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"PREFACE

There are three distinct states of matter -~ solid
iiquid and gas. The liquid state is intermediate between
the solid and the gaseous states and therefore it is to be
expected that the thermodynamic properties of a liquid will
be intermediate between those of its solid and gaseous states.
But because of the peculiar properties of the liquid state
and intensive interaction among.the pérticles in strong
disarder, the theoretical analysis of the problem becomes
difficult and remains much less developed in contrast with
the {heory of gases and solidses This is not for want of

trying. A‘vast number of researches have been devoted

lto attempts to analyze the structure of liquids, either
directly by the diffraction methods which have proved so
successful in crystalline solids, or indirectly, through
the construetion of models and their thermodynamic testing.
But we still lack either an adequate picture of the arrangc-
ment of moleculcs in‘a liquid or the necessary quantitative
theory to explain their thermal and o{her propertieses

The attempts that have beeh made to formulate a
"theory of liquids fall into  four b;éad classes

(1) Simulation studies

(ii) Integral equation methods
(iii) Lattice theoriecs
(iv) Perturbation theories.

None of the above theories. is adequate description

of the liquid state structure, and so far by no mecans the

problem of liquid state is completely solved. Though the

perturbation thecries are in the process of developing into
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a consistent theory but so far only it has been proven that
they are physically satisfying ﬂﬂggggggg_to the theory of
the eduilibrium properties only and that is too in case of
simple liquids not for non simple liquids like water. That
is why the liquid state research is an emerging field which
will keep physicists attention occupied in the coming decédes.

Most of the above'theories now remain only of histo-
rical importance, becausc they are either "gas-~like" approach
or "Solid=like" approache They do not treat the liquid state
as an independent state. A real theory to come for liquids
must have to treat it as an independent state.

An exact and a well developed theory of 1liquid
state is not only of academic interest but also has many
tcchnical applications, for example in the pollution and entro-
phication problems, as well as is necessary for further
advances in a number of branches of physics, Physical
chemistry, Biophysics etc. This problem is of further
importance because of biochemical interests, in that all
living structures are mostly composed of.water.

As a first step to understand the liquid state
of matter, we have chosen to study the various thermodynamic
and mechanical properties of liquids critically with respect
to temperature. Since the different states of matter are
nothing but a competition between the thermal energy and

N——

intermolecular forces. So in the preliminary stages the

—



piublem of liquid state resolves itself into twos First,
.to a relation which can give us the temperature variation
of various properties of liquids and, secondly, to a
choice of a suitable form of intemmolecular potential.

‘ This thesis devided into five Chapterss First
Chapter 1s devoted to a survey review on intemolecular
potentials. Special attention is paid towards 48 years of
Lennard Jones ( 6: n) potential. It is concluded from
the discussion that for a'real palr potentieal, while keeping
the simplicity of the L=J{6sn) potcntial some sort of
flexibility in the potential parameters must be so intro-
duced as to conform to the experimental data. It is then
pointed out that a new linc of approach could be to intro-

duce z suitable temperature dependence of the force parameters.

In Chapter 2 our essense has been an idea to
deal the liquid state as a rcal, van der waal gas of
Mmolecular clusters" or microscopic "drops" . Such a model
suggests itself 1f we try a mathematical decoupling of
molecular clusters to avoid the complicated cluster |
integrals. En Yeffective®™ potential between the "drops"
has been cbtained, Starting from the experimental PVT-

data for liquid water.

In Chapter 3 various empirical, semi~-empirical

oeXpressions for properties of water have been examined



and a single expression which represents the functional
dependence of temperaturce of almost all properties of water
is suggesteds The oxpression has been interpreted in temms
‘of two state theory of watef. A more fundamental ihterpre~

tation in tems of molecular interaction has been discussed.

In Chapter- 4 a specific fomm of temperaturc-
dependent molecular potential has been considered as trial.
Compréssibility, sound velocity and prassure dependence of
bulk modulus for liquid water have been calculated from this
potential. A gcod agrcement with cxperimental results has
been found. A speculative suggestion for future work on
building a theory of liquid state sui generis without
directly refering to gaseocus or solid state has been
mentioned basing it on a tomperature~dependent molecular
potential. According to this speculation the transformation
of solid to liquid state would mean !'cluster' - fommation
of molecules, so that the liquid can be treated as a real
van der waals gas of these *clusters! or ‘dreps'. Such
a description will correspond to the case already treated

in Chapter 2.

Chapter 5 deals with a brief review of a number
of theories of liquids. Calculation have been made for
volume and two=state themodynamic parameters alongwith
some other physical properties of water on tﬁo-state approach.

Furthemore a statistical theommodynamic theory is successfully
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applied to water based on the two ~state model of

liquid water which consists of two classes of molecular -
structures. Class I is constituted of hydrogen bonded
molecules and Class II is constituted by unbonded
monomers. The resulting partition function is formulated
and~calculated by using the two quantities, the
encrgy difference between class I and class 1I, & |,

and the fraction of close=packed specy.



CHAPTER I

A great déal of the current effort in science is
dirccted towards relating the real~life properties of gascs,
liquids.and solids to behaviour at the atomic and moleculai
level. Since the amount of infommation that one nceds about
the molecules and their interactions is much iess than the
information about the physical properties which is or should
be derivable from them, a knowledge of the true intemmolocular
pétential is thus a necessary steop towards an understanding
of these physical properties. A quite good number of the
intemolecular potential functions is available in the
literatures The purpose of the present review i@ not to
deal with all these potentials in detail{which requires
a large space) but with principles and attempts which have
been made by various authors to determine a reasonablec
form of the pair potential'and finaily to suggest something

which ought to be fundamental about a true pair potential.

One of the most common potential which has been
used extensively in detemmining the variocus properties of
the matter in the Qaseous, liquid and solid'states is the
Lennard= zones (6. ¢ n) potential Fig. (1). The géneral

form of this potential energy function is

| ' *.n * om
@(r),=( m: = (E) - 0E)
1= 3 | ? (1.1
or - T * 1o * 6 kel)
b (2) =e[-(§“) "2(?)]
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Wwhere ¢ {r) is the mutual pair potential=~energy of inter-
action between two molecules; € is the (~ve) minimum eneigy)
r is the distance between molecular centres, - r* is the
distance between molecular centres at the minimum molecular
palr potential energy. n and m are the repulsive and
attractivé exponents. The choicé of the repulsive exponent
n =12 is primarily one of the methamatical coﬁvenience,
but by no means unique. A general survey of the 1i£ér§ture

reveals that n can have any value ranging from 8 to 0.

The potential is named after Lennard=jones ,
although, Mie (1) was the first to- suggest that the inter-
action energy between a pair of atoms might usefully be
expressed as the sum of two tems (Fig. 1), a negative
temm proportional to the power=m of the distance r and
a positive temm proportional to the power = n of the dis~
tance r with n>m>»0 (this form for the sake of bravity
éalled the (m ¢ n) interaction), he made many of the earlier
calculations of the bulk properties of the gases and liquids
in a series (2- 9) that started in l924§

In 1924 Lennard-jones (10) showed that the
experimental values of the second virial coefficient of
Argon, and several other gases could be derived from a

(4in) interaction with n (repulsive exponent) having any
of the values n = 8,10,13% y 0, 24 ,
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.

In 1930 London (11) proved by quantum theory that
at large distances the interaction energy is proportional
to rné « It is, therefore, natural to use the valuesm =6
In 193l Lennard=jones(2) refitted the experimental data
withm =6 and n = 9, 10,12; 

One reason for the popularity of Lennard=jones
(63n) potential is that Lennard=jones has showed how the
integration for the second virial coefficient could be
carried out analytically to yield a power scriecs that
. convexged rapidl? enough to be within the scope of a desk
calculator,'This was the non=trivial matter in the days

before the fast electronic computers.

The properties which provide a convenient means of
testing a potential=energy functions are ¢ second and
. third virial coefficients of gases. Joule=Thomson coeffi~
cients, crystal properties (lattice spacing, heat of
| sublimation, mechanical constants), coefficient of viscosity
thermal conductivity, diffusion, themal diffusion and
scattering of molecular beams. The parameters of a force
model are detemmined by fitting experimental second virial
coefficients and also from the viscosity data; We shall

not discuss here the methods of fitting the data , which

essentially are the following five methbda,



(i)  Selected points

(ii) Empirical equations

(iii) Parallel translation of axes
(iv) Curve intersections —

(v} Least squares iteratitn

There a£§ t@o general criteria which are used to
give some measure of confidence in the reality of a true
pair potential of the molecules; The first one is that

“the model must not conflict in any essential way-with
generally accepted theorctical results about intemmole=
cular forces. The second criterion is that the model
must be able to predict, in agrecment with experiment,
other properties besides those used to detemine the
paramcters. | _
EXPRESSIONS FOR THE SECOND AND THE THIRD VIRIAL COEFFICIENTS
FOR LENNARD~-JONES (6:n) POTENTIAL :

The equation of state of a gas written as power
serice in density is | .

P‘M‘. =1 +-}-3-Ell) +-C£l-l ‘+P*§,-% +§£VI% -&ﬂz\%»+...

AT , v 2 |
(1.2)

where B{T), C(T), D(T), E(T) ,F(T) etc.are thevsécond,

third, fourth, fifth and sixth virial coefficient respectively.

The sccond virial coefficient, B(T) , of the virial

oquation of state is related to the potential encrgy O(r)
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as @ a¢ = 0(x)/AT
B(T) = - 2RN 5 1‘3 d e dr
kT o r
@ 07kt
=2 NA § 2 (1~e¢’ ar (1.3)
0
Using the following reduced quantities,
= , T = k1'/e
. B B
B" = — =
% ~N 0'3 b0

-
4 o % %™
P LTI ek b
B(T):-;’-“ ,-.—-—-;n-l-—;x_-g e dr
Lo
. 4
Putting A = -
T .
0w Lens2 B "”3?0 *
B = na (2 T o T dr
0
o A A
| %6 -
4 T *N
-6 A 5 ol e e T gt
0

Which gives finally after carrying out the integration ,

1 | "(654'3"'3)/1'1 . .
* %._. § 6j+n=
B ('I‘*) = A — A a:l-tg-3))
254 L
< 'S AR RS S
-6 A E T &= A (_‘( =)
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#poH = % A *(‘23*'1)/4
B o ol g (1.4)
J %(3
i+
. 2 — 25l .
where bl = - T () ()

The third virial coefficient, C{T), of the virial
equation of state is related to the potential energy, O(r..)

| i3'"
of a pair of molecules i & j separated by a distance Iij by
c(1) = 8 r Mf £ f dr, dr d
= — r r r dr dr dr
3 . 1211323121323 12 13 23
Q(r. .) (lté)

where f, .= exp ( - __II 'y o

= kT

The integral may be evaluated by a method similar to that

uscd for the evaluation of the sccond virial coefficient.

The rosults obtained are el
. N
y \ *
SO S cld) 1 Yy
j=0
2 - . . "
(1) = bl C (%) " | (L)

Wﬁere the expansion coefficients cld) for the third virial
coefficient are complicated integrals and values are
computed by numerical integration.

Calculations for the Lennard=jones potential
have been made for various properties by various authors(3s)
such as ¢ second viriai coefficients (12=16),transport

properties of dilute gases ¢ viscosity, themmal conductivity,
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aﬁd coefficient of self~diffusion of the dilute gases(12,19,
2,;58), lattice spacing, latent heat of sublimation and
coefficient of thexmal expansion of solid argon at low
temperatures (19-25), with the same force parameters as

are usced to fit the sccond virial coefficientse.

Numerical calculations have been made of the third
virial cocefficient for the Lennard=jones potential by Bird
st al-{26), and some other authors (27-29); Rowlinson
et al.(30) developed asymptotic expression for the
Lennard=~jones third virial coefficient valid at high and

low temperatures.

With modern computers it is possible to reach the
fifth virial coefflclent E(T) for a Lennard~gones potential
(31~33), ‘

This potential has only two adjustable paraﬁeters
and so confoms to the principle of corresponding Jtates.
The properties of the inert gases, in all states of matter,

require a potential of this fom.

However, Lennard-jonés (64n) potential which has
been used extensively in the study of interaction of simple
non“polar molecules since 1924, has severe faults. These
were revealed by many independent failures which became
apparent from 1960 onwards. The inadequacy of the L=J

potential, cven in case of simplest molecules (inert gases),.
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has been corrcborated {14-l6, 34=37) by several independent
authors and may be summarized as foilows 1

{1) The long range interaction potential between a
pair of atoms is given by second=order perturbation theory
b » where the interaction constant C,,

bt
can be related to the oscillator strengths of clectronic

(17) as - c,

transitions which can be measured experimentally from the
ultraviolet spectrum. Barker and Leonard (39) found that
the coefficients so determined for simple gases (ﬁe, Ne,
A, Kr and Xe) are roughly half those of Lennard-jones
potential.

(ii) Munn (31) célculated the same dispersion=force
coefficient for Argon and Neon from the low temperature
viscosity measurements, which is a direct source of
infomation concerning dispersion forcese Again the values
so obtained are half those for the Lennard=jones (6212)
potential.

{ii1)  Weir , Wynn Jones, Rowlinson and Saville (40)
pointed out that.the Lennard~jone$ (6212) potential is
inadequate for wide ranges of temperature, and this
becomes more obvious when the deviations are éxamined
graphically .JThe ninimum depth of the bést L=J potential
are €/k = 116 + 1°C for Argon and 163 + 19K for
Krypton, which are too small to produce.-the rapid fall in
B observede Their measurement of the second virial

coefficient at low temperature require a depth € that is
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about ‘one third larger than that of Lennard=jones potential .
They do not stress the physical significance of any of these
. figures, but only put them forward as evidence that the
depths of the true pair potential is certainly greater than
the depths associated with the L-J potential.

(iv) ‘ Rowlinson (41), Sherwood and Prausnitz(42) cal=
culated the third virial coefficient, as the third virial

cocfficient is more sensitive to the shape of the potential
function than the second virial coefficient, for many gases

e«ge Argon, Krypton, Xenon, Methane, Nitrogen, Co, etc. and

2
compared with the oxperimental values. It is found that the-
calculated valucs of the third virial coefficient have a
wpeak at low temperatures whose height cannot be reconciled

‘with the experimental one.

(v) The experimental behaviour of the classical
fluctuation discriminatnt of the configurational energy and
the virial was examined by Rowlinson{43) for the fluid states
of nitrogen and methane which shows that the discriminant
must be essentially positive. But LennardsJones (6:12)
potentlal leads to negative values of the discriminant

for orthobaric liquids at low temperatures, for the liquids
at high pressures and for the gases at high temperatures ;
Any how Rowlinson pointed out that the discriminant can be
made positive in the low temperature region by choosing a

value of n = 13 =14 , but at high temperatures, the value
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would have to be 20~30. It does mean that the best expori=-
mental results for gases at high temperatures are not
compatible with a L=J potential with a reagonable repulsive
index. So this also demonstrate the inadequacy of the L-J
(6812} poténtial at high densities and temperatures;

(vi) Guggenheim*s and McGlashan!s (44)investigations
on the equilibrium properties of the crystal, namely, the
variation of entropy with temperature, of energy with
tempgrature, of density with temperature and of the density
with ﬁressure show that the interaction cnergy which best
accords with all these properties is étrikingly different
from the commonly advocated difference between an inverse

twel fth power and an inverse sixth power of the distances

(vii)  Kihara's (14-16) objections to the L=J(6s12)
potential are t(a) It does not explain the absolute stability
of the cubic:strucfure, (b) The recal intermolecular poten=-
tial for rare gases has a wider bowl and a harder repulsive

-wall than the Lennard~jones potential.

(ix) For some time it has also been recognized that it
does not give satisfactory description of dilute gas

' properties (15,45,46).

" In the light of the above discussion, it has been:

recognized for some time that the inverse power (6.12)
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potential due to Lennard~jones is mot an adequate
represcntation of the intemclecular energy even of the
inert gases which have several simplifying features, i.e.
closed electronic shells, honoatomic molecules with spheri~
cal symmetry and they crystallize in the simple closed packed
structure which make them a unique system for a detailed

study of their molecular fields.

Nonctheless, the success of potential function
is evaluated as much in terms of its simplicity as in
accgrécy.bLennard*jones(6:12) ha§ remaikable simplicity
although, of course, its accuracy has been in doubt for
éomé time.‘But the modifications due to several authors
most significant'since 1960 onwards are advpncement in
this direction of making it more flexible so that its
accuracy might increase,although at the cost of simplicity.
Notable emong thescvare, due to Kihara (15), Guggenheim=
McGlashan (44), Boys and Shavitt (47), Dymond, Rigby and
Smith (48), Pollara et al.(®5), Dymond and Alder (54)
and very recently due to Koo {57)  etc,. which are discu~

" sscd in brief below 8-

Kihara (15) proposed a three=parameter potential,
in which third parameter is added to represent the molecular

core sizo ¢ _

. m ) n
$x) =a(F)E | (=—) -

m
) - (1.9)
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where ry is the separation, o is the collision diameter

(Ulo) = 0 ) y " € is the minimum value of U (veo)is
hard core within which U is supposed to be infinite and

Alm/n) is a pure number
x

Alx) = x.“r:; (l*-x)~l or A(172) = 4 (1.10)

This potential can also be written in terms of the reduced
separation ( r/im ), where T, 1s the separation at which U

is minimum,

B!
rm - . n '
— =y=(1=Y)(z) "™ (1.11)

This potential reduces to that of Lennard«jones for P =0
This can be written in tems of (x/ o ) as in equation
(L.9), or as,

- ne m Iy on rn |
$(x) = ‘ [; (=) - (5 J (1.12)

ne-n

This  potential has been used by Sherwood and Prausnitz(42)
to fit the second virial coefficiehts of Argon and by
Barker, Fock and Smith (49) to fit the second virial
%“coefficieni and the transport coeffiCients;.The parameters
~ suggested by them are close to cach other, ,
SandP n=12,m=6, p =146, 0= 3.314 .z,e fe = 147.2°K
| (1.13)
B.F, and 8. n = 12, m= 6 ,P= 1/10 , o= 3.363a ,6/k = 142.9%K
| (l.14)
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The greater success of the Kihana(pdtontials is due to

their greater depth of the wells

It is geonerally agreed that the second virial coeffi-
cients alone cannot detemmine the form of. the interaction
energys Any how the more detailed infommation concerning the
interaction energy especiaily at distance r near to that
at which the energy is minimum, should be obtainable from
the equilibrium pioperties of the crystal, in particular the
density, the energy and the entropy. Guggenheim and McGlashan
(44) have correlated the interaction energy between argon
atoms with the equilibrium and none~equilibrium experimental
properties of argon, namely, the variation of cntropy with
temperature, of energy with temperature of demsity with
temperature, of density with pressure, of the secoﬁd virial
coefficient of the gas with temperature , and of‘viscosity .
of the gas at high temperatures, Their curve of interaction
enérgy in the neighbourhood of the minimum is expressed as
a power series in (r-ro) which introduces additibnal anharmonic
temms in the neighbourhood of potential minimum in order to

explain the solid properties, namely

2
=T r=r, 3 r=r 4
¥ 2 € g K ) & () + B (——)
'.'Co IO : I‘o.
(1.15)

where r, is the distance at which the energy is minimum, K,
~
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The greater success of the Kihara potentials is due to

their greater depth of the wells

It is generally agrecd that the second virial coeffi=
cients alone cannot determine the fom of.the interaction
encrgy. Any how the more detailed information concerning the
interaction energy especiaily at distance r near to that
at which the energy is minimum, should be obtainable from
the equilibrium properties of the crystal, in particular the
density, the energy and the entropy. Guggenheim and McGlashan
(44) have correlated the interaction energy between argon
atoms with the equilibrium and none~equilibrium experimental
propertics of argon, namely, the variation of entropy with
temperature, of energy with temperature of demsity with
temperature, of density with pressure, of the secoﬁé virial
coefficient of the gas with temperature , and of viscosity |
of the gas at high temperatures.ATheir curve of interaction
enérgy in the neighbourhood of the minimum is expressed as
a power series in (r-ro) which introduces additibnal anharmonic
tems in the neighbourhood of potential minimum in order to

explain the solid properties, namely

- 2

r=r r=r, 3 r-r

W . .8 ¢ K‘@*___Qﬁ.) ~ X @Awni%) + ? (~ o) )
To IO - T

(L.15)

where z, is the distance at which the energy is minimum, K,
A

‘
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a paramecter determines approximately the characteristic
frequency Y, X is a parameter which plays an important
role in detemining the dependence of ¥ on the lattice
constant gnd so indirectly the temperature dependence of

all the cquilibrium propexties.

84 the importance of anhammonicity is detemmined mainly
by the value of B =~ % and they have assumed for p a value
botween 0 & % so that anharmonicity is unimportant in the
atomic vibrations. Calculgtions show that this potential
gives considerably better fit tham (6312) potential in some
properties such as in casc of entropy and léttice constants

0'tC:§

Shavitt and Boys (47) (Fig. 7) introduces a new

“expression with unlimited number of adjustable parameters,

n amel y,

46 : 2t Al1l-r?) ]

Here r = R/ho, where R is the intemolecular distance and

R, is the distance for which U =0, A, B2 and Céi(i=0,l,2,-J
are the parameters, and it is suggested that & and 82 be
éssigned definite values while the linear coefficients

' C2i be varied to fit the experimantal or theoretical data.
The scale factor € can be made equal to the maximum depth

of the potential well by a simple 'normalization! of the
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parameters C2i’ It is shown that the choice A = 4, Bz= 0.1
makes the basic function of the system Equation (1;16) namely
that for which Cb = 1 and all other C, =0 , practically

2
indistinguishable from the L=J potential.

1 1 .
4)1‘ {r) =486 ( ‘:3':’2 3 ) (1eLl7)

Three cases of the potential function eduatiqn (1;16) given
hy assigning three sets of values of the C2i have begn
examined. The sccond, third and fourth virial coefficients
for the three potentials Uy Uy & ug have been calculglted
at various temperatures. The second virial coefficient was
evaluated by a stralghtforward numerical integration, the
third and fourth virial coefficients by the method of

expansion in Gaussian functions.,

Dymond, Rigby and Smith (48) proposed a two para=
meter, five temm, potential function of a polynomial foim,

namely,

| Ry 28 24 1
¢ (B) = € [9.331 (-——§) - 1,2584(%) + 2.07151(-%“ °
. = 1274452 (—j’l )8

By 6 '
= -0.399.59(?-—7 ] (1.18)

Where R is the intemolecular separation at the minimum
energy € , and are different for different gases. The
power of the main attractive tem (in R0 and R™8) were

chosen on theorctical grbunds; The attractive teim has no
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theoretical basis , but was found nccessary to give a
broad bowl to the potential function as required by the
experimental data. The potential function is illustrated

in Pigs (6). This potential fits well the second virial
cocfficient of a wide range of gases. The heat of sublima=
tion and lattice parameters of the inert gases have been
calculated using the parameiers obtained from the fitting
of the sccond virial cocfficients. And when the correction
of non=pairwise additivity in the solid.phase are applied,
the agreement is excellents The heat of sublimation calcula-
téd in this way arc considerably super@or to those estimated
from other two parametcers intemmolecular potentials in
common. usce The third virial cocfficients of Ar,Kx and

Xe have been calculated making allowance for the non=
palrvisc additivity (42,48). 1n:the case of Kr the calculated
results arc 10% low than the experimental results. Any
how this potential has got certain limitations namely, as
five temms are involved in the pétential function it is
unlikely that the coefficients of the various powers of

R can be regarded as meaningfulQ.Thus the coefficients of
Rné and R.S cannot be-used to evaluate theorctical
approaches to the theory of dispersion forces, and sccondly
at small separations the repulsion forces predicted by v
potential are clearly much greatér than those suggestad -

by scattering experiments.
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Pollara et al (55) proposed a three parameter
.potential function, to avoid the Kihara's objection

against the Lennard=jones (6%12) potential, as shown in -

Fige (4)+ of the fomm, <

o = W l ' O ¢ r £ o

¢ = =€ ’ oc £ r % (1.19)
¢ =-eii-:8 Vi £

which includes an adjustable bowl, a herd repulsion and-a
realistic (r-6) attraction tem, a hybrid potential of
the squarc well potential, and the Sutherland potential.
In order to test the proposed model they calculated the
sccond virial éoefficient by the usual methods of statis-

tical mechanics wusing Equation({1.20) given below 8-

B(T) = l (xRN o ap (1A% - (_imﬁ P° (exp (147 -1)
- o | T*-n o
! AoT (2n-l)n}

(1.20)
-

Where N is the Avogadro number, r is the intemolecular

*
distance T =kI/€, €, o, r are as defined in Fig. (4)
The results so obtained were compared to those of Hamann

and Lambert (56) (7:28) potential energy function,
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Recently, Dymond and Alder (54) dealt with the probl em
in a more systcmatic way. They studied the e¢ffect of varia=
tions in the interatomic potential of argon on the calculated
propertics of the dilutc gase They modified the L«J (6an')
potential as follows :

(a) Changes in the long range attraction.
(k)  Potential cnergy functions with different slopes to
the outer wall of the attractive bowel.
{c) Potential energy functions with different bowl width.
(d) Potential cnergy function with different repulsive
energy. o |
Pictorially these changes are shown in Figs (3a to 3¢)
Further they found that changing different regions of the
potential simultaneously leads to the same results as
combining ihe separate changes. And a potential function
which does provide a reasonable fit to the experimental
datas The general featurcs of this numerical potential are
that it has a smaller attractive tail, a wider bewl with
a steeper outer wall, and a weak repulsive region than
previously postulated potentials, to overcome the Kiharas

criticisms against the Lennard = Jones (6:12)potential.

Very recently to remove these criticism Ronald Y.
Kéo (57) et a1. modified the Lennard-Jones potential

as shown in Fige. (5) and expressed mgthematically as. 3
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. 1
Cb(r)=[n8 J[(l)n”(g)éjforo(r<r,
(n~6) T min
o (r) = ~8€ - for SR Y :
_ - 6
€ | -6 Y n
o ={?M®J{%n)n (-f) 0—) %r&kgf\m
1 (1.21)
where 1 Py
Tyin = (g0) o

and € o ,n, Y aré the maximum cnergy of attraction,the
collision diameter, hardness of the repulsion and width of the
bowl respectivelys Substituting the modified L=J {6 sns V)
potential function in to the expression for the second

virial coefficient given by,

o0 - A -
B(T) = 27N jﬁ - e Q(IMJJ g (1.22)

The reduced second virial coefficient is obtained for the

modified L=J (6:ns V) potontial as s

*, * 3/ _ o1 5/ :‘;¢
MO EERP AN ST I B e oVvy
o min
. =0 _
(1.23)

6 [
= aP Y3| (Kpy M)+ (R +1)

- (1<i’M2) - :y3p(z<2,ml)~F(K2+l)]'
+ P(Kz ’ M2) } (1424)
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in which,
8 =3/ (2anod)
T* = KT/Q
| 6
A = BI’*; /T*
B= n/n=
r =1 /0
nin min
7 (x+1) = xt
Mlxely yo) = ()t = (=t X
X+ly v+ = (XY = { e~ t dx
0
Ky = ( 65+3~n)/n
Ky =(65=3)7n
Y n
M =alE )
min
M, =R (g )

T min
When Y = 0 Equation {1.23) reduces to the fom of the

Lennard~ Jones (6:n) potential i.e.
§

e - Loar p o HERD )

Equation (1.23) and Equation (1.25) were used to calculate
the second virial coefficient for six gases , nitrogen,
C02 s cthanc, ne~butanc, ethylene, and benzene. They found
that the modified potential (6:n ¢ V) has an improvement

over the (6:n ) potertial.
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However, none of these potentials has been found
to be flexible enbugh to reproduce all the known 1ow-
density properties of the inert gases within experimental
error. This is truc inspite of the fact that recent
measurcments of the coefficient of viscosity at high
temperatures (50) indicate that values (51=53) derived

from the carlier experiments were significantly too low.

1,2 POLARMOLECULES

For polar molecules Stockmayer (59) modified L-J
(6sn) potential by adding some extra tem which corresponds
to direct and induced electrostatic temms. It describes
well the interaction between thoge polar molecules for
which interactions (dipole~quadropole and higher multipoles)
other than dipole=dipole arc unimportant just like HéO and

NHq molecules, The fom of this potential energy function

is,
S -3
¢ =222 ¢ 228, (536 &A= h)
where g = 2 Cos 8 Cos 8, = $in 8 Sin 92 Cos (0 )

or § (r,8,8,0,-06) =46 E_( %—)12 - -;':-)6}

--wuz (8,, 8., 0 0. )
3 91819 By 9 ¥y 1
r
(1.26)

Where g(Gl, 8, ' ¢.2 - ¢l ) =2Cos 8) Cos®, ~6in®, Sind

, . 2
Cos (®2 “@l )
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is the angular dependence of the dipole~dipole interaction.
#4 and M, are the pemanent dipole moment, @l and @2
are the inclinations of the two dipole axes to the inter=

molecular axis, and @ is the azimuthal angle between them

as shown in the Figs{10) » This potential (59) has been
widely wused to represent the effective intemolecular
force between a pair of polar molecules; The second virial
coeffiéient was calculated by Pople (60} using a perturba=-
tion method for this potential'fﬁhction; Additional examples
are summarized by Hirschfelder, Curtiss and Bird (12).

No transportiprOpérty calculation is aVailable for this
potential function. The limitations of this simple model
is obvious, however, first, the polar molecules are
spherically unsymmetric and therefore, the charge overlap
and dispersion forces for a pair of them can only fortui~-
tously be represented by a central force field such as the
Lennard=jones potential, second, the nature of charge
distribution in a real polar molecule may not be adequately

described by a centrally located pemanent point dipole alone.

Though the model, that has been used most widely fox
the interpretation of the propertics of polar gases in tems
of molecular parameters, is due to Stockmayer (59) yet it
is unsatisfactory in many respects e.g.,

(1) The collision diameters obtained from the application

of the Stockmayer potential to the second virial
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coefficienfs of polar gascs are frequently found to be
unrcalistically smalle

{ii) The model predicts only positive values of the
dielecctric second virial coefficient for all polar
gases while there are many polar gascs knovn to show
negative diclectric second virial cocfficient (61Y
c.g. =600 cm@/mole? for CH.F at 50°C (63). It is
impossible to explain such negative values on the
basis of the Stockmayer model. |

(111} In certain mixturcs, large positive enhancements of
dielectric second virial coefficient are observed
e.g;,__B ( * 10'3) for the mixture Me 0 + SO?
is 45.5 en® /ol 2 (71}, whereas the value Calcuiated
from the Stockmayer potential is 3.0 em®/nole?.

(iv) Por such mixtures, sccond virial coefficient may have

large negative values. For the mixture Me,0 + SO,

2

second virial coefficicht B12 = =1220 cm3/hole, the

. Stockmayer potential predicts =470 cmS/mole.
Efforts have been made to extend its validity and
to increasc the accuracy as well, by scveral authors by
introducing various modifications to the stockmayer potential
function. Notable among these arc the Buckingham and Pople
(62w63), Dymond and Smith (64) Suh and Storvick(65),
Sweot and Steele(66+«68) and Chang Lyoul Kong (69;70) ote, ,

they arc discussed in brief below ¢ -
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Buckingham and Pople (62,63) considered the offects
of~separatbly adding the induced=dipole energy, the
guadropole energy, and an arbitrary‘and simple version of

the molecular shape factor into the stockmayer potential.

Dymond et §l¢164) refined the’off-centré model, which
in conjunction wéth.a hard~sphere central potential could
providc a semi-quantitative interpretation of the four .
points discussed above and was especially successful for
mixtures, hy fhe addifion;of-a Leﬁnard~joneé central poten=
tial, and applied to the compressibility and dielectric
Virial\,coefficients of single component systems of polar
gésesQIThey found that off~centre dipole model, when applicd
to the»properties'of polar gases, has certain advantage
over the Stockmayer potential; Por almost all polar molbculés‘
(CHgF, NHy , CHCL,, AsFg, CHE,, Me,O, soz", HC1) the dielectric
virial coefficients are negative, or less positive than
would be expected from a central dipole model. This provides
‘strong evidence for the”hpplicabili£} éf thé-off~céntré

dipole‘modelé

Suh  and Storvick {65) extended the Kihara coré model.
to include non=spherical polar moleccules, The polar contri=
bution to the molecular‘paii forcefield is represented by a
pcrmancnd point dipole located at the centre of the core;

The molecular cores for the polar molecules were sclected cn
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the basis of the cores for the hydrocarbon homomorph of

the polar mclecules. Pople's perturbation method was then

used to obtain an expression for the second virial coefficient
of a polar gas. The potential function parameters for nine
CH

polar gases (CHCly, CoHiCl , CHCl, , CHCIQF, CCl COCH,,

oFgs Oy
CH,OH , CH,F , NHS) were then evaluated by numerical methods.
The second virial coefficient datas«For these gases are

well represented by this potential.

Sweet and Stecle'(66-68) investigated the interaction
between a pair of Linear symmetric molecules using the two
simple models + The two models consists of a linear Kihara
core potential, and a diatomic model(a model made up by
placing two centres of interaction on the axis of each
molecule, and the sum of all the pair interactions between
the centres on the adjacent molecules is taken as the overall
intemolecular potential‘energyﬁ.AThey extended -this model
~then, to the systems of linear polar molecules by adding
simply the usual dipole~dipole interaction to their potential

function.

Chang Lyoul Kong (69~70) refined the Stoékmayer
potential a step further, by taking into consideration a
mere realistic molecular shape factor and including the
induction effect for axially symmetric polar molecules.
This model basedon the following assumptionss- |

(i) A polar molecule with axial symmetry has two constituent
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2 =3 ,
U = R . » & ‘i’
, = A [2 Cos 8 Cos 8, + Sin 8 Sin 8,Cos (0,+0,) J

' 2
- (q%[%z/é ) 3'6 (3 Cos 8 +3 C05232 +2) (1.29)

qe and 4 - are the mean polarizability and the pemanent
dipole momeht respectively. The temms dipole~quadropole and
higher multié@les are neglected. The coordinate system defined

in Fig. (10).:

il

This potential was used to eﬁaluate the second
virial coefficiént of the polar gases (methyl flouride and
fluoroform) by aiperturbation treatment. But the merit of
a potential funcfion cannot be judged simply on the basis
-of its ability to reproduce the observed second virial
coefficients becaﬁse the ordinary second wvirial coefficients
of polar gases areaquite insensitive to the orientation
dependences of intérmolecular potential functions. So the
potential function is further tested by computing the
dielectric second virial coefficients (which is very scnsitive
to the orientation dependences of intemmolecular potential

functions) for polar gases (CHéF and CHFé).

In the light of the above discussion one may say
that the search ?or a true pair potential is still not
complete. Heuristic approaches are still justified and
occasionally rewarding. Even for the inert gases for which

L=J potential is fairly good there is a scope for modifications
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2 2°2?
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core potential, and a diatomic model{a model made up by
placing two centres of interaction on the axis of each
molecule, and the sum of all the pair interactions between
the centres on the adjacent molecules is taken as the overall
intemmolecular potential energy). They extended this model
~then, to the systems of linear polar molecules by adding
simply the usual dipole=dipole interaction to their potential

function.

Chang Lyoul Kong (69+70) refined the Stockmayer
potential a step further, by taking into consideration a
more realistic molecular shape factor and including the
induction effect for axially symmetric polar molecules.
This model basedon the following assumptionss - |

(i) A polar molecule with axial symmetry has two constituent
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atomic groups located on the molecular axis. Each
atomic group, which may be an atom or group of atoms

has a centre of Lennard-jones (6:12) interaction.

(ii) The potential energy between a pair of the molecules
due to the charge-overlap and dispersion force is the
sum' of all the pair interactions between all consti-

tuent atomc groups on the adjacent mclecules.

(iii) The molecules are polarized and each molecule has a
point dipole located at its centrec. The centre of

molecule is assumed to be the centre of gravitye.

(iv) There is uncorrelated, free rotation of the melecules

on their axes.

The form of the potential cnergy function is,

Q (RQGl! 62 L Ql’ 02) = Ul(R’e Ql! @2)+U2(R,Gl, 62!61102)

l’ 62'
where U; is the sum of all the pair interactions between the
constituent atomie groups, and U2 represents the energies
of dipole~dipole and dipole=induced dipole interactions

and expressed as,

i o o) - n
- 12 AB 6 C (o3 {
U = oy ab, 12 ab. 6
LT Ey [ (=) (=) }Meabg(—;—) (=)
i ALB IAB i ab rab H
o oy 6] Y28 0. |
vae [(TWyo (T O] g [ Byre e
Ab T T aB[ T TR
Ab . . aB a
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2 =3 .
U = R i i C:
H [2 Cos 8 Cos 8, + Sin 8 Sin 8 ,Cos (Ol+ 02? ]

2
3 Cos el + 3 Cosze + 2 ) {1.29)

2

qe and 4 = are the mean polarizability and the pemanent
dipole moment respectively. The temms dipole~quadropole and
higher multiﬁoles are neglected. The coordinate system defined

in Fig. (10).:

This potential was used to evaluate the second
virial coefficiént of the polar gases (methyl flouride and
fluoroform) by a perturbation treatment. But the merit of
a potential £Unc£ion cannot be judged simply on the basis
of its ability to reproduce the observed sccond virial
coefficients becguse the ordinary second virial coefficients
of polar gases areaquite insensitive to the orientation
dependences of intérmolecular potential functions. So the
potential function is further tested by computing.the
dielectric second virial ccefficients (which is very sensitive
to the orientation dependences of intemmolecular potential

functions) for pelar gases (CHéP and CHPé).

In the light of the above discussion one may say
that the search for a true pair potential is still not
complete. Heuristic approaches are still justified and
occasionally rewarding. Even for the inert gases for which

L=J potential is fairly good there is a scope for modifications
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by altering any or all of the characteristics of the poten=~
$ial, viz. the hard core , the depth of the bowl and the
width and slope of the tail of the bowl. Thus, for example
Dymond et al (54) find 2 numerical potential, as modifica~

tion,to agree better for some properties of inert gases.

It emerges from this discussion, then , that in
search for a real pair-~potential while keeping the simplicity
of the L=J potential some sort of flexibility in-the
potential parameters must be so introduced as to comfomm
it to the experimental data. A new line of approach could
be to introduce a suitable temperature dependence of the
. parameters, as mentioned above. We shall retumrn to this

topic again in Chapter 1y.
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CHAPTER II

A survey review of expressions for molecular
noteniials has already been given in Chapter one where it
has been brought out that a temperatufe dependent potential
may be ~ as a modification to thec simple L+=J potential
form ~ a good possibility to which attention should be given
In this Chapter we discuss this problem from an another
point of view: starting from the experimental PVI ~ data
for liquid water we shall see how it can throw light'on an

"effective® potential for liquid water.

EQUATION OF STATE FOR LIQUID WATER

The equation of state
| pv = ¥
for an ideal vapour makes the assumptions

(i) That the molccules are point masses, and

(1i) That they have no mutual interactions
Van der ¥Waal {73) in 1879 pointed out that at high pressurcs
these assumptions are not valid and for a recal gas the
equation of state has t¢ consider both the size of the
molecules end the mutval interaction between them;vSo

to allow for these two, he replaced V by (V-b), and p

a
by (p+‘;2) » He thus cbtained the famous equation
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. N2a .
{p+=~—1) (v-Np) =&T (2.1)
V2 |
which is known as the Van der Waal's equation. a and b
are the Van der Waal's constants. When V is large, both
b and a/V? become negligible, and equation (2.1)

reduces to the simple gas eguation, pV = RI.

.  The attractive force between molecules which give
rise to the tem (a'/V2) in Van der Waai‘s equation, is
responsible not only for the deviations from the gas laws
at high pressures but also for the condensation of gases to
“liquids. b is the excluded volume and is about four times
the aggregate volume occupied by all the molecules in a
gramw This equation is valid for gas under high pressures,

though not so well for high densities‘(liquid).

The Eyring equation of state for liquids is a.
Van der #Waal's type equation
AT) .
(p+——)(V=~ 0.7516 p*’3 V3 o g (2.2)

where A is temperature dependent. The tem 0.7816 p1/3 \1'2/3
can be replaced to make It analogous to the Van der Waals
equation; by a factor B = B(T) expecting it to be temperature

dependent, So the equation of state for liquids becomes

( +ﬂ -
P V2) (Vv = B(TY) = RT (2.3)
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Here, in this equation A and B both are temperature dependent,
We calculate first the actual values of A(T) and B(T) for

the case of water from the known PVI= data (75) for ligquid
water. The values of A(T) and B(T) have been detemmined

by solving the equation for knowh valueé of p,V, and T

- applying the Newton =~ Raphson method, see Appendix VI,

using an electronic computer. The values of A(T) and B(T)
50 obtained are illustrated graphically in Figs (12} and

(13)» PVI behaviour of liquid water ié illustrated in |

Figu (14} .

2,2 INTERPREIATION OF A(T) and" B(T) FOR LIQUID WATER

To interpret A(T) and B(T) in temms of molecular
structure we start from the statistical * mechanical deri-
vation of the equation of state. The partition function f'r

a real gas will be written as @

1 1A .(p%-&p? +.o0ud p2) @(??r,?,)
Zy = & m” ,,&exp ez T2 TN P TN
pN Ny B 2mkT kT

~ - - R “ -3 vy ‘
: AP, o dp2...de..drldr2..drN (2.4)
where @ is the total interaction energy of the system which

depends on the positions‘%i ' ?Z, ...*;; of the molecules.

Since  depends only on position coordinates, we can write

I T L PLY Pobf «-t by 9
ZN -— hN N: [ XK1 P .Xp s i )dpl‘?ﬁ2o---?ijN %{'

i.g exp l—- j (?l%gkl.g\]) }&ld;‘»

: v
T 2....drN

i

(2.5)
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Then, evaluating the first integral and writing Q for the

second we get

L = ™ ( “T”“) Qy (2.6)

Since QN is the only part of Z vwhich depends on volume the

formula for the pressure simplifies to

a ' .
= et 3 l7
po=nr = (b (2.7)
where, _ I s T
| S o ¥(mym e )i o
Q = ffj...’ exp ’ - o J dry dr, «. dry
v B k
il [ ox {- o) 1 o
i€ 3 s kT S

or, because it has bcen reduced to two-particle potential,

droping the subscripts, we write

Q = II chp ( - -ﬁé%lﬁ dr (2.8)

whore r is the distance between two particles. To evaluate

it, we introduce a new function

fr) = oxp {. qéél } -1 ;

So, we can write,

Q = (H (1+ £,) dz,
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or \}\’ + o Foe - d_-§ a_; d.;.:? ‘Uc—a; f.
- \drl I T Tk w bty

~  —y
dri drk
2
¢ N N .
") OI\]::V +_ VN"2 o~ T (210
> ink dr; dr, _ )
But 5; d~’ = S(\~¢$Eikl 5
ut, fik ri rk = | e kT -1) dri drk
5
cee. = 4TV I(C kT ~l)r2dr
o ,

On placing the proper limits, and introducing

.___417) ¢\/kT

J ~1) rzdr, the first irreducible integral.

Therefore from Equation (2.10), we get for configurational

integral
o }
i 2
‘ N N
W=V (L+ — ) (2.11)
2V
| N/
7 (27mkT) 2 N N2
N = v A G N PO R
Nt h oy !
And the cquation of state as
i1 N2yT
o T NI X g (2.12)
Voo o
Van der waal's cquation of statec, on the other hand is
NKT N%a
PT v W2
2
, NkT  N%Tbh N4
Y . T el (2.13)

v V2o R
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Then, evaluating the first integral and writing Qq for the
second we get
1 mkT §% ‘
Zy = o ( _;ES) Q (2.6)
Since Qq is the only part of Z vhich depends on volume the

fomula for the pressure simplifies to

d ' :
p =N = ( LnQN) (2.7)
. ; Q (rl’ Ty ereTy P = —
QN = "(‘{j ‘e 05 GXp ’ Ld kT - - j dl‘l dI‘2 e dI'N
v L
: . @(r . -
- ﬂ j exXp {- _.__.J.'_J) ‘L dr. .
i 3 kT - 1]

or, because it has been reduced to two-particle potential,

Y

droping the subscripts, we write 7

( - ﬁg—)) dr (2.8)

where r is the distance between two particless To evaluate

e

Qq = i joxp

it, we introduce a new function

w - e [8] L

So, we can write,

G =TT (e £, dr,
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-

or, oh expanding the product

% - S+ Tyt Dhyg gt oo (2.9)

Now, if therc is no interaction between the particles, f{z)=0
and the first tem in the series (2.9) corresponds to the
contribution in Q from scparate non~interacting particles,
as in an ideal yvas. The tems of the first sum in the series
(2.9) corresponds to the contribution from the interaction
of all possible pairs onc by onc. The tems of the second

sum in the series {2.9) describe the contributicns in Q
from the simultaneous interaction of two pairs of particles
in the system, or the contributions from thec interaction of
triplots of particles. Analogously, the successive unwritten
tems of the scrics (2.9) describe the interactions of trip=-

leotsy quadruplets, ... etc. of particles.

In the case of a rcal gas, it is assumed that
clusters of molccules of more than two arc not likely, so
that it is sufficient to consider only the first two temms

N(N-1) .~ N2

in the expansion, oquation (2.9). There will be —— =

pairs of moleccules. Furthemmore, for a short-range potential -
O(xr) , the function f(r) is apprcciably different from zero

only in the small region of influence of the intemmoleccular

forcese
Therefore,
N2
Qy = ( 1+ — - =g
I\ d L N
> fik) T, dr,
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2 ¢ .
I\ Y - - = —
or que '+ .
] drl...dr, L dr, _ dr drk+l ’ dIN«ffik

z ie j#1 k-l RN
dri drk
2
. N N
¢ ¢ QN =V +__ VN-2 —— 5 .}.O
5 jgkdﬁ_m% ( )
But £ dr d;? = s(e Q kT 2 2
! ik ik T ~1) dr, dr
o -4z)
e = 4‘|TV

Ot.__"'\8

(¢ KT . 1) r2dx

On placing the proper limits, and introducing

pomal i, AT

0]

2

-1} r“dr, the first irreducible integral.,

Therefore from Equation (2.10), we get for configurational

integral
. ,
o _ M N2
N=V (L+ — ) (2.11)
2V
W2
; _ (2mwmkT) o l+NQ
N - N ——
Nt h3N oy ? )
and the cquation of state as
Nk N2KT
p = ._l_i{ - — B (2.12)
Voo oy
Van der waal's cquation of state, on the other hand is
NkT N2a
T v w2
2
, NkT  N%%kTb N
o ML 21‘}‘ L2 (2.13)

N, V2 V2
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Comparing the equations (2.12) and (2.13) , we get,

..E. = .E... - b : (2.l4)
2 kT
Now becausc , @
. ~ - @/kT
p =4 ?rj (¢ -1) r4dr
3 A .
e -0AT P AT
=417 j (e - 1) rldr + j (e /% —l)r2dr
0 o |

For a simplec calculation of a and b in tems of the potential

parameters, we take the simplificd from of § (r),

o~OAT

for0¢r €& , Or) = 4 =0

;B o= 4“jr2&r N 41.!_}0(._ (_’11;“)4_ _.l_ (M 2 o

) 4.
S KT 2V kT )x%dr
(2.15)
Comparing equations ( 2.14) and (2.15), we get,
L
b = _2___ 0—3 R
3 (2.16)
a =

2 T jilm(r)l £ dr

The above derivation is fairly good for a real dilute gas,
wherc clusters of more than two particles can be assumed
non~cxistant. For liquids, howover, this assumption is not
correct. Since these constants‘in'Eyring equation (2.3), on
calculation turn out to be function of temperature, as in

the previous scction, thercfore, for a liquid we can write

Be 2 3 T 2
"z Y and A =2 §oo100) | 2P
T
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logic does not suffere. Such a concept is not alien. A
"flickering cluster model (76,77)" already exists for
liquid state. In fact, the ncutron scattering cxperiments
do reveal a short range arrangement of molecules inside

liq\}ids-

Supposc ¢ molecules, at a certain tomperature,
unite to form one drop on an average such that the liquid
. . N
is treated to consist of - = drops now. The energy of

9
clusterization of these particles

2
€ o = -%9 +B g3 +gkT . (2.18)
vhere the first term is the condensation  term which for a

supersaturated vapour is given by « = const.*%nf;(s is the
ratio of supersaturation), the sccond tem is the surface
tension and the third temm is the vibrational energy of
molecules inside the drop. Thus E can be assumed constent
for a certain tomperature. If we denote by i(rlj) the
interaction cnergy of two drOps, and by p the momentum of
the transhatory motion of drop, then we can write for the

energy of each drop as
2

P
~ * & o + 3 (2.19)

(Where M is the mass of the drop) and the partition function

for the liquid will be,
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Comparing the equations (2.12) and (2.13) , we get,

&2y (2.14)
2 kT
Now because , 0
S, -~ OAT
B=eTf (. 1y
0 » ‘
™ 0AT - %W
= 477 5 (o -l)r2ar +£(G &T*l)rzdl‘
0 o

For a simple calculation of a and b in temms of the potential

parameters, we take the simplificed from of ¢ (r),

, o0/

for 0¢r < ¢ , ¥zr) = . =0

o , .
S B o= 4“({1‘%&7 + 4.73‘?(- %—5)4- -—l— (%-]:—))24-..)1*2(1:

(2.15)
Comparing equations ( 2.14) and (2.15), we get,
m -
b = 2..... 0*3
(2.16)

o
1l

2 (?’IO(I) ‘ % dr

The above derivation is fairly good for a recal dilute gas,
wherc clusters of more than two particles can be assumed
non-oxistant. For liquids, howover, this assumption is not
correct. Since those constants in 'Eyring equation (2.3), on
calculation turn out to be function of tempcrature, as in
the previous section, thercfore, for a liquid we can writc

2 3 @
J

B= = ¥ and A z2 |0(=) | x%ar
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vhere ¥ is the constant for liquid corresponding to ¢
for gase Then, in sc far as A and B are functions of tempera-
ture ©Z and , & , tho depth of the potential ¢>(r) appro=

priate for liquid should also be temperature dependent @
1 =20 & =¢(m

This would be the situation if cluster integrals in the
expression of equation (2.9) could be neglected as in gas.
But as we know they should not be!  because of the large
density the clusters are no less likely to be fomed than
the pairs. On the other hand, since a Van der waal form of
equation of state, cquation (2.9), describes the liquid very
well, it should be possible to introduce some sort of a de~
coupling device (mathcmatico-physical) which will enable Qu

to be cvaluated in a way analogous to the real gas casc.

For this to do, let us imagine the liquid as a
real gas of minutc molccular "“drops" of the liquid. These
drops = the molccular aggregates - arc assumed to play the
samc role in the liquid as the molecules in the gas. They
have their internal cnhergy of formation and fhey move inside
the liquid as one identity. The 'drops' arc not nccessarily
pemeanent structurcs, they may bo transient to any degree.
So long as such a situation prevails, that at any moment
inside the liquid, on an average, if somewherce some 'drops!

break=off an cqual number of them form somewhere clse, the
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logic does not suffer. Such a concept is not alien. A
Wflickering cluster model (76,77)" already exists for
liquid state. In fact, the ncutron scattering experiments
do roeveal a short range arrangement of molecules inside

liquids.

Suppose ¢ molccules, at a certain temperature,
unite to form cne drop on an average such that the liquid
. N
is treated to consist of _ = drops now. The energy of

g
clusterization of these particles

/3

€ cy = -%9 +8B 92 + g kT v (2.18)

’wherc the first term is the condensation  term which for a

supersaturated vapour is given by « = const;*%n‘s(s is the
ratio of supersaturation), the sccond term is the surface
tension and the third tem is the vibrational energy of
molecules inside the drop. Thus Ec@ can be assumed constant
for a certain tomperature. If we denote by @(rij) the
interaction cnergy of two dIOps, and by p thc momentum of
the transhatory motion of drop, then we can write for the

energy of each drop as
2
P

E :-2-};1—-}'8(:64' ‘é (2-1.9)

(Where M is the mass of the drop) and the partition function

for the liquid will be,
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1 1 E '
Z =__.___._SOX B N
llq h'n ny’ . p ( kT) dpldp2v . :3pn . dqldq2¢ D odqn
€4 (2.10) .

Then, on writing ¢ kT _ 4 (T, 9) , a constant not de~

pending on position or momentum of the drop, and evaluating

the momentum integral, we get,

3n
R asiiel oT | Q, . 2.21)
Zliq nt ( h ‘ 9 | liq ( ’
where, _ -
T (=¥ -
I LT ) Qg Aoy - - -dq (2.22)
\liq - pr bl “*"i‘{’f‘""""‘"" dqldq2_covc qn oLl

Now procceding as in deriving cquaticn (2.7) to (2.11) with
the assumptions :
1. The drop-pair interaction potential is similar in
nature to that of the moleculcs.
2. Tho likelyhood of three or more drops coming within

the appreciable interaction range is negligible small, we

gct finally, ® - §
g T ATV e KT L q ) o2 g
0
or Q v . (1 n?
. = do— 2423
lig oy 8 lig ) (2.23)
3
00 2l 3
. | :
Such that A(T) = 20 § 1§ (o) | o%g =_..3_.c(3 =%
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Wherc fis the radius of the drop and € 1is the depth of
the potential well in § , the drop~potential. It is clear,
then that

S =2 Y (1) and € = &(T)

_§’ it must be cmphasized, is not a molecular
potential, and in so far as it has been introduced as a
decoupling device it is an " effective potential invélving
the parameters ¥ (T) and € (T)

We shall assume the nature of § to be the same
as that of the L-J potential, only the parsmeters being
different. ‘

n
(Ey - 2y |2

=l =]

(L~%)

wherc & is the potential =~ well's depth and zr is

the radius of the drop as a hard=-core. € and E:: are

then known from the values of A(T) and B(T) .

Thus,

€ = ¢ (T) = Const x atd
B(T)
Fe=am= | e



45

With these values the liquid partition function (Equation(2.21))
1s determined, cexcept for g. which must be fixed by
comparing the property calculated with its experimental

valuc.

The concept of effective pair potential is not
cntirely new. Recontly Rowlinson et al (78) has  also
considered a effective pair potential which leads to
correct distribution and correlation functions, These
effective potentials depend on both density and teﬁperaturc,
but thcy do not have the frec-cnergy character of some kinds
of temperature dependent energy levels o They are to be

regerded only as computational devices.

Rowlinsonts treatmont of the effective pair potential
is although of general néturo, is not casily amendble to
experimental  determination of the potential. In the present
treatment the parameters of the effective drop potential
are correctly known from the values of A(T) and B(T),
which, in their turn have been obtained from the experimental

pvr L] datau
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CHAPTER III

.A number of empirical and semi-empirical relations
‘are available in the literature to study the temperatu;e
\ depeﬁdence,of various propérties of the liguids But as_fcrA
.eééh property along there are mahy éuchvemﬁirical.:elations
~and not one gives a good fit with the experimcntal déta in
the whole range under study, the subject of studying the
functional depéndence of temperature of various propertics
of liquids becomes most unsatisfactory. As fof example the
temperature dependence of the viscosity of liquids has been
studied by several authors over a long pgriod of years, and |
a:large number of reléfioﬁships involving thesc variables
’ has'been compiled, :A resume of a number of these expressions
relating viscosity to temperaturé may be found in a Chapter
" by Arthur K. Doolittle in Allexander's Colloid Chemistry(79) .
Similarly a number of empirical or semi-cmpirical rclations
aie available to study the temperature dependence of other
properties al so é-g; Surface tension (80~82) (though no
direct relation giving teﬁperaﬁure variation of surface
tension is aVaiiable in the liteiatﬁre), Dielectric
“constant (83=85) sélf—diffusion (86) , Sound velocity(87489}

Vapour pressure (90), Refractive index (91) ctce
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From onc point of view, according to which an
cmpirical relation is a desirable first step towards
explalning the property in temms of something basic about
the liquid =~ say= the molecular structurc or the molecular

interaction = the present situation is certainly not satis~

factory.

The Millers(92) expression for viscosity
,}n’fl =A + B/ (T ~T1) (3.1)

prepares the way for a meaningful interpretation. in torms

of molecular structure. His expression {Equation (3.1))

holds good for liquid watecr. M iller (88() interprets his
relation in context with the Doolittle!s (93) free~volume
cquation for viscosity and Cohen and Turnbull's (94) temperc-
ture dependence of free;volume. He suggests that the tem

- (TT,) /8 represents, f, the volume fraction of free=volume.
This contention is further supported by the fact that the
free=volume so obtained is also in agrecment with an independent
estimation of it according to the model of Némethy and

Scherage (95).

Expressions of the type of Miller (Equation (3,1))
were later found tc hold good for many more properties of
water (96) and this leads to a dilemma, namely that the

calculations for free=volume separately from each individual



property are quite inconsistent among cach other. This point

has becen discusscd in detail in our earlier paper (96) ..

An alternative to free=volume could be the fractions
of the open=packed or the close=packod spocies of the twoe
state theory. It should, however, bec observed that just as
the frec=volume concept is only semi=-cmpirical, so also the

two=state theory of water, is in itself not fundamental,
for, it should be possible to further reduce the assumptions
of the theory'; the densc~ packed and open-packed constituents

of liquid= in temms of molecular interactions.

The situation can be saved, however, if we write

cempirical relation in a modificd fomrm as

LnXx =4 +B_( ) (3.2)

X X T T

Here X represents the property, Ay and Bx are constants for
that property, To the same constant, reference temperature
as in Equation (3.1) and T, the critical temperaturc. In this
form the volume fraction of free=volume should be expected

to be represented by T =T
i)

£ =

TC-T) o (3.3)

which will come out the same for any property. Here we have

two reference temperatures, T, and T, , which almost coincides

c
with the Debye temperature, has significance in the Cohen=

A
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Turnbull derivation which state that the origin of the free
volumc in a liquid, as manifested by transport properties, is
at this refercnce temperature T,, and that the frec=volume

is proportional to temperature above Ig « The significance
of T¢y the critical temperature, also becomes understandable
in the same context. The liquid under all circumstances will
become gas at and above the temperature T.» and f can have

meaning for tomperature below T, only.

Very rccently, Singh, Dass and Varshneya (107,97)
has shown that relation (3.2) holds good for almost all
propertics of wafor that.we have tried, viz., suxrface tension
(98) , viscosity (99), self-diffusion(100) , Dielcctric=
relaxation time (101), Spin-lattice relaxation time (100)
Themal conductivity (99), Mechanical ~relaxation time(102)
Uitrasonic absorption (102), Dielcctric congtant (98), Sound
velocity (89), Density (103), Volume (98), Refractive Index
(98), viscosity at high pressure (104), themal conductivity
at high pressurcs (105), Volume at high pressurcs(75),
Magnetic susceptibility (106), of liquid water.

Computed results from Equation (3.2) for the proper=
tics under study at atmospheric pressure are given in Tablc 1,
and for viscosity, themal conductivity, volumc , at hiéh
pressures arc given in Tables II, III, IV, respectively. The

agrecament between present calculations and experimental data
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is found to be goods The results-arc also shown in graphical
fom at the ond of this Chapters The values of the constants
Ax and By alongwith the range of study are reported in
Appendices I, II, III, IV, respectively.

The activation cnergy of different properties of
water can be calculated on differentiating the relation (3.2)
with respect to temperature. The activation energies of viscous
flow, Diffusion, thermal conductivity, and spin=lattice

relaxation are calculated by the following relations ¢

E\ = =~ RI°( ddfn ), (3.4)
ED = er(f_-%i)P (3.5)
B = RT2 (_%&Tl_ - (3.6)
EJ\T = R’ (f_g_;___}_‘r__)P | (3.7)

arc reported in Table V and graphically shown in Fig.(22).

In literature, we find that the activation=cnergy
in casc of water should be the same whether calculated from
sclf~diffusion, viscosity, spin«lattice relaxation time,
themal conductivity . But the comparision of all''the four
, B, shows that

1
activation energies arc different calculated from different

activation cnergies i.c. Eﬂ + Ep o Ep

properties.
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The activation cnergy for themal conductivity is
lessy roughly a factor 8 than that for other transport
~propértics, iece, the value of B, is a factor 8 lesss This
result is not purprising due to the siméle fact that in this
region of 0° to 100°C the magnitude of all the transport
properties (except themal conductivity) varies 8 to 10
times, whercas the magnituae of themal conductivity varics

one and half times only.

The behaviour of transport properties of water
could not be explained on the basis of transition state
theory, according to which the activaticn process for viscous
flow or self=diffusion etc, in a non associgted liquid involves
essentially the creation of a vacancy infront of the diffusing
molecule for the latter to move into , because firstly, the
molar volume of water is smaller than ice and secondly, at
tomperature not far away from 0°C the viscosity of water
decreases continually when the cxternal pressure is increased
from atmospheric pressure to about 1000 Kg/cm2 and this picturc
of watcr behaviour is unlike that found for non=associated
liguidse. So, what can be concluded is:that at oxdinary
temperétures, the water molecules are loosely =packed in
their nomal state so that cnough vacancics exist to meake the
dissociation of water molecules from the scmi~crystalline

lattice.
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Some morc interesting points may be summarized as

below §=

(1) Since the relation (3.2) cxpresscs analytically
the functional dependence of temperature of almost all the
propertics of water for the whole range of melting to boiling’
point. Therefore the relation (3.2) will also be uscful {a)
to have checks on the theoretical models , and (b) to
calculate a number of parameters which Cannét be obtained .
otherwise like activation energy  of transport properties.
(i1) Becausc this relation gives the'functiopal depen= |
dence of temperature of volume at different pressurcs, so

it can be given the status of cquation of state for water.
(iii) Recently, Krishnaji and Mansingh (108) have
classified a number of liquids on the basis of the value

of Q, = ET/ Eq where E 4 is the activation energy
of dielectric relaxation time and E4] 1is that of viscosity

of a particular liquid. In case of water
A
L = —— = l.l
which suggests that dipole rotation is frozen in case of

water at the freezing point.

(iv) The parameter T  is a constant quantity for a
particular liquid but it is different  for different liquids

e.ge Tp has the same value for all the properties of water
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under studys Therefore it appears that T, is an important.
paramcter which is playing a very important role in the liquid
state perhaps in the fomm of hydrogen bonding rather than a
convenient reference tompérature. This is in confimation with
the views of others (109).

(v). The value of T = 155°K  for water is close to the
Debye tomperature, 135°K found experimentally (110) by the
slow r neutron diffraction technique as well as to the theore~
$ical value obtained on the quasi~crystalline structure of
water (111,112),.

(vi) If we collect the values of T fox all other
associated liquids, we find that except water all other
liquids so far studied (107,113) on this approach , have
negative value of T, . We expect this due to the effect of
hydrogen bonding being maximum in Gase of water and then

comes methyle alcohol (T, =0) and so on. Further it may

be used to classify the associated liquids into two categoreis
(i) with positive value of T, (ii) with (=ve) value of Ty e
(vii) In the literature, we find that T, has bcen taken
equivalent to the glass transition temperatﬁro at which

the viscosity becomes of the oxder of 1013 poisc. But except
water all other liquids under study have (=ve) value of Tye

it thereforc reflects that these liquids may be taken much
below their meiting point without sclidifying i.c. liable to

much supercooling (114).
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(vii) It is also interesting to note from Appendix (III)
that the values of B, not only vary from property to property
but even assumecs the negative values in the case of some
propertics of water. The same conclusion beComes obvious

while studying the pressure dependence of thexmaliconductivity
because By increases upto 6000 Kg/cm2 and afterwards decreases
indicating that the frce volume is increasing upto 6000 Kgf%mz
whereas the value of Bx in case of viscosity decreases with
pressurcs They are in contraét to the éxperimental obscrva=
tions. This clearly indicates that the free volume conceived
by Miller (92) is no more valid and something othor than

frec volume is playing an important rolc.

DLSCUSSION.

What understanding does the above expression leads
us into ? Firstly, we note, thatthe constant A corresponds
to the value of the property at T, one of the two reference
‘temperaturess At temperatures above TC the matter cannot
be expected to remain in liquid state, it would be gaéeous,
and there, from the Equation (3.2), since T T, , the
secbnd tem would contribute little as it will also change
sign. He may assume therefore that the factor (T =)/ {T~1,)
is a temperaturc tem characteristic of the liquid state.
Secondly, the origin of this term must be sought in temms

of something basic of the liguid. There may be two views
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(1) In tems of the two=state theory (T .~T) / (T-T,)
must have relation with the fraction of close=packed and open=
packed species af a temperature, T, and (ii) in tems of
molccul ar interaction, this tem should find an appropriate
place in relation to interaction energy. We consider these

two views respectively in the following -

(1) TWO STATE THEORY

| In the two-state theory(102) the froction of the
close=packed specy, X., in the liquid is obtained through
involved and indircect methodse This is a function of tempera=
ture, and the valucs quoted by differont authors have wide
variability. In vicw of the foregoing discussion if we assume

that X, can be expressed as 3

T «T A
> S — - (3.8)
T.~1
theb, the fraction of the open=packed specy, X, will be
T=-71
= 1 - = 1 = RY
% *e T.~T
To =T, =~ 21
=\ i ) 349
(2 (3.9)

Although the assumptions (3.8) and (3;9) have not bcen
proved here in any riggrous theoreﬁical way(as a matter of
fact, any theoretical expression to express Xo(ox XO) as a
function of temperaturc wouid follow from the two=state theory
where itself there is wide varaibility). Hence the fact that

values obtained from (3.8) and (3.9) agrce rcasonably well
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with the two state calculation, should be regarded as,

indirect proof, but it should be justified in view of the

fact that the values of XO so obtained lie at all temperatﬁros
of intercst within the range of valucs quoted by various
authors (95,115, 116,117). These assumptions (equation(3.8)
& (349)) can bc made use of to calculate some propertics,
say o the specifié volume and refractive index of water, as
we do herce The good agreement of these calculations with
experimental results once again point to the justification
of assumptions (3.8) and (3.9).
(a) Specific Volume -

The volume V , can be written as

V= X0V6 + XCVé

Where V, and V, represents the specific volumes of the open=
packed and close=packed species, respectivelys. The temperature
dependence of these can further be expressed as

Vo

19.657 (1 + 1.55 % 10%t) }
} (3.10)

!

V. = Vo ( L+ at+Bt?)

0 . 0 )
Where Vy and Vg are the values at a reference temperature,
A and B the coofficients and t+ the rise in temperature above

the reforences tomperature, then,

Vo= Xo* 19.657(141.55%10 ™) + (X2 (1+At+Bt?))
| (3.11)
Here X, and X. are known, Vg y A and B can be fixed from

threce known valucs of V. These are obtained to be
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3.6358 + 1073 o¢™
=5 oc*l

A
B

I

~3.2859 * 10

V"= 0.802071 c.c.
The calculated valucs for V along with the experimental
values are given in Table VI, The agrecment is very good.
(b) Refractive Index &

Using equations (3.8) and (3.9) and the relation
for refractive index of water given Mitra et ak(118) on
two state approach,

(n=1)v = XK+ XK

where n is the refractive index, V the specific volume and
kos ko some constants to be fixed empirically. They arc
obtained as ko = 043359 and kc = 0.3311. Then from experi-
mentally known values of V, n can be calculateds These values
alongwith the GXporiméntal are given in Table VI « The

agreement is again very good.

MOL ECULAR INTERACTION

As already rcmarked, the two=-state theory of water
1s 1tsclf not fundamental, because it is further reducible
in tems of molocular inteoractions. The close=packed
and open=packed species, in as much as they rcpresent two
idecalised classes of molccular groupings= noct necessarily
rcalistic = can also be expressed in temms of 'tight' and

'loose' molecular bindings. This may be hydrogen bonding
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or, in fact, any dipole and multipole binding. Then, to
speak of temperaturce dependence of  fractions of close =
packed and open=packed species is equivalent to speaking of

temperature dependence of molecular=interaction encrgy.

Quite at hand we know for dipole interactions that
the encrgy depends upon the dipole moment, 4, the distance
r, and relative orientation angles , ® and ¢ , which certainly

depend upon the temperature.

The above discussion, ffom which we leam that

! -
liquid water involves a tem t T -7 i for the tamperaturc
T = T ;
‘o

dependence of its properties, we are led to conclude that
the molecular interaction energy for liguid water must some=
how or other involve this temm as argument of a suitable

function.
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TABLE ~ 1
Tempera.- Surface Tension {dynes/cm)| Viscosity (cP)
ture :
Experimental Calculated Exp gij‘l.men ~| Calculated
0 75 .64 75 .64 1,7938 1.7938
5 74492 73.98 1.5188 1.5236
10 74,22 72.48 1.3097 1.3107
15 73449 71.12 1.1447 1.1404
20 72.75 69 .88 10087 1.0022
25 71497 68474 048949 0.8888
€ 71.18 67.70 08004 07946
35 70 .38 66 .74 0.7208 0.7156
40 69..56 65.86 04653 0.6487
45% 68.74 65.04 05970 045917
50 6791 64428 045492 045426
55 67405 63457 045072 045001
60 66 418 62.90 0.4699 044630
65 - 62,28 0.4368 0.4305
70 64 .42 61,70 044071 0.4018
75 - 61.15 0 +3806 0.3764
e 62.61 60 .64 03570 03537
85 - 60.15 0.3357 | 0.33%
90 60..75 59.469 10,3166 0.3152
. 9% - 59426 042994 002988
" 100 58 485 58 .85 042839 0.2839
L .




TABLE 1 (Continued)

60

_....w..,._
R

Self ~diffusion(1g™

Diglectric constant

e cn*/scc) {
°C * IExperimental| Calculated |Exp érim_ ental | Calculated |
0 0497 0197 83400 88400
5 1.16 1.18 86 .04 84.46
10 1.3 1.4L 84.11 81.32
15 1,58 1.66 82422 78.52
20 1.85 1,94 80.% 7601
25 2.13 2,23 78 .54 73.74 |
0 2,46 2,55 76 475 71,69 |
35 2479 2,89 75400 69.83
40 3.14 3.24 73.22 68.12
45 3.52 3.62 71 .59 66 456
50 3,94 4.01 69.94 7 65.13
55 4.37 4442 - 63480
60 4,82 4.84 66 .74 62.58
65 5430 5,28 - 61,44
70 5,78 © 5,73 63468 60,38
75 6427 6.19 - 59«40
80 6.81 6 466 60476 58 .48
85 7.2 7.15 A 57.62
90 7.75 7464 5798 56 .81
95 8.20 8.14 - 5605
100 8465 8.65 55,33

55.33
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TABLE 1 (Continued)

1 Sound Velocity (Km/scc) |

Tampera=- Themal Conductivity
tué:e (107 watt/em 0C) e
¢ Experimental {Calculated] Experimentalj Calculated 1
0 5,540 5,540 1.40274 1.40274
5 - 5 4660 1.42650 1.41861
10 5;705 ' 54774 lQA4759 1.43341
15 - 54880 1.46625 1.44723
20 5.870 54081 148266 1.46017
25- . 6 076 149700 1.47231
') 6,034 6 +167 : l;50944 1;48372
35 - 64252 1452012 1.49447
40 64200 6;334 1.52018 1,50461
45 - 64411 1,53672 1,51418
50 64363 6+484 1,54287 1452325
55 L 6 o554 1.54770 1.53184
60 6.530 6.4621 1,53130 1.53999
65 - 6 +685 1,55376 1454775
70 6 .695 6 . 746 1.55512 1.53512
75 - 6 4804 1455545 1.56214
80 6.4860 6 860 1.55481 1,56884
85 - 6.913 1.55325 1.57524
90 - 64965 1.5%079 1.58135
95 . 74014 154750 1.58720
100 - 7,061 1.54341 1.59280
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TABLE 1 (Continued)

!ngizra" Befractive Index Magnetic suscep;cibility
! °c Experimentd.l Calculated Experimenta]iCalculated
? 0 1.33433  1.33433 0499717 - 0.99717
5 1.33427  1.33299 0.99789 0499828
10 1,33408  1.33157 0.99860 0.9993l
15 1.33377  1.3%035 0.9993L 100027
® 1.33335  1.32901 10000 1.00115
% 25 1.33287  1.32816 1.,00068 1.00197
- 1.33228  1.32718 1.00136 100274
o 1.33157  1.32626 10002  1.00346
40 1,33087  1.3254 1.00268 1,00413
a5 © 1,311 1.32460 - 1.00333  1.00417
50 1.32030  1.32384 1..00396 1.005%
55 1.32846  1.32313 1.00459 1.00593
60 1.32754  1.32245 1.,00521 1.00646
65 1.32652  1,32182 1,00582  1.00695
70 1.32547  1.32122 100642 1400743
75 1.32434  1.32065 1.00791 1.00788
80 1.32323 © 1.32010 1.00759 - 1.00831
85 1.3208  1.31959 1.00817 1.00872
90 1.32086  1.31910 1,00873  1.00911
95 1,31959  1.31863 100928 1.02948

100 - 1.31819  1.31819 1.00983 1,00983




TABLE 1 (Continued)
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Spin~lattice relaxation

Dielectric relaxation time

Tempera= (sec) (7,% 1012 sec)
ture
°c E%pfrimen~ Calculated | Experimental|Calculated
al e i
0 1.59 1,59 18.7 18.7 f
5 1.88 1.89 - 155
10 2.2 2,23 13.6 1340
15 2455 2.59 - 11.1
20 2495 2.97 10.1 9.5 |
o8, 3.37 3.38 - 8.3
€, 3.82 3.82 745 7.3
35 4.0 4427 - 645
a 4.76 4475 5.9 5.8 j
45 5427 5.24 - 5,2
50 5.77 5.75 447 a7
55 6.78 6.28 - 443 ?
60 6.81 6.82 - 3.9 |
65 7436 7438 - 3.6
70 7.91 7.95 - 343
75 8.49 8.53 - 3.1
80 9.10 9.12 - 2.9
85 9470 9,71 - 2.7
90 10.30 10432 - 2.5
95 10,95 10,93 = 244
100 11.55 11.55 - 2.2




TABLE 1 (Continued)

64

‘ ngggra- time (% 10~12 sec) (10717 secz/bm)
°c Experi= | Calculated Experimental] Calculated
mental
0 4.05 4,05 7946 79.6
5 337 3.36 6l.4 64 .99
10 2486 Z2.83 49.5 53.91
15 - 2.42 - 45.35
20 2.14 209 34.3 38463
25 - 1.82 - 33.28
RS} 1.64 1.60 25.9 28 .06
35 - 1.42 - 25.43
40 1.3 L.27 19.5 22,51
45 - 1.15 - 2708
o4 1.08 1.04 16.0 18.03
55 - 0495 - 16,29
6D 0.89 0«87 13.8 14.81
65 - 0.80 - 13,53
70 0 ._75 D74 1l.5 12.42
75 - 069 - 11.45
80 0,64 0.64 10.6 12.60
85 - _0460 - 9.85
90 - 0 .56 - 9.19
05 - 0.53 - 8 .60
100 - 030 - 8 O7

Mechanical =relaxation

Ultrasonic absorption




TABLE 1 (Continued)

65

Temperature Density (gm/cc)
OC 7
~ Experimental Calculated
0 0.99987 0499987
5 0499999 0499612
10 0499973 0.99268
15 0499913 1.98951
20 0.99823 0.98658
25 0.99707 24,9836
) 0.59567 0498133
35 0499406 0497897
40 0499224 0 .97676
45 0.99025 3497470
50 0.98807 0.97275
55 0.98573 097093
60 0.98324 0,96922
65 098059 0 96760
70 9.97781 096606
75 0.97489 9496461
30 0.97183 0.96324
85 0.96865 0.96193
% 90 0496534 0.96069
| 95 9.96192 0.95951
! 120 0.95838
-

0.95838

e
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TABLE 4 (Continued)

3 40 | 50 '

Bxperi= | Calculated Experi= | Calculated Experi= fCalculated

mental mental mental |

50 1002180 1.014318 1405670  1.018505  1.000937 L1.022208

100 04999978  1.011873 1.003486 L.0Ll6071 1007752 1.019784 |
15 3.997807 1009468 1001332 1.013677  1.005698 1.017430
230 0.095667 1007102  0.999210 1.011323 1.903474 1015056
250 0.993557 1004775 0.997119 14009006 1400381  1,012750
300 0.991477 1.002484  @.995057 14006727 04999317 1.01048)
350 0,989426  1.00023L 0.993024  1.004485 0.997282 1.008248
400 0.987404  0+998014  0.991019  1.002279 0.995215 1.006052
450 0.985409  0.995832 0.989043 1.0%0107 0.993297 1.003889
500 . 0.983443 04993685 (.987094 0.997971  0.991345 1.001762%
550 0.981503  0.991570  0.98517L  0.995866  0.989420 @.999607 |
600 04979590: 94989489  0.983275  0.993796.  0.987522 0.997605
650 0.977702. 0.987440 0.981404 04991756  1.985649 0.995574 |
700 2.975840  9.985423 0.97955C  0.989743 0.98380L 0.993574
750 24974003 0.983436 0.977736 04987770  0.981978 3.991605 |
800 0.972190  0.981473  0.975938 0.93582L  0.980179° 0.989664
850 0.970401  0.979549 0.974163 0.983901 0.973404 0.987751
900 0.968634  5.977649  0.972410  0.982003  0.976655 0.985866
950 1.966891  0.975775 04970630 0900143 04974922 (.984007
1000 0.965169  0.973920  0.968970  0.978303  0.9732L4 (,982174 |

|




TABLE 4 (Continued)

70

T emgé 60 .70 80 .
% Experi~ [alculated| Experi= .Calcul ated | Experi~- {Calculated
ure mental mental mental
Atm, |
50 1.01480L  1.0255%06 1.020501 1.023463 1.,026717 1.031129 |
100 1,012677 1.023092 1.018247 1.026057 1.024400 1.028730
150 1.,010497 1.020717 1.,016027 1.,023691 1,022121 1,026372
200 1.008349 1.013382 1.013342 1.021364 1.019878 1.024052 !
2%0 1.006233 1.016085 1,011639 1,019074 1.017670 1.023770
300 1004148 1.013824 1.0095%69  1.016822 1,015493 1.019525
350 1.002994 1.,011600 1.,007480 1.014606 1.013359 1.017316
400 1.000069 1,009413  1.005425 1.012426 1.,011253 1,015144
450 0.998073 1.007259 1.003395 1.010280 1.009L79 1.013204
500 0996105 1.005140  1,001396 1.,003169 1.,007137 1.,010900 |
550 04994163 1.003053 0;999427 “1.006089 1.005125 loOOSGQ’?i
600 04992253  1.000999 0.997436 1.004043 1.003143 1.006737 g
650 04990366  0.998977 0.995572 1.002027 1.001190 1.004777 ‘
700 3983506 04996934  0.993634  1.000041 0 .999 264 1.002798
750 2.986670  0.095022  0.991823 0.990086  0.997366 1.000845 |
300 04984353 0.993088 0.989989  0.996158 04995493 0.993926
330 0.933070  0.99118L  0.988174 0.994253  0.993646 0.997032 |
900 0.981305 0.989030 0986336 0.992035 0.9918324 0.995164
950 0.979552 0.93874%0  5.904621  0.990537 VO;990025 0.093321
1000 0.577841 0.905623 | O-§82879 04983715 ~0.988249 0.991504




TABLE 4 (Continued)

71

90 100
Experi=~ Calculated Experimen~| Calculated
mental tal )
50 1.033545  1.033545  1.040972  1.035744
100 1.031153  1.031153  1.038486  1.033358
15  1.028801  1.028801  1.03045 1.03l012
200  1.026488  1.026488  1.033645 1.028706
250 1.024213  1.024213  1.031287  1.026437
00  1.021974  1.021974  1.028969  1.024204
350 1.019772 1019772 1.026691 1.022008
400  1.017606  1.017606  1.024451 1.0l9848 |
45 ~ 1.015473  1.015473  1.022243 l.01772L |
500  1.013375  1.013375  1.020081 1.015628
550  1.011308  1.011308  1.017949 1.013567 |
600  1.009274  1.009274  1.015851 1,011539
650  1.007270  1.007270  1.013786  1.009540
700 1.005296  1.005296  1.011752  1.007571
750  1.003352  1.003352  1.09749  1.005632
800  1.001435  1,001435  1.007776 1.003720
850 0.995546  0.903546  1.005832  1.001835
900 0.997683  0.997683  1.003915  0.999976
950 0.995845  0.995845  1.002024  0.998143
1000 0.994032  1.090150  0.996333

0.994032
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TABLE 5
f s I L L N
C _ . i , - -
0 5404699 5499028 5.42886  0.66433
5 4.81725 571760 5.18173  0.63409
10 4.61017 547182 4.95898  0.60684
15 4,42068 5424929 4.7573L 058216
20 4.,25224 5 04699 457398 055972
25 4409671 4486239 4.40668 053925
0 3495429 4469335 4425348 052050
35 . 3.82344 4.53804 4.11273  0.50328
40 3.70285 4.39493 3.98%02  0.48741
45 3.59142 4426266 3.86316  0.47274
50 3.48816 4.14011 3.75209 0.45915 }
55 3439225 4.02626 3.64891  0.44652 |
60 3430294 3.92027 3.55285  0.43477
65 3.21960 3.82135 ' 3.46321 - 0.42380
70 3.14168 3,72886 3.37938  0.41354
75 3.06866 3464220 3.30085 040393
80 3,00013 3.56086 3.22713  0.39491
85 2.93569 3.48437 3.15781  0,38642
90 2.87499 3.41233 3.09252  0.37843
95 2.81773 3.34427 3.03093  0.370%
190 2.76363 3.28716 297273 0.36378
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TABLE 6
Tempe- Volume of water (cc) | Refractive Index )
z‘a‘t\uro Xe Xo -
C Experimen= {Calculated | Experimens Calculated
tal tal
o  0.3160 0.6840  1,00013  0.99959  1.33433  1.3343
5 7.3339 0.6661  1.00001  0,99980  1.33427  1.3343
10 0.0522 0.6478  1.00027 ~ 1.00027  1.33408 1,334l
15 0,3710 0.,6290  1.,00087  1.00098  1.33377  1.3338
00,3904 0.6096  1,00177  1.00190  1.33335  1.3334
2% 0,4103  0.5897 100294  1.0006  L.3387  1.339
00,4308 0,5692  1.00435  1.00444  1.33228  1.332%4
35 044519 0.5481  1.00598  1.00604  1.33157  1.3317
40 0.4736 0.524  1.00782  1.00785  1.3387  1.3310
45  0.4960 0.5040  1.00985  1,00986  1.,330l1l  1.3302
50  0.5191 0.4809  1,01207  1.01207 1.32930  1.3294
55 045429 0.4571  1.01448  1.01448  1.32846  1.3285
60 05675 0.4325  1.01705  1.,01707  1.3275%4  1.3276
65 045929 0.4070  1.01079  1.01084  1.32652  1.3266
70 0.6191 0.3809  1.02210  1.02219  1.32547  1.3255
75 046461 0.3539  1.02576  1.02591  1.32434  1.3244
80  0.674l 0.3259  1.02899  1.02018  1.32323  L1.3233
85 047724 0.2976  1.03237  1.03267  1.32208  1.3221
9  0.7324 0.2676  1.03500  1.03621  1,3086 1,309
95  0.764l 0.2359  1.03959  1,03983  1,31959  1,3196
100 0.7963 0.2037  1.0433  1.04363  1.31819  1,3182
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CHAPTER Iv

From the works of Rowlinson et al.(78), Lester
Haar ot al-(ll9),‘ "zBH" (120} theory ectc. and from our
discussion in Chapter I and II, we conclude £hat a true
palr potential especially for polar molecules should be.
temperature dependent and that the Lennard-Jones{(6: n)
potential could be modified such that its parameters o and

€ arc tomperature dependent.

4.1 AVERAGE POTENTIAL FOR POLAR GASES

The thermodynamic and transport properties of fluid
can, in prihciple,-be calculated by mecans of statistical
mechanics once the intermolecular potential function is known.
In the casc of Polar gascs the calculations in practice
become complicated by the presence of the orientation

dependent terms of the interaction. Monchick and Mason (121)

have presented a solution for the transport properties

bascd on a fixed orientation model using a set of simple

assumptions :

(i) inclastic collisions have little effect on the
trajectorics.
(i1) in a given collision only onec relative oricnta-

tion is effective.
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(iii) every possiblc orientation has equal weight.

their treatment has been extended to mixtures of polar

gascs (122) and to onc component system of quadrupolaf gascs

(123 ),

Recently Danon and amdur (124) have proposed
different method of calculation of transport propertics
bascd on the use of preaveraged frec cnergy potentials (There
arc two different methods of averagings The canonical aver=
aging and the ~ free-encrgy averaging. The canonical

averaging by

i 9 s¥ ' "'@( su) _i

kT )

(4.1)

and the frece-cnergy averaging by

Py tT) 2 = - ka"n[é exp (- Q(;w) ) dm/f do | (4-2)

Both of thesc lead to different results) . The procedure had
previously becn applied to the calculation of cquilibrium
themodynamic properties of fluids by Cook and Rowlinson
(125) and by Rowlinson (126) . Althouch there scems to be

‘no similar theooretical basis for using the free~cnergy
average poteritial in calculating non-cquilibrium properties,

the cmpirical cvidences, however, indicates, this approach
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as a plausible and much simpler alternative to the more
vigorous procedure of Monchick and Mason. It is found that
if a procedure involving a preaveraged potential is used as
an alternative to the method of Monchick and Mason, the
free~energy average seems to be a better choice than the

canonical average.

They assumed in their treatment that the stockmayer
potential is a moderately realistic representation of the
interaction between two dipolar molecules. The Stockmayer

i

potential is - - -
0y N o m
¢ (ryw) =4¢€_ L( <) -7 |- 3l

, (4.3)
where 4 is the dipole moment,

9lw) = 2 cos § Cos @, ~ sin @ §in'@, Cos § B

Vith 6, and 92 the angles between the axes of the molecular
dipoles and the line joining the molecular centers, and Q

the azimuthal angle in thc planc perpendicular to this line.
As £ 0 , O(r,w)— O(r) , the well known Lennard-Jones

(6:12) potential with parameters oy and € so defined that

6 (0p) =0 and § (r ., ) ==~ & . Ithas the additional ad~
advantage of reclating, after averaging acrording to cither
Equation ( 4.1) ar Equation (4.2) , reciprocal powers of
T that may be written as ™3, s a result, to the sccond-

order ¢f approximation, the oricntation averaged potential
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has the same form as the Lennard~Jones potential, only the
parameters are now tomperature dependent. So, if the tempeora-
ture dependent parameters of the average potentials arc
properly  rclated to the temperature - independent paramcters
of the isotropic potential, it is possible to calculate the
non-cquilibrium (or equilibrium properties) by using collision

integrals which are known for Lennard - Jones potential.

- R * T
Defining bmax = A? 5 and Ty = k s they show
2€ ¢ €
o o . 0

that free-energy average potential can be wrltten as,

Lo (r0» =4 {(5'-9)12 - (2 (1 '“a" ]}
r T | !

Equation (4.5) can be written in the form of a Lennard-Jones

potential applicable to dipolar molecules where G& and oy

are new parameters which are temperature dependent and

r

oq =4¢€ ’(fc-‘)lz-(opd )6] (446)
I

related to temperaturc - independent parameters, €, and o

by dmax . o |
6,= ¢ ( 1+ )
d o ST *
© > {4.7)
c 1 ‘ '
o =0 ( _0©
d 0 G—_—— '
€4 |

From this amerges out clearly the following 3
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For polar molecules a true pair-potential can be a modificd
L-J potential with temperature dependent parameters. Some
forms for polar gases have oxplicitly been obtained as in

tho work of Danon and Amdur discussed above.

4,2, TEMPERATURE DEPENDENT POTENTIAL AND THE LIQUID STATE

that form should be the tomperature dependence of
potential for a polar liquid, like water, is not ocbviously
known so far, But the mere conclusion that molecular poten-
.tial is temperature dependent leads to very interesting
speculations regarding the treatment of liquid state suigenris,

without rcferring to the gaseous or the solid state.

If we follow what happens to a solid on heating we
can make the following picturce. The solid is an ordered |
lattice arrangement, wheré the atoms or melecules are strongly
bound to cach other. On heating the solid wherceas the
kinetic cnergy of cach molecule increases to dissociate thom
completely, ultimately leading to the gaseous state, the
tomperature dependence of the molecular force introduces
a new clement, namely, the molecular force, which changes
with temperature in such a way that it balances the dissocia-
tion to the extent of forming minute molecular clusters in
the average situation. Therc are thus three forces which
keep a balance, (i) the molecular potential, (ii) the thermal

cnergy and (iii} the surface cnergy of the molecular cluster.



79

-

This speculation is mentioned here by the way and
cannot be worked out in detail unless the potential is

procisely known.

In the following we shall make a heuristic attempt

to scarch for a trial potential for liquid water.

4,3, TRIAL SEARGQ! FOR A TEMPERATURE DEPENDENT POTENTIAL

As a simple trial we teke the potential (127),

or,T) = 46 [(%Q)n - (—?)6 (1+0Q ] (4.8)

-

Vhere 8 is a suitable function of temperature which should

agree with the dipole-dipole interaction term of the stock-
mayer potential at different temperatures and has to be

found out. We introduce the temperature function only in
the attractive term of the L-J form, because the Stockmayer's
modified (6 ¢ n) potential has the addition of an extra
attractive tem which corresponds to direct and induced
electrostatic dipole~dipole interaction. Since the dipole
moment of molecules, their aversge distance'and average rela-
tive orientations will largely be effected by temperaturc.

We may, in a formal and empirical way, write for this poten=-
tial the fomm of the type f oquation (4.8) . Such a formal
introduction of temperature in the potential is logical and
shculd be consistent with the oxperimental data of gaseous

propertics, at least to the extent, the stockmayer potential
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is« This form of the potential can be written in the

form (See Jppendix VII)

o(r,T) = 4 €() | ( AL )n ~{ oD )m (4.9)

with 6(T) and o (T), related to temperature~ independent

parameters €, and o, by

. 7
n/h o
6 (1+ Q) nem

i

e(T
) ) (4.10)
1/n-n ‘

(1)

06(1443

The function € must be a decrecasing function of tamperature
and at a suitably high temperature it should become netligible
small to reduce the equation (4.8) to the following form

A 0 )

1

br) =46 | (=) -(=) | (4.11)

which is the famous (m:n) Lennard~Joncs potential, valid for

high temperatures.

4.4, SOME PROPERTIES OF LIQUID WATER.THE FORM OF Q

We now lock for some clues for the function &
Basing his arguments on the Némethy and Scheraga's (128)
mocel for water and making use of the fres~volume concept of

Cohon and Turnbull (94) , Miller wrote an ampirical relation

for viscosity 1l of the  fom of
. B |
Inf) = A+— (4.12)
. - TO
17399

CAL DIRATY UNIERSITY OF ROORY:
ROORKEE.
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where A , B and T, are appropriate constants, Singh, Dass
and Varshneya (97) later found that an empirical relation

of the fom,
B(T,~T) |
bn X = a4 - (4.13)
(T = To)

for any property X, is a good representation of OXperi~
mental results, not only for viscosity but for many more
properties of water including sound velocity and compre-
ssibility. Here & and B are appropriate constants
(different for each property),T. the critical temperature
and T, having a valuec about 135°K. It is interesting to
note that the Debye temperature of water also. has this
values, From this we gquess for thc'liquid water a fom

for £

v

) {4.14)

In this form Qis a decreas ing function of temperaturc

and is zero at T = Tc v

Since the potential given by Equation (4.9) should
reduce to the L-J (6:n) potential at TA{TC and since

log A{T) ~ log (T - T,) , as also log B{T) ~ log (T-T,)

(Figs. (16) and (17)), the following form of the force

parametefs arc justifiable
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o = & (T )
° X (4.15)
T, =T, L/ (m-n) (
o (1) = op { ——)
T-T,

Using these force parameters in equation (4.9), we now make
use of the proposed potential to calculate the compressi-

bility and sound velocity of water as in referecnce (129).

4.5, COMPRESSIBILITY AND SOUND VELOCITY OF LIQUID WATER

As is well known the sound velocity of liquids is

a function of the compressibility K and the density P

v2 = _:_ (4.16)

K P
- The temperature coefficient of v therefore is given py
1l dv 1 11 dK . 1 d4d8f (4.1
N At om it 4,17
vdl. T TS 0k TP a4t )

In calculzting the temperature coefficient of the compre-

ssibility it is supposed that the liquid contains N mole~

3

cules per cm” which, under cquilibrium conditions, are at.

a distance r, from each other, when applying an external
pressure p, this value is reduced by an amount Ar . Assum-

ing that the forces arc harmonic in nature

= N * .
P fI:ro Ar (4.18)
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where fr*r = force constant, At this pressure the volume
=T, .
is reduced from Nrg =1 cm3 to V=N {( T, -Arﬁg, so that
K is given by

didnvV
K:: -
d(
R P Y e
= - 34nN4+ 3 r-Ar]
d P + 0
3 dAxr
K = - —
(r A1) dp
From equation (4.18)
dAr 1
dp  .2/3
" N T=T,
K = v,
(r,~br) N2/3 f
I=I,
K = %o (4.19)
f
Ld '
Kk — =1 d 1odf
dT r, dT £ dT
. 1 dr 1 d
ol L 4Ry
ry dT 3P dT '

Therefore the temperature coefficient of compressibility
is given below

1K 1 dp
T

1
-7 Tf

< 4,21
K dT 30 d (4.21)

a1
Now the temperature coefficient of the force constant f can

be calculated if the interaction energy between two molecules
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is known. Writing Equation (4.9) in an another form given

below - 7T
- a c”
o) =TRT o~ e + T .
8(r, ) =3 ' T TO) (4.22)
d¢ n a mp T.-T
(:;;_‘ r=r, T T +l“"- (14 TCI )
n+ "fo
ro I'gl+l
na- T_, T M=
b = -';{1 { :r_f‘o J I‘o (4«23)
cf 0
2% |
(d § n(n+l)a m{m+1)b l.'%T )
ar2 ' N2 M2 (L+ T -1,
2
4 g _nlnel)a mimel)b | T =T,
I=I ‘ - ’ - -
° dr®  r=r/ r8+2 rom+2 T-T,
(4.24)

Substituting the value of b from Equation (4.23) in

4

Equation (4.24) , we get,

¢ - ( a2 ¢ ) _ n (n+l)a (m+1)na
ro' r10n+2
n{n-m) a
f = -—S——«Z~w»- (4.25)
pn+2 '
o

Now on differentiating Equation (4.24)

df _ d | d%

e e
_|= na(n+l)(n+2) dr, m{m+1) (m+2) b (TC-TO ) dr
- : +
. ron+3 dT r0m+3 T-TO dl
m{m+1) T.~T
~ R (4.26)
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Now substituting the value of b in this equation, we get,

4 ,=“IE"' ( -..l... ?f.?.) [(n;-m)(n+m+3)] +na{m+1) !

n+2
. 1 af | 1 9% ma 1
o @ ? —— = ( ﬂ+m+3) ( - T)  — .
0

1 ar 1 d
.’ ( -J-:-— —_—t = = p from Equation (4'20)_)

o dT 3P

. 1 df n+m+

"("%:‘,ﬁ:) = __a__.....ms-c-l-E -Z-A-u-i&v—- (4.27)
e, ap & (nem) (1T

From Equations (4.21) and (4.27) , we get,

Lodk o mmdy o d0 g 1
K ar "~ '73p r — == (4.28)
(n-m)(T-TO)

Now from Equations (4.17) and (4.28) , we get,

L dv n+ms+l dO . 7 A (4.29)
v qT 6 p dT 2(n-m) (T-TO)

First of all, since we know that the sound velocity in
water has a maximum at 76°C , we can use this condition
in Equation (4.29) to fix n . Keepingm =6 (theoretically

justificd) »and T, = 135°K we get n S 14, Now integrating
Bquatiun (4.28) , we get,

, 7 '
ern Kz o 3 ‘(’:n p . é. *Q/n ( T-To) + }\l (4030)

at an arbitrary refercnce temperature Tr’



86
N = .aX .1y -
Ao K, = ‘8 n Pr : n (T-To) +J§

"
"

4 Ky +8#n Pr + —é{ Qm(Tr -

1/8
. P T.T
. ZnK.-_ggn( rKr)..Z»zn( —C ) (4.31)
8 ‘1‘ =T,
P
Now on integrating Equation (4.29) , we get,
7 78
*Qn v = .2. 'an P + 15 N (T'TO) + }\2
‘At an arbitrary reference temperature T., we have

= V- 4 o, - 12 An (1,.-T,)

2/7
' T-
JZ:I"l\/ = -Qn( I‘) a_‘zzn(T'.

. .
- ) (4.32)

Where K. 4 Pl‘ and V, are cxperimental values at an
arbitrary reference temperature Ty, of compressibili’éy,
density, and sound velocity respectively. It will be noticed
t_hat we get  on expanding the logarithimic function for
temperature upte the first term, approximate expressions

for K and V similar to the énc suggested by Varshneya ct al(97)

which has been found good empirically. We can calculate
K an Vusing the values of 1 a0 given in recference

. dT
(98) . We sec that these ecquations represents the

experimental data (89, 98) very good as shown in Figs. (26)
and (27).
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4,6 PRESSURE CHANGE OF BULK MODULUS

Differentiating Equation (4.30) with respect to

pressure, we gct,

L dky o 8 . d 3
(% o Y3 ”ﬁ’r (4.33)

Now because isothermal compressibility is defined by

1 oV.
K = we s
' ( P )T
TA L L 4o | (4.34)

From Equations (4,33 ) and (4.34), we get,

1 dK 3 XN
K gp ( ap )1

Dividing both sides by (~K) , we got,

- %r 95— = + 8 w E (6! )1,
K= dp KPep T

As a first approximation we assume that )1 is pressurc

independent (in fact it depends upon pressure slightly),

then

Cl = _@__(l/K)

| P )T = 8 . (4-35)

In the case of non-polar liquids, it was shown by Moelwyne

Hughes {(130) by thermodynamic arquments that the pressure
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change‘of bulk modulus of rigidity is a constant. Here
in case of polar liquids (water) also we notc from
Equation (4,35) that the pressure change of bulk modulus
of rigidiﬁy of water is also constant and has the value
- € =8 , while the experimental value obtained from the
slope of the graphs of 1/ 8 Vs. P is 8.2, which is in

good agreement with the calculated values,

4,7 CONCLUSION

In scarching for a true pair potential which is
both simple and workable, we thus sece in the above that
a temperature dependent potential of the form of Equation
(4.9) is a promising vne. There have been numerous attempts
already in print which suggest variations of paramcters
of the Lennard-Jones (6:n) potential in some form or the
other of adhoc nature to suit the experimental data., The
suggested potential (4.9) gives a rcqular variation of the
parameters of the L-J(63n) potential in a consistent way

and agrees with the data shown above.

Although a rigorous theoretical derivation of
tempcerature dependence is yet to be atﬁemptéd, the proposed
potential may be found useful. To decide whether this is
indeed the true pair potential, it would be most desirable to
test this model against other equilibrium and non-equilibrium
propertics., This work presents an exploration of a possible

potential function.
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CHAPTER V

-There are many approaches prevalent to the liquid
theories. Cell and hole theories appear to describe solids
" rather than liquids;.The tunnel & 'wom! theories give good
results for liquid densities and compressibilities but
unsatisfactory results for entropy and critical constants,
The Born-Grecn-Yvon, Percus-Yevick(13l), and hypernetted
chains theories and their extensions so far appear to be
unsatisfactory in the prescence of strong attractive forces
(132) s It appears that all theorics based on density
expansions meet a formidable barrier in thelr approaches
to the liquid state, but therce does not seam to be any such
barrier in the ZBH theory (133) (Zwanzig theory modificed
by Barker and Henderson{120))

Although the perturbation thcories are in the process
of developing into a consistent theory. But so far only
it has been proven that they are physically satisfying
approach to the theory of the equilibrium propertics only
and that is too for simple liquids not for non simplc

liquids 1like water.

Herc bhelow a bricef discussion of some of the carliocr

theorics is given' .
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5.1 CELL THEORY

| The cell model (124) is based on the idea that
each molecule in a liquid or compresscd gas spends much
of its time confinad by its neighbours to a comparatively
restricted region (cage or cell in which the central
molccule moves)s The number of cclls is chosen to be cqual

to the number of molecules,

The simplest possible assumption is that the mole-
cules move entirely independently of one another in thelr
cells and when considering the motion of the central
molccul e, the neighbours which form the cage as fixed at
the centres of thelir respective cells. Further all the
cages are identical and that cach contains just one molecule
which imposes sceverc restrictions on fluctuations of density.
Prccisely speaking it restricts the configuration space
availablc to the molecules to that fraction of the total
configuration space in which every cell contains one

molecul e.

The regular lattice of cell centres brings back the
very futurc of long-range oidor, thus it should not be
surprising if the cell theory actually describes solids

rather than fluidse.

A simpler approach, developed by Eyring and Hirsch-

felder (135,136) 1is based on combining the exﬁression



91

for the configurational entropy with an ecmpirical expression
- for the configurational energy. This uses the idea that

the free volume and entropy arc deterimined primarily by
the repulsive forces and the»energy primarily by the attra-
ctive forces. Strictly speaking such a scparation cffects
cannot be rigorously Jjustified, but however, it leads to

a uscful semi-empirical equation i.e; Eyring equation of

state glven below

(p +a(T)/ V3 (V- O.7816bl/3 '\72/3) - R (5.1)

it is capable of giving a useful semlempirical description

of the propertics of liquids and gases (12).

The cell theory - abbreviated to "L-J-D" theory was
first investigated in detail by Lennard-Jones and Devonshire.
In, their two papers (6,137) they calculated the themmodynamic
properties based on the cell model for molecules inter-
acting according to (6:12) potential and in later papers
(4,5,138,139) they regarded the cell model as more preciscly
a model for solids, and they explained the differences between
solids and liquids in tems of their order-disorder theory
of melting;

-
In maxing comparisions with experiment they found

that the L-J=D theory is in fact an oxcellent theory
of solids in the temperature range wherce quantum cffects

arc not importent. This is not surprising since theory uses
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essentially the Einstein model with full correction for
anharmonicity; One might have hoped that the theory

would describe both solids and ligquids in'appropriate
temperature ranges which is not the case becguse above

the melting point the theory describes a solid phase which

is metastable.

Inspite of this the theory is of fundamental
importance in the theory of liquids, because effectively
all progress towards a satisfactory lattice or structural
theory of liquids has arisen from attempts to justify or
improve fhe L-J-D theorys Furthermore the L-J<D fheory
may validly be rcgarded as an approximate theory of fluids
Since from some points of view the themmodynamic differences
between solids and fluids are small, particularly if the

fluid and solid are considered at the same density.

5,2, THE VARIATIONAL THEORY AND CELL MODEL

Kirkwood (140) proposed a variation method bascd
on the cell models The method is closely analogous to the
Hartree and Hartree~Fock sclf consistent field methods of
quantum mechanics. Kirkwood proposed that the probability
density function should be approximated by a simple product
of identical cell distribution functions cach dépending
on the coordinates of one molecule with respect to an

origin at the centre of its cell. This corresponds to the
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assumption of independent motion in the L~J=D theory . It
scemed likely that the variation method could be regarded
both as a justification for the approximations of the LeJ=D
theory and as a method for calculating more accuratc results
than those given by the LeJaD theory;‘Butlater caleculations
duc to Hirschfelder and his Colleagues (141,142) have proved
that this is not the case. Comparision with experiment shows
that the variational theory based on the cell model describes

solids not liquids.,

5.3. THE CELL-CLUSTER THEORY

The cell~cluster theory, developed by de Boer(143)
provides an elegant and fommally convergent method for
taking account of correlation and multiple oocupation
effects which arc ignored by the L-J-D theory. The basic
idea is to devide the lattice of.cells into clusters of
cells and to express the total configuration integral as a
sum of products.of cell cluster configuration integrals.
The simplbst of these integrals is the L=J=D free volume,
Vs o and the leading term in the sum of products is just
the L-J=D result for the configuration integral;'Thc
remaining temms involve contributions from pairs or larger
clusters of ceclls, and correct for correlation and multiple
OCCUpatiOD effects. In practice the only clusters for
which the integrals can bé evaluated arc palrs of cells,

If only the contributions from these are induced then the
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cell-cluster theory suffers from roughly the same limita~
tions as the L-J~D theory, However the cell cluster theory,
with allowance for two cell clusters only, does not improve
on the L-J~D theory as far as the preésure is concerned,
although the entropy is certainly improved..To some extent
it scems that what the cell cluster theory gains in simplicity
and clegance it loses in flexibilitys Of course if it
becomes practicable to evaluate the integrals for larger
clusters this situation will be changed=entirely. An
advantage of the cell cluster theory is that it can easily
be carried over into quantum mechanics, simply by replacing
the classical cluster integrals by quanta} . slater
sums, Reccntly Dahler and Cohen (144) have gencralized
the cell cluster theory in such a way as to allow for the
presence of holes or empty cells.»The consequences of this

modification are not yet known.

5.4, HOLE THEORLES OF LIQUIDS

Originally Eyring (145) introduced the idea of hole
theory to decrcase the coordination number of a molecule
in the liquid by introducing into the cell theory the
concept of empty cells or holes as was pointed out by de
Boer (146) that the agrecment of the L~J=D theory with
experiment could be improved.by cheosing the number of
nearest neighbours Z smaller than the value 12 corresponding

to close packings The presence of holes, and their more or
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less random distribution on the lattice, would explain

at least part of the disorder in liquids which gives

rise to the entropy increase on melting. Furthermore the
presence of holes would give a basis for understanding

the relative casc of diffusion and flow in liquids in

tems of a vacancy. In fact hole theories give the correct
value for the entropy of the perfect gas, so that the whole
of the communal entropy is included in the low density
limit. But at high densities the proportion of holes
becomes very small and the predictions of'the hole theories
“are very close to those of cell theories; In a hole

theory the‘cell size remains constant (independent of the
density and tomperaturo) so that the whole of the thermal
expansion is due to the increasing number of holes. Alter-
natively one could suppose that both the cell size and the

number of holes vary.

Because in hole thoeries the numbei of cells exceeds
the number of moleculesvand so there will be a number of
empty cells or holes present cven when noAcell contains
more than ono molecule, which implies that the number
- of nearest neighbours is decreascd below that of the solid

. in accordance with the experimental evidence.

These theories are based largely on this idea,
that the cells can be chosen sufficiently small so that

~ configurations with morc than one molecule in any cell
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can be neglected entirely, There are some doubt as to the
justification for the assumption that multiple occupation
of cells can be neglected in the hole theories. Nevertheless

this assumption has been made in existing hole theories,

The least satisfactory feature is that if thecell
volume is detemmined to minimize the free energy then the
cells are so large that multiple occupation cannot be
neglectéd; Thus .to develope a really satisfaftory hole
theory, it would probably be necessary to allow fof the

effects of multiple occupaticn,

5;5 SIQNIFIC/NT STRUCTURES THEORY

Byring and his associates (147,148) have proposed
a model for the liquid state based on an arbitrary separa-
tion of the degrees of  freedom of the system into tsolid
like! and 'gas like! components; They suggest the following

partition function for the liquid i

/ - Nv
- = N(v-ve)
e | ~a/ny RT §V o
Z = — (1l +n e Y i ev v
(L - e-O/T ) 3 h l “§~.J
L 4 A
(5.2)
where,
Eq = the energy of sublimation
e = the Dcbye temperature of the solid
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ny = the fraction of molecules in the liquid which

border holes.

a = a disposablec paramcter

Vg = molccular volume of the solid

v = molecular velume of the liquid

A = 21'.7mk'l')“"/2 /h is proportional to the De

De Broglie wave length.
vith a suitable choice of a , this function does romarkably

well in generating the thermodynamics.

This theory has becn applied with the excellent
degree of success to a tremendous range of liguidse Its
usefulness cannot be doubted since the model can be applied
to so many different liquids, can be used to calculate
transport propcrfies and surface tension, and can be used
to compute the radial distribution function. The theory
rests on a model of the liguid state which is reasonably
successfule The model envisioned- by Eyring ot al is that
which would be fommed if all the volume increase upon
fusion went to form holes of molecular QiZG; Thus the
immediatec neighbour scparations in the iiquid are
considerec to be the same as in the solid, and melting
decrcases the average coordination number of a molecule
by an amount proportional to the incrcase in volume

fraction during fusion.’
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Ay how the criticisms raised against the theory
are as follows =
(i) It has a number of adjustable parameters.
(ii1) It doés not provide the reduce equation of state.
(iii) The agreqneht between calculated and observed heat
capacity and Helmlioltz cnergy is not good as

claimed by the authors.

6.6, MONTE CARLO METHOD

This method signifies a numerical calculation
method in which specific probability clements are introduced
in contradiction to the calculations made by classical
techniques,-The problem mainly consists in'evaluating
multiple integrals of the type of configurationals
encountered in the Gibbs statistical physics by numerical
integration over random sets of points instead of the
usual method of integrating over a regular set of points;
This method uses ensembles averaging and restricted to
équilibrium phenomena but in this ficld is probably morc
satisfactory and is true for any 1aw of interaction of
particles; but depends only on the configurations of the
particles, provided that the ergodicity condition is
satisfiéd, This method was employed for the two dimensional
casc in one of the earliest works (149) .+ The still more
interesting three~dimensional case has been dealt with by

Rosenbluthe et al. (150) and  Wood et al. (151).
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Monte Carlo method is restricted by the fact that
only a limited number of molecules can be connected, this
limitation is imposed by computing speed rather than by
information storage requirements. To minimize the effect
of this restriction a periodic boundary condition is used.
It is supposed that the whole of space is filled by repi-
tition of a fundamental cell of volume V containing N
molecules. As a consequence of this the Monte Carlo method
is closely related to the simpler cell theorieg, The funda-
mental difference is that the cell is large an& contains
many molecules, Further differcnces lie in the trcatment
of the tsurface cffects'! which are of course much lcss
important with a large cell, and in the fact that other
cell theories pemit approximate evaluation of the parti=-
tion function, In the prescent state of the art of
computing, the partition function, and therefore the
entropy cannot be evalu%ted by this methods Any how with
the rapid growth of the technical means and computational

methods Monte Carlo method have bright prospects.

5.7. THE METHOD OF MOLECULAR DYNAMICS

“Alder and Wain wright (152, 153) have used a
fast electronic computer to study the behaviour of
molecul es moving randomly uncler Specified attractive and
repulsive forces at various densitics corresponding to the

solidy liquid, gaseous states.
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The method is capable of decaling not only with
equilibrium phenomena  but also with relaxation and non-
equilibrium phenomena. This method uses time averaging
following the trajectories of the system. In this method
the classical equations of motion for a system consisting
of a very large number of particles are solved by a step-
wise proceduro; So far the calculations have been made
only for rigid non-interacting spheres and square well
potentialse The periodic boundary condition is used,
éo that a mélecule leaving the fundamental cell through
one face- re-enters it through the opposite faces In this
way the hUmber of molecules in the cell remain constant.,

In determining when and where the next collision will occur

a convention analogous to the 'minimum imgage distancefwrule
is adopted. Initially, for each System,Aall the particles

of the fundamental cell situated at the sites of the face~
centredcubic lattice were uniformly distributed over the
whole of the cell with equal Speeds.but random directions
of motion. The velocity distribution tends rapidly to

the Maxwell distribution. The total energy of course remains

constant and detemmincs the temperature,

The method of molecular dynamics show that even in
fluid state the molecules appear to vibrate for considerable

pcriods in localized regions.
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Apart from the lack of a simple picture of the
structure, the disadvjntage common to both the Monte
Catlo method and the method of molecular dynamics is the
amount 6f computation required to obtain the results but
with the rapid g¥owth of techhical means and computational
methods, it seems that in the heat future thése methods
(spccially Monte Carlo method) will be great suécess in

statistical physics.

5,8, THE TUNNE., THEORY

In 1960 Barker proposed a model (154; i58) for

liquids =~ THE TUNNEL MODEL ~ according to which the
whole system of molecules devided into sub-systems consis-
'ting of lines of molecules moving almost onc-dimensionally
in tunncls whose walls are formed by neighbouring lines,
The advantage of this model over cecll model and hole
theories 1s basically that it pemits a more extensive
sampling of configuration space, in regions not necessarily
close! to reqular lattice configuiations. Density fluctua-
tions are permitted since the molecules may take up any
position along the tunnel éxis, and these include small
fluctuations as well as the relatively gross flucfuations

described in the hole theorics by empty cells.

The tunnel theory has not yet been investigated as

fully as the cell theory, This is developed only for rigid
‘ {
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spherical molecules and for (6:12) molecules and predicts
a radial distribution function for liquid argon in good
agreement with experiment, It gives calculated values of
pressure and energy which are in . good agreement with
experiment, but the calculated entropies are less satisfac-
tory « At present this is perhaps the most promising of

the lattice thoories.

Any how the most serious objection to this theory

is its anisotropic character.

5.9, TWO-STATE APPROACH

Due to its wide availability and unusual propertics,
water has always provided an interesting scientific challange.
During the years a great number of qualitative and guanti-
tative theories have bech proposed to explain the propertics
of water and to elucidate its structure. A critical
review of these theories reveals that a group out of thesc
theorics rely on two-state approach (102, 105,166-162).
According to this theory water is considered to be as an
equilibrium mixture of two classes of molecules. Class
first is constituted by hydrogen bonded molecules{open
structurc or ice~like structure) and class II = is
constituted by unbonded monomers (close-packed structure) .
Many authors have applied this apéroach with some degrees of

successy to many propertics of water, however, they do not
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agree on the values of the various two-state themodynamic

parameters.

For the first time, in 1948, Hall (102) presented

a two=State theory of water, which was based on the assump=- .
tion that liquid water was composed of two states,.
State L is characterized by large volume and lower free
cnergy identifying it as more ice~like structure (open=-
packed structure) and state- 2 is characterized by smaller
volume and higher free energy iae.‘unbonded water molecules
(closc-packed structure), in order to explain the ultra-
sonic absorption data. Hall's thecory succeeded in the
interpretation of ultrasonic absorption -data, but was
pointed by Litovitz and Carnevalc (161l) to be unsatisfactory
for the cxplanation of the pressure dependence of ultrasonic

absorption. Since then the two state approach of liquid
water has been developed in various ways by a number of
authors (102, 105, 156-162) to investigate the coffectiveness
and limitations of the two-statc approaches Some of them,
the theory of Samoilov (163) , Frank and Quist (159) ctc.
were found to amphasize the solida-like structure., On the
other hand Frank and Wen (76) proposed a flickering cluster
model based on the cooperative nature of hydrogen bonding
formation, and pointed out the life time of the clusters

10

to be as short as' 10 or lO~ll scc, from the relaxation

data. According to the suggeétion of Frank and Wen (76,164),

-
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Némethy and Sheraga (128) have presented a refined statis-
tical theory, in which water is assumed to be an equilibrium
mixture of flickering clusters and unbonded molecules, The
clusters are supposed to be composed of tetra-tri-di,

and singly~ hydrogen bonded water molecules, and thercfore,
Nénethy and Scheraga's theory is alsc regarded as a five-
state theory. The results from the Némethy and Scheraga
model arc in satisfactory agreement with the experimental
values of entropy, free energy, and internal energy, but
fail to predict the behaviour of the specific heat of water,
In addition, the concentrations of the species derived by
Nemethy and Scheraga do not show a satisfactory correlation
‘with the experimental results of Buijs and Choppin (115)

detemmined by infra-red techniques .

After the propostion of Nemethy and Scheraga's theory
several studies have Been made along this line. Vand
and Senior have rccently presented a nince-state theory
(165).« The main feature of their approach was that the
concept of descrete energy levels, corresponding to zerg
s One and two hydrogen bonds is abondoned and replaced
by the concept of energy bonds without giving any theore-
tical GXplénation. This assumption means a continuous
distribution of encrgy for watér molecules and also means
‘the introduction of g very large number of states since

the cnergy changes continuously. Using a model of liquid
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water bascd on threec species found cxperimentally by

Buijs and Choppin and by introducing the above mentioned
assumption they derived a partition function for the systom.
Using the experimental data of Buijs and Choppin and of
Dorsey (104) (at 50°C9 s and introducing some other assump£~
ions regarding the nature of the intemolecular forces,
they evaluated the paramcters needed in this partition
function. Using the resulting partition function they found
that their model successfully represents the thermodynamic

I

properties of liguid water in the range of 0° to lOOOC.

It is questionable that, when the life time of the

hydrogen bonded region is known to be as short as lO'll-

lo~lo secy a number of different states within the hydrogen
bonded region could be distinguished from each other, for

a 'state! has to be regarded as corresponding to a structure.
The assumption of the presence of a ~ number of distins-
quishable states with as short a life time as 0™ - 100
sec, may be doubtful, when thc energy differcnce between
the states is as small as the energy of the themmal motion.
It may be generally said on constitﬁting'the theory," the
number of states assumed is desirable to be as small as

possible, so long as the increase in the number of states

means the increase in the number of parameters .

Recently Davis and Litovitz (116) presented a two-

state model of the structurc of water and the ovidence for
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the existence of two types of structures in water comes
from the difference in the number of neighbors indicated
by Raman spectra and X-ray di ffraction which is consistent
with the suggestion of Grjotheim and Krogh-Moe (157) that
the first peak in the radial distribution curve is in
reality two unresolved peaks corresponding to two different
types of nearest neighbors in water. This model is based

on two postulate =~ the first postulate is that in water
there oxist puckered hexagonal rings like those that
make up the structure of ice (166). The presence of such
rings in water is explained by the fact that the hydrogen
bond is partially covalent leading to highly directional
cooperative forces suggested by Frank which favor the
formation of hydrogen bondse. The second postulate is that
in water these rings occur in an equilibrium distribution
of two structurcs, an open-packed structure as in ice

while others are arranged in a more closely = packed ncarly
complete body centered cubic structures Further they have
pointed out that Hall's analysis requires modification.,
According to them the excess sound absorption is not
completely an isoﬁhormal process but a large component of
the excess loss results from the prescnce of a relaxational
specific heat. When a liquid is subjected to variations
in pressure or temperature, volume changes occur; These
volume changes procecd by rapid changes in lattice spacing
followed by slower structural (or relaxational) rearrangements

(167) . The lattice and relaxational components of the
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compressibility, expansivity and specific heat,
KT,CO , K&,r , qr ’ Cp L Cﬁ,r respectively are related
by the expressions

Kr = K, K L (5.3)

X = & 4+ (5.4)

(5.5)

%

The molar volume of water on two-state approach is given
by

i
w7
8
+
e
-

Vo= VoX, + VX, = X VT4V (5.6)

there Xos VB and XC, V; are the mole « fractions and

volume respectively, of the open-packced and close-packed

structures rospectively.

1 = - }
Vv = VO Vc . ,
‘ 2
and X =1 - X f
o 0 ;

Expression for expansivity is given by

(W

= —_—
aT

el Ly

7

)y : (5.7)

From equations (5.6} and (5.7) we got,

1,0V 3
« = (= = .]:_ — _(th+v)
v OTP Vv OT 0 ¢ -
vt oy X oyt 2
e Py + =2 () L ~.¢)
Vier'y v o or’p oy TR
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Similarly, the compressibility of liquids is expressed
Kp =-=(y _. (2 + V
‘ R
e v KT = o e _( - )T .ﬁ_(——-) _-—- (--—--—r
\' o) 3P T
(5.9)
According to Davis and Litovitz
V! oX,
o = e [
r= 7 (3 )p (5.10)
i o oX)
= - ——— ___. 50-1-.1.
and KT,I‘ v ( 3P )T ( )
Further in the equilibrium condition
X G! .
8 zexp (- —=) (5.12)
- T
L= X R
Using the thermodynamic relation
G'" = F' +PV =H' - TS (5.13)

ithere G!' is

the difference in the Gibbs free energy betw-

een two states, F' is the difference in the Helmholtz

_free ehecrgy

, H' is the difference in the enthalpy, $' is

the difference in the entropy, P is the pressure, R is

the gas con

stant, and T is thec absolute temperaturc,
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From Equation (5.12)

Xo H'
{ —); = (—;;5 ) % (1-X) (5.14)

and o 1
“"0\“";5('0’1 = (-:%) X (1-X) (5.9

Making the substitution of Equations (5.14) and (5.15)

in Equations (5.10) and (5.11), we get,

vl HY

of . = ( —————) X (1-X) (5.16)
r
V RT2 o0
(v1)?
and =\ —— - oL
K:,r ( = ) X,(1-X ) - (5,17)
The relaxation component of specific heat is obtained as
(H‘)2 « \_
. (= (5.1
q = - —— + X ‘ 5.19
A L TR -t N )

To determine the parameters X,, V', G' and VE s Davis and
Litovitz solved equations (6.6) (5.12) , (5.16) and (5.19)
in self consistent manner and then they have calculated

various thermodynamic parameters.

Any how the main difficulty in the past has been
in the determination of X Actually there was no absolute

method for the determination of XO' and one have to sct
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1.5 parameter one or the other way. In the present work
vo have, by considering the structurc of water and its
properties, arrived at an expression to determine the
fraction of hydrogen bonded molecules (Xa) and its func-
tional dependence on temperature, and have ultimately
discusscd.the effectiveness and limitations of the two

state theory.

In a published work (97) wei;ave proposcd an
empirical expression which represents the functional
dependence of temperature of most of the propertics of:
water, This .expression is interpreted in terms of two
state approach. In view of the forgoing discussion
(Chapter III) , if we assume that the fraction of the

close packal specy , i.ce

x = (Zloy (5.20]

¢ T,-T

and then the fraction of the hydrogen bonded molccul es

(open~packed species), X, will be

Xo = 1= X
T &« T 2T
X, = ( _¢ 0 (5,21)
To =T

Once we know the value of Xy it becomes asimple matter

to apply the two-state approach as by various investigators
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to obtain the volume and two-state thermodynamic parametcrs

alongwith some other physical propertiecs of water.

5.91 Specific Volume

The volume V, can be written as
V =XV +X V
“o o c ¢
Wherc Vo and V, represents the specific volumes of the

open~-packed  species and close-packed respectively. The

" : \]
- temperature dependence of Vj and V. can be cxpressed as

Vo = 194657 (1 4 1.56 +107%t)  (5.22)
Vo = V" (144t +Bt9) (5.23)
ang Vo=V -V, (5.24)

Where Vg (= 19.657) and Vg)are the values at a reference
temperature, A and B arc the coefficients and t the rise

in temperaturc above the reference temperature, then

Vo= Xo* 10.657 (1 + 1.55 % 1077 t)+ XV (L+At+Bt)
(5.25)
Here X, and X, are known, VZ y A and B can be fixed from
threc known values ¢f V. These arc obtained

A= 3,6358% 10'3 o7l

B

- 8.2859 % 1070 0¢l

= 0,80207L c.c.

<
1
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The calculated values for V along with the experimental
values are shown in Table 6 (Chapter III} . The agrecment

is found to be very good.

5¢942, Refractive Index

Using again the values of X, and X. and the
relation for refractive index of water given by Mitra et al.
(118) on the two state approach,

(nl)v = X kg + Xy k (5426)

where n is the refractive index, V is the specific volume
and  koy kg some-constants to be fixed empiricallye They
arc obtained as |

K, = 043359 and K_ =0,33L
Then from cexperimentally known values of V, n can be
calculateds Thesc values along with experimental values
arc shown in Table 6 (Chapter III) . The agreement is

found again very good.

- 9.9.3 Two=State Thermodynamic Parameters

Differentiating Equations (5.12) and (5.13) with

respect to temperature yields.

9 G _ 1-X RI 3
=) =8 =R Fn( —0) . ~ X5
CaR n X5 y-d Xo(l-Xo)) { o \P
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and '
2gy | % .= ax, R __fé
3125 I — (31 ) - | T2 p
X, (1=X) X (1-X,)
. RT(1-2X) 98X 2
(%(1-x ))2 ar P
(5428)
** H = G' +TS!
¢ ' 2
1- X RIS aX,
or H' -PTf»n(-—-—O)-RT Ln ( —=°) + ‘.31-)J
X % Xol1-%,) & F
(5.29)
Now from the forgoing discussion we know
X, = (TC + TO - 2T) / (TC-T)
3X T =T
( EEO o= o= (=° (5.30)
P raf
2 .
X, 2 (T.-T
and -——52) = = oTo) (5.31)
. (.- 13

Now it becomes very easy to compute the values of G',S!,
C}, and H* using the above equations (EQuations (5.13),
(5.27), {5.28), (5.29), (5.21), (5.30),(5.3L). Knowing
these parameters on one hand, we can'calculate Gibbs
frec -cnergy, enthalpy , entropy and specific heat for
the individugl state from the fo;lowing relétions,‘

respectively,
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C
= - 1 :
G, G=-X G . (5.32)
— !
and G G + G,
(as G = G, = G)
H = XH' & H ]
=H - XH 5
e 0 [5 (5.33)
and HO = H! + HC |
J
- -
(as H' = H - H)
= X C"x + C + C ]
Cp y Ye b,r
C, = ~X O ~C s
Pc CP o P P,r P (5'34)~x
C
Cbo PC + C!
S = X8 +5 =S
C r
&l — -~ '\' ’ .
sc =S Xob + S, , (5439)
and S, = S'+8§; |

The values so obtained of various two-state parameters are
reported in Tables (7-15), In these tables the calculated
values are also compared with the values obtained by various

investiggtors.
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A further test of the validity of the two state
relaxational parameters can be made by calculating the
ratio of the structural or volume viscosity to the shecar
viscosity in water, i.c. ﬁlv /”ﬂs . An expression for
this ratio is obtained by rewriting Equation (100-6 )

in reference (167), Thus

r > 7
(V') ‘

N/ 2 e 2

ﬂv l, e J(l = X)X (5.36)

Where K 1s the adiabatic compressibility. The results

so obtained are compared with the other authors in Table(13).
From the table it is clear that our model gives the better
agreement with experimentally known values in comparison

to others namely, Nemethy and Scheraga, Grjotheim and

Krogh ~ Moc, Wada, Eucken, Davis and Litovitz. But at

higher temperatures Davis and Litovitz model is better

than others including ours.” Here it appears that our modol

also may undercstimate the amount of association at higher

temperaturcs,

Further the sound absorption coefficient which
is due to structural rclaxation is computed using the

following expression

(5.37)
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h N /et
: e
Where 7r = P (5.38)
kT H'/ RT
L +¢

where v 1is the sound velocity, KT - is the relaxational
' ?

part of the compressibility, %1 is the activation cnergy,

h is the Plancks constant, N is the Avogadro's number.

5.9.4 Statistical Treatment

The formulation of the partition function, Z,
for the mixture of NX, molecules in Class I (constituted
by hydrogen bonded molecules i.e. open structure or ice-
like structure) and NX, molecules in Class II (constituted
by unbonded monomers i.e¢ close-packed structure) is made

as follows ,

Nt ‘ NX - €/ NX
7 = , (£) ° (f e Rl") ¢ (5.39)

(M)t (Wx)y H

Where £; and f are partition functions for each species.

II
Now maximization of Z concerning X, as a variable

Skn z _
=0 (5.40)

S x
0

From Equations (5.39) and (5.40) and using Stirling's

approximation we get the equilibrium value of 'xo '
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X = - (5.4.1.)
foag o R
I7 1€

and, introducing Equation (5.41) into Equation (5.39), the

partition function, Z for the cquilibrium mixture, is rec=-

presented as follows, (Sce Appendix V). The partition

function of cach species, f; and fII are given in the
following cquations, Equations (5.42) and (5.43)
6
1 \
£f1 0= ] ( 1 (5.42)
I L hys
i=1 I ~e¢ VLT )

[1 7 zn

(5.43)

\
%

Where V.

; 1is the frequency of translational

vibrstions and liberations in state of class I,.vf is the
free volume available to a molecule in the state of class II
and A,B, ahd C arc the principal moments of incrtia of
water molecule., The factor in the first bracket of fII
corresponds to the translational degrees of frecdom and

that in the second bracket to the rotational ones. The

contribution from intramolecular vibrations into f. and fII

I
is ipgnored, because¢ it may be safcly regarded as 1 at

I(Nmm ) 3/2vf']\ f (8rr2v kT)3/2(WA3C)l/
L
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temperatures from 0°C to 100°C.

As for the frequencies which have been attributed
to intormolecular wibrations a tentative assignment has
been made referring to the data from the infrared and
Raman spectroscopy : 210 c:m-l for threeAmodes of trans-
lational vibrations(128,168,169) and 500 cmnl for three
modes of liberations on the average (168,170), The prin-
cipal moments of incrtia have been given to be the same
as in the vapor state (l?l). Theo energ? difference
between two states, € and the frec volume, v¢ , which
is available to a mclecule in the statc of class II, arc
two main parameters used in this theory, It is impossible

to determine the magnitude of € and v, precisely from

f
theory at present. Any how here because we know Xos SO we

can determine vy as follows, from equations (5.43) and

5.41
( ) X f,
¢ I

v = e

12 | ~e /R
X

2Tt 32 (8 1 2kT) Y2 ABC) e

2 h3

(5.44)

remaining is the parameter é to be known, and € has

been treated as the adjustable parameters tb give the best

fit of calculated values to expcrimoﬁtal data. The variation

of this paramecter was, of course, limitcd within the physically

3
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rcasonable range. In the earlier treatment based on the
two - state model the magnitude of € has been estiméted

to be within the range of 2.5 -3.0 KCal/mol. S$mith and
Lawsen cstimated the magnitude of € to be 2.6 KCal/mol from
their sound velocity data (160) and Lawson et al. estimated
it to be 3 KCal/mol from their thermal conductivity data
(105)a Wada used the value of 2.51 KCal/mol in his
treatment (158).

Taking account of the heat of fusion ice in addi~-
tion to the estimation described above, we have taken the
range of € to be 2,75 - 3.15 KCal/mol and found that
€ = 3 K Cal/mol gives the best fit of calculated valucs

to experimental data.

5.9.5 Calculations of Thermodynamic Variables
Once we know the partition functicn, we can
calculate the various thermodynamic properties of the -

system as follows !~
The Helmholtz energy, A is obtained from the following
Equation (5.45)

A -kxT 4nz

e-C /AT ) (5.45)

il

or A - NkT 4n (fi + f

II

and the cnergy and entropy can be calculated by Equations(5.46)
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and (5.47)
a {
B o= 12 2bnz
| 3T
- kT2 f1 f11 e-C/RT € =~ S/ fII)
oI RT2
~&/RT
(5.46)
S = (B-a)/T (5.47)

The specific heat is derived from thc cnergy, E,

[te oo ~€/RT :
I ) o ot ©

' ~C/T |
(fI+fIIe / )2“




where

-h W /kT - hy /kT
o, 3hy, e 3y e 2
- * fI + * f
aT - hY. /] h :
kTg( . hv) kT) T2 - o \)2/1<T)
(5.49)
and y
T - hV, /T
. _ h : 1
o*fr | . *-<[ <3h7l n/T ) hy, e M2
P =) 3 * o ww
o2 ‘ I _hY y kT2 T
o { (T2(1oeML/AT k2 (1-e7M/T)
;h Vs /] , ~hV¥
[ 3V, e 2 o n, o 2T W o \3 {
+ - =
~hv,/] 2 1o MVKTy kT2 T
KT%(L-e v2 kT) kT=(1 o/
.7 . . =hy./ T
. OfI/! / 3h\?1 e h\‘)l/kT \‘ 3 h)/’z e })2 kT { ;
w N ‘ — N
dT H N “ ; } . ‘7/ Vi
~s1 ;.9 £ 1, ~ = T {
L ksz(l-e 1/ KT) KT%(1-c ok ) / i J
(5.50)
/2, i/ T s ]
- (=7 f/Q (ot 7 (a0 /Q<3 2y 418 25
3T h2 2h3 ‘ ' °T |
(5.51)
and
2 / i .
o fpg _ ¢ 2imk \3/> (87 %) 2(“4@»"-3(:)1/2 l Ve
= ( —5 ) — K6V 46T —em
8T h 5 n3 31
52Vf i
$ T2 =} (5.52)

Using the values of the parameters as duscribed above calcula-

tions of thermodynamic functions have becn made over the
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temperature range from 0°C to 100°C at 10°C intcrvals.
The calculated valucs of the Helmholtz cnergy, &; the
internal energy, E, the entropy, S and thc specific heat

at constant volume, G, , are given in Table 16, . The
results calculated arc comparced with the cexperimental data
for water, which are taken from Dorscy (128, 104). The
agreement is found to be better at higher temperatures than
at lower temperaturcs for A, E and S. Further the agrecment
between the observed and calculated values of AyE, and S
can be made better by choosing the new value of € higher
than 3 K Cal/mole. But the circumstances arc differcnt for
the specific heat, C,. The agreement between the obsoivod
and calculated valucs is very poor, for which the two~state

approach has alrcady been criticised.
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P

Tanp e« ' Lo 1 l-
ij ! Xe xo__. l'xci {(_‘_3_5%(2 )T* 3..32 % (_a_fz,,) % _}_’\ _
| m
0 71,3160 1.6840 ~0.351883 «0.188173
5 0.3339 0.6661  =0.361484 -0.195926
10 0.3522 0.6478  -0.371483 ~0.204111
15 0.3710 0.6290  ~0.381903 - =0.212759
20 7143904 0.6096  =).392767 04221902
25 0.4103 0.5897  ~0.404102 =0 .231577
30 0.4308 0.5692  =0.41593 -0.241822
35 04519 0.5481  ~0.428294 ~) 4252681
40 044736 045263  =0.441213: ~0.264200
45 0.4960 0.5039  =0.454726 ~0.276429
50 0.5191 0.4809  ~).46886 ~0 28945
55 0.5429 0.4570  =0.483682 0303249
60 05675 0.4325  =0.499209 ) .3L7967
65 0.5929 0.4071  =Q.515495 ~0 4333654
70 0.6191 0.3309  =0.532592: 0350339
75 0.6461 0.3538  ~0.550553 ~0.368263
80 0.6741 0.3258  ~0.569439- ~0.387373
85 0,7031  0.2969 ~).5893L3 ~0,407829
90 0.733L 0.2669  =0.610246 ~) 4429751
95 0.7641 0.2383 < .6323L% =0 .453272
100 0.7963 =0 .635602: «0 «478542

0.2037




125

|

r

IABLE 9
- T i g 1
Tamperas | v v V' (cc/mole) ‘
ture | ¢ * 0 / {
Op: i (cc/mole) l (cc/mole) ]
9 0.302071 1.090844 5,20 !
5 0,816485 1.091639 4496 |
1 0.830568 1.092535 4,72
15 0.844318 1093380 4,49 |
2 0.357735 1.094226 4426 §
| . - |
% 0.870821 1.,095071 4404 |
D 0.833574 1095016 3.83 g
35 0895995 1.096762 3.62 §
40 04903083 1.097607 3441 :
45 0.919840 1.098453 3,22 |
50 04931263 1.099298 303
55 0.942355 1.100143 2,84
60 04953115 1.100989 2466
65 04963542 1.101834 2449
70 04973636 1.102680 2.22 ;
75 0.93340 1.103525 2,16
80 0.992229 1,104370 2,01
35 0.100193 1.105216 1.86
90 0.101069 1.106061 1.72
95 0.101913 1.,106907 1.50
100, 0.102723 1,107752 1.45




TABLE 9 (Continued)

L6

feiﬁiu Ire X0 G! XOG' ( chl /molé GC GO
OC »

0 0.,6840 =418,985  =236.586 1.0 0l3.414  494.4%0
10 046478  =342,738  =222.02% 1.35  1127.974 1785.2%
D 0.6096 ~250.489 «l58.184 1,50  134l.8l5  1082.326
30 0.5692  =l67.753 = 95.485 lléé, 1%64.515 1396.762
40 045264 = 654746 = 34.609 1,83  1795.391  1729.645
50 0.4809  + 49,063 23.504 2,00  2023.594 2072,657
60 0.4325 179,766 T7.745  2.17  2247.749  2427.515
70 0.3309  33L.07L 126,105 2.36  2486.105 2817.176
80  0.3259  509.809  166.147 2,55  2716.147  3225,956
90 042676 726,244  194.343 2.74  2934,343  3660.587

100 0.2037 1010.465  205.832 2.94  3145,832  4156,297




TABLE 9 (Continued)

128

{ H ]
Ta?ggl:re C;? I XOVC}') CP Cpr Cp c %o
oc ' ‘

0 ~l64113 «11.,022 1.007 84492 20.683 4,569
10 -20.083 - =13.010 1.001  9.63¢  21.419  1.33%
20 244946 5,207 0.999  11.067 22,139 -2.807
0 ~31.163 -17.738 0.998  12.881 22,841 ~3.321
40 ~39..440 ~20.761  0.998 15,212 23.534  ~25.906
50 ~50 4959 ~24,506 04998  18.269 24,231 «26.729
60 .- ~67.796 ~29.322  0.999  22.387 24.944 42,852
70 ~93.968 =35.792 1,00l  28.138 25.687  ~68.28l
80  ~L38.009  =44.977 1.002  36.568  26.470  =11L539
90  =220.417 58.984  1.004  49.779 . 27.303  =193.113

100 ~409.293 ~83.373 1.007  73.295 28,223  ~381.069
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TABLE 9 (Continued)

: f
E Tempe~ % St i XSt S Scr S, | S,
i rature 3 (Cal/aeg !
°c i l moldl ‘
0 ~7.299  ~4.993 14.5 1.474 0.967  13.668
| 10 ~ 7:947  =5.148 15,1 1.273 21,521 13,574
20 = 8,725 =5.319 15.7 1,019 22,038  13.312
0 =966l ~5.499  16.3  0.698 22,496 12,83
40 Al0.798  =5.684 16,0 0.200  22.874  12.076
50 ~12,208  =5.871 17.5  =0.230  23.141  10.933
60 -13.998  =6.054 18.1 0.890  23.257 9,258
70 ~16.358  =6.231 18.6 -1,763  23.068 64709
80 -19.625  ~6,396 19.1 ~2.903  22.593 24968
90 ~24.450 =654 19.6 ~4.,432  2L.713  =2,745
100 32664 =6.654 0.0 ~6.625  20.020 =12.635
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TABLE 9 (Continued)
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48 4462

. .13 1
Temneraturé (OCOO * 107 (Kr’oglo 2) Cp,oo
Oy i (%) "l (om2/, dynes) | (Cal/oc.mole)
l :

73.2 0.957913  36.561 9.661
283.2 1,967 35.804 84409
293.2 1,132115 36,045 6,932
203.2 1.18178 36,881 5.103
313.2 1.214916 33.073 2,772
323.2 1.236066 39.481 0,275
333.2 1,248526 41,041 -4.378
343.2 .1.255218 424711 =k . L06
353.2 1.253164 44..492 -18.507
363.2 1,259213 46 .396 =31 .860
373.2 1.250553 ~5% 150




TABLE 9 (Continued)

13t

Temp eoratu re | (& %10 3) (K, , _*10 "1)2 CP, ) |
‘ (oc) "1 [(en2/dme) Ty [ s
! - -
73,2 ~l.0l6013  =14.208  8.492 3.1407
283.2  =0.972901  -ll.981  9.634 2.7269
93,2  =0.0272l5 =~ 9,823 11,067 2,233
303.2  <0.87930 -~ 7.870, l2.88l. 1.7306
3132 0329716 ~6.149  15.212 1.2710
323,2 ~0.778466  =4.,671 18;269 0,880
333.2  <0.725826  -3.433  22.387 0.575L
343,02  <0.67019  =2.425 28,13 03489
353.2 0617264  =1.630  36.568 0.1936
363.2  0.561813  =l.027  49.779 0.0057
373.2  0.505853  =0.5385 . 73.295 0.0394

o



TABLE

10

132

, -
Temperature | &, (10 e )

(o}

Present calc.

“meas.(lO-%C) %l (10=3 /°C) !

c (Davis & Litovitz)%

0 <0 .0581 «0.031 0,032
10 0.0871 0 094 04084
20 0.2049 - 04200 94190

0 03024 04295 0287 |
40 0.3852 0.380 0.376
50 0.4576 0.457 0.458
60 0.5227 0.52 04533
70 0.5832 0.596 04602
80 046409 0.661 04665
90 0.6974 0.724 0.724
100 047537 0.786 0779
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TABLE 11
Present Davié & [EBucken }-iémethy &| Smitha Frank &
2;2%& re | € alc. Litovitz | (1073/0C) ASC heraga | Lawson Quist
0. | 10 3¢ lof3/°c 1973%c | 1973/ | 103/
0 =l.0l6 G666 0a® a2 ~ld6  =0.33
20 ~0.927 ~l.444  =0,515 0 .56 - -
40 =0.830  =l.258  «0.320 -0 .40 - -
60 “0.72%6 L0l ~0.186 0.2 N s .
80 -01;6.1.7 «0 .969 =0.101 =0.15 - -
100 04506 ~0.053 | <0.09 - -

-0 .858
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TABLE 13
Davis & ! Gr‘ofh-
Tempe~ vis ¢ NemethySTd
rature {poasent Litovitz eim & Wada |Bucken
oc Measu= chgra-xrogh- .
calcu- red 4= 2,80 d=§.82 , Moe
lations| A a
0 3.14 2.33 3.97 4,23 0.98 0.53 044 0.80
10 273 2.18 3.75 4,06 0 .86 - 0.39 -
0 1.73 2.0 3.20 3.5 0.59 - - -
40 -1-027 ZcOl 2-92 3-27 0-46 0!23 - O-lL
50 0.88 200.1- 264 3.00 had had - -
60 0..57 2.04 237 2412 0026 J.14 - J0.03
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TABLE 15
i . ] )
% Temp= |Present Né$%§h£ Lgigisti : uii;th Wada t;zgh Fragk Sm%th
| oTatud calcu~ Bc!:aera¥ Bucken| kroght Caine" QuiStLawson
o lations! ¢ = 4= Moe vale
| ; 26802'§2
oAl : o -
% 0 8 .49 9.04 12.06 lQ.55 - 11,2 10.36 1.1 0755 14,77
| 10 9.63 8.74 11.70 10-06 8.5 - 9.35 =~ - -
20 1107 7488 1l.20 9.49 ~  9.34 8.3 =~ = =
0 1288 6.94 10.58 8.86 8.3 = = = =
40 15.21  6.03 9.9L 8.26 = 753 = = =
5 18.27 5.12 9.0 7.58 8.0 - - - - -
60  22.39  4.22 B8.49 6.9 = 6.22 = - - -
70 23 .14 3.46 7.8l 6.38 7.5 - - - - -
80. 36457 2,91  7.15 5.83 - 514 - - - -
90 49.78  1.86 6.54 5.32 7.2 - - - - -
100 73.29 =~ 5.7 4.86 =  3.96 = = = -
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TABLE 16
o T alKCal/mole)| E(KCal/mol) | S(Cal /deg.mél) CV(Cal /degamol )s
T 1rz'»mp o | A -
;Cu - Aons | “cal . Eo]o s Ec al Sobs S al czVob s CVC al
|
0 =L.20 +0,98 2,75 2,29 14,5 12,01 18J 24,83
10 «le35 =1.09 2,93 2,50 15,1 12,69 18.0 @ 24.25
0 -lS0 1,22 8,01 271 15.7  13.38  17.8  23.49
0 =l66  =l.35 3.29 2,92  16.3 14,09 17,7 22,59
40 ~1.83  =l.49 3.47 3,14  16.9 14,80 17.5 21,53
50 =2.00 =1.65 3.65  3.37  17.5 15,52 17.2  20.34
60 =2.17  ~l.83 3.83  3.60 18.1 16,29 17.1 18,99
70 =2.36  =2.02 4,01  3.84 18.6 17.08. 16.8  17.53
80 =255  =2.25 4.20 4,08  19.0 17,93 16,5 19,92
90 =2.74 =251 4.36 4.3 19.6 18.84 - 16.3  14.18
100 =294 -2.84 4.55 460 2.0 19.94 16, | 12.26
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APPENDIX I

- . | Range of . B
P t unit ! A X
Toperty * study X

Y OC y
SUREACE  dynes/cm 0 to 100  0.3009838LE¥0L  0.13152023
TENSION | 4 .
VISCOSITY ¢P 0 to 100 - 24721381E%0L  0,96507673
SELE- 1070 0 to.100 0.37371584E+0L =0 .12579146 E+OL
DIFFUSION ¢m2/sec - |
DIELECTRIC _,, 0 to 50 -0 ,60141840 0.11156128E+0L
RELAXATION 10 sec
T IME
SPIN- -
RELAXATION  Sec. 0 to 100 0.371492E+01 ~+10390651E+0L
T IME |
THERMAL 10 Watt/ 0 to 100 0'.211431761»:«1-01 -.127151 138
CONDUCT IVITY cm ©G :
MECHANICAL 1, 0 to 100  -0.20745722E+0l  0.10977080E+0l
RELAXATION 10~ “sec -
T IME
ULTRASONIC 1077 sec2/
ABSORFTION  em. O to 8) 0.58151730 0.11995303E401
DIELECTRIC
CONST ANT - 0 to 100 0.37779884E0L  0.24314609
SOUND Kn/scc 0 to 100 0.54910362 -0 .66582701 =01
VELOCITY . |
AEFRACT IVE
INDEX - 0 to 100 0 26825220 0.6 3768605E~C2
DENSITY  gnw/c.c. 0 to 100 -, 70396967E-0L  0.222072425-01
MAGNET IC
SUSCEPT I~ = 0 to 100 0.,18083700E=0L =0 661098 33E~02

BILITY
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APPENDIX II
Hange
Pressure A B, %
(atm.) " study(og ).
50 ~2.4494197 0.95653348 |
100 «2.4110334 0.94244529
Y 0 to 100
200 ~2.3562609 0.92027514
300 =243063206 T 0.90139425
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APPENDIX III

Pressure | , Range of
(atm.) Ay B, ?gé?y
1000 5.2834325 -o_._10339864 ) |
2500 5.378133L =0« 17694290
4000 544603588 ;0.11520044' S 20 to L3
6000 545133190 ~0.10797428
8000 5.5708826 ;0.10889356
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APPENDIX IV
_li’;:c‘ssurc | A 3 Range of
k) " i nggy) .
50 0 «59756407 B=01 ~0:19619117E-01 |

100 » 57577 248E=01 =0 19720169 E=0L
150 045543020 3E=01 ~:19820277E-01
200 0.5331553 LE=0L ~0+19920108 =01
250 0.51232753E-01 ~0 420019716 E~01
300 0.49177572E~01 0. 20117 379 E=01
350 044715326 2E-01 =0+ 20214654 E~0L
400 0.45159525E=01 ~0.20311762E-01
450 0443190884 E~0L ~0.20406815E-0L
500 04125138 3E-0L ~0.20501000E=0L
550 030335553601 0.205933%5E-01 /0 to 100
600 0.37446984E-0L 0420684806 E<01
650 035581490 E~01 0420774248 E=0L
700 0.33739067E-0L =0+ 20861690 E-OL
750 0.3192178 3E-0L -0.20948354E=01
800 0.30123356E-01 ~0.21031907E~01
850 0.28346707E-01 ~0 21114126 E=QL
900 026589549 E=01 0421193624 E~01
950 0.24851614E-01 ~0¢21271233E~01

1000 023131791 E=0L 0,21 346286 E~01
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APPENDIX V

The partition function, Z; for the mixture of
NX, molecules in class I and NX, (or N(l-Xo)) molecules

in class II, is given by
Ny NXp - N(1-X,)
z = (e (e Ry T ()
(NXo) % (N(1-X)) 4

Taking logarifhm, we get

log Z = log N! = log (NX )t = log N(1-%,)% + Nx log fy

. ~6/RT
* N(1-X) log (fyge )

Using Stirling approximation,
log Z = Nlog N = N =~ NXjlog N X+ Nx,= N(1-X}log N(1-X,)

-6/RT
+ N{1-X)) + NX,log £+ N(1-X ) log (fyqe )

or
log Z = N log N = NX; log NX = N (1-X}log N (1-X )+NX log *

+ N(l-xo) log.(fII e-g/hT)‘ (b)

Now maximizing equation (b), we get,

d log Z 1= X £
—f_g.ﬁ =O=Nlog( XO) + N log — 1 .
3X, X ¢ -6¢/R
o} II e ‘
. X f1
X -6/RT
0 i fII e
! (c)
T — ¢
or Xb ~G/RT

fprfgre
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| -§/RT X
or log fy = log fII e = log 0

(d)

1%

~ Now equation (b) can be written as,

;
log Z=N1log N =~ NXO l_log N X, = log N(J.-XO)J
-~ Nlog N (1-X) + Nxo[ log f1 = log ‘fue»'G/RT)j
* Nlog £y e*G/RL
Using equation (c),;we get

~6/RT
fir e N

v

log Zz = log- (==
Now from equations (c) and (e) , we get finally,

~G/RT N
log Z =log(fI'l~ fire '

2 = (£ 4 -6/RT
= M e )
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APPENDIX VI

Let the given equations be
f (a,b)

gl a,b)

{
o

(1)
(2)

1
(@]

Now 1f a, s b, be approximate values'of a pair of roots

0

and  %a , 3b be the corrections, so that

i

" a aO + §a

1]

b bo * 3b
Then equations (1) and (2) become

fla, * 52 , bt db )

0 )

I

g(ag *8a , b+ 8b ) 0 - (4

cxpanding equations (3) and (4) by Taylox's theorem for a

function of two variables, we have,

df of
flagh va , by * 8b) = f (ag,bp) + 82 ((52) *+8b (T,

+ terms in higher poweis of da & &b
| (5)
(2. % b3, by#b) = gla.b) & sa() 4 syl
N ag s Yo 9\ 35 o) + ba(aa o + bb(é‘g )0

il

+ terms in higher powers of da & ®b

(6)

i}
@]

Now since %3 and 8b  are relatively small- we neglect their



156

squares, products and higher powers and then equations (5) &

(6) become simply

£ (agsby) + 5a(-—- )+ o (% ) = 0 (7)
g(ao,bo) t 53(52 ) + 8b ('gg )0‘ =0 (8)

Solving these cquations by determinants, we find the first

correction to be

l - £ (355B) ( 3b Yo

39
‘ - g (ao’bO) ( 5'}3 )O
b3 = — —— (9)
A .
-, of | |
(% o £ (ag,bo)
39 )
('gg )O - g (aO’DO)
db = , (10)
A
where, of -
sa ’o ( db )o
A = : (11)
39
F), (5,

~

on { &) of
The notation { 3 )o means the value of ( 35 vhen 2

~
>0

and b, are substituted for a and b. Similarly ( %g )l

means the ValU0.0f ( %‘i ) when a = a(l) ' b = b(l) :

and so on,
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I shall now apply this method to solve Van dexr waal's

oquation for a and b. The Van der waalls equation is

, a
(pt—)(V-p) =8I (12)
v
Let ’ 5
ar y
8 = Z-[M**g)(v ~b;-RTJ (13)
1 v,*
1
3 :
f=—==p27 Moyl o P, T
- 1 31 2 5 1 1
~RT 2 2 wa |22 =b
Al Rl IZ-VZ-Z-E,(M)
* 1 it vy
J5 5¢ 1 Py , 1 2
g= —~— =a“L . +2a] = ~aRTL —+2p;V
3b L Vf iy Iy i
RTZ p, = b Z—‘p2+2az-&i—+a2'>:£—q (15)
it : v2 ERRY
1l "1 1“
Therefore
4 1
af 1
L ooiopT FrrI— + T L (16)
o2 i s 1 1 v2
i Vs s
f Pj 1 Py ' :
-‘35=2b3§ 12 -!-RTZi? »zg_l-gat}_?’
1
* 2ab X 1
& (17)
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. and
1 _ Ps 1
.‘.3.9.-':232:-{/-3 +2Z~——~RTZ-—§
aa i 1 i Vi i Vk
a.._.p, — l
-b |22 +2a2...._] (18)
1 s .
2T 4
a9 1
s 1 2 p. Q
- -’Zpi+2a5.:_}..+a2z.-— (19)
b i i T, iV
" V

Now the first correction is determined by substituting

cquations (14) to (19) in equations (9), (10) and (11)

Additional corrections can be found by repeated
applications of these formulae with the improved values of
a and b substituted at each step. The computed values of a

and b this way are shown in Figures 12 & 13.
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APPENDIX VII

The trial potential is

@(r,T)=4go[(%»)“q_<_"2]m (1”2)‘} (1)

r

We can write for this equation _
o (1408 n  o(waf o

e
@ (r,T) =4 Gb(l,-i- Q) [(‘ - - (“'—‘;’***

Comparing equations (1) and (2), we get for the powé%é,

X~ n g =0 (3)
1 (4)

]

« + m B
Now subtracting equation (4) from equation (3), we get,

1
p = - (5)

(nem)

vasti#uting the value of B in cquaticn (3), we get for

n
o =

(o) (6]

Hence cquation (2) becomes

o (1) o(1) m } -

O(n0) =46(n) (7 ) -{—)

vy

6 (1 + o) TA=m)

. (8)

]

where 6(T)

D

%(l'{'ﬂ) fi=m

i

o~ (T)
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