinate 

representation to qj representation. This enables us to 

write 

G°(w) p(wit) r 	 d(13 

0 CO 2 5.":&W -w2 

a 	8in(1)-(49) 	... (2.27) 
qJ 

which is the phonon density of states of the unperturbed 

host crystal. Writing (2.26) as 

G°(w) = (1/M0) (.(0 

with P(L0') 

(2.26) 



Im<G(Ij ) )>  1,1 (c0 217l-Rg(w) + w2 Img(w)) 

... (2.34) 

2 w ImC(w) 

2 w .(q) 
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and using (2.25), we write (2.24) 1 finally; in the form 

	

Nw) = oC4(w) D. 	coV(w) 	 ... (2.28) 

where 	 P(wt) 
je°((4) = 5 ----------------- taw , 	... (2,29) 

w 2E1Z(w)  ]_(0 12 

The averaged Greents function G(q )w) is speci-
fied by the spectral density 

(t("iilw) = —7c-1  Im<G(1.0)w)›. 	 ... (2.30) 

We can cast the spectral density function into a form 
which is convenient for calculation. From eqns.(2.26) 

and (2.27) we have 

8fwi (-4)-(0} Go (w) 	I 	 ...(2.31) 1\11v lo 	(02  U-M -w qi 

G°(w) may be written in terms of the modes specified 
by qjj as 

G°(w) = N 	0°(ii,W), 	 (2.32) 

 -1 
where G°(4j )w)fw2(3.-Re7(0.))-(1)(1))-ico2Im7(w) 3 .- 

0 
... (2.33) 

In the CPA 

<G(q.j )w)> = G°Cfii :co) • 

Separating the real and imaginary parts in (2.33), we 
get the imaginary part 
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This is the spectral density, which can be evaluated 

by calculating the self-energy from the self-consistent 

equations (2.28) and (2.29). G°(aj,w), which is completely 

determined byelt(qj,w), contains full information about 

the one-particle properties and in particular permits 

discussion of the quasiparticle approximation. Because 1(w) 

is qj-independent in the CPA, G°("Clj,w) depends upon qj 

only through wi(el). Ifa(ilj,w) be calculated for the 

whole allowed range of Clj, one can get information 

about localization or delocalization of an eigenmode.In 

the spectral density two kinds of excitation appear, one 

related to the plane wave like eigenstates of pure host 

crystal and the other to the impurity states. A peak in 

e(ij,w), if well localized in qj space as well as in to 

space, has a quasiparticle character and hence corresponds 

to the delocalization in r-space (because of the uncert-

ainty principle). On the contrary a flat peak extending 

over the entire band is expected of states localized in 

coordinate space. 

A fairly comprehensive set of density of phonon 

states and spectral density obtained from CPA-equations 

(2.28), (2.29) and (2.34), has been given in Figs.1 and 2 

for a series of compositions in Cu-Au alloys. The un-

perturbed density of states for Cu and the w (-0 Ts 

were taken from Svensson et.al.[Phys.Rev,1619(1967)]. 

Only mass defect was considered. Figure 1 is a good ill-

ustration to see how CPA interpolates between the 
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unperturbed densities of states of pure Cu and Au. Thi 

Cu-Au system is further interesting because Au is 

slightly more than three times heavier than Cu, so that 

in-band resonance mode of Au in Cu-rich alloys and iso-

lated impurity mode of Cu in Au-rich alloys can be 

distinctly seen. Figure 2 shows spectral densities for 

Cu containing 25%, 75% and 95Y. Au and for wi(I) 7. 0.21 
0.4, 0.6) 0.8 and 0.95 of 4u  , where Cuwra  is the maximum 

frequency in the frequency distribution of Cu. A compar 

ison of spectral density plots and the density of states 

for the corresponding alloy gives some insight into the 

discussions made in the preceding paragraph about the 

spectral density. 

3. PHoivio'4s 	DI§ORD4RED I5i-Ge ALLOYS: 

In recent years a lot of work has been done on 

lattice vibrations of disordered alloys. The vibrational 

spectra of a large number of binary and pseudobinary alloys 

have been studied by means of infrared absorption and 

Raman scattering.ll Two distinct types of behaviour are 

found. For same systems only long-wavelength optical 

phonon frequencies occur which shift, in most cases, 

linearly with concentration from the mode frequencies of 

the lighter component downward to the mode frequencies of 

the heavier component. In other systems vibration freq-

uencies related to each one of the constituents can be 

separately found in the middle of the concentration range. 

The first, or the one-mode-type behaviour, is obtained for 

most of the solid solutions of alkali halides, while the 
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second or two-mode-type behaviour is found in most 

of the solid solutions of zinc-blende-type crystals. 

Balkanski12  suggests that the long-range average-crystal-

potential variation may have been large enough for the 

one-mode systems to shift the eigenfrequencies of each 

constituent towards a unique value )  and is not sufficient 

for the two-mode case. The alkali-halide mixed crystals 

are strongly ionic in character )  and therefore each atom 

is subjected to electrostatic forces extending much 

further than the statistical cluster in which it is 

embedded. These forces therefore average for each pair 

of ions and yield a unique frequency for the mixture. On 

the contrary)  in zinc-blende-type mixed crystals the first-

neighbour interaction dominates and is responsible for 

the splitting of the vibrational spectrum. 

A third type of inultimode behaviour has been 

reported for the Raman spectra of Ge-Si alloys by Feldman 

et.al..13 over a small composition range (0-33 at % Si in 

Ge) and by Renucci et.a1.14  and Bryal5  over the whole . 

. composition range. Three peaks have been found and are 

attributed to the vibrations of Ge-Ge)  Ge-Si)  and Si-Si 

nearest neighbour pairs. Silicon and germanium form a 

mixed crystal in all proportions .16  Because the mass of 

silicon is much less than that of germanium) one would 

expect local modes to be associated with the motion of 

silicon atoms in germanium. Germanium and silicon have 

a common valency) so that such modes are not expected to 

be infrared active in first orderi however they should 



be Raman active. We have tried to understand the 

experimental observations for the Ge-Si system by Feldman 

et.a1.13  and Renucci et.a1.14,theoretically9  within the 

framework of the coherent potential approximation. With 

the help of equations (2.28), (2.29) and (2.3i.) we 

calculated the spectral density functions for Ge-Si 

alloys. An examination of the optical modes of germanium17 

and si/icon18 in directions a..003 and EI10) obtained 

.through neutron-scattering measurements by Ghose et.al.17 

and Dolling18)  respectively, shows that the opitcal phonons 

scale by numbers which lie between 0.58 and 0.61. This 

is reasonably close to (MSi 	0.62. This encouraged /MGe
)1/2  

us to take into account only the mass change in this 

.calculation. The function POLIO) was taken from Dolling and 

Cowley's calculations19  based on their neutron spectro-

scopic measurements for Ge and Si. The density of states 

was taken as a histogram of very closely spaced points and 

integration of (2.29) was done using Simpson's rule) with 

an initial approximate choice of 24(w). Equation (2.28) 

was solved iteratively using Newton-Raphson's method 

applied to a function of a complex variable. Thereafter 

we calculated the spectral density function from (2.31,.) 
4 for q = 0 optical modes of Si-Ge alloys. 

341 Discussilon of.Results: 

The peaks of the spectral density function for 

optical modes at q = 0 give information about the, zone--

centre optical vibrations of alloys of Ge and Si )  either 
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of the two taken as the host crystal. For low concent-

rations of le in Si, one of these may be identified as 

being due to the heavy defect resonance and the other is 

near the optical frequency of Si. In our calculations 

we find that the spectral function shows two distinct 

peaks. In the impurity band region the spectral function 

is not sharply peaked )  and peaks are too broad to be 

called peaks. As the defect concentration increases )  the 

weaker peak becomes merely a shoulder on the larger peak 

(cf.Fig.3). At any concentration) the more prominent 

peak is attributed to the majority atoms. With Ge taken 

as host lattice, when Si is added in small quantity it 

gives rise to a very weak and broad resonance: but this 

resonance gains prominence as more and more Si is added. 

At the middle of the concentration range) the two peaks 

are of comparable prominence, and as more Si is added the 

lower peak gradually loses prominence while the upper peak 

becomes narrower. Eventually the lower peak appears only 

as a shoulder to the upper peak )  which approaches optical 

frequency of pure Si. When Si is taken as host and Ge is 

added to it )  the_ similar structure of peaks is seen 

throughout tb composition range with a shift in the 

frequency scale. The peaks at all compositions are 

shifted to slightly higher frequencies and the amount 

of shift remains almost constant. This shift may be 

attributed to the changes of force constants that 

accompany the alloying process. In our calculations we 
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did not consider these char-es in force constants. When 

Ge is taken as host we assume that the force constants 

for the alloy are the same as those for pure Ge. 

Similarly) with Si we take the alloy force constants to 

be identical to those of Si. In order to take into accouAt 

in an approximate manner the force-constant changes due 

to alloying, we did all calculations by first taking Ge 

as a host, then taking Si as a host lattice) and finally 

taking the average of the two values'after weighting them 

with the concentration of that constituent which was 

regarded as host in that calculation. This appears to be 

reasonable and has the appearances of a virtual crystal 

approximation for force constamts. 

The variation of the frequencies assigned to the 

peak in the spectral function with the variation of the 

Si concentration is shown in Fig.4. The lower peak shows 

only slight variation with composition. The frequency 

decreases as the Si content increases. The maximum varia-

tion, was observed to be 16 cm'l, when Ge was host and it 

was 20 cm-1 when Si was host. These variationn for the 

frequency of the upper peak were 76 and 74 cm-1 respect-

ively in the two cases. The slight decrease in the lower 

frequency with increasing Si content obtained in our 

calculations does not agree with the experimental results 

of Chang, Lacina and PershaP, but is in agreement with 

the observations of Feldman et.al.13  and Renucci et.a1.14. 

At 33 at mit. Si the calculated downward shift is about 7/. 



-27- 

of the Ge optical-mode fre,uency.  . Xinha  has treated 

Raman scattering of light by crystals of the diamond 

structure containing substitutional random mass defects 

and no force constant changes. He obtained theoretical 

expressions for the Raman scattering using a self-energy 

calculated to lowest order in the concentration of the 

minority atoms.22 His results should be valid: therefore:  

only for small concentrations. These results: when 

applied to Si in Ge:  show that the Raman-active localized 

mode frequency for small finite concentrations is slightly 

higher than the localized-mode frequency for a single 

mass defect. The theory also predicts that the peak in the 

Raman spectra of the disordered crystal which corresponds 

to the optical mode (ho) of the perfect Ge crystal should 

shift to lower frequencies with increasing Si concentration. 

As may be seen from Fig..:  the upper peaks obtained 

by Renucci et.al.: which they assign to be Si-Si nearest 

neighbour vibrations:  are very close to the upper peaks 

obtained by us taking Si as host:  i.e. assuming atoms to 

be joined by the Si-Si force constant in the alloy. 

Similarly: the socalled Ge-Ge peaks of Renucci et.al.fall 

very close to our peaks obtained by taking Ge as host 

where Ge-Ge force constants are assumed to prevail in the 

whole lattice. The upper peaks obtained by taking weighted 

averages fall close to the upper peaks obtained with Ge 

base at small concentrations of Si and move close to the 

tipper peaks obtained with Si base as the Si concentration 
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increases. Similar behaviour is seen with the lower 

peak also. The averaged )ehaviour in bo:th cases is 

pretty well in agreement with the behaviour obtained 

experimentally by Renucci et.al.. 

It is also worth noticing that many of the poaks 

have characteristic asymmetry; they are sharp on the 

high frequency side and broader at lower frequencies. 

This is consistent with the CPA theory. The CPA gives 

the sharp edges of the bands of the density of states, 

consequently lopsided spectral functions for the phonons 

belonging to the q values at these edges.7 We are 

concerned with the top of the optical band; hence the 

peaks obtained by us are sharp at the high frequency 

side. 

Feldman et.al. and Renucci et.al have assigned 

the three peaks to the vibrations of the pairs Ge-Ge )  

Ge-Si and Si-Si. Our calculation was based on the CPA) 

which is only the single-site approximation treated 

self-consistently. This approximation by its nature 

smooths out the structures due to pairs or clusters's° 

we did not assign the peaks in our results to the pair 

vibrations. The nature of upper and lower peaks is in 

correspondence with the upper and lower peaks obtained 

in references 13 and 14. Some other experimental data on 

Si-Ge alloys may be had from references 23 to 28. 

To conclude this chapter we wish to indicate some 

limitations of CPA. The complexities involved in solving 
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the self-consistent equations in CPA require the use 

of a jingle band model. One has to furthir assume that 

the density of states curves (phononic or electronic) 

for constituents in their pure phases should have the 

same form and width and should only be displaced with 

respect to each other along the energy axis. This is far 

from reality because the density of states curves for 

the two constituents are usually devoid of any such 

similarity. The inability of CPA to take this effect into 

account limits its application to model systems only. 

Another complication with the realistic systems is 

that instead of a single non-degenerate band they have 

several sub-bands generated from the crystal field split 

atomic levels. Besides this the single site nature of 

the CPA and the inclusion of only diagonal disorder 

prove to be inadequate. The single site nature assumes 

that the environment of each site is identical whereas 

there are always good chances that the clusters of like 

atoms appear. The neglect of off-diagonal disorder is 

a highly simplifying assumption; in the case of electrons 

it means that the constituents have the same transfer 

integral and in the case of phonons it means that the 

constituents have the same force constants. In the 

succeeding two chapters we have attempted to extend CPA 

to account for these ingredients in two classes. 

(a) Retaining the single-site nature of CPA, with the 

help of a technique using pseudopotentials we impute the 
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effect due to the different shapes and bald widths of 

the constituent densities of states. This is equivalent 

to roughly take into account the effect of off-diagonal 

disorder. We also generalize this technique to account 

for the several sub-bands generated from the crystal 

field split atomic levels. 

(b) Breaking the single-site nature of the CPA:  we 

include the effects due to clusters. We explicitly cal-

culate the effects due to pairs embedded into an effective 

medium and take into account both the diagonal and off-

diagonal disorders. We test it for a simple cubic lattice. 
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CHAPTER 3 

Coherent Pseudopotential 

Approximation 
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In the concluding remarks of the preceding 

chapter we pointed out that for CPA calculations the 

constituents should have identical (in all respects) 

densities of states )  merely shifted on energy scale. 

This is understandable for model systems only. Recently 

attempts have been made to improve upon these cons-

traints. Following are the attempts within single-site 

approximation, &von29 Gyorffy30 and Bansil et.al.31 

do it by using muffin-tin form for the alloy potential. 

Clark and Dawber32 have attempted to improve upon the 

constraints using a simple pseudopotential scheme. 

The basic idea behind our tochnique33'34  of 

handling the problem is the following. In an AB alloy, 

starting from the electronic density of states,P(E),of 

pure A constituent, one can arrive at the P(E) for pure 

B constituent by putting an energy dependent pseudopoten-

tial, V(E), on all the A sites, V(E) can be determined 

from the knowledge of densities of states of both the 

constituents of the alloy, and thus acts as an energy 

dependent parameter completely determined from the one-to-

one correspondence for the densities of states of the 

two constituents. This idea has been generalized for the 

case where there are many sub-bands, a situation which we 

always face in real systems, The density of states for 

each sub-band is allowed to have arbitrary shape. 

We apply this generalized formulation to the Cu-Ni 

system. This system is a good example of a continuous solid 
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solution having f.c.c. lattice. The lattice constant 

changes by only 2.5% betveen pure Ni and pure Cu.35  

There is evidence fOr clustering of like atoms in a CuNi 

sample of roughly equal concentrations361  but the cluster-

ing observed is slight and the clusters are small in 

size. The electronic band structures of the constituents, 

pure Ni37  and pure Cu38/39  are well known. Comparison of 

the essential, features of the band structure of Ni and 

Cu reveals that the s-p bands are very similar in two 

and the two differ substantially in the location of d-

bands with respect to the Fermi level. A lot of experi-

mental information for this alloy system is available from 

the measurements of soft-x-ray spectra14-43  and photo-

emission spectra.1"45  The electronic density of states 

of this alloy for a range of concentrations has also been 

previrlsly calculated by Kirkpatrick et.al.46 (hereafter 

referred as KITE) and Stocks et.a1.47  (hereafter referred 

as SWF))  using the CPA. We can therefore)  compare our 

calculation with the existing ones and examine the effects 

of improvement of the model. 

1. MODEL  

1.1 Generalisation of CPA for Systems with MEny Sub-Bands: 

Within the single site approximation we have from 
oqn.(1.20) of Chapter 2) the CPA condition 

<tn>= 0 	 ... (1.1) 

We now take up the generalization of this condition for 
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a case where there are many subbands. 

4inae-Sitet Single-Band Approximation: 

If the system has F-fold orbital degeneracy(F = 

number of sub-bands), the single-site self-energy would 

become a FxF matrix, and FxF simultaneous equations would 

be required to find the elements of the matrix. It would 

simplify the matter a great deal if we assume F bands to 

be non-interacting. The perturbations with respect to the 

reference medium are assumed to be localized with respect 

to sites as well as sub-bands i.e., 

Perturbation = Hoff- 14 = Pn of 
	• • • 1.2) 

where H
eff 

is the Hamiltonian of the averaged medium,ii 

is the Hamiltonian of a reference medium, Pn  is the 

contribution of nth  site to the total perturbation, and 

Pre  i, the contribution (L. the f th band to Pn' This app-

roximation yields, 

tn = 	11 _ 
1-Pxi1 

Z P nf f 

1- Pn )G
9 

1 
E 	 4, 	  , 
f 
 t 

"4- 	( nt 
P 	)6 

1- 	nf:  
PG 

 

... (1.3) 

 

... (1.4) where, 



Heff = ( Ctaf > ) {14[6( I 
n 	f 	 f 

1.2 Model Hamiltonian for  Cu-Ni: 

-1 
nf 

... (1.8) 
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and ? 

, 1 implies the sum over all the sub-bands excluding 

the rah  one. We can approximate to  as a sum of tnf is 

t 	E t n—Ev  nf 

if Pnf  al for all f ts.  

... (1.5) 

0410 (1.6) 

The approximation (X.6)is the same as introduced by KVE46 

in their eqn.(4.26) and was found to be reasonable for 

Ni-rich alloys. Later$ it has been shown by SWF47  that 

the limitations imposed by(1.6)are not severe for the 

whole range of composition in Cu-Ni system. Introduction 

of (1.5) into the well-known relation (1,19) of Chapter 2, 

Heff = H + 	1:Ktn> (i+G<tn:) -1 	(1.7) 

yieldsa 

The Cu-Ni alloys have the nearly ideal substitutional 

nature. Mossbauer isomer shift data of Love et.al.42 show 

that the nuclear contact density at the Ni nucleus does 

not depend on the concentration of Cu. This indicates 

that there is no charge transfer in Cu-Ni system.The s-p 

bands of pure Cu and Ni are identical and this band is 

assumed to remain unaffected on alloying Ni and Cu. One 

then has to examine the effects of alloying on the d-

bands. In the Wanaier representation, the d-d block of 

the model Hamiltonian takes the form, 
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Hdd = n'f 
Inf> C  + 

nl nf 	Inc> (n If f, 
f)ft 	 ... (1.9) 

where f represents the sub-band and n denotes the lattice 

sites. For an AB alloy Cns  takes on values Cm  or CDs  

depending on the site n being occupied by A or B respect-

ively. We simplify the problem by assuming tns,n1s1  to be 

translationally invariant and independent of the random-

ness of C. Calling the off-diagonal part to be W we can nf 
choose the reference Hamiltonian in two ways: 

(a) Hdd  E f 	f*f Inf}ol + W. 
n'   

we assign a separate 01, to each sub-band. 

(b) Hdd  ~ 

	

	Inf>6<nf + W. 
n'f 

Here a single a-  is common for all sub-bands 

... (1.104) 

(1.10b) 

We discuss below the use of these two schemes to 

solve (1.8) to determine the self-energy nonself-

consistently as well as self-consistently and we shall 

use coherent pseudopotential model.32 

1.3 Coherent Pseudopqtentialat42ft 

We consider an alloy Al_cBc, where c is the fract-

ional concentration of B. In general pure A would have 

a band structure quite different from that of pure B.We 
can relate the band structure of pure B to the band 



structure of pure A in an approximate manner by writing: 

BB= HA  + 	Vc,(E). 	 ... (1.11) 
,Gf 

HB  and HA  are the Hamiltonians of pure B and pure A 

respectively. We have introduced an energy dependent 

pseudopotential Vf(E) to represent a B atom replacing an 

A atom on the site L for the sub-band f. Vs  (E) is assumed 

to be diagonal in site in the basis of Wannier functions, 

Vf,nn(E)  5nerelf(E).  
... (1.12) 

A reference system may now be introduced with Hamiltonian) 

H = HA  c 	Vf(E) 	 (1.13) 
4)f 

H becomes H and BB  in the two limits (0 and 1) of c. 

With the help of eqns.(1.10a), (1.10b), and (1.13)) eqn. (1.8) 

is salved as follows. 

kalalags.mQ.dzaLJklall 
We write 

tns  = 1nf> Tns<nf 1 and G Inf'> 1341,1f<nf 	... (1.14) 

Then we can write eqn.(1.8) as 

'Jeff (E) = W 	nf 	E <tat. > (1 + > )-1]<ns  

(1.15) 

If we now transform to k-representation, we obtain for 

the self-energy of the effective medium: 



E <ire> 
wf (k ,E) = 	(E) = (3-  + 	 

1 + fiat  Z<Tnf > 

37- 
... (1.16) 

For the reference medium the Green's function is given by 4.6  

P (C)dC 
 1. 1-••••-e 	(E) 	(E) nf% 	f ' 	E-C-c Vf (E) 

In the alloy Ai_cBc, for the sub-band f the fluctuation 

with respect to the reference medium is -c Vf (E) at sites 

occupied by A atoms (L. sites) and is (1-c) Vf (E) at B 

• sites. 1.
nf  IS can therefore be calculated. An initial choice 

of Cr and E,+ c Vf (E) 2 then enables one to solve (1.16) 

with tip, and T
Bf 

given by, 

-c Vf (E) 
Af 

1 + c Vf  (E) Ff  
... (1.18a) 

... (1.17) 

and (1-c) Vf (.;) 

 

(1.18b) ev • 
1••• (3.'"'c) Vf (E)Rf 

Having obtained 7 (E), a new choice of the reference medium 

is made by replacing cVf (E) in eqn.(1.13) by .2f  (E)-CAf  and 

as before we again calculate If (E). This procedure is 

repeated till two values of 7f (E) in consecutive cycles 

come close together within a tolerance. 

Con.,_sIsteatlethod, 

With the help of equations (1.1),(1.5) (1.10a) and 

(1.10b), eqn.(1.16) may be solved self-consistently in 

two ways, 
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(I) < tnf> 	0 ) 	 ... (1.19) 

which follows when we write Hdd as in (1.10a). 

(II) <1 tnf> 7; 02 	 ... (1.20) 

which corresponds to Had  given by eqn.(1.10b). 

The self-consistency condition (1.19) Yields: 

crf 	(°A,f —  cri )  f gBf 	Of)  

where, 

af, 	(1-c)C x+ c0Bf(E), 

Cl3f(E) m °Is+ Vf(E), 

P (C)dC 
and 	= r 	 

41 E-C-0-+CAp 

... (1.21) 

... (1.22) 

... (1.23) 

... (1.24) 

Pm  is the density of states of the sub-band f of pure A 

system. 

The self-consistency condition (1.20) yields, 

I t: (1-c) 	I" 	 + c 	---4÷--,---3 = 0. 
f 	1-(0 -0-)i 	1-(Clif-er)Ff Af 	. f 	...n(1.25) 

Here 'lf is given by, 

P (0)(10 
- E-C-4'+ ehf 

1.4, Calcul4tion of Pseudopotential: 

... (1.26) 

If a system has a Hamiltonian involving an energy 
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dependent potential, we follow Soven48  to derive the 

expression for the densities of states. The out-going 

Green function, G in this case is given by DidS-E211(E)]-1)  
where El(E) is the formal eigenvaluecf the energy dependent 

Hamiltonian. The potentials are chosen to ensure En(En)=En. 

Explicitly we want the quantity E 8(E-En) while we actually 
n 

calculate 6(E -EIVE)). But since Eila(En): Ero  with the 
n 

use of the identity. 

8(f(E)) Ift(E)1EmE  = 8(E-E0 	 ... (1.27) 0   

where Eo is the zero of f(E) (i.e. f(E ) 

aE4 

o(E-En) = o(E-Eiti(E))(1 -se). 

we have, 

... (1.28) 

The density of states is, therefore, given by, 

• Al, 
p(E) = 1: 6(E-E ) n - 1 57 Im1D+is-To(E) n 	a 

dEt, 
-u 'In TrG(1----14-). a 

Using similar arguments we establish a relation 

between the density of states for each sub-band of pure 11 

and pure B crystals. We have a pure A crystal Hamiltonian, 

Ha(i.), and the Bloch eigenstates firs(-1.), satisfying the 

Schrodinger equationl  

E(1')0if(5) = Wk%f(r). 	 ... (1.30) 

... (1.29) 

The paeudopotential Vf (E) is diagonal in Bloch represent-

ation. So the eigenstates of crystal B are the same Bloch 
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functions as those of crystal A but their energies are 

changed. 

HBMOTtf () % (HA(5)-Fvf (E))0 f (5) 

(Orevi(E))L,(5) 

= Efif62f(5" 
 

(1.31) 

The eigenvalues of pure B crystal, E are thus related 
to the eigenvalues of crystal A by the relation) 

• 

Era. 	Vf(Ertf) 
 ... (1.32) 

Now the pure A and pure B densities of states are defined 

as, 

(E)  8(E-Etf)1 	 ... (1.33a) 

(B) m I 6{8-Bni). 	 (1.33b) 

Making use of the identity (1.27)) we can write, 

(t) = E o(E-Ercf) 
2 

E gE-%-yE))(1- 
aV(E) 

... (1.34) 

where E f ts are the zeros of the function f(E) 0E-C f-Vf(E). 

Using the definition (1.33a), we have from (1.34)1 

OV (E) 
(E) = P (E-V

f  (E)) (1-  ... (1.35) Af  

Substituting X = E-Vf(E) in (1.35) and integrating from 



-CO to +00 

 

oo  co 
PB1  (E) dE =  P A4, (X) dX. 

- 

 

-oo  
oo 

 

... (1.36) 

If the bottoms of A and B bands are respectively at 

Elf  and E3f/ 

V (0) n EBf-EAf 
 ... 01.37) 

Other values of Vf (E) are then obtained as; 

fPBf(E)dE 

EBf 

-V(E) 
, P (4dX. 

E
lf 

• • • 1.38) 

Vf  (E) is thus completely determined from the knowledge 

of the electronic densities of states of the two consti-

tuents. For all the energy measurements we assume the 

energy zero at the bottom of the s-band)  which we take 

as common for both A and B. 

2.5 Total and Partial Densities 'of States: 

We shall adopt two approaches to calculate the 

total densities of states. 

(i) In the first approach (hereafter referred to as 

approach(i)) we calculate the contribution from each 

individual sub-band to the total density of states. 

For an averaged medium;  eqn.(1.29) enables us to write 

the alloy density of states for the fth sub-band as) 

Vf, (E) 
Pf  (E)  -(7r1i)-1  ImTr <G(E) (1-  >  (1.39) 
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Decoupling of the configurational average simplifies 

it )  

Pf ( ) 
_c3 aVEf  ) > a  

enki) -1  Ira Tr <G(*<1- 	... (1.40) 

Our mean crystal consists of a potential Eicl- cVi(E) 

on every site, so that (1.40) may be written as) 

E) 
Pf (E) = -01ND -1  Im. X (nflO(E)) Inf.> (1-c 

alV 
 

... (1.41) 
<G(E):> is approximated by G introduced in Eq.(1.14). We 

can then write Eq,(1.41) as 

dV,(E) 
Pf (E)=-(1H) Im Ff (1-c OE 	)' 	... (1.42) 

where N is the total number of states in the system.The 

validity of the decoupling employed above depends upon 

the magnitude of IdVi(E)/dEl. It is valid if IOITI,(E)/oEl)  

is much smaller than 1. 

(ii) In the second approach (hereafter referred as 

approach (ii)) we calculate the contributions of A and 

B to Pf (E). For calculating the partial (component) 

densities of states we definejel  andUe as the Hamiltonians 
of the systems in which in an otherwise averaged,  medium 

one site, say 0th is occupied by an A or a B atom. In 

our formalism the two are related by 

AB 	+ V(E). 

Ifj4(Y)  be the projections ofaA(B)  on the f th  sub-band) 



they would satisfy the relation, 

B 
f f 	 V  f (j'j

p  

The partial densities of states are given by, 

OM 
ISIS 

lv 

< 0 (E+iS-gt 11.) "1  10> , 	.0. (1.43a) 

av,(E) 
c a <01(E+is- ) 110> (1— 	(1.4313)aE  

where m indicates the m-fold degeneracy of the f th  sub-

band. For Cu-Ni systems m is 3 for t2g symmetry and 2 for 

e symmetry. These partial densities of states may be 

evaluated in two ways. In the first method as shown by 

VKE,7 we write for A-component: 

in-•(1-c) Im  	 ... (1.44) 
1-4 - 

In the other method we borrow the following expression from 
4. KVE, 6  

p( 
 
A)  (c  EB) 	Im E (0"f-CB) Tc 	 f 

Both formulae may be used in any single site theory but 

they yield different results and only (1.45) satisfies the 

natural condition, 

	

(A.) 	(B) 

	

Pf = P(A) 	P(B)  , (1.46) 

With the help of eqn.(1.3b) and the analogy with eqns.(1.44) 

and (1.45)1 the corresponding formulae, for the partial 

density of states for the B-component according to) t,hese...  (1.47)  

first and second methods are respectively 

• f  aV(E) 
PP)m % c Im {  1(1   

1-4 - 01Jf  8E 



-44° 

P (p) .0 Ire 1711u. (F44)-1  Imr(Oi-epyj(l- a;r(E)  ). 
... (1.48) 

When we use Tfrom eqns.(1.21) and (1.25) based on the 

two self-consistent methods)  the formulae written above 

for the two methods become identical. So either of the two 

may be used in the present calculations. 

After having calculated Pf ls either through (1.42) 

or through (1.45)) (1.48) and (1.46))  it is important to 

examine which of the two procedures is more rigorous for 

calculating the total density of states) 

P E f 	 ... (1.49) 

Calculations through (1.42) involve a decoupling in 

averaging, whereas, the calculations through the approach 

(ii) Eeqns.(1.45), (1.48) and (1.46)] dr not involve any 

such approximation. Obviously the approach (ii) should 
( be preferred. Denoting PfA)  Is) calculated from the approach 

( (i) and approach (ii) by) P(A)(i) and Pf
A)  (ii))  we find 

the difference in their magnitudes as 

Pf(A)(ii) - Pf (i) - —c — t 0.-c 
(A) . - m Vf(E) 	3'f  - 	gm 

7t aE 	
, 1-(4-oif 
Ff 	

1:3 • im 	, , 
1-(Cf'-0-)F f 14' 	... (1.5o) 

For CPA this difference is zero. CPA does not distinguish 

between the two approaches as it does not deal with an 

energy dependent part and we do not have to introduce the 

and 
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decoupling approximation of the type used in eqn.(1.42). 

2. COMPUTATION Aup DISCUSSION OF RESULTS 

We studied the density of states for CuNi alloys 

using the model Hamiltonian for the d-d block derived 

in Section 1.2 . This model for the d--bands incorporates 

the effects of hybridization and takes into account the 

orbital degeneracy. For this system in Eq.(1.9) f 

describes the d-orbital symmetry which is t2g  for 
f = 112,3 and eg  for f = 4,5. The inputs for the calcula-
tions are based on the data provided by the calculations 
of SWF.47. The components of Cu and Ni densities of 

states have been illustrated in Figs.5(a) and 5(b). 

As mentioned before we assume that the s-p band remains 

unaffected by alloying, and we dwellinre on the total 

and component densities of states for the d--band only, of 

the alloy. The input parameters for Cu and Ni have been 

tabulated in Table 1. The eg  and t2g sub-bands have 
common atomic potentials for both Cu and Ni. 

The pseudopotentials belonging to each sub-band 

are calculated from eqn.(1.36). The mesh for Cu-densities 
of states consists of 77 points spread at a regular 

interval of 0.0061 Ryd. and for Ni it consists of 103 

points spread at an interval of 0.0050 Ryd. The pseudo-

potentials for the t2g  and eg  sub-bands have boon shown 

in Fig.6 by broken and full lines respectively. In order 

to evaluate the derivatives of V
f(E) a  we use their values 



available to us at points at intervals of E equal to 

0.0061 Ryd. For calculating the derivative at a certain 

energy point El  a second order polynomial is fitted at 

three points: the point E under consideration and its 

two nearest neighbours. In order to make sure that we 

have a fairly reasonable value of the derivative by 

this method) we calculated the derivative at a few 

points by using points successively upto nearest) upto 

next nearest and upto next-next nearest neighbourhood and 

found that the values of the derivative differ only at 

the third place of decimal. 

Having obtained Vf  (E) for t2g  and eg  bands )  the 

self-consistent equations (1.21) and (1.25) are solved 

with the help of eqns.(1.22)) (1.23), (1.24) and (1.26). 

The difference in the value of ENi  for the two sub-bands is 

sufficiently sma1147)  so ;fiat we take it ;o be the same 

for both t and e bands and obtain two sets of CCu's 

with the help of eqn.(1.23). For calculating 14is's from 

(1,24) and (1.26) we use PNif(E)Is for Ni rich alloys 

and PCuf(g)ls for Cu rich alloys. In order to take 

proper account of the degeneracy of t2g  and eg  bands we 

normalize the corresponding electronic densities of 

states to 3 and 2 respectively. The areas enclosed by 

the t2g  and eg  densities of states curves of Cu and 

Ni are given in the table 1. In Sec.1.3 we had discussed 

the two self-consistent methods to evaluate the self-

energies. In one we obtain Ort's from (1.21) and in the 
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other eqn.(1.25) is used to calculate 0-. The self-

consistent equations (1.21) and (1.25) have been solved 

iteratively using Newton-Raphsonts method (for complex 

variables here). The integrals (1.24) and (1.26) are 

evaluated by Simpsonts rule. The iterations are seen to 

converge quite rapidly. These self-energies are then 

used to calculate the t2g and eg  components of the density 

of states from (1.42) and also the partial densities 

of states for the sub-bands using (1.45) and (1.48). Then 

use is made of (1.46) and (1.49) for calculating the total 

d-band densities of states. Figures 7-12 show the results 

of our calculations of the total and partial densities 

of states for d-bands, P(E)2 P(Cu)(E) and P(i)(), through 

the two self-consistent methods di-s,cused above for the 

alloy vysteLls possessing the :Donowig atomic percentages 

cof-  Ni : 13% a, 237. 	61'4 	81% Ni and 

89% Ni. The P(E)Is displayed in these figures were cal-

culated from the partial densities of states Ei.e. the 

approach (ii) band not from (1.42). We have compared the 

density of states curves calculated by us with CPA calcula-

tions of SWF47  and the experimental results of Seib 
and spice/ALE 145 In all the figures P(E) is given by the 

the full line p(Cu)(E) by the dashed line and P(I)(E) 

by the dotted line. The CPA results of KVE and SWF follow 

as a special case of our formalism in which all the Vf(E) ts 

reduce to a constant value, the 6-parameter (5=CA-CB). We 
did verify this by replacing Vf(E)Is by 0.1340 Ryd. and 



then calculating the density of states for 13/. Ni composi-

tion. The results based on the two self-consistent methods 

are shown in Fig.13. The results from the first method 

(Eqn.(1.19)) are almost the same as thoseof SWF. The second 

method) which uses the same 0-  for both the sub-bands t2g  

and eg  shows slight differences in the structure of the 

curve and the peak positions are shifted to the lower energ-

ies by a small amount (about 0.0095 Ryd.). 

Comparison of our results for densities of states 

and those of SWF reveals that the shapes of P(E) curves 

from these two calculations, are different spec:Lally for the 

majority bailds of Cu-rich alloys .Our calculations show lot of 

structure whereas the density of states curves calculated 

by SWF are comparatively smooth. But the densities of 

states curves calculated here for Ni-rich alloys) 81 at./. 
Ni and 89 at. */. Ni are almost similar to those from calc-

ulations of SWF)  only that the structures are a bit more 

pronounced in P(E.) calculated by us. This may be understood 

from the conclusions reached by SWF in their analysis that 

Cu-rich alloys are very sensitive to change in 8) as 

8  [:"CNI-CCu--] increases from 0.0) and this is not the case 

for Ni-rich alloys. The Stater-Koster49  criterion for the 

formation of an impurity level leads us to see that the 

values of S required to split off an impurity level from 

the bottom of the Ni d-band and the corresponding value 

to split off an impurity level from the top of the Cu d-band 
are 0.42 Ryd. and 0.07 Ryd respectively. Our energy dependent V(E) 
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(corresponding to 8) assumes the values in the range of 

0.02 Ryd.'-0.14 Ryd. One could, therefore, expect the 

structures shown for Cu,-rich alloys and their sensitivity 

to V(E)4 

Both the self-consistent methods lead to quite 

the same structures in densities of states. In the second 

method (Eq.(1.25)) the structures are not as sharp as in 

the first one (eqn.(1.21)). This relative rounding off of 

the structures in the second method becomes less noticeable 

with increasing Ni-concentration. The peak positions in the 

two methods are nearly the same. The second method based on 

a common self-energy for both the sub-bands is simpler to 

implement compared to the first method where we assign a 

separate self-energy to each sub-band. The likeness of the 

curves in the two methods is interesting in the light of 

the fact that computer time required for calculating P(E) 

for the second method is almost half of that required for 

the first. 

An important difference between SWF and our calcula-

tions for 13 at./. Ni and 23 at 1. Ni alloys (Figs.7 and 

8 respectively) is that in SWF calculations the three 

main peaks of the host band (marked 2,3 and 4 on the 

graphs) follow descending" order for their heights, whereas 

our calculations show just the reverse for both the Ni 

concentrations. Also the height of the 4th peak in the 

host band is almost double in our case as compared to 

the SWF calculations. The impurity band in our case is 



slightly broader than in SWF calculations. In our 

calculations with the second method (eqn.(1.25)) some 

structures show up in the impurity band and these are 

absent when we use the first method (eqn.(1.21)). These 

structures appear near the top edge of the impurity band 

and may be suggestive of the trend to build up the top 

peak in the pure Ni density of states. 

These features regarding the differences in 

structures in densities of states calculated by us and 

SWF' may be qualitatively understood, with the help of the 

imaginary part of self-energy. For 13 at. Y. Ni alloy, the 

imaginary part of self-energy has been plotted in Fig.l4. 

Figure 14(a) shows it for the present coherent pseudo-

potential approximation and Fig.14(b) shows it for the 

CPA. The solid line curves belong to the first method with 

dotted line curves and dash and dot line curves showing 

respectively the eg  and t2g band contributions to the total 

golf-energy. The broken line curves belong to the second 

method (an average self-energy for each sub-band). The Imo-

is proportional to the life time of the electronic states 

in disordered systems. Comparison of Figs.14(a) and 

14(b) show that in the region where Imo is significantly 

large, it is larger in CPA than in our case by almost a 

factor of 2. This implies that compared to our calculation, 

CPA should show more of the rounding off of critical point 

singularities in the density of states. The two methods, 

eqns.(1.21) and (1.25), show little difference in 'mar for 

lo g‘.3 
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CPA in the region where impurity band occurs. This feature 

also showed up as additional structures in the impurity 

band obtained through eqn.(1.25) as compared to that 

obtained through eqn.(1.21). 

Our calculation takes into account the forms and 

the widths of the densities of states of both the consti-

tuents based on band-structure calculations, The input 

densities of states used here are shown in Figs.5(a) and 

5(b) instead of densities of states in Fig.5(c) which 

were inputs of SWF calculation. Almost complete indepen-

donee of the location of high energy edge in the majority 

band on Ni concentration in Cu rich alloys is conspicuous 

both in our case as well as SWF calculations and also in 

experiments. The gradual erosion of the high energy peak 

in the Cu band as Ni is added is seen in SWF and also in 

our calculations with the difference that for 13 at. 74 

Ni alloy this peak is very prominent in our case whereas 

in SWF calculations it is not so prominent. 

For comparison the optical density of states (ODS) 

plots calculated from the electron distribution curves 

(EDC) of Seib and Spicer44145  using a non-direct transi- 

tion model)  have been given for 13 at. 	Ni and 23 at. Y. 

Ni alloys. For the rest of alloys EDCts4)45  have been 

reported. The EDC for 38 at. 	Ni alloy is for an incident 

photon energy of 10.2 eV and the rest are for an incident 

photon energy of 10.0 eV. The peak positions of the promi-

nent peaks deduced from the experimental,SWF and oux 
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calculated curves have been displayed in table 2 The 

peaks have been numbered as 1,2)3)4 and 5a aid this 

identification is shown in figures. This assignment is 

arbitrary and has been made to locate only those 

structures in calculated density of states which appear 

to correspond to the structures in the experimental curves. 

The disagreements among the calculated and measured curves 

should be taken in the light of the fact that the inter-

pretation of photomission measurements is not very clear. 

In particular the relationship of EDC's with density of 

states is quite ambiguous. In general the agreement of 

the peak positions from our calculations with the experi-

ment is good except for a few peaks. Of all the alloy 

compositions) the SWF calculation for P(E) for the alloy 

61 at 	Ni (Fig.10) shows worst correlation with the 

structures in the experimental RDC. On the other hand the 

three main peaks in EDC for this alloy are in good agree-

ment with those obtained in our calculations. This is 

expected because SWF and KVE calculations incorporate as 

input only Cu density of states for Cu rich alloys and 

Ni density of states for Ni rich alloys )  so that the 

calculations tend to become inaccurate as the two consti-

tuents appear in comparable compositions. In our case the 

use of . the energy dependent pseudopotential enables us to 

incorporate the change in density of states as we go from 

pure A to pure B(through Eqn.(1.38)), our calculation should 

be much better than SWF or KVE calculation for alloys 
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having 5(Vat.7.Ni. As stated earlier we automatically 

go from pure Cu to pure Ni density of states in our 

calculation when we change Ni concentration in the alloy 

from 0 to 100 at. % This has not been done in an ad hoc 

basis as in earlier CPA calculations. 

Figure 15 shows the total density of states and 

its t2g  and eg  components for 77 at. 	Cul  23 at !/. Ni 

alloy calculated through the approach (i) mentioned in 

Sec. 2.5. Comparison of Fig.15 with Fig.6 shows a major 

difference in the impurity band. In Sec.I.5 it has been 

proved that the method involved in the Fig.15 is less 

accurate than that involved in Fig.6 and this is revealed 

in the calculations plotted in Fig.15. There the height 

of the impurity band appears to be underestimated by a 

factor of about 2;  though the width remains the same. 

Figure i6 compares the t2g component of total density of 

states for 23 at..3/4. Ni alloy as calculated through appro-

aches (i) and (ii) within the schemes represented by 

eqns.(1021) and (1 25). 

Recently) House et.al.5o have completed a CPA 

calculation for a cluster of muffin tin wells by applying 

the methods of scattering theory. With a 13-atom cluster 

they calculate the densities of states for pure Cu; 10 at. 

*/. Nil 90 at.-*/. Cu and 10 at.,/. Zn, 90 at.'/. Cu alloys. 

Their density of states for Cu is shifted downwards on the 

energy scale by about 0.05 Ryd. as compared to the density 
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of states calculated by St)cks et.al.,4-7  shown in 

Fig.5. Consequently their alloy density of states is also 

shifted downwards on the energy scale by about the same 

amount as compared to the density of states functions for 

13 at.'/. Ni alloy reported in this work For comparison 

their 10 at.°/. Ni alloy calculations have been shown with 

our 13 	Ni alloy calculations in Fig.17. Their plot 

has been pulled to the higher energy, so that the major peak 

in the main band falls around 0.5 Ryd. The agreement is 

good and a significant feature is that the high energy 

peak (--0.5 Ryd.) in Cu is enhanced in magnitude by about 

25,/. when 10 at.'/. Ni is added. Our calculations also 

exhibit this feature, whereas CPA shows a damping of the 

same peak by an amount of 25 J. . The ratio of the intensities 

of the impurity peak and the high energy peak of the main 

band ib 1/8 in cluster calculations as compared to 1/5 

in our calculations. 

Above discussion suggests that the method requires 

a precise calculation of V(E)ts done with a reliable 

integration scheme and that too using extrapolation of 

densities of states at a narrow grid of energy. The 

Simpson's rule (for integration) used by us with the grids 

of 0.0061 Ryd. and 0.0050 Ryd. for Cu and Ni respectively 

may not be very reliable in the regions where steep rise 

and fall are occurring in the densities of states. In the 

light of this weakness of our calculations, the good 

agreement with experiments indicated in table 2 indicates 
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that the method is promising. 

To sum-up the Chapter we indicate that within the 

coherent pseudopotential scheme we can have three self-

consistency requirements in order of austerity. In a F-band 

formulation=  a single-site, single-band approximation yields: 

(i) (tnf> tt 0 (each sub-band has a separate self-energy) 

(ii)</ twp
'

> tt 0 (all subbands have a common self-energy) 

And in a single-band formulation, a single-site approximation 

requires, 

(iii) Ktn> = 0 (this is within pseudopotential scheme hence 
different from CPA). 

In addition to the calculations using (i) and (ii):  we also 

performed calculations using (iii) 5l  and found that if one 

is interested in the essential features of the density of 

states, it is not necessary to complicate the calculation 

by incorporating subbands. The experimentally found density 

of states (photo-emission) available for comparison with 

calculations, possess extremely rounded-off structures and 

depict only roughly the peak positions. As long as this 

requirement goes, (iii) yields as good results as those 

obtained from (i) and (ii). This finding is important in 

the light of the fact that the computer time required for 

(ii) is almost half of that required for (i) and for (iii) 

it is again almost half of that required for (ii). For 

comparison we have plotted in fig.18 the pseudopotentials 
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for e nd t2g subbands and within the single band theory. 

The densities of states for 62 at.Y. Cu, 38 at o'/. Ni alloy 

obtained through method (iii) are shown in fig.19(a), along 

with the same obtained through (i) and (ii) as shown in 

fig.19(b). The main features are retained in all the methods 

with negligible changes in peak positions. 

CPA follows as a special case of our method [replacing 

V(E) Is by -0.134 Ry(= E
Cu-

Elli):). With this replacement 

in CPA also we have three self-consistent methods parallel 

to (1), (ii) and (iii). The densities of states in CPA for 

87 at.'/. Cu, 13 at.',/. Ni arc shown in fig.20. Da) gives 

those obtained through (i) and (ii) ,J. This leads to the 

same conclusion as made in the preceding paragraph. However, 

the comparison of our method with CPA shows that the effects 

of the difference in the shapes of the densities of states 

of the constituents are more important. 



-57- 

TABLE 1 Parameters relevant for 
calculations 

Parameters Nickle Copper 

EF 

AREA(eg) 

AREA (t
2g

) 

0.4418 Ryd. 

0.6740 Ryd. 

1.97 States/ 
atom. 

2.91 States/ 
atom 

0.5760 Ryd. 

0.6800 Ryd. 

1.72 States/atom 

2.65  States/atom 



TABLE 2. Positions of the prominent peaks in the densities 
for six alloy systems. Comparison has been made for 
results based on calculations with eqn.s...21) and 
0:25) (indicated as methods I and II respectivel), 
CPA and the photo-emission experiments of Seib and 
Spicer .4444 

Composition method 1 
Peak Positions (Rydbergs) 

1st 	! 	2nd 3rd nth fth 

87 at.'/. Cu) I 0.4000 0.4427 0.4732 0.4976 0.6074 
13 at...4 Ni)  II 0.3939 0.4427 0.4732 0.4976 0.6074 

cRt. 0.3923 0.4533 0.4771 0.5229 0.6045 
EXPT. 0.36 0.43 0.49 0.51 0.61 

77 at  Cu) I 0.4122 0.4424 0.4610 0.4915 0.6071 
23 at.% II 0.4183 0.4485 0.4671 0.4976 0.6071 

CPA 0.3295 -  , 0.4624 0.4941 0.6241 
EXPT 0.38 0.44 0.50 0.62 

62 at.% Cu, I 0.4183 - 0.4671 0.4970 0.6196 
38 at.'/. Ni II 0.4183 - 0.4671 0.4909 0.6257 

CPA 0.40762  - 0.4757 - 0.6400 
EXPT. 0.43 - 0.49 - 0.62 

39 at.■!  Cu)  I 0.4000 - 0.4671 - 0.6623 
61 at.'/.  Ni II 0.4000 - o. 610 - 0.6684 

CPA 0,3694 - 0.5523 - 0.6489.  
EXPT. 0.37 _ 0.52 _ 0.66 

19 at.'/. Cu)  I 0.4183 0.5525 
_ 

0.6074. 0.6562 
81 at.V. Ni II  . 0.4183 0.5586 _ 0.6134 0.6623 

cpa 0.3923 0.5617 -- 0.6136 0.6648 
EXPT. - 0.52 - 0.66 

11 at./: Cu) I 0.4122 0.5403 0.6196 0.6745 
89 at.V. Ni II 0.4183 0.544 - 0.6074 0.6684 

CPI. 0.3910 0.5502 - 0.6045 0.6631 
EXPT 0.39 0.51 -- 0.67 
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CHAPTER 4 

Cluster Effects in 

Disordered Systems 
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This chapter is concerned with the generalizations 

of coherent potential approximation to include the 

effects due to clusters, as indicated in Chapter 2. The 

CPA has been generalized in numerous ways52 to include self-

consistently the two or many site scatterings. The methods 

involving multiple scattering theory are due to Cyrot-

Lackmann and Ducastelle53) Schwartz and Ehrenreich54 

Cyrot-Lackmann and Cyrot552 Vipin and Joshi56) Foo et.22,58  

Horiguchi et .a1.59 'and vCapek.6°  A method involving 

generalized mean field theory has been given by Ducastelle. 

A diagram technique has been introduced by Aiyer et.al.63 

and Nickel and KrumhansA4  Some other attempts have been 

given in references 65-71. There are also some attempts due 

to Brouers et.a1.72'73  and Butler7  which treat clusters in 

the spirit of single site approximation centring attention 

on a single site and taking local environmental effects 

of the nearest neighbour sites. 

The CPA treatment is the unique self-consistent single 

site method. But there is no unique way to generalize it 

for clusters, We have made a critical study of this non-

uniqueness) to examine the subtle differences in their 

derivations: in the decoupling schemes involved in them, 

their calculational details and finally how all these 

methods may be linked together. This helps in seeing how the 

calculations in a method may be made tractable by taking 

clues from alternative approaches. For the sake of simplicity 

we look at the case of pairs only. All the arguments can be 

61,62 



(3) - (nn1)+•• • 3.) 
4100 (1.5) p 

.6o 

generalized for higher order clusters. 

1. cimuJuAgp4;oN CF CFA 

The properties of a disordered system represented by 

a Hamiltonian H are determined by replacing it by an ordered 

system (reference) of Hamiltonian H and then treating the 

difference between the two as perturbation. The reference 

medium is the one in which at every site a self-energy 

matrix 	(4 is placed. The scattering in the system is 

governed by a.scattering matrix 

I-V G 

G 	(ZI-H)-11  V is ,j-eff ... (1.2) 

The aim is to solve the Dyson equation.  

	

'(G). = G ÷ G :<G 	 ... (1.3) 
i.e. to determine > 1  whichl  as we have seen in Chapter 24  

is done self-consistently by putting 

< T>= 0 . 

The problem becomes convenient in momentum representation 

so that one must go back and forth from coordinate to 

momentum representation according to: 

L 
	

L 
r(1) 	 ! -(2) 	 2  72  1 >-(3) ( ) 	• (nn) 	. • ( 

m 	. 	P m 2 '`p lm 	+.... 

.R El.,(2) (m)  + 
m 



nm 
and /G \. _ 1 

nm/ (270' d - 
... (1.6) 

The various terms on the right hand side describe the 

contributions from single site, two sites, three sites 

etc, and will be described in more detail later. The primes 

on the lattice sums indicate that no two indices be the 

same, 

It is impossible to solve (1,4) exactly using all the 

terms of (1,5). T is therefore expanded in terms of the 

single site contributions to it (cf. eqn.(1.12) 

• 

of chapter 2): 

T =S Tn y 	-.tn,1 	im+  
n m n 

Vanishing of (T,> implies <Tn\,) = 0, which in the SSA 
decoupling scheme reduces to On>: 0 (the CPA condition). 
In CPA is taken to be ce.1 localized (i.e. (1.5) is 

truncated at the very first stage., Z = I 2(1)(n)1  where 
n ,-(1) L (n) is site diagonal)4  so that Vn  is cell localized and 

consequently to  is site diagonal. 

To extend GPA, Z, should be taken to be non-diagonal. 
Restricting to the case of pairs only, the self-energy 

E, can be broken in terms of the various contributions 
to it in two ways. 

(A) Contributions from single sites and from pairs of 

various separations., i0e0 

= .1(nn)+ rZ T  2:(2)  (nm) e 	nm 	
... (1.8) 
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(B) Z(nn) may be further broken in two parts )  one 

giving the contribution wlm electron comes at n and 

gets immediately reflected and the other belongs to the 

case in which electron comes at n and goes out of n after 

suffering intermediate scatterings between n and all other 

m's 	i.e. 

:(1) (n) 	(nn).1. 	E(2) (m) e"nm 

m rn (1.9) 
If in a system there are (17-1) pairs of different 

separations) then for the evaluation of the effective 

medium)  (A) has N and (B) has (2N-1) unknown variables. The 

self-consistent equations for their calculation are obtained 

as follows. We will briefly review three main approaches to 

the problem. 

(a) 	proach: 

The t-matrix expansion (1.7) is written so as to 

involve one site explicitly as 

T 	+ t 	E n n -n ion  

and two sites explicitly as 

Tn  tn  + tn  Tm  + tn  1.6  - - -- 
Tm  t + tGm  fd  Tn  + tm  G E T — 

(Xm'n 

(1.10) 

... (1.11a) 

(1.11b) 

In (1.10) the influences of all m('n) over n have been 

summed and we will call it the 'single site framework', In 

(1.11) the influences of all £ (in,n) over the pair of sites 
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m-n have been summed and we will call it the !two site 

framework'. We will derive two self-consistency conditions 

within these frameworks. 

(i) Two site framework: The solution of the coupled equa-

tions (1.11a) and (1.11b) is 

Tn  = t
(2) 

(m)  + G  2f) ; — —n 
KF'm 2n 

where  t(2)  (m)  t (I+a tm  )(I-tn 
 G Z1- -1  

—n  — -- 

= t t Gt +t GtGt+. —n—n--mrr--mr--n '8' 

... (1.12a) 

(1.12b) 

If (1.12a) be averaged over all configurations of n and m 

and the average on the right hand side be decoupled to iso-

late the pair scattering matrix from the effective wave 

incident on the pair) then the general self consistency req-

uirement (<'Tn> = 0) yields,
56  

< t(2) (n) > 0 0 for all n and m,  ... (1.13) 

i.e. on the average the scattering from n and all the multi-

ple scatterings between n and m of an electron entering 

either through n or m but emerging out of n only, together 

go to zero. This is required for all pairs of any separation. 

Since we can discriminate between the situations in which 

electron enters at n, or m for-each specified pair, (1.13) 

should be capable of calculating the corresponding cont:ci 

butions L(2)  (nn) and I(2)(nm) separately. The (2N-1) elements 

of (1.9) are calculated from the following equations, 



‹ , 
n Ltn+tnGt inttng .traltn+ ... 14 = 0 [ (N-1) eqns 	

• 	

(1.14a) 

‘n itn+,1-5tta+1;:rq 	In+.-LnZit 	tn-Z 	I 4 - 

	

[(N-1) eqnsa )  

• 	

(1.14b) 
(nlIn(r4 = 
	 eqn3 	... (1.11+c) 

Equation (1.111.c) is obtained as a special case of (1.13) in 

witch n and m are infinitely distant. The atomic t-matrix tn, 

is defined as, 

t 	  ; -n 	(In 	)G (1.15) 

and is different from the one used in CRII because now the 

site n is influenced by the other specified site m. The 

information of all nits is contained in G., which is a function- 

al of full 	. En  is the site energy matrix. This method yields 

12 exact moments of density of states.62  

(ii) Single-Site Framework: Instead of treating each pair 

individually, if we introduce (1.12a) into (1.10), we get 

2n  = (111:1140.  .t  (n) ) (1 +  2z) ;  ... (1.161 
mn 	 ra ln 

which after usual operations yields a self-consistency condi-

tion., 

to  + to 	 )› = 0) 	 (1.17a) n 
or 	÷ 	t G t +t G t t-n- -m- -n > n - xr. -m -n -n  
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i.e. the scattering from n and multiple scattering 

corrections due to all m(Xn) in the system go to zero 

on the average. By the nature of (1.17) it is clear that 

if the electron is incident at n2 then before it goes out 

of n2  the multiple scattering corrections due to individ- 

ual ,m(= n() 	can not be distinguished. Hence the contri- 

butions :(2)  (nn) due to individual m can not be sieved 

out:  and all such scatterings together contribute a single 

term, Z(nn) ( m::(1)(n) -1-'2:t
'
(rn)). But if the electron 

m 
is incident on m 2  then the multiple scatterings before it 

leaves through ncan be distinguished. It follows from 

the fact that (n1 	I Zcity/ Im;- = 
f=m,n 11-  

(1.17b) allows multiple scatterings 

0, because with n fixed )  

only between n and all 

other mts and not between ((n) and rats. Therefore G is a 

functional of N elements in (A)2  which are determined 

from the following equations, 

// -6  n xr- 	In+' •) 	0 [1 eqn.] 
... (1.18a) 

LInk1 A  In71-•"1 > = ° E (N-1) eqn3': 
(1.18b) 

This method yields 11 exact moments of density of states.62 

Cyrot-Lackmann and Cyrot55  have made a remark on 

(1.17) that it does not treat all the pairs in the system 

equivalently because an atom being fixed at nl all possible 

pairs n-m are properly taken into account but pairs m-41  

with kin, are not correctly described. We see that this 

argument is not right. The choice of n is random and in (1.17), 



T +T = (t(2)(m)+t(2)(n))(I-Fa -n -m -n  -m  m3n 
E t (2) (n)m) (I+G  Te) . ... (1.19) 

the sum has been taken over pairs of all possible separa- 

tions from n. It is only the different separations between 

the two sites of the pair that give rise to the various 

contributions to L. Rather it seems that the sites of the 

pair are not treated equivalently while considering the 

scattering from the pair in both (i) and (ii). One of the 

two sites is given special treatment ly requiring the 

effective wave to emerge out of it only. This incongruity 

is trivial from numerical calculational point of view. However, 

it is simple to avoid it also. Adding expressions for Tn  and 

Tm  of the type (1.12a), 

To elaborate a little further )  (1.19) can be written in a 

symmetrical form as 

T n -m +T = t(2)(n,m)(I+G  (T +T )); - 
i2P  -P 

(Yri,m) 

... (1.20) 

the sum extends over half the sites because a pair n-m 

(or X-p) got specified would mean that fixing n(or X) 

would fix m(or p) also. The eqn.(1.20) is thus in terms of 
identical and disjoint pairs. Averaging (1.20) and then 

decoupling of the average gives the self-consistency 

condition, 

(...t (2)(n)111)> r- 0 	for all n and m, 	... (1.21) 
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t(2) (n2m) is the pair t-matrix and includes all the 

multiple scattering terms in which the effective wave 

exits through n as well as m after being incident on n as 

well as m. Sites n and m are therefore treated symmetri-

cally. If (1.20) be iterated we get the standard multiple 

scattering series with atomic t-matrices replaced by pair 

t-matrices2 

Tn  +Tm  = t(2) (n2m) + t(2)  - - n,m) 
g m. (n )1( )(K213)  

+ t(2)(n2m)a / 	t(2)(K:10)Z/1' 	t(2)(q 2s)+... 
1:)(n2m) 	q :a= (p 2t) 

(1.22) 
It is not possible to get such a series from (1.12a). 

Conditions (1.13) and (1.21) are formally the same and make 

no difference in calculations. 

(b) Diagram Method  

For a particular pair the self-energy is broken 

as 
1(1) + :(2) 

(1)(n) 	0 	/ Y(2) rn  (nn) 
0 	:7(1)  (m) ' 	..1,(2) (ran) 

2(2) (ntn)  

;(1.2) (min)  

• (1.23) 
and following equations are solved simultaneously, 

1-(1)(n) E  `(1) (n) 	Gnn>3.2 

and g_T 

• (1.24a) 

O 0 0 (1.24b) 

Equation (1.24b) is solved for all pairs in the system 

whereas (1.24a) is the simple CPL condition. This method 

is essentially the same as (i) and the differences between 
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the two may be noted from the following. The self energy 

in (1.23) is broken as in (B);  but it follows from the 

text of Nickel and Krumhansl64 that when (1.24b) is solved 

for a particular pair; :(112)(nn)is and 7.:(2)(nm)is belonging 

to other pairs are completely ignored i.e. taken to be 

zero. Thus the Green's function is a functional of six 

elements of self-energy whereas in (i) it is a functional 

of full self-energy matrix. Because of this reason (1.24a) 

is different from (1.14c) contrary to the statement by 

Cyrot-Lackmann and Cyrot55  that they are the same. These are 

the subtle differences between this method and multiple 

scattering method and not the one pointed out by Leath75  

that the two methods involve self energy respectively like 

(B) and (A). Both; (b) and (i) take self energy in the 

form (B). 

(.c) Generalized Mean Field Method: 

This method goes parallel with the diagram method 

,. and ane assumes 2.2)  [77(2)(nn) ==.Cial 77(2) 	(2) c mm) 

‹n1 7(2)1MX] to be the same for all pis X m when going 

from Heff to Hnmf  Dinm  is the Hamiltonian of the system ef 
in which n and m sites have been excluded from averaging 

What 1(2)  is to be taken for all the pairs but the one 

under consideration;  is free to be chosen and choosing it 

to be zero like in (b);  is a special case of this method. 

In fact using some approximate suitable value for these 

terms is necessary because it is not strictly speaking 

possible to disconnect a single pair from the others and 
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the information belonging to these other pairs should 

be contained in an approximate way in G. 

It is important to state Leathts theorem75 at this 

stage. The theorem bridges the generalized CPA obtained 

through Bloch state expansion [i.e. (a) ] and locator 

expansion) and provides an interpolation formula from the 

virtual crystal to the atomic limit (not the split band 

limit as stated by Leath.75). The theorem states: the self 

energy as a matrix should be cluster diagonal)i.e. it does 

not have any non-zero elements 1(n)t) connecting a site n 

within the nxn cluster to another site L  outside the cluster. 

Besides merging the locator approach into the multiple scatt-

ering approach)  we see that it further merges (c) into (b) and 

also (i) into (b). Thus all the methods that use 25.  of the 

kind (B) merge to yield a single method )i.e. (b). The 

method (ii))  that uses 	of the kind (4) 1  is greatly simpli- 

fied with the use of Leathts theorem )  which eradicates the 

sums of the type t  ' 	hidden in (1.18a) and (1.18b) because 
p n)m 

of the specified m deciding (1.18b) .However) (ii) does not 

merge into (b)) contrary to what Leath75 has stated. 

So eventually we are left with two methods )  (ii) 

[simplified form] and (b))  respectively based upon 

of the kinds (4 and (B). It will be discussed in the next 

section that to make the numerical calculations tractable 

one has to take into account only the pairs of nearest 

neighbours. Then the formulation outlined under (ii) takes 

into account simultaneously all the Z nearest neighbours 



-70- 

of a pair, where Z is the coordination number, and (b) type 

formulations take into account only one such pair embedded 

into an averaged medium. It should be interesting to 

compare the detailed nature of density of states obtained 

through the two methods. Ducastelleis observation62  that 

(ii) has 11 exact moments of density of states whereas 

(b) has 12 2  makes it more interesting although a priorily 

(ii) looks to be firmer than (b). Using the approach of the 

type (ii) originally due to Cyrot-Lackmann and Ducastelle53, 

Moorjani et.al.78 have done density of states calculation 

for body-centred cubic lattice. We have attempted to do 

the three dimensional calculations using the (b) type 

approach for simple cubic lattice. 

1.1 Simplifications  For  Numerical-  Calculation: 

The calculations are still too tedius to be tract-

able if done for all pairs of all separations. However., since 

:(2)  decays asymptotically as (‹. Gnm> )31 one can expect 

only small Rnm  to contribute except possibly at isolated 

energies near band edges. So one ,canfurther simplify the 

calculations by doing them for few pairs of small spatial 

separations, and thus truncating the self-energy matrix 

after few neighbours. We have seen that the calculations 

for a single pair lead to heavy computation, so doing it 

for few pairs would multiply the amount of computation 

accordingly. It can be guessed from the fact that following 

""1:.:711,71T.',RSITY 
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the methodology discussed here, only one dimensional 

calculations have been done57/ 76277  so far. We report the 

results obtained by assuming a pair of nearest neighbour 

atoms embedded in an effective medium. Our aim is not 

to analyse the fine structures of the effective medium 

but to see the behaviour of diagonal part of Groenls 
-,m(2) function. Therefore, we do not isolate L 7 .(1) 	L (n) from 	(nn) 

and consider the sum of the two (I(nn) = :(1)(n)+:2(2)(=)) 

as the diagonal part of self-energy. This removes the need 

of solving (1.14c). We have to solve only two equations 

(1.14a) and (1.14b). The elaborated calculation of these 

two equations is discussed below. Weconsider bothldiagonal 

and off-diagonal randomness. among the other attempts to 

consider the off-diagonal randomness, two are due to Brouers 

and Van der Rest78 and Blackman et.a1.80'81 (hereafter 
referred. as BEB). They cast the off-diagonal disorder 

problem in a form suitable for single site averages. The two 
sets of authors respectively work within multiple scattering 

and locator approaches. 

To conclude this section we remark that for three 

dimensional systems there is no calculation for clusters 

consisting of more than two sites. All big cluster calculat-

ions done so far are in the spirit of single site approxi-

mation. Ducastelle82 has reduced the problem discussed in 

the preceding text by further neglecting the off-Thagonal 

matrix elements of the self-energy within a cluster., and 



-72- 

keeps a single scalar self-consistent equation. He 

reduces the Molecular CPA(iICPA) condition(tc) = 0 

	

:equivalent to KG>\ = 6] to <<G 	r' only, where 00>/ oo 
201  is the central site of the cluster 10. This approxi-

mation is called the central site approximation and has 

also been used by Butler662 Brouers et.al.:72273  and 

Tsukada.77  This approximation yields good results after 

calculations. Butler 76 has discovered that if the above 

thing is done for a site at the boundary of the cluster 

rather than for the central sites  then in one dimensions  

the single self-consistent equation obtained in this way 

is exactly equivalent to the MCPA. 

2. PAIR CATLCULATION  

The alloy effective medium may be written in terms 

of the diagonal (II) and off-diagaaal ( /2) parts of the 

self-energy discussed in (1.8)1 

lieff  = L(E)  in)- 	
' 

<nl+1,, 	
o 

	

(E) 	(2.1) n 	n 
n'm 

Here In> and Im) are the Wannier orbitals at the nth and 

mth lattice sites. Naming two nearest neighbour sites 

constituting the pair as 1 and 21  the perturbation equation(1.1) 

is expanded to yield T11  and Ta  as follows., 

V (V G +V G ) 

11 
21 11 12 12 22  V+ 
l-(V21G12+V22G22

)  - 
(V G +V G )(V G +V G ) 11 12 12 g2 21 11 22 21  1-(V11G11+V12G21)-  

T11 

1-(V21G124-1722G22) 



VII  = 

V
22 

 = 
c274-1 2  

V
12 

=‘V
21 

= hZ(1222). 

000 (2.4) 
000 (2.5) 
0 .0 (2.6) 

-73- 

- 
V

• 11
+N  

D 
V'21

4.(V
21
G
11
+V
22
G
21

)T
11  T

21 
= 
1-(V21G

12
+V
22
G
22

)  

- 
V

- 21
+A  

000 (22) 

... (2.3) 

 

B 

 

( T
11 

and  T
21 are diagonal and off-diagonal parts of In

2) 
 (m). 

The expansion of (1.1) takes the terms belonging to n and 

m other than 1 and 2 to be zero. The diagonal and off-

diagonal perturbations with respect to the effective medium 

parameters II  and h(1-  are are given as 

t and c
2 are allowed to tIce two values LA  and  andd h:  

the hopping integral can be ti :h.BB  and hlgmhBA= it(hAA+hBB) 

depending upon the occupancy of the sites of the pair. 
The particular form of hAB  is a simplification:  not a require-
ment. 

The self-consistency requirements<T11)>= 0 and <T21)= 0)  

yield two coupled equations in 2'1  and :=_72  to be satisfied 

simultaneously :  

<1/D> 

=1- <h/B) + <6,./B> 
11<1/B> 

... ( 2 :7) 

... (2.8) 



G11 - --1— 1- y2 LE. 
- El+6A  1-y2 

... (2.10) 

The averaging is done over the occupancy of the pair 1-2. 

The pairs A-A, A-B4  B-A and B-B occur respectively with 

the probabilities c2:  c(1-c)2  (1-c)c and (1-0)2:  where 

c is the concentration of A atoms. The diagonal and 

off-diagonal contributions to the medium Green's function 

are obtained as follows. The diagonal part is 

1 
7. 
k E 	(E) -hZs (k) D..-12(E) 

. 1 
	 1 	

(2.9) 
1- 2  k 

1-X2 
 ws(k) 

w = Zh:  where Z is the number of nearest neighbours. For con- 

venience if we take h = hthen the 'integral' form of A'  

(2.9) can be written as 

P(EI) is the unperturbed density of states of pure 

system and the integral runs between the band edges of 

P'&(E). For deriving the off-diagonal part of Green's 

functions  we proceed as in the localor formulation, 

G11 = g11 	g11W  12G  21 2 
 

where g11  = (2-21)-1' 1412 h(1-12) and 2 denotes the 

nearest neighbours of 1. So we easily get :  

.,. (2.11 



(E-7_0G11 -1 
G12 .7- G21  =7. 	 

Zh (15:2) 
... (2.12) 

Having obtained 13.  and Y2  from (2.7) and (2.8) )  the alloy 

density of states is given by 

P(E) = 	 (2.13) 

2.1 Component Density of States 

The partial density of states PA(B) (E) can be derived 

by defining the conditional averaged Green's functions, 

11G(A) (z)I1> 	Gil)  (Z) 

) 11><11 
11 

(1-2:2) 27 1 Y11)421111} 	... (2.14 ) 

and a similar expression for G(B) (Z), Z E E+10. 11 
After some transformations this can be rewritten, 

 

G11(Z) 

    

(Z-644-) C11  (Z) ,(Z:11)Gli(Z)-1}/(1-42  

G1  (Z) 

Z-cB)G11(Z)-hBBf(Z-24)G11(Z)-11/1hAA 

    

G 
11 

) (Z) 

  

• •• (2.15a) 

 

(2.15b) 

The partial densities of states are given by, 

. PACE) = -11 1  DAG(A)  (E+10), 11 ... (2.16a) 
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and PB(E) = 	m G(B)(E+i0). 11 	 (2.16b) 

These quantities satisfy the natural identity 

	

P(E) = cP (E)+(l-c)PB(E). 	 (2.17) 

2.2 Computation and Discussion of Results  : 

The self-consistent simultaneous equatiohS (2.7) and 

(2.8) have been solved with the required components cal-

culated from eqns.(2.10)9(2.12) and (2.2)-(2.6). Having 

obtained 2 and L2 iteratively from (2.7) and (2.8), 
component densities of states are obtained from (2.5a)-(2.6b) 

and finally the total density of states from eqn.(2.17). 

The parameters for which we performed the calculations are 

the following:5 = 0.4(=cATeB)9 cA(concentration of A atoms)= 

0.6 ; and 8 = 19 cA 	A 
O.I.=.. Flr 	= 	c = 0.6 we also studied 

the effect of off diagonal randomneSs)  taking hAA= 2hBB/3 

and 3hBB/2. 

For small 8(=0.4) we employed the simple iteration 

method to solve the twin equations in 73.  and 172, but for 
larger 8(=1.0) we had to use the Newton Raphsonts method 

for iteration. Although the latter method gives convergence 

at places where the former fails but the amount of computa-

tion per iteration increases enormously. Besides this 9  in 

the impurity band region the. convergence becomes very tough. 

About 45 to 5o iterations are needed even at very close 

interval of energy. The calculation is thus very time taking) 
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even on the IBM 360/44 computer. Another type of con-

vergence difficulty arises in the minority band region.At 

certain energies two different solutions are obtained 

depending on whether these energies are approached from 

higher or lower energy side. Similar difficulty has also 

been reported by Moorjani et.al.,78 

Figures 21 and 22 show the density of states respecti- 

vely for cA 	0.6) 5 1; 0.4 and C.A:; 0.128L:1.0. For 840.4, 

fig.21 shows very little and trivial difference between 

the pair calculation and the CPA result81(the B&B81 method 

reduces to CPA for no off-diagonal disorder). Figure 23 

quantifies the difference in terms of the off-diagonal 

coherent potential) 1,2. 129 which is zero for CPA) is 

only about 7% of YI  (if the maximum values of the two 

be compared). For larger 5('-'-1), i.e. stronger scattering case 

X, becomes very significant.  21 and /..„ have comparable magni-
tudes, also /.1 reduces by a large magnitude as compared to 

its CPA value (cf.fig.24). The effect of large magnitude 

of /12 is seen in the density of states plot in fig.22. CPA 

gives two split bands with a considerable gap between the host 

and' impurity bands. The present pair calculation erodes this 

gap by pulling the top edge of host band and the bottom 

edge of impurity band towards each other by a sufficiently 

large amount. The convergence problem discussed earlier arises 

around E=0.32.While approaching higher energies from lower 

sides density of states decreases smoothly upto E=0.38 then. 

a sudden increase occurs at Er-0.39 and density of states 
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goes smoothly upto E=0.854. After this energy, convergence 

is not obtained even at the energy interval of 0.0005. Then 

we tried convergence from the top of the band with energy 

decreasing. The iterations did converge though at very 

small energy interval and very large number of iterations.  

(around 45 to 50). The region between E = 0.854 and 0.39 was 

retraced and this time it kept decreasing smoothly and 

joined the main band at E = 0.32. The shape ofihe impurity 

band is quite different than that obtained from GPA. An 

anomaly is found :the density of states obtained by us does 

not seem to be conserved. We are trying to analyse this 

anomaly by doing the calculations again with a small ima-

ginary part added to energy. However, it appears that the 

shape of the impurity band will not change much, only the 

magnitude of density of states may change in some energy 

regions. The shape obtained by us looks very much like that 

obtained from continued fraction methods .83 The results of 

Moorjani et.al.78 show distinct structures in the impurity 

band and are assigned to the bonding and anti-bonding states 

of a molecule embedded in an effective medium. Schwartz 

and Siggia84 also obtained similar structure in the impurity 

band. The non-self consistent approach of Schwartz and 
84 

Siggia has been shown in its self-consistent form to be 

equivalent to the approach of the type (ii) discussed in 

Section 1. The approaches (ii) and (b), representatives 

of the two classes of pair-methods discussed in Section 1, 

thus lead to two types of impurity bands. The earlier shows 
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structures in the minority band )  whereas the latter shows 

a smoothly varying pattern with a peak at the top of the 

band. It is interesting that the feature of Im 2)  that 

it changes sign within the minority band:  has been found 

common with both the approaches. This feature has been 

discussed to be compatible with the dispersion relations 

and with interpretation of associating the side bands as 

originating from bonding and anti-bonding states of a 

molecule.78 

3.2 Effects due to off-diagonal disorder:. 

We now discuss the effects when two elements with 

quite different band widths are alloyed. Figures 25 and 26 

show the total and component densities of states-for the cases 

when the bandwidths of A are respectively 3/2 and 2/3 times 

the bandwidth of B. The figures also show the corresponding 

results obtained by BEB.81 The diagonal and off-diagonal 

self-energies for these cases are plotted in figures 27 and 

28. The centers of gravity of pure A and pure B densities 

of states) 
EA  and LB: are respectively at 0.2 and -0.2:  i.e. 

8 = 	£B  = 0.4. The concentration of A atoms is 60%. 

The effect of narrower solute (B) band (cf.Fig.25) shows 

up in the negative energy portion of the total and partial 

densities of states (P )PB  and PA). P and PB  have distinct 

peaks at almost the same energy and PA  has a shoulder 

(satellite peak) in the same region. The results of BEB81  

are almost like ours except that in our case the band width 
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is slightly larger than the BEB results. This shows that 

the larger band width of host(A) band plays more important 

role in our case. Both the peaks in P are indicated as 

kinks in the real and imaginary parts of 1 and y2. Both 
the coherent potentials have almost equal magnitudes at 

individual energies. Interestingly the plots of 171  and 

look like mirror images of each other, the physical 

implication of which is unclear. The development of the 

satellite structure in the component density of states is 

of physical importance. The existence of the shoulder in 

PA(A atoms being in majority) due to a narrower pure B-band, 

indicates that slightly more charge is concentrated about 

the .41 atoms (and slightly lesser about the B atoms) than 

would be inferred if the weight of the peak in P was attri-

buted solely to a peak in PB. 

In the case of a narrower host (A)band the satellite 

peak is seen in the A-component density of states PA  and 

in the positive energy region (cf.fig.26). The total density 

of states in this case is quite different as compared to the 

same obtained by BEB. The solid and broken curves for P are 

respectively obtained through eqns. (2.17) and (2.13). 7'2  

in this case becomes much larger than 	Besides:  IM:71  

and Inr_2  are peaked over a narrower range as compared to 

the earlier case (cf.figs.27 and 28). This can be under-

stood as follows. The imaginary parts of self-energies 

indicate the width caused by disorder in the dispersion 

curves, hence they should be large in the energy region 



where PA and P13 
are almost equal or have small ratio 

(i.e. both types of atoms contribute to P comparably). This 

region is obviously narrower in the latter case. Total 

span of allowed energies is much narrower when hIll= 1hBB 

than when hAil 2 = hBB if  ZahBB  wB 	CwB = unperturbed 

bandwidth of B-band) 

To sumup these results we make following remarks. 

Generalization of GPar, for clusters is non-unique. The 

numerical computation for cluster-GP 4. is at the same time 

too tough to be feasible. The simplifications to make the 

calculations tractable for three dimensional solids cate-

gorise all the generalisations into two classes. The cal-

culations through one of these two methods have been done 

by Moorjani et.al.78 and results through the other method 
85 

are obtained by us. The case of most interest is when 

8 = 1.0 and c = 0.1. The method used by Moorjani et al. 

would yield a well separated impurity band with lot of 

structures. Our method yields highly broadened and smoothly 

varying impurity band. No band gap is obtained. It is 

difficult to predict which of the two methods is better. 

Though the two methods respectively yield 11 and 12 exact 

moments of density of states, this can not be held as a 

reliable criterion for judgement. Only computer simulation 

results can be the best results for comparison. The so-

called 'experimental' numerical results for crystalline 

semiconductors obtained using the moment technique83  show 

the impurity band of the type we have obtained. 
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In the case of off-diagonal disorders for small 8) 

although BEB's81  results look like ours (BEBts method has 

first four moments of density of states exactly) :  but the 

very significant magnitude of 2:2  indicates the necessity 

of employing pair-calculations rather than incorporating 

these effects in single-site theories. 
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CHAPTER 5 

Localisation 
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We finally turn to the most fascinating :  yet 

controversial phenomenon in the study of disordered systems: 

exciton localization caused by disorder. Anderson86  first 

suggested that under same conditions an electron cannot 

diffuse in a random lattice. Using a tight-binding model 

which goes under his name _Anderson presented the first 

quantitative estimates of the critical disorder which 

produces such localization. 

There are two competing processes that must be 

accounted for: first, the potential fluctuations favouring 

localization; and secondly the fact that however deep the 

well the electron may experience :  it can always quantum 

mechanically tunnel away with finite probability. The 

subtle balance between these two competing phenomena is the 

ultimate cause of localization. We can express the problem 

of wave propagation in a given system in terms of the 

wave amplitudes at fixed atomic sites. The wave equation 

takes the form of a set of coupled linear equations for 

those amplitudes. The propagating character of the wave is 

expressed mathematically through the existence of non-

vanishing transfer matrix elements coupling the amplitudes 

at a given site with those of neighbouring sites. If the 

transfer matrix elements were zero, the eigenmodes of the 

system would be non-propagating oscillations associated with 

each atomic site. As the transfer matrix elements are 

turned one an oscillation formerly associated with one 

specific site would propagate to neighbouring sites 



and from them on giving thus rise to a wave propagating 

through the system. This propagation however does equally 

strongly depend on another factor, namely, the matching 

of eigenfrequencies of oscillations at the sites i and j. 

The closer the eigenfrequencies the easier the transfer 

of energy is. Thus the most favourable condition for 

propagation is achieved when all the eigenfrequencies are 

the same. The wave can then propagate through the whole 
medium without any scattering in the form of Blochls solut-
ion. These states are extended throughout the space, with 

a perfectly horizontal envelope. When a little disorder 

is introduced, and we depart from the ideal condition of 

having all the eigenfrequencies the same, the wave is 

scattered, the wave function remains no longer periodic 

and has random sign and fluctuating amplitude across the 

system. We expect two possibilites: first, the wave function 

may remain extended with a horizontal envelope (in the 

sense that t,4ere is always a finite probability of the 

electron being somewhere in its neighbourhood.) These are 

the extended states of disordered system. Secondly, the 

wave may be attenuated in such a way that it would cease to 

Propagate, thus giving rise to localized eigenmodes. The 

envelope of localized states is quite different in charac-

ter: It becomea humped over the region of localization 

and falls off to zero far away. How the wave • function falls 

away from the region of legalization is a matter of 

conjecture. Mott defines it to fall off like exp(-Yri'.-501) 



from the centre ro of the localized region. Thouless 
and 

Last
P7 
 suggest that in addition to exponentially localized 

states there are also states localized by 'power laws'. 

Thus the existence or not of localized states depends on 

the strength of transfer matrix elements and the difference 

in the eigenfrequencies associated with each site.The more 

random the system) the larger the spread in eigenfrequencies 

is and consequently the more favourable the situation is 

for localization. 

Localization can be defined in an alternative way 

in terms of conductivity. Mott defines an energy to be 

localized if the configuration averaged d.c. conductivity 

0- (E) vanishes for that energy) in an energy range where 

the density of states is finite. 

We now introduce the model which we have used for 

our localization studies. We work within the Mott-CF0(after 

Cohen)  Fritsche and Ovshinsky) modelPP which states that 

the extended states in the Centre of the band and the 

localized states tailing deep into the band gap of the 

ordered system are separated by sharp mobility edges Ec. 

At a critical degree of disorder /c- measured by the ratio 

of the spread in well-depths (caused by disorder) to the 

band width-suddenly the entire spectrum becomes localized. 

This transition is called Anderson transition. 

Following Anderson86 we adopt the following criterion 

for localization: let Poo  (co) be the probability of re-  
discovering a particle at a particular Wannier state 10>as 



t 	coif initially (tr!0) the particle was at the state 10 ',) 

then the existence of localized eigenstates overlapping 

with 101> is equivalent to Poo(oo) X 0. 

1. GENERALY THEORY 

The Hamiltonian in Anderson's model is expressed as) 

Kn H I m> = 6n8
21111

+Vnm ) 
	 ... (1.1) 

V 	= V 	if n and m are nearest 
neighbours) 

	

0 	otherwise. 

cn are distributed with a probability distribution p(en). 

Corresponding to H we define a resolvent as before )  G(Z) = 

(ZI-H)-1. For 00 )  the wave function can be expressed in 

terms of the amplitudes at given sites) 

I1(t) = 1 cn(t) 10 , 	 . • (1.2) 

then 	P00  (t) = Lim 	j
t 

IC0(tt)( 2dtl. 	 (1.3) 
ti00 0 

It can be shown68 that )  

Aoo 
Poo (t) = 	poo  (E) dE 

-co 

where )  p (E) = Lim 	IG (E-i-i8)1 2 
oo 	84 04. 'It 	00 

... (1.4) 

Goo is the diagonal element of Green's function) i.e. 

Goo (E+i5) =(01(E+18-H) -110;>. It is clear from (1.4) 

that localization is related to the analytic properties of 

the Green's function. Introducing a self-energy `...1)(E) through 

the definition, Goo  (E) = (E-e0-Z0)-1) we get p00  in terms 
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of Lo  as, 

Im Goo(E+i8) 

	

poo  (E)= Lim 	 (1.5) 

	

8,10 	2i8-E20(E+i8)-20(E-i8)7 

Writing 2:0(Z) = E0(Z)-ido(Z) and Goo(Z)= t(Z)-ino(Z) in terms 

of real and imaginary parts, where no(E) = 8(E-60-71.0), we 

get from (1.5)) 

n (E) 
p  oo (E) = 	2,o(E) 	F • 8-io 	+ 	 

8 

... (1.6) 

For an infinite disordered system, the complete spectrum 

of the Hamiltonian can be separated into two parts.(i) Extended 

part e: this constitutes a true branch cut for Goo(Z) along 

the real axis . On it the spectral measure is absolutely 

continuous. Ao(Z) 	a finite quantity as 8 4 0+  on a set 

in eof finite measure. (ii) Localized partJC: this consists 

of a dense set which does not constitute a true branch cut. 

On it the spectral measure is singularly continuous and 

A (z) 	0 as 8 0+  except on a set in of measure zero. 
_ 

co 2  so Poo (E)  Whenever EE E, we have Lim+  -e--) 	= 0. This is so 
 

what.we expect. poo  can also vanish because of the poles of 

2. But Economou and Cohen68 have shown that the poles of 

(Z) coincide with the zeros of Goo  (Z). When Goo  (Z) is 

zero we are in a gap, so the possibility is trivial. We are 

left with the possibility that the only contributions to 

poo  comes from the bound and localized states, i.e. from the 

part of the spectrum consisting of discrete poles, or cont-

inuous bits which have the 'singular continuity' character. 
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(z) 	aL 

Here 	finite quantity 6r
, 
 -lz.J=1L(')2  

and since within the continuous spectrum no(Z) is non-

zero almost everywhere Poo(E)  will be non-zero. Now 

Goo(Z) 	i 	Ei are the 

energy eigenvalues corresponding to the eigenfunctions 

i. fi: <0110.10> is the probability that an electron 

in the eigenstate 	be on the site O.Thus with the 

help of (1.4) we obtain)  

Poo PP(E)dE n  f? . 
-*co " 

Since 0 < fi< 1 with 2: f.;  1, we get 0<Pop9  i . e . 

p oo(E)  varies between 0 and 1. 

- We examine the consequence of allowing the dimen-

sions of the system to approach infinity. If N be the 

number of sites in a finite system and PN( 7 ,N;E) be the 

probability distribution of 	,N  for E belonging to the 

spectrum of infinite (N:zoo) system, then following Economou 

and Cohen89   and Licciardello and Economou90  we state that 

in the localized region Lim PI,-( 2: 10E) exists whereas it 
14-)olo 

does not exist in the extended region.One can also consider 

the probability distribution of Im 20  i.e. fl . Lim Lim e- 	o+ 
PN(Ao'1,j;14,1,5) exists and is a smooth function of E in the 

extended regime;  whereas in the localized regime Lim Lim 
A. 	 8-,o+N-oo 

PN  (8 7 
2-2.'"E+i8) exists and is a smooth function of E. 

Thus the existence of localized eigenstates depends on 

the existence of the probability distribution of 	,In order to 
study the properties of the probability distribution of 2.10 1 
one has to express it in terms of 

... (1.7) 



x  Ez_e  _ED 	+ n n 	no 

t_e 	te 	 - • e e_ 

known quantities. A perturbative expansion of Z o in  
terms of site energies with hopping integral as pertur- 

bation diverges for all energies. The problem is resolved 
90.291.292 

by writing a renormalized perturbation expansion (RPE) 

of .10,1 

Pi 

Io(E) 	V [E-e -7°1-1V + 	VOnt noo  on 	n 4-n-4 	no npio 
nt#o 2n 

... (1.8) 

or equivalently 

o(E) = 	V n  0  o 
1 

v 

E-en7  E 	V 	Vk 	
no 

nk kin o 	E-ek- 

  

... (1.9) 

The superscripts o2n2...denote that the corresponding quan-

tity has been calculated for co2en).0.= co. The summations 

in (1.8) run over all self-avoiding paths i.e. all paths 

which begin and end at 0 and do not visit the same site 

more than once. For a system of finite size both the infinite 

series and the continued fraction terminate and (1.8) and 

(1.9) form a closed solution of 1: . For infinite series we 
0 

cannot make this statement unless the infinite step iteration 

procedure implied in (1.9) and the series itself converges 

in probability. It can be assumed8990 that the convergence 

of the series implies the convergence of the iteration 

procedure. In one dimensional case, the series terminates 

at the first step and only the iteration procedure remains. 
93 

One can show that the latter always converges when the 
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degree of randomness is non-zero. This was the basis of 

the statement that in 1-dimensional disordered systems anstates 

are localized. Hence following our previous discussion 

we infer that.the convergence of RPE implies localization 

and the divergence implies the extension. We may rewrite 

(1.9) as, 

N 
(E) 

0,N 	M=2 
(N) (E) N ... (1.10) 

T-(M) where 2, 	is the sum of all diagrams visiting M sites. 1N 

If the eigenstates at E are localized then: (a) the 

probability distribution of .4., 7°
(M)
,N(E) converges as N.400 

and (b) the contributions of all terms j 7o(M)(E)I where - 
M/Mo are negligible as m -0:Do The reason for (a) is as 

M) follows. 	(E) can be expressed in terms of finite 4-07N 
number Gn:i$1.2  for each of which the probability distribution 

converges as N-oop(if states at E are localized, probability 

distribution of 5 converges and same is true for all other 

2.17:EID V etc.). Thus if the eigenstates of H corresponding 

to E are localized, so are the eigenstates of H°2"' at E 

(if any). If (b) is satisfied, (a) is satisfied too94. Thus 

the problem reduces to look at the probability distribution. 

of Z(N)  (E) as lv,6co i.e. of 

1(14)  (E) E V 	 v V 	V 
all diagrams e1' e2"'eM 
of order M(.40) 

... (1.11) 

Here . E-c.-I°142"4-1  and the sum extends over all el 	. 

M-step self-avoiding diagrams starting and ending at 0. 



A particular contribution to 2.(14)  i 

TCI1D 	IrM  1 . 1 	1 
e1 e2'" eM  ... (1.12) 

( Evenifoneknowstheprobabilityclistributien of  . ToM)  ,  

the problem is not solved since one ought to know the 

degree of statistical correlation among the various T Y1)  
J 

( ) There are roughlyK-A  :Tj terms contributing to > 	where 

K, the connectivity of the lattice, is related to the 

number CM of self-Lvothrg paths of M steps by the relation, 

1 

M  
K Lim — inC One can proceed with the two limiting 

M4OD 	14.  
cases of 'no correlation' and 'extremely strong correlation'. 

This has given rise to two schools of thought. 

2. NO-CORRELATION CASE  

It is easy to see that there is atleast one case where 

the different contributions due to a certain number of 

steps are statisbically uncorrelatec This is the case of an 

infinite Cayley tree lattice as shown in the Fig.29. The 

topology of the Cayley tree indicates that due to the absence 

of closed polygonal paths on it, the infinite series(1.8) 

terminates after the first term. only the second order 

terms are retained. The sum over n runs only over the 

nearest neighbours of the site under consideration. If K 

is the connectivity of the lattice, so that there are (K+1) 

nearest neighbours)  then the first sum in (1.9) runs over 

(K+1) independent terms and the subsequent sums in the 

continued fraction have K independent terms. For this case 



the problem of localization has been solved exactly by 

Abou-Chaora at.al.95  Without going into the details of 

their method )  we briefly mention what they have done. They 

construct an integral-eigenvalue equation involving the 

joint probability distribution of the real and imaginary 

parts of the self-energy and taking advantage of the fact 

that imaginary part of self-energy tends to zero as 5(imagin-

ary part of energy) tends to zero )  they evaluated the 

mobility edge as the point where the integral equation 

ceases to have solution. Their theory is thus a theory of 

the breakdown of localized states. Having known the localized 

regime from this work we have attempted to determine the 

nature of the wave functions (i.e. the knowledge of Poo 

and Leff' the spatial extent) in this regime. 

In a,disordered system these parameters are configur-

ation d3pendent anda statistical description demands the 

knowledge of configuration averages of the type <Poo>  • 
For a convincing calculation of <P00(E):> we have to resort 

to more sensitive averaging procedures than the usual 

effective medium type. To this date no satisfactory 

calculation of these quantities has been reported )  apart 

from the linear chain case.495 We have presented a formula-

tion97  for the calculation of<ipoo(E)> on a Cayley tree 

lattice with diagonal disorder and Cauchy probability 

distribution for site energies. At the outset we have 

assumed that we have the knowledge of mobility edges cal-

culated by Abou-Chacra et.al.95 
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From eqn.(1.6) and the subsequent discussion) we 

see that for calculating `p00 (E),> in the localized regime 

we have to have the knowledge of the joint probability 

distribution of Eo and Ao  l, +:i(Eo o  ,At). We havej+  (Eo o 'AT) = 

4(E0 oo  ,A 1)G(At),G(At) vanishes for negative values of At 

and is unity otherwise. We have to do this because Ao  and 

hence At is always positive so as to yield positive density 

of states. In the localized regime we can write (1.6) as 

1300(E)  = "1-60-E0)/(11-60). 
	

(2.1) 

Bo, 1,00()  

	

= j deo
is

Eoj dAtp(c )(E At) 
8(E-e

° 	
-E PO 	coCD 	CO 

0 0 	0 -CO -CO 0 	1+At 
0 

	

OD 	1  .7. IC° E d o-1 dAOP(E-Eo)f3+(EolAO)  1+At co 	0 
OD 	000  = r j dEoi diVIAE-E0)3(E )Acpe(A,!)14.,61  

	

-co -GO 	j̀  0 

 

- f- c°  dE0  d0 op (E -Eo) (E o )Ao  ) 1+1  ' , 	o 
-co 0 

Ac! ... (2.2) 

p(e0) is the probability density of co. E denotes the 

 

energy measured with respect to Ec, the mobility edge. 

Evaluation olj(Eo o  ,At) has been elaborated in the following. 

Eo and At on a Cayley tree are given in the localized regime 

as 
K-1-1 

E = 	V 
 

0 j-1 E 	e 	Ec? 
0 

• • • 2.3a) 

At 
0 

K+1 ,2(1+An 

co-E3) 2 
(2.3b) 
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The subscript denotes the contribution from the particular 

site and the superscript denotes the site removed. We 

have seen that because of the topology of the Cayley tree 

(K+1) factors in the sum in (2.3) are statistically inde-

pendent. 

For convenience we rewrite (2.3) as 

2 
io = I 2-  E I X 2  

x  

Af = 7 112  =/Y.9
0 	4-  2 	j j x 

and 	E9 = E-co-x = f(x) 

= y-1 	= g(y). 

... (2.11.a) 

• (2.4b) 

... (2.5a) 

• (2.5b) 

Aot never becomes negative) therefore Y and At are always 

positive. Let us denote joint probability distribution of 

X and Y as Gi.(X,Y) for positive Y and G(X,Y) for Y lying 

anywhere between -ooamd co. The similar quantities for E,°1  

ot and A, are denoted by F (E°  A-  ) and F(Eoj j  
Aot). We can 

j 
write the Radon trangform98-F as 

OD 	 t 	 o t G (X,Y) = f de0)
OD 
 de 

00 
dA° F+j  (e3A°jI)8(E9-f (x))8(A. -g(y))p(e0) 

j   
-co -co 

• (2.6) 

In further calculations we will require Fourier transforms 

of these distribution functions. To facilitate this we 

of 	o f  introduce G(A) to make A vary between -wand op and thus 



G(X,Y) 

‘4 	•• 

CO 	• 

s a eo -00 -co 

" ! 	 11- :Jo  - t 
fG tit k 

1' 

k V2  fel" 	 C ' 
tti Cbq ciktKk 

-00 -UD  

ik, V2  
)F(kt y--737)exp aktia-iktx- 

x`  1k 2V2 K:+1 2_31 
x  ... (201 2) 
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ettl • 

e 	 • 

get a relation bettteen G 'arid 

j de.g(e)e))66q1)}&(E-f(  Ot 
,r0 	r  

3 	3 3 3 x))8(A-g(y))P(c ' -co 

We have G (X
3 
Y) r:( GkX,)8(Y0 and 1? (E(? ),6:? '   3 3, 

The Fourier transform of (2.7) is 

.09 

O f 	0 f )0(Ai  ) 

(2.7) 

G(k,11c„) =  n  
e (2%)' 

,co 
dxf 
 - X--k„Y)i 

dx1 dyfF (f (x) 2g (y) )4a (g (y) ) J e -L`  x 

fcc; (e,) deo  
-co 

▪ (2.8) 

00 -OD 

Again in terms of Fourier transform we have 

J 
F (f (z)  )g (Y) G (g (Y) ) fc°  jc°  F (ki 214) ei gt41q+g (Y)k2 

-oo-oo 
• ((2.9) 

so that (2.8) is written as 

00  cco  k,V2  ik, V2  ik V2  
G (kl3k2) t  f dx dk P(k t)F (k I 	

2 
 exp  

.6. (2.10) 

where P(ki) is the Fourier transform of p(e0) and the follow- 

ing definition has been used 
V2k 

8(k-  2) 1 OD  V2Ii 
I ext) (14-  l)y ady 
-00 

4 2.11) 

For a Cayley tree we have the following relation between 

G (k, 2k2) and rj(ki  ,k2) , the Fourier transform of j (Eo  0(1)) . 
- 
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Given P(kt) = exp D'Sgn(k t)k J  i.e. Cauchy distribution 

for site energies ; it can be shown by substitution that 

a solution of (2.12) is given by 

F (ki  k2) = exp E {-imi-n1Sgn(k2.) lki+{-in12-n2Sgn(k2) }k2  ; 

exp Ef-ia-b Sgn(ki) 	Sgn(k2) jk2  
(2.13) • • • 

with ml-ina.  Is 21  m2-1n2 E  2 a-ib.  r: 	 2 

and 	Sgn(k) 
	

k >0  

	

-1 	k 

	

= 0 	k = 0 

With this substitution the k'-integral becomes 

_co j dk 
-co 

"qkt 
	elk  e 	expi_ i(E-x) 	jkl+f dk e exp (E-x) 	1:k 

-co 
exp i 	jk t+exp-i LE-x-Z1 jk t 

- (l+ni)kt i(E-x-m)k t 	(E-x-mi) k 
+ G J 

- lc° 	e 	2 cos{(E-x-m1)k 
0 

2(+n-i) Fa_ 17 
( 	2 

1-x)  +(1+111) 2 
• i x-T  

where T = (E-mi)+i()/+ni) = E + 

Thus (2.12) can be written as 

exp 	Sgn(ki) jki+t-i0-11r Sgn(k2) Jk2 

1 	 V2 	 2  dx( 	 k2t 

-im2-n2Sgn(k2) }k2  3K+1  ... (2.14) 
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If k1  )0 and 

k2/ 2  • 
0 (2 14) reduces to 

.v k  2  2  2 -i2lki-i 2k2  _f-  2  
Liclexpt„ 

T 
 2 ) 2

11 
 e 	-r9-11T 1 T2 2 

or 
C k -C.k  k  (Z2

+i) (K-1-1) V2 
1 1 e 2 ex, r:  (K+iyv2  e h.

2
3, 

z
1
+4 1 (Z

1
-14..)2 

• • • 2.15) 

A 	n 	 A 

 

where ZI:iZ,,Z„,e=iZ  C2-1C2) 4-T-31 C
1 b+1* C  i0 

and -iT= Z1  +4. 

Comparing the coefficients' of  andd k2  we get 

r 
'1 Z1

+4 ) 

(K+1)(Z2+i)V2  
and  c

2 = -  (Z1-1)2 

• (2,I6a) 

• (2abb) 

These relations are at the origin of the Cayley tree. Z1  

and Z2  can be obtained by writing analogous expressions 

for the interior of Cayley tree: and these easily turn out 

to be 

Z1 KV2/(Z1  +4) 	 ... (2.17a) 
Z2 = -KV2  (Z2+1)/(ZI+fa)

2 	
(2.17b) 

If k1  > 0 and k2< 0 / one easily gets after some algebra the 

following relations, 

Cl (K+1)V2AZ1  +4) 

C; = 	 )2 a  

which shows that the relations (2.16) and (2.17) which 
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evaluate a,b, and 03 remain unaltered. The other cases, 

(ki<O, k2>0) and (kl<0 k2<0) also do not change them. 

The two pairs of relations (2.16) and (2.17) yield, 

(K+1) 
Cl  = K  Zi  = b+ia 

and 	2 	K 	" 
 = E±1) 7

2 
 Eli/ + 

'  

• .. (2.18a) 

(2.18b) 

From (2,17a) we get 

_ 	 ±i024-2,2+4.K_ 2iTe31/2 

In separating real and imaginary parts of this equation, 

we encounter two situations. 

(a) (E2_72_4K),› 0 : this gives 

Re Z1  = - +-i r sin/2 

Im Z/  =• 2 - r cos G/2 

(b) 11,E 2-72-4X)(0 : this gives 
Re Zl  = - + r cos8/2 

Im Zi  = 	- 2 r sine/2 

... (2.19a) 

(2.19b) 

... (2.20a) 

(2.20b) 

where G = tan 	and r = 	2 1/4  ) 3  2  

and the + or - sign is chosen such that Re Z1  remains positive, 

This is to satisfy the natural condition thatj(E0,A(1)) is 

always positive. This will be clear later when the expression 

fora(E0,A(1)) is obtained. With the help of (2.19) or (2.20), 

and (2.18) we get a and b as 

b = ReCi  = K -R+ 1--- ReZ1 
	... (2.21a) 



-99- 

a = Im 	= K+1 Im 
	 (2.21a) 

From (2.16b) and (2.18b) we get 

(z1.4)2+K 

which may be converted to the form 

C2  (C1) (2.22) 

 

(2+1 C3.44' ) 2+  K  

Its real and imaginary parts are 

4(ci) = -(K-1-1)TAD2+T2), 	... (2.23a) 
rgy = -(K+1)DAD2+T2), 	(2.23b) 

where D = (7+A)2-(K+i-E)2+K: 	... (2.24) 

and T = 2(Y+ Bi)el  -E). (2.25)  

Now the Fourier inversion ofnki,k2) as given in (2.13), 

yields 

(E0  ,A(t) 27E 
bin 

(E0-a) 2+b 

 

V ( CI) fg 

lAct)-95( cl) 12+i 	(1) 

  

 

... (2.2) 
Substituting this exact distribution function into (2.2) we 

get 

/Poo 
J = 	fa)„, f  

(E -a)2+b2T-0)2+42 ' - co 	0  0  0  0 

,sn 	4/7c 271  dE j dA! ---1/4--̂  	n  
_0)  00 	0 (E0..... E)4i14.  (E0...ay+132 'ocir.4)24_42'1.1.4(!): 

... (2.27) 
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where p(E-E ) 	n  
° 	1171!E 144.V 

3-r--  01  

... (2.28) 

is the Cauchy distribution for site energies. L and E0  

are related through (2.3) in a very complicated manner. This 

makes the exact solution of (2.27) impossible. To get rid of 

this trouble, we assume A(1)  and Bo  to be independent of each 

other like in Anderson's upper limit approximation.74  

This approximation has been discussed in the appendix /3  

and it has been found that though this approximation is very 

less rigorous as compared to our line of action still it 

leads to certain complexities that are crucial. Owirig to 

this assumption of taking A(1)  and E0  to be independent the 

simplification enables us to solve the A(1)  part of (2.27). 

Calling it to be tit we have 

00 I 
T = 	

(()/Y: 
ITST(140..m2+ 	dA' 42 

1/11  	[: (1+0)(i -t) +44n 1
si(t+tan 

1

-1 1+  (1+0)2 	

i

n.

cos(tan-1 +1)p  

. 	(2.29) 

where t ... (2.30) 

Thus (2.27) reduces to 

Poo(E):>  = —
2)13 

rap 1 	1  (E0...E) 2+72 (Eo_a) 2+b2.I dEo  ... (2.31) 

This can be conveniently solved numerically using 'Gauss-

quadraturel method for integration. E'Jlation (2.31) gives 

the average probability of localization per unit energy 

interval. It can be related to the average total extent of 



mobility edge. Andersonts original work was extended 

to determine the mobility edges, by two sets of authors, 

ECOMMOU and Cohen, and Abou-Chacra, Anderson and 

Thouless. They used renormalized perturbation expansion 

of self-energy and dealt with the convergence and 

divergence of the series. The former authors assumed 

all the terms in the series to be strongly correlated 

whereas the latter ones took them to be uncorrelated. 

The convergence of the series implies localization and 

divergence implies extension. 

We have modified the Economou-Cohen criteria by 

avoiding a. mathematical approximation made by them, and 

have calculated the percolation concentration. This 

concentration comes out to be 7% and 8Y. against the 

corresponding old values of 17r. and 24% yielded by two 

of Economou-Cohen criteria. Percolation studies of local-

ization yield the value 31.'/. . We have made some prelimin-

ary studios regarding the influence of short range order 

on localization, and the meaning of localization of 

phonons. 

The shape of localized wave functions is a subject 

of great interest in localization studies. Assuming the 

mobility edge to be known we have studied for a Cayley 

tree lattice the extent of localized wave function as a 

function of energy. We have found that the extent ofieve-

function diverges at the mobility edge -- an observation 
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Imaginary part of (2.35) gives the average density 

of states, If (E2-T2-4X) 0: <no> is given by, 

(2K1/ ;41T sin 0/2) 

<%(E)> 

If 
	2-4K) < 0 we have 

E 	 r cos e/2)2+ Wr sin 0/2) 
(2 36,a) 

<no (E)> 
1 

(K-1Y T 	r cos 9/2) 

(L2y-c.   r sin 9/2) ( 	K+1 
21L r cos 9/2)

2  

(2.36b) 

 

$ and r are given as described earlier after the eqn.(2.20), 

and out of and - signs is taken so as to keep <no> positive, 

2.2  Results and D,}scussion 

We have solved equation (2.31) with the help of the 

Preceding equations for the evaluation of <PooM>'Y 

integrating <Poo (E> we obtain Pool introduced in (103). 

These results have been plotted in Fig 30 as a function of 

disorder parameter Y, The figure shows the results for both 

K = 3 and K = 1:  the linear chain case: taking V = 1, An 

increase in P00  with increasing Y is always seen. This is 

the anticipated result but the quantitative behaviour has 

been reported for the first time for lattice of any K. 

After calculating <no(*from (2.36) we calculate 

the average extent of the wave functions in the localized 

region with the help of (2.32). The results for K = 1 have 
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been displayed in Fig.31 )  and those for K 3 in Fig .32. 

The results indicate two very significant featuxes of 

the wave functions in the localized region. These have 

been discussed below. 

:.though -kiott l00  has made a number of illuminating 

conjectures for states near 	there has been very 

little quantitative work on this region of the band.The 

nature of the states is of great interest becauie they tell 

us how localized states near the transition energy change 

to e.vbeaded states in a disordered system. Our results are 

in striking agreement with the contentions of hott1 00.  We 

have for the first time shown. quantitatively that the 

extent of wave function falls from infinity to a very 

small magnitude in the vicinity of Eic  on the localized 

portion of density of states. This is related to the Mott's 
conjecture that the d.c. conductivity at T 	0 falls 

abruptly to a very small value as soon as the localized 

region is approached after the transition energy. It should 
301 be emphasized that except the efforts by .brain and 'Awards 

no formal proof for this behaviour was so far given )  and 

some authors have thought otherwise Ei.g. Cohenio2:1.In 

the neighbourhood of Ec  the extent of wave-function goes 

very much like that found by arm' and Ldwardsl°1  1Z--E F3/53 • 
Ik>r small 7 (--1) we find some structures in<Leff -1)-1)  the 
physical implication of which is unclear. These structures 

vanish as Y is increased and at a particular energy ) <Cef>71)  
decreases as Y increases )  which is reasonable. 

There is another significant feature in the behaviour 

as the energy approaches the band tail. The 



extent of wave function is seen to increase with 

energy in this region. The behaviour estimated by 
-1/2 

Abram and Edwards101 c 
. 
	as E co] is not 

correct, as we see that the behaviour obtained by us is 

congruent with the probabilistic arguments first proposed 

by Lifshitz303  and Halperin and Lax.104  

Let H = T+V be the hamiltonian of the disordered 

system' T is the kinetic energy operator and is equal 

to the energy of an electron in host system plus the 

average potential of the impurities. V is the fluctuation 

of the impurity potential about the mean value. If V n 0 

(i.e. no fluctuation), the band edge is decided by the 

minimum eigenvalues of T.Let the lower and upper band • 

edges be Eb  and 20. If the fluctuations be switched on, 

the positive fluctuations pull the right band edge to a 

larger energy and the negative fluctuations pull the left 

band edge more to the left. For a particular disorder 

let the new band edges be at El and Eo. Obviously larger 

the (2-E0), larger will be the potential fluctuation 

causing this shift. This potential fluctuation has to 

be large enough to bind states with minimum eigenvalues 

' Elo  and 21o  The states in the tail should be associated  
with deep and extensive fluctuations in potential. Because 

of random nature of impurity distribution, there will 

always be some region of macroscopic crystal in which 

we find an unusually high number of attractive impurities 



or an unusually small number of repulsive impurities. 

If the region is sufficiently large and the fluctuation 

sufficiently deep;  then we expect to find a bound state;  

localized in this region. The probability of finding 

such a region may be roughly taken to be proportional to' 

cv;  where c is the average concentration of the atoms 

lying in the deep tail of the distribution and v is the 

volume of the region. The size of the region containing 

a fluctuation of sufficient magnitude to produce a bound 

state increases very rapidly;  and hence the probability 

of finding such strong fluctuations decreases veryrapidly 

as E moves deep into the tail. Therefore the density of 

states; which goes as cv;  becomes very small. This has been 

verified. At the same time the increase in the size of the 

region indicates that the extent of wave function should 

increase. Our results confirm it directly. 

In summary;  we have determined the nature of the 

wave functions in the localized region by calculating the 

quantities directly related to transport coefficients. The 

nature of wave functions near Ec  and in the extreme tail 

region has been found to be of special significance. We 

have been able to make definite statement regarding the 

nature of wave functions and thus the behaviour of conduc-

tivity (at T = 0) near Ec  ; from the model used here. The 

conductivity experiences a sudden drop and does not 

fall gradually to a very small value as Ec  is approached 
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equivalently they have been replaced by infinite potentials. 
ni  
' The quantity G,  is defined by 

,o,n1)... 
Gn.  I 

=<Inl 1 
E-en. 

 

)...ni 1 >  
... (3.3) 

 

The L(E) is too complicated for practical calculations. 

To simplify it Ziman8  omits the self-energy and obtains 

L(E) = 2.V expt; <InIE -En  L>:]  (3.4) 
1 

where Z is the number of nearest neighbours. 

Economou and Cohen
89 
 have obtained within the frame-

work of an effective medium theory7 and for symmetrical 

bands a more sophisticated approximation to L(E) which 

retains the self-energy. They replaced all the G's in (3.2) 

by the effective medium Green's function G00  and further 

simplify as 

) 0 0 .ni_i  1>  
In Gn. <den! Gn. 

<en 1600 > 
Ln < I 61,0  > 

xn 1<k 0 > I 
-1 - where 0oo 	Goof Goo oo <01(E-Heff ) -110> = (E I) . Geff  is 

the CPA Green's function and 2: is the CPA self-energy, or 

the effective medium site-energy. Therefore, one gets an 

(3.5a) 

(3.5b) 
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approximation for L(E) as, 

L(E) -4 F(E) = KV 	A  
1E-T_ 1 

... (3.6) 

A is a constant and is determined by the requirement that 

in the periodic limit F(E) should be 1 at the band edges 

i.e. mobility edges move to the band edges. In the (periodic) 

effective medium (L - ZV) < E <( :>+ ZV), so that 

KVA 
2-7—  ... (3.7) 

or A = Z/K and thus finally 

F(E) = 	 ) 	 (3.8) 

whore Z is the coordination number. 

3.1 ,NewCriterionbseclLL A.eLE-Method. 

In this section we report a more sophisticated approxi-

mation for L(E) obtained by Licciardello and Economou.l06 

For a better calculation of the average in (3.3) , an effective 

Hamiltonian. is introduced which satisfies the relation, 

fnKri. (E-H°  
2a, • • ..ni_1)  -1 ni, 

) I 
/ 

.n. , -1 
0.1<n.1(E-Urt 	1-.1.) 

a., 
o3n,I...ni_1  

,(n.4 	 1 	.0. (3.9) 

o,n1,...ni  _1  
is a tight binding Hamiltonian with 

cn=0, nio, ni,...ni_l  and en  m 00 2  n = olni,...ni_i. Within 

this approximation L(E) becomes 
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L(E) 	Le(E) = Lim [ivi+1  
m-4 co n2' 

1/M 

nm  ... (3.10) 

Replacing all the in (3.10) 
n4  

7  (E) becomes n . , 

(3.11) 

7' is an effective medium self-energy,and86 

n.  epii- • • (3.12) 

Viewed differently, (3.11) is obtained as 
- 	 ...n ,-6 ,11i: . 
-tn. G '-  1-1 . 

n. bile
,n1,...n1-1 

ni 	
1 

i 

1. . 
- tn<renli-11> 

1 
= Xni ( Yni.j---1> I = tia l 

... (3.13a) 

(3.13b) 

T1 	from E3.2) we again get (.11). 

The following section (3.2) contains an error and it 
is regretted that this was included without adequate 
analysis of the matter. You may please ignore this 
section and its conclusions, 

improVing upon the approximation involved in eqns.(3.5b) and 

(3.13b). Let H be the Hamiltonian involved in G, so that 

G = <01(E-a -110> , and = H + V • • 	Gaff 	(E H 	-1 oo= <01  He  	giving 	- 	- off ) 2 

the Greents function of a reference system. Then we have 

°!nl'"ni -1 
An  G ni  Goo  

<01(E-ii)-110> 
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in! <01 (E-Leff -2)-1100 

= <(rd <0 I  (E_Heff ) -11 0 .<0 1{.1_ (E-He ) -14-11 0)  

Geff/0 1 -fl-Gef f V t -11 0 > I eo 	
H 

= 'cCni Goof 1 >+ <tnl<01{I-GeffV}-110>i>.. (3.14) 

Thus the approximation involved in (3.5b) is equivalent 

to neglecting the second term in (3.14). Ggf is the 

CPA or generalized CPA Green's function. To study whether 

the approximation of neglecting the second term of (3.14) 

is crucial we have devised a method of calculating this 

term exactly. 

Since we have configurational averages involved, 

we have the advantage of using the property 

</TrX > N 	N ‹p'<x>IO> = 4oLzio N:  /- ... (3.15) 

Therefore (3.14) can be written as 

<(n I <0 l  (1-Gef f V) -11 0>i) 7.- <1  ‹.0 1 tn(1-GeffV)-110>1> 

= N <Tr I tn(1-Gef f V) -1 I  

= N(An det (1-Gef f V) -1 

= - N <Tr I tn(1-Gef f.1) I ;›... (3.16) 

The problem thus reduces to the evaluation of in.(1-GeffV), 

which is done as follows. Let B and BN be two matrices 

defined as 
B 12.-dj V -6 V + 	 ... (3.17) 



and 	B().) = 	V + 7■.24 V F1 V  + 2.... 3 
2 

Thus 	6(-1B(?■.) = 1(X) 

where T is the total t-matrix of the system defined 

earlier. From (3.18) we have 

i3.(\.) 

	

dX = r6#  V + 	v v + 23-6 v v v±.... 0 
(3.20) -tn(1--6 V) 

or 	-J T() 	
d?\. = tn(1+G V) 	 ... (3 .21) 

0 

Thus we have for (3.16) 

<Tr I Kn(1-Geff V) > = -1/1 <Tr I I--u")  Ger f  
0 

1 <01 T(7) Geff 10;) 

	

<I I 	  d2 l> ... (3.22) 
o ?\. 

We have seen in Chapter 2 that T can be expanded in terms 

of atomic t-matrices and within single-site approximation 

we have <01T(1.)10> 	to(X). Also Geff  is site diagonal 

in single-site approximation) so that (3.22) can be written 

as 

N 	
( 	_ 1 t (X) GT dx  

- /Tr Itn(1-Geff V) I 	
7 

= I j 
0 

Y 

Thus having known Goff from CPA:  (3.23) is exactly calcul-

able Equation (3.14) can now be written in the form 

1 	v Goff 
:„<if

o  of fcu d> 
o Go 	 ... (3.23) 

o oo 

2121: 	kn I GT + Y n.  4n G ... (3.24) 
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Theref ,re the modified form of criterion (3.8) is 

(E) = KV exp E.  in Ggfof  1-1-Y2 

The modified form of the criterion (3.11) is 

(E) :KV expEtnIqleffl+VI 

vGy2ff  
where 	

o 

	

= <li 	eff c12\1 o 1-Xv G°  ° 	 o 11 

	

and Go eff - Gff E 	Golf  Glofof  / 	, 11 

where qfof  = Ggf  = (E- llf (E - 2- 1 

... (3.25) 

(3.26) 

... (3.27) 

... (3.28) 

... (3.29) 

The last relation is the same as Eq.(2.12) of Chapter 4. 

There it was derived for a nearest neighbour pair along with 

a 2x2 matrix for self-energy. Hero in the single site frame 

work we have put 2  = O. 

It is necessary to normalize all the localization 

functionsso as to fulfil the requirement mentioned before 

(3.7). The mobility edge should coincide with the band edge 

in the periodic limit. The arguments leading to (3.7) 

yield the normalization constant for Le(E) in (3.11) to be.  

Z/K. The normalization constant for both Lm and II is  

obtained in the following way. Calling it to be A, we have:  

(II) Lm 	= A.KV oxP 1---Y JE=ZV = 1, 
°1°ff  because Goff and G 1 	both tend to 1/ZV as disorder Goof 

tends to zero and E tends to the periodic system's band 
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edge. In the periodic limfA if we take x = 0(concentra-

tion of say A atoms) then y = 1-x=1 and therefore vo=eB  

(as L = 0)2 so Y reduces to the following 

Y = Ill  	C = tn(1- ). 
CD  

1 - XeB 	B 

Therefore 	= 1 / EKV(1-cB):1 2  

and 	Lm = exp 	Gcf I + Yj / (1-EB) 	(3.30) 

cxp kni qieff  1+ Y 	/ (1-GB) 	... (3.31) 

Numerical results for F(E) 2  Lc(E)2  LrI(E) and 4I  (E) 

are displayed in Fig.33 for 5 = 1 and 2 and x = 0.1 and 

0.05. It is indicated that F(E) and L0(E) greatly over-

estimate the localization as compared to their modified 

versions obtained by us. For x = 0.12  no localization is 

seen through Lm and Lm  for both 8 = 1 and 22  although.  

for 8 2 all states are localized if seen through F(E) and 

Le(E). It is more instructive and a reliable test of 

conformity to compare the percolation limit of concentra-

tion, xc , obtained from the four criteria. Percolation 

concentration, xc , is the maximum concentration of impurity 

at which ;Anderson transition does not occur even as Sam. 

Some direct numerical estimates (see e.g. ref.l06) indicate 

it to be 0.31 and, F(E) and Le(E) yield respectively 0.17 

and 0.25 for simple cubic.106  If simple cubic lattice be 

assumed to have parabolic shape of density of states, then 

Lm  and LII respectively indicate 0.07 and 0.08 values for 

xc . Thus there is hardly any agreement, with the value 0.31. 
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This E'l,OWS that the approximation, <fnj ...I) 2f fn<I... 4> 
leads to a fortuitous agreement. more critical study is 

under process. 

3.3 Localization 	 Order  

Our study was motivated by the fact that complete 

disorder is possible only in principle and that in 

practice it is doubtful whether the 'annealing' tempera-

ture is high enough or the 'quenching' fast enough (in the 

preparation of sample) to guarantee total randomness, so 

there will always be some local order present. Moreover, 

it is now possible to measure the degree of localorder 

(see e.g. Mozer et al. Phys.Rev.175, 868(1968)), hence, 

instead of trying to remove local order it would seem 

worthwhile to make it an adjustable parameter and study 

its ef-ects. The knowledge of short range order gives 

information about clustering or anticlustering of like 

atoms. It will be shown further that clustering or anti-

clustering show effects near the band edges of the density 

of states. 	there are the regions where localization 

is seen. Therefore, short range order should show signi-

ficant changes in localization. 

Local order cannot be introduced in any of the 

single-site theories (say CPA) because they completely 

ignore the correlations among the lattice sites One should 

therefore use atleast two-site cluster theory. We have used 

the pair calculation discussed in Chapter 4, and introduce 



the snort range order in the following mannor.Suppose 0- is 

short range order parameter such that the probabilities 

for A-A, A-B(B-A) and B-B configurations of a nearest 

neighbour pair are respectively: PAA c
201-2 PAB  c-c

2
0- =PBA 

and PBB = 1-2c+c
2
0-)  where c is the concentration of A 

atoms. Thus 0-= 1 implies complete randomness and 0-=1/c 

implies complete A-A order. 

The computational results are shown in'Figs.34 and 

35 for simple cubic density of states with of' 0.1 and 

0.2:  and 8 = 1. For CA  = 0.1, 0-  takes the values 1:4 and 

6, and for CA,: 0.2:  it takes the values 1:1.5 and 2.5. 

Starting from the completely random case:  as C-  increases)  

PAA  and PBB  increase by equal amount and PAB( or PBA) 

decreases by the same amount. Jils a result of this:  affinity for 

the formation of 47-4L, and B-B pairs increases. This will 

cause the segregation of 14,-,A and B-B pairs:  until at 0-7-10 

for c
4,  = 0.1 and 0-= 5 for  7: 0.2 when complete segregat- 

ion should take place (i.e. absence of J-B order). We can 

describe this situation as: for c  0.1) PAA  will be 0.1:  

i.e. if one of the sites is known to be A then the other 

will be i with probability 1. Thus:  in the cases under 

consideration with increasing 0 we have an increasing 

tendency for the formation of small ..L.-atom clusters in the 

sea of large B-atom clusters. This will give rise to larger 

fluctuations in potential as compared to the case when there 

is complete disorder. Switching over to the discussions 

like in Sec.2.2 of this chapter:  we see that the eigenvalues 



of 	Hamiltonian of thQ.,  disordered system (H=T+V:  

T= Kinetic energy operator )  V = fluctuation in poten-

tial) should shift to the energies more on the right 

and left of the density of states. The effects of chang- 

ing 0-  should dominate at the top of the alloy density 

of states where the impurity (.il) band is situated. The 

reason is the following. The ends of the alloy density 

of states contain the maximum effects due to fluctuations. 

The concentration of 4 atoms being small only the positive 

fluctuations are significant. The negative fluctuations 

can be ignored because there is very little chance of 

small clusters of B atoms being embedded in larger 11-atom 

clusters. 

The above considerations allow to make the following 

conje:!tures. With increasing Or, density of states 

should be stretched to form long tail at the top-side of 

the band and a little stretch on the bottom side. The 

localization should increase as O increases. Our results 

for the aforesaid parameters are in conformity with these 

theoretical qualitative contentions. 

The c, :: 0.1 case: For complete disorder (0-= 1) ,44 

a band of extended states sandwitched between bands of 

localized states is seen in the impurity band region. 

Very little localization is seen at the bottom edge. For 

0-  = 4, the structure in the impurity band is eroded and 

a gradual fall of density of states is seen. The band of 
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extended states also vanishes and all impurity states 

become localized. The localization at the bottom increases 

slightly. Ls 0-further increases to 6 , the impurity band 

looks like a long tail of the main band. Localization at 

the top and bottom of the band increases. 

The c1  a  0.2 case: The variations in the shape 

of density of states with varying 0-  are like those 

explained for citt 0.1 case. For G-= 1 the band of the 

extended states in the impurity subband is bigger as 

compared to cl  = 0.1 case. Ls 0-increases this band of 

extended states shrinks. The localization at the bottom 

of the band also increases gradually. 

4. LOC;ILIZL.'TION OF PHONONS: 
There is only a little knowledge available about 

localization of phonons in disordered systems. Some 

insight into the problem has been given by Economot107  

and Bellla• We have just started studies in this direc-

tion from the very beginning, starting from the meaning 

of localization of phonons. So far we havecnly assimilated 

some qualitative knowledge and some quantitative knowledge 

obtained by adaptation of the results for electronic 

systems into phononic systems. Both the systems respond to 

localization phenomenon broadly in the similar fashion, 

but there are some subtle differences. 

Following general behaviour is found for phonons in 

disordered alloys: 
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(a) An impurity atom which is sufficiently light and 

strongly bound will vibrate in a mode which has a higher 

frequency than any of the modes of the pure host crystal. 

The amplitudes of the atoms vibrating in this 'local mode' 

are, to a greater or lesser extent, localized around the 

impurity site. The degree of localization depends on the 

interatomic forces and on the mass of the impurity atom 

relative to a host atom. The smaller the mass of the 

impurity, the more localized at the impurity site is 

the local mode. 

(b) ien impurity atom which is sufficiently heavy and 

weakly bound will produce a 'resonant mode' at a frequency 

within the band of lattice-vibrational (phonon) frequencies 

of the pure host crystal. The greater the mass of the 

impuri,y atom relative to he mass of a host atom, the 

lower will be the 'resonant frequency' and the more readily 

apparent will be the effects of the resonant mode. 

Various experimental techniques have been applied 

(or are in principle applicable) to such studies. 2imong 

these are the Mossbauer effect )  infrared absorption, Raman 

andBrillouin scattering, diffuse x-ray scattering, coherent 

and incoherent inelastic neutron scattering etc.(for ref-

erences see Maradudin 09(1966)). Of these, coherent inelas-

tic neutron scattering is considered to be the most power- 

110 ful.  From the neutron scattering profiles one can deduce 

the intensities, energies and energy widths (inverse lifetimes) 
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of the individual modes of vibration. Without giving 

details we state that these quantities are also easily 

obtainable through theoretical techniques and respect-

ively correspond to the spectral density, real part 

(which gives the shift in energy with respect to the 

host band) and imaginary part of self-energy. Thus one 

can easily obtain the frequencies (energies) and the 

degree of localization (spatial extent) of local and 

resonance modes. A qualitative discussion of this follows. 

For illustration the density of states, self-

energy and spectral densities for various parameters 

have been displayed in Figs,37 and 38. They have been 

obtained through CRA discussed in Chapter 2. The consti-

tuents possess the Debye form of phonon density of states. 

The spectral densitya(q.w) can give a vague information 

about the localization or delocalization of a phonon (or 

electron) state. Localization in 1,-space indicates deloc-

alization in coordinate space (uncertainty principle), 

and vice-versa.a(Cli,w) gives distribution of wts for 

a particular q, hence the informations about localizat-

ion are obtained by looking ata(712w)ts at a particular 

w for a series of qls ranging over the whole allowed 
/Th 

range. For alloys (.,- ,(q,(0) shows two peaks (for large 

mass-ratio and small concentration of light impurity) , 

one sharply distributed about a central energy (lorenzian 

in shape) and another very flat in shape. The first shows 
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the cpasi-particle nature of the excitations and is 

related to the plane wave like eigenstates of host 

crystal. The other flat peak is extended over a large 

q - space, indicating localization in r-space. This is 

consistent as seen from the density of states and 

6((q,w) for c = -2 (i.e. mass ratio = 3/1) and 

c = 0.75 (conc. of heavy atoms). If e is reduced and 

c is increased,a(q2(0) is seen to be affected for large 

its only. This means comparatively more localization 

in q-space, thus delocalization in r-space (cf.Fig.35). 

This is what one expects. In the region of main band the 

Lorenzian character ofa(i,w) is consistent with the 

small magnitude of Im2 (imaginary part of self-energy) 

in this region (see Fig.37(b) for c = 0.5 and 0.75). 

Small Im2 means small damping of states because of 

impurities 2  i.e. the states in this region have large 

life time (a 1/Im2) • Life time tells that if an eigenstate 

be assigned an energy it will stay at that energy for 

the time proportional to (ImZ)-1  before it diffuses to 

the neighbouring energies. The strongly damped, non-

Lorenzian character ofa(i,w) in the region of impurity 

band is consistent with large IM.2 i.e. small life time. 

For resonance mode (in-band mode) the state of 

affairs is slightly different. L crude physical explanation 

of the resonance mode can be given as follows. We consider 

the case of a very heavy impurity coupled very weakly 

to the surrounding host crystal. Alt very low frequencies 
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because of infinitesimal translation it vibrates in 

phase with the neighbours in the host crystal. However, 

as the normal mode frequency increases, because of its 

heavy mass and (or) weak binding to neighbours, it begins 

to lag more and more behind the neighbours, until a 

frequency is reached at which it vibrates 180°  out of 

phase with the surrounding lattice in a kind of local 

optical vibration mode. The frequency at which this occurs 

is called the frequency of resonance mode. The mean square 

vibration amplitude of the impurity atom as a function of 

its frequency is sharply distributed about the resonance 

mode frequency. Resonance mode is not spatially localized 

in the way a local mode is localized. Since it lies in the 

allowed frequency range of the host lattice ,the vibration 

of the heavy impurity is transferred to the neighbouring 

light atoms. Resonance mode appears like a hump or shoulder 

on the low frequency side of the density of states (c.f. 

density of states for c= 0.05 and 0.25). This description 

facilitates the understanding of the Fig.36(a). The line 

shape of a mode with a frequency slightly lower or higher 

than that of the resonance (this can be roughly known from 

the density of states plots) tends to have a shoulder or 

pronounced tail over the resonance region. When the line 

shape peaks right at the resonance, it is symmetric but 

broad. 

The resolution broadened line shapes110 obtained from 

neutron inelastic scattering profiles taken for a series 
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of q-vectors are comparable with the spectral density 

discussed here. The two look alike for both, the local 

mode and resonance mode. The width at half maximum of 

a line shape belonging to a particular energy [Te(i,w) 
• 

gives the inverse life time of that energy stateb0) 

is thus comparable to the Im obtained theoretically. 

It is always more illustrative to do calculations 

for realistic systems rather than the models as discussed 

just now. In Fig.1 we have displayed density of phonon states 

for Cu-4u alloys for 3'4 and 9.3r. Au. These systems have 

been widely scanned (see ref .90 and the references therein). 

The resonance mode due to heavy impurity (Au) is clearly 

shown. The real and imaginary parts of 2: (Fig.38) are in 
very good agreement with the experimental data (for compari-

son se ref.110). 

We now proceed further to study the localization 

problem more rigorously rather than the qualitative argu-

ments given above. We take the analogy with the problem 

of electrons and define phonon localization in Anderson-

sense. 

Suppose U(o,o) = Uo is the amplitude of displacement 

of an atom at 0th site and at t = O. Then the localization 

criterion would require, Ucc (o,co) X 0 at t = op. To be 

more explicit suppose Ux(o,o) = U, then the criterion would 
2 	2 

be, 1U(02co ) 12 z tf: ( o co) + Uy(%co) +1.1 ( co) X. 0 71.e. the q3.aan- 

tity of interest is Lim 1U(o,t)12.Alternatively,given arbitrarily 
t-*co 
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sma.1111,we can always find a finite number M(ii) of lattice sites 

which contain all but n of the total amplitude.To quantify 

the concept we introduce a participation ratio which gives 

the proportion of atoms in a'system contributing effect-

ively to the energy of a given mode. 

In the case of electrons the localization is found 

symmetrically on the both ends of a band. Unlike this the 

situation in the case of phonons appears to be entirely 

unsymmetrical mainly because all the frequency distribut-

ions start from the zero of frequency. Further it appears 

that the states lying in the low frequency region of the 

density of states, attributed mainly to the vibration of 

heavy atoms can not be localized in the Anderson sense. 

A small displacement given to a heavy atom surrounded 

by ligh++, atoms, will always be transferred to the neigh-

bouring atoms. This also suggests that the eigen- 

frequencies less than wm, the maximum eigen-frequency 

in the spectrum of the heavy atom, should not be localized. 

To guess the localization of higher frequencies (>com) we 

understand in the following manner. Consider the situation 

where mass ratio is sufficiently large and the concentra-

tion of light atoms is sufficiently small so that the 

impurity band is separated. The main band is mainly consti-

tuted due to heavy atoms and very little of light atoms. 

The top of this band is due to clusters of light atoms 

surrounded by heavy atoms. The movement of the light atoms 



is damped by the surrounding heavy atoms, thus reducing 

the eigenvalue. If the cluster of light atoms is suff- 

iciently large to have an eigenfrequency greater than 

m it will trap the eigenstate of the corresponding 

eigenfrequency. These clusters will of course be not 

very large in size because the eigenvalues that they can 

accommodate are still quite smaller than those in the 

impurity band. As the edge of this band is approached 

the size of the cluster required increases. The impurity 

band is constituted of so high eigenvalues that they 

are scarcely taken by heavy atoms, so it is mainly due 

to very large clusters of light atoms. However, the 

presence of few heavy atoms cannot be ignored in principle. 

These heavy atoms tend to reduce the eigenvalue, so the 

lower 1)rtion of the impurity band has the effects due 

to the clusters of heavy atoms embedded among light atoms. 

The situation in this band can be conceived in terms of 

the configurations shown in Fig.39. Large clusters of light 

atoms containing small clusters of heavy atoms as shown 

in (I) correspond to the lower portion of the impurity 

band. As the size of the small cluster of heavy atoms 

reduces the eigenvalue increases. Since the large clusters 

of light atoms are further enveloped by the heavy atoms, 

the eigenstates are localized in this region. There is 

also possibility of finding clusters of light atoms open 

at atleast two boundaries of the crystal, like in (II). They 



give rise to the extended states. The probability of 

occurrence of such clusters is proportional to the 

concentration of light atoms. As one approaches the 

higher eigenvalues) the effect of heavy atoms reduces 

rapidly. So that the topmost eigenfrequencies are 

thought to be due to very large clusters of light atoms 

as shown in (III). If their concentration is quite 

small )  there will be very few such clusters but they 

will be enclosed by heavy atoms )  thus creating localized 

states of very high eigenfrequency. 

It is interesting that in the results reported 

in the following all such features are revealed. It is 

important to state that as M op (the weight of heavy 

atoms) )  Wmi 0)  thus making all the states localized 

proviCad concentration of heavy atoms is larger than 

a critical value. This may correspond to the Anderson 

transition for electron states. 

Without working out the localization problem for 

phonons from the very beginning as has been done for 

electrons) we transform the two localization criteria 

for electrons reported in eqns.(3.6) and (3.11) to the 

case of phonons. This is done with the comparison of the 

equations of motion for electrons and phonons in a 

disordered system )  

al 	ai+8 	(electrons) 
8 

	

(m.w2-ZK)ul  .=-Kt ui+8 	(phonons) 
8 

... (4 .30) 

(4.31) 
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The electron wave function is given by J =J- 11) , 
ith 	 1 

ui  is the displacement of 	particle of mass mi, 

K is the coupling constant for oscillations, w is the 

eigenfrequency of the oscillation, E is the eigenvalue 

and V is the hopping integral between nearest neighbours. 

Comparison of the two equations yields the following 

correspondences, 

E 	ZK 	... (4.32) 
V K 

Now we will derive the correspondence between the forms 

of self-energy, in which it is commonly used in the 

calculations of electronic and phononic properties. For 

that we compare the single-particle Greents function in 

the ten cases, 

Gelectron(r.  7)  . 1 7 	1  
11 	''-1-I 	N L- k E -7 -ws(k) 

Gphonon 	 1 -. 1.hr  7    11 	in II r to  2 	co2(,...6)  k 	- 

where 	s(k) = Z — 
7 eiko 

... (4.33) 

... (4.34) 

and 	w = half width of energy distribution func- 

tion. 
N 
 is the self energy for phonons as defined in Chapter 2. 

It is very simple to see that 

.2 ZK,- 
wk 	SVC'  (4.35) 

So (3.34) can be written as 
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Gphonon 	1 7‘ 	1 

	

11 	N 

	

k ZK(1-s(k)) 	inw2(1-!) 

Replacing E by ZK in (4.33) we get for phonons 

Gp
1

honon 	1 7 	1  

	

1 	N k ZK ws(k)-1 

(4.36) 

... (4.37) 

Comparison of (4.36) and (4.37) yields the correspondence ;  

-3n02(1-e) It 	 ... (4.38) 
w -*ZK 

The correspondences (electron4phonon) (4.32) and (I..38) 

transform the localization criterion (3.6) as 

ZK 
F(w) 

   

IZK mo.)2(1-Z)1 
miw / 2 

  

 

/ 2 - mw2(1-)1 

11- 2X2[1 - Z(.4 
	 ... (4.39 ) 

Using the relation ZK = 4/2, where cam  is the maximum 

frequency in the frequency spectrum of the host. X = w/win  

in dimensionless units. For the transformation of the 

criterion (3.11) we have to transform the Greonts function 

occurring in (3.12)) 
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) - 1 r 	1  
N E-7(E) ws(k) 

= 1 	 1 	 
N 	2 k ZK-mw (1-e)-ZKs(k) 

- 1 7 	1  
- N2 

 

k  mw2(1-E) 

- 1 0  P0(0 ?)dci.) m 	 .  
0 	(.0 0-)32(1-) 

	

1. 	P,(xto) cat = 	 --- (4.40) mw nic () xt2...x20....i.(x) 3  

Here X? = 0?/0m , Po  is the unperturbed density of states 
of the host lattice, and C is the normalization constant, 
i.e. 

1 m  p 0 (u)t)dwi = C .6  (4.41) 

The only thing to be resolved in (4.40) is to write Po (X10m ) 

• in ter s of P (X?) which ilivolves dimensionless variable 

for frequency. Equation !4.41) is equivalent to 

C r 	p 0(condwt = 1 
o 

f 0 
Po (r)dX? 

or 	1 fl  P (no )(1) dX1 	1 
C 0 0 	m m 0 o(X.1 )dx? 

so that we get 
In 

P0 (0mX?) 	 (4.42) 

 

Thus we have, 



	4 

D 

-129- 

phonon 1 	P0(XT)dXt 

ni 	= 	11  mwm 0  xt2_x2[1-Z(  
... (4.43) 

Substitution of this into (3.11) through (3.12) is 

straightforward and finally yields the criterion:  

.1I 

 

4E{• -  x2E--''(x) .31D-132  SID D 

fl P (Xt)dXt 
where DEi 

° X12-X2E1.-Z(X) 

(4.44) 

... (4.45) 

We have calculated s(-" allot D within CPA as discussed 

in Chapter 2. The results for Cu-Au alloys (the density 

of state:  F(X) and Le  (X)) have been shown in Fig.40(a2b 7c0). 

The criterion Le pushes the mobility edges more inside the 

band as compared to F. For Cu25 Au751 all states in the 

impurity band have been shown to be localized by Le  whereas 

F shows quite a large amount of extended states in the 

middle of the impurity band. Other features of the local-

ized states are as conjectured above except the one which 

states that localization should be observed among the 

states with eigenfrequencies wm(defined there). If this 

was to hold:  we should not have obtained localization before 

X = 0.6:but we do obtain it for Cu504102 0alloy. The error 

may be assigned to CPA. The self energy and D obtained 

in CPA may yield an overestimation of localization and the 

same quantities obtained through a very sophisticated 

technique may correct it. Besides this for calculating 
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the d nsity of states for alloys (with arbitrary concen-

tration of Au): the integral form of Green's function 

involves the unperturbed density of states of Cu and 

no force constant changes have been taken into account: 

which should be quite different for Cu and Au. Our 

experience from the calculations for Si-Ge alloys tells 

that if instead of P
Cu; 

P
u 

is used in the calculation 

of Green's function )  the essential features remaining 

unchanged lthe alloy density of states in the two cases 

should have a marked shift. 

Keeping in view these discrepancies:ve can say 

that the Economou-Cohen criteria originally obtained 

for electron localization) ere able to describe some feat- 

ures of the phonon localization. However:  it should not 

be taken seriously to be a very good. theory (for phonons 

also) as we have seen in the previous section. more 

consistent theory is yet to come out specially for phonons. 

It is important to indicate that all the theories to 

deal with localization are for the models that are 

far from reality. In realistic systems very litie local- 

ization is expected because of long range hopping which 

is completely omitted in the theory. There are other 

important factors also)such as off-diagonal disorder )  

which should be incorporated into a theory to make it 

apt for realistic systems. 
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5. THEORY OF MATTIS AND YONEZAWA--  A REFUTAL: 
Recently Mattis and YonezawaIll(MY) have proposed 

a new criterion for locating mobility edges in a three 

dimensional disordered medium. It is completely alienated 

from the concepts introduced in the preceding sections 

and incorporates an altogether different concept of 

localization. The criterion relates the mobility gap 

to regions of anomalous dispersion of quasi-particles. 

They construct a wave packet, which in this region 

becomes an incoming spherical wave packet and grows 

unphysically as it approaches the origin and then ceases 

to exist at large t. The conclusion that there is a 

sink at r= 0 2  is related to localized eigenstates. 

We have pointed out 112  some unphysical outcomes of the 

criterinn. It starts with cG> 2  which can Lever yield 

localization. 

The MY criterion is essentially based on the foll-

owing considerations. One considers the single particle 

dispersion relation obtained after averaging the retarded 

single-particle Green's function: 

	

(G(w)) = Gjc)(w) 	Gipc(w),2(w) Gk(c.o)> 	... (5.1) 

Here 
	= lik(w) 	irk(w), 	... (5.2) 

is the self-energy. The single particle dispersion relation 

is given by 

... (5.3) 
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MY construct a spherical wave packet about a central 

energy given by (5,3). This is written after some simpli-

fications as 

	

= exP (-1u)otTi o '51)  DP0 ( Eko )  /kor 	x 
exp Gr F-0/1 o foodpfo, exp E (t-IPr/1 Vo l) 2  

(5.4) 
where VO7-1 (dek/dk)k=k 2g = (0-40o ,f(D) is the envelope 

 o 
function and IJJ*=. El-dRk(w)/dw343.74,0  is the dispersion 

o 
parameter. I;(w) is assumed to be small Ero  = c(w0 ) ]as 
well as slowly varying. MY argue that in the region of 

anomalous 'dispersion given by 

dR (w) 

	

.11,,,.w‘ 0 	... (5.5) 
0. 

the states are localized with the equality sign locating 

the mobility edge, The spherical wave-pocket F(11,t) built 

out of the energy states for which (5.5) is satisfied does 
not correspond to outgoing spherical waves: but rather to 

incoming spherical waves indicating a sink at r = 0. 

Equivalently the region where (5.5) holds has been assigned 
to the localized states. 

We have shown in the following that (5.5)leads 

to negative density of states in the localized region, 

which is unphysical. Subsequently we see that the line 

of action adopted by MY yields only extended states. 

<pk(w),› can be written in terms of ek  and 7(k)w) as 
1 

6' 	/(1) / \ -7. \ k ( 	w-ek-E(k)w) 
(5.6) 



ank  
j =wk 

rrk -12 	r: 	aRk-12
aw  I aw 

- j=  
wr.4.0k 	w wk 

1m (Gk(w)> ... (5.8) 
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This .has a pole at wk-ilk  (for small TO, where wk  is given 

by the solution of (5.3). Expanding the denominator about 

wk  r- k  _i, we get, 

(Gk (w )> = 
1 

  

... (5.7) 
(w -ti) 	(w))(1- 

a rk 
) -wk  +i 	a 03  +.41,* 

=03
k 

w= wk lm I(Gk >is written as 

Therefore to keep the density of states positive one 

always has 
OR — &k J> o. ... (5.9) 

Thus 'Irs <0, which is the MY criterion, is never satisfied. 

tP-.T. 0 is trivially satisfied in the region of no density 
of states. 

The reasons for our assertion that the MY states 

are extended are easily understood in the light of the 
work by Lnderson86 and Economou and Cohen.89 We present 
below essentially their arguments in the present context. 

(a). 	In constructing the wave packet, MY use the Green's 

function that has the translational symmetry of the 
regular lattice. If the system contains the localized 



and f jN  a e-P Aj for localized states) 

butfiN a 1/N for extended states) 

-134- 

states) they are necessarily localized in some finite 

part of space within the system) where a strong enough 

fluctuation in the potential has occurred) thereby making 

the Green's function translationally non-invariant.' The 

effect of averaging this Green's function is placing such 

a localized state at all the equivalent sites of the 

lattice) and thus destroying the local character. The 

argument has been stated in references(65) and (68) 

in terms of the analytical properties of the Green's 

function. For a N-site lattice:  we can write the Green's 

function in the site representation as 

N <W><10>  
'Gm= <01G10>= 	 faN 

a=1 	E-Ea 	
- 	E_E 	(4.10) 
a-1 a 

where ici> 's denote the eigenstates of the system. Now 

we can divide the sum into two parts-one over the extended 

states and the other over the localized states) 

fiN  f;IN  
Goo 	E E  	 + E - E J  . 	2  l    (4.11) 

where . is the distance of 0 site from the site where 

jth state is localized. Its we take the limit N->'0140, the 

first sum becomes an integral leading to the familiar 

branch cut in the Green's function)  while the second term 

has most peculiar analytical structure. Though the number 
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and packing of localized states increases as N 

the second term remains a dense distribution of discrete 

poles, some of which have very small residues and the 

others have residues of order unity. From the above 

argument it is clear that this must be a basic property 

of Green's function describing localized states. The 

Green's function that MY use has only a branch cut which 

should correspond to extended states only. 

(b) Another demonstration of this argument may be seen 

by considering the quantity Poo,  defined earlier. It is 

given as follows 

Poo-  - - 	% Lim 	Goo  (E-is)Goo  (E-Fis)da. 	... (4.12) 

Plugging the Green's function that is employed by MY 

we get, 

P 7. Lim a f 7 	1  
oo 41 	(Eids) 

 

	 dE 
E-610- Zio(E-is) 

...(4.13) 

 

But 4(Ei-is)= Rk(E)Tiric(E), 	 . . . (4.14) 
so that P00  -4 0 for such a form of self-energy. 

(c) For a disordered system the calculation of the 

wave-function F(5,t) involves off-diagonal part of the 

Green's function as well. It is not clear that if we ignore 

the off-diagonal part of Green function, we will be correctly 

describing the situation, particularly in the presence of 

localized states. MY's formulation takes into account only 

the diagonal part of Green's function. 
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APPENDIX 

ANDERSON' S UPPER  LIMIT APPROXIMATION. 

Anderson has argued that an upper limit to the 

width of the site energy distribution necessary to 

produce localized states could be obtained by ignoring 

the real part of the self-energy. /1 similar argument can 

be made here. The argument is that a very small value of 

E-e -E. produces a very large value of A!:  but also 
produces a very large value of Ei . If eqn.(2.3) of 

Chapter 5 is iterated again, 61, which now occurs on the 

right hand side of the equation3is large, but (3-ei-E1)2  
is also large :  so there is no particularly large effect 

from this term. Thus under the approximation that the 
effect of Eo over A' is negligible:  we write A? as 

At
K+1 V2(1+46°') 	V2(1+ef) = 

oL 	2 j=1 (E.-60) 	j=1 	x2 

The joint probability distributiong-(E0 ,A(?) then splits 
as 

j(E0240?) = f i (E0)f 2(A0'), ... (12) 

and the expression for ‹.10 oo (E)) is simplified as - 

(13) 

It follows from the equations (2.1) and (2.32) of Chapter 5 
that <1+A0?› is related with the participation ratio 

(roughly proportional to the number of sites over which 

the wave function is spread). So for the calculation 
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poo (E)  = 5 p (E -Eo  )f i  (Ed dEo , f2(Ag4 

oo 	 a) 

op 	
0 
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(v/L Y ) i  of <Loff/  \ f1  f  we can solve separately the second 

integral in (13). At this stage it is necessary to make 

it clear that one has to resort to the calculation of 

1/(1+4101)> as <A(13) does not exist. To chock this one 

should study the form of f2(4) for very large Ac  or 

equivaently by studying  the form of f(s) [Laplace trans-

form of f2o  (At).] for very small s. Following  Abou-Chacra 

et a1.7  one can show that 

f(s) ti 1-AsP 

for small s. This means afta sl sio 
or f

2  (A) falls off too slowly as 

does not exist. But<l/(l+A(*) › does 

0 Kp <1/2 	(n) 

Co "" 6f2/6AO1A1-414D O 
op. Therefore Af 

exist. Following  the 

A' 0 

same lino of action as in section 2 of Chapter 5 we get 

, co  -2 K+1 
F(k) = ti7 	p(E )de f^(4exP(- —2— )1,  

ikv- 
_co  0 04 x 	

(15) 

For Cauchy distribution of site energios 2  p(e(5)= 7/7 /(eo+A) 

eqn.(15) is solved:  

F(k)  "02(42) exp(
_ ikv2  ))1(-1-1 2  

Co 

wherewhere Co  = E+4.. Taking  solutions of this equation as 

F(k)r-e-alki and f2(k) = e- lkl : we get 

c2 

IkiV2(K+l) 
exp.( -alkl)  exp( -(3 -0C-11- /v2 iki) cxp(-i 	

2  
), 

0
r '0 

so that a 
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Solving this for the interior of Cayley tree, we get 

(p+i) E IT + 10 , 

o 

with VEKV2  
* =(E2-y2-KV2)2+4Y2E2: 	

(18) 

Kv2(E2 
and  -  2  2  2 2 '  ... (19) 

(E -T -K ) +4.1' E 

With the help of this we get for the origin of Cayley 

tree s 

a = (K+3.) v2  + ±0+1) 	r+ 
is r2 

(K+1) V2  Eir(E2-1,2) +2yE (1÷0) 
Fr. (E2-12)2+  4y2E2 

with 

and a= (K+1) 1T2  r-  (1+0)(E2-1/2)_21E1 ] 

(E2_,y2)2+ 44,2E2 

From (13) we get 

\'`'eff, -
o 

r roo 
(AT-a) 
 
2+F-2.  1+At I  

dA ? 	
1 

because the Fourier inversion of F(k) yields, 

f 2°)  7:  2 2 
`wo "i 

Equation (112) can be solved to give 

cos(tan-1 114) 
/ -1 \ -  Vit  Fl+a)(i2L  -t)+  

1 1  
L .r/ -  )2+r-2L \ ef,.  (1 a) 	 1 2..±a, r- Kn  Isin(t+tan- 	r..) .-1 -  

... (114) 
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a where t = -tan-1  (T....) (1.15) 

/ The results for 'L 1
f 	look very much like those \f 

shown in figures 31 and 32 except that the feature, that 

'IAe3f-;)-1  increases as E moves deep into the deep tail, 

is lost, 



BIBLIOGRAPHY 	 -140- 

1. J.A. Krumhans1)  Proceedings of the International 
Symposium on Amorphous Magnetism Detroit)1972 
(Plenum Press). p.15. 

2. P.Soven )  Phys.Rev.156)809(1967). 

3. D.W.Taylor) Phys.Rev.IA) 1017(1967). 

4. m.Lax, Rev.Mod.Phys,ga) 287(1951). 

5. S,F.Edwards )  Phil.Mag.6)617(1961). 

6. J.L. Beeby and S.F.Edwards) Proc.Roy.Soc.(London) 
Aai, 395(1963). 

7. .a.VelickY) S.Kirkpatrick and H.Ehrenreich) Phys.Rev.175) 
747(1968). 

8. F.Yonezawa and K.Morigaki) Prog.Theor. Phys.Suppl.No.53 
(1973). 

9. Vipin Srivastava and S.K.Joshil  Phys.Rev.B8)  4671(1973). 

10. D.N.Zubarev )  Usp. Fiz.Nauk.21171(1960) 	Sov.Phys.- 
Usp...11320(1960) 

11. For reference see G.Lucovsky, M.H.Brodsky and E.Burstein )  
Phys.Rev.B2 )  3295(1970). 

12. M.Balkanski )  R.Besserman andJ.M. Besson) Solid State 
Commun)201(1961). 

13. D.W.Feldman) M.Ashkin and James H.Parker Jr.) Phys.Rev. 
Lett.1271209(1966). 

14. M.A.Renuccil J.B.Renucci and M.Cardona)  in Proceedings 
of the Second International Conference on Light Scatter-
ing in Solids )  edited by M.Balkanski(Flammarion) Paris) 
1971)2 P.326.) Solid State Communk211651(1971). 



-141- 

15. W.J.Brya: Colid State Jommun, 12, 253(1973). 

16. J.P. Dismukes, L. Ekstrom and R.J.Paff, J.Phys. 
Chem.68, 3021(1964). 

17. A.Ghose, H.Palevsky:  D.J.Hughes, I.Pelah.'and 
C.M. Eisenhauer, Phys.Rev.1132 49(1959). 

18. G.Dolling, Inelastic Scattering of Neutrons in 
Solids and Liquids (International Atomic Energy Agency, 
Vienna, 1963) Vol.II, p.37. 

19. °spoiling and R.A. Cowley, Proc.Phys.Soc.London, 
88:  463(1966). 

20. R.K.Chang, Brad Lacina and P.S.Pershan: Phys.Rev. 
Letters:1Z, 755(1966). 

21. N.X„Xinh, Westinghouse Research Laboratories Scientific 
Paper no.65-9F5-4312-P8,1965(unpublished), 

22. A.A.Maradudin, Astrophysics and the Many Body Problem 
(Benjamin, New York:1963). 

23. A.E.Cosand and W.G.Spit'-er, J.Appl.PhYstkg, 5241(1971) 
24. Ak0E„Cosand, J.Appl.Phys..4.2, 5230(1971). 
25, N.Wakabayashi, R.M.Nicklow and H.G.Smith,Phys.Revaak, 

2558(1971). 

26, N.Wakabayashi, Phys.Rev.B8, 6015(1973). 
27. J,S.Lannin:  Solid State Commun.lg,947(1973). 
28. C.Benoit a la Guillaume and M.Voos, Phys.Rev.B10, 

4995(1974), 

29. P.Soven, Phys.Rev.B2, 4715(1970). 

30. B.L.Gyorffy, Phys.Rev.B5, 2382(1972). 

31. A.Bansil, H.Ehrenreich, L.Schwartz and R.E.Wateon, 
Phys.Revs13.21 445(1974). 



-14.2- 

32. J.A.Clark and P.G.Dawber :  J.Phys.F:2: 930(1972). 
33. Vipin Srivastava and S.K.Joshi: Procdedings of the 

International Conference on Vacuum Ultraviolet Radi 
ation Physics (Hamburg :  1974). 

34. Vipin Srivastava and S.K.Joshi:  Phys.Rev.B12:  2871(1975). 

35. E.A. Owens and L.Pickup: Z.Krist.88:116(1934). 

36. B.Mozer: D.T.Keating and S.C.Moss:  Phys.Rev.17 :  

868(1968) 

37. E.I.Zornberg: Phys.Rev.131:244(1970). 
38. B.Segall :  Phys.Rev,1221 109(1962). 
39. G.A.Burdick :  Phys.Rev.122:  138(1963), 

L0. H.Friedman and W.W.Beeman:  Phys.Rev.582 400(1940). 
4, J.Chift, C.Curry and B.J.Thompson: Phil.Mag.8,593 

(1963). 
42. J.C.Love: F.E.Obensbain and G.Czjzek:  Phys.Rev.132:  

2827(1971). 
43. L.1i.Azaroff: and B.N.Das:  Phys.Rev.1342  A 747(1964). 
44. D.H.Seib and W.E.Spicer:  Phys.Rev.B2:1676(1970). 

45. D.Hstteib and W.E.Spicer:  Phys.Rev.B2:1694(1970). 

46. S.Kirkpatrick:  B.VelickYr and H.Ehrenrcichl  Phys.Rev. 
Bl:  3250(1970). 

47. G.M.Stocks:  R.W.Williams and J.S.Faulkner:  Phys.Rev..Ek:  
4390(1971). 

48. P.Soven:  Phys.Rev.121: 539(1966). 

49. G.F.Koster and J.C.Slater :  Phys.Rev.24:1208‘1954). 
50. D.House: B.L.Gyorffy and G.M.Stocks:  J.de Phys..12: 

C4-81(1974). 

51. Vipin Srivastava and S.K.Joshi: Phys.Rev.13(1976)(to 

appear in 15th June-issue). 



-143- 

52. R.j.Elliott:J.A.Krumharsl: P.L.Leath: Rev.Mod.Phys,k6: 
465(1974):  and the references therein. 

53. F.Cyrot-Lackmann and F.Dueastelle: Phys.Rev.Letters.27:  

429(1971). 

54. L.Schwartz and H.Ehrenreich:  Phys.Rev.B6:2923(1972). 

55. F.Cyrot-Lackmann and M.Cyrot: J.Phys.C2A209(1972). 

56. Vipin Srivastava and S.K.Joshi: J.Phys.FIL 179(1973). 

57. E-Ni Foo,E,hnar and M.ilusloos: Phys.Rev,BL:3350(1971). 

58. E-Ni Foo:S.M.Bose and M.Lusloos: Phys.Rev.131,3454(1973). 

59. T.Horiguchi:  C.C.Cohen and T.Morita: Solid State Commun. 
la: 957(1973). 

60. V26apek: Phys.Status Sol.(b) 52:  399(1972). 

61. F.Ducastelle:  J.Phys.F21468(1972). 

62. F.Ducastelle :  J.de Phys. :  Paris 2a C3, 269(1972). 

63. R.N.Aiyer:  R.J.Elliott:  J.A.Krumhansl and P.L.Leath:  
Phys,Rev.1,81:1006(1969). 

64, B,G,Nickel and J.A.Krumhansl:  Phys.Rev.11, 4354(1971). 

65, W.R.Butler and W.Kohn:  J.Res.Natl.Bur.Stand.(US4 
443(1970). 

66, W.H.Butler:  Phys.Letters. 39 10  203(1972). 

67. H.J.Fischbeck:  Phys.Stat.So1.(13) 62: 425(1974). 

68. K.F.Freed and M.H.Cohen:  Phys.Rev.Q.:  3400(1971). 

69, N.F,Berk and R.A. Tahir-Kheli:  Physica  501(1973). 

70, KoNtzeki: Solid. State Commun.12)267(1973). 

71, P.R.Best and Pailoyd: Jahys.C8: 2219(1975). 

72. F.Brouers: F.Cyrot-Lackmann and M.Cyrot, Phys.Rev. 

B7:4370(1973). 



73. F.Brouers, F.Ducastelle, F.Gautier and Van der 
Rest, J.Phys.F.2,2120(1973). 

74. W.H.Butler, Phys.Rev.B8, 4499(1973), 

75. P.L.Leath, J.Phys.C6,1559(1973). 
76. W.H.Butler, Phys.Rev.B814499(1973). 

77. M.Tsukada, J.Phys.Soc.Jap,1, 1475(1972). 
78. K,Moorjani, T.Tanaka, M.M.Sokoloski and S.M.Bose, 

J.Phys.C,7,1098(1974);Jede.Physta,C4-153(1974). 
79. F.Brouers and J.Van der Rest, J.Phys.F2,1070(1972). 
80, J.L.Blackman, N.F.Berk aid D.M. Esterling, Phys.Lett. 

alto  205(1971). 
81. J.L.Blackman, D.M.Esterling and N.F.Berk, Phys.Rev.BL, 

2412(1971) 
82. F.Ducastelle, J.Phys.C7,1795(1974). 
83, F.Cyrot-Lackmann, J.de Phys.ta2,C4-109(1974), and 

the references therein. 

84, L.Schwartz and E.Siggia, Phys.Rev., 383(1972). 

85. Vipin Srivastava and S.K.Joshi, under preparation. 

86, P.W.Anderson, Phys.Rev.109,1492(1958). 

87. D.J.Thouless and 	Last, private communication. 

88, M.H.Cohen, H.Fritsche and S.R.Ovshinsky, Phys.Rev. 
Letters, 22,1065(1969). 

89. E,N.Economou and M.H.Cohen, Phys.Rev.Letters.25, 
1445(1970); Phys.Rev,L12931(1972). 

90. D.C.Licciardello and E.N.Economou, 211, 3697(1975). 
91. E.Feenberg, Phys Rev.2t ,206(1948). 
92. K.M.Watson, Phys Rev.105,1388(1957). 

93. E.N.Economou and M.H. Cohen, Phys.Rev.,396(1971). 



-145- 

94. E.N.Economoul Proceedings of the New Delhi Winter 
School(1972). 

95. R.Abou-Chacral P.W.Anderson and D.J.Thouless) J.Phys. 
C6)1734(1973); R.Abou-Chacra and D.J.Thouless) 
J.Phys.C7)65(1974). 

96. E.N.Economou and C.Papatriantafillou) Phys.Rev. 
Lett.32, 1130(1974). 

97. Vipin Srivastava)Abhijit Mookerjee and), S.K.Joshi)under 

preparation. 

98. I.M.Guelfand) M.I.Graev and N.Ja.Vilenkin) Les Distri-
butions) tome 5 )Dunod) Paris (1970). 

99. P.Lloyd) J.Phys.C2) 1717(1969). 

100. N.F.Mott) Phil.Mag.2217(1970);N.F.Mott and E.1.Davis) 
Electronic Processes in Non-Crystalline Materials) 
Clarendon Press) Oxford (1971). 

101. R.A.Abram and S.F.Edwards) J.Phys.C5)1183(1972). 

102. M.H.Cohen) J.Non-Cryst.Solids 2)432(1970)) and 
J.Non-Cryst.Solids L)391(1970). 

103. I .M.Lif shit Z 7  Usp .Fiz Nauk 817  617(1964) DON/ .Phys UsP .21 

549(1965)]. 

104. B.I.Halperin and M.Lax) Phys.Rev.148,1722(1966): 
and Phys.Rev.153)802(1967). 

105. J.M.Ziman )  J.Phys.C2)1230(1969). 

106. D.C.Licciardello and E.N.Economou: Sol.St.Comm.12)969(1974) 

107. E.N.Economou) Solid St.Comm.211317(1971). 

108. R.J.Bell )  Rep.Prog.Phys.22)1315(1972). 

109. A.A.Maradudin) Solid State Physics )  edited by F.Seitz 
and D.Turnbull (Academic Press Inc.New York) 11.g.)273-420°) 
2,1-134. 

110. E.C.Svensson and W.A.Kamitakahara) Can.J.PhYs.1 ,2291(1971)0 

111. D.C.Mattis )  and F.Yonezawa )  Phys.Rev.Lett t3)828(1973). 
112. Deepak Kumar )  Vipin Srivastava and S.K.Joshi)unpublished. 



(d) 

)1 

J 9 1  

I 	I  
0 	 .6•  • 2.0 

(c Id) . 	,.:pcctral .L 	far 1)1.--,-) r. 	: 
0.7 	c 

It — 

10 

c 	• 0 c = 0.75 

1.0 
0.7 



a c 

e 	0.:s5 

(a) 

c 0.50 

• • 

c = 

b) 

C.2 

o 3. 
0 

1 

41 

I  
/ 1  

/ 	k 
I II \\ 
/ i . 

/ 	i 	. 
./ 	II 	. . 

li 	.. 

c 0.7q 

I\ 

3 

for (!) 
A 

C 	 • C 
C I/ 	1,A 	11.1-vc 

1 

Lti 	)1 



.L L  	 I  -I 	I  . 	1.0 0 
1  
. 	• 

_ 1 .0 

o . 

0 • 1 

V. 

.3n . 	pn.rt uppor cvu 	 n6 	 ry 
C owe C LIT v ) of phonon s I one L di 

OT 	u ;Al 	; 	(r., 3'!. 7 ' 	 Y/. Au, 



O 0 0 0 0 
O 0 0 00 
0 0 0 0 0 
O 0 0 0 0 
0 0 0 0 0 
O 0 0 0 0 
O 0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
O 00 0 0 
0 0 0 0 0 
0 00 0 0 
0 0 0 0 0 

I 

0 0 0 0 0 
O 0 0 0 0 
O 0 0 0 0 
O 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
O 0 0 0 0 

U 

:ig.39. hypothetical configuratious depietilig 
a-d  oZ viLra- 

tio.ial modes LI disordered lattices. 



0.1• 	(a) 

0.0" 

0.04 

0.00 0.1 	0 	0.3 	0.1. 

87'/. Cu , 13'/. 

0.6 0.7 

(b) 

0.2 

0.16 

b 

0.0r 

0.00 	 
0.1 

1 
0.3 	 0 	.6 	0.7 

( 

. i. 	`,:ho im (T(Z) versus ,e',IerLy plots calculated wi...,14 mutlioth; cia-ploy- 
i,,; oci..i.(1.a) (—) Lnd eq.i.,.(1. -')  (---). (a) shows the sacs 
for coherent poeudopotential method 0..4 (L) :.:;.,ow;; thou for CFA. 
( 	 ) alid (--•—) ret4.)ectively beluilt to the o,. Lnd t, ,  co;t . ,- 
ribucdons to the total 1m 0 obtained throw ;n ec.:11:(1.:'1, . 



r."0 	r r-7 r*/. Cu, 

0 	 1  
0.0 	0.; 	0., i. 	Oe(d 

E,E.T1CY C.7,:. ) 

Dorzdtics o1 state., u: inc; eciur.tion.: (1.47) ,.old 

(3..,-,9) . (--) C‘cilotcs total delis ltio::: of 

:-...4.1;c:: 2 ( 	 i th0. er, colapc)nent 7 C.116. ( • • • • 
oily t,,,, conpolient of i,otal dencitie2 of stz.,,tes . 

c b 

• 



D 4 

H 
CD 0 0 0 

0 

C- 
• 

t • 

rr. 1.  17 r- 	• 
P, 0, 0  

C-• 
C-ri-,1 

C 	) 
cr 

Ct HO 0 1-' 	p o 

0 0 'ltd 
00 

0 
k 

0 	I- 
r Cs.; • •-• 

.n 	c 

• r- 

F 
4:- 

0 
• 
.01 

) 
LAI 

0 
• 

es. 


	109377.pdf
	Title
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Appendix
	Bibliography


