ELECTRONIC STATES IN DISORDERED
SYSTEMS

Thesis submitted to the
University of Roorkee
for the award of the degree of
Doctor of Philosophy

in
Physics

By
MUKUNDA PRASAD DAS

DEPARTMENT OF PHYSICS
UNIVERSITY OF ROORKEE

ROORKEE (INDIA)
March 1975



CERTIFICATE

Certified that the thesis entitled 'EIECTRONIC
STATES IN DISORDERED SYSTEMS' which is being submitted
by Mr. Mukunda Prasad Daé in fulfilment for the award of
the degree c¢f Doctor of Philosophy in Physics of the
University of Roorkee is a record of his own work carried
out by him under my supervision and guidance. The matter
embodied in this thesis has not been submitted for the

award of any other degree.

Thisis further to certify that he has worked for
a periocd squivalent to 24 months full time research for

preparing his thesis for Ph.D. Degree at this university.

| (S.K.Joshi)
Dated '77\ﬁU{bL /7 15~ ° Professor and Head of the

Department of Physics,
University of Roorkee,
Roorkee, 247667, India.



i

ACEKNOWLEDGEMENTS

I wish to express my sincere gratitude to
Professor Sri Krishna Joshi for his valuable guidance
throughout this investigation. I have enjoyed lavishly
his kindness, and constant encouragements. It was a

great experience to be associated with him.

I am thankful to D¥. Madan M Pant and Dr.Radhey
Shyam Tripathi for many useful discussions at several
stages of the work . Thanks are also due to all the

members of the Physics Department for their cooperation.

I express my gratefulness to the authorities
of Indian Institute of Technology, Kanpur and Tata

Institute of Fundamental Research, Bombay for making me

5723 181016 O et it 1B Eriaisny i v

Financial supports from Council of Scientific
and Industrial Research, New Delhi, State Council of
Scientific and Industrial Research, Lucknow and National
Buresu of Standards, Washington(U.S.A.) are gratefully

acknowledged.

Rucardaf Doy

(Mukunda P.Das)



~iii=-

SYNOPSTIS

The work reported in this thesis is some of the
author's attempts to understand the behaviour of electrons
in disordered systems. The subject dealt here is a part
of the extensively growing field of noncrystalline or
aperiodic systems, in which enough stimuli have.Eeen
created to understand the phenomena of disorder in the
recent years. Because of the great  progress in the experi-
mental techniques, yielding reliable (experimental)
results in the disordered materials like metallic binary
alloys, impure semiconductors, liquid metals and glasses
around 1960, theoretical attempts were made to understand
better,the problem of elementary excitations in dis-
ordered systems. One of the landmarks is the Andersons
classic paper "On the absence of diffusion in certain
random lattice" and this was followed by discussions
due to Mott, Ziman, Thouless- and others regarding the
nature of the wave functions of electrons in systens
having random potentials. The usﬁal tools of band theory,
were not applicable to such systems where translational
symmetry is incomplete or absent. Due to the impetﬁs
gained by rapid advancements of computer technology,
refinement and ingenuity of experimental methods, many
sophisticated techniques like Green function approach
are developed to solve the problem of electrons in

disordered systems.
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In order to have a systematic understanding in
this complex area of investigation, a brief discussion
of various experimental methods will be provided and

coertain typical results will be presented.

The simplest of all disordered materials is the
random binary alloy, which is a cellulary disordered
gystem and the study of these will constitute the main
body of the thesis. Starting with empirical rules =
brief resume will be given on the phenomenological
developments of the theory of binary alloys for example;
rigid band model, virtual crystal approximation{ ninimum
polarity model, virtual bound state model (Friedal-Anderson
model) and Stern's charging model. After discussing the
multiple sbattering theory of electrons in disordered
systems the Green fgnotion approach will be presented in
Two difTerentv Ilorms, one of which is the coherent poteni-
ial method which will be extensively discussed pointing

out its strength and weaknesses.

A formaliesm for a system of extended potentials
of muffin tin varieties will be used to solve the self-
consistent coherent potential equation and finally
results for spectral functions will be obtained for sdmé
réal brass alloys like a-CuZn and a-CuGevand bronze alloys
like a-CuAl., These calculations will be compared with

available optiéal and photoemission. data.

A systematic treatment of a tight binding approxima-

tion will be presented for . random binary alloys in which
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hopping integrals are also random unlike the single
gsite cell localised CPA., This model will be used to
discuss the electron transport in disordered binary

alloys.

The rest of the thesis will be connected with the
structurally disordered systems like liquid metals and
gmorphous solids. We shall discuss the nature of the
electronic states in such systems by borrowing the
techniques used earlier and shall present the results
of our calculation on the electron density of states
of liquid metals, Al and Be employingmsimple approximate

nethod known as Pseudo-atom model.

Finally a summary of the work will be provided with

suggestions for improving theoretical methods.
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FIGURE CAPTIONS

Phase diagrams of binary alloys

(a) CuZn, (b) CuGe, (c) CuAl

Density of states of a model binary alloy, calc-
ulated by various methods (Ref.58)(a)Virtual
crystal approx., (b) Average t-matrix approx. and
(¢c) Coherent-Potential approx; (d-f) are the
comparision of ATA and CPA density of states for
varying & (Ref.56).

V-diagram (ref.65) for a model binary alloy
Ay Bl-x where x = 0.1.

A cluster involving nearest neighbours.

A block diagram for calculating self-consistently
the spectral functions P(e,k) for a binary alloy.

Pan n;{e}, phase shifts as a function of enmergy €

for (a) copper; with @hodorow potential and

Fig.7.

Fig.8.

Fig'go

Fig.10.

(b) Aluminium; with Heine-Segall Potential.

Band structure of (a) Cu with Chodorow potential
and (b) Al with Heine-Segall potential.

Comparison of band structure of Cu and Cuo 7ZnO 3
with VCA

Complex bandstructure of a-CuO 7Zno 3 along
[~ X symmetry direction.

Spectral funotionst(E,E) for CuZn for Aq states
for 20, 20 and 10 at Y. of zinc in (a), (b) and (c)
regpectively..



hopping integrals are also random unlike the single
site cell localised CPA, This model will be used to
discuss the electron transport in disordered binary

alloys.

The rest of the thesis will be connected with the
structurally disordered systems like liquid metals and
amorphous solids. We shall discuss the nature of the
electronic states in such systems by borrowing the
techniques used earlier and shall present the results
of our calculation on the electron density of states
of liquid metals, Al and Be‘employingaéimple approximate

method known as Pseudo-atom model.

Finally a summary of the work will be provided with

suggestions for improving theoretical methods.



-vii-
FIGURE CAPTIONS

Fig.l, Phase diagrams of binary alloys
(a) Cuzn, (b) CuGe, (c) Cual

Fig.2. Density of states of a model binary alloy, calec-
ulated by various methods (Ref.58) (a) Virtual
crystal approx., (b) Average t-matrix approx. and
(¢c) Coherent-Potential approx; (d-f) are the
comparision of ATA and CP4 density of states for
varying & (Ref.56),

Fig.3. V-diagram (ref.65) for a model binary alloy
Ay Bl~x where x = 0.1,

.Fig.%%bA cluster involving nearest neighbours.

Fig.5. 4 block diagram for calculating Self-consistently
the spectral functions P(e,k) for a binary alloy.

?iQVWhi{é); Phase shifts ésméwfunCtioh of energy ¢
for (a) copper; with Ghodorow potential and
(b) Aluminium; with Heine-Segall Potential.

Fig.7. Band structure of (a2) Cu with Chodorow potential
and (b) Al with Heine-Segall potential.

Fig.8. Comparison of band structure of Cu and Cuo 7ZnO 3
with VCA

Fig.9. Complex bandstructure of a—Cuo 7ZnO 3 along
[ - X symmetry direction.

Fig.10.Spectral functionst(E,E) for CuZn for Al states
for 20, 20 and 10 at Y. of zinc in (a), (b) and (¢)
respectively.
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rig.1l. Variaticn cf the cbserved cptical cpactra of
a=brass with zinc concentraticn: continuous line
main peak, dott=d line-abscrption edgs and dashed
line- a seccndary peak (Ref.96).

Fig.12(a) Optical absorption rssults for Cu and Cuil
(Ref.705)

(b) Optical tran51t1fns in scme Cu based alloys
(Ref.100)

Fig.13, First order cdiagrams.

Pig.14. First order diagrams in the renormalized pertur-
bation expansion.

Fig.15. First crder diagrams of types A, and Zl in the
renormalized perturbatl n expansicn

Fig.16. Change in the difference of widths showan as the
difference of overlap integrals (5ﬁ=(ﬁiliﬁ§2)) for
L and B type ioms for CA = 0.1 2nd 0.3 respectively.
Fig.17. Diagrams ccntributing to the imaginary part of {2(2)
Fig.18. Diagram fcr (a)“ﬁ;n and-(b))\l(ﬁ,w
Fig.19. Z-like diagrams
Fig.20. (a) Two uncorrelated partially renormaslized

prcpagators,

(b) The upper cne is the full propagator and the
lower cne is the partially-rencrmalized cne.

Fig.21. Some of the diagrams for (337" - terms cf eq.(5.33)

Fig.22. Some of the Ciagrams for <66€Kv terms cf eq.(5.33)
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Fig. 23. Bethe-~Salpeter eguation,

Fig.24. Plot of a(B) vrs. § in a.u, for Aluminum. Solid
line represents the results for the random
assembly while the dashed line is for the correla-
ted one.

Fig.25. Plot of a(B) ¥rs..B.in a,u. for Be.

Fig.26, Calculated density of states for Al. The solid
line is for the random assembly while the
dashed one is for the correlated cne.

'Fig.27, Density cf states for Be.

Fig.28, Comparison of density of states: — —-— free
electron scheme; -—..— .— Edwards theory,
— e pSeudo-potential method} ..... Monte
Carlo calculation; - - ~ scft X-ray measurerents

of Rooke;
random asSembly and ----- for correlated system.

presents calculation for
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CHAPTER-I

PHYSICS OF THE DISORDERED STATES

1. INTRODUCTION

The study of 'Blectrons in Disordered Systems'
has become a very fiourishing and challenging field of
research in the physics of noncrystalline materials. An
ideal crystal in its ground state possesses perfect period-
icity. For understanding the physics of condensed matter
the 1deal concept of Bloch electron has been used, while'
the resl materials pbssess many kinds of imperfections. Any
departure from the ideal ordered situation gives rise to a
state of 'disorder'(l).

, We shall mainly distinguish the following two types
of disorder in the condensed matter considering its geomet-
rical structure.

(1) Cellular disorder: materials which possess lattice

structure, for example,
subgtitutional glloys.

(i1 ) Positional : the position of atoms or molecules
disorder in such materials are not iso-
morphic with the sites of a
‘lattice, for example, liquids,
liquid metals and amorphous
gsolids.,

Elementary excitations like phonons bring about dynami-
cal disorder while magnons lead to magnetic disorder. Plasmons

in metals and excitons in insulators represent the type of

electronic disorder. In certain meterials at elevated
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temperatures there exists a very high degree of disorder.
A ferromagnetic material above its Curie temperasture has
no magnetic long range order(LRO) while & short range order
(SRO) may persist upto certain temperature. An alloy above
its ordering temperature does not exhibit LRO but 2RO may
be present. Above the melting point a material has long
range positional disorder. However, we shall be primarily
interested in tﬁe electronic structure of disordered

materials falling into the cellular and positional categories.

Looking back to the history of research on the electr-
onic structure of the materials one finds that there have
been continual development and refinement of Bioch formula~-
tion of energy band theory(2) paralleled to some extent -
by the evolution of the electron orbital scheme(3) of
Mulliken for the atoms and molecules used in the solid
state calculations. Both these schemes rely on the Hartree
Fock methods of calculating the approximate wavefunctioné
and energies‘of the electronic systems employing a static
lattice model justified within the Born-Oppenheimer approximat-
ion.The past two decades have been remarkedly fruitful for
the energy band calculatiohs based essentially on the
independent electron pogel, The power and limitations of
the one electron band theory are reasonably well«undefstood
in terms of its relationship to the many body theory for
electrons in crystals. With the new advancement of the
band struétural schemes and development of computer

technology considerable progress has been made in carrying
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out and interpreting the band structure cf many solids.
The progress in the experimental studies c¢f band structure
has become very rapid and dramatic in the last decade.
In addition tc the refinement of traditional experimental
techniques new methods have been invented to probe the

topclogy of the Fermi surface(4).

In contrast to the satisfactory understanding of the
electronic statés in crystais gained through experiments and
theory during the past decades, bur knowledge about the di-
sordered materials is relatively meagre. The lack of trans—
lational symmetry does not permit us to use any of the
me£hodé developed in the conventicnal band theory for
study of disorderedlsystems. Most Ofﬂ:tudies were either
for unrealistically simple models or were based on pheno-
[ienclogical models. Besides there were no direcf experi-
ments availsble to stuly electronié spectra. The convenw
tional powerful methods likede Haas van Alphen (dHVA) effect
and cyclotrom resonance can only be ﬁsed when the electrons

have long meam free paths. This requirement can not be

met in disordered systems.

2. EXPERIMENTS . |
The commonly used experimental methcds to obtain infor-
mation on the electronic structure of solids can be class-

ified into the following categories:

(i) Spectrosccpic Probes.

(4) Optical and Photo-electron emission,
(B) Soft X-rays, ‘
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(C) Positron annihilation,
(D) .Ion neutralizaticn method,
(E) Kohn anomaly studies.

(ii) Thermal snd Magnetic measurements:

(4) Blectronic specific heat,
(B) Magnetic susceptibility.

"fii) Conduction Phenomena:

(4) Anomslous skin effect,

(B) Ultrasonic attenuation,

(C) Magnetoresistance,

(D) ac and dc electrical resistivity,

(E) Cyclotron resonance etc.

We shall bfiefly describe some of the techniques
which are capable of yielding reliable infermation on the‘
band structure and fermi supféoes of metallic alloys.

(4) OPTICAL(OPT) AND PHOTO ELECTRON EMISSION
SPECTROSCOPY (PES) (5)

The optical and photo-electroﬁ spectré gave very
intimate relations with the band structure. In faét, optical
measurements have proved to be powerful tools for.ﬁrobing
the electronic properties of materials. One bf the pioneér; .

ing works with regards tu the pure metals waé due to
| Ehrenreich and Phillips(6), who interpreted the optigélx
spectra of noble metals in terms of the critical points
associated with band structure. The quantity ez(w),'the
energy dependenf dielectric constant is calculated from
the joint dehsity of states derived from band structure.

The transition rate and the optical constants can be
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‘deduced from eg(w).Conversely,the observed optical
absorption gpectra can be related to eg(w). Subtractiné
" out the Drude term, which is due to intraband transitions,
iheAremaining part of the spectrum is attributed %o
direct (inter-band)transitions, where thehomen‘,bum
conservation is regarded as a valld selection fule. The
photo~electron emission experiments give the electron
Qistribution.curves (EDC) (7). This is esseﬁtially fhe
quantity feﬁresenting the density of states of the
valenceband distorted by many body gffects and surface
‘bar;ier.Spieef and colleboratora(8) believe that the
photoemission EDC is due to the nondirect transitions,
in which momentum conservation is either through phonons
or is non—importaﬁt. When an electron legves a state from
the valence band 1% leaves & hole localised on one atom
for a time comparabls with the exoltation time. This is
believed to happen for small ﬁverlap of states botween
nedghbouring atoms, like the d-wavefuncticns in trmnsition
metals This,in other worde, deals with a nanybody exoitabdon
involving electron relaxation around the hele(9), However,
no complete theoretical trestnent is available elthough |
people have gtarted thinking that the photoenission process

involves interaction of many particles and many holes(10).

Besides photoenmission recently plezo-optical({ll),
optical modulation(l2) and ﬁolar reflecticn Farady efféct(lB)-
experinents have been carried out tc understand the band

structure of the materials. On disordered alloys and
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amorphous solids, a bulk of experimental data from
optical and photoenission experiments are available.

. B. SOFT X-RAY SPECTRA (8%S)(14)

Soft Z~ray spectra are obtained, when fast electrons
falling on a metal surface eject electrcns from the ion |
core states of the atoms emitting X-rays when electrons
ffom the ccnduction band fall into these core state
vacancigs. Since the core level has a well-defined energy,
the enitted quantum has the.energy equal tc the difference
of conduction and core state ensrgies.The spectrum there-
fore“provides infermation about the océupied part of the
conduction bends, There are many complications in the
interpretation of X . This is essentially duc tu the life-
time of the quasi-particles for the states far fron the |
Ferni surface, that produces the energy broadening of the
low lying states and smears out any expected structure in
this region. ~

Isochromat spectroscopy(15) ié & newly developed
technique. In the SX8, one needs the correcticn for the
life~time broadening of the participating core level. The
Isochropat spectroscopy is free from this feature. Fast
moving electrons of well-specified energy (varisble) are
shot at the sample and the intensity of the outconing
radiation is analysed by wsing o fized frequency
X~ray monochromator. This kind of experiment probes the

unoccupied energy levels.,
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There are large anount of SX3 experimental data
available for ordered snd disordered allcys(16), but their
guantitative interpretation is not gatisfactory. Recently
there are scme experiments on X-ray photoemission(17)

with a vefy roderate energy resolution.

(. TON. NEUTRALIZATION SPECTRA(INS)(18)

v'.To derive information about the density of states
in solids Hagstrum has deveiﬁped this technigue, known
ag Ion neutralization spectroscopy. When a slow (\SeV)
rére'gas ion approaches a metal surface, cne of the
electrons from the conduction band may tunnel out through
the surface to neutralize it, giving up‘its eXCess energy
to & second electrcn which is raised to a state above
the Fermi level. If the second glectron is moving towards
tho surface with sufficient energy it may escape from the
netal and be collected outside. This process is similar
2§ in PES @s far as the emergent electrcn is concerned, bub
the experiment is difficult to carry out. Besides the inter- |
pretation of results is subject tc number of assumptions
like the energy spectrum of thé emergent electrons yields
the self-convolutiocn of a certain quantity, that is related
to the density of states. Although their precise relationship
is extremely complicated, cne gets the peaks in the INS for
d-electron systems reasonably close in width and positiocn

to those expected from other experiments like SIS.
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D. NEUTRON SCATTERING AND KOHN ANOMALY(19)

The inelastic scattering of slow neutrons has been
uéed to map the phonon spectrum in great detail, The
shape of Fermi surfaces, in principle is reflected in the '
phonoh spectrun, showing snmall kinks, Enown a8 Kohn
snonglies. Physically, if we think the solid as a lattice
of bare ions, immersed in a sea of conduction electrons,
e phoncn corresponds to a periodic displecement of the
bare ion that produces a pericdic electric field which
is then largely screened out by the conduction electrons.
Their screening ability changes sbrupily at certain values
of the wavevectors and since screening determings the
effective forces betwecn the ions, the dispersion curve
exhibits é corresponding kink at those velues of the wave-
vectors.
E. POSITRON ANNIHILATION (?QS;(EO) and

MUSSBAUER SPECTROSCOPY(MOS) (21)
The angular correlation of y~rays in the experim_ent .
of positron annihilation offers information on the momentum
distribution ¢f the conduction electrons. When a positren
enters into a solid i% loses its energy rapldly due to
collisions till it is left with its residual thermal
energy. Consequently it ie annihilated by an electron and

| the tetal momentum of the emergent y~rays is esdentially
that of the electron. The momentum distribution of the
electrens is inferred from the angular infensity distri-

bution end hence the shape of the Fermi surface (22).
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A transition between an excited and the ground state
of a nucleus is very sharp when the entire crystal takes
up the recoil momentum. This is known as MOsshauer effect
or rocoilless emission of y-rays. In case of substitutional
alloys the informationiabout the charge transfer of‘
s-gloctrons of tho constituents are obtained from the
Mosabauer Isomer shift measurements(23). The isomer shift
is due to the fact that nucleus has different nuclear
charge radii in the excited and ground states. It depends
on the s~electron probability density at the nucleus from

which the charge transfer is found out.

In a similar manner NMR Knight shift measurements(24)
provide us information about the conduction electron -
density at the nucleus, The specific heat and magnetic
susceptibility measurements{25), also yield information

about the density of states at the Fermi level.

3+ NATURE OF ELECTRONIC STATES IN DISORDERED MATERIAILS

It has been polnted out earlisr that in the physice
of Bloch electrons in crystalline meterials, the conduct-
ion electrons (or quasiparticles) are itinerant giving
rise to extended states possessing infinite life-times.
Because of imperfections in the lattice, the qqasi-partiéleS 
get scattered and have only a finite life-time in an |
eigenstate of the perfect crystal. If we introduce a single
impurity atom intc a perfect crystal, the Bloch waves
propagating throughout the crystal, after being incident

onto the impurity, get scattered. The wave functions and
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the density of states become scmewhat distorted from its

original unperturbed state(26). In the case when the
scattering potential is very strong, discrete localised

elgenstates are obtained which occur below or above the
continuous band depending on the attractive or repulsive
nature of scattering potential. Further, on increasing the
pumber of impurity atoms, with a random distribution
(keeping the impurity concentration still low), we may

get extended states with finite phase coherence because

of random impurity scattering along with the quasicontinuum
localised states. Such featurss are believed to be more

prominent on increasing disorder(27).

(1) PERCOLATION THEORY

From studies using ciassical percolation approach(28)
i§ has been found that in a disordered medium, where the
potentials are randomly distributed, there are finite
allowed regioms- of localised states and sllowed channels
of extended states. The propagation of electrons from one
space point tc another depends on the height of the potential
barrier between these nsighbouring points which make bonds.
Chemicglly the bond is an overlap of electron wavefunctions.
Whon @ bond is closed with certain probability, the electron
tries to propagate in the medium. A similar situation has also
been considered for site percolation(29). So, when a medium
is characte;ised by a random distribution of potentials
with certain prcbability, then the migration of an electron is

possible only when it has an energy greater than a critical
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enorgy corresponding to the critical percclation threshold.
The latter is dependent on the lattice structure. There
are some computer experiments on two-dimensional lattices(27)
to show how one can localise a particle in a region with
a potential greater than its energy. An extensive litera-
ture is available on the percolation problem(30) regarding
its enalytical approach, numerical results and important |
consequences, But if one replaces the classical particle by
a quantum mechanical one in the same random medium, then
the additional process involved will be fhe tunnelling.
Localised elcctrons from an isclated region will tunnel

into another having same cenergy resulting in delocalis ation

of states.

(11) PROBABILITY AND ENSEMBLE-AVERAGE

Before discussing quentum mechanically the nature of
electronic states, the noticn of probability distribution
should be discussed., 48 we can not have the complete inform-
ation on the structural details of a physical system possess=-
ing certain degree of randomness, we seek to know the most
probable configuration or configurations for any particular
material, From any experiment one gets certain quantities
pgrtinent to the macroscopic behaviour of the system, these
are sharply distributed around the ensemble-averaged value.
S0 the knowledge of the probability distribution for certain
configuration of the system is necessary to obtain information
about the processes, those have observable relevance. There

are two ways of calculating the ensemble~average (a) from
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the knowledge of the probability distribution and (b) a
technique to calculate directly the ensemble.average like

a mean field rmethod.

(1ii) ANDERSON MODEL

The class of problems in disordefed structures falls
in the category (a) is typically the'Anderson model'.
Physically let us look into the situation where there is
a randoﬁ assenbly of atoms, each possessing a single s-type
atomic orbital. An electron is left into such a medium. Let
the distribution of energy levels of various atoms or the
randon potential duc to them follow a certain type of
probability distribution. At a certain instant of time if
one knows the probability amplitude cf the electron orbital
and observes at that space point how the amplitude behaves
with lapse of time, then the information about the (single
pafticle) states can be derived. In atomic systems an
electron with the nucleus forrs the bound state. In
pericdic sclids, the valence electrohs form extended states
by modulation ¢f pericdic potentials. In both these cases
states are stationary with infinite life-time, In the dis-
ordered medium the states are intermediate between these
two extreme limits. Unlike infinite phase coherence in
Bloch states, electrons in disordered medium have finite

phase coherence.

Anderson(31) studied the problem of localisation, as
to how a localised state will be obtained due to randomness.

Since the localised states have important bearing on the



_13;
transport phenomené(BE) it is necessary to cbtain the
range of localisation. Anderson's paper is famous for being
very complicated and obscure but recently considerable
simplification has been achieved by a number of workers
such as Ziman, Thouless, Anderson, Kikuchi, Economou and

Cohen and many others (33).

The logical structure of the simple Anderson model

based on a simple tight-binding Hamiltonian is given by

H=Ye |adda] + § o>t _.<B| , Cees (101)
(04 « OL,B aB .
aéB

where, € is a random independent variable i.e. the eigen-
value of an electron belonging to the atom at the ath site.
€q obeys a common distribution function, taﬂ is the tight
binding or hopping integral and is in the present context
2 positive constant t for «,f being nearest neighbours but

zero otherwise.|a) denotes a Wannier state, centered at

gite a,

In the absence of the tight binding integral the
eigen state of the system is nonpropagating, but switching
the former on,the state will start propagating to the
nearest neighbour site and cbnsequently over the whole system.
Stronger the taﬁ’ easier is the propagation. Besides the
elgen energies of the atomic species should be élose to each
other’ﬁo Permit propagation easily. In the perfect crystal
the eigen energies are same all ower,as a result of which
Propagating states are obtained without any scattering.

In the present context the strength of the tight binding
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integral and the spread of the eigenenergies will decide
whether the electron states will propagate in the crystal
or be localised, i.e. a critical ratio of t and W(the

width of prcbability distribution of the eigen energies)
exists, below which all the states become localised., This
hag been studied within sultable mathematical framework

by introducing the response function (or the Groen function)
and examining the analytical behaviour cf it in the complex

gnergy plane,

Briefly the relation between the Anderson arguments
and Green functicn is shown below., We define the retarded

Green function following Zubarev(34).

fa (M) = 1 0(1) ojagtlaiie) o) ... @.2)
where aa(t)(az(t)) is the annihilation(creation) operator
in the Hoeisenberg fepresentation,

a,(t) = exp(ifit) e (o) exp(-iHt), ver (1.3)

IO> is tho vacuun state and 6(t) is the Heaviside step
function,
o) =1 for 20
= 0 otherwise ,

The equation of motion of Gaﬁ(t) with Hamiltonian(1.l) is

i -g-%- Goq(8) = Bgg8(8) + egf, (8) +YEBt8Y 6 (8)  een (124)

The probability amplitude Aa(t) for the state |a) satisfies
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the kinetic equation
.0
ime A (t) = e A (t) + 2 t, A (%) eeo (1.5)
9% p BB vZp BYY |

with the boundary condition Aﬁ(t) =0 for t = 0 and B #a,

50 AB(t) is identified as GBa(t) for t > 0. Now introducing

the Fourier transform

Gge(t) = %E JGBG(E) exp(-iBt) dE oo (1.6)
we write
(B-e ) Ggy (B) = 6“5+i§B bgyGrqB) e (1)

The behaviour of AB(t) after a long time is obtained from
the analytic properties of GBa(E)’ When Gaa(E) possesses

a pole on the real energy axis of the complex cnergy

plane the amplitude of the perturbed state remains station-
ary as t -»® and hence it is a strictly localised state.
The situation when Gaa(E) acquires a branch cut correqunds
to extended states. For the sake of convenience the one
particle Greenfunction derived from the resolvent operator
(B-#)"! that satisfies the same equation (1.7) will be used

hereafter. For real E the Green function is written as

Gaa(E—in) = l - ’ ® e 0 (1.8)
E-€ ~in- :E(E-in)

with 1 as a positive infinitesimal and ;i}s the socalled

total gelf-energy, ariging out of scattering due to random



-16~

elements in an infinite series. The ccnditions 6f localisa-
bility for a given value of E should hcld

It In XZ(E-in) =0, ees (1.92)

n- 0%t

with probability unity, and

B-e,m It | Ro 50 (E-in) = 0 ce. (1.9D)

n =0

Wwhen the randcr elements {Ea} fall inside the width of the
pfobability distribution. Essentially the complicacy of the
analysis of this model lies in the convergence of the series

-t
for A¢ .

t 1 1
£t - t mme—t + t + 1
a Yéa ay b-eY ya Yza ay E—ey yé E:EEt6a+ ceese
Sta
*e 0 (l.lo)

For convenience the serics is summed diagrammatically using
the method of self-avoiding walks by which a site is not

visited more than once. Fihally the series (1.10) is re-

written
Ta = é % 1 o+ § T S
oy ya oy _ 3@
Y£O a . _ SO Y£Q B-g
ey S#vsa L
x t 1 .+ . oo (1.11)
y6 oy e
B-gg- 5
T« t ! t a
with = and SO On.
Y féwga Y6 B - zg:Y by

This hierarchy of (1.11) is known as renormalised perturbation
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serics (RPS). A sinilar analytical derivation has been
obtained by Pujita and Hori(35) in a continued fraction
series.

Using a streng statistical dependence of the quantities

in various terms of RPS,Economou and Cohen wrcote a function

1 1/M
L(B) = 1t | Y% % veoot J
IR "M B, -2 T2 T
l l ¢ 00 (1012)
(where all subscripts are distinct) whose properties are
for L(E)>1 - Eigon states corresponding to E are all
extended
(1 - Bither no eigen state at E or Bigen states
are localised.
and = 1 = the corresponding E separates localised from

extonded states known as mobility edge.

These results were derived when the RPS is convergent accord-
ing to a probabilistic analysis. The result(1.12) is further
approximated by removing the restricted summation with a
factor KM, when K is the connectivity of the lattice given

by 2/3 of the number of nearest neighbours. FPurther the
product of quantities, 1 / (E-EY- Z?) etc. are approximated
by g(3, Heff.)’ a functicn of an effective Hamiltonian

80 that for the Hamiltonian (1.1) with constant nearest

neighbour hopping, t
L(B) & zﬂg(E,HOff)-.{ veo (1.13)

This form of the function has been used in showing the

localised states in the density of states out of effective

4
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Hamiltonian by Bconomou snd collaborators (33) which is

inconsistent in the effective Hamiltonian theory.

As it has been pointed out earlier, the localisat-
ion is not to be Seen in a pé}ficular space point (like
examining the diagonal Green function), one has to find
out a domain to determine the size of the localised states.
There are many analytical attempts in this direction by

Anderson and many others(36).

4. MODELS ON DISORDEKED BINARY ALLOYS

The theories of binary alloys have initially relied
heavily on simplified models. We shall discuss mainly binary'
disordered alloys of substitutitnal type AxBl-x' The first
qﬁestion arises on the structural stability of the alloy,
if the element B is miscible in A through a wide range of
concentration - a problem often considered by metallurgists
in terms of certain empirical rules. The commonest of all
are the socalled Hume Ruthery rules, that put restrictive
conditions on the foermation of structurally stable solid
solution (37), (a) Atomic size, (b) Differense of electro-

negativity and (c) Electron per atom ratio.

It is difficult to form solid solutions if the dia-
meters of A and B type of atoms differ by more than 15Y..
Typically for brass alloys like CuZn, with their atomic
radii 2.55 4° and 2.66 A° respectively, the sizes are favour-
able for zinc %o go into copper as a solid solution upto
38 at Y. of Zn in contrast to Od(with atomic radius
2.97 i°) is scluble in Cu to about 1.7 at 7. . Secondly,

even if the atomic sizes are in favourable ratio,
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the solid solutions will not be formed if A and B
elements have a tendency to form a stable compound
in definite proportion. If A is strongly electronegative
and B is strongly electro-positive like III-V or II-VI
compounds, it is very likely that instead of solid
solutions compounds,such as AB or A,B etc. will be
precipitated out of the solution. For example, fthe atomic
diameter ratio (1.09) is favourable for Sb in Mg but the
solubility of Sb in Mg is small because of elsctro-
negativity difference. Thirdly in allcys different
constituent valancies (the ratio of electrons per atom)
are sometimes used to find the structural changes in
the phase diagram.Ws shall illustrate this below by

considering some Cu based alloys.

(1) PHASE DIAGRAM OF ALLOYS (38)

In Fig.l we show the phase diagrams of copperbased
binary alloys with zinc, germanium and aluminul as the
gsecond element. The first two are known as brass alloys
and CuAl is known as-bronze alloy. When zinc 1s added to
copper, the primary solution cf zinc in copper is formed
with the same fcc structure as pure copper. This is known
as a-phase of brass which goes upto 38Y7. (atom )of zinc.
Between the limits of 38 to 467, of zinc a two-phase region
occurs corresponding to a-f phases while from 46-497. the
alloy becomes a secondary solid solution changing its -
structure i.e. b.c.c. in p-phase. The B-phase undergées

an order disorder phase transition at a temperature of
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about 540°C below which one gets an ordered B' phase
with Cs-Cl structure. At higher zinc concentrations we
get cubic y-phase hexagonal €-phase with an axial ratio
~ 1.56 and a hexagonal n=-phase with axial ratio~1.8.
The n phase like a~-phase is a primary solid solution of
Cu in zinc while B,Y and € are all phases of secondary

go0lid solutions.

In Fig.1(b) and (c) we show the phase diagrams
of CuGe and Cudl.

(ii) Phenomenological Models
A. Rigid band model (RBM) (39)
In this simple model one assumes the shape of the
density of states P(E) does not change on alloying, but
.the concentration of the electron 'n' in ths conduction
band changes. The Fermilevel on alloying is obtained from

the simple relation

EF
n=[" A5 dE ver (1.14)
-

RBM has been sometimes used to correlate the electron
concentration with structursl stability. On alloying
one pours the valence electrons of the constituent
element intc a single nearly free electrcn band. Once
the filled states reach the zone boundary it is costly
to add further electrons which can only be accommodated

in states above the energy gap which occurs at the zone
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bound~ry or states at the corners of the zone both of
which are of high energy. On further adding electrons
a structural transformaticn takes place so that the
new phase contains a large number of states before it
makes contact with zone boundary. The stability of alloys
1ike a-brasses (%/a limit of CuZn being 1.36) which
undergoes & transformation from f.c.c. to b.c.c. was
interpreted in the above sald manner. However, it is now
folt (40) that there 48 in general no special stability
associated with Fermi sphere to touch Brillouin zone
boundary. There are other factors like presence of SRO
and charge transfer which influence the struétural
stability. The rigid band model is inadequate in many

.caSes to explain measurements of magnetic susceptibility,
gpecific heat, soft x-ray emission and photo~emissicn of

transition metal alloys like Ni-Cu(4l).

Several authors(42)stt¥empted to go beyond RBM of
Cu based alloys arguing that density of states at the
Fermi level could be improved by impurity scattering in
order to fit the increase of linear term of the specific

heat coefficient with impurity concentraticn.

B. Virtual Crystal Approximation (VCA)(43)

The potential for an AB alloy in the band theory
is written as superposition of atomic potentials of the
constituents in the following manner, ‘ o

V(E) =3 [% (14e (R ) PA(F-R,) +L(1-c (ﬁu))VB(‘f..ia)}..u.w)

(1
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structure. The key feature of this model is the depend-
ence of the gap between the ccnduction band and the
next higher energy band. The energy gap is estimated by
relating it tc the atomic s-p excitation energies of the
solute and solvent atoms. The importance cf the energy
gap results frem the dependence of the curvature of the
Fermi surface on the magnitude of the gap. General
trends in the band structure with positions in the perio-
dic table can then be interpreted in terms cf the s-p
excitation energies and the atonic volumé, which increases
as one moves down or to the right of the table. For Cu
based alloys a large atomic volume means & small Fermi
energy while an increase in atomic number means an increase
in s-p excitaticn in Cu alloys; both favour a small energy

band gap and a spherical energy surface.

D. Minimun Polarity Model (MPM) (48)

In contrast tc the RBM, the minimum polarity model is
valid in the limits where the random potential in the
Hamiltonian is strong. This is suitable for transition
metal alloys. MPM assumes that the electronic configurat-
iocns of each compcnent in its pure state are carried over
to the alloy. The RBM leads to appreciable polar character

on each site, where MPM assumes charge neutrality.

This mcdel has been applied in a heuristic way
to the NiCu system yielding nice agreement with experi-
ment.The band calculation of Ni and Cu with starting conf-

igurations 3d945 and 3dlo43 respectively give rcesults in
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substantial agreement with experiment. Use of those
configurations in the alloys confines extra d-electrons to
the Cu-gites. This is only possible in the band picture
if d-states associated with Cu are below the Fermi level.
Since 4s configurations are same in both components the
s-bands undergo little change on alloying. Essentially
this model takes care of the repulsive interaction between

the d-holes.

E. Virtual Boundstate Model (VBM) (49)

The virtual boundstate model lies in betweqn the
two extremes, RBM and MPM. This is also known as Friedel-
inderson rescnance meodel and is appropriate for transition
metal impurity in noble metals. It is assumed that the
electron correlation of opposite spin becomes important
when they belong to the same atomic level with energy,
say Ea' In the simple Hartree Foeck approximation one
can write the interaction U <th) <ndl>' with'{@dc) as
the average number cf d-electrons with spin o and
U the strength c¢f interacticn. In the alley if the atomic
levels remain sharp on the dissclution of the transition
metal into ordinary metals then the levels will be
polarized with say fgq as nuch as possible. Now on intro-
ducing a spin-independent interacticn between the localised
d-étate.and s-band state linking with same spin, there will
be a transition to or from the conduction band at the rate
proportional to the density of state available at Ed and

the square of the strength of s-d interaction. This
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transiticn gives rise to a brcadening of the d-state. The
density of cohduction state hence acquires a rcesonance
peak. This state contains enough charge to screen the
valence difference between impurity and host. The rest
of the screcening may be due to conduction electrons in
the vicinity of impurity. The Fermi level in this model does
not shift. This model is found satisfactory to explain the
optical and photo-emission experiments on allcys upto 20
at /. transition metal sclutes in noble metals(50) like

CuNi, CuMn, CuPd, AgPd, AgMn, AuPd, AuNi.

F. Stern's Charging Model (7)

In the crystalline periodic systems the conduction
electrcn sees only the potential due to ion or ions in
its own unit cell, that is why the periodicity requirement
demands the Wigner Seitz cell to¢ be charge neutral. This
requirement is nc longer valid when the periodicity is
‘destroyed in disordercd alloys. The charging which is due
to the non-uniform electron distribution in disordered
system has to be included in the bare icn potential in a
self-consistent manner. Suppose due to the charge fluétuat-
ion the impurity cell is, say positively charged, this
will produce a net long ranged Coulomb field throughout
the whole solid. In dilute alloys the shielding clouds
are such that they completely neutralise the positive charge
of the impurity outside the screening length which is of

the order of the atomic dimension. But for ccncentrated
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alleys, this queétion has tc be answered by a quantitative
calculation. In a tight binding approximation Stern(52)
has shown that there is in general a net electric charge
in the cell about each constituent i.e. neutralization
‘does not cccur iﬁ concentrated alloys. The‘¢alculation of
net electric charge and ion core potential has to be done

in a self-consistent fashion.

5. PLAN OF THE THESIS

We shall adopt the multiple scattering approach for
studying electrons in a medium cf random binary alloys.
In Chapter II the Green function theory is used to describe
the multiple scattering. The self-consistent Green function\
hierarchy is decoupled within a single site approximation
which is known as ccherent potential approximation (CP4).
The limitations of the cell-localised CPA, which is widely
used in the recent days are pointed out and improvements are
shown in two ways. Firstly by ccnsidering a many atenm
cluster instead of a single site description. Secondly we
have employed a single site extended potentials of nuffin
tin variety. This formulation in its first iteration (which
is the well known 4iveraged T-matrix approximation(AT4)) is
used to calculate the spectral functicns for some Cu based
alloys in Chapter III. The results of thé calculétions are
compared with the available experimental data cn optical,
photoemission’soft x-rays and positron annihilation spectro-

scopies. In Chapter IV a detailed treatment of -a tight-
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binding approximation is presented for a random binary
alloy in which the hopping integrals are also raﬁdom

unlike the single site cell-localised CPA., In Chapter V
this formulation is used to calculate the static electrical
conductivity using the linear response theory of Kubo.
Chapter VIvis concerned with the positionally disordered
systems. A canonical density matrix method is used to
calculate the density of states of liquid metals like

Al and Be. Chapter VII provides the summary of the thesis

as to how one could improve the results presented here.



CHAPTER II

MULTIPLE SCATTERING THEORY

The recent theories of disordered systems are
'usually viewed within the framework of the multiple
scattering theory(53). The sysfem is looked upon as a
medium in which the atdms or molecules are randomly
distributed and the conduction electrons while propagat-
ing suffer from scattering due to the random part of fhe
potentials. It has been pointed out earlier that one has
to perform a configurational averaging in order to obtain
a quantity of physical interest like density of states,
conductivity tensor and so on. Therefore the formulation
of any theory for disordered system has to be cast

in such a manner that this configurational and/or thermo-
dynamic averaging(34) can be done very easily. Averaging
wave functions in disordered medium makes no meaning but
the Green function which is a natural language of discuss-
ing the elementary excitations in condensed materials
offer a possibility of affecting such an averaging., It is
for this reason that most of the formulations of the
disordered materials make use of the Green functions in

one way or other.

1. GREEN FUNCTION AND T-MATRIX

We outline the Green function theory in the indep-

endent particle picture with Hamiltonian
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H=H + v .. (2.1)

where HO is the freé or unperturbed part of the Hamil=-
" tonian and V is the potential operator that scatters the

electrons and is regarded here as sum of contributions

from the scattering centers having potentials v, SO
that
V=§va oo (2.2)

1. GREEN FUNCTION
The Schrédinger equation in the coordinate repre-
sentation with the single particle Hamiltonian H is

written as
(B-H) ¥(r) =0, eeo (2.3)

Corresponding to this one can write the Green function
equation

(E-H) G(F,7':E) = 6(F-#) cer (2.)

with suitable bouhdary conditions. If the energy para-

~ meter E does not coincide with the elgen value of H, then

eq.(2.4) uniguely defines G(T,T',E). In general we use a

complex number z in place of real B, with an infinitesimal

imaginary part and define

¢ (z) = It G(Ein) .e. (2.5)
N0 =

when B coincides with any eigen value of H, ¢ and G are

not identical., In the operator form the Green function
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- known as Green operator is formally written as
: - -1
G(Z) - (Z-H) e e (2 96)

Using the relation

It —4— = £ +ind(x)
y»o x¥Hy X
we éan wrife
+
6 (z) = P == T ins(5-H) e. (2.7)
. B H

where P stands for the principal valuwe integral. So, it foll-

ows that
Im 6X(z) = F n 6(B-H) . ' voo (2.8)

If |a) and eggbe the eigen functions and eigen values of

H ﬁhen

2 8(B-¢,)

a

il

S &l o)

= 3

N L

+
In § 2|67 (z) [0
04

. *
= 4+ i Im tr G (Z) cve (2.9)

where tr stands for the trace of the operator. Therefore,

the densitonf states is given by

f(E) = + = Im trij(E) cee (2.1@)

2=

If we introduce a complete get of states {|)~>} in a cer-
tain representation then we can write, the matrix element

of G
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+ ) o) e At

2

o
MG (2) [AD = 6y

a E-e i-:'U’]

<M§§a.|_£>i in ) M DLfr 6(B-e,)

veo (2.11)

b A

The real and imaginary part of th,(z) are related by the
Kronig-Kramer dispersion relation and Green function is
known completely if the imaginary part of it is known.
The analytic behaviour of the Green function yields the

following information.

When the eigen spectrum of H is discrete, at the eigen
values the second term of (2.11) is a sum of S-functions
"with coefficients (x)i><i]A‘> equal to the residues. In

such a situation th.(z) has discrete set of first order

poles at the eigen valueg;/ln case of continuous spectrum

of extended eigen states G g) possesses a cut along

hk'(
the real axis within the range where the spectrum is conti-

nuous. The discontinuity along the branch cut is obviously

AN
states which we have pointed out earlier is the localised

proportional to the Im G, ,(z). The third kind of eigen
ones. They may occur in the continuous spectrum. Instead
of branch cut such singularities are closely spaced poles

with nonzero residues and are socalled naturasl boundariés(54).

With the Hamiltonian in {2,1) the total and unper-

turbed Green functions are thus defined by (2.6) and

Go(2) = % - H e (2412)
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respectively. So we can write suppressing the boundary

conditions
G(z) = —2
B-H -V
- 1
6lz) - v
= Go(z)+G0(z)V Go(z) + eeeees eee (2,13a)
= Go(z)+Go(z)VG(z). ‘ se. (2.13D)

where we have V, is the total scattering potential.

In an inhomogeneous medium which is constituted of random
scatterers we can write the total wave function in terms of

incident wave with Lipmann-Schwinger type of equation

117 = wO+GOV1U
S =P L Gend, S e kA
where wa = U+ % GOvaB , ‘ veo (2,15)

Wé being the unperturbed wavefunction, ma’ wave function
that describes the field at the oth site and B runs over

all sites. BEquation (2.1%5) can be rewritten as

"

b <1-Gova>"l<ﬂfo+ﬁga 6,75 ¥g) cer (2.16)

i}

(l—GOva)-l i oo (2.17)

wherevwa is the effective incident wave function constituted
of the unperturbed one and those due to scattered wave

from all other sites except the ath site. Multiplying v, on
both sides we get
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v, U, = t 0" ... (2.18)

T ( )

Where t = oe o 2.19
a 1--GOVOC

is the single Site t-matrix,

From (2.13%b) we obtain

G(z) = 6, (2)+C (2) T(z) G, (2) voo (2.20)

where $(z) =V +7 Go(z)V+ e
= v(1-¢,7)"* - ... (2.21)
= V(1+G(z)V) = V(1+GOT), ve. (2,22)

T(z) is the total t-matrix, which is directly related

to the scattering cross-section. Now we shall relate the
total t-matrix with the single 8ite t-matrix using (2.22)
and (2.2).

- Pz v {16 T(Z))

e (2.23)

a

a
=37
a
This expresses total t-matrix as a contribution from all

individual 8ites. Dropping the energy argument,we write

Toc = Va+V(IGOT(x+v G Bga TB eo. (2.24)

which can be further written as

p4
a v 0B£a B« °g2q g o Y*BY ‘

iJ;



Equation (2.25b) is the infinite series for the t-matriz
that contain interfe;ence terms due to scattering of waves
from all 8ites. Thus,
T=3t +Tt¢G gw , e (2.26)
£ a & a0 aZa 8

1o an exact series which will be oxamined in the next

seotion.

2, COHERBNT POTENTIAL APPROXIMATION(CPA) (56)

In this section we shall utilize the knowledge of
nultiple socattering fheory to obtain workable expressions
in the single site approximation and extend it to the oase
of a finive cluster. It has been said earlier that an
onsemble average over all possible configurations of the
atomic arrangements in the lattice structure is necessary
to obtain any quantity of physical interest. In the present
method the average will be carried out approximately so
a8 to obtain an effective medium in which the electrons are

embedded.,

Goving back to eq.(2.1) we find the Hamiltonian H
contains a free part i.e. periodic and configuration inde-
pendent and the potential part is random and configuration
dependent. The periodié part is the reference part which
can be suitably chosen depending on the physics of the prob-
lem, while the random part will be correspondingly defined.
In the case of 'ceil localised disorder', the randomness |
of potential does not go beyond the atomic cell of the
lattice Site. We write the potential as a superposition as

in (2.2) and divide the Hamiltonian in the following manner.

H = (H,+o)+(V-0)
é He -{-tve v (2 o27)
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where,
0= % la) o, <af
V= % la) v, (q
and V= % o (vy=0,) <ol

= 3 ladvy, <al

K

Now we have renormaiised the medium in such a way that an
electron will suffer scattering at various sites and
at say ath site will be scattered by potential vi relative
to the medium H°. Defining the Green functicn &°as
6¢(z) = —i— oo (2.28)
e
7z - H
and with the t-matrix corresponding to the scattering poten-

. e
tial vy

T =t +t G T oo (2.2
o a+aGB§aB . (2.29)

As we have seen earlier, the iteration of (2.29) yields the
standard multiple scattering series which depends on the
location of all sites. We ncte here that the characteristic
exclusions prevent the electron from scattering twice on the
sequence from the same site. All the multiple scatterings
with the same particle have been gathered together in ta’

s¢ that we have only true sequential multiple scattering.

ta includes all the nmultiple interactions of electron with
scatterers at the a site and it describes completely

their interacticn. Now performing the relevant configurat-

ional averaging on the t-matrix, we obtain frem (2.29)
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<Ta>'= /ta(l'*'Ge P )>

\ ety B
= 7t e /TN
= (b, (146 ﬁéa \TB’ )

~ e L Vs .
+{(8,) @ Bﬁa(%- (1> )> oo (2.30)

The first term describes the scattering of the effective
wave on the ath site, while the second term is known as the
fluctuation term. In the single site approximation (854),
the fluctuation is completely ignored corresponding to the
.neglect of all statistical correlations between the ath and
rest other sites.

SO,
/ /.t I G.E é s/ ’I‘ 2 3 l '

If we now define the average of the true Greenfuncticn with

a self-energy S (z), which is unknown of the problem, then

(e =<;HJ(;+V ) R — oo (2.32)

z-HO- E(Z)

We note that the average (H + Z (z)) has the full symmetry
of the lattice, & (z) yields information about the scattering

and also possesses the full symmetry of the lattice.

228 -1 -1
From (4=8) @° = (E:%fjg*)
| ' 2o
1 -1 e—l . -1
and G) = ETETTE) = (6" -(% -0))
(@]

1l

So GY =G +G6%( T —¢) G > cee (2.33)
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§T = T-T , (@d) is written as
pra B O

A
<Ta/ =

or (l+(ta” &%) {Ty=

because {(G> =
and (3G =
Then {1y =

i

Substituting (2.37)

<“G > =

Comparing this with

5-0=

Bquation (239)is wr

> a2 (a)
a
where = o
and F(z) = <a

<ty (146°
(84 {3;(1

¢y (1+684TY)

-1
(g ¥<G2E°

6°+6® Ty 6°

146° <1
y -\Ta>
a

e
e TP RGNt
1+ D6

into (2.3%6) we get

468 T —E—— (£

(2.33) we cbtain
¢

o 1+(‘ca‘; G°
itten in the form

@ =3 |y o(z) <«
a

>{t) <

16°(2)|ad .

s Ky -<Tp )

=1

+ 3 |ad

04

coo (2.34)
.. (2.35)
.. (2.36)
eo. (2.37)
(2.38)

er (2.39)
< ,
ol

1+&) F(z)

... (2.40)
eor (2.41)
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{t> will be same for all sites, so no index is put with
it and in (2.40) 3(z), o(z), F(z) and (t> are all numbers.
So we get
_ N
Y(z) = olz) + Lt vee (2.42)
1+ F(z)

The equation (2.42) can be solved in two ways.

(i) Non-self consistent soluticn (ATA)

With a suitable choice of o(z), €t> and F(z) are
calculated. This method is otherwise known as 'hAveraged
T~matrix approximation(ATAf(57) and a detailed discussion
is provided by Schwartz et al.(58). If we consider the

single band Hamiltonian of (2.1) and use an interpolation
O .
F(z) = F (z-0(z))

with (z) = (a ZEHO(a>

and we shall get }(z) from (t) which is given by
A A B
(b =x {6y &g

B
lEIAv-C) (EI -0')
ko T EEgr

i

i}

- A B
and we choose o0 = € = Xe™ +ye

o w0 (z-3)
then Y(z) =€ + Y e (2443)
14+2eF (z-€)
SA-EB

where S = = W being the band width.
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(ii) Self-consistent Sdlutiocn(CP4)

For the requirement (6> = 6%, $(z) will be equal to

o(z) » when {t)= 0 coo (2.44)

This equation(244) is same for all sites due to the period-
icity in the averaged system. This method is kgown as single

site Coherent Potential Approximation (CPA)(55,56).

The physical basis of the approximation is viewed in
the following manner. The true disordered Hamiitonian,.
for example (2.1) is replaced by an effective periodic
Hamiltonian which in general has complex eigenvalues
corresponding to the damping of the states. The self~
energy Z(z) which is an unknown of the problem is so deter-
mined that the effective wave does not get scattered from
any site. The effective wave contains the incident wave
and contributicn from all sites to the scattered waves,
except that coming from the site in question. In the self-
consistent procedure we consider the waves propagating
in the medium such that it can not be scattered on the
average by an atcm situated at the ath site. Thus, it
follows from the self-consistent soluticn ¢f the usual
nultiple scattering problem, in which generally ()= 0
is the requirement for the situafion when the effective
mediur is equivalent to the true averaged medium. In the
single site versicn the properties of all sites but one
are averaged over and that one is treated exactly.Effects

due to the local surrounding are averaged over in this
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approximation.

In the nonself-consistent procedure we calculated
{t> for a ohcice of effective medium and here we shall

find out the medium from (2.44). Because

(G(Z)>= G®(z), we shall write (2.44) as

"y R (2.45)

X +y 4_-_—0 s e 2545
l—VﬁF(z) .1—VEF(E)
where vg(B) - 4B i(z)

After some simplification we shall obtain

Y(z)=e- (e 53(2)) F(z) (eP- T(2)) e (2.46)
which can also be cast into the form

Y (2) = T+ ER(2) (2.47)
' VA = £ ; P .
< 1+(E+T)F(z)

"~ Bquation (2.46) and (2.47) are two alternate forms of CPA
equation derived by Soven(55) and Velick§ et al.(56)

respectively.

Here we ncte that the Green function method discussed
by Yonezawa and Matsubara(59), Das and Joshi(60) and Leath(61)
is an equivalent scheme of the CPA. Besides similar schemes
have been employed by Taylor and others(62) for phonons,andOnedova
and Toyozawa(68) for Frenkel excifons and Roth(64) for

spin waves. Thus, CPA has become a working tool for
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understanding the behavicur of elementary excitations in
disordered systemt This method correctly interpolates
to the limits of virtual orystal, dilute alloy and split

band situations.

~Using the semi-circular model for the density cf
states of the host, the density of states for AXB —x
randon alloy is shown in Fig.2. x = 0.15 and varying 6 in
both CPA and ATA scheme. In both approximations for increas-
ing &, we get the distorticn of the band at its upper edge
and finally at a certain 6 the band. splits off. Now we
shall briefly discuss the well-known results from CPA
using the so~-called V-diagram(65) as shown in Fig.3 for
the same model alloy with x = 0.1. The hatched ﬁortion
shows the density of states for various values of &. The
exact bounds and CPA bounds are demarcated for the density
of states. One finds for small &, there is 2 common band,
A dip appears in the upper region of the band on incfeéééwh”
ing & and for large 6 the impurity band splits off. Here
it is interesting to note that the density of states of
the alloy cuts off sharply, without showing any band
edge tailing effect. The majority band (or B sub-band)
approaches the exact limits of the spectrum and is very
much like that of the pure B crystal with not much damping
of the étates. The minority band is restricted tojlie
well inside the exact-spectral bounds and the electronic
states are strcngly damped. For large 6 the two sub-bands

are essentially independent.
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With this cell-localised., CPA model in which the
self-energy of the clectron is momentum independent there
are some calculations for the alloy system NiCu(66) in
which the pure density of states of Ni is used fron
exporinental PES data. The same scheme of intcrpolating
the density of statecs from purc A band structure density
is used by Stocks et al.,(67), Leoni et al. and Hasegawa
et al.(68) for noble transition metal alloys of CuPd,

AgPd and CuNi through a range of concentrations,

The main drawback of such calculations is that
the calculated density of states does not possess hosgt-
impurity symmetry(59) i.e. the density of states of NiCu
calculated from Ni as host is not same as that of Cu~host
alloy. Besides, such calculations share the following
objection of the single site cell~localised (CPA) theory
in which the self-energy is k-independent.

We have discussed earlier that while calculating
the randor potential in a2 disordered system, cne should
consider the screening of electrons. CPA discussed
above is a localised perturbation model which has been
shown (69) to viclate the screening requirement and the
potential in this scheme can not be made self-consistent
via Friedel sum rule. Therefore, this particular model
can not have much applicability so far as real systems
are concerned. Lasseter and Soven(69a) on the other hand
have calculated the potential for a single impurity through

a self-consistent procedure by utilizing Friedel sum rule.
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The calculated changes in the density of states are not
sufficient to account for the measured changes in the

linear term of the specific heat.

In view of the above limitations of single site
CP4 it is natural to attempt at improving this approxi-
mation. In the recent past many workers have worked out
many possible extensions of CPA by including the off-
diagonal randomness in the transfer integral and/or by
considering the effect of cluster due to pairs, triplets
etc. The straight forward extension of single site CPA

to clusters is carried out in the next section.

3, CLUSTER MODEL OF ALLOYS

As discussed above the CPA is a single site theory
and all the higher order effects are averaged to provide
an uniform environment to a single site scatterer; the
theory neglects the effect of clusters of atoms in the
alloy. The cluster-effects are known to show explicit
structures in the energy spectrum. In a2 model tight
binding Hamiltonian in which diagonal disorder is only
taken it becomes equivalent to the assumption that the
density of states of pure metal of each constituent is

the Soumne -excq,ft Jor th it of the evurgy byl . Jhio reatricken io
removed when one considers the off-diagonal disorder.

@yrotﬁLackmanyénd Ducastelle(70) have developed a

self-consistent pair theory. This theory in the dilute

limit is exact to x° and it has included the scattering
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from all possible pairs with various separations, but

it hoe neglacted the presence of random off-diagonal
element (RODE) in the tight binding integral, In a
similar manner Schwartz and Bhrenreich(71) have calcula-
ted the multiple scattering series for a pair by perform-
ing the repeated scattering. One can very easily calc-
ulate the correction of wvarious orders to the T-matrix
from a pair. The nonvanishing correction from it comes

in the fourth order which is calculated as

(4 _ .2 2 R @,
<A Ta pair = X (l"‘X) AC(G %a ABG ACXG AB’ --:(2-4-8)
by = tA-D, b y+(1-x) 4
with $8 = ¢t - x4, and
a Q o .
/ - A B
\.ta> = X ta+(l-x)ta ’
where tﬁ and tg are single-site t-matrices of site «

for A and B type of atoms respectively. This theory also
shafes the same dfawback as does that of CyrotLéckmann

and Ducastelle and such theories can not be unambiguously
self-consistent when nonlocal coherent potentials are
introduced. Here we note that there are some attempts

to include RODE in these theories, which can be derived
from a general theory of clusters of tight binding charac-

ter as discussed below.

A large number of experiments have shown the effect
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of local environment on the electronic properties of
disordered alloys and it is well known that interatomic
forces in general favour some kind of local order(72).
Therefore, along with the atom that scatters an electron
one should include its neighbours so as tc describe
the response of an electron to a cluster of atoms. The
approach presented here is mainly based on the cluster
theory of Freed and Cohen(73) and local disorder theory
of Butler and Kohn(74). Freed and Cohen have derived
the multiple scattering hierarchy considering a fixed
set of scatterers, forming a cluster. Because they
describe clusters of finite size, the resulting equation
do not preserve the requirement of translational period-
icity of the average system, which they overcome by
introducing an alternate equation of moticn known as
extended coherent potential cluster methcd (ECPn). The
cluster Green Function carries with it a weight factor
which is the probability distribution function of atoms
of a given cluster in an ensemble of all possible
configurations., If we periodiéally repeat such clusters,
then after proper averaging we shall obtain a continuous
spectrum. Here we shall assume the principle of local-
ity, in which the asymptotic theorem for the operators,
having a finite range is valid (74). Let us consider
now the same tight binding Hamiltonian (L.]) in which
taB is not translationally invariasnt. It can havzs any
AL (BB 4 AB g +BA

one of the following values t
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Toking the same spirit as in single site CPA, we can

choose an effective Hamiltonian

1

B = « B
| %Bl >[a_ﬁ<ﬁl cen (2.49)
for all values of a and B
or B® = %; '“>‘Zo<hi + 2;51a> Ea-B <6 «ee (2.50)
aFf

Here the diagonal element of H® will be zo and off-diagonal

one will be 3 ., which are unknowns of the problem. Looking

o
to (1.1) and (Z§OL Eo is the renormalised atomic energy
level apd zaﬁ is the new hopping integral that is dependent
on a=-3, Here one can note that B is translatiocnally invar-
iant. If we now describe scattering with respect to the

medium He, then the perturbation is
. e
V':h-H s e (2!51)

and the corresponding T-matrix is found out from

T=V/ (1~ 6% v (2.52)

with G° defined in terms of new HS in (2.50). For the
CH> = H® i.e. €6) = G°, we can show from both physical

grounds and mathematics that

(Tygd= 0 oo (2.53)

for all values of o and B, and this is the self-consistent
condition of the present theory. If « = p then (2.53)

gives the self-consistent requirement of the single site CPA,



—A8-

Taa - Va +TaaGaaVaa +1 aI;aG;B Ba
e
E; Taﬁ GBa ax %%, af BB B bt «e. (2.58)
BER "4
and
e ‘ e
TaB = VaB + T, Gaﬁvﬁﬁ + T(mc}(mvmB %’;és;éa TaB’GB'aVaB

+ T _,G5,.V eo. (2.59)
?f—vggﬁ;ga af 'TE'EBE

Bq.(2.59) is a set of Z(nearest neighbour coordination

nunber) simultaﬁeous equations because B runs over all

nearest neighbour sites. The self-consistency condition

<Ta-B = 0 implies
_ | ves (2.602)
< Tcxoc> = 0
-~ * e 2-60b
and | <Tap >= 0 ( )

In this zpproximation closed form of equations for Taa

and Taﬁ are obtained by defining a matrix

Y

- _ 2.61
ss' = %sp " %pp (2.61)
so that | .
< +
“op = [ﬁr;B*avaB'yB'B *aa g'-rigﬁqga XGB'yB'B] /8
v, (2.62)
and
+ 5 y At
T o ‘?a ’#B;éoc Tag¥p51 s .. (2.6%)
aa -1

l"'Xaa"' ‘B'Za -B"?B;éa aﬁyﬁﬁt B'la
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where,
oo = Ggavaa * z;aGaBVBa
Zap = CuplppCualp 7
%gu = %a"ao +Z;ép £a TR
T AP TAR

A 1is the determinant of Y and y is the cofactor

of the matrix Y.

Using (2+62) and (2.63)from (2,60) one can calculate the
Coherent Potentials Eo and {i. This general result
in the case of diagonal randomness only will yield the
socalled self-consistent condition for pair cluster due to
CyrotLackmann and Ducastelle(70) and Nickel and Krumhansl
(75) .The vanishing of the T-matrix in the random case as
we have seen above can also be used for a correlated system
possessing a short range order. Simply for the case of a

pair the equaticn for T _ ., will be replaced by JTapg(R)dR

ap
where R =|a=-g|,and g(R) is the pair correlation function.
Once the ccherent potentials Z's are determined the
density of states can be calculated from the knowledge of
the medium Green function G°, 4 large nﬁmber of papers(75)
on the cluster and off-diagonal treatment of ,disordered
systems have appeared in the recent days., Some of them
feport model calculations for a cluster of atom and its

nearest neighbours.
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CHAPTER-III

ELECTRONS IN THE EXTENDED RANDOM POTENTIALS

We discussed in fhe last chapter that the cell
localised potential model has several limitations for
use in the calculation of the electronic structure of
real disordered alloys. One of the assumptions that both
the constituents in an alloy should have in their pure
form identical band shepes is a severe limitation. In
the bend structure calculation of ordered crystals
generally a system of potemtiale with muffin-tin
form(76,77) is used, which is very convenient to handle.
This kind of potential is assumed to be spherically
symmetric within g certain sphere surrounding each.atom‘
while the interstitial space is having a constant (or a

zero) potential. Since we consgider a random alloy having
. "\\M

~.

a definite lattice structure it is tempting to use the
conventional band structure scheme like the Green function
theory, otherwise known as KKR (Kcrringa (78), Kehn and
Rostoker(79)) method. The formulation of this problem

has been very neatly carried out by Soven(80). Gyorffy(81)
on the other hand,has rederived in a different way the
coherent potential eguation for nonoverlapping muffin

tin potentials without resorting to 6-shell form.

We shall use the result of Soven's formulation along with

certain approximations for our calculation and finally

| [084 9§
ToRAL S ETTE T OGE



show the numerical rzsulis.

Here we recall that the nonselfccensistent ATA (82-84)
cen become a good first approximation in an iteration
scheme leading finally to the self-consistent CPA solut-
ion. We describe below the muffin~tin formalism of CPA
schemé in an itgrated ATA following essentially the

formulation of Soven and examine its applicability.

1. MODEL POTENTIALS AND SELF-CONSISTENT EQUATIONS

The choice of model potentials for the constit-
uent atoms in the ailoy are written in the form

. 5(r-R) . \

im =iy o A im8(r!=R A,

where L is a composite index for the angular momentum
P

gquentum number (3,m). YL(r) is the real spherical harmonics
of angle r, WL(E) is an appropriately chosen energy depen-
dent (model) potential amplitude, index i stands for the

type of atom, R is the radius of the muffin-tin sphere.

If the potential amplitude satisfy the equation

() = Rz[&;m) - % 3 (®R) / jlmm] e (3.2)
then the model potential will have the same phase shifts
as the true atomic potential of i. HereJLi(E) is the exact
logarithmic derivative of the radial wave functicn of angular
momentum}l and energy E for ith atom, j and j' are the

spherical Bessel function and its derivative and & = JE.
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Now with two sets of potentials V<i), the model potential

and V(l)the trve muffin-tin potentials, we can compare the

correspending Green functions, G(i) and @(i). While doing this

}we say that the Green function is in the exterior region
of the muffin-tin well when both of its arguments lie
outside of it, otherwise it is in the interior region. It
can be shown that in the exterior region the Green function
é(i)is solely determined by the phase shift of the.indivi-
dual potentiais; Since V1) and 7 have same phase shifts,
the corresponding Green functions are identical in the

exterior region. But in the interior region the Green

functions differ. We know that the density of states
$@ =-2%mtr GE>

and now 1f'f l) (E) denote the part of the trace of the
‘above equatlon arlslnb from the 1ntegrat10n over the volume
within the sphere surrounding a particular type of atom i

then
W@ - -t [GEDY,, (3.3)
5 =T R A AN Ay) T

where, « . --g( ) is 2 restricted average for (1), is defi-
nitely at a particular site., In a spherically symmetric
situation the angular momentum decomposition of the Green
function is given by

G(T,r") = %r, Y (8) Gppi¥p.(F') veo (3.4)
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angular momentum subscripts, which arise from the fact
that {G) and hence ) need only have the point group symm-
etry of the lattice.We can write the operator equation
for T-matrix of A and B type of atoms corresponding to

this medium as

= (e 4 (- Gyt .. (3.10)

As shown above {Ty= O from which

A

x T7 + (1-x) TB' = 0 will give'the operator

form oFf oquaticn (2.46) as
=0+ (I-vEE-m L (3.12)

where U= x V'A+(l—x)VB and has the same form as 13(3.1).
Here onwards we shall write CPA medium G for <G> , because

the true averaged medium is described by } . Then@we have

6t =6+ (vt - et o (3.12)

from which (3,8 ) is written as

P@E - {tr ¢ - N% [X(GLL)A ggi + (1-x) (G ) g ]?
(3 13)

‘Using the 6-shell model for all the operators (3.11) is
written out as a matrix equation in the angular momentum

representation:
- A
WLL t - UL‘éIJL ' + %;L o LL" 6LLNWI] GLH LIH

B ‘
X EIJL'"L'” 6L"'L'WL':} "o (3-14)

I 128



or  W=1U+ (W-w8) o(w-vF) Cees (3.15)

New in the above coherent potential equaticn G occurs
which is a functicnal of W. Since lattice periodicity is

there, defining the Fourier transform

- - Vo k- -
6(F,7") =§% ¢ (%,7') vve (3.16)
where the prime over the summation sign restricts the
k vectors to lie in the first Brillouin zone. Using the

Green function in the KXR form we can write in the nmixed

representation
(5,5 = (550 + 3 EDILLEELE) e (3.172)

I, L! .

(371 + ¥
0 L'

H

k - W By o
Go(r,L)[;éngLL'GO(L yT)
s e (3017b)

where G, is the free electron Green functiocn, given explicitly

in the coordinate repréesentation as

. i (B4R, ).(B-F")
¢(7,7') = & € ee. (3.18
J(TT') =3 }l; [E—|E+k—n|'2] (3.18)

where @ is the volume of the crystal, En denote the reciprocal

lattice vectors.

Again using fhe 6-shell form for Gk we can straight forward-

1y write the matrix equation

=iy —1__ pE ver (3.19)
ﬁ?{; (I-GIOE W) :

GGR

' 1 °prL, W
tr G = [} - Z —== ( ) s
% % (E-|E+k |2)  Tr' 9% 1-ciy L L
n © (3.20)

and

i
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k

k(= Kory =yam aGOﬂL
for which the relation fGo(r,L) GO(L ,v)dr = =N )

has been used. It has been shown by Beeby that the poles

of the first term in (3.20) for the electron energies

get cancelled by the corresponding poles in the sccond term ,

Now G%L is calculated as

{\_ Z ['. . W)(:,-]LL'GL,L from which the

formula for the den31ty of states can be written as

06 _
1 ' LI W
F@E=-2In> > (- )[ _J
, nOU s fr 9 1..G§w LL'

d%Ar -1 4
-N Im %%, GL‘L[% = {(1-(WA~W)G) }

in!

+(1-x) ddE t(l~(v -1)G) }LL‘] oo (3.21)

The above formula is further simplified using the KKR
method where the values of its argument lie inside the

nuffin-tin sphere go that

E@F)_kgﬁ BLJI )ﬁ&m)

11 -
15 0e) 3, GY) BLL,JYL'(I") e (3.22)

k
LL!

. is the structure constant matrix tc be Cescribed later,

where r} and r, are greater or less of r and T' and B

The potential amplitude defined in eqn.(3.2 ) can be

obtained as
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Wp = - (&9 6 (@R o on @) . (3.23)

from the elementary potential scattering, where CL ; are

]
the cotangent of the phase shifts for i kind of potential.
For the complex potential 2 ’ CL will be COmplex, so that

_ ’;K:‘]l ['3 (%R)C i ri(mﬂ] .. (3.24)

Now from {3.22) we have

k
0

; 4 -1 :
k=g, o @Ry, Y @Ry @) B |

LL'
eeo (3.25)

Using the above two equations in ( 3.17b ) we get

650 = %y (@R) [j (m)cL-nl(mﬂ 6ppr - it jl(acR)cL~nl(xRﬂ

-1
. k
z (Jl'(xR)CL,-nl,(IGR))[C+B:]LL' ves (3.26)

Now aumming over £ we get
i (s 2
G = Kbl(3lCL nl)—XXJlCL gl) 3 .. (3.27)

where, -1

- §
= % ' [C+Blﬂ | oo (3.28)

Kk LL .
Using ( 3.23 ) and (3.24 ) in the coherent potential
equation (3.15 ) we shall obtain a system of equations

_ A B
Cp = CL,av+(CL )g (63-C,) S eee (3.29)
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- ch+(1-x)c% | ... (3.30)

where C I

Lyav
Here we note that eqn.( 3.28 ) and (3.29 ) are coupled
equations which need be self-consistently deternined.

Now we go back to equation (3.21) for the density

of states, Using (3.24) and (3.25) we can write

-1
[ ] (Kalal.) EJ+Bﬂ eor (3.31)
1-G WHTL LL!
d_ ok 11 d : B d (o -
and G Yo, =1 ESLL' a8 ®hm)+Brp GEiRd 3)
R <
'HK}JlJlBE BIJ'L] ' oo (3.32)

so that the first term of (3.21) is

E(r[E e

LL

-1
+N3L(x3§.) [%E(ml“ﬁ‘% %ﬁmf{]}

(3.33)
and similarly the second term Is—obtained as
A B
dcC . daC
-1 L B -1 L
~NIn '5: { (1-x) (3= ) ™F =g + x(eB - o) =
2 A fons & rni2 |

+(~'KJJ_) gLI:dE(KJ]_Ii)'CL E-E(K‘,Jl):‘} ver (3.34)

Now on adding together the final expression for the spectral

density of states per atom is obtained as
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. - -1 ok -1 acﬁ
P8,k = % Im % [[ C+BX ] %-]LL+ Im %{ 1-x) (CL—C%) -
B
vz (0-cB)L L} (3.35)
X L“‘ IJ dE i .o 0 .

In order to obtain the total density of states we have to
integrate over the first Brillouin zone i.e. a summation

over the rhs of (3.35) is to be carried out.

We realize that the use of the above formalism is an
extremely difficult task becausc of the fact that in onec
of the coupled CPA eguations (3.28), there is a summation
on the first Brillouin zone,performing this summation for
once only is already a difficult task because the function
is highly anisotropic in k. Use of standard methods like
linear interpolation scheme (86) or QUAD scheme (87) in this
case is practically impossible. Besides'there is an extrem-
ely simple method of k-sum known as 'Mean Value Point
Method' due to Balderschi (88). But this method is useful
only when the function is smooth in k. In view of these
difficulties we shall use the ATA result for the phase shift
in eq.(3.29) and then calculate the quantities as described'
in the block-diagram (Fig.5). Mean value point method was
used to perform the k-sum, and was found to be poorly
convergent in view of the fact that it is not to be used
for arbitrary functions (unless smooth). So, the results méy
not be reliable.

We found that the CPA program as detailed in Fig.5 is
difficult to implement,we avoid the iterations of (3.28) and

(3.29) .,The details of this calculation for CuAl is described below.
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We have also calculated the spectral functions by

assuming the potentials of the constituent atoms and the
i

medium to be of the 6-shell form as in (3.1). The ampli-

tude of the medium potential is obtained from CP equation(77)

C-OWAW - wa+(1-x)w )

[(l—-x w + XV ]—1

where G% = G%(R,R), 1th angular momentum component of the

free particle Green function.

Now the t-matrix has also the same é~shell-form

1(E,F) = ) 1 (D) A (8) olr-H) 7 (%)

T, = — T

e Z 1® 2 e (3.37)
oW

where tl = '."'""B"-""" "o (3038)
l-GLWL

The Fourier transform of T(Tr,r') is written as
B = an 5T (0 v,k
10 = 4 T 10 1,0 [ 0y,

+[t (k,@ (61 (1-6"t (3,%) )—l}t (;m,k)] }

LL!
eee (3.39)
where, t(k,&) = tlji(kR)m_«bR) veo (3.40)
and Gy, = Ao+l o, ' oo (3.41)
We can find out the spectral function}‘CE,E) as (57)
f(E,E) ::-'——LTZ Im T(E) - eas (3-42)

70 (B-k )
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2. DETAILS OF CAICULATIONS

Thé me thod described above has been used to cal=-
culate the spectral functions of copper‘based alloys like
CuZn, CuGe and Cull. Our choice of the numerical work on
these systems is mainly because of the fact that the one
electron spectrum of copper is well.understcod and there
are variety of experiments carried out on such systems.
Because of the very involved nature of calculations as
well as approximations the results of the calculation can
at best be regarded at best approximate. fgain the reliable
calculations of the potentials is a difficult problem.

In case of alloys, it is well known that the non-uniform
site envirbnments and the différent atomic properties of
the species compound the uncertainties of the alloy poten-
tials, still we assume that the basic form of the potential
doed8 not get seriously changed. However, if one under=-
takes a self-consistent calculation these aspects should
be considered in greater detail., We shall use the formulae
(3.42) and (3.35) to compute spectral functions. While
using the formula (3.42) we have calculated the medium
potential amplitude (3.2) by numerically solving the
differential equation for the radial part of the wave
functions and finally calculated the logarithmie derivative

at the muffintin sphere., From the knowledge of the

medium potential amplitude, the t-matrizx was calculated end
then the spectral density of states. While using (3.35) we

uge the parametrized phase shift schem§ to calculate

cotangents of the phase shifts and then the procedure
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described in the flow chart (Fig.5) was followed. In both
the cases the calculation of the structure constants was

carried out using the method as outlined below.

(i) CAICULATION OF STRUCTURE CbﬁéTANTS

) The derivation of the XKR method has been discussed
by many authors, particularly by Ham and Segall in their
review article(69). In the muffintin approximation the
wave function within the muffintin sphere is written as

1
ax

m
wﬁ(i) = %; '

0

M

£ cgmal(E,'f)ylm(e,QS)

B
1

-1

where Cim are the expansion coefficients, Rl(E,?) is the
radial function of the equation containing the potential
and ylm(e,ﬁ) are the real spherical harmonics. The E(k) are

obtained from the zeroes of the determinant

H Alml'm'(E’E) + rE 6n.5mm.00‘6‘0 (E) ”

1

The structure dependent part is Alml'm‘ which is independent
of the potential. These quantities are conveniently express-

ed as

- M
(B,k) =41y C -
Alml’m' ! %}I 1m1!mQDLM(E’ k) 2

LM _
where lel}m: —‘fdﬂ YLM(9,¢) ¥Lm(e'¢) yl'm’(e’¢)

are known as gaunt numbers. For a given(E,E)pair due to the

properties of C%ﬁl‘m" (21max+»1)2 distinct structure



-63-
constants -DLM are evaluated since the largest L value
is 21 DLM(E,E) are readily evaluated by using the
expression of Ham and Segall and the efficient numerical
technique of Davis (90).
(ii) CALCULATION OF POTENTIALS AND LOGARITHMIC
DBRIVATIVES.

The type of crystal potential which has been
found to be reasonably successful in calculating the
band structure of noble and transition metals is obtained
from a superposition of atomic potentials on neighbouring
sites. The crystal potential is represented as the sum
of a Coulonmb and an exchange part, both being obtained
from atomic wave functions. At any lattice point, the
Coulomb part is taken to be the Coulomb potential located
'at that site plus contributions from neighbouring sites.
Thisis evaluated by employing Lowdins o-function expansion
technique and retaining only the spherically symmetric
term as implied in the muffintin approximation. The
crystal charge densities are obtained by a spherically
symmetric superposition of the atomic charge densities in
an analogous manner. The exchange potential is calculated
from Slator's formula. The average pOtentials of the
species of the alloy, VA and VB, were calculated with
the method described by Pant and sthi(46) by following
the procedure similar to the Mattheiss prescription(91).
With these potentials the radial equations were solved
numerically by employing Numerov method. Then the logarithmic

derivatives were calculated at each energy and angular
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momentum on the radius of the muffintin sphere.

This program was used for CuZn and CuGe alloy to
calculate the spectral functions employing eqn.(3.42).
(iii) CAICULATION OF PHASE SHIFTS FROM A PARAMETZRIZED

SCHEME
(4) Phase shifts for metals

The KKR band structure method works very well even
if we restrict ourselves to using 1max=2' S0 essentially
ons needs to calculate.S phase shifts Mg nl’and N, as
functions of energy in order to solve the secular deter-
minant. For realistic band calculations for alloys, it is
quite cumbersome to construct potenfials for each concen-
tration of the solute atoms in ailoys. Therefore, a parametr-
ised scheme is useful which can fit first principal cal-
culation of band structure of pure metals. Such a scheme
is developed within the framework_of XKR scheme by Cooper
et al.(92).

The essential step in this procedure is to obtain
the funétional form of n for their energy dependence.
This has been carried out by taking the leading terms in
the series expansion of the Bessel and Neumann functions.
Then for noble and transition metals the d-band resonance

is taken in nz. In an emperical manner the three phase

shifts are specified with 10 ad justable paramaters for

noble and transition metals and 6 adjustable parameters for
free electron like metals. These are to be adjusted in

order to get best fit tc the first principle band structure
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calculations.

We have employed this scheme for Cu and Al in
order to get the pure band structure of the metals using
our KKR program. The phase shifts of copper are fitted
with the Chodorow potential and that of aluminum to
Heine-Segall Potentizl.Tan nl‘s are shown in Fig.6(4,B)

and the computed band structure of Cu and Al in Fig.(74,B).

(B) Phase Shifts for Alloys
In the elementary theory of scattering the t-nmatrix

is written as

in, (B)

t,(B) = - 1 e sinny (B) = -ﬁ(cc}tnl(E)-i)-

B

The alloy phase shifts corresponding to the ATA result is

- ey

written as

(6 3= x %) + (1-x) 7

-1 -1
- - % ot s)-1)” - L2 (oot i)

Now we can Write'<t)l= - l—(cotﬁl(E)-i) so that
B

-1

= . l-X
cotn. (B) = 1 + [ X + X ]
1 cotnf(E)-i cotnf(E)-i

In terms of cotnf and cotn?, we calculated the ATA phase

shifts of the alloy of Cuil,

Here we note that the phase shifts for the alloy

are complex for real value of energy. One could do a
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complex band strucﬁpre calculation with! these complex
phase shifts while making k-real. These ccmplex cot nys
make the sharp dispersion of Eg tc be blurred giving rise
to anwidth. With these phase shifts we calculated JXE,k)
from eqn.(3.35).

In additicn to the parameters to obtain the phase
shiftsan additicnal parameter V -+a constant potential is
necessary to find out the muffintin zero of the potential.

In our calculaticn, we choose it to be Vb: xV§+(l—x)V§

3. RESULIS

We have discussed earlier that the Bloch states of
an electron gét diffused because of the aperiodicity of
the potential. So the crystalvmomentum-ﬁ is no more a good
quantum number. That is why we have preferred to calculate

the spectral function

- 2
FEx =5 8-8) V5l ,

=]

where wni is the kth Fourier component of the eigen fdnct-
ion wn with En as,its eigen value. We have calculated the
spectral functioné:for both 'Energy and Waveﬁvector searches'
as is conventionally done in the KKR scheme. The peaké of
theNP(E,E) are téken to be the snergy(wavevectors) corres- =
ponding to the chosen wavevector (energy) of the band. The
width of the f(8,k) is supposed to be the spread of the

one elactron state, from which the decay time can be féund
out. In Fig.7a we have shown the band structure of pure

copper along the principal symmetry directions E;rA'i]J
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CTAL] and [ [ T x| by using the phase shift paramet-
rization scheme for the Chodorow potential of Cu. We shall
see how the substitution of the second ccmpenent in the

a~phase change the bends.

(4) Brass alloys(CuZn(93), CuGe (94))

As menticned earlier, there are séveral calculat ions
on CuZn in its a-phase. In Fig.8 we show how the bands of
copper shift when zinc is added within the virtual crystal
approximation. The obsarvations are (1) the alloy bands
are found to be displaced to the lower energy, (2) the
Fermi energy of the alloy has shifted to higher energy as
compared to that of pure copper. The complex band structure
has been calculated along the [ [AX] direction and is
shown in Fig.9. We have shown how the cdisorder brings the
spread in the dispersioh curves in Ao AZ’ and As—bands
marked by hatched line. The solid line is drawn thrcugh
the peak energies oij(E,E) at the values of 0.0, 0.25,
0.50, 0.75 and 1.0 of the ¥/k __ in the direction of the Bz.
The bands are found to be mcre diffused in the central
- part of the Zone than at the centre and the zone face.

The spread of the band was taken tc be equal to the width

of the spectral function_f(E,E). This spread is found td in-
crease with increasein concentration of the solute atoms.
For A5 band the widths of the spectral functicns are
approximately in the ratio 4.5:6:7 for 10, 20 and 30 at 7.
of zinc respectively. In FigldO we have shown~f%3,§) for

-

fixed value of energy against k for the 84 representation
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of the band for 3 concentratiomsof zinc. The half-width

of the d-states (A2,A5)'is about 4.57. of the Bz dimensions
while for the s-states it is about 17/. of it. From our
calculations we find that Al,andlabands suffer a downward
shift and this agrees with the results of Amar et al. (46).
Because the calculations are very tedious, we calculated
the spectral functions fqr a few selected symmetry points

on the Bz for «a-CuZn and a-CuGe.

CuZn

Biondi and Rayne(95) have measured the optical
abserptivity of a-brass as a function of frequency and
have obtained the.absorption edge at 2.2 eV for pure
copper. This edge shifts to higher energy on alloying with
zinc. It has been observed that an absorption peak at 4.2 eV
moves to lower energies on addition of zinc atoms. Another
weak absorption maximum is found near 3.45 eV for pure
copper which also moves up on alloying. These measurements
have been discussed and interpreted by several authors taking
energy values from the pure copper band structure. The
optical absorption results are shown in Figs.11,
Lettington(96) attempted.to interprete these measure-
ments on the basis of the band structure calculation for Cu
due to Segall (97). Cooper et al.(98), Bhrenreich and
Phillips(6), Beaglehole(99) have studied the frequency
dependent sz(w) for copper and suggested some assignments
for the optical transitions. So far as the peak positions

are concerned, the measurements are consistent, but the
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(a), (b)

Table 1
- Approximate 2.2 oV 3,45 oV 4.3 oV
position of * A A
the peak - .
Systemsl,
(1) L32 —> Lo (1) XS - X,
d — EF X5 —_ X4, d —=p
Cu (b),  (d) & = p (b)
(2) Virtual excita- (&) (2) L2,~9 L
tion resonance
(C) (C)) (d)
| (1)L2,-+Ll (1) XS - X,
L32 - L2,f/ (a) d ~»p
CuZn d - EBg (2) X5--->X41 (2) Lyy—> Ll

(¢), (d)
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Table 2
Systems Cu Cuzn(10 7) | Cuzn(20 %) Cuzn (30 %)
Transitions Theory l Expt.|Theory | Expt. !Theory Bxpt. |Theory | Expt.
1.807§a;
) .
Ly, =Ly, 195 12020 1.504 2,30 1.658 2,42  1.712 2,58
52 1.481(¢) (c) (a)
1.252
5.925§:§ _ | .
Ly, =L 4'865( ) 4.30 3.669 3.82 3.302  3.335  2.935 2.9
4.661 4.362(2) 3.995(d)
4.756(d)
4.57953?
I, o %, 92 03045 4.050  4.02 4,104 4.60  5.517 5.08
3.968(°) (a) (d)
| : 4,208 6.170

3.860 (%)
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assignments to transitions differ. In table 1 we present
the assignments due to various éuthors for the optical
absorption peaks of pure copper and a-brass. For the
edge at 2.3 eV in copper the assignment L32-L21,by
Lettington and Cooper et al. fits well with our calculat-
ions.The absorption pesk at 4.3 eV also agrees with the
assignment (LZ'LI) transition byMuaeller and Phillips and
Gerhardt et al., but Lettington and Cooper et al. have
assigned this peak to (X5—X40 transition. Our calculations
show that the secondary absorption peak may be due to (XS_X4').
as proposed by Gerhardt et al. Lettington has identified
this with (LZ,-LI) transition. A recent optical reflect-
ivity study due to Hummel et al.(100) reveals the peak at

2,27 for 97, Zn in Cu which may be due to L (B

32=Ly (Bp)
transition. Besides these authors have made the reflect-
ivity measurements over a very wide range of concentration

of Zinc.Although their observation of (LQ,-Ll) transition

and the provision of edge agrees well with other measuréments,
fhe transition (XS*X4') is observed for pure copper at

about 4.2 eV and falls to 2.84 eV for 24.8 at 7. of zinc

in Cu. In table?we have displayed the concentration depend-
ence of various transitions according to our calculations.

The experimental optical absorption data of Biondi and

Rayne has also been shown.

Cule
Rayne (101) has measured the optical absorptivity of

CuGe alloys with varying concentrations of Ge upto 7 at 7.
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at 4.é°K. Later Pells and Montgomery measured the absor-
ption as a function of photon energy from 1.7 to 5.9 eV
for CuGe at two compositions. In both these measurements
the main absorption edge at about 2.2 eV of pure copper
moves upto higher energy on alloying with Ge. Rayne has
observed that the main peak for pure copper at about
4.20eV shifts slightly to the higher energy in the alloy.
Pells and Montgomery(102) find that the single peak near

5 eV in Cu is split into two peaks iﬁ the a2lloy. The low
energy peak is not as pronocunced as the high energy one.
The high energy peak remainsclose to 5.4 eV and the low
energy one moves to the lower energy as the Ge concentrat-
ion increases. Optical and photoemission measurements have
been made by Nilsson(103) on Cu0.94GeO.O6‘ His observations
show the same broad features as found in the measurements of
Pells and Montgomery. As seen earlier, Iy, lies about 0.5 eV
below EF which is depressed on'alloying by an amount which
"depends on the total number of.cenduction electrbns and the
density of states. The Fermi energy should show a slow

rise. Thus, in alloy (L2,-EF) separation will be larger

than in pure copper. From our calculation (L32—L2L) separat-

ion is about 2.067 eV in Cu This suggests that in

0.9%0.1"
the case of pure copper the absorption edge could be
ascribed to transitions from the top of the d-band to EF'
Then two levels move apart as we alloy and this agrees
with the observed movement to the higher energy. We adopt

the interpretation of pure Cu from Pells and Shiga(104)

i et 0N

[ W
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TABIE -3
Transit - Cu Cule
ions Theory Bxpt. Theory Expt.
a
Lygrlpr  1.48 2,200¢ 2,07 2,23"
1.20
a
Lailyp i.:d 4.78° 4,37 4.0°
Ly;-Ly, 4'982 5,%2° 5.41 5,48
4.25
- a '
Eg=Xpn  3.99 3.97° £.09 -

3,849
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for the absorption peaks. The lower energy peak is ass-
umed to arise from the transitions in the neighbourhood
of (L2,— 12) and the higher one %o (IifEF)' If we regard
EF to lie close to L2' the table 3 shows that the calculated

values show surprisingly good agreement with experiment.

CuAl

This is a prototype of a noble metal alloyed with
a free electron type metal. The band structuresof both
Cu and Al are well studied and this system is well-suited
for optical studies because the conduction bands are
supposed to shift substantially with increasing electron
concentration by adding Al into copper. In the alloys
studied earlier like GuZn and CuGe, the solute atoms
Zn and Ge have their own d-bands well below the bottom of
the conduction bands. It is not easy to find out how do
they influence the band-strﬁcture of such alloys. While

in the Cuil, such problem is not there.

‘Using the phase shift parametrization method we
have calculated the energy bands in three principal direct-
ions for Cu and Al (shown in Figs.7(a) and 7(b)). The
spectral functicns are calculated for Cuo.9 AlO.l at
selected points of the Brillouin zone using the energy
search method. The peak points of P(B,k) are shown in
Table 4, against the pure coppef values. The muffin-tin
zero of the pure copper is -11,797 eV for the Chodorow
potential while for the alloy it is -11.07& eV (a virtual

crystal muffin-tin-zero).
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TABIE 4

Cu Cuy 940 4
1 0.00 0.00
PYY 5.42 5.31
[‘12 6.24 6.14
x 3.56 3.82
Xy 4.05 4.40
X, 6.82 6.67
X 7.03 6.99
Xy 11.13 B 10.98
4 16.47 -
¢ 3.59 3.51
nd) 5.37 5.30
L% 6.85 6.75
Ly, 8.44 8.48
Ly 13.07 12.87
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There are measurements on the optical reflectivity
for this alloy by Rea and DeReggi(le) and Hummel
et al.(100). The inter-band contributions to e, for
Cu and Cuil alloys due tc Res and DeReggl are shown in
Fig.l2a.The vertical lines (4,B,C and D) show the move-
ments of the thresholds of transitions ﬁhich cne can
compare with the critical energy transitions of Hummel
et al, The edge at 2.2 eV is due to transition from the
top of the d-band to the Fermi level. This increases
on alloying and for 10 at 7. of 4l we find the change
in ‘LSZ-LQ'I gap is 0.137 eV. Hummel et al. have observedv
this change to be 0.14 eV. The line CB starts nearly from
4.4 eV and cdecreases on increasing Al. This traﬁsition
is due to (LZ'(EF)“Ll)‘ Our calculated shift is 0.246 eV
against the observation 0.82 eV, The remaining transition

which is seen at 5.2 eV, its energy decreases as the

concentration of Al increases ﬁpto 7.5 at /. of Al and
then it increases. The differential spectrogram of Hummel
et al. shows two structures around 3.1 eV and 5.2 eV
which were also reported by Fong et al.(106) for pure
copper using wave length modulation technique. Although
3.1 eV structure disappears on increasing concentration
of L1, the one at 5.2 eV shifts to lower energy. This
transition may be due to |X1-EF|.IX5— 4,| transition is
observed by Hummel et al. which decreases by 1.2 eV as Al
concentration increases to lO.at /. . We find this shift is
0.11 eV. For theseinterpretations of optical transitions,

we could not calculate the Fermi level of the alloy.
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But as in pure copper EF lies about 0.5 eV above L2'
point, the filling of the d-band by additional electrons

due to Al is assumed to have the same amount of upward

shift of the Fermi level.

The possible assignment to the direct optical trans-
itions are no doubt speculative, unless we do the detailed

calculation of the dielectric functions.
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CHAPTER~-IV

ELECTRON STRUCTURE OF BINARY ALLOYS IN A
TIGHT-BINDING MODEL

We have discussed in the last chapter the coherent
potential approximation in the framework of muitiple
scattering theory, its single gite version and other
possible extensions with some typical resulfs in relation
to realistic experimental measurements. What is signi-
ficantly important in the thecry of disordered binary
alloy is the effect of fluctuation in the alloy potential.
It has been pointed out earlier that the fluctuations are
neglected in the self-consistent single site theories.
Recently Edwards and Loveluck(107) have proposed an app-
roach within a tight binding framework, which appears
promising for taking into account the effect of fluctua-
tions of the alloy potential, In this theory the electr-
onid structure is described as uswal in termsAof the
configurationally averaged Green function. A partial
sunmetion for the averaged perturbation series was
performed diagrammatically to get information about the
electronic states. Some of the unsatisfactory features of
such a partial summation was eliminated through a partially
renormalised perturbation expansion. In their analysis.
Edwards and Loveluck (EL) replaced the hopping matrix
element by its average value before the configurational
averaging of the series is carried out for each term of
the perturbation expansiocn in order to simplify the

formulation. Such an approximation is not satisfactory
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for an alloy whose constituents have significantly
different potentials. In the présent chapter we shall
consider explicitly and exactly the configuration
dependence of the hopping term (108). Necessarily this
modification in the present formulation will lead to a

more complicated anglysis than the one made by EL.

1. MODEL HAMILTONIAN AND THE GREEN FUNCTION

We consider a simple model Hamiltonian for substi-
tutional disordered binary alloy. This is the same model
Hamiltonian as used by Edwards and Loveluck. The ions are
randoﬁly distributed, therefore, .a particular type of ion
has equal probability for the occupation of any lattice
site which is equal to the concentration of that type of
ion. We further assume that each ion has only one electron
with eigenvalue Ei for the ion of type i ( i=1,2). In the
tight-binding approximation the Hamiltonian for the system

will be written as

i .. ij
S A LR '
E = .c.x_ Ca .uo aa aa+ éB cz B‘; T;g aB Cg ’ e (401)

where aZ and a, are the creation and annihilation operators
respectively for an clectron at the ath site, Tig is the
hopping (transfer) matrix element between the ath site
(with the ion of type i) and Bth site (with ion of type j).
The transfer matrix fig is related to the crystal potential
V(T) by
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3
TIJ | ax ('x" [ (7) - Ug('i):l@g(i), ves (4.2)
with V(F)= 5‘ ey UL(F), e (4.3)

where we have designatel the potential at position T
associated with an ion of type i (i=1,2) centred at the
lattice point ia by U;(E). @i(?) is the atomic wave
function which corresponds to the ion at the site ﬁa’

The coefficient ci takes only one of the two values 1 or
0. If the lattice site ﬁa is occupied by an ion of type i
then ci is equal tounity, otherwise zero. Since at a time

only one type of ion can occupy a particular lattice

site, ct and og satisfy the‘following condition,

j_ i
¢, Co = c éij e (4.4)

Let us now define the .retarded single particle

Green frinction and its Fourier transform'by

g6t = -10(t-t) <[ (), o ate )_|:; e (4.5)
and
;é( ) = i; f gig(t) exp (iEt)dt eee (4.6)

respectively. Here~aa(t) is the operator in the Heisenberg
representation for a, and 6 (t-t') is the Heaviside step-

function defined by

1

6(t-t") 1 for t>t'

n

0 for t<{ ¢!

[ j represents an anticommulator and the angular brackets
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¢ e indicate +the average over the grand canonical
N
ensemble ,

,(o)e = 1r 0 ¢ PH/pp oFH

.

The equation of motion for the Green function (4.5) can
‘be now easily obtained by differentiating with respect
to time. Using the property (4.4) of the coefficients the

equation of motion is

. . . .. . ;
iy i i i€ 41 A9(B
(E-EOX gaB(E) = ¢ 6aB ey 5 Tt% gés( ) cee (4.7)
we now introduce the atomic Green function
RO
yoid - a8 oo (4.8)
of E-E,

where &t stands for the product of & _, and 6, .. The
ap @ ij

equation (4.7) with the help of the atgmic Green function
(4.8) can now be written in a more convenient and compact
form

k1l

a ] ;

a “af x CaN AS J(E) voe (4.9)

B

2. Perturbation Expansion and Diagram Technique

Our problem is to solve the Eq.(4.9) for the Green
function gig(E). Due to random distribution of ions it is
not an easy task to get a solution. For a disordered
lattice the crystal momentum E is not a good quantum
number and we shall solve the equation for Green function

in the direct lattice representation. We shall expand
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equation (4.9) by successive iterations and then confi-

gurationally average it term by term. Thus

« - - kl > - .
1jmy o a1 y01iJ( 1 ,o0ik k1 (01j <
<gaﬁ(E)/ = {Cq YaB 3+( jéca Yoo N YéB /
L klmn .
S ot Y01k rIkl 1 olmen n YOHJ\: o
‘e & v v6 ©8 5 ak A AR

... (4.10)

This is identical to the Eq.(3.16) of Edwards and Loveluck

obtained by them by following a different procedure.

Here { > denotes the configurational averaging. In
g.(4.10) Edwards and Loveluck replaced T é appearing in

the expressions like /c ’1‘:LJ 5> and the other higher order

terms by the average value ’Tlgf;T;g)-depends on ﬁa and
- - - ' {3
RB through |R,- RBI and is designated by‘%afﬁ.

In the present study we have tried to investigate

the problem without resorting to such an approximation
A

af

depends on the coefficients c through the expression of

for 1t B It is clear from the expression (4.2) that T

the crystal potential V(T). We shall average the various
terms in (4.10) without resorting to any approximation for
the transfer matrix element T.é. Except this difference we
shall be closely following the work of Edwards and Loveluck.
In order to accomplish this we rewrite T 9 in s slightly

af

modified form using equations (4.2) and (4.3).

s S .
1j _ % (o8 _ £83 isj
Tag =2 O 8 T

where,
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where,

. . - . 3 - - o
Vg = | 4F 0 (F) UF() 05(3). co (4.12)

We now substitute (4.11) into (4.12) and obtain
ksl

ijo_ 1 013 Olk ksl 01
Ep7= Ca ¥ gué o b op
N kslmpn . '
i s 1y _ g8l i:l: oik yksl (olm
(Cey “u 05> 6u6 <C > * \)WSSY}}\ Yoo Vwus Toe
mpn On J oS. l oP_ pn

Now it is clear from the perturbation expansion (4.13)
that the task of evaluating the averages is to evaluate
the averages of the products of the coefficients ci (for
examplet <°a X 6><a °) % ic?)etc.). These averages
can be easily evaluated if we adopt a diagrammatic approach.
0f course, one can easily get the first few terms by
algebra without resorting to diagrams, but the higher
order térms in the perturbation series (4.13) will become
more and more complicated and it is difficult to evaluate
them without using the diagram technique. These diagrams
can be constructed by following certain rules which are
derived from algebra. The rules are discussed in detaii

by Bdwards and Loveluck and we will not repeat them here.
Wherever necessary we shall point out the modifications or
extension of their rules so as to deal with the problem

at hand here.

In the perturbation expansion (4.13) the first term

on the right hand side contains only a single coefficient
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ct, and its average in the case of complete disorder is

equal to nt the concentration of the ith type of ion.

The second term in (4.13)‘contains threé c¢'s and two c's.
"In order to evaluate these averages, following Edwards
and Loveluck we first construct the dot diagrams which

are given below

[ 4
1
] ) ® .
1 sl 8 8 s (1)
sy
. . o 'y [ ¢ *
isl is i il i il(s) i

(1) (i1) (iii) (iv) (v) (vi) (vii)

Here 1(s) stands for 6ls which is explicitly present in
the second term of (4.13), 4 moments reflection shows‘that
out of these dot diagrams (i) and (iii) are cancelied by
(vi) aﬁd (vii) respectively, and only three dot diagrams
survive. Once the dot diagrams are made, one has to do
horizontal grouping over the various lattice indices a,
and 8, and the diagrams cén be easily constructed. The
diagrams corresponding to the second term (4.13) are shown

in Fig.l3.

On comparison with the firsf order (in‘(T) diagfams
corresponding to the perturbation eipansion (3.17) of
Edwards and Loveluck, one finds that the diagrams except
(3,6,9) in Fig.13 are completely new. These new diagrams

arise due to the fact that we took out explicitly the
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s
u

matrix element T;g, while this was not considered by

coefficients ¢ from the expression of the transfer
Edwards and Loveluck. These new diagrahs lead to
chariges in the self-energy part of the Green function,

which will be discussed in succeeding sections.

In addition to the rules given by Edwards and

Loveluck, the following points need mention,

(a) In the present case the curly line, which has
been used to represent the potential strength,
incorporates three lattice sites. In the
interpretatién of 2 particular diagram a summg-
tion has to be introduced over the intermediate

indices for the lattice site and atomic type.

(b) In case two lattice sites are connected by a

dotted line, a 6~-function has to be introduced.

Keeping these and other rules in mind the contribut-

ion of the above diagrams to the total Green function is

found to be
[?ls(l 5 +513<1-5 ) nin®
u B-E ap
et *n764, 85,8057 1S“j(éué"5ua+5aﬁﬂ
m—
i g-g) P
= 5%55 nt S“B -;J , ees (4.14)

where the meaning of Slj is obvious. In the approximation

af
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of Edwards and Ldveluck!
s o S . . PR
ij _fii s si_viid
e -b(T _*ﬂa_ﬁ = E n° 7oy

They get for the contribution from diagrams of first
order in (T> and expression identical to (4.14) except

ij zi]
SlaB replaced by SlaB where,

13 Jall J¥id
S .giﬁéaﬁ +n g (l 6

aB)

Iiid(1es ).
-n VaBB( -8 B{J eoe (4.15)

SSyied_yiidl 3 € 8 isieq_
[éaﬁ\u Viua Lo & E n vﬁus(l 5

Comparing (4.14) and (4.15) we obtain

111513 6ij

)+v aaoaf ap

std _ L1 pdviii s §6+n

1ag anp 6a5

a
$ ity ol g ng is , yisg)
0 u ay, «p = aoa aﬁB aaB

... (4.16)

We observe here that S B depends on a and B only ‘through
|R - R lso we may define the space Fourier transform

as
Sup = T SRRy i) cor (417)
If we consider the tight binding approximation with the
.nearest neighbour hopping alone,'we can write

st (m)= sij(i)ﬁASij(i) ' oo (4.18)

such that
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Asij(g) = njﬁ(i)f?§%—> +Lﬁ§%+):]+ z%a)éij ver (419)

£, - fd)ix(f”fén)[?i 2 () - @] B aE ... (4.202)
B =it @ [F_S U8 (7) - Uj(i‘)Jqu(Iﬂ-'én)dY- .. (4.200)

*QiéJ(‘a) :Iq)i*(;)[f 508 (7) - vl (F) |07 (F)aF .. (4.20c)

with §n denoting nearest neighbour lattice vectors,

The disgrams corresponding to the third term of the
perturbation expansion (4.13) can be constructed in a
similar manner and contribution of each diagram can be
written down. It is to be noted that the third term contains
five c¢'s and numerous diagrams will result. However, one |
can always choose the most relevant class of diagrams
depending on the nature of the problem. After a laborious
and tedious calculation one obtains the following series

for the Fourier transform of the Green function.

nY? (E) + n¥°(E)S (k)Y (E) + nY°(E)S (k)
YO(E)S(R)YO(E) Foanenn

i

(g(E,E)>

= nY°(B) / (1-8(k)Y°(8)), e (4.21)

where we héve defined



-84

and yoild :
E-Eg

oo (4.220)

The self-energy matrix S(k) is given by
k) + So + een ou

Sl, 82, »». being contributions from first, second ......

order diagrams respectively.

The gspectral function for the system is‘given by
&8>k In S et >
<Fl,B)d=-z In 3 (e '(EE) , e (4.23)

which can be evaluated explicitly using the expression
(4.21) for the averaged Green function. The mean field
aﬁproximation consists in replacing S(k) vy Sl(i) of
(4.18). From (4.18), we observe that in the self-energy

8, (k) is different from that given by Edwards and Loveluck
to an explicit consideration of the coefficients c§ in
the‘expression of the transfer matrix element Tig. Becaqse
of this modification the band structure will change.In

order to see this we shall consider the case in which the

potential is assumed to be given by
@) =T 0°F (7) e (4.24)

i.e. the sum of the two types of the atomic potentials and
in this approximation we obtain with the help of equations‘

(4.18) and (4.19),
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. oij . . .
ijomy L i = Eij
3ii(g) _‘ﬁo(a)a Tdp (B) K1, .. (2.25)

we now substitute (4.25) into (4.18) and. obtain

59 (k) = -nJp (k) ;g_) oo (4.26)
As observed by Edwards and Loveluck the self-energy
depends only on the overlap integral between the neigh-
bouring ions..In the limit |Ei-Ei|§>bandWidth y 1t can
be shown (107) that By (k) and By (k) reduce approximately

in the following form,

By

—_
N
-

= E](;"nlﬁ (E)-ﬁ 1(-)

5 oo (4.27)

By (k) Eo—nzg (E)ﬁ 1(-)
where we have assumed that the overlap integrals'ﬁi%_)
are independent of i,j for the szke of simplicity. On
comparison with the corresponding expression (3.42) of
Bdwards and Loveluck we find a constant shift in the
<<

bandwidth, the theory does not exclude the possibilities

energy bands B (%) and 3,(E). For the case El--E2
1 2 00

that the density of state functions for the bands due to
El(E) and E,(K) overlap, and a gap may not necessarily be
there in the mean field approximation. In the mean field
approximation the self-energy is resl. If one renormalises
the perturbation expansion one finds that the renormalised

self-energy is complex.
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%, Partial Renormalized Perturbation BExpansion

In the previous section we noticed that the life-
time of the electronic states due to disorder does not
show up in the mean field approximation. This is due
to the fact that Y° did not have any structure in wave-
vector space, and we could introduce the id=a of wave-
vector k and = well defined relation betwsen B vs k
for the configurationally averaged system too. In order
to renormalize the perturbation expansion one has to
replace Y° in (4.10) by the averaged Green function (4.21) as
in Edwards and Loveluck. One has to renormalize the per-
turbation expansion(4,10)in such a way that the resulting
 series corresponds to the Green function(4.21)and at the

same time the convergence of the expanéion is improved.

We follow the procedure of Bdwards and Loveluck and
obtain the following result for the renormelized expansion
of the Green function,

ksl

(ggmy = wiily +1 TG, o Dl { chelep- 83 <ehep)
B el - ok (e ]
+ gi:ji Yilév V\ITS}SY?‘L&V?%?YEB [<°oc(°u' 28
Glohreiel> - Chle-lop s
CCRleP-eEMeld - oy (eP-l)e §>;rz
<;,§<c§-a§;>cg>+§§<c§< s 5
<C§(c§ - 5§§)C’}i>]+ oo (4.28)
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There exists a close similarity between the two perturba-

tion expansion (4.10) and (4.28). It seems. that one can

A ij - i 13 ‘
obtaln(4 28)by Just replacing ol B by Tag 05 <ca aBCB;>

and Y by Y53 in the earlier perturbation expan51on(4 10)

B la B

Here Y; is the averaged propagator (4.21) in the mean

field approximation without the multiplication factor n.

We observe that the renormalized perturbation expan-
gion of the Green function (4.28) contains many complicated
combinations of the coefficients ci and their evaluation
directly from algebra is a tedious task. However, various
terms can be determined through diagrammatic technique by
a method described by Edwards and Loveluck and used by us
in the prsoeding section. The diagrams for the first brder
terms obtained in the direct lattice space are shown in
Fig.14.

These diagrams can be classified into the categories
(i) the diagram starting with a Y, line and ending with a
Y, line. Such type of diagrams will be called as ¥ - like.

> stands for the intermediate structure between the two
Y, lines:
1

(i1) The diagram ending with a Y, line but not beginning

with it. Such type of diagrams can be represented by

B>

NE



-88-

and will be called A-like. If we only consider the
first order diagrams then /\1 and 21 are represented

in Fig.l5.

On comparing the first-order renormalized diagrams
of Bdwards end Loveluck, we observe that in the present
treatment five additional diagrams each forJQl-like andéqilike
diagrams. In the same way the second order diagrams corres-
ponding to the third terms of (4.28) can be constructed.
A large number of diagrams will appear in this case. A
calculation shows that the first order diagrams even after
renormalization do not contribute towasrds life-
time. Some of the‘second order diagrams are, however,
found to lead to a complex self-energy. We shall categori-

se those diagrams in the following groups:?
(1) The diagrams which can be represented by

5. Y307

Yy 279251

(2) The diagrams which are of the type

A1A Y
(3) The diagrams which can be represented by
AN
(4) The diagrams which are of the type 1\2Yi. Those are
the diagrams other than those in (2).

(5) There are some more diagrams other than of type (i)

which start with a Yl line and end with Yl-line. These
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will be called ¥ 1like, Actually these are the
diagrams which cgntrihgpe towards the imaginary
part of the self-energy. The second order diagrams

are %5 in number.

‘The evaluation of iz(i,E) now needs the evaluat-
ion of the contributioﬁ of all 35 diagrams in the
Appendix. These involve complicatad type of integrals.
We give below the algebraic equation for the self—-
energy considering only those diagréms which contribute

to the lifewstime of the electronic states.

kn pslm ’
<~ _ ksl lm ympn} s l.psgdn o S 1.8n.lp
2__2\()4“}3\) = Jnéev\’“é Ylés Vam\[n n 56x66}\(1 éu}\)+nn 6p)s66n(l‘6}\n)

s p, l.ns S p lens q_ _ans s 1. p
+2n°n*n cSMcSnéém«bnn n éw(l 66u) Syulnel O

_,8. 1 p.ns 258yl gSP onS 1y n16
n°nn 6hu6un+ n"n"n 5un6nk +2n°n"n éék uééun

s 1 p.nl s np.lng s 1 p'ln
M nn*d Aé(l'éun)"n nn 66k6kn n°"nn ééképk

S APNG) &n

+2nsnlnnélp6 6§H + nsnpnnélp(l—énk

“ 8 p . ngdps o8 ponglp _ z,8,1 p.n
-n°n*n 66n6u6 n°n*n ééﬂéhu 3n"n ntn 6Aﬂ6n666u

s 1l pn s 1 p.n sl . p.n
+2n"n-ntn 6k66 + 2n°n"n¥n énéénu+2n nntn 66x6nk

)

s . l.pn s.1.pn s. 1l p.n
+2n"n"n*n 6kn6nu+ n"n n n éukééﬂ +"n n*n 6un66x

s. .l pn

810 Pnts  enSntnPn (6n6+6ux+ék6):) veo (442)

-n"nnn 6uﬂ
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4. 5 LINEAR CHAIN

In order to see the difference betwecen the present
method and the approximation adopted by Edwards and Loveluck
in their paper, we consider a linear chain having two
different kinds of atoms which occupy the sites of the
linear lattice in a random manner. The potentials of
the ions of the type 1 and 2 are vt and V2 respectively.
Here we assume that in the nearest neighbour interaction

only the integrals of the following types to survive:

COMVIIO3Y = <O V0L =k ... (4.30)
and
<o31viloly = Cobiviedy kY c (4.31)

Using these overlap integrals we calculate 35 diagrams
given in the appendix. We also calculate 8 diagrams of
Bdwards and Loveluck carrying out of their second order
correction to the self-energy having 22 structure. On
inspection one can find ocur diagrams (nos.l6 and 35 of
the appendix) are present as such in the set of a

diagrams of Bdwards and Loveluck.

We wish to show here when and where the calculat-
ion based on the present formulation will differ from
that of‘Edwards and Loveluck. For'this we shall calcu-
late the changes in the widths [(E,k) of the spectral
function P(B,%). The width is the imaginary part of the
complex band structure B(k) and it comes through the

self-energy ZZ(E,E). Since we do not attempt here a
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detailed band structure calculation, which is much more
involved, we content ourselves with an order of magnitude

estimate of the width by writing,
_ 11 22
[ (E,k)2In} (B,k) +1n} (5,k), coe (4.32)

Using various parameter for the overlap integrals for
ions of type 1 and 2, we illustrate in Figl6é the diff-
erence of widths in our caglculation from that of Edwards
and Loveluck. We notiqe that for a small difference of
the overlap integrals, the widths calculated by our
“approach and by the Edwards and Loveluck theory are
nearly the same. But these widths differ significantly

if thé overlap integrals for the two types of ions differ

a lot.

5. CONCLUSION

We have discussed the electronic structure of
substitutionally disordered binary alloys closely foll-
owing the work of Edwards and Loveluck and using a
- tight-binding description. Edwards and Loveluck have
replaced the hopping matrix by the average value in order
to obtain a simplified perturbation series. In view of
the virtual crystal type approximation their theory does
not give a correct description for an alloyvhaving consti-
tuents whose potentials are very much different. The present
appréach does not suffer from such a drawback.Here the
potential is constructed by superposition from all sites

with the randomness duly taken care of in the formulation.
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CHAPTER V

BLECTRONIC TRANSPORT IN BINARY ATIOYS

Uptil now we discussed about the equilibrium
properties of disordered binary alloys. Compared to this
the dynamical properties like conductivity have received
much less attention. The most commonly approach to study
electrical conductivity is by ﬁsing the semiclassical
Boltzmann equation(109) which is valid for the relaxat-
ion time being )h/EF. Another popular approach is based
on the linear response formalism of Kubo(11l0).0ne solves
there the Iiouville equation for the density matrix to
first order in the external field. Usiﬁg this one electron
Kubo formula Velicky(65) studied the electrical conducti-
vity for random binary alloys within the single band
cell localised CPA. The forrmulation of Velick§ has been
extended by Levin et al(11ll) to calculate some general
transport coefficient: the thermopower, thermal conduct-
ivity and Hall coefficient. Chen et al(112) has studied
the D.C. electrical resistivity and its temperature
dependence introducing the thermal disorder in the single

band CPA,

In the foregoing chapter we discussed an elaborate
diagrammatic approach which is very useful in taking into
account the fluctuations in the alloy potentials. A

self-consistent version of this method is superior to
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the widely used single site CPA, but it is obviousiy
for more difficult than the CPA. However, we shall
presently study(1l3) in this chapter the static elect-
rical conductivity with the Kubo formula and using the

tight binding formalism of Edwards and Loveluck(107).

1. EDWARDS-LOVELUCK THEORY

We shall bo:row the results of EL and write for
the Green function, after the renormalisation of the

perturbation expansion about the mean field:

voo (5.1)

o n 0 .
vith 10 = ( ; nB) . (5.2)

: (w,k) is the self-energy matrix and [1—fi(w,ii]-l is

the weight factor. This weight factor is the outcome of
the partial renormalisation. The treatment here is based
on a perturbation approach; therefore the theory is valid
only in the region/@ij (1. Thus the poles of [l-j%(w,ﬁ):]—l
are of no significance. Here onwards we shall omit this
factor for simplicity. This factor can be easily included

in a calculation.

—

Y(w,k) is defined by the equation

gp(w k) = n Y(0,k),. oo (5.3)

In the mean-field approximation (denoted by the subscript m),
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we have

0 (u-22-558 (%)) n's 2B (k)
g, (0,k) = 3

BuBA B A ~AA/7

n°ST*(k) n (w-E-=-57(k))

— 1 0 l T e (5-4)
where,

D= (u-Ep - 574()) (0-B2-57P(k)) - 87P(k) 8PA(k)
.o (5.5)

and  SI(K) =*ﬁgjaij+ a3 36 () .. (5.6)

Here,

B @D, -v@d® .6
{Iitj - j‘df' ¢i*(f+§n) E(V(§)>AV_U3(IT)]¢j(;) e. (5.8)

-

and B(k): Z. elk-an * e (5!9)
n
with 2, as the direct lattice vector connecting the

nearest neighbours.

An explicit expression for the self-energy § (w, &)
can be obtained from a partial summation of diagrams. In
the first order approximation one can sum the diagrams
which are of first order in the hopping matrix to give
El(m,ﬁ) for self-cnergy. 4 'selective' summation oﬁer higher

order diagrams could give

fen.

Y (0,k) = —Ee , | ... (5.10)

NwE) =0 -on vee (5.12)
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with
wd 0=} T v | .\ (5.13)

2 .. | ij
'ﬁ% being the Fourier transform of '<haB>Av

_fii
=T, g

If we use the diagrammatic representation suggested by

EL, En and Zl(w,ﬁ) can be represented by the following diagrams
in Fig.18. Edwards and Loveluck give a discussion of

diagrams upto second order terms in the,hopping matrix

element kg, in the perturbation expansion of )y (w, k).

2. KUBO FORMULA FOR STATIC CONDUCTIVITY

In the linear response theory, the static electrical
conductivity tensor o is given by the familiar expression

(110)
1@ P STy T
o=1 jo at fodk {T(0) J(t+i)) o (5.14)

Here E(t) is the current operator in the unperturbed

Heisenberg representation
J(t) = exp(ilit) J(o) exp(-iHt), ver (5.15)

i.e. H is the total Hamiltonian of the system before the
field is switched on.y 1is the volume of the system,

B = l/kBT’ k is thevBoltzmann constant and T is the

B

absolute temperature. . We write the current density operat-

or in the form
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- o d - i +
J(t) =~1e§Z (Ry~Rg) h-';g 2(8) g (1) e ... (5.16)

Now substituting (5.16) into (5.14) we obtain
| ;

2 .o B ijlp . ij
& jo at jo dx 'E%%n(R BhaB)(Rén 6n)

%a(tﬁM%#tﬂkhﬁ>

O +_

X <b§a;(o)é6(o)cﬁc

(3.17)
where,

This equation shows that the calculation of ¢
~demands an evaluation of a two particle correlation funct-
ion., The two particle correlation function can be obtained
from the knowledge of the two particle Green functions.
The equation of motion of two particle Green function
involves stili higher order Greesn functions; It is not
possible to solve this hierarchy of equations, so one has
t0 resort to some approximation. We adopt a simple method

of decoupling the correlation functions(114).

<aBeD) = <aBY D) + {ad)y D) +(aD) dC> oo (5.18)
When we apply the decoupling (5.18) to the correlation
function in (5.17) and ignO?Qwﬁhe correlations between

two creation or agnnihilation operators we obtain

2 ijlp B B
= - & 1j ni?
o= -2 %één fodtg dA(RthaB)( bgn)
{c t+1k)c )(cJa (o)aé(tﬂ}\ °<S>

(5.19)
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We define the spectral weight function I(w) (34)

+00 ) i(t+N)w
<b o)a t+1k)c§ f. Igi(w) e dw +.. (5.20)
-00

Substituting (5.20) into (5.19) and integrating over

t and N we obtain

2 iilp . . '
o=-& % o gj f wde%mH&mW

exp (fw)-exp (Bw')
X = o 7 Lt _'""T"_""y

- W W= '+ig
e e (5.21)

€-0

where,

-

cég = Rth;g eo. (5422)

We find that o does not depend explicitly on w and w' and

we can interchange them. This enables us to write

2 Zflp 4@0 :
_ _ & oli wle r . 1bi NEA
0 = = == dw dw* IZ (w) Igs(w')
v a5 8N aB 6n -00 _00 na g6
eXp(ﬁw)-eXp(Bw') 1 l l
- 3 It e THE T wT-w+ie:|
o e (5.23)
Making use of the identity

L - &%l)~ ind(x) veo (5.24)

X+le X

performing the integration over w' and using
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exp (Bw) ~exp (Bw ') exp(Bm'){exp[ﬂ(w-w') ]—1}
It = L‘t’ )
i o o v ve. (5.25)
= § exp(fw')

The conductivity formula (5.23) reduces to

2  +oo 1jlp s - : :
- _ Bre_ &P 21y 5lpy (i i1 .
o= - dw (CoeuCer) I7(w) Ix(w)exp(Bw).
v f—u)' éﬁéﬂ ag” " on’ “na por’-
s e (5026)
Thé'problem is therefore reduced to an evaluation of

the spectral weight function I(w). This can be obtained

from the single particle Green function(34)

I(w) = EEB%EETII[%(w+)—€(Qi]s . (5.27)

where wt = wiie. Combining (5.27) with (5.26) we

obtain
2+ ijlp -5 .
¢ = %2 [ dw Ef C;J.Cép(_’ﬁgiﬁl)
-0 apén B oM w

x | el e el W)
- L )el ) -g M alt ) ]
eee (5,28)

where f(w) is the Fermi distribution function.

For disordered alloys we have to configurationally average
eq.(5.28) over all possible arrangements of ions in the
lattice consistent with the given concentration of the

constituents. In order to evaluate this we introduce

b
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a quantity X,
ij
D =5/
Kﬂé(wl’wz) aﬂ \gl.;a(wl) aB gﬁé(‘” >AV se (5029)

On substituting (5.29) into (5.28) we are able to write

2 +oo
o =B- [ aw(- Eladypy) .. (5.30)
-~ 00
where,

pl l + + 1, - - 1, -
%6 [Kgé )+ Kps wu) - Kpslw )
- Kgé‘(w+,w-_-|

This is a convenient form of Kubo formula for a disordered
system. We now need to evaluate K. X can be given a simple
physical interpretation. K is the direct product.of two
propagators, describing the correlated motion of two

electrons each specified by a single particle propagator.

5. BVALUATION OF <gg>AV AND K.

We have found out that the expression for conduct-
ivity (5.31) requires the knowledge of X defined in (5.29).
The quantity C defined in (5.22), which is sandwitched
between the two propagators in the expression for K, does
not depend on configurations when we use the approximation
13\

ap Jiy = 'ﬂ?J. In this case K can be found out provided

we knOW'<gé>kv.

We are using the single particle description in
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the same spirit as done by Velick§(65). The configura-
tional averages reduce to averaging of a direct product
of two electron Green function <6G> . An extension to g
linear response investigation basically involves the
determination of the interference term known as vertex
correction: ( <GG) - {G><>). Though the propagation of

a single particle is statically independent, a correlat-
ion in the motion of two particles in a disordered medium

not necessarily be ignored.

In the EL scheme a selfconsistent evaluation of the
total self-energy p is an extremely complicated and
involved process. This obviously means that one will have
to resort to drastic approximations in solving for <gg>AV.
In the low concentration 1limit Langer(1l4a) has discussed
the equation for K in terms of the self-cnergy diagrams
of the single particle propagators. The quantity K is
found to satisfy an integral equation, which is the well-~
known Bethe-Salpeter equation(115). In the present
problem of disordercd allcy we do not aepriori assume
that K will satisfy a Bethe-Salpeter type equation. We
therefore make a detailed diagrammatic study for the
propagation of the twc particles and examine whether we
can obtain a manageable expression for K and hence for

the conductivity. With this motivation we go back to

Edwards and Loveluck who partiglly renormalised the series

expansion for g(w) by replacing Y° by Y and‘ﬁzg by

ij ;i . 4
| LaB'Laﬁ is defined by

L
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15 _fij o L ifijd
1o =k ol - . <caﬁaﬁcB>Av cor (5.31)

The renormalised series expansion is now

ij I T By i (is sl 1]
gaﬁ(w) = c Y oo(w) + gé Cy You (@) I Yéﬁ(w)
slpm . . .
i is slylp pm omj
+ géng c Yau(w)lhéYén(w)Lne YsB(w)+...

eer (5.32)
Using this equation we can write symbolically

AN S D> o\ 1
elwslw Vo = 10y +6.2 et {13 D T oo

W S
* <31 » AV+<32 ’Av+<33'>Av T

e e e e e e e eoe (5.33)

Here the numbers n (or n') denote the term in the pert-
urbation expansion of g(w) (or g(w')) of (5.32) used in
cOnstructing4{g(w)g(w’)>@y. Bach term of the above series .
can now be evaluated following the rules discussed in

EL. In the configurationally aversged single particle
Green functions, the disgrams contributing to the life-
time are of the type shown in Fig.19. Other diagrams

(A -like) give cither a shift in energy or a change in
the weight factor, associated with the spectral functions.
Therefore, we would draw only the diagrams of general
structure like those as in Fig.19 which contribute to

life-time and will not worry for the rest of them. Here
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we shall use,
<0%c030350§ ...>ggni <cﬁc]éci "'>Av s voe (5.34)
and replace <hig’% by its average value’gig as ment-
ioned earlier for grawing the diagrams: This way we have
considerably reduced the labour by weeding out lot of
diagrams. The first ternm élltaﬂv of (5.33) corresponds
to an uncorrelated motion of two electrons and is shown
in Fig.(20a). The other terms of the first row of right
hand side of (5.33) also represent uncorrelated motion.
Tﬁe total centribution from such term can be represented
by Fig.(20b). Here the double line stands for the average
Singlé particle full propagator <g>Av' An examination
of the various terms of (5.33) shows that the lowest
order term that corresponds to the correlated motion
of electrons is (33'>Av and the contribution from this

are shown by diagrams in Fig.21.

In the above diagrams we observe that the two outgoing
propagators are emerging from.the same site, while the

types of ions may be different.

The diagrams corresponding to the various terms of
(5.33) can be drawn in a similar manner. From a careful
study of these diagrams, we-can write the equation for
the twe particle Gresen function in a ccompact form. We use
the iadder approximation (116) and consider diagrams for

the self-energy as discussed earlier. In this scheme some
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of the diagrams corresponding.to <6 > terms are shown

in Fig.22 below.

With a proper selection of gll the diagrams in g
restricted ladder approximation in which two particles
emerge out from the same point, we are able to write a
Bethe-Salpeter type equation for the nondilute alloys with-
in the Edwards-Loveluck scheme. Diagrammatically the
appropriate equation is shown in Fig.23. The left hand
side of Fig.23 shows the correlated two particle propag-
ators. The first term in the right-hand side represents
two independent single particle propagators and the hatched
square is the vertex correction due to the correlated
scattering of the two electrons. The equation correspond-
ing to the above diagrammatic representation can be written

as follows.

Ceadloy) ehid i)y = B (o) B ()

Py =i 'k’
+Z' ga (wl) galvl (wz)
W
kp k'p
Tvn (w <gn5 wl gnﬁ' w2 >1v

Here onwards we use a bar over the operators to show that

they are also configurationally averaged,

K 1 KD |
We have written T*P(w) = =- 1 (w) .+, where

v WFHP

S p(w is the self-energy corresponding to the siﬁgle

particle Green function. With the help of eq.(5.35) we can
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write a series for the two particle propagator.

itj!( )
(gaﬁ wl Egtpt W2 (- -

On multiplying by CBa

kk'p
3 1k
Bopo (1) E ocB' (w5) *Z,n oy ©1)

i'k!

X k!
ga.v. (w5) ivg(wl) T p(w

2)

-~ P8

(wy) Toguy) 28 %«»2)

eee (5.36)

(which is configuration independent)

and rearranging various terms we obtain from (5.36)

. -'
K;g "(wl'wZ)

POl

kk'p ]pk'
- [g(wl ‘e wz)]ocﬁ' gv 'n a$ et (wl)[< )8 Elup) !

1 () B () 4

vIn

12 (0y) x [Eluy) CEy)]

- 03"
gﬂB’(wZ) + eees

We can therefore write

K='g‘[c+r:]é

such that

1
Kic'pas'l _ 4,

kl
g M wq) Tox(wq) ot (wy)
V\I’);{Qw'? oy l»‘ vorl | & V1
n\)' \l){']é(wz)ééist ((»02) TS! (LUQ)
cee (5.37)
veo (5.38)
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kp 5'
[:)J (LUIQUJ2) = ‘\’TI \)n 1)[ (.\)1)0 g((.l)2)] Ll)?
£ Ly 2280 190060 [E (0 ) 6B (0, o
+ T (w g i [ (w,)Cg(w ]
S v/ Bt/ iyt 1 21
r -
x T5S(u) Bgt (uy) 15 Py) + ..
(5.39)

The equation (5.38)can now be compared with the expression
for K obtained by Velicky(65) using the single site CPA.
Although they resemble each other, they originate from

quite different schemes. In the EL scheme it is not needed
that the perturbation be cell localised as done in CPA(65)

In order to evaluate the conductivity we have to solve (5.38)
The Solution in direct lattice representation is very
tedious, therefore, we shall change over to the momentum

representation.The Fourier transform of (5.38) is

-

K(ky0p,0,) = 8(kw) 058 (Kywy) + B(key) [ (wg,0,) E(kuw,)
... (5.40)

where,
r (wl’w2) = ]ﬁ T I\(q,wl’wz)Tq RS (5041)
. q ;

We shall use the principle of dynamical reversibility(117)

which demands that

Ek = -SR | e (5-42&)

and Cl:: = —C“E ¢ e (504‘2b)
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Here g(3,w) and Ti are even functions of § while Cq is
an odd function of q. Hence [ (wy,w,) which involves a

summation in g, will vanish. Therefore,

K(kjwys wy) = E(Kywp) Cp E(Fwy) . coe (5.43)

These quantities are diagonal in k. Thus we find that in
the above approximation_the average of the product of
two Green functions becomes equal to the product of their

averages,

(gg)Av = gg& . . ... (5.44)

4. EVALUATION OF BLECTRICAL CONDUCTIVITY

We shall consider here a cubic lattice for which
conductivity is isotropic. Using the Fourier transform

of C*J ana épi, we obtain from (5.29)

of n
2 .+ ijlp :
o= 232 (7w 3 2 (o)) o 3D

x[e P50 -2 (k| [ (k) -8 (5,0
vor (5.45)

We shall now write the single particle Green function (5.1)

in a convenient form (EL-eq.5.2).

- v A(kw) B(k,w) \
g(k9w) ”w-el(k,w) + w-»ez%)k',w) oo (5046)

where,
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nM(E,lD) v (5047)

A(E,w) =
and  B(k,w) = nN{k,w) veo (5.48)
Here, - -
| N
\ B «BB_ <BB_ AB  <AB t
: Eo-Sl 7 €y —Sl -2
- 1 3
M) = e G |
€ ‘{,w ~£. (k,w
2 1 !-S:lz’A 784 gh_gAh TAA
| 1T 4 g
l_ - _J(
ce e (549
I B «BB BB AB AB R
) 1 | Eg=Sy -2 -¢ S1-t
N(kyw) = - = i
gy (kyw)-e5 (k,u) |
| BA  <BA A qAA
3 S -2 Eo—51 &1 i
LN ) (5050)
e+ (i, ) . - - - .=
s %EE§+E§+S3%A<1¢>+S§B<1<>+ zAA<k,w>+zBB<k,w>¢a<k.w)J
ot (5.51)
with
' 2
A (E,w) = [{E _EA SBB(k) SAA (L-BB(k w)- AA(K’(U)}
+4{.b1 +"AB {SBA )+§BA K, ]]
eer (5.52)
We shall rewrite el(ﬁ,w) and eg(f:,w) in the form
ey (ky0) = By ()+ T, (kyw) cer (5.53)

and e, (k,0) = By (k) + Ty(k,0) | oo (5.58)
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g
I
>
S’

0

3 Y'Aék,w \'BB(k,w)q.A (k Q))-Zl(k)-} "o (5055)

~7

and  T,(kw) = = TH (k,0) + 3 (K,0) 4 (k,u) + A(E;]

[

?
cve (5.56)

El(i) and Ez(ﬁ) are the two roots of the equation (5.5) and

Z(k) is given by
" i . - .2 - _=1/2
L0 = [[e-abeslB-spA 0] wstPosPhm | L. (5.57)

Let us resolve §, A and B into their real and imaginary

parts,

Z50®) = Pkt (Kud) cee (5.58)
Alk,w?) = a(k0d) ¥ 1A (k0?) : v (5.59)
B(k,0%) = Bg(k,wf) ¥ 1B (k,0) v+ (5.60)

In terms of these we can write

_Tptise)By(ky 0,) 48 (y6,) (u-B, (-, (E,ez))]

[o-5, () -2, (K, 92>_] + T2 (%0, |
cee (5.61)

where 8y, o= el 2( k). The expression of the right hand side
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of (5.61)shows that the functions are peaked at w = B(K)+P(k,p) .
S0 we expect that the contributions to conductivity will arise
mainly from near about this value of w ,This point has been

emphasized by EL. Therefore,

2 +o0 ijpl
= 4ne d 5‘ j?lj)
L j—an ? k
X [ rl(l‘{’el)APﬁl(lz’Gl)
]:w-E -F (k,el)] +[‘1 (k, 91)
&,6,) B0 (&, -
\ [5(ky6,5) By (k,0,) _J
["EZ( )“'Pz(k 82] +r2 ,92
X [ E(k el)AR (kyel)
2 :
[w-By (k>-P (K000 ] +]'l ,el)
- 'l —— )
N rz(k992)3§ (k 62) ':J,
EU"E 'Pz(k 92)_’ +r2 5192)
oo (5.62)
Wherey -
01 (k) = By H(k)4P; ,(k,By ,(K)). ... (5.63)

We can now write the expression for the electrical conduct-
ivity of a substitutionally disordered binary alloy in
terms of the spectral density of state,FKi,w),'defined

by
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fliow) = - 3 In glkw) ver (5.64)
2 Yo ijpl .
o =4 | w £ D ) oty

X[Pl (}E:w) Agl (E,Gl)‘*,g (E’N)Bgl (E’ 92)]

2| (B0) afl (e )4, (rw) Bﬁlfﬁ'tzz)ls)
' ses (B

We shall show below that this expression yields the known

result in the weak scattering limit.

S5Megk Scatbering Limit:

In the weak scattering limit the scattering matrixfg
is small. One can verify using (5.10) that P(k,p) and
f’(ﬁ,e)vare proportional to'ﬁk. By using the identity

£ =20 X +e ‘ :

the expression for the conductivity (5.65) will reduce

to 4
ane? [0 HIPL gy 15y, 41
o = 4z J-mdw z‘; (- ) ogkid) (o B

x a(w)[Aﬁl(fc,el)é(w—el(ﬁ))+B§l(1?:,92)5(u()—92 u;c))]
- L (5.67

where,

1(0) = [ () B (5,01 43 (c,0) BB (1,0,) v (5.68)

Integrating with respect to w we get
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2 ij1
- 4§ * (ofl 1«?)[ L ) {ato DAl e}

ot (o )
+(~ 36 55 [03(92) BR (k’eg)ﬂ eeo (5.69)

Following EL, we have two distinct bands characterised by
the spectral functions £ (s, (k)) and 5(s,(k)). These two
bands in the reciprocal space will be separated by a gap,
thsreforejoi(ez(k)) andvfb(el(k)) will vanishf Hence, we
shall obtain
ijl
E (vkki S(TpR?)
[( af(el) 4 (e,) 4t (o)

%1 7 (8, (k)
o ey Bglmzmgi(eg)]
%2 7 [Lle,(R))
(5.70)

The leading term in ¢ in the weak scattering limitlis of

the order of ‘Ei, which is physically obvious. The relaxation
time (7) for electrons resulting from the scattering due

to disorder will be inversely proportional to the transition

rate,

T ~'l/r'

If we retain only the lowest order term in the concentra—

tion, then we can show from (5.10) that

[a n®n® = nd(1-n4) . N eoo (5.71)
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Since the resistivity is proportional to [, we recover
the Nordheim's rule, a well-known feature of the weak

scattering theoryllB.

6. SUMMARY

We have_discussed the static electrical cbnducti-
vity of a nondilute substitutionally disordered binary
alloy using & simple tight binding model and Kubo's linear
responge theory. The two particle Green function is
written in terms of single particle Green function with-
in a restricted ladder approximation. In general one can
- perform a ladder sum to get the well known results cof
impurity conductivity as obtained by Ambegaonkar(1l5) in
which a characteristic (l-cosg) factor occurs explicitly
due to the vertex correction. The choice of restricted
diagrams in the present treatment leads to the forward
scattering approximation which is a reasonably good approxi-
mation for metallic binary alloys. From the knowledge of
the self-energy correction to the single partic¢le energies
- we obtained an expression for the electrical conductivity.
In the weak scattering limit and in a first order approxi-

mation this theory’gives the Nordheim rule.

It is necessary to point out that the formulation
presented here is different from the work of Velicky(65).
Veliok&'s theory has already been applied to calculate
the transport coefficients in alloys (ILevin et.al(11l),

Brousrs and Vedyayev(119)). The Bdwards-Loveluck approach
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that we have used here is not based on the multiple
scattering description adopted by Vélicki, but is formula-
ted within a tight-binding framework. Alsothe formulat-
ion presented here is capable of taking into account the
fluctuations in the alloy potential from site to site,
whereas in the cell-localised disorder model used by
Vélick§ pure A and pure B are assumed to have the‘same
band structure. We have to pay the price for #he general-
isation of the theory in terms of the complexity of the
final expression that we obtain for the electrical
conductivity. A calculation of the static electriéal
conducfivity of & random substitutional binary alloy using
the self-consistent version of Edwards and Loveluck theory

will demand intensive computational effort.
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CHAPTER VI

BELECTRONS IN POSITIONALLY DISORDERED
SYSTEMS ¢ LIQUID METAILS

"The description of the positionally disordered
gystems such as liquid metals and amorphous materials
ie extremely complicated compared to that of the cell-
ular ones. In such systems the atomic species occupy
random positions in space, hence there is no iattice
structure o simplify the problem. In this chapter we shall
discuss only the electronic states of liquid metals for

which there exists a few numerical calculations.

In the theory of liquid metals there have béen
several approaches. Ziman(120a) has proposed a pearly free
eléctron model analogous to that of Scmmerfeld. This
approach has been improved in several ways by using pseu-
do-potential perturbation theory and by invoking multiple
scattering technique primarily based on the guasi-crysta-
1line approximation(120b). Ziman's results were extended
by Lloyd(121) who gave a formal expression for the average
density of states in terms of the scattering phase shifts
and radial distribution function for ions. From the express-
ion of transition, T and reaction, K matrices,Bristol.
-group(122) hés calculated the density of states for some

transition and noble liquid metals. Anderson and McMillan (85)



115~

have devised an approach in which each ion is isolated
within its Wigner-Seitz sphere and outside of it there
is a complex (uniform) medium, which is determined by
the condition thét there is no forward scattering, para-
1lel to the CPA condition. Using this method these
authors have obtained the density of states for liquid
Fe. Schwartz and Ehrenreich(123) have used the single
site approximation and discussed the electronic theory
of the liquid metals. They have calculated the complex
Eand structure and density of states of liquid-copper.
Bdwards(124) have developed the Green function theory

to calculate the density of states from a perturbation
expansion of the single particle Green function averaged
over the péssible atomic arrangements appropriate to the

liquid state.

Ballentine(léS) has used this approach to calculate
the density of states of liquid Al and Zn which are free
election like but predicted that density of states of
liquid Be to differ significantly from the free electron
parabola. He used a local pseudopotential for the electron-
ion interaction derived from the Fermi snergy shell matrix
elements of the Heine-Abarenkov model potentigl. Shaw and
Smith(126) have pefformed calculations for Li, Cd and In
using nonlocal energy-dependent model potentials. In their
result the Van Hove singularities are smoothed out and the
density of states of Li is much different from free elect~-

ron like density. Cyrot Lackmann(127) has developed a
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tight binding approximation for the moments of the density
of states. It is applicable to bound bands, since the

moments do not exist for free bands.

A non-perturbative approach has been proposed recent-
1y by Rousseau et al.(128). In this chapter we outline
the theory of independent pseudo-atoms and use ﬁhat to
calculate the density of states of ligquid A1(129) and
Be(130). Aluminum wag chosen becesuse for this system a
number of calculaticns for the density of states have been
attenpted using other existing methods and there are some
goft X~rays data. Be was chosen tc compare our numerical
calculation with the result of Rousseau et al. who used
enalytical method to obtain density of states by a model

partition function,
1. OUTLINE OF THE THEORY OF INDEPENDENT PSEUDO-ATOMS

We shell summarise the theory of independent pseudo-
atom due to Roussezu et al.(128) in order to establish the
notation and provide a framework for the discussion of
results. There are two essential steps in the caléulatibn
of the density of states in a liquid. First the partition
function is obtained for a given configuration. Then the

ensemble averaging is done to obtain the density of states.

The total potential V(T) in the acsembly is regarded
as a gum of localised potentials v(T) centred on ﬁi' the
position of ith ion?

V(F) = ] v(T-R;) ... (641)

Ry



-117-

The partition function is defined by

72(8) =3 e Pei
1

n

IC(E;Efﬁ)d? ee (6.2)

where € is the ith eigenvalue of the single pgiticle
Hamiltonian H = -v2+V(E), B = 1/kT and’C(r,ro;B) is the

canonicagl density matrix given by
== . % =y g (= PE4
C(T,T,:8) = % mi(r)vi(ro) e ves (6.3)

If we have a slowly varying potential, the eigen values
change by V whereas the wavefunctions remain essentially
unchanged. Then for the potential given in eqn.(6.1), we

can write

C('f‘,f'o,'ﬁ) = CO(Y‘,'I"O,'B) exp{_:ﬁ z V(-I"-Rl)] oo (6.4)
1
where C(F,7,iB) is the free-particle density matrix.

0
Bquation (6.4) is generalized to the form -

C(F,%,ip) = C,(F,F,ip) expE—ﬁU(?,'i‘o;B)‘, ... (6.5)

U is called the effective potential matrix and
U(r,r,p) = U(r,p) defines the pseudo-atoms.We further write
U(r;p) = % u(f—ﬁi;ﬁ), so that the system is locked upon
as a set o% independent pseudo-atoms desoribedvby the
above canonical density matrix involving effective potential

U instead of actual potential V(¥).
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A function analogous to the Mayer-function in

classical statistical mechanics is introduced

£(%,8) = exﬁEBU(E,{a)]—l ver (6.6)

so that
C(F,8) =C (F0) |1 + T £(3-B)38)
1

+%§§%f(f“§i;5) f('f-fij:ﬁ) + _' oo (6.7)

The series (6.7) has to'ensemble»averaged.

In order to find the configurational averages for a set

-of correlated scatterers higher order correlation functions
are needed. Three body correlation functions are expressed
in terms of two body correlation functions by the Abe

approximation

jo( )(rl, T, r3) ~ [g(r 2 8(ry3)+8(ry,)e(ryz)+a(rs)e 32)]

eee (6.8)

Similarly the nth order correlation functions may be

.} . Thus

expressed in terms of g(riJ

Z(B) = -(?%I'—B-TB/‘QE_%-_Pfd'f'f(f‘,B)'i'Jd-i‘.lf('l-‘l,B)
* {%TJDZG(EI) +oo + 2 PETHED S L }]

(6.9)

with G(r fdr r2, g(r 2) and so on. The terms in

geries (6.9) can be summed tc yield



-119~

- £(F,,8){exp[PG(F,) J-1}
_ 1 - 1 . 1
S LR 6(7) ’

«.. (6.10)

For the random pseudo-atom mcdel g(r) is replaced by

unity, so that Eq.(6.10 ) reduces to

1
Z(p) = (2n5)3/2 eXPESa(B)] . ee. (6.11)

a(f) =% | ar £(F;p)

{?‘,
e

and jois the number of ions per unit volume,

The partition function Z({) is related to the density
of states n(E) by the Laplace transformation
+0

2(6) = [ n(B) o PE az eer (6.12)
0

Z,IAPPLICATION TO ALUMINIUM AND BERYLLIUM

~ In order to calculate the electronic density of
statés we have to start with the suiteble choice of a2
potential. Here we use a potential in the following

analytical form due to Green et al.(131)

v(r) = 2zz) (6.13)

r . LN BN |
where, '

' -1
y=1- [{exp(g) - H} + ]3 " ee. (6.14)
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z is the number of nuclear protons, N is the number of
core electrons and H and & are two parameters. These
parameters are determined by fitting the energy values

and wave functions with those calculated from the Hartree-
Fock Slater method by Herman-Skillman(132). This simple
analytical form which Yields the same energies and wave
functions as the Herman~Skillman potential is thus a
reasonable choice for the single-centre potential. With
this choice the effective potential matrix can be deter-

mined in an analytical form.

Hilton et al.(133) have shown that in the linear
approximation (ignoring VU(T)) the effective potential

matrix U(r,z;p) is written as

U(E,F,6) = [ &(F,F,F) v(E)aE e (6:15)

with

B d LW p e e L e A
o C[5-5'][3'-5] J
X expEa(('f'-Y"lH'f"-'f'ol}z / 28] (6.16)

We are interested in the diagonal element U(T,p) given by

N olE=1]2
U(r,B) = E%“ fdf' v(T') exp.( Irﬁr—l-) ces (6.17)

Using the form (6.13) for v(r) we obtain
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U(r,B) = il_q% ST r E (-1)"* exp[ 2 ]

28d
X erfc[lj%(m- :H: exp(-&— -exp (__&I‘)ﬂ . (6.18)

As we have mentioned in the foregoing section, that

~ .this approach is valid for a slowly varying potential or

a weak potential, we cannot apply the method in this form
for a real metal having strongly attractive potentials and
possessing bound ststes. Hence it is necessary to orthogonalise.
- the density matrix to the known bound states of the system
following the method due to Hilton et al,(1%3). The ortho-
gonalised density matrix approach is applicable for a strong

scattering potential alsc (128).

Now the orthogonalised density matrix is used to
calculate Z(B) for both random and correlated assembly.
In fhe latter case the required radial distribution funct-
ions are taken from the numerical solutions of Percus-Yevick

equations of the hardsphere assembly.(134)

In prihciple the inversion of the partition function
gives the density of states, but difficulty arises in a
calculation, becaﬁse 2 (8) is~knbwn numerically for certain
values of B. We perform the inversion by making use of the
method of first order steepest descent due to Hoare et al.
(135)3 They have showed that this method gives reasonably
good results when comparéd to exact analytical solutions for

some simple cases.
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3, RESULIS

In Figs.24 and 25, we have plotted a(B) for both
the random and correlated cases of liquid Al and Be.
It is seen that the difference between the results for
random and correlated assembly increases with increasing 8.
For small values df B the curves for the random assemblies

lie close to that for the correlated ones.

The density of states is shown in Fig.26 for both
the random and correlated systems for a wide range of
energy for Al and -in Fig.27 for Be. As mentioned before
an analytical evaluation of the density of states from
partition function is not possible here, therefore, we have
calculated numerically the density of states by Laplace
inversion of (6.16) using six values of g(f=0.3,0.5,

0.7, 0.9, 1.1 znd 1.3 in atomic units). The density of
states for liquid aluminum obtained by the present
method is compared with the results of other calculations
in Fig.28. The calculations by other workers were based
on free electrcn scheme, Edward's theory(125), MonteCarlo
calculations (136) and the pseudo-potential method (137).
The density of states curve obtained frcm the soft x-ray
emission meésurements of Roocke(138) is also shown. The
pseudo~atons tend to lower the value of the density of
states atvhigher energies as coﬁpared to free electron
results. For locating the low energy conduction edge we
shall have to undertake tedious calculations using values

of Z(B) at many values of B higher than those used here.
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The singularities in the density of states are
washed out in our calculations for the disordered assembly.
We also find that our results for density of states are
close to those for free electron scheme. This shows the
nearly free-electron like behaviour of electrons in the

liquid alumingm.

In case of Be(Fig.27) the density of states for the
random assembly ié found to be less than that of the
correlated one upto 1 Ryd and then it increases and
exceeds that of the correlated one beyond 1 Ryd. An
interesting feature of this calculation is the tailing
structure in the density of states curve for both cases
while in the calculation of Rousseau et al. the random
assembly possesses a long tail and the correlated liquid
- has a very insignificant tail (Fig.3 of Rousseau et al.
1128)). We do not find any direct experimental ﬁeasure-
ment of the density of states for this system.In view
of the disagreement of ogrwreéult with that of Rousseau
et al., #e conclude that the method of Laplace inversion

by steepest descent method is not a powerful one.
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CHAPTER VII

SUMMARY AND CONGLUSIONS

We have discussed in some details the activities
and mein interests in the field of disordered systems,
which essentially aim at‘obtaining the quesiparticle energy
gpectrum and the nature of the wavefunctions. Research in
the problem dealing with the cnergy spectrum has mainly
aimed at. calculating the electronic density of states
or the gpectral functions. We have mainly concentrated on
the substitutional binary alloys, the simplest of all
digordered systems. The coherent potential model (an effectw
ive medium theory) has been found tc be very useful., The
equilibrium and the dynamical properties of 2 disordered
syetem are described with the help of the effective field
conoent of the type used in CPA. It is not quite clear
how one can incorporate the fluctuations in random potente
ialg over the effeotive field., We have omitted the discuse=
ion of the problem of dilute impurities for which normal
perturbation method sometimes works fairly well. This method
in a sequence of development has finally resulted in the
effective medium theory except the fact that the self-
energy in the perturbative method has spurious poles.
Iﬂ“tébié'slbelow; fhe dé;eiOpment of the theory is abstrac-
ted. There oxists model calculation (60) in the first order

perturbative treatment that gives analogous results like CPA.
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TABLE 5
Expression for the self-energy and its
characteristic foatures
TYPe of excitations - Self-encrey DE:ﬁtures N—

Electrons | Phonons | Bxcitons Symaotry 'pgles in T
Bdwards 5
Klauder X
Matsubara =75 Broken Don't
and exist
Toyozawa
Beeby

Takeno %6 Don't

Elliot T F(2) 6 Broken exist

and

Taylor
Sovewu Taylor Onedora <6
Yonezawsa and Full Removed

Toyozawa 1-F(z) (6-0)

Details are given in a recent review by Yonezawa,Suppl. to
Prog. Th.Phys. No.53, p.l (1973).

. iﬁ&&g
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The fact that the virtual crystal approximation
is good enough for the alloys (where the difference of
potentials is small), is used as a quantitative tool for
obtaining the bandstructure of disordered alloys; The
effective medium method is a step ahead of it.Tﬁis relies
on the self-consistency of the complex potential of the
medium. Because of certain obvious unavoidable reasons
as shown in Chapter III, the first iteration leading to
ATA result has been obtained. Except performing some
refinements over this method (to be discussed below)
there seems no improvement in the single site theory.
Then the next candidate is the cluster approach. One
does a model calculation withinthe first shell of a
cluster. But a realistic cluster calculation is. extremely
expensive for which there exists only a few calculations
by Johnson and coworkers(139) at MIT and Ziman and
coworkers(122) at Bristol for small clusters. The
tight-binding method as used in the recent days in the
band structure calculation of transition metals(140) may
be a good start for use in the theory as described in
Chapter IV. This scheme is very useful for tzking into
account the fluctuation in the random alloy potential.
Although a selfconsistent version of this method will be
no doubt superior to single site CPA, this scheme will
be very complicated for use in a realistic calculation.
This tight binding method has been used to obtain the

static electrical conductivity and paramagnetic spin
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gusceptibility(141) of disordered binary alloys. Then

next structurally complicated system we consider, is a
positionally disordered material! liquid metaqls. The
guestion of the influence of local order has been
thoroughly discussed by March and collaborators who

use the Thomas Fermi theory for the effect of the environ-
ment and discuss in detail how the liquid theory can

be based on the partition function of the liquid directly,
Use of this theory has been found to be fruitful for

the realistic systems.The problems of amorphous materials
are much more difficult and involved compared to disordered
systems (142) considered here. Now we discuss some of the
refinements which one can incorporate in our calculations,
Charge transfer(143) happens to be the most important

one for calculating the alloy potential. One usually
expects a charge transfer from one of the species to
another, if the gtomic potentials or the valencies of

the constituents differ. Mott(144) has pointed out that
if the charges on the atoms are tco large, the Madelung
energy gained by forming an ordered solid overcomes the
entropic term which favours disorder and the alloy

will order at sufficiently low temperature, If the net
charge is small enough, the ordering temperature might

be 80 low that kinetic effects will make the disordered
phase favourable.That is why the transition and noble
metal alloys have in the primary phase a substitutionally

disordered structure.So the net charge transfer is quite
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small i.e. £ 10%. for e@uiconoentrated alloy. We have
not considered charge transfer effects. A view pqint
exists that the transfer of electrons is related to
the electronegetivities of the species. VWhen atoms
are brought together to form a solid, the‘electronic
charge density is compressed by causing a significant
increase of local Fermi energy, which provides a useful
scale of electronegativity, but the local Permi-energy
is not a measurable quantity, sc one relates it with
the work function of the material, Efforts have been
put to examine the effects of work function of metals
or the contact potentials of the bi-metallic sysfems
on the charge transfer.(145) Recently Ehrenreich and
collaborators(146) have tried to incorporate the charge
transfer in Aghu in a two band model tight-binding
Hamiltonian through CPA. However, the calculation of the
complex band is no doubt very complicated but people are
worrying about the choice of a good alloy potential.
If one uses the density functional argument (that tells
that there exists a periodic potential V(¥,B) for a given
energy E), then it is feasible to work out an alloy
potentia;, as a functional of energy dependent consti-
tuent potentials. This has the possibility of including
the many body effects through the density dependent
exchange-correlation potenfial. This apprcach via the
partition function (147) will be a gimpler workable scheme
for the alloy band structure than the model Hamiltonian

approach used extensively these days.
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Appendix

We give the diagrams which contribute to the
imaginary part of the self-energy » (k) in Figl7. The
2
diagrams are drawn in direct lattice space. The weight

factors and the sign of each diagram are also given.

It is to be noted that the sixteenth and last
diagrams are the same as obtained in Edwards and Love-

luck(107). The other diagrams are completely new.
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