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SYNOPSIS 

The work reported in this thesis is some of the 

author's attempts to understand the behaviour of electrons 

in disordered systems. The subject dealt here is a part 

of the extensively growing field of noncrystalline or 

aperiodic systems, in which enough stimuli have been 

created to understand the phenomena of disorder in the 

recent years. Because of the great progress in the experi-

mental techniques, yielding reliable (experimental) 

results in the disordered materials like metallic binary 

alloys, impure semiconductors, liquid metals and glasses 

around 1960, theoretical attempts were made to understand 

better,the problem of elementary excitations in dis-

ordered systems. One of the landmarks is the Andersoris 

classic paper "On the absence of diffusion in certain 

random lattice" and this was followed by discusSions 

due to Mott, Ziman, Thoulesa- and others regarding the 

nature of the wave functions of electrons in systems 

having random potentials. The usual tools of band theory, 

were not applicable to such systems where translational 

symmetry is incomplete or absent. Due to the impetus 

gained by rapid advancements of computer technology, 

refinement and ingenuity of experimental methods, many 

sophisticated techniques like Green function approach 

are developed to solve the problem of electrons in 

disordered systems. 
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In order to have a systematic understanding in 

this complex area of investigation, a brief discussion 

of various experimental methods will be provided and 

certain typical results will be presented. 

The simplest of all disordered materials is the 

random binary alloy, which is a cellulary disordered 

system and the study of these will constitute the main 

body of the thesis. Starting with empirical rules a 

brief resume will be given on the phenomenological 

developments of the theory of binary alloys for example; 

rigid band model, virtual crystal approximation, minimum 

polarity model, virtual bound state model(Friedal-Anderson 

model) and Stern's charging model. After discussing the 

multiple scattering theory of electrons in disordered 

systems the Green function approach will be presented in 

two different forms, one of which is the coherent poteau-

ial method which will be extensively discussed pointing 

out its strength and weaknesses. 

A formalism for a system of extended potentials 

of muffin tin varieties will be used to solve the self-

consistent coherent potential equation and finally 

results for spectral functions will be obtained for some 

real brass alloys like a-CuZn and a-CuGe and bronze alloys 

like a-CuAl. These calculations will be compared with 

available optical and photoemission. data. 

A systematic treatment of a tight binding approxima-

tion will be presented for . random binary alloys in which 
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hopping integrals are also random unlike the single 

site cell localised CPA. This model will be used to 

discuss the electron transport in disordered binary 

alloys. 

The rest of the thesis will be connected with the 

structurally disordered systems like liquid metals and 

amorphous solids. We shall discuss the nature of the 

electronic states in such systems by borrowing the 

techniques used earlier and shall present the results 

of our calculation on the electron density of states 
a 

of liquid metals, Al and Be employing simple approximate 

method known as Pseudo-atom model. 

Finally a summary of the work will be provided with 

suggestions for improving theoretical methods. 
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FIGURE CAPTIONS 

Fig.l. Phase diagrams of binary alloys 

(a) CuZn, (b) CuGe, (c) CuAl 

Fig.2. Density of states of a model binary alloy, calc- 

ulated by various methods (Ref.58)(a)Virtual 

crystal approx., (b) Average t-matrix approx. and 

(c) Coherent-Potential approx; (d-f) are the 

comparision of ATA and CPA density of states for 

varying 6 (Ref.56). 

Fig.3. V-diagram (ref.65) for a model binary alloy 

Ax  _ B1-x  where x = 0.1. 

Fig.4. A cluster involving nearest neighbours. 

Fig.5. A block diagram for calculating self-consistently 

the spectral functions,P(e,i) for a binary alloy. 

-Tan 11{0,-phase bhiftb as a function of-  energy C 

for (a) copper; with Chodorow potential and 

(b) Aluminium; with Heine-Segall Potential. 

Fig.7. Band structure of (a) Cu with Ghodorow potential 

and (b) Al with Heine-Segall potential. 

Fig.8. Comparison of band structure of Cu and Cu0.7Zn0.3  

with VOA 

Fig.9. Complex band structure of a-Cu0.7Zn0.3  along 
r- - X symmetry direction. 

Fig.10.Spectral functionsY(E,) for CuZn for A, states 

for 20, 20 and 10 at 7. of zinc in (a), (b) and (c) 

respectively.. 
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Fig.l. Phase diagrams of binary alloys 

(a) CuZn, (b) CuGe, (c) CuA1 

Fig.2. Density of states of a model binary alloy, calc-
ulated by various methods (Ref.58) (a) Virtual 

crystal approx., (b) Average t-matrix approx. and 

(c) Coherent-Potential approx; (d-f) are the 
comparision of ATA and CPA density of states for 
varying 6 (Ref.56). 

Fig.3. V-diagram (ref.65) for a model binary alloy 

Ax  _ B1-x where x = 0.1. 

Fig.%A cluster involving nearest neighbours. 
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the spectral functions,P(e,i) for a binary alloy. 

a 1 8 p ase shifts as a function of energy e 
for (a) copper; with Chodorow potential and 
(b) Aluminium; with Heine-Segall Potential. 

Fig.7. Band structure of (a) Cu with Chodorow potential 
and (b) Al with Heine-Segall potential. 

Fig.8. Comparison of band structure of Cu and Cu0.7Zn0.3  
with VOA 

Fig.9. Complex band structure of a-Cu0.7Zno.3  along r-- X symmetry direction. 

Fig.10.Spectral functions f(E,K) for CuZn for Al  states 
for 20, 20 and 10 at 7. of zinc in (a), (b) and (c) 
respectively.. 



Fig.11. Variation of the observed optical epectra of 
a-brass with zinc c,Aacentration: continuous line 
main peak, dotted line-absorption edge and dashed 
line- a secondary peak (Ref.96). 

Fig.12(a) Optical absorption results for Cu an Cull 

(Ref.105) 

(b) Optical transitions in some Cu based alloys 
(Ref.100) 

Fig.13. First order diagrams. 

Fig.14. First order diagrams in the renormalized' pertur- 

bation expansion. 

Fig.15. First order diagrams of types Al and :1  in the 
renormalized perturbation expansicn 

Fig.16. Change in the difference of widths shown as the 
122\\ for  difference of overlap integrals (p=( 11  
1
14

2 
A and B type ions for C = 0.1 and 0.3 respectively. 

Fig.17. Diagrams contributing to the imaginary part of 12(i) 

Fig.18. Diagram for ( )12K n and (b)Al(A,w) 

Fig.19. Z-like diagrams 

Fig.20. (a) Two uncorrelated partially renormalized 
propagators, 

(b) The upper one is the full propagator and the 
lower one is the partially-rencrmalized one. 

Fig.21. Some of the diagrams for (33 1)1v  terms cf eq.(5.33) 

Fig.22. Some of the diagrams for (66& terms of eq.(5.33) 



Fig. 23. Bethe-Salpeter equation, 

Fig.24. Plot of a(p) yrs. t in a.u. for Aluminum.  Solid 

line represents'the results for the random 

assembly while the dashed line is for the correla-

ted one. 

Fig.25. Plot of a(p) yrs..p.in a.u. for Be. 

Fig.26, Calculated density of states for Al. The solid 

line is for the random assembly while the 

dashed one is for the correlated one. 

Fig.27. Density of states for Be. 

Fig.28. Comparison of density of states; -- 	free 

electron scheme; -------- Edwards theory; 

pseudo-potential method; 	 Monte 

Carlo calculation; - 	soft X-ray msurerents 

of Rooke; ------ presents calculation for 
random assembly and 	for correlated system. 
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CHAPTER-I 

PHYSICS OF THE DISORDERED STATES 

1. INTRODUCTION 

The study of 'Electrons in Disordered Systems' 

has become a very flourishing and challenging field of 

research in the physics of noncrystalline materials. An 

ideal crystal in its ground state possesses perfect period-

icity. For understanding the physics of condensed matter 

the ideal concept of Bloch electron has been used, while 

the real materials possess many kinds of imperfections. Any 

departure from the ideal ordered situation gives rise to a 

state of Idisorderi(1). 

We shall mainly distinguish the following two types 

of disorder in the condensed matter considering its geomet-

rical structure. 

(i) Cellular disorder: materials which possess lattice 

structure, for example, 

substitutional alloys. 

(ii) positional 
disorder 

: the position of atoms or molecules 
in such materials are not iso-

morphic with the sites of a 
lattice, for example, liquids, 
liquid metals and amorphous 

solids. 

Elementary excitations like phonons bring about dynami-

cal disorder while magnons lead to magnetic disorder. Plasmons 

in metals and excitons in insulators represent the type.of 

electronic disorder. In certain materials at elevated 



_2- 

temperatures there exists a very high degree of disorder. 

A ferromagnetic material above its Curie temperature has 

no magnetic long range order(LRO) while a short range order 

(SRO) may persist upto certain temperature. An alloy above 

its ordering temperature does not exhibit LRO but SRO may 

be present. Above the melting point a material has long 

range positional disorder. However, we shall be primarily 

interested in the electronic structure of disordered 

materials falling into the cellular and positional categories. 

Looking back to the history of research on the electr- 

onic structure of the materials one finds that there have 

been continual development and refinement of Bloch formula- 

tion of energy band theory(2) paralleled to some extent 

by the evolution of the electron orbital scheme(3) of 

Mulliken for the atoms and molecules used in the solid 

state calculations. Both these schemes rely on the Hartree 

Fock methods of calculating the approximate wavefunctions 

and energies of the electronic systems employing a static 

lattice model justified within the Born-Oppenheimer approximat- 

ion.The past two decades have been remarkedly fruitful for 

the energy band calculations based essentially on the 

independent electron model. The power and limitations of 

the one electron band theory are reasonably well-understood 

in terms of its relationship to the many body theory for 

electrons in crystals. With the new advancement of the 

band structural schemes and development of computer 

technology considerable progress has been made in carrying 
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out and interpreting the band structure of many solids. 

The progress in the experimental studies cf band structure 

has become very rapid and dramatic in the last decade. 

In addition to the refinement of traditional experimental 

techniques new methods have been invented to probe the 

topology cf the Fermi surface(4). 

In contrast to the satisfactory understanding of the 

electronic states in crystals gained through experiments and 

theory during the past decades, our knowledge about the di-

sordered materials is relatively meagre. The lack of trans-

lational symmetry does not permit us to use any of the 

methods developed in the conventional band theory for 
002 

study of disordered systems. Most of studies were either 

for unrealistically simple models or were based on pheno-

menological modelQ. Besides there were no direct experi-

ments available to study electronic spectra. The conven-

tional powerful methods likede Haas van Alphen (dHvA) effect 

and cyclotron resonance can only be used when the electrons 

have long mean free paths. This requirement can not be 

met in disordered systems. 

2. EXPERIMENTS 

The commonly used experimental methods to obtain infor-

mation on the electronic structure of solids can be class-

ified into the following categories: 

(i) Spectrosccpic Probes: 

(A) Optical and Photo-electron emission, 

(B) Soft X-rays, 
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(C) Positron annihilation, 

(D) Ion neutralization method, 

(B) Kohn anomaly studies. 

(ii) Thermal and Magnetic measurements: 

(A) Electronic specific heat, 

(B) Magnetic susceptibility. 

W.) Conduction Phenomena: 

(A) Anomalous skin effect, 

(B) Ultrasonic attenuation, 

(C) Magnetoresistance, 

(D) ac and dc electrical resistivity, 

(E) Cyclotron resonance etc. 

We shall briefly describe some of the techniques 

which are capable of yielding reliable information on the 

band structure and Fermi surfaces of metallic alloys. 

(A) OPTICAL(OPT) AND PHOTO ELECTRON EMISSION 
SPECTROSCOPY (PES)(5) 

The optical and photo-electron spectra have very 

intimate relations with the band structure. In fact, optical 

measurements have proved to be powerful tools for.probing 

the electronic properties of materials. One of the Pioneer-.  

ing works with regards to the pure metals was due to 

Ehrenreich and Phillips(6), who interpreted the opti9a1 

spectra of noble metals in terms of the critical points 

associated with band structure. The quantity e2(w), the 
energy dependent dielectric constant is calculated from 

the joint deisity of states derived from band structure. 
The transition rate and the optical constants can be 
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deduced from e 2 W,Conversely,the observed optical 

absorption spectra can be related to e2(w). Subtracting 

out the Drude term, which is due to intraband transitions, 

the remaining part of the spectrum is attributed to 

direct (inter-band)transitions, where the momentum 

conservation is regarded as a valid selection rule. The 

photo-electron emission experiments give the electron 

distribution curves (ED0)(7). This is essentially the 

quantity representing the density of states of the 

valencetand distorted by many body effects and surface 

Iarrier,Spicer and collaborators(8) believe that the 

photoemission EDO, is due to the nondirect transitions,' 

in which momentum conservation is either through phonons 

or is non-important. When an electron leaves a state from 

the valence band it:leaves a hole localised on one atom 

for a time comparably with the excitation time. This is 

believed to happen for small overlap of states between 

neighbouring atoms, like the d-wavefunotions it transition 

petals.Thie,in other worast deale with a tanybody excitation 

involving electron relaxation around the hole(9). However, 

no complete theoretical treatment is available although 

people have started thinking that the photoemission process 

involves interaction of many particles and many holes(10). 

Besides photoemission recently piezo-optical(11), 

optical modulation(12) and polar reflection Parady effect(13) 

experiments have been carried out to understand the band 

structure of the materials. On disordered alloys and 
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amorphous solids, a bulk of experimental data from 

optical and photoenission experiments are available. 

B. SOFT X-RAY SPECTRA (SIS)(14) 

Soft X-ray spectra are obtained, when fast electrons 

falling on a metal surface eject electrons from the ion 

core states of the atoms emitting X-rays when electrons 

from the conduction band fall into these core state • 

vacancies. Since the core level has a well-defined energy, 

the emitted quantum has the energy equal to the difference 

of conduction and core state energies.The spectrum there-

fore provides information about the occupied part'of the 

conduction bands. There are many complications in the 

interpretation of SIS. This is essentially due to the life-

time of the quasi-particles for the states far from the 

Fermi surface, that produces the energy broadening of the 

low lying states and smears out any expected structure in 

this region. 

Isochromat spectroscopy(15) is a newly developed 

technique. In the SIB, one needs the correction for the 

life-time broadening of the participating core level. The 

Isochromat spectroscopy is free from this feature. Fast 

moving electrons of well-specified energy (variable) are 

shot at the sample and the intensity of the outeoning 

radiation is analysed by using a fixed frequency 

X-ray monochromator. This kind of experiment probes the 

unoccupied energy levels. 
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There are large amount of SLS experimental data 

available for ordered and disordered alloys(16), but their 

quantitative interpretation is not satisfactory. Recently 

there are some experiments on X-ray photoemission(17) 

with a very moderate energy resolution. 

C. ION. NEUTRALIZATION SPBCTRA(INS).(18) 

To derive information about the density of states 

in solids Hagstrum has developed this technique, known 

as Ion neutralization spectroscopy. When a slow ( 5eV) 

rare gas ion approaches a metal surface, one of the 

electrons from the conduction band may tunnel out through 

the surface to neutralize it, giving up its excess energy 

to a second electron which is raised to a state above 

the Fermi level. If the second electron is moving towards 

the surface with sufficient energy it may escape from the 

metal and be collected outside. This process is similar 

as in PBS as far as the emergent electron is concerned, but 

the experiment is difficult to carry out. Besides the inter- 

pretation of results is subject to number of assumptions 

like the energy spectrum of the emergent electrons yields 

the self-convolution of a certain quantity, that is related 

to the density of states. Although their precise relationship 

is extremely complicated, one gets the peaks in the INS for 

d-electron systems reasonably close in width, and position 

to those expected from other experiments like SIB. 



D. NEUTRON SCATTERING AND KOHN ANOMA1Y(19) 

The inelastic scattering of slow neutrons has been 

used to map the phonon spectrum in great detail. The 

shape of Fermi surfaces, in principle is reflected in the 

phonon spectrum, showing small kinks, known as Kohn 

anomalies. Physically, if we think the solid as a lattice 

of bare ions, immersed in a sea of conduction electrons, 

a phonon corresponds to a periodic displacement of'the 

bare ion that produces a periodic electric field which 

is then largely screened out by the conduction electrons. 

Their screening ability changes abruptly at certain values 

of the wavevectors and since screening determines the 

effective forces between the ions, the dispersion curve 

exhibits a corresponding kink at those values of the wave-

vectors. 

E. POSITRON ANNIHILATION (POS)(20) and 
MbSSBAUER SPECTROSCOPY(MOS)(21) 

The angular correlation of y-rays in the experiment 

of positron annihilation offers information on the momentum 

distribution of the conduction electrons. When a positron 

enters into a solid it loses its energy rapidly due to 

collisions till it is left with its residual thermal 

energy. Consequently it is annihilated by an electron and 

the total momentum of the emergent y-rays is essentially 

that of the electron. The momentum distribution of the 

electrons is inferred from the angular intensity distri-

bution and hence the shape of the Fermi surface (22). 
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A transition between an excited and the ground state 

of a nucleus is very sharp when the entire crystal takes 

up the recoil momentum. This is known as gsabauer effect 

or recoilless emission of y-rays. In case of substitutional 

alloys the information about the charge transfer of 

s-electrons of the constituents are obtained from the 

KOssbauer Isomer shift measurements(23). The isomer shift 

is due to the fact that nucleus has different nuclear 

charge radii in the.excited and ground states. It depends 

on the s-electron probability density at the nucleus from 

which the charge transfer is found out. 

In a similar manner NKR Knight shift measurements(24) 

provide us information about the conduction electron 

density at the nucleus, The specific heat and magnetic 

susceptibility measurements(25), also yield infortation 

about the density of states at the Fermi level. 

3. NATURE OF ELECTRONIC STATES IN DISORDERED MATERIALS 

It has been pointed out earlier that in the physics 

of Bloch electrons in crystalline materials, the conduct-

ion electrons (or quasiparticles) are itinerant giving 

rise to extended states possessing infinite life-times. 

Because of imperfections in the lattice, the quasi-particles 

get scattered and have only a finite life-time in an 

eigenstate of the perfect crystal. If we introduce a single 

impurity atom into a perfect crystal, the Bloch waves 

propagating throughout the crystal, after being incident 
onto the impurity, get scattered. The wave functions and 
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the density of states become somewhat distorted from its 

original unperturbed state(26). In the case when the 
scattering potential is very strong, discrete localised 

eigenstates are obtained which occur below or above the 

continuous band depending on the attractive or repulsive 

nature of scattering potential. Further, on increasing the 

number of impurity atoms, with a random distribution 

(keeping the impurity concentration still low), we may 

get extended states with finite phase coherence because 

of random impurity scattering along with the quasi-continuum 

localised states. Such features are believed to be more 

prominent on increasing disorder(27). 

(i) PERCOLATION THEORY 

From studies using classical percolation approach(28) 

it has been found that in a disordered medium, where the 

potentials are randomly distributed, there are finite 

allowed regions of localised states and allowed channels 

of extended states. The propagation of electrons from one 

space point to another depends on the height of the potential 

barrier between these neighbouring points which make bonds. 

Chemically the bond is an overlap of electron wavefunctions. 

When a bond is closed with certain probability, the electron 

tries to propagate in the medium. A similar situation has also 
been considered for site percolation(29). So, when a medium 

is characterised by a random distribution of potentials 

with certain probability, then the migration of an electron is 

possible only when it has an energy greater than a critical 



energy corresponding to the critical percolation threshold. 

The latter is dependent on the lattice structure. There 

are some computer experithents on two-dimensional lattices(27) 

to show how one can localise a particle in a region with 

a potential greater than its energy. An extensive litera-

ture is available on the percolation problem(30) regarding 

its analytical approach, numerical results and important 

consequences. But if one replaces the classical particle by 

a quantum mechanical one in the same random medium, then 

the additional process involved will be the tunnelling. 

Localised electrons from an isolated region will tunnel 

into another having same energy resulting in delocalksation 

of states. 

(ii) PROBABILITY AND ENSEMBLE-AVERAGE 

Before discussing quantum mechanically the nature of 

electronic states, the notion of probability distribution 

should be discussed, As we can not have the complete inform-

ation on the structural details of a physical system possess-

ing certain degree of randomness, we seek to know the most 

probable configuration or configurations for any particular 

material. From any experiment one gets certain quantities 

pertinent to the macroscopic behaviour of the system, these 

are sharply distributed around the ensemble-averaged value. 

ao the knowledge of the probability distribution for certain 

configuration of the system is necessary to obtain information 

about the processes, those have observable relevance. There 

are two ways of calculating the ensemble-average (a) from 
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the knowledge of the probability distribution and (b) a 

technique to calculate directly the ensemble-average like 

a mean field method. 

(iii) ANDERSON MODEL 

The class of problems in disordered structures falls 

in the category (a) is typically the'Anderson model'. 

Physically let us look into the situation where there is 

a random assembly of atoms, each possessing a single s-type 

atomic orbital. An electron is left into such a medium. Let 

the distribution of energy levels of various atoms or the 

random potential due to them follow a certain type of 

probability distribution. At a certain instant of time if 

one knows the probability amplitude of the electron orbital 

and observes at that space point how the amplitude behaves 

with lapse of time, then the information about the (single 

particle) states can be derived. In atomic systems an 

electron with the nucleus forms the bound state. In 

periodic solids, the valence electrons form extended states 

by modulation of periodic potentials. In both these cases 

states are stationary with infinite life-time. In the dis-

ordered medium the states are intermediate between these 

two extreme limits. Unlike infinite phase coherence,in 

Bloch states, electrons in disordered medium have finite 

phase coherence. 

Anderson(31) studied the problem of localisation, as 

to how a localised state will be obtained due to randomness. 

since the localised states have important bearing on the 
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transport phenomena(32) it is necessary to obtain the 

range of localisation. Anderson's paper is famous for  being  

very complicated and obscure but recently considerable 

simplification has been achieved by a number of workers 

such as Ziman, Thouless, Anderson, Kikuchi, Economou and 

Cohen and many others(33). 

The logical structure of the simple Anderson model 

based on a simple tight-binding  Hamiltonian is given by 

H = / cala)<al 	la> 
a 	a,p 

t
ap ... (1.1) 

where, ea  is a random independent variable i.e. the eigen-

value of an electron belonging  to the atom at the ath site. 

e
a obeys a common distribution function, tap is the tight 

binding  or hopping  integral and is in the present context 

a positive constant t for a,p being  nearest neighbours but 

zero,otherwise.la> denotes a Wannier state, centered at 

site a. 

In the absence of the tight binding  integral the 

eigen state of the system is nonpropagating, but switching  

the former on
/
the state will start propagating  to the 

nearest neighbour site and consequently over the whole system. 

Stronger the tap, easier is the propagation. Besides the 

eigen energies of the atomic species should be close to each 

other to permit propagation easily. In the perfect crystal 

the eigen energies are same all oNer,as a result of which 

propagating  states are obtained without any scattering. 

In the present context the strength of the tight binding 
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integral and the spread of the eigenenergies will decide 

whether the electron states will propagate in the crystal 

or be localised; i.e. a critical ratio of t and W(the 

width of probability distribution of the eigen energies) 

exists, below which all the states become localised. This 

has been studied within suitable mathematical framework 

by introducing the response function (or the Green function) 

and examining the analytical behaviour of it in the complex 

energy plane. 

Briefly the relation between the Anderson arguments 

and Green function is shown below, We define . the retarded 

Green function following Zubarev(34): 

G(t) 	e(t) <01ap (t)act (0)10> 	... (1.2) 

‘, 
where aa ktikaa tt/i is the annihilation(creation) operator 

in the Heisenberg representatio, 

 

a4 (t) = exp ( iHt ) aa (0) exP(-iHt ), 
	(4.3) 

10'> is the vacuum state and OW is the Heaviside step 

function, 

0(t) = 1 	for t 

= 0 	otherwise 

The equation of motion of Gap  (t)with Hamiltonian(1.1) is 

i (64 Gi3a(t) = Spas(t) + yioa(t) +joti31  Gya(t) 	(1:.4) 

The probability amplitude Aa(t) for the state 10 satisfies 
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the kinetic equation 

AA (t) =e R Ap (t) + 	t
PY 

A
Y 
 (t) 
	... (1.5) 

with the boundary condition A
P 
 (t) = 0 for t = 0 and p 

so A
P 
 (t) is identified as G

Pa 
 (t) for t >0. Now introducing 

the Fourier transform 

1 Gpa (t) 	w- en fGpa (E) exp(-i3t) dE 

we write 

(E-e0)Goot(E) = óap+i4 t PY G Ya(B) 
	... (1.7) 

The behaviour of Ap(t) after a long time is obtained from 

the analytic properties of Goa(E). When Gaa(E) possesses 

a pole on the real energy axis of the complex energy 

plane the amplitude of the perturbed state remains station-

ary as t -*co and hence it is a strictly localised state. 

The situation when G
aa  (E) acquires a branch cut corresponds 

to extended states. For the sake of convenience the one 

particle Greenfunction derived from the resolvent operator 

(B-H)-1  that satisfies the same equation (1.7) will be used 

hereafter. For real B the Green function is written as 

G
aa

(E-in) 1 	 

zta(E-in 
(1.8) 

with 11 as a positive infinitesimal and z
t
is the socalled 
4 

total self-energy, arising out of scattering due to random 
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elements in an infinite series. The conditions of localisa-

bility for a given value of E should hold 

Lt 	Ira za (E-il) = 0 y 
140+  

with probability unity, and 

... (1 .9a) 

E-ea- LtRe t(tx  (E-ii) = 0 	... 	.9b) 
-40+  

when the random elements e a). fall inside the width of the 

probability distribution. Essentially the complicacy of the 

analysis of this model lies in the convergence of the series 

for It  

ra  yp-1--t + 	glty6 Elc  t a  ay 3-e 	ya • 	ay :TT - ct+ 	 
a 

6ia 

... (1.10) 

For convenience the series is summed diagrammatically using 

the method of self-avoiding walks by which a site is not 

visited more than once. Finally the series (1.10) is re- 

written 

Za =t 	1 - t +t 1 ay 	la  ya y a  ay 	_ is 
Y Y 	64y,a 	Y Y 

x t18 
	

1 	t act + ....  
6 E-e - Ia'Y  ■5 

... (1.11) 

1 
with Ea 	t 

t 
	and so on. 

Y6 Y 5 ya 	E _Eo  ;go' 6Y an  

This hierarchy of (1.11) is known as renormalised perturbation 
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series (RPS). A similar analytical derivation has been 

obtained by Fujita and Hori(35) in a continued fraction 

series. 

Using a strong statistical dependence of the quantities 

in various terms of RPS,Economou and Cohen wrote a function 

1 	
1/M 

1,(E) = Zt [1 t
Y 	

. • • •t 
M400 	Y1 E-e 	Za 	1Y2 	Y a  M 

Y1 Y1 

(where all subscripts are distinct) whose properties are 

for 1(E) > 1 - Eigon states corresponding to E are all 
extended 

<1 - Either no oigen state at E or Eigen states 
are localised. 

and 

	

	= 1 - the corresponding E separates localised from 
extended states known as mobility edge. 

These results were derived when the RPS is convergent accord-

ing to a probabilistic analysis. The result(1.12) is further 

approximated by removing the restricted sunmation with a 

factor KM, when K is the connectivity of the lattice given 

by 2/3 of the number of nearest neighbours. Further the 

product of quantities, 1 / (E-eY
- 
Ea) etc. are approximated 

by g(3, 
 Heff.)' a function of an effective Hamiltonian 

so that for the Hamiltonian (1.1) with constant nearest 

neighbour hopping, t 

1(E) fz..1  ZtIg(3,Hoff)4 	(1.13) 

This form of the function has been used in showing the 

localised states in the density of states out of effective 

• • • (1.12): 
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Hamiltonian by Economou and collaborators (33) which is 

inconsistent in the effective Hamiltonian theory. 

As it has been pointed out earlier, the localisat-

ion is not to be seen in a particular space point (like 

examining the diagonal Green function), one has to find 

out a domain to determine the size of the localised states. 

There are many analytical attempts in this direction by 

Anderson and many others(36). 

4. MODELS ON DISORDERED BINARY ALLOYS 

The theories of binary alloys have initially relied 

heavily on simplified models. We shall discuss mainly binary 

disordered alloys of substitutinal type ABi_x. The first 

question arises on the structural stability of the alloy, 

if the element B is miscible in A through a wide range of 

concentration - a problem often considered by metallurgists 

in terms of certain empirical rules. The commonest of all 

are the socalled Hume Ruthery rules, that put restrictive 

conditions on the formation of structurally stable solid 

solution (37), (a) Atomic size, (b) Differenoe of electro-

negativity and (c)'Electron per atom ratio. 

It is difficult to form solid solutions if the dia-

meters of A and B type of atoms differ by more than 15/.. 

Typically for brass alloys like CuZn, with their atomic 

radii 2.55 A° and 2.66 A°  respectively, the sizes are favour-

able for zinc to go into copper as a solid solution upto 

38 at Y. of Zn in contrast to Cd(with atomic radius 

2.97 2) is soluble in Cu to about 1.7 at 7. . Secondly, 

even if the atomic sizes are in favourable ratio, 
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the solid solutions will not be formed if A and B 

elements have a tendency to form a stable compound 

in definite proportion. If A is strongly electronegative 

and B is strongly electro-positive like III-V or II-VI 

compounds, it is very likely that instead of solid 

solutions compounds, suchas AB or A2B etc. will be 

precipitated out of the solution. For examp1ethe atomic 

diameter ratio (1.09) is favourable for Sb in Mg but the 

solubility of Sb in Mg is small because of electro-

negativity difference. Thirdly in alloys different 

constituent valancies (the ratio of electrons per atom) 

are sometimes used to find the structural changes in 

the phase diagram. Ws shall illustrate this below by 

considering some Cu based alloys. 

(i) PEASE DIAGRAM OF ALLOYS (38) 

In Fig.1 we show the phase diagrams of copperbased 

binary alloys with zinc, germanium and aluminum as the 

second element. The first two are known as brass alloys 

and CuAl is known as.bronze alloy. When zinc is added to 

copper, the primary solution of zinc in copper is formed 

with the same fcc structure as pure copper. This is known 

as a-phase of brass which goes upto 38r. (atom )of zinc. 

Between the limits of 38 to 46r. of zinc a two-phase region 

occurs corresponding to a-13 phases while from 46-49r. the 

alloy becomes a secondary solid solution changing its 

structure i.e. b.c.c. in p-phase. The p-phase undergoes 

an order disorder phase transition at a temperature of 
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about 54000 below which one gets an ordered p' phase 

with Cs-C1 structure. At higher zinc concentrations we 

get cubic y-phase hexagonal C-phase with an axial ratio 

--, 1.56 and a hexagonal 11-phase with axial ratio,Jl.8. 

The 11 phase like a-phase is a primary solid solution of 

Cu in zinc while p,y and e are all phases of secondary 

solid solutions. 

In Fig.1(b) and (c) we show the phase diagrams 

of CuGe and CuAl. 

(ii) Phenomenological Models 

A. Rigid band model (RBM) (39) 

In this simple model one assumes the shape of the 

density of states f(E) does not change on alloying, but 

the concentration of the electron 'n' in thr) conduction 

band changes. The Formilevel on alloying is obtained from 

the simple relation 

EP  
n = f .P(E) dE 

-co 

RBM has been sometimes used to correlate the electron 

concentration with structural stability. On alloying 

one pours the valence electrons of the constituent 

element into a single nearly free electron band. Once 

the filled states reach the zone boundary it is costly 

to add further electrons which can only be accommodated 

in states above the energy gap which occurs at the zone 

14) 
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boundary or states at the corners of the zone both of 

which are of high energy. On further adding electrons 

a structural transformation takes place so that the 

new phase contains a large number of states before it 

makes contact with zone boundary. The stability of alloys 

like a-brasses (e/a limit of CuZn being 1.36) which 

undergoes a transformation from f.c.c. to b.c.c. was 

interpreted in the above said manner. however, it is now 

felt (4n) that there is in general no special stability 

associated with Fermi sphere to touch Bri4.10uin zone 

boundary. There are other , factors like presence of BR° 

and charge transfer which influence the structural 

stability. The rigid band model is inadequate it many 

cases to explain measurements of magnetic susceptibility, 

specific heat, soft x-ray emission and photo-emission of 

transition metal alloys like Ni-Cu(41). 

Several authors(42}-Atfempted to go beyond RBM of 

Cu based alloys arguing that density of states at the 

Fermi levelcould be improved by impurity scattering in 

order to fit the increase of linear term of the specific 

heat coefficient with impurity concentration. 

B. Virtual Crystal 4-proximation (VC4(43) 

The potential for an AB alloy in the band theory 

is written as superposition of atomic potentials of the 

constituents in the following manner, 

V(7') 	[12: (l+c (rla )) vA(F-Ra ) + 4(1-c aird)v13  ri-iccq .. (1.15) a 
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structure. The key feature of this model is the depend-

ence of the gap between the conduction band and the 

next higher energy band. The energy gap is estimated by 

relating it to the atomic s-p excitation energies of the 

solute and solvent atoms. The importance cf the energy 

gap results from the dependence of the curvature of the 

Fermi surface on the magnitude of the gap. General 

trends in the band structure with positions in the perio-

dic table can then be interpreted in terms of the s-p 

excitation energies and the atomic volume, which increases 

as one moves down or to the right of the table. For Cu 

based alloys a large atomic volume means a small Fermi 

energy while an increase in atomic number means an increase 

in s-p excitation in Cu alloys; both favour a small energy 

band gap and a spherical energy surface. 

D. Minimum Polarity Model (MPM)(48) 

In contrast to the RBM, the minimum polarity model is 

valid in the limits where the random potential in the 

Hamiltonian is strong. This is suitable for transition 

metal alloys. MPM assumes that the electronic configurat-

ions of each component in its pure state are carried over 

to the alloy. The RBM leads to appreciable polar character 

on each site, where MPM assumes charge neutrality. 

This model has been applied in a heuristic way 

to the NiCu system yielding nice agreement with experi-

ment.The band calculation of Ni and Cu with starting conf-

igurations 3d94S and 3d104S respectively give results in 
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substantial agreement with experiment. Use of those 

configurations in the alloys confines extra d-electrons to 

the Cu-sites. This is only possible in the band picture 

if d-states associated with Cu are below the Fermi level. 

Since 4s configurations are same in both components the 

s-bands undergo little change on alloying. Essentially 

this model takes care of the repulsive interaction between 

the d-holes. 

E. Virtual Boundstate Model(VEM)(49) 

The virtual bound-state model lies in between the 

two extremes, REM and MPL. This is also known as Friedel-

Anderson resonance model and is appropriate for transition 

metal impurity in noble metals. It is assumed that the 

electron correlation of opposite spin becomes important 

when they belong to the same atomic level with energy, 

say Ea. In the simple Hartree Fook approximation one 

can write the interaction U <ladT> <nal), with'<rida> as 

the average number of d-electrons with spin 	a and 

U the strength of interaction. In the alloy if the atomic 

levels remain sharp on the dissolution of the transition 

metal into ordinary metals then the levels will be 

polarized with say nap as much as possible. Now on intro-

ducing a spin-independent interaction between the localised 

d-state and s-band state linking with same spin, there will 

be a transition to or from the conduction band at the rate 

proportional to the density of state available at Ed  and 

the square of the strength of s-d interaction. This 
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transition gives rise to a broadening of the d-state. The 

density of conduction state hence acquires a resonance 

peak. This state contains enough charge to screen the 

valence difference between impurity and host. The rest 

of the screening may be due to conduction electrons in 

the vicinity of impurity. The Fermi level in this model does 

not shift. This model is found satisfactory to explain the 

optical and photo-emission experiments on alloys upto 20 

at 7. transition metal solutes in noble metals(50) like 

CuNi, CuMn, CuPd, AgPd, AgMn, AuPd, AuNi. 

F. Stern's Charging Model(7) 

In the crystalline periodic systems the conduction 

electron sees only the potential due to ion or ions in 

its own unit cell, that is why the periodicity requirement 

demands the Wigner Seitz cell to be charge neutral. This 

requirement is no longer valid when the periodicity is 

destroyed in disordered alloys. The charging which is due 

to the non-uniform electron distribution in disordered 

system has to be included in the bare ion potential in a 

self-consistent manner. Suppose due to the charge fluctuat-

ion the impurity cell is, say positively charged, this 

will produce a net long ranged Coulomb field throughout 

the whole solid. In dilute alloys the shielding clouds 

are such that they completely neutralise the positive charge 

of the impurity outside the screening length which is of 

the order of the atomic dimension. But for concentrated 
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alloys, this question has to be answered by a quantitative 

calculation. In a tight binding approximation Stern(52) 

has shown that there is in general a net electric charge 

in the cell about each constituent i.e. neutralization 

does not occur in concentrated alloys. The calculation of 

net electric charge and ion core potential has to be done 

in a self-consistent fashion. 

5. PLAN OF THE THESIS 

We shall adopt the multiple scattering approach for 

studying electrons in a medium of random binary alloys. 

In Chapter II the Green function theory is used to describe 

the multiple scattering. The self-consistent Green function 

hierarchy is decoupled within a single site approximation 

which is known as coherent potential approximation (CPA). 

The limitations of the cell-localised CPA, which is widely 

used in the recent days are pointed out and improvements are 

shown in two ways. Firstly by considering a many atom 

cluster instead of a single site description. Secondly we 

have employed a single site extended potentials of muffin 

tin variety. This formulation in its first iteration (which 

is the well known Averaged T-matrix approximation(ATA)) is 

used to calculate the spectral functions for some Cu based 

alloys in Chapter III. The results of the calculations are 

compared with the available experimental data on optical, 

photoemissionosoft x-rays and positron annihilation spectro-

scopies. In Chapter IV a detailed treatment of•a tight- 



-27- 

binding approximation is presented for a random binary 

alloy in which the hopping integrals are also random 

unlike the single site cell-localised CPA. In Chapter V 

this formulation is used to calculate the static electrical 

conductivity using the linear response theory of Kubo. 

Chapter VI is concerned with the positionally disordered 

systems. A canonical density matrix method is used to 

calculate the density of states of liquid metals like 

Al and Be. Chapter VII provides the summary of the thesis 

as to how one could improve the results presented here. 



CHAPTER II 

MULTIPLE SCATTERING THEORY 

The recent theories of disordered systems are 

usually viewed within the framework of the multiple 

scattering theory(53). The system is looked upon as a 

medium in which the atoms or molecules are randomly 

distributed and the conduction electrons while propagat-

ing suffer from scattering due to the random part of the 

potentials. It has been pointed out earlier that one has 

to perform a configurational averaging in order to obtain 

a quantity of physical interest, likedensity of. states, 

conductivity tensor and so on. Therefore the formulation 

of any theory for disordered system has to be cast 

in such a manner that this configurational and/or thermo-

dynamic averaging(34) can be done very easily. Averaging 

wave functions in disordered medium makes no meaning but 

the Green function which is a natural language of discuss-

ing the elementary excitations in condensed materials 

offer a possibility of affecting such an averaging. It is 

for this reason that most of the formulations of the 

disordered materials make use of the Green functions in 

one way or other. 

1. GREEN FUNCTION AND T -MATRIX 

We outline the Green function theory in the indep-

endent particle picture with Hamiltonian 
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H = H + 	 ... (2.1) 

where Ho 
is the free or unperturbed part of the Hamil-

tonian and V is the potential operator that scatters the 

electrons and is regarded here as sum of contributions 

from the scattering centers having potentials va, so 

that 

V = I va  
a 

... (2.2) 

1. GREEN FUNCTION 

The SchrOdinger equation in the coordinate repre-

sentation with the single particle Hamiltonian H is 

written as 

(B-11) /(;) = 0 	... (2.3) 

Corresponding to this one can write the Green function 

equation 

(E-H) G(-1",1";E) = 	(2.4) 

with suitable boundary conditions. If the energy para-

meter E does not coincide with the deakvalue of H, then 

eq.(2.4) uniquely defines G(7,i'",E). In general we use a 

complex number z in place of real E, with an infinitesimal 

imaginary part and define 

G (z) = It G(E-Fill) 	... (2.5) 
n 40 ± 

w hen E coincides with any eigen value of H, G
+ 
and G are 

not identical, In the operator form the Green function 
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known as Green operator is formally written as 

G(z) = (z-H)-1  

Using the relation 

Zt  1 P nok e/x) = - +i 
y x+137 x  

we can write 

r(z) = P -1- ino(B-H) 
B-H 

... (2.6) 

... (2 .7 ) 

where P stands for the principal value integral. So, it foll-

ows that 

	

Im G±(z) = ; n 8(B-H) • 	(2.8) 

If la) and ea  be the eigen functions and eigen values of 

H then 

(a18(E-H)1(x) = I 6(E-ca) 

= ; 1 Im <al G-  (z) l a> 

= ; 1  Im 	tr G-  (z)
7 
	

(2.9) 

where tr stands for the trace of the operator. Therefore, 

the density of states is given by 

f(E) = 	Im tr r (E) 	400 (2.10) 

If we introduce a complete set of states {IX>) in a cer-
tain representation then we can write, the matrix element 

of G 
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<X4(a 1 X5 

	

= 2 	

- 	
; 	a)<OCI X I > )5(E-e a) 

	

a 	a 

The real and imaginary part of Gxxl(z) are related by the 

Kronig-Kramer dispersion relation and Green function is 

known completely if the imaginary part of it is known. 

The analytic behaviour of the Green function yields the 

following information. 

When the eigen spectrum of H is discrete, at the eigen 

values the second term of (2.11) is a sum of 5-functions 

with coefficients <X1i)0.1X 1 ). equal to the residues. In 

such a situation G1(z) has discrete set of first order 

poles at the eigen values. In case of continuous spectrum 

of extended eigen states G1(z) possesses a cut along 

the real axis within the range where the spectrum is conti- 

nuous. The discontinuity along the branch cut is obviously 

proportional to the Im G
XXI 

 (z). The third kind of eigen 

states which we have pointed out earlier is the localised 

ones. They may occur in the continuous spectrum. Instead 

of branch cut such singularities are closely spaced poles 

with nonzero residues and are socelled natural boundaries(54). 

With the Hamiltonian in (2.1) the total and unper-

turbed Green functions are thus defined by (2.6) and 

1 
G
o(z) =E-H 

0 
... (2.12) 

7  (kl a)  (a I X'› 

<x1G-(z)IV/ = GXX'' 

( 

z'

) 

	E-e 
a 

(2.11) 
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respectively. So we can write suppressing the boundary 

conditions 

G(z) = 	1  
E-H

o
-V 

1 
G 1(z) - V 

= Go ( z) +Go (z)V Go(z) +  	

• 	

(2.13a) 

= Go(z)+Go(z)VG(z). 	... (2.13b.) 

where we have V, is the total scattering potential. 

In an inhombgeneous medium which is constituted of random 

scatterers we can write the total wave function in terms of 

incident wave with Lipmann-Schwinger type of equation 

= +G 
o o 

=V+IGvt 
o o a_a 

where # =V+EGv# V0+ 
p  opp 

... (2.14) 
• (2.15) 

to  being the unperturbed wavefunction, 
$a
, wave function 

that describes the field at the ath site and p runs over 

all sites. Equation (2.15) can be rewritten as 

#a  = (1-Gova)-1(1104-pL Govptp) 
	... (2.16) 

- (1-G
o  va  )-1  ta 
	

• 	

(2.17) 

where'Oa  is the effective incident wave function constituted 

of the unperturbed one and those due to scattered wave 

from all other sites except the ath site. Multiplying va  on 

both sides we get 
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vaTa = tata 
	 ... (2.18) 

where t - a  
to 1-G v o a 

.... (2.19) 

is the single site t-matrix. 

From (2.13b) we obtain 

G(z) = Go(z)+Go(z) T(z) Go(z) 
	... (2.20) 

where 
	

T(z) = V + V Go(z)V+ 

V(1-GoV)-1 
	

• 	

(2.21) 

V(1+G(z)V) = V(1+GoT) 
	

... (2.22) 

T(Z) is the total t-matrix, which is directly related 

to the scattering  cross-section. Now we shall relate the 

total t-matrix with the single site t-matrix using (2.22) 

and (2.2). 

TH E 	(1-+GoT (2)) 
a 

= I T(z) 
a " 

• ( 2 .23) 

This expresses total t-matrix as a contribution from all 

individual sites. Dropping  the energy argument,we write 

T
a 
= v+v G T +v 

cc a o a cc 0 
a lj  

... (2.24) 

which can be further written as 

▪ (25a) t (1+G a 	a 	0 	
Fj 	

2 

a 
ta+taGo  t+taGo 	(2.25b) 

Oa 	

i3a 
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Equation (2.25b) is the infinite series for the t-matrix 
that contain interference terms due to scattering of waves 
f rom all sites. Thus, 

T = I t +Zt a 	cc o ... (2.26) • 

is an exact series which will be examined in the next 

section. 

2. 00113RWT POT3NTIAL APPROXIMATION(CPA)(56) 

In this section we shall utilize the knowledge of 

multiple scattering theory to obtain workable expressions 

in the Single site approximation and extend it to the case 

Of a finite cluster. It has been said earlier that an 

ensemble average over all possible configurations of the 

atomic arrangements in the lattice structure is necessary 

to obtain any quantity of physical interest. In the present 
method the average will be carried out approximately so 

as to obtain an effective medium in which the electrons are 

embedded. 

Goving back to eq.(2.1) we find the Hamiltonian H 

contains a free part i.e. periodic and configuration inde-
pendent and the potential part is random and configuration 

dependent. The periodic part is the reference part which 

can be suitably chosen depending on the physics of the prob-

lem, while the random part will be correspondingly defined. 

In the case of 'cell localised disorder', the randomness 

of potential does not go beyond the atomic cell of the 

lattice site. We write the potential as a superposition as 

in (2.2) and divide the Hamiltonian in the following manner. 

H (Ho+a)+(V-cy) 

He  +lie 	 ... (2.27) 
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where, 

c= 	I a) aa  <al 
a 

V = 7 la> v 	al 
a- 	cc \ / 

and 	V
e
= 	I a> (va-ca) 

a 

= 	I a > va  (a l 
a 

Now we have ronormalised the medium in such a way that an 

electron will suffer scattering at various sites and 

at say a
th 

site will be scattered by potential ve relative 
a 

to the medium He. Defining the Green function Geas 

Ge(z) - 	1 e 	 ... (2.28) 
z - H 

and with the t-matrix corresponding to the scattering poten-

tial ve 
 

T
a 

= ta  +t a Ge 
pa P 

	 (2 .29) 

As we have seen earlier, the iteration of (2.29) yields the 

standard multiple scattering series which depends on the 

location of all sites. We note here that the characteristic 

exclusions prevent the electron from scattering twice on the 

sequence from the same site. All the multiple scatterings 

with the same particle have been gathered together in ta, 

so that we have only true sequential multiple scattering. 

t
o includes all the multiple interactions of electron with 

scatterers at the a site and it describes completely 

their interaction. Now performing the relevant configurat-

ional averaging on the t-matrix, we obtain from (2.29) 
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(To› .= <ta(l+Ge  7 T

P 

 )\ 

Pta  

= <ta > (1+Ge 	(T0  
P;(2  P  

<:(ta) epa(Tp- (To> )) ..7  (2.30) 

The first term describes the scattering of the effective 

wave on the ath site, while the second term is known as the 

fluctuation term. In the single site approximation (SSA), 

the fluctuation is completely ignored corresponding to the 

neglect of all statistical correlations between the ath and 

rest other sites. 

so, 

<Ta> = Kita > (1 + Ge ... (2.31) 

If we now define the average of the true Greenfunction with 

a self-energy 1 (z), which is unknown of the problem, then 

, 1 

(z) 
<G> Vi.717+1 	z-H i - o 

- o 
(2.32) 

We note that the average (H0+ y (z)) has the full symmetry 

of the lattice, I (z) yields information about the scattering 

and also possesses the full symmetry of the lattice. 

2.28 	e-1 	-1 
From () G 

-1 	-1 
<G> = (2) 	= (Gc  -( 	-a)) 

( z -Ho 	) 

So 	<G> = Ge + Ge( 	-0) (G.  > 	... (2.33) 
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Frs_m (2.23) using 

= T-Ta , (231) is written as 
P7a 
<T a: = <ta) (1+Ge  7 DT) - <Ta)1 ) 

aa 
(2.34) 

or (1+(t c?' Ge ) (T0,), = <t a) (1+Ge<T)) 

= <ta  ><G>Ge 	 ... (2.35) 

because 	<G. 	= Ge+Ge  <T> Ge 	 ... (2.36) 

and 	<G> Ge  = 1 +Ge  <,11 

Then 	< 	=<T 
a a  

1 
= 7 	 ) 	 ... (2.37) 

a 1 + <t cc̀  Ge  a 

Substituting (2.37) into (2.36) we get 

Ge+Ge  7 	< 	 ... (2.38) 
"5.  11-<ta.,Ge a  

Comparing this with (2.33). we obtain 

\ 
a 1-1-',t cc̀ , Ge  

(2.39) 

Equation (2.39)is written in the form 

la>i(g)!.,a1 = Z la> a(z)  <al 	la. 	 <al a 	 a 	 a 	1-FWF(z) 

where 	<t a)‘ = a> <t> 	 ... (2.40) 

and 	F(z) = KalGe (z)la 	 (2.41) 
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<t> will be same for all sites, so no index is put with 

it and in (2.40) 1(z), c(z), F(z) and <t> are all numbers. 

So we get 

2(z) = c(z) 	
1+ <t) F (z ) 
	... (2.42) 

The equation (2.42) can be solved in two ways. 

(i) Non-self consistent solution (ATA) 

With a suitable choice of c(z), 4,* and F(z) are 

calculated. This method is otherwise known as 'Averaged 

T-matrix approximation(ATA)(57) and a detailed discussion 

is provided by Schwartz et al.(58). If we consider the 

single band Hamiltonian of (2.1) and use an interpolation 

with 

F(z) = F°(z-c(z)) 

F°(z) = 	
la > 

Ho  

and we shall get )7(z) from <t> which is given by 

<ta> = x ‘tAa ) +yea> 

_.(C A-- C1) 	B-a) 
= x 	+ y 	 

1- (e
A
- a) F 	1- (c

B 
a) F 

and we choose a = E = xe
A
+ye

B 

then 
	

7(z) = E + 
xy,521,0 (z_E) 	

(2.43) 
1+2EF - (z-E) 

A B 
where 	S = 	 , W beinE the band width. 
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(ii) Self-consistent saution(CPA) 

For the requirement <G> = Ge, 1(z) will be equal to 

a(z) 	when (0= 0 	... (2.44) 

This equation(244) is same for all sites due to the period-

icity in the averaged system. This method is known as single 

site Coherent Potential Approximation (CPA) (55,56). 

The physical basis of the approximation is viewed in 

the following manner. The true disordered Hamiltonian, 

for example (2.1) is replaced by an effective periodic 

Hamiltonian which is general has complex eigenvalues 

corresponding to the damping of the states. The self 

energy /(z) which is an unknown of the problem is so deter-

mined that the effective wave does not get scattered from 

any site. The effective wave contains the incident wave 

and contribution from all sites to the scattered waves, 

except that coming from the site in question. In the self-

consistent procedure we consider the waves propagating 

in the medium such that it can not be scattered'on the 

average by an atom situated at the ath site. Thus, it 

follows from the self-consistent solution of the usual 

multiple scattering problem, in which generally (T)= 0 

is the requirement for the situation when the effective 

medium is equivalent to the true averaged medium. In the 

single site version the properties of all sites but one 

are averaged over and that one is treated exactly.Effects 

due to the local surrounding are averaged over in this 
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approximation. 

In the nonself-consistent procedure we calculated 

<t> for a choice of effective medium and here we shall 

find out the medium from (2.44). Because 

6(0= Ge(z), we shall write (2.44) as 

A 	vB 
 

X 	 +y a 0 
1-eF(a z) 	1-vDaF(Z) 

(2.45) 

A(B) A(B) r 
where va 	= E 	L(Z) 

After some simplification we shall obtain 

/(z)=Z-(eA-I(z)) F(z)(eB- 7(z)) 	... (2.46) 

which can also be cast into the form 

(z) = E 
	xyE2F(z) 	

(2.47) 
1+(E+E)F(z) 

Equation (2.46) and (2.47) are two alternate forms of CPA 

equation derived by Soven(55) and VelickY et al.(56) 

respectively. 

Here we ncte that the Green function method discussed 

by Yonezawa and Matsubara(59), Das and Joshi(60) and Leath(61) 

is an equivalent scheme of the CPA. Besides similar schemes 

have been employed by Taylor and others(62) for phonons,andOnedora 

and Toyozawa(63) for Frenkel excitons and Roth(64) for 

spin waves. Thus, CPA has become a working tool for 
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understanding the behaviour of elementary excitations in 

disordered systems. This method correctly interpolates 

to the limits of virtual crystal, dilute alloy and split 

band situations. 

Using the semi-circular model for the density of 

states of the host, the density of states for AxBi_x  

random alloy is shown in Fig.2. x = 0.15 and varying S in 

both CPA and ATA scheme. In both approximations for increas-

ing 6, we get the distortion of the band at its upper edge 

and finally at a certain 6 the band, splits off. Now we 

shall briefly discuss the well-known results from CPA 

using the so-called V-diagram(65) as shown in Fig.3 for 

the same model alloy with x = 0.1. The hatched portion 

shows the density of states for various values of 8. The 

exact bounds and CPA bounds are demarcated for the density 

of states. One finds for small 6, there is a common band. 

A dip appears in the upper region of the band on increas-

ing 8 and for large 8ite impurity band splits off. Here 

it is interesting to note that the density of states of 

the alloy cuts off sharply, without showing any band 

edge tailing effect. The majority band (or B sub-band) 

approaches the exact limits of the spectrum and'is very 

much like that of the pure B crystal with not much damping 

of the states. The minority band is restricted to lie 

well inside the exact-spectral bounds and the electronic 

states are strcngly damped. For large 8 the two sub-bands 

are essentially independent. 
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With this cell-localised, CPA model in which the 

self-energy of the electron is momentum independent there 

are some calculations for the alloy system NiCu(66) in 

which the pure density of states of Ni is used from 

experimental PBS data. The same scheme of interpolating 

the density of states from pure A band structure density 

is used by Stocks et al.,(67), Leoni et al. and Hasegawa 

et al.(68) for noble transition metal alloys of CuPd, 

AgPd and CuNi through a range of concentrations. 

The main drawback of such calculations is that 

the calculated density of states does not possess host-

impurity symmetry(59) i.e. the density of states of NiCu 

calculated from Ni as host is not same as that of Cu-host 

alloy. Besides, such calculations share the following 

objection of the single site cell-localised (CPA) theory 

in which the self-energy is k-independent. 

We have discussed earlier that while calculating 

the random potential in a disordered system, one should 

consider the screening of electrons. CPA discussed 

above is a localised perturbation model which has been 

shown(69) to violate the screening requirement and the 

potential in this scheme can not be made self-consistent 

via Friedel sum rule. Therefore, this particular model 

can not have much applicability so far as real systems 

are concerned. Lasseter and Soven(69a) on the other hand 

have calculated the potential for a single impurity through 

a self-consistent procedure by utilizing Friedel sum rule. 
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The calculated changes in the density of states are not 

sufficient to account for the measured changes in the 

linear term of the specific heat. 

In view of the above limitations of single site 

CPA it is natural to attempt at improving this approxi-

mation. In the recent past many workers have worked out 

many possible extensions of CPA by including the off-

diagonal randomness in the transfer integral and/or by 

considering the effect of cluster due to pairs, triplets 

etc. The straight forward extension of single site CPA 

to clusters is carried out in the next section. 

3. CLUSTER MODEL OF ALLOYS 

As discussed above the CPA is a single site theory 

and all the higher order effects are averaged to provide 

an uniform environment to a single site scatterer; the 

theory neglects the effect of clusters of atoms in the 

alloy. The cluster-effects are known to show explicit 

structures in the energy spectrum. In a model tight 

binding Hamiltonian in which diagonal disorder is only 

taken it becomes equivalent to the assumption that the 

density of states of pure metal of each constituent is 
tRw itovol-e -exce-p* TOY' '44_ AANikt aS Om. R.instrs” GR,Q, 	ritAtriclt:ey■ 
removed when one considers the off-diagonal disorder. 

eyrot.Lackm 
	

d Ducastelle(70) have developed a 

self-consistent pair theory. This theory in the dilute 

limit is exact to x2 and it has included the scattering 
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from all possible pairs with various separations, but 

it hat neglected the presence of random off-diagonal 

element (RODE) in the tight binding integral. In a 

similar manner Schwartz and Ehrenreich(71) have calcula-

ted the multiple scattering series for a pair by perform-

ing the repeated scattering. One can very easily calc-

ulate the correction of various orders to the T-matrix 

from a pair. The nonvanishing correction from it comes 

in the fourth order which is calculated as 

T(4)> 
a pair ' x2(1-x)2  Aa

Ge 	A Geh p 	a 	...(2.48) a   

	

Aa 
 to -t 	a = tA B -t 	tA-/ >4(1-x) h

a a 

with 
	

t
a 
= O

a
) - x 	and 

:ta 	a 	a = 	tA+(- t
B 
, 

where ta
A  
 and to are single-site t-matrices of site a  

for A and B type of atoms respectively. This theory also 

shares the same drawback as does that of CyrotLackmann 

and Ducastelle and such theories can not be unambiguously 

self-consistent when nonlocal coherent potentials are 

introduced. Here we note that there are some attempts 

to include RODE in these theories, which can be derived 

from a general theory of clusters of tight binding charac-

ter as discussed below. 

A large number of experiments have shown the effect 
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of local environment on the electronic properties of 

disordered alloys and it is well known that interatomic 

forces in general favour some kind of local order(72). 

Therefore, along with the atom that scatters an electron 

one should include'its neighbours so as tc describe 

the response of an electron to a cluster of atoms. The 

approach presented here is mainly based on the cluster 

theory of Freed and Cohen(73) and local disorder theory 

of Butler and Kohn(74). Freed and Cohen have derived 

the multiple scattering hierarchy considering a fixed 

set of scatterers, forming a cluster. Because they 

describe clusters of finite size, the resulting equation 

do not preserve the requirement of translational period-

icity of the average system, which they overcome by 

introducing an alternate equation of motion known as 

extended coherent potential cluster method (BCPn). The 

cluster Green Function carries with it a weight factor 

which is the probability distribution function of atoms 

of a given cluster in an ensemble of all possible 

configurations. If we periodically repeat such clusters, 

then after proper averaging we shall obtain a continuous 

spectrum. Here we shall assume the principle of local-

ity, in which the asymptotic theorem for the operators, 

having a finite range is valid (74). Let us consider 

now the same tight binding Hamiltonian (1.1) in which 

t
ap is not translationally invariant. It can have any 

one of the following values t
AA
, t

BB
, t

AB 
and t

BA
. 
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Taking the same spirit as in single site CPA, we can 

choose an effective Hamiltonian 

He  ' 1: la> E a,3 	a-p 
for all values of a and p 

... (2.49) 

or He  ' 2: la>E0<al 	:: pla> 	<PI 
a 	a,  

a4 

... (2.50) 

Here the diagonal element of He will be
o 

and off-diagonal 

one will be :a-c  which are unknowns of the problem. Looking 

to (1.1) and (250), 10  is the renormalised atomic energy 

level andap is the new hopping integral that is dependent 

on a-P. Here one can note that He  is translationally invar-

iant. If we now describe scattering with respect to the 

medium He , then the perturbation is 

V = H 	 ... (2.51) 

and the corresponding T-matrix is found out from 

T = V / (1 - GeV) 

with Ge  defined in terms of new He  in (2.50). For the 

< H> = He  i.e. (G> = Ge, we can show from both physical 

grounds and mathematics that 

<Ta..(3>= 0 	 sie (2.53) 

for all values of a and 3, and this is the self-consistent 
condition of the present theory. If a = p then (2.53) 

gives the self-consistent requirement of the single site CPA. 
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T = V +T Ge  V + T r—  Go  V 
as 	as as as aa 	aatla  ap pa 

+ T GeV + T Ge  
tqa  aP Pa aa 	ppl 	aP PP

V
' P ia 

PiP l a 

... (2.58) 

and 

T 	V 	T Ge  V + T Ge  V + T tG V ap 	ap 	aa ap pp 	aa aa ap 	piipia  af3 p 	ap 

T 	Ge , V 
Pa P P PP 

... (2.59) 

Eq.(2.59) is a set of Z(nearest neighbour coordination 

number) simultaneous equations because p runs over all 

nearest neighbour sites. The self-consistency condition 

a-p0 implies 

<T aa> = 0 	 ... (2.60a) 

and 
	

<Tad= 0 
	

(2.60b) 

In this approximation closed form of equations for Taa  

and Tap are obtained by defining a matrix 

YPP' = 614'
- x

PP' 
	... (2.61) 

so that 

T 	h.7- 	V ly 	+ T 3- 	X ly 	/ 
aP 	tr45406 aP  P P 	aa  riPia aP  P P 

(2.62) 

and 

T 

v 	x y I V 1 
a 
 L-1 f.6 cc  aP PP 0 aa 

 

• • • 2.63) 

   

as i-X 	 X y I X 
acc  P#a P ̀13a aP PP P 
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where, 

X = Ge  V 	7-  Ge  V , 
aa 	act aa 	T7a  ap pa 

X . GeV  +Ge  
ap 	ap pp aa

V 
 ap 

X = Ge  V + 77 	Ge  IV 1  
Pa 	Pa aa .r:Wa  PP P a 

X. = Ge l  V +Ge l  V-, 
P P 	IJP 

A is the determinant of Y and y is the cofactor 

of the matrix Y. 

Using (2.62) and(2.63)frora (2.60)one can calculate the 

Coherent Potentials E0  and II. This general result 

in the case of diagonal randomness only will yield the 

socalled self-consistent condition for pair cluster due to 

CyrotLackmann and Ducaste11070) and Nickel and Krumhansl 

(75).The vanishing of the T-matrix in the random case as 

we have seen above can also be used for a correlated system 

possessing a short range order. Simply for the case of a 

pair the equation for Tap  will be replaced by STapg(R)dR 
where R =i0c-01 ,and g(R) is the pair correlation function. 

Once the coherent potentials 	s are determined the 

density of states can be calculated from the knowledge of 

the medium Green function Gc. A large number of papers(75) 

on the cluster and off-diagonal treatment of ,disordered 

systems have appeared in the recent days. Some of them 

report model calculations for a cluster of atom and its 

nearest neighbours. 
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CHAPTER-III 

ELECTRONS IN THE EXTENDED RANDOM POTENTIALS 

We discussed in the last chapter that the cell 

localised potential model has several limitations for 

use in the calculation of the electronic structure of 

real disordered alloys. One of the assumptions that both 

the constituents in an alloy should have in their pure 

form identical band shapes is a severe limitation. In 

the band structure calculation of ordered crystals 

generally a system of potentials with muffin-tin 

form(76,77) is used, which is very convenient to handle. 

This kind of potential is assumed to be spherically 

symmetric within a certain sphere surrounding each atom 

while the interstitial space is having a constant (or a 

zero) potential. Since we consider a random alloy having 

a definite lattice structure it is tempting to use the 

conventional band structure scheme like the Green function 

theory, otherwise known as KKR (Korringa (78),Kohn and 

Rostoker(79)) method. The formulation of this problem 

has been very neatly carried out by Soven(80). Gyorffy(81) 

on the other hand, has rederived in a different way the 

coherent potential equation for nonoverlapping muffin 

tin potentials without resorting to 6-shell form. 

We shall use the result of Soven's formulation along with 

certain approximations for our calculation and finally 

iDgitci s? cza„ 	. .. 	nom  

k_; 
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show the numerical r3sults. 

Here we recall that the nonselfconsistent ATA (82-84) 

can become a good first approximation in an iteration 

scheme leading finally to the self-consistent CPA solut-

ion. We describe below the muffin-tin formalism of CPA 

scheme in an iterated ATA following essentially the 

formulation of Soven and examine its applicability. 

1. MODEL POTENTIALS AND SELF-CONSISTENT EQUATIONS 

The choice of model potentials for the constit-

uent atoms in the alloy are written in the form 

ii) 
(S(r-R) . 

(E) vrtR2

_RN 	Ai  

L(19-712—  W31, 	
.-(3.l) 

where L is a composite index for the angular momentum 

quantum number (1,m). YL(r) is the real spherical harmonics 

A 
of angle r, W

L
(E) is an appropriately chosen energy depen-

dent (model) potential amplitude, index i stands for the 

type of atom, R is the radius of the muffin-tin sphere. 

If the potential amplitude satisfy the equation 

Wl(B)  = R2D
1
(E) - 	i'(R) / J (R)] 	... (3.2) 

1 	1 	1 
then the model potential will have the same phase shifts 

as the true atomic potential of i. Herekt(E) is the exact 

logarithmic derivative of the radial wave function of angular 

momentum 1 and energy E for ith atom, j and j' are the 

spherical Bessel function and its derivative and .1e.  = 
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Now with two sets of potentials V(1), the model potential 

and V(i)the true muffin-tin potentials, we can compare the 

corresponding Green functions, G(i)  and G(l). While doing this 

we say that the Green function is in the exterior region 

of the muffin-tin well when both of its arguments lie 

outside of it, otherwise it is in the interior region. It 

can be shown that in the exterior region the Green function 

4(i)is solely determined by the phase shift of the indivi-

dual potentials: Since V(i) and v(i) have same phase shifts, 

the corresponding Green functions are identical in the 

exterior region. But in the interior region the Green 

functions differ. We know that the density of states 

o (E) = - = Im tr <G(E)> 

and now if f'(i)(B) denote the part of the trace of the 

above equation arising from the integration over the volume 

within the sphere surrounding a particular type of atom i 

then 

(1)  (E) 	- 	Im j 
	>(i)  d'f. 	... (3.3) 

where, < 	)4)  is a restricted average for (i)l  is defi- 

nitely at a particular site. In a spherically symmetric 

situation the angular momentum decomposition of the Green 

function is given by 

=  
LL' YL 

 (C.) GLL11.1(') ... (3.4) 
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angular momentum subscripts, which arise from the fact 

that 4G> and hence need only have the point group symm-

etry of the lattico.We can write the operator equation 

for T-matrix of A and B type of atoms corresponding  to 

this medium as 

Ti = (Vi- 2) + (V1-  1) <G>Ti 	 • • (3.10) 

As shown above <T)= 0 from which 

x T A + (1-x) TB = 0 will give the operator 

form of .:)quation (2.46) as 

E= U+( 	- VA) 0 	vB) 	.. (3.11) 

where U= x VA+(1-x)VB and has the same form as in (3.1) . 

Here onwards we shall write CPA medium G for G> , because 

the true averaged medium is described by I . Thentwe have 

Gi = G + G(Vi I)Gi 	 • • (3.12) 

from which ( 3 .8 ) is written as 

dWA dWB  
(E) 	{tr G N 	Ex(GII) A  dE 	(1-x)(GII)B dE 

.. (3.13) 

Using  the 6-shell model for all the operators (3.11) is 

written out as a matrix equation in the ang ular momentum 

represent ation: 

A 
WIJV = 	L"Wi] 111 1,"' 

B  x 	151,'"Lt W14 1 1 
.. (3.14 ) 



= E E 
kn 	EE-1E-s-En 1 2  

• (3.18) 

ly write the matrix equation 

• G = 	1
k 	P 

	

o 	

1 
k (1-G W) 

and 

tr G = z'[I 
k 

oG
k  

1 	
n 

W  
dE 	)1,# 1] (E-Ii+kn i - 	IL' 	1-GoW 

(3.20) 

... (3.19) 
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Or 	W = 	(W-WA) G(W-WB) 	 ... (3.15) 
Now in the above coherent potential equation G occurs 

which is a functional of W. Since lattice periodicity is 

there, defining the Fourier transform 

G(1.,F1) 	G2(1,it) 	 (3.16) 

where the prime over the summation sign restricts the 

R vectors to lie in the first Brillouin zone. Using the 

Green function in the KKR form we can write in the mixed 

representation 

G (Y.,14') = G 	Go(Y'
L)W

LL'G (It tr') ... (3.17a) 
1J,L 1  

E - 	 I -t 

	

= G
o
("1.-r')+ I 	G (i-,L)[ 	W  R 	Go(L 1,r) 

IL' ° 	1-GoW IL/ 
• (3.17b) 

where G is the free electron Green function, given explicitly 

in the coordinate representation as 

where Q is the volume of the crystal, Ru  denote the reciprocal 

lattice vectors. 

Again using the 5-shell form for Gk we can straight forward- 
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i 	
k 	- - 

for which the relation iGcc)(F 	l  L  

	

,L) Go 	= -N 

has been used. It has been shown by Beeby that the poles 

of the first term in (3.20) for the electron energies 

get cancelled by the corresponding poles in the sccone, term. 

Now GLL is calculated as 

g. 	 -1 
G1 	E [...(140.7w)) 	G

LIL 
from which the 

LL 
L' 	LL' 

formula for the density of states can be written as 

dG2 

oP(E) 	- 1  Im 	( .,-J—J1Lc ) 
n, 	*"- dE 	---77 

LL' 	
[ W 
1-Go LL 

dW
LA I 

-N Im;7
71  G 
	

, dB 	t 
1.1 

-1 

'A
-W) G) 

LL' 

+(1—x dW1-
D  
1-1 

( 

	

I' 	(W B- G) 

	

dB 	 ... (3.21) 
LL' 

The above formula is further simplified using the KKR 
method where the values of its argument lie inside the 

muffin-tin sphe:e so that 

+ i 	j 1(,')Osi's  

- 
G
okrr

I, 
 = LL' j  n1 (lc' r) 

— B 	Y (is') ... (3.22) 

where r
> 
and r(  are greater or less of r and r' and Buil  

is the structure constant matrix to be described later. 

The potential amplitude defined in eqn.(3.2 ) can be 
obtained as 
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-1 

INTL,  = - EiCsji  (MR) ( j1  (OR) CL, i-n1 	.. (3.23) 

from the elementary potential scattering, where CL,i  are 

the cotangent of the phase shifts for i kind of potential. 

For the complex potential 

WL = - raci 

CL  will be complex, 	so that 

[31 (ER)%-ni ( ii-1  .. 	(3.24) 

Now from (3.22) 	we have 

Gr i,R) o
LL 

 c 	
LL 	

-11 1 
n 	(.10R) (5, 	1 +i 	j 	((R) j1,( 	R) 	BLL  , 

... 	(3.25) 
Using the above two equations in ( 3.17b ) we get 

(av-% N " G
LL' 

= T,j
1(SR)D (2,R)C -n L 	oLL, 	 h, u n (ER] 

-1  j
1
(MO OLI-n (XR))[0 +1 

LL' 
 ... (3.26) 

Now summing over : we get 

GLL 
= jl

( CL-111 )4°(  ii CL-111 
2 
 8L 

where, 	-1 

k 	LL 
= 1:-- t [c+Bi] 

(3.27) 

... (3.28) 

Using ( 3.23 	) and (3.24 ) in the coherent potential 

equation (3.15 ) we shall obtain a system of equations 

... (3.29 ) 
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where CL,av = xCIA +( 1-x)CB 
	

(3.3o) 

Here we note that eqn.( 3.28 ) and (3.29 ) are coupled 

equations which need be self-consistently determined. 

Now we go back to equation (3.21) for the density 

of states, Using (3.24) and (3.25) we can write 

-1 
. 

	

= 	tacJiii) 
si.  (3.31)  w  

j 
1

A 	(E j E 1  = 1 -1 ['LL' dE 	1  1 
+BLL Cr and dE ("1  o LL 

.d 11 
44°ja. J1:72  

so that the first term of (3.21) is 

Im 	fEa +132.3 
L L 	1•••• OE 	 LL 

(/c 2)-1- d 	 i2]} 

	

gL jr L 2 	n dE 4.&.4 L/ 

... (3.33) 

and similarly the second tend-Is-obtained as 

dCA  

	

IrtA n 	, 10B 	0  \-1 dC L -NIm 1: f 	dij) un- , 	- ,L, ---- 
L 	 dE 

	

+(jl 
-1 	d [I 	d 

gL 	un( JA} ... (3.34) 

... (3.32) 

Now on adding together the final expression for the spectral 

density of states per atom is obtained as 



ocili  
jP 	 —1  dBk  (Epi) = 	Im 	[_C+Bfc  ] 	+ Im I( l-x)(GL-CLA  ) 	/14-dE  

11. 	L 	LL 	L 	• 

B -1 dCL 
(3.35) x (CL- GL)  au-  I 

In order to obtain the total density of states we have to 

integrate over the first Brillouin zone i.e. a summation 

over the rhs of (3.35) is to be carried out. 

We realize that the use of the above formalism is an 

extremely difficult task because of the fact that in ono 

of the coupled CPA equations (3.28), there is a summation 

on the first Brillouin zone,performing this summation for 

once only is already a difficult task because the function 

is highly anisotropic in k. Use of standard methods like 

linear interpolation scheme (86) or QUAD scheme (87) in this 

case is practically impossible. Besides there is an extrem- 

ely simple method of k-sum known as 'Mean Value Point 

Method' due to Balderschi(88). But this method is useful 

only when the function is smooth in k. In view of these 

difficulties we shall use the ATA result for the phase shift 

in eq.(3.29) and then calculate the quantities as described 

in the block-diagram•(Fig.5). Mean value point method was 

used to perform the k-sum, and was found to be poorly 

convergent in view of the fact that it is not to be used 

for arbitrary functions (unless smooth). So, the results may 

not be reliable. 

We found that the CPA program as detailed in Fig.5 is 

difficult to implement,we avoid the iterations of (3.28) and 

(3.29).The details of this calculation for CuAl is described below. 
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We have also calculated the spectral functions by 

assuming the potentials of the constituent atoms and the 

medium to be of the 6-shell form as in (3.1). The ampli-

tude of the medium potential is obtained from CP equation(77) 

3.36) 

where GL  = GL(R,R),
th 

angular momentum component of the 

free particle Green function. 

Now the t-matrix has also the same 6-shell-form 

A 6(r-R) 	6(r'-R) 	A 
T(1,7.1 ) = E Y (r) -r  tl (E) 	YL(r1 ) 

(3.37) 

WL  where t = 1 	o 
1-G

L
W
L 

The Fourier transform of T(1-,P) is written as 

... (3.38) 

T(t) = 4n2N
p  YI 

 (k) Y 1 () ft1  (ac,k)6LLI  

-1 
(k,as 	( , C)) 	1.t( ,k)] 

• (3.39) 

where, t(k,) = ti h(kR)ji 	 (3.40) 

and 	G' 	= A +ils6 
LL' ALL' LL' • (3.41) 

We can find out the spectral function vfr(E,k) as(57) 

-(E'') =- 71,7_7  Im T(R) It 	c   • (3.42) 
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2. DETAILS OF CALCULATIONS 

The method described above has been used to cal- 
; 

culate the spectral functions of copper based alloys like 

Cuaa, CuGe and CuAl. Our choice of the numerical work on 

these systems is mainly because of the fact that the one 

electron spectrum of copper is well..understood and there 

are variety of experiments carried out on such systems. 

Because of the very involved nature of calculations as 

well as approximations the results of the calculation can 

at best be regarded at best approximate. Again the reliable 

calculations of the potentials is a difficult problem. 

In case of alloys, it is well known that the non-uniform 

site environments and the different atomic properties of 

the species compound the uncertainties of the alloy poten-

tials, still we assume that the basic form of the potential  

does not get seriously changed. However, if one under-

takes a self-consistent, calculation these aspects should 

be considered in greater detail. We shell use the formulae 

(3.42) and (3.35) to compute spectral functions. While 

using the formula (3.42) we have calculated the medium 

potential amplitude (3.2) by numerically solving the 

differential equationior the radial part of the wave 

functions and finally calculated the logarithmic derivative 

at the muffintin sphere. From the knowledge of the 

medium potential amplitude, the t-matrix was calculated and 
then the spectral density of states. While using (3.35) we 

the the parametrized phase shift scheme to calculate 

cotangents of the phase shifts and then the procedure 
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described in the flow chart (Fig.5) was followed. In both 

the cases the calculation of the structure constants was 

carried out using the method as outlined below. 

(i) CALCULATION OF STRUCTURE COI TANTS. 

The derivation of the KKR method has been discussed 

by many authors, particularly by Ham and Segall in their 

review article(69). In the muffintin approximation the 

wave function within the muffintin sphere is written as 

1 
max +1 a k  

h(T) = E: 1:: 	cimyE,T)ylm(9,0) 
1=o m=-1 

where Clm are the expansion coefficients, R
1
(E,Y) is the 

radial function of the equation containing the potential 

and yina(0,0) are the real spherical harmonics. The E(2) are 

obtained from the zeroes of the determinant 

l'imlie(E'i)  +rE11,8..,cotl  .(E) d 

The structure dependent part is Annl,m, which is independent 

of the potential. These quantities are conveniently express-

ed as 

Ainatml(ES) = 4n E 
LM lmllm tl'Im(E,K),  

where C
LM 
imfin f =PC1 Ya(0,0) Yini(0,16) Y1 lm,(8t0) 

are known as gaunt numbers. For a given(E,k)pair due to the 

LM 
properties of Ci 	(21 max+1)

2 
distinct structure m tmIP  
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constants -D
LM 

are evaluated since the largest L value 

is 2 'Max.  D
ijm..(7,E) are readily evaluated by using the 

expression of Ham and Segall and the efficient numerical 

technique of Davis (90). 

(ii) CALCULATION OF POTENTIALS AND LOGARITHKIC 
DERIV25IVES: 

The type of crystal potential which has been 

found to be reasonably successful in calculating the 

band structure of noble and transition metals is obtained 

from a superposition of atomic potentials on neighbouring 

sites. The crystal potential is represented as the sum 

of a Coulomb and an exchange part, both being obtained 

from atomic wave functions. At any lattice point, the 

Coulomb part is taken to be the Coulomb potential located 

at that site plus contributions from neighbouring sites. 

Thisis evaluated by employing Lbwain's a-function expansion 

technique and retaining only the spherically symmetric 

term as implied in the muffintin approximation. The 

crystal charge densities are obtained by a spherically 

symmetric superposition of the atomic charge densities in 

an analogous manner. The exchange potential is calculated 

from Stator's formula. The average potentials of the 

species of the alloy, VA  and VB, were calculated with 

the method described by Pant and Joshi(46) by following 

the procedure similar to the Mattheiss prescription(91). 

With these potentials the radial equations were solved 

numerically by employing Numerov method. Then the logarithmic 

derivatives were calculated at each energy and angular 
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momentum on the radius of the muffintin sphere. 

This program was used for CuZn and CuGe alloy to 

calculate the spectral functions employing eqn.(3.42). 

(iii) CALCULATION OF PHASE SHIFTS FROM A PARAMETERIZED 
SCHEME 

(A) Phase shifts for metals 

The KKR band structure method works very well even 

if we restrict ourselves to using lmax 2. So essentially 

one needs to calculate 3 phase shifts no, ni  and n2  as 

functions of energy in order to solve the secular deter-

minant. For realistic band calculations for alloys, it is 

quite cumbersome to construct potentials for each concen-

tration of the solute atoms in alloys. Therefore, a parametr-

ised scheme is useful which can fit first principal cal-

culation of band structure of pure metals. Such a scheme 

is developed within the framework of KKR scheme by Cooper 

et al. (92) . 

TAO essential step in this procedure is to obtain 

the functional form of n for their energy dependence. 

This has been carried out by taking the leading terms in 

the series expansion of the Bessel and Neumann functions. 

Then for noble and transition metals the d-band resonance 

is taken in It. In an emperical manner the three phase 

shifts are specified with 10 adjustable parameters for 

noble and transition metals and 6 adjustable parameters for 

free electron like metals. These are to be adjusted in 

order to get best fit to the first principle band structure 
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calculations. 

We have employed this scheme for Cu and Al in 

order to get the pure band structure of the metals using 

our KKR program. The phase shifts of copper are fitted 

with the Chodorow potential and that of aluminum to 

Heine-Segall Potent ial.Tan 11's are shown in Fig.6(A,B) 

and the computed band structure of Cu and Al in Fig. (7A113). 

(B) Phase Shifts for Alloys 

In the elementary theory of scattering the t-matrix 

is written as 

t1 {E) 	- _ e l 	
/ 

irk (B) 	 -1
t  1 	1  (c n (E) sln 1( 	° 1 -1)  ,„11 	*FE 

The alloy phase shifts corresponding to the ATA result is 

written as 

(t 	x 	+ (1-x) ti 

(cotiltL(E)-i)-1_ 1-x)  (cot 11(E)-i 
+TE 

-1 
Now we can write (t) = - 1 -(cot71(E)-i) 	so that 1 ,TE 

-x  cotii1 (E) = 	 4. 	1 
B total(E)-i 	cotri1  (E)-il 

-1 

In terms of cotn1
A   and cotlB we calculated the ATA phase 

shifts of the alloy of Cull=  

Here we note that the phase shifts for the alloy 

are complex for real value of energy. One could do a 
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complex band structure calculation withl these complex 

phase shifts while making 	These complex cot nis 

make the sharp dispersion of 	to to be blurred giving rise 

to anwidth. With these phase shifts we calculated 	E, k) 

from eqn. (3.35) . 

In addition to the parameters to obtain the phase 

shifts an additional parameter Vo-ta constant potential, is 

necessary to find out the muffintin zero of the potential. 

In our calculation, we choose it to be Vo= xVIC(1-x)VB 
o • 

3. RESULTS 

We have discussed earlier that the Bloch states of 

an electron get diffused because of the aperiodicity of 

the potential. So the crystal. momentum-k is no more a good 

quantum number. That is why we have preferred to calculate 

the spectral function 

r— 
5(E_En)Ilini12 

= 	

' 
K/ 	€, 

where Viol is the kth Fourier component of the eigen funct-

ion tin with En as its eigen value. We have calculated the 

spectral functions for both 'Energy and Wave-vector searches '  
as is conventionally done in the KKR scheme. The peaks of 

the„P(E,k) are taken to be the energy(wavevectors) corres 

ponding to the chosen wavevector (energy) of the band. The 

width of thef(E,k) is supposed to be the spread of the 

one electron state, from which the decay time can be found 

out . In Fig.7a we have shown the band structure of pure 

copper along the principal symmetry directions 	FA la 
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[ FAL] and [ r  K] by using the phase shift paramet 
rization scheme for the Chodorow potential of Cu. We shall 

see how the substitution of the second component in the 

a-phase change the bands. 

(A) Brass alloys(CuZn(93), CuGe(94)) 

As mentioned earlier, there are several calculations 

on CuZn in its a-phase. In Fig.8 we show how the bands of 

copper shift when zinc is added within the virtual crystal 

approximation. The observations are (1) the alloy bands 

are found to be displaced to the lower energy, (2) the 

Fermi energy of the alloy has shifted to higher energy as 

compared to that of pure copper. The complex band structure 

has been calculated along the [ 	direction and is 

shown in Fig.9. -We have shown how the disorder brings the 

spread in the dispersion curves in 62, A2,, and 65-bands 

marked by hatched line. 	The solid line is drawn through 

the peak energies ofjP(3,i) at the values of 0.0, 0.25, 

0.50, 0.75 and 1.0 of the k/kmax  in the direction of the Bz. 

The bands are found to be more diffused in the central 

part of the zone than at the centre and the zone face. 

The spread of the band was taken to be equal to the width 

of the spectral function:P(3,i). This spread is found to in-

crease with increasein concentration of the solute atoms. 

For A5  band the widths of the spectral functions are 

approximately in the ratio 4.5:6:7 for 10, 20 and 30 at 7. 
of zinc respectively. In Piga° we have shownp3,Tc) for 

fixed value of energy against k for. the Al  representation 
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of the band for 3 concentration3of zinc. The half-width 

of the d-states (A2,A5) is about 4.5/. of the Bz dimensions 

while for the s-states it is about 17. of it. From our 

calculations we find that Al,andAbands suffer a downward 

shift and this agrees with the results of Amar et al. (46). 

Because the calculations are very tedious, we calculated 

the spectral functions for a few selected symmetry points 

on the Bz for a-CuZn and a-CuGe. 

CuZn 

Biondi and Rayne(95) have measured the optical 

abserptivity of a-brass as a function of frequency and 

have obtained the absorption edge at 2.2 eV for pure 

copper. This edge shifts to higher energy on alloying with 

zinc. It has been observed that an absorption peak at 4.2 eV 

moves to lower energies on addition of .zinc atoms. Another 

weak absorption maximum is found near 3.45 eV for pure 

copper which also moves up on alloying. These measurements 

have been discussed and interpreted by several authors taking 

energy values from the pure copper band structure. The 

optical absorption results are shown in Figs.11. 

Lettington(96) attempted to interprete thebe measure-

ments on the basis of the band structure calculation for Cu 

due to Segall (97). Cooper et al.(98), Shrenreich and 

Phillips(6), Beaglehole(99) have studied the frequency 

dependent e2(w) for copper and suggested some assignments 

for the optical transitions. So far as the peak positions 

are concerned, the measurements are consistent, but the 
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Table 1 

Approximate 
position of 
the peak 4 

2.2 eV 	3.45 eV 4.3 eV 

Systems 

(1) L32 	L2' 	(1) X5  -4 X4, 

d -4 EF 	X5 	X4' 	d 	p 
C u 	 (b), 	(d) 	d -4 p 	(b) 

(2) Virtual excita- 	(a) 	(2) L21 -4 L1  
tion resonance 

(0) 	
(c), 	(d) 

CuZn 

(1)142,-411 	(1) X5  --> X4, 
L32 -4  L21 	(a) 	d -4 p 

d 	-4 7F 	(2) X5-4X4' 	(2) 142'-.-) L1 " 
(a), 	(b) 	(d) 	(c), 	(d) 
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Table 2 

       

Systems 
Transitions 

Cu  
Theory Expt. 

0uZn(10 /) 
Theory Expt .  

CuZn (20 7,) 
Theory Expt 

  

CuZn (30 7,)  
Theory I Expt. 

  

  

   

       

L32 -4L2 1  

1.807(a)  

1.196 (b)  

	

(c ) 2.20 1.504 	2.30 
1.481 	

1.753
(d) 

1.252 (d)  
12.266598(a) 2  42  

1.712 2.58 

L2  -4L1  

5.925(a)  

4.865(b) A 

4.661(c) "T. -1v1l 

 
3.669 3.82 

4.756(d) 	
4.362(d) 

3.302 3.335 

3.995(x)  

2.935 2.90 

4.579 (a)  
3.832 (3) 

	

(c ) 3.45 4.050 	4.02 3.968   

3.860(d) 	
4.208(d) 

4.104 4.60 

_6.170
(d) 

 

5.517 5.08 
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assignments to transitions differ. In table 1 we present 

the assignments due to various authors for the optical 

absorption peaks of pure copper and a-brass. For the 

edge at 2.3 eV in copper the assignment L32-124,by 

Lettington and Cooper et al. fits well with our calculat- 

ions.The absorption peak at 4.3 eV also agrees with the 

assignment (1,-L1) transition byMueller and Phillips and 

Gerhardt et al., but Lettington and Cooper et al. have 

assigned this peak to (X5-X4.) transition. Our calculations 

show that the secondary absorption peak may be due to (X5-X4') 

as proposed by Gerhardt et al. Lettington has identified 

this with (L21-1.1) transition. A recent optical reflect- 

ivity study due to Hummel et al.(100) reveals the peak at 

2.27 for 9'/. Zn in Cu which may be due to 132-L2,(E2) 

transition. Besides these authors have made the reflect- 

ivity measurements over a very wide range of concentration 

of Zinc.Although their observation of (L2,-L1) transition 

and the provision of edge agrees well with other measurements, 

the transition (X5
-X41 ) is observed for pure copper at 

about 4.2 eV and falls to 2.84 eV for 24.8 at /. of zinc 

in Cu. In tablawe have displayed the concentration depend- 

ence of various transitions according to our calculations. 

The experimental optical absorption data of Biondi and 

Rayne has also been shown. 

CuGe 

Rayne(101) has measured the optical absorptivity of 

CuGe alloys with varying concentrations of Ge upto 7 at 
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at 4.2°K. Later Fells and Montgomery measured the absor-

ption as a function of photon energy from 1.7 to 5.9 eV 

for CuGe at two compositions. In both these measurements 

the main absorption edge at about 2.2 eV of pure copper 

moves upto higher energy on alloying with Ge. Rayne has 

observed that the main peak for pure copper at about 

4.20eV shifts slightly to the higher energy in the alloy. 

Pells and Montgomery(102) find that the single peak near 

5 eV in Cu is split into two peaks in the alloy. The low 

energy peak is not as pronounced as the high energy one. 

The high energy peak remainsclose to 5.4 eV and the low 

energy one moves to the lower energy as the Ge concentrat-

ion increases. Optical and photoemission measurements have 

been made by 1ilsson(103) on Cu0.94 Ge0.06' His observations 

show the same broad features as found in the measurements of 

Pells and Montgomery. As seen earlier, L2, lies about 0.5 eV 

below EF which is depressed on alloying by an amount which 

depends on the total number of oenduction electrons and the 

density of states. The Fermi energy should show a slow 

rise. Thus, in alloy (L21-EF) separation will be larger 

than in pure copper. From our calculation (L32-12  ) separat-

ion is about 2.067 eV in Cu0.9 Ge0.1' This suggests that in 

the case of pure copper the absorption edge could be 

ascribed to transitions from the top of the d-band to E. 

Then two levels move apart as we alloy and this agrees 

with the observed movement to the higher energy. We adopt 

the interpretation of pure Cu from Fells and Shiga(104) 
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TABLE -3 

Transit-
ions 

Cu CuGe 

Theory Expt. Theory Expt. 

L32-L2' 

L2'-L12 

L11-L2' 

X
5
-x

4' 

1.48a  

1.20
d  

4.67a  

4.87d  

4.98a  

4.25d  

3.99a  

3.844  

2.20bc  

4.78c  

5.32°  

3.97°  

2.07 

4.37 

5.41 

4.09 

2.23b  

4.0e  

5.4e  
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for the absorption peaks. The lower energy peak is ass-. 

umed to arise from the transitions in the neighbourhood 

of (L2 1-I12) and the higher one to(LITEF). If we regard 

EF  to lie close to 	the the table 3 shows that the calculated 

values show surprisingly good agreement with experiment. 

CuAl 

This is a prototype of a noble metal alloyed with 

a free electron type metal. The band structures of both 

Cu and Al are well studied and this system is well-suited 

for optical studies because the conduction bands are 

supposed to shift substantially with increasing electron 

concentration by adding Al into copper. In the alloys 

studied earlier like Clan and CuGe, the solute atoms 

Zn and Ge have their own d-bands well below the bottom of 

the conduction bands. It is not easy to find out how do 

they influence the band-structure of such alloys. While 

in the CuAl, such problem is not there. 

Using the phase shift parametrization method we 

have calculated the energy bands in three principal direct-

ions for Cu and Al (shown in Figs.7(a) and 7(b)). The 

spectral functions are calculated for Cum  Al 	at 0.1 

selected points of the Brillouin zone using the energy 

search method. The peak points off(B,2) are shown in 

Table 4, against the pure copper values. The muffin-tin 

zero of the pure copper is -11,797 eV for the Chodorow 

potential while for the alloy it is -11.078 eV (a virtual 

crystal muffin-tin-zero). 
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TABLE 

Cu Cu 	A1 
0.9 	0.1 

r25,  

0.00 

5.42 

0.00 

5.31 

ri2 6.24 6.14 

Xi 3.56 3.82 

X
3 4.05 4.40 

X2 6.82 6.67 

X
5 7.03 6.99 

X
4' 11.13 10.98 

Xi 16.47 

Le  1 3.59 3.51 

L 5.37 5.30 

Lu
3  

6.85 6.75 

L2' 8.44 8.48 

Lu1  13.07 12.87 
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There are measurements on the optical reflectivity 

for this alloy by Rea and DeReggi(105) and Hummel 

et al.(100). The inter-band contributions to e2 for 

Cu and CuA1 alloys due to Rea and DeReggi are shown in 

Fig.12a.The vertical lines (L,B,C and D) show the move-

ments of the thresholds of transitions which one can 

compare with the critical energy transitions of Hummel 

et al. The edge at 2.2 eV is due to transition from the 

top of the d-band to the Fermi level. This increases 

on alloying and for 10 at X. of Al we find the change 

in IL322'1 gap is 0.137 eV. Hummel et al. have observed 

this change to be 0.14 eV. The line CB starts nearly from 

4.4 eV and decreases on increasing Al. This transition 

is due to (L21(EF)-11). Our calculated shift is 0.246 eV 

against the observation 0.82 eV. The remaining transition 

which is seen at 5.2 eV, its energy decreases as the 

concentration of Al increases upto 7.5 at 7. of Al and 

then it increases. Tho differential spectrogram of Hummel 

et al. shows two structures around 3.1 eV and 5.2 eV 

which were also reported by Fong et al.(106) for pure 

copper using wave length modulation technique. Although 

3.1 eV structure disappears on increasing concentration 

of Al, the one at 5.2 eV shifts to lower energy. This 

transition may be due to (X1-EF1.1X5-X41 1 transition is 

observed by Hummel et al. which decreases by 1.2 eV as Al 

concentration increases to 10 at Y. . We find this shift is 

0.11 eV. For theseinterpretations of optical transitions, 

we could not calculate the Fermi level of the alloy. 
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But as in pure copper Bp  lies about 0.5 eV above L2/  

point, the filling of the d-band by additional electrons 

due to Al is assumed to have the same amount of upward 

shift of the Fermi level. 

The possible assignment to the direct optical trans-

itions are no doubt speculative, unless we do the detailed 

calculation of the dielectric functions. 



CHAPTER-I V 

ELECTRON STRUCTURE OF BINARY ALLOYS IN A 

TIGHT-BINDING MODEL 

We have discussed in the last chapter the coherent 

potential approximation in the framework of multiple 

scattering theory, its single site version and other 

possible extensions with some typical results in relation 

to realistic experimental measurements. What is signi-

ficantly important in the theory of disordered binary 

alloy is the effect of fluctuation in the alloy potential. 

It has been pointed out earlier that the fluctuations are 

neglected in the self-consistent single site theories. 

Recently Edwards and Loveluck(107) have proposed an app-

roach within a tight binding framework, which appears 

promising for taking into account the effect of fluctua-

tions of the alloy potential. In this theory the electr-

onic structure is described as usual in terms of the 

configurationally averaged Green function. A partial 

summation for the averaged perturbation series was 

performed diagrammatically to get information about the 

electronic states. Some of the unsatisfactory features of 

such a partial summation was eliminated through a partially 

renormalised perturbation expansion. In their analysis 

Edwards and Loveluck (EL) replaced the hopping matrix 

element by its average value before the configurational 

averaging of the series is carried out for each term of 

the perturbation expansion in order to simplify the 

formulation. such an approximation is not satisfactory 
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for an alloy whose constituents have significantly 

different potentials. In the present chapter we shall 

consider explicitly and exactly the configuration 

dependence of the hopping term (108). Necessarily this 

modification in the present formulation will lead to a 

more complicated analysis than the one made by EL. 

1. MODEL HAMILTONIAN AND THE GREEN FUNCTION 

We consider a simple model Hamiltonian for substi-

tutional disordered binary alloy. This is the same model 

Hamiltonian as used by Edwards and Loveluck. The ions are 

randomly distributed, therefora,...a particular type of ion 

has equal probability for the occupation of any lattice 

site which is equal to the concentration of that type of 

ion. We further assume that each ion has only one electron 

with eigenvalue Bic; for the ion of type i ( i=1,2). In the 

tight-binding approximation the Hamiltonian for the system 

will be written as 

. 	. 	, 	ij 
H r  El  - 

cl  
ao aa 'a+ 7  Lci  aa  TJa cj  , a 	ap a 	ap p p ... (4.1) 

where aa and as are the creation and annihilation operators 

respectively for an electron at the ath site, Tj40-c  is the 

hopping (transfer) matrix element between the ath site 

(with the ion of. type i) and kith site (with ion of type j). 

The transfer matrix Tap
ij  is related to the crystal potential 

V(r) by 
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Tiaii 	di. occ (i)[v(T-) 	up7,)10), 
i 	• 	. 

with V(i)= 	ca Ula("i), 

where we have designated the potential at position 7- 

associated with an ion of type i (i=1,2) centred at the 

lattice point R
a 

by IT
i
(7') is the atomic wave a 	a 

function which corresponds to the ion at the site Ra. 

The coefficient ca takes only one of the two values 1 or 

0. If the lattice site R
a 
is occupied by an ion of type i 

then c
a is equal to unity, otherwise zero. Since at a time 

only one type of ion can occupy a particular lattice 

site, ca and ca satisfy the 

ci  ca = ca a 	a 

Let us now define the 

Green fqnction and its Fourier 

glpt-t') = 	(t-t t ) < 

and 

gij(E) 	= 	gij(t) 	exp(iEt)dt 

following condition, 

8. 	. 	 ... 

_retarded single particle 

transform by 

[oia  aa(t) , 	ao (t 	).. 
e 

... 

(4.4) 

(4.5) 

(4.6) ap. a 
2n 	

p 
 

respectively. Here.aa(t) is the operator in the Heisenberg 

representation for as  and 8(t-t') is the Heaviside step-

function defined by 

e (t—t 	= 1 	for t > t 

= 0 	for t < t 

... (4.2) 

... (4.3) 

] represents an anticommulator and the angular brackets 
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a 'aX "" 16 54" ... (4.9) 

-77- 

/ 	indicate the average over the grand canonical e 
ensemble, 

-(CCN.e  = Tr 0 ePH/Tr e-C311  ` 

The equation of motion for the Green function (4.5) can 

be now easily obtained by differentiating with respect 

to time. Using the property (4.4) of the coefficients the 

equation of motion is 

i ij 	i A ., ljt \ (E-Ei) ii (E) = c 	+ c 	gAkE)  
0 	a ap 	a b ao 

we now introduce the atomic Green function 

Sij oij . ap  Yap = 	. E-Bi ... (4.8) 

where8ijstandsfortheproductofSapand45i j .The ap  

equation (4.7) with the help of the atomic Green function 

(4.8) can now be written in a more convenient and compact 

form 

... ( 4 .7 ) 

2. Perturbation Expansion and Diagram Technique 

Our problem is to solve the Eq.(4.9) for the Green 

function gij(E). Due to random distribution of ions it is ap 

not an easy task to get a solution. For a disordered 

lattice the crystal momentum k is not a good quantum 

number and we shall solve the equation for Green function 

in the direct lattice representation. We shall expand 
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equation (4.9) by successive iterations and then confi-

gurationally average it term by term. Thus 

fEN 	/ci yOji \+ '141.c i yoik Tkl yOli \ 
\CCP I/ 	\ a afi 	\ v a av 	v 	oia 

klmn , / •t; 	i yoik 

Tv 
cl yolmTmn cn yonj 

\ 	
c a 
	v 6 6 6s 	X X 	/ 	• • v OE X 

... (4.10) 

This is identical to the Eq. (3.16) of Edwards and Loveluck 

obtained by them by following a different procedure. 

Here 	denotes the configurational averaging. In 

Eq.(4.10) Edwards and Loveluck replaced Tij appearing in 

the expressions like /ca ap Tij cj) and the other higher order \   

terms by the average value (Tij\
'
jij),  depends on 	and 

aP' aP 
R through IRa- 11/3 I and is designated by ap* 

In the present study we have tried to investigate 

the problem without resorting to such an approximation 

for T. It is clear from the expression (4.2) that Tij up. 	 ap 

depends on the coefficients cif through the expression of 

the crystal potential V(F). We shall average the various 

terms in (4.10) without resorting to any approximation for 

the transfer matrix element T. Except this difference we ap 

shall be closely following the work of Edwards and Loveluck. 

In order to accomplish this we rewrite Tij ap in a slightly 

modified form using equations (4.2) and (4.3). 

Tij 	7 (cs 	6sj) Visj 
aP 	P 	PP 

where, 
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where, 

	

visi r 	usci,) ail  

We now substitute (4.11) into (4.12) and obtain 

ij i 0i . ks1 . 
<gai3 > = 	y 	+ 	yolk vks1 yolj 

a ap •‘ 46 	vp.5 sp 

\ / 	_s 	osi ± 1\ rkgImPn oik ks1 yolm 
ea  co, o  - 	 sca  c 	y 0 	vp,oeilx 	V v p. O Se 

umpn vonj 	t,s_ As1) 1 p- Apn n > 
y olk 	ea\e4 16, even ix) c x  

(4.12 ) 

... (4.13 ) 

Now it is clear from the perturbation expansion (4.13) 

that the task of evaluating the averages is t o evaluate 

the averages of the products of the coefficients ca (for 
<cia cps, clo><cia cps, cril cpx  example: 	 etc ) . These averages 

can be easily evaluated if we adopt a diagrammatic approach. 

Of course, one can easily get the first few terms by 

algebra without resorting to diagrams, but the higher 

order terms in the perturbation series (4.13) will become 

more and more complicated and it is difficult to evaluate 

them wit hout using the diagram technique. These diagrams 

can be constructed by following certain rules which are 

derived from algebra. The rules are discussed in detail 

by Edwards and Loveluck and we will not repeat them here. 

Wherever necessary we shall point out the modifications or 

extension of their rules so as to deal with the problem 

at hand here. 

In the perturbation expansion (4.13) the first term 

on the right hand side contains only a single coefficient 
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ca, and its average in the case of complete disorder is 

equal to ni  the concentration of the ith type of ion. 

The second term in (4.13) contains three c's and two c's. 

In order to evaluate these averages, following Edwards 

and Loveluck we first construct the dot diagrams which 

are given below 

0 
1 

0 • • 0 
1 sl s • 

s (1) 

• II 	0 	1 	• 
isl is i ii i ills) i 

(i) 	(ii) (iii) (iv) (v) 	(vi) (vii) 

Here 1(s) stands for 6
ls 

which is explicitly present in 

the second term of (4.13). A moments reflection shows that 

out of these dot diagrams (i) and (iii) are cancelled by 

(vi) and (vii) respectively, and only three dot diagrams 

survive. Once the dot diagrams are made, one has to do 

horizontal grouping over the various lattice indices a, p 

and 6, and the diagrams can be easily constructed. The 

diagrams corresponding to the second term (4.13) are shown 

in Fig.13. 

On comparison with the first order (in 0> diagrams 

corresponding to the perturbation expansion (3.17) of 

Edwards and Loveluck, one finds that the diagrams except 

(3,6,9) in Fig.13 are completely new. These new diagrams 

arise due to the fact that we took out explicitly the 
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coefficients cs  from the expression of the transfer 

matrix element T
ij
, while this was not considered by ap 

Edwards and Loveluck. These new diagrains lead to 

changes in the self-energy part of the Green function, 

which will be discussed in succeeding sections. 

In addition to the rules given by Edwards and 

Loveluck, the following points need mention. 

(a) In the present case the curly line, which has 

been used to represent the potential strength, 

incorporates three lattice sites. In the 

interpretation of a particular diagram a summa-

tion has to be introduced over the intermediate 

indices for the lattice site and atomic type. 

(b) In case two lattice sites are connected by a 

dotted line, a 6-function has to be introduced. 

Keeping these and other rules in mind the contribut-

ion of the above diagrams to the total Green function is 

found to be 

p. E-Eo 	aI" ap\ ap'
)flins  

410hfnj+2ninsnj6
o4  6P 	

46 +6 )] 
4 aP
6 -ninsn3(6 

 PP Pa aP 

1 . viSj 

A  E-EJ a" 

1 
ni 	1 =  

E-Ei 	
a0 

E-E
j 
0 

(4.14) 

where the meaning of Si4 is obvious. In the approximation 
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of Edwards and Loveluck: 

Tii-.0ij> 	= ns  
ap ap 	a-P 	allP app 

They get for the contribution from diagrams of first 

order in <T> and expression identical to (4.14) except 
—ij 

Sij replaced by Slap where, lap 

+ n 	 (1-6 ) 
aP 	0 03 	ap 	ap 

= pA 	 ns  V1s3(1-6 ) ap. a as 	aP-P 	ap 

-njVijj(1 	)1 
aP P 	aP 

• • S, 4.15) 

Comparing (4.14) and (4.15) we obtain 

Sij = Eij +niviii(1-5 is+njviii(1-6 )+viiisii - sii lap 	aap 	app 	ap 	aaa ap 	ap 

nsVisi6211i
p 7 ns visj _ nj 	nS(viSj 	visj)  

aug 	a 	aaa 	app 	aap 

(4.16) 

We observe here that S
ap
ij 
 depends on a and p only through 

IRa -Rp  'so we may define the space Fourier transform 

as 

ij 	1 r  
Slap = R ... (4.17) 

If we consider the tight binding approximation with the 

nearest neighbour hopping alone, we can write 

... (4.16) 

such that 
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ASij(R) = njp(i) 13( +) +foi(a)6i3  ... (4.19) 

where, 

l(+) =10(7^4n)[i nsUs(r) 	Ui(i)10i(1")d-i. 

40iI(7.)ynsus(1..) - 

03(a)  = JOi*(7.) [f nsus  (I) - ui (7,]0 j (7.)cfi,  

ik.an  
and p(R) = 	e an  

... (4.20a) 

• (4.20b) 

• (4.20c) 

with an denoting nearest neighbour lattice vectors. 

The diagrams corresponding to the third term of the 

perturbation expansion (4.13) can be constructed in a 

similar manner and contribution of each diagram can be 

written down. It is to be noted that the third term contains 

five c's and numerous diagrams will result. However, one 

can always choose the most relevant class of diagrams 

depending on the nature of the problem. After a laborious 

and tedious calculation one obtains the following series 

for the Fourier transform of the Green function. 

O(R,E) = nY°(E) + nY°(E)S(2)Y°(E) + nY°(E)S(E) 

Y°(E)S(k)Y°(E) 

= nY°(E) / (1-8(T)Y°(E)), 	... (4.21) 

where we have defined 
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nij = nisii 	

• 	

(4.22a) 

and 
yoi 

• (4.22b) 

The self-energy matrix S(R) is given by 

S(R) = S1(k) + S2  + 

S1, S2, ... being contributions from first, second 	 

order diagrams respectively. 

The spectral function for the system is given by 

orc,E)>=4, Im 	<gi  j (k, E)} , 	... (4.23) 

which can be evaluated explicitly using the expression 

(4.21) for the averaged Green function. The mean field 

approximation consists in replacing S(i) by Sl(k) of 

(4.18). From (4.18), we observe that in the self-energy 

Sl(R) is different from that given by Edwards and Loveluck 

to an explicit consideration of the coefficients ca  in  

the expression of the transfer matrix element Tick Because 

of this modification the band structure will change.In 

order to see this we shall consider the case in which the 

potential is assumed to be given by 

<v(i.)> 	f nse(7) 	... (4.24) 

i.e. the sum of the two types of the atomic potentials and 

in this approximation we obtain with the help of equations 

(4.18) and (4.19), 
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ij 

Ulf (k) = 	6ij+11j13(2)  1(+) o (a) 

we now substitute (4.25) into (4.18) and obtain 

slj(k) 	-nip(2)l(_) 

... (4.25) 

(4.26) 

As observed by Edwards and Loveluck the self-energy 

depends only on the overlap integral between the neigh-

bouring bouring ions.. In the limit I E0].  -E200 bandwidth , it can 

be shown (107) that El  (ii) and E2 (k) reduce approximately 

in the following form, 

El(i) ' 3o-n1P (K)Ii1(-) 

E2 (7) .1 -1320-n213 (701 1 (-) 
	 (4.27) 

where we have assumed that the overlap integrals 	(_) 

are independent of i, j for the sake of simplicity. On 

comparison with the corresponding expression (3.42) of 

Edwards and Loveluck we find a constant shift in the 

energy bands El  (IR) and 32  (k) . For the case I Elo-E201<< 

bandwidth, the theory does not exclude the possibilities 

that the density of state functions for the bands duo to 

El (R) and E2  (k) overlap, and a gap may not necessarily be 

there in the mean field approximation. In the mean field 

approximation the self-energy is real. If one renormalises 

the perturbation expansion one finds that the renormalised 

self-energy is complex. 
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3. partial Renormalized Perturbation Expansion 

In the previous section we noticed that the life- 

time of the electronic states due to disorder does not 

show up in the mean field approximation. This is due 

to the fact that Y°  did not have any structure in wave- 

vector space, and we could introduce the id:?a, of wave- 

vector k and a well defined relation between E vs 

for the configurationally averaged system too. In order 

to renormalize the perturbation expansion one has to 

replace Y°  in (4.10) by the averaged Green function (4.21) as 

Edwards and Loveluck. One has to renormalize the per- 

turbation expansion(4.10)in such a way that the resulting 

series corresponds to the Green function(4.21)and at the 

same time the convergence of the expansion is improved. 

We follow the procedure of Edwards and Loveluck and 

obtain the following result for the renormalized expansion 

of the Green function, 

giapE). = 
" 'lap 

ksl ,ik 	ksl „lj 
ilay 	vy46 'asp v4a,  

ni  ,/ k s 1 	_ 	sl \c„c4c o i 	00,6  
n 

[f /_i_s_l 
1 	\eae4e 6,  

\cco , 

sl 
up,o \ ;̀e6/ 

kslmpn 
+ 	yik vkslylm vmpnynj 	 i(,s As1\ 
voci4x  lay y46 16c cnX 	k.--c -p,-wpA' 

ok 	O 	n. - 	4 
/ 	s-6 ) sl\  c12\1 rlx)cx   a 	46 6 nm 

<bm(cP _opn)en> 	
x 

<ci( p_opn)cn),,lr  
c 	nX x 	a 	 nit 

ni 	s_As1,1,, 1_ 
`'y'VuOic 	m  7  "“‘c[J, vP.OL'^' 6 n

m n 	v  
m (cp 	ispn )cn 

\cc 	nx 	 ' 	
• • • 	(4.28) 
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There exists a close similarity between the two perturba-

tion expansion (4.10) and (4.28). It seems that one can 

obtain(4.28)by just replacing T4 by 
Tap

cri  - —117 <eiaTiapii;) 

ij 	ij p i 	
ca 

and Yap 
by Y i n the earlier perturbation expansion(4.10) la 

Here Yl  is the averaged propagator (4.21) in the mean 

field approximation without the multiplication factor n. 

We observe that the renormalized perturbation expan-

sion of the Green function (4.28) contains many complicated 

combinations of the coefficients ca and their evaluation 

directly from algebra is a tedious task. However, various 

terms can be determined through diagrammatic technique by 

a method described by Edwards and Loveluck and used by us 

in the preceding section. The diagrams for the first order 

terms obtained in the direct lattice space are shown in 

Fig.14. 

These diagrams can be classified into the categories 

(i) the diagram starting with a 	line and ending with a 

Y1  line. Such type of diagrams will be called as 1 - like. 

stands for the intermediate structure between the two 

Y1 lines: 

(ii) The diagram ending with a Y1  line but not beginning 

with it. Such type of diagrams can be represented by 
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and will be called A-like. If we only consider the 

first order diagrams then Al and 11  are represented 
in Fig.15. 

On comparing the first-order renormalized diagrams 

of Edwards and Loveluck, we observe that in the present 

treatment five additional diagrams each forAl-like and;like 

diagrams. In the same way the second order diagrams corres-

ponding to the third terms of (4.28) can be constructed. 

A large number of diagrams will appear in this case. A 

calculation shows that the first order diagrams even after 

renormalization do not contribute towards life- 

time. Some of the second order diagrams are, however, 

found to lead to a complex self-energy. We shall categori-

se those diagrams in the following groups: 

(1) The diagrams which can be represented by 

(2) The diagrams which are of the type 

A 1A1Y1 
(3) The diagrams which can be represented by 

41Y111Y1 

(4) The diagrams which are of the type A Y . Those are 
the diagrams other than those in (2). 

(5) There are some more diagrams other than of type (i) 

which start with a Y1 line and end with Y1-line. These 



	

will be called 	like, Actually these are the 
2 

diagrams which contribute towards the imaginary 

part of the self-energy. The second order diagrams 

are 35 in number. 

The evaluation of E2(ii,E) now needs the evaluat-

ion of the contribution of all 35 diagrams in the 

Appendix. These involve complicated type of integrals. 

We give below the algebraic equation for the self-

energy considering only those diagrams which contribute 

to the life-time of the electronic states. 

k( E} 

	

	 s 1.sn \- - ksl lm mpn[ s lAps can o (1-6 ) +n n op‘xooli  2(E) = 	vp6 16E El 

	

Y 	V x  nn vox ox 	p. x  
11.56 

+2nsnpnlanso 
16  5  1"  

+nsnp,lons(i_o 
OP/  

)...6ns6 
no"  
ns,lnp 

	

41, 	 X4 '   

_naninponso +211sninnospo 4.2nsnl,pAn16 6  

	

N4 'In 	µn nx 	" '6X p6 pr 

+nsnlnponlo(1-641)..nsnnnp61,5;1,6xn_ nsnlnp04x  

4.2nsnl,
"
nAl 	+ nsnp,"nA p_ 
'611

p6 
 X6
6 
 Sp 	,_, oil tiA  ,,r) x  

	

s p nap6 	s p n 1p 	slrn -n n n 4061 46  - n n n 6616x4  - 3n n n-n 6x16064,  

1.2nsnlnpnn6 6 	+ 2nsnlnp,nA A +2,snlnpnn66x6nx  

	

X6 	" Xp 	.16,,i  " 

+2nsnlnpnn6 6  + nsnlnpnn6 6 Imsnlnpnn6 6  
xn np, 	4x or 	41 OX 

-nsnlnpnn6
41
-nsnlnpnn(6 ) 	. . . (4.29) 
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4. A LINEAR CHAIN 

In order to see the difference between the present 

method and the approximation adopted by Edwards and Loveluck 

in their paper, we consider a linear chain having two 

different kinds of atoms which occupy the sites of the 

linear lattice in a random manner. The potentials of 

the ions of the type 1 and 2 are V' and V2 respectively. 

Here we assume that in the nearest neighbour interaction 

only the integrals of the following types to survive: 

<00-Iviol4aj>- <~ol Val a 

and 

-4o 1 0o 10a > = /(i iVa 
l0a/ =11  

... ( 4 .30) 

( 4.31) 

Using these overlap integrals we calculate 35 diagrams 

given in the appendix. We also calculate 8 diagrams of 

Edwards and Loveluck carrying out of their second order 

correction to the self-energy having 52 structure. On 

inspection one can find our diagrams (nos.16 and 35 of 

the appendix) are present as such in the set of a 

diagrams of Edwards and Loveluck. 

We wish to show here when and where the calculat-

ion based on the present formulation will differ from 

that of Edwards and Loveluck. For this we shall calcu-

late the changes in the widths r(E,R) of the spectral 

function j5(E,R). The width is the imaginary part of the 

complex band structure E(R) and it comes through the 

self-energy :2(E,R). Since we do not attempt here a 
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detailed band structure calculation, which is much more 

involved, we content ourselves with an order of magnitude 

estimate of the width by writing, 

11 	22 
E (E,K),..,,Ira 	(E, k) 	lm 	(E,E), 	 • •• (4.32) 

Using various parameter for the overlap integrals for 

ions of type 1 and 2, we illustrate in Fig,16 the diff-

erence of widths in our calculation from that of Edwards 

and Loveluck. We notice that for a small difference of 

the overlap integrals, the widths calculated by our 

approach and by the Edwards and Loveluck theory are 

nearly the same. But these widths differ significantly 

if the overlap integrals for the two types of ions differ 

a lot. 

5. CONCLUSION 

We have discussed the electronic structure of 

substitutionally disordered binary alloys closely foll-

owing the work of Edwards and Loveluck and using a 

tight-binding description. Edwards and Loveluck have 

replaced the hopping matrix by the average value in order 

to obtain a simplified perturbation series. In view of 

the virtual crystal type approximation their theory does 

not give a correct description for an alloy having consti-

tuents whose potentials are very much different. The present 

approach does not suffer from such a drawback.Here the 

potential is constructed by superposition from all sites 

with the randomness duly taken care of in the formulation. 
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CHAPTER V 

ELECTRONIC TRANSPORT IN BINARY ALLOYS 

Uptil now we discussed about the equilibrium 

properties of disordered binary alloys. Compared to this 

the dynamical properties like conductivity have received 

much less attention. The most commonly approach to study 

electrical conductivity is by using the semiclassical 

Boltzmann equation(109) which is valid for the relaxat-

ion time being >t/Ep. Another popular approach is based 

on the linear response formalism of Kubo(110).0ne solves 

there the Liouville equation for the density matrix to 

first order in the external field. Using this one electron 

Kubo formula VelickY'(65) studied the electrical conducti-

vity for random binary alloys within the single band 

cell localised CPA. The formulation of Velicky has been 

extended by Levin et al(111) to calculate some general 

transport coefficient: the thermopower, thermal conduct-

ivity and Hall coefficient. Chen et al(112) has studied 

the D.C. electrical resistivity and its temperature 

dependence introducing the thermal disorder in the single 

band CPA. 

In the foregoing chapter we discussed an elaborate 

diagrammatic approach which is very useful in taking into 

account the fluctuations in the alloy potentials. A 

self-consistent version of this method is superior to 



g(a),) 	1 	 
A(t,,),T) 	I(co,0 

n 
... (5.1) 
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the widely used single site CPA, but it is obviously 

for more difficult than the CPA. However, we shall 

presently study(113) in this chapter the static elect-

rical conductivity with the Kubo formulae andusing the 

tight binding formalism of Edwards and Ioveluck(107). 

1. EDWARDS-LOVELUCK THEORY 

We shall borrow the results of EL and write for 

the Green function, after the renormalisation of the 

perturbation expansion about the mean field: 

/ nA 	0 
with n 

\ 	nB  
... (5.2) 

Z (w,l' 	 1  i) is the self-energy matrix and EI-Jk(w,ig-  is 

the weight factor. This weight factor is the outcome of 

the, partial renormalisation. The treatment here is based 

on a perturbation approach; therefore the theory is valid 
-1 

only in the regiondlijk(1. Thus the poles of [1-ft(w,ii): 

are of no significance. Here onwards we shall omit this 

factor for simplicity. This factor can be easily included 

in a calculation. 

Y(w,k) is defined by the equation 

gm(w,k) = n 	 ... (5.3) 

In the mean-field approximation (denoted by the subscript m), 
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we have 

gm (04 	= 

where, 

    

A B BB  
n (w-E0-S1  (k)) 

nAs:tB(i )  

  

n1
B BA(-\ k) 

B 	0AA/c, 
n (w-E0-01 

e  
) ) 

  

-... (5.4) 

  

B1) 

i\N 	SAB(k) qBA(T) 

) "1 

.. (5.5) 

• (5.6) 

D = (w-4' StA(i))(w-E2-S 

and 	Si13(i) 	.
a.2 o

+ n (10 

Here, 

kjoif dr fe313E(i.%)[<V(r) Av  

= 1dr c4i31-(1.-1- n) 	(;) 

and 	p(c)-, ! 
an  

... (5.7) 

• (5.8) 

... (5.9) 
4 

with an as the direct lattice vector connecting the 

nearest neighbours. 

An explicit expression for the self-energy 	(,11,i) 

can be obtained from a partial summation of diagrams. In 

the first order approximation one can sum the diagrams 

which are of first order in the hopping matrix to give 

1
1
(w,k) for self-energy. A 'selective' summation over higher 

order diagrams could give 

k n 
I (w,-0 

	

	 ... (5.10) 
(w 

where, 

i\ 
1 wy k) = 	Qn 
	 ... (5.11) 
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with 

(5.12) 

1 
and 	a = I Y(wpd )K- 

{, being the Fourier transform of <hii> Av 	-R. 

... (5.13) 

If we use the diagrammatic representation suggested by 

BL,"?En and 11(w,k) can be represented by the following diagrams 

in Fig.18.Edwards and Loveluck give a discussion of 

diagrams upto second order terms in the hopping matrix 

element ii, in the perturbation expansion of 	(w,i). 

2. KUBO FORMULA FOR STATIC CONDUCTIVITY 

In the linear response theory, the static electrical 

conductivity tensor is given by the familiar expression 

(lie) 
,f3 

a = -1 c° dt 	dX <J(o) J(t-FiX)) 
o 

... (5.14 ) 

Here J(t) is the current operator in the unperturbed 

Heisenberg representation 

J(t) = exp(iHt) 7i(o) exp(-iHt), 	... (5.15) 

i.e. H is the total Hamiltonian of the system before the 

field is switched on.v  is the volume of the system, 

p = 1/k
R 
 T, k

P 
 is the Boltzmann constant and T is the 

absolute temperature. We write the current density operat-

or in the form 
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• 

7(0 	=-ie y (Ra-R0 h14 c3-ac  aa
+  
(t) ap(t) cR 	... (5.16) 

ap 

Now substituting (5.16) into (5.14) we obtain 

 i 1p 
= - 2- I dt 	dX (R Rhib,(11 h3AT) 

2 rop 

- o 	o 	461 a" a"  

x<Ciaa4a-(o)e(o)ccicloa(t+iX)ai(t+iX)4> 

... (3.17) 

where, 

Rap 
a p 

This equation shows that the calculation of a 

demands an evaluation of a two particle correlation funct-

ion. The two particle correlation function can be obtained 

from the knowledge of the two particle Green functions. 

The equation of motion of two particle Green function 

involves still higher order Green functions. It is not 

possible to solve this hierarchy of equations, so one has 

to resort to some approximation. We adopt a simple method 

of decoupling the correlation functions(114). 

	

<AND> <AB> C  D> + (AC> <BD> +<AD> <30> 	... (5,18) 

When we apply the decoupling (5.18) to the Correlation 

function in (5.17) and ignore the correlations between 

two creation or annihilation operators we obtain 

2  11113  P P * 1 
a 	- 	f dtj dx(Rap  h13)(R6i on 11-"13) 

ap 
v apol 0 0 

<014 (0) an  (t+ix)ci> < chap  (0) a+cs  (t+iX) cs > 

... (5.19) 



-97- 

We define the spectral weight function 1(w) (34) 

+a) 	. 	+iX)w i + 
a (o)a (t+iX)cP;>= 	IP1(w) e 	dw ... (5.20) a a 	1 	la -00 

Substituting (5.20) into (5.19) and integrating over 

t and X we obtain 

CT = 
2 	

+°3 +c°  
11_1p 	pl Cij C 

	r 

4511 aPs 81 j-00 j-oodw dw' 
 qia(w)iji(w 1) PO  

exp(Pw)-exp(pw') 

it  ;7717' x 
E40 

... (5.21) 

where, 

C13 = R
aP  h

13  

We find that c does not depend explicitly on w and w' and . 

we can interchange them. This enables us to write 

a  = _ e2 i.1.11p .cii.,alp  7°D 

$ v 	4 on - -co .1 	dw dw. IPi(w) Iil(w l ) 
na 	(36  081 	-oo 

exp(pw)-exp(pw') 1  
1 	1 

	

x - -- ----- 	 2  Lt 	 __,....,_ + --r--..--1 

	

t 	 CO —10 +1E 	(A) CO +1E 0,1 —(.0 	 E -j0 
... (5.23) 

Making use of the identity 

1 
x+ls )- int)(x) 	... (5.24) 

performing the integration over w' and using-. 



exp(pw)-exP(Pw1) 
I,t ----- 
w-pw 	co-w' 

= It exp 
	' )-(exP CP (w-w 

colw 	w w 

= p exp(Pw') 
... (5.25) 
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The conductivity formula (5.23) reduces to 

	

2 	+a) 	i l p „„ . • 
= - vej 	dw 4_ (Cag.g) In(w) Ipo(w)exp(Pw). 

—00 	cci3 on 
(5.26) 

The'problem is therefore reduced to an evaluation of 

the spectral weight function I(w). This can be obtained 

from the single particle Green function(34) 

I 	exp pco 	w ) g (w.)] 
	

... (5.27) 

where w+ = w+ie. Combining (5.27) with (5.26) we 

obtain 

	

.... ne2 +op 	ill C' p -4 

' 
dw 2= 	0 	 df(w)) 

	

-co 	a136r) 	 51 	dw 

x 	(w+) 431(w+)+4.))ai(0„—).giipo(.—) 

41(w— )g io(w+) _giricc(.,a+)gpo.(u))1 

(5.28) 

where f(w) is the Fermi distribution function. 

For disordered alloys we have to configurationally average 

eq.(5.28) over all possible arrangements of ions in the 

lattice consistent with the given concentration of the 

constituents. In order to evaluate this we introduce 
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a quantity K, 

ij 

1)1(wl'w2 )  = 	/Pi 	1—  
ac \gia (w1) 	43.5-(w2)>Av ▪ (5.29) 

On substituting (5.29) into (5.28) we are able to write 

a  
v 

r+°° , df(
aw

w)  auk- 	)D(w) 00 -  • (5.30) 

where, 
Pl [pli + 	p co-it D(w) = 	,w 	+ Kr i ko 	, w-\ 	Kp L no w-  / 

" 
_pl, - no k Kw+ co-  , 

This is a convenient form of Kubo formula for a disordered 

system. We now need. to evaluate K. K can be given a simple 

physical interpretation. K is the direct product of two 

propagators, describing the correlated motion of two 

electrons each specified by a single particle propagator. 

3. EVALUATION OF <gg›Av  AND K. 

We have found out that the expression for conduct-

ivity (5.31) requires the knowledge of K defined in (5.29). 

The quantity C defined in (5.22), which is sandwitched 

between the two propagators in the expression for K, does 

not depend on configurations when we use the approximation 

apAv --gijap' In this case K can be found out provided  
we know <gey 

• Av  
We are using the single particle description in  
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the same spirit as done by Velicky(65). The configura-

tional averages reduce to averaging of a direct product 

of two electron Green function <GG> . An extension to a 

linear response investigation basically involves the 

determination of the interference term known as vertex 

correction: ( <GG> 0.,›0›). Though the propagation of 

a single particle is statically independent, a correlat-

ion in the motion of two particles in a disordered medium 

not necessarily be ignored. 

In the EL scheme a selfconsistent evaluation of the 

total self-energy 2 is an extremely complicated and 
involved process. This obviously means that one will have 

to resort to drastic approximations in solving for <gg,›Av. 

In the low concentration limit Langer(114a) has discussed 

the equation for K in terms of the self-energy diagrams 

of the single particle propagators. The quantity K is 

found to satisfy an integral equation, which is the well-

known Bethe-Salpeter equation(115). In the present 

problem of disordered alloy we do not a*priori assume 

that K will satisfy a Bethe-Salpeter type equation. We 

therefore make a detailed diagrammatic study for the 

propagation of the two particles and examine whether we 

can obtain a manageable expression for K and hence for 

the conductivity. With this motivation we go back to 

Edwards and Loveluck who partillly renormalised the series 

expansion for g(u) by replacing Y°  by Y andiij  by 

Lii.Lii is defined by 4 4 
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- 1- / iflici\ 
13 	

\
c a aP VAv 

(5.31) 

The renormalised series expansion is now 

S1 ; 4 

 ap,

, Ts = 	

ea  
. 	1 yl

p
j(_ \  

54' 	'a ap''' 	o s"" 
116  
slpm . . , T 	,1 v1SL. ,\ T Slyip(,.,\ LPM ylni(w ) 4,

a  r fiale 	415 61  ‘,./ ic cp, 

(5.32) 

Using this equation we can write symbolically 

4(w)g(w')%17  = (11 	+ 	'>.A.v+ °
3')Av 	"" 

+ /21') -1421Av 	3 
 Av + • • • • 

<31 t)  Av 	2  '..Lv-4-(.33t Av 	'4  

(5.33) 

Here the numbers .n (or n') denote the term in the pert-

urbation expansion of g(w) (or g(w')) of (5.32) used in 

cOnstructing <g(w)g(w 1 ):›Av. Each term of the above series 

can now be evaluated following the rules discussed in 

EL. In the configurationally averaged single particle 

Green functions, the diagrams contributing to the life-

time are of the type shown in Fig.19. Other diagrams 

(A-like) give either a shift in energy or a change in 

the weight factor, associated with the spectral functions. 

Therefore, we would draw only the diagrams of general 

structure like those as in Fig.19 which contribute to 

life-time and will not worry for. the rest of them. Here 
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we shall use, 

.4.sclep uce.;1.1,...(5.- n  • • • 	\`-'p. 6 n ",(Av ... (5.34) 

and replace (hij) by its average value -g'4 as ment-ap Av 
ioned earlier for drawing the diagrams: This way we have 

considerably reduced the labour by weeding out lot of 

diagrams. The first term ‘11 1)11v  of (5.33) corresponds 

to an uncorrelated motion of two electrons and is shown 

in Fig.(20a). The other terms of the first row of right 

hand side of (5.33) also represent uncorrelated motion. 

The total contribution from such term can be represented 

by Fig.(20b). Here the double line stands for the average 

Single particle full propagator 

of the various terms of (5.33) shows that the lowest 

order term that corresponds to the correlated motion 

of electrons is <33%v  and the contribution from this 

are shown by diagrams in Fig.21. 

In the above diagrams we observe that the two outgoing 

propagators are emerging from.the same site, while the 

types of ions may be different. 

The diagrams corresponding to the various terms of 

(5.33) can be drawn in a similar manner. From a careful 

study of these diagrams, we can write the equation for 

the two particle green function in a compact form. We use 

the ladder approximation (116) and consider diagrams for 

the self-energy as discussed earlier. In this scheme some 

<g›Av. An examination 
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of the diagrams corresponding-to <66 '',›Av  terms are shown 

in Fig.22 below. 

With a proper selection of all the diagrams in a 

restricted ladder approximation in which two particles 

emerge out from the same point, we are able to write a 

Bethe-Salpeter type equation for the nondilute alloys with-

in the Edwards-Loveluck scheme. Diagrammatically the 

appropriate equation is shown in Fig.23. The left hand 

side of Fig.23 shows the correlated two particle propag-

ators. The first term in the right-hand side represents 

two independent single particle propagators and the hatched 

square is the vertex correction due to the correlated 

scattering of the two electrons. The equation correspond-

ing to the above diagrammatic representation can be written 

as follows. 

< 	( 	 (w ) g j ;› -ap wl) i  (zip (w)  2 Av = 	(wl)  ga' 	2  

kk'p 

tr) 	
(wi) 	(w2) 

vv  

TkP (w ) Tic i P <ej((.01)e0w 2)%v 

	

vi 	v in 	1113   

... (5.35 ) 

Here onwards we use a bar over the operators to show that 

they are also configurationally averaged, 

kP 1

n  

	

We have written TkP(w) = 	., where vn 	 -P n  
Ai  

IkP (w) is the self-energy corresponding to the single V n 

particle Green function. With the help of eq.(5.35) we can 
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write a series for the two particle propagator. 

gi:j% 	= - ij,(1) 	kktP 	ik,w  , 

) a  Pik 
(w2} 'v

gaP 	1) 
gala

; ( 2) 	NWT) gav k 1)  

Tkpi_ T pl_ 
6a 	"1'2/ 	v

k 
 '7) ‘w 2/ 

• ss 

fAIP (wa. ) 	(w2) + Enu,s (wi)  
A  

g 11'811 (w2) Ttas16 (w1) Tp.s 2  :6-(w2)  

x g4i (wi) zoV (w2) 	.... 
(5.36) 

On multiplying by Cji: (which is configuration independent) 
Pa 

and rearranging various terms we obtain from (5.36) 

= [awl)q(w2)  apt 

.k  

g cvl 	6)1) 	Tvicl(u)1)[(1L)  vv in )c  R(W2thiv 
71Pk i  

kk'pas'l  
T 	

.k 

(wl 	(wl ic 13(w 	A lij(w In 2) 	p 	2) 4- E 
vv tl4u, ' 

' TsP(w1  ) x [(w1) Cg(w2) Pk  Tlyc lio(w2)goi.ist '(w2) Tµ, (w2) 

grP(w2) 	•••• 
	 ... (5.37) 

We can therefore write 

K = [ 

	
(5.38) 

such that 
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' 	

pk' 

r 	 k 
(wl'w2)  = 	TvT13)(w1)[g(w1)C 	TuPN  ) 

vl 	
2 nv , 	_ 

' k'lss' 	
pk 

 
+ Tkl(wi) kksi(wl) TMw1)17i(i01)0g(w2)] 

v,(54,   nV 1  

x k 
' 6 
's 	) g- 	1 p ) Ts (u)  ) 

v 	2 	4.), ' 	2 	la 1 .1 	2 	• " ' 

... (5.39) 

The equation (5.38) can now be compared with the expression 

for K obtained by Velickii.(65) using the single site CPA. 

Although they resemble each other, they originate from 

quite different schemes. In the EL scheme it is not needed 

that the perturbation be cell localised as done in CPA(65) 

In order to evaluate the conductivity we have to solve (5.38) 

The solution in direct lattice representation is very 

tedious, therefore, we shall change over to the momentum 

representation.lhe Fourier transform of (5.38) is 

K(7,(01,2) = R(i,wi)ckg(i,w2) + 	r (w,,w2) g(Tcyw2) 

... (5.40) 

where, 

F (.01,w2) = 1 7  T K(Ei'' 1 w ,w )T- 
N 	2 q 

We shall use the principle of dynamical reversihility(117) 

which demands that 

-c 	 ... (5.42a) 

... (5.41) 

and 
	

(5 .42b) 
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HereE(Efo.)andT-q 	 q are even functions of i while C- is 

an odd function of zi. Hence Et wl'w2) which involves a 

summation in i, will vanish. Therefore, 

K(c;col, w2) = K(i,w1) 6i Z(Ew2 ). 	 (5.43) 

These quantities are diagonal in k. Thus we find that in 

the above approximation the average of the product of 

two Green functions becomes equal to the product of their 

averages, 

<gg>Av = g E 
	 ... (5,44) 

4. EVALUATION OF ELECTRICAL CONDUCTIVITY 

We shall consider here a cubic lattice for which 

conductivity is isotropic. Using  the Fourier transform 

ofap and e, we obtain from (5.29) lla 

2 ,+oo 
o = 	dw 3v , co 

x[g Pi(k,w+)-gPi (i,v7)11.iij(i,w+)-iii (ife 

... (5.45) 

We shall now write the single particle Green function (5.1) 

in a convenient form (EL-eq.5.2). 

21i21_ 
w) w-e2ikpw) 

where, 

(5.46) 
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A(i,w) = nM(E,w) 

and 	B(k,w) = nN(k,w) 

Here, 

... (5.47) 

... (5.48) 

r- 
EB -SBB-  T-BB -- E 	-SAl3 	AB 

0 1 	1 	1 - 

1 
M(k,w) = 

e2(kw)-E1(1: w BA ;BA 
1 - BA_sAA_ rAA_c  

o 1 L 2 

1 	 0 1 
BB 	e 2 

_sAB_ 
1 	

• (5A9) 
, 	r-AB EB-S - BB-  

= 	-=-- 
el (1w)-e2 (k 'w)  

_SBA 7•BA 
1 	z- 

oAA 
El  0 '').1 -e 1 

c1(i' = 
E2(k'co) 

 

E0A+BoB+sf.A( fo+s3B(ic ) 4.  7AA( i-c" ,(0)+IBB( k-,(0 ) +A  

•• • (5.51) 
with 

A ( km  = B.B0B_BAo_siBB( it. )...siAA 070+EBB0-c,w)...3:AA( K,w)}2  

+4 tsa.B( i )+7-ABacm i(siBA(ic ) +IBA(i ,w )il 

••• (5.52) 

1/2 

We shall rewrite el (k,w) and e 2 (k,w) in the form 

E l (i,(0) = El (10 4-  Il (k,10) 

and 	e 2 ( Zw) 	B2 (1c)+ 72 (2")  

... (5.53) 

... (5.54) 
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where, 

I1(11.w) = 	 1:Afi,w) 7BB(i,w)+0(2,4))-(i)1 ... (5.55) 

and 	7  (ft' 
	2 
w) = 	7AA(ilw)+ 713B(i.u))+6(ip(1));(101 1 - 

°.. (5.56) 

E1(k) and E2(k) are the two roots of the equation (5.5) and 

Z(k) is given by 

(k) 	 1+STB(1).ti (i)/ +4S (TSTA 

 
(i)1  

1/2 

*es (5057) 

Let us resolve E, A and B into their real and imaginary 

parts, 

4.(i0A) =P(k.(1)-±)-fr(Ft,cet) 
	 ... (5.58) 

A(i,(14) = AR(1,w2..) + 
	

... (5.59) 

B(Tcpwl") = BR(i,w±) T 
	

(5.60) 

In terms of these we can write 

ri (ktel)AR(ktel) +Ai(k►el) (w—Ei (k) 	(k-  01) 
= 

E)..E1 (i) ..P1 (it el] 2+112  (ITV el) 

r2(i02)BR(i02)+Bi(i02)(w-E2(i)-P2  02)1 
-E2(i)-P2(i,82)]2  + 1-22 (17,0 2 ) 

... (5.61) 

where 01,2=01,2(7). The expression of the right hand side 
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of (5.61)shows that the functions are peaked at w = E(i)+P(ip0),  

So we expect that the contributions to conductivity will arise 

mainly from near about this value of w .This point has been 

emphasized by EL. Therefore, 

4ne 	dw 
k 	

ow 

2  +a) 	
p101(.. df(w))(pli 	),(Vk V)

-co a = 	f  

X [ 2 	2  - 
Ew-E)..(i)-P2.(ii,01.): 	(k, 2.) 

r2(i,e2)11,i(i,02) 

:1 

E0-E2(i 	2 2  )-22(ite2c.)1 -2(k,02) 

x 	ri(i'el)41(itel) 

-1-1-12(fc>t ) 

1-2(1c'82)1i1('Le2)  
2 2 

D -E2 (i)-p2 (ii,e 2 ) ]  +F2 - (k,e 2 ) 
• (5.62) 

where, 

(31,2( 7) = 1,260 +F1,2( 7, B1,2()). 	

• 	

(5.63) 

We can now write the expression for the electrical conduct-

ivity of a substitutionally disordered binary alloy in 

terms of the spectral density of stateAk,w), defined 
by 
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racoo 	1m R(i,w) 	 ... (5.64) 

47-11
2  
- I

+ 
 a) dm 	63))  (Vk k ),(VA1) 5v j -a) 	k 

x[P1(1-c•w) AV(LO1)+132(11,w)BRi(17,82)] 

ii(k,w) 41(i,e1)+f/2(ii,w) Be(i,e2)] 
... (5.65) 

We shall show below that this expression yields the known 

result in the weak scattering limit. 

5,yleajc Scattering Limit: 

In the weak scattering limit the scattering matrix 

is small. One can verify using (5.10) that P(IE,0) and 

r(i0) are proportional to-Kk. By using the identity 

Lt 2  2 - 6(x) 
e 40 X +C 

... (5.66) 

the expression for the conductivity (5.65) will reduce 

to 

4ne
2 Wi-c° 

a =  
3v 	

do) (- 4)) 	k kip)  -co 

x a(w)[Ail(k,01)6(w-01(i))-141(R,02)6(w-02(k))] 

... (5.67) 

where, 

a(w) 	[Pi(k,w)AIR)i(k,e1)+,2(k,w)BRi(k,92)] 	... (5.68) 

Integrating with respect to w we get 



r- of(e ) Di4 	Ai 
- 	(Vile Mvik ---P ) k 	)(a(e1)41(i'elq 

of 
(92) 

+(- -r—)  1a(82) Bil(i,02) 	(5.69) 
e2 

Following EL, we have two distinct bands characterised by 

the spectral functionsY1(01(i)) andr2(02 (i)). These two 

bands in the reciprocal space will be separated by a gap, 

thereforejP1(02(k)) andA(01(k)) will vanish. Hence, we 

shall obtain 

	

2 	. . 	.. 
a = 7 	

ijlp 
ACe— 	Cykkik 3  ).(v kIP) 3v 	 It k 

[ 

81.01) A11'11(01)  Ail (el)  (- 7— ) --------------- 
l 	ri(ei(ii)) 

of 

	

	 2 (e 2) BjR1(e2 )BPRi (e ) 
+(- --.— ) -----:------ 02 	F-2(02(k)) 

... (5.70) 

The leading term in o in the weak scattering limit is of 

the order of -4, which is physically obvious. The relaxation 

time (t) for electrons resulting from the scattering due 

to disorder will be inversely proportional to the transition 

rate, 

•-•/1/1-  

If we retain only the lowest order term in the concentra-

tion, then we can show from (5.10) that 

r a nAnB  = n 	-nA) 	 ... (5.71) 
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Since the resistivity is proportional to r- , we recover 

the Nordheimis rule, a well-known feature of the weak 

scattering theory118. 

6. SUMMARY 

We have discussed the static electrical conducti-

vity of a nondilute substitutionally disordered binary 

alloy using a simple tight binding model and Kubo's linear 

response theory. The two particle Green function is 

written in terms of single particle Green function with-

in a restricted ladder approximation. In general one can 

perform a ladder sum to get the well known results of 

impurity conductivity as obtained by Ambegaonkar(115) in 

which a characteristic (1-cose) factor occurs explicitly 

due to the vertex correction. The choice of restricted 

diagrams in the present treatment leads to the forward 

scattering approximation which is a reasonably good approxi-

mation for metallic binary alloys. From the knowledge of 

the self-energy correction to the single particle energies 

we obtained an expression for the electrical conductivity. 

In the weak scattering limit and in a first order approxi-

mation this theory gives the Nordheim rule. 

It is necessary to point out that the formulation 

presented here is different from the work of Velicky(65). 

Velicky's theory has already been applied to calculate 

the transport coefficients in alloys (Levin et.al(lll), 

Brouers and Vedyayev(119)). The Edwards-Loveluck approach 



that we have used here is not based on the multiple 

scattering description adopted by Velicky, but is formula-

ted within a tight-binding framework. Also the formulat-

ion presented here is capable of taking into account the 

fluctuations in the alloy potential from site to site, 

whereas in the cell-localised disorder model used by 

Velicky pure A and pure B are assumed to have the same 

band structure. We have to pay the price for the general-

isation of the theory in terms of the complexity of the 

final expression that we obtain for the electrical 

conductivity. A calculation of the static electrical 

conductivity of a random substitutional binary alloy using 

the self-consistent version of Edwards and Loveluck theory 

will demand intensive computational effort. 
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CBAPTER VI 

ELECTRONS IN POSITIONALLY DISORDERED 

SYSTEMS: LIQUID METALS 

The description of the positionally disordered 

systems such as liquid thetals and amorphous materials 

is extremely complicated compared to that of the cell-

ular ones. In such systems the atomic species occupy 

random positions in space, hence there is no lattice 

structure to simplify the problem. In this chapter we shall 

discuss only the electronic states of liquid metals for 

which there exists a few numerical calculations. 

In the theory of liquid metals there have been 

several approaches. Ziman(120a) has proposed a nearly free 

electron model analogous to that of Sommerfeld. This 

approach has been improved in several ways by using pseu-

do-potential perturbation theory and by invoking multiple 

scattering technique primarily based on the quasi-crysta-

lline approximation(120b). Ziman's results were extended 

by Lloyd(121) who gave a formal expression for the average 

density of states in terms of the scattering phase shifts 

and radial distribution function for ions. From the express-

ion of transition, T and reaction, K matrices,Bristol 

group(122) has calculated the density of states' for some 

transition and noble liquid metals. Anderson and McMillan(85) 
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have devised an approach in which each ion is isolated 

within its Wigner-Seitz sphere and outside of it there 

is a complex (uniform) medium, which is determined by 

the condition that there is no forward scattering, para-

llel to the CPA condition. Using this method these 

authors have obtained the density of states for liquid 

Fe. Schwartz and Ehrenreich(123) have used the single 

site approximation and discussed the electronic theory 

of the liquid metals. They have calculated the complex 

band structure and density of states of liquid' copper. 

Edwards(124) have developed the Green function theory 

to calculate the density of states from a perturbation 

expansion of the single particle Green function averaged 

over the possible atomic arrangements appropriate to the 

liquid state. 

Ballentine(125) has used this approach to calculate 

the density of states of liquid Al and Zn which are free 

election like but predicted that density of states of 

liquid Be to differ significantly from the free, electron 

parabola. He used a local pseudopotential for the electron-

ion interaction derived from the Fermi energy shell matrix 

elements of the Heine-Abarenkov model potential. Shaw and 

Smith(126) have performed calculations for Li, Cd and In 

using nonlocal energy-dependent model potentials. In their 

result the Van Hovo singularities are smoothed out and the 

density of states of Li is much different from free elect-

ron like density. Cyrot Lackmann(127) has developed a 
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tight binding approximation for the moments of the density 

of states. It is applicable to bound bands, since the 

moments do not exist for free bands. 

A non-perturbative approach has been proposed recent-

ly by Rousseau et al.(128). In this chapter we outline 

the theory of independent pseudo-atoms and use that to 

calculate the density of states of liquid Al(129) and 

Be(130). Aluminum was chosen because for this system a 

number of calculations for the density of states have been 

attempted using other existing methods and there are some 

soft X-rays data. Be was chosen to compare our numerical 

calculation with the result of Rousseau et al. who used 

analytical method to obtain density of states by a model 

partition function. 

1. OUTLINE OF THE THEORY OF INDEPENDENT PSEUDO -ATOMS 

We shall summarise the theory of independent pseudo-

atom due to Rousseau et al.(128) in order to establish the 

notation and provide a framework for the discussion of 

results. There are two essential steps in the calculation 

of the density of states in a liquid. First the partition 

function is obtained for a given configuration. Then the 

ensemble averaging is done to obtain the density of states. 

The total potential V(r) in the assembly is regarded 

as a sum of localised potentials v(r) centred on Ri, the 

position of ith ion: 

. I v(ijiii) 	... (6.1) 

R. 
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The partition function is defined by 

	

z(p) = 	e-4i 

	

= 	 ... (6.2) 

where C is the ith eigenvalue of the single particle 

Hamiltonian H = -v
2 
 +V(r), p = l/kT and C(r,r0;13) is the 

canonical density matrix given by 

-PE 
c(1.,"'04) 	7 e(70.. ) e T  1 	0 ... (6.3) 

If we have a slowly varying potential, the eigen values 

change by V whereas the wavefunctions remain essentially 

unchanged. Then for the potential given in eqn.(6.1), we 

can write 

C(T.,1.0 ;p) = Co (Y.,1-0 ;13) exp[p Z v(Y.-Ri )] 	... (6.4) 

where c0(11,i0;p) is the free-particle density matrix. 

Equation (6.4) is generalized to the form 

c(i.,Y-0;p) expLpu(rt i.o;p)] 	... (6.5) 

U is called the effective potential matrix and 

u(il,F.;p) 	u(-17.,p) defines the pseudo-atoms.We further write 

u(7.;(3) = 	u(F-Ri;p), so that the system is locked upon 

as a set of independent pseudo-atoms described by the 

above canonical density matrix involving effective potential 

U instead of actual potential V(1%). 



-118- 

A function analogous to the Mayer-function in 

classical statistical mechanics is introduced 

f(1,(3) = expLf3U(1-',01-1 	(6.6) 

so that 

C(r,P) = C o(r,0)[1 + 	f(r-Ri);(3) 

‘-t 
	7 f(y.lii;c3) f(F-R

J; 	
+ 	... (6.7) 

1 -5-  

The series (6.7) has to ensemble..averaged. 

In order to find the configurational averages for a set 

of correlated scatterers higher order correlation functions 

are needed. Three body correlation functions are expressed 

in terms of two body correlation functions by the Abe 

approximation 

(b) 	r2 	3Cg(r12)g(r13)+g(r21)g(r23)+g(r31)g(r32] 

... (6.8) 

Similarly the nth order correlation functions may be 

expressed in terms of g(rii). Thus 

z(p) = 77-1773/21:4-pfdif(T", p) tfai,if ("ii, p) 

[2;pG(.17.1) 	i irnGn-a(ia.)+  

... (6.9) 

with G(rl) = fdi,"2  f(r2;p) g(r12) and so on. The terms in 

series (6.9) can be summed to yield 
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Z(p) 	1 ./0(1 	...f(I' VP)fsexP
[PGrr)]-11 

(27tp)d/' 	G(r) 
... (6.10) 

For the random pseudo-atom model g(r) is replaced by 

unity, so that Eq. (6.10 ) reduces to 

Z (R) = 
(21,0 3/2 e" aq 
	

... (6.11) 

where, 

«Ca(N)
JP  

- 	f(T.;p) P 

and f  is the number of ions per unit volume. 

The partition function z(p) is related to the density 

of states n(E) by the Laplace transformation 

+OD 
Z(P) = f 	n(E) e-PE  dE 

0 
... (6.12) 

2. APPLICATION TO ALUMINIUM AND BERYLLIUM 

In , order to calculate the electronic density of 

states we have to start with the suitable choice of a 

potential. Bere we use a potential in the following 

analytical form due to Green et al.(131) 

v(r) = 112Y-z)  (6.13) 

where, 

y = 1 - ['fexp(i) ... (6.14) 
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z is the number of nuclear protons, N is the number of 

core electrons and H and d are two parameters. These 

parameters are determined by fitting the energy values 

and wave functions with those calculated from the Hartree-

Fock Slater method by Herman-Skillman(132). This simple 

analytical form which yields the same energies and wave 

functions as the Herman-Skillman potential is thus a 

reasonable choice for the single-centre potential. With 

this choice the effective potential matrix can be deter-

mined in an analytical form. 

Hilton et al. (133) have shown that in the linear 

approximation (ignoring VU(i)) the effective potential 

matrix U(7.,74;13) is written as 

u(1.,10;p) = f g(-r,i70;Yo) 
	

(6.15) 

with 

g (r, y.00 /1 ). exP 	I Y.-10 1 2/2P 3 	

I IT-t-izo  I "L".1 
x exp [ -- ((!._r' J +1 r' -ra  112  / 2p] 

... (6,16) 

We are interested in the diagonal element u(i.,p) given by 
_211;_p12 . 

u(i,p) = 	 fcrit v(P) exp.(---------)nR 

Using the form (6.13) for v(F) we obtain 

(6.17) 
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2 u(r,p) 	7r3,174.. 	(_1)n+1 expr 	nri 

2pd 

x  erfc[r(r+ 0)1 [ an{exp(le-)-exp (1r))1 ••• (6.18) 

As we have mentioned in the foregoing section, that 

this approach is valid for a slowly varying potential or 

a weak potential, we cannot apply the method in this form 

for a real metal having strongly attractive potentials and 

possessing bound states. Hence it is necessary to orthogonalise 

the density matrix to the known bound states of the system 

following the method due to Hilton et al.(133). The ortho-

gonalised density matrix approach is applicable for a strong 

scattering potential also (128). 

Now the orthogonalised density matrix is used to 

calculate z(0) for both random and correlated assembly. 

In the latter case the required radial distribution funct-

ions are taken from the numerical solutions of Percus-Yevick 

equations of the hardephere assembly.(134) 

In principle the inversion of the partition function 

gives the density of states, but difficulty arises in a 

calculation, because z(p) is known numerically for certain 

values of 0. We perform the inversion by making use of the 

method of first order steepest descent due to Hoare et al. 

(135). They have showed that this method gives reasonably 

good results when compared to exact analytical solutions for 

some simple cases. 
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3. RESULTS 

In Figs.24 and 25, we have plotted a(P) for both 

the random and correlated cases of liquid Al and Be. 

It is seen that the difference between the results for 

random and correlated assembly increases with increasing p. 

For small values of p the curves for the random assemblies 

lie close to that for the correlated ones. 

The density of states is shown in Fig.26 for both 

the random and correlated systems for a wide range of 

energy for Al and in Fig.27 for Be. As mentioned before 

an analytical evaluation of the density of states from 

partition function is not possible here, therefore, we have 

calculated numerically the density of states by Laplace 

inversion of (6.16) using six values of p(p.0.3,0.5, 

0.7, 0.9, 1.1 and 1.3 in atomic units). The density of 

states for liquid aluminum obtained by the present 

method is compared with the results of other calculations 

in Fig.28. The calculations by other workers were based 

on free electron scheme, Edward's theory(125), MonteCarlo 

calculations (136) and the pseudo-potential method (137). 

The density of states curve obtained frcm the soft ,x--ray 

emission measurements of Rooke(138) is also shown. The 

pseudo-atoms tend to lower the value of the density of 

states at higher energies as compared to free electron 

results. For locating the low energy conduction edge we 

shall have to undertake tedious calculations using values 

of Z(3) at many values of p higher than those used here. 
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The singularities in the density of states are 

washed out in our calculations for the disordered assembly. 

We also find that our results for density of states are 

close to those for free electron scheme. This shows the 

nearly free-electron like behaviour of electrons in the 

liquid aluminum. 

In case of Be(Fig.27) the density of states for the 

random assembly is found to be less than that of the 

correlated one upto 1 Ryd and then it increases and 

exceeds that of the correlated one beyond 1 Ryd. An 

interesting feature of this calculation is the tailing 

structure in the density of states curve for both cases 

while in the calculation of Rousseau et al. the random 

assembly possesses a long tail and the correlated liquid 

has a very insignificant tail (Fig.3 of Rousseau et al. 

(128)). We do not find any direct experimental measure-

ment of the density of states for this system.In view 

of the disagreement of our...result with that of Rousseau 

et al.,We conclude that the method of Laplace inversion 

by steepest descent method is not a powerful one. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

We have discussed in some details the activities 

and main interests in the field of disordered systems, 

which essentially aim at obtaining the quasiparticle energy 

spectrum and the nature of the wavefunctions. Research in 

the problem dealing with the energy spectrum has mainly 

aimed at: calculating the electronic density of states 

or the spectral functions. We have mainly concentrated on 

the substitutional binary alloys, the simplest of all 

disordered systems. The coherent potential model (an effect-

ive medium theory) has been found to be very useful. The 

equilibrium and the dynamical properties of a disordered 

syStom arc described with the help of the effective field 

conoopt of the type used in CPA. It is not quite clear 

how one can incorporate the fluctuations in random potent. 

talc over the effective field. We have omitted the discuss 

ion of the problem of dilute impurities for which normal 

perturbation method sometimes works fairly well. This method 

in a sequence of development has finally resulted in the 

effective medium theory except the fact that the self-

energy in the perturbative method has spurious poles. 

In table 5 below, the development of the theory is abstrac-

ted. There exists model calculation (60) in the first order 

perturbative treatment that gives analogous results like CPA. 
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TABLE 5 

and its 
features 

for the self-energy Expression 
characteristic 

Type of excitations 
Self-energy 

Features 

Electrons Phonons 	1 Excitons Dual 
Symmetry 

spurious 
poles in 

Edwards 
Klauder 
Matsubara 
and 
Toyozawa 
Beeby 

Sovet, 
Yonezawa 

Takeno 
Elliot 
and 
Taylor 

Taylor Onedora 
and 
Toyozawa 

x6 
Broken 

Broken 

Full 

exist 
 

Don't 
exist 

Don't 

Removed 

1 -F(z)6 

x 
1-(16-x)F(z)6 

x6 
1-F(z) (8-c) 

Details are given in a recent review by Yonezawa,Suppl. 
Prog. Th.Phys. No.53, p.1 (1973). 
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The fact that the virtual crystal approximation 

is good enough for the alloys (where the difference of 

potentials is small), is used as a quantitative tool for 

obtaining the bandetructure of disordered alloys. The 

effective medium method is a step ahead of it.This relies 

on the self-consistency of the complex potential of the 

medium. Because of certain obvious unavoidable reasons 

as shown in Chapter III, the first iteration leading to 

ATA result has been obtained. Except performing some 

refinements over this method (to be discussed below) 

there seems no improvement in the single site theory. 

Then the next candidate is the cluster approach. One 

does a model calculation within the first shell of a 

cluster. But a realistic cluster calculation is. extremely 

expensive for which there exists only a few calculations 

by Johnson and coworkers(139) at MIT and Ziman and 

coworkers(122) at Bristol for small clusters. The 

tight-binding method as used in the recent days in the 

band structure calculation of transition metals(140) may 

be a good start for use in the theory as described in 

Chapter IV. This scheme is very useful for taking into 

account the fluctuation in the random alloy potential. 

Although a selfconsistent version of this method will be 

no doubt superior to single site CPA, this scheme will 

be very complicated for use in a realistic calculation. 

This tight binding method has been used to obtain the 

static electrical conductivity and paramagnetic spin 
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susceptibility(141) of disordered binary alloys. Then 

next structurally complicated system we consider, is a 

positionally disordered material: liquid metals. The 

question of the influence of local order has been 

thoroughly discussed by March and collaborators who 

use the Thomas Fermi theory for the effect of the environ-

ment and discuss in detail how the liquid theory can 

be based on the partition function of the liquid directly. 

Use of this theory has been found to be fruitful for 

the realistic systems.The problems of amorphous materials 

are much more difficult and involved compared to disordered 

systems(142) considered here. Now we discuss some of the 

refinements which one can incorporate in our calculations. 

Charge transfer(143) happens to be the most important 

one for calculating the alloy potential. One usually 

expects a charge transfer from one of the species to 

another, if the atomic potentials or the valencies of 

the constituents differ. Mott(144) has pointed out that 

if the charges on the atoms are too large, the Madelung 

energy gained by forming an ordered solid overcomes the 

entropic term which favours disorder and the alloy 

will order at sufficiently low temperature. If the net 

charge is small enough, the ordering temperature might 

be so low that kinetic effects will make the disordered 

phase favourable.That is why the transition and noble 

metal alloys have in the primary phase a substitutionally 

disordered structure.So the net charge transfer is quite 
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small i.e. 	10r. for equiconcentrated alloy. We have 

not considered charge transfer effects. A view point 

exists that the transfer of electrons is related to 

the electronagativities of the species. When atoms 

are brought together to form a solid, the electronic 

charge density is compressed by causing a significant 

increase of local Fermi energy, which provides a useful 

scale of electronegativity, but the local Fermi-energy 

is not a measurable quantity, so one relates it with 

the work function of the material, Efforts have been 

put to examine the effects of work function of metals 

or the contact potentials of the bi-metallic systems 

on the charge transfer.(145) Recently Ehrenreich and 

collaborators(146) have tried to incorporate the charge 

transfer in AgAu in a two band model tight-binding 

Hamiltonian through CPA. However, the calculation of the 

complex band is no doubt very complicated but people are 

worrying about the choice of a good alloy potential. 

If one uses the density functional argiment (that tale 

that there exists a periodic potential V(i.,E) for a given 

energy E), then it is feasible to work out an alloy 

potential, as a functional of energy dependent consti-

tuent potentials. This has the possibility of including 

the many body effects through the density dependent 

exchange-correlation potential. This approach via the 

partition function (147) will be a simpler workable scheme 

for the allay band structure than the model Hamiltonian 

approach used extensively these days. 
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Appendix 

We give the diagrams which contribute to the 

imaginary part of the self-energy E (k) in Fig17. The 
2 

diagrams are drawn in direct lattice space. The weight 

factors and the sign of each diagram are also given. 

It is to be noted that the sixteenth and last 

diagrams are the same as obtained in Edwards and Love-

luck(107). The other diagrams are completely new. 
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