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PitEF• CE 

There are three distinct states of matter.- solid 

liquid and gas. The liquid state is intermediate between 

the solid and the gaseous states and therefore it is to be 

expected that the thermodynamic properties of a liquid will 

be intermediate between those of its solid and gaseous states. 

But because of the peculiar properties of the liquid state 

and intensive interaction among the particles in strong 

disorder, the theoretical analysis of the problem becomes 

difficult and remains much less developed in contrast with 

the theory of gases and solids. This is not for want of 

trying. A vast number of researches have been devoted 

to attempts to analyze the structure of liquids, either 

directly by the diffraction methods which have proved so 

successful in crystalline solids, or indirectly, through 

the construction of models and their thermodynamic testing. 

But we still lack either an adequate picture of the arrange-

ment of molecules in a liquid or the necessary quantitative 

theory to explain their thermal and other properties. 

The attempts that have been made to formulate a 

theory of liquids fall into 	four broad classes 

(i Simulation studies 
(ii 	Integral equation methods 
(iii Lattice theories 
(iv 	Perturbation theories. 

None of the above theories is adequate description 

of the liquid state structure, and so far by no means the 

problem of liquid state is completely solved. Though the 

perturbation theories are in the process of developing into 
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a consistent theory but so far only it has been proven that 

they are physically satisfying approach to the theory of 

the equilibrium properties only and that is too in case of 

simple liquids not for non simple liquids like water. That 

is why'the liquid state research is an emerging field which 

will keep physicists attention occupied in the coming decades. 

Most of the above theories now remain only of histo-

rical importance, because they are either "gas-like" approach 

or "Solid-like" approach. They do not treat the liquid state 

as an independent state. A real theory to come for liquids 

must have to treat it as an independent state. 

An exact and a well developed theory of liquid 

state is not only of academic interest but also has many 

technical applications, for example in the pollution and entro-

phication problems, as well as is necessary for further 

advances in a number of'branches of physics, Physical 

chemistry, Biophysics etc. This problem is of further 

importance because of biochemical interests, in that all 

living structures are mostly composed of water. 

As a first step to understand the liquid state 

of matter, we have chosen to study the various thermodynamic 

and mechanical properties of liquids critically with respect 

to temperature. Since the different states of matter are 

nothing but a competition between the thermal energy and 

intermolecular forces. So in the preliminary stages the 



p_Lublem of liquid state resolves itself into two. First, 

to a relation which can give us the temperature variation 

of various properties of liquids and, secondly, to a 

choice of a suitable form of intermolecular potential. 

This thesis devided into five Chapters, 	First 

Chapter is devoted to a survey review on intermolecular 

potentials. Special attention is paid towards 48 years of 

Lennard Jones ( 6: n) 	potential. It is concluded from 

the discussion that for a real pair potential, while keeping 

the simplicity of the L-J(6m) potential some sort of 

flexibility in the potential parameters must be so intro-

duced as to conform to the experimental data. It is then 

pointed out that a new line of approach could be to intro-

duce a suitable temperature dependence of the force parameters. 

In Chapter 2 our essense has been an idea to 

deal the liquid state as a real, van der waal gas of 

"molecular clusters" or microscopic "drops" . Such a model 

suggests itself if we try a mathematical decoupling of 

molecular clusters to avoid the complicated cluster 

integrals. An "effective" potential between the "drops" 

has been obtained, Starting from the experimental PVT-

data for liquid water. 

In Chapter 3 various empirical, semi-empirical 

expressions for properties of water have been examined 



and a single expression which represents the functional 

dependence of temperature of almost all properties of water 

is suggested. The expression has been interpreted in terms 

of two state theory of water. A more fundamental interpre-

tation in terms of molecular interaction has been discussed. 

In Chapter. 4 a specific form of temperature-

dependent molecular potential has been considered as trial. 

Compressibility, sound velocity and pressure dependence of 

bulk modulus for liquid water have been calculated from this 

potential. A good agreement with experimental results has 

been found. i speculative suggestion for future work on 

building a theory of liquid state sui generis without 

directly refering to gaseous or solid state has been 

mentioned basing it on a temperature-dependent molecular 

potential. According to this speculation the transformation 

of solid to liquid state would mean 'cluster' - formation 

of molecules, so that the liquid can be treated as a real 

van der weals gas of these 'clusters' or 'drops'. Such 

a description will correspond to the case already treated 

in Chapter 2". 

Chapter 5 deals with a brief review of a number 

of theories of liquids. Calculation have been made for 

volume and two-state thermodynamic parameters alongwith 

some other physical properties of water on two-state approach. 

Furthermore a statistical theormodynamic theory is successfully 



5 

applied to water based on the two -state model of 

Liouid water which consists of two classes of molecular 

structures. Class I is constituted of hydrogen bonded 

molecules and Class. II is constituted by unbonded 

monomers. The resulting partition function is formulated 

end calculated by 	using the two quantities, the 

energy difference between class I and class II, 6 , 

and the fraction of close-packed specy. 



CHAPTER I 

A great deal of the current effort in science is 

directed towards relating the real-life properties of gases, 

liquids and solids to behaviour at the atomic and molecular 

level. Since the amount of information that one needs about 

the molecules and their interactions is much less than the 

information about the physical properties which is or should 

be derivable from them, a knowledge of the true intermolecular 

potential is thus a necessary step towards an understanding 

of these physical properties. A quite good number of the 

intermolecular potential functions is available in the 

literature. The purpose of the present review is not to 

deal with all these potentials in detail(which requires 

a large space) but with principles and attempts which have 

been made by various authors to determine a reasonable 

form of the pair potential and finally to suggest something 

which ought to be fundamental about a true pair potential. 

One of the most common potential which has been 

used extensively in determining the various properties of 

the matter in the gaseous, liquid and solid states is the 

Lennard- zones (6 	n) potential Fig. (1). The general 

form of this potential energy function is 
■■• 	 es, 

e 
(r). = 

 

m 	* .n 	* m  
) 	( 	

)m 
n r 	• r 

 

( r) 	r  ) 	2 ( *Kr  ) [ 	12 	* 6 or 
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where f  (r) is the mutual pair potential-energy of inter-

action between two molecules, E is the (-ve) minimum energy )  

r is the distance between molecular centres, r*  is the 

distance between molecular centres at the minimum molecular 

pair potential ontrgy. n and m are the repulsive and 

attractive exponents. The choice of the repulsive exponent 

n = 12 is primarily one of the methamatical convenience, 

but by no means unique.. A general survey of the literature 

reveals that n can have any value ranging from 8 to 30. 

The potential is named after Lennard-jones 

although, Mie (1) was the first to suggest that the inter-

action energy between a pair of atoms might usefully be 

expressed as the sum of two terms (Fig. 1), a negative 

term proportional to the power- m of the distance r and 

a positive term proportional to the power - n of the dis-

tance r with n m ) 0 (this form for the sake of brevity 

called the (m : n) interaction), he made many of the earlier 

calculations of the bulk properties of the gases and liquids 

in a series (2- 9) that started in 1924. 

In 19 24 Lennard-jones (10) showed that the 

experimental values of the second virial coefficient of 

Argon, and several other gases could be derived from a 

(4n) interaction with n (repulsive exponent) having any 

of the values n = 8,10,131  , 20, 24 . 
3 



In 1930 London (11) proved by quantum theory that 

at large distances the interaction energy is proportional 
• to r . It is, therefore, natural to use the values m = 6 

In 1931 Lennard-jones(2) refitted the experimental data 

with m = 6 and n = 9, 10,12. 

One reason for the popularity of Lennard-jones 

(6:n) potential is that Lennard-jones has showed how the 

integration for the second virial coefficient could be 

carried out analytically to yield a power series that 

converged rapidly enough to be within the scope of a desk 

calculator. This was the non-trivial matter in the days 

before the fast electronic computers. 

The properties which provide a convenient means of 

testing a potential-energy functions are 	second and 

third virial coefficients of gases. Joule-Thomson coeffi 

cients, crystal properties (lattice spacing, heat of 

sublimation, mechanical constants) coefficient of vi scosity 

theme' conductivity, diffusion, thermal diffusion and 

scattering of molecular beams. The parameters of a force 

model are.determined by fitting experimental second virial 

coefficients and also from the viscosity data. We shall 

not discuss here the methods of fitting the data , which 

essentially are the following five methods, 



(i) Selected points 

(ii) Empirical equations 

(iii) Parallel translation of axes 

(iv) Curve intersections 

(v) Least squares iteration 

There are two general criteria which are used to 

give some measure of confidence in the reality of a true 

pair potential of the molecules. The first one is that 

the model must not conflict in any essential way with 

generally accepted theoretical results about intermole-

cular forces. The second criterion is that the model 

must be able to predict:  in agreement with experiment, 

other properties besides those used to determine the 

parameters. 

EXPRESSIONS FOR THE SECOND AND THE THIRD VIRIAL COEFFIGID\ITS 
FOR LENNARD-JONES (6 tn) POTENTIAL : 

The equation of state of a gas written as power 

series in density is !: 

Ey. 	DLO c(T)  + D(T) 	E 	120)  4. = + + 	 ... 
RT v 	V 2 	V 4 	V V8  

(1.2) 
where B(T) :  C(T):  D(T), E(T) ,F(T) etc. are the second, 

third:  fourth, fifth and sixth virial coefficient respectively. 

The second virial coefficient, B(T) , of the virial 

equation of state is related to the potential energy 0)(r) 



Putting A = 4 
T*  

B*(11 = 
oo *..n+2 

r*I°  dr*  

as 	 00 	d th• 0(r) /kT 
2 01 •S r3 	e 	dr 
3kT 0 

B(T) = . 	 dr 

10 

co 	4/ler 
= 2 N 	I r2  (1- e 	)dr 

0 
Using the following reduced quantities, 

r = r/ o- 	T = kT• / G 

B 
	B 	 B 

2 	 bo  -3- 7s- N o-3 

*-6 
Therefore 	(r*) = 4 G 14*-n  r 

* * 	4 	*2 r n 	6 
B (T ) = 	cr r*n 

(1.3) 

n 4 I * 	**111) r -r 
dr*  

oo 	A A 
rte' 

z 	
*n 

-6 A 	z.-ff 	e 	e 	r 	dr*  
0 

Which gives finally after carrying out the integration , 

—A 
1 	i -(63+n-3) Al 	+n .°3) B*(T*) 	= A 	..- 	4Fit.. 	A 	 6j 

i J.0 	. .4  6.a.2, 03 	1 	; 1 	n in, a7t.16* 3 } 4- 6 A 	 WM.. ---  -Tr A n 
.i0 
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B*(T*) 	
co 	1y. 	.4 2j +1) /4 

b"/ T* 	(1.4) 
j = 0 

2 i+ 
where b(i )  = 	 1 	( 	) 4j t 

The third virial coefficient, C(T), of the virial 

equation of state is related to the potential energy, 0(rii), 

of a pair of molecules i & j separated by a distanceby 
rij 

8 re2N2 

3 .Cfl2f13f23r12r13r23dr12cirl3dr23 
C(T) = 

(rid) 	
(1.6) 

where f. j 	exp ( 	) 
kT 

The integral may be evaluated by a method similar to that 

used for the evaluation of the second virial coefficient.. 

(1.5) 

The results obtained are 

c*(T1 

j +1 

Co). T* 2 

C(T) 	= b2  C*(T*) 

(1.7) 

(1•8) 

Acre the expansion coefficients CO)  for the third virial 

coefficient are complicated integrals and values are 

computed by numerical integration. 

Calculations for the Lennard,-jones potential 

have been made for various properties by various authors(38) 

such as : second virial coefficients (12-.16),transport 

properties of dilute gases : viscosity, thermal conductivity, 
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and coefficient of selfAidiffusion of the dilute gases(12,19, 

20i58), lattice spacing, latent heat of sublimation and 

coefficient of thermal expansion of solid argon at low 

temperatures (19-25), with the same force parameters as 

are used to fit the second virial coefficients. 

Numerical calculations have been made of the third 

virial coefficient for the Lonnard-jones potential by Bird 

-,t al.(26)7  and some other authors (27-29). llowlinson 

et al. (30) doveloped asymptotic expression for the 

Lennard-jones third virial coefficient valid at high and 

low temperatures. 

With modern computers it is possible to reach the 

fifth virial coefficient B.(T) for a Lennard-jones potential 

(3.1-33). 

This potential has only two adjustable parameters 

and so conforms to the principle of corresponding states:. 

The properties of the inert gases, in all states of matter, 

require a potential of this form. 

However, Lennard-jones (6:11) potential which has 

been used extensively in the study of interaction of simple 

nonapolar molecules since 1924, has severe faults. These 

were revealed by many independent failures which became 

apparent from 1960 onwards. The inadequacy of the L-3 

potential, even in case of simplest molecules (inert gases),.  
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has been corroborated (14-16, 3437) by several independent 

authors and may be summarized as follows 

(i) The long range interaction potential between a 

pair of atoms is given by second-order perturbation theory 

(17) as .. cab  1:6  where the interaction constant Cab 
can be related to the oscillator strengths of electronic 

transitions which can be measured experimentally from the 

ultraviolet spectrum. Barker and Leonard (39) found that 

the coefficients so determined for simple gases (He, Ne, 

A, Kr and Xe) are roughly half those of Lennard-jones 

potential. 

(ii) Munn (31) calculated the same dispersion-force 

coefficient for Argon and Neon from the low temperature 

viscosity measurements, which is a direct source of 

information concerning dispersion forces. Again the values 

so obtained are half those for the Lennard.-jones (6:12) 

potential. 

(iii) Weir , Wynn Jones*  Rowlinson and Saville (40) 

pointed out that the Lennard-jones (6112) potential is 

inadequate for wide ranges of temperature, and this 

becomes more obvious when the deviations are examined 

graphically . The minimum depth of the best 1...J potential 

are C/ k = 116 ± 1°K for Argon and 163 t 1°K for 

Krypton, which are too small to produce•the rapid fall in 

B observed, Their measurement of the second virial 

coefficient at low temperature require a depth e that is 
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about t one third larger than that of Lennard.jones potential. 

They do not stress the physical significance of any of those 

. figures, but only put them forward as evidence that the 

depths of the true pair potential is certainly greater than 

the depths associated with the 	potential. 

(iv) Rowlinson (41), 	Sherwood and Prausnitz(42) cal- 

culated the third virial coefficient, as the third virial 

coefficient is more sensitive to the shape of the potential 

function than the second virial coefficient, for many gases 

e.g. Argon, Krypton, Xenon, Methane, Nitrogen, Cot  etc. end 

compared with the experimental values. It is found that the 

calculated values of the third virial coefficient have a 

peak at low temperatures whose height cannot be reconciled 

with the experimental one. 

(v) The experimental behaviour of the classical 

fluctuation discriminatnt of the configurational energy and 

the virial was examined by Rowlinson(43) for the fluid states 

of nitrogen and methane which shows that the discriminant 

must be essentially positive. But Lennard.jones (6:12) 

potential leads to negative values of the discriminant 

for orthobaric liquids at low temperatures, for the liquids 

at high pressures and for the gases at high temperatureS 

Any how Rowlinson pointed out that the discriminant can be 

made positive in the low temperature region by choosing a 

value of n = 13 .14 , but at high temperatures, the value 
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would have to be 2033. It does mean that the best experi-

mental results for gases at high temperatures are not 

compatible with a LuJ potential with a reasonable repulsive 

index. So this also demonstrate the inadequacy of the L-0.  

(6:12) potential at high densities and temperatures. 

(vi) Guggen holm' s and Mc G1 ashant s ( 44) investi.gations 

on the equilibrium properties of the crystal, namely, the 

variation of entropy with temperature, of energy with 

temperature, of density with temperature and of the density 

with pressure show that the interaction energy which best 

accords with all these properties is strikingly different 

from the commonly advocated difference between an inverse 

twelfth power and an inverse sixth power of the distance. 

(vii) Kiharat s (14-16) objections to the L-46112) 

potential are i(a) It does not explain the absolute stability 

of the cubic structure, (b) The real intermolecular poten-

tial for rare gases has a wider bowl and a harder repulsive 

wall than the Lennard-Jones.potential. 

(ix) 	For some time it has also been recognized that it 

does not give satisfactory description of dilute gas 

properties (15145146). 

• In the light of the above discussion, it has been 

recognized for some time that the inverse power (6:12) 
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potential due to Lennard-jones is not an adequate 

representation of the intermolecular energy even of the 

inert gases which have several simplifying features, i.e. 

closed electronic shells, monoatomic molecules with spheri-

cal. symmetry and they crystallize in the simple closed packed 

structure which make them a unique system for a detailed 

study of their molecular fields. 

Nonetheless, the success of potential function 

is ev4luated as much in terms of its simplicity as in 

accuracy. Lennard.ijones(6:12) has remarkable simplicity 

although, of course, its 	accuracy has been in doubt for 

some time. But the modifications due to several authors 

most significant since 1960 onwards are advancement in 

this direction of making it more flexible so that its 

accuracy might increasei although at the cost of simplicity. 

Notable among these are, due to Kihara (15), Guggenheim-

McGlashan (44), Boys and Shavitt (47), Dymond, Rigby and 

Smith (48) Pollara et al, (55), Dymond and Alder (54) 

and very recently due to Koo (57) 	etc. which are discu 

sseci in brief below :4- 

Kihara (15) proposed a three-parameter potential, 

in which third parameter is added to represent the molecular 

core size t. 

f(r) 	A ( 	)€ I "I"  ) 	 ) 
1) 	X 

(1.9) 

  



1.7 
where r; is the separation, a is the collision diameter 
(U(a) = 0 ) 	€ is the minimum value of U, ( 1),  cr ) is 

hard core within which U is supposed to be infinite and 

A(m/n) is a pure number 
x 

A(x) = x i-  1-x (i.x) -1  

This potential can also be written in terms of the reduced 

separation ( r/rm  ), where rm  is the separation at which U 

is minimum, 
1 

rm  
" 1r"  " 	( 

) non 

This potential reduces to that of Lennardiones for 	= 0 

This can be written in terms of (r/ 	 ) as in equation 

(1.9), or as, 

(r) = -2  
n m 	

r ) 
	( ) 
n 	r 

n 	r 	
(1.12) 

WV. 

This potential has been used by Sherwood and Prausnitz(42) 

to fit the second virial coefficients of Argon and by 

Barker, Fock and Smith (49) to fit the second virial 

coefficient and the transport coefficients. The parameters 

suggested by them are close to each others  
0  S and P n = 12, m = 6 , 	= 1/9 , cr= 3.314 A,€ /k = 147.2K 

(1.13) 

B.F, and S. n= 12, m= 6 V= 1/10 r  Cr ..= 3.3634(A ,g/k = 142.9°K 
(1.14) 

or A(1/2) = 4 
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The greater success of the Kihara potentials is due to 

their greater depth of the well: 

It is generally agreed that the second virial coeffi-

cients alone cannot determine the form of.the interaction 

energy. Any how the more detailed information concerning the 

interaction energy especially at distance r near to that 

at which the energy is minimum, should be obtainable from 

the equilibrium properties of the crystal, in particular the 

density, the energy and the entropy. Guggenheim and McGlashan 

(44) have correlated the interaction energy between argon 

atoms with the equilibrium and non-equilibrium experimental 

properties of argon, namely, the variation of entropy with 

temperature, of energy with temperature of density with 

temperature, of density with pressure, of the second virial 

coefficient of the gas with temperature , and of viscosity 

of the gas at high temperatures. Their curve of interaction 

energy in the neighbourhood of the minimum is expressed as 

a power series in (r-ro) which introduces additional enharmonic 

terms in the neighbourhood of potential minimum in order to 

explain the solid properties, namely 

3 
(4 	

rmro 	r-r0 	r-ro   4  
4, g 4, K (...----- m a( (.----410 4. p ( 

ro 	 ro 	1'0  

(1.15) 
where ro is the distance at which the energy is minimum, K, 
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explain the solid properties, namely 

r-r 3 ca = 	G. + K .2:721_ :. 0( (,--,-21.4) 4
r-ro 	4 (.........._—. ) 

ro 	 ro 	ro  

(1.15) 
where ro is the distance at which the energy is minimum, K, 
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a parameter determines approximately the characteristic 

frequency 17, c< is a parameter which plays an important 

role in determining the dependence of V on the lattice 

constant and so indirectly the temperature dependence of 

all the equilibrium properties. 

, the importance of anharmonicity is determined mainly 

by the value of (3 c4 and they have assumed for p a value 

between 0 & a so that anharmonicity is unimportant in the 

atomic vibrations. Calcul4tions show that this potential 

gives considerably better fit tham (6:12) potential in some 

properties such as in case of entropy and lattice constants 

etc. 

Shavitt and Boys (47) (Fig. 7) introduces a new 

expression with unlimited number of adjustable parameters, 

namely, 

4 C 
(r) 

( r24. 62)3 
	 C 
i=0 

- ALL-r2) 
r e 	(1.16) 

Here r = BAof where R is the intermolecular distance and 

R0  is the distance for which U = 0 A., B2 and C2i(10,1,2,. .) 
are the parameters, and it is suggested that A. and B2  be 

assigned definite values while the linear coefficients 

Ca  be varied to fit the experimental or theoretical data. 

The scale factor € can be made equal to the maximum depth 

of the potential well by a simple tnormalizationt of the 



parameters Ca. It is shoves that the choice A = 4, B2= 0.1 

makes the basic function of the system Equation (1.16) namely 

that for which Co = 1 and all otherC2i = 0 , practically 

indistinguishable from the L-J potential. 

1 	 1 

	

L ( r)  = 4 6  (2 	6 ) 1.  
4.40... ) 	 1. 

	

12 	r6 

Three cases of the potential function equation (1.16) given 

by assigning three sets of values of the C2i  have been 

examined. The second, third and fourth virial coefficients 

for the three potentials ul' u2' & u3  have been calculated 

at various temperatures. The second virial coefficient was 

evaluated by a straightforward numerical integration, the 

third and fourth virial coefficients by the method of 

expansion in Gaussian functions. 

Dymond, Rigby and Smith (48) proposed a two para-

meter, five term, potential function of a polynomial form, 

namel y, 

 

Rm 28 	Rtn  24 	R5118 
0.331 ( 	 -- 1.2584() 	2.07151(—) R. ,41 	= 

  

, Rm 
1.74452 Rm 8 ) 	0.39959k- 16  a ( 1.18) 

  

Whore 1n is the intermolecular separation at the minimum 

energy € , and are different for different gases. The 

power of the main attractive term (in 11-6  and R.43) wore 

chosen on theoretical grounds. The attractive torn has no 
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theoretical basis , but was found necessary to give a 

broad bowl to, the potential function as required by the 

experimental data. The potential function is illustrated 

in Fig. (6). This potential fits well the second virial 

coefficient of a wide range of gases. The heat of sublime... 

tion and lattice parameters of the inert gases have been 

calculated using the parameters obtained from the fitting 

of the second virial coefficients. And when the correction 

of non-pairwise additivity in the solid phase are applied, 

the agreement is excellent. The heat of sublimation calcula-

ted in this way are considerably superior to those estimated 

from other two parameters intermolecular potentials in 

common. use. The third virial coefficients of Ar,Kr and 

X° have been calculated making allowance for the non.. 

pairwlse additivity (42,48). In the case of Kr the calculated 

results are 10% low than the experimental results. Any 

how this potential has got certain limitations namely, as 

five terms are involved in the potential function it is 

unlikely that the coefficients of the various powers of 

R can be regarded as meaningful ,. Thus the coefficients of 

R646  and a..8 
 cannot be-used to evaluate theoretical 

approaches to the theory of dispersion forces, and secondly 

at small separations the repulsion forces predicted by 

potential are clearly much greater than those suggested 

by scattering experithents. 
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poll ara et al (55) proposed a three parameter 

, potential function, to avoid the Kiharae s objection 

against the Lennard••jones (6:12) potential, as shown in • 

Fig. (4). of the form, 

CP 	= 	 0 	r 
= 	g 	 cr -4 r = 	(1.19) 

06 
.4 

r6 	
r 4 cc =• c  

which includes an adjustable bowl, a hard repulsion and 'a 

realistic (r"6) attraction term, a hybrid potential of 

the square well potential, and the Sutherland potential. 

In order to test the proposed model they calculated the 

second virial coefficient by the usual methods of statis-

tical mechanics using Bquation(1.20) given below :- 

2 	r'•' 	 2 	r-1  
B(T) = 

r 
(-3) 7C N o- 

3 
 exp ( 3./T*) 	(-3) .A-N 

3 
 exp (1/1:1 

4r-n 
- 	co 	T 

Where N is the Avogadro number, r is the intermolecular 

distance T
* 

= kT/G 	r are as defined in Fig. (4) 

The results so obtained were compared to those of Hamann 

and Lambert (56) (7:28) potential energy function. 
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Recently, Dymond and Alder (54) dealt with the problem 

in a more systematic way. They studied the effect of varia-

tions in the interatomic potential of argon on the calculated 

properties of the dilute gas. They modified the L-„T (6sn ) 

potential as follows : 

(a) Changes in the long range attraction. 

(b) Potential energy functions with different slopes to 

the outer wall of the attractive bowel. 

(c) Potential energy functions with different bowl width. 

(d) Potential energy function with different repulsive 

energy. 

Pictorially these changes are shown in Figs (3a  to  3o) 

Further they found that changing different regions of the 

potential simultaneously leads -to the sane results as 

combining the separate changes. And a potential function 

which does provide a reasonable fit to the experimental 

data. The general features of this numerical potential are 

that it has a smaller attractive tail, a wider bowl with 

a steeper outer wall, and a weak repulsive region than 

previously postulated potentials, to overcome the Kiharas 

criticisms against the Lennard s. Jones (6:12)potential. 

Very recently to remove these criticism Ronald Y. 

KO° (57) et al. modified the Lennard-Jones potential 

as shown in Fig. (5) and expressed mathematically as-. 



 

nG 

(n-6) i 

( 2: )
6--) 

 for 0(r <r  r 	 min (r) = 

   

(1) (r) G- 	 iforrtr Yr 
min 	min 
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i  1 	 cr 	o- 6 
41(r) = 1 n — 	n•) n"6 	)

n y 
**( 	) ford 	r oo 

(n 6̂)' 

	

6 	
min 

(1.21) 
where n-6 

rmin ^ ( 6  n )  

and GI  a- 	n , I are the maximum energy of attraction,the 

collision diameter, hardness of the repulsion and width of the 

bowl respectively. Substituting  the modified L-3 (6 sn: v ) 

potential function in to the expression for the second 

virial coefficient given by, 

cx)( 	
e 

r) 	j _2  
 dr 	(1.22) 0 

The reduced second virial coefficient is obtained for the 
modified L-‘1 (6:ni 	potential as • 

3/n 
13*(T*) 	 (it)""Ai/ 	F(T*n min ft V) 

(1.23) 

Where, F(V„n,rrnin , ) = 6 A  P I  y3 r ( Kis 	r(s.+,)  
- 	,1112) - 	r(K2,m1) 41(2+1) 

	

11  (K2  , M2) 	 (1,24) 

B(T) = 27N 

i=0 
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B
*(T*) TT 3 (1.25) 

25 

in which, 

B* 	 2 = B / ( 	7f N o-3  ) 
3 

T* = KT/ g  
, 

r / min 

n n-6 

= 	10_ 
min min 

(x+1) = xt 

1-1(x+1, y+1) = (xsy)t = y 
e~t t

x  dx 
0 

K1 	= ( 6,1+3-n) 

K2 
	=(6j -3 ) 	n 

M1 	=A ( 	) n  
rmin 
1 

) M 2 
	= , 	

r min 

When Y = 0 equation (1.23) reduces to the form of the 

Lonnard. Jones (6:n) potential i.e. 

Equation (1.23) and Equation (1.25) were used to calculate 

the second viria1 coefficient for six gases , nitrogen, 

CO2  ethane, n-butane, ethylene, and benzene. They fount' 

that the modified potential (6:n JO has an improvement 

over the (6:n ) potential. 



r 
(1.26) 

n  (e  9 	it 	4  
1' 2 ' 2 	1) 3 
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However, none of these potentials has been found 

to be flexible enough to reproduce all the known low-

density properties of the inert gases within experimental 

error. This is true inspite of the fact that recent 

measurements 	of the coefficient of viscosity at high 

temperatures (50) indicate that values (51-53) derived 

from the earlier experiments were significantly too low. 

1.2 POLANCLECULBS 

For polar molecules Stockmayer (59) modified L-J 

(6 n) potential by adding some extra term which corresponds 

to direct and induced electrostatic terms. It describes 

well the interaction between those polar molecules for 

which interactions (dipole-guadropole and higher multipoles) 

other than dipolemdipole are unimportant just like H2O and 

NH3  molecules. The form of this potential energy function 

is, 
-S 	,) 3 

	

'Ara Cr -Arr 	g,  (S>6 

Ivhere g = 2 Cos 91  Cos 92  Sin 9/  Sin 92  Cos (0 ) 

or 0 ( r,e1, 92,  02 	) 	4  [( IL)12 

Where g(91, 42  , 2 Cos 9 Cos9 -Sine, Sine,  1 	2 	2 
Cos (02  - 01  ) 
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is the angular dependence of the dipole-dipole interaction. 

and it2  are the permanent dipole moment, cpi  and q2  
are the inclinations of the two dipole axes to the inter- 

molecular axis, and 	is the azimuthal angle between them 

as shom in the Fig.(10) . This potential (59) has been 

widely used to 	represent the effective intermolecular 

force between a pair of polar molecules. The second virial 

coefficient was calculated by Pople (60) using a perturba-

tion method for this potential' function. Additional examples 

are summarized by Hirschfelder, Curtiss and Bird (12). 

No transport-property calculation is available for this 

potential function. The limitations of this simple model 

is obvious/  however, first, the polar molecules are 

spherically unsymmetric and therefore, the charge overlap 

and dispersion forces for a pair of them can only fortui-

tously be represented by a central force field such as the 

Lennard-jones potential, second, the nature of charge 

distribution in a real polar molecule may not be adequately 

described by a centrally located permanent point dipole alone. 

Though the model, that has been used most widely for 

the interpretation of the properties of polar gases in terms 

of molecular parameters, is due to Stockmayer (59), yet it 

is unsatisfactory in many respects e.g., 

(1) 	The collision diameters obtained from the application 

of the Stockmayer potential to the second virial 



coefficients of polar gases are frequently found to be 

unrealistically small. 

(ii) The model predicts only positive values of the 

dielectric second virial coefficient for all polar 

gases while there are many polar gases known to show; 

negative dielectric second virial coefficient (6l)' 

e.g. ..600 cm6/mole2  for CH3F at 50°C (63). It is 

impossible to explain such negative values on the 

basis of the Stockmayer model. 

(iii) In certain mixtures, large positive enhancements of 

dielectric second virial coefficient are observed 

e.g., {3 ( *10"3) for the mixture Me20 + SO? 
 

is 45.5 cm6/mole2  (71), whereas the value calculated 

from the Stockmayer potential is 3.0 cm6/mole2. 

(iv) For such mixtures, second virial coefficient may have 

large negative values. For the mixture Me20 ÷ SO2  

second virial coefficiebt B12 = -1223 cm3/mole, the 

Stockmayer potential predicts .470 cm3/mole. 

Efforts have been made to extend its validity and 

to increase the accuracy as well, by several authors by 

introducing various modifications to the stockmayer potential 

function. Notable among these are the Buckingham and Pople 

(62.63), Dymond and Smith (64) 	Suh 	and Storvick(65), 

Sweet and Stec.)10(66,-68) and Chang Lyoul Kong (69-70) etc, , 

they are discussed in brief below : 
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Buckingham and Pople (62,63) considered the effects 

of separately adding  the induced dipole energy, the 

quadropole energy, and an arbitrary and simple version of 

the molecular shape factor into the stockmayer potential. 

Dymond et al. (64) refined the off-centre model, which 
/ 

in conjunction with a hard-sphere central potential could 

provide a semi-quantitative interpretation of the four . 

points, discussed above and was especially successful for 

mixtures,,by the addition. of a Lennard-jones central poten-

tial, and applied to the compressibility and dielectricc 

virial ,coefficients of single component systems of polar 

gases,. They found that off-centre dipole model, when applied 

to the properties of polar gases, has certain advantage 

over the Stockmayer potential. For almost all polar molecules 

(CH3F, NH3 CH013' AsF3'  CHF3 ' Me2 P 
0  SO2'  HCI-) the dielectric 

virial coefficients are negative or less positive than 

would be expected from a central dipole model. This provides 

strong evidence for -the 'applicability of the off-centre 

dipole model,. 

Suh and Storvick (65) extended the Kihara core model 

to include non.-spherical polar molecules. The polar contri-

bution to the molecular pair forcefield is represented by a 

permanent point dipole located at the centre of the core. 

The molecular cores for the polar molecules were selected on 



the basis of the cores for the hydrocarbon homomorph of 

the polar molecules. Pople's perturbation method was then 

used to obtain an expression for the second virial coefficient 

of a polar gas. The potential function parameters for nine 

polar gases (CHC13, CACI. , CHCl3  CHC12F, CC12F2, CH3COCH3, 

CH3OH , CH3F , NH3) were then evaluated by numerical methods. 

The second virial coefficient datas.For these gases are 

well represented by this potential. 

Sweet and Steele' (66-68) investigated the interaction 

between a pair of Linear symmetric molecules using the two 

simple models . The two models consists of a linear Kihara 

core potential, and a diatomic model(a model made up by 

placing two centres of interaction on the axis of each 

molecule, and the sum of all the pair interactions between 

the centres on the adjacent molecules is taken as the overall 

intermolecular potential energy). They extended this model 

then, to the systems of linear polar molecules by adding 

simply the usual dipole-dipole interaction to their potential 

function. 

Chang Lyoul Kong (69-70) refined the Stockmayer 

potential a step further, by taking into consideration a 

more realistic molecular shape factor and including the 

induction effect for axially symmetric polar molecules. 

This model basedon the follovang assumptions: 

(1) 	A polar molecule with axial symmetry has two constituent 
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and 

U 
2 

cle 

2 	-3 R 

(c<eizo2/2 

and Az 	are 
o 

[2 Cos 9 	Cos 92 + Sin 	1 	2 Sin 9 Dis 	01  4- 	2) I 

) 	R1-6  (3 Cos291  + 3 Cos2e2  + 2 ) 	(1.29) 

the mean polarizability and the permanent 

dipole moment respectively. The terms dipole-quadropole and 

higher multipoles are neglected. The coordinate system defined 

in Fig. (10). 

This potential was used to evaluate the second 

virial coefficient of the polar gases (methyl flouride and 

fluoroform) by a perturbation treatment. But the merit of 

a potential function cannot be judged simply on the basis 

of its ability to reproduce the observed second virial 

coefficients because the ordinary second virial coefficients 

of polar gases are quite, insensitive to the orientation 

dependences of intermolecular potential functions. So the 

potential function is further tested by computing the 

dielectric second virial coefficients (which is very sensitive 

to the orientation dependences of intermolecular potential 

functions) for polar gases (CH3F and CHF3). 

In the light of the above discussion one may say 

that the search for a true pair potential is still not 

complete. Heuristic approaches are still justified and 

occasionally rewarding. Even for the inert gases for which 

L-J potential is fairly good there is a scope for modifications 



the basis of the cores for the hydrocarbon homomorph of 

the polar molecules. Poples perturbation method was then 

used to obtain an expression for the second virial coefficient 

of a polar gas. The potential function parameters for nine 

polar gases (CHC13, C2H5C1 CHC13  CHC12F, CC1 2F2, CH3COCH3, 

CH3  OH 	(-13F , NH3) were then evaluated by numerical methods. 

The second virial coefficient datas.For these gases are 

well represented by this potential. 

Sweet and Steele'(66-68) investigated the interaction 

between a pair of Linear symmetric molecules using the two 

simple models . The two models consists of a linear Kihara 

core potential, and a diatomic mociel(a model made up by 

placing two centres of interaction on the axis of each 

molecule, and the sum of all the pair interactions between 

the centres on the adjacent molecules is taken as the overall 

intermolecular potential energy). They extended this model 

then, to the systems of linear polar molecules by adding 

simply the usual dipole—dipole interaction to their potential 

function. 

Chang Lyoul Kong (69.70) refined the Stockmayer 

potential a step further, by taking into consideration a 

more realistic molecular shape factor and including the 

induction effect for axially symmetric polar molecules. 

This model basedon the following assumptions: 

(i) 	A polar molecule with axial symmetry has two constituent 
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atomic groups located on the molecular axis. Each 

atomic group, which may be an atom or group of atoms 

has a centre of Kennard-jones (6:12) interaction. 

(ii) The potential energy between a pair of the molecules 

due to the charge-overlap and dispersion force is the 

sum of all the pair interactions between all consti-

tuent atonic groups on the adjacent molecules. 

(iii) The molecules are polarized and each molecule has a 

point dipole located at its centre. The centre of 

molecule is assumed to be the centre of gravity. 

There is uncorrelated, free rotation of the molecules 

on their axes. 

The form of the potential energy function is, 

Cli) (R26.1, d2 , 	02) = 	e2, 41, (62) +1.'2( R,ei  42,81,42) 

where U1  is the sum of all the pair interactions between the 

constituent atomic groups, and 	U
2 
represents the energies 

of dipole-dipole and dipole-induced dipole interactions 

and expressed as, 
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and, 

U 	 ji 
2 11-3 [2 Cos 8 Cos 92 + Sin 1 	2 Sin Cos (0I  + 2) 2  

(c<eizo2/2 ) Ri46  (3 Cos2ei  + 3 Cos2e2  + 2 ) 	(1.29) 

c(o and Az are the mean polarizability and the permanent 

dipole moment respectively. The terms dipole,-quadropole and 

higher multipoles are neglected. The coordinate system defined 

in Fig. (10)• 

This potential was used to evaluate the second 

virial coefficient of the polar gases (methyl flouride and 

fluoroform) by a perturbation treatment. But the merit of 

a potential function cannot be judged simply on the basis 

of its ability to reproduce the observed second virial 

coefficients because the ordinary second virial coefficients 

of polar gases are quite insensitive to the orientation 

dependences of intermolecular potential functions. So the 

potential function is further tested by computing the 

dielectric second virial coefficients (which is very sensitive 

to the orientation dependences of intermolecular potential, 

functions) for polar gases (CH3F and CHF3). 

In the light of the above discussion one may say 

that the search for a true pair potential is still not 

complete. Heuristic approaches are still justified and 

occasionally rewarding. Even for the inert gases for which 

1,-J potential is fairly good there is a scope for modifications 
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by altering any or all of the characteristics of the poten-

vial, viz. the hard core , the depth of the bowl and the 

width and slope of the tail of the bowl. Thus, for example 

Dymond et al (54) find a numerical potential, as modifica-

tion1to agree better for some properties of inert gases. 

It emerges from this discussion, then , that in 

search for a real pair-potential while keeping the simplicity 

of the L-J potential some sort of flexibility in the 

potential parameters must be so introduced as to conform 

it to the experimental data. A new line of approach could 

be to introduce a suitable temperature dependence of the 

parameters, as mentioned above. We shall return to this 

topic again in Chapter Iv. 
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A survey review of expressions for molecular 

potenials has already been given in Chapter one where it 

has been brought out that a temperature dependent potential. 

may be 	as a modification to the simple 1."7-  potential 

fo:rsa w  a good possibility to which attention should be given 

In this Chapter we discuss this problem from an another 

point of view: starting from the experimental PVT - data 

for liquid water we shall see how it can throw light on an 

"effective." potential for liquid water. 

EQUATION OF STATE FOR LIQUID WATER 

The equation of state 

PV = .A. 

for an ideal vapour makes the assumptions 

(i) That the molecules are point masses, and 

(ii) That they have no mutual interaction. 

Van der Vaal (73) in 1879 pointed out that at high pressures 

these assumptions are not valid and for a real gas the 

equation of state has to consider both the size of the 

molecules and the mutual interaction between them. So 

to allow for t4cse two, he replaced V by (V-b), and p 
t  

by IN' V-2)`  . He thus obtained the famous equation 
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N2a 
tP 	) 	Nb) =RT  

v2  
(2.1) 

which is known as the Van der Waal's equation. a and b 

are the Van dor Waal's constants. When V is large, both 

b and a/1/2  become negligible, and equation (2.1) 

reduces to the simple gas equation, pV = RT. 

The attractive force between molecules which give 

rise to the term (a 42) in Van der Waal' s equation, is 

responsible not only for the deviations from the gas laws 

at high pressures but also for the condensation of gases to 

liquids. b is the excluded volume and is about four times 

the aggregate volume occupied by all the molecules in a 

gram. This equation is valid for gas under high pressures, 

though not so well for high densities (liquid). 

The Eyring equation of state for liquids is a 

Van der Waal's type equation 

A(T) 
P —,) ) (V •• 0 -7816 1)1/3  V2/3 ) = RT 

\" 
where A is temperature dependent. 'The term 0.7816 b1/3  V2/3  

can be replaced to make it analogous to the Van der Waals 

equation, by a factor B = B(T) expecting it to be temperature 

dependent. So the equation of state for liquids becomes 

A(T) 
P 4. '7) (V B(T)) = RI 	 (2.3) 

( 2.2) 



Here, in this equation A and B both are temperature dependant. 

We calculate first the actual values of A(T) and B(T) for 

the case of water from the known PVT.- data (75) for li quid 

water. The values of A(T) and B(T) have been determined 

by solving the equation for known values of p,V, and T 

applying the Newton - Raphson method, see Appendix VI. g  

using  an electronic computer. The values of A(T) and B(T) 

so obtained are illustrated graphically in Figs ( 12) and 

( 13) 	PVT behaviour of li quid water is illustrated in 

Fig. (14). 

2.2 INTERPRETATION OF P.(T) and B(T) FOR LIQUID WATER 

To interpret A(T) and B(T) in toms of molecular 

structure we start from the statistical mechanical deri-

vation of the equation of state. The partition function f 

a real gas will be written as 
1 

z„, = k,.... ..... 
" 	N 	1 " exp 	

(pi + p22 +.•.+ pN) + SO( 11 }.7r 
-2
, • •T'aN) 

t, 	 ,, 	,.‘ 

1 1 
h Nt 	 2m kT 	 kT - 

 opl. 	
44 	", .4 	...4.41' op, . dp 2  . . . dpN  . . dri  dr2 . . drN 	( 2.4) - 

where 0 is the total interaction energy of the system which 
..4 	.41,, 	.4 depends on the positions r1  , r2' ... r of the molecules 

Since 0 depends only on position coordinates. we can write 

	

2 	2 

	

1 	 Pl
2 

 + 132+ ."4" PN  exp t dpi  p2.... pN  

	

h 1\1 	 4  24kT 
exp F- 4)(1.1 •r2 • - 

	

kT 	
) 	crr dr 	..C14r 1 2" • 	N 

(2.5) 
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Then, evaluating the first integral and writing QN  for the 

second we get 

3N 
1 	mkT  

ZN 	
2 a  

= ( 2.6) 

Since QN  is the only part of ZN  which depends on volume the 

formula for the pressure simplifies to 

p = NkT Ldv tnQN) 
	

(2.7) 

wh ore, 

QN = 	'"'S exP 

4 •-•) 
r 	r 	• •r N 11  2 '  

V 	 kT 

-4 -4 	-4 
dr1 dr2 .. drN 

 

b(r. 
exp 

kT 

or, because it has been reduced to two-particle potential, 

droping the subscripts, we write 

QN 	
0 

= 	cxP 	kT 
(r) 

 ) dr  ( 2.8) 

where r is the distanCe between two particles. To evaluate 

it, we introduce a new function 

f(r) = exp - Cr) _ 
kT 

So, we can write, 

1+ f. ) dr. ak QN 
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N2  -9 	-4 	-4 -4 	-4-  r 

or 	\1\I  — I dr ...dr
i -1 

dr
i+1 

dr 	dr 	• • drN I fik 2 	 k -1 k4.2, 
dr. dr 1 k 

N2 

2 VN  S 	—) 

	

f 	-'dr 
ik 1 k 

-1S_EL 
But, 	f (-14r. dr-)  = )(0 	kT -1) d-r. dr  ik 	k 	 k 

(2.10) 

- a) r)  
= 4 TV 	kT 	r2dr  

0 

On placing the proper limits, and introducing 

p = 4 it 	( 0  -0( r) 
r2dr, the first irreducible integral . 

Therefore from Equation (2.10) , we got for configurational 

integral 
e! 

ZN 

And the 

p 

PJ = N2 

V 
p 	) (2.11) 

(2.12) 

2 
••••■••••■■.■■• 

3N /2 
21TmkT) 	N 

V 
, ( 

as 

1 + N
2 

N t h 3N 

equation of state 
N 2kT NkT 	B 

2V 

V 	2V2  

Van der waalt s equation of state, on the other hand is 

• • • • 

p 
NkT 	N2a 

V-N b 	V2  
NkT N2kTb N2a 

V 	V2 	v2 
(2.13) 
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Then, evaluating  the first integral and writin g  QN  for the 

second we get 

3N 
1 	mkT 

= 	 ) 2  QN • (2.6) 

Since QN  is the only part of ZN  which depends on volume the 

formula for the pressure simplifies to 

NkT 17;(trIQN) 

whore, , 
l(1) 	' r2 	'rN  QN  = 	exp - 

kT 

-• 

(2.7) 

-4 -4 	-4 
dr1 dr2 .. drN 

	

0(r 	— 
= il 	I exP 	

. . 	
dr.: 

i/ j 	 kT 	) 	-L J 

or, because it has been reduced to two-particle potential, 

droping  the subscripts, we write 	 ,/ 

1  
QN 	joxp( 0(  ) 

kT ) dr ( 2.o) 

whore r is the distance between two particles. To evaluate 

it, we introduce a new function 

[  f(r) 	= exp 	
(1)(r) 	- 1  

kT 

So, we can write, 

QN = ia (1+ fik) drik 
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or, on expanding the product 

QN  = 1(1 + Efik 	fii  fkt i- ...)dr 	(2.9) 

Now, if there is no interaction between the particles, f(r) 

and the first term in the series (2.9) corresponds to the 

contribution in 	from separate non-interacting particles, 

as in an ideal gas. The terms of the first sum in the series 

(2.9) corresponds to the contribution from the interaction 

of all possible pairs one by one. The terms of the second 

sum in the series (2.9) describe the contributions in Q 

from the simultaneous interaction of two pairs of particles 

in the system, or the contributions from the interaction of 

triplets of particles. Analogously, the successive unwritten 

terms of the series (2.9) describe the interactions of trip-

lets, quadruplets, ... etc. of particles. 

In the case of a real gas, it is assumed that 

clusters of molecules of more than two are not likely, so 

that it is sufficient to consider only the first two terms 
N(N-1) re N2  in the expansion, equation (2.9). There will be 

2 	2 
pairs of molecules. Furthermore, for a short-range potential 

b(r) , the function f(r) is appreciably different from zero 

only in the small region of influence of the intermolecular 

forces. 
Therefore, 

, N2  
f ) d-1)  2 ik 	rN 
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?
2 c 
"1-  j .dr 2 	dr 1 
	i -1 

dr 
 i+1 	k 

dr 
 k+1 yd idrN f fik 

dr dr  k 

N2  _ \IN-2 f  
2 	ik i k 

But, 	f 	d-r4  = 	( 	kT -1) d4r. dr ik 	k 	 k 

• , 
( 2.10) 

a) 
	Q( r) 

0 • • • 
	 4 17,-V f 	kT 	r2dr  

On placing the proper limits, and introducing 

p 	4 rt 00 	-fr) /kT 	2  
.4) r2dr, the first irreducible integral 

Therefore from equation (2.10) , we get for configurational 

integral 

N2 
p ) 

2 V 

3N/2 
z 	_ ( 2ITmkT) 	N 	N2 
N - 	 V ( 1 + 	3  ) 

NI. h3N 	 2V 1  

And the equation of state as 

i+4 NkT 	N 2kT 
-- —. pm  ".."'"'"'""" B 

V - 2V2  
p 

( 2.11) 

( 2.12) 

Van dor rvaalt s equation of state, on the other hand is 
NkT 	N2a 

V-Nb V2  
NkT N2kTb N23 = 

V 	V2 	 2  
( 2.13) 
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Comparing the equ ations (2.12) and (2.13) 	we get, 

P - b 
2 	kT 

( 2.14) 

Now because r̀) -OAT  
= 4 11-    -1) r2dr 

0 

 

 

00 	4, 

= 4 Tr 	o- 0/kT /) r2dr 	(e-BAT-1 r2dr 
0 

For a simple calculation of a and b in terms of the potential 

parameters, we take the simplified from of 46 (r), 
for 0 < r < er , 	= (1) 	e4/kT  = 0 

•.• 41-1  r2dr + 4 tr ( 	+ 	( 4)—(11  ) 2+ . .) r2dr 0 	cr kT 2'. kT 

(2.15) 

Comparing equations 	2.14) and 2.15) , we get, 

b = 2TT 3 
Cr" 

3 
co 

a = 2 Tr" :1(1)( r) 	r2 dr 
(2.16) 

The above derivation is fairly good for a real dilute gas, 

where clusters of more than two particles can be assumed 

non-oxistant. For liquids, however, this assumption is not 

correct. Since these constants in Eyring equation (2.3), on 

calculation turn out to be function of temperature, as in 

the previous section, therefore, for a liquid we can write 

2 	3 	 co 
B= 	and A r:F 2 	5 	l(P(r) r2dr 3— 
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logic does not suffer. Such a concept is not alien. A 

"flickering cluster model (76,77)" already exists for 

liquid state. In fact, the neutron scattering experiments 

do reveal 	a short range arrangement of molecules inside 

liquids. 

Suppose g' molecules, at a certain temperature, 

unite to form one drop on an average such that the liquid 

is treated to consist of — = n  drops now. The energy of 
g 

clusterization of those 	.. particles 

ce 	g + p g2/ 	+ g kT 
	

(2.18) 

where the first term is the condensation term which for a 

supersaturated vapour is given by 0( = constif4n  s(S is the 

ratio of supersaturation), the second term is the surface 

tension and the third term is the vibrational energy of 

molecules inside the drop. Thus c 	can be assumed constant 

for a certain temperature. If we denote by (rid ) the 

interaction energy of two drops, and by p the momentum of 

the translatory motion of drop, then we can write for the 

energy of each drop as 

P
2 

(2.19) 
2 	Ece 

(Where M is the mass of the drop) and the partition function 

for the liquid will be, 
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Comparing the equations (2.12) and (2.13) 	we get, 

a 
b  2 	kT 

(2.14) 

	

Mow because 	
13 = 4 IT 	• OAT ( 	-1)r2dr 

("" 	-OAT 	, 	°) ‘41)/kT 1)r2dr 

	

4 Tr j. ( 	- 1) r`dr + j 

For a simple calculation of a and b in terms of the potential 

parameters, we take the simplified from of 0 (r), 

	

for 0 <r < Q.. , 1;b(r) = w 	e4/1(T  

rC7  2 	,9, 	0(r) 	(1)(r) 

	

= - 	I  J Is  -dr + 4r j (— 	— 1 () 2 
	r2dr  

kT 2. kT 

(2.15) 

Comparing equations ( 2.14) and (2.15), we get, 

2 R 3  b = 
3 

co 
a =2 17 r  I4(r) I r2  dr 

(2.16) 

 

The above derivation is fairly good for a real dilute gas, 

where clusters of more than two particles can be assumed 

non-existant. For liquids, however, this assumption is not 

correct. Since these constants in Eyring equation (2.3), on 

calculation turn out to be function of temperature, as in 

the previous section, therefore, for a liquid we can write 

2 	3 	 co 
B= 	and A 	2 	10(r) I r2dr 

3- 
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whore E is the constant for liquid corresponding to (*- 

for gas. Then, in so far as A and B are functions of tempera- 

ture £ and , 	the depth of the potential 41) (r) appro- 

priate for liquid should also be temperature dependent 

= 	(T) 	= E (T) 

This would be the situation if cluster integrals in the 

expression of equation (2.9) could be neglected as in gas. 

But as we know they should not be: 	because of the large 

density the clusters are no less likely to be formed than 

the pairs. On the other hand, since a Van der waal form of 

equation of state, equation (2.9), describes the liquid very 

well, it should be possible to introduce some sort of a 2e-

coupling device (mathematico-physical) which will enable QN  

to be evaluated in a way analogous to the real gas case. 

For this to do, let us imagine the liquid as a 

real gas of minute molecular "drops" of the liquid. These 

drops - the molecular aggregates - are assumed to play the 

same role in the liquid as the molecules in the gas. They 

have their internal energy of formation and they move inside 

the liquid as one identity. The 'drops' are not necessarily 

permanent structures, they may be transient to any degree. 

So long as such a situation prevails, that at any moment 

inside the liquid, on an average, if somewhere some 'drops' 

break-off an equal number of them form somewhere else, the 
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logic does not suffer. Such a concept is not alien. A 

"flickering cluster model (76,77)" already Exists for 

liquid state. In fact, the neutron scattering experiments 

do reveal 	a short range arrangement of molecules inside 

Suppose g.  molecules, at a certain temperature, 

unite to form one drop on an average such that the liquid 

is treated to consist of j = n  drops now. The energy of 
g 

clusterization of these 	particles 

ce = - ag +p g2/3 	g ki 
	

(2.18) 

Where the first term is the condensation term which for a 

supersaturated vapour is given by c< = const.*Zn s(S is the 

ratio of supersaturation), the second term is the surface 

tension and the third term is the vibrational energy of 

molecules inside the drop. Thus c 	can be assumed constant 
uce 

for a certain temperature. If we denote by (r.3.5) the 

interaction energy of two drops, and by p the momentum of 

the translatory motion of drop, then we can write for the 

energy of each drop as 
2 

E = 	E .+ 
2M 

(2.19) 

(Where M is the mass of the drop) and the partition function 

for the liquid will be, 



( 741 ]..C7  
= 	C Xp kT 	) clq2. .dcfn  

where, 

( 2.22) 
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1 	1 = 
liq 

	

h
.r1 	ni 

E 	--a exp 	P P kT) d-
-4 

 l d- 2..  

sa 

-4 -4 . dqiclq 2...dqn  

(2.10) 

Then, on writing a kT C ( T, g) 	a constant not de- 
pending on position or momentum of the drop, and evaluating 

the momentum integral, we get, 

3n 	n 

liq 	n• 

1 	I  
MkT ) —2 rC(lIg) 	Qliq Z 	 h li  

( 2.21) 

Now proceeding as in deriving equation (2.7) to (2.11) with 

the assumptions : 

1. The drop-pair interaction potential is similar in 

nature to that of the molecules. 

2. The likelyhood of three or more drops coming within 

the appreciable interaction range is negligible small, we 

get finally, 
Qliq = It 	S 	kT 	1  ) q2 0 

n 2  Q 	= Vn ( 	P) liq 	 2V 	liq 
a 

anc 	= 	(th Q . ) aV 	ll q 
00 

Such that A( T) 	2r 	(q) q2dq 0 
B(T) = 2.r`L. 3 

3 	- 

or  ( 2. 23) 

3 
E 
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Vlore tis the radius of the drop and E is the depth of 

the potential well in 	, the drop-potential. It is clear, 

then that 

Y (T) and 	E 	= E (T) 

5 it must be emphasized, is not a molecular 

potential, and in so far as it has been introduced as a 

decoupling device it is an " effective potential" involving 

the parameters 	1: (T) and E (T) 

?te shall assume the nature of 0- 	to be the same 

as that of the L-J potential, only the parameters being 

different. 

F ra 	n 

 
(r,tT) = 	

) 
 

(1 	) 

in 
(2.25) 

   

where E 	is the potential 	wellts depth and 	is 

the radius of the drop as a hard-core. € 	and 	are 

then known from the values of A(T) and 13(T) 

Thus, 
= E (T) = Const x 

13(T) 

E 	(T) 	3Fr 	11/3 
L.  -2-- B(T) 

A(T ) 
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Vith these values the liquid partition function (Equation(2.21)) 

is determined, except for g which must be fixed by 

comparing the property calculated with its experimental 

value. 

The concept of effective pair potential is not 

entirely new. Recently Rowlinson et al (78) has 	also 

considered a effective pair potential which leads to 

correct distribution and correlation functions. These 

effective potentials depend on both density and temperature, 

but they do not have the free-energy character of some kinds 

of temperature dependent energy levels . They are to be 

regarded only as computational devices. 

Rowlinsonts treatment of the effective pair potential 

is although of general nature, is not easily amendble to 

experimental determination of the potential. In the present 

treatment the parameters of the effective drop potential 

are correctly knov.n from the values of A(T) and B(T), 

which, in their turn have been obtained from the experimental 

pvr data. 
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CHAPTER III  

A number of empirical and semi-empirical relations 

are available in - the literature to study the temperature 

dependence of various properties of the liquid. But as ti•.r 

each property along there are many such empirical relations 

and not one gives a good fit with the experimental data in 

the whole range under study, the subject of studying the 

functional dependence of temperature of various properties 

of liquids becomes most unsati sfactory. As for example the 

temperature dependence of the viscosity of liquids has been 

studied by several authors over a long period of years, and 

a. large number of relationships involving these variables 

has been compiled. A resume of a number of these expressions 

relating viscosity to temperature may be found in a Chapter 

by Arthur K. Doolittle in Allexandert s Colloid Chemistry(79) 

Similarly a number of empirical or semi-empirical relations 

are available to study the temperature dependence of other 

properties also e.g. Surface tension (80-82) (though no 

direct relation giving temperature variation of surface 

tension is available in the literature), Dielectric 

constant (83-85) self-diffusion (86) , Sound velocity(87-89; 

Vapour pressure (90), Refractive index (91) etc. 
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From one point of view, according to which an 

empirical relation is a desirable first step towards 

explaining the  property in terns of something basic about 

the •liquid 	say- the molecular stricture or the molecular 

interaction - the present situation is certainly not satis-

factory. 

The Millers(92) expression for viscosity 

tri 	= A + B 	(T - To ) 
	

(3.1) 

prepares the way for a meaningful intorpretation, in t ,,:nris 

of molecular structure. His expression (Equation (3.1)) 

holds good for liquid water. M iller (88() interprets his 

relation in context with the Doolittle's (93) free-volume 

equation for viscosity and Cohen and Turnbull's (94) tempera 

ture dependence of free-volume. He suggests that the term 

(T-To ) 43 represents, f, the volume fraction of free-volume. 

This contention is further supported by the fact that the 

freewolume so obtained is also in agreement with an independent 

estimation of it according to the model of Nemethy and 

Scherage (95). 

Expressions of the typo of Miller (Equation (3.1)) 

were later found to hold good for many more properties of 

water (96) and this leads to a dilemma, namely that the 

calculations for free-volume separately from each individual 



property are quite inconsistent among each other. This point 

has been discussed in detail in our earlier paper (96) 

An alternative to free-volume could be the fractions 

of the open-packed or the close-packed species of the two-

state theory. It should, however, be observed that just as 

the free-volume concept is only semi-empirical, so also the 

two-state theory of water, is in itself not fundamental, 
for, it should be possible to further reduce the assumptions 

O•it 

of the theory - the dense- packed and open-packed constituents 

of liquid-,  in terms of molecular interactions. 

The situation can be saved however, if we write 

empirical relation in a modified form as 

Tc 
A 

nX 	A„ + Bx  ( T 	T  ) 	 (3.2) 

Here X represents the property, Ax  and Bx  are constants for 

that property, To the same constant, reference temperature 

as in Equation (3.1) and Ic  the critical temperature. In this 

form the volume fraction of free-volume should be expected 

to be represented by 
T -To  

f = (T 	
T c- )  

which will come out the same for any property. Here we have 

two reference temperatures, Tc  and To 	which althost coincides 

with the Debye temperature, has significance in the Cohen- 

0 

(3.3) 
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Turnbull derivation which state that the origin of the free 

volume in a liquid, as manifested by transport properties, is 

at this reference temperature To, and that the free-volume 

is proportional to temperature above To  . The significance 

of Tcs  the critical temperature, also becomes understandable 

in the same context. The liquid under all circumstances will 

become gas at and above the temperature lc  , and f can have 

meaning for temperature below Tc  only. 

Very recently, Singh, Dass and Varshneya (107,97) 

has shorn that relation (3.2) holds good for almost all 

properties of water that we have tried, viz., surface tension 

(98) , viscosity (99), self-diffusion(100) , Dielectric-

relaxation time (101), Spin-lattice relaxation time (100) 

Thermal conductivity (99), Mechanical-relaxation time(102) 

Ultrasonic absorption (102), Dielectric constant (98), Sound 

velocity (89), Density (103), Volume (98), Refractive Index 

(98) , viscosity at high pressure (104) , thermal conductivity 

at high pressures (105) f 	Volume at high pressures(75), 

Magnetic susceptibility (106), of liquid water. 

Computed results from Equation (3.2) for the proper-

ties under study at atmospheric pressure are given in Table 1, 

and for viscosity, thermal conductivity, volume , at high 

pressures are given in Tables II, III, IV, respectively. The 

agreement between present calculations and experimental data 
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is found to be good. The results -are also shown in graphical 

form at the end of this Chapter. The values of the constants 

Ax and Bx  alongwith the range of study are reported in 

Appendices I, II, III, IV, respectively. 

The activation energy of different properties of 

water can be calculated on differentiating the relation (3.2) 

with respect to temperature. The activation energies of viscous 

flow, Diffusion, thermal conductivity, and spin-lattice 

relaxation are calculated by the following relations 

d en RT4 

	

	 (3.4) 
dT P 

2 d tn. D 
E 	

RT 	 D 	) p 	 (3.5) 
dT 

RT2 	d 1"i 
)p 	

(3.6) 
61'1 = dT 

2  d tn 
E 	= RT ( 	)P (3.7) 

XT 	 dT 

are reported in Table V and graphically shown in Fig.(22) • 

In literature, we find that the activation-energy 

in case of water should be the same whether calculated from 

self-diffusion, viscosity, spine-lattice relaxation time, 

thermal conductivity . But the comparision of all' the four 

activation energies i.e. La , ED  , Eri  , E 	shows that 

activation energies are different calculated from different 

properties. 



51 

The activation energy for thermal conductivity is 

less, roughly a factor 8 than that for other transport 

properties, i.e., the value of Bx  is a factor 8 less. This 

result is not purprising due to the simple fact that in this 

region of 0°  to 100°C the magnitude of all the transport 

properties (except thermal conductivity) varies 8 to 10 

times, whereas the magnitude of thermal conductivity varies 

one and half times only. 

The behaviour of transport properties of water 

could not be explained on the basis of transition state 

theory, according to which the activation process for viscous 

flow or self-diffusion etc. in a non associated liquid involves 

essentially the creation of a vacancy infront of the diffusing 

molecule for the latter to move into , because firstly, the 

molar volume of water is smaller than ice and secondly, at 

temperature not far away from 0°C the viscosity of water 

decreases continually when the external pressure is increased 

from atmospheric pressure to about 1000 Kg/cm2  and this picture 

of water behaviour is unlike that found for non-associated 

liquids. So, what can be concluded is that at ordinary 

temperatures, the water molecules are lo:)sely -packed in 

their normal state so that enough vacancies exist to make the 

dissociation of water molecules from the semi-crystalline 

lattice. 
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Some more interesting points may be summarized as 

below 1- 

(i) Since the relation (3.2) expresses analytically 

the functional dependence of temperature of almost all the 

properties of water for the whole range of melting to boiling 

point Therefore the relation (3.2) will also be useful (a) 

to have chocks on the theoretical models , and (b) to 

calculate a number of parameters which cannot be obtained 

otherwise like activation energy 	of transport properties. 

(ii) Because this relation gives the functional depen- 

dence of temperature of volume at different pressures, so 

it can be Liven the status of equation of state for water. 

(iii) Recently, Krishnaji and Mansingh (108) have 

classified a number of liquids on the basis of the value 

of 	 = Ep,/ ET4, where E T  is the activation energy 

of dielectric relaxation time and EA is that of viscosity 

of a particular liquid. In case of water 

ET  
= 1.1 

which suggests that dipole rotation is frozen in case of 

water at the freezing point. 

(iv) The parameter To  is a constant quantity for a 

particular liquid but it is different 	for different liquids 

e.g. To  has the same value for all the properties of water 
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under study. Therefore it appears that To  is an important. 

parameter which is playing a very important role in the liquid 

state perhaps in the form of hydrogen bonding rather than a 

convenient reference temperature. This is in confirmation with 

the views of others (109). 

(v) The value of T = 155QK for water is close to the 

Day° temperature, 135°K found experimentally (110) by the 

slow r neutron diffraction technique as well as to the theore-

#cal value obtained on the quasi-crystalline structure of 

water (111,112), . 

(vi) If we collect the values of To for all other 

associated liquids, we find that except water all other 

liquids so far studied. (107,113) on this approach , have 

negative value of To  . We expect this due to the effect of 

hydrogen bonding being maximum in casel of . water and then 

comes methyl° alcohol (To  = 0) and so on. Further it may 

be used to classify the associated liquids into two categoreis 

(i) with positive value of To  (ii) with (-ve) value of To . 
(vii) In the literature, we find that To  has been taken 

equivalent to the glass transition temperature at which 

the viscosity becomes of the order of 1013 poise. But except 

water all other liquids under study have (-ve) value of Tor  
it therefore reflects that these liquids may be taken much 

below their melting point without solidifying i.e. liable to 

much supercooling (114). 
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(vii) 	It is also interesting to note from Appendix (III) 

that the values of Bx not only vary from property to property 

but even assumes the negative values in the case of some 

properties of water. The same conclusion becomes obvious 

while studying the pressure dependence of thermal conductivity 

because Bx  increases upto 6000 Kg/cm2  and afterwards decreases 

indicating that the free volume is increasing upto 6000 Kg(cm2  
whereas the value of Bx  in case of viscosity decreases with 

pressure. They are in contrast to the experimental observa-

tions. This clearly indicates that the free volume conceived 

by Miller (92) is no more valid and something other than 

free volume is playing an important role. 

DISCUSSION  

What understanding does the above expression leads 

us into 7 Firstly, we note, thatthe constant Ax  corresponds 

to the value of the property at Tc , one of the two reference 

temperatures. At temperatures above Tc the matter cannot 

be expected to remain in liquid state, it would be gaseous, 

and there, from the Equation (3.2), since Te) To  , the 

second term would contribute little as it will also change 

sign. 'nfe may assume therefore that the factor (Ic  -1)/ (T.-To ) 

is a temperature term characteristic of the liquid state. 

Secondly, the origin of this term must be sought in terms 

of something basic of the liquid. There may be two views $ 



55 

(1) 	In terns of the two-state theory (Tc.-T) / (T-T0 ) 

must have relation with the fraction of close-packed and open-

packed species at a temperature, T, and (ii) in totals of 

molecular interaction, this term should find an appropriate 

place in relation to interaction energy. We consider these 

two views respectively in the following - 

(i) TWO STATE THEORY 

In the two-state theory(102) the fraction of the 

close-packed specy, X0 , in the liquid is obtained through 

involved and indirect methods. This is a function of tempera-

ture, and the values quoted by different authors have wide 

variability. In view of the foregoing discussion if we assume 

that Xc  can be expressed as s 

Xc 	Tc - T 
I a' To 	 (3.8) 

theb, the fraction of the open-packed specy, X0  will be 

X0  =1-Xc  =1- T-T°  
Tc-T 
- 

T  
T0  •- 2T , 	

(3.9) 

Although the assumptions (3.8) and 	(3.9) have not boon 

proved here in any rigorous theoretical way(as a matter of 

fact, any theoretical expression to express k(or X0) as a 

function of temperature would follow from the two-state theory 

whore itself there is wide varaibility). Hence the fact that 

values obtained from (3.8) and ('3.9) agree reasonably well 
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With the two state calculation, should be regarded as, 

indirect proof, but it should be justified in view of the 

fact that the values of Xo so obtained lie at all temperatures 

of interest within the range of values quoted by various 

authors (95,115, 116,117). These assumptions (equation(3.8) 

& (3.9)) can be made use of to calculate some properties, 

say , the specific volume and refractive index of water, as 

we do hero. The good agreement of these calculations with 

experimental results once again point to the justification 

of assumntions (3.8) and (3.9). 

(a) Specific Volume - 

The volume V , can be written as 

V=XV +X V Xo o 	c c 
Where Vo  and Vo  represents the specific volumes of the open-

packed and close-packed species, respectively. The temperature 

dependence of these can further be expressed as 

Vo  = 19.657 (1 + 1.55 *10-40 A 
Vc = V° ( 1 + At + Bt2) 

V o  Aare Vo  and \To
o 

perature are the values at a reference tem, 

A and B the coefficients and t the rise in temperature above 

the references temperature, then, 

V = Xo* 19.657(1+1.55*10" ) + (Xc V (1+At+Bt2)) 

(3.11) 

Here Xo and ; are knom, \Pc  , A and B can be fixed from 

three known values of V. These are obtained to be 

(3.10) 
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A = 3.6358 * 10"3  °C"1  

B =-.8.2859 * 10.6 oC-1 

Vc
o= 0.802071. c .c 

The calculated values for V along with the experimental 

values are given in Table VI. The agreement is very good. 

(b) Refractive Index 

Using equations (3.8) and (3.9) and the relation 

for refractive index of water given Mitre et al(118) on 

two state approach, 

(n-1)V = Xo  Ko  + Xc  Kc 
whore n is the refractive index, V the specific volume and 

kc  some constants to be fixed empirically. They are 

obtained as ko  = 0.3359 and kc  = 0.3311. Then from experi-

mentally known values of V, n can be calculated. These values 

alongwith the experimental are given in Table VI . The 

agreement is again very good. 

MOLECULAR INTERACTION 

As already remarked, the two-state theory of water 

is itself not fundamental, because it is further reducible 

in terms of molecular interactions. The close packed 

and open-packed species, in as much as they represent two 

idealised classes of molecular groupings- not necessarily 

realistic - can also be expressed in terms of *tight' and 

'loose' molecular bindings. This may be hydrogen bonding 
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or, in fact, any dipole and multipole binding. Then, to 

speak of temperature dependence of fractions of close - 

packed and open packed species is equivalent to speaking of 

temperature dependence of molecular interaction energy. 

Quite at hand we know for dipole interactions that 

the energy depends upon the dipole moment, 4, the distance 

r, and relative orientation angles , 9 and (I) , which certainly 

depend upon the temperature. 

The above discussion, fizom which we learn that 

liquid water involves a tern 	c T 
	

for the temperature 
T To  

dependence of its properties, we are led to conclude that 

the molecular interaction energy for liquid water must some-

how or other involve this term as argument of a suitable 

function. 
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TABLE 

Tempera 
ture 

Surface Tension ( dynes/cm) Vi scosity 

Experimental Calculated Exp erim en - 
t al 

Cal cul at ed 

0 

5 
10 

15 

20 

75.64 

74.92 

74.22 

73.49 

72.75 

75.64 

73.98 

72.48 

71.12 

69.88 

1.7938 

1.5188 

1.3097 

1.1447 

1.0087 

1.7936 

1.5236 
1.3107 

1.1404 

1.0022 
25 71.97 68.74 0 .8949 0 .8888 
30 71.18 67.70 0 .8004 0 .7946 
35 70 .38 66.74 0.7208 0.7156 
40 69 .56 65.86 0.6536 0 .6487 
45 68.74 65.04 0 .5970 0 .5917 
50 67,91 64.28 0 .5492 0 .5426 
55 67.05 63.57 0 .5072 0 .5001 
60 66.18 62.90 0 .4699 0.4630 
65 IMO 62.28 0 .4368 0.4305 
70 64.42 61.70 0 .4071 0.4018 
75 61.15 0 .3806 0.3764 
80 62.61 60.64 0.3570 0 .3537 
85 60.15 0.3357 0.3334 
90 60 .75 59.69 0.3166 0.3152 
95 59.26 0.2994 	0.2938 

100 58.85 58.85 0.2839 	0 . 28 39 
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TABLE 1 (Continued) 

Tempera-
ture 

oC  

Self -di ffu sion(10 
cm2/sec) 

Dielectric constant 

I
Experimental 	Calculated Experimental Calculated 

0 0.97 01 .97 83.00 88.00 
5 1.16 1.18 86.04 84.46 

10 1.36 1.41 84.11 81.32 
15 1.58 1.66 82.22 78.52 
20 1.85 1.94 80.36 76 .01 
25 2.13 2.23 78.54 73.74 
30 2.46 2.55 76.75 71.69 
35 2.79 2.89 75.00 69.83 
40 3.14 3.24 73.22 68.12 
45 3.52 3.62 71.59 66.56 
50 3.94 4.01 69.94 -  65.13 
55 4.37 4.42 - 63.80 
60 4.82 4.84 66.74 62.58 
65 5.30 5.28 - 61.44 
70 5.78 5.73 63.68 60.38 
75 6.27 6.19 59.40 
80 6.81 6.66 60 .76 58.48 
85 7.26 7.15 ..,. 57.62 
90 7.75 7.64 57.98 56.81 
95 8.20 8.14 .. 56.05 .  

100 8.65 8.65 55.33 55.33 
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Temp era - 
tu re 

oC  

Thermal Conductivity 
( 10 -7  watt/cm 0C) 
Experimental I Calculated 

Sound Velocity (Km sec 

Experimental Calculated.  

0 
5 

10 
15 

20 

25' 

5.540 

5 .705 

5.870 
a 

5.540 

5.660 
5.774 
5.880 
5.981 

6.076 

1.40274 

1.42650 
1.44759 
1 .46625 

1.48266 

1.49700 

1 .40274 

1.41861 

1.43341 

1.44723 

1.46017 

1.47231 
30 6.034 6.167 1.50944 1.48372 
35 . 6 .252 1.52012 1.49447 
40 6.200 6.334 1 .52918 1.50461 
45 . 6.411 1.53672 11,51418 
50 6 .363 6.484 1 .54287 1.52325 
55 - 6.554 1 .54770 1.53184 
60 6.530 6.621 1.55130 1.5 
65 6.685 1 .55376 1.54775 
70 6.695 6.746 1.55512 1.55512 
75 . 6.804 1.55545 1.56214 
80 6 .860 6 .860 1.55481 1.56884 
85 - 6.913 1.55325 1.57524 
90 - 6.965 1.55079 1.58135 
95 . 7.014 1 .54750 1.58720 
100 7.061 1.54341 1.59280 



Tempera"  Refractive Index 	I Magnetic susceptibility 
Lure  

oc 	Experimental Calculated 	Exp erim ent all Cal cu I at ed 

0 1.33433 1.33433 0.99717 0.99717 

5 1.33427 1.33299 0.99789 0 .99828 
10 1.33408 1.33157 0.99860 0 .99931 
15 1.33377 1.33335 0.99931 1.00027 
20 1.33335 1.32921 1.0000 1.00115 
25 1.33287 1.32816 1 ,000 68 1.00197 
30 1.33228 1.32718 1.00136 1.00274 
35 1.33157 1.32626 1.00202 1.00346 
40 1.33087 1.3254 1 .00268 1.00413 

45 1.33011 1.32460 1.00333 1.00417 
50 1.32930 1.32384 1.00396 1.00536 

55 1.32846 1.32313 1.00459 1.00593 
60 1.32754 1.32245 1.00521 1.00646 
65 1.32652 1.32182 1.00582 1.00696 

70 1.32547 1.32122 1.00642 1.00743 

75 1.32434 1.32065 1.00701 1.00788 
80 1.32323 1.32010 1.00759 1.00831 

85 1.32208 1 .31959 1.00817 1.00872 
90 1.32086 1.31910 1.00873 1.00911 
95 1.31959 1.31863 1.00928 1.00948 

100 1.31819 1.31819 1.00983 1,00983 

62 
TABLE 1 ( Continu ed) 
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TABLE 	1 (Continued) 

Tempera-
ture 

oC  

S inalattice relaxation 
(sec) 

ielectric relaxation time 
( T

o 	101 2  sec) 

Experimen- 
tal. 

Calculated Experimental Calculated 

0 1.59 1.59 18.7 18.7 
5 1.88 1.89 15.5 

10 2.20 2.23 13.6 13.0 
15 2.55 2.59 11.1 

20 2.95 2.97 10.1 9.5 
25 3.37 3.38 8.3 
30 3.82 3.82 7.5 7.3 
35 4.30 4.27 6.5 
40 	, 4.76 4.75 5.9 5.8 
45 5.27 5.24 5 .2 .  
50 5.77 5.75 4.7 4.7 
55 6.78 6.28 4.3 
60 6.81 6.82 3.9 
65 7.36 7.38 3.6 
70 7.91 7.95 3.3 
75 8.49 8.53 a 3.1 
80 9.10 9.12 a 2.9 
85 9.70 9.71 2.7 
90 10.30 10.32 2.5 
95 10.95 10.93 2.4 

100 11.55 11.55 IND 2.2 
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TABLE 1 (Continued) 

Temp era-
tu re 

Mechanical-relaxation 
time 	-12 (* 10 	sec) 

Ultrasonic absorption 
(10-17 s ec 2/cm) 

Experi-
mental 

Calculated Experimental Cal cul at cd 

0 4.05 4.05 79.6 

5 3.37 3.36 61.4 

.10 2.86 2.83 49.5 

15 2.42 

20 2.14 2.09 34.3 

25 1.82 

30 1.64 1.60 25.9 

35 1.42 OS 

40 1..30 1.27 19.5 

45 1.15 

50 1.08 1.04 16.0 

55 0 .95 

60 0.89 0.87 13.8 

65 0.80 

70 0 .75 0 .74 11.5 

75 0 .69 

80 0.64 0.64 10.6 

85 _ 0.60 
90 0 .56 et. 

95 0.53 
100 0.50 

79.6 

64.99 

53.91 

45.35 

38.63 

33.28 

28.96 
25.43 

22.51 

20.08 
18 .03 

16.29 
14.81 

13.53 

12.42 

11.45 
to .60 

9.85 
9.19 

8.60 

8 07 



0 

Experimental Calculated 

0 

5 

10 

0.99987 

0.99999 

0 .9997 3 

0 .99987 

0 «9961.2 

0.99268 

15 0 .9991 3 .98951 

20 0.998 23 0 .98658 

25 0.99707 308 386 

30 0 .99567 0.98133 

35 0.99406 0.97897 

40 0 .99 224 0 .97676 

45 0.990 25 0 .97470 

50 0.98807 0 .97 27 5 

55 0 .98 57 3 0.9709 3 

60 0.98 324 0.969 22 

65 0 .980 59 0 .96760 

70 0.97781 0 .96606 

75 0.97439 0.96461 

80 0 .9718 3 0.96 324 .  

85 0.96865 0 .9619 3 

90 .96534 0 .96069 

95 0.9619 2 0 .95951 

100 0 .958 38 0 .958 38 

Temperature (gm/cc)  Density 

65 

TABLE 1 (Continued) 
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TABLE'  4 (Continued) 

• 

40 

Experi 
mental 

Cal cul at e6 Exp eri -- 
mental 

Cal cu 1 at ed 

50 1..00 2180 1 .014318 1.105670 1.018505 1 .009937 1.022208 
100 0 .999978 1 .011873 1.003486 1.01.6071 1.007752 1.019784 
153 3 .997807 1.009468 1.001332 1.013677 1 .005598 1.017410 
200 0.995667 1.007102 0.999210 1.011323 1.703474 1.015056 
250 0 .993557 1.004775 0 .997119 1.009006 1000381. 1.01275) 
300 0.991477 1 .002484 0.995057 1.006727 0.999317 1.010481 

350 0.989426 1 .000231 0.993024 1 .004485 0.997282 1.018248 

400 0.987404 0 .998014 0 .991019 1 .002279 0.995215 1.036052 
450 0.985409 0 .995832 0 .989043 1 .010107 0 .993297 1 .003869 
500 0.983443 1 .993685 0.987094 3.997971 1.991345 1.0)176 2 

550 0.981503 0 .991570 0 .985171 0 .995866 0.989420 a.999667 
600 0.979590`  0.989489 0 .983275 0 .993796 0 .987522 0.99760 5 
650 0.977702 .  0._987440 0 .981404 34991756 1 .985649 0.995574 
700 0.975840 1.985423 0.979553 0.989743 0.983801 3574 0.993574 
750 1..974003 0.933436 0.977736 0..987770 0.981978 3 .991605 
800 0 .972190 0.981473 0 .975938 0.935821 0.980179' 0-.989664 
850 0.970401 .979549 0 .974163 0 .983901 0.973404 0.987751 
900- 0.963634 0.977649 / .972410 0 .982303 0 .976655 0.98 5866 
950 0.966091 0 .975775 3.970630 0..900143-  0.974922 0.984007 

1000 0 .965169 0 .973929.  0.963970 0.978303 0 .973214 0.98 2174 
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TABLE 4 (Continued) 

Temp.  
oc  60 70 

Press- Experi- 	al cul at ed Experi Calculated 
u re mental 	

IC 
mental 

Atm • 

1 .0 25506 

1 .0 23392 

1.023717 

1 .013 38 2 

1.01608 5 

1 .0 20501 

1 .018 247 

1 .0160 27 

1 .01 3342 

1.011639 

1 .0 2346 3 

1 .0 260 57 

1 .0 23691 

1 .0 21 364 

1.019074 

1 .0 26717 

1 .0 24403 

1 .0 221 21 

1.019878 

1.017670 

1 .0311 29 

1 .0 287 30 

1 .0 26 37 2 

1 .0 240 52 

1.0 24370 

1 .01 38 24 1 .009569 1 .0168 22 1.015493 1 .019525 

1.011600 1.007430 1.014606 1 .01 3359 1.017 316 

1 .00941 3 1.005425 1 .01 2426 1.011253 1 .01 5144 

1.007 259 1 .00 339 5 L010 280 1.009179 1 .01 3204 

1.00 5140 1 .001 396 1.003169 1 .0071 37 1.010900 

1 .00 a) 53 0 .9994 27 1.006089 1 .00 51 25 1 .0080 27 

1.000999 0.997436 1.004043 1 .00 3143 1 .0 76737 

0.998977 0.99557 2 1 .00 20 27 1.031190 1.000 4777 

0.996934 0 .993684 1.000041 3.999 264 1 .00 2793 

0 .9953 22 0 .9918 23 0.993086 0 .997 366 1.000043 

0.993088 0.939939 9 .996158 0.995493 0 .9939 26 

0.991131 :0.938174 0.994258 0.993646 0 .9970 32 

0 .9090 a) 0 .906 386 0 .99 203 5 0 .9910 24 0.995164 

0.907450 .9346 21 0 .990 537 0.990025 25 0 .993321 

0 .9056 23 , 0.902879 0 .98871 5 0 .938 249 0.991504 

	

50 	1.014091 

	

100 
	1 .01 2677 

	

150 	. 	1 .010 497 

	

200 	1 .003 349 

	

250 	1.006 233 

	

300 
	

1.004143 

	

350 
	

1.00 2994 

	

400 	1.000069 

	

450 	0.99807 3 

	

500 	0.99610 5 

	

550 	0 .99416 3 

	

600 	0 .99 2253 

	

650 	0.990 366 

	

700 	.903 506 

	

750 	0.906670 

	

300 	0 .9040 50 

	

850 	0 .93 3070 

	

900 	0 .901 30 5 

	

950 	0 .979 56 2 

	

1000 	0.977341 
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TABLE 4 ( Continu ed) 

90 

Calculated 

Temp era 
tore 

°C 
Pres 
sure 
( Atm) 

Exp eri 
mental 

100 

Exp erim en 
t al 

Cal cul at ed 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

550 

600 

650 

700 

750 

830 

850 

900 

950 

1.033545 

1 .031153 

1.028801 

1 .026488 

1.0242.3 

1.021974 

1..019772 

1.017606 

1.015473 

1.013375 

1.011308 

1 .009274 

1 .007270 

1.005296 

1 .003352 

1 .001435 

0 .995546 

0 .997683 

0 .995845 

1 .033545 

1.031153 

1.028801 

1 .026488 

1.0242.13 

1 .021974 

1 .019772 

1.017606 

1 .015473 

1.013375 

1.011308 

1.009274 

1 .007270 

1.005296 

1 .303352 

11001435 

0.995546 

0 .997683 

0 .995845 

1.04097 2 

1.0 38486 

1.0 36045 

1.0 33645 

1 .0 31 287 

1.0 28969 

1.0 26691 

1.0 24451 

1.0 22248 

1.0 20081 

1 .017949 

1.015851 

1 .0./ 3786 

1.011752 

1.009749 

1.007776 

1 .005832 

1 .003915 

1 .002324 

1.000159 

1.035744 

1.033358 

1.031012 

1.028706 

1 .0 26437 

1 .0 242e 4 

1 .0 22008 

1.019848 

1.0177 21 

1 .0156 28 

1 .01 3567 

1,0115 39 

1.009540 

1 .007571 

1 .005632 

1.003720 

1 .001835 

0.999976 

0.998143 

0 .996333 1000 	0.9940 32 	0 .9940 32 
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TABLE 5 

Temp era -
ture  
oC  

f•••■•■ 

E ED T1  E S T 
 

0 5.04699 5.99028 5.42886 0.66433 

4.81725 5.71760 5.18173 0.63409 
10 4.61017 5.47182 4.95898 0.60684 
15 4.42268 5.24929 4.75731 0.58216 

20 4.25224 5.04699 4.57398 0•55972 
25 4.09671 4.86239 4.40668 0.53925 
30 3.95429 4.69335 4.25348 0.52050 
35 3.82344 4.53804 4.11273 0.50328 
40 3.70285 4.39493 3.98302 0.48741 
45 3.59142 4.26266 3.86316 0.47274 
50 3.48816 4.14011 3.75209 0.45915 
55 3.39225 4.02626 3.64891 0.44652 
60 3.30294 3.92027 3.55285 0.43477 
65 3.21960 3.82135 3.46321 0.42380 
70 3.14168 3.72886 3.37938 0.41354 
75 3.06866 3.64220 3.30085 0.40393 
80 3.00013 3.56086 3.22713 0.39491 
85 2.93569 3.48437 3.15781 0,38642 
90 2.87499 3.41233 3.09252 0.37843 
95 2.81773 3.34437 3.03093 .0.37090 

100 2.76363 3.28fl16 2.97273 0.36378 
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TABLE 6 

Tempe- 
Triture 

c r,  
Xe  Xo 

Volume of water (cc) Refractive Index 

Exp erim en - 
t al 

Calculated Experimen- 
tal 

Calculates 

0 0.3160 0.6840 1.00013 0.99959 1.33433 1.3343 

5 ') .3339 0.666J. 1.00001 0.99980 1,33427 1.3343 

10 0 , 2522 0.6478 1.00027 1.00027 1.33408 1.3341 

15 0.3710 0 .6290 1.00087 1.00098 1 .33377 1.3338 

20 0.3904 0.6096 1.00177 1.00190 1.33335 1.3334 

25 0.4103 0.5897 1400294 1.00306 1..33287 1.3329 

30 0.4348 0 .5692 1.00435 1.00444 1.33228 1.3324 

35 0.4519 0 .5481 1 .00598 1.00604 1.33157 1.3317 

40 0 .4736 0.5264 1.00782 1.00785 1.33087 1.3310 

45 0.4960 0.5040 1.00985 1 .00986 1.3301)- 1.3302 

50 0.5191 0.4809 1.01207 1.01207 1.32930 1.3294 

55 0 .5429 0 .457). 1.01448 1.01448 1.32846 1.3285 

60 0.5675 0 .4325 1.01705 1 .01707 1.32754 1.3276 

65 0.5929 0.4071 1.01979 1.01984 1.32652 1.3266 

70 0.6191 0.3809 1.02270 1.02279 1.32547 1.3255 

75 0 .6461 0 .3539 1.02576 1 .02591 1.32434 1.3244 

80 0 .6741 0.3259 1.02899 1 .02918 1.32323 1 .3233 

85 0, .7")24 0.2976 1.03237 1.03267 1.32208 1.3221 

90 0 .7324 0.2676 1.03590 1.03621 1.32086 .1..3209 

95 0.7641 0.2359 1 .03959 1 	398 3 1.31959 1 .3196 

100 0 .7963 0.2037 1.04363 1.04363 1.31819 1.3182 
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CHAPTER 	IV 

From the works of Rowlinson et al. (78), Lester 

Haar et al• (119) 	"ZBH" (120) theory etc. and from our 

discussion in Chapt,,r  I and II, we conclude that a true 

pair potential especially for polar molecules should be 

temperature dependent and that the Lennard-Jones(6: n) 

potential could be modified such that its parameters o and 

are temperature dependent. 

4.1. AVERAGE POTENTIAL FOR POLAR GASES 

The thermodynamic and transport properties of fluid 

can, in principle, be calculated by moans of statistical 

mechanics once the intermolecular potential function is known. 

In the case of Polar gases the calculations in practice 

become complicated by the presence of the orientation 

dependent terms of tho interaction. Monchick and Mason (121) 

have presented a solution for the transport properties 

based on a fixed orientation model using a set of simple 

assumptions 

(i) inelastic collisions have little effect on the 

traj ectori 

(ii) in a given collision only one relative orienta-

tion is effective. 
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(iii) every possible orientation has equal weight. 

their treatment has been extended to mixtures of polar 

gases (122) and to one component system of quadrupolar gases 

(123 ), 

Recently Danon and Amdur (124) have proposed 

different method of calculation of transport properties 

based on the use of preaveraged free energy potentials (There 

are two different methods of averaging:. The canonical aver- 

aging and the 	free-energy averaging. The canonical 

averaging by 

(1) (r, T) > = 

  

 

4(r, )exp w(- 	
1.1w) 

kT 	exP(
kT  )dw 

• C4  

 

  

  

(4.1) 

and the free-energy averaging by 
+1. 

0(r,w) 
.K/1(r,tT)> = - kTtnr) exp ( 	 kT ) dw dw (4.2) 

   

Both of these lead to different results). The procedure had 

previously been applied to the calculation of equilibrium 

thermodynamic properties of fluids by Cook and Rowlinson 

(125) and by Rowlinson (126) . Although there seems to be 

no similar theoretical basis for using the free-energy 

average potential in calculating non-equilibrium properties, 

the empirical evidences, however, indicates, this approach 
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as a plausible and much simpler alternative to the more 

vigorous procedure of Monchick and Mason. It is found that 

if a procedure involving a preaveraged potential is used as 

an alternative to the method of Monchick and Mason, the 

free-energy average seems to be a better choice than the 

canonical average. 

They assumed in their treatment that the stockmayer 

potential is a moderately realistic representation of the 

interaction between two dipolar molecules. The Stockmayer 

potential is 
g2 

4 (r, w) = 44:0 	
o 

( 	)
m 
	(-5) g(w) 

where iz is the dipolo moment, 
	 (4.3) 

g(w) = 2 cos Qi  Cos 82  . sin Qi  Sin' Q2  Cos (t) 

With Q
1 

and 8
2 

the angles between the axes of the molecular 

dipoles and the line joining the molecular centers, and (I) 

the azimuthal angle in the plane perpendicular to this line. 

Hs /.4-4 0 , 0(r,w)--4 o(r) , the well knom Lennard-Jones 

(6:12) potential with parameters cro  and go  so defined that 

6 (0-0) = 0 and 0 (r. ) = - go  . It has the additional ad-
Jun 

advantage of relating, after averaging according to either 

Equation ( 4.1) or Equation (4.2) 	reciprocal powers of 

r that may be written as r-1  . As a result, to, the second' 

order of approximation, the orientation averaged potential 



= 4 g 	I ( 	) 	(r ) d cr: 2 	d 6 
L r  

r- 
( 4 ,6) 

Scl 	
6max 2 

= Co  ( I + 	) 
by 

1 
	

(4.7) 
3T0 *  

77 

has the same form as the Lennard-Jones potential, only the 

parameters are now temperature dependent. So, if the tempera-

ture dependent parameters of the average potentials are 

properly related to the temperature - independent parameters 

of the isotropic potential, it is possible to calculate the 

.non-equilibrium (or equilibrium properties) by using collision 

integrals which are known for Lennard - Jones potential. 

Defining 	6 	_  /1  and T 	kT 
max they show To y = 

2 g 0-3 	 g o 0 	 0  

that free-energy average potential can be written as, 
2 

(< ,t( (r,T)>> 	= 4Q0  (L
r )

12 ( c 0 )6 	6
max )1ki 3 To 	ji 

(4.5) 

Equation (4.5) can be written in the form of a Lonnard-Jonos 

potential applicable to dipolar molecules where gd  and 0-  d 
are now parameters which are temperature dependent and 

related to temperature - independent parameters, go  and 0-0  

) c )1/2  
ed 

From this emerges out clearly the following 

;rd  = cr  
0 
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For polar molecules a true pair-potential can be a modified 

L-.3.  potential with temperature dependent parameters. Some 

forms for polar gases have explicitly been obtained as in 

the work of Danon and ladur discussed above. 

4.2. TEMPERATURE DEPENDENT POTENTIAL AND THE LIQUID STATE  

What form should be the temperature dependence of 

potential for a polar liquid, like water, is not obviously 

knov,ri so far. But the more conclusion that molecular poten-

tial is temperature dependent leads to very interesting 

speculations regarding the treatment of liquid state suigenris, 

without referring to the gaseous or the solid state. 

If we follow what happens to a solid on heating we 

can make the following picture. The solid is an ordered 

lattice arrangement, where the atoms or molecules are strongly 

bound to each other. On heating the solid whereas the 

kinetic energy of each molecule increases to dissociate them 

completely, ultimately leading to the gaseous state, the 

temperature dependence of the molecular force introduces 

a new clement, namely, the molecular force, which changes 

with temperature in such a way that it balances the dissocia-

tion to the extent of forming minute molecular clusters in 

the average situation. There are thus three forces which 

keep a bal ance, (1) the molecular potential, (ii) the thermal 

energy and (iii) the surface energy of the molecular cluster. 
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This speculation is mentioned here by the way and 

cannot be worked out in detail unless the potential is 

precisely known. 

In the following we shall make a heuristic attempt 

to search for a trial potential for liquid water. 

4.3. TRIAL SEARCH FOR A TEMPERATURE DEPENDENT POTENTIAL 

As a simple trial we take the potential (127), 

r T ) = 4 go  n J-  6 
- (7,2) 	( 1 + ca) (4•8) 

    

Where 0 is a suitable function of temperature which should 

agree with the dipole-dipole interaction term of the stock-

mayor potential at different temperatures and has to be 

found out. We introduce the temperature function only in 

the attractive term of the L-J form, because the Stockmayerts 

modified (6 : n) potential has the addition of an extra 

attractive term which corresponds to direct and induced 

electrostatic dipole dipole interaction. Since the dipole 

moment of molecules, their average distance and average rela-

tive orientations will largely be effected by temperature. 

We may, in a formal and empirical way, write for this poten. 

tial the form of the typo of equation (4.8) 	Such a formal 

introduction of temperature in the potential is logical and 

should be consistent with the experimental data of gaseous 

properties, at least to the extent, the stockmayer potential 



T) = go  ( 	Q) 
• n /n  _rn  

g(T) = co(14-0) 14-n 

(4.10) 

80 

is. This form of the potential can be written in the 

form (See Appendix VII) 

r °it) n 	cr(T) m 
O(r,T) = 4 g (I) 	) 	 ) r 	r 

.1111•16 

with g(T) and o (I) related to temperature- independent 

parameters g
o 

and d
o 

by 

(4.9) 

The function Q must be a decreasing function of temperature 

and at a suitably high temperature it should become negligible 

small to reduce the equation (4.8) to the following form 

6( r) = 4 Co  [ ( (3- —2—r  ) 	 )
m 1 n  

which is the famous (m:n) Lennard-Jones potential, valid for 

high temperatures. 

4.4. SOME PROPERTIES OF LIQUID WATER.THE FORM OF Q 

We now lock for some clues for the function 

Basing his arguments on the Nemethy and Scheraga e s (128) 

model for water and making use of the free-volume concept of 

Cohen and Turnbull (94) 	Miller wrote an empirical relation 

for viscosity 11. of the 	form of 

= A + (4.12) 
T T0  

RD'13019,  
0 -zra 1124rylINIIRS77Y OF ROOM 

ROORKEE. 

(4.11) 
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where A , B and To  are appropriate constants, Singh, Dass 

and Varshneya (97) later found that an empirical relation 

of the Ram, 
B ( Tc- T ) 

tn X = A + 
(T - To ) 

for any property xr is a good representation of experi-

mental results, not only for viscosity but for many more 

properties of water including sound velocity and compre-

ssibility. Here A and B are appropriate constants 

('different far each property),Tc  the critical temperature 

and To  having a value about 135°K. It is interesting to 

note that the Debye temperature of water also has this 

value. From this we guess for the liquid water a form 

for Q 

T Q 	c 	T  ) 
T - To  

(4.14) 

In this form II is a decreas ing function of temperature 

and is zero at T = Tc  . 

Since the potential given by Equation (4.9) should 

reduce to the 1,-,3 (6;n) potential at TrQTc  and since 

log A(T) r",' log (T 	To) , as also log B(T) 	log (T-To ) 

(Figs. (16) and (17)), the following form of the force 

parameters are justifiable 

4.13) 



	

- To 	n/( n-m) 
g(T) = 	T - To 

82 

(4.15) 

( c 	 
I/ (M-n) 

= 0-0 	) 
T -To 

Using these force parameters in equation (4.9), we now make 

use of the proposed potential to calculate the compressi-

bility and sound velocity of water as in reference (129). 

4.5. COMVRESSIBIL1TY AND SOUND VELOCITY OF LIQUID WATER 

As is well known the sound velocity of liquids is 

a function of the compressibility K and the density P 

v2  = 1 
	

(4.16) 
KP 

The temperature coefficient of v therefore is given by 

dv 
v dT. 2 

1 
K 

dK 
dT 

1 
P 

d p 
( 4.17) dT 

In calcul-ting the temperature coefficient of the compre-

ssibility it is supposed that the liquid contains N mole-

cules per cm3  which, under equilibrium conditions, are at. 

a distance ro from each other, when applying an external 

pressure p, this value is reduced by an amount Or . Assum- 

ing that the forces are harmonic in nature 
2/3 

p = N 	
r=ro 0 r 
	

(4.18) 
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whore f 	= force constant. At this pressure the volume 
r=r

o 
is reduced from Nro  = 1 cm3 to V = N ( ro  - dr) 3, so that 

K is given by 
d tn V 

K = 

d 	r3 tnNi- 3.en(ro..Ar)] 
d p 
3 	d A r 

K = 
( ro  r) 	GIP 

From equation (4.18) 

d A r 	1 

d p 	N2/8 f  
r=r0  

3 	1 
K 

(ro--"A r 
	

N2/3 f 
r=r0  

1 dK 
K 

dT 

K = 3ro 
f 

1 dro 	1 df 
111.07.0.■ 	 ••••••■■•• 	auraymos 

ro  dT 	f dT 

(4.19) 

• / 1 disc, 	1 	d p 
• 6  t ) 

ro  dT 3 p dT 
( . 20) 

Therefore the temperature coefficient of compressibility 

is given below 

1 dK 	1 d Q 	1 df 

K dT 	- 3 p dT 1  f dT 
(4.21) 

Now the temperature coefficient of the force constant f can 

be calculated if the interaction energy between two molecules 
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is  known, Writing Equation (4.9) in an another form given 

below - 

	

a 	b 	Tc- T 
7:6( r,T) 	= n 	k 

r 	rm 
	

T- To 
(4.22) 

dr )  r=ro 

n a 	mb 	Tc-T 
- + 	( + T -To  

r
n+1 m4.1 
o TO 

b- 

d2  d 

na 
arn  

n( 

T- T
o - 

T 	 T - c 	o 

n+1) a 

m-n 
To 

m(m+l)b T7T 

(4.23) 

) 

( d 2r 	
) 

r=r0  
d 2j 

rn+2 	rm+2 

n(n+l)a 

(1+ 	) 
T -To 

m( m+1) bT -T 
( 

dr2  dr n+2 r=ro 	ro rom+2 	T-To 
(4.24) 

Substituting the value of b from Equation ( 4 .23) in 

Equation (4.24) , we get, 

mo 	

d
2 
V 	n (n+1) a 	(m+1) na f

r= 	
= 	) dr2 r=r0 = 

ro 
n+2 	rm+2 

n( n-m) a 

 

4.25) 
rn+2 

Now on differentiating Equation (4.24) 

f 	d , d2(/ 
dT = 	k 	

‘ 
d  

- na( n+1) (n+2) dr0 	m(m+1) ( m+2) b 	T -To 	dr I  c 	) 	 9.  
dT + 	' T -To  ' dT 

ro 	To  
n +3 

m+3 

	

m(m+1) 	Tc-T + ------ b. ( 

	

rom+2 	( T -T o) 2   . 	. 

0 

( 4.26) 
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Now substituting the value of b in this equation, we get, 

df 	na = 	1 	dro 
) n  (n+m+3) na(m+i) 

dT 	rn+2 ,  = nro+m+3)  ( dT 	 ra+2 	(T-T0)

• • 	1 	d f 1 	dro ) 
	m+1 	1 

f 	dT 	 (n-m) 	(T .T0)  

	

, 1  dr r  1 	d(? • .. 
ro dT 	3 	dT 

from Equation (4.20)) 

1 df 	ni-m+3 	7 	1 . . f 	
) 	

(4.27) 
r=ro 	3p 	dT 	(n-m) (T-T0) 

From Equations (4.21) and (4.27) 	we get, 

1 dK = 	( 	) dp 	7  
K dT 	3 0 	dT 	 . 	(4.28) 

(n.m)(T-To) 

Now from Equations (4.17) and (4.28) 1  we get, 

1 dv n m I  dP 	7 	1 
v dT 	6 p 	dT 	2(n-m) 	(T-T0) 

First of all, since we know that the sound velocity in 

water has a maximum at 76°C , we can use this condition 

in Equation (4.29) to fix n . Keeping m 6 (theoretically 

justified) and To = 135°K we get n 1;1  14. Now integrating 

Equation (4.28) , we get, 

in K= -8kn p 	87- ,en( T-T0 ) 	1■1 	(4.30) 

at an arbitrary reference temperature Tr, 

(4.29) 
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- kn (T-To) n 	 4j.  Kr  = - 8 kn 
8 

n 2̀∎1 = 	Kr  .+ 8 i 	7 n Pr  + 8- won(Tr  - To) 

, Pr Kr/8 	 , T.T. 	, 
11 K = 8 tri k ------- ) 	76 ftn t 	/ k4.31) 

o 

Now on integrating Equation (4.29) 	we get, 

n v  = 

	

	n p + 16 5:3n (T-To ) + 
2 

At an arbitrary reference temperature Tr, we have 

= 	Qin Vr  -1 -en pr  - 	In (Tr-To ) 

2/7 
n v = 	( ---P vr ) 	2t, n ( T

Tr
-10T 0) 	(4.32) 

Pr 	16 

Where Kr  , pr  and Vr  are experimental values at an 

arbitrary reference temperature Tr, of compressibility, 

density, and sound velocity respectively. It will be noticed 

that we get on expanding the logarithimic function for 

temperature upto the first term, approximate expressions 

for K and V similar to the one suggested by Wrshneya et al(97) 

which has been found good empirically. 	We can calculate 

K an' V using the values of L 6-2- 	given in reference 
P dT • 

(98) 	We see that these equations represents the 

experimental data (89, 98) very good as shown in Figs. (26) 

and (27). 



87 

4.6 PRESSURE CHANGE  OF BULK MODULUS 

Differentiating Equation (4.30) with respect to 

pressure, we get, 

( 	s ) 
K dp 

MO 

	

(), 	( 2211  

	

dp = 	6 p 
(4.33) 

Now because isothermal compressibility is defined by 

1 av 
) V 	op T 

or 
	1 	d O  

P dP 

From Equations (4.33 ) and (4.34), we get, 

1 dK 	 a Al 
-= - 8 K 	( 

dP 	 ap T 
Dividing both sides by (-i0 , we get, 

1 	dK 	. 	8  . 1 1 6, lit  

K a p IT K2 dP 

(4.34) 

As a first approximation we assume that 	is pressure 

independent (in fact it depends upon pressure slightly), 

then 
( /K) Cl 	 I T (4.35) 

1n the case of non-polar liquids, it was shown by Moelwyn. 

Hughes (130) by thermodynamic arguments that the pressure 
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change of bulk modulus of rigidity is a constant. Here 

in case of polar liquids (water) also we note from 

Equation (4.35) that the pressure 'change of bulk modulus 

of rigidity of water is also constant and has the value 

Cl = 8 , while the experimental value obtained from the 

slope of the graphs of I/ p Vs. P is 8.2 which is in 

good agreement with the calCulated values, 

4.7 CONCLUSION 

In searching for a true pair potential which is 

both simple and workable, we thus see 	in the above that 

a temperature dependent potential of the form of Equation 

(4.9) is a promising one. There have been numerous attempts 

already in print which suggest variations of parameters 

of the Lennard-Jones (6sn) potential in some form or the 

other of adhoc nature to suit the experimental data. The 

suggested potential (4.9) gives a regular variation of tho 

parameters of the 	(6;n) potential in a consistent way 

and agrees with the data shown above. 

Although a rigorous theoretical derivation of 

temperature dependence is yet to be attempted, the proposed 

potential may be found useful. To decide whether this is 

indeed the true pair potential, it would be most desirable to 

test this model against other equilibrium and non-equilibrium 

properties. This work presents 	an exploration of a possible 

potential function. 



1  
90 

1  
10 Go 

I  
so 100 

1560 

I 	I 
40 SO 

T(Z) 

FIG. 26 

10 
I  

.g0 
1400

0 20 



FIG. 27 

\ 

\ 

\ 

\ 

S1 

50 

48 

47 

46 

45 

/ 
/ 

/ 
/ 

/ 
/ 

44 

43 

42 

41 

4o 
o 	70 	20 	30 	4o 	50 	6o 

T (°C) 



CHAPTER V  

There are many approaches prevalent to the liquid 

theories. Cell and hole theories appear to describe solids 

rather than liquids. The tunnel & °worm' theories give good 

results for liquid densities ani compressibilities but 

unsatisfactory results for entropy and critical constants. 

The Born-Green-Won, Percus-Yevick(131), and hypernetted 

chains theories and their extensions so far appear to be 

unsatisfactory in the presence of strong attractive forces 

(132). It appears that all theories based on density 

expansions meet a formidable barrier in their approaches 

to the liquid state, but there does not seem to be any such 

barrier in the ZBH theory (133) (Zwanzig theory modified 

by Barker and Henderson(120). 

Although the perturbation theories are in the process 

of developing into a consistent theory. But so far only 

it has been proven that they are physically satisfying 

approach to the theory of the equilibrium properties only 

and that is too for simple liquids not for non simple 

liquids like water. 

Here below a brief discussion of some of the earlier 

theories is given: 
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5.1 CELL THEORY 

The cell model (124) is based on the idea that 

each molecule in a liquid or compressed gas spends much 

of its time confined by its neighbours to a comparatively 

restricted region (cage or cell in which the central 

molecule moves). The number of cells is chosen to be equal 

to the number of molecules. 

The simplest possible assumption is that the mole-

cules move entirely independently of one another in their 

cells and when considering the motion of the central 

molecule, the neighbours which form the cage as fixed at 

the centres of their respective cells. Further all the 

cages are identical and that each contains just one molecule 

which imposes severe restrictions on fluctuations of density. 

Precisely speaking it restricts the configuration space 

available to the molecules to that fraction of the total 

configuration space in which every cell contains one 

molecul e. 

The regular lattice of cell centres brings back the 

very future of long-range order, thus it should not be 

surprising if the cell theory actually describes solids 

rather than fluids. 

A simpler approach, developed by Eyring and Hirsch-

folder (135,136) is based on combining the expression 
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for the configurational entropy with an empirical expression 

for the configurational energy. This uses the idea that 

the free volume and entropy are deteriminod primarily by 

the repulsive forces and the energy primarily by the attra-

ctive forces. Strictly speaking such a separation effects 

cannot be rigorously justified, but however, it leads to 

a useful semi-empirical equation i.e. Eyring equation of 

state given below 

(p + a(T)/ V2) 	0.7816b1/3  sel'3) 	k (5,1) 

it is capable of giving a useful semiempirical description 

of the properties of liquids and gases (12). 

The cell theory - abbreviated to 01,-J-D" theory was 

first investigated in detail by Lennard-Jones and Devonshire. 

In, their two papers (6,137) they calculated the thermodynamic 

properties based on the cell model for molecules inter- 

acting according to (6:12) potential and in later papers 

(4,5,138,139) they regarded the cell model as more precisely 

a model for solids, and they explained the differences between 

solids and liquids in terms of their order-disorder theory 

of melting. 

In making comparisions with experiment they found 

that the L-J-D theory is in fact an excellent theory 

of solids in the temperature range where quantum effects 

are not important. This is not surprising since theory uses 
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essenti4lly the Einstein model with full correction for 

anharmonicity. One might have hoped that the theory 

would describe both solids and liquids in appropriate 

temperature ranges which is not the case because above 

the melting point the theory describes a solid phase which 

is metastable. 

Inspite of thLs the theory is of fundamental 

importance in the theory of liquids, because effectively 

all progress towards a satisfactory lattice or structural 

theory of liquids has arisen from attempts to justify or 

improve the L-..T-D theory. Furthermore the L-J.D theory 

may validly be regarded as an approximate theory of fluids 

Since from some points of view the -thermodynamic differences 

between solids and fluids are small, particularly if the 

fluid and solid are considered at the same density. 

5.2. THE VARIATIONAL THEORY AND CELL MODEL 

Kirkwood (140) proposed a variation method based 

on the cell model. The method is closely analogous to the 

Hartree and Hartree.Fock self consistent field methods of 

quantum mechanics. Kirkwood proposed that the probability 

density function should be approximated by a simple product 

of identical cell distribution functions each depending 

on the coordinates of one molecule with respect to an 

origin at the centre of its cell. This corresponds to the 
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assumption of independent motion in the L-J-D theory . It 

seemed likely that the variation method could be regarded 

both as a justification for the approximations of the L-J-D 

theory and as a method for calculating more accurate results 

than those given by the L-3-D theory. Butlater calculations 

due to Hirschfelder and his Colleagues (141,142) have proved 

that this is not the case. Comparision with experiment shows 

that the variational theory based on the cell model describes 

solids not liquids. 

5.3. THE  CELLTCLUST ER THEORY 

The cell-cluster theory, developed by de Boer(143) 

provides an elegant and formally convergent method for 

taking account of correlation and multiple occupation 

effects which are ignored by the L-J-D theory. The basic 

idea is to devide the lattice of cells into clusters of 

cells and to express the total configuration integral as a 

sum of products of cell cluster configuration integrals. 

The simplest of these integrals is the 1.-J-D free volume, 

of  , and the leading term in the sum of products is just 

the L-J-D result for the configuration integral. The 

remaining terms involve contributions from pairs or larger 

clusters of cells, and correct for correlation and multiple -

occupation effects. In practice the only clusters for 

which the integrals can be evaluated are pairs of cells. 

If only the contributions from these are induced then the 
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cell-cluster theory suffers from roughly the same limita-

tions as the L-J-D theory. However the cell cluster theory, 

with allowance for two cell clusters only, does not improve 

on the L-J-D theory as far as the pressure is concerned, 

although the entropy is certainly improved. To some extent 

it seems that what the cell cluster theory gains in simplicity 

and elegance it loses in flexibility. Of course if it 

becomes practicable to evaluate the integrals for larger 

clusters this situation will be changed-entirely. An 

advantage of the cell cluster theory is that it can easily 

be carried over into quantum mechanics, simply by replacing 

the classical cluster integrals by quantal . slater 

sums. Recently Dahler and Cohen (144) have generalized 

the cell cluster theory in such a way as to allow for the 

presence of holes or empty cells. The consequences of this 

modification are not yet known. 

5.4. HOLE THEORIES OF LIQUIDS  

Originally Eyring (145) introduced the idea of hole 

theory to decrease the coordination number of a molecule 

in the liquid by introducing into the cell theory the 

concept of empty cells or holes as was pointed out by de 

Boer (146) that the agreement of the L-J-D theory with 

experiment could be improved by choosing the number of 

nearest neighbours Z smaller than the value 12 corresponding 

to close packing. The presence of holes, and their more or 
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loss random distribution on the lattice, would explain 

at least part of the disorder in liquids which gives 

rise to the entropy increase on melting. FUrthermore the 

presence of holes would give a basis for understanding 

the relative ease of diffusion and flow in liquids in 

terms of a vacancy. In fact hole theories give the correct 

value for the entropy of the perfect gas, so that the whole 

of the communal entropy is included in the low density 

limit. But at high densities the proportion of holes 

becomes very small and the predictions of the hole theories 

are very close to those of cell theories. In a hole 

theory the cell size remains constant (independent of the 

density and temperature) so that the whole of the thermal 

expansion is due to the increasing number of holes. Alter-

natively one could suppose that both the cell size and the 

number of holes vary. 

Because in hole theories the number of cells exceeds 

the number of molecules and so there will be a number of 

empty cells or holes present even when no cell contains 

more than one molecule, which implies that the number 

of nearest neighbours is decreased below that of the solid 

in acco_cd-nce with the experimental evidence. 

Those theories are based largely on this idea, 

that the cells can be chosen sufficiently small so that 

configurations with more than one molecule in any cell 
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can be neglected entirely. There are some doubt as to the 

justification for the assumption that multiple occupation 

of cells can be neglected in the hole theories. Nevertheless 

this assumption has been made in existing hole theories, 

The least satisfactory feature is that if thecell 

volume is determined to minimize the free energy then the 

cells are so large that multiple occupation cannot be 

neglected. Thus to develope a really satisfaftory hole 

theory, it would probably be necessary to allow for the 

effects of multiple occupation, 

5,5 SIGNIFICANT STRUCTURES  THEORY 

-gyring and his associates (147,148) have proposed 

a model for the liquid state based on an arbitrary separa- 

tion of the degrees of 	freedom of the system into 'solid 

like' and tgas like' components. They suggest the following 

partition function for the liquid 
Nvs  

N( 	s) v-v 
-a/nh al' 	v 

	  ( 1 + nhe 	 ev i 	V 
3  

(5.2) 

where, 

Es 	= the energy of sublimation 

= the Dobye temperature of the solid 

EsAT 

L 
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the fraction of molecules in the liquid which 

border holes. 

a disposable parameter 

molecular volume of the solid 

molecular volume of the liquid 

A 	= ( 2 rTmkT) /12 	h is proportional to the De 

De  Broglie wave length. 

with a suitable choice of a , this function does remarkably 

well in generating the thermodynamics. 

This theory has been applied with the excellent 

degree of success to a tremendous range of liquids. Its 

usefulness cannot be doubted since the model can be applied 

to so many different liquids, can be used to calculate 

transport properties and surface tension, and can be used 

to compute the radial distribution function. The theory 

rests on a model of the liquid state which is reasonably 

successful. The model envisioned -  by Eyring et al is that 

which would be formed if all the volume increase upon 

fusion went to form holes of molecular size. Thus the 

immediate neighbour separations in the liquid are 

considered to be the same as in the solid, and melting 

decreases the average coordination number of a molecule 

by an amount proportional to the increase in volume 

fraction during fusion. 

nh = 

a = 

vs  = 

v = 
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Any how the criticisms raised against the theory 

are as follows - 

(1) 	It has a number of adjustable parameters. 

(ii) It does not provide the reduce equation of state. 

(iii) The agreement between calculated and observed heat 

capacity and Helmlioltz energy is not good as 

claimed by the authors. 

5,.6. MONTE ciao METHOD, 

This method signifies a numerical calculation 

method in which specific probability elements are introduced 

in contradiction to the calculations made by classical 

techniques. The problem mainly consists in evaluating 

multiple integrals of the type of configurationals 

encountered in the Gibbs statistical physics by numerical 

integration over random sets of points instead of the 

usual method of integrating over a regular set of points. 

This method uses ensembles averaging and restricted to 

equilibrium phenomena but in this field is probably more 

satisfactory and is true for any l aw of interaction of 

particles, but depends only on the configurations of the 

particles, provided that the ergoacity condition is 

satisfied. This method was employed for the two dimensional 

case in one of the earliest works (149) . The still more 

interesting three-dimensional case has been dealt with by 

Rosenbluthe et al, (150) and 	Wood et al,(151). 
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Monte Carlo method is restricted by the fact that 

only a limited number of molecules can be connected, this 

limitation is imposed by computing speed rather than by 

information storage requirements. To minimize the effect 

of this restriction a periodic boundary condition is used. 

It is supposed that the whole of space is filled by repi- . 

tition of a fundamental cell of volume V containing N 

molecules. 4,s a consequence of this the Monte Carlo method 

is closely related to the simpler cell theories, The funda-

mental difference is that the coil is large and contains 

many molecules. Further differences lie in the treatment 

of the 'surface effects' which are of course much loss 

important with a large cell, and in the fact that other 

cell theories permit approximate evaluation of the parti- 

tion 	function. In the present state of the art of 

computing, the partition function, and therefore the 

entropy cannot be evaluated by this method. Any how with 

the rapid growth of the technical means, and computational 

methods Monto Carlo method have bright prospects. 

5.7. THE METHOD OF MOLECULAR DYNAMICS 

alder and Wain wright (152, 153) have used a 

fast electronic computer to study the behaviour of 

molecules moving randomly under specified attractive and 

repulsive forces at various densities corresponding to the 

solid, liquid, gaseous states. 
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The method is capable of dealing not only with 

equilibrium phenomena but also with relaxation and non- 

equilibrium phenomena. This method uses time averaging 

following the trajectories of the system. In this method 

the classical equations of motion for a system consisting 

of a very large number of particles are solved by a step- 

wise procedure. So far the calculations have been made 

only for rigid non-interacting spheres and square well 

potentials. The periodic boundary condition is used, 

so that a molecule leaving the fundamental cell through 

one face- re-enters it through the opposite face. In this 

way the number of molecules in the cell remain constant. 

In determining when and where the next collision will occur 

a convention analogous to the tminimum image distance' rule 

is adopted. Initially, for each system, all the particles 

of the fundamental cell situated at the sites of the face- 

centredcubic lattice were uniformly distributed over the 

whole of the cell with equal speeds but random directions 

of motion. The velocity distribution tends rapidly to 

the Maxwell distribution. The total energy of course remains 

constant and determines the temperature. 

The method of molecular dynamics show that even in 

fluid state the molecules appear to vibrate for considerable 

periods in localized regions. 
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Apart from the lack of a simple picture of the 

structure, the disadvantage common to both the Monte 

darlo method and the method of molecular dynamics is the 

amount of computation required to obtain the results but 

with the rapid growth of technical moans and computational 

methods, it seems that in the near future these methods 

(specially Monte Carlo method) trill be great success in 

statisti cal physics. 

5,8, THE TUNNEL THEORY 

In 1960 Barker proposed a model (154, 155) for 

liquids 	THE TUNNEL MODE - according to which the 

whole system of molecules devided into subsystems consis-

ting of lines of molecules moving almost one-dimensionally 

in tunnels whose walls are formed by neighbouring lines. 

The advantage of this model over cell model and hole 

theories is basically that it permits a more extensive 

sampling of configuration space, in regions not necessarily 

'closet to regular lattice configurations. Density fluctua-

tions are permitted since the molecules may take up any 

position along the tunnel axis, and these include small 

fluctuations as well as the relatively gross fluctuations 

described in the hole theories by empty cells. 

The tunnel theory has not yet been investigated as 

fully as the cell theory. This is developed only for rigid 
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spherical molecules and for (6:12) molecules and predicts 

a radial distribution function for liquid argon in good 

agreement with experiment. It gives calculated values of 

pressure and energy which are in good agreement with 

experiment, but the calculated entropies are less satisfac-

tory • At present this is perhaps the most promising of 

the lattice theories. 

Any how the most serious objection to this theory 

is its anisotropic character, 

TWO-srATE APPROACH 

Due to its wide availability and unusual properties, 

water has always provided an interesting scientific challenge. 

During the years a great number of qualitative and quanti-

tative theories have been proposed to explain the properties 

of water and to elucidate its structure. A critical 

review of these theories reveals that a group out of these 

theories rely on two-state approach (102, 105,156-162). 

According to this theory water is considered to be as an 

equilibrium mixture of two classes.of molecules. Class 

first is constituted by hydrogen bonded molecules(open 

structure or ice-like structure) and class II - is 

constituted by unbonded monomers (close-packed structure). 

Many authors have applied this approach with some degrees of 

success, to many properties of water, however, they do not 
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agree on the values of the various two-state thermodynamic 

parameters. 

For the first time, in 1948, Hall (102) presented 

a two-state theory of water, which was based on the assump-

tion that liquid water was composed of two states. 

State 1 is characterized by large volume and lower free 

energy identifying it as more ice-like structure (open-

packed structure) and state- 2 is characterized by smaller 

volume and higher free energy i.e. unbonded water molecules 

(close-packed structure), in order to explain the ultra-

sonic absorption data, Hall's theory succeeded in the 

interpretation of ultrasonic absorption -data, but was 

pointed by Litovitz and Carnevale (161) to be unsatisfactory 

for the explanation of the pressure dependence of ultrasonic 

absorption. Since then the two state approach of liquid 

water has been developed in various ways by a number of 

authors (102, 105, 156-162) to investigate the effectiveness 

and limitations of the two-state approach. Some of them, 

the theory of Samoilov (163) , Frank and Quist (159) etc. 

were found to emphasize the solid-like structure. On the 

other hand Frank and Wen (76) proposed a flickering cluster 

model based on the cooperative nature of hydrogen bonding 

formation, and pointed out the life time of the clusters 

to be as short as 10
-10 or 10-11 

sec, from the relaxation 

data. According to the suggestion of Frank and Wen (76,164), 
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Nemethy and Sheraga (128) have presented a refined statis-

tical theory, in which water is assumed to be an equilibrium 

mixture of flickering clusters and unbonded molecules. The 

clusters are supposed to be composed of tetra-tri-di, 

and singly- hydrogen bonded water molecules, and therefore, 

Ncmethy and Scheragatt: theory is also regarded as a five-

state theory. The results from the Nemethy and Scheraga 

model are in satisfactory agreement with the experimental 

values of entropy, free energy, and internal energy, but 

fail to predict the behaviour of the specific heat of water. 

In addition, the concentrations of the species derived 	by 

Nemethy and Scheraga do not show a satisfactory correlation 

with the experimental results of Buijs and Choppin  (115) 

determined by infra-red techniques . 

4tfter the propostion of Nemethy and Scheragat s theory 

several studies have been made along this line. Vend 

and Senior have recently presented a nine-state theory 

(165). The main feature of their approach was that the 

concept of descretc.) energy levels, corresponding to 

one and two hydrogen bonds is abondoned and replaced 

by the concept of energy bonds without giving any theore-

tical explanation. This assumption means a continuous 

distribution of energy for water molecules and also means 

the introduction of a very large number of states since 

the energy changes continuously. Using a model of liquid 
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water based on three species found experimentally by 

Buijs and Choppin and by introducing the above mentioned 

assumption they derived a partition function for the system. 

Using the experimental data of Buijs and Choppin and of 

Dorsey (104) (at 50°C) , and introducing some other assumpt-

ions regarding the nature of the intermolecular forces, 

they evaluated the parameters needed in this partition 

function. Using the resulting partition function they found 

that their model successfully represents the :thermodynamic 

properties of liquid water in the range of 0°  to 100°C. 

It is questionable that, when the life time of the 

hydrogen bonded region is known to be as short as 10-11- 

10
-10 

 sec, a number of different states within the hydrogen 

bonded region could be distinguished from each other, for 

a 'state' has to be regarded as corresponding to a structure. 

The assumption of the presence of a .  number of distin- 

guishable states with as short a life time as 10-11 	i0.10 
 

sec, may be doubtful, when the energy difference between 

the states is as small as the energy of the thermal motion. 

It may be generally said on constituting the theory,-the 

number of states assumed is desirable to be as small as 

possible, so long as the increase in the number of states 

means the increase in the number of parameters 

Recently Davis and Litovitz (116) presented a two-

state: model of the structure of water and tho evidence for 
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the existence of two types of structures in water comes 

from the difference in the number of neighbors indicated 

by Raman spectra and X-ray diffraction which is consistent 

with the suggestion of Grjotheim and Krogh-Moe (157) that 

the first peak in the radial distribution curve is in 

reality two unresolved peaks corresponding to two different 

types of nearest neighbors in water. This model is based 

on two postulate - the first postulate is that in water 

there exist puckered hexagonal rings like those that 

make up the structure of ice (166). The presence of such 

rings in water is explained by the fact that the hydrogen 

bond is partially covalent leading to highly directional 

cooperative forces suggested by Frank which favor the 

formation of hydrogen bonds. The second postulate is that 

in water these rings occur in an equilibrium distribution 

of two structures, an open-packed structure as in ice 

while others are arranged in a more closely - packed nearly 

complete body centered cubic structure. Further they have 

pointed out that Hall' s 	analysis requires modification. 

According to them the excess sound absorption is not 

completely an isothermal process but a large component of 

the excess loss results from the presence of a relaxational 

specific heat. When a liquid is subjected to variations 

in pressure or temperature, volume changes occur. These 

volume changes proceed by rapid changes in lattice spacing 

followed by slower structural (or relaxational) rearrangements 

(167). The lattice and relaxational components of the 
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compressibility, expansivity and specific heat, 

respectively are related i,C0 $ KT, r 	4̀1, 	Cptco 	Cp,r  

by the expressions 

Kr ( 5 . 3) 

= a + 
oo 	r. 

- C.p oo  
,r 

(5.4) 

(5.5) 

The molar volume of water on two-state approach is given 
by 

V = Voxo 	Vo Xc  = X0 V' + Vo 	 (5.6) 

Where X0, Vo  and Xc , V are the mole • fractions and 

volume respectively, of the open-packed and close-packed 

structures respectively. 

= V - V o 	c 
and X 	X C 	0 

d,xpression for expansivity is given by 

1,( 
 

'P 

From equations (5.6) and (5.7) we get, 

1 ,dV 	1 	
(X V1  +V) = v 	- 0c V sir' 

(5.7) 

Sit 	dx 	X 	OV1 	l 	c'Vc  
V 	er 1 p 	V 	P 	V 	-1  

(5.8) 



vf = 	OX0 ,;( 	( 	) 
r v aT p 

and Kr,r  = 
V'a X 

( 	 P ) 
V  P T 
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the compressibility of liquids is expressed 

1 ov 	1 a 

V ( d--13 InCo 	Vc))  

.°Vo 	 OV, Kr 	.( 	 ) 	( a vt ) 	) 
V 	 T 	v 	a p T V OP T 

(5.9) 

According to Davis and Litovitz 

as 
KT  

Further in the equilibrium condition 

X 	G' 0   
= exp 	) 

1 - X
o 	

RT 

Using  the thermodynamic relation 

G' = F' 	PV = H' - TS' 

( 5 .12) 

(5.13) 
there G' is the difference in the Gibbs free energy betw-

een two states, F' is the difference in the Helmholtz 

free energy, H' is the difference in the enthalpy, 3' is 

the difference in the entropy, P is the pressure, R is 

the gas constant, and T is the absolute temperature. 



The relaxation component of specific heat is obtainfd as 

(5.18)• 
( H' )2 

Cps r . 
	;77_ 1 X0(1 -I 

From Equation (5.12) 
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and 

( 8X0 	HI 
) 	( 	) X (1-X o) 

	

P 	RT2  

xo  
-,••••••irs^.." ) 

	

P T 	( RT)  X011-X0/  

Making the substitution of Equations (5.14) and (5.15) 

in Equations (5,10) and (5.11), we get, 

Ht  
	 ) X0(1-X0) 	(5.16) 

V RT2  

and 	Kr 	
( Vi) 2  

r  = %  	X0(1-X0) 	(5,17) 
VRT 

   

1 

V 

avc 	 8V1 
OT P 	°T r 

(5.19) 

   

   

To determine the parameters X04  Vlk  Gt and Vo  , Davis and 

Litovitz solved equations (6-.6) (5.12) , (5.16) and (5.19) 

in self consistent manner and then they have calculated 

various thermodynamic parameters. 

Any how the main difficulty in the past has been 

in the determination of X . Actually there was no absolute 

method for the determination of X0  and one have to set 



Xo  = 1 - X 

T +T -2T 
Xo =   ) 

Tc  T 
(5.21) 
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. 'LIS parameter one or the other way. In the present work 

ve have, by considering the structure of water and its 

properties, arrived at an expression to determine the 

fraction of hydrogen bonded molecules (x0) and its func-

tional dependence on temperature, and have ultimately 

discussed the effectiveness and limitations of the two 

state theory. 

In a published work (97) we have proposed an 

empirical expression which represents the functional 

dependence of temperature of most of the properties of 

water. This -expression is interpreted in terms of two 

state approach. In view of the forgoing discussion 

(Chapter III) 	if we assume that the fraction of the 

close packed specy - , i.e. 

>C 	
To 

c  = (
-T

T
) 	 (5.20) 

Tc- 

and then the fraction of the hydrogen bonded molecules 

(open-packed species), X0  will be 

Once we know the value of X0 , it becomes a simple 	matter 

to apply the two-state approach as by various investigators 
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to obtain the volume and two-state thermodynamic parameters 

alongwith some other physical properties of water. 

5.91 Specific Volume 

The volume V, can be written as 

V =XV+X
c 
 V 

0 o 	c 

Where Vo  and Vc  represents the specific volumes of the 

open-packs 3 	species and close-packed respectively. The 

temperature dependence of Vo  and Vc 	can be expressed as 

Vo 	= 	19.657 ( 1 + 1.55 + 10-4  t ) (5.22) 

( Vc 	= 	Vc
o 	

k + At + Bt2) (5.23) 

and V? = Vo  (5.24) 

Where V°0  ( = 19.657) and Vo°  are the values at a reference 

temperature, A and B are the coefficients and t the rise 

in temperature above the reference temperature, then 

V = Xo* 19.657 (1 + 1.55 * 10-4  t)+ Xd (1+At+Bt) 

(5.25) 

Here Xo  and Xc  are known, V° , A and B can be fixed from 

three known values of V. These are obtained 

A = 3.6358* 10-3 °C-1  

B = - 8.2859 *10-6 0C-1  

V
c
o = 0.802071 c.c. 
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The calculated values for V along with the experimental 

values are shown in Table 6 (Chapter III) . The agreement 

is found to be very good. 

5.9.2. Refractive Index 

Using again the values of X0  and Xc  and the 

relation for refractive index of water given by Mitra et al. 

(118) on the tlho state approach, 

(n-1)V = X
o 
k
o 	

X
0 
k
c 	

(5.26) 

where n is the refractive index, V is the specific volume 

and ko, ko  some constants to be fixed empirically.. They 

are obtained as 

Ko  = 0.3359 and Kc  = 0.3311 

Then from experimentally known values of V, n can be 

calculated. These values along with experimental values 

are shown in Table 6 (Chapter III) . The agreement is 

found again very good. 

5.9.3 Two-State Thermodynamic Parameters 

Differentiating Equations (5.12) and (5.13) with 

respect to temperature yields. 

Gt 	1-X 	RT 	a Y_ 
)p  = 	S4  = R 41,n ( ---°) - ( 	 ) ( 	-°1 

	

X0 	X0(1-X0) -617  p 

(5.27) 
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and 
a2 1 

a T 2  
C 2R 	OX0 	RT 	42X0  

( a T ) p 	( -7-21  •••••■•■•• 	= 

X0 (1...X) 	 X0  ( 

RT( 1 - 2X,) 	 2 	  ( a.x_0 
(xo(.1.-x0))2 	4 f) 

(5,28) 

or 

• • H' = 	+ TS' 
0 	1- X = RT Ain 	x 	RT n 

RT2  8X0  

X0(1-40 ) cir  

Nov from the forgoing discussion we know 

X0  = (Tc  + To 	2T) / (Tc-T) 

c3XT -T a.
( _ o 
	

- 	( 	) 
or 	(Tc-T? 

5.29) 

(5.30) 

and 
( A2v 

a T2  

2 (Tc-To) 
(5.31) 

(re- T) 3  

Now it becomes very easy to compute the values of Gt,S1, 

C'.- and H' using the above equations (Equations (5.13), 

(5.27), (5.28), (5.29), (5.21), (5.30),(5.31). Knowing 

these parameters on one hand, we can calculate Gibbs 

free -energy, enthalpy , entropy and specific heat for 

the individual state from the following relations, 

respectively, 



.1.14 

G = X0G' + Gc  

Gc 
= C3 - X0  G' 

and 	G
o 

= 	+ G
c 

(as G' = Go  - G0) 

H = XoHI + Hc 

H
o 
= H 	X

0
1-1 1  

and 	Ho = HI + He 

(as H' = H 	H ) 
Ho 	c 

Cp = X CI  4. 
o ) 	+C 

c 	k,r 

Cp  = 	X0  Cpl 	Cppr  

CD = Cp + 
Cl  .0 	

c 	p 

S = XS' + S
c 

S
c 

= S X
o
S' + S

r 

and 	So = S' Sc 

(5.32) 

(5.33) 

  

(5.3'4) 

(5.35) 

The values so obtained of various two-state parameters are 

reported in Tables (7-15). In these tables the calculated 

values are also compared with the values obtained by various 

investigators. 
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A further test of the validity of the two state 

relaxational parameters can be made by calculating the 

ratio of the structural or volume viscosity to the shear 

viscosity in water, i.e. 'v /)As  . An expression for 

this ratio is obtained by rewriting Equation (100-6 ) 

in reference (167). Thus 

(v9 2  /11 	 2 
s

T
TxT--- ] (1 - Xo)X0 	5.36) 

Where Ks  is the adiabatic compressibility. The results 

so obtained are compared with the other authors in Table(13). 

From the table it is clear that our model gives the bettor 

agreement with experimentally known values in comparison 

to others namely, Nemethy and Scheraga, Grjotheim and 

Krogh - Moe, Wada, Eucken, Davis and Litovitz. But at 

higher. temperatures Davis and Litovitz model is better 

than others including ours. Here it appears that our model 

also may underestimate the amount of association at higher 

temperatures. 

Further the sound absorption coefficient which 

is due to structural relaxation is computed using the 

following expression 

2 0( 	412 
2  ) 

v 	T,r 
Ni 

(5.37) 



h 	e 
r 

kT 	
Ht / RT 

1 + 

(5.38) Where 

E  A/RT 
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where v is the sound velocity, 	
r 

Kr 	is the relaxational i  

part of the compressibility, Eit 	is the activation energy, 

h is the Plancks constant, N is the Avogadro's number. 

5.9.4 Statistical Treatment 

The formulation of the partition function, Z, 

for the mixture of NXo molecules in Class I (constituted 

by hydrogen bonded molecules i.e. open structure or ice-

like structure) and NXc  molecules in Class II (constituted 

by unbonded monomers i.e close-packed structure) is made 

as follows , 

(Nx0): (Nxc)1 

NX - e/ NX 
RT  

(f I) 	(f
II
e 	) c  (5.39) 

Where 	and fII  are partition functions for each species. 

Now maximization of Z concerning x0  as a variable 

a  z 

= 0 	 (5.40) 
d x

o 

From Equations (5.39) and (5.40) and using Stirling's 

approximation we get the equilibrium value of xo  , 



I 
xo 

f 

-e/kr 
f
I 
 + f

II 
e 

(5.41) 
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and, introducing Equation (5.41) into Equation (5.39), the 

partition function, Z for the equilibrium mixture, is re-

presented as follows, (See Appendix V). The partition 

function of each species, fI  and 	
fII 

 are given in the 

following equations, Equations (5.42) and (5.43) 

 

6 	1 

 

(5.42) I 
1=1 	- e h9±/kT 

 

2 7-  mkT 

h2  

2
I 3/2 	( 	kT ) 3/2  ( Tr A311/2  

v f 1 	2 h3  
f
II 

= 

(5.43) 

there ))i  is the frequency of translational 

vibrations and liberations in state of class I, of  is the 

free volume available to a molecule in thu state of class II 

and A,B, a-nd C are the principal moments of inertia of 

water molecule. The factor in the first bracket of f
II 

corresponds to the translational degrees of freedom and 

that in the second bracket to the rotational ones. The 

contribution from intramolecular vibrations into f
I 
and f

II 

is ignored, because it may be safely regarded as 1 at 
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temperatures from ()DC to 100°C. 

As for the frequencies which have been attributed 

to intermolecular vibrations a tentative assignment has 

been made referring to the data from the infrared and 

Raman spectroscopy : 210 cm
-1 

for three modes of trans-

lational vibrationsC128,168,169) and 500 cm-1  for three 

modes of liberations on the average (168,170). The prin-

cipal moments of inertia have born given to be the same 

as in the vapor state (171). The energy difference 

between two states, C 	and the free volume, vf  , which 

is available to a molecule in the state of class II, are 

two main parameters used in this theory. It is impossible 

to determine the magnitude of C and of  precisely from 

theory at present. Any how here because we know X0, so we 

can determine of as follows, from equations (5.43) and 

(5.41) 

o
f 

X
c 

27TmkT ,3/2  (8 2 	3/2 
kT) 	(r-  ABC)1/2  -C /RI 

h2 	* 
Xoe 

2 h3  

(5.44) 

remaining is the parameter € to be known, 	and C 	has 

been treated as the adjustable parameters to give the best 

fit of calculated values to experimental data. The variation 

of this parameter was, of course, limited within the physically 
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reasonable range. In the earlier treatment based on the 

two - state model the magnitude of S has been estimated 

to be within the range of 2.5 -3.0 KCal/Mol. Smith and 

Lawson estimated the magnitude of C to be 2.6 KCalimol from 

their sound velocity data (160)  and Lawson et al. estimated 

it to be 3 KCal/Mol from their thermal conductivity data 

(105)4 Wada used the value of .2.51 KCal/mol in his 

treatment (168). 

Taking account of the heat of fusion ice in addi-

tion to the estimation described above, we have taken the 

range of g to be 2.75 - 3.15 KCal/Mol and found that 

C = 3 K Cal/mol gives the best fit of calculated values 

to experimental data. 

5.9.5 Calculations of Thermodynamic Variables 

Once we know the partition function, we can 

calculate the various thermodynamic properties of the 

system as follows :- 

The Helmholtz. energy, A is obtained from the following 

Equation (5.45) 

A = - k T ft n Z 
or 	- N k T to (f

1 
+ f

II
e
-C ART) 

	(5.45) 

and the energy and entropy can be calculated by Equations(5.46) 
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and (5.47) 

E = k T2 a Z  
a T 

	

= I 	 111‘ NkT9 f  1 df 	clf I I + G 	/ —e f I )  

	

dT 	or 
- GAIT 

RT2 	I 

(f1 fil0-/kr 
(5.46) 

S = (E-e.)/ T 	 (5.47) 

The specific heat is derived from the energy, E, 

C V 

CV 	= 	( 

• - 	aT2 
 

dE 

) 
2 

7 ) V 
r-- 

/2(frEfil C.€411.  

-C/AT 
(f I+f IIe 	) I\ 	T 

of' of I I -c/RT 
aT e  

+ f II 
R. 	

e 	/RT ) * -C/kT 
I 	f II e  T2 	

+ 

( d2f/  +432f,, -GAT a  fII 	
e-CAT 	

e 
e-C/RT 

dT2 0 T2 e 	+0 --- 	---- 	2 dT 
	RT2  - f  II 

RT3  --1 
+ f2(- 	) 2 P- 

- 

	

€ 2 - CAT 	I 

RT2 

 

( 5.48) - 



where 

f 

* f1 + 

hv 2/kT 

* fT  
e-h1)2/kT) 

-h 91  /kT ' 3 h\;)1  e 
= 	. 	 

dT 	
kT2(1 - e

- t1)1/1(T ) 

3 hv2 

2 kT /  - 

and 

62f, 

aT2 
f2* 

8f11 
T 

and 
432 1E  

z1 -( 
 

27mic )3/2 

d T2 	h2  

211 mk 

h2  

(5.50) 

r2 	3/2 2k) 	( AB 0)1 	r  
2 	av f I   + .1`‘ 3 T vf 	T 2h3  

('5.51) 

(87t  2k)  3/2 Ir. oc)  1/2 
	  *Ts6vf+6T 

2 h3  

v d2 f  
aTo 	(5.52) 

dT 

-h01  3h 	e 	-L  

(5.49) 

/1cT 
e 

+ —,- 2 
T kT2(1_e-1-1V1/kr kT2 ( 1.4, e-hVi/kT) 

J 3h13)2 e
-h 2AT 

kT2(1.46-11V2/kT) . 

I 
43f  ) / 311V  e-h1)14a  
OT 

+ 	\ 1 
1  

I \ kT 2(1 _ e- 1̀  'l /kT)) 

15 

t3 h1)2 0-V2/kT ) 	I 

L 

hO2 2 

1c7.2(
i _e-hi)2/kT) +  kT2 

h V2 0-h/i2/ki 

Using the values of the parameters as described above calcula-

tions of thermodynamic functions have boon made over the 



122 

temperature range from 0°C to 100°C at 10°C intervals. 

The calculated values of the Helmholtz energy, Ai the 

internal energy, E, the entropy, S and the specific heat 

at constant volume, qv 	are given in Table 16, . The 

results calculated are compared with the experimental data 

for water, which are taken from Dorsey (128, 104). The 

agreement is found to be better at higher temperatures than 

at lower temperatures for A, E and S. Further the agreement 

between the observed and calculated values of A,E, and S 

can be made better by choosing the new value of 	higher 

than 3 K Cal/mole. But the circumstances are different for 

the specific heat, Cv. 	The agreement between the observed 

and calculated values is very poor, for which the two-state 

approach has already been criticised. 



cr) 

I
n
v
e
s
t
i
g
a
t
o
r
s
  

O 

123 

0 .0 N. 
co 0 en 
N 	0. 
f 	I 	I 

I.- 	o■ 	 Kt . 0 	1--,. 	en 	 RI- 	• ,-.1 	• 	• 	4 	.- . 	(Ni ,-( 	op 	o• 	ON 	II 	.-4 	,-1 
1 	1 	1 	I 	 1 	1 

	

O 	'0 
N

• 

N 

	

f+\ • 	 • 	• • 	(' • 	r 	- • 

	

,• 	(NJ - 	0 	01 	CO 	r".1 	 cr 	I 	 • 	• 

	

of. RI 	co 	

• 	

r4 	
0 

a) 
• E 

	

u ---... 	• 0  N 	0 	.0 .0 0 

	

>4 r-1 	N '-i CO 	.0 in 	LO en 0 

	

u ea 	 N Izt 	N 	d'' 	't . co 	ON 4) 
to 0 s''' 

	

,0 	N. 	.--1 	,--I 	N 	CO 	r-I 	,. -1 	r-i 	I 	if) 	 f i 	1 	1   
I 	I 
	I 	I 	I 	 I •••••••••■••• 

CO 
0 

* O 

0 
'-1 
0 
E 

a
u
t
h
o
r
s
  

co 
,--4 
C. 
N 
1 

.0 
--4 
o 
,-; 1 

0 
cr) . 

ct. ..-1 

O 
N • 
LI) 

O 
1.- 
CO.Q 
0 

N 
CO 
N 
N 
I 

\c,  
.0 
,so 
. 

1 

to 
0 - 
.' 

N 
N. 

N 
• 

.0. 

N. 
1 q) 

(8  

N 
'4' to 
N 
I 

.0 

.0 

I 

0 
Cr 
. 

0 
CO 

•ct 
N • 
N. 

co 
0‘ 1‘) 
8 

- 	0 
,4- 
.0 
C.1. 

I 

CI 
N. . 

 0 
I 

CO • 
N 

Co 
en 
C') 

co 
•zt. 
(r) 

4 
0 

0 
- 	0 

N 
CO 
I 

co 
ce) 
L--- 
0 

I 

•0 ' 4 
'-, .---I 

0 

0 
co 
• 

0 

I" 	NI 
•0 

73 
C  "0 	 13 (15 	 C -a 	 . az) C 	iti 	 E 0 	 0 et N 	ris 	..-t 0 	 N r-I -1-' 	-P 	›, 0) 	Co '7 -0 ru C 0 	..-1 	4 (1) 	4 1 	 9-I  • u) > 	4-) (4 	a 	-I-)  .0 	4 	> a)  u) 	.1-1 0 	0 C.) 

C. 	 C.) 	co co 	(r) 	-1-) 	,--, 	0 C > -1.) 	E 4 	-- 	1-) 0 	"0 	.H 	r-1 	4-) $4 $4 	n5 •,-i 	- 0 0 	1-1 $-1 	nJ 	E 	o 0, 	CI 0 	Z 0 W (-9 	U') = r.-J U 

0 

as 0 0 
C' 	• , 

-:' • fa 
N N CO N 

F
r
a
n
k
  
a
n
d
 

0 - 0 0 	0 0 0 r(  . 0 	 N  '0 	if) 	.0 	
f". 

CO N N C.1 N I 	1 N I 	1 	I 	 I 

.o 	co 
,:r 	t 	co • 

I 	I 	r-4 	 / 	8 
I 	00 	 I 

NO 
1c) 	 . - 4 	CT \ 	 In 	C \I to 	•4" . CO . 	cO 	N 

CO CO 

.r. 	(.4 	o 	o 	c\I 	cv •:■• 	•:r 	in. 	ts- 	CO 	c0 
4 • 8 	

• 	i. 	•  0 0 	0 • 0 • 0 



TABLE 8 
	

124 

o C 
x 

 c 
Ta mp . , 

X = 1-X i 0 	c 1 
1 

a xo  
) 
. 

T 
1  0 

1 2 	1 
i 

... , ; 
(
a 2X0 

) 
er-77-  

* 	
+4 

10 
I 

8T 

_ 0 .3163 0 .6840 -0.351883 -0.188173 

5 0.3339 0.6661 -0.361484. -0 .195926 

10 0.3522 0.6478 -0.37148 3 -0.204111 

15 0.3710 0 .6290 -0 .381903 -3.212759 

20 0.3904 0.6096 -0 .392767 -0.221902 

25 0 .4103 0 .5897 -0 .404102 -0.231577 

30 0.4308 0.5692 -0 .41593 -0 .241822 

35 0 .4519 0.5481 -0.428294 -0.252681 

40. 0.4736 0.5263 -0.441213•• -3 . 264 200 

45 0.4960 0.5039 -0 .454726 .0 .276429 

50 .  0.5191 .4809 -0.468869 ,-0.28945 

55 0.5429 0.4570 -0.483682 -0 .303249 

60 0.5675 0-.4325 -0 .499209 -0.317967 

65 0.5929 0.4071 . 515495' -0 .333654 

70 0.6191 0.3809 -0.532592, -0 .350389 

75 0.6461 0.3538 .0.550553 -0.368263 

80 0.6741 0.3258 -0.569439. .0 .387373 

85 0.7031 0.2969 -0.589313.  .0 .407829 

90 0.7331 0.2669 .0 .610246 -0.429751 

95 0.7641 0.2358 .632315 -.0.453272 

11 100 0.7963 0.2037 .-0.655602.  -0 .478542 
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TABLE 

T (;m 	 - 
tuxe  

or. 
vc 

(cc/mole) 
.V0  
(cc/mole) 

VI (cc/mole) 

0 0.002071 1.090844 5.23 
0.816435 1 .091639 4.96 
0.830568 1.092535 4.72 

0.844318 1 .093380 4.49 
23 0 .057735 1.094226 4.'26 
25 0.370821 1.095071 4.04 
30 0.803574 1 .095916 3.33 
35 0.895995 1 .096762 3.62 
40 0 .908033 1 .097607 3.41 
45 0.919340 1.098453 3,22 
50 0.931263 1 .099298 3.03 
55 0.942355 1 .100143 2.84 
60 0.953115 1,100989 2.66 
65 0 .963542 1 .101834 2.49 
70 0.973636 1 .102630 2.32 
75 0.98340 1 .103525 2.16 
80 0 .992829 1.104370 2.01 
35 0 .100193 1 .105216 1.86 
90 0.101069 1.106061 1 .72 
95 0.101913 1.106907 1.50 

100. 0.102723 1 .107752 1.45 



126 

TABLE 9 (Continued) 

erature 
oc  

Xo Gi XoGt G 
( Kc al /m014 

Gc G 
0 

0 0.6840 .418 .985 236.586 1.20 913.414 494.429 

10 0:6470 -342.738 -222.026 1.35 112/ .974 785.236 

.20 0.6096 b-259 .489 458 .184 1.50 1341.815 1082.326 

30 0.5692 -167.753 95.485 1.66 1564.515 1396 .762 

40 0 .5264 - 654746 - 34.609 1.33 1795,391 1729 .645 

50 0 .4809 + 49.063 23.594 2.00 2023.594 2072.657 

60 0.4325 179.766 77 .745 2.17 2247 .749 2427 .515 

70 0.3809 331.071 126.105 2.36 2486 .105 2817 .176 

80 0.3259 509.809 166 .147 2.55 2716 .147 3225.956 

90 0.2676 726.244 194.343 2.74 2934.343 3660 .587 

100 0.2037 1010 .465 205.832 2.94 3145.832 4156 .297 

Temp- 
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TABLE 9 (Continued) 

Temp- 
erature  

oc  
p 
	

xo p 	 Cp 	p C 

	CP0  

0 -16 413 41.022 1.007 8 .492 20 .683 4.569 
10 -20 .083 -13.010 1.001 9.634 21.419 1.336 
20 -24.946 -15.207 0.999 11.067 22.139 -2.807 
30 -31.163 -17.738 0.998 12.881 22.841 -;3.321 
40 -39.440 -20 .761 0.998 15.212 23.534 45.906 

50 -50.959 -24.506 0.998 18.269 24.231 -26.729 
60 -67.796 -29.322 0.999 22.387 24.944 *42.852 
70 -93.968 -35.792 1.001 28.138 25.687 -68.281 
80 -138.009 -44.977 1.002 36.568 26 .470 431.539 
90 -22_0.417 -58 .984 1.004 49 .779 27.303 493.113 
00 -409.293 -83.373 1.007 73.295 28.223 -381.069 
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TABLE 9 (Continued) 
, 

Tempe- 	St 
rature 

oc 
XOS' S 

(Cal/deg 
mole) 

S cr Sc 

g 

So 

0 - 7.299 -4.993 14.5 1.474 29.967 13.668 
10 - 7.947 -5.148 15.1 1 .273 21.521 13.574 
20 - 8.725 -5.319 15.7 1.019 22.038 13.313 
30 - 9.661 -5.499 16.3 0.698 22.496 12.836 
40 10.798 -5.684 16.9 0.290 22.874 12.076 
50 -12.208 -5.871 17.5 -0.230 23.141 10 .933 
60 -13.998 -6.054 18.1 -0 .890 23.257 9.258 
70 -16.358 -6.231 18.6 -1 .763 23.068 6.709 
80 -19 .625 -6 .396 19.1 -2.903 22.593 2.968 
90 -24.459 -6.545 19.6 -4.432 21.713 -2.745 

100 -32.664 -6.654 20.0 -6 .625 20 .029 -12.635 



TABLE 9 (Continued) 

emo eratu re 
oK 

* 103) co 
( 

*1012) 

(Cm2/dynes) 
P 

Calloc.mole) 

;73.9 0.957913 36 .561 9.661 

283.2 1 ..160`  35.804 8 .409 
293.2 1.132115 36.045 6.932 
303.2 1.18178 36.881 5.103 
313.2 1 .214916 38.073 2.772 
323.2 1.236066 39.481 -0.275 
333.2 1.248526 41.041 -4.378 
343.2 _1.255218 42.711 -X0.106 
353.2 1.253164 44.492 -18.507 
363.2 1.259213 46 .396 -31.860 

373.2 1-.259553 48.462 -55.-150 
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TABLE 9 (Continued) 

13.1. 

( c'cif10 3) 	( Kr, r*10 -12  

( 0C ) 	(om2/dyne) 
Temperature 

oK 'A 1 A. v s 

273.2 -1.016013 44.298 8.492 3.1407 
283.2 -0 .972901 41.981 9.634 2.7269 

293.2 -0.927215 e- 9.823 11.067 2.2331 

303.2 -0.879380 - 7.870 12.881 .  1.7306 
313,2 -0 .329716 -6.149 15.212 1.2710 

323.2 -0.778466 -4.671 18.269 0.8820 
333.2 -0 .725826 -3.433 22.387 0.5751 
343.2 -0.672019 -2.425 28.138 0.3489 

353.2 -0 .617264 4.630 36 .568 0.1936 

363.2 -0.561813 -1.027 49.779 0.0957 
373.2 -0.505853 -0.585 73.295 0.0394 
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TABLE 	10 

Temperature 
o

C  
(4611(10"31bC ) 
Present calc ii 

4171 ea s. (1°- 	) 4(  cal  (10-3  PC) 
(Davis & Litovitz ) 

0 -0.0581 -0.031 -0 .032 
10 0.0871 0.094 0.084 
20 0.2049 • 0.200 0.190 
30 0 .3024 0.295 0.287 
40 0 .3852 0.380 0.376 
50 0.4576 0.457 0.458 
60 0.5227 0.528 0.533 
70 0.5832 0.596 0.602 
80 0.6409 0.661 0.665 
90 0.6974 0.724 0.724 

100 0.7537 0.786 0.779 



TABLE 11 
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present 
cal c. 

Davi s & 
Lit ovitz 

Eu ck en 
(10-3/0C) 

116ethy & Smith & 
Scheraga Lawson 

Frank & 
Qui st T emp eratu re 

10 	-C oC  10
.43/0c  10-3AC 10 -'3AC 10 4-3/°C 

I 

0 -1.016 -1.666 -0.738 .72 	-1.46 	-0.33 

20 -0.927 -1.444 -0.515 -0.56 	se 

40 .0.8 30 -1.258  -0.320 •Is 	 ■1111. -0.40 

60 -0.726 4.101 -0.186 -0.26 

80 .0.617 ‘0.969 -0.101 -0.15 

100 -0.506 -0.858 -0.053 -0.09 



Tempe-
rature 

oC, 

NemethyGrioth- 
g, 	eim & 

Schera-Krogh-ga oo 
Present 
calcu. 
1 ations 

Measu 
rod d= 2.80 

0 

Davis & 
Litovitz 

d=2.8 2 
0 

ilada Eu cken 
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TABLE 13 

0 
10 

20 
30 
40 
50 
60 

3.14 

2.73 
2.23 

1 .73 
1.27 
0.88 
0.57 

2.33 
2.18 
2.10 
2.10 
2.01 
2.01 
2.04 

3.97 

3.75 
3.48 
3.20 
2.92 
2.64 
2.37 

4.23 

4.06 
3.83 
3.56 
3.27 
3.00 
2.72 

0.98 
0.86 
0 .7 3 
0.59 
0.46 

0.26 

0.53 
MI 

0.40 
40.1. 

0.23 

3.14 

0.44 

0.39 
0.32 

11. 

0 .80 

0.34 

0.11, 

0.03 
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TABLE 15  

Io  
Present 1 	gi  °m ethI 

 
i  

Geh 
y 
 era, cal cu.. 

lotions! 94 	 

Tamp- 
oratu 

cc d= 
2680 

Davis & 
Litovitz 

d= 
2.2 

Bucken 

3rjoth 
er dada 
Krogh 
Moe 

Lito-
vitz 

Carne-
vale 

Frank 
Qui s 

Smith 
awson 

12.06 

11.70 

11.20 

10.58 

9.91 

9.20 

8.49 

7.81 

7.15 

6.54 

5.97 

0 8.49 9.64 

10 9.63 8.74 
20 11.07 7,.88 

30 12.88 6.94 

40 15.21 6 .03 

50 18.27 5.12 

60 22.39 4.22 

70 28.14 3.46 

80 36.57 2.91 

90 4'9.78 1.86 

100 73.29 

10.55 

10.06 

9.49 

8.86 

8.26 

7.58 

6.99 

6.38 

5.83 

5.32 

4.86 

8.5 

8.3 

8.0 

7.5 

7.2 

11.2 

9.34 

7.53 

6 .22 

5.14 

3.96 

10.36 

9.35 

 8.37 

- 

1.1 

- 

011 

••• 

Om 

OID 

0.55 

011, 

14.77 

INN 

WM. 
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TABLE 16 

Cv Cal /dog .mol 
T amp ca- 
ature 
O

C  

0 	-.1 .20 	3.93 
10 w4..35 -1.09 
20 .50 1.22 
30 -.1.66 -1.35 
40 -1 .83 .49 
50 . 0.2.00 -1.65 
60 -2.17 -1.83 
/0 -2.36 -2.02 
80 -.2.55 -2.25 
90 -2.74 -2.51 

100 -2.94 -.2.84 

2.75 2.29 14.5 12.01 18 4 24.83 
2.93 2.50 15.1 12.69 18.0 24.25 
3.11 2.71 15.7 13.38 17.8 23.49 
3.29 2.92 16.'3 14.09 17.7 22.59 
3.47 3.14 16.9 14.80 17.5 21 .53 
3.65 3.37 17.5 15.52 17.2 20.34 
3.83 3.60 18.1 16.29 17.1 18.99 
4.01 3.84 18.6 17.08. 16.8 17.53 
4.20 4.08 19.' 17.93 16.5 1L-  .92 
4.36 4.34 19.6 18.84 16.3 14.18 
4.55 4.60 20.0 19.94 16.1 12.26 
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APPENDIX 	I 

Property unit Range of 
study oC  

Ax 
B x  

SURFACE 
	dynes/cm 0 to 100 	0 . 39098 381E+01 0 .1 315 20 23 

T ENS ION 

VISCOSITY 	cP 	0 to 100 	-. 247 21 381E+01 0 .9659767 3 

SELF 	-5 - 
DIFFUSION cm2/sec 

0 to 100 	0 . 37 371564E+01 -0 .1 2579146E+01 

DIELECTRIC 
RELAXAT ION 10 -12 
T IME 

0 to 50 	-0.60141840 
sec 

0 .1 11561 28E+01 

SPIN- 
REL AXAT ION 	Sec. 0 to 100 	0.371492E+01 
T IME 

THERMAL 	10 -7  watt//  

	

 0 to 100 	0 .21143176E+01 
CONDUCT IVITY cm °C 

MECHANICAL -12 	0 to 
RELAXATION 10 	sec 

	100 	-0.20745722E+01 

T IME 

-.10 390651E+01 

-.1 27151 38 

.10977080E+01 

ULTRASONIC 10 47  sect/ 
ABSORPTION 	cm. 0 to 80 	0.58151730 	0 .1199539 3E+01 

DIELECTRIC 
CONST ANT 

SOUND 	Km/sec 
VELOCITY 

REFRACT IVE 
INDEX 

0 to 100 	0 .37179884E-#.01 

0 to 100 	0 .54910 36 2 

0 to 100 	0.26825220 

3 .24 314699 

-0.6658 2701E-01 

0 .6 376860 5E-C2 

DENSITY 	gm/c.c. 0 to 100 	-.70 396967E-p1 0 . 22207 242E-01 

MAGNETIC 
SUSCEPT I- 	0 to 100 	0 .1808 3700 E-01 -0.661098 33E-0 2 
BILITY 
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APPENDIX II  

:Pressure 
( atm.) 

B x 
Range 
of 

study( oc  ) 

50 	-2.4494197 	0.95653348 

100 	-2.4110384 	0.94244529 

0 to 100 
200 	-2.3562609 	0.92027514 

300 	-2.3063206 	0.90139425 
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Pressure Range o 
( atm.) Ax Bx study 

°c)  ( 

1000 5.2834325 -0 .10339864 

2500 5.3781331 -0.10694290 

4000 5.460 3588 . 11 5200 44 . 	30 to 130 

6000 ' 5.5133190 -0.10797428 

8000 5.5708826 -0 .10889356 
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APPENDIX IV 

Range of  f 1.'Fo ssu re 	I  

" 

	

	
13 t .) 

50 
100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
6 50 
700 
7 50 
800 
8 50 
900 
9 50 

1000 

0 .597 56407 E-01 	41;19619117 E-01 
0.57  577 248E-01 	-0 ,197 20169E-01 
0 554 30 20 3E-01 	198 20 277E-01 
0.53315581E-01 	.O .19920108E..01 
0.51 2327 53E-01 	-0 . 2001971.6E-01 
0.49177 57 2E-01 	-0.20117.379 E-01 
0 .4715326 2E-01 	-0 .20 214654E-01 
0.45159525E-01 	-0.20 31176 2E-01 
0 .43190884E-01 	-0.20406815E-01 
0 .41 251 38 3E-01 	-0.20 501090 E-01 
0 .39 335553E-01 	-0.20 59 3365E-01 
0 . 37446984E-01 -0.20684806 E‘.01 
0.35581490E-01 -0 . 20774 248E-01 
0 .337 39067 E-01 -0.20861690E-01 
0 .319 2178 3E-01 -0 .20948 354E-01. 
0 .301 23356E-01 -0.210 31907E-01 
0 .28 346707 F.-01 -0 . 211141 26E-01 
0 .26 589549E-01 -0.2119 36 24 E-01 
0.24851614E-01 -0 .21 271 233E-01 
0 .231 31791E-01 -0. 21 346 286E-01 

0 to 100 
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APPENDIX V 

The partition function, Z, for the mixture of 

NX0  molecules in class I and NXc  (or N(1-X0)) molecules 

in class II, is given by 

NX0 	
-VAT 

N(1-X )  
(fl) 	(f ile  file 	 (a) 

(NM'. (N(1-X0)) 

Taking logarithm, we get 

log Z = log NV. - log (NX0) t - log N(1-X0): + NX0log f I  

+ N(1-X0) log ( 	-G/RT  flle ) 

Using Stirling approximation, 

log Z = N log N N NX0log N X0  + Nxo- N(1-X0)log N(1-X0) 
, -GAT + N(1-xo) + NX0log f I  + N(1-X0) log (fi le 

or 

log Z = N log N NX0  log NX0  N (1-Xdlog N (1-X0)+Rolog 

+ N(1-X0) log ( fII e-GAT) 	 (b) 

Now maximizing equation (b), we get, 
f 0 log Z 	 0  = 0 = N log ( 	1- 	) -I- N log 	' I  , axo 	 xo 	 fII e
-g/T 

Xo 	 f I 

1- Xo 	f e -GAT 
II 

f I or X 
0 	fI fII e-g/RT 

Ni. 

• • 
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or log f1  
-QAT 	xo  

log f 	e 	= log ---"^"""---"'" 	(d)IT 
.1. X"o 

Now equation (b) can be written as, 

log Z = N log N 

N log 

N log 

NXo [log 

N (1-X0 ) .14 

f I  e 

1 
N X0  - log N(1-X0 ).1 

I  
NX0  [ log 	logg v,q/e•".gAT 

) 

Using equation (c) we get 

-GAT 
, f1I e 	N  

log Z = log t 	  
/ - Xo 

(e) 

Now from equations (c) and (e)) 	we get finally, 

log Z = log (f I  + f II 
 e -6/RT ) N 

-GAT N 
Z = (f I + f II e 	) 
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APPENDIX VI  

Let the given equations be 

f (a,b) = 0 

g(a,b) 	= 0 

Now if ao  , bo  be approximate values of a pair of roots 

and 	Oa , bb be the corrections, so that 

	

a = a
o 	

ba 

	

100 	615  

Then equations (1) and (2) become 

f(ao  4 ba r  b04 bb ) 	= 0 

g(ao  4ba 	1004 61a ) 	= 0 

expanding equations (3) and (4) by Taylor's theorem for a 

function of two variables, we have, 

of , 
0 	

Of 
f(a04 ba , 100  .4 Ma) = f (ao,b0) 	

ca 
ba ( 	/ 	Sip ( 

• terms in higher powers of Oa & Ob =0 

(5) 

g(ao 	ba , bo+Sb) = g(ao,b0) 4 ba(ia
g  
)0 	bb( a 

8 
)o  

▪ terms in higher powers of ba & bb =0 

(6) 

Now since ba and Bb are relatively small. we neglect their 



correction to be 

(a b ) of o 

g  (a0 ,1)0) 

ba= 

Oa 

1 )0 
g (a0 ,b0) 
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squares, products and higher powers and then equations (5) & 

(6) become simply 

af ) 	
af, 

f (a0 ,b0) 	Sa(-.., I  4. bb VO0 	= 0 	(7) 
Oa o 

g(ao ,b0) 	ba(0 )0 	bb ( 1.3.a  
2 )

0  = 0 	(8) 

Solving these equations by determinants, we find the first 

(9) 

6b=  	(10) 
A 

where, 

   

A 

of 
) 

ag , 
as )0  

Of 
( ob )o 

( 
ag 
8b )0  

  

of , 	 Of The notation ( 7 )0  means the value of ( 77
A

—/ vhen a0  
ef, 

and 130  are substituted for a and b. Similarly ( 	) aa 
Of means the value of ( as  ) when a = a(1) 	b = b(1) ; 

and so on. 
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a shall now apply this method to solve Van der waa11  s 
equation for a and b. The Van der waalt s equation is 

) ( 	b) = RT 	 (12) 

Let 
a • 

S E (p• 
[ 
	2) 

 
(v. b) -RT 

V. 

a s f = — = 2 7 Pi 	,.., 1 	t- Pi  - — 4 RTb 4. --$0  .. 2Ia z. 	+ (... • a_ V-- 	1.  Vi 	i Pi  
as 	S. 

i 

(13) 

RT 	- a 
V. 1 

Z"-L 
Vi 

b2  1  
7 
1  

5- 	I 
4- 	•-•-• vV. 

J 
14) 

(3 	2 - 1 	 P. 

	

c--. a. 	1 --.% 2 
=r' I 	 .--- =a 1--- + 2 at — -aRTE—+ p? Vi 

a 	i 3 

	

V 	i V. 	i v2 •  a. I 

-RT r p1  - b r p2. + 2 a 1 --IP  + a27... 2-  [ 
i 14 	± vl 	

(1.5) 3. 	i 	3. 

Therefore 
1 df = - 2 bi 7 + b2  t 1  + aa 	i vi 	i 4 V- i 

af 	v- Pi 	,_,_ 1 	‘..., Pi 	si... 1 + RT C — - 2 .1., 	- 2 a 2- ab 	a. v-
, 
	i v2 	3. V

a.  . 	i 3 V. a. 
+ 2ab 1 1  1 

	

	 (17) -- Vi  

(16) 



(23  2 a E W3 + 2 
dai 1 

.10 

.: Pi 2 — 1 -b 

ad. 
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and 

dg — = 	E p.2  + 2 a Z 
ub 	

i 

pi 
ewnon■. 

r  
i 

rrad 

1 

1 
-- 

(16) 

(19) 

V1  . 

7-.  2a  - 

V.2 3. 

V4  1  
a2E 

i 2 
Vi 

Now the first correction is determined by substituting 

equations (14) to (19) in equations (9), (10) and (11) 

Additional corrections can be found by repeated 

applications of those formulae with the improved values of 

a and b substituted at each step. The computed values of a 

and b this way are shown in Figures 12 & 13. 
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The trial potential is 
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n 
(r,T) = 4 Go[(-9.°1 

r 	r 
( 1 + Q ) (1) 

   

We can 'write for this equation 

,T) =4 %(1.+ g2)ci 
1+0 n cro I+0) 
	 ) 	( 	r 

Comparing equations (1) and (2) we get for the powers (2) 
, 

0( 	n 	 (3) 
m 8 = 	 (4) 

Now subtracting equation (4) from equation (3) , we get, 

1 
P 	(n-m) 
	 (5) 

ilbstituting the value of p in equation (3), we get for et 

  

(6) 

 

(n-m) 

Hence equation (2) becomes 

 

n 
(r,T) = 4 6 (T) 

where 60) = Go (1 * ‘a011-Irn7. 

1 

(~ (T)  
1.111.01.01■1000 

  

  

  

0.111■41.8 

/ 1 	 ) n-m 
o ‘ " 
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